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Abstract

At atomic scales, all molecules attract each other, but macroscopic objects usually do not
stick. The explanation for this apparent paradox is that most surfaces are rough, so that elasti-
cally stiff objects only touch on the top of their asperities. Geckos and insects have compliant
fibrillar structures or soft pads at the tip of their feet that conform to surface roughness, sus-
taining enough adhesion to climb vertical walls. Understanding the role of surface roughness
in adhesion is a challenge because surfaces exhibit roughness down to the atomic scale.

In this thesis, my collaborators and I investigate the effect of surface roughness on adhe-
sion in both stiff and compliant contact systems. I model adhesion theoretically, and I help
experimentalists analyze surface topography over multiple scales. The combination of my
new models and of the comprehensive surface topography characterization by Abhijeet Gu-
jrati (University of Pittsburgh), allows us to unravel the role of surface roughness in adhesion
experiments.

Stiff materials do not stick because roughness prevents most of the surfaces to come into the
range of molecular attraction. A recent theory quantifies this effect based on an approximate
expression for the distribution of interfacial gaps near the contact edge. Joe Monti (Johns
Hopkins University) and I benchmark this expression against gap distributions extracted from
finely resolved numerical simulations. The theory is valid provided that adhesive stresses are
weak and act over a range shorter than a geometrical parameter determined by small-scale
roughness.

Elastically soft (jelly-like) objects stick because the elastic penalty to deform into intimate
contact is small compared to the gain in surface energy. However, theories based on this sim-
ple thermodynamic argument cannot explain the fact that in experiments, the force measured
during retraction is often much higher than during indentation. This adhesion hysteresis can
be caused by material specific irreversibility or elastic instabilities triggered by surface rough-
ness. The role of these instabilities in adhesion hysteresis remains poorly understood because
existing numerical and theoretical models cannot account for realistic roughness in soft con-
tacts. I introduce an efficient crack-perturbation model for the contact of rough spheres, en-
abling large scale simulations with realistic surface roughness. By clarifying the link between
adhesion hysteresis and classic pinning problems (for example fracture of heterogeneous ma-
terials and wetting angle hysteresis), this model allows me to derive a simple theoretical model
linking adhesion hysteresis to surface roughness. In combination with the characterization of
surface roughness over multiple scales, my models shed light on the role of elastic instabilities
in adhesion experiments.

Surfaces are rough from the macroscopic scale down to the atomic scale, and the lack
of comprehensive roughness characterization is the major obstacle towards bringing theory
and experiments together. Abhijeet Gujrati and collaborators measured the roughness of four
diamond coatings over eight decades of length scales, enabling the application of adhesion
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Abstract

theories on experiments performed with these samples. Besides the experimental challenge of
determining roughness down to the atomic scale, an additional obstacle to the documentation
of roughness is the technical complexity of established multiscale roughness measures such
as the power spectral density. My collaborators and I address this problem by introducing
the scale-dependent roughness parameters (SDRPs), a new analysis framework that is easy to
interpret and to implement. This new analysis, together with several established techniques,
is available to use through our web-service contact.engineering. We thereby encourage the
community to measure, analyze and publish roughness over multiple length scales.

The SDRP analysis computes the fluctuations of slopes and curvatures as a function of
the lateral length scale. Slopes and curvatures are important ingredients for rough contact
theories, but it remains unclear at which scales they matter. Luke Thimons (University of
Pittsburgh) and I show that in macro-scale contacts between ruby spheres and diamond coat-
ings, the roughness that critically affects adhesion is between lateral length scales of 43 nm to
1.8 µm. The large-scale cutoff is related to the finite radius of the spherical indenter, while the
unimportance of small scales is due to plastic deformations and the long range of the adhesive
interaction (5 nm). To determine the critical range of length scales, as well as the parameters
of the adhesive interaction, we analyzed the experimental pull-off forces by combining surface
topography characterization and numerical simulations.

Adhesion is critical in applications such as microelectromechanical systems (MEMS), soft
robotics and skin adhesives. Our insights provide guidance for practitioners which scales of
roughness to control in order to tune adhesion, and our framework for surface topography
characterization will allow a better overall understanding of surface topography across the
community.
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Public software

My collaborators and I provide a free-to-use web-platform for the analysis and publication of
measurements of surface topography under the url https://contact.engineering/.
The code underlying this web-platform, as well as my boundary-element (BEM) and crack-
front simulations, is open source and available in the GitHub organization https://github.
com/ContactEngineering/. This computational ecosystem is decomposed in multi-
ple repositories with dedicated functions, SurfaceTopography, ContactMechanics, Adhesion,
CrackFront and Topobank, which I describe individually further below. Our codes also make
use of the Python packages muFFT for the fast Fourier transform, and of NuMPI for par-
allelization with the message-passing interface (MPI) [1] and for minimization algorithms.
My main contributions to these projects are the MPI-parallelization of the boundary element
method and of the underlying minimization algorithms [2–4], enabling the large reference
simulations used in publications [III, VI]. Till Junge and Lars Pastewka wrote preliminary
implementations of the BEM and of the web-application, and Lars Pastewka, Michael C.
Röttger and I developed them further. Part of the development of the ContactEngineering
ecosystem was contributed in the framework of the master’s theses of Sindhu Singh [5] and
Paul Strauch [6], which I cosupervized with Lars Pastewka. I list the functionalities of these
packages and my contributions to the individual repositories in more details below.

muFFT
https://gitlab.com/muspectre/muspectre

Main contributors: Lars Pastewka, Till Junge, Antoine Sanner
Hybrid C++/Python, GNU LGPLv3 License
muFFT is a module of the µSpectre project [7]. This module contains wrappers to serial and
MPI-parallel implementations of the fast Fourier transform, and finite-difference stencils for
the computation of derivatives. I implemented a wrapper to the half-complex fast Fourier
transform provided by FFTW [8], which Sindhu Singh [5] used to develop a preconditioned
formulation of the BEM inspired from Ref. [9].

