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The beliefs which we have the most warrant for have no safeguard, but a standing invitation to the
whole world to prove them unfounded.

— John Stuart Mill, 1871



Abstract

One of the grand challenges in robotics is to create robots capable of performing a wide range
of tasks in unstructured environments based on arbitrary user command. The key challenges
to develop “general-purpose” robots are acquiring a diverse repertoire of general-purpose
skills and non-expert users to be able to effectively specify tasks for the robot to solve.
Moreover, such robots need strong generalization capabilities to adapt to new environments,
identify and handle unfamiliar objects and to understand instructions it has never been given
before. Despite the significant strides achieved in robotics over the last decades, the reality is
that the majority of robots currently in use in real-world settings, such as warehouses and
factories, are still limited to performing only a narrow range of pre-programmed behaviors
for specific tasks in controlled industrial environments.

In this thesis, we introduce techniques that enable a robot to acquire general-purpose
knowledge from purely offline, unstructured data that allows to compose long-horizon,
multi-tier tasks by following unconstrained language instructions.

To achieve this, we first introduce a method to estimate pixelwise distributions for pairwise
spatial relations between objects that enables a robot to place objects in accordance with
the spatial relations expressed by the user. Our method lifts the requirement for pixelwise
ground-truth data by classifying hallucinated high-level scene representations as an auxiliary
task. We extend our approach to follow unconstrained language instructions to pick and
place arbitrary objects and effectively resolve ambiguities through dialogues by grounding
objects and their spatial relations. Secondly, as a step towards instructable robots that can
learn many useful behaviors, we present CALVIN, the first public benchmark of instruction
following that combines: natural language conditioning, multimodal high-dimensional inputs,
7-DoF continuous control, and long-horizon robotic object manipulation. We additionally
contribute an extensive study of the most critical challenges in learning language conditioned
policies from offline free-form imitation datasets. Thirdly, taking inspiration from how
intelligent beings have the ability to discover, learn and transfer skills without supervision,
we present a method that enables a robot to learn skills from unlabeled videos. Our proposed
models enables training of continuous control policies to solve novel tasks that require the
interpolation of previously seen skills. Fourthly, we address the challenge of producing
previously unseen combinations of skills, learned from an offline, unstructured dataset, to
reach temporally extended goals by “stitching” together skills. We contribute a self-supervised
hierarchical approach that combines the strengths of the imitation learning and reinforcement
learning paradigms to learn task-agnostic long-horizon policies from high-dimensional
camera observations. Finally, we present a method that learns language-conditioned robotic
visuomotor skills from unstructured data in the real world in a data-efficient manner by
discovering object affordances to enable efficient policy learning and motion planning. Our
contribution goes beyond existing paradigms by allowing the robot to follow unseen abstract
natural language instructions, such as “tidy up the workspace and turnoff the lights” with no
additional training.
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We implemented and tested all methods presented in this thesis on real-world datasets and
in extensive experiments with real robots. We show that our proposed approaches are key
enablers to (i) learn diverse skills to perform tasks in house-like environments from uncurated
data, (ii) relate human language to a robots perceptions and actions, and (iii) efficiently
complete long-horizon, multi-tier manipulation tasks in the real world. We hope that these
techniques will open the door for the future development of agents that can relate human
language to their perception and actions and generalize abstract concepts to unseen entities
in the same way humans do.



Zusammenfassung

Eine der großen Herausforderungen in der Robotik besteht darin, Roboter zu entwickeln,
die in unstrukturierten, haushaltsähnlichen Umgebungen auf der Grundlage von Benut-
zerbefehlen eine Vielzahl von alltäglichen Aufgaben ausführen können. Die wichtigsten
Herausforderungen bei der Entwicklung von sogenannten “Allzweck”-Robotern sind die
Erlangung eines vielfältigen Repertoires an Fähigkeiten und die Möglichkeit für Benutzer,
Aufgaben effektiv für den Roboter zu spezifizieren. Darüber hinaus benötigen solche Roboter
starke Generalisierungsfähigkeiten, um sich an neue Umgebungen anzupassen, unbekannte
Objekte zu identifizieren und zu manipulieren sowie neuartige Anweisungen zu verstehen.
Trotz der erheblichen Fortschritte, die in den letzten Jahrzehnten in der Robotik erzielt werden
konnten, werden in der Praxis immer noch mehrheitlich Roboter eingesetzt, welche auf eine
begrenzte Anzahl vorprogrammierter Verhaltensweisen für spezifische Aufgaben beschränkt
sind.

In dieser Arbeit werden Techniken vorgestellt, die es einem Roboter ermöglichen, Fä-
higkeiten und Fertigkeiten aus rein unstrukturierten Daten zu erlernen. Dies bietet solchen
Systemen die Möglichkeit, langfristige, mehrschichtige Aufgaben durch die Befolgung von
Sprachanweisungen auszuführen.

Um dies zu erreichen, stellen wir zunächst eine Methode vor, um pixelgenaue Verteilun-
gen für paarweise räumliche Beziehungen zwischen Objekten zu schätzen, welche es es
einem Roboter ermöglichen Objekte entsprechend den von dem Benutzer ausgedrückten
räumlichen Beziehungen zu platzieren. Die vorgestellte Methode hebt die Anforderung
an pixelgenaue Annotationen auf, indem sie halluzinierte Szenendarstellungen als Neben-
aufgabe klassifiziert. Wir erweitern unseren Ansatz um Sprachanweisungen zu folgen, um
beliebige Objekte zu greifen, zu platzieren und Ambiguitäten durch Dialoge zu lösen. Zwei-
tens, als Schritt in Richtung auf programmierbarer Roboter, die viele nützliche Aufgaben
lernen können, stellen wir CALVIN vor, den ersten öffentlichen Testumgebung, welche
Folgendes kombiniert: das Folgen von Sprachanweisungen, multimodale hochdimensionale
Eingaben, das Lernen von kontinuierlichen Regelungsstrategien mit sieben Freiheitsgraden
und zeitlich langen Objektmanipulationsaufgaben. Wir tragen zusätzlich eine umfangreiche
Studie der kritischsten Herausforderungen beim Lernen von Sprachbedingten Agenten aus
Freiform-Imitationsdatensätzen bei. Drittens, inspiriert von der Fähigkeit intelligenter Wesen,
zielgerichtete Handlungsstrategien ohne Aufsicht zu entdecken, zu lernen und zu übertragen,
stellen wir eine Methode vor, die es einem Roboter ermöglicht, Fähigkeiten aus Videos
zu lernen. Unser Ansatz ermöglicht das Training von kontinuierlichen Steuerungsmodel-
len, um neue Aufgaben zu lösen, die die Interpolation von zuvor gesehenen Fähigkeiten
erfordern. Viertens befassen wir uns mit der Herausforderung, bisher unbekannte Kombina-
tionen von Fähigkeiten aus einem offline, unstrukturierten Datensatz zu erzeugen, um zeitlich
erweiterte Ziele zu erreichen, indem man Fähigkeiten zusammenbindet. Wir stellen einen
selbst-überwachten hierarchischen Ansatz vor, der die Stärken des Imitationslernens und des
berstärkenden Lernens kombiniert, um aufgabenunabhängige langfristige Regelungsstrategi-
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en aus hochdimensionalen Kamera-Beobachtungen zu lernen. Schließlich stellen wir eine
Methode vor, die sprachbedingte robotische Fähigkeiten aus unstrukturierten Daten in der
realen Welt auf dateneffiziente Weise durch die Entdeckung von Objek Affordanzen lernt, um
effiziente Manipulationsstrategien und Bewegungsplanung zu ermöglichen. Unser Beitrag
geht über bestehende Paradigmen hinaus, indem er dem Roboter ermöglicht, unbekannte,
abstrakte natürliche Sprachanweisungen wie “Räaume den Arbeitsbereich auf und schalte
das Licht aus” ohne zusätzliches Training zu erforndern.

Sämtliche in dieser Arbeit vorgestellten Methoden wurden auf Datensätzen aus der realen
Welt und in umfangreichen Experimenten mit echten Robotern implementiert und getestet.
Wir zeigen, dass unsere vorgeschlagenen Ansätze Schlüsselfaktoren sind, um (i) vielfältige
Fähigkeiten zur Durchführung von Aufgaben in haushaltsähnlichen Umgebungen aus unstruk-
turierten Daten zu lernen, (ii) menschlicher Sprache mit den Wahrnehmungen und Aktionen
eines Roboters zu verbinden und (iii) langfristigen, mehrschichtigen Manipulationsaufgaben
in der realen Welt effizient zu durchführen. Wir hoffen, dass die in dieser Arbeit vorgestellten
Ansätze die Tür für die zukünftige Entwicklung von Agenten öffnen werden, die in der
Lage sind, menschliche Sprache mit Ihrer Wahrnehmung und Handlungen zu verbinden und
abstrakte Konzepte ähnlich zu Menschen zu generalisieren.
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Chapter 1

Introduction

Robots are rapidly changing the way we live and work. In manufacturing, robots are being
used for tasks such as welding, assembling, and mass-producing products, leading to an
increase in productivity. In transportation, the development of autonomous vehicles is
promising to bring about a new era of safe transportation, while in healthcare, robots are
being used to assist doctors in various procedures such as surgery, resulting in improved
outcomes for patients.

Robots are also making an impact in the home, with vacuum-cleaning robots being one
of the most prevalent examples. A growing number of consumer home robots address more
mundane tasks, such as lawn mowing and the cleaning of windows or pools. While their
applications are vast, one field in which robotics has not lived up to our aspirations so far
is personal, assistive robotics. For several decades, the idea of a “general-purpose” service
robot that can assist for example the elderly by undertaking a variety of household chores
has captured our imagination. The first such robots were envisioned by science fiction
books (Asimov in the 1950s), movies (C-3PO from Star Wars in the 1970s) and cartoons
(Rosey from The Jetsons in the 1980s), and were endowed with human like intelligence.
Besides the ability to perform a wide range of everyday tasks, a common feature of these
fictional robots is their ability to understand natural language and communicate with humans.
In practice, despite considerable progress since the first industrial automation robot was
introduced in the 1960s by Unimation, the vast majority of robots deployed out in the real
world today continue to remain restricted to a narrow set of preprogrammed behaviors
for specific tasks in controlled industrial settings. Moreover, existing domestic robots are
currently restricted to performing simple and straightforward tasks that do not require a
comprehensive understanding of the environment nor the ability to engage in collaborative
dialogue with a human partner.

However, the recent advent of deep learning has revolutionized the fields of machine
learning and computer vision. Advances made in training deep models and the availability
of Internet-scale data have tremendously accelerated the capacity of AI systems to perform
complex tasks – from decision-making [1] and logical reasoning [2], to protein folding [3]
and generative content generation [4]. These developments are a constant inspiration towards
developing “generalist robots” that can perform not just one, but a broader range of useful
tasks in unstructured environments with minimal human interventions. Just as foundation
models [5] from natural language processing (e.g., GPT-3 [6]) and computer vision (e.g.,
CLIP [7]) are capable of generalizing to new tasks with only handful of examples, a driving
expectation is that data-driven models may likewise enable generalist robots to assist humans
by learning to perform physical tasks with only a few or no examples.

Borrowing from these successes, recent work suggests that it’s possible to train end-to-end
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artificial neural networks to learn complex robotic manipulation skills [8], e.g., mapping
from raw pixels to control torques. Although end-to-end learning enables robots to evolve
from performing only structured actions to act re-actively based on perceptual sensing, in
practice, most current end-to-end models typically learn individual tasks from scratch one at
a time and show poor generalization performance. Traditionally, obtaining multiple skills for
robots involves defining a set of tasks, collecting expert demonstrations for each task, and
training a separate policy for each task with supervised learning [9]. Another approach is
to use reinforcement learning, but this involves manually designing a reward function for
each task. The design of reward functions that elicit the desired agent behavior is especially
challenging for real-world tasks, particularly when the state of the environment might not be
accessible. Besides, designing a reward often requires the installation of specific sensors to
measure as to whether the task has been executed successfully [10, 11]. In many scenarios,
the need for task-specific engineering of reward functions undermines the benefits of end-
to-end learning from pixels, if the reward function itself requires a dedicated perception
pipeline. Additionally, using reinforcement learning in complex settings like robotics requires
overcoming exploration challenges, which are often addressed by adding manual scripting
primitives to guide the robot to areas with a non-zero reward. In general, both approaches
require a significant amount of human effort for each new skill a robot is required to perform,
and this effort is typically not transferable to other skills. Moreover, the costs of collecting
data with real robot hardware can be expensive, time-consuming and difficult to automate.
Another formulation is to train multiple tasks simultaneously with either of both approaches
by conditioning the policy on a discrete task id, that can represent a skill such as opening a
door [12]. Multi-task learning is a promising approach that aims to discover shared structure
across tasks in a way that achieves greater efficiency and performance than solving tasks
individually [13]. In practice, multi-task settings present a number of optimization challenges,
making it difficult to realize large efficiency gains and a positive transfer compared to learning
tasks independently [14, 15].

Furthermore, in open world settings, agents will be expected to perform not just a small
discrete set of tasks, but rather a wide continuum of behaviors. For example, we might
want the robot to open a drawer from the side instead of doing a top-down grasp, for which
collecting a new set of demonstrations and retraining might be necessary. On a similar note,
defining discrete tasks suffers from ambiguity. Imagine we want to teach a robot a skill for
opening a sliding door of a cabinet. Assuming there exists a perception pipeline that can
measure the percentage of how far the robot has moved the sliding door, which percentage
should be considered as a threshold for a successful trial, 90%, 80%, 60%? People might
have different answers for rating such trials as being successful or not. These problems stem
from the fact that the world is continuous and can not be fully described by a set of discrete
behaviors or symbols [16, 17]. Thus, robots that move to unstructured, real world settings
will need to contend with this fact.

If we want systems that can perform a wide range of everyday tasks and exhibit the
generality of human intelligence, they should learn a full continuum of behaviors rather
than a set of discrete tasks from expert, curated data. In this thesis, we argue that in
order to acquire a diverse repertoire of general-purpose skills, the diversity of the data is a
key factor. Instead of repeating costly data collection and training from scratch for every
new task and environment, robots need the ability to learn from diverse and unlabeled
unstructured data. Although current embodied agents are typically trained tabula rasa on
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large amounts of curated datapoints due to the flexibility of not requiring domain-specific
knowledge to solve the tasks, the way humans learn suggests that diversity is paramount
to learn multiple transferable and generalizable skills. Humans do not require experience
manipulating thousands of instances of few object classes (e.g., screwdrivers, mugs, cutlery)
to learn generalizable grasping strategies. On to the contrary, we interact with thousands of
object classes for which very few instances might be seen. Thus, a humans remarkable ability
to manipulate unfamiliar objects originates from the ability to learn from diverse data and to
transfer knowledge.

As robots become more capable to assist us with a broad range of everyday tasks and
become ubiquitous across human-centered environments, they will be surrounded by people
who do not have the knowledge to program and direct robots. Since most users will not
be experts, the need for natural and effective human-robot communication grows. Recent
works that have studied scaling up the number of tasks a robot learns, assume tasks being
specified via goal images [18] or one-hot skill selectors [19], which are not practical for
untrained users to instruct robots. Endowing a robot with the ability to learn how to perform
tasks from videos of human demonstrations is a desirable and scalable alternative task
specification [20]. In reality, learning to imitate tasks from human videos comes involves
solving a difficult correspondence problem and understanding the semantics of the tasks
being shown [21]. By contrast, language plays a crucial role in human communication, and
its daily use encompasses various functions such as directing actions, asking and answering
questions, sharing information, and requesting assistance. Thus, natural language presents
a promising alternative form of task specification, providing an intuitive and flexible way
for humans to communicate tasks and refer to abstract concepts. Similarly, it is difficult to
conceive a truly generalist robot without also possessing the ability to understand and execute
instructions conveyed in natural language. To effectively utilize human language, robots must
establish a correspondence between words and the physical environment, mediated by the
robot’s sensorimotor system.

Developing systems that can demonstrate their visual understanding by generating or
responding to natural language in the context of perceptual inputs is a long-standing goal.
Marvin Minksy, one of the founding father of artificial intelligence, was quoted saying the
following on the goal of a 1966 undergraduate summer research project [22]

... spend the summer linking a camera to a computer and getting the computer to describe what it saw.
— Marvin Minsky, 1966

Despite the tremendous progress made in visual and language understanding since this now
famously ambitious summer project, we are far away from achieving robots that can learn to
relate human language to their world model. Understanding and following unconstrained
language instructions is a notoriously challenging problem, subsuming many long term
problems in AI [23, 24]. Learning to follow language instructions involves addressing a
difficult symbol grounding problem [25], relating a language instruction to a robot’s onboard
noisy perception and physical actions. For example, a robot presented with the command
“fetch the banana and place it left of the bottom object” must be able to relate language
to its low-level perception (what does a banana look like?). It must perform visual and
spatial reasoning about where to place the “banana” relative to the “bottom object” in order
to reproduce the spatial relation “to the left of”, which is inherently ambiguous as natural
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language placement instructions do not uniquely identify a location in a scene. Moreover, the
robot needs the ability to resolve ambiguous instructions or ask for help through dialogue
with the user. Additionally, it must solve a complex sequential decision problem (what
commands do I send to fetch an object, or to do a relative placement?). These notoriously
challenging problems only get exacerbated if we consider the aforementioned need for
learning a full continuum of skills and behaviors rather than a single task. As a result,
prior work on mapping language and vision to actions has been studied mostly in restricted
environments [26, 27], simplified actuators with discrete motion primitives [28, 29, 30] or
restricted structured language inputs [31, 32]. This motivates the age-old question [25, 33],
how might intelligent agents ground unconstrained, free-form natural language understanding
in their own embodied perception?

From the perspective of human language acquisition, research in fields of psychology
and linguistics suggest it to be a highly socially-mediated process [34, 35]. Studies have
demonstrated that infants engage in language-learning through interactions with caregivers,
who provide input in the form of words [36]. Conversely, there also exist theories in the
linguistics fields, such as the theory of universal grammar by Chomsky [37] that postulate
that all human languages share some fundamental similarities, and that these are attributable
to innate principles unique to human language. While the underlying cognitive mechanisms
of language acquisition in humans remain an area of ongoing investigation, robots need to
rely on humans for language acquisition. In order to reduce the need for expensive human
supervision, one of the issues we will investigate in this work will be bootstrapping instruction
following by learning skills from mostly uncurated data, while annotating as little as 1% of it
with natural language annotations. This setting mirrors the aforementioned human analogy
for learning transferable and generalizable skills from diverse data.

Grounding language into the physical world is tightly coupled to the representation of
concepts, skills and their generalization. Consider a robot that has learned to “pick up a green
block" and “pick up a red mug", ideally it would understand what “pick up a green mug"
means even though it has never encountered that concept in the training data. However, the
inherent compositionality of language [38] and its fuzziness make it challenging to represent
concepts as disentangled, standalone representations. Moving beyond toy combinations of
orthogonal attributes, current deep generative models show remarkable understanding of
visuo-lingual concepts [4]. Trained on Internet-scale data consisting of paired images and
captions, they are able to generate realistic images for complex queries such as “a photo of an
astronaut riding a horse underwater". Translating similar capabilities to an embodied agent
that might understand open-ended instructions, such as “pick up slowly the rightmost object
that is neither a fruit nor a toy”, is an open robotics problem that highlights the challenges of
grounding artificial intelligence and concepts in shared sensory and experience. Moreover, we
do not fully understand the mechanisms of human cognition for such complex instructions.

Cognitive psychology suggests that humans possess two distinct visual systems, a semantic
stream (what) and a spatial stream (where) [39]. These vaguely reflect the building blocks
needed for instruction following i) a set of low-level skills that coordinate the control
of a robots body with its perception and that can be seamlessly combined together to
intelligently act in the world, and ii) a higher, semantic policy that reasons on temporally
extended horizons about the best way to complete abstract language instructions, such as
“tidy up the workspace and turn off the lights”. Developing robots with these capabilities
requires solving the many challenges described so far. Contrary to the expectations of
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the general public, learning sensorimotor skills alone typically requires a massive large-
scale data collection effort [40, 41, 42] with frequent human interventions and solving the
aforementioned challenges of multi-task learning and reward definitions. The phenomenon
that the apparently easy tasks for humans, such as pouring water into a cup, are difficult to
teach a robot to do, is also known as Moravec’s paradox [43].

Considering the aforementioned challenges, we pose the following research questions that
we address in this thesis:

• How can we scale robot skill learning so that instead of relying on structured, isolated
expert demonstrations for each new skill, we can learn many skills simultaneously
from large amounts of unlabeled, unstructured data?

• How can we lessen the requirements for specifying tasks to robots, to move from
task-specific engineering of reward functions to more intuitive and natural choices,
such as natural language or videos?

• How can we improve the long-horizon reasoning capabilities of robots, to break down
abstract, long-horizon tasks into sequences of subgoals?

• How can we integrate semantic and structural priors to improve sample-efficiency and
generalization of learned skills?

• How can we scale robot learning systems to autonomously acquire general-purpose
knowledge from from purely offline, unstructured data in the real world that allows
them to compose long-horizon, multi-tier tasks by following unconstrained language
instructions?

In the scope of this thesis, we tackle the aforementioned questions and provide solutions
which outperform current state-of-the-art methods. Although the application scenarios that
we described are in the context of robot object manipulation in human-centered environments,
the principles behind these methods are generally applicable to robots in any environment
that need scalable ways of learning multiple skills from uncurated data and/or ground them
in language.

1.1 Scientific Contributions
In this thesis, we make several contributions to the challenging problems of skill learning
and fusing perception, language and control. In the following we provide an overview of the
key contributions presented in this thesis.

Learning Object Placements For Relational Instructions
In Chapter 3, we address the challenge of learning object placements for relational instruc-
tions, to enable human-robot interactions such as “place the mug on the right of the box”.
We contribute an approach coined Spatial-RelNet that estimates pixelwise object placement
probabilities for a set of spatial relations from a single input image with a convolutional
neural network, without requiring ground truth data for pixelwise relational probabilities
or 3D models of the objects. We address the problem of the unavailability of ground-truth
pixelwise annotations of spatial relations from the perspective of auxiliary learning. During
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training, our network receives the learning signal by classifying hallucinated high-level scene
representations as an auxiliary task. To this end, our approach receives the learning signal by
classifying hallucinated scene representations as an auxiliary task. Concretely, deep features
of objects are implanted into a pretrained auxiliary classifier to compute a posterior class
probability over spatial relations. By rearranging deep features, we can reason over what
relation would most likely be formed if we placed an object at the given location without
modifying the input image. Our results obtained using real-world data and human-robot
experiments demonstrate the effectiveness of our method in reasoning about the best way to
place objects to reproduce a spatial relation.

Composing Pick-and-Place Tasks By Grounding Language
In Chapter 4, we address the challenge of learning to follow unconstrained language in-
structions to pick and place arbitrary objects and effectively resolves ambiguities through
dialogues. Concretely, we present an approach that infers objects and their relationships
from input images and language expressions and can place objects in accordance with the
spatial relations expressed by the user. Specifically, by grounding objects and their spatial
relations, we allow specification of complex placement instructions, e.g. “place it behind
the middle red bowl”. We contribute a grounding network that processes language input
and visual object candidates detected with an off-the-shelf detector and performs referential
expression comprehension. Additionally, it generates referential expressions for each ob-
ject candidate to disambiguate unclear instructions. Once the reference object of a relative
placement instruction has been identified, a second network, the Spatial-RelNet presented in
Chapter 3 predicts object placing locations for a set of spatial relations. Ours was the first
comprehensive system for controlling robots that allowed tackling temporally more extended
tasks by sequentially composing pick-and-place language instructions and grounding object
semantics and spatial relations. Our results obtained using a real-world PR2 robot demon-
strate the effectiveness of our method in understanding pick-and-place language instructions
and sequentially composing them to solve tabletop manipulation tasks.

A Benchmark for Language-Conditioned Policy Learning
Thus far, we have introduced a method for picking-and-placing objects based on language
instructions that can solve ambiguities through dialog. However, if we want to command
the robot to solve more complex tasks, such as opening a drawer, extending our approach
presented in Chapter 4 is not trivial. Towards developing generalist robots, it is not only
imperative to ground object semantics and spatial relations, but also to be able to ground a
diverse repertoire of robot skills. To this end, we advocate defining skills as being continuous
instead of discrete, endowing the agent of task-agnostic control: the ability to reach any
reachable goal state from any current state.

To address this issues, in Chapter 5 we present a new open-source simulated benchmark,
coined CALVIN, that links human language to robot motor skills, behaviors, and objects
in interactive visual environments. In this setting, a single agent must solve complex ma-
nipulation tasks by understanding a series of language expressions in a row, e.g., “open
the drawer . . . pick up the blue block . . . push the block into the drawer . . . open the sliding
door”. Furthermore, to evaluate the agents’ ability for long-horizon planning, agents in this
scenario are expected to be able to perform any combination of subtasks in any order. Our
framework has been developed from the ground up to support training, prototyping, and
validation of language conditioned policies over a range of four indoor environments. To
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establish baseline performance levels, we evaluate an approach that uses relabeled imitation
learning to distill reusable behaviors into a language-based goal-directed policy. This is the
first public benchmark of instruction following that combines: natural language conditioning,
multimodal high-dimensional inputs, 7-DoF continuous control, and long-horizon robotic
object manipulation.

Studying What Matters in Language-Conditioned Imitation Learning
While recently substantial advances have been achieved in language-driven robotics by
leveraging end-to-end learning from pixels, there is no clear and well-understood process
for making various design choices due to the underlying variation in setups. Having now
a standardized platform in the form of the CALVIN benchmark presented in Chapter 5, in
Chapter 6 we conduct an extensive study of the most critical challenges in learning language
conditioned policies from offline free-form imitation datasets. We systematically compare
key components of language conditioned imitation learning over unstructured data, such as
observation and action spaces, losses for aligning visuo-lingual representations, language
models and latent plan representations, and we analyze the effect of other choices, such
as data augmentation and optimization. We contribute four improvements to these key
components: a multimodal transformer encoder to learn to recognize and organize behaviors
during robotic interaction into a global categorical latent plan, a hierarchical division of
the robot control learning that learns local policies in the gripper camera frame conditioned
on the global plan, balancing terms within the KL loss and a self-supervised contrastive
visual-language alignment loss. We integrate the best performing improved components in
a unified framework, Hierarchical Universal Language Conditioned Policies (HULC). Our
model achieved state-of-the-art results on the challenging CALVIN benchmark at the time of
publication.

Learning Robot Skills from Unlabeled Videos
In Chapter 7, we address the key challenges of discovery, representation and reuse of skills
from unlabeled videos. Learning robot skills from unlabeled videos is a challenging task, with
the potential of unlocking greater robot capabilities by tapping into internet-scale unlabeled
data sources, such as YouTube videos. To this end, we propose a novel approach, Adversarial
Skill Networks (ASN), to learn a task-agnostic skill embedding space from unlabeled multi-
view videos. We combine a metric learning loss, which utilizes temporal video coherence
to learn a state representation, with an entropy-regularized adversarial skill-transfer loss.
The metric learning loss learns a disentangled representation by attracting simultaneous
viewpoints of the same observations and repelling visually similar frames from temporal
neighbors. The adversarial skill transfer loss enhances re-usability of learned skill embeddings
over multiple task domains. Extensive evaluations demonstrate that given a single video
of a previously unseen task, the learned embedding enables training of continuous control
policies to solve novel tasks that require the interpolation of previously seen skills.

Task-Agnostic Offline Reinforcement Learning
In Chapter 8 we address the challenge of producing previously unseen combinations of
skills, learned from an offline, unstructured dataset, to reach temporally extended goals by
“stitching” together skills. To this end, we contribute a novel hierarchical approach, Task-
AgnostiC Offline Reinforcement Learning (TACO-RL), that combines the strengths of the
imitation learning and reinforcement learning paradigms to learn task-agnostic long-horizon
policies from high-dimensional camera observations. Specifically, we combine a low-level
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policy that learns latent skills via imitation learning and a high-level policy learned from
offline reinforcement learning for skill-chaining the latent behavior priors. By stitching latent
plans extracted from unstructured data, our formulation offers the simplicity of imitation
from collected play data while offering long-term optimality for sequential multi-tier tasks.
This hierarchical approach constitutes a practical solution by decomposing a whole task
into smaller chunks of sub-tasks. The high-level policy can learn long-horizon tasks as the
effective episode horizon is reduced and it does not need to capture in detail the physics
of the world, simplifying the underlying dynamics of the RL agent. Extensive evaluations
show an order-of-magnitude improvement in performance upon state-of-the-art baselines on
various long-horizon tasks. We even learn one multi-task visuomotor policy for 25 distinct
manipulation tasks in the real world which outperforms both imitation learning and offline
reinforcement learning techniques.

Learning Affordances from Play Data for Sample-Efficient Policy Learning
In Chapter 9 we address the challenge of discovering object affordances from unstructured
data and leveraging them to enable efficient policy learning and motion planning. Knowledge
of object affordances helps a robot understand how function: what can be done with each
object, where this interaction may occur, and how the object is used to achieve a goal.
Affordance learning methods typically require manually segmented annotations to learn
visual affordances and are limited in the complexity of the actions they model by relying often
on predefined action templates. We contribute a novel approach, Visual Affordance-guided
Policy Optimization (VAPO), that learns affordances that are grounded in real human behavior
from teleoperated play data by leveraging the gripper’s opening and closing signal as a
heuristic. Our approach decomposes object manipulation into a sample-efficient combination
of model-based planning and model-free reinforcement learning. Aside from accelerating
learning, a critical advantage of imbuing robots with an object-centric visual affordance
prior is generalization: the learned policy generalizes to unseen, functionally similar, objects
because our visual affordance model can anticipate their affordance regions. As play data is
not random, but rather structured by human knowledge of object affordances, we find that
the affordances discovered from it are functional affordances, priming a robot to approach an
object the same way a human would.

Grounding Language with Visual Affordances over Unstructured Data
In Chapter 10 we address the challenge of learning language-conditioned robotic visuomotor
skills from unstructured data in the real world in a data-efficient manner and composing them
to follow abstract natural language instructions, such as “tidy up the workspace and turn
off the lights” with no additional training. To this end, we contribute a novel approach to
efficiently learn general-purpose language-conditioned robot skills from unstructured, offline
and reset-free data in the real world by exploiting a self-supervised visuo-lingual affordance
model, which requires annotating as little as 1% of the total data with language. Specifi-
cally, we present Hierarchical Universal Language Conditioned Policies 2.0 (HULC++), a
hierarchical language-conditioned agent that integrates the task-agnostic control of HULC
presented in Chapter 6 with the object-centric semantic understanding of VAPO presented in
Chapter 9 to decompose robot manipulation into semantic and spatial pathways. We show
that by extending VAPO to learn language-conditioned affordances and combining it with a
7-DoF low-level policy that builds upon HULC, our method is capable of following multiple
long-horizon manipulation tasks in a row, directly from images, while requiring an order of
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magnitude less data than previous approaches. We evaluate our method in extensive experi-
ments both in simulated and real-world robotic tasks, achieving state-of-the-art performance
on the challenging CALVIN benchmark at the time of publication and learning over 25
distinct visuomotor manipulation tasks with a single policy in the real world. We show that
when paired with Large Language Models (LLMs) to break down abstract natural language
instructions into subgoals via few-shot prompting, our method is capable of completing
long-horizon, multi-tier tasks in the real world.

1.2 Dataset Contributions
Generally, research on various robot learning tasks is facilitated by the availability of stan-
dardized datasets, which help reproduce results and serve as a foundation for further research.
In the context of this thesis, we published the following publicly available datasets that have
thereafter been adopted for standardized benchmarking in many works.

• Relational Placing Dataset: Manually annotated bounding boxes and pairwise spatial
relations for hundreds of tabletop scenes with several camera viewpoints.

• Multi-view Block Task Dataset: Unlabeled, synchronized multi-view videos of humans
manipulating colored blocks.

• Freiburg Poking Dataset: 40K of random robot pushing data with over 34 distinct
objects.

• CALVIN Dataset: 24 hours of unstructured, human teleoperated play data distributed
across 4 simulated tabletop environments, with 1% of annotated language instructions.
This dataset is the foundation of the CALVIN Benchmark.

• Visual Affordances Dataset: Multimodal robot interaction data in both simulated and
real world environments for detecting and learning visual affordances.

• Task-Agnostic Robot Play Dataset: 9 hours of undirected, unstructured, multimodal
play data in a complex real world tabletop environment, with less than 1% of annotated
language instructions.

1.3 Software Contributions
Together with the availability of datasets, acess to software is equally important to accelerate
research. In the context of this thesis, we have open-sourced our implementation of several
proposed models and developed software stacks to facilitate future research.

• Spatial Relations: http://spatialrelations.cs.uni-freiburg.de

• Self-supervised 3D Shape: https://github.com/mees/self-supervised-3D

• Adversarial Skill Networks: http://robotskills.cs.uni-freiburg.de

• CALVIN Benchmark: http://calvin.cs.uni-freiburg.de

http://spatialrelations.cs.uni-freiburg.de
https://github.com/mees/self-supervised-3D
http://robotskills.cs.uni-freiburg.de
http://calvin.cs.uni-freiburg.de
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• HULC Model: http://hulc.cs.uni-freiburg.de

• Visual Affordances: http://vapo.cs.uni-freiburg.de

• TACO-RL: http://tacorl.cs.uni-freiburg.de

• Visuo-lingual Affordances: http://hulc2.cs.uni-freiburg.de

• Visual Language Maps: https://vlmaps.github.io

1.4 Experimental Robot Platforms
In this thesis, various experiments are conducted using different robotic platforms to demon-
strate the applicability of our models in real-world scenarios. This section gives an overview
of the robots and setups used, with some being developed by the author during the course of
this PhD.

PR2
In our research, we utilize the PR2 (Personal Robot 2), a service robot developed by Willow
Garage and released in 2010 for navigation and manipulation in human-centered environ-
ments, see Fig. 1.1. The robot is a highly advanced and capable robot designed for research
and development that can be used for mobile manipulation tasks, such as tidying up tabletops
or bringing a beer from a fridge.

Figure 1.1: The PR2 mobile manipulation robot that we use in our experiments. The robot has two
arms and a mounted Kinect 2 RGB-D camera on its head.

The PR2 is equipped with two 7-DoF arms, each with a gripper that can switch between
opened and closed states and is compliant due to built-in mechanical springs. The robot

http://hulc.cs.uni-freiburg.de
http://vapo.cs.uni-freiburg.de
http://tacorl.cs.uni-freiburg.de
http://hulc2.cs.uni-freiburg.de
https://vlmaps.github.io
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also has a telescoping spine for adjusting the height of the upper body, a pan tilt head
with multiple onboard RGB cameras, a tilting laser rangefinder and a mounted Kinect 2
camera that provides RGB and depth images at a frame rate of 30 Hz and a resolution of
1920x1080 pixels. These sensors provide the robot with a detailed understanding of its
environment. The PR2 runs the open-source Robot Operating System (ROS) middleware to
handle communications between programs.

We primarily used the PR2 for all experiments presented in Chapter 3 and Chapter 4 for
the evaluation of the robot’s ability to follow language based pick-and-place instructions,
understand spatial relations between objects and to identify and resolve ambiguities.

Franka Panda
The Franka Panda is a highly versatile and adaptable robotic arm designed by Franka Emika
for use in research settings. The robot, which was released in 2017, has a payload capacity
of 3 kg, a 850 mm reach and a repeatability of 0.1 mm. It features a lightweight design,
with a total weight of only 18 kg, making it easy to move and deploy in various applications.
The Franka Panda can be easily integrated into different systems and environments using a
variety of interfaces, including the Robot Operating System (ROS) and Python programming
language. This makes the robot highly adaptable and easy to program for a wide range of
tasks such as pick and place, assembly, testing, and research applications.

Figure 1.2: The Franka Panda manipulation robot that we use in our experiments for learning to
pick-and-place objects, open drawers or moving sliding doors. We developed a custom
steel and aluminium made table for it and an alumium profile based construction that
allows for a flexible placement of sensors.

In order to allow flexible setups to cater to the needs of different users, we developed
a custom made table made of steel and aluminium, with holes every 10 cm that allows
screwing the robot at different positions on the table, see Fig. 1.2. The table is 70 cm high,
160 cm wide and 120 cm long. Due to the robustness and weight of the table, the table
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can not be damaged by applications that might exert high vibrations upon it, such as online
reinforcement learning. We attach an aluminium profile based construction on top of the table
that allows for a flexible placement of different sensors. In our case, we attach a Microsoft
Kinect Azure RGB-D camera to perceive the scene as a static camera and VR towers to track
a VR motion controller that remote controls the robot. Additionally, we integrate a FRAMOS
Industrial Depth Camera D435e as a RGB-D gripper camera.

We primarily used the PR2 for all experiments presented in Chapter 8, Chapter 9 and
Chapter 10 for the evaluation of the robot’s ability to learn a wide range of visuomotor control
policies from unstructured data and reason about temporally extended tasks.

1.5 Publications
Major parts of the work presented in this thesis have undergone international peer review. In
the following, we list the corresponding publications in chronological order.

• O. Mees*, A. Emek*, J. Vertens, and W. Burgard, “Learning Object Placements For
Relational Instructions by Hallucinating Scene Representations”. In Proc. of the IEEE
International Conference on Robotics and Automation (ICRA), 2020.

• O. Mees*, M. Merklinger*, G. Kalweit, and W. Burgard, “Adversarial Skill Networks:
Unsupervised Robot Skill Learning from Video”. In Proc. of the IEEE International
Conference on Robotics and Automation (ICRA), 2020. Finalist for the Best Paper
Award in Cognitive Robotics.

• O. Mees, and W. Burgard, “Composing Pick-and-Place Tasks By Grounding Language”.
In Proc. of the International Symposium on Experimental Robotics (ISER), Springer
Proceedings in Advanced Robotics book series (SPAR, volume 19), ISBN: 978-3-030-
71151-1, 2020.

• O. Mees*, L. Hermann*, Erick Rosete-Beas, and W. Burgard, “CALVIN: A Benchmark
for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation
Tasks”. IEEE Robotics and Automation Letters (RAL), doi: 10.1109/LRA.2022.3180108,
2022.

• O. Mees*, L. Hermann*, and W. Burgard, “What Matters in Language Conditioned
Robotic Imitation Learning over Unstructured Data”. IEEE Robotics and Automation
Letters (RAL), doi: 10.1109/LRA.2022.3196123, 2022.

• J. Borja-Diaz*, O. Mees*, G. Kalweit, L. Hermann, J. Boedecker, and W. Burgard,
“Affordance Learning from Play for Sample-Efficient Policy Learning”. In Proc. of the
IEEE International Conference on Robotics and Automation (ICRA), 2022.

• O. Mees, and W. Burgard, “Language-Conditioned Policy Learning for Long-Horizon
Robot Manipulation Tasks”. In Proc. of the RSS Pioneers Workshop at Robotics:
Science and Systems (RSS), 2022.

∗Denotes equal contribution



1.6. COLLABORATIONS 13

• E. Rosete-Beas*, O. Mees*, G. Kalweit, J. Boedecker and W. Burgard,“Latent Plans
for Task-Agnostic Offline Reinforcement Learning”. In Proc. of the 6th Conference on
Robot Learning (CoRL), 2022.

• O. Mees*, J. Borja-Diaz* and W. Burgard,“Grounding Language with Visual Affor-
dances over Unstructured Data”. In Proc. of the IEEE International Conference on
Robotics and Automation (ICRA), 2023.

The following publications of the author of this thesis are related to the work in this thesis,
but are outside of its scope.

• O. Mees, A. Eitel, and W. Burgard, “Choosing smartly: Adaptive multimodal fusion
for object detection in changing environments. In IIEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2016.

• O. Mees, N. Abdo, M. Mazuran, and W. Burgard, “Metric Learning for Generaliz-
ing Spatial Relations to New Objects”. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2017.

• W. Burgard, A. Valada, N. Radwan, T. Naseer, J. Zhang, J. Vertens, O. Mees, A. Eitel
and G. Oliveira. Perspectives on Deep Multimodel Robot Learning. In Proc. of the
International Symposium on Robotics Research (ISRR), 2017.

• O. Mees, M. Tatarchenko, T. Brox, and W. Burgard, “Self-supervised 3D Shape and
Viewpoint Estimation from Single Images for Robotics”. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2019.

• I. Nematollahi, O. Mees, L. Hermann, and W. Burgard, “Hindsight for Foresight:
Unsupervised Structured Dynamics Models from Physical Interaction”. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2020.

• C. Huang, O. Mees, A. Zeng, and W. Burgard, “Visual Language Maps for Robot Nav-
igation”. In Proc. of the IEEE International Conference on Robotics and Automation
(ICRA), 2023.

1.6 Collaborations
This thesis work was done in collaboration with other researchers from the University of
Freiburg. Prof. Wolfram Burgard was the supervisor of this thesis and therefore, contributed
through scientific discussions. The collaborations beyond this supervision are outlined below.

