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Abstract

Background: Multiparametric MRI (mpMRI) improves the detection of aggressive

prostate cancer (PCa) subtypes. As cases of active surveillance (AS) increase and

tumor progression triggers definitive treatment, we evaluated whether an AI‐driven

algorithm can detect clinically significant PCa (csPCa) in patients under AS.

Methods: Consecutive patients under AS who received mpMRI (PI‐RADSv2.1

protocol) and subsequent MR‐guided ultrasound fusion (targeted and extensive

systematic) biopsy between 2017 and 2020 were retrospectively analyzed.

Diagnostic performance of an automated clinically certified AI‐driven algorithm

was evaluated on both lesion and patient level regarding the detection of csPCa.

Results: Analysis of 56 patients resulted in 93 target lesions. Patient level sensitivity

and specificity of the AI algorithm was 92.5%/31% for the detection of ISUP ≥ 1 and

96.4%/25% for the detection of ISUP ≥ 2, respectively. The only case of csPCa

missed by the AI harbored only 1/47 Gleason 7a core (systematic biopsy; previous

and subsequent biopsies rendered non‐csPCa).

Conclusions: AI‐augmented lesion detection and PI‐RADS scoring is a robust tool to

detect progression to csPCa in patients under AS. Integration in the clinical workflow

can serve as reassurance for the reader and streamline reporting, hence improve

efficiency and diagnostic confidence.
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1 | INTRODUCTION

Multiparametric MRI of the prostate (mpMRI) has become a

fundamental tool in the diagnostic pathway of prostate cancer

(PCa) and was consequently implemented in several internationally

recognized guidelines.1–4 With rising demand for exams, the required

workforce for the reading of prostate MRI also increases—thus

presenting an organizational challenge for efficient clinical reporting.

Artificial intelligence (AI) based lesion detection and classification in

prostate MRI has emerged as a promising technique to make reading

of prostate MRI exams more time efficient5 with improved

interobserver agreement and at least the same diagnostic accuracy

compared to radiologists.6,7

Due to the heterogeneity in histopathological subtypes of PCa,

prognosis and therapy differ enormously depending on histopathological

subtype as well‐differentiated (low‐grade) tumors show less aggressive

growth and better prognosis.8 The majority of PCa are rather slow‐

growing and potentially clinically inapparent.9 For instance, clinically

insignificant tumors (ncsPCa) in low‐risk settings do not require immediate

treatment but can be monitored in active surveillance (AS).10 However, a

proportion can present with an aggressive growth rate, limiting the

patient's life span and calling for different lines of therapy which results in

the need to distinguish one type from the other.11 MpMRI improves

detection of aggressive PCa that calls for prompt treatment12–15 and is a

strong predictor for tumor progression under AS.16,17

The current reading practice of prostate MRI and the expected

increasing number of AS cases undergoing MRI18 makes an

intensification of the radiological workload in the near future

foreseeable. AI driven reporting might serve as a tool to dampen

the rise in cost and human resources. If clinically significant PCa

(csPCa) can be detected reliably and fit in a structured report by

automated algorithms, the reporting process can be streamlined and

provide reinforcing feedback for the interpreting radiologist.

The purpose of this study was to evaluate whether a clinically

certified AI‐driven lesion detection algorithm can detect csPCa in

patients under AS and therefore increase efficiency and confidence in

clinical decision making.

2 | METHODS

2.1 | Subjects

In this single‐center retrospective study we evaluated 56 consecutive

patients who received mpMRI of the prostate between April 2017

and February 2020 while being under AS. Median age was 63 years

(range: 54−78; mean: 67.23; SD: 5.74). Indications for MRI during AS

were suspicion for progression due to prostate specific antigen (PSA)‐

dynamic (n = 31; mean PSA doubling time: 50.6 months; mean PSA

slope: 0.18, mean PSA velocity: 4.7 ng/mL/month), standard proce-

dure during AS with nonincreasing PSA and MR‐guided surveillance

biopsy (n = 18), patient request (n = 1), and unknown reasons (n = 6).

PSA‐dynamics were calculated considering the two most recent

mpPSA values before the MRI using an open‐access online tool.19

Follow‐up MRI and rebiopsy as standard procedure in AS were

performed in patients who received initial MRI scans and systematic

(±targeted) biopsy before inclusion or in case there was no initial MRI

available according to international guidelines.1,3 Patients were

excluded if MRI exams were performed for first guided biopsy

before AS, even if the biopsies resulted in AS. Median PSA before

biopsy was 9.48 ng/mL (range: 0.55−63.89; mean: 11.18; SD: 9.58).