NuMPI
https://github.com/IMTEK-Simulation/NuMPI

Main contributors: Antoine Sanner, Sindhu Singh, Lars Pastewka
Python, MIT License
The Python package NuMPI is a collection of numerical tools for MPI-parallelized Python
codes, including minimization algorithms, reduction operations, and parallel file input and
output. It uses the mpi4py [10] interface to the MPI standard [1]. I am the main maintainer
of this repository. I implemented a parallelized version of the L-BFGS algorithm [4]. Sindhu
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Singh implemented constraint conjugate gradients algorithms [2, 3, 11, 12] and I parallelized
them.

SurfaceTopography
https://github.com/ContactEngineering/SurfaceTopography

Main contributors: Lars Pastewka, Michael C. Röttger, Antoine Sanner, Till Junge, Johannes
L. Hörmann
Python, MIT License
The Python package SurfaceTopography provides tools for the processing of raw measurement
data, datastructures for the definition of surface topography, multiscale statistical analyses of
surface topography, and the generation of synthetic self-affine surfaces. It is the main compu-
tational backend behind our web-service contact.engineering, and we describe its main func-
tionalities in publication [II]. This package implements readers for raw measurement data
and implements the automatic detection of tip artifacts introduced in publication [IV]. The
multiscale analysis of surface roughness includes standard descriptors such as the autocorre-
alation function (ACF) and the power-spectral density (PSD), as well as our newly established
scale-dependent statistical roughness parameters (SDRPs) [IV]. SurfaceTopography imple-
ments the stitching and averaging of multiple measurements into multiscale descriptors of
the surface topography as established in Refs. [VII, 13]. This package also implements the
Fourier-filtering algorithm described in Refs. [14, 15] that we used to generate synthetic sur-
faces. I participated in the general maintenance of the repository. I MPI-parallelized the code,
implemented scale-dependent roughness parameters and the detection of tip artifacts [IV].
Paul Strauch [6] implemented scale-dependent statistical parameters quantifying deviations
from Gaussian distributions.

ContactMechanics
https://github.com/ContactEngineering/ContactMechanics

Main contributors: Lars Pastewka, Antoine Sanner, Till Junge, Sindhu Singh
Python, MIT License
The Python package ContactMechanics implements BEM simulations and analytic models
for contact mechanics without adhesion. It relies on SurfaceTopography for datastructures
defining the contact geometry. Lars Pastewka and I maintained this repository and I MPI-
parallelized the code.

Adhesion
https://github.com/ContactEngineering/Adhesion

Main contributors: Lars Pastewka, Antoine Sanner, Till Junge, Sindhu Singh
Python, MIT License
The Python package Adhesion extends ContactMechanics with interaction potentials for the
BEM simulations of adhesive contacts and implements analytic models of adhesive contacts.
Lars Pastewka and I maintained this repository. I MPI-parallelized the code, implemented in-
teraction potentials, and implemented analytic models such as the JKR contact of smooth
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spheres [16]. Sindhu Singh implemented preconditioned BEM simulations inspired from
Ref. [9].

CrackFront
https://github.com/ContactEngineering/CrackFront

Main contributors: Antoine Sanner
Python, MIT License
I implemented my crack-front simulations in the Python package CrackFront. The code is
GPU parallelized using PyTorch [17]. It includes the crack-front equations for spheres [I, III]
and for a semi-infinite crack, the mapping from roughness to equivalent work of adhesion
heterogeneity, and the crack-propagation algorithm by Rosso and Krauth [18]. I wrote this
repository in its entirety.

Topobank
https://github.com/ContactEngineering/Topobank

Main contributors: Michael C. Röttger, Lars Pastewka
Python/Web, MIT License
The repository Topobank implements the database and the web-interface for our web-service
contact.engineering. It uses the packages SurfaceTopography and ContactMechanics to load
raw measurement data and to perform the analyses such as SDRPs, PSD and BEM simulations.
I participated in the design and in the testing of the web application and I provided support for
users via e-mail and a discussion forum.
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1 Introduction

All matter attracts with van der Waals forces [19], and insects and lizards rely on these uni-
versal forces to climb vertical walls made of any material [20–22]. Van der Waals interactions
are the weakest among intermolecular forces, however they cause strong attractive pressures
of order 100 MPa. Acting on a contact area of 1 cm2, these pressures are strong enough to sus-
tain the weight of a car [21], in contradiction with our daily experience. The main explanation
for this “adhesion paradox” is that roughness keeps most of the surface apart from molecu-
lar interaction forces [21, 23, 24], which typically act over ranges below a nanometer [19]
(Fig. 1.1a,b).

Very soft solids (Fig. 1.1c) are sticky because they are able to conform to the surface rough-
ness [25, 26]. Yet, their adhesion strength is by far not as spectacular as mentioned above,
even for perfectly flat interfaces. In this case, the explanation is that interfaces do not separate
uniformly. The edge of the contact corresponds to a crack where stresses concentrate due to
elastic deformation. As we pull the objects apart, the adhesive bond progressively breaks by

a Rigid

b Stiff

c Soft

Figure 1.1: Effect of surface roughness on adhesion. (a) In the contact of rigid objects, van der Waals forces
only act in a vanishingly small area confined to the top of the highest asperity (red line). (b) Stiff elastic
materials conform to the roughness over a finite area of contact Ac (black line). The actual area of contact
Ac is only a small fraction (. 10%) of the apparent area of contact A0, so that the majority of the surface
does not interact. The adhesive stresses are small compared to the repulsive stresses in the contact area, and
the Derjaguin-Muller-Toporov (DMT) approximation neglects the elastic deformations caused by adhesive
stresses. (c) Soft elastic materials can fully conform to the surface roughness. The large adhesive stresses
concentrate at the edge of the contact, forming an adhesive neck, or crack tip. In this Johnson-Kendall-
Roberts (JKR) regime, the solids separate by the propagation of this crack.
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1 Introduction

the zip-like propagation of the crack. The breaking process is governed by Griffith’s [27] bal-
ance between the elastic strain energy released by propagating the crack and the increase in
surface energy associated with separating the surfaces, the work of adhesion.

In soft contacts that behave like cracks, the adhesive stresses cause elastic deformations
large compared to the interaction range. This limit of soft materials with strong adhesive
stresses confined to small interfacial gaps is named after Johnson Kendall and Roberts (JKR) [16],
who described the contact of spheres through fracture mechanics. The opposite limit of stiff
materials and weak adhesive stresses is called the DMT limit, because Derjaguin Muller
and Toporov [28] neglected any deformation caused by adhesive stresses when computing
the force acting between spheres. Bradley [29] computed the force needed to separate rigid
spheres (pull-off force). In all these limits, the pull-off force of spheres is proportional to the
work of adhesion, so that experiments with spherical probes are commonly used to quantify
the strength of adhesive interactions [19].

