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[bookmark: _Ref100697257]S1: Occurrence data of European bison and moose used in this study
[bookmark: _Ref90420381]Table SI 1: Overview of European bison and moose occurrence data used in this study
	Species
	Region
	Sampling years
	# of GPS-collared individuals (f / m)
	# of records

	E.Bison
	Augustowska (PL)
	2018-2019
	1 / 0
	7,539

	
	Białowieska (PL)
	2011-2019
	12 / 4
	127,113

	
	Bieszczady (PL)
	2001-2019
	3 / 1
	108,643

	
	Borecka (PL)
	2012-2019
	13 / 4
	209,938

	
	Knyszynska (PL)
	2012-2019
	10 / 7
	187,621

	
	Western Pomerania (PL)
	2014-2019
	68 / 3
	1 116,803

	
	Rothaar Mountains (GER)
	2013-2020
	4 / 1
	56,693

	Moose
	Białowieska (PL)
	2013-2017
	-
	89

	
	Biebrza (PL)
	2012-2017
	15 / 15
	560,279

	
	Polesie (PL)
	2008-2017
	12 / 5
	155,827

	
	Western Poland
	2010-2020
	0 / 1
	15,232

	
	Central Poland
	2008-2018
	-
	70

	
	Northeastern Poland
	2008-2011
	-
	149

	
	AUT/GER/CZ
	2000-2017
	-
	220

	
	Eastern Germany
	2018-2020
	0 / 1
	7,727

	
	Kalmar (SWE)
	2010-2012
	10 / 5
	20,813

	
	Kronoberg (SWE)
	2012-2013
	9 / 6
	21,841




[bookmark: _Ref100697121][bookmark: _Ref92924194]S2: Generation of predictor variables used in the habitat suitability models
We accounted for variation in the spatial scale at which different variables influence habitat selection of animals by considering predictors at the local (100m resolution) as well as at the home range scale. For the latter, we derived home range size by calculating mean summer (April-September) home ranges (MCP95) across all individuals with available GPS-tracking data (Figure SI 1). Given that males tend to have larger home ranges, thus accommodating female home range sizes (Borowik et al. 2021; Krasińska et al. 2000), we then used the median home range size across all males, yielding a radius of 5km for European bison and 3.5km for moose. To derive variables at the home range scale, we applied these species-specific radii for calculating focal neighborhood means of the predictors.
For the variables Share of core forest and Share of edge forest, we used the Copernicus High Resolution Layers 2015 Forest product (available at https://land.copernicus.eu/pan-european/high-resolution-layers/forests), and derived measures of forest fragmentation (core forest: a forest pixel surrounded by other forest pixels; edge forest: forest pixels on the outside of forest patches as well as along openings inside forest patches) through the application of morphological image segmentation (Soille and Vogt 2009) using the GuidosToolbox (Vogt and Riitters 2017) and considering a forest edge width of 100m. We then also calculated the Euclidean Distance to nearest core forest pixel. For the variables Share of grasslands and Share of cropland, we used the Pan-European land cover map provided by Pflugmacher et al. (2018) (available at https://doi.pangaea.de/10.1594/PANGAEA.896282). Moreover, we used the classes “permanent wetness” and “temporary wetness” of the Copernicus High Resolution Water & Wetness 2015 status layer (available at https://land.copernicus.eu/pan-european/high-resolution-layers/water-wetness) and intersected this with the abovementioned layers of forest and grassland cover to generate the predictor variable Share of wet forests & grasslands. To capture fine-scale variability of vegetation productivity, phenology, and structure, we used Landsat satellite-based habitat metrics as described in Oeser et al. (2019). We used the Google Earth Engine code provided in Oeser et al. (2021) to create layers of Median tasseled cap greenness (proxying vegetation productivity), Interdecile range of tasseled cap greenness (proxying vegetation phenology), and Median tasseled cap wetness (proxying vegetation type and structure) for each year with available species data. To calculate the topographical variable Mean slope, we used elevation data from the Shuttle Radar Topography Mission (SRTM, available at https://lpdaac.usgs.gov/products/srtmgl1v003/).
We used the GHS-POP dataset from the Joint Research Centre (JRC) of the European Commission (years 2000 and 2015, available at https://ghsl.jrc.ec.europa.eu/ghs_pop2019.php) to derive the variable Mean population density. For the variable Distance to nearest settlement, we used CORINE land cover data (years 2000, 2006, 2012 and 2018, available at https://land.copernicus.eu/pan-european/corine-land-cover), aggregating the classes: Continuous urban fabric, Discontinuous urban fabric, Industrial or commercial units, Port areas, Airports, Construction sites, Green urban areas, Sport and leisure facilities, and calculated the Euclidean distance of each pixel to this aggregated settlement class. We used OpenStreetMap (OSM) data (www.openstreetmap.org, available at https://download.geofabrik.de/) and selected the OSM road classes: motorway, trunk, primary, secondary and tertiary to generate the predictor variable Mean road density, while using the classes motorway, trunk and primary to calculate the Euclidean Distance to nearest major road for each pixel.
We generated all predictors at a spatial resolution of 100m and projected all data to the ETRS89 Lambert Azimuthal Equal Area coordinate system. We matched each species occurrence with the respective predictor from the closest year with available data for fitting the models, while using the most recent predictor layers for the predictions and creation of our habitat suitability maps. The variable Share of cropland was highly collinear with the variable Share of core forest and was therefore excluded from our final models. 




















