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Context: While urothelial and renal cell cancers have exhibited modest responses to
novel immune checkpoint inhibitors targeting the programmed death ligand 1 and its
receptor, response rates in patients with prostate cancer have remained poor. The factors
underlying suboptimal outcomes observed in patients treated with novel immunother-
apies are still to be resolved.
Objective: To review the literature and describe the key adaptive immune physiological
events associated with cancer progression and therapeutic response in genitourinary
(GU) cancers.
Evidence acquisition: We performed a nonsystematic, collaborative narrative review to
highlight recent advancements leading to the current state of knowledge on the critical
mediators of antitumor adaptive immunity to GU cancers. Further, we discuss the find-
ings on the pre- and post-treatment immunological events that either are unique to each
of the three cancer types or exhibit overlapping clinical associations.
Evidence synthesis: Aging-associated immune function decline is a major factor under-
lying poor outcomes observed in patients treated with both conventional and novel
immunotherapies. Other cancer immunobiological aspects associated with suboptimal
responses in GU cancers include the overall tumor mutational burden, mutations in
specific tumor suppressor/DNA damage repair genes (KDM6A, PTEN, STAG2, TP53, ATM,
and BRCA2), and abundance of multiple functional states of adaptive immune cells and
their spatiotemporal localization within the tumor immune microenvironment.
Understanding these mechanisms may potentially lead to the development of prognostic
and predictive biomarkers such as immune cell infiltration profiles and tertiary lym-
phoid structures (TLSs) that associate with variable clinical outcomes depending on
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the nature of the novel immunotherapeutic approach. Implementation of newer
immune-monitoring technologies and improved preclinical modeling systems will aug-
ment our understanding of the host and tumor intrinsic factors contributing to the vari-
ability of responses to immunotherapies.
Conclusions: Despite the tremendous progress made in the understanding of dynamic
and static adaptive immune elements within the tumor immune landscape, several
knowledge gaps remain. A comprehensive knowledge thus gained will lead to precision
immunotherapy, improved drug sequencing, and a therapeutic response.
Patient summary: We performed a collaborative review by a diverse group of experts in
the field to examine our understanding of the events and crosstalk between cancer cells
and the patient’s immune system that are associated with responses to novel
immunotherapies. An evolving understanding of tumor-intrinsic and host-related
immune alterations, both before and after therapy, will aid in the discovery of promising
markers of responses to immunotherapy as well as the development of unique therapeu-
tic approaches for the management of genitourinary cancers.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association of
Urology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction adaptive immunity in bladder, kidney, and prostate cancer,
In 2020, cancers of the genitourinary (GU) tract originating
from the kidney/renal pelvis, urinary bladder, or prostate
accounted for 2.42 million newly diagnosed cancer cases
worldwide. As per the International Agency for Research
on Cancer, this number is estimated to increase to approxi-
mately 4.08 million new cases by 2040. A major factor
underlying this projected rise in incidence is the aging glo-
bal population, which remains an unmodifiable risk factor
for all cancers of the GU tract. Most patients diagnosed with
a cancer originating in the GU tract are >65 yr old [1].
Recent initiatives such as the Genotype-Tissue Expression
Program in humans and Tabula Muris Senis in mice, which
comprehensively characterized age- and sex-related tran-
scriptomic alterations across tissue types, have advanced
our understanding of the effect of biological aging on immu-
nity within the prostate, bladder, and kidney [2,3]. Studies
in the bladder and kidney have also highlighted tissue-
specific local immunological changes such as increased
lymphocytic infiltration, tertiary lymphoid structure (TLS)
formation, or changes in the microbiome that accompany
biological aging in a sex-dependent manner [4–6].

Simultaneous to the rise in incidence, newer therapies,
especially those targeting the host immune system, have
demonstrated considerable efficacy in cancers of the blad-
der and kidney [7]. Although patients with prostate cancer
have not benefited as much as bladder cancer patients,
those with genomic alterations such as germline or somatic
mutations in DNA damage repair (DDR) genes (BRCA2 and
ATM) [8] have experienced indirect benefits [9].