Surface roughness The major experimental and modeling challenge in contact mechanics
is that rough surfaces are fractals: asperities have smaller asperities on top of them [21, 30–33].
The sharp peaks at the small scales are the hardest to conform to and determine the contact
area. Other contact properties such as the stiffness depend on the large-scale roughness. Which
scales of roughness dominate adhesion depends on the situation and is a matter of current
debate.

It is therefore important to statistically characterize surface roughness over a wide range
of scales, but measuring roughness down to the atomic scale is a challenge. Early studies
relied only on scalar roughness parameters [34–36], which are affected by the resolution of
the instrument and are hence not representative of the true surface topography. It is now
common to describe roughness via the power spectral density [14, 21], that decomposes a
measurement into contributions from different spatial frequencies, and several measurements
can be combined in order to construct a comprehensive description of the multiscale roughness
[13, 37, 38]. Recent advances in experimental techniques allow the measurement of roughness
down to the atomic scale [13, 39].

Role of adhesion in non-sticky contacts Most daily life objects are closer to the stiff,
DMT regime, where atomic-scale roughness limits the true area of contact to the highest peaks
and thereby suppresses macroscopic adhesion [24, 40]. Adhesive interactions still play an
important role because they increase the contact area [24, 40, 41]. The contact area critically
affects important properties of the interface like the electric conductivity, heat transfer, fluid
leakage, and friction.

Friction commonly obeys Amontons’ law [42] (observed earlier by Da Vinci [43]), stating
that the lateral force is proportional to the normal force and is independent of the apparent,
macroscopic area of contactA0. A major advance in contact mechanics was to understand that
the actual area of contactAc is independent ofA0 and limited to the top of a few asperities [44].
Amontons’ law holds because the contact area is proportional to the normal force [45–48], and
because the shear stress inside a contact junction is a material constant [49]. While this early
work ignored adhesive interactions, Pastewka and Robbins [24] and Müser [40] showed that
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1 Introduction

for weak adhesive interaction, the contact area increases but remains proportional to the force.

Analytic models Theoretical models link macroscopic contact properties such as the con-
tact area to statistical measures of the surface roughness. The two main categories of analytic
models are asperity models and Persson’s theory.

Greenwood and Williamson [45] modeled the interface as a set of independent spherical
contacts, and showed that the proportionality between area and load emerges from the random
distribution of the heights of asperities. Their original work used Hertz’s [50] solution of the
nonadhesive contact of spheres, but was extended to adhesive contacts using the JKR or DMT
theories [34, 51]. While the theory by Bush Gibbson and Thomas [46] accurately predicts
the proportionality between force and contact area for small contact area fractions, asperity
models break down at large contact area fractions. Furthermore, they fail to predict other
properties such as the mean and distribution of interfacial gaps [55], or the stress- and contact-
autocorrelation function [0].

Persson’s theories [41, 52, 53] accurately predict the contact area from small to full con-
tact area fractions [55, 54, 56]. Borrowing ideas from renormalization group theory [57],
Persson describes how the contact area and the distribution of interfacial pressures evolve as
roughness at progressively smaller lateral length scales is included. His theory accounts for
all length scales of the power spectral density and predicts many contact properties such as the
contact area, mean gap and the stored elastic energy. Persson derived two variants for adhesive
contacts, one where the contact area is set by Griffith’s energy balance (JKR limit) [41] and
the other using the DMT approximation [53].

Theoretical models linking adhesion to random surface roughness make simplifying ap-
proximations and often focus on limiting cases such as the JKR or DMT limit. A global
understanding of the role of surface roughness requires the determination of the accuracy and
the range of validity of specific adhesion theories using numerical simulations as a bench-
mark [24, 40, 55, 56].

Numerical models Numerical simulations describe in detail the contact of a specific real-
ization of the surface topography (e.g. an AFM areal scan or an artificially generated surface)
and make only a few basic assumptions. The most popular numerical model is the boundary
element method (BEM) [2, 24, 55, 58–60] also called Green’s function molecular dynamics
(GFMD). It accelerates the computation by using fast Fourier transforms (FFT) and an analyt-
ical solution linking surface displacements to pressures, the Green’s function. BEM considers
only the degrees of freedom at the surface, in contrast to classical finite element or full molec-
ular dynamics simulations, which resolve the displacements in the whole volume. Despite
this speed-up, the range of fractal roughness that can be taken into account is limited by the
computational resources. Especially the adhesion of soft materials is challenging to describe
using these models because the sharp crack tip requires finely discretized meshes [61].

Adhesion hysteresis in soft sticky contacts The role of surface roughness in the ad-
hesion of soft solids is still poorly understood. Dalvi et al. [62] investigated experimentally
how the adhesion of soft rubber spheres depends on surface roughness. Using the multiscale
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1 Introduction

roughness characterization of publication [VII], they showed that a theory by Persson and
Tosatti [26] quantitatively predicts how surface roughness reduces the adhesive force measured
when the contact forms. However, Persson’s theories assume that the contact evolves follow-
ing thermodynamic equilibrium, and thereby fail to explain why adhesion is much stronger
during retraction than during approach. This adhesion hysteresis [63] can be caused by ma-
terial specific dissipation mechanisms like viscoelastic dissipation in the bulk of the material
or molecular rearrangements at the surface, but it can also emerge in purely elastic systems
when surface roughness triggers elastic instabilities. Because they observed that the dissi-
pated energy depends critically on the surface roughness, Dalvi et al. hypothesized that elastic
instabilities triggered by surface roughness play the dominant role in their experiment.

Numerical simulations [61, 64–70] and simplified analytical models [36, 71–76] show
that the surfaces sometimes enter and leave contact in sudden jumps (elastic instabilities) in-
stead of moving continuously. These elastic instabilities dissipate energy and lead to adhesion
hysteresis even in purely elastic systems. This theoretical work indicates that the main pa-
rameter governing adhesion hysteresis is the elastic energy required to fully conform to the
surface roughness, but there is no theory quantitatively linking adhesion hysteresis to random
roughness. Because we lack numerical or theoretical models accounting for realistic surface
roughness, it is unclear whether these jumps occur and how much energy they dissipate in real
experimental situations.