• Chapter 3: The initial work on the Spatial-RelNet architecture for estimating pixelwise
object placement heatmaps was formulated in collaboration with Johan Vertens for Alp
Emeks Master’s thesis, which the author of this thesis supervised together with Johan
Vertens. Alp Emek helped with collecting and labeling the dataset and implemented
the initial experimental framework. All the results for Spatial-RelNet reported in this
thesis were entirely carried out by the author of this thesis. The paper was mostly
written by the author of this thesis.
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• Chapter 5: I developed the main idea of the paper, implemented the initial simulated
environments and baselines, training code and wrote most of the paper. Lukas Hermann
implemented most of the robot control code and the evaluation of the policies and
contributed speed improvements for loading the dataset. We carried out the simu-
lated experiments jointly. Erick contributed the final 3D models for the simulated
environments.

• Chapter 6: I developed the main idea of the paper, contributed the idea of using a
multimodal transformer encoder, the KL divergence balancing, the self-supervised
contrastive visual-language alignment loss and using discrete categorical latent plans.
Lukas Hermann contributed the idea of using relative actions in the gripper frame and
improvements to the model’s training time. All the results for HULC reported in this
thesis were entirely carried out by the author of this thesis. The paper was mostly
written by the author of this thesis.

• Chapter 7: The initial work on the Adversarial Skill Networks (ASN) for learning robot
skills from unlabeled videos was formulated in collaboration with Gabriel Kalweit
for Markus Merklingers Master’s thesis, which the author of this thesis supervised
together with Gabriel Kalweit. Markus Merklinger implemented the initial experimen-
tal framework and we jointly collected the dataset. The insights gained during the
aforementioned thesis supervision influenced the subsequent improved implementa-
tions of ASN that the author of this thesis carried out. All the results for ASN reported
in this thesis were entirely carried out by the author of this thesis. The paper was
mostly written by the author of this thesis. Markus Merklinger and Gabriel Kalweit
also contributed to the paper writing.

• Chapter 8: The main idea to use offline reinforcement learning with latent skills was
developed in collaboration with Gabriel Kalweit. Erick Rosete-Beas implemented
the initial experimental framework and we jointly collected the dataset. I contributed
the implementations for learning the low-level level policies with latent skills, the
PLayLMP baseline, the framework to collect data via teleoperation and perform
experiments in both simulation and in the real world. Erick additionally helped design
and implemented the high-level policy, baseline implementations and performed the
experiments in the CALVIN environment. All the real world experiments reported in
this thesis were entirely carried out by the author of this thesis. Gabriel additionally
provided consultation on the design of the experiments. All authors contributed to the
paper writing. Joschka Boedecker and Wolfram Burgard provided general consultation.

• Chapter 9: I developed the idea for the paper, devised the theoretical framework and
wrote most of the paper. Jessica Borja-Diaz implemented the initial experimental
framework and we jointly collected the dataset and carried out the experiments for the
paper. Gabriel Kalweit provided consultation with initial experiments, and contributed
to the conceptualization of the idea and writing of the paper. Lukas Hermann provided
consultation for the real world robot experiments and implemented the low-level control
of the robot. Joschka Boedecker and Wolfram Burgard provided general consultation.

• Chapter 10: I developed the main idea for the paper, devised the theoretical framework
and wrote most of the paper. Jessica Borja-Diaz implemented the initial experimental
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framework for learning visuo-lingual affordances and we jointly collected the dataset. I
contributed the implementations for translating abstract language input into sequences
of subgoals with Large Language Models, learning the language-conditioned low-level
level policies with latent skills, the framework to collect data via teleoperation and
perform experiments in both simulation and in the real world. Jessica additionally con-
tributed the experiments in the CALVIN environment. All the real world experiments
reported in this thesis were entirely carried out by the author of this thesis.





Chapter 2

Background
In this chapter, we briefly describe some of the basic concepts and theoretical foundations for
the methods presented later in this thesis. First, we give an overview on different paradigms
for learning robot skills with machine learning. This overview serves as an introduction to
the field and defines the general setting of the following research results. Furthermore, we
describe challenges and methods for learning policies from fixed static datasets that serve as
the foundation for many of the approaches described in this thesis. Details of the specific
implementation are given in the respective chapters. Finally, we discuss different ways to
encode natural language with deep neural networks.

2.1 Learning Sensorimotor Behavior
Generally, the problem of learning a behavior for an agent is considered the task of learning
a policy π : S → A, mapping from the environment’s state to actions of a dynamical system
that elicit some desired behavior [9]. Thus, the policy reacts with an appropriate action to
every new observation to control an agent, such as a robot. We will denote πθ(at | st) as the
distribution over actions under the policy conditioned on the state. The policy is represented
by a set of parameters θ, which may take the form of weights of a neural network. We consider
a system with S being the state, A the actions an agent can take and O the observations from
the environment. For example, S might contain the position and orientation of objects in the
environment or the joint angles and positions and velocities of the robot’s links. Regarding
the dynamics, given that applying an action at causes a transition into some markovian state
st+1 ∈ S, the state evolves through time according to p(st+1 | st, at). Neither the system
dynamics p(st+1 | st, at) nor the observation distribution p(ot | st) are assumed to be known
in general. We denote τ = {(s0, a0), . . . , st, at)} as a sequence of state-action pairs from a
task demonstration with a finite horizon t ∈ [1, . . . , H]. The policy and the system dynamics
induce the distribution over the trajectories:

ρπ(τ) = p(s0)
H∏
t=0

πθ(at | st)p(st+1 | st, at) (2.1)

For the task we are considering, we denote L(st, at) the expected cost of performing action
at in st. Thus, the overall objective is to minimize the expectation given by

Eπθ(τ)

[
H∑
t=0

L(st, at)

]
. (2.2)
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Conventionally, a simple way to learn sensorimotor behaviors is by learning from demon-
strations [44]. This involves the following steps. First, one has to define a task, such as
opening a drawer. Second, collecting a large number of labeled and segmented expert
demonstrations, either by manually moving the robot joints (i.e. kinesthetic teaching) or tele-
operating the robot to execute the desired task. Finally, the policy is trained with supervised
learning. Assuming a unimodal Gaussian distribution for πθ(at | st), the parameters θ can be
found for instance by minimizing a mean squared error loss:

θ∗ = arg min
θ

H∑
t=0

|| at − π(st; θ) ||2 (2.3)

Despite its simplicity, this paradigm will struggle to achieve good long-horizon perfor-
mance, because a small mistake on the part of the policy or system noise will place the agent
into states that are outside of the distribution of the training data, leading to compounding
errors [45].

As aforementioned, the state of the system is usually unknown and the robot’s sensor
observations are a stochastic process produced from the state. Thus, the representation
of the state has a large influence over the sample complexity and the robustness of the
policies. Traditionally, hand-engineered low-dimensional representations of observations
have been used as state representations, which are more tractable and sample-efficient [46].
However, computer vision systems are often unable to estimate the state variables of the
model accurately and it has proven non-trivial for downstream control systems to be robust
to such errors [47, 48]. One way to alleviate this problem is end-to-end learning from
pixels, which in recent years has seen tremendous success by jointly learning a suitable state
representation and control from the environments raw perceptual observations [8]. Such
model-free methods enjoy a high flexibility due to the minimal assumptions required about
the state representation of the world. The caveat is the poor sample complexity, as important
state information needs to be inferred from raw observations, such as the location of objects,
in addition to the control. We refrain from a detailed explanation of deep neural networks
and refer to Goodfellow et al. [49].

2.1.1 Learning Multiple Behaviors via Imitation
Developing robots that can perform multiple tasks are a long-standing goal. In theory,
learning multiple tasks jointly promises to achieve greater efficiency and performance than
solving tasks individually by discovering and exploiting shared structure across tasks [13].
In practice, multi-task settings present a number of optimization challenges, making it
difficult to realize large efficiency gains and a positive transfer compared to learning tasks
independently [14, 15]. These challenges of achieving greater efficiency and performance
have been observed in both the computer vision community [50], as well as in the robot
learning community [42, 51].

A natural extension of the sensorimotor policy to multiple tasks is to introduce a secondary
variable g from a distribution p(g) that conditions the policy π : S × G → A. Thus, instead
of communicating how to perform a task via observation-action pairs, this allows a more
flexible specification of what needs to be done, by considering the conditional variable to be
a goal state [52]. In its most simple form, this variable can take the form of an one-hot vector
that selects the corresponding task to execute from a set of pre-defined discrete tasks [12, 19].
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Alternative formulations obtain the latent variable from the observations of the desired world
states, such as goal images [53] or from encodings of natural language instructions [54]. In
this thesis, we use both goal images and language instructions extensively. While conditioning
the policies on a goal offers a greater flexibility, achieving good long-horizon performance can
be challenging due to the highly multimodal action distribution that can reach a temporally
distant goal. As a consequence, goal-conditioned policies πθ(at | st, sg) trained via imitation
have been studied for reaching short-horizon behaviors, such as pushing [53] or short-distance
navigation [55].

Learning Behaviors from Play Data

In order to generalize to a wide range of tasks at test time, the agent should intuitevely be
exposed to a diverse set of (st, sg) pairs during training, alongside the actions that connect
both states. Randomly exploring the state space is challenging to automate for complex skills
in a safe way. Moreover, the likelihood of performing complex tasks and demonstrating
interesting behaviors is low. For example, skills that emerged from random exploration
strategies in cluttered bins, were shown to be limited to pushing behaviors, not covering
complex skills like grasping [56]. Therefore, undirected “play data” has recently emerged
as a solution to obtain datasets that are extensive in scope and dense in its coverage of the
environment’s interaction space [18]. The key idea is to collect data by asking humans to
teleoperate a robot without any specific tasks in mind. Thus, unlike expert demonstrations,
in this setting an operator engages in a behavior that satisfies their own curiosity. As users
naturally interact with the environment, the need for resetting the scene to initial states is
eliminated, making it a scalable and inexpensive form to collect diverse behaviors. Due
to its scalability and diversity, unstructured play data serves as an ideal foundation for
developing robot systems that can perform a wide range of useful tasks, as demonstrated in
the approaches outlined in Chapter 5, Chapter 6, Chapter 8, Chapter 9 and Chapter 10.

To learn control, this long temporal state-action stream D = {(st, at)}∞t=0 is relabeled [57],
treating each visited state in the dataset as a “reached goal state”, with the preceding states
and actions treated as optimal behavior for reaching that goal. Relabeling yields a dataset
of Dplay = {(τ, sg)i}

Dplay
i=0 , where each goal state sg has a trajectory demonstration τ =

{(s0, a0), . . . , (st, at)} solving for the goal. These short horizon goal image conditioned
demonstrations can be used in a maximum likelihood imitation objective:

E(τ,sg)∼Dplay

 |τ |∑
t=0

log πθ(at | st, sg)

 (2.4)

In order to model the multimodality, Lynch et al. [18] introduced a hierarchical latent
variable model, by auto-encoding contextual demonstrations through a latent “plan” space
with a sequence-to-sequence conditional variational auto-encoder (seq2seq CVAE), which
we visualize in Figure 2.1. Conditioning the policy on the latent plan frees up the policy
to use the entirety of its capacity for learning uni-modal behavior. The latent plans z can
be generated by making use of the variational inference framework [58]. The objective of
the latent plan sampler is to model the full distribution over all high-level behaviors that
might connect the current and goal state, to provide multi-modal plans at inference time.
This distribution is learned with a CVAE by maximizing the marginal log likelihood of the
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Figure 2.1: Overview of an approach to learn control from play data via imitation [18]. During
training a stochastic plan sampler that receives the first and the last frame of a randomly
sampled window learns to mimic the latent plans generated by a plan recognition encoder
that receives the full sequence as input with a Kullback–Leibler (KL) divergence loss. The
policy is trained on reconstructing the actions observed in the window and is conditioned
on the current state, the goal state and the sampled latent plan from the plan recognition
encoder. At test time only the plan sampler is used to generate latent plans given the
actual state and a goal state that is specified by the user.

observed behaviors in the dataset log p(x | s), where x are sampled state-action trajectories
from τ . The Evidence Lower Bound (ELBO) [58] for the CVAE can be written as:

log p(x|s) ≥ −KL(q(z|x, s) || p(z|s)) + Eq(z|x,s) [log p(x|z, s)] (2.5)

The decoder is a policy trained to reconstruct input actions, conditioned on state st, goal
sg, and an inferred plan z for how to get from st to sg. At test time, it takes a goal as input,
and infers and follows plan z in closed-loop. Variants of this formulation are used in the
approaches described in Chapter 5, Chapter 6, Chapter 8 and Chapter 10.

2.1.2 Reinforcement Learning
Reinforcement learning (RL) constitutes an alternative paradigm for solving Sequential
Decision Making (SDM) problems, which are tasks that require several consecutive decision
steps. In its most general form, it learns from an agents trial and error in an environment and
tries to maximize the sum of future rewards [59]. Concretely, at each time step the agent
receives a scalar value, referred to as the reward rt, from the environment. The design of the
rewards is such that maximization of them leads to achieving the desired goal. In the drawer
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opening task, suppose the agent receives a reward of 1 if it successfully opens the drawer and
0 otherwise. In the initial stages of training, the agent’s parameters, θ, are typically set to
random values, leading to the agent performing random actions. This can result in a lack of
rewards being received by the agent until it happens to stumble upon the desired sequence
of actions by chance. This phenomenon is referred to as the exploration problem. While in
simulated environments agents trained with RL can accumulate large numbers of interactions
to achieve success, the cost and safety issues of exploration with real robot platforms makes
this a key challenge for the deployment of reinforcement learning agents in the real world. In
this thesis, we propose a range of solutions to overcome this issue, such as learning rewards
from videos in Chapter 7, leveraging human knowledge of object affordances in Chapter 9 or
leveraging offline RL in Chapter 8.

As a sequential decision problem, reinforcement learning is commonly framed as a
Markov Decision Process (MDP) M = (S,A, T , r, µ0, γ). Like before, S and A denote the
state space and action space respectively. Similarly, as the system dynamics are unknown,
T (st+1|st, at) represents the probability of transitioning from state st to state st when apply-
ing action at. The reward r(st, at) is received by an agent for executing action at in state
st and µ0 is the initial state distribution. Concretely, the sum of rewards for a given fixed
trajectory is called the return, denoted by Gt is given by

Gt =
H∑
k=0

γkrt+k+1, (2.6)

where the discount factor γ ∈ (0, 1) weights the importance of long- versus short-term
rewards. Concretely, a value close to 0 places higher importance on immediate rewards,
wheres a value of 1 prioritizes future rewards. Besides, a discount factor under 1 prevents the
return from becoming infinite in case of H →∞ horizon.

The trajectory distribution is the same as in Equation 2.1. The goal in RL is therefore to
optimize a policy π(at|st) that maximizes the expected discounted return:

Eπ,µ0,T

[
∞∑
t=0

γtr(st, at)

]
. (2.7)

We can recover a near-optimal policy by accurately estimating the state or state-action
value function. The state-value function Vπ(st) represents the expected return when starting
in state st and following the policy π thereafter for a sequence of length H1:

Vπ(st) = Eτ∼ρπ(τ |st)

[
H∑
t′=t

γt
′−tr(s′t, a

′
t)

]
. (2.8)

The action-value function Qπ(st, at) denotes the expected return when starting in state st,
selecting action at, and then following π thereafter

Qπ(st, at) = Eτ∼ρπ(τ |st,at)

[
H∑
t′=t

γt
′−tr(s′t, a

′
t).

]
(2.9)

1We note that we use prime notation for infinite horizon settings and time subscripts for finite horizon settings.
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Therefore, we can express the action-value function in terms of the state-value function as
follows:

Qπ(st, at) = r(st, at) + γEst+1∼T (st+1|st,at) [Vπ(st+1)] . (2.10)

Likewise, we can also express the state-value function in terms of the action-value function:

Vπ(st) = Eat∼π(at|st) [Qπ(st, at)] . (2.11)

These definitions allow a recursive formulation of the state-action value function by using
the Bellman expectation equation:

Qπ(st, at) = r(st, at) + γEst+1∼T (st+1|st,at),at+1∼π(at+1|st+1) [Qπ(st+1, at+1)] (2.12)

However, the goal in RL is to find an optimal policy π∗, which for a finite MDP is
π(at|st) = arg maxat Q(st, at). In order to find the optimal policy, many methods use the
Bellman optimality equation [60], which for the state-action value function leads to a popular
algorithm named Q-learning [61]:

Q?(st, at) = r(st, at) + γEst+1∼T (st+1|st,at)

[
max
at+1

Q?(st+1, at+1)

]
. (2.13)

Deep Reinforcement Learning

Deep Reinforcement Learning is a subfield of Reinforcement Learning (RL) that combines
the power of deep learning with the framework of RL to scale to higher dimensional domains.
Concretely, a neural network is used as a function approximator to represent the Q-function
or the policy. Deep Q-networks (DQN) [62] is considered one of the pioneering works in
the field, by learning to play Atari games from raw image observations with a variant of
Q-learning.

The vanilla Q-learning formulation performs updates in an online fashion, immediately
after an experience tuple (st, at, st+1, rt) gets available. However, gradient based optimization
methods typically assume the training data to be independent and identically distributed (i.i.d.)
and when the agent interacts with the environment the collected sequence of experience
tuples can be highly correlated. Intuitively, the collected experience at a timestep influences
the experiences that the agent will encounter in the future. Thus, even small updates can
have cascading effects in the resulting data distribution and can cause the policy to diverge
catastrophically. Imitation learning does not suffer from this issue, as the underlying training
data is unaffected by the learning of the policy due to its inherent offline nature. To mitigate
this issue Mnih et al. [62] introduced experience replay, which stores a large collections of
past experience in a buffer and samples experiences randomly from it. Thus, besides breaking
harmful correlations, this allows to learn more effectively from individual experience tuples
by replaying them multiple times and additionally helps recalling rare experiences.

A second challenge when training Deep Q-Networks comes from the correlation between
the estimated value and the target value for the estimation. Concretely, the Bellman equation
states that we can compute the current Q(st, at) value dependent on the Q value of the next
state, r(st, at) + γQ(st+1, at+1) and the current parametrization of the network. Thus, an
update for the current Q(st, at) value can indirectly alter the values for Q(st+1, at+1) causing
instability in the learning and an increased possibility of oscillation or divergence. In order
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to account for moving targets and their inherent non-stationarity, modern implementations
use a delayed target network. Typically, this target network is either updated slowly via
Polyak-Ruppert averaging [63, 64] or periodically, after a fixed number of time steps.

The application of experience replay and target networks within the DQN framework
yielded significant advancements in the field of reinforcement learning. Specifically, it
demonstrated that utilizing raw pixel inputs and game scores as a reward signal, the DQN
algorithm was capable of achieving human-level performance on a diverse range of 2D Atari
games, without any prior domain knowledge about the games.

Algorithms for Continuous Action Spaces

Despite the success of DQN, a limitation for its applicability to learn robot skills is that it is
designed to operate with discrete action spaces. This stems from the fact that the maximization
of the Q-function for target calculation with continuous actions leads to an optimization
problem infeasible to solve for every update. As we consider skills to be continuous rather
than discrete, in this thesis we have worked with extensions that are suitable for continuous
action spaces.

Policy Gradient Methods: In Chapter 7, we use Proximal Policy Optimization (PPO) [65],
which tackles the challenge of continuous action spaces on the basis of the Policy-Gradient
theorem [66]. Unlike implicit policy learning via Q-learning, policy gradient methods directly
optimize π(at|st) in Equation 2.1.2, by parametrizing the policy with the weights θ of a neural
network and taking gradient steps. As policy gradient methods sample from a probability
distribution, the policy network outputs logits over the actions A. A general form of a policy
gradient can be expressed as:

∇θJ(πθ) = Eτ∼ρπθ (τ)

H∑
t=0

γt∇θ log πθ(at|st)
H∑

t′=t+1

γt
′−t−1r(st′ , at′)− b(st), (2.14)

where b(st) is a baseline function. As the return is commonly estimated with Monte Carlo
samples [67], the main purpose of the baseline function is to reduce the variance of the
gradient estimates used to update the policy, making the training process more stable. A
common example of a baseline function is the value function V (st), which represents the
expected return when starting in state st and following the policy π thereafter. By subtracting
the value function from the cumulative reward, the agent can focus improving over the
average policy return estimates, which also improves sample-efficiency. A practical challenge
when training policy gradient methods is, that a small change in the parameter space of the
policies can have significant differences in performance. This makes it risky to use large step
sizes when updating the policy, which can negatively impact the sample efficiency of the
algorithm. To prevent his, modern methods, such as TRPO [68] and PPO [65], implement
therefore constraints on how much the policy can change from the previous iteration, via a KL
divergence DKL (π(at|st)||πold(at|st)) < ε on the policy distribution for instance. However,
the need for new samples to be collected for each gradient step, makes on-policy methods,
such as PPO, less sample-efficient compared to off-policy methods that are able to reuse prior
experience.

Actor-Critic Methods: Actor-critic methods combine the ideas of Q-learning and Policy
Gradient methods by parametrizing both a policy πθ(at|st) and a value function Vφ(st) or
Qφ(st, at). Instead of using the value function as a baseline, actor-critic methods bootstrap
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the target estimates with it. Unlike Q-learning, which directly attempts to learn the optimal
Q-function, actor-critic methods aim to learn the Q-function corresponding to the current
parameterized policy πθ(at|st) as follows:

Qπ(st, at) = r(st, at) + γEst+1∼T (st+1|st,at),at+1∼πθ(at+1|st+1) [Qπ(st+1, at+1)] . (2.15)

Thus, alternating between policy evaluation, computing the value function for a policy,
and policy improvement, using the value function to obtain a better policy, the agent ideally
converges to a near-optimal policy. In Chapter 9, we use Soft Actor-Critic (SAC) [69] to teach
a real Franka Panda robot manipulation skills. SAC is an actor-critic variant that optimizes a
stochastic policy in an off-policy fashion, and augments the expected reward in the objective
with the entropy of the policy.

π? = arg max
π

∑
t

E(st,at)∼ρπ [r(st, at) + αH(π(·|st))] (2.16)

Thus, the actor has the objective of maximizing both the entropy and the expected return of
the policy. This allows the policy to explore more extensively, and thus, increases the chances
of finding better solutions for the chosen task by balancing the exploration-exploitation
trade-off. Further, the entropy regularization helps to prevent the policy from prematurely
converging to sub-optimal solutions. Modern implementations automatically tune the α
parameter, which weights the entropy term in relation to the return. At the beginning of the
training it is set to a high value, which allows for increased exploration. As the training
progresses, the temperature is gradually adapted via gradient descent, which shifts the
policy’s focus towards exploitation. These changes improve the stability, sample-efficiency
and overall robustness of the agent, making SAC a popular choice for a wide ranges of
problems, such as games and robotics control problems.

2.1.3 Offline Reinforcement Learning
A drawback of having no prior knowledge about the domain or the task, is that model-free
online RL methods require a high number of samples for training. While feasible to scale
in simulated environments, robot interaction data in real world settings is scarce and costly.
Moreover, evaluating sub-optimal policies at early stages of a training or collecting data with
random exploration are notoriously difficult to automate in ways that ensure the safety of both
the robot and the physical environment. Consequently, there exists a large interest in applying
reinforcement learning in a completely offline fashion, with a fixed dataset of transitions
D collected by some potentially unknown behavior policy πβ. We visualize the different
reinforcement learning settings in Figure 2.2. Unlike imitation learning, which is limited
by the quality of πβ, an appealing property of offline RL is its ability to effectively use all
the behaviors in D to produce unseen combinations of skills. Hence, it effectively leverages
possibly sub-optimal data and generalizes over naive imitation learning. Furthermore, offline
RL has the potential of acquiring new skills without the need of explicit demonstrations, if
the new skills can be assembled from parts of previously learned behaviors.

Unfortunately, the main benefit of offline RL, the lack of environment interaction, is also
what raises several algorithmic challenges [70]. An obvious challenge is that D needs to
have a good state coverage. As exploration is not possible, if D does not contain transitions



2.1. LEARNING SENSORIMOTOR BEHAVIOR 25

(c) Offline Reinforcement Learning

Interactions

 

 
Learn

Buffer

 
Deployment

 

Fixed dataset collected 
 once with any policy

Training

(a) On-policy Reinforcement Learning

 

Interactions

 
Update

Transitions 

 

(b) Off-policy Reinforcement Learning

Interactions

 

Transitions 

 

 
Update

Buffer

 

Figure 2.2: Illustration of the various reinforcement learning settings, including (a) online RL, (b)
off-policy RL, and (c) offline RL. In the classic online setting (a) the policy πk is updated
using data collected by πk itself. In the off-policy setting (b), the agent’s experience is
stored in a replay buffer D. Offline reinforcement learning (c) uses a fixed dataset D that
is collected once by a (often unknown) behavior policy πβ and the policy is deployed
without further environment interactions. Adapted from: Levine et al. [70].

that lead to high-reward regions of the state space, it might be impossible to discover those
regions. Thus, we build upon diverse play data, as described in Section 2.1.1, to train offline
RL policies in Chapter 8.

Algorithmically, it may be intuitive to apply commonly used reinforcement learning meth-
ods [69, 71] directly in an offline reinforcement learning setting by utilizing the dataset D as
the initial replay buffer and forgoing any additional environmental interactions. Algorithms
designed with this idea in mind, such as QT-OPT [72], have been shown to perform poorly
without any additional on-policy interaction. The use of high-dimensional, expressive func-
tion approximators in offline reinforcement learning exacerbates the issue of distributional
shift, which is one of the key challenges in offline RL. Intuitively, in offline RL we want
to learn a policy that is better than the unknown behavior πβ that produced the dataset D.
Therefore, the agent needs to execute and compose action sequences in different ways to the
behaviors seen in D, which leads to the agent visiting different states than the ones seen in
the training set. In other words, the agent is trained under one distribution, but gets evaluated
on a different distribution.

Distributional shifts can harm any policies performance in MDPs. In their seminal paper,
Ross et al. [45] discovered that for a policy π(a|s) trained with supervised learning, given
optimal action labels a∗ at each state s ∈ D, the error bound is linear in the time horizon H
for the online case and quadratic for the offline case. Intuitively, once the offline policy enters
a states outside of its training distribution, it will continue to make mistakes and remain
out-of-distribution for the rest of the rollout, accumulating O(H) error. As there is a chance
of entering an out-of-distribution state at each of the H time steps, the total error becomes
O(H2). Offline RL algorithms can in principle mitigate this error by constraining the learned
policy to the behavior policy induced by the dataset with a KL divergence, similar to the one
discussed for policy gradient methods in Section 2.1.2. However, this approach may result in
a significant decrease in overall performance, as the behavior policy and any policy that is
similar to it, may not be as effective as the best policy that can be inferred from offline data.

Besides the state distribution shift at test time, during training a more subtle action
distribution shift takes place. Concretely, the computation of the targets for the Bellman
backups in Equation 2.12 depends on at+1 ∼ π(at+1|st+1). Without the possibility of online
interaction, evaluating Qπ at at+1 is challenging due to the fact that the Q-function regression
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targets are dependent on the estimated Q value for actions that are not present in the training
distribution used to learn the Q-function. Consequently, when π(a|s) differs considerably
from πβ , the target Q-values can be highly inaccurate. This issue is further compounded by
the explicit maximization of the target values Ea∼π(a|s)Qπ(s, a), leading the policy to take
out-of-distribution actions, because the Q-function mistakenly assigns high values to them. In
online reinforcement learning, the issue of over-optimistic Q-values is mitigated through the
process of the policy taking actions it mistakenly believes to be good and receiving feedback
from the environment to correct these errors. However, in offline reinforcement learning the
policy lacks this mechanism for correction. Consequently, errors accumulate over the course
of the training, resulting in sub-optimal performance.

There are several approaches to address these issues. In Chapter 8, we build upon Conser-
vative Q-learning (CQL) [73]. The main idea of CQL is to ensure that the Q-values learned
from offline data are always conservative, meaning that they are always an underestimation
of the true Q-values. CQL achieves these conservative predictions by combining the Bellman
objective J(D, φ) with a Q-value regularizer C(D, φ):

Ĵ(D, φ) = αC(D, φ) + J(D, φ) (2.17)

where C(D, φ) is the conservative penalty term. CQL implements this penalty with an
adversarial action distribution µ(a|s) which samples actions that can produce high Q-values.
The addition of this penalty term acts to constrain the Q-values of these state-action pairs,
resulting in a lower bound for the estimated Q-function.

CCQL0(D, φ) = Es∼D,a∼µ(a|s)[Q(s, a)] (2.18)

For actions that are within the training distribution, the standard Bellman objective term
J(D, φ) still enforces that the Q-values adhere to the Bellman backup. By selecting an
appropriate value for the penalty weight α, the conservative penalty should primarily decrease
Q-values for actions that fall outside the distribution and have potentially incorrect high
values. Kumar et al. [73] show that a Q-function trained with this conservative penalty will
represent a lower bound of the true Q-function Q(s, a) for the current policy. In general,
CQL is a state-of-the-art offline RL approach that can be seamlessly integrated into existing
Q-learning and actor-critic frameworks. Specifically, in the context of continuous control
tasks it can be integrated on top of SAC, as demonstrated in Chapter 8.

2.2 Language Representation Models
NLP (Natural Language Processing) is an interdisciplinary field of study concerned with
making sense of human language from a computational perspective. Making a computer
“understand” natural language has a wide range of applications, such as text classification and
generation, language translation or speech recognition. One of the challenges we address in
this thesis is grounding natural language into a robot’s sensorimotor experience. Thus, as
a highly interdisciplinary problem, we draw inspiration from NLP advancements to model
language in the methods described in Chapter 4, Chapter 5, Chapter 6 and Chapter 10.

The first step towards understanding language computationally is to translate words to a
representation on the basis of numbers. The most simple and naive way to do this is building
a vocabulary V of the words our program should be able to understand, and represent every
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word with a one-hot encoding. For example, we might have the word “lemon” in position
128, “apple” in position 3000 and “robot” in position 130. This representation has two major
issues. On the one hand, it is highly inefficient as only a single item from a large vector will
have a value different to zero. On the other hand, it treats all words equally, as the distance
between every pair is the same. However, intuitively the word “lemon” is more similar to the
word “apple” than to “robot”, as they are both fruits. Language models need to understand
not only single words, but the meaning of sentences. This can be expressed as learning the
joint probability of a sequence words. Concretely, the probability of the next word wt given
the sequence of previous words is

P (wti) =
T∏
t=1

P (wt | wt−1
1 ), (2.19)

where wji = (wi, wi+1 . . . wj−1, wj). Thus, having seen in the training the sentence “The king
ate an apple in the kitchen” might help generalize to the unseen sentence “The queen ate a
pineapple in the dining room”, because there are similar semantical and grammatical roles
between the pairs (“queen”, “king”), (“apple”, “pineappple”) and (“kitchen”, “dining room”).
The underlying linguistic assumption is coined the distributional hypothesis [74, 75], which
postulates that words appearing in similar contexts are related to each other semantically.

Word embeddings solve these problems by representing each word in the vocabulary with
a fixed size vector, which is learned during the training [76]. These dense vectors position
words with semantically or contextually similar meanings in close proximity, as opposed
to the sparse representation resulting from one-hot embeddings, which leads to a greater
efficiency. Word embeddings can be generally divided into context-free and contextual word
embeddings. Context-free representations such as Glove [77] and Word2Vec [78] are based
only on the characters the word consists of, while contextual word embeddings take into
account the neighboring words, i.e. the context.

2.2.1 Sequence-to-Sequence Models

In order to give robots instructions with language, the meaning of a sentence needs to be
captured. Thus, in this thesis we leverage contextualized language representations. As
sentences consists of a sequence of words, techniques that can effectively process sequential
data are used in NLP. Imagine the task of interest is translating a sentence to another language.
Vanilla neural networks are not well suited for such tasks, as they map fixed length inputs (e.g.,
an image) to fixed length outputs (e.g., probabilities over classes). However, in translation
tasks it might not be possible to know a priory the length of a sentence in a different language.
Thus, one of the most common architectures found to encode sentences are Recurrent Neural
Networks (RNNs) [79].

In its most simple form, the RNN applies the following function to each of the sequence
elements sequentially:

ht = tanh(Whixt +Whhht−1) (2.20)

where ht is the hidden state at time t, xt is the input at time t, and h(t−1) is the hidden state of
the previous layer at time t− 1 or the initial hidden state at time 0. The hidden state encodes
the context of the sentence.
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Figure 2.3: Visualization of a Recurrent Neural Network, also known as an Elman RNN [80].

Thus, RNNs can process sequences of arbitrary length and store a persistent representation
of it in the form of the hidden state. An attractive property of RNNs is the potential for
connecting prior information to current tasks. Imagine the task of predicting the last word
in the sentence “I grew up in Germany. . . I speak fluent German” in a sentence completion
task [81]. In order to predict correctly the language, the model needs the context of Germany,
which is at the beginning of the sentence. However, basic RNNs struggle to capture such long
horizon dependencies due to exploding and vanishing gradients [82]. This happens because
during backpropagation, the calculation of (partial) derivatives/gradients in the weight update
formula follows the chain rule, where gradients in earlier layers are the multiplication of
gradients of later layers. Thus, in practice Long Short Term Memory networks (LSTMs) [83]
are often used, as their formulation helps mitigate the aforementioned issues. The architecture
is similar to basic RNNs, but the update rule for each element in the sequence is given by:

it = σ(Wiixt +Whiht−1)

ft = σ(Wifxt +Whfht−1)

gt = tanh(Wigxt + +Whght−1)

ot = σ(Wioxt +Whoht−1)

ct = ft � ct−1 + it � gt
ht = ot � tanh(ct)

(2.21)

where σ represents the sigmoid activation function, � the Hadamard product, and it, ft,
gt, ot are the input, forget, cell, and output gates, respectively. Intuitively, these gates
control how much information gets added to the persistent cell state and when it should be
updated. In order to make predictions, RNNs or LSTMs are combined in an encoder-decoder
architecture, coined Seq2seq model [84], where the decoder uses the resulting context vector
for downstream predictions. In Chapter 4, we use LSTM networks and train word embeddings
end-to-end to i) encode sentences for referring to objects in the scene the robot should pick
up, and ii) to describe image regions with natural language descriptions in order to interact
with a user to resolve ambiguities.
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2.2.2 Transformer Networks

One practical issue of training RNNs or LSTMs is that they are difficult to parallelize due
to the sequential unrolling for each timestep. Besides, the fact that all the information is
stored in a context vector can limit the ability to understand long dependencies and complex
inputs. The introduction of self-attention and its integration into the transformer network
architecture [85] has efficiently addressed both challenges, playing a pivotal role in fostering
numerous ML innovations in the recent demi-decade.

An attention mechanism is a method to selectively focus on parts of the input when making
a prediction. It helps weigh the importance of different input elements and can improve
the performance of tasks such as machine translation and image captioning. In essence,
the attention mechanism models correlations. For example, the occurrence of the word
“eating” activates an expectation for a subsequent word related to food, as a result of semantic
associations. Thus, in the sentence “He is eating a yellow banana”, the words “eating” and
“banana” have a high attention score, while the pair (“eating”, “yellow”) has a lower attention
score.

Self-attention is an auto-regressive attention mechanism, i.e. it has the ability to examine
prior inputs in the sequence during the encoding of the current input. In order to compute the
attention scores, first each element of the input sequence is linearly projected to a query qi,
key ki, and value vi to form the respective matrices Q ∈ Rdk , K ∈ Rdk , V ∈ Rdv . Then, the
elements are scored against each other to determine how much attention to place on other
parts of the sequence. This is achieved via a scale dot-product attention by computing the dot
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Figure 2.4: Overview of multi-head attention. Each of the h heads in multi-head attention (right)
computes the scale dot-product attention (left), enabling the model to learn contextual
representations from different representation subspaces at different positions. Source:
Vaswani et al. [85].
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product of the query vector with all the keys. To stabilize the gradients, an additional scaling

factor
1√
dk

is used. Finally, a softmax function is applied to normalize the scores and obtain

the weights of the values:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (2.22)

Instead of only computing the self-attention once, the multi-head mechanism runs the
scaled dot-product attention multiple times in parallel, which allows the model to learn
contextual representations from multiple subspaces as visualized in Figure 2.4. The full
transformer architecture, visualized in Figure 2.5, stacks several multi-head attention layers
followed by fully connected networks in the encoder to learn to focus on important parts
of the input sequence. The decoder also stacks several identical layers, but additionally
computes attention with respect to the encoder to learn the relationship between the input and
the target. One of the main advantages of this architecture is that there is no recurrence, as it
consists only of standard feed-forward networks. However, the network needs to incorporate
knowledge about the relative or absolute position of the elements in the sequence. The

Figure 2.5: Overview of a transformer network. The encoder (left) makes use of self-attention to learn
the relationships within the input sequence. The decoder (right), additionally computes
attention with respect to the encoder to learn the relationship between the input and the
target. Source: Vaswani et al. [85].
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transformer architecture solves this by injecting positional embeddings in the form of a
sinusoid-wave for example.

We use a transformer encoder architecture in Chapter 6 and Chapter 10 to learn temporally
contextualized global video representations that are used to recognize and organize high-level
behaviors. It is also worth mentioning that the transformer encoder is significantly more
efficient both memory and model size wise in comparison to RNNs, e.g., 5.9 M vs 106 M
parameters for the video encoder network in Chapter 6.

2.2.3 Pre-trained Language Models

The advent of the transformer network was followed by a proliferation of language models
trained on large corpora of text. Among the pioneers was “Bidirectional Encoder Representa-
tions from Transformers” (BERT), a natural language processing model proposed by Devlin
et al. [86]. We will briefly describe it, as most of the modern language models are similar in
spirit.

BERT’s architecture is a multi-layer bidirectional transformer encoder. Bidirectionality
means that it learns to predict both context on the left and right, i.e. both the next and
previous words determine the representation of a word. For example, the sentences “I very
much like rock bands from the 80s” and “I very much like rock formations in the desert”
can only be understood by allowing the succeeding words after the word “rock” to influence
the representation. Unidirectional models only consider the left context previous to the
word, in both cases “I very much like”, making it difficult to infer the meaning of the word
rock. By considering both directions, a better representation of the word “rock” is obtained.
Bidirectionality was found to improve the quality of the language embedding representations.

In order to train a deep bidirectional representation, BERT masks 15% of tokens in each
sequence at random, and then predicts those masked tokens. Besides, in order to capture
longer relationships at the sentence level, BERT incorporates a next sentence prediction loss
(NSP) by forming tuples of sentences (A, B) and predicting if B follows A, which is true for
50% of the tuples formed. These simple auxiliary losses, which can be trivially generated
from any monolingual corpus, effectively allows to scale the training to Internet-scale diverse
datasets. The contextual representations of words in a sentence learned by BERT were shown
to be effective for a broad range of NLP tasks, such as question answering or sentiment
analysis.

Although BERT demonstrated strong performance in various NLP tasks, its effectiveness is
limited in some situations. For instance, when trying to predict the two most similar questions
asked in a forum, BERT could form a pairwise comparison. However, the n · (n − 1)/2
forward passes needed for all possible sentence combinations makes this computationally
infeasible. Similarly, when directing a robot with language instructions, a user might use very
similar sentences that have different meanings, such as “grasp the pink block and turn it left”
and “grasp the pink block and turn it right”. Embeddings from BERT for these sentences
will be very close in latent space, therefore confusing the robot on the desired behavior.
SBERT (Sentence-BERT) [87] alleviates these issues by reasoning over the similarity of
sentence-level representations. SBERT is a modification of the BERT architecture using
siamese networks in order to derive semantically meaningful sentence embeddings.

SBERT adds a pooling layer on top of BERT to extract a fixed size representation for
a sentence. After passing two sentence through a siamese network, a cosine similarity
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Figure 2.6: SBERT computes the cosine similarity between the sentence embeddings with siamese
networks. Source: Reimers et al. [87].

is computed to reason over the sentence-level similarity, which is particularly useful for
tasks that involve semantic comprehension like paraphrasing or clustering. We visualize the
architecture of SBERT in Figure 2.6.

In this thesis, we found that language models finetuned on sentence similarity to work best
to understand free-form language instructions for directing robots. We perform a study over
the choice of architectures and losses to encode sentence semantics in Chapter 6. Throughout
this thesis, we have leveraged pre-trained language models to encode raw text into a semantic
pre-trained vector space in Chapter 5, Chapter 6 and Chapter 10.



