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This research addresses the assessment of adipose tissue (AT) and spatial distribution of visceral (VAT) and sub-
cutaneous fat (SAT) in the trunk from standardized magnetic resonance imaging at 3 T, thereby demonstrating
the feasibility of deep learning (DL)–based image segmentation in a large population-based cohort in Germany
(five sites). Volume and distribution of AT play an essential role in the pathogenesis of insulin resistance, a risk
factor of developingmetabolic/cardiovascular diseases. Cross-validated training of the DL-segmentation model
led to a mean Dice similarity coefficient of >0.94, corresponding to a mean absolute volume deviation of about
22 ml. SAT is significantly increased in women compared to men, whereas VAT is increased in males. Spatial
distribution shows age- and body mass index–related displacements. DL-based image segmentation provides
robust and fast quantification of AT (≈15 s per dataset versus 3 to 4 hours for manual processing) and assess-
ment of its spatial distribution from magnetic resonance images in large cohort studies.
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INTRODUCTION
The obesity pandemic is growing rapidly; in 2016, 39% of the adult
world population was overweight, and 13% were obese. The world-
wide prevalence has nearly tripled since 1975 (1). Abdominal
obesity, as manifested by increased visceral adipose tissue (VAT)
(2), shows a strong correlation to insulin resistance and is a key con-
dition of the metabolic syndrome, which is associated with the risk
of developing type 2 diabetes (3–5) and a major risk factor for a wide
range of other diseases (6, 7) such as cardiovascular diseases (8, 9)
and several types of cancers (10, 11).

Not only the volume of adipose tissue (AT) but also its regional
distribution are considered to play an essential role in the pathogen-
esis of insulin resistance (12, 13), implying the necessity to charac-
terize individuals for body fat distribution in addition to exclusively
determine simple anthropometric measures as, e.g., body mass
index (BMI) or waist-to-hip ratio, as, especially VAT shows a
better correlation to metabolic parameters (9, 14–17). For
example, regarding metabolically healthy obesity, in the Tübingen
Diabetes Family Study (TDFS), the metabolically healthy and
insulin-sensitive obese individuals were found to differ in liver fat
content, intramyocellular lipids, and VAT but not in body weight,
height, or waist circumference (WC), from the metabolically un-
healthy and insulin-resistant obese individuals (14). Furthermore,
in the TDFS, insulin secretion failure, insulin resistance, fatty liver
[measured by 1H magnetic resonance (MR) spectroscopy], and MR
imaging (MRI)–determined visceral obesity, but not BMI categories
or visceral obesity based on WC measurement, were independent
determinants of prediabetes (18). Therefore, noninvasive assess-
ment using whole-body MRI, which is able to precisely distinguish
between VAT and subcutaneous adipose tissue (SAT), has been es-
tablished (19) and can be regarded as gold standard for the

assessment of topography and quantification of AT. State-of-the-
art MRI techniques enable gapless acquisitions with high spatial res-
olution as provided by three-dimensional (3D) chemical shift selec-
tive MRI using Dixon-based techniques (20, 21). Large population-
based cohort studies such as the German National Cohort (GNC)
(22) or the U.K. Biobank (23) provide comprehensive databases for
the assessment of AT depots from MRI (24).

Volumetric localization and quantification of AT from MRI are
based on slice-wise semantic segmentation of AT compartments.
Manual segmentation requires trained personnel, is time-consum-
ing, is costly and—especially in large cohort studies using whole-
body images—not feasible in practice. Recent studies have imple-
mented automated segmentation algorithms using atlas-based seg-
mentation (21, 25, 26), statistical shape models (27, 28), or machine
learning (29–31) on 2D or 3D data using 2D and 3D segmentation
algorithms (32) and demonstrated the applicability of the methods
in small- to medium-sized populations.