Here, we review the key aspects of adaptive antitumor
immune responses associated with carcinogenic processes
within the GU tract and highlight major advances leading
to the current state of knowledge on the biology and thera-
peutic exploitation of tumor vulnerabilities in GU cancers.
2. Evidence acquisition

We performed a comprehensive literature review using a
nonsystematic approach to search original studies exploring
until December 2022. From this comprehensive search
using the PubMed database, we summarize the most rele-
vant studies and outcomes from clinical trials that signifi-
cantly advanced the field of immuno-oncology in GU
cancers. While a majority of the original articles were pub-
lished over the last 10 yr, we also include some earlier pub-
lications that were critical to the overall scope of this
review. Following careful consideration of 162 publications,
we selected 108 publications that were deemed most suit-
able by all authors to be included in this narrative review.
Based on the evidence from recently completed
immunotherapy trials integrating pretreatment tumor
immune status in trial design, we further provide perspec-
tives on combination approaches to improve response rates.

3. Evidence synthesis

3.1. Adaptive immunity in the healthy GU tract

The mucosal barrier in the GU tract is constantly exposed to
metabolic waste products, microorganisms, and environ-
mental carcinogens; thus, homeostatic mechanisms medi-
ate immune tolerance at the GU interface. Tissue-resident
antigen-presenting cells (APCs) such as macrophages,
monocytes, and dendritic cells take up antigen, but the
strength of the subsequent adaptive immune response
may depend upon the type of APCs presenting antigen
[10]. The macrophage is the major tissue-resident innate
immune cell that acts as the first responder to infectious
or carcinogenic insults at the GU mucosae [4,10–12]. To
bridge adaptive immune mechanisms, other cell types, such
as mast cells, dendritic cells, neutrophils, and natural killer
cells located within the bladder mucosa, also play signifi-
cant roles and have widely been studied in the context of
antitumor immunity [13,14].

Among the cells of the adaptive immune branch, helper
T cells, cytotoxic T cells, and their mucosal innate counter-
parts such as mucosal-associated invariant T cells, natural
killer T cells, and gamma-delta (cd) T cells are critical to
antitumor immunity in the GU mucosa [15–19]. In one
study, single-cell sequencing of tumors before and after
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chemotherapy or immune checkpoint inhibition showed
that, in addition to cytotoxic CD8+ T cells, bladder tumors
are also enriched in clonally expanded CD4+ T cells in mul-
tiple functional states, such as regulatory or helper cells
[16]. Novel findings from this study were the observation
of the cytotoxic capacity of tumor-infiltrating CD4+ T cells
that exhibited robust expression of the cytotoxic proteins
granzyme K and granzyme B and the presence of several
canonical CD4+ T-cell states such as Th17 cells. Further,
bacillus Calmette-Guérin (BCG) immunotherapy-specific
cd T cells increase in the urine of patients undergoing BCG
treatment [20]. A single study reported that tissue-
resident memory T cells, a more recently described type
of memory T cells, were positively associated with a good
response to immune checkpoint inhibitors (ICIs) in
muscle-invasive bladder cancer (MIBC) [21]. While diverse
T-cell populations in the bladder are not well researched,
it is likely that these play an important role in immunity
to bladder diseases [19].

Tissue-resident B cells are rare in younger individuals.
However, they significantly increase with biological aging
in the kidney [22] and the bladder [23], residing mainly
within mucosa-associated lymphoid tissue, commonly
referred to as TLSs [4]. The formation of TLSs within the
bladder and kidney also results from chronic inflammation
[24] such as persistent urinary tract infection [25], pro-
longed exposure to carcinogens, immunotherapy [26], or
age-related increased systemic levels of tumor necrosis
factor-a [27]. The formation of TLSs of acute and chronic
nature explains their varied associations with clinical out-
comes across different cancer types [27,28]. The cellular
composition, presence of activated and exhausted states,
and spatial organization of TLSs under pre- and post-
treatment scenarios have prompted further research into
their role as predictive biomarkers for several immunomod-
ulatory therapies, including, most importantly, ICIs [27–29].