4



2 Problem statement and approach

The overarching scientific question of this cumulative dissertation is to understand how sur-
face roughness affects adhesion. This thesis discusses three regimes of adhesion where the
solid is either rigid (Fig. 1.1a), elastic but stiff compared to the adhesive stresses (DMT limit,
Fig. 1.1b), or so soft that the contact behaves like a crack (JKR limit, Fig. 1.1c). I model
adhesion theoretically [I, III, VI], and I help experimentalists to analyze surface topography
over multiple scales [II, V, VII]. The combination of my new models [I, III] and of my col-
laborators’ comprehensive surface topography characterization [VII, 77] allows us to unravel
the role of surface roughness in adhesion experiments [V, 62, 78]. Our scientific insights
were enabled by tackling the experimental challenge of statistically characterizing the surface
topography from macroscopic to atomic length scales, and the theoretical challenge of devel-
oping a model for elastic instabilities that can account for this multiscale roughness. I use
large-scale boundary element method simulations as a benchmark for my new model [I, III]
and Joe Monti (Johns Hopkins University) and I use them to test the theory by Pastewka and
Robbins [VI, 24].

Roughness Experimental datasets where the roughness has been measured and documented
over a sufficient range of length scales are still rare. Besides the experimental challenge of
determining roughness down to the atomic scale, an additional obstacle to the documenta-
tion of roughness is the technical complexity and a lack of consensus on how to statistically
describe a surface over multiple scales [14, 79]. Publication [IV] and the public database con-
tact.engineering described in publication [II] aim to simplify the process of analyzing surface
roughness over multiple scales.

Surface roughness over all length scales might affect adhesion and other contact proper-
ties, but is poorly known down to the atomic length scale. Abhijeet Gujrati (University of
Pittsburgh) measured the roughness of four diamond coatings over eight decades of length
scales [VII, 13, 77], allowing us to test common assumptions on the nature of surface rough-
ness and to apply adhesion theories on experiments performed with these samples [V, 62,
80].

Rigid solids Luke Thimons (University of Pittsburgh) measured the adhesion of these di-
amond coatings against ruby spheres [V, 78]. By comparing experimental results with nu-
merical computations on the real surface topography, we investigate which length scale of
roughness and which mechanisms critically affect adhesion in these rigid contacts.

Stiff solids The theory by Pastewka and Robbins [24] predicts that roughness at the atomic
scale suppresses adhesion, while other theories emphasize the role of large-wavelength rough-
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2 Problem statement and approach

ness [26, 41, 81, 82]. Which lateral length scale is important is still under debate [70], because
the range of validity of different adhesion theories is not clear. In publication [VI] we use
finely discretized boundary element simulations to test Pastewka and Robbins’ prediction of
the gap distribution in stiff, weakly adhesive contacts. The gap distribution is a key element in
their theory for the effect of adhesive interactions on the contact area and for their stickiness
criterion.

Soft solids The role of elastic instabilities in adhesion hysteresis between soft materials is
poorly understood because no theory or simulation model can describe this effect on realistic
surface roughness. In publications [III] and [I], I use a crack-perturbation approach to develop
an efficient coarse-grained model, enabling simulations representative of the experiments by
Dalvi et al. [62].

From 3D to 1D in formulating adhesion model The boundary element method uses
analytical solutions, the Green’s functions, to compute the surface displacements caused by
pressures without solving for the three-dimensional equilibrium equations of elasticity. The
BEM thereby reduces the dimensionality of the computational problem from 3D to 2D, and
the associated speed-up is crucial in the study of the contact between randomly rough sur-
faces. However, it is not sufficient to describe the adhesion of soft solids on realistic surface
roughness.

My crack-front model provides the necessary speed-up by further reducing the dimensional-
ity of the problem to 1D. It describes the position of the contact perimeter, instead of comput-
ing the displacements of the whole surface. Here, the crack-perturbation theory by Rice and
coworkers [83–86] plays a role similar to the Green’s function in the BEM. Rice’s equations
describe how roughness perturbs the energy balance along the crack-front, and the theory of
the contact of smooth spheres by JKR [16] links the adhesion force to the contact area.

In summary, I use efficient computational methods based on the reduction of dimensionality
of the 3D elastic problem. These reductions of dimensionality are derived mathematically for
simple solids and are exact in the limit of small deformations of the halfspace (BEM) and of
the crack front (crack-front model).
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3 Modeling assumptions

Most theoretical and numerical models share a common set of basic assumptions. Here I
define the main modeling assumptions and the generic contact system used in this thesis.

I describe the quasistatic process of squeezing a rigid indenter into an elastic substrate
(indentation), and then pulling it out again (retraction). I consider only displacements normal
to the surface and I neglect tangential deformations and stresses. The material is linear elastic
and adhesive interactions are fully reversible. This model has hence no dissipation mechanism
either in the bulk (such as viscoelasticity) or at the interface (such as friction or time dependent
adhesion). I will show in section 7 that energy dissipation and irreversibility in an indentation-
retraction cycle can still arise due to elastic instabilities.

The geometry of the rigid indenter is described by the heights h(x, y) (Fig. 3.1), where x, y
are Cartesian coordinates in the plane of the undeformed substrate. Here, h(x, y) contains
the macroscopic geometry and the surface roughness. The positive direction for heights and
surface displacements u point out of the rigid indenter, towards the elastic substrate. The gap
between the surfaces is

g(x, y) = u(x, y)− (h(x, y) + b), (3.1)

where b is the rigid body translation of the indenter.