Because of the success of deep learning (DL) algorithms in
medical image analysis (33), many task-specific and highly special-
ized DL models, often mainly focused on improving model training
evaluation metrics, have been proposed (30, 31, 34, 35). Because of
specific assumptions on input data and nontrivial, often undocu-
mented configuration, the applicability of most of these models in
a broader scientific setting is limited. Furthermore, these models do
not necessarily output anatomically accurate results despite im-
proved training evaluation metrics, as time resources are invested
in an iterative trial-and-error process during method design
instead of providing accurate examples of manual segmentation
(model-centric DL). Recently, this issue was addressed by the intro-
duction of nnU-Net (36). This framework quantitatively confirms
that the configuration (including data processing pipeline, training
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parameters, etc.) of a DL model has more impact on its performance
than architectural variations. Consequently, nnU-Net enables
cross-task generalization and can be used as an out-of-the-box
tool (36) paving the way toward data-centric artificial intelligence
that is focused on applications of DL by improving its underlying
data (37).

The purpose of this study is to assess the volume of different AT
compartments of the body trunk, i.e., VAT ranging from hip to
cardiac apex, and SAT, which is differentiated in subcutaneous ab-
dominal adipose tissue (SAAT) and subcutaneous thoracic adipose
tissue (STAT) using the cardiac apex as the boundary and their
spatial distribution along the craniocaudal axis, thereby demon-
strating the feasibility of using DL-based image segmentation in a
large population-based cohort undergoing MRI.

RESULTS
Automatic data processing using DL segmentation model
On the basis of 30 stratified randomly selected samples from the
GNC, fivefold cross-validated training of the nnU-Net segmenta-
tion model (exemplary results shown in Fig. 1) led to mean Dice
similarity coefficients (DSCs) for VAT, SAAT, and STAT of 0.947
± 0.033 (0.855 to 0.983), 0.981 ± 0.011 (0.933 to 0.993), and 0.955
± 0.028 (0.850 to 0.984), corresponding to a mean absolute volume
deviation of AT volume of −18.4, 27.5, and 20.3 ml, respectively.
Bland-Altman plots (see Fig. 2) showed good agreement and low
bias of manual and automated quantification of AT in all three com-
partments. Comprehensive cross-validation model performance
metrics are summarized in Table 1. Intrareader similarity (IRS) of
the main annotator is 0.916 (SAAT), 0.876 (STAT), and
0.777 (VAT).

On the basis of a population of 11,191 participants of the GNC,
the application of the trained segmentation model led to the uncer-
tainty-based detection of 217 (about 2% of the entire population)
potential outliers. After their manual inspection, 21 participants
(about 10% of the automatically initially classified outliers) had to
be excluded because of imaging errors (partial fat-water swaps) (see
Fig. 3, A and B) in the abdomen. False-positive outliers that could be
kept after manual inspection mostly include participants with very

low AT volume (see Fig. 3, C and D). Manual inspection of 1120
additional participants was unremarkable. In addition, two partic-
ipants had to be excluded because of corrupted image data, and 27
had to be excluded because of missing height or weight measure-
ments yielding a total of 11,141 participants (5708 males and
5433 females) for AT quantification to form the study population.
WC was available from 11,117 participants (5697 males and 5420
females). Anthropometric data of the analyzed study population
can be found in Table 2.

Assessment of AT volume and distribution
Regarding the entire study population, females were characterized
by significantly higher SAAT and STAT compared to males (7.68 ±
3.88 and 3.78 ± 1.77 liters for females and 6.17 ± 3.05 and 2.81 ±
1.17 liters for males, respectively; see Fig. 4, first and second
column, A, B, D, E, G, and H). Males had significantly higher
VAT volume (4.84 ± 2.36 liters for males and 2.51 ± 1.55 liters for
females; see Fig. 4, last column, C, F, and I).