Chapter 3

Learning Object Placements For
Relational Instructions by Hallucinating
Scene Representations
The content of this chapter has been published in [88]:

O. Mees, A. Emek, J. Vertens and W. Burgard
Learning Object Placements For Relational Instructions by Hallucinating Scene
Representations
IEEE International Conference on Robotics and Automation (ICRA), 2020

Me and Alp Emek share the main authorship. The initial work on the Spatial-RelNet archi-
tecture for estimating pixelwise object placement heatmaps was formulated in collaboration
with Johan Vertens for Alp Emeks Master’s thesis, which the author of this thesis supervised
together with Johan. Alp helped with collecting and labeling the dataset and implemented
the initial experimental framework. All the results for Spatial-RelNet reported in this thesis
were entirely carried out by the author of this thesis. The paper was mostly written by the
author of this thesis.
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HALLUCINATING SCENE REPRESENTATIONS

Abstract

Robots coexisting with humans in their environment and performing services
for them need the ability to interact with them. One particular requirement
for such robots is that they are able to understand spatial relations and can
place objects in accordance with the spatial relations expressed by their user.
In this work, we present a convolutional neural network for estimating pixel-
wise object placement probabilities for a set of spatial relations from a single
input image. During training, our network receives the learning signal by
classifying hallucinated high-level scene representations as an auxiliary task.
Unlike previous approaches, our method does not require ground truth data
for the pixelwise relational probabilities or 3D models of the objects, which
significantly expands the applicability in practical applications. Our results
obtained using real-world data and human-robot experiments demonstrate the
effectiveness of our method in reasoning about the best way to place objects
to reproduce a spatial relation. Videos of our experiments can be found at
https://youtu.be/zaZkHTWFMKM

3.1 Introduction

Understanding and leveraging spatial relations is a key capability of autonomous service
robots operating in human-centered environments. In this work, we aim to develop an
approach that enables a robot to understand spatial relations in natural language instructions
to place arbitrary objects. The spatial relations include common ones such as “left”, “right”
or “inside”. In Figure 3.1, the robot is asked to “place the mug on the right of the box”. To
do so, the robot needs to reason about where to place the mug relative to the box in order
to reproduce said spatial relation. Moreover, as natural language placement instructions do
not uniquely identify a location in a scene, it is desirable to model this using distributions to
capture the inherent ambiguity.

Object-object spatial relations can be learned in a fully-supervised manner [89, 90, 91, 92,
93, 94, 95] from 3D vision. The main limiting factor for exploiting this setup in practical
robotics applications is the need for collections of corresponding 3D object shapes and
relational data, which are difficult to obtain and require additional instrumentation for object
tracking. This limits prior methods to training on synthetic datasets or simulators, leading to
difficulties in their application to real-world scenarios. A possible solution to this problem
is to model relations directly from RGB images [96], which allows direct training on real
image data without the need of modeling the scene in 3D. Reasoning about object placements
for relational instructions in this context requires estimating pixelwise spatial distributions
of placement locations, as shown in Figure 3.1. One of the key challenges to estimate such
pixelwise spatial distributions is the lack of ground-truth data. This originates from the
inherent ambiguity on modeling such ground-truth distributions without using heuristics. If
one wants to model the relation “left”, how far left of the reference object would form a valid
relation? Should the distribution have a single or multiple modes? And where is the boundary
between “left” and “in front of” for instance?

In this paper, we push the limits of relational learning further and present a method which
leverages a weaker form of supervision to model object placement locations conditioned on a

https://youtu.be/zaZkHTWFMKM
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Place the mug on
the right of the box

Figure 3.1: The goal of our work is to follow natural language instructions based on spatial relations
to place arbitrary objects. Our network learns to predict pixelwise placing probability
distributions (heatmap on the table) solely from classifying hallucinated high-level scene
representations into a set of spatial relations.

set of spatial relations. We address the problem of the unavailability of ground-truth pixelwise
annotations of spatial relations from the perspective of auxiliary learning. Our approach
relies solely on relational bounding box annotations and the image context to learn pixelwise
distributions of object placement locations over spatial relations, without any additional form
of supervision or instrumentation. Though classifying two objects into a spatial relation does
not carry any information on the best placement location to reproduce a relation, inserting
objects at different locations in the image would allow to infer a distribution over relations.
Most commonly, “pasting” objects realistically in an image requires either access to 3D
models and silhouettes [97, 98, 99, 100] or carefully designing the optimization procedure
of generative adversarial networks [101, 102]. Moreover, naively “pasting” object masks
in images creates subtle pixel artifacts that lead to noticeably different features and to the
training erroneously focusing on these discrepancies. Our results show that such models
lead to reduced performance. Instead, we take a different approach and implant high-level
features of objects into feature maps of the scene generated by a network to hallucinate
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scene representations, which are then classified as an auxiliary task to get the learning signal.
Training a network in this setup solely requires being able to classify relations between pairs
of objects from an image.

We demonstrate both qualitatively and quantitatively that our network trained on real-world
images successfully predicts pixelwise placement probability distributions for each spatial
relation. Our approach can be trained on images with relational bounding box annotations
and does not require 3D information or any additional instrumentation to predict the spatial
distribution of arbitrary objects, thus making it readily applicable in a variety of practical
robotics scenarios. We exemplify this by using the probability distributions produced by
our method in a robot experiment to place objects on a tabletop scene by following natural
language instructions from humans.

3.2 Related work

Learning spatial relations by relying on the geometries of objects provides a robot with the
necessary capability to carry out tasks that require understanding object interactions, such as
object placing [89, 90], human robot interaction [32, 103, 104, 105], object manipulation [93]
or generalizing spatial relations to new objects [91, 92, 106]. Commonly, spatial relations
are modeled based on the geometries of objects given their point cloud models [91, 92, 93].
However, learning object relations from 3D data [91, 92, 93, 94, 95] typically requires
additional instrumentation to track objects, with the consequent difficulties due to occlusions
for example. One way to overcome this limitation could be learning to predict 3D shapes
from single images in a self-supervised manner [107]. In contrast to these works, we learn
spatial distributions directly from real-world images.

Spatial relations also play a crucial role in understanding natural language instructions [108,
109, 110], as objects are often described in relation to others. Several studies on human–robot
interactions have been conducted, mainly for picking objects. These works focus on analyzing
the expressive space of abstract spatial concepts as well as notions of ordinality and cardinality
[104, 108]. Complementary to these works, we propose to learn distributions of object
relations, for commonly used prepositions in natural language, to enable a service robot to
place arbitrary objects given natural language instructions.

There has been a large body of research targeting relations in the vision community.
Multiple works attempt to ground object relationships from images for classification [96],
referring expression comprehension [111, 112, 113], human-object interactions [114] or
relational learning in visual question answering [115, 116]. While these approaches reason
about an existing scene, our method learns which future state might follow best a spatial
relation grounded in natural language instructions. Generating a future state in a object
placement scenario would mean to insert the object to be placed into different locations
in the robot’s view image. There exists a plethora of work for learning how to synthesize
objects realistically into images [97, 98, 99, 100]. Most commonly, such methods requires
either access to 3D models and silhouettes or carefully designing the optimization procedure
of generative adversarial networks [101, 102]. Instead, our approach implants high-level
features of objects to hallucinate scene representations, which are then classified by an
auxiliary network to learn spatial distributions.
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Figure 3.2: In the first stage of our approach, we train an auxiliary convolutional neural network,
called RelNet, to predict spatial relations given the input image and the two attention
masks referring to the two objects forming a relation (a). After training, we can “trick”
the network to classify hallucinated scenes by implanting high-level features of items at
different spatial locations (b).

3.3 Method description
In this section we describe the technical details of our method for estimating pixelwise object
placement probabilities for a set of spatial relations from a single input image. We consider
pairwise relations and express the subject item as being in relation to the reference item. We
extract subject, object and relation from natural language instructions.

3.3.1 Auxiliary Network
In the first stage of our approach, we encode the input RGB image together with an
object and a subject attention mask to classify them into a set of spatial relations with
an auxiliary convolutional neural network (CNN). We denote the RGB image, the ob-
ject and subject attention masks as xi,aio,a

i
s respectively and yi corresponds to the re-

lation label in one-hot encoding – i.e., yi ∈ {0, 1}|C| is a vector of dimensionality C
(the number of relations). We model relations for a set of commonly used natural lan-
guage spatial prepositions C = {inside, left, right, in front, behind, on top}. Let
D = {(x1, a1

o, a
1
s,y

1), . . . , (xN , aNo , a
N
s ,y

N)} be the labeled data available for training our
auxiliary classification network, which we name RelNet, see Figure 3.2a. Let θRelNet be
the parameters of the network. We denote the mapping of RelNet as f(xi,aio,a

i
s; θRelNet)

∈ R|C|. The attention masks are calculated as a Gaussian distance transform a(u, v) =
1

σ
√

2π
e−

1
2

((1−duv)/σ)2

with duv being the distance transform between (u, v) and the bounding
box center, based on the L2 norm and with σ = 2.
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Figure 3.3: Our encoding-decoding Spatial-RelNet network processes the input RGB image and
the object attention mask to produce pixelwise probability maps Γ over a set of spatial
relations. During training, we sample locations (u, v) according to Γ, implant inside
the auxiliary network RelNet at the sampled locations high level features of objects and
classify the hallucinated scene representation to get a learning signal for Spatial-RelNet.
At test time the auxiliary network is not used.

The goal of RelNet is to learn classifying scenes of pairwise object relations by minimizing
the cross-entropy (softmax ) loss. The softmax function converts a score zc for class C into
a posterior class probability that can be computed as L(zc) = exp(zc)/

∑|C|
j=1 exp(zj). Using

stochastic gradient descent (SGD) we then optimize:

θ∗RelNet ∈ arg min
θRelNet

N∑
i=1

L(f(xi, aio, a
i
s; θRelNet),y

i). (3.1)

RelNet is only utilized during training time and discarded at inference time.

3.3.2 Hallucinating Scene Representations
Clearly, classifying the spatial relation formed by two items is not suitable to identify
the best placing location to reproduce a relation. However, inserting objects at different
locations in the image would allow to infer a distribution over relations. As mentioned
before, “pasting” objects realistically in an image requires commonly either access to 3D
models and silhouettes [97, 98, 99, 100] or carefully designing the optimization procedure
of generative adversarial networks [101, 102]. To tackle this challenge, we take a different
approach and implant high-level features of objects into a high-level feature representation
of RelNet to hallucinate scene representations, which are then classified to get the learning
signal, as shown in Figure 3.2b. Given an input image xi of size W ×H , we use the RelNet
network on the image to obtain a spatial feature map Mo of size Wf × Hf × Nf (width,
height, number of filters) at depth d. Given an input image, we extract a slice of the feature
map s ∈ RWs×Hs×Nf corresponding to a bounding box containing an item in the image.
Thus, hallucinating a scene representation requires no more than making a forward pass with
RelNet and implanting the high level features of a subject object s into the feature map Mo at
a sampled location (u, v) by summation and continuing the forward pass with the modified
feature map. We define the implanting operation as:

ϕ(Mo, s, u, v) = Mo +Ms(u, v), (3.2)
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where

(Ms(u, v))jk =


s(j − u, k − v),

if u ≤ j ≤ u+Ws

and v ≤ k ≤ v +
Hs

.

0, otherwise.

(3.3)

This way we can reason over what pairwise spatial relations are most likely to be formed
given an existing item in the image and a subject item which can be hallucinated at different
locations. In other words, what relation would the two items form, if the subject item was
placed at the specified location. Formally, we define the mapping of a RelNet with implanted
features s at location u, v as fϕ(xi, aio, a

i
s, s, u, v) ∈ R|C|.

3.3.3 Learning pixelwise item placement distributions
In the final stage of our approach, we model the primary task of inferring pixelwise spatial
distributions to find the best placing locations by following a natural language instruction
containing a spatial relation. We define a second network, named Spatial-RelNet, with an
encoding-decoding architecture. Given an image xi of size W ×H and the object attention
mask aio, the network predicts for each pixel in the input image the probabilities of belonging
to one of the C classes with respect to the reference object attention, see Figure 3.3. Thus, we
denote the mapping of Spatial-RelNet as g(xi, aio) = Γ ∈ RW×H×|C| and

∑|C|
j=1 Γj(u, v) = 1

for all u = 1...W, v = 1...H . Due to the unavailability of ground-truth pixelwise annotation
of spatial relations we propose a novel formulation which leverages auxiliary learning. During
training, we sample pixel locations (u, v) ∈ ξ ⊆ {0, ...,W} × {0, ..., H} according to the
probability maps Γ produced by Spatial-RelNet and then implant at the specified locations
the subject object features to compute with RelNet a posterior class probability over relations.
This way, we can reason over what relation would most likely be formed if we placed an
object at the given location. Our formulation allows predicting non-parametric probability
distributions. Thus, by sampling multiple locations in the scene from Γ and leveraging the
auxiliary task of classifying the spatial relation formed by two objects in an image we can
train our primary network Spatial-RelNet with the following mean squared error loss:∑

u,v∈ξ

||g(xi, aio)uv − fϕ(xi, aio, a
i
s, s, u, v)||22. (3.4)

We note that at inference time the auxiliary RelNet network is discarded.

3.3.4 Implementation Details
In the first stage of our approach, we train the auxiliary RelNet network on the task of
classifying spatial relations between two objects in images. The auxiliary RelNet network is
based on a ResNet-18 [117] architecture and is initialized with ImageNet pre-trained weights.
We use the SGD optimizer with a learning rate of 10−3.

In the final stage of our approach, we train Spatial-RelNet to predict pixelwise spatial
distributions by using the auxiliary RelNet network for supervision. The Spatial-RelNet is
inspired by the FastSCN [118] semantic segmentation architecture and initialized randomly.
We apply a per-pixel sigmoid activation function for the last layer instead of softmax . We use
the ADAM optimizer with a learning rate of 10−3.We sample 20 locations per distributions
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Figure 3.4: Examples of the scenes recorded for training the auxiliary RelNet classifier. We recorded
a total of 1237 images of 165 tabletop scenes and manually annotated the bounding boxes
of the objects and their spatial relations.

and use a feature map of the size 128, 10, 10 pertaining to an object to hallucinate the
scene representations. For all experiments, we implant the subject features after the third
convolutional block “conv3_x” (d = 3) of the ResNet-18 architecture that characterizes
RelNet. In order to speed up the training we apply a Sobel filter on the output probability
maps H to propagate the gradient to local neighborhoods. We define the Sobel kernels as[ −1 0 1
−2 0 2
−1 0 1

]
for the x direction and

[
1 2 1
0 0 0
−1 −2 −1

]
for the y direction.

3.4 Experiments
In this section we showcase our approach both qualitatively and quantitatively, and demon-
strate its applicability in a human-robot experiment, where participants ask a PR2 robot to
place objects with natural language instructions based on spatial relations.

3.4.1 Dataset

We record and annotate a total of 1237 images of 165 tabletop scenes, see Figure 3.4. The
images depict tabletop scenes from three different viewpoints (object-centric to top-down)
containing spatial relations formed by using combinations of 40 different household objects.
Learning from multiple camera viewpoints helps the approach become less sensitive to view-
point changes and generalize better. We annotate 5304 pairwise bounding boxes with the com-
monly used natural language spatial prepositions C = {inside, left, right, in front,
behind, on top}. For all recorded scenes we use different tablecloths and tables in different
rooms to avoid overfitting. To evaluate the pixelwise probability distributions predicted
by Spatial-RelNet, we record 105 scenes containing unseen objects and tables. Due to
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(a) (b) (c)

Figure 3.5: Example user annotation of ground-truth points for the relation “right” with a “spray”
paint tool (a). We convolve the user annotated points to generate a dense distribution (b).
The shown network output distribution and the ground-truth distribution have a IoU0.5 of
0.39 (c).

the inherent ambiguity of defining pixelwise spatial distributions, we ask 3 participants to
annotate them. To do so, the user use a “spray” tool to draw points in which placing an
item would reproduce a given spatial relation, as shown in Figure 3.5a. The points are then
convolved with a fixed kernel to generate a dense pixelwise ground-truth distribution, as seen
in Figure 3.5b.

3.4.2 Evaluation protocol
To compare the pixelwise distributions predicted by our method with the ground-truth
pixelwise annotations provided by the participants, we report several metrics. Inspired by
metrics from object detection and segmentation, we threshold the distributions at different
ranges and compute their mean intersection over union (IoU). Additionally, we are interested
in comparing the modes between the distributions. First, we compute the maximum mode
from each distribution and report the euclidean pixel distance between them (Mode). As the
distance between the modes does not model the tails of the distributions, we also calculate the
distance between the centroid pixels of the predicted and ground-truth distributions (Centroid).
Due to the non-parametric nature of the distributions, we perform a Kruskal-Wallis (KW)
test by analyzing if 100 points sampled from the ground-truth distribution and another 100
points sampled from the predicted distribution originated from the same distribution, with a
significance of p < 0.05. Finally, we measure the similarity of the probability distributions
with the Kullback–Leibler (KL) and Jensen–Shannon (JS) divergences.

3.4.3 Quantitative Results
First, we analyze the performance of the auxiliary RelNet network to model spatial relations,
as we rely on it to get the learning signal for Spatial-RelNet. We evaluate the performance of
RelNet on a test split containing 975 pairwise relations and report an average accuracy of
97% over all relations, as shown in Table 3.1. We compare its performance against a model
that was trained only on binary masks of the objects to analyze the importance of using the
image context to model the relations. This model achieves an accuracy of 84.4% and we
find that the image context is specially important to disambiguate the relations on top and
inside. We also train an intermediate model, which takes as input the image and binary
object masks to model the relations, and achieves an accuracy of 94.3%. Our final model
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Input Inside Left Right In Front Behind On Top

Figure 3.6: Qualitative results for predicting pixelwise distributions for every spatial relation. Placing
an object at a location sampled from these distributions maximizes the probability of
reproducing the selected spatial relation. Our network produces meaningful distributions,
despite relying solely on an auxiliary task of classifying hallucinated high-level scene
representations into a set of spatial relations for supervision.

shows the best performance by incorporating the use of the Gaussian distance transforms for
the attention masks.

Model Mean Inside Left Right In Front Behind On Top
Masks only 84.4 60.8 99.3 93.2 99.3 98.1 56.6
Image + Masks 94.3 81.3 99.3 100 98.7 97.5 88.5
Full model 97 93.1 98.7 100 100 98.7 91.5

Table 3.1: Quantitative comparison of RelNet with its variants. Adding the image context helps
disambiguating the relations on top and inside.

Next, we quantitatively evaluate the capability of a baseline model in which we naively
“paste” objects masks in the RGB images to predict pixelwise distributions for spatial relations.
We report mean Ious of 0.44, 0.4, 0.3 for the thresholds of 0.25, 0.5 and 0.75 respectively.
This shows that the artifacts created by “pasting” object masks in RGB images lead to
noticeably different features and to the training erroneously focusing on these discrepancies.
In comparison, our Spatial-RelNet achieves mean IoUs of 0.63, 0.6 and 0.44, as shown
in Table 3.2, by classifying hallucinated scene representations, alleviating this problem.
Moreover, for Spatial-RelNet the mean distance between the modes of the distributions
lies at 67.2 pixels, corresponding approximately to 5.74cm. As this metric depends on the
image resolution and the distance of the camera to the objects, for each image in the test
set, we sample uniformly 100 pixels and compute their average distance to the mode of
the ground-truth distribution. Thus, the mean distance between a random pixel and the
ground-truth mode is 504.5 pixels. To model the tails of the distributions, we also calculate
the distance between the centroid pixels of the predicted and ground-truth distributions and
we report a mean distance of 113.5 pixels, which corresponds approximately to 9.88 cm. We
measure the similarity of the distributions with the Kullback–Leibler and Jensen–Shannon
divergences, were we report mean values of 3.78 and 0.46 respectively. Finally, we found in
0.55% of the cases the samples drawn from the predicted and ground-truth distribution to



3.4. EXPERIMENTS 43

Metric Mean Inside Left Right In Front Behind On Top
IoU0.25 0.63 0.66 0.69 0.65 0.64 0.51 0.65
IoU0.5 0.6 0.62 0.6 0.62 0.57 0.57 0.62
IoU0.75 0.44 0.47 0.41 0.46 0.39 0.48 0.5
Mode 67.2 43.5 71 59.2 86.8 115.3 90.5
Centroid 113.5 116.7 241.1 85.1 70.9 51.4 163.4
KL 3.78 5.35 4.47 3.5 1.62 3.9 5.7
JS 0.46 0.54 0.48 0.45 0.34 0.5 0.57
KW 0.55 0.63 0.5 0.51 0.51 0.43 0.73

Table 3.2: Quantitative comparison of the predicted pixelwise distributions with ground-truth annota-
tions for a range of metrics. Our methods yields good results though relying on a weaker
form of supervision.

originate from the same distribution according to the Kruskal-Wallis test, with a significance
of p < 0.05.

We show qualitative results in Figure 3.6. In this challenging setting, the network learns to
produce meaningful distributions, from which one can sample object placement locations to
reproduce a spatial relation.

3.4.4 Human-Robot Object Placement Experiment

We also evaluate the performance of our approach in a realistic human-robot collaboration
context. We exemplify the ability of our approach to reason about the best way to place
objects by asking a group of participants to provide relational natural language instructions
to a PR2 service robot in a tabletop scene.

Procedure

Our study involved 11 participants recruited from a university community. Each participant
was asked to give 20 natural language instructions to the PR2 robot, which were parsed
with an Amazon Echo Dot device. For each placement trial, the participants were asked to
choose a reference item from a range of 30 household objects and to place it on the table at a
random location. Next, the participants were instructed to choose a different item to put on
the gripper of the robot. Afterwards, the participants were asked to provide a natural language
instruction that contained one of the six spatial relations. We relied on keyword spotting
to select the corresponding predicted distribution. The instruction was repeated in case of
failures synthesizing the voice input. After sampling a (u, v) location from the predicted
distribution, we used the robot’s Asus Xtion RGB-D camera to localize the pixel coordinate
in 3D space. Our system then planned a top-down grasp pose to the calculated 3D point. The
reachability of the proposed plan was checked using MoveIt! [119]. The end-effector was
moved above the desired location and then the gripper was opened to complete the placement.
After each trial the participants rated the placement on a 10-point Likert scale as well as a
binary success rate. The Likert scale helps us rate ambiguous placements such as a top left or
diagonal placements for a instruction containing the relation “left”.
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Figure 3.7: Performance of a PR2 robot following natural language instructions of 11 participants for
object placement. Error bars indicate 95% confidence intervals.

Results

Figure 3.7 shows the performance of our approach on a PR2 robot for a total of 220 natural
language instructions of 11 participants. We report a mean rating of 8.1 over all relations and
trials. We observe a lower score for “behind” as many points sampled were outside the reach
of the robot’s gripper and therefore no valid motion plan was found. We observe a similar
behaviour for the success rates reported on Table 3.3. Many participants chose reference
items with a small area to place the object for the relations “on top” and “inside”, requiring a
precision placement. For such challenging scenarios, we observed some failure cases when
the sampled location lied at the border of the reference item or the depth information from the
RGB-D camera contained noise. Overall, our results demonstrate the ability of our approach
to effectively learn object placements for relational instructions.

Figure 3.8: Example object placing execution with the PR2 robot for the natural language instruction
“place the can on top of the box”, which is synthesized with the Amazon Echo Dot.
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Metric Mean Inside Left Right In Front Behind On Top
Success Rate 0.84 0.84 0.87 0.95 0.84 0.80 0.79

Table 3.3: Performance of our approach on a real robot platform following natural language instruc-
tions of 11 participants to place objects in a tabletop scenario.

3.5 Conclusion
In this paper, we presented a novel approach to the problem of learning learning object place-
ments for relational instructions from a single image. We exemplified how the distributions
produced by our method enables a real-world robot to place objects by following relational
natural language instructions. Our method is based on leveraging three key ideas: i) modeling
object-object spatial relations on natural images instead of 3D, which helps avoiding addi-
tional instrumentation for object tracking and the need for large collection of corresponding
3D shapes and relational data ii) reasoning about the best way to place objects to repro-
duce a spatial relation by estimating pixelwise, non-parametric distributions, without the
use of priors iii) leveraging auxiliary learning to overcome the problem of unavailability of
ground-truth pixelwise annotation of spatial relations and thus receive the training signal by
classifying hallucinating scene representations.

We feel that this is a promising first step towards enabling a shared understanding between
humans and robots. In the future, we plan to extend our approach to incorporate understanding
of referring expressions to develop a pick-and-place system that follows natural language
instructions.
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Abstract

Controlling robots to perform tasks via natural language is one of the most
challenging topics in human-robot interaction. In this work, we present a robot
system that follows unconstrained language instructions to pick and place
arbitrary objects and effectively resolves ambiguities through dialogues. Our
approach infers objects and their relationships from input images and language
expressions and can place objects in accordance with the spatial relations
expressed by the user. Unlike previous approaches, we consider grounding
not only for the picking but also for the placement of everyday objects from
language. Specifically, by grounding objects and their spatial relations, we allow
specification of complex placement instructions, e.g. “place it behind the middle
red bowl”. Our results obtained using a real-world PR2 robot demonstrate
the effectiveness of our method in understanding pick-and-place language
instructions and sequentially composing them to solve tabletop manipulation
tasks. Videos are available at http://speechrobot.cs.uni-freiburg.de

4.1 Introduction

As robots become ubiquitous across human-centered environments the need for natural
and effective human-robot communication grows. Natural language provides a rich and
intuitive way for humans and robots to interact due to the possibility of referring to abstract
concepts. Moreover, many real-world tasks can be effectively described by a series of
language instructions. In this work, we aim to develop an approach that enables a robot
to solve complex manipulation tasks by understanding a series of unconstrained language
expressions characterizing pick-and-place commands. To do so, the robot has to locate
unconstrained object categories based on arbitrary natural language expressions, known
as referring expression comprehension, and understand spatial relations to generate object
placing locations. In other words, the robot needs to “ground” the referred objects and their
spatial relations from language in its world model.

However, understanding unconstrained language instructions is challenging due to the
complexity and wide variety of abstract concepts expressed via human language, e.g. “fetch
the yellow thing” and “place it left of the bottom object”. Moreover, the expression might
contain ambiguities because there are several “yellow things” in which case the robot should
be able to resolve the ambiguity through dialogue, as shown in Figure 4.1. Finally, the robot
needs to reason about where to place the “yellow thing” relative to the “leftmost container”
in order to reproduce the spatial relation “right”, which is inherently ambiguous as natural
language placement instructions do not uniquely identify a location in a scene.

In this paper, we propose the first comprehensive system for controlling robots to per-
form tabletop manipulation tasks by sequentially composing unconstrained pick-and-place
language instructions. Our approach consists of two neural networks. The first network
learns to segment objects in a scene and to comprehend and generate referring expressions.
The second network estimates pixelwise object placement probabilities for a set of spatial
relations given an input image and a reference object. The interplay between both networks
allows for an effective grounding of object semantics and their spatial relationships, without
assuming a predefined set of object categories. We demonstrate the effectiveness of our

http://speechrobot.cs.uni-freiburg.de
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Figure 4.1: The goal of our work is to control a robot to perform tabletop manipulation tasks via
natural language instructions. Our approach is able to segment objects in the scene, locate
the objects referred to in language expressions, solve ambiguities through dialog and
place objects in accordance with the spatial relations expressed by the user.

approach by enabling non-expert users to instruct tabletop manipulation tasks to a robot,
based on sequences of pick-and-place speech commands.

4.2 Related Work
Our work is primarily concerned with the task of grounding natural language instructions
and spatial relations in the context of the robot’s world model [36]. Locating entities
in images based on language is closely related to object recognition. Previous works in
robotics [32, 121] have addressed semantic object retrieval by training classifiers to recognize
predefined object categories. These approaches are limited in real-world scenarios as they are
not capable of handling variation in the users natural language descriptions and are restricted
to a small number of objects.

Spatial relations also play a crucial role in understanding natural language instructions [108,
109], as objects are often described in relation to others in tasks such as object placing [88,
89, 91] or human robot interaction [32, 104, 122]. Concretely, spatial relations help the robot
disambiguate multiple instances of the same object and to define target areas for placing the
picked objects. In our previous work, we introduced a novel method to predict pixelwise
object placement probability distributions for a set of commonly used prepositions in natural
language [88]. In contrast, we relax the assumption of having a single reference object on
the tabletop and add a grounding model to effectively place arbitrary objects in a scene that
contains multiple objects.

Recently, there has been significant progress made towards systems that can demonstrate
their visual understanding by generating or responding to natural language in the context
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of images [28, 123, 124, 125, 126]. To learn joint visual-linguistic representations, state-of-
the-art approaches use convolutional neural networks to encode visual features and recurrent
neural networks to process language, replacing traditional handcrafted visual features and
language parsers. We leverage advances in modular networks [112, 127, 128] for referential
expression comprehension. This allows decomposing language into modular components
related to subject appearance, location, and relationship to other objects, flexibly adapting to
expressions containing different types of information in an end-to-end fashion.

Most related to our approach are the works by Shridhar et al. [104] and Hatori et al. [109],
as both use an interactive fetching system to localize objects mentioned in referring expres-
sions with bounding boxes. We tackle temporally more extended tasks, using our model
which enables complex object placement commands such as “place the cup on top of the
leftmost box”. Notably, sequentially composing pick-and-place language instructions can
lead to desirable high-level behaviours, such as tidying up a tabletop or table setting for
example. Finally, in contrast to the template-based picking approaches of prior interactive
fetching systems [104, 109] we leverage state-of-the-art methods for grasping novel objects
with 6-DOF grasps [129].

4.3 Method Description
In this section we describe the technical details of our method to control a robot to perform
tabletop manipulation tasks via natural language instructions. Our approach relies on two
models: a grounding model that identifies the most likely object referred by a language
instruction and a neural network that predicts object placing locations conditioned on a set
spatial relation. An overview of the system is given in Figure 4.2.

4.3.1 Target Object Selection
We start off by detecting and segmenting all objects in the scene. We train a semantic
segmentation network based on Mask-RCNN [130] with a Resnet-101 backbone, which
extracts a set of region proposals or object candidates oi from an image. After all objects
on the scene are recognized, we need to identify which object the user is referring to in its
language instruction. Given an input image I and expression r, the target object selection
is formulated as a task to find the best bounding box from the set of predicted candidate
boxes O = {oi}Ni=1. Our grounding model is based on MAttNet [112], a modular referring
expression comprehension network. To enable human-robot communication in cases of
ambiguous instructions, we have extended it to support the generation of self-referential
expressions, described in Section 4.3.2.

The candidate regions are encoded by a neural network consisting of three modular
grounding components related to subject appearance, location and relationship to other
objects. These modules combine image features encoded by a Resnet-101 network with
relational and geometric features pertaining to the neighborhood or context of each candidate
region. The language expression r is encoded in a word embedding layer, which encodes
each word in the input sentence to a vector representation, followed by a bi-directional Long
Short-Term Memory (LSTM) and a fully-connected (FC) layer. Additionally, the language
network learns two types of attention: attention weights that are computed on each word
for each module and are summarized as phrase embedding qm | m ∈ {subj, loc, rel}, and



4.3. METHOD DESCRIPTION 51

Mask R-CNN

MLP

Place it inside the 
red bowl

Natural Language 
Encoder

MLP

Joint Embedding 
Space

Target object

Spatial RelNet

Pixelwise probability 
maps per relation

Robotic system

Referring Expression
 Generation

Picking Placing

Object Attention

Figure 4.2: Overview of the system architecture. Our grounding network processes the input sentence
and visual object candidates detected with Mask-RCNN [130] and performs referential
expression comprehension. Additionally, it generates referential expressions for each
object candidate to disambiguate unclear instructions. Once the reference object of
a relative placement instruction has been identified, a second network predicts object
placing locations for a set of spatial relations.

module weights [wsubj, wloc, wrel] that estimate how much each module contributes to the
overall expression score. Each visual module computes scores for each object candidate by
calculating the cosine similarity between the vector representation of the instruction, and
that of the candidate image region. Finally, the output module takes a weighted average of
these scores to get an overall matching score S(oi | r) = wsubjS(oi | qsubj) + wlocS(oi |
qloc) + wrelS(oi | qrel). During training, we sample triplets consisting of a positive match
(oi, ri) and two random negative samples (oi, rj) and (ok, ri), where ok is some other object
and rj is an expression describing some other object in the same image to apply a hinge loss:

L1 =
∑
i

[λ1 max(0,m1 + S(oi | rj)− S(oi | ri))

+ λ2 max(0,m1 + S(ok | ri)− S(oi | ri))].
(4.1)

4.3.2 Resolving Ambiguities
If the referred object cannot be uniquely identified by the grounding model, the system needs
to ask for clarification from the human operator. Inspired by recent advances in image caption
generation and understanding [125, 131, 132], we incorporate a LSTM based captioning
module to our grounding network that allows the robot to describe each detected object
with a natural language description. Our referring expression generation module is jointly
trained with our grounding network and shares the features used in the three modules related
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to subject appearance, location and relationship to other objects. Specifically, the visual
target object representation vvisi is modeled by a concatenation of the ResNet-101 C3 and C4
features, followed by one FC layer which is shared with the comprehension network and one
exclusive FC layer. To facilitate the generation of referential expressions that contain location
information, such as “the cup in the middle”, we leverage the representation learned by the
location module vloci . This module combines a 5-d vector representing the top-left position,
bottom-right position and relative area to the image for the candidate object, together with a
relative location encoding of up to five surrounding objects of the same category. Finally,
we integrate the output of the relationship module vreli , which encodes the appearance and
localization offsets of up to five category-agnostic objects in the targets surroundings to enable
modeling sentences such as “the teddy bear on top of the box”. The final visual representation
for the target object is then a concatenation of the above features vi = [vvisi , vloci , vreli ]. The
model is trained to generate sentences ri by minimizing the negative log-likelihood:

L2 = −
∑
i

logP (ri | vi). (4.2)

To generate discriminative sentences, we use a Maximal Mutual Information constraint
proposed by Mao et al. [131] that encourages the generated expression to describe the
target object better than the other objects within the image. Concretely, given a positive
match (oi, ri) we sample a negative (ok, ri), where ok is some other object, and optimize the
following max-margin loss:

L3 =
∑
i

[λ3 max(0,m2 + logP (ri | vk)− logP (ri | vi)). (4.3)

In order to detect if an instruction is ambiguous, we leverage the max-margin loss the
comprehension model is trained with. Concretely, during training the max-margin loss aims
to guarantee that every correct pair of a sentence and an object has scores by a margin m1

than any other pair with a wrong object or sentence. Therefore, if at test time there are more
than one objects within that threshold, we consider them potential targets. For each candidate
we generate multiple self-referential expressions via beam search and use the comprehension
module to rerank these expressions and select the least ambiguous expression, similar to Yu et
al. [132]. We then let the system ask the human “Do you mean ...?”. After asking the question,
the user can respond “yes” to choose the referred object or “no” to continue iterating through
other possible objects. Alternatively, the user can provide a specific correcting response to the
question, e.g., “no, the banana on the right”, in which case we re-run our grounding module.

4.3.3 Relational Object Placement
Once an object has been picked, our system needs to be able to place it in accordance
with the instructions from the human operator. We combine referring expression com-
prehension with the grounding of spatial relations to enable complex object placement
commands such as “place the ball inside the left box”. Given an input image I of the
scene and the location of the reference item, identified with our aforementioned grounding
module, we generate pixelwise object placement probabilities for a set of spatial relations
by leveraging the Spatial-RelNet architecture we introduced in our previous work [88]. We
consider pairwise relations and express the subject item as being in relation to the reference
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Figure 4.3: Our Spatial-RelNet [88] network processes the input RGB image and an object attention
mask to produce pixelwise probability maps Γ over a set of spatial relations. During
training, we sample locations (u, v) according to Γ, implant inside an auxiliary classifier
network at the sampled locations high level features of objects and classify the hallucinated
scene representation to get a learning signal for Spatial-RelNet. At test time the auxiliary
network is not used.

item. We model relations for a set of commonly used natural language spatial prepositions
C = {inside, left, right, in front, behind, on top}. As natural language placement
instructions do not uniquely identify a location in a scene, Spatial-RelNet predicts non-
parametric distributions to capture the inherent ambiguity. A key challenge to learning such
pixelwise spatial distributions is the lack of ground-truth data. Spatial-RelNet overcomes this
problem by leveraging a novel auxiliary learning formulation, as shown in Figure 4.3. During
training, pixel locations (u, v) are sampled according to the probability maps Γ produced by
Spatial-RelNet. To get the learning signal, high level features of objects are implanted into a
pretrained auxiliary classifier fϕ to compute a posterior class probability over relations. This
way, we can reason over what relation would most likely be formed if we placed an object at
the given location.

4.4 System Implementation

4.4.1 Machine Learning Setup

During training, we sample the same triplets for both the object comprehension module
and the expression generation module. We set the margin m1 = 0.1 for the comprehension
ranking and m2 = 1.0 for the generation loss. We additionally use MAttNet’s auxiliary visual
attribute classification loss. We use the Adam optimizer to train the joint model with an initial
learning rate of 0.0004. For the contrastive pairs, we set λ1 = 1, λ2 = 1 and λ3 = 0.1. We
make the word embedding of the comprehension and generation modules shared to reduce
the number of parameters. For implementation details of Spatial-RelNet, we refer to the
original paper [88].
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4.4.2 Robot Setup
To pick an object from language, we first identify the object with our grounding model and
extract the corresponding segmentation mask of the selected object. We use an Amazon
Echo Dot device to synthesize the voice instructions. We localize the object in 3D space
and generate grasp poses with Grasp Pose Detection (GPD) [129], which predicts a series of
6-DOF candidate grasp poses given a 3D point cloud for a 2-finger grasp. The reachability of
the proposed candidate grasps are checked using MoveIt!, and the highest quality reachable
grasp is executed with the PR2 robot. For placing the object, we first sample a location from
the spatial distribution predicted by our Spatial-RelNet model. We rely on keyword spotting
to select the corresponding predicted distribution. Next, we localize the pixel coordinate in
3D space and plan a top-down grasp pose to the calculated 3D point. Finally, the end-effector
is moved above the desired location and then the gripper is opened to complete the placement.

4.5 Experiments
We evaluate our approach under two settings. First, we evaluate the capability of our
approach to comprehend and generate referring expressions for a wide variety of objects on
the RefCOCO dataset [123]. Next, we evaluate the ability of our robotics system to follow
pick-and-place language instructions in human-robot experiments.

4.5.1 RefCOCO Benchmark
The RefCOCO dataset contains images and corresponding referring expressions that uniquely
identify a wide variety of objects in the images. We compare our grounding networks
ability to comprehend and generate referring expressions against several strong baselines on
Table 4.1. For evaluating the comprehension, we compute the intersection-over-union (IoU)
of the selected region with the ground-truth bounding box, considering IoU > 0.5 a correct
comprehension. To evaluate the generation module, we leverage standard machine translation
metrics commonly used in image captioning, such as METEOR and CIDEr. We observe
that by jointly training the comprehension and language generation modules, they regularize
each other and improve their respective performances, demonstrating the effectiveness of
multitask learning [13, 132, 133].

RefCOCO comprehension RefCOCO generation
val TestA TestB TestA TestB

Meteor CIDEr Meteor CIDEr
Mao [131] - 63.15 64.21 - - - -

INGRESS [104] 77 76.7 77.7 - - - -
SLR [109, 132] 79.56 78.95 80.22 0.268 0.697 0.329 1.323
MAttNet [112] 85.65 85.26 84.57 - - - -

Ours 86.15 87.18 85.36 0.29 0.753 0.33 1.33

Table 4.1: Referring expression comprehension and generation on the RefCOCO dataset, with human-
annotated ground-truth object regions.



4.6. CONCLUSIONS AND DISCUSSION 55

4.5.2 Robot Experiments
We evaluate our approach on two real-world scenarios: picking and placing objects according
to user defined object arrangements and a tidy-up task. We will first describe the setup of the
object arrangement experiment. Our study involved 4 participants recruited from a university
community1. The robots workspace contained two tables, as shown in Figure 4.1. One table
contained previously unseen objects in clutter. The second table contained a single reference
object. The average number of objects on the cluttered table was 5.6. The participants
were asked to instruct a PR2 robot to arrange a desired target scene by picking objects from
the cluttered table and using relational expressions to place them on the second table. In
addition to the robots RGB-D camera we placed a second camera in front of the cluttered
table and performed online registration to compute a global point cloud. The tidy-up task
consisted of iteratively picking 4 colored objects from the cluttered table and placing the
same colored objects on the left container and the remaining objects on the right container.
In this experiment we were interested in evaluating the number of actions the robot has to
take to complete the task, given unambiguous instructions.

Table 4.2 shows the performance of our approach on a PR2 robot for the first experiment.
Our approach achieves a 78.3% target object selection accuracy and a 85.7% accuracy on
selecting the reference object the placing will be relative to. The higher accuracy of the latter

Target Object Target Object Placing Base Placing Avg. Number Pick and
Selection Grasping Grounding Success of Feedback Place

Ours 78.3% (47/60) 74.4% (35/47) 85.7% (30/35) 83.3% (25/30) 0.63 (60/95) 63% (60/95)

Table 4.2: Performance of our approach on a real robot platform following natural language instruc-
tions to pick and place objects in a tabletop scenario.

is due to fewer candidate objects being on the placing table and the participants preferring
to use ambiguous expressions for the picking instructions. The robot took ∼ 20 seconds
to complete an action from the moment the human started to speak. We report a grasping
performance of 74.4% with GPD. We find that some objects such as mugs are particularly
difficult for GPD as it often fails to find feasible grasps due to either occluded object parts
or noisy measurements on thin structures such as rims. Our object placement approach
achieves a success rate of 85.7%. We observe some failure cases for large object placements,
because of missing 3D priors of the objects to be placed. Thus, when placing a big box
left of a small box, it is possible that the chosen placement results in the big box partially
ending up on top of the small box. For the tidy up task, we report a mean task length of
14.4 actions, due to several re-grasp attempts. Overall, our results demonstrate the ability
of our approach to allow non-expert users to instruct tabletop manipulation tasks based on
sequences of pick-and-place speech commands.