Contact modulus

Rigid

Figure 3.1: Schematic of a contact defining the kinematic relationship between the gaps g, the displacements u,
the heights h and the rigid body translation b. The dashed lines represent the surface of the undeformed elastic
solid (green) and the mean plane of the surface of the rigid indenter (black).
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3 Modeling assumptions

3.1 Nonadhesive contacts

Elasticity The deformable solid is an isotropic, linear elastic halfspace, for which Young’s
modulus E and Poisson’s ratio ν quantify the stiffness of the material via the contact modulus
E ′ = E/(1 − ν2) [87]. Linear elastic behavior is valid in the limit of small deformation
gradients, but it is a common approximation even for surfaces with larger slopes [26] and
describes the behavior of cracks surprisingly well [16]. These assumptions allow describing
the contact using only displacements and stresses on the surface of the solid. The surface
displacements u caused by the normal pressures σ can be computed by convolution with the
Green function G,

u(x, y) =

∫

A

dx′ dy′G(x− x′, y − y′)σ(x′, y′). (3.2)

Note that I use positive σ for compressive pressures, causing a positive displacement u of the
surface towards the bulk. For periodic pressure distributions, this convolution reduces to the
simple form [26, 88]

ũ(~q) =
2

E ′
|~q|σ̃(~q), (3.3)

where ~q = (qx, qy) is the wavevector and the tilde denotes the Fourier transform,

ũ(qx, qy) =

∞∫

−∞

dx dy e−i(qxx+qyy)u(x, y). (3.4)

Note that since only the separation between the surfaces matter and the deformations are
linear, the contact between two deformable solids with heights h1 and h2 can be mapped to
the contact with a rigid indenter described here, using h = h1 + h2. The contact modulus of
the elsatic substrate has to be replaced by 1/E ′ = (1− ν2

1)/E1 + (1− ν2
2)/E2, where E1, E2

and ν1, ν2 are the elastic properties of the respective material [87]. In some of the experiments
considered in this thesis [62], the most compliant solid is a soft rubber sphere that indents a
rough diamond surface. The heights of the rigid indenter are then given by the superposition
of the geometry of the sphere and the roughness of the diamond, and the composite modulus
approximately corresponds the material properties of the soft sphere.

Equilibrium contact The static equilibrium is the minimum of the mechanical energy
Πmech under the constraint that the solids do not interpenetrate. In terms of pressures and
displacements, this constraint leads to a linear complementarity problem [89], requiring that
the conditions

σ(x, y) ≥ 0, g(x, y) ≥ 0, σ(x, y)g(x, y) = 0 (3.5)

are satisfied simultaneously in every point (x, y). The region where the gaps are 0 defines the
contact area Ac. The inequalities (3.5) require that pressures are compressive inside Ac and
vanish outside Ac. The mechanical energy Πmech contains the elastic strain energy

Uel =
1

2

∫
dx dy σ(x, y)u(x, y) (3.6)
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3.2 Adhesive contacts

and the potential of the applied forces. In this thesis I always prescribe a rigid body penetration
b, in which case Πmech = Uel.

3.2 Adhesive contacts

Adhesive interactions reduce the energy of the system for small interfacial separations. In
our theoretical work, we do not address the physical nature of the surface interaction and
assume that these interactions are reversible. We either model adhesion with a generic stress
distance relationship (cohesive law) or with a surface energy. Note that while the van der
Waals interaction acts over the volume of the contacting bodies, it reduces to a cohesive law
within small slope approximations (Derjaguin approximation [90]).

Cohesive law The energy due to adhesive interactions is given by the interaction potential
v depending on the local gap between the surfaces,

Πadh =

+∞∫

−∞

dx dy v(g(x, y)). (3.7)

In publications [V] and [VI], we use the exponential interaction potential,

v(g) = −wint exp(−g/ρ), (3.8)

which is commonly used in numerical simulations [55] for its mathematical convenience and
does not represent any specific physical interaction. The length ρ is the range of interaction and
wint is the work of adhesion, the energy per surface area gained by bringing the surfaces into
contact. The derivative of this potential v′ gives the cohesive law determining the pressures
outside the contact area

σ(g) = −v′(g) = −(wint/ρ) exp(−g/ρ). (3.9)

The adhesive traction is maximal at the contact edge and equals σ0 = v′(0) = wint/ρ (Fig. 3.2).
The static equilibrium is now given by minimizing the total energy Π = Πmech +Πadh under

the constraint that g ≥ 0. Note that now pressures also act outside the contact area and can
be tensile in the contact area, however, they cannot exceed −σ0. Formally, the non-overlap
constraint can be described by an infinitely stiff repulsion in the interaction potential. Many
numerical studies with adhesion [24, 53, 61, 65, 70, 91–96] and some theoretical models [82,
97] use a potential with a repulsion of finite stiffness to prevent the solids from overlapping.

Short-ranged limit Adhesive stresses are usually concentrated in a region around the con-
tact perimeter called the cohesive zone. The tensile adhesive stresses stretch the solid at the
contact edge (Fig. 3.2), and when these elastic deformations are large compared to the range
of interaction, the cohesive zone becomes insignificant so that the perimeter corresponds to a
brittle crack. The contact properties no longer depend on the range and shape of the interaction

9



3 Modeling assumptions

Gap

Cohesive law

Figure 3.2: The cohesive law gives the relationship between the adhesive interaction pressure σ and the local
gap g, and the integral over the cohesive law is the work of adhesion wint (shaded area). For the exponential
interaction Eq. (3.9), the maximum adhesive traction −σ0 occurs at g = 0. When large σ0 stretch the solid at
the edge of the contact and the interaction range ρ is small, adhesive interactions act over a narrow cohesive
zone of width `coz, so that the contact corresponds to a brittle crack.

potential so that the adhesive energy only depends on the work of adhesion and the contact
area Ac,

Πadh = −
∫

Ac

dx dy wint. (3.10)

This description of adhesion corresponds to Griffith’s [27] formulation of linear elastic frac-
ture mechanics, where the equilibrium contact area is given by a balance of elastic and surface
energies gained per unit contact area. This framework is the basis of my crack-front model [I,
III] and will be discussed in more details in section 7.

Transition between long-ranged and short-ranged adhesion The contact behaves as
a brittle crack when the interaction range is short compared to the elastic opening at the edge
of the contact. For the contact of spheres this ratio is given by the Tabor parameter [98–101]

µ =
(Rw2

int/E
′2)1/3

ρ
, (3.11)

stating that soft spheres with large radius R are described by linear elastic fracture mechanics.
Note that there exist equivalent criteria based on the width of the cohesive zone or a ratio of
stresses called Maugis parameter [102].