All patients underwent TRUS‐fusion guided biopsy (targeted and

systematic) for histopathological verification subsequently.

2.2 | MRI reading and protocol

MpMRI of the prostate was read by board‐certified radiologists

according to the PI‐RADS (Prostate Imaging Reporting and Data

System) lexicon, which establishes a standardized diagnostic approach20

and works well as a risk stratification tool in the detection of PCa.21,22

As PI‐RADS formally does not address MRI for evaluation of

progression during AS,20 examinations were evaluated based on PI‐

RADS criteria but did not receive a final score. Instead, all potentially

cancerous lesions were marked and described for confirmation biopsy.

All exams were acquired in the same 3T scanner (MAGNETOM

Vida; Siemens Healthcare) according to the PI‐RADSv2.1 acquisition

protocol: T2 weighted images with 3mm slice thickness and no gap

(2D TSE, TR: 7500ms, TE: 104ms, FA: 160°). The field‐of‐view

was 200 × 200mm (768 × 768 matrix), in‐plane resolution was

0.26 × 0.26mm.20 No endorectal coil was used. Butylscopolamine

was injected intravenously before the scan with dose adjustment

considering body weight. Acquired images were then prepared for

MRI‐ultrasound fusion biopsies. Both the prostate gland and scored

lesions were segmented manually by a trained radiologist in axial T2

weighted slices under the supervision of a board‐certified radiologist.

For the current study, we recorded all lesions described as suspicious

by the interpreting radiologist in clinical routine.

2.3 | Histopathological verification

MRI‐guided ultrasound fusion transperineal biopsy was performed

and accomplished with the MonaLisa environment (Biobot Surgical

Pte Ltd). Laryngeal mask anesthesia was established periprocedurally.

A three‐dimensional model of the prostate gland was generated by

the endorectal ultrasound probe and fused with the MR volume

derived by manual segmentation of T2 weighted imaging by a

specialized urologist. Lesions previously defined and scored by the

radiologist were transferred to the in vivo ultrasound model.

Transperineal access for biopsy was established by incision. Biopsy

angle and depth were automatically calculated by the software. An

automated imaging‐guided robotic arm was then positioned for

biopsy. A multiuse biopsy device (Uromed; REF6020) and trocar‐like

needles (Uromed; REF 6025.10) were used and triggered manually.

Target lesion biopsies were performed before systematic biopsies.
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Systematic biopsies were taken according to the volume adapted

Ginsburg study scheme.23 Patients received postprocedural trans-

urethral catheterization. For a detailed description of the biopsy

procedure refer to the publication of Kroenig et al.24

2.4 | AI‐algorithm

An AI‐driven, CE‐certified research software for detection of prostate

lesions based on bi‐parametric MRI (MR Prostate AI v1.3.2, build date

2021‐11‐15; Siemens Healthcare) was used for automatic detection,

segmentation, and classification of prostate lesions.

The AI model, which is based on bi‐parametric MRI, has been

described extensively in a previous publication.6 Briefly summarized,

it comprises preprocessing by an automatic segmentation of the

prostate gland on axial T2‐weighted imaging (T2WI) and diffusion‐

weighted imaging (DWI), followed by coregistration of T2WI and

DWI. From the DWI series, a synthetic b‐value image at b = 2000 s/

mm² and an ADC map are computed. The segmentation, as well as

the coregistered T2WI, b = 2000 image and ADC map, are then fed

into a 2D image‐to‐image convolutional neural network (CNN),

producing an initial map of suspicious lesions. These lesion candi-

dates are then processed by a second CNN stage, performing a 3D

patch‐wise classification for false positive reduction.25 Finally, a PI‐

RADS score proposal is automatically deduced from the network's

response and the detected lesion's diameter.

2.5 | Definitions and criteria

csPCa was defined based on histopathology defined ISUP grade or

Gleason score as ISUP ≥ 2.26 International guidelines state inclusion

criteria for AS as follows: life expectancy ≥10 years, PSA‐values ≤10 ng/

mL, Gleason‐score ≤6, cT1 and cT2a tumor stages, tumor cells in ≤2

cores and in case of ≤50% tumor per core.1,3,27–29 However, we

exclusively included patients with biopsy proven low risk PCa (ISUP 1).

2.6 | Data collection

The patient cohort was derived from our local database and filtered

for previously known malignancy of the prostate. Thereafter clinical

records were searched, and if needed, additional clinical information

from the Department of Urology was requested. Ethical approval was

obtained beforehand by the local ethics committee.