4.6 Conclusions and Discussion
In this paper, we proposed the first robotic system that allows non-expert users to instruct
tabletop manipulation tasks by sequentially composing unconstrained pick-and-place lan-
guage instructions and can clarify a human operator’s intention through dialogue. We

1Further quantitative experiments were infeasible at time of submission due to COVID-19.



56 CHAPTER 4. COMPOSING PICK-AND-PLACE TASKS BY GROUNDING LANGUAGE

demonstrate the effectiveness of our approach to encode high-level behaviours in a highly
challenging, realistic environment. Even though we are far from achieving robots that can
learn to relate human language to their world model, we hope our work is a step in this
direction.

While the experimental results are promising, our approach has several limitations. First,
relative object placement instructions do not allow for fine-grained target specification due to
its inherent ambiguity. Addressing this issue would require learning user preferences from
feedback [134]. Second, we observe some failure cases for large object placements, because
of missing 3D priors of the objects to be placed. Integrating 3D priors is a natural extension
to enable optimizing placement poses [135] and to reason over the effects of actions on
the scene [136]. Third, we find that GPD often fails to find feasible grasps due to either
occluded object parts or noisy measurements. Integrating methods that can complete occluded
scene regions [107, 137] or generate more diverse grasps [138] might help alleviating these
problems. Finally, our approach is limited to tabletop tasks that can be characterized by
pick-and-place actions. An exciting area for future work may be one that not only grounds
object semantics and spatial relations, but also grounds actions in order to learn complex
behaviours with language conditioned continuous control policies [139, 140].
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CALVIN: A Benchmark for
Language-Conditioned Policy Learning
for Long-Horizon Robot Manipulation
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CALVIN: A Benchmark for Language-Conditioned Policy Learning for Long-
Horizon Robot Manipulation Tasks
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Me and Lukas Hermann share the main authorship as we jointly developed and imple-
mented the CALVIN benchmark. I developed the main idea of the paper, implemented
the initial simulated environments and baselines, training code and wrote most of the pa-
per. Lukas implemented most of the robot control code and the evaluation of the policies
and contributed speed improvements for loading the dataset. We carried out the simulated
experiments jointly. Erick contributed the final 3D models for the simulated environments.
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Abstract

General-purpose robots coexisting with humans in their environment must
learn to relate human language to their perceptions and actions to be useful
in a range of daily tasks. Moreover, they need to acquire a diverse reper-
toire of general-purpose skills that allow composing long-horizon tasks by
following unconstrained language instructions. In this paper, we present Com-
posing Actions from Language and Vision (CALVIN) (Composing Actions
from Language and Vision), an open-source simulated benchmark to learn
long-horizon language-conditioned tasks. Our aim is to make it possible to
develop agents that can solve many robotic manipulation tasks over a long hori-
zon, from onboard sensors, and specified only via human language. CALVIN
tasks are more complex in terms of sequence length, action space, and language
than existing vision-and-language task datasets and supports flexible specifi-
cation of sensor suites. We evaluate the agents in zero-shot to novel language
instructions and to novel environments. We show that a baseline model based
on multi-context imitation learning performs poorly on CALVIN, suggesting
that there is significant room for developing innovative agents that learn to
relate human language to their world models with this benchmark. Code,
dataset and trained models available at http://calvin.cs.uni-freiburg.de.

5.1 Introduction

A long-standing goal for robotics and embodied agents is to build systems that can perform
tasks specified in natural language. Concepts expressed in natural language provide humans
with an intuitive way to represent, summarize, and abstract diverse knowledge skills. By
means of abstraction, concepts such as “open the drawer and push the middle object into the
drawer” can be extended to a potentially infinite set of new and unseen entities. Additionally,
humans leverage concepts to describe complex tasks as sequences of natural language
instructions. This stands in contrast to current robots, which typically lack this generalization
ability and learn individual tasks one at a time. Moreover, multi-task learning approaches
traditionally assume that tasks are specified to the agent at test time via mechanisms such as
goal images [18] and one-hot skill selectors [19, 142] that are not practical for non-expert
users to instruct robots in everyday real-world settings. As robots become ubiquitous across
human-centered environments the need for intuitive task specification grows: how can we
scale robot learning systems to autonomously acquire general-purpose knowledge that allows
them to compose long-horizon tasks by following unconstrained language instructions?

To address this problem we present CALVIN, a new open-source simulated benchmark
that links human language to robot motor skills, behaviors, and objects in interactive visual
environments. In this setting, a single agent must solve complex manipulation tasks by
understanding a series of unconstrained language expressions in a row, e.g., “open the
drawer . . . pick up the blue block . . . push the block into the drawer . . . open the sliding door”.
Furthermore, to evaluate the agents’ ability for long-horizon planning, agents in this scenario
are expected to be able to perform any combination of subtasks in any order. CALVIN
has been developed from the ground up to support training, prototyping, and validation of
language-conditioned continuous control policies over a range of four indoor manipulation

http://calvin.cs.uni-freiburg.de


5.1. INTRODUCTION 59

Figure 5.1: CALVIN is a benchmark to learn many long-horizon language-conditioned tasks over
a range of four manipulation environments, designed to be diverse yet carry shared
structure, from multimodal onboard sensor observations. In the most difficult evaluation,
the methods must generalize to unseen entities by training on a large interaction corpora
covering three environments and testing on an unseen scene.

environments, visualized in Figure 1. CALVIN includes ∼24 hours teleoperated unstructured
play data together with 20K language directives. Unscripted playful interactions have the
advantage of being task-agnostic, diverse, and relatively cheap to obtain [18, 143]. The
simulation platform supports a range of sensors commonly utilized for visuomotor control:
RGB-D images from both a static and a gripper camera, proprioceptive information, and
vision-based tactile sensing [144]. We believe that this flexible sensor suite will allow
researchers to develop improved multimodal agents that can solve many tasks in real-world
settings. This is the first public benchmark of instruction following, to our knowledge,
that combines: natural language conditioning, multimodal high-dimensional inputs, 7-DOF
continuous control, and long-horizon robotic object manipulation. We provide an evaluation
protocol with evaluation modes of varying difficulty by choosing different combinations of
sensor suites and amounts of training environments. This effort joins the recent efforts to
standardize robotics research for better benchmarks and more reproducible results. To open
the door for future development of agents that can generalize abstract concepts to unseen
entities the same way humans do, we include a challenging zero-shot evaluation by training
on large play corpora covering three environments and testing on an unseen scene. The
language instructions used for testing are not included in the training set and represent novel
ways of describing the manipulation tasks seen during training.

To establish baseline performance levels, we evaluate the multi-context imitation learning
(MCIL) approach that uses relabeled imitation learning to distill many reusable behaviors into
a goal-directed policy [145]. This model is not effective on the complex long horizon robot
manipulation tasks in CALVIN. While it achieves up to 53.9% success rate in short horizon
tasks, it performs poorly in the long-horizon setting. We note that there is no constraint to use
imitation learning approaches to solve CALVIN tasks, as approaches that use reinforcement
learning to learn language-conditioned policies can also be applied [146].

In summary, CALVIN facilitates learning models that translate from language to se-
quences of motor skills in a realistic simulation environment. This benchmark captures many
challenges present in real-world settings for relating human language to robot actions and per-
ception for accomplishing long-horizon manipulation tasks. Models that can overcome these
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challenges will begin to close the gap towards scalable, general-purpose, language-driven
robotics.

5.2 Related Work
Natural language processing has recently received much attention in the field of robotics [24],
following the advances made towards learning groundings between vision and language [123,
147]. Recent successes in human-robot interaction include an interactive fetching system to
localize objects mentioned in referring expressions [104, 108, 109, 148, 149] or grounding
not only objects, but also spatial relations to follow language expressions characterizing
pick-and-place commands [120, 150, 151]. By contrast, CALVIN tasks require grounding
language to a wide variety of general-purpose robot skills. Prior work on mapping language
and vision to actions has been studied mostly in restricted environments [26, 27] and sim-
plified actuators with discrete motion primitives [28, 29, 30]. A growing body of work also
looks at learning language-conditioned policies for continuous visuomotor-control in 3D
environments via imitation learning [21, 54, 145] or reinforcement learning [140, 146, 152].
These approaches typically require offline data sources of robotic interaction, such as tele-
operation or autonomous exploration data, together with post-hoc crowd-sourced language
labels. However, the lack of standardized benchmarks and algorithm implementations, makes
it difficult to compare approaches and to facilitate future research.

The most closely related benchmark to ours is ALFRED [29], which contains language
instructions for combined navigation and manipulation tasks with seven predefined action
primitives. In CALVIN, rather than classifying predefined actions, the agent must learn to
acquire a diverse repertoire of general-purpose skills that allows composing long-horizon
tasks by following unconstrained language instructions in closed loop control. Our tabletop
environments are inspired by the one shown in Lynch et al. [145] in order to have a fair
comparison to their MCIL approach, which we implement to establish baseline performance
levels. We note that although considered a state-of-the-art approach, no public implementation
of MCIL is available. In contrast to their work, CALVIN contains more subtasks (34 vs 18),
longer long-horizon evaluation sequences (5 vs 4), provides a range of sensors commonly
utilized for visuomotor control and allows testing zero-shot generalization by leveraging a
range of four manipulation environments and unseen language instructions. Finally, CALVIN
goes beyond the original MCIL setup by adding a challenging visual grounding problem,
where similar language instructions for differently colored blocks are given and the agent
needs to identify which block is meant.

5.3 CALVIN
The aim of the CALVIN benchmark is to evaluate the learning of long-horizon language-
conditioned continuous control policies. In this setting, a single agent must solve complex
manipulation tasks by understanding a series of unconstrained language expressions in a row,
e.g., “open the drawer. . . pick up the blue block. . . now push the block into the drawer. . . now
open the sliding door”. We note that in the benchmark we only allow feasible sequences
that can be achieved from a predefined initial environment state. The CALVIN benchmark
consists of three key components, which are:
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Observation Space
RGB static camera 200× 200× 3
Depth static camera 200× 200
RGB gripper camera 84× 84× 3
Depth gripper camera 84× 84

Tactile image 120× 160× 2
EE position (3)

EE orientation (3)
Proprioceptive state Gripper width (1)

Joint positions (7)
Gripper action (1)

Action Space
Absolute cartesian pose EE position (3)

(w.r.t. world frame) EE orientation (3)
Gripper action (1)

Relative cartesian displacement EE position (3)
(w.r.t. gripper frame) EE orientation (3)

Gripper action (1)
Joint action Joint positions (7)

Gripper action (1)

Figure 5.2: Observation and action spaces supported by CALVIN.

1. CALVIN Environment

2. CALVIN Dataset

3. CALVIN Challenge

5.3.1 The CALVIN Environment

CALVIN features four different, yet structurally related environments (A, B, C, D) so that it
can be used for general playing as well as evaluating specific tasks. The environments contain
a 7-DOF Franka Emika Panda robot arm with a parallel gripper and a desk with a sliding
door and a drawer that can be opened and closed. On the desk, there is a button that toggles a
green light and a switch to control a light bulb. Besides, there are three different colored and
shaped rectangular blocks. To better evaluate the generalization capabilities of the learned
language groundings, all environments have different textures and all static elements such
as the sliding door, the drawer, the light button, and switch are positioned differently. The
position of the desk, robot, and the static camera is the same in all environments. Due to
the general difficulty of language-conditioned multi-task closed-loop control, we reduced
the complexity of the objects to unicolored primitive shapes. If future advances in this field
require new challenges we will reflect this by extending CALVIN to environments with more
realistic and diverse objects. Physics are simulated using the PyBullet physics engine [153],
which supports fast GPU rendering for large-scale parallel data collection.
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Observation and Action Space

Unlike prior work which relies on RGB images from an egocentric camera to perceive its
surroundings [18, 145], CALVIN offers a range of sensors that can be used to develop and
prototype agents that learn task-agnostic control in the real world. Concretely, the agent
perceives its surroundings from RGB-D images from both a fixed and a gripper camera.
It additionally has access to a vision-based tactile sensor [144] and to continuous internal
proprioceptive sensors. A visualization of the supported sensor modalities is shown in
Figure 5.3. The agent must perform closed-loop continuous control to follow unconstrained
language instructions characterizing complex robot manipulation tasks, sending continuous
actions to the robot at 30hz. In order to give researchers and practitioners the freedom to
experiment with different action spaces, CALVIN supports absolute and relative cartesian
actions, as well as actions in joint space. We encourage the community to study flexible
combinations of observation and action spaces since the tasks require a varying degree of
precise control vs. coarse locomotion. While the static camera and absolute cartesian actions
are the natural choices for tasks that call for a complete traversal of the environment from
one side to another, the gripper camera and relative actions (w.r.t to the gripper frame) allow
more fine-grained control for tasks like stacking or grasping. Tactile information can become
important when the task requires the robot to maintain a stable grasp on the handle while
moving the sliding door to the side. See Fig. 5.2 for a description of the observation and
action dimensionalities.

Tasks

We define 34 specific tasks (see Fig. 5.4) that can be achieved in each one of the environments
The environment has the functionality to automatically detect which one of the tasks has
been completed in a sequence of steps, which can serve as a sparse reward for reinforcement
learning agents. The criterion for task completion is defined in terms of a change in the
environment state between the initial and final step of a sequence. This also enables the
automatic task detection in any variable-length sequence of offline data, since the environment
can be reset to the state of each one of the recorded frames.

5.3.2 The CALVIN Dataset

Unstructured Demonstrations

Learning generally requires exposure to diverse training data. To effectively cover state space,
we collect twenty-four hours of teleoperated “play” data in four environments with a HTC
Vive VR headset, spending an approximately equal time of six hours in each environment.
This corresponds to ∼2.4M interaction steps and ∼40M short-horizon windows for relabeled
goal conditioned imitation learning [52, 57], each spanning 1-2 seconds. In this setting,
an operator is not constrained to a set of predefined tasks, but rather engages in behavior
that satisfies their own curiosity or some other intrinsic motivation. Unscripted playful
interactions have the advantage of being task-agnostic, diverse, and relatively cheap to
obtain [18, 143]. We asked three people to collect data, and these users were untrained and
given no information about the downstream tasks. The only guideline we gave data collectors
was to “explore the environment without dropping objects from the table”. This includes
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Figure 5.3: CALVIN supports a range of sensors commonly utilized for visuomotor control: RGB-
D images from both a static and a gripper camera, proprioceptive information, and
vision-based tactile sensing (bottom-left).

picking up and placing objects, opening, and closing drawers, sliding doors, pushing buttons,
operating switches and undirected actions. This style of data is very different from commonly
used task-specific data, which only consists of expert trajectories. Playful interaction data
by design is free-form, so there are no categories associated with the data. This kind of
unstructured data is useful because it contains exploratory and sub-optimal behaviors that are
critical to learning generalizable and robust representations, e.g., enabling retrying behavior.
While expert demonstrations often only show one of the many possible ways to solve a task,
play data is richer in the sense that it covers the multimodal space of possible solutions.
However, as opposed to expert demonstrations, in play data some task instances naturally
occur less frequently than others, especially those that have the completion of another task as
a prerequisite.

Language Instructions

Approaches that learn language-conditioned continuous control policies typically require post-
hoc crowd-sourced natural language labels aligned with its corresponding robot interaction
data [145, 146]. Instead of relying entirely on crowd-sourced annotations, we collect over
400 crowd-sourced natural language instructions corresponding to over 34 tasks and label
episodes procedurally using the recorded environment state of the CALVIN dataset. We note
that using this labeling scheme, only sequences that display meaningful skills are labeled
with language annotations. We visualize example language annotations in Fig. 5.4. In order
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Task Natural language instructions
rotate red block right “rotate the red block 90

degrees to the right”
“turn the red block right”

push blue block left “go slide the blue
block to the left”

“push left the blue block”
move slider left “grasp the door handle,

then slide the door to the left”
“slide the door to the left”

open drawer “grasp the handle of the
drawer and open it”

“go open the drawer”
lift red block “lift the red block

from the table”
“pick up the red block”

pick pink block “pick up the pink
from drawer block lying in the drawer”

place in slider “put the grasped
object in the slider”

stack blocks “stack blocks on top
of each other”

unstack blocks “collapse the stacked blocks”
“go to the tower of blocks
and take off the top one”

turn on light bulb “toggle the light switch
to turn on the light bulb”

turn off green light “push the button to
turn off the green light”

Figure 5.4: Example crowd-sourced natural language instructions to specify manipulation tasks in
CALVIN.

to simulate a real-world scenario where it might not be possible to pair all the collected
robot experience with crowd-sourced language annotations, we annotate only 1% of the
recorded robot interaction data with language instructions. Besides language instructions, we
provide precomputed language embeddings extracted from MiniLM [154]. MiniLM distills
a large Transformer based language model and is trained on generic language corpora (e.g.,
Wikipedia). It has a vocabulary size of 30,522 words and maps a sentence of any length
into a vector of size 384. We note that there exist many choices for encoding raw text in a
semantic pre-trained vector space and encourage the community to experiment with different
choices to solve for CALVIN tasks.
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Long-horizon language instructions
“turn on the led”→ “open drawer”→ “push the blue blue block→ “pick up the blue block ”→ “place in slider”
“move slider left”→ “lift red block from slider”→ “stack blocks”→ “toggle light”→ “ collapse stacked blocks”

“open drawer”→ “push block in drawer”→ “pick object from drawer”→ “stack blocks”→ “close drawer”

Figure 5.5: Example long-horizon language tasks sequences evaluated in CALVIN. We show the
abbreviated subtask names instead of the full language annotations due to space constraint.

5.3.3 The CALVIN Challenge

CALVIN combines the challenging settings of open-ended robotic manipulation with open-
ended human language conditioning. For example, a robot that is instructed to “place the blue
block inside the drawer” must be able to relate language to its world model. Concretely, it
needs to learn to identify how a blue block and a drawer look like in its multimodal perceptual
observations1, and then it needs to reason over the best sequence of actions to “place inside
the drawer”. Ideally, a general-purpose robot should be able to perform any combination of
tasks instructed with natural language in any order. Thus, to accelerate progress in language-
driven robotics, we present a set of evaluation protocols of varying difficulty by choosing
different combinations of sensor suites and amounts of training environments.

Training and Test Environments

CALVIN offers three combinations of training and test environments with varying difficulty:
Single Environment: Training in a single environment and evaluating the policy in the

same environment. This corresponds to the setting of Lynch et al. [145].
Multi Environment: Training in all four environments and evaluating the policy in one

of them. This poses an additional challenge since the policy has to generalize to multiple
textures and different locations of the sliding door, button, and switch. On the other hand, the
agents can benefit from increased data.

Zero-Shot Multi Environment: To open the door for future development of agents that
can generalize abstract concepts to unseen entities the same way humans do, we include a
challenging zero-shot evaluation by training in three environments and evaluating the policy
in the fourth unseen one. This is the hardest combination since the policy has never seen
the test environment during training. However, all elements of the scene were present in
different locations in the training environments. While highly challenging, we believe it
aligns well with test-time expectations for service robots to be useful in a range of daily
tasks in everyday environments. Concretely, in CALVIN agents need to generalize to a
room where the environment has different textures and all static elements such as the sliding
door, the drawer and the light turning button and switch are positioned differently. Thus,
a language-conditioned policy should ideally be able to open a sliding door even if it is
differently positioned or looks visually a bit different.

Evaluation Metrics

All three environment combinations are evaluated with the following metrics:

1Simulator states consisting of object positions and orientations are also provided, but not used to better
capture challenges of real-world settings.
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Task Condition
Rotate red/blue/pink
block right

The object has to be rotated clockwise more than 60° around the z-axis
while not being rotated more than 30° around the x or y-axis.

Rotate red/blue/pink
block left

The object has to be rotated counterclockwise more than 60° around z
while not being rotated more than 30° around the x or y-axis.

Push red/blue/pink
block right

The object has to move more than 10 cm to the right while having
surface contact in both frames.

Push red/blue/pink
block left

The object has to move more than 10 cm to the left while having
surface contact in both frames.

Move slider
left/right

The sliding door has to be pushed at least 12 cm to the left/right.

Open/close drawer The drawer has to be pushed in/pulled out at least 10 cm.
Lift red/blue/pink
block table

The object has to be grasped from the table surface and lifted at least 5
cm high. In the first frame the gripper may not touch the object.

Lift red/blue/pink
block slider

The object has to be grasped from the sliding cabinet’s surface and
lifted at least 3 cm. In the first frame the gripper may not touch the
object.

Lift red/blue/pink
block drawer

The object has to be grasped from the drawer’s surface and lifted at
least 5 cm high. In the first frame the gripper may not touch the object.

Place in
slider/drawer

The object has to be placed in the sliding cabinet/drawer. It must be
lifted by the gripper in the first frame.

Push into drawer The object has to be pushed into the drawer. It has to touch the table
surface in the first frame.

Stack blocks A block has to be placed on top of another block. It may not be in
contact with the gripper in the final frame.

Unstack blocks A block has to be removed from the top of another block. It may not be
in contact with the gripper in the first frame.

Turn on/off light
bulb

The switch has to be pushed up/down to turn on/off the yellow light
bulb.

Turn on/off LED The button has to be pressed to turn on/turn off the green LED light.

Figure 5.6: List of all 34 tasks with their respective success criteria.

Multi-Task Language Control (MTLC): The simplest evaluation aims to verify how
well the learned multi-task language-conditioned policy generalizes to 34 manipulation tasks,
which we visualize in Fig. 5.6. The evaluation begins by resetting the simulator to the first
state of a valid unseen demonstration, to ensure that the commanded instruction is valid. For
each manipulation task 10 rollouts are performed with their corresponding different starting
states. The language instructions used for testing are not included in the training set and
represent novel ways of describing the manipulation tasks seen during training.

Long-Horizon MTLC (LH-MTLC): This evaluation aims to verify how well the learned
multi-task language-conditioned policy can accomplish several language instructions in a row.
This setting is very challenging as it requires agents to be able to transition between different
subgoals. We treat the 34 tasks of the previous evaluation as subgoals and compute valid
sequences consisting of five sequential tasks. We only allow feasible sequences that can be
achieved from a predefined initial environment state. We filter the evaluation sequences for
cycles, redundancies and similarities to arrive at 1000 unique instruction chains. Examples
for excluded sequences are “close the drawer”. . . “place in drawer” (unfeasible), “move slider



5.4. BASELINE MODELS 67

right”. . . “move slider left”. . . “move slider right” (cyclic) or “push blue block left”. . . “push
red block left”(similar). We reset the robot to a neutral position after every sequence to avoid
biasing the policies through the robot’s initial pose. We note that this neutral initialization
breaks correlation between initial state and task, forcing the agent to rely entirely on language
to infer and solve the task. We include different initial scene configurations in the evaluation
to better evaluate generalization capabilities. We visualize the evaluated subtask distribution
in Figure 5.7. For each subtask we condition the policy on the current language instruction
and transition to the next subgoal only if the agent successfully completes the current task
according to the environments state indicator.

Sensor Combinations

The aim of CALVIN is to develop innovative agents that learn to relate human language
from onboard sensors by capturing many challenges present in real-world settings. Most
autonomous robots operating in complex environments are equipped with different sensors
to perceive their surroundings. To foster development and experimentation of language-
conditioned policies that perform manipulation tasks in the real-world, CALVIN supports a
range of sensors commonly utilized for visuomotor control: RGB-D images from both a static
and a gripper camera, proprioceptive information, and vision-based tactile sensing [144]. We
therefore evaluate baseline agents for different sensors combinations.

5.4 Baseline Models
An agent trained for CALVIN needs to jointly reason over perceptual and language input and
produce a sequence of low-level motor commands to interact with the environment.

5.4.1 Multicontext Imitation Learning
We model the interactive agent with a general-purpose goal-reaching policy based on multi-
context imitation learning (MCIL) from play data [145]. To learn from unstructured “play”
we assume access to an unsegmented teleoperated play dataset D of semantically meaningful
behaviors provided by users, without a set of predefined tasks in mind. To learn control, this
long temporal state-action stream D = {(xt, at)}∞t=0 is relabeled [57], treating each visited
state in the dataset as a “reached goal state”, with the preceding states and actions treated as
optimal behavior for reaching that goal. Relabeling yields a dataset of Dplay = {(τ, xg)i}

Dplay
i=0

where each goal state xg has a trajectory demonstration τ = {(x0, a0), . . .} solving for the
goal. These short horizon goal image conditioned demonstrations can be fed to a simple
maximum likelihood goal conditioned imitation objective:

LLfP = E(τ,xg)∼Dplay

 |τ |∑
t=0

log πθ(at | xt, xg)

 (5.1)

to learn a goal-reaching policy πθ (at | xt, xg). Multi-context imitation learning addresses
the inherent multi-modality in free-form imitation datasets by auto-encoding contextual
demonstrations through a latent “plan” space with an sequence-to-sequence conditional
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variational auto-encoder (seq2seq CVAE). The decoder is a policy trained to reconstruct input
actions, conditioned on state xt, goal xg, and an inferred plan z for how to get from xt to xg.
At test time, it takes a goal as input, and infers and follows plan z in closed-loop.

However, when learning language-conditioned policies πθ (at | xt, l) it is not possible
to relabel any visited state x to a natural language goal as the goal space is no longer
equivalent to the observation space. Lynch et al. [145] showed that pairing a small number of
random windows with language after-the-fact instructions enables learning a single language-
conditioned visuomotor policy that can perform a wide variety of robotic manipulation tasks.
The key insight here is that solving a single imitation learning policy for either goal image or
language goals, allows for learning control mostly from unlabeled play data and reduces the
burden of language annotation to less than 1% of the total data. Concretely, given multiple
contextual imitation datasets D = {D0, D1, . . . , DK}, with a different way of describing
tasks, MCIL trains a single latent goal conditioned policy πθ (at | xt, z) over all datasets
simultaneously, as well as one parameterized encoder per dataset.

5.4.2 Implementation Details
We follow the baseline architecture implementation reported by Lynch et al. [145] unless
stated otherwise. We train the agent with the Adam optimizer and a learning rate of 10−4. We
set the weight controlling the influence of the KL divergence to the total loss to β = 0.001.
During training, we randomly sample windows between length 16 and 32 and pad them until
the max length of 32. As in the original implementation, no image data augmentations are
applied and absolute cartesian actions w.r.t the world frame are used. The encoder for the
gripper camera takes an image of 84× 84 as input and consists of 3 convolutional layers with
32, 64, and 64 channels followed by a 128 unit ReLU MLP. The encoder for the visual-tactile
sensor is based on a pre-trained ResNet-18 model. The feature vectors produced by the
different modality encoders are concatenated. Depth images are concatenated channel-wise
with the RGB images in an early-fusion fashion. In contrast to [145], the gripper fingers of the
robot in the CALVIN environment cannot be controlled independently, reducing the action
output of the network by one dimension. We note that the same training hyperparameters are
used for all splits.

5.5 Experimental Results
The results comparing language-conditioned policies based on multicontext imitation learning
for the different evaluation modes in CALVIN are shown in Figure 5.8. We note that there is
no constraint to use imitation learning approaches to solve CALVIN tasks, as approaches that
use reinforcement learning to learn language-conditioned policies can also be applied [146].
We observe that the baseline with images of the static camera achieves a success rate of
53.9% for the MTLC evaluation setting, when training and testing the 34 manipulation tasks
on the same environment. The success rate stays comparable when including a gripper
camera, depth channels or tactile sensing. We hypothesize that the reason for not seeing
larger improvements when adding the gripper camera is that the policy might benefit from
using relative actions instead of global actions. A qualitative analysis indicates that the
performance depends significantly on the initial position of the robot, suggesting the agent
relies on context rather than learning to disentangle initial states and tasks. It is possible this is
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due to causal confusion between the proprioceptive information and the target actions [155].
Besides, we did not use image data augmentations in the baselines to stay close to the original
implementation, but we hypothesize this might be beneficial. Additionally, more elaborate
sensor fusion approaches such as mixture of experts [156, 157] or view-invariant contrastive
learning [133, 158] might be necessary to learn better multimodal state representations.

For the Long-Horizon MTLC evaluation we observe that the agents perform poorly on
CALVIN’s long-horizon tasks with high-dimensional state spaces. The best MCIL model
achieves a success rate of 0.08% when following chains of five language instructions in a row
when training and testing on the same environment. Additionally, it solves the first subtask of
the chain, starting from a neutral position, in 48.9% of the cases. We observe that the policy
sometimes correctly executes block manipulation tasks, but confuses the red and blue block
colors in the instruction. As the language models embed sentences containing the words
red and blue similarly, backpropagating through the entire language model and leveraging
auxiliary losses that try to align visual and language representations [7] might be beneficial
to tackle the complicated perceptual grounding problem.

Finally, the general performance drops significantly when evaluating on the multi environ-
ment and zero-shot multi environment settings, which do not follow the standard assumption
of imitation learning that training and test tasks are drawn independently from the same distri-
bution. In order to achieve better zero-shot generalization capabilities, additional techniques
from the domain adaptation literature [133], better data augmentation and a stronger focus
on depth inputs, since they are invariant to texture changes, might be helpful. As MCIL is an
offline learning method, we hypothesize that naïve data sharing between multiple domains
can be brittle because it can exacerbate the distribution shift between the policy represented
in the data and the policy being learned [15]. This motivates further research into agents that
can perform the complex long-horizon language-conditioned manipulation tasks introduced
by CALVIN.

5.6 Conclusion
In this paper, we presented CALVIN, the first public benchmark of instruction following
that combines natural language conditioning, multimodal high-dimensional inputs, 7-DOF
continuous control, and long-horizon robotic object manipulation in both seen and unseen
environments. As the field of language-driven robotics evolves, a need arises to standardize
research for better benchmarks and more reproducible results. CALVIN has the goal of
providing researchers with a modular framework that has been developed from the ground up
to support training, prototyping, and validation of language-conditioned continuous control
policies. Further to that, we hope, along with the help of the community, to continuously
expand the tasks available for both training and evaluation.

We use CALVIN to evaluate a conditional sequence-to-sequence variational autoencoder,
shown to be effective in other long horizon language-conditioned manipulation tasks [145].
While this model is relatively competent at accomplishing some subgoals, the overall success
rates are poor. The long horizon of CALVIN tasks poses a significant challenge with sub-
problems including the acquisition of a diverse repertoire of general-purpose skills, object
detection, referring expression and action grounding, and task-agnostic continuous control.
We hope CALVIN will open the door for the future development of agents that can relate
human language to their perception and actions and generalize abstract concepts to unseen
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entities in the same way humans do.
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Appendix

A Tasks
All tasks are defined in terms of change in the environment state between the first and the
final frame of a sequence. In order to see if a task was solved in an arbitrary sequence of
frames of the CALVIN dataset, the environment is reset to the state of the first and the last
frame of that sequence. The tasks detector compares the two simulator states and checks
which task conditions are fulfilled. A key advantage of this strategy is that it enables efficient
evaluation of sequences for task completion independent of their length. Figure 5.9 shows a
list of all task definitions.

B Language Annotation Generation
The language annotations are extracted automatically from the recorded data with the fol-
lowing procedure: we randomly sample sequences with a window size of 64 frames. For
each sequence the task detector checks if a task has been solved between the first and the
last frame. Additionally, we check that neither that task nor any other task is solved in the
first half of the sequence. The intuition behind this is that we want to include the locomotion
behavior prior to the actual task. For example, before opening the drawer, the arm must
navigate in the direction of the handle. This is important for learning to solve tasks with
language goals from arbitrary starting positions. If a sequence qualifies for labeling, we
sample a natural language instruction from a set of predefined sentences with approximately
11 synonymous instructions per task. In total, this gives 389 unique language instructions
for 34 tasks. The sequence in which the task “stack blocks” is solved could for example get
instructions such as “place the grasped block on top of another block” or “stack blocks on top
of each other”. In order to simulate a real-world scenario where it might not be possible to
pair all the collected robot experience with crowd-sourced language annotations, we annotate
only 1% of the recorded robot interaction data with language instructions. The CALVIN
dataset conveniently includes precomputed MiniLM language embeddings for all instructions,
but researchers are free to use their own language model of choice on the raw input data.



74
CHAPTER 5. CALVIN: A BENCHMARK FOR LANGUAGE-CONDITIONED POLICY

LEARNING FOR LONG-HORIZON ROBOT MANIPULATION TASKS

Task Condition
Rotate red block right
Rotate blue block right
Rotate pink block right

The object has to be rotated clockwise more than 60° around
the z-axis while not being rotated for more than 30°

around the x or y-axis.
Rotate red block left
Rotate blue block left
Rotate pink block left

The object has to be rotated counterclockwise more than 60°

around the z-axis while not being rotated for more than 30°

around the x or y-axis.
Push red block right
Push blue block right
Push pink block right

The object has to move more than 10 cm to the right while
having surface contact in both frames

Push red block left
Push blue block left
Push pink block left

The object has to move more than 10 cm to the left while
having surface contact in both frames

Move slider left The sliding door has to be pushed at least 12 cm to the left.
Move slider right The sliding door has to be pushed at least 12 cm to the right.
Open drawer The drawer has to pulled out at least 10 cm.
Close drawer The drawer has to be pushed in at least 10 cm.
Lift red block table
Lift blue block table
Lift pink block table

The object has to be grasped from the table surface and lifted
at least 5 cm high.
In the first frame the gripper may not touch the object.

Lift red block slider
Lift blue block slider
Lift pink block slider

The object has to be grasped from the surface of the sliding cabinet
and lifted at least 3 cm high.
In the first frame the gripper may not touch the object.

Lift red block drawer
Lift blue block drawer
Lift pink block drawer

The object has to be grasped from the drawer surface
and lifted at least 5 cm high.
In the first frame the gripper may not touch the object.

Place in slider
The object has to be placed in the sliding cabinet.
It must be lifted by the gripper in the first frame.

Place in drawer
The object has to be placed in the drawer.
It must be lifted by the gripper in the first frame.

Push into drawer
The object has to be pushed into the drawer.
It has to touch the table surface in the first frame.

Stack blocks
A block has to be placed on top of another block.
It may not be in contact with the gripper in the final frame.

Unstack blocks
A block that is stacked on another block has to be removed
from the top, either by grasping it or by pushing it down.
It may not be in contact with the gripper in the first frame.

Turn on light bulb The switch has to be pushed down to turn on the yellow light bulb.
Turn off light bulb The switch has to be pushed up to turn off the yellow light bulb.
Turn on LED The button has to be pressed to turn on the green LED light.
Turn off LED The button has to be pressed to turn off the green LED light.

Figure 5.9: List of all 34 tasks with their respective success criteria.
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What Matters in Language Conditioned
Robotic Imitation Learning over
Unstructured Data
The content of this chapter has been published in [159]:

O. Mees, L. Hermann and W. Burgard
What Matters in Language Conditioned Robotic Imitation Learning over Un-
structured Data
IEEE Robotics and Automation Letters (RAL), 2022
DOI: 10.1109/LRA.2022.3196123

Me and Lukas Hermann share the main authorship as we jointly developed the HULC
method. I developed the main idea of the paper, contributed the idea of using a multi-
modal transformer encoder, the KL divergence balancing, the self-supervised contrastive
visual-language alignment loss and using discrete categorical latent plans. Lukas Hermann
contributed the idea of using relative actions in the gripper frame and improvements to the
model’s training time. All the results for HULC reported in this thesis were entirely carried
out by the author of this thesis. The paper was mostly written by the author of this thesis.
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Abstract

A long-standing goal in robotics is to build robots that can perform a wide
range of daily tasks from perceptions obtained with their onboard sensors and
specified only via natural language. While recently substantial advances have
been achieved in language-driven robotics by leveraging end-to-end learning
from pixels, there is no clear and well-understood process for making various
design choices due to the underlying variation in setups. In this paper, we
conduct an extensive study of the most critical challenges in learning language
conditioned policies from offline free-form imitation datasets. We further iden-
tify architectural and algorithmic techniques that improve performance, such
as a hierarchical decomposition of the robot control learning, a multimodal
transformer encoder, discrete latent plans and a self-supervised contrastive loss
that aligns video and language representations. By combining the results of
our investigation with our improved model components, we are able to present
a novel approach that significantly outperforms the state of the art on the
challenging language conditioned long-horizon robot manipulation CALVIN
benchmark. We have open-sourced our implementation to facilitate future
research in learning to perform many complex manipulation skills in a row
specified with natural language. Codebase and trained models available at
http://hulc.cs.uni-freiburg.de

6.1 Introduction

One of the grand challenges in robotics is to create a generalist robot: a single agent capable
of performing a wide variety of tasks in everyday settings based on arbitrary user commands.
Doing so requires the robot to acquire a diverse repertoire of general-purpose skills and
non-expert users to be able to effectively specify tasks for the robot to solve. This stands in
contrast to most current end-to-end models, which typically learn individual tasks one at a
time from manually-specified rewards and assume tasks being specified via goal images [18]
or one-hot skill selectors [19], which are not practical for untrained users to instruct robots.
Not only is this inefficient, but also limits the versatility and adaptivity of the systems that
can be built. How can we design learning systems that can efficiently acquire a diverse
repertoire of useful skills that allows them to solve many different tasks based on arbitrary
user commands?

To address this problem, we must resolve two questions. (1) How can untrained users direct
the robot to perform specific tasks? Natural language presents a promising alternative form
of specification, providing an intuitive and flexible way for humans to communicate tasks
and refer to abstract concepts. However, learning to follow language instructions involves
addressing a difficult symbol grounding problem [25], relating a language instruction to
a robot’s onboard perception and actions. (2) How can the robot efficiently learn general-
purpose skills from offline data, without hand-specified rewards? A simple and versatile
choice is to define skills as being continuous instead of discrete, endowing the agent of
task-agnostic control: the ability to reach any reachable goal state from any current state [52].
These forms of task specification can in principle enable a robot to solve multi-stage tasks by
following several language instructions in a row.

http://hulc.cs.uni-freiburg.de
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“Lift the red block from 
the sliding cabinet”

“Stack the grasped 
block”

“Push the sliding door 
to the left side”

“Press the button to 
turn off the led light”

“Pull the handle to 
open the drawer”

1 2 3

4 5

Figure 6.1: CALVIN learns a single 7-DoF language conditioned visuomotor policy from offline,
unstructured data that can solve multi-stage, long-horizon robot manipulation tasks. We
divide instruction following into learning global plans representing high-level behavior
and a local policy conditioned on the plan and the instruction.

Recent advances have been made at learning language conditioned policies for contin-
uous visuomotor-control in 3D environments via imitation learning [21, 54, 145, 160] or
reinforcement learning [140, 146]. These approaches typically require offline data sources of
robotic interaction together with post-hoc crowd-sourced natural language labels. Although
all methods share the basic idea of leveraging instructions that are grounded in the agent’s
high-dimensional observation space, their details vary greatly. Moreover, evaluating pub-
lished methods and their components in language conditioned policy learning is difficult due
to incomparable setups or subjective task definitions. In this work we systematically compare,
improve, and integrate key components by leveraging the recently proposed CALVIN bench-
mark [161] to further our understanding and provide a unified framework for long-horizon
language conditioned policy learning. We build upon relabeled imitation learning [57] to
distill many reusable behaviors into a goal-directed policy, as seen in Fig. 6.1. Our approach
consists of only standard supervised learning subroutines, and learns perceptual and linguistic
understanding, together with task-agnostic control end-to-end as a single neural network.
Our contributions are:

• We systematically compare key components of language conditioned imitation learning
over unstructured data, such as observation and action spaces, losses for aligning visuo-
lingual representations, language models and latent plan representations, and we
analyze the effect of other choices, such as data augmentation and optimization.
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• We propose four improvements to these key components: a multimodal transformer
encoder to learn to recognize and organize behaviors during robotic interaction into
a global categorical latent plan, a hierarchical division of the robot control learning
that learns local policies in the gripper camera frame conditioned on the global plan,
balancing terms within the KL loss and a self-supervised contrastive visual-language
alignment loss.

• We integrate the best performing improved components in a unified framework, Com-
posing Actions from Language and Vision (CALVIN). Our model sets a new state
of the art on the challenging CALVIN benchmark [161], on learning a single 7-DoF
policy that can perform long-horizon manipulation tasks in a 3D environment, directly
from images, and only specified with natural language.

6.2 Related Work
Natural language processing has recently received much attention in the field of robotics [24],
following the advances made towards learning groundings between vision and language [7,
147] and grounding behaviors in language [162]. Early works have approached instruction
following by designing interactive fetching systems to localize objects mentioned in referring
expressions [104, 109] or by grounding not only objects, but also spatial relations to follow
language expressions characterizing pick-and-place commands [30, 120, 151]. Unlike these
approaches, we directly learn robotic control from images and natural language instructions,
and do not assume any predefined motion primitives.