For µ � 1, the contact is described by the crack-front theory by Johnson Kendal and
Roberts (JKR), and for µ � 1, adhesive stresses do not cause any elastic deformation, as
assumed in the theory of Derjaguin Muller and Toporov (DMT). The concept of Tabor param-
eter has been generalized to rough surfaces [40, 53], where the radius represents the curvature
of an asperity. For any contact geometry, I call the short-ranged limit the JKR limit and the
long-ranged limit the DMT limit.

10



3.3 Boundary element method

3.3 Boundary element method

The boundary element method (BEM) implements a discretized version of the physical system
introduced above with no additional assumptions. It therefore serves as a benchmark for
analytical theories [VI] and for more coarse-grained simulations models such as my crack
front model [I, III]. The implementation for nonadhesive contacts is available to use in the
contact.engineering platform and summarized in [II]. I accelerate the computation of the
elastic response of the material using the fast Fourier transform (FFT) [59, 60, 103]. In order
to make use of the fast Fourier transform for nonperiodic contacts, I introduce a padding
region that decouples periodic images [94, 104, 105]. The Green’s function for nonperiodic
contacts is provided in Refs. [87, 106]. I solve for the static equilibrium using constrained
minimization algorithms [2–4]. Note that in publications [III] and [I], I model the JKR limit of
vanishing range of interaction, and the cohesive law should be considered as a regularization
of the surface energy defined by Eq. (3.10).
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4 Roughness

4.1 Surface metrology

Most natural surface are rough over many decades of lateral length scales, and one of the
major challenges impeding the prediction of contact properties is the actual measurement and
statistical characterization of rough surfaces. Publication [VII] characterizes four diamond
coatings over an unprecedented range of length scales, from atomic (nm) to mm.

This comprehensive surface topography characterization requires to combine several mea-
surement techniques, because each individual technique can only resolve a limited range of
scales (or bandwidth). Abhijeet Gujrati and coworkers measured the large-scale topography
using a stylus profilometer (Fig. 4.1a), the medium-sale topography using an atomic force
microscope (AFM) (panel b) and the small-scale topography using transmission electron mi-
croscopy (TEM) (panel c). Stylus and AFM are based on a mechanical probe scanning the
surface. The resolution of these instruments is limited by tip artifacts, because the finite radius
of the probe tip smears out the small-scale roughness. In order to resolve surface roughness
down to the atomic scale, my experimental collaborators extract profiles from TEM images
of side-views or cross-sections of the rough surfaces, allowing to resolve surface roughness
down to atomic scales. Details on the measurement procedure are given in Refs. [VII, 13, 39].

TEM only provides one-dimensional (1D) profiles of the surface. While AFM and some
stylus profilometers allow constructing areal scans of the surface (Fig. 4.2), the data perpen-
dicular to the fast-scan direction has artifacts due to instrument drift. Here I assume that the
surfaces are isotropic, so that 1D-profiles yield a complete statistical characterization of the
surface topography.
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Figure 4.1: Height profiles of nanocrystalline diamond (NCD) at different lateral length scales obtained from
three different measurement techniques: (a) stylus profilometry, (b) atomic force microspopy (AFM), and
(c) transmission electron microscopy (TEM). The width of the profile decreases by a factor of 100 from
instrument to instrument. Note that plots have aspect rations different from unity and that the height axis for
TEM is rescaled by a factor of 100 compared to AFM and stylus.
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Figure 4.2: Two-dimensional height-map measured with AFM, revealing faceted grains of size ' 1 µm.

4.2 Multiscale statistical description of surface
roughness

Surface topography is commonly described by scalar roughness parameters such as the root-
mean-square (rms) fluctuations of heights hrms, slopes h′rms or curvatures h′′rms. On NCD, the
amplitudes of the heights decreases by two orders of magnitude between the AFM scan of
width 4 µm (Fig: 4.1b) and the TEM scan of smaller width 0.04 µm (Fig. 4.1c). Because hrms

depends on the width of the measurements, this single scalar value is not representative of
the whole surface topography, so that we need multiscale statistical measures for a complete
description. In our work, we use the variable bandwidth method (VBM), the autocorrela-
tion function (ACF) and the power spectral density (PSD), which are established multiscale
measures, and also introduce an additional framework termed scale-dependent roughness pa-
rameters (SDRP) [IV]. These methods are all available to use on contact.engineering and
described in publications [II] and [IV]. I provide a short introduction below.

Reporting hrms as a function of the measurement width L yields the variable bandwidth
method (VBM) [VII, 13, 31]. The VBM can also be carried out on a single measurement, by
subdividing it into smaller sections and computing hrms for each of these sections [107–111].

Similarly to the VBM, the height-difference autocorrelation function A describes how the
height fluctuations increase over lateral distances [79]. It is the variance of the difference
between heights measured at two points separated by the distance `,

A(`) =
1

2

〈[
h(x+ `)− h(x)

]2〉
, (4.1)

where the angular brackets indicate spacial averaging. The height-difference autocorrelation
function is related to the height-height autocorrelation function

〈
h(x)h(x+ `)

〉
via:

A(`) = h2
rms −

〈
h(x)h(x+ `)

〉
. (4.2)

We mainly use the height-difference autocorrelation function, which we denote autocorrela-
tion function or ACF for brevity.
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4.3 Self-affine surfaces

The power spectral density (PSD) represents the amplitude of the roughness in frequency
(Fourier) space [14, 21]. For a 1D-profile of length L, it is defined as

C1D(qx) = L−1|h̃(qx)|2, (4.3)

where h̃(qx) is the Fourier transform of the height profile and qx is the wavevector. The
wavelength λ = 2π/qx encodes a notion of lateral length scale. The Wiener-Khinchin theorem
states that the PSD is the Fourier transform of the height-height autocorrelation function, so
that ACF and PSD are mathematically equivalent.

All these measures are straightforward to generalize to areal scans. In this work we assume
that the surfaces are isotropic, where only the radial average of these quantities is important.
These radially averaged (isotropic) multiscale roughness measures can be obtained from their
counterpart computed on 1D profiles. The ACF computed on profiles is identical to the ra-
dially averaged 2D-ACF, but the radially averaged 2D-PSD, C iso, and C1D are linked via a
convolution [14]. This convolution is difficult to carry out on experimental data because it has
a singular kernel. For this reason, we use the approximation

C iso(q) =
π

q
C1D(q), (4.4)

which is strictly valid only for self-affine topographies, where the PSD decays as a power-law
(see next section).