3 | RESULTS

3.1 | Biopsy

Analysis of 56 patients resulted in a total of 93 detected lesions.

Eighty‐three lesions were accessible for targeted biopsy. Ten lesions

did not receive targeted biopsy due to difficulties in coregistration of

ultrasound to MR imaging, low lesion volume and location directly

adjacent to larger target lesions. On average, 2.7 cores were acquired

per target (range 1−12; median: 3). Mean number of cores in the

additionally performed systematic biopsy was 28.8 (range: 15−58;

median: 29), the (volume adapted) Ginsburg biopsy scheme was used

for systematic biopsies.23

3.2 | Lesion level analysis

Of 83 lesions detected by the radiologists, 49/83 (59%) targets

yielded ISUP 0, 7/83 (8%) ISUP 1, and 27/83 (33%) ISUP ≥ ISUP 2. AI

rated 54 lesions in accordance with the radiology reports (≥PI‐RADS

3; not every detected lesion had a corresponding targeted biopsy). AI

assigned a PI‐RADS score of 3 in 7 lesions of which 4 turned out to

harbor no PCa (ISUP 0), 2 showed insignificant PCa (ISUP 1) and 1

significant PCa (ISUP ≥ 2). A PI‐RADS score of 4 was assigned 18

times with 9 ISUP 0 lesions, 3 ISUP 1 lesions, and 4 ISUP ≥ 2 lesions

(2 lesions were missing corresponding targeted biopsy). Twenty‐nine

PI‐RADS 5 scores resulted in 8 ISUP 0 lesions, 1 ISUP 1 lesion, and 16

ISUP ≥ 2 lesions (4 lesions were missing corresponding targeted

biopsy). Of the remaining 39 targeted lesions that were assigned PI‐

RADS 0 categories (i.e., not detected by the AI), 28 lesions were

correctly identified as benign, while 1 ISUP 1 lesion and 6 ISUP ≥ 2

lesions were falsely classified as negative by AI (4 lesions were

missing corresponding targeted biopsy). For detailed information

refer to Figure 1.

3.3 | Patient level analysis

Based on mpMRI, AI classified 1/56 patients as PI‐RADS 3, 7/56

were classified as PI‐RADS 4, and 40/56 as PI‐RADS 5. Eight patients

were classified as benign.

Five out of 8 patients that were classified as negative by the AI

proved benign after biopsy (systematic and targeted biopsy), 2

patients yielded ISUP 1 and 1 lesion ISUP ≥ 2, respectively. One

maximum AI‐based PI‐RADS score of 3 was assigned and proved to

be ISUP 0. Of 7 patients with a maximum AI‐based PI‐RADS score of

4, 1 proved to be ISUP 0 and ISUP 1 each, while 5 patients showed

ISUP ≥ 2. The largest group of 39 patients scored as PI‐RADS 5 by AI

presented with 9, 9 and 22 ISUP 0, ISUP 1, and ISUP ≥ 2 grades,

respectively. AI detected a mean of 1.11 additional lesions (lesions

not overlapping with manually detected lesions) per patient (0−5

lesions; median: 1; SD: 1.23). Corresponding data is presented in

Figure 2.

Overall, the patient level sensitivity/specificity of the AI

algorithm was 92.5% (37/40)/31% (5/16) for detection of ISUP 1

or higher, and 96.4% (27/28)/25% (7/28) for detection of ISUP 2 or

higher.

Two cases of nsPCa were neither detected by the radiologist nor

the AI. In one, patient 1 of 2 cores of targeted biopsy as well as 3 of
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22 random biopsy cores yielded a Gleason 3 + 3 pattern (ISUP 1), the

other one did not receive targeted biopsy but presented with 1 of 33

cores with Gleason 3 + 3 pattern in random biopsy.

One patient harbored Gleason 3 + 4 in one systematic core and

Gleason 3 + 3 in two cores out of 47 (negative target lesions) and was

not detected by AI (for details compare Figure 2).

Detailed histopathology results are depicted in Table 1. Compare

for Figures 3–5 for examples of a true positive, a true negative, and

the previously mentioned false negative result.