More recently, end-to-end deep learning has been used to condition agents on natural
language instructions [21, 54, 140, 145, 146, 160], which are then trained under an imitation
or reinforcement learning objective. These works have pushed the state of the art and
generated a range of ideas for language conditioned policy learning, such as losses for
aligning visual observations and language instructions. However, each work evaluates a
different combination of ideas and uses different setups or task definitions, making it unclear
how individual ideas compare to each other and which ideas combine well together. For
example, the methods BC-Z and MIA [21, 160] use both behavior cloning, but different
actions spaces and multi-modal alignment losses, such as regressing the language embedding
from visual observations [21] or cross-modality matching [160]. Moreover, BC-Z leverages
expert trajectories and task labels, and MIA includes mobile navigation, making them difficult
to implement directly in CALVIN, which contains unlabeled play data on different tabletop
environments. Nair et. al. [146] learn a reward classifier which predicts if a change in state
completes a language instruction and leverage it for offline multi-task RL given four camera
views. Similar to BC-Z they rely on discrete task labels and do not focus on solving long-
horizon language-specified tasks. Most related to our approach is multi-context imitiation
learning (MCIL) [145], which also uses relabeled imitation learning to distill reusable
behaviors into a goal-reaching policy. Besides different action and observation spaces, these
works leverage different language models to encode the raw text instructions into a semantic
pre-trained vector space, making it difficult to analyze which language models are best suited
for language conditioned policy learning. The ablation studies presented in these papers
show that each novel contribution of each work does indeed improve the performance of
their model, but due to incomparable setups and evaluation protocols, it is difficult to asses
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what matters for language conditioned policy learning. Our work addresses this problem by
systematically comparing and combining different observation and action spaces, auxiliary
losses and latent representations and integrating the best performing components in a unified
framework.

6.3 Problem Formulation and Method Overview
We consider the problem of learning a goal-conditioned policy πθ (at | st, l) that outputs
action at ∈ A, conditioned on the current state st ∈ S and free-form language instruction
l ∈ L, under environment dynamics T : S ×A → S. We note that the agent does not have
access to the true state of the environment, but to visual observations. In CALVIN [161]
the action space A consists of the 7-DoF control of a Franka Emika Panda robot arm with a
parallel gripper.

We model the interactive agent with a general-purpose goal-reaching policy based on multi-
context imitation learning (MCIL) from play data [145]. To learn from unstructured “play”
we assume access to an unsegmented teleoperated play dataset D of semantically meaningful
behaviors provided by users, without a set of predefined tasks in mind. To learn control, this
long temporal state-action stream D = {(st, at)}∞t=0 is relabeled [57], treating each visited
state in the dataset as a “reached goal state”, with the preceding states and actions treated as
optimal behavior for reaching that goal. Relabeling yields a dataset of Dplay = {(τ, sg)i}

Dplay
i=0

where each goal state sg has a trajectory demonstration τ = {(s0, a0), . . .} solving for the
goal. These short horizon goal image conditioned demonstrations can be fed to a simple
maximum likelihood goal conditioned imitation objective:

LLfP = E(τ,sg)∼Dplay

 |τ |∑
t=0

log πθ(at | st, sg)

 (6.1)

to learn a goal-reaching policy πθ (at | st, sg). We address the inherent multi-modality in
free-form imitation datasets by auto-encoding contextual demonstrations through a latent
“plan” space with an sequence-to-sequence conditional variational auto-encoder (seq2seq
CVAE) [18]. Conditioning the policy on the latent plan frees up the policy to use the entirety
of its capacity for learning uni-modal behavior. To generate latent plans z we make use
of the variational inference framework [58]. The objective of the latent plan sampler is to
model the full distribution over all high-level behaviors that might connect the current and
goal state, to provide multi-modal plans at inference time. This distribution is learned with a
CVAE by maximizing the marginal log likelihood of the observed behaviors in the dataset
log p(x | s), where x are sampled state-action trajectories from τ . The Evidence Lower
Bound (ELBO) [58] for the CVAE can be written as:

log p(x|s) ≥ −KL(q(z|x, s) || p(z|s)) + Eq(z|x,s) [log p(x|z, s)] (6.2)

The decoder is a policy trained to reconstruct input actions, conditioned on state st, goal sg,
and an inferred plan z for how to get from st to sg. At test time, it takes a goal as input, and
infers and follows plan z in closed-loop.

However, when learning language conditioned policies πθ (at | st, l) it is not possible
to relabel any visited state s to a natural language goal as the goal space is no longer
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Figure 6.2: Overview of our architecture to learn language conditioned policies from unstructured
data. First the language instructions and the visual observations are encoded. During
training a multimodal transformer encodes sequences of observations to learn to recognize
and organize high-level behaviors through a posterior. Its temporally contextualized
features are provided as input to a contrastive visuo-lingual alignment loss. The plan
sampler network receives the initial state and the latent language goal and predicts the
distribution over plans for achieving the goal. Both prior and posterior distributions are
predicted as a vector of multiple categorical variables and are trained by minimizing their
KL divergence. The local policy network receives the latent language instruction, the
gripper camera observation and the global latent plan to generate a sequence of relative
actions in the gripper camera frame to achieve the goal.

equivalent to the observation space. Lynch et al. [145] showed that pairing a small number of
random windows with language after-the-fact instructions enables learning a single language
conditioned visuomotor policy that can perform a wide variety of robotic manipulation tasks.
The key insight here is that solving a single imitation learning policy for either goal image or
language goals, allows for learning control mostly from unlabeled play data and reduces the
burden of language annotation to less than 1% of the total data. Concretely, given multiple
contextual imitation datasets D = {D0, D1, . . . , DK}, with a different way of describing
tasks, MCIL trains a single latent goal conditioned policy πθ (at | st, z) over all datasets
simultaneously, as well as one parameterized encoder per dataset.

6.4 Key Components of Language Conditioned Imitation
Learning over Unstructured Data

This section compares and improves key components of language conditioned imitation
learning over unstructured data. We base our model on MCIL [145] and improve it by
decomposing control into a hierarchical approach of generating global plans with a static
camera and learning local policies with a gripper camera conditioned on the plan. Then we
go through different components that have a large impact on performance: architectures to
encode sequences in relabeled imitation learning, the representation of the latent distributions,
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how to best align language and visual representations, data augmentation and optimization.
We visualize the full architecture in Fig. 6.2.

A Observation and Actions Spaces

How to best represent motion skills is an age-old question in robotics. From a learning
perspective, generating the action sequences to solve diverse manipulation tasks with a single
network from high-dimensional observations is challenging, because the distribution is multi-
modal, discontinuous and imbalanced. For these reasons, finding an efficient representation is
crucial to perform this non-trivial reasoning using learning-based methods. MCIL [145] uses
global actions learned from a single static RGB camera. We observe that predicting 7-DoF
global actions leads to the network primarily solving static element tasks, such as pushing
a button, but failing to generalize to dynamic tasks, such as manipulating colored blocks.
To alleviate this problem, we propose generating global plans that correspond to reusable
common behavior b seen in the play data, but learning local policies conditioned on the plan.
This results in a hierarchical approach that frees up the network from having to memorize
all locations in the scene were the behaviors were performed. Concretely, we encode RGB
images from both the static and a gripper camera to learn a compact representation of all
the different high-level plans that take an agent from a current state to a goal state, learning
p (b | st, sg). Inspired by a recent line of work that aims to learn hierarchies of controllers
based on static and gripper cameras [163], we use the encoded gripper camera representations
in the policy network, the global contextualized latent plan, and perform control in the gripper
frame with relative actions for an efficient robot control learning. The action space consists
of delta XYZ position, delta Euler angles and the gripper action. Our proposed formulation
has several advantages: a) local policies based on the gripper camera generalize better to
different locations of the objects to be manipulated b) the policy has a prior in the form of a
global contextualized latent plan, but is free to discover the exact strategy on how to interact
with the objects.

B Latent Plan Encoding

A challenge in self-supervising control on top of free-form imitation data is that in general,
there are many valid high-level behaviors that might connect the same (st, sg) pairs. By
auto-encoding contextual demonstrations through a latent “plan” space with an sequence-
to-sequence conditional variational auto-encoder (seq2seq CVAE) [18], we can learn to
recognize which region of the latent plan space an observation-action sequence belongs to.
Critically, conditioning the policy on the latent plan frees up the policy to use the entirety of
its capacity for learning uni-modal behavior. Thus, learning to generate and represent high-
quality latent plans is a key component in the seq2seq CVAE framework. MCIL [145] uses
bidirectional recurrent neural networks (RNN) to encode a randomly sampled play sequence
and map it into a latent Gaussian distribution. In contrast, we leverage a multimodal trans-
former encoder [85] to build a contextualized representation of abstract behavior expressed
in language instructions and map into a vector of several latent categorical variables [164].
The foundation of the Transformer architecture is the scaled dot-product attention function,
which enables elements in a sequence to attend to other elements. The attention function
receives as input a sequence {x1, ..., xn} and outputs a sequence {y1, ..., yn}. Each input xi is
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projected linearly to a query qi, key ki, and value vi. To compute the output yi the values are
summed with weights that take into account the similarity of the query with its corresponding
key. The attention function is defined as Attention(Q,K, V ) = softmax(QK

T
√
dk

)V , where dk
is the dimension of the keys and queries. The queries, keys, and values are stacked together
into matrix Q ∈ Rn×dmodel , K ∈ Rn×dmodel , and V ∈ Rn×dmodel . We encode the sequence of
visual observations of both modalities X{static,gripper} ∈ RT×H×W×3 with separate perceptual
encoders, and concatenate them to form the fused perceptual representation V ∈ RT×d of the
sampled demonstration, where T represents the sequence length and d the feature dimension.
To enable the sequences to carry temporal information, we add positional embeddings [85]
and feed the result into the Multimodal Transformer to learn temporally contextualized global
video representations. Finally, inspired by the recent line of work that looks into learning
discrete instead of continuous latent codes [164, 165], we represent the latent plans as a
vector of multiple categorical latent variables and and optimize them using straight-through
gradients [166]. Learning discrete representations in the context of language conditioned
policies is a natural fit, as language is inherently discrete and images can often be described
concisely by language [120]. Furthermore, discrete representations are a natural fit for
complex reasoning, planning and predictive learning (e.g., if it is sunny, I will go to the
beach).

C Semantic Alignment of Video and Language

Learning to follow language instructions involves addressing a difficult symbol grounding
problem [25], relating a language instruction to a robots onboard perception and actions.
Although instructions and visual observations are aligned in CALVIN, learning to manipulate
the colored blocks is a challenging problem. This is due to the fact that the robot needs to learn
a wide variety of diverse behaviors to manipulate the blocks, but also needs to understand
which colored block the user is referring to. Thus, the block related instructions are very
similar, for the exception of a word that might disambiguate the instruction by indicating
a color. Therefore, most pre-trained language models struggle to learn such semantics
from text only and the policy needs to learn referring expression comprehension via the
imitation loss. There have been a number of multi-modal alignment losses proposed, such
as regressing the language embedding from the visual observation [21] or cross-modality
matching [160]. We maximize the cosine similarity between the visual features of the
sequence i and the corresponding language features while, at the same time, minimizing
the cosine similarity between the current visual features and other language instructions
in the same batch. We define our Lcontrast loss the same way as the contrastive loss for
pairing images and captions in CLIP [7]. However, ideally our model should use the
time-dependent representation of the sequence visual observations in order to capture the
meaning of a language instruction. This can be appreciated only after the sequence of
actions have been executed for several timesteps. The usage of in-batch negatives enables
re-use of computation both in the forward and the backward pass making training highly
efficient. The logits for one batch is a M × M matrix, where each entry is given by
logit(xi, yj) = cos_sim(xi, yj) · exp(τ),∀(i, j), i, j ∈ {1, 2, . . . ,M} where τ is a trainable
temperature parameter. Only entries on the diagonal of the matrix are considered positive
examples. The final loss is the sum of the cross entropy losses on the row and the column
direction.



6.4. KEY COMPONENTS OF LANGUAGE CONDITIONED IMITATION LEARNING OVER

UNSTRUCTURED DATA 83

D Action Decoder
A challenge in learning control from free-form imitation data, in which different ways
of executing the same skill are shown, is that a standard unimodal predictor, such as a
Gaussian distribution, will average out dissimilar motions. To address this multimodality, we
follow the solution proposed by Lynch et. al. [18] of discretizing the action space and then
parameterizing the policy as a discretized logistic mixture distribution [167, 168]. Each of
the predicted k logistic distributions have a separate mean and scale, and are weighed with
α to form the mixture distribution. The imitation loss is the negative log-likelihood for this
distribution:

Lact(Dplay, V ) = − ln(Σk
i=0 αk(Vt) P (at, µi(Vt), σi(Vt))

Where, P (at, µi(Vt), σi(Vt)) = F (at+0.5−µi(Vt)
σi(Vt)

) − F (at−0.5−µi(Vt)
σi(Vt)

) and F (·) is the logistic
CDF. Additionally, we use a cross-entropy loss to model the binary gripper open/close action.

E Optimization and Implementation Details
Our full training objective for the 1% of the total data that is annotated with after-the-fact
language instructions is given by L = Lact + βLKL + λLcontrast. The windows without
annotations are trained with the same imitation learning objective, but the language goals
are replaced by the last visual frame of the sampled window to learn control in a fully
self-supervised manner. A common problem in training VAEs is finding the right balance in
the weight of the KL loss. A high β value can result in an over-regularized model in which
the decoder ignores the latent plans from the prior, also known as a “posterior collapse” [169].
On the other hand, setting β too low results in the plan sampler network being unable to
catch up to plan over the latent space created by the posterior, and as a result at test time
the plans generated by the plan sampler network will be unfamiliar inputs for the decoder.
Orthogonal to this, as the KL loss is bidirectional, we want to avoid regularizing the plans
generated by the posterior toward a poorly trained prior. To solve this problem, we minimize
the KL loss faster with respect to the prior than the posterior by using different learning rates,
α = 0.8 for the prior and 1 − α for the posterior, similar to Hafner et. al. [164]. We set
β = 0.01 and λ = 3 for all experiments and train with the Adam optimizer with a learning
rate of 2−4. During training, we randomly sample windows between length 20 and 32 and
pad them until the max length of 32. For the latent plan representation we use 32 categoricals
with 32 classes each. To better compare the differences between approaches, we use the
same convolutional encoders as the MCIL baseline available in CALVIN for processing the
images of the static and gripper camera. Our multimodal transformer encoder has 2 blocks, 8
self-attention heads, and a hidden size of 2048. In order to encode raw text into a semantic
pre-trained vector space, we leverage the paraphrase-MiniLM-L3-v2 model [87], which
distills a large Transformer based language model and is trained on paraphrase language
corpora that is mainly derived from Wikipedia. It has a vocabulary size of 30,522 words and
maps a sentence of any length into a vector of size 384.

F Data Augmentation
To aid learning we apply data augmentation to image observations, both in our method and
across all baselines. During training, we apply stochastic image shifts of 0-4 pixels to the
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gripper camera images and of 0-10 pixels to the static camera images as in Yarats et. al. [170].
Additionally, a bilinear interpolation is applied on top of the shifted image by replacing each
pixel with the average of the nearest pixels.

6.5 Experiments
We evaluate our model in an extensive comparison and ablation study, to determine which
components matter for language conditioned imitation learning over unstructured data. We
ablate single components of our full approach to study the influence of each component. We
then compare our resulting model to the best published methods on the CALVIN benchmark,
and show that it outperforms all previous methods.

A Evaluation Protocol
The goal of the agent in CALVIN is to solve sequences of up to 5 language instructions
in a row using only onboard sensors. This setting is very challenging as it requires agents
to be able to transition between different subgoals. CALVIN has a total of 34 different
subtasks and evaluates 1000 unique sequence instruction chains. The robot is set to a neutral
position after every sequence to avoid biasing the policies through the robot’s initial pose.
This neutral initialization breaks correlation between initial state and task, forcing the agent
to rely entirely on language to infer and solve the task. For each subtask in a row the policy
is conditioned on the current subgoal instruction and transitions to the next subgoal only
if the agent successfully completes the current task. We perform the ablation studies on
the environment D of CALVIN and additionally report numbers of our approach for the
other two CALVIN splits, the multi environment and zero-shot multi environment splits. We
emphasize that the CALVIN dataset for each of the four environment consists of 6 hours
of teleoperated undirected play data that might contain suboptimal behavior. To simulate a
real-world scenario, only 1% of that data contains crow-sourced language annotations.

B Results and Ablations of Key Components
Observation and Actions Spaces: We compare our approach of dividing the robot control
learning into generating global contextualized plans and conditioning a local policy that
receives only the observations of the the gripper camera on the global plan against a “No
Local Policy” baseline. Unlike our approach, which performs control in the gripper camera
frame, the baseline’s policy receives both cameras images and performs control in the robot’s
base frame, as is usual in most published approaches. We observe in Fig. 6.3, that despite the
baseline’s decoder having more perceptual information, the performance for completing 5
chains of language instructions sequentially drops from 28.3% to 20.1%. In order to analyze
the big performance difference with respect to the original MCIL baseline, we train a MCIL
baseline with relative actions and observe that its performance improves significantly from
the original MCIL baseline with absolute actions, but performs worse than our models. We
speculate that using relative actions with a local policy is easier for the agent to learn instead
of memorizing all the locations where interactions have been performed with global actions
and a global observation space. By decoupling the control into a hierarchical structure, we
show that performance increases significantly. Additionally, we analyze the influence of using
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the 7-DoF proprioceptive information as input for both the plan encodings and conditioning
the policy, as many works report improved performance from it [18, 19, 145]. We observe
that the performance drops significantly and the agent relies too much on the robot’s initial
position, rather than learning to disentangle initial states and tasks. We hypothesize this
might be due to a causal confusion between the proprioceptive information and the target
actions [155]. We also analyze the effect of modeling the full action space, including the
binary gripper action dimension, with the mixture of logistics distribution instead of using
the log loss for the open/close gripper action and observe that the average sequence length
drops from 2.64 to 2.45. Finally, we note that applying stochastic image shifts to the input
images increases the performance significantly.

Method Train→Test LH-MTLC
No. Instructions in a Row (1000 chains)

1 2 3 4 5 Avg. Len.
MCIL [145] A,B,C,D→D 37.3% 2.7% 0.17% 0% 0% 0.40

Ours A,B,C,D→D 88.9% (0.6) 73.3% (1.7) 58.7% (1.8) 47.5% (1.6) 38.3% (1.9) 3.06 (0.07)
MCIL [145] A,B,C→D 30.4% 1.3% 0.17% 0% 0% 0.31

Ours A,B,C→D 41.8% (2.3) 16.5% (2.5) 5.7% (1.3) 1.9% (0.9) 1.1% (0.5) 0.67 (0.1)

Figure 6.4: Performance of our model on the multi environment splits of the CALVIN Challenge
across 3 seeded runs.

Latent Plan Encoding: In our CVAE framework the latent plan represents valid ways
of connecting the actual state and the goal state and thus, frees up the policy to use the
entirety of its capacity for learning uni-modal behavior. As language is inherently discrete
and discrete representations are a natural fit for complex reasoning and planning, we represent
latent plans as a vector of multiple categorical latent variables and and optimize them using
straight-through gradients [166]. We observe that the performance for 5-chain evaluation
drops from 28.3% to 23.6% when we train our model with a diagonal Gaussian distribution
as in MCIL. While it is difficult to judge why categorical latents work better than continuous
latent variables, we hypothesize that categorical latents could be a better inductive bias for
non-smooth aspects of the CALVIN benchmark, such as when a block is hidden behind
the sliding door. Besides, the sparsity level enforced by a categorical distribution could be
beneficial for generalization. Additionally, we compare against a goal-conditioned Behavior
Cloning (GCBC) baseline [18] which does not condition the policy on a latent plan, and
observe that it performs worse than MCIL with relative actions, highlighting the importance
of modeling latent behaviors in free-form imitation datasets. We also observe that balancing
the KL loss is beneficial in the CVAE training. By scaling up the prior cross entropy relative
to the posterior entropy, the agent is encouraged to minimize the KL loss by improving its
prior toward the more informed posterior, as opposed to reducing the KL by increasing the
posterior entropy. We visualize a t-SNE plot of our learned discrete latent space in Figure 6.5
and that see that even for unseen language instructions it appears to organize the latent
space functionally. Additionally, we report degraded performance for an over-regularized
model which learns to ignore the latent plans, in which we weight the KL divergence with
β = 0.1. Finally, we evaluate replacing the transformer encoder in the posterior with a GRU
bidirectional recurrent network of the same hidden dimension of 2048, similar to MCIL. The
results suggest that besides an improved performance, the multimodal transformer encoder is
significantly more efficient both memory and model size wise (5.9 M vs 106 M parameters
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for the posterior network) and overall training wall clock time. For comparison, with the
transformer encoder, our full approach contains 47.1 M trainable parameters.

rotate_red_block_right
rotate_red_block_left
rotate_blue_block_right
rotate_blue_block_left
rotate_pink_block_right
rotate_pink_block_left
push_red_block_right
push_red_block_left
push_blue_block_right
push_blue_block_left
push_pink_block_right
push_pink_block_left
move_slider_left
move_slider_right
open_drawer
close_drawer
lift_red_block_table
lift_blue_block_table
lift_pink_block_table
lift_red_block_slider
lift_blue_block_slider
lift_pink_block_slider
lift_red_block_drawer
lift_blue_block_drawer
lift_pink_block_drawer
place_in_slider
place_in_drawer
push_into_drawer
turn_on_lightbulb
turn_off_lightbulb
turn_on_led
turn_off_led
stack_block
unstack_block

Figure 6.5: t-SNE visualization of the discrete latent plans generated by embedding randomly selected
unseen language annotations. Surprisingly, we find that despite not being trained explicitly
with task labels, CALVIN appears to organize its latent plan space functionally. We
visualize with the same color functionally similar skills, but use different shapes to
distinguish sub-skills.

Semantic Alignment of Video and Language: One of the main challenges for language
conditioned continuous visuomotor-control is solving a difficult symbol grounding prob-
lem [25], relating a language instruction to a robots onboard perception and actions. An
agent in CALVIN needs to learn a wide variety of diverse behaviors to manipulate blocks
with different shapes, but also needs to understand which colored block the user is instruct-
ing it to manipulate. We compare commonly used auxiliary losses for aligning visual and
language representations. Concretely, we compare our contrastive loss against predicting
the language embedding from the sequence’s visual observations with a cosine loss [21],
cross-modality matching [160] and not having an auxiliary visuo-lingual alignment loss. We
observe that using an auxiliary loss to semantically align the sampled video sequences and
the language instructions helps, but both baselines perform similarly. We hypothesize that our
contrastive loss works best because it leverages a larger number of in-batch negatives than
the cross-modality matching loss. Concretely, we maximize the cosine similarity for N real
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pairs in the batch while minimizing the cosine similarity of the multimodal embeddings of
the N2−N incorrect pairings. The cross-modality matching loss implements a discriminator
that produces a binary predictor of whether the embeddings match or not. The batch is
shuffled only once to produce the negative samples, contrasting only N negative samples.

Language Models: Despite steady progress in language conditioned policy learning, a
fundamental, but less considered aspect is the choice of the pre-trained language model
to encode raw text into a semantic pre-trained vector space. We compare the lightweight
paraphrase-MiniLM-L3-v2 language embeddings from our full model against several popular
alternatives, such as the larger BERT [86], Distilroberta [172] and MPNet [171], which
double the embedding size from 384 to 768. Besides the architecture of the language model,
we analyze the impact of the loss functions the language models are trained on, by comparing
the original embeddings of MPNet and Distilroberta against versions that have been finetuned
with contrastive losses at the sentence level to map semantically similar sentences into the
same latent space [87]. We observe that the SBERT models that have been finetuned on
sentence semantic similarity achieve significantly better results than the original language
models trained on masked language modeling. Concretely, the original Distilroberta model
achieves an average sequence length of 2.21, while the SBERT Distilroberta model achieves
an average sequence length of 2.50. Finally, we also compare against a model conditioned on
visual (ResNet-50) and language-goal features from a pre-trained CLIP model [7], which has
been trained to align visual and language features from millions of image-caption pairs from
the internet. Surprisingly, we find that performance is slightly worse than our best performing
model. We hypothesize that this might be due to a domain gap between the natural images
that CLIP has been trained on and the simulated images from CALVIN. The results suggest
that for complex semantics, the choice of the pre-trained language model has a large impact
and models finetuned on sentence level semantic similarity should be preferred. While in this
paper, we do not finetune the language models with the action loss, we anticipate this might
lead to better performance, specially in order to ground instructions referring to the colored
blocks.

Multi Environment and Zero-Shot Generalization: Finally, we investigate the performance
of our approach on the larger multi environment splits of CALVIN on Fig. 6.4. On the
zero-shot split, which consists on training on three environments and testing on an unseen
environment with unseen instructions, we observe that despite modest improvements over the
MCIL baseline, the policy achieves just an average sequence length of 0.67. We hypothesize
that in order to achieve better zero-shot performance, additional techniques from the domain
adaptation literature, such as adversarial skill-transfer losses might be helpful[133]. On the
split that trains on all four environments and evaluates on one of them, we observe that
CALVIN benefits from the larger dataset size and sets a new state of the art with an average
sequence length of 3.06, which is higher than our best performing model trained and tested on
environment D (2.64). The results suggest that increasing the number of collected language
pairs aids addressing the complicated perceptual grounding problem.

6.6 Conclusion
We have presented a study into what matters in language conditioned robotic imitation
learning over unstructured data that systematically analyzes, compares, and improves a set of
key components. This study results in a range of novel observations about these components
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and their interactions, from which we integrate the best components and improvements
into a state-of-the-art approach. Our resulting hierarchical CALVIN model learns a single
policy from unstructured imitation data that substantially surpasses the state of the art on the
challenging language conditioned long-horizon robot manipulation CALVIN benchmark. We
hope it will be useful as a starting point for further research and will bring us closer towards
general-purpose robots that can relate human language to their perception and actions.





Chapter 7

Adversarial Skill Networks:
Unsupervised Robot Skill Learning from
Video
The content of this chapter has been published in [133]:

O. Mees, M. Merklinger, G. Kalweit and W. Burgard
Adversarial Skill Networks: Unsupervised Robot Skill Learning from Video
IEEE International Conference on Robotics and Automation (ICRA), 2020
Finalist for the Best Paper Award in Cognitive Robotics

Me and Markus Merklingler share the main authorship. The initial work on the Adversarial
Skill Networks (ASN) for learning robot skills from unlabeled videos was formulated in
collaboration with Gabriel Kalweit for Markus Merklingers Master’s thesis, which the author
of this thesis supervised together with Gabriel Kalweit. Markus Merklinger implemented
the initial experimental framework and we jointly collected the dataset. The insights gained
during the aforementioned thesis supervision influenced the subsequent improved implemen-
tations of ASN that the author of this thesis carried out. All the results for ASN reported in
this thesis were entirely carried out by the author of this thesis. The paper was mostly written
by the author of this thesis. Markus Merklinger and Gabriel Kalweit also contributed to the
paper writing.
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Abstract

Key challenges for the deployment of reinforcement learning (RL) agents in the real
world are the discovery, representation and reuse of skills in the absence of a reward
function. To this end, we propose a novel approach to learn a task-agnostic skill
embedding space from unlabeled multi-view videos. Our method learns a general
skill embedding independently from the task context by using an adversarial loss. We
combine a metric learning loss, which utilizes temporal video coherence to learn a state
representation, with an entropy-regularized adversarial skill-transfer loss. The metric
learning loss learns a disentangled representation by attracting simultaneous viewpoints
of the same observations and repelling visually similar frames from temporal neighbors.
The adversarial skill-transfer loss enhances re-usability of learned skill embeddings
over multiple task domains. We show that the learned embedding enables training
of continuous control policies to solve novel tasks that require the interpolation of
previously seen skills. Our extensive evaluation with both simulation and real world
data demonstrates the effectiveness of our method in learning transferable skills from
unlabeled interaction videos and composing them for new tasks. Code, pretrained
models and dataset are available at http://robotskills.cs.uni-freiburg.de

7.1 Introduction

Intelligent beings have the ability to discover, learn and transfer skills without supervision.
Moreover, they can combine previously learned skills to solve new tasks. This stands in
contrast to most current “deep reinforcement learning” (RL) methods, which, despite recent
progress [173, 174, 175], typically learn solutions from scratch for every task and often rely
on manual, per-task engineering of reward functions. Furthermore, the obtained policies and
representations tend to be task-specific and generally do not transfer to new tasks.

The design of reward functions that elicit the desired agent behavior is especially chal-
lenging for real-world tasks, particularly when the state of the environment might not be
accessible. Additionally, designing a reward often requires the installation of specific sensors
to measure as to whether the task has been executed successfully [10, 11]. In many scenar-
ios, the need for task-specific engineering of reward functions prevents us from end-to-end
learning from pixels, if the reward function itself requires a dedicated perception pipeline.
To address these problems, we propose an unsupervised skill learning method that aims to
discover and learn transferable skills by watching videos. The learned embedding is then
used to guide an RL-agent in order to solve a wide range of tasks by composing previously
seen skills.

Prior work in visual representation learning for deriving reward functions relied on self-
supervised objectives [176, 177, 178, 179, 180] and focused on single tasks. Not only is this
inefficient, but also limits the versatility and adaptivity of the systems that can be built. Thus,
we consider the problem of learning a multi-skill embedding without human supervision.

In this paper, we present a novel approach called Adversarial Skill Networks (ASN). In
order to learn a task-agnostic skill embedding space, our method solely relies on unlabeled
multi-view observations. Hence, it does not require correspondences between frames and task
IDs nor any additional form of supervision or instrumentation. We combine a metric learning
loss, which utilizes temporal video coherence, with an entropy-regularized adversarial skill-

http://robotskills.cs.uni-freiburg.de
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Figure 7.1: Given the demonstration of a new task as input, Adversarial Skill Networks yield a
distance measure in skill-embedding space which can be used as the reward signal for a
reinforcement learning agent for multiple tasks.

transfer loss. Our results indicate that the learned embedding can be used not only to train
RL agents for tasks seen during the training of the embedding, but also for novel tasks that
require a composition of previously seen skills.

In extensive experiments, we demonstrate both qualitatively and quantitatively that our
method learns transferable skill embeddings for simulated and real demonstrations without
the requirement of labels. We represent the skill embedding as a latent variable and apply
an adversarial entropy regularization technique to ensure that the learned skills are task
independent and versatile and that the embedding space is well formed. We show that the
learned embedding enables training of continuous control policies with PPO [65] to solve
novel tasks that require the interpolation of previously seen skills. Training an RL-agent to
re-use skills in an unseen task, by using the learned embedding space as a reward function,
solely requires a single video demonstrating the novel task. This makes our method readily
applicable in a variety of robotics scenarios.

7.2 Related Work

Our work is primarily concerned with learning representations that enable a robot to solve
multiple tasks by re-using skills without human supervision, thus falling under the category
of self-supervised robot learning [107, 176, 178, 180]. There exists a large body of work
for learning representations through autoencoders [181, 182], pre-trained supervised fea-
tures [180], spatial structure [181, 183] and state estimation from vision [184]. Compared
to these approaches, we take multiple tasks into account to learn a skill embedding before
training a reinforcement learning agent with a self-supervised vision-based training signal.

Further approaches attempt to derive data-driven reward functions [178, 179, 180, 185,
186] by providing a label-free training signal from video or images to minimize human
supervision. Related to our work, Sermanet et al. [180] provide reward functions by iden-
tifying key intermediate steps for one task from multiple video examples. Other meth-
ods [177, 179, 181, 186] use images of goal examples to construct a task objective for goal
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reaching tasks such as pushing. Atari video games are solved in [185, 187] by constructing
an objective from human demonstration videos. However, it is unclear whether the reward
signal reflects a good performance when transferring it to a real-world robotic task. Our
model is able to find task specific features and generalizes to unseen objects, viewpoints and
backgrounds.

Existing methods for learning reusable skill embeddings make use of entropy-maximization
of the policy [188, 189, 190] and therefore allow for policy interpolation. Haarnoja et al. [189]
use a composition of soft Q-functions to create a policy that reaches a new goal. Hausmann et
al. [188] propose a hierarchical reinforcement learning approach that utilizes two embedding
networks and an entropy regularization on the policy to cover a latent space with different
skill clusters. Orthogonal to our work, these methods rely on previously designed reward
functions.

Most related to our approach is the work by Sermanet et al. [176] that introduces Time-
Constrative Networks (TCN) and a triplet loss combined with multi-view metric learning to
increase the distance of embeddings for transitions far apart in time. The learned metric can
then be used as a reward signal within a RL-setup by minimizing the distance to a visual
demonstration. However, TCN focuses only on the single-task setting and does not leverage
information from previously learned skills. Dwibedi et al. [191] extend TCN using multiple
frames (mfTCN). In contrast to our approach, the embedding is not used as a (label-free)
reward signal.

In addition to the metric loss, we use an adversarial loss term [192, 193, 194, 195, 196] as
a regularization technique. The adversarial loss was introduced for Generative Adversarial
Networks (GAN) [192] and domain adaptation [194, 195, 196]. Similar to the problem of
domain adaptation we have multiple videos for different task domains. For domain adaptation,
multiple approaches [194, 195] use a gradient reversal layer and Tzeng et al. [196] exploit
a GAN-based loss. Springenberg et al. [193] introduce an objective function for label free
classification by extending GANs to categorical distributions. Our approach uses a similar
adversarial loss to learn a reusable skill embedding for different task domains.

In contrast to these previously described approaches, we propose a method to learn skills
from video by a composition of metric learning and an entropy-regularized adversarial skill-
transfer loss. Our method not only allows for the representation of multiple task-specific
reward functions, but also builds upon this information in order to interpolate between learned
skills, see Figure 7.1.

7.3 Learning a Transferable Skill Embedding

The main incentive of our method is a more general representation of skills that can be re-used
and applied to novel tasks. In this work, we define tasks to be composed of a collection of
skills. Since we approach this problem in an unsupervised fashion, we do not need any labels
describing relations between different task videos or even for different examples of the same
task. In our approach, we are interested in the following properties for a learned embedding
space:
i) versatility: Multiple tasks can be represented in the same embedding space.
ii) skill representation: A skill can be described by the embedding of two sequential frames,
with a time delay in-between (stride).
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iii) generality: The learned embedding space should generalize to unseen objects, back-
grounds and viewpoints.
iv) task independent skills: It should not be possible to distinguish similar skills from
different task domains, i.e., the same skill executed in different environments should ideally
have an identical embedding.

A Adversarial Skill Networks

We propose Adversarial Skill Networks (ASN) to achieve a novel skill representation, which
takes these properties into account. We combine a metric learning loss, which utilizes tempo-
ral video coherence to learn a state representation, with an entropy-regularized adversarial
skill-transfer loss. An overview can be seen in Figure 7.2.

To transfer similar skills without any label information to unseen tasks, one needs to
learn generalized skills that should neither be task- nor domain-specific, following property
iv). Since the true class distribution over skills is not known, this problem can naturally be
considered as a “soft” probabilistic cluster assignment task.

To solve this, our method introduces a novel entropy regularization by jointly training two
networks in an adversarial manner: an encoder network E and a discriminator D. Given two
sequential frames (v, w), which are separated by a temporal stride ∆t, we define an unlabeled
skill embedding x = (E(v), E(w)) and collection of skills X = {x1, ...,xN} representing
the different tasks. The encoder network embeds single frames of the dimension d1 × d2 into
a lower-dimensional representation of size n, i.e. E: Rd1×d2 → Rn. We compute Euclidean
distances in the embedding space to compare the similarity of frames. The discriminator
network takes two concatenated embedded frames that define an unlabeled skill x as input
and outputs yc, the probability of the skill being originated from task c. Formally, we require
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D(x) ∈ RC to give rise to a conditional distribution over tasks
∑C

c=1 p(yc = c | x, D) = 1.
Although we define this hyper-parameter a priori as the number of tasks contained in a
training set, we observed minor performance drops setting it to a value with small deviation
from the true number of tasks. Most importantly, ASN does not need a task label for the
demonstration videos.

The encoder parameters are updated using a metric learning loss and maximization of
the entropy of the discriminator output. In order to capture the temporal task information,
we use a modified version of the lifted structure loss [197]. Given two view-pairs (v1, v2),
synchronized videos from different perspectives, we attract frames that represent the same
temporal task state and repulse temporal neighbors, given a constant margin λ, i.e.

(7.1)Llifted asn =
M∑
i=1

(
log

∑
yk=yi

(
eλ−Sik + 1Sik>ξ · Sik

)
+ log

∑
yk 6=yi

eSik

)
,

for M frames (x1, x2...xM ) and Sij = E(xi) · E(xj), as a dense squared pairwise similarity
distance matrix of the batch and ξ a similarity threshold. Additionally, we introduce a
constraint that bounds the distance between two positive view-pairs. This constraint is
tailored to account for high variance in the learned distance metric. By penalizing large
distances of positive view-pairs, we aim at smoother transitions between similar states in a
RL setting.

The discriminator network minimizes the entropy given an unlabeled skill embedding x
to be certain about which task C the skill originated from. Note that the discriminator D is
utilized only during training. Without any additional label information about the C classes,
we cannot directly specify which class probability p(yc = c | xi, D) should be maximized
for any given skill x. We make use of information theoretic measures on the predicted
class distribution to group the unlabeled skills into well separated categories in the skill
embedding space without explicitly modeling p(x). Specifically, if we want the discriminator
to be certain for the class distribution p(yc = c | xi, D), this corresponds to minimizing the
Shannon information entropy H[p(yc | x, D)], as any draw from this distribution should
most of the times result in the same class. On the other hand, if we want the encoder to learn
generalized skill representations to meet requirement iv), it should be uncertain of how to
classify the unlabeled skills. Thus, the encoder tries to maximize the entropy H[p(yc | x, D)],
which at the optimum will result in a uniform conditional distribution over task classes.
Concretely, we define the empirical estimate of the conditional entropy over embedded skill
examples X as:

Ex∼X

[
H[p(yc | x, D)]

]
=

1

N

N∑
i=1

H
[
p(yc | xi, D)

]
=

1

N

N∑
i=1

−
C∑
c=1

p(yc = c | xi, D) log p(yc = c | xi, D).

(7.2)

With an additional regularizer we enhance the equal usage of all task classes, corresponding
to maximizing a uniform marginal distribution:

Hx[p(yc | D)] = H

[
1

M

M∑
i=1

p(yc | xi, D)

]
, (7.3)
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where M is set to the number of independently drawn samples [193].
In order to disentangle the learned metric and the mapping to task IDs, we add a sampled

latent variable z = µ + σ � E and E ∼ N(0, 1), where D estimates µ, σ of a Gaussian
distribution. We use the re-parameterization trick to back-propagate through the random
node [58]. With the Kullback-Leibler divergence regularization for z we force D to find
similar properties describing the skills. Without this objective, similar skills could end up
represented far away from each other in the skill embedding space.

This leads to the following objectives for the encoder E and discriminator D:

LKL = DKL[p(z | x)||p(z)],

LD = −Hx

[
p(yc | D)

]
+ Ex∼X

[
H[p(yc | x, D)]

]
+ βLKL and

LE = Hx

[
p(yc | D)

]
+ Ex∼X

[
H[p(yc | x, D)]

]
− αLlifted asn.

(7.4)

We therefore optimize the discriminator and the encoder according to:

min
D
LD (7.5)

and
max
E
LE. (7.6)

B Implementation Details

The encoder network is inspired by Time-Contrastive Networks (TCN) [176]. We use an
Inception network as a feature extractor [198], which is initialized with ImageNet pre-trained
weights. The feature extractor is followed by two convolutional layers and a spatial softmax
layer for dimension reduction. Finally, after a Fully Connected (FC) layer, the model outputs
the embedding vector for a frame. For all experiments, we use α = 0.1, β = 1.0, λ = 1.0
and an embedding size of 32. The discriminator consists of two FC layers to estimate µ and
σ of a Gaussian distribution, followed by two layers to output the task ID. We use dropout
for regularization.

We train the encoder and discriminator networks with the Adam optimizer and a learning
rate of 0.001. A training batch contains 32 frames from n = 4 different view pairs. We
load real-world data from video files and sample the simulated data from uncompressed
image files. Training directly on images, ensures that our model is not learning any bias
introduced by video compression techniques. For frames from the training set, we randomly
change brightness, contrast and saturation and randomly mirror frames horizontally. For
real-world data, additional training frames are cropped randomly. We train on images of the
size 299× 299× 3 pixels. For simulated data the discriminator network is only updated with
successful task demonstrations, since only they contain the skills we want to transfer. After
data augmentation, the frames of a batch are normalized on each RGB channel using the µ
and σ of the ImageNet dataset.
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7.4 Experimental Results

We evaluate the performance of our ASN model on two data sets, see Figure 7.3 and Figure
7.4.

pre-trained

pre-trained

pre-trainedpre-trained

Figure 7.3: Visualization of the real-world multi-task datasets used in this work.

The first data set, visualized in Figure 7.4, consists of three simulated robot tasks: stacking
(A), color pushing (B) and color stacking (C). The data set contains 300 multi-view demon-
stration videos per task. The tasks are simulated with PyBullet. Of these 300 demonstrations,
150 represent unsuccessful executions of the different tasks. We found it helpful to add
unsuccessful demonstrations in the training of the embedding to enable training RL agents
on it. Without fake examples, the distances in the embedding space for states not seen
during training might be noisy. In the initial phase of training, however, the policy to be
learned mostly visits areas of the state-action space which are not covered by the (successful)
demonstration. Hence, it is important to have unsuccessful examples in the training set. The
test set contains the manipulation of blocks. Within the validation set, the blocks are replaced
by cylinders of different colors.