[bookmark: _Ref100693286]Figure SI 1: Mean annual summer (April-September) home range sizes (MCP95) in the different regions, derived from all individuals with GPS-tracking data. Numbers on the bottom depict the number of individuals represented in the sample. We excluded data from two individuals of each species that did not have a stable summer home range and represented clear outliers exhibiting explorative movements.


[bookmark: _Ref100697394]

S3: Further details on the habitat suitability modeling
Filtering of species occurrence data
In order to exclude sporadic occurrences (e.g., representing migratory or exploratory movements) for the purpose of modeling potential core habitats, we firstly calculated 95% kernel utilization distributions per individual for the GPS-tracking data (using the R package adehabitatHR, Calenge (2006)) and selected all records inside these areas. Secondly, we used ancillary data differentiating areas of permanent and sporadic occurrences of moose in Czechia (see Romportl et al. (2017)). Third, we included moose records from Białowieska, Bolimowska and Kampinoska forests as permanent occurrences, following official reports (e.g., by protected area and forestry administrations) and personal field observations of the authors. In the connectivity assessment we additionally included all the sporadic occurrences for the creation of resistance surfaces which thus also reflected the ability of animals to move through suboptimal habitat (Cushman et al. 2013; Killeen et al. 2014).
Model parameterization
We ran Maxent models with a maximum of 2,500 iterations (Phillips and Dudík 2008), and systematically compared models with solely hinge features vs. hinge+product features (Elith et al. 2010) as well as along a vector of regularization multipliers (1,2,3,4,5). For BRTs, we used a bag fraction of 0.5 (Friedman 2001) and compared all combinations of tree complexities (1,2) and learning rates (0.1, 0.05, 0.01, 0.005, 0.001) to find the best model fit (Elith et al. 2008). We allowed only simple two-way interactions as limiting model complexity is advised when predicting potential habitat for species not in equilibrium with their environment (Elith et al. 2010). We used the R package dismo (Hijmans et al. 2020) to carry out the modelling (functions maxent and gbm.step). 
[bookmark: _GoBack]
Table SI 2: Parameter settings of final habitat suitability models (selected via the performance metric external CBI)
	[bookmark: _Hlk100694659]
	Maxent
	BRT

	
	Regularization
	Features
	Tree
complexity
	Learning rate
	# of trees

	E.Bison environmental
	5
	hinge + product
	2
	0.005
	7300

	E.Bison human
	5
	hinge
	1
	0.01
	2150

	Moose environmental
	5
	hinge
	1
	0.001
	9850

	Moose human
	5
	hinge + product
	1
	0.005
	3200




[bookmark: _Ref101364296]Table SI 3: Performance metrics of final habitat suitability models
	