3.2. Tumor immune landscape of GU cancers

Snapshots of dynamic immune responses and coordinated
crosstalk with neighboring cells are often reflected in stud-
ies evaluating the pretreatment tumor immune microenvi-
ronment (TIME). Indeed, the pretreatment immune
landscape of GU cancers has extensively been studied to
identify novel therapeutic targets and immune biomarkers
of response (Fig. 1). Several studies on genomic correlates
of the pretreatment TIME have confirmed that the loss of
tumor suppressor or DDR gene function is a key driver of
coevolving TIME states in GU cancers [30].

3.2.1. Bladder cancer
Mutations in tumor suppressor or DDR genes, such as
KDM6A, ARID1A, STAG2, TP53, and PPARG, and their associa-
tion with variable TIME states have widely been reported in
MIBC and non–muscle-invasive bladder cancer (NMIBC)
[31,32]. In a carcinogen-induced murine model, it was
shown that KDM6A deficiency in urothelial cells activated
cytokine signaling and promoted M2 macrophage polariza-
tion in the bladder immune microenvironment [30]. Inter-
estingly, evaluation of both normal and malignant
urothelium using 2097 microbiopsies from human bladders
showed mutations in KDM6A to be more prevalent in older
women than in men [33,34]. Sequencing of bladder-
associated lymphoid or immune cell aggregates (commonly
found in both nonmalignant and malignant bladder tissues)
revealed a low mutational allele frequency in immune cells,
confirming KDM6A loss as a cancer cell–intrinsic event. Sim-
ilarly, mutations in STAG2 were more enriched in tumors
from women than in tumors from men [35].

An investigation of the effect of the mucosal environ-
ment on bladder carcinogenesis showed a significant asso-
ciation between interleukin-6 (IL-6)-, IL-3–, IL-8–, IL-17–,
and IL-23–regulated T- and B-cell pathways and the evolu-
tion of a basal subtype of bladder cancer [36]. A high tumor
mutational burden (TMB) is often observed in these tumors
and contributes to the generation of an immune-infiltrated
tumor by amplifying the tumor neoantigen repertoire. By
contrast, chromosomal alterations such as loss of the 9p21
region, harboring the IFN1 genes, are associated with less
infiltrated TIMEs across multiple cancers, including MIBC
[37]. Not surprisingly, tumors with 9p21 region loss also
exhibit a poor response to immune checkpoint blockade
potentially due to the loss of CDKN2A [37].

Immune-cell deconvolution analyses from tumor whole
transcriptomic datasets as well as characterization of static
TIME states via spatial and single-cell immune-cell profiling
have defined a spectrum of pretreatment TIME states in GU
cancers that correlate with disease progression and treat-
ment outcomes [28,38,39]. Indeed, such studies have rein-
forced that in individuals’ TIME states, adaptive immunity,
and tumor-promoting inflammation may exist in a delicate
balance [40]. In bulk transcriptomic data from pretreatment
tumors obtained from patients with metastatic bladder can-
cer enrolled on a clinical trial with PD-1 blockade, the ratio
of two gene signatures reflecting adaptive immunity and
tumor-promoting inflammation, coined the myeloid
single-cell immune:protumorigenic inflammation ratio
(Msc2IR) score that correlated with the response to treat-
ment [40]. Projecting these gene signatures onto single-
cell RNA sequencing data from a cohort of patients with
MIBC confirmed that the adaptive immune signature genes
emanated largely from diverse cell populations, whereas
the tumor-promoting inflammation signature genes ema-
nated largely from macrophages [41].

Infiltration patterns and spatial organization of immune
cells are widely shown to correlate with the basal and lumi-
nal subtypes of bladder cancer, and treatment outcomes
[42]. For instance, greater CD8+ T-cell infiltration in the
basal subtype of bladder cancer may confer increased sus-
ceptibility to treatment due to higher expression of immune
checkpoints on exhausted phenotypes and short-term
treatment benefit via immunogenic cell death–inducing
chemotherapy [43].