Females showed a stronger correlation of SAAT, STAT, and VAT
with BMI compared to males. SAAT showed the strongest correla-
tion with BMI in both genders. All correlation coefficients are sum-
marized in Table 3. Moreover, normal-weight individuals of both
genders show variability in VAT (0.5 to 9.4 liters for males and
0.2 to 5.9 liters for females) and SAAT (0.7 to 8.9 liters for males
and 0.8 to 11.3 liters for females). The range of variability of VAT
(1.6 to 15.3 liters for males and 1.2 to 10.3 liters for females) and
SAAT (3.4 to 26.3 liters for males and 5.9 to 29.4 liters for
females) is even greater for obese individuals indicating the pres-
ence of the “thin outside fat inside” phenotype with a high share
of VAT despite being lean (38) and metabolically healthy obese in-
dividuals with a low share of VAT, despite being obese (14).

Regarding the association with age, SAAT and STAT showed
negligible correlation in both genders. VAT showed a moderate
but significant positive correlation with age in both genders (see
Table 3). Considering age decades, participants in the oldest
group of the study population (age > 60 years) had 3.33 ± 1.60
liters of VAT compared to 1.27 ± 0.75 liters (+162%) in the youngest
age group (age < 30 years) for women and 5.84 ± 2.34 liters of VAT
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compared to 2.18 ± 1.30 liters (+167%) for men with each age group
showing wide variability (see Fig. 4, G to I).

Using anthropometric measures routinely collected in clinical
practice (i.e., age, height, and weight) to explain the variation in
MRI-assessed AT compartments showed that the addition of WC
lead to an improved prediction for all AT compartments. While
VAT showed no gender-specific differences (R2 = 0.75 for men
and women), the variation of both subcutaneous AT compartments
was better explained in women (R2 = 0.90 for SAAT and R2 = 0.80
for STAT) compared to men (R2 = 0.81 for SAAT and R2 = 0.72 for
STAT). An overview of all models is provided in table S1.

Regarding the regional spatial distribution of VAT along the cra-
niocaudal axis, there were significant age-dependent differences in
the group of normal-weight males. VAT shifts from the pelvis to the
abdomen with increasing age. Normal-weight females do not show
such displacement (see Fig. 5, A and C). In addition, obese males
had less VAT in the pelvis region and showed an age-dependent dis-
placement of VAT towards the lower abdomen. This observation
did not apply to females with obesity (see Fig. 5, B and D). Consid-
ering SAT, especially in normal-weight females, a similar displace-
ment of AT from the pelvis to the abdomen was observed. Females
with obesity did not show any age dependency of the regional dis-
tribution of SAT, whereas males with obesity showed a similar re-
distribution of SAT (see Fig. 6, B to D).

DISCUSSION
Automated MR image segmentation for the analysis of AT com-
partments of the body trunk using nnU-Net yields state-of-the-
art performance without any manual configuration. On the basis
of 30 stratified randomly selected and manually annotated
samples from the GNC, the model offers robust and fast segmenta-
tion performance in terms of low SD in model evaluation metrics
(Table 1) and low detection rate of uncertainty-based outliers.
Moreover, an improvement of quantitative and qualitative measures
compared to the literature is achieved [e.g., increase in mean DSC
by 0.02 for SAT and 0.06 for VAT compared to Küstner et al. (30),
respectively]. With regard to the absolute volumetric error in AT
quantification, high agreement with the manual segmentation
could be achieved narrowing the reported quantification error
range (29). Only by using DL-based image processing, large data
sizes can be handled in a reasonable amount of time. For
example, using a trained nnUNet model for the segmentation of
data from a single individual takes about 15 s compared to 3 to 4
hours of pure manual segmentation.

Qualitatively, previous studies (30, 34, 35) revealed weaknesses
in the delineation of VAT leading to inaccurate AT quantification,
e.g., by including intermuscular fat around the spine, vertebral bone
marrow, the skeletal muscles, and parts of the pelvic cavity or by
completely ignoring abdominal AT compartments besides SAT.
The anatomically standardized segmentation of VAT and SAT

Fig. 1. Examples of successful segmentations. 3D view and exemplary coronal slice of segmented SAT (yellow) and VAT (red). (A and B) Male participant, 42 years; BMI,
34.5 kg/m2; SAAT, 10.5 liters; STAT, 4.2 liters; VAT, 6.8 liters. (C and D) Male participant, 26 years; BMI, 22.9 kg/m2; SAAT, 5.9 liters; STAT, 2.8 liters; VAT, 2.4 liters.

Haueise et al., Sci. Adv. 9, eadd0433 (2023) 12 May 2023 3 of 10

SC I ENCE ADVANCES | R E S EARCH ART I C L E
D

ow
nloaded from

 https://w
w

w
.science.org at U

niversitaet Freiburg on June 14, 2023



obtained from nnU-Net overcomes these weaknesses. On the basis
of unremarkable model uncertainty scores and additional manual
review, the model performance directly translates to the large
study population of the GNC.

Results from this work are able to confirm and extend the find-
ings of smaller studies in terms of MR population size (16, 20, 39).
First, volumetric segmentation allows assessment of regional spatial

AT distribution along the craniocaudal axis leveraging the high
spatial resolution of the MR data. A recent study evaluates the asso-
ciation of AT volumes with cardiometabolic diseases but omits the
aforementioned advantages using models based on 2D projection
images (40). Second, increased population size will allow correla-
tions with anthropometric data, age effects, and sex differences in
a fine-grained way (9).

In the GNC, more than 95% of the participants are Caucasians
(22), and thus, the presented results most likely reflect this ethnicity
with generalizable accuracy. However, because the relations
between different AT compartments and their distribution within
different ethnic groups are similar within these groups, the de-
scribed methods are also applicable and can be used to describe
other ethnic groups in a similar manner.

Furthermore, MRI-assessed AT compartments, especially VAT,
yield deeper insight compared to basic anthropometric measures.
Independent of gender, anthropometric measures (age, height,
weight, and WC) explain 75% of the variation in VAT correspond-
ing to an estimated standard error of 1.18 liters in men and 0.77
liters in women, respectively. In a study using dual-energy x-ray ab-
sorptiometry, it has been reported that approximately 90% of the
variation in total fat mass is explained by age, height, weight, and
ethnicity (41). This study now provides information about the
impact of age and simple anthropometric measures on the variation
of SAAT, STAT, and VAT (table S1). Together, this study does not
intend to abandon any common (and cost effective) measures of
abdominal obesity in favor of (expensive) MRI but to show the po-
tential of this technique in terms of differentiation of AT compart-
ments, their volumetric quantification and the possibility of future
research of AT distribution along the craniocaudal axis—all of these
aspects will probably help in characterizing the general population,
taking into account the individual risk for metabolic diseases.

This study has some limitations. First, moderate IRS of the main
annotator introduces noise to the training labels of the segmenta-
tion model. This noise can lead to systematic errors that are hard to
detect as the model is optimized to reproduce the manual segmen-
tations. Second, the automated detection of the region of interest
can also introduce small systematic errors by missing VAT depots
accumulated close to the diaphragm. Third, this study does not

Fig. 2. Agreement of manual and automated segmentation. Bland-Altman plots showing the agreement of SAAT (A), STAT (B), and VAT (C) quantification.

Table 1. Model performance metrics. Mean validation metrics of the
class-wise confusion matrix and SD of the fivefold cross-validated model
training using a total of 30 annotated datasets.

SAAT STAT VAT

Accuracy 0.998
± 0.001

0.995
± 0.002

0.998
± 0.001

Dice 0.981
± 0.011

0.955
± 0.028

0.947
± 0.033

False discovery rate 0.022
± 0.014

0.050
± 0.037

0.047
± 0.032

False-negative rate 0.017
± 0.014

0.040
± 0.027

0.058
± 0.038

False-omission rate 0.001
± 0.001

0.002
± 0.001

0.001
± 0.001

False-positive rate 0.001
± 0.001

0.003
± 0.002

0.001
± 0.001

Jaccard 0.962
± 0.027

0.915
± 0.048

0.902
± 0.057

Negative
predictive value

0.999
± 0.001

0.998
± 0.001

0.999
± 0.001

Precision 0.979
± 0.015

0.950
± 0.037

0.953
± 0.032

Recall 0.983
± 0.014

0.960
± 0.027

0.942
± 0.038

True-negative rate 0.999
± 0.001

0.997
± 0.002

0.999
± 0.001

Relative error (%) 0.52 ± 1.87 1.17 ± 3.94 −1.25 ± 2.79

Absolute error (ml) 27.5 ± 140.9 20.3 ± 71.5 −18.4 ± 51.1
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evaluate additional variables associated with diseases (metabolic
data or laboratory parameters) and is limited to basic anthropomet-
ric data and image-based parameters. Fourth, an independent an-
notated testing dataset is missing and manual inspection of all
segmentation results is not feasible because of the size of the pop-
ulation. However, the low true-positive rate (7%) of the outlier de-
tection in combination with a manual check for anomalies (10% of
the study population) sufficiently minimizes the probability of

unidentified error. Fifth, the applied Dixon technique just allows
a binary decision in the presence of fat mass and is not capable to
detect small amounts of ectopic fat (e.g., in the liver, pancreas, or
skeletal muscles), which would add important additional informa-
tion on the metabolic condition of the individuals (14, 16, 39).

In conclusion, the results presented demonstrate the effective-
ness of the nnU-net model to provide automated assessment of
the volume and topography of AT in humans, with accuracy and

Fig. 3. Outlier detection. Examples of detected outliers based on model uncertainty. (A and B) True-positive detected outlier due to partial fat-water swap in the
abdomen; quantification of AT is not possible [(A) without model–generated segmentation and (B) model-generated segmentation]. (C and D) False-positive detected
outlier due to low AT volume [(C) without model–generated segmentation and (D) model-generated segmentation]; quantification of AT is possible.

Table 2. Study population. Anthropometric data and AT volumes obtained from automatic segmentation of the entire study population and anthropometrics of
the training data. *P < 0.05.

Male Female
Means ± SD Range Means ± SD Range

Study
population

n 5708 – 5433 –
Age (years) 52.1 ± 11.4 20–72 51.7 ± 11.3 20–72
Height (kg) 178.2 ± 7.0 152.8–204.6 164.9 ± 6.5 126.4–189.0
Weight (kg) 86.9 ± 14.3 45.8–191.6 71.2 ± 14.4 37.9–157.5
BMI (kg/m2) 27.4 ± 4.1 15.6–49.4 26.2 ± 5.2 16.2–54.6
WC† (cm) 97.4 ± 12.1 63.2–165.0 86.1 ± 13.1 54.0–150.0

SAAT (liters) 6.17 ± 3.05 0.66–26.3 7.68 ± 3.88 0.83–29.4
STAT (liters) 2.81 ± 1.17 0.36–13.6 3.78 ± 1.77 0.38–16.0
VAT (liters) 4.84 ± 2.36 0.54–15.3 2.51 ± 1.55 0.22–10.3

Training data‡ n 15 – 15 –
Age (years) 44.5 ± 14.7* 24–69 44.9 ± 13.4* 23–64
Height (kg) 175.5 ± 8.0 164.4–190.6 164.5 ± 8.2 152.6–176.5
Weight (kg) 81.0 ± 15.3 58.7–111.9 66.1 ± 20.0 46.7–106.4
BMI (kg/m2) 26.6 ± 6.4 20.0–37.5 24.6 ± 7.9 18.2–37.0
WC (cm) 91.9 ± 14.6 72.7–125.0 82.0 ± 17.5 64.1–111.6

†Analysis included all individuals with WC data available (n = 5697males and n = 5420 females). ‡Differences between the complete study population and the
training subset are tested for significance.
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Fig. 4. Anthropometric associations.Association and linear regression of AT compartments with BMI [SAAT formales (A) and females (D), STAT formales (B) and females
(E), and VAT for males (C) and females (F)] and with age [SAAT (G), STAT (H), and VAT (I)].

Table 3. Correlations with anthropometric data. *P < 0.05 and **P < 0.001.

SAAT STAT VAT

Male Female Male Female Male Female

Age 0.07** 0.15** 0.22** 0.28** 0.40** 0.41**

Height 0.10** −0.03* 0.05** −0.10** −0.01 −0.11**

Weight 0.85** 0.91** 0.78** 0.82** 0.71** 0.74**

BMI 0.86** 0.93** 0.81** 0.87** 0.77** 0.79**

WC† 0.85** 0.89** 0.83** 0.86** 0.85** 0.84**

†Analysis included all individuals with WC data available (n = 5697 males and n = 5420 females).
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precision equivalent to that of skilled human observers. This ap-
proach and the results obtained from the large population of the
GNC are relevant for both epidemiological and clinical perspec-
tives. On the basis of automated MR image analysis, meaningful ep-
idemiological data illustrating prevalence and associated
cardiometabolic disease burden of AT compartments allow to iden-
tify gender-specific and regional characteristics. By complementing
existing risk prediction models with characterization of body fat dis-
tribution, improved and individualized risk estimation will be pos-
sible, as earlier identification of individuals at risk will lead to more
timely and individualized prevention and treatment.

MATERIALS AND METHODS
German National Cohort
The GNC (NAKO Gesundheitsstudie) is a population-based, longi-
tudinal multicentric cohort study in Germany enrolling >200,000
participants selected randomly from the population. Its main objec-
tive is to identify and to characterize risk factors for major chronic
diseases (e.g., diabetes mellitus and cancer) (22). For a subset of ap-
proximately 30,000 participants, whole-body MRI examinations
have been conducted at five imaging sites using dedicated neurolog-
ic, cardiovascular, thoracoabdominal, and musculoskeletal imaging
protocols (42). All local on-site institutional review boards in charge

of the five imaging sites approved the GNC, and written informed
consent of all participants was obtained before study enrollment.

MRI data acquisition
MRI was performed at five sites using 3-T whole-body scanners (all
MAGNETOM Skyra, Siemens Healthineers, Erlangen, Germany)
using a standardized acquisition protocol (42). Imaging of the
body trunk was performed using a dedicated T1-weighted 3D
VIBE two-point DIXON sequence in axial orientation with 3 mm
in section thickness, 1.4 mm–by–1.4 mm in-plane voxel size, echo
times of 1.23 and 2.46 ms, and a repetition time of 4.36 ms accord-
ing to the GNC protocol (42). From this, fat- and water-selective
images are automatically calculated on the scanners. For the sake
of data minimization, only fat-selective images are used in the anal-
yses. The data used in this study were obtained from the first GNC
release of MRI data, which includes 11,191 participants being
screened between May 2014 and December 2016.

Segmentation model
For the automated, retrospective analysis of the MR data, a stratified
(age and BMI) random sample of 30 (15 males and 15 females; de-
mographics are provided in Table 2) manually segmented fat-selec-
tive MR images was used to train a 3D U-Net model (nnU-Net, full-
resolution configuration) (36) to perform the segmentation of VAT
and SAT. The 3D nnU-Net model was trained out of the box for

Fig. 5. Spatial distribution of VAT. Age dependency of the regional distribution of VAT along craniocaudal axis. (A) Males with a BMI of <25.0 kg/m2, (B) males with a BMI
of >30.0 kg/m2, (C) females with a BMI of <25.0 kg/m2, and (D) females with a BMI of >30.0 kg/m2. Error bars show SEM.

Haueise et al., Sci. Adv. 9, eadd0433 (2023) 12 May 2023 7 of 10

SC I ENCE ADVANCES | R E S EARCH ART I C L E
D

ow
nloaded from

 https://w
w

w
.science.org at U

niversitaet Freiburg on June 14, 2023



1000 epochs using fivefold cross-validation providing the mean (i.e.,
the output of an ensemble) of the five resulting independent models
as resulting segmentation as suggested by the authors (36). The
model-generated segmentations were evaluated by DSC and by
the actual volume of the AT compartments and the percentage of
the error.

Manual segmentation
The manual labeling process was performed by a doctoral student
under the supervision of two experienced medical physicists. IRS
was assessed after a 2-month interruption by resegmentation
from scratch of randomly chosen axial slices from the 30 originally
annotated datasets.

To assess VAT, defined as AT inside the abdominal cavity in-
cluding retroperitoneal structures such as the kidneys, pancreas,
or duodenum, in a standardized manner, AT accumulated around
the heart is excluded. The manual segmentation was performed
from the middle of the femoral heads to the cardiac apex, since
the thoracic diaphragm cannot be detected on the MR images.
SAT was segmented ranging from the middle of the femoral
heads to the middle of the humeral heads (see red dashed lines in
Fig. 7 indicating the different levels). By design, nnU-Net implicitly
recognizes these inferior and superior boundaries with no need for
an explicit adaption of the model to the region of interest.

Fig. 6. Spatial distribution of SAT. Age dependency of the regional distribution of SAT along craniocaudal axis. (A) Males with a BMI of <25.0 kg/m2, (B) males with a BMI
of >30.0 kg/m2, (C) females with a BMI of <25.0 kg/m2, and (D) females with a BMI of > 30.0 kg/m2]. Error bars show SEM.

Fig. 7. Manual segmentation. (A) Red dashed lines indicating the limits of the
ranges of manual segmentation (femoral heads to cardiac apex for VAT and
SAAT and cardiac apex to humeral heads for STAT, respectively) and (B and C)
axial examples of manual segmentations of SAT (yellow) and VAT (red).
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Uncertainty-based outlier detection
Because of the large population size of the cohort, an automated
measure for outlier detection in the segmentation based on mean
pairwise DSC of the cross-validated training folds to estimate the
model’s uncertainty (43) was used. Participants are classified as out-
liers if the model uncertainty is three interquartile ranges below the
first quartile of all participants. Detected outliers were reviewed
manually by three different scientists. In addition, random datasets
up to 10% of the study cohort were manually checked for anomalies.

Fat quantification and spatial distribution
For the analysis of the associations of AT depots and anthropomet-
ric data, SAT was differentiated in SAAT and STAT using the cardiac
apex as the boundary. The regional spatial distribution of the AT
compartments was described by considering the percentage of
total AT of the trunk along the craniocaudal axis.

Anthropometric data
Body height and weight were assessed using standardized measur-
ing instruments across the study centers (all Stadiometer 274 for
height and medical Body Composition Analyzer 515 for weight,
both seca GmBH, Hamburg, Germany). WC was measured at the
midpoint between the iliac crest and the lowest rib. The study par-
ticipants should come to the measurements with an empty bladder,
should not have been physically active in the last hour, and should
not lie down 10 min before the measurements (44). For further anal-
yses, normal weight was defined as BMI ≤ 25 kg/m2, whereas
obesity was defined as BMI ≥ 30 kg/m2.

Statistical analysis
Data are reported as means ± SD unless stated otherwise. Bland-
Altman plots are were used to visualize the agreement between
manual and automated AT quantification. IRS was measured as
DSC using true-positive, false-positive, and false-negative annotat-
ed image pixels. Model performance was evaluated using class-wise
metrics of the confusion matrix, e.g., DSC or precision. The associ-
ation of AT compartments and anthropometric (gender, age, and
BMI) data was assessed using linear regression and Pearson’s corre-
lation coefficient. Two-sample Welch’s t test was used for the deter-
mination of gender-related differences. The explained variation in
MRI-assessed AT compartments by anthropometric measures is
modeled using multiple linear regression models. SEM was used
in the visualization of regional AT distribution. P < 0.05 was con-
sidered statistically significant in this study. All statistical analyses
were performed in Python 3.8 using SciPy 1.5.4 and R version 4.2.0.

Supplementary Materials
This PDF file includes:
Table S1

View/request a protocol for this paper from Bio-protocol.
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