	CBI ext*
	CBI c-v**
	AUC ext*
	AUC c-v**

	
	Maxent
	BRT
	Maxent
	BRT
	Maxent
	BRT
	Maxent
	BRT

	E.Bison environmental
	0.96
	0.9
	0.98
	0.98
	0.78
	0.77
	0.76
	0.77

	E.Bison human
	0.97
	0.92
	0.98
	0.96
	0.78
	0.77
	0.71
	0.72

	Moose environmental
	0.44
	0.37
	0.98
	0.96
	0.61
	0.62
	0.7
	0.69

	Moose human
	0.79
	0.75
	0.83
	0.93
	0.64
	0.66
	0.65
	0.66


* external validation
** internal cross-validation


[bookmark: _Ref92924225]Table SI 4: Region-specific external validation measures for the final European bison environmental habitat suitability models. Each row represents a habitat model which omitted the respective population and used the data as validation data
	Population
	Maxent CBI
	Maxent AUC
	BRT CBI
	BRT AUC

	Augustowska
	0.99
	0.99
	0.62
	0.93

	Bieszczady
	0.93
	0.64
	0.96
	0.62

	Białowieska
	0.96
	0.8
	0.98
	0.78

	Borecka
	0.97
	0.94
	0.9
	0.94

	Knyszynska
	0.94
	0.68
	0.96
	0.69

	Rothaar
	0.95
	0.79
	0.96
	0.83

	Western Pomerania
	0.99
	0.64
	0.95
	0.64



[bookmark: _Ref92924339][bookmark: _Ref92924331]Table SI 5: Region-specific external validation measures for the final moose environmental habitat suitability models. Each row represents a habitat model which omitted the respective population and used the data as validation data
	Population
	Maxent CBI
	Maxent AUC
	BRT CBI
	BRT AUC

	Białowieska
	-0.35
	0.48
	-0.45
	0.54

	Biebrza
	1
	0.81
	0.98
	0.78

	CZ/GER/AUT
	-0.27
	0.49
	0.36
	0.59

	Germany East
	0.74
	0.56
	0.53
	0.58

	Kalmar
	0.35
	0.53
	-0.1
	0.46

	Kronoberg
	0.44
	0.52
	-0.1
	0.51

	Poland West
	0.26
	0.53
	0.4
	0.56

	Poland Central
	0.82
	0.89
	0.71
	0.91

	Polesie
	0.98
	0.72
	0.98
	0.67





[bookmark: _Hlk100695516]S4: Partial dependency plots of the habitat suitability models
[bookmark: _Ref101364356]Figure SI 2: Partial dependency plots of final Maxent and BRT environmental habitat suitability models for European bison. Numbers in parentheses indicate the relative variable importance in the models (Maxent, BRT).




Figure SI 3: Partial dependency plots of final Maxent and BRT human pressure models for European bison. Numbers in parentheses indicate the relative variable importance in the models (Maxent, BRT).




[bookmark: _Ref101364539]Figure SI 4: Partial dependency plots of final Maxent and BRT environmental habitat suitability models for moose. Numbers in parentheses indicate the relative variable importance in the models (Maxent, BRT).



Figure SI 5: Partial dependency plots of final Maxent and BRT human pressure models for moose. Numbers in parentheses indicate the relative variable importance in the models (Maxent, BRT).




S5: Continuous habitat suitability index mapsFigure SI 6: Continuous output maps of the separate habitat suitability models based on predictors describing 1) the natural environment, and 2) human pressure

S6: Extrapolation uncertainty maps
[image: A picture containing text

Description automatically generated]Analysis of extrapolation uncertainty using Multivariate environmental similarity surfaces (MESS) (Elith et al. 2010).Figure SI 7: Multivariate environmental similarity surface (MESS) extrapolation uncertainty maps of the environmental habitat suitability models. Black pixels indicate locations where the values of predictor variables are outside the value range contained in the presence and background data used for model training (MESS values <0). These areas represent novel environments where predictions might be unreliable.
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