The second data set, visualized in Figure 7.3, includes real-world human executions of the
simulated robot tasks (A, B and C), as well as demonstrations for a task where one has to first
separate blocks in order to stack them (D). Each task contains 60 multi-view demonstration
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Figure 7.4: Visualization of the simulated multi-task datasets used in this work.

videos, corresponding to 24 minutes of interaction. The test set contains blocks of unseen
sizes and textures, as well as unknown backgrounds, in order to evaluate the generality of our
approach.

A Quantitative Evaluation
We measure the performance of our models based on the alignment loss, following Sermanet
et al. [176], to determine how well two views of a video are aligned in time. We take
advantage of the fact that frames in both videos are synchronized with each other to get
alignment labels for free. We try to sequentially align two view pairs by finding the nearest
neighbor in the embedding space normalizing the distances by the demonstration length.
After embedding the two videos in our skill embedding space, we search for each frame tij
in the first video i the nearest neighbour in the second view and retrieve its time index tnnj .
Thus, for video i the aligment loss is defined by:

aligni =

∑F
j=1|tij − tnnj |

F
, (7.7)

for a video of length F . As Sermanet et al. [176] have shown, the alignment loss reflects
the quality of the reward signal within a RL setup. Instead of evaluating the alignment loss
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Figure 7.5: t-SNE of an unseen color stacking video for models trained on block stacking and color
pushing. Our ASN model maintains the temporal coherence of the task better than the
baselines. The colorbar indicates the temporal task progress.

on the same task as the embedding was trained on, we measure how well view pairs of
novel, unseen tasks are aligned. This form of zero-shot evaluation is very challenging, as
it requires the combination of previously seen skills. Adversarial Skill Networks yield the
best performance for transfer in the simulated robot setting, which can be seen in Table 7.1.
Please note the lower bound (0.081) of alignment loss for single-task TCN. In contrast to
TCN trained on multiple tasks, our model gets very close (0.099) despite not being trained on
the task. Furthermore, our approach outperforms TCN in both the real robot multi-task setup,
as well as in the transfer task, which is depicted in Table 7.2. We also compare against the
different metric learning losses and show that the lifted loss in combination with the bound
for positive view-pairs outperforms other methods.

Model Task Combination, Train→Test
C→C A,B,C→A,B,C A,B→C

Inception-ImageNet [198] 0.29 0.31 0.29
TCN - lifted [176] 0.081 0.058 0.112
ASN - 0.056 0.099

Table 7.1: Test alignment loss for the simulated robot multi-task dataset, which includes fake ex-
amples, Tasks: A: 2 block stack, B: 3 block color push sort, C: 3 block color stack
sort.

A visualization of the learned embedding space is depicted in Figure 7.5. ASN can
represent the temporal relations of an unseen task better than TCN or multi-frame TCN,
leading to more meaningful distance measures in embedding space. Our proposed multi-task
setup is able to reflect skills needed to solve the unseen task and thus can generalize better,
while maintaining the temporal coherence of the unseen task.

B Ablation studies
To analyze the influence of our different building blocks on the learned embedding, we
conducted several experiments, see Table 7.3. Our results indicate that it is of benefit to
describe a skill with a growing stride, so as to cover macro-actions describing events longer
in time. In order to keep the embeddings of these skill frames of higher stride aligned, the
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Model Task Combination, Train→Test
A,B,C→C A,B→C A,B,D→C

TCN - triplet [176] 0.186 0.21 0.218
TCN - lifted [176] 0.171 0.20 0.187
TCN - npair [176] 0.221 0.209 0.221
mfTCN - lifted [191] 0.174 0.23 0.22
ASN - normal lifted 0.168 0.183 0.181
ASN 0.150 0.180 0.165

Table 7.2: Test alignment loss real-world block tasks, Tasks: A: 2 block stack, B: 3 block color push
sort, C: 3 block color stack sort, D: 4 block separate to stack.

KL-divergence is shown to be an effective regularization technique, yielding the lowest
alignment loss. Furthermore, it seems to be enough to describe a skill by only the start and
end frames. A single frame seems to provide too little information whereas using four frames
proves to make the state space too high dimensional.

Regularization #Domain frames Stride Real block tasks
A,B,D→C

KL 1 - 0.187
KL 4 5 0.185
KL 2 5 0.168
KL 2 15 0.165
FC 2 15 0.1987
KL w/o encoder entropy 2 15 0.186
KL w/o entropy 2 15 0.177

Table 7.3: Ablation studies: transfer loss for different regularization techniques and skill definitions.

C Learning Control Policies

Lastly, we integrate the learned metric within a RL-agent to imitate an unseen task given
a single video demonstration. Concretely, for learning a continuous control policy on the
color stacking (C) task we train the embedding on the tasks of two block stacking (A) and
color pushing (B). Thus, successfully imitating the previously never seen color stacking task
requires the interpolation of previously seen skills. Additionally, we also learn a continuous
control policy for an unseen color pushing task, given an embedding trained on stacking
and color stacking. To train the agents, we use the distance measure in embedding space of
the agent view vta and the demonstration frame vtd for timestep t as the reward signal for the
on-policy optimization algorithm PPO [65]:

r(t) =

{
10− d

(
E(vta), E(vtd)

)
if d

(
E(vta), E(vtd)

)
< ξ

0 otherwise,
(7.8)
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Figure 7.6: Reward plot for a novel color stacking task C for models trained on tasks A, B and D.
The reward is based on the distance to a single goal frame from a different perspective.

where d is the euclidean distance and ξ a constant threshold. The agent state consists of
the embedding E(vta) and the joint angle of the robot. We train the policy with Adam and
a learning rate of 10−5 and a batch size of 32. To alleviate the problem of exploration
and to focus on the quality of reward signal, we take random samples along the given
demonstration as initial states and reset the environment if the end effector vastly differs from
the demonstration, following Peng et al. [199]. The results are depicted in Figure 7.7.
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Figure 7.7: Results for training a continuous control policy with PPO on the unseen Color Pushing
and Color Stacking tasks with the learned reward function. The plot shows mean and
standard deviation over five training runs.

Our method succeeds in solving the tasks, whereas the baseline TCN approach converges
to a local minima. This demonstrates the effectiveness of our approach in reusing skills for a
novel task given a single video demonstration. Please note that training RL agents on tasks
which have never been shown during the training of the embedding is very challenging, as it
requires the discovery and reuse of task-independent skills.

Additionally, we evaluate the reward signal on an unseen color stacking task (C) for the
real-world dataset. We plot a reward signal, which is based on the distance measurement
of the task state for each timestep and a single goal frame from a different perspective, see
Figure 7.6. The embedding of all models are trained on tasks A, B and D. To compare the
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different models we normalize the negative distance outputs for timestep between zero and
one. The baseline model already give a similar reward for many initials states and goal states,
despite the states being visually different. Our model shows a continuous and incremental
reward as the task progresses and saturates as it is completed.

7.5 Conclusion
We proposed Adversarial Skill Networks, a model to leverage information from multiple
label-free demonstrations in order to yield a meaningful embedding for unseen tasks. We
showed that our approach is able to reuse learned skills for compositions of tasks and achieves
state-of-the-art performance. We demonstrate that the learned embedding enables training of
continuous control policies to solve novel tasks that require the interpolation of previously
seen skills. Our results show that our model can find a good embedding for vastly different
task domains. This is a first step towards discovery, representation and reuse of skills in the
absence of a reward function.

Going forward, a natural extension of this work is the application of the learned distance
metric in a real-world reinforcement learning setting and in environments that require a
higher degree of interpolation for successful completion. Another promising direction for
future work is the evaluation of the proposed approach in a sim-to-real setup [200].





Chapter 8

Latent Plans for Task-Agnostic Offline
Reinforcement Learning
The content of this chapter has been published in [201]:

E. Rosete-Beas, O. Mees, G. Kalweit, J. Boedecker and W. Burgard
Latent Plans for Task-Agnostic Offline Reinforcement Learning
6th Conference on Robot Learning (CoRL), 2022

Erick Rosete-Beas and I share the main authorship. The main idea to use offline reinforce-
ment learning with latent skills was developed in collaboration with Gabriel Kalweit. Erick
Rosete-Beas implemented the initial experimental framework and we jointly collected the
dataset. I contributed the implementations for learning the low-level level policies with latent
skills, the PLayLMP baseline, the framework to collect data via teleoperation and perform
experiments in both simulation and in the real world. Erick additionally helped design and
implemented the high-level policy, baseline implementations and performed the experiments
in the CALVIN environment. All the real world experiments reported in this thesis were
entirely carried out by the author of this thesis. Gabriel additionally provided consultation
on the design of the experiments. All authors contributed to the paper writing. Joschka
Boedecker and Wolfram Burgard provided general consultation.
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Abstract

Everyday tasks of long-horizon and comprising a sequence of multiple im-
plicit subtasks still impose a major challenge in offline robot control. While
a number of prior methods aimed to address this setting with variants of im-
itation and offline reinforcement learning, the learned behavior is typically
narrow and often struggles to reach configurable long-horizon goals. As both
paradigms have complementary strengths and weaknesses, we propose a novel
hierarchical approach that combines the strengths of both methods to learn
task-agnostic long-horizon policies from high-dimensional camera observa-
tions. Concretely, we combine a low-level policy that learns latent skills via
imitation learning and a high-level policy learned from offline reinforcement
learning for skill-chaining the latent behavior priors. Experiments in various
simulated and real robot control tasks show that our formulation enables pro-
ducing previously unseen combinations of skills to reach temporally extended
goals by “stitching” together latent skills through goal chaining with an order-
of-magnitude improvement in performance upon state-of-the-art baselines.
We even learn one multi-task visuomotor policy for 25 distinct manipulation
tasks in the real world which outperforms both imitation learning and of-
fline reinforcement learning techniques. Code and trained models available at
http://tacorl.cs.uni-freiburg.de.

8.1 Introduction

In recent years, reinforcement learning (RL) has achieved tremendous successes in a variety
of domains [175, 202, 203, 204]. Especially offline RL [70, 205, 206, 207, 208, 209] with its
appealing property to estimate (close-to) optimal policies from previously collected and fixed
datasets yielded a strong current in robot control research. However, despite the exceptional
progress in this fast-moving field, current offline RL methods are often evaluated on highly
specific and artificial benchmarks lacking the complexity and long-term dependencies of
everyday tasks, which inherently entail a sequential relationship of multiple implicit subtasks.
It lies in the nature of such composite tasks that this translates to estimating optimal actions
for a significant amount of consecutive decision steps, making learning of such optimal
policies very difficult. In fact, Kidambi et al. [210] discovered a quadratic relationship
between the horizon of a task and the worst-case accumulated error of any offline RL method.
This poses a major challenge especially in case of raw and unstructured sensory inputs, as
robots must be capable of learning a large repertoire of skills and combine them to perform
everyday tasks acting on long time scales.

One way to alleviate the problem of long horizons is the hierarchical subdivision of a
task into high- and low-level policies, where a high-level policy is chaining executions of
multiple low-level policies over primitives. Most commonly, such hierarchical structures
are rather rigid and act upon a fixed number of low-level policies, thus lacking the flexibility
and extendability required for most real-life settings. In addition, the a priori definition of
useful low-level skills or their discovery from data is a highly non-trivial task. Related prior
work attempted to solve this via a goal-conditioned reformulation [211] of Conservative
Q-learning [205]. However, it was shown that on short and distinct robot manipulation

http://tacorl.cs.uni-freiburg.de
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Figure 8.1: TACO-RL learns a single 7-DoF hierarchical visuomotor policy from offline data. It
can solve long-horizon robot manipulation tasks by using a high-level policy that divides
a task into a sequence of latent behaviors that are executed by a low-level policy that
interacts with the environment. It reduces the effective horizon of the high-level policy
and learns to chain skills through dynamic programming.

tasks, self-supervised learning on unlabeled play can significantly surpass the performance
of individual expert-trained behavioral-cloning policies [18] – which, on the flip-side, can
be on par with computationally expensive offline RL methods in such settings [212, 213].
In this work, we thus propose to leverage play data, i.e., non-goal-directed collections of
trajectories grounded in human action execution, to estimate short-horizon expert policies
via imitation learning chained via a coarse-grained high-level policy optimized by offline RL
to account for optimal solutions over long horizons. By stitching latent plans extracted from
unstructured data, our formulation offers the simplicity of imitation from collected play data
while offering long-term optimality for sequential multi-tier tasks. Specifically, we use the
collected data to learn our hierarchical policy as acquiring data with good state coverage and
visual variety is important for successful applications of offline RL. Play data assumes access
to an unsegmented teleoperated dataset of semantically meaningful behaviors provided by
users, without a set of predefined tasks in mind. Unlike previous hierarchical approaches,
that learn long-horizon tasks by performing a discrete set of tasks with a low-level policy, we
are motivated by the idea of an agent capable of task-agnostic control. In this setting, we are
endowing the agent with the ability to reach any possible target state from a given initial state.
Specifically, we learn a low-level policy that decodes motor control actions from latent skills
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learned through imitation learning in a self-supervised manner. This low-level policy can
perform various behaviors when present in a state by conditioning the policy with a latent plan.
Consequently, we also learn a high-level policy that will order these behaviors to achieve
long-horizon tasks. This high-level policy is modeled as a goal-conditioned policy that
outputs latent plans to be decoded by the low-level policy. The skill-chaining of the behavior
priors is learned through offline RL by augmenting plan transitions with hindsight relabeling.
This hierarchical approach constitutes a practical solution by decomposing a whole task
into smaller chunks of sub-tasks. The high-level policy can learn long-horizon tasks as the
effective episode horizon is reduced and it does not need to capture in detail the physics of
the world, simplifying the underlying dynamics of the RL agent. The model formulation
allows to design a general-purpose training objective by considering every possible state
reached in the data as a potential task. Additionally, our approach is effective for learning
policies from large and diverse datasets which do not necessarily contain optimal behaviors.

The primary contribution of this work is an hierarchical self-supervised approach to
learning task-agnostic control policies from high-dimensional observations by combining
model-free RL methods with imitation learning. To our knowledge, our method is the first
learning system explicitly aiming to solve long-horizon multi-tier tasks from purely offline
and unstructured play data without access to a model. We integrate our components in a
unified framework, called Task-AgnostiC Offline Reinforcement Learning (TACO-RL). See
Figure (8.1) for an overview. We show that our model obtains the highest success rate when
tested against other state-of-the-art baselines on various long-horizon tasks of the challenging
CALVIN environment [214] and that it is able to learn a single visuomotor 7-DoF policy
that can perform a wide range of long-horizon manipulation tasks in both a simulated and a
real-world tabletop environment. At test time, the real world system is capable of solving a
challenging suit of 25 manipulation tasks at 10 Hz that involve more than 300 decisions per
task.

8.2 Related Work
Offline Reinforcement Learning. Offline RL [70], i.e., RL from fixed and possibly mixed
transition sets, constitutes a recent trend in RL and robot control research. Generally, at least
in model-free settings, these techniques put a regularization on out-of-distribution actions,
so as to enforce the learned policy to remain in the coverage of the dataset, since offline RL
methods tend to suffer strongly from the problem of value overestimation. The simplest,
yet competitive, attempt to solve this issue is a behavioral cloning addendum to a classical
actor-critic framework [207]. Conservative Q-learning [205], on the other hand, imposes a
penalty for actions not covered in the dataset making out-of-distribution actions non-optimal.
Fisher-BRC parameterizes the critic as the log-behavior-policy [215] extended by a weighted
offset term. Implicit Q-learning [209] modifies the Bellman optimality update towards a
SARSA-like update, maximizing only over actions in the data-set. However, the rationale
behind most current offline RL methods remains rather similar. While we make use of
Conservative Q-learning in our experiments – which recently emerged as one of the most
widely used benchmarks in offline RL – we want to point out that any other sophisticated
improvement upon the classical offline RL objective is orthogonal to our work and could in
principle be incorporated in our framework.

Hierarchical policy learning. Hierarchical policy learning involves learning a hierarchy
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of policies where a low-level policy performs motor control actions and a high-level policy
directs the low-level policy to solve a task. While some works [216, 217, 218] learn a
discrete set of lower-level policies, each behaving as a primitive skill, this is not appropriate
for a general-purpose robot that accomplishes a continuum of behaviors. A large body of
hierarchical policy optimization approaches following a similar rationale to our method use
planning in latent state spaces [219, 220, 221, 222, 223, 224, 225, 226] and hence require a
model covering the complex dynamics of multistep skills, which is an active field of research
on its own. We alleviate the necessity of a model by estimating the high-level policy via
model-free RL as opposed to model-based planning and thus keep the optimization over the
continuous set of skills completely at training time. In contrast to a plethora of prior work
[163, 227, 228, 229, 230, 231, 232], our approach acts in the offline paradigm as it yields a lot
of appealing properties for learning robot control policies. En route to a skill-chaining policy
able to solve long-horizon problems, our approach exploits unstructured play data to estimate
the latent skill embeddings as opposed to other work that relies on expert data or predefined
skills [233, 234, 235]. Whilst in principle also other latent skill representations could be
considered [133, 236, 237, 238, 239], we build upon Play-LMP [18] as it has already shown
great performance and robustness in this very setting. Our design choices are directed towards
a general-purpose visuomotor agent that has a high zero-shot generalization even for complex
long-horizon tasks, a setting more complex than in previous offline methods [18, 240]. In
summary, our approach is aiming to solve temporally extended tasks without the necessity of
a model or planning from entirely offline, unstructured, unlabeled and suboptimal data. This
unique combination of properties thus adds a scalable and extendable optimization method to
the toolbox of robot learning.

8.3 Mathematical Foundation
In this section, we introduce notation and define the problem setting. We model the interac-
tion between and environment and a goal-conditioned policy as a goal-augmented Markov
decision process M = (S,A, p, r,G, p0, γ) where S represents the state-observation space,
A represents the action space, p(s′|s, a) is a state-transition probability function, r(s, a, s′)
represents the reward function, G ⊆ S specifies the goal space, p0(s) is an initial state
distribution, and γ ∈ (0, 1) represents the discount factor. We note that the agent does
not have access to the true state of the environment, but to visual observations. We learn
in an offline manner by assuming to use a large, unlabeled, and undirected fixed dataset
D = {(s1, a1), (s2, a2), ..., (sT , aT )}. We then relabel this long temporal state-action stream
to produce a dataset of trajectories D = {(τi = (st, at)

k
t=0}Ni=1 that can be used to learn both

the low-level and high-level policy without access to a model.

8.4 Offline goal-conditioned RL with TACO-RL
In this section, we elaborate on TACO-RL. Our proposed method considers the bottom-up
approach; we start by training a low-level policy and we use it to provide a higher-level
action space for a high-level policy that, due to this task division, is ideally facing an easier
learning problem. First, we describe our unsupervised objective, which learns a continuous
space of latent-conditioned behaviors πω(a|sc, z) from D, where sc represents the current
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Figure 8.2: TACO-RL Overview. TACO-RL is a self-supervised general-purpose model learned
from an offline dataset of robot interactions, it generalizes to a wide variety of long-
horizon manipulation tasks. (1) Low-level policy: Recognizes and organizes a repertoire
of behaviors from unlabeled, undirected dataset in a latent plan space. (2) High-level
policy: Hindsight relabeling of sampled windows of experience into reward-augmented
latent plan transitions. Learned with offline RL, this allows the high-level policy to stitch
plans together to achieve complex long-horizon tasks. (3) Inference: the hierarchical
model is used to perform goal-conditioned rollouts in robot manipulation tasks.

state. Afterward, we detail how to learn the high-level policy with offline RL by hindsight
relabeling sub-trajectories with the aid of the previously learned low-level policy. This
reduces our effective task horizon, making it easier to learn long-horizon tasks. Additionally,
the low-level policy will predict actions close to the offline data distribution, bringing stability
to the whole learning pipeline. See Figure (8.2) for an overview.

A Learning the low-level policy
We would like to extract a continuous space of primitives that propose meaningful behaviors
for an agent to take within a given state. We learn a low-level policy πω(a|sc, z) from
the offline, unstructured dataset D that is able to decode a latent plan z to its respective
motor-control actions a. After training, we can use the latent plans as an action space for the
high-level policy to learn reaching temporally extended goals by “stitching” together latent
skills through goal chaining.

In our fixed static dataset D, it is expected to find different valid behaviors achieving the
same outcome in a scene, e.g. closing a drawer quickly or slowly. We address this inherent
multi-modality by auto-encoding contextual data through a latent plan space with a sequence-
to-sequence conditional variational auto-encoder (seq2seq CVAE) [18, 241]. Conditioning
the action decoder on the latent plan allows the policy to use the entirety of its capacity for
learning uni-modal behavior. Consequently, we propose the following objective for learning
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the low-level policy πω(a|sc, z):

min
ω,φ

Eτ∼D,z∼qφ(z|τ)

− |τ |∑
t=0

log(πω(at|st, z))

 , (8.1)

where E indicates empirical expectation and qφ(z|τ) may be interpreted as the latent plan
encoder. As an additional component of the algorithm, we enforce consistency in the
latent variables predicted by encoder qφ(z|τ) and prior πδ(z|st, sg). Since our goal is to
obtain a latent plan z that captures a temporal sequence of actions for a given trajectory
τ = (s0, a0, ..., sk, ak), we utilize a regularization that enforces the distribution qφ(z|τ) to be
close to just predicting the primitive or the latent variable z given the initial and last state
of this sub-trajectory, i.e., πδ(z|sc, sg). The Evidence Lower Bound (ELBO) [242] for the
CVAE can be written as:

log p(x|s) ≥ −KL (q(z|x, s) ‖ p(z|s)) + Eq(z|x,s) [log p(x|z, s)] . (8.2)

The conditioning of the prior πδ(z|sc, sg) on the initial and final state regularizes the
distribution qφ(z|τ) to not overfit to the complete sub-trajectory τ . In practice, rather
than solving the constrained optimization directly, we implement the KL-constraint as a
penalty, weighted by an appropriately chosen coefficient β. Thus, one may interpret our
objective as using a sequential β-VAE [243]. Finally, we use balancing terms within the KL
loss [159, 244], see Appendix D.

B Offline RL with Hindsight relabeling
After distilling learned behaviors from D in terms of an encoder qφ(z|τ), a latent behavior
policy πω(a|sc, z), and a prior πδ(z|sc, sg), TACO-RL then applies these behaviors to learn a
general-purpose agent with offline RL. We formulate a goal augmented MDP by augmenting
environment trajectories with a reward function. Thereby, we sample a trajectory from the
dataset τ =∼ D. Then, we use this trajectory to represent a high-level policy transition
by using the pre-trained fixed encoder. For this, we sample a latent plan from the policy
encoder zt ∼ qφ(z|τ) and we generate an interaction transition using the sampled latent plan
(st, zt, st+k−1). To augment this transition with a reward, we use hindsight relabeling with a
sparse reward as follows r(st, zt, st+k−1, sg) = 1st+k−1=sg . In this formulation, we assume
that during inference we can decode the latent plan using the low-level policy and we will
reach the final trajectory state st+k−1. Note that st, st+k−1, and sg all represent images, and
the reward is only given when the high-level transition reached state and goal state exactly
match. During training, goals are sampled according to a distribution sg ∈ S, which we
will discuss later. Our Q-learning approach corresponds to the following Bellman error
optimization objective:

min
λ

Eτ∼D,z∼qφ(z|τ),sg∼S

[
Qλ(st, zt, g)− Q̂(st, zt, g)

]2

where: Q̂(st, zt, g) =

(
1st+k−1=sg + γ1st+k−1 6=sg max

zt+k−1

Qλ(st+k−1, zt+k−1, sg)

) (8.3)

We can then learn a high-level policy πθ(z|sc, sg) with an off-the-shelf offline actor-critic
method. In TACO-RL, we use Conservative Q-Learning (CQL) [205] where we initialize
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Samples from goal distribution

Current state

Positive
examples:

r = 1 
r = 0 

Negative
examples:
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Figure 8.3: We relabel sampled trajectories into reward augmented transitions by sampling goal states
that can be reached after executing a sequence of behaviors. With green border, we have
the frame found at the end of the sampled trajectory. As this state will be reached after
executing the latent behavior, the reward for this transition is 1. With blue border, we
find future states that occur after the sampled sequence. These goals are necessary for
chaining behaviors. The reward for these transitions is 0. Finally, with red border, we
present images with similar proprioceptive information to the final state in the sampled
trajectory, but a different scene arrangement. The reward for these transitions is 0.

the actor weights with the previously learned prior policy πδ(z|sc, sg), as the prior policy is
already a good starting point that is able to solve short-horizon tasks.

Selecting goals for relabeling transitions. Our high-level policy is learned via offline
RL as we want to learn through dynamic programming how to chain skills to reach long-
horizon goals. For this we need to create a formulation that sample goal states sg that can be
reached after executing a sequence of plans. Naively choosing sg, say by sampling random
states uniformly from the dataset, will provide an extremely sparse reward signal, as two
random state images will rarely be identical. The sparse reward problem can be mitigated by
selectively sampling as goals the states that were reached in future time steps along the same
trajectory as st [245]. As we want to sample states that are reached after executing a plan,
we assume an arbitrary window size k. Concretely, to sample goals for a transition at time
step t, we sample a discrete-time offset ∆ ∼ Geom(p), with p ∈ [0, 1], and use the state at
time t+ ∆ ∗ (k − 1) as the goal. Note that if we assume consistent transitions from latent
plan decoding, then if ∆ = 1, the reward for this transition is 1, as the low-level policy will
reach the specified state after executing the plan, avoiding the sparsity issue.

However, relabeling all transitions in this manner introduces a problem: because the
distance function is only trained on goals that have been achieved, it will systematically
underestimate the distance to unreachable goals. We require a method for selecting “negative”
goals that are distant, but still relevant. Randomly selecting states will produce pairs of
images that are likely to be distant, but not necessarily relevant (e.g., pairs in which all objects
and the robot have been moved). We want a goal sampling procedure that generates less
obvious examples of distant states that are more informative. Similar to Tian et al. [246],
we sample negative goal states sg which have a similar proprioceptive state. This constraint
enables the Q-function to learn to focus on the scene’s under-actuated parts (e.g., objects),
which are likely to have distinct positions. As a result, these timesteps act as hard negatives,
encouraging the model to pay closer attention to the scene. This sampling approach is
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computationally inexpensive, as we can query a precomputed k-nearest neighbors structure.

8.5 Experimental Results
We evaluate TACO-RL for learning a general-purpose robot in both simulated and real-world
environments. The goals of these experiments are to investigate: (i) whether our hierarchical
model is effective in performing complex long-horizon skills, (ii) how TACO-RL compares
with alternative goal-conditioned policies, (iii) if our model scales to be used in real-world
robotics.

A Experimental Setup
We evaluate our approach in both simulated and real-world environments. We first investigate
learning 7-DoF visuomotor robot skills in the CALVIN environment [214]. We train on
the environment D of CALVIN, which contains 6 hours of unstructured play data collected
via teleoperating a Franka Emika Panda robot arm to manipulate objects in a 3D tabletop
environment.

Baselines Methods. As we aim to combine the complementary strengths of both paradigms,
imitation and offline RL, we compare TACO-RL to representatives of the two extrema of
the spectrum: the offline RL method Conservative Q-learning [205] extended by hindsight
relabeling (CQL+HER) and the imitation learning method Play-supervised Latent Motor
Plan (LMP) [18]. CQL+HER is trained on the derived reward as explained in Section B and
introduces a penalty for out-of-distribution actions to limit the respective values of unseen
actions. To make a fair comparison, this baseline is also trained with the negative mining
trick. LMP, on the other hand, trains a goal conditioned imitation agent and resembles the
low-level policy in TACO-RL, however, without any long-term optimality guarantees which
TACO-RL accounts for by offline RL of a higher-level plan-selective policy. Additionally,
we also compare against Relay Imitation Learning (RIL) [230]. This algorithm is the most
related hierarchical algorithm, as it also learns from offline play data. RIL represents the
family of methods that learns to predict latent subgoals for a low level policy.

B Simulation Results

We start by evaluating our approach in the CALVIN environment [214]. This is a challenging
environment as the scene changes through time and we act by using only RGB images of a
static camera as input. As there is no predefined reward signal in this dataset, we relabel the
transitions analogously as we do with TACO-RL. We investigate if our method is capable
of performing complex long-horizon tasks in a robot control setting. We first attempt to
solve 500 unique chains of 5 image-based goals queried in a row. For each subtask in a row
the policy is conditioned on the current sub-goal image instruction and transitions to the
next sub-goal only if the agent successfully completes the current task or if 180 timesteps
have passed without reaching a success. We call this evaluation of performing multiple
tasks on a row, long-horizon multitask with visual observations LH-MTVis. This setting is
very challenging as it requires agents to be able to transition between different subgoals.
Additionally, we ablate our model by increasing the negative goals ratio to 50% and removing
the negative mining.
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Method LH-MTVis

No. Instructions in a Row (500 chains)
1 2 3 4 5 Avg. Len.

Ours 95.4%±2 82%±7.3 57.8%±15 32.7%±10 6.9%±3.1 2.7±0.3
No neg. goals 94.9%±4.5 69.7%±14.3 31.1%±15.7 5.5%±4.5 0.9%±0.8 2.02±0.4

50% neg. goals 71.8%±2.2 27.1%±1.8 6.2%±2.6 0.2%±0.3 0%±0 1.05±0.1

RIL [230] 70.3%±3.5 32.9%±7.2 10.5±4.01 2.4±0.7 0.1±0.1 1.17±0.15
LMP [18] 91.4%±2.3 63.3%±3.5 23.1%±2.2 3.6%±0.9 0.2%±0.08 1.8±0.08

CQL+HER 65.5%±12.7 25.3%±11 5.6%±3.2 0.6%±0.2 0% 0.9±0.2

Table 8.1: Success rates of models running 500 chains per three different random seeds, using
intermediate sub-goal images.

In Table 8.1. we can see that TACO-RL is able to outperform all baselines. This experiment
demonstrates that our agent is able to transition between different sub-goal images more
naturally, enabling chaining more tasks in a row. Through our ablations, we observe that
the performance of our model drops significantly when increasing the negative goal ratio to
50%. This result is to be expected as reducing the number of positive examples leads to a
less informative reward indicating which are the useful behaviors to reach a transition. If
we remove the negative goals from the goal distribution, the agent is still able to perform
more sequential tasks than the baselines, but it underestimates the distance to the goals. This
results in a decreased performance compared to our full approach.

Method LH-MTVis

No. Instructions in a Row (1000 chains)
1 2 Avg. Len.

Ours 67.9%±3.9 27%±2.5 0.94±0.06
No neg. goals 39.5%±2.7 4.2%±1.6 0.44±0.04

50% neg. goals 45.4%±5.2 6.3%±0.6 0.52±0.05

RIL [230] 66.2%±6.5 13.3%±2.3 0.79±0.09
LMP [18] 34.3%±3.2 2.7%±0.1 0.3±0.03

CQL+HER 35.2%±3.4 2.4%±0.8 0.37±0.04

Table 8.2: Success rates of models running 1000 chains per three different random seeds conditioned
only on the last goal image.

We then evaluate the capacity of our model to perform 1000 rollouts of two sequential tasks
using a single goal image. For this, we allow the agent to perform actions until 300 timesteps
has passed. We record the success rate of all models in Table 8.2. TACO-RL successfully
performs long-horizon tasks that require reasoning over sequential behaviors with an final
success rate of 27% which corresponds to an order of magnitude improvement upon the
LMP and CQL+HER baselines. RIL also exploits a hierarchical structure which allows it to
reason over longer horizons than the other baselines, but TACO-RL still obtains more than
two times its accuracy when performing both sequential tasks using a single image, proving
its effectiveness in chaining skills through dynamic programming.

We further test the capacity of the models to perform a single task when the goal image
does not contain the robot performing the task, but the end-effector appears in another
position after the task was performed (cf. Table 8.3). We run 50 rollouts for each task.
These harder tasks require reasoning about changes in the scene and additionally evaluates
generalization, as each rollout uses a different goal image not seen during training. With
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our ablations, we can see that including the negative goals in our framework contributes
greatly to obtain a good performance in this scenario alleviating to not only imitate the final
end-effector position, but to reach the entire scene configuration. We noticed that TACO-RL
was able to outperform the baselines, which can be explained through the skill-chaining
abilities of our model and the negative goal mining used to train the critic network of the
high-level policy. On the other hand, CQL+HER is not able to achieve the desired goal image
and LMP has a strong bias towards the end-effector position ignoring the changes in the
environment. RIL can imagine intermediate latent sub-goals required to achieve the task,
which reduces the bias towards the end-effector position, but it stills obtain a lower accuracy
rate than our method.

C Real-Robot Experiments

For the real-world experiments, we investigate learning a single policy capable of performing
multiple goal conditioned tasks. Examples of the tasks are shown in Figure (8.4). To generate
the training dataset we collected nine hours of play data recorded via teleoperating a Franka
Emika Panda robot arm with a VR controller. To avoid self-occlusions in the scene, these
models also receive RGB images of a gripper camera as an additional input. After training
the models with the offline dataset, we performed 20 rollouts for each task using multiple
goal images and start positions. TACO-RL was able to outperform the baselines consistently,
especially when evaluated from a start position far away from the goal image or that required
extended reasoning. We recorded the success rate of each model in Table 8.4.

We also tested our approach to perform sequential tasks with the real robot to verify that
our approach can be scaled for long-horizon tasks. For this experiment we use a goal image
for each task that the robot executes. See the supplementary video for qualitative results that
showcase the diversity of tasks and the long-horizon capabilities of the different methods.
Our agent trained completely from unlabeled play data is able to successfully perform most
of these sequential tasks, by inferring how to transition between tasks and reach the state
depicted by the goal image. More details in Appendix F.

Finally, we evaluate TACO-RL performing complex tasks with a single goal image, such
as lifting the block and moving it to a desired position, and stacking a block on top of another.
These tasks requires the agent to reason in a long-horizon manner, as if the robot imitates
only the end-effector position, the objects would not be arranged correctly in the scene. By
stitching together the learned latent behaviors, our model was able to perform these tasks
consistently.

Method \Task Place block in drawer Open drawer Move slider left Turn on lightbulb

Ours 94%±8.7 87.3%±5 79.3%±11.7 94%±4
No neg. goals 77.3%±6.1 37.3%±32.3 13.3%±9.5 9.3%±6.1

50% neg. goals 88%±7.2 58.7%±21.6 39.3%±25.3 92%±4

RIL [230] 74.67%±26.6 87.3%±1.15 77%±1.4 92.7%±2.3
LMP [18] 78.6%±6.1 12%±2 12%±5.2 10%±2

CQL+HER 67.6%±20.8 8.6%±5 17.3%±8 4%±4

Table 8.3: The average success rate of goal-conditioned models running 50 rollouts where the goal
image does not contain the end-effector performing the task. Three models trained from
different random seeds were used to perform the rollouts.
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Task \Method Ours LMP [18] CQL+HER

Lift the block on top of the drawer 60% 60% 20%
Lift the block inside the drawer 65% 50% 15%
Lift the block from the slider 60% 30% 10%

Lift the block from the container 65% 60% 20%
Lift the block from the table 70% 70% 30%

Place the block on top of the drawer 60% 50% 30%
Place the block inside the drawer 70% 40% 20%

Place the block in the slider 30% 0% 0%
Place the block in the container 65% 30% 15%

Stack the blocks 30% 0% 0%
Unstack the blocks 30% 10% 0%
Rotate block left 70% 40% 10%

Rotate block right 70% 50% 15%
Push block left 60% 50% 20%

Push block right 60% 50% 10%
Close drawer 90% 70% 20%
Open drawer 70% 50% 10%

Move slider left 75% 30% 0%
Move slider right 70% 10% 0%
Turn red light on 60% 30% 0%
Turn red light off 50% 20% 0%

Turn green light on 70% 60% 10%
Turn green light off 65% 50% 10%
Turn blue light on 50% 50% 5%
Turn blue light off 50% 30% 10%

Average over tasks 61% 40% 11%

Table 8.4: The average success rate of the multi-task goal-conditioned models running roll-outs in the
real world.

8.6 Conclusion and Limitations

In this paper, we introduced Task-Agnostic Offline Reinforcement Learning (TACO-RL),
which exploits a latent plan representation estimated from unstructured play data to effectively
limit the horizon of a high-level offline RL policy acting upon this latent plan space. By
dividing sequential multi-tier tasks into chunks of implicit subtasks solved by imitation learn-
ing, TACO-RL showed up to an order-of-magnitude improvement in performance compared
to state-of-the-art both imitation learning and offline reinforcement learning baselines in both,
simulated and real robot control tasks.

While TACO-RL is quite capable, it does have a number of limitations. Specifying a task
to the requires providing a suitable goal image at test-time, which should be consistent with
the current scene. Besides, tracking task progress might be useful when sequencing skills of
different time horizons. We discuss limitations in more detail in Appendix H. But overall, we
are excited about the confluence of imitation and offline RL methods towards scaling robot
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learning.
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Appendix

A Teleoperation Interface
Simulation

To collect data for simulation the human teleoperator uses the HTC VIVE Pro headset to
visualize the CALVIN environment and its controller to collect play data. Clicking the
application menu button emits a signal to start recording a play data episode, since then
the robot arm tracks the controller’s position and orientation and maps it to the gripper
end-effector position and orientation.

Control Function
Application menu Starts or finishes recording a play data episode

Trigger When pressed it closes the gripper end-effector, otherwise it opens

Real World

For the real world we use the HTC VIVE Pro controller. At the beginning of the teleoperation,
we calibrate our X axis position by clicking the grip button and moving towards its positive
axis, we then click the application menu to indicate that we finished the calibration movement.
This calibration procedure allows us to define the reference frame in which the global
coordinates from the robot end-effector is be recorded. In this setting, the teleoperator is
facing the table in the same direction as the robot, hence if the controller moves right so does
the robot. This way we can map the position of the controller to an absolute action defining
the desired robot arm end-effector 3D position. Additionally, we must press continuously the
grip button to enable movement of the robot arm, this is to avoid involuntary hand tracking
and prevent possible accidents.

Control Function
Grip Starts calibration; enables robot movement

Application menu Finishes calibration; Starts or finishes recording a play data episode
Trigger When pressed it closes the gripper end-effector, otherwise it opens

B Experimental Setup Details
For both our real and simulated robot environments we use the following 7-dimensional
action scheme:

[δx, δy, δz, δalpha, δbeta, δgamma, gripperAction]

The δx, δy, δz action dimensions corresponds to a change in the end-effector’s position in
3D space. The δalpha, δbeta, δgamma action dimensions specifies a change in the end-
effector’s orientation in the robot’s base frame. All these 6 dimensions accept continuous
values between [−1, 1]. Finally, the gripperAction command can have two discrete values
−1.0 and 1.0. An action of −1.0 in this dimension commands the robot to open the gripper
and 1.0 indicates that we desire to close it.
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Data Collection Details

For the real world robot, we collected nine hours of play data by teleoperating a Franka
Emika Panda robot arm, were we also manipulate objects in a 3D tabletop environment.
This environment consists of a table with a drawer that can be opened and closed. The
environment also contains a sliding door on top of a wooden base, such that the handle can be
reached by the end-effector. On top of the drawer, there are three led buttons with green, blue
and orange coatings to be able to identify them, on the recorded play data we only interacted
with the led button with green coating. When the led button is clicked, it toggles the state
of the light. Additionally, there are three different colored blocks with letters on top. We
visualize the data collection and setup in Figure 8.5.

Figure 8.5: Visualization of the real world data collection procedure (left) and the full robot setup
(right).

In every time step we record the measurements from the robot proprioceptive sensors,
as well as an static RGB-D image of size 150 × 200 from the Azure Kinect camera and a
gripper RGB-D image of size 200× 200 emitted by the FRAMOS Industrial Depth Camera
D435e and the commanded absolute action. For this project we only use the static RGB
image and the gripper camera RGB image as part of the observation. We visualize the input
observations in Figure 8.6.
We extract the relative action at from the change in the absolute actions from time steps
at and at−1 as in practice, reproducing the relative actions computed this way showed a
better performance than when computed from the noisy measurements of the proprioceptive
sensors.
The data is collected at 30 Hz, but given that there is relatively a very small change in the
end-effector position between frames, we downsample the processed data to a frequency of
15 Hz.

C Network Architecture
Hyperparameters for TACO-RL

Low-Level Policy: To learn the low-level policy we trained the model using 8 gpus with
Distributed Data Parallel. Throughout training, we randomly sample windows between length
8 and 16 and pad them until reaching the max length of 16 by repeating the last observation
and an action equivalent to keeping the end-effector in the same state. We visualize the
low-level policy architecture in Figure 8.7. Additional hyperparameters are listed below:
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Figure 8.6: Visualization of the observations obtained in the real world environment. On the left we
show the RGB image captured by the static camera. On the right we show the RGB image
captured by the gripper camera.