4 | DISCUSSION

Overall, AI achieved an excellent sensitivity for the detection of

csPCA on patient level (92.5% ISUP ≥ 1; 96.4% ISUP ≥ 2) with only

one debatable case of csPCa missed (refer to Figure 2) but low

specificity (31.5% ISUP ≥ 1; 25% ISUP ≥ 2). These results fit the

intention to detect csPCa in particular, so that in a clinical setting

almost no critical case would be missed. This partially reflects findings

of other authors who showed equally high sensitivity levels but also

better specificity: Fehr et al. reported accuracies up to 93% for the

distinction between ISUP 1 and ISUP > 1 cancers with integration of

imaging features30 although applied to a non‐AS cohort with

inclusion of patients with known PCa; Antonelli et al. developed a

model that showed sensitivities up to 88% (at 50% specificity

threshold) and even outperformed board‐certified radiologists in

differentiating tumors with and without a Gleason 4 component.31

Deviations in specificity most likely derive from our patient cohort,

being a high‐risk population under AS, entirely receiving prostate MRI

and subsequent MRI guided biopsy.

Detected lesions in our cohort showed predominantly Gleason

Grade (GG) ≥ 2 in histopathology although AS is proposed for

patients with clinically insignificant carcinoma (GG ≤ 1). Hamdy

et al. reported 77% ISUP 1 cases and 23% ISUP ≥ 2 cases in their

cohort selected for AS with localized PCa.9 Arif et al. found a

distribution on patient level of 53% ISUP 1 cases and 47% ISUP ≥ 2

cases in their AS cohort32 compared to 12/56 (21%) and 28/56 (50%)

in our cohort, although their study is only partially comparable since

indication for mpMRI was not explicitly stated. This could originate

from the indication for prostate MRI in our cohort, which was mainly

suspected progression due to PSA‐elevation. The proportion of

intermediate risk tumors in other cohorts was found to be 18.9%

(definition: Gleason 7 or T3 or PSA > 15 ng/mL33) compared to our

cohort that consisted of 29% (16/56). Therefore, we conclude that

we predominantly included high‐risk patients with a more than

average risk of progression into csPCa who in reality represent a

subset of the overall AS cohort.

There are some heterogeneous studies that investigate tumor

progression rates in cohorts with a substantial proportion of csPCa.

Despite slight differences in the definitions of tumor progression

(mostly including Gleason 4 as predominant histological subtype),

F IGURE 1 Lesion level analysis (lesions ≥ PI‐RADS 3 with
corresponding targeted biopsy cores only); PI‐RADS 0 means the
lesion was not detected by AI. PI‐RADS,prostate imaging reporting
and data system. [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 2 Patient level analysis. An AI‐based PI‐RADS score of
0 means the patient was classified as negative.PI‐RADS,prostate
imaging reporting and data system. [Color figure can be viewed at
wileyonlinelibrary.com]
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TABLE 1 Distribution of PI‐RADS score assigned by the AI and corresponding histopathology result.

Pi‐RADS category
assigned by AI

Corresponding Gleason score (n)
Benign 3 + 3 3 + 4 ≥4 + 3 Total

Lesion level 0 28 1 6 0 35

3 4 2 1 0 7

4 9 3 4 0 16

5 8 1 7 8 25

49 7 18 9 83

Patient level 0 5 2 1 0 8

3 1 0 0 0 1

4 1 1 4 1 7

5 9 9 14 8 40

16 12 19 9 56

Abbreviation: PI‐RADS, prostate imaging reporting and data system.

F IGURE 3 Example of a true positive result. AI detected both target lesions correctly and assigned PI‐RADS 5 for both target lesions. Target
lesion 1 (left) contained 4 Gleason 4 + 4 (predominantly 3 + 4, with a 4 + 4 component) out of 5 cores, target lesion 2 (right) contained 3 Gleason
4 + 4 out of 4 cores. Random biopsy yielded 2 Gleason 3 + 3, 4 Gleason 3 + 4, and 8 Gleason >3 + 4 cores out of 26. PSA at biopsy was
30.8 ng/mL. (A) Axial T2 weighted image; (B) axial T2 weighted image + heatmap overlay (AI output); (C) calculated high b‐values; (D) ADC map;
arrows: target lesions according to the radiology report. PI‐RADS, prostate imaging reporting and data system; PSA, prostate specific antigen.
[Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 4 True negative result. AI correctly assigned a PI‐RADS score of 0. Neither target nor random cores yielded PCa. PSA at biopsy was
5.7 ng/mL. (A) Axial T2 weighted image; (B) ADC map; (C) calculated high b‐values; arrows: target lesions according to the radiology report. PCa,
prostate cancer; PI‐RADS, prostate imaging reporting and data system; PSA, prostate specific antigen.
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previous studies found tumor progression rates of 19%−34%34–38