Most recently, Aragaki et al. [44] showed that female
MIBC patients with increased expression of B- and T-cell
genes in their tumors had a poor response to treatment with
atezolizumab immunotherapy, in contrast to male patients.
Similar sex differences in increased expression of immune
cell–associated transcripts and programmed death ligand
1 (PD-L1) were also reported by Hurst et al. [31], with
higher expression of PD-L1 in stage T1 tumors from women,



Fig. 1 – The tumor immune microenvironment of GU cancers and response to immunotherapy. The TIME of GU cancers is influenced by factors such as TMB
and mutations in DDR genes (such as TP53, KDM6A, STAG2, ARID1A [bladder cancer]; PTEN, ATM, BRCA1 [prostate cancer]; and PRMB1 [RCC]) or due to TMB,
insertion or deletion (INDEL) mutations, or human endogenous retroviral (HERV) elements. The pretreatment TIME states are observed as a spectrum ranging
from noninflamed (less infiltrated) to inflamed (highly infiltrated). Inflamed TIME exhibits increased density of CD8+ T cells (and their proliferating and
dysfunctional subsets), TLSs, B cells and M2-like suppressive macrophages, and PD-L1–expressing cells. Patients with inflamed pretreatment TIME generally
show favorable responses to ICIs in contrast to those with noninflamed TIME. Bladder cancer patients with inflamed pretreatment TIME exhibit a poor
response to BCG immunotherapy. BCG = bacillus Calmette-Guérin; DDR = DNA damage repair; GU = genitourinary; RCC = renal cell carcinoma; TIME = tumor
immune microenvironment; TLS = tertiary lymphoid structure; TMB = tumor mutational burden.
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although no significant associations with clinical outcomes
were found. In this cohort, T1 tumors exhibited features
similar to those observed in MIBC, such as increased preva-
lence of mutations in ERCC2. Further categorization of T1
tumors into T1E1, T1E2, T1E3, and T1E4 subtypes showed
higher expression of genes associated with an immune
response, specifically the interferon (IFN) pathway and T-
cell responses. Progression after BCG was found to be higher
in the subtypes T1E3 and T1E4.

Another study conducted by Taber et al. [45] on a cohort
of 785 patients also showed an association between
increased immune cell infiltration and higher disease stage.
Interestingly, an independent association between PD-1 and
PD-L1 expression with increased risks of recurrence and
progression of NMIBC, in contrast to those in MIBC, was
observed. Among the other immune checkpoint proteins,
expression of LAG3 on stromal cells was shown to positively
correlate with the abundance of exhausted CD8+ T cells
[46]. This study also demonstrated increased expression of
LAG3 in the basal subtype of MIBC tumors compared with
the luminal subtype. While most studies to date have
reported consistent findings across the known subtypes, a
recent single-nucleus RNA sequencing–based profile of 48
tumors showed the presence of significant intratumoral
subtype heterogeneity and the simultaneous existence of
both luminal and basal characteristics within the same
tumor [47]. While upper tract urothelial carcinomas consti-
tute only 5–10% of all urothelial carcinomas, these exhibit
features similar to the luminal papillary MIBC tumors, such
as lower expression of genes associated with T-cell function
[48]. An exploratory biomarker analysis from the ABACUS
trial evaluating neoadjuvant immunotherapy in cisplatin-
ineligible MIBC showed that increased baseline stromal
CD8+ T cells were associated with shorter recurrence-free
survival [49]. Forkhead box P3 (FoxP3+) regulatory T cells
correlated positively with baseline stromal CD8+ T cells.
3.2.2. Kidney cancer
Clear cell renal cell carcinoma (ccRCC) is characterized by a
relatively low TMB, which is about ten-fold lower than that
in melanoma [50], and yet is recognized as a highly
immunogenic tumor type that is responsive to
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immunotherapy agents, including IL-2 [51] and ICIs [52].
The most common mutations in ccRCC include VHL (57–
80%), PBRM1 (35.4%), BAP1, SETD2 (41.7%), TP53 (18.8%),
and KDM5C (16.7%) [53,54]. Among these mutations, SETD2
mutations are associated with decreased levels of FoxP3+ T
cells in the tumor core, stroma, and tumor-stroma interface;
PBRM1 mutations are associated with decreased FoxP3+ T
cells in the tumor core; and KDM5C mutations are associ-
ated with significantly increased CD206+ macrophage
tumor infiltration in the tumor core. These data suggest that
mutations in these chromatin-modifying genes, including
SETD2, PBRM1, and KDM5C, are associated with distinct
immune infiltration patterns within the TIME and, thus,
may influence the response to immunotherapy [54].