• Batch size of 64

• Latent plan dim of 16

• Learning rate of 1e− 4

• The KL loss weight β is 1e− 3 and uses KL balancing

These hyperparameters were chosen in order to make the action space of the high-level policy
tractable for reinforcement learning, as the latent plan z is used as an action when learning
the high-level policy.

High-Level Policy: Similarly as in the low-level policy, we also trained the model using 8
gpus with Distributed Data Parallel. We visualize the architecture in Figure 8.8. We use the
following hyperparameters:

• Batch size of 64

• Learning rates − Q-function: 3e− 4, Policy: 1e− 4,

• Target network update rate of 0.005

• Ratio of policy to Q-function updates of 1 : 1

• Number of Q-functions: 2 Q-functions, min(Q1, Q2) used for Q-function backup and
policy update

• Automatic entropy tuning: True, with target entropy set to − log|A|

• CQL version: CQL(H) (Using deterministic backup)

• α in CQL: 1.0 (we used the non-Lagrange version of CQL(H))

• Number of negative samples used for estimating logsumexp: 4
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• Initial BC warmstart epochs: 5

• Discount factor of 0.95

It is important to mention that the model performance is robust to slight changes in the
hyperparameter selection.

Initial state

Static camera

Gripper camera

Visual 
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Visual 
Encoder
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Figure 8.7: Overview of the architecture used in the real world to learn the low-level policy.

Goal Sampling Strategy: We use the same geometric distribution probability of p = 0.3
for all experiments. When this hyperparameter is closer to 0 it will be able to stitch plans to
achieve longer horizon tasks, but it will encounter less often a reward of 1 which makes the
optimization problem harder. For the 3D tabletop environment in both simulation and real
world, we sample positive examples (goals from the future) 90% of the time and negative
examples (goals with similar proprioceptive state) 10% of the time.

Encoder

The encoder (aka Posterior) qφ(z|τ) encodes the trajectory τ of state-action pairs into a
distribution in latent space and gives out parameters of that distribution. In our case, we
represent qφ(z|τ) with a transformer network, which takes τ and outputs parameters of
a Gaussian distribution (µencz , σencz ). We encode the sequence of visual observations with
our vision encoder. Then, we add positional embeddings to enable the experience window
to carry temporal information. Finally, we fed the result into the transformer to learn
temporally contextualized global video representations. In particular, our transformer encoder
architecture consists of 2 blocks, 8 self-attention heads, and a hidden dimension of 2048.

Decoder

The decoder (aka Low-Level Policy): πω(a|sc, z) is the latent-conditioned policy. It maxi-
mizes the conditional log-likelihood of actions in τ given the state and the latent vector. In
our implementation, we parameterize it as a recurrent neural network which takes as input
the current state and the sampled latent plan and gives out parameters of a discretized logistic
mixture distribution [167].
For our experiments, we use 2 RNN layers each containing a hidden dimension of 2048. In
the discretized logistic mixture distribution we use 10 distributions, predicting 10 classes
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per dimension. We predict an action where the 6 first dimensions are continuous in a range
between −1.0 and 1.0 and its last dimension contains the gripper action, which is a discrete
value optimized by cross entropy loss.

Prior

The prior πδ(z|sc, sg) tries to predict the encoded distribution of the trajectory τ from its
initial state and its goal state. Our implementation uses a feed-forward neural network
which takes in the embedded representation of the initial state and goal state and predicts
the parameters of a Gaussian distribution (µprz , σ

pr
z ). The prior network consists of 3 fully

connected layers with a size of 256.

Visual Encoder

To obtain the current state embedded representation we pass each input modality observation
through a convolutional encoder and we perform late fusion by concatenating the embedded
representations of all the observation modalities.

Simulation
In simulation we only use the RGB static image as input, this is passed through the same con-
volutional encoder proposed in the original Play LMP implementation with 3 convolulational
layers and a spatial softmax layer, after flattening its representation it is fed through two fully
connected layers which output an embedded latent size of 32.

Real World
For the real world we use both RGB static image and the RGB gripper image as input. We send
the RGB gripper image to a convolutional encoder as in original Play LMP implementation,
with an embedded latent size of 32. For the RGB static image we used the pretrained
R3M [247] Resnet18 networks with fixed weights, afterwards we passed it through 2 feed-
forward networks with a hidden size of 256 and an embedded latent size of 32.

Goal Encoder

We obtain a compact perceptual representation from the goal observation by passing it
through the visual encoder. Then, we use 2 hidden layers with a size of 256 and an output
layer that maps its representation to 32 latent features.

Actor

To learn the high level policy we use CQL. In particular, The actor network uses the same
network architecture as the prior πδ(z|sc, sg), as we can use the pre-learned weights as a
good initialization. It has 3 hidden fully connected layers with a size of 256 and an output
layer that predicts the mean and standard deviation of a latent plan Gaussian distribution.

Critic

The critic network takes as input the embedded representation of the current state, the encoded
goal state and a sampled latent plan. All the inputs are concatenated and passed through
a feed forward network with 3 hidden layers with a size of 256 and an output layer which
predicts the expected state-action value of the policy.
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Figure 8.8: Overview of the architecture used in the real world to learn the high-level policy. We first
used the learned low level policy to generate transitions using latent plans, afterwards we
sample a batch of transitions and use CQL to learn the high level policy.

D Policy Training Details
In this section we specify some implementation details of our baseline models used as
comparison against TACO-RL.

Play-supervised Latent Motor Plans (LMP)

For our reimplementation of LMP we used the same network architecture described in C,
the main differences with the original implementation is that the latent goal representation is
only added to the prior, but not to the decoder. Additionally, we apply a tanh transformation
to the sampled latent plan to ensure that every dimension is between −1.0 and 1.0. Another
difference with respect to the original formulation is that we implement a KL balancing. As
the KL-loss is bidirectional, we want to avoid regularizing the plans generated by the posterior
toward a poorly trained prior. To solve this problem, we minimize the KL-loss faster with
respect to the prior than the posterior by using different learning rates, α = 0.8 for the prior
and 1− α for the posterior, similar to Hafner et al. [244]. These architectural changes were
made to do a fair comparison against our implementation, and to make sure the improvements
of our method were due to the plan stitching capabilities and our self-supervised reward
function.
Additionally, the decoder predicts relative actions instead of absolute actions as this leads to
an overall better performance. We note that our LMP baseline is implemented in the same
way.

Conservative Q-Learning with Hindsight Experience Replay (CQL + HER)

We use the same visual encoder architecture as in TACO-RL. The critic networks are made
with 3 fully connected layers using a hidden dimension of 256. The actor network also uses 3
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fully connected layers with a size of 256 and predicts in the last dimension a discrete action
to open and close the parallel gripper. This last dimension is predicted through a Gumbel
Softmax distribution.
The self-supervised reward function is done similarly as in our method with a small difference
when sampling goal states from the future. The CQL transitions are (st, a, st+1) instead of
(st, zt, st+k−1), therefore when we sample a goal from discrete-time offset ∆ ∼ Geom(p),
we use the observations at the time step t + ∆ as a goal instead of the observation at the
timestep t + ∆ ∗ (k − 1), where k is the window size and p is the same value for both
implementations. This change is required as CQL needs to take isolated decisions every time
step. In contrast, our formulation allows TACO-RL to reduce the effective episode horizon
by predicting high-level actions (latent plans).

Relay Imitation Learning (RIL)

We use the same visual encoder architecture as in TACO-RL to do a fair comparison. For the
policy architecture, we first tried the architecture proposed by the original authors of each
policy using two layer neural networks with 256 units each and ReLu nonlinearities. This
architecture obtained poor performance for our application, we noticed that the respective
loss objectives were not being correctly optimized for which we solved this issue by training
a bigger network. For our tested implementation, for both the high-level and low-level policy
we used four layer neural networks with 1024 units each.

E Data Preprocessing

Simulation

In simulation we only use the static camera RGB image as input, we first resize the RGB
image from 200× 200 to 128× 128. Then we perform stochastic image shifts of 0− 6 pixels
to the static camera images and a bilinear interpolation is applied on top of the shifted image
by replacing each pixel with the average of the nearest pixels. Then we apply a color jitter
transform augmentation with a contrast of 0.1, a brightness of 0.1 and hue of 0.02. Finally,
we normalize the input image to have pixels with float values between −1.0 and 1.0.

Real World

In the real world as there are several occlusions only using the static camera RGB image,
we also add the gripper camera RGB image to the observation. For the static camera RGB
image we use the original size of 150 × 200, we then apply a color jitter transform with
contrast of 0.05, a brightness of 0.05 and a hue of 0.02. Finally, we use the values for the
pretrained R3M normalization, i.e., mean = [0.485, 0.456, 0.406] and a standard deviation,
std = [0.229, 0.224, 0.225].
For the gripper camera RGB image we resize the image from 200× 200 to 84× 84, we then
apply a color jitter transform with contrast of 0.05, a brightness of 0.05 and a hue of 0.02.
Then we perform stochastic image shifts of 0− 4 pixels to the and a bilinear interpolation is
applied on top of the shifted image by replacing each pixel with the average of the nearest
pixels. Finally, we normalize the input image to have pixels with float values between −1.0
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and 1.0.

F Additional Results

CALVIN

We add the rest of the results of all the different tasks that could be made in the CALVIN
environment where the goal image does not need to contain the robot end-effector performing
the task in Figure 8.9. We run 50 rollouts for each task. Each rollout uses a different goal
image which was not seen throughout training.
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Figure 8.9: The average success rate of goal-conditioned models running 50 rollouts where the goal
image does not contain the end-effector performing the task. Results were calculated
using 3 seeds.
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Maze2D

We also evaluate our algorithm in the Maze2D environments from D4RL [248]. These tasks
are designed to provide a simple test that the model is capable of stitching together various
subtrajectories such that the agent is capable of reaching the goal in the smallest amount of
steps. For TACO-RL, we learn the policy by relabeling the transitions instead of using the
rewards given by the dataset. Additionally, given that the scene does not change through
time, we only add positive examples in our goal sampling approach. We perform the rollouts
of both LMP and TACO-RL by exposing the desired target position. TACO-RL outperforms
both LMP and CQL as it is able to stitch plans through dynamic programming as shown in
Table 8.5.

Environment TACO-RL LMP [18] CQL [205]

maze2d-umaze 110±2.2 81.9±14.9 5.7
maze2d-medium 88.9±2 77±18 5.0

maze2d-large 76.7±9.7 20.1±29.3 12.5

Table 8.5: The average normalized score for three different random seeds. The CQL results were
obtained from the D4RL whitepaper [248].

Real World

To make sure that our method can be scaled for long-term tasks, we used our framework to
control a real robot to carry out consecutive tasks. For the purposes of this experiment, we
assign a goal image for each of the robot’s tasks. Our agent, which was trained entirely from
unlabeled play data, can complete all of these sequential tasks by inferring how to transition
between them, achieving the state depicted by the goal image. Examples of these sequential
tasks are listed below:

• Moving the sliding door to the right and then opening the drawer

• Lifting the block and putting it on top of the drawer

• Lifting the block and placing it on a plastic container

• Turning the blue light on and then opening the drawer

• Turning the green light on and then open the drawer

G Negative Results

We present an incomplete list of experiments tried throughout the course of the research
project. These ideas were tried a couple of times, but they in general do not improve
performance. It is possible that they could work better with a more thorough investigation.
We hope this experience will be helpful to researchers building on top of this work.
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• Predicting absolute actions instead of relative actions with the decoder decreases the
low-level policy performance. We believe that using relative actions might be easier for
the agent to learn, as it does not have to memorize all the locations where an interaction
has been performed.

• Decoder designed only with fully connected layers instead of a recurrent neural network
lead to a slightly worse performance. We speculate that this could be due to the
environment not completely following the Markov assumption.

• Using a gaussian mixture model instead of a mixture of logistics to predict the decoder
actions lead to a similar performance.

• Using a pretrained ResNet18 in the imagenet dataset as visual encoder in simulation
decreases performance for the low-level policy. More experiments by using the R3M
pretrained model in simulation might offer different results.

• In the real world experiments, training the visual encoder from scratch for the static
camera network decreases performance for the low-level policy. This can be explained
due to the small amount of data present in the real-world dataset.

H Limitations
Despite the promising ability to learn diverse goal-reaching tasks even reasoning over long-
horizon tasks, our method has a few aspects that warrant future research. Specifying a task
to the goal-conditioned policy, requires providing a suitable goal image at test-time, which
should be consistent with the current scene. An exciting direction for future work is to use
natural language processing techniques to command the robot policy [120, 159]. If one
wishes to sequence various tasks in the real world, an open question we did not address
in this work is tracking task progress, in order to know when to move to the next task. In
this work we acted with a fixed time-horizon for sequencing tasks in the real world, but
this implicitly assumes that all tasks take approximately the same timesteps to complete. In
addition, recent results [212] show that, in general, pure offline RL methods tend to offer
better data-efficiency compared to behavioral cloning, which could be counted as one general
limitation of imitation learning methods and derivatives of it, as the approach introduced in
this work. However, since one of the most appealing properties of play lies in the simplicity
of data collection, this limitation appears to be rather minor. Our method has a specific
limitation in that we must first train the low-level policy before training the high-level policy,
which requires more training time than training them together. However, because we train
our approach offline, the robot does not need to perform rollouts in the environment during
this time, making this a minor issue.
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Abstract

Robots operating in human-centered environments should have the ability to
understand how objects function: what can be done with each object, where
this interaction may occur, and how the object is used to achieve a goal. To
this end, we propose a novel approach that extracts a self-supervised visual
affordance model from human teleoperated play data and leverages it to en-
able efficient policy learning and motion planning. We combine model-based
planning with model-free deep reinforcement learning (RL) to learn policies
that favor the same object regions favored by people, while requiring minimal
robot interactions with the environment. We evaluate our algorithm, Visual
Affordance-guided Policy Optimization (VAPO), with both diverse simulation
manipulation tasks and real world robot tidy-up experiments to demonstrate
the effectiveness of our affordance-guided policies. We find that our policies
train 4× faster than the baselines and generalize better to novel objects because
our visual affordance model can anticipate their affordance regions. Code and
trained models available at http://vapo.cs.uni-freiburg.de.

9.1 Introduction

Humans have the ability to effortlessly recognize and infer functionalities of objects despite
their large variation in appearance and shape. For example, we understand that we need
to pull the handle of a drawer to open it or grasp a knife by the handle to use it. This
capacity to focus on the most relevant behaviors in a given situation enables efficient decision
making by limiting the choices of action that are even considered. Gibson’s theory of
affordances [249] provides a way to reason about object function. It suggests that objects
have action possibilities, e.g., a mug is “graspable” and a door is “openable” and has been
extensively studied in both the robotics and the computer vision communities [250].

However, the abstract notion of “what actions are possible?” addressed by current affor-
dance learning methods is limited. A robot needs to know where are actionable regions in an
environment, the specific points on the object that need to be manipulated for a successful
interaction, what it can achieve with it and how the object is used to achieve a goal. Current
affordance learning methods have two major problems. First, they are limited by requiring
heavy supervision in the form of manually annotated segmentation masks [251, 252, 253, 254]
or expensive interactive exploration [255, 256], restricting their scalability and applicability
in practical robotics scenarios. Second, current affordance-augmented robotic systems are
limited in the complexity of the actions they model by relying often on predefined action
templates [255, 256, 257, 258]. Together, these limitations naturally restrict the scope of
affordance learning systems to a narrow set of objects and robotics applications.

In light of these issues, we propose a method for sample-efficient policy learning of
complex manipulation tasks that is guided by a self-supervised visual affordance model.
Therefore, we call our algorithm Visual Affordance-guided Policy Optimization (VAPO).
Towards overcoming the issues of expensive manual supervision and exploration, we propose
to learn affordances that are grounded in real human behavior from teleoperated play data [18].
Play data is not random, but rather structured by human knowledge of object affordances (e.g.,
if people see a drawer in a scene, they tend to open it). Moreover, affordances discovered

http://vapo.cs.uni-freiburg.de
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Figure 9.1: Real world setup for a tidy up task: our self-supervised visual affordance model guides
the robot to the vicinity of actionable regions in the environment with a model-based
policy. Once inside this area, we switch to a local reinforcement learning policy, in which
we embed our affordance model to favor the same object regions favored by people and
to boost sample-efficiency.

from unlabeled play are functional affordances, priming a robot to approach an object the
way a human would. On the other hand, teleoperated play data does not bear the risk of the
correspondence problem as opposed to recordings directly from human demonstrations. We
hence leverage this visual affordance model to guide a robot to perform complex manipulation
tasks. Aside from accelerating learning, a critical advantage of imbuing robots with an object-
centric visual affordance prior is generalization: the learned policy generalizes to unseen
object instances because our visual affordance model can anticipate their affordance regions.

Our approach decomposes object manipulation into a sample-efficient combination of
model-based planning and model-free reinforcement learning, inspired by a recent line of
work that aims to combine classical motion planning with machine learning [259, 260, 261].
Concretely, we first predict object affordances and drive the end-effector from free-space to
the vicinity of the afforded region with a model-based method. Once inside this area, the
model cannot be trusted and we switch to a RL policy in which the agent is rewarded for
interacting with the afforded regions. This way, the local policy has a “human prior” for how
to approach an object, but is free to discover its exact grasping strategy. Our self-supervised
visual affordance model is leveraged twice to boost sample-efficiency: 1) driving the model-
based planner to the vicinity of afforded regions, 2) guiding a local grasping RL policy to
favor the same object regions favored by people. Standard model-free RL faces a number
of challenges, since the policy must solve two problems: representation learning and task
learning from high-dimensional raw observations in a single end-to-end training procedure.
As in practice solving both problems together is difficult, embedding our visual affordance
model within a reinforcement learning loop alleviates the representation learning challenge.
The interplay between model-based and model-free policies allows for a sample-efficient
division of the robot control learning, without assuming a predefined set of manipulation
primitives, 3D object shapes or a tracking system.
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9.2 Related Work
Predicting Semantic Representations To successfully interact with a 3D object, a robot
must be able to “understand” it given some perceptual observation. There exists a large
body of work in the computer vision community targeting such an understanding in the
form of different semantic labels. For example, predicting category labels [262], or more
fine-grained output such as semantic keypoints [263], part segmentations [264] or afforded
spatial relations [88] can arguably yield more actionable representations e.g. allowing one to
infer where “handles” are. However, merely obtaining such semantic labels is clearly not
sufficient on its own, a robot must also understand what needs to be done and how the object
is used to achieve a goal.

Acting with Model-based Planning Towards obtaining useful information for how to act,
some methods aim for representations that can be leveraged by classical robotics techniques.
In particular, traditional analytical approaches use knowledge of the 3D object pose [265, 266],
shape [107, 262], gripper configuration, friction coefficients, etc. to determine optimal action
trajectories. However, model-based methods rely on an accurate model of the environment
and they normally do not handle perception errors and physical interactions naturally [120],
limiting their reliability. Our approach uses model-based planning to guide the robot to the
vicinity of detected affordance regions and switches then to a local RL policy.

Reinforcement Learning Grasping RL models offer a counterpoint to the planning
paradigm. Instead of breaking the task into two steps, static grasp synthesis followed by
motion planning, it can operate directly from raw sensory inputs in closed-loop feedback
control, which are not subject to estimation errors [8, 72]. Unlike model-based methods, RL
methods do not require a detailed description of the environment and the task, but rather
require access to interaction with the environment and to a reward function. Such binary
rewards are easy to describe, but unfortunately they render RL methods extremely sample-
inefficient and brittle. Although there have been promising advances in learning data-driven
reward functions [133, 176, 186], for most complex problems of interest, learning RL policies
from scratch remains intractable. In contrast, we inject an object-centric visual affordance
prior extracted from human teleoperated play data to boost sample efficiency.

Visual Affordances Most closely related to our approach is the line of work where visual
affordances are learned for object manipulation [253, 254, 267, 268, 269]. Traditionally,
visual affordance learning methods are limited by their requirement of manually drawn
segmentation masks or keypoints [251, 252, 253, 254] and some leverage additional sensing,
such as force gloves [270]. Recently, there has been a shift to explore other forms of
supervision such as videos [271], a robot’s gripper grasp success/failure [258, 267] or thermal
image contact data [269]. In contrast, we leverage a self-supervised signal of a robot’s gripper
opening and closing during human teleoperation to learn image-based functional affordances.

9.3 Approach
The main incentive of our method is to learn sample-efficient policies of complex manip-
ulation tasks that are guided by a self-supervised visual affordance model. Our approach
consists of three steps. First, we train a network to discover and learn object affordances in
unlabeled play data (Sec. A). Second, we divide the space into regions where a model-based
policy is reliable and regions where it may have limitations handling perception errors or
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Figure 9.2: Visualization of our self-supervised object affordance labelling. We leverage a self-
supervised signal of a robot’s gripper opening and closing during human teleoperation
to project the 3D tool-center-point into the static and gripper cameras. We label the
neighboring pixels within a radius around the afforded region with a binary segmentation
mask and direction vectors from each pixel towards the affordance region center. On the
right we show the color code used to interpret the direction vectors.

physical interactions. We leverage the learned affordance model to drive the end-effector
from free-space to the vicinity of the afforded region with a model-based policy πmod (Sec.
B). Third, once inside this area we switch to a local reinforcement learning policy πrl, in
which we embed our affordance model to favor the same object regions favored by people
and to boost sample-efficiency (Sec. C). Thus, our final policy is defined as a mixture:

π(a|s) = (1− α(s)) · πmod(a|s) + α(s) · πrl(a|s), (9.1)

where α(s) ∈ [0, 1]. We use an estimate of the normalized distance between the robot’s
gripper and the affordance region α(s) to switch between the policies. An overview of the
system is given in Figure 9.1.

A Learning Visual Affordances from Play
Our key insight is to learn about object interactions from play data by leveraging a self-
supervised signal of a robot’s gripper opening and closing during human teleoperation, as
shown in Figure 9.2. In this way, without explicit manual segmentation labels, we learn
to anticipate not only where are regions that afford human-object interactions, but also a
powerful prior on how humans approach those objects. The only assumption our method
makes is an existing robot-camera calibration. We decouple the affordance prediction task
into different components.

First, the affordance model Fa learns to transform an image I into a binary segmentation
map A ∈ RH×W , indicating regions that afford an interaction. Second, it estimates 2D pixel
coordinates of the affordance region centers by predicting a vector from each affordance pixel
towards the center. Estimating the center points of the afforded regions is a key component
in order to disambiguate affordances from multiple objects in a scene. Clearly, play data
showing people naturally interacting with objects partially reveals the afforded regions in an
environment. Thus, in order to discover affordances in unlabeled data the gripper action is
used as a heuristic to detect human-object interactions.
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Intuitively, if the gripper closes during play, it is indicative of a possible interaction that
will start at that position. Thus, we can project the gripper’s 3D point ptgrip to a camera image
pixel utgrip and label the pixels within a radius r for the past n frames as an afforded region.
Similarly, if the gripper transitions from being closed to open, it means that an interaction
with an object ended at the 3D position pi. This allows us to discover a set of interaction
points throughout time P k = (p1, p2, ..., pk), which represent the world coordinates of where
interactions have occurred until timestep k. To get the full set of interaction locations for
a timestep t we consider the 3D positions from where a grasp will occur and where an
interaction has been previously occurred until t. Finally, each 3D point is projected to a
camera image pixel to create the affordance mask label by marking neighboring pixels. The
pixel coordinates of the projected points are used as the affordance region centers.

In order to disambiguate affordances from multiple objects in a scene, we let the network
estimate 2D pixel coordinates of the affordance region centers by predicting a vector from
each affordance pixel towards the center V ∈ RH×W×2. We construct these labels by
calculating the displacement from each pixel of the affordance mask to the corresponding
projected center. The background pixels are pointed towards a fixed position to avoid false
positives.

One limitation of the proposed heuristic is that it assumes users interacting with the
environment during play will only close the gripper to perform meaningful interactions. To
avoid erroneous labeling due to closing/opening the gripper in free-space without object-
interaction, we introduce an additional check by requiring the griper-width to stay for ∆t
timesteps in a range between opened and closed.

To train the full affordance model Fa we apply two different loss functions. For the
affordance segementation A loss , we use a weighted sum between a cross entropy `ce and a
dice loss `dice to account for class imbalance. Similar to Xie et al. [272], for the direction
prediction we optimize a weighted cosine similarity loss given by:

`dir =
∑
i∈O

αi(1− V T
i V̄i) +

λb
| B |

∑
i∈B

(
1− V T

i

[
0
1

])
Where Vi, V̄i are the predicted and ground truth unit directions of pixel i respectively. B,O

are the sets of pixels belonging to the background and affordance region classes. The total
loss for the affordance model is given by wce`ce + wdice`dice + wdir`dir.

B From Model-Based to Reinforcement Learning Workspace
Classical motion planning algorithms have difficulty in the presence of stochastic dynamics
and high-dimensional systems. RL methods on the other hand offers a promising solution for
its ability to learn general policies that can handle complex interactions and high-dimensional
observations. However, for most complex problems of interest, learning RL policies from
scratch remains intractable. Inspired by recent works that aim to combine both type of
controllers [259, 260, 261], we divide the space into regions where a model-based policy is
reliable and regions where it may have limitations handling perception errors or physical
interactions.

Concretely, we predict affordances and the corresponding region centers using a static cam-
era image. Given this information of where are regions that afford human-object interactions,
we localize a chosen pixel region center in 3D and drive the end-effector from free-space to
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the vicinity of the afforded region with a model-based policy πmod and hand control over to
the model-free policy πrl. We use an estimate of the distance between the robot’s gripper and
the predicted affordance region center to switch between the policies. Restricting the area
where the RL policy is active to the vicinity of regions that afford human-object interactions
has the advantage that it makes it more sample-efficient. Besides, this division of labour
allows to learn local RL policies by switching to a gripper camera, improving generalization
across different locations.

C Affordance-guided Reinforcement Learning Grasping

Once the model-based policy πmod has brought the end-effector to the vicinity of a region
that affords human-object interactions, we switch to a local gripper-camera based RL policy
which we augment with an object-centric visual affordance prior to boost sample efficiency.

Problem Formulation: We consider the standard Markov decision process (MDP) M =
(S,A, T , r, µ0, γ), where S and A denote the state space and action space respectively.
T (s′|s, a) is the probability of transitioning from state s to state s′ when applying action a.
The actions are drawn from a probability distribution over actions π(a|s) referred to as the
agent’s policy. r(s, a) is the reward received by an agent for executing action a in state s,
µ0 the initial state distribution, and γ ∈ (0, 1) the discount factor prioritizing long- versus
short-term reward. The goal in RL is to optimize a policy π(a|s) that maximizes the expected
discounted return Eπ,µ0,T [

∑∞
t=0 γ

tr(s, a)].

Observation Space: The observation space is composed of two parts: 1) the proprioceptive
state including the 3D world coordinates of the end-effector, the orientation Euler angles and
the gripper width. 2) The visual inputs consisting of the current RGB-D image observed
by the gripper camera and the binary affordance mask predicted from the corresponding
affordance model.

Action Space: We use a 7-DOF Franka Emika Panda robot with a parallel gripper both
in simulation and in the real world. The action space consists of delta XYZ position, delta
Euler angles and the binary gripper action.

Reward: The reward function should not only signal a successful object interaction, but
also guide the exploration process to focus on actionable object regions. To realize this, we
leverage the visual affordance model to guide the agent to get close to the affordance centers.
This way, the local policy has a “human prior” for how to approach an object, but is free to
discover its exact grasping strategy. Given the detected affordance center and the fact that
the RL policy only acts locally within a neighborhood, we normalize the euclidean distance
between the end-effector and the affordance center to create a positive reward Raff which
increases as we get closer to the detected center. Additionally if the agent goes outside the
neighborhood, it receives a negative reward Rout and if it successfully manipulates an object
it receives a positive reward of Rsucc. Our total reward function is:

r(s, a) = λ1Rsucc + λ2Raff + λ3Rout (9.2)
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Figure 9.3: Overview of the full approach. The affordance model takes an image from either camera
as input to predict object affordance masks and center pixel predictions (top left). The
static camera affordances are used to select a position that the model-based policy will
move towards (bottom left). We then switch to a RL policy which takes as input the the
predictions of the gripper camera affordance, the robot’s proprioception, the distance to
the predicted center, and the current RGB-D image (right).

9.4 Implementation Details

Teleoperated play data During the unscripted teleoperated interactions we record images
from two cameras: a static camera that captures the global scene, and a camera mounted on
the robot’s gripper. The static camera image has a resolution of 200× 200 and the gripper
camera uses a resolution of 64× 64. We label the images of the static camera with a radius
of r = 10 pixels around the projected center and the the gripper camera images with r = 25.

Affordance model We use a U-net [273] architecture followed by two parallel branches
of convolutional layers that produce the affordance mask and center directions. Similar to
Xiang et al. [274], we use a Hough voting layer to predict the 2D object centers during
inference. The Hough voting layer takes the affordance mask and the direction vectors as
input to compute a score for each pixel, indicating its likelihood of being an affordance region
center. The location with the maximum score is selected as the object center.

We define a two-stage affordance detection by training separate models for the two cameras
as shown in Figure 9.3. One model is trained with images from a static camera and predicts
a spatial interaction hotspots map, indicating actionable regions. Similarly, we train an
affordance model with images from a gripper camera, which gives a finer-grained spatial
interaction map about where humans tend to interact with each object.

The affordance model should give insight into which parts of an object are relevant for
its use. As this is dependent on the shape of the objects rather than the color, we would
like the affordance model to be invariant to different colors. For this reason, the images are
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(a) (b)

Figure 9.4: Objects used in simulation grasping experiments. (a) Seen objects during affordance
model training. (b) Unseen objects during affordance model training. The objects propose
different challenges as some are small or must be grasped in a specific manner, e.g.
grasping the frying pan requires to use the handle to be successfully lifted.

converted to grayscale before being fed to the networks. Both affordance models are trained
with stochastic gradient descent with a learning rate of 1e-5 and a batch size of 256. The loss
weights are set to wce = 1, wdice = 5, wdir = 2.5.

Affordance-guided Reinforcement Learning
We train the policy using Soft Actor-Critic [69]. We concatenate the RGB-D images with

the inferred affordance mask and pass it through a convolutional neural network (CNN) as
depicted in Figure 9.3. The CNN is composed by three convolutional layers with kernel size
[8,4,3] respectively and one linear layer to obtain a feature representation of size 16. Then we
concatenate the obtained representation to the robot state and the distance to the affordance
center. Finally this is passed through four fully connected layers. The critic and actor are
implemented following the same architecture without weight-sharing. For the simulation
experiments, we train a single policy for all the objects with an episode length of 100 steps
during 400K episode steps. This amounts to 30hrs of learning experience. We train for 3 seed
initializations. In the reward function we set λ1 = λ2 = λ3 = 1 and the rewards Rsucc = 200,
Rout = −1.

9.5 Experimental Results

In this section we seek to answer the following questions: how does our method compare to
the baseline policies in terms of sample efficiency and task completion? And, is the proposed
approach applicable to a real world tidy-up task?

A Experimental Setup

We evaluate our method with both diverse simulation manipulation tasks and real world robot
tidy-up experiments.
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Figure 9.5: Drawer opening task. On the left, the detected affordance and the corresponding center
are shown. On the right we show a rollout of the RL agent opening the drawer.

Simulation

We evaluate two tasks in simulation: a grasping task and a drawer opening task. The grasping
task consists on lifting different objects in a PyBullet simulated environment. The policy is
trained over 15 different objects with varying degrees of complexity, such as hammers, knifes
and power drills, as shown in Figure 9.4. After the policy executes a close-gripper action, the
gripper attempts to lift the object and waits in the air for two seconds. If the object is still in
the gripper at the end of this time, we define the grasp as being successful.

VAPO is not exclusive to a grasping task. To show this, we train a policy to open a drawer
as shown in Figure 9.5. Every episode consists of the drawer on a closed position and the
robot in a neutral position. The episode is deemed successful if the robot opens the drawer at
least 15cm.

To train the affordance models we teleoperate the robot using a virtual reality (VR)
controller to collect unscripted play data. We gather two hours of human interaction which
amounts to∼100K images for each environment to train the static camera and gripper camera
affordance models.

Real world

For the real world experiment, we setup the environment using a 7-DOF Franka Emika Panda
robot. The full setup can be seen in Figure 9.1. Similar as in simulation, we collect play
data by teleoperating the robot using a VR controller as shown in Figure 9.2. We accumulate
1.5 hours of human interaction, which results in ∼70K images and use this to train both the
gripper camera and static camera affordance models. The labels for both simulation and real
world experiments are obtained as described in Section A. We only use the data to train the
affordance models and do not need human annotation.
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Figure 9.6: VAPO vs. local-SAC for the pick up tasks. (a) Policy trained on seen objects by the
affordance model. (b) Policy trained on unseen objects by the affordance model. In both
experiments, our method learns 4× faster as compared to the baseline and successfully
lifts most of the objects.

B Evaluation Protocol
To test the sample efficiency of the affordance-guided RL policy, we compare against a
sparse-reward SAC agent, local-SAC. For this baseline, we remove Raff from the reward
function and we modify the observation by removing the affordance mask and distance to
the center. This policy still uses πmod to move through free space, but does not use the
affordances for interaction. In essence, it is a sparse-reward SAC agent operating with the
RGB-D images of the gripper camera in the vicinity of the objects. For all the experiments
we show the success rate as the average success over a given number of attempts to complete
a task.

C Simulation Experiments
We start of by training policies to lift a diverse set of 15 objects on which the affordance
model was also trained on. We observe that our approach outperforms the baseline and
lifts significantly more objects as it has a strong prior on how objects should be interacted
with. We observe that VAPO successfully can grasp objects at the anticipated afforded
regions (handle of a pan, power-drill, knife), while the baseline fails to grasp objects of
complex (frying pan) or ambiguous (bowl) geometries. This shows the effectiveness of the
affordance-guided policy in learning stable functional grasps. Not only does our method learn
better, but it is critically more sample-efficient. After ∼30 hours (400k timesteps) of robot
interaction the baseline reaches a success rate of 0.6, while VAPO matches this performance
at 100k steps. This indicates that our method learns up to 4× faster than the baseline. After
training for 400k timesteps, VAPO remains stable at an overall success rate of 0.90.

Next we push our affordance model to generalize to unseen objects in two sets of experi-
ments. In the first setting, we train and test the policies on 15 objects which were not seen by
the affordance model during training. We observe in Figure 9.6 that VAPO outperforms the
baseline by a large margin in terms of both number of objects lifted and sample-efficiency. In
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Figure 9.7: VAPO vs. local-SAC in real world tidy-up experiments. The success rate over the last ten
episodes is shown. After two hours of real world robot interaction, the baseline rarely
lifts any objects, while our approach consistently “functionally” grasps all the objects.

the second setting, we evaluate the trained policies zero-shot on lifting 15 unseen objects.
This form of zero-shot evaluation is very challenging, as the objects are unseen for both the
affordance model and the RL agent. We report a lifting success of 13/15 for VAPO and 8/15
for the baseline. This demonstrates the effectiveness of imbuing robots with an object-centric
visual affordance. Aside from accelerating learning, the visual affordance model generalizes
sufficiently to new object shapes and can anticipate their affordance regions, providing a
useful object-centric prior.

To analyze if our approach is applicable for more tasks, we conduct experiments on a
drawer opening task (Figure 9.5). We report a success rate over 100 episodes of 0.84 for
VAPO and of 0.52 for the baseline. The results are consistent with the previous experiments
showing that our method outperforms the baselines, while being more sample-efficient.

D Real World Experiments

We finally evaluate our approach on a real world tidy-up experiment. We show the learning
curves for this experiment in Figure 9.7. We use a 7-DOF Franka Emika Panda robot and
run our policy at 20 Hz. We train all methods to pickup four objects: a plastic banana, a
screwdriver, a table tennis racket and a paint roller. After two hours of training VAPO is able
to consistently “functionally” grasps all the objects, e.g., grasping the objects by the handles,
while the SAC baseline rarely achieves to lift any object, despite the agent starting at the
same robot pose as our method. This is due to the low number of samples that sparse-reward
SAC is trained on, since most success stories of RL in the real world require several orders of
magnitude more data [72]. Overall, our results demonstrate the effectiveness of our approach
to learn sample-efficient policies by leveraging self-supervised visual affordances.
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9.6 Conclusion
In this paper, we introduced the novel approach VAPO (Visual Affordance-guided Policy
Optimization) as a method for sample-efficient policy learning of manipulation tasks that is
guided by a self-supervised visual affordance model. The key advantage of our formulation
is the extraction of visual affordances from unlabeled human teleoperated play data to
learn a strong prior about where actionable regions in an environment are. We distill this
knowledge into an interplay between model-based and model-free policies that allows for
a sample-efficient division of the robot control learning, without assuming a predefined
set of manipulation primitives, 3D object shapes or a tracking system. Our results show
that aside from accelerating learning, a critical advantage of imbuing robots with an object-
centric visual affordance prior is the ability of policies to generalize to unseen, functionally
similar, objects. To the best of our knowledge, this work is the first one to demonstrate the
effectiveness of visual affordances to guide model-based policies and closed-loop RL policies
to learn robot manipulation tasks in the real world.
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Abstract

Recent works have shown that Large Language Models (LLMs) can be ap-
plied to ground natural language to a wide variety of robot skills. However, in
practice, learning multi-task, language-conditioned robotic skills typically re-
quires large-scale data collection and frequent human intervention to reset the
environment or help correcting the current policies. In this work, we propose
a novel approach to efficiently learn general-purpose language-conditioned
robot skills from unstructured, offline and reset-free data in the real world by
exploiting a self-supervised visuo-lingual affordance model, which requires an-
notating as little as 1% of the total data with language. We evaluate our method
in extensive experiments both in simulated and real-world robotic tasks, achiev-
ing state-of-the-art performance on the challenging CALVIN benchmark and
learning over 25 distinct visuomotor manipulation tasks with a single policy
in the real world. We find that when paired with LLMs to break down ab-
stract natural language instructions into subgoals via few-shot prompting, our
method is capable of completing long-horizon, multi-tier tasks in the real world,
while requiring an order of magnitude less data than previous approaches.
Code and videos are available at http://hulc2.cs.uni-freiburg.de.

10.1 Introduction

Recent advances in large-scale language modeling have produced promising results in
bridging their semantic knowledge of the world to robot instruction following and plan-
ning [40, 276, 277]. In reality, planning with Large Language Models (LLMs) requires
having a large set of diverse low-level behaviors that can be seamlessly combined together
to intelligently act in the world. Learning such sensorimotor skills and grounding them in
language typically requires either a massive large-scale data collection effort [40, 41, 42, 276]
with frequent human interventions, limiting the skills to templated pick-and-place opera-
tions [30, 278] or deploying the policies in simpler simulated environments [141, 145, 159].
The phenomenon that the apparently easy tasks for humans, such as pouring water into a cup,
are difficult to teach a robot to do, is also known as Moravec’s paradox [43]. This raises the
question: how can we learn a diverse repertoire of visuo-motor skills in the real world in a
scalable and data-efficient manner for instruction following?

Prior studies show that decomposing robot manipulation into semantic and spatial path-
ways [30, 163, 257], improves generalization, data-efficiency, and understanding of multi-
modal information. Inspired by these pathway architectures, we propose a novel, sample-
efficient method for learning general-purpose language-conditioned robot skills from unstruc-
tured, offline and reset-free data in the real world by exploiting a self-supervised visuo-lingual
affordance model. Our key observation is that instead of scaling the data collection to learn
how to reach any reachable goal state from any current state [52] with a single end-to-end
model, we can decompose the goal-reaching problem hierarchically with a high-level stream
that grounds semantic concepts and a low-level stream that grounds 3D spatial interaction
knowledge, as seen in Figure 6.1.

Specifically, we present Composing Actions from Language and Vision (CALVIN), a hier-
archical language-conditioned agent that integrates the task-agnostic control of HULC [159]

http://hulc2.cs.uni-freiburg.de
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workspace?
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“Open the drawer” “Place the pink block 
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“Close the drawer”“Place the purple block 
inside the drawer”

“Place the yellow block 
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I will do:

Figure 10.1: When paired with Large Language Models, CALVIN enables completing long-horizon,
multi-tier tasks from abstract natural language instructions in the real world, such as
“tidy up the workspace” with no additional training. We leverage a visual affordance
model to guide the robot to the vicinity of actionable regions referred by language. Once
inside this area, we switch to a single 7-DoF language-conditioned visuomotor policy,
trained from offline, unstructured data.

with the object-centric semantic understanding of VAPO [163]. HULC is a state-of-the-art
language-conditioned imitation learning agent that learns 7-DoF goal-reaching policies end-
to-end. However, in order to jointly learn language, vision, and control, it needs a large
amount of robot interaction data, similar to other end-to-end agents [41, 145, 160]. VAPO
extracts a self-supervised visual affordance model of unstructured data and not only acceler-
ates learning, but was also shown to boost generalization of downstream control policies. We
show that by extending VAPO to learn language-conditioned affordances and combining it
with a 7-DoF low-level policy that builds upon HULC, our method is capable of following
multiple long-horizon manipulation tasks in a row, directly from images, while requiring
an order of magnitude less data than previous approaches. Unlike prior work, which relies
on costly expert demonstrations and fully annotated datasets to learn language-conditioned
agents in the real world, our approach leverages a more scalable data collection scheme:
unstructured, reset-free and possibly suboptimal, teleoperated play data [18]. Moreover, our
approach requires annotating as little as 1% of the total data with language. Extensive experi-
ments show that when paired with LLMs that translate abstract natural language instructions
into a sequence of subgoals, CALVIN enables completing long-horizon, multi-stage natural
language instructions in the real world. Finally, we show that our model sets a new state of
the art on the challenging CALVIN benchmark [141], on following multiple long-horizon
manipulation tasks in a row with 7-DoF control, from high-dimensional perceptual observa-
tions, and specified via natural language. To our knowledge, our method is the first explicitly
aiming to solve language-conditioned long-horizon, multi-tier tasks from purely offline,
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reset-free and unstructured data in the real world, while requiring as little as 1% of language
annotations.