with no difference in outcome between Gleason 6 and Gleason 7

patients. The proportion of Gleason ≥4 + 3 in our cohort was 16%

(9/56). Moreover, PCa detected by established predictors of tumor

progression such as PSA level elevation alone often results in higher

false‐positive rates, thus causing excess costs and potential risks

related to unnecessary biopsies.39 Recent studies do not only suggest

that AI‐based algorithms derived from mpMRI are able to differenti-

ate between ncsPCa, csPCa, and benign prostatic alterations40 and

are capable of detecting tumors on histopathological level compara-

ble to expert pathologists41 but could already show advances in false

positive reduction25 which gains importance rapidly with 25% PCa

per PSA elevation (>4 ng/mL42) and a total of estimated 1.4 million

diagnoses worldwide in 2020.43

The use of AS has increased drastically over the last decades, for

example, from 14.5% in 2010 to 42.1% in 2015 in the US

population.44 Furthermore, recent international guidelines (AUA)

already suggest AS for patients with low risk localized cancer and

recommend discussion of AS for a favorable intermediate risk

setting.45 European guidelines (EAU) provide a weak recommenda-

tion for the inclusion of a favorable subset of ISUP 2 patients in AS.1

Willemse et al. also suggested less restrictive inclusion criteria in

debatable cases of low‐volume ISUP 2 patients. For instance, only

high‐volume ISUP 2 PCa or low‐volume ISUP 2 PCa in combination

with increased core positivity or core involvement should lead to

active treatment.46 This implies tendencies for rising numbers of AS

cases in the future. Potential use cases for AI as reinforcement in

diagnostic confidence as second reader and triage tools were already

suggested in the past.47,48 Thus, AI‐aided detection and lesion

scoring offers an additional noninvasive tool based on parameters

that are already being acquired in the scanning process without

additional expenditure of time.

As mentioned in Section 2, we did not assign PI‐RADS scores to

the target lesions detected by the reader as recommended by the PI‐

RADS lexicon (“[PI‐RADSv2.1] does not address the use of MRI for

detection of suspected recurrent prostate cancer following therapy [and]

progression during surveillance”).20 However, the employed AI automat-

ically allocates PI‐RADS scores to detected lesions depending on the

estimated probability of present csPCa. Due to this intrinsic metric,

we did not employ additional scoring systems (e.g., Likert scaling). We

provide the distribution of AI assigned PI‐RADS categories on lesion

level and patient level. As intended for the standard use case of PI‐

RADS, cancer detection rates increase with higher PI‐RADS categories

(c.f. Figures 1 and 2). This provides initial evidence that the scope of

the tested AI‐driven lesion detection and classification may be

successfully extended. However, since we tested the tool on a

particularly specific patient collective it remains unclear whether the

same performance can be achieved in a more heterogeneous setting

with more benign exams, lower risk PI‐RADS cases and especially in

borderline cases of PI‐RADS 3 or upgraded lesions.

AI performance was tested on and acquired from a rather small

cohort in a retrospective single‐institution environment, thus results

need to be verified in a larger prospective cohort, ideally in a

multicenter setting.

F IGURE 5 False negative result. AI assigned a PI‐RADS score of 0. Two cores yielded Gleason 3 + 3 + = 6 and 1 out of 47 random cores
yielded Gleason‐score 3 + 4 = 7a, hence significant PCa was missed. PSA at biopsy was 9.51. Initial biopsies yielded 1/11 Gleason 3 + 3, following
biopsies before and after said images showed benign histopathology (35−47 cores each). (A) Axial T2 weighted image; (B) calculated high
b‐values; (C) ADC map; arrows: target lesions according to the radiology report. PCa, prostate cancer; PI‐RADS, prostate imaging reporting and
data system; PSA, prostate specific antigen.
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5 | CONCLUSION

We conclude that AI‐augmented lesion detection and PI‐RADS

scoring is a robust tool to detect progression to csPCa in patients

under AS. Upon integration in the clinical workflow the tool can

serve as reassurance for the reader and streamline reporting,

hence improving diagnostic confidence, although additional

multicenter studies need to evaluate the detection rates in

both primary PCa diagnostics and AS cohorts. Once the AI tool

achieves a sufficiently high negative predictive value, implemen-

tation as a rule‐out test seems conceivable. In anticipation

of further evidence for the implementation of AI, prostate

MRI in AS could be analyzed by AI before human evaluation in

future scenarios, therefore rendering the process more time

efficient.
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