The observation that renal cell carcinoma (RCC) is a
highly immune-infiltrated solid tumor [55] suggests that
the major source of the ‘‘inflamed’’ TIME in RCC likely
results from genomic changes distinct from TMB. One
potential source could be mutations in chromatin-
modifying genes, including PBRM1 (mutated in about 60%
of ccRCC), which result in conformational changes of the
chromosome and thus allow for increased expression of
key immune genes such as IFNG to mediate antitumor
immune responses [56]. Mutation of PBRM1 has not been
consistently associated with clinical responses to ICIs [57].

One possible explanation for the lack of a consistent corre-
lation between mutations of these chromatin-modifying
genes (eg, PBRM1 and SETD2) and clinical response could be
due to the likelihood of these gene mutations generating
mostly tumor-associated antigens (TAAs; ie, antigens that
have elevated expression levels on cancer cells and also lower
levels on host cells) instead of tumor-specific antigens (TSAs;
ie, antigens found on cancer cells only). A supportive piece of
evidence is the elegant pan-cancer analyses of the role of fra-
meshift insertion and deletion mutations that can generate
neoantigens to initiate antitumor immune responses in
patients with kidney cancer, bladder cancer, prostate cancer,
melanoma, and lung adenocarcinoma, [58].

Paradoxically, high immune infiltration in RCC correlates
with poor outcomes [59]. Single-cell sequencing approaches
identified enrichment of terminally exhausted CD8+ T cells
and M2-like macrophages in advanced disease compared
with early-stage disease, and these correlated with a poor
prognosis [60]. In addition, the pretreatment TIME of ccRCC
tumors that respond to ICI typically contains cytotoxic T
cells expressing high levels of coinhibitory receptors and
effector molecules. Finally, ccRCC cells divide into subpopu-
lations differing in angiogenic signaling and upregulation of
immunosuppressive programs after an ICI [61]. An analysis
of the molecular characteristics of tumors from patients on
the phase 2 IMmotion150 trials indicates that patients with
a Teffhigh gene signature (including T-effector presence and
function, IFN-c response, response to checkpoint inhibitors,
high expression of PD-L1, and CD8+ T-cell infiltration) have
better outcomes when treated with atezolizumab and beva-
cizumab, whereas those with a myeloidhigh signature did
poorly when treated with atezolizumab alone or in combi-
nation with bevacizumab [62]. Similarly, correlative
research from the phase 3 JAVELIN Renal 101 clinical trial
demonstrates that a 26-gene immunomodulatory signature
(Renal-101 Immuno signature) is associated with longer
progression-free survival in patients treated with avelumab
plus axitinib [63]. Additional validation studies will be
needed before these biomarkers can be used clinically.

Collectively, these findings from genomic analysis, TIME
evaluation, and gene signature exploration suggest that a
more detailed and advanced understanding of tumor-
intrinsic factors (especially identification of TSAs that can
generate antitumor immune responses) and tumor-
extrinsic factors (especially how these factors modulate
antitumor immune responses) in ccRCC is necessary not
only to identify biomarkers to predict clinical response to
immunotherapy, but also to develop novel and effective
therapies for patients with ccRCC.

3.2.3. Prostate cancer
Prostate tumors exhibit somewhat distinct profiles of infil-
trating immune cells [64,65]. Pretreatment prostate tumors
are traditionally categorized as immunologically underac-
tive with a relatively low TMB [66]. Some studies have
noted high proportions of CD4+ and CD8+ T cells and
FoxP3+ regulatory T cells in the prostate TIME [67]. This is
more pronounced in tumors exhibiting PTEN tumor-
suppressor protein loss [65]. Increased infiltration of T cells
in the stromal regions, with higher proportions of CD4+ T
cells than CD8+ T cells, correlated positively with PTEN pro-
tein loss in primary prostate tumors [41]. Another recent
study revealed predominance of CD163+ macrophages in
high-grade tumors [68]. Emerging reports have also demon-
strated the distinct spatial profiles of T and B cells in germ-
line homologous recombination repair deficient and
sporadic prostate tumors with the presence of TLSs in the
stromal regions [69]. Recently completed ICI trials have
demonstrated the therapeutic impact on the prostate TIME
[70]. Despite an underactive TIME, clinical responses were
reported in patients harboring relatively higher TMBs or
specific mutations in DDR genes [70]. In addition, in pros-
tate cancer patients with a low TMB, those who can produce
TAAs or TSAs to specifically generate antitumor immune
responses also demonstrate favorable clinical outcomes in
response to ICI (ipilimumab) therapy [66].

Overall, an understanding of the pretreatment TIME and
genomic changes that lead to generation of antitumor
immune responses will be key to provide insights into the
biology of GU tumors and define precise biomarkers of ther-
apeutic response, depending on the specific types of
immunotherapy.

3.3. Therapeutic immunomodulation in GU cancers

Effective mucosal immune responses to organ-specific anti-
genic insults are best evoked by locally delivered
immunomodulatory therapy. Despite its demonstrated effi-
cacy, approximately 50% of patients have disease recurrence
following intravesical BCG treatment of NMIBC [71]. Some
studies have highlighted the inverse association between
increased infiltration of regulatory T cells and CD163+
macrophages, and a poor response [72]. Adaptive immune
resistance induced by increased levels of IFN-c has been
proposed as one of the factors underlying a poor response
to BCG therapy [73]. It is tempting, however, to speculate
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that BCG, an attenuated microbe, may not be able to acti-
vate immune cells in an exhausted bladder immune
microenvironment [74], especially in cases of carcinoma
in situ or patients nonresponsive to BCG who often exhibit
high infiltration of immune cells and TLSs in pretreatment
tumors [26]. A key finding from this study was the
increased levels of tumor-derived DNA and immune
exhaustion–related proteins such as PD-1, PD-L1, and
CD70 in the post-BCG urine specimens of patients who
exhibited high-grade recurrence.

For metastatic urothelial carcinoma, five immune
checkpoint-inhibiting agents have been approved by the
Food and Drug Association (FDA) as first-line, second-line,
and adjuvant therapy. In the first-line setting, both ate-
zolizumab (anti–PD-L1) and pembrolizumab (anti–PD-1)
have been approved as the standard therapy for patients
with advanced urothelial carcinoma, based on eligibility
for first-line platinum-based chemotherapy and levels of
tumor PD-L1 expression [75]. In addition, avelumab (anti–
PD-L1) has been approved for maintenance treatment of
patients with locally advanced or metastatic urothelial car-
cinoma that has not progressed following first-line
platinum-containing chemotherapy [76]. Atezolizumab
and durvalumab were later voluntarily withdrawn by the
supporting companies due to follow-up phase 3 clinical tri-
als in which these agents failed to meet primary survival
endpoints. The failure of some of these agents (ate-
zolizumab and durvalumab) in a specific clinical setting
(first or second line after chemotherapy) begs the question
of how to optimally target the bladder cancer TIME to max-
imize antitumor immune responses.

For patients with RCC, immune checkpoint–inhibiting
agents have been approved by the FDA in the first-line,
second-line, and adjuvant therapy settings. In the first-line
setting, nivolumab plus ipilimumab (anti–CTLA-4), pem-
brolizumab plus axitinib (tyrosine kinase inhibitor), avelu-
mab plus axitinib, nivolumab plus cabozantinib (tyrosine
kinase inhibitor), and pembrolizumab plus lenvatinib (mul-
titarget kinase inhibitor) have been approved [77–80]. In
the adjuvant setting, pembrolizumab was recently shown
to promote a significant improvement in disease-free sur-
vival after surgery in patients with RCC who were at a high
risk of recurrence [81]. Together, some of these clinical suc-
cesses demonstrate not only the well-founded strategy of
targeting T cells in RCC for clinical benefit, but also potential
combination approaches to optimize the RCC TIME to max-
imize antitumor immune responses.

In the USA, there are three approved immunotherapies
for prostate cancer: sipuleucel-T and two anti–PD-1 anti-
bodies (pembrolizumab and dostarlimab). Sipuleucel-T is
a therapeutic vaccine targeting prostatic acid phosphatase,
which is a TAA. A full treatment regimen includes infusion
of sipuleucel-T three times at approximately 2-wk intervals.
Guidelines suggest that sipuleucel-T should be offered to
men with less aggressive disease who are asymptomatic
or minimally symptomatic [82–84].

Pembrolizumab and dostarlimab are approved in a
tumor-agnostic fashion that applies to a small subset of
patients with metastatic castration-resistant prostate can-
cer (mCRPC) [85]. Roughly 5% of men with mCRPC are
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microsatellite instability (MSI) high and about 5% are TMB
high, which may overlap significantly [86,87]. The response
rate for biomarker-positive men treated with pem-
brolizumab is about 50%, and these responses are often dur-
able [86,87]. Dostarlimab is also approved for MSI-high
solid tumors including mCRPC. Beyond these limited indica-
tions, ICIs have not been proved to be efficacious in
prostate cancer. This lack of response can largely be
attributed to both noninflamed TIME and increased infiltra-
tion by immunosuppressive cell subsets [64,65,88,89]. Cur-
rently approved ICIs in GU cancers are summarized in
Table 1.
3.4. Emerging role of TLSs as biomarkers in GU tumors

Tumor-infiltrating B cells localized within or outside of TLSs
are associated with favorable prognosis and response to ICIs
in some GU cancers [27,28,90–92]. A comparison of TLSs in
ccRCC and MIBC revealed their presence to be associated
with poor outcomes only in RCC [29]. However, TLSs were
observed more frequently in high-grade ccRCC and bladder
cancer, suggesting the presence of exhausted immune cells
within TLSs due to the chronic nature of the disease. The
overall abundance of TLSs is higher in pretreatment tumors
from patients with MIBC than in those from patients with
NMIBC [23,93]. These patients showed improved survival
following adjuvant chemotherapy and an ICI [92,94–96].
Given the ability of BCG to induce the formation of granulo-
mas that are often associated with decreased disease recur-
rence [97], it is reasonable to suspect that TLS-formed post-
tumor resection would be associated with similarly positive
clinical outcomes. However, some studies have demon-
strated a variable association between BCG-induced granu-
lomas and response [98]. Much is still unknown regarding
the specific treatment type associated with the predictive
relevance of TLSs.
4. Conclusions

While some immunomodulatory therapies reduce the rates
of recurrence and restrict disease progression, the lack of a
memory response induced by exogenously activating
immune responses or ‘‘releasing the brakes’’ on immune
checkpoints does not always achieve beneficial therapeutic
outcomes. Clinical usefulness of predictive biomarkers such
as immune cell infiltration, immune checkpoint expression,
TMB, and DDR status is yet to be proved. Challenges associ-
ated with clinical translation include tumor heterogeneity,
immune-related adverse events, and other patient factors
such as age and sex [99]. However, ongoing trials evaluating
variable therapeutic sequencing of immunomodulatory
treatments may lead to improvement in favorable out-
comes. An understanding of the role of cancer-associated
fibroblasts in GU cancer is beginning to emerge [100] and
presents an attractive avenue for therapeutic modulation.
Immune cell therapy with gene-edited chimeric antigen
receptor–engineered autologous T cells or natural killer
cells combined with an ICI and/or chemotherapy may prove
promising [101].
Overall, our understanding of the pre- and post-
treatment immunological events that evolve from crosstalk
between tumor intrinsic alterations and host immune
responses has increased substantially over the past decade,
with a more finessed understanding of immunobiology in
general and a concerted effort to explore these concepts in
GU malignancy.
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