Using the PSD to characterize surface topography involves some technical difficulties. Be-
cause real measurements are not periodic, they must be multiplied with a window function [14,
112, 113] before taking the Fourier transform. Another problem is that the value C1D has no
direct geometrical meaning, and its exact definition differs among researchers [14]. Further-
more, there is no consensus about which definition of the PSD to use, making the comparison
of PSDs reported in different publications cumbersome. In our work, we use the conventions
established in Ref. [14] to define the Fourier transform and the PSD. Multiscale measures with
direct geometrical interpretation such as the ACF and the SDRPs introduced below have the
advantage that there is no ambiguity in their definition and that they do not require preliminary
windowing of the data [IV, 79].

4.3 Self-affine surfaces

The scale-dependence of the rms heights illustrated by the measurements in Fig. 4.1b,c re-
flects the fractal nature of surface roughness [21, 31–33, 38]. In the special case of self-affine
surfaces, the rms heights vary with scan size following the power-law hrms(L) ∝ LH , where
H ∈ (0, 1) is the Hurst exponent. A well-known example of self-affine profile is the random
walk, for which H = 0.5. In the ACF, self-affine scaling implies that A(`) ∝ `2H [114]. For
the PSD, C1D(q) ∝ q−1−2H and C iso ∝ q−2−2H [14, 21].

Natural and technical surfaces are often self-affine with H ' 0.8 below the rolloff wave-
length λr, above which the profile is random noise [33, 37, 38]. Above λr, the rms height is no
longer scale-dependent and the PSD and ACF are flat. It is usually assumed that the surface is
self-affine down to atomic scales.
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4 Roughness

Power spectral Density (PSD)

Wavevector

Figure 4.3: Idealized self-affine power spectral density with rolloff wavevector qr = 2π/λr and short-cutoff
wavevector qs = 2π/λs.

Theoretical work, including that of this thesis, idealizes surface roughness as self-affine
with Gaussian height distribution. The surface is defined by an isotropic PSD which is flat for
wavevectors below qr = 2π/λr, and a power-law for wavevectors between qr and the short-
wavelength cutoff qs (Fig. 4.3). In numerical work, I generate random realizations of surfaces
described by this PSD using the Fourier filtering algorithm described for example in Refs. [14,
15]. This algorithm constructs the height map h(x, y) by a superposition of sine waves with
random uncorrelated phases, and amplitudes scaled according to the PSD.

4.4 Scale-dependent roughness parameters

While the value C1D has no direct physical interpretation, integrals of the PSD yield statistical
roughness parameters with clear geometrical meaning. By virtue of Parseval’s theorem, the
rms height is

h2
rms =

1

L

∫ L

0

dxh(x)2 =
1

2π

∫ ∞

−∞
dq C1D(q). (4.5)

The rms derivatives of order α can be computed similarly via higher moments of the power-
spectrum [14, 115] :

(h(α)
rms)

2 =
1

2π

∫ ∞

−∞
dq q2αC1D(q). (4.6)

It is straightforward to generalize Eq. (4.6) to 2D surfaces. For isotropic surfaces, the rms
heights and rms curvatures obtained from C1D or C2D are identical. Concerning first deriva-
tives, it is important to distinguish between the one-dimensional rms slope

√
〈(∂h/∂x)2〉 and

the rms gradients
√
〈|∇h|2〉 =

√
〈(∂h/∂x)2 + (∂h/∂y)2〉, the latter being the quantity used

in contact mechanics theories. For isotropic surfaces, the rms gradient is the 1D rms slope
multiplied by a factor of

√
2. In publication [IV] and in this section, we use the notation h′rms

for slopes, but h′rms usually denotes rms gradients.
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4.4 Scale-dependent roughness parameters
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Figure 4.4: Illustration of the basic idea behind the scale-dependent roughness parameters. (a) Example line scan
showing the computation of slopes h′(`) and curvatures h′′(`) from finite differences. A scale can be attached
to this computation by computing these finite differences at different distances `, shown for ` = 40∆x and
` = 80∆x where ∆x is the sample spacing. Similarly, the curvature at a finite scale ` is given by fitting a
quadratic function through three points spaced a distance `/2. (b) Local slope, obtained at a distance scale
of ` = 40∆x for the line scan shown in panel (a). The slope is defined for each sample point since we
can compute it for overlapping intervals. (c) Probability density P1 of the local slope, obtained from the
slope profile shown in panel (b). The rms slope for this length scale is equal to the width of this probability
distribution. The figure is reproduced from publication [IV] (CC BY 4.0).

Persson [26, 53] introduced a notion of scale-dependence in these rms derivatives by re-
stricting the limits of integration in Eq. (4.6) to a limited range of wavevectors. Persson’s
theories for contact mechanics are formulated in Fourier space and describe how contact prop-
erties evolve as Fourier modes (sine waves) with smaller and smaller wavelength are added to
the roughness. The PSD and these scale-dependent roughness parameters play a central role
in his contact theories.

4.4.1 Scale-dependent finite differences

In publication [IV], we propose a more direct and intuitive way to define scale-dependent
roughness parameters. The simplest definition of the derivative uses the finite difference
scheme (h(x+ ∆x)−h(x))/∆x, where ∆x is the sample spacing of the measurement. Wang
and Müser [79] introduced a notion of scale by applying the scheme on a sample spacing η∆x
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4 Roughness

(with integer η),

h′(x, η∆x) =
h(x+ η∆x)− h(x)

η∆x
(4.7)

and Fig. 4.4 illustrates this idea. Equation (4.7) filters out contributions of small-scale rough-
ness to the slope by assuming that the slope is constant over the interval [x, x + η∆x] and
given by the line passing through the two endpoints.

The finite difference scheme for the second derivative fits a second-order polynomial through
three sample points and is given by

h′′(x, `) =
h(x+ η∆x)− 2h(x) + h(x− η∆x)

(η∆x)2
, (4.8)

where ` is the distance scale. Because Eq. (4.8) implies that the curvature is constant over
the stencil length 2η∆x, we define the distance scale as ` = αη∆x, with α the order of the
derivative.

The rms fluctuations of these scale-dependent derivatives yield the scale-dependent rough-
ness parameters (SDRPs), for example for the slope:

h′SDRP(`) =

〈[
h(x+ `)− h(x)

`

]2
〉1/2

. (4.9)

4.4.2 Relationship with other multiscale measures

The scale-dependent rms derivatives can be computed from the autocorrelation function. For
the first derivative, it is apparent from Eqs. (4.1) and (4.7) that [79]

h′SDRP(`) =
[
2A(`)

]1/2
/`. (4.10)

Derivatives of higher order can also be computed from the ACF, but require evaluating the
ACF in more than one point. Our scale-dependent derivatives are also similar to a generalized
form of the variable bandwidth method [116, 117]. While the finite-difference scheme uses
only two or three points to fit a polynomial, the generalized VBM makes use of all data points
over the length ` via a least-squares regression.

Our numerical tests on synthesized self-affine surfaces show that computing scale-dependent
derivatives from finite-differences (or the ACF), the VBM or the PSD yields similar results.
In comparing the Fourier derivative with other methods, the exact relationship between the
distance scale ` and the cutoff wavelength λc setting the integration bounds in Eq. (4.6) is
not evident. Analyzing the finite difference operators in Fourier space shows that the wave-
length that contributes the most to h(α)

rms is 2`/α. For the Fourier derivative, the dominating
wavelength is the cutoff wavelength λc, so that we chose λc = 2`/α = 2η∆x. For the first
derivative, this corresponds to Nyquist’s sampling theorem stating that the smallest wavelength
that can be resolved on a discrete grid is λc = 2∆x. In summary, we have shown in publi-
cation [IV] that scale-dependent derivatives can be obtained from finite difference schemes,
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4.4 Scale-dependent roughness parameters

length scales below this resolution limit is eliminated
from the respective scale-dependent analysis.

For tip-based profilometry, the user is asked to
provide the tip radius Rtip which is used to auto-
matically detect tip artifacts. We use a tip radius analy-
sis technique that originated in the work of Church &
Takacs [48, 49] and was recently extended by the pre-
sent authors [31]. Briefly, if the probe-tip radius Rtip is
larger than the radius of curvature of a valley, the scan-
ning probe cannot fit into this valley on the rough
topography. In this case, the peaks on the measured
height data are rounded with a radius of curvature that
cannot be smaller than the tip curvature. The valleys of
the topography then develop cusps (figure 3). Church
&Takacs pointed out [48] that the cusps lead to a (one-
dimensional)PSD that scales as C q q .1D 4( ) µ -

We have recently extended this idea [31], but we
look at the rounded peaks instead of the cusps. We
compute the local curvature at a certain scale ℓ via the
scale-dependent second derivative, i.e., equation (9) or

rather its equivalent for the second derivative.We then
find the length ℓ below which the maximum of the
(negative) curvature rises above the user-specified tip
curvature,
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Any ℓ for which this condition is fulfilled must be
unreliable, as a scanning probe with tip radius Rtip is
unable to scan regions with this curvature. The factor c
must be of order unity; we use c 1 2/= based on
numerical experiments (see [31]). Criterion
equation (13) hence adjusts the reliable region of the
scale-dependent surface roughness data, with rougher
surfaces generally leading to a larger unreliable region.
Note that equation (13) expects peaks on the rough
topography to have positive height values and care
must be taken not to accidentally upload height data
that has been flipped upside down.

Figure 2.Variable-bandwidth analysis of the surface of a high entropy alloy from amolecular dynamics simulation [42].

Figure 3. Scanning the topography of a rough surfacewith a stylus can only capture features with a radius of curvature larger than the
radius of the stylus tip. Peaks are smoothened to the tip radius and valleys turn into cusps.
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Figure 4.5: Tip-based methods scan the surface with a probe with finite radius Rtip. This probe cannot fit into
small valleys of the surface and smoothens the curvature of the peaks in the measured profile. The figure is
reproduced from publication [II] (CC BY 4.0).

the ACF, the generalized VBM or the PSD, and that these four definitions yield equivalent
results on self-affine surfaces. However, this relationship is not universal and breaks down in
the rolloff region [79], so that future work should compare these methods in other situations
such as surfaces with facets (see Fig. 4.2 and section 4.5) or steps.

4.4.3 Scale-dependent distributions of derivatives

The scale-dependent finite differences allow us to extract the full distribution of slopes as a
function of length scale (Fig. 4.4c). Established multiscale roughness measures only give in-
formation on the variance of heights, slopes and curvatures over scale, and it is commonly
assumed that the underlying distribution is Gaussian. We can quantify deviations from Gaus-
sianity for each length scale ` by computing higher moments or cumulants (or combinations
of them, such as the skewness or kurtosis) of the distribution of the scale-dependent derivative
h′(x, `) given by Eq. (4.7). In contrast, the PSD, ACF and VBM only contain information
about the variance (i.e. the second moment) of this distribution.

4.4.4 Application to tip-artifact detection

An important practical application of the scale-dependent curvature distribution is the detec-
tion of tip artifacts. Tip-based methods scan the surface with a probe with finite radius Rtip

(Fig. 4.5), so that roughness features with curvature larger than 1/Rtip cannot be resolved, af-
fecting the measured profile at small lateral length scales. Note that the lateral length scales af-
fected by this artifact depends on the surface topography as well as on Rtip. We determine the
critical lateral length scale by comparing the maximum of the scale-dependent curvature dis-
tribution to the tip radius. Our method is more robust than an alternative method based on the
PSD [14], enabling us to automatically remove data with tip artifacts in contact.engineering [II].

19



4 Roughness

4.5 Roughness of polycrystalline diamond coatings

Diamond coatings are used in various contexts such as microelectromechanical systems [118]
(MEMS), biomedical applications [119], and seals and bearings [120, 121]. Surface roughness
critically affects their performance, but the nature of surface roughness is rarely known from
macroscopic scales down to atomic scales. In publication [VII], we characterize the rough-
ness of four different polycrystalline diamond coatings: microcrystalline diamond (MCD),
nanocrystalline diamond (NCD), ultrananocrystalline diamond (UNCD), and polished UNCD
(pUNCD). These four substrates enable adhesion experiments varying roughness at identical
surface chemistry [V, 62], and our