10.2 Related Work
There has been a growing interest in the robotics community to build language-driven robot
systems [24], spurred by the advancements in grounding language and vision [4, 7]. Earlier
works focused on localizing objects mentioned in referring expressions [104, 108, 109, 148,
149] and following pick-and-place instructions with predefined motion primitives [30, 120,
151]. More recently, end-to-end learning has been used to study the challenging problem of
fusing perception, language and control [40, 41, 42, 145, 146, 159, 160, 279]. End-to-end
learning from pixels is an attractive choice for modeling general-purpose agents due to its
flexibility, as it makes the least assumptions about objects and tasks. However, such pixel-
to-action models often have a poor sample efficiency. In the area of robot manipulation, the
two extremes of the spectrum are CLIPort [30] on the one hand, and agents like GATO [42]
and BC-Z [41] on the other, which range from needing a few hundred expert demonstrations
for pick-and-placing objects with motion planning, to several months of data collection of
expert demonstrations to learn visuomotor manipulation skills for continuous control. In
contrast, we lift the requirement of collecting expert demonstrations and the corresponding
need for manually resetting the scene, to learn from unstructured, reset-free, teleoperated
play data [18]. Another orthogonal line of work tackles data inefficiency by using pre-trained
image representations [30, 247, 280] to bootstrap downstream task learning, which we also
leverage in this work.

We propose a novel hierarchical approach that combines the strengths of both paradigms
to learn language-conditioned, task-agnostic, long-horizon policies from high-dimensional
camera observations. Inspired by the line of work that decomposes robot manipulation
into semantic and spatial pathways [30, 163, 257], we propose leveraging a self-supervised
affordance model from unstructured data that guides the robot to the vicinity of actionable
regions referred in language instructions. Once inside this area, we switch to a single multi-
task 7-DoF language-conditioned visuomotor policy, trained also from offline, unstructured
data.

10.3 Method
We decompose our approach into three main steps. First we train a language-conditioned
affordance model from unstructured, teleoperated data to predict 3D locations of an object
that affords an input language instruction (Section A). Second, we leverage model-based
planning to move towards the predicted location and switch to a local language-conditioned,
learning-based policy πfree to interact with the scene (Section C). Third, we show how
CALVIN can be used together with large language models (LLMs) for decomposing abstract
language instructions into a sequence of feasible, executable subtasks (Section D).

Formally, our final robot policy is defined as a mixture:

π(a | s, l) = (1− α(s, l)) · πmod(a | s)
+α(s, l) · πfree(a | s, l) (10.1)
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Figure 10.2: Visualization of the procedure to extract language-conditioned visual affordances from
human teleoperated unstructured, free-form interaction data. We leverage the gripper
open/close signal during teleoperation to project the end-effector into the camera images
to detect affordances in undirected data.

Specifically, we use the pixel distance between the projected end-effector position Itcp
and the predicted pixel from the affordance model Iaff to select which policy to use. If the
distance is larger than a threshold ε, the predicted region is far from the robots current position
and we use the model-based policy πmod to move to the predicted location. Otherwise, the
end-effector is already near the predicted position and we keep using the learning-based
policy πfree. Thus, we define α as:

α(s, l) =

{
0, if |Iaff − Itcp| > ε

1, otherwise
(10.2)

As the affordance prediction is conditioned on language, each time the agent receives
a new instruction, our agent decides which policy to use based on α(s, l). Restricting the
area where the model-free policy is active to the vicinity of regions that afford human-object
interactions has the advantage that it makes it more sample efficient, as it only needs to learn
local behaviors.

A Extracting Human Affordances from Unstructured Data
We aim to learn an affordance model Fa that can predict a world location when given a
natural language instruction. Unlike prior affordance learning methods that require manually
drawn segmentation masks [254], we automatically extract affordances from unstructured,
human teleoperated play data [18]. Leveraging play data has several advantages: it is cheap
and scalable to collect, contains general behavior, and is not random, but rather structured
by human knowledge of affordances. Concretely, play data consists of a long unsegmented
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dataset D of semantically meaningful behaviors provided by users teleoperating the robot
without a specific task in mind. The full state-action stream D = {(st, at)∞t=0} is relabeled
to treat the preceding states and actions as optimal behaviour to reach a visited state [18].
Additionally, we assume that a small number of random sequences, less than 1% of the
dataset, are annotated with a language instruction describing the task being completed in the
sequence.

In order to extract visual affordances from unstructured data, we use the gripper action as
a heuristic to discover elements of the scene that are relevant for task completion. Consider
the following scenario: a random sequence τ = {(s0, a0), ..., (sk, ak)}, where k denotes
the window size, is annotated with a language instruction sg = l. If for any state si in the
sequence, the action ai contains a gripper closing signal, we assume that there is an object that
is needed for executing the task l at the position of the end-effector. To learn a visuo-lingual
affordance model, we project the end-effector world position to the camera images to obtain
a pixel pt, and we annotate the previous frames with said pixel and the language instruction
l, see Figure 10.2. Intuitively, this allows the affordance model to learn to predict a pixel
corresponding to an object that is needed for completing the task l.

During test time, given a predicted pixel location, assuming an existing camera calibration,
depth information is needed to compute the 3D position where the model-based policy
should move to. Instead of relying on the sensory depth observations, our model is trained
to produce an estimated depth, by using the position of the end-effector during the gripper
closing as supervision. A key advantage of our formulation is that by predicting the depth
from visuo-lingual features, our model can better adapt to partial occlusions that might occur
in the scene.

B Language-Conditioned Visual Affordances

Our visuo-lingual affordance model, see Figure ??, consists of an encoder decoder architec-
ture with two decoder heads. The first head predicts a distribution over the image, representing
each pixels likelihood to be an afforded point. The second head predicts Gaussian distribution
from which the corresponding predicted depth is sampled. Both heads share the same encoder
and are conditioned on the input language instruction. Formally, given an input consisting of a
visual observation I and a language instruction l, the affordance model Fa produces an output
o of (1) a pixel-wise heatmap A ∈ RH×W , indicating regions that afford the commanded task
and (2) a corresponding depth estimate d. We denote this mapping as Fa(I, l) 7→ o = (A, d).

Visual Module

The visual prediction module produces a heatmap A given an input (It, lt). To train it, we
apply a softmax function over all the pixels of A. This results in a distribution V over the
image where the sum of all the pixel values equals to one.

V = softmax(A) =
exp(ai)∑N
j=1 exp(aj)

(10.3)

Similarly, the target T is constructed with the same shape as V , by initializing all its values to
zero. Then, we generate a binary one-hot pixel map with the pixel of the projected position
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Figure 10.3: Overview of the system architecture. CALVIN first processes a language instruction and
an image from a static camera to predict the afforded region and guides the robot to its
vicinity. Once inside this area, we switch to a language-conditioned imitation learning
agent that receives RGB observations from both a gripper and a static camera, and learns
7-DoF goal-reaching policies end-to-end. Both modules learn from the same free-form,
unstructured dataset and require as little as 1% of language annotations.

that corresponds to the current state input. Finally, we optimize the visual prediction module
with the cross-entropy loss:

Laff = −
N∑
i=1

ti log vi, (10.4)

where ti ∈ T and vi ∈ V . This optimization scheme [281] allows the visual module to learn
a multimodal belief over the image, where the pixel with the highest value denotes the most
likely image location given the input. During inference, we use the dense pixelwise output
prediction A to select a pixel location Ii:

Ii = arg max
(u,v)

V ((u, v) | (I, l)) (10.5)

The affordance prediction follows a U-Net [273] architecture, where we repeatedly apply
language-conditioning to three of the decoder layers after the bottleneck, taking inspiration
from LingUNet [282].

Depth Module

As aforementioned, we can compute a target for the depth module by transforming pt to
the camera frame to obtain pcamt , where the z coordinate of this point corresponds to the
ground truth depth pcamt,z . Although we compute the true value, typical depth sensors present
measurement errors. Therefore, in order to design a system that models the depth error, we use
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the ground truth depth information to train a Gaussian distribution N (µ, σ) by maximizing
the log likelihood.

Ldepth =
1

2

(
log σ2 +

(y − µ)2

σ2

)
(10.6)

As shown in Figure 10.3, the depth module consists of a set of linear layers that take as input
the encoded visuo-lingual features. Here, the language-conditioning is done by concatenating
the natural language encoding to the first two layers of the multilayer perceptron. The output
of the network are the parameters of a Gaussian distribution d ∼ N(µ, σ), which is sampled
during inference to obtain the depth prediction d. The total loss function used to train the full
affordance model is defined as a weighted combination of the affordance module and depth
prediction module losses:

L = βLaff + (1− β)Ldepth (10.7)

C Low-Level Language-Conditioned Policy
In order to interact with objects, we learn a goal-conditioned policy πθ (at | st, l) that outputs
action at ∈ A, conditioned on the current state st ∈ S and free-form language instruction
l ∈ L, under environment dynamics T : S × A → S. We note that the agent does not
have access to the true state of the environment, but to visual observations. We model the
low-level policy with a general-purpose goal-reaching policy based on HULC [159] and
trained with multi-context imitation learning [145]. We leverage the same, long unstructured
dataset D of semantically meaningful behaviors provided by users we previously utilized
to learn affordances in Section A. In order to learn task-agnostic control, we leverage goal
relabeling [57], by feeding these short horizon goal image conditioned demonstrations into a
simple maximum likelihood goal conditioned imitation objective:

LLfP = E(τ,sg)∼Dplay

 |τ |∑
t=0

log πθ(at | st, sg)

 (10.8)

However, when learning language-conditioned policies πθ (at | st, l) it is not possible to
relabel any visited state s to a natural language goal, as the goal space is no longer equiv-
alent to the observation space. Lynch et al. [145] showed that pairing a small number of
random windows with language after-the-fact instructions, enables learning a single language-
conditioned visuomotor policy that can perform a wide variety of robotic manipulation tasks.
The key insight here is, that solving a single imitation learning policy for either goal im-
age or language goals, allows for learning control mostly from unlabeled play data and
reduces the burden of language annotation to less than 1% of the total data. Concretely,
given multiple contextual imitation datasets D = {D0, D1, . . . , DK}, with different ways
of describing tasks, multi-context imitation learning trains a single latent goal conditioned
policy πθ (at | st, z) over all datasets simultaneously.

D Decomposing Instructions with LLMs
Guiding the robot to areas afforded by a language instruction with the affordance model and
then leveraging the low-level policy to execute the task, enables in principle to chain several
language instructions in a row. Although natural language provides an intuitive and scalable
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state = ‘drawer_open’: False, ‘blocks_on_table’: [‘red’],

‘buttons_on’: [‘green’]

# put away the red block.

open_drawer()

pick_and_place(‘red’, ‘drawer’)

close_drawer()

...

state = ‘drawer_open’: False, ‘blocks_on_table’: [],

‘buttons_on’: [‘yellow’]

# turn off the lights.

push_button(‘yellow’)

state = ‘drawer_open’: False, ‘blocks_on_table’: [‘red’,

‘green’, ‘blue’], ‘buttons_on’: [‘green’, ‘yellow’]

# tidy up the workspace and turn off all the lights
open_drawer()
pick_and_place(‘red’, ‘drawer’)
pick_and_place(‘green’, ‘drawer’)
pick_and_place(‘blue’, ‘drawer’)
close_drawer()
push_button(‘green’)
push_button(‘yellow’)

Figure 10.4: Example prompt to decompose abstract instructions into sequences of subtasks. Prompt
context is in gray, input task commands are magenta, and generated outputs are
highlighted.

way for task specification, it might not be practical to have to continually input low level
language instructions, such as “open the drawer”, “now pick up the pink block and place it
inside the drawer”, “now pick up the yellow block and place it inside the drawer” to perform
a tidy up task for instance. Ideally, we would like to give the robot an abstract high level
instruction, such as “tidy up the workspace and turn off all the lights”. Similar to Zeng et.
al. [278], we use a standard pre-trained LLM, to decompose abstract language instructions
into a sequence of feasible subtasks, by priming them with several input examples of natural
language commands (formatted as comments) paired with corresponding robot code (via few-
shot prompting). We leverage the code-writing capabilities of LLMs [277, 283] to generate
executable Python robot code that can be translated into manipulation skills expressed in
language. For example, the skill expressed by the API call push_button(‘green’), is translated
into “turn on the green light” and then used to execute an inference of the policy. The
only assumption we make is that the scene description fed into the prompt matches the
environments state. We show a example prompt in Figure 10.4.

10.4 Experiments
Our experiments aim to answer the following questions: 1) Does integrating the proposed
visuo-lingual affordance model improve performance and data-efficiency on following lan-
guage instructions over using an end-to-end model? 2) Is the proposed method applicable to
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the real world? 3) When paired with LLMs, can the agent generalize to new behaviors, by
following the subgoals proposed by the LLM?

A Simulation Experiments

Evaluation Protocol. We design our experiments using the environment D of the CALVIN
benchmark [141], which consists of 6 hours of teleoperated undirected play data that might
contain suboptimal behavior. To simulate a real-world scenario, only 1% of that data contains
crowd-sourced language annotations. The goal of the agent in CALVIN is to solve up to
1000 unique sequence chains with 5 distinct subtasks instructed via natural language, using
onboard sensing. During inference, the agent receives the next subtask in a chain only if it
successfully completes the current one.

Results and Ablations. We compare our approach of dividing the robot control learning
into a high-level stream that grounds semantic concepts and a low-level stream that grounds
3D spatial interaction knowledge against HULC [159], a state-of-the-art end-to-end model
that learns general skills grounded on language from play data. For a fair comparison, we
retrain the original HULC agent to also finetune the language encoder, as this gives a boost
in average sequence length from 2.64 to 2.69. We observe in Table 10.5, that when combined
with our affordances model, the performance increases to an average sequence length of 2.93.
By decoupling the control into a hierarchical structure, we show that performance increases
significantly. Moreover, when initializing our affordance model with pretrained weights of
R3M [247], a work that aims to learn reusable representations for learning robotic skills,
CALVIN sets a new state of the art with an average sequence length of 3.30.

In order to study the data-efficiency of our proposed approach, we additionally compare
our model on smaller data splits that contain 50% and 25% of the total play data. Our results
indicate that our approach is up to 50% more sample efficient than the baseline. As it might
be difficult to judge how much each module contributes to the overall sample-efficiency
gains, we investigate the effect of pairing our affordance model trained on 25% of the data
with a low-level policy trained on the full dataset. We report little difference, with an average
sequence length of 2.92.

B Real-Robot Experiments

System Setup. We validate our results with a Franka Emika Panda robot arm in a 3D tabletop
environment that is inspired by the simulated CALVIN environment. This environment
consists of a table with a drawer that can be opened and closed and also contains a sliding door
on top of a wooden base, such that the handle can be reached by the end-effector. Additionally,
the environment also contains three colored light switches and colored blocks. We use an
offline dataset from concurrent work [201], consisting of 9 hours of unstructured data and that
was collected by asking participants to teleoperate the robot without performing any specific
task. Additionally, we annotate less than 1% of the total data with language, 3605 windows
concretely, by asking human annotators to describe the behavior of randomly sampled
windows of the interaction dataset. The dataset contains over 25 distinct manipulation skills.
We note that learning such a large range of diverse skills in the real world, from unstructured,
reset-free and possibly suboptimal data, paired with less than 1% of it being annotated with
language, is extremely challenging. Additionally, this setting contains an order of magnitude
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less data than related approaches [41].

Baselines. To study the effectiveness of our hierarchical architecture, we benchmark
against two language-conditioned baselines: HULC [159] and BC-Z [41]. The first baseline
serves to evaluate the influence of leveraging the affordance model to enable a hierarchical
decomposition of the control loop, as the low-level policy is tailored to learning task-agnostic
control from unstructured data. The BC-Z baseline, on the other hand, is trained only on
the data that contains language annotation and includes the proposed auxiliary loss that
predicts the language embeddings from the visual ones for better aligning the visuo-lingual
skill embeddings [41]. For a fair comparison, all models have the same observation and
action space, and have their visual encoders for the static camera initialized with pre-trained
ResNet-18 R3M features [247]. For CALVIN this entails both, the visual encoder for the
affordance model and the visual encoder for the static camera of the low-level policy. The

Task\Method Ours HULC [159] BC-Z [41]

Lift the block on top of the drawer 70% 60% 20%
Lift the block inside the drawer 70% 50% 10%
Lift the block from the slider 40% 20% 10%

Lift the block from the container 70% 60% 20%
Lift the block from the table 80% 70% 40%

Place the block on top of the drawer 90% 50% 30%
Place the block inside the drawer 70% 40% 20%

Place the block in the slider 30% 20% 0%
Place the block in the container 60% 30% 20%

Stack the blocks 50% 30% 0%
Unstack the blocks 50% 40% 0%
Rotate block left 70% 40% 10%

Rotate block right 70% 50% 20%
Push block left 70% 50% 20%

Push block right 60% 50% 10%
Close drawer 90% 70% 20%
Open drawer 80% 50% 10%

Move slider left 70% 10% 0%
Move slider right 70% 30% 0%
Turn red light on 50% 30% 0%
Turn red light off 40% 20% 0%

Turn green light on 70% 60% 10%
Turn green light off 70% 50% 10%
Turn blue light on 70% 50% 10%
Turn blue light off 70% 30% 10%

Average over tasks 65.2% 42.4% 16.6%

Average no. of sequential tasks 6.4 2.7 1.3

Table 10.1: The average success rate of the multi-task goal-conditioned models running roll-outs in
the real world.
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encoder for the gripper camera is trained from scratch.
Evaluation. We start off by evaluating the success rate of the individual skills conditioned

with language. After training the models with the offline play dataset, we performed 10
rollouts for each task using neutral starting positions to avoid biasing the policies through
the robot’s initial pose. This neutral initialization breaks correlation between initial state and
task, forcing the agent to rely entirely on language to infer and solve the task. We recorded
the success rate of each model in Table 10.1. We observe that the BC-Z baseline has near
zero performance in most tasks, due to insufficient demonstrations. HULC is more capable,
as it leverages the full play dataset with an average of 42.4% over 10 rollouts, but struggles
with long-horizon planning, as do most end-to-end agents trained with imitation learning.
Overall, CALVIN is more capable with an average of 65.2% success rate over 25 distinct
manipulation tasks, demonstrating the effectiveness of incorporating a semantic viso-lingual
affordance prior for decoupling the control into a hierarchical structure.

Finally, we evaluate how many tasks in a row each method can follow in the real world,
by leveraging GPT-3 to generate sequences of subgoals for abstract language inputs, such
as “tidy up the workspace and turn off the lights”. We report an average number of 6.4
subgoals being executed for our method, while the baselines tend to fail after completing 2 to
3 subgoals. See the supplementary video for qualitative results that showcase the diversity
of tasks and the long-horizon capabilities of the different methods. Overall, our results
demonstrate the effectiveness of our approach to learn sample-efficient, language-conditioned
policies from unstructured data by leveraging visuo-lingual affordances.

10.5 Conclusion and Limitations
In this paper, we introduced a novel approach to efficiently learn general-purpose, language-
conditioned robot skills from unstructured, offline and reset-free data containing as little as
1% of language annotations.The key idea is to extract language-conditioned affordances from
diverse human teleoperated data to learn a semantic prior on where in the environment the
interaction should take place given a natural language instruction. We distill this knowledge
into an interplay between model-based and model-free policies that allows for a sample-
efficient division of the robot control learning, substantially surpassing the state of the art on
the challenging language-conditioned robot manipulation CALVIN benchmark. We show
that when paired with LLMs to translate abstract natural language instructions into sequences
of subgoals, CALVIN is capable of completing long-horizon, multi-tier tasks the real world,
while requiring an order of magnitude less data than previous approaches.

While the experimental results are promising, our approach has several limitations. First,
when sequencing skills in the real world, an open question is tracking task progress in order
to know when to move to the next task. In this work, we acted with a fixed time-horizon
for sequencing tasks in the real world, implicitly assuming that all tasks take approximately
the same timesteps to complete. Second, the code-generation module to translate abstract
language inputs to sequences of subgoals assumes that the prompted scene description
matches the environment’s state, which could be automated by integrating a perceptual
system [276]. Finally, an exciting area for future work may be one that not only grounds
actions with language models, but also explores improving the language models themselves
by incorporating real-world robot data [284].
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Appendix

A Affordance Model Ablations

In this section we perform more ablation studies of our method on the CALVIN environment.
Concretely, to better study the data-efficiency of our method, we perform ablation studies
by pairing affordance and policy models trained with 25% and 100% of the training data.
We observe in Table 10.2 that the performance does not change much, demonstrating the
sample-efficiency of the visuo-lingual affordance model.

Training data Tasks completed in a row

Policy Affordance 1 2 3 4 5 Avg. Len.

25% 25% 81% 56% 37% 24% 15% 2.15
25% 100% 82% 58% 38% 24% 15% 2.18

100% 100% 89% 71% 55% 43% 33% 2.93
100% 25% 89% 72% 55% 42% 31% 2.92

Table 10.2: Ablation of our approach trained with different data quantities for the affordance and
low-level policy networks.

Next, we perform similar ablation studies for the depth prediction module trained on 25%,
50% and 100% of the dataset. We report two metrics: mean pixel distance error and the
mean depth error. We plot the pixel distance error for the validation split in Figure 10.6, and
observe that the error increases only in ∼ 3 pixels when training the model with 25% of the
data instead of the full dataset.

Figure 10.6: Pixel distance and depth validation error for the affordance model’s depth prediction
module trained with different data quantities.

Similarly, we observe that the depth error increases in ∼2 cm when training the model
with 25% of the data instead of the full dataset. These results show that the proposed
visuo-lingual affordance model is very sample-efficient, making it attractive for real world
robotic applications, where collecting robot interaction data and annotating them with natural
language might be costly.



10.5. CONCLUSION AND LIMITATIONS 157

B Hyperparameters

Low-Level Policy

To learn the low-level policy we train the model using 8 gpus with Distributed Data Parallel
(DDP). Throughout training, we randomly sample windows between length 16 and 32 and
pad them until reaching the max length of 32 by repeating the last observation and an action
equivalent to keeping the end-effector in the same state. We use a batch size of 64, which
with DDP results in an effective batch size of 512. We train using the Adam optimizer with a
learning rate of 2e− 4. The latent plan is a vector of categorical variables, concretely we use
32 categoricals with 32 classes each. The KL loss weight β is 1e− 2 and uses KL balancing.
Concretely, we minimize the KL loss faster with respect to the prior than the posterior by
using different learning rates, α = 0.8 for the prior and 1 − α for the posterior. In order
to encode raw text into a semantic pre-trained vector space, we leverage the paraphrase-
MiniLM-L3-v2 model [87], which distills a large Transformer based language model and
is trained on paraphrase language corpora that is mainly derived from Wikipedia. It has a
vocabulary size of 30,522 words and maps a sentence of any length into a vector of size 384.

For the real world experiments, the static camera RGB images have a size of 150× 200,
we then apply a color jitter transform with contrast of 0.05, a brightness of 0.05 and
a hue of 0.02. Finally, we use the values for the pretrained R3M normalization, i.e.,
mean = [0.485, 0.456, 0.406] and a standard deviation, std = [0.229, 0.224, 0.225]. For
the gripper camera RGB image, we resize the image from 200 × 200 to 84 × 84, we then
apply a color jitter transform with contrast of 0.05, a brightness of 0.05 and a hue of 0.02.
Then we perform stochastic image shifts of 0− 4 pixels to the and a bilinear interpolation is
applied on top of the shifted image by replacing each pixel with the average of the nearest
pixels. Finally, we normalize the input image to have pixels with float values between −1.0
and 1.0.

Affordance Model

For the affordance model we use a Gaussian distribution to model the depth estimate. We
normalize the depth values with the dataset statistics. We train the network end-to-end using
a learning rate of 1e − 4 with the Adam optimizer and a batch size of 32 in a single GPU.
During training, we resize the input images to 224× 224× 3, apply stochastic image shifts of
5 pixels and apply a color jitter transform with contrast of 0.05, a brightness of 0.05 and a hue
of 0.02 as data augmentation. We use the paraphrase-MiniLM-L3-v2 pretrained model [87]
to encode raw text into a semantic vector space. In our experiments, we observed that the
affordance model starts learning accurate predictions for the 2d pixel affordance faster than
making proper depth estimations. In order to balance both tasks, we define a higher weight
for the depth loss Ldepth than for the affordance loss Laff by setting β to 0.1.

C Qualitative Results

In order to better understand how the visuo-lingual affordance model, the model-based policy
and the model-free policy interact with each other, we visualize a rollout for one chain of the
CALVIN benchmark in Figure 10.7. Given a language instruction and a visual observation,
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Take the blue block
and rotate it to the

right
Pull the handle to
open the drawer

Press the button to
turn off the led light

Grasp and lift the
blue block

Store the grasped
block in the sliding

cabinet

Affordance
prediction

Model-based
policy

Learning-based
policy

N/A

Figure 10.7: Visualization of a sample rollout for our approach in the CALVIN environment. For
each column, we show the input language instruction, the predicted affordance, the
reached state by the model-based policy after executing the command, and the final
reached state by the learning-based policy for completing the requested task.

the visuo-lingual affordance model predicts a location which affords the given instruction.
The model-based policy guides the robot to the vicinity of the afforded region. Once inside
this area, we switch to the model-free language-conditioned visuomotor policy that interacts
with the environment.
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Conclusions and Discussion

In this dissertation, we presented a line of work exploring the development of service robots
that can relate human language to their perception and actions to efficiently solve long-
horizon manipulation tasks. Our contributions revolved around the challenge of enabling
robots to perform a wide range of tasks based on arbitrary user commands, by learning to
leverage unstructured, offline data. Specifically, we considered leveraging self-supervision
and structural priors to enable sample-efficient learning of language-conditioned manipulation
policies. We presented frameworks for (i) following language instructions to pick and
place arbitrary objects and effectively resolve ambiguities through dialogues by grounding
objects and their spatial relations, (ii) learning diverse skills to perform tasks in house-like
environments from uncurated data (iii) discovering, learning and transferring skills from
unlabeled videos (iv) relating human language to a robots perceptions and actions, (v)
efficiently completing long-horizon, multi-tier manipulation tasks in the real world. We
extensively evaluated our proposed frameworks on several standard benchmarks and real-
world environments. The results demonstrate that our proposed methods surpass the state of
the art, while enabling efficient real world deployment.

We first tackled the challenge of learning spatial relations that enable a robot to place
objects in accordance with the spatial relations expressed by the user. Typically, modeling
spatial relations is challenging due to their inherent ambiguity. If one wants to model the
relation “left”, how far left of the reference object would form a valid relation? And where is
the boundary between “left” and “in front of” for instance? Moreover, most methods assume
access to corresponding 3D object shapes and relational data, which are difficult to obtain
and require additional instrumentation for object tracking. We proposed a novel solution to
this problem by leveraging the paradigm of auxiliary learning in combination with modeling
relations directly on RGB images. In order to learn pixelwise distributions for modeling
spatial relations, we proposed a novel method that implants deep features of objects into a
pre-trained classifier to compute a posterior class probability over spatial relations. Our novel
approach rearranges deep features, crucially enabling to reason over what relation would
most likely be formed if we placed an object at the given location without modifying the
input image. Our contribution is the first approach to address the problem using an end-to-
end learning technique while lifting the requirement of ground-truth pixelwise annotations
and the need for tracking objects with 3D models. We extensively evaluate our method
using real-world data and real-world human-robot experiments. Our results demonstrate the
effectiveness of our method in reasoning about the best way to place objects to reproduce a
spatial relation.

The above contribution enables a robot to infer locations on a tabletop that are suitable to
place an object following relational instructions from a user. However, this limits the robot to
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tasks were it already has successfully grasped an object. Therefore, we additionally tackled
the challenge of enabling a robot to understand natural language instructions to first pick
an object from a cluttered tabletop and then place it on a second tabletop according to the
relational placing instructions given by the same user. With the goal of grounding language
in the perception of a robot, we proposed a multitask learning convolutional neural network
architecture for jointly comprehending and generating referential language expressions. We
achieved state-of-the-art results on the RefCOCO benchmark and showed that the proposed
multitask learning scheme exploits synergies to improve the overall performance. This
architecture effectively integrates language understanding of visual regions. It enables both
to locate the referred objects on a tabletop and to resolve ambiguities via dialogue for unclear
instructions, such as “fetch the yellow thing”, by generating corresponding questions, such as
“do you mean the lemon in the middle?”. As a result, the full approach can follow complex
placement instructions such as “place it behind the middle red bow”. Additionally, we
presented real-world experiments using our PR2 robot that demonstrates the effectiveness
of our model to complete multi-stage tasks, such as tidying up a workspace or setting
the table. Ours was the first comprehensive system for controlling robots that allowed
tackling temporally more extended tasks by sequentially composing pick-and-place language
instructions and grounding object semantics and spatial relations.

A practical limitation of the aforementioned approach is that it is not easily extendable to
more complex tasks a robot might need to master in order to assist with everyday tasks, e.g.,
opening a drawer or a fridge before retrieving an object. Therefore, a key contribution of this
thesis are innovative methods that discover and learn a broad range of skills from uncurated
and unlabeled data. First, we proposed a novel benchmark, coined CALVIN, that links human
language to robot motor skills, behaviors, and objects in interactive visual environments. In
this setting, a single agent must solve complex manipulation tasks by understanding a series
of language expressions in a row, e.g., “open the drawer . . . pick up the blue block . . . push
the block into the drawer . . . open the sliding door”. We contribute ∼24 hours of teleoperated
unstructured play data together with 20K language directives across four different simulated
tabletop environments and offer flexible sensor and training and test setups for evaluating long-
horizon robot manipulation performance. Ours is the first public benchmark of instruction
following that combines: natural language conditioning, multimodal high-dimensional inputs,
7-DoF continuous control, and long-horizon robotic object manipulation. We established
baseline performance levels with an approach shown to be effective in other long horizon
language-conditioned manipulation tasks and concluded that there is significant room for
improvement due to the poor overall performance. Second, we conducted an extensive
study of the most critical challenges in learning language conditioned policies from offline
free-form imitation datasets. We systematically compared and improved key components
of language conditioned imitation learning over unstructured data, such as observation and
action spaces, losses for aligning visuo-lingual representations, language models and latent
plan representations, and we analyzed the effect of other choices, such as data augmentation
and optimization. We integrated the best performing improved components in a unified
framework, which achieves state-of-the-art results on the challenging CALVIN benchmark.

Language is an intuitive and flexible of specifying tasks to a robot, but it might not be well
suited for all tasks, as language looses the spatial precision of goal images. Moreover, when
a user wants to teach a novel skill to a robot, it might intuitively perform a demonstration.
Therefore, endowing robots with the ability to learn how to perform tasks from videos of
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demonstrations is a desirable and scalable alternative task specification, with the potential of
unlocking greater robot capabilities by tapping into Internet-scale unlabeled data sources,
such as YouTube videos. By drawing inspiration from information theoretic measures, we
proposed a novel approach that learns a task-agnostic skill embedding space from unlabeled
multi-view videos. Our solution combines a metric learning loss, which utilizes temporal
video coherence to learn a state representation, with a novel entropy-regularized adversarial
skill-transfer loss. This technique substantially enhances the re-usability of the learned skills
over multiple, vastly different domains. Extensive evaluations demonstrate that given a single
video of a previously unseen task, the learned embedding enables training of continuous
control policies to solve novel tasks that require the interpolation of previously seen skills.

In an effort to improve long-horizon performance for sequential multi-tier tasks, we further
tackled the challenge of producing previously unseen combinations of skills, learned from
an offline, unstructured robot interaction dataset, to reach temporally extended goals by
“stitching” together skills. Most existing skill learning methods rely on either imitation
learning or reinforcement learning as the underlying paradigm. As these two approaches
have complementary strengths and weaknesses, we contribute a novel hierarchical approach
that combines the strengths of the imitation learning and reinforcement learning paradigms
to learn task-agnostic long-horizon policies from high-dimensional camera observations.
Specifically, our proposed framework combines a low-level policy that learns latent skills
via imitation learning and a high-level policy learned from offline reinforcement learning for
skill-chaining the latent behavior priors. This hierarchical approach constitutes a practical
solution by decomposing a whole task into smaller chunks of sub-tasks. Accordingly, the
high-level policy does not need to capture in detail the physics of the world, simplifying the
underlying dynamics of the RL agent. Using extensive experiments on the CALVIN and
D4RL benchmarks, we demonstrated an order-of-magnitude improvement in performance
upon state-of-the-art baselines on various long-horizon tasks. Additionally, we presented
real-world experiments using our Franka Panda robot that demonstrates the effectiveness of
our model in learning one multi-task visuomotor policy for 25 distinct manipulation tasks in
the real world.

At the heart of the above approaches are goal conditioned policies learned from unstruc-
tured data that aim to endow the agent of task-agnostic control: the ability to reach any
reachable goal state from any current state. In practice, this formulation tends to be data
intensive. It is important to note, that most related approaches require several months of
humans teleoperating robots to collect sufficient data to train visuomotor policies that can
solve a wide range of everyday tasks. This drawback motivated our extensions that leveraged
structural priors in the form of object affordances to accelerate learning and data-efficiency.
The knowledge of object affordances helps a robot understand how objects function: what
can be done with each object, where this interaction may occur, and how the object is used to
achieve a goal. However, affordance learning methods typically require manually segmented
annotations to learn visual affordances, limiting their applicability. We contribute a novel
approach that learn affordances that are grounded in real human behavior from teleoperated
play data by leveraging the gripper’s opening and closing signal as a heuristic. We showed
that besides enabling efficient policy learning and motion planning, a critical advantage of
imbuing robots with an object-centric visual affordance prior is generalization: the learned
policy generalizes to unseen, functionally similar, objects because our visual affordance
model can anticipate their affordance regions. Interestingly, we also observed that the affor-
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dances discovered from play data are functional affordances, priming a robot to approach an
object the same way a human would.

Subsequently, we addressed learning language conditioned visual affordances with the
aim of improving language conditioned policies in low data regimes. We proposed a novel
approach that decomposes robot manipulation into semantic and spatial pathways and requires
annotating as little as 1% of the collected uncurated data with language directives, in addition
to an order of magnitude less data than comparable approaches. We evaluate our method
in extensive experiments both in simulated and real-world robotic tasks, achieving state-of-
the-art performance on the challenging CALVIN benchmark and learning over 25 distinct
visuomotor manipulation tasks with a single policy in the real world. More importantly, we
show that when paired with Large Language Models to break down abstract natural language
instructions into subgoals via few-shot prompting, our method is capable of completing
long-horizon, multi-tier tasks in the real world, i.e. “tidy up the workspace and turnoff the
lights”, with no additional training.

In summary, we proposed several contributions in this thesis that enable robots to acquire a
wide range of general-purpose skills from unstructured data, relate them to natural language
and efficiently compose them to complete long-horizon, multi-tier manipulation tasks in the
real world. Our models outperform the state-of-the-art in each of the presented tasks, while
often relying on weaker forms of supervision and showing greater sample-efficiency. Our
contributions encompass the full robotics stack, presenting a principled and unified approach
to learn low-level control, perception and high-level planning over temporally extended
tasks while grounding natural language into the robot’s world model. We believe that the
proposed techniques have brought us closer towards the goal of general-purpose robots that
can relate human language to their perception and actions by leveraging complementary
forms of unstructured, scalable data.

11.1 Outlook
There are several ways by which future research can extend the scope and capabilities of
the approaches we proposed in this thesis. While the main focus of this thesis has been to
develop policies to effectively solve long-horizon robot manipulation tasks, general-purpose
robots operating in human-centered environments need the ability to navigate in the physical
world. Therefore, it would be beneficial to imbue robots with the knowledge of navigating to
goals described via language, without the need of collecting data for every new environment
the robot is deployed in. Recently, we started to tackle this problem by exploring how to best
connect visual-language models trained on Internet-scale data to a spatial representation of the
physical world that can be used by robots. In Visual Language Maps (VLMaps) [285] we have
developed a map representation that directly fuses pretrained visual-language embeddings
into a 3D reconstruction of the environment. By leveraging similar few-shot prompting
techniques as the ones proposed in Chapter 10, VLMaps allows robots to (i) navigate to
spatial goals such as “go in between the sofa and TV” or “move 3 meters to the right of the
chair” without any additional training, and (ii) generate open-vocabulary obstacle maps –
allowing multiple robots with different morphologies (e.g., mobile manipulators and drones)
to use the same VLMap for path planning.

This effectively demonstrates how natural language can act as a common grounding
across otherwise incompatible embodiments and foundation models. Learning multimodal,
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multitask foundation models with complementary forms of commonsense has the potential
to unlock combinatorial generalization of robots to novel behaviors. In order for a robot to
interact in unseen environments and understand free-form instructions, we need to explore
novel ways of endowing robots “few-shot” and “zero-shot” capabilities. Unlike NLP models
in which few shot text examples can be added to the context prompt, in robotics we need to
look at novel ways of task specification that consider a robot’s inherent multimodality, e.g.
learning from third-person demonstrations, or language conditioning. A first step towards this
goal might be building upon VLMaps and the manipulation policies proposed in Chapter 8
and Chapter 10 to spatially anchor more modalities (e.g., sound, affordances, touch or video)
to build a multimodal robot memory and solving more complex mobile manipulation tasks
(e.g., “bring me Tom’s favorite book”). This would also open new exciting avenues, such as
multimodal prompting that interleave language with other modalities [286], i.e. “go to the
left of where the bird was heard singing” or “grasp the object that feels similar to a pineapple,
but is brown” (e.g., a pinecone). Another overlooked aspect in the field is that language
also plays a crucial role in creating safe and interpretable autonomous robots, by verbalizing
and analyzing their decision making process in language. Having a bidirectional language
grounding of a robotics experience memory might be an interesting opportunity for improved
interpretability and more flexible safety specifications in language, effectively treating natural
language as a robotics “middleware”.

One specific area of interest towards scaling robot learning is how we can reuse diverse,
task-agnostic robot interaction data to move away from the default paradigm of repeating
costly data collection and training from scratch for every new task and environment. A crucial
ingredient of the success stories in NLP and computer vision was to move towards models pre-
trained on diverse, large datasets. Achieving such generalization requires sufficiently broad
datasets, which can be prohibitively expensive to collect in a robotics context. Although great
efforts were made in this thesis to enable scalable ways of collecting diverse data, collecting
a broader offline dataset with different robots and environments would be a promising
future research direction. First attempts have been made at pooling together several robot
interaction offline datasets [287, 288], but they are limited in either not supporting multiple
robots, multiple environments or language annotations. Although the up-front challenge of
assembling a dataset suitable for building a pre-trained robotic model is rather high, in the
long-run it is cost-effective due to the possibility of bootstrapping autonomous data collection.
The approaches in this thesis that learn from play data, implicitly assume the data not to be
overly imbalanced. When either combining robot interaction data from different sources, or
bootstrapping a lifelong learning process, it might be interesting to investigate techniques
that can handle imbalanced data.

Not only is language effective for bridging multi-embodied robots, but first results also
indicate that it is also a powerful implicit state representation that can crucially lead to positive
transfer in multi-task settings [30] and task generalization in higher data regimes [41].
Therefore, an exciting area for future work may be one that explores leveraging natural
language to bridge offline data from vastly different robot embodiments and tasks, paving the
way for a robotics foundation model that enables zero or few-shot capabilities for unseen
tasks with minimal human interventions. These results suggest that natural language might
be a key component for both improving low-level skill learning, as well as helping robots
bridge their semantic knowledge of the world. In parallel, there are some intriguing results
from Lu et al. [289], which show that the internal structure of pre-trained language models
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can be frozen and used for a variety of non-language tasks, e.g., protein folding, numerical
computation and vision. This suggests that it might be possible to improve generalization
simply by scaling up language data, instead of collecting large amounts of task-specific data.
Exploring these ideas in a robotics context remains an open research question.

In summary, the aforementioned directions highlight the benefits and opportunities that a
tighter confluence of language grounding and skill learning can offer towards scaling robot
learning. We hope the insights gained in this thesis will open the door for future agents that
can generalize abstract concepts to unseen entities the same way humans do. Since Marvin
Minsky’s summer project, these are the most exciting times to work towards general-purpose
robots that can relate human language to their perception and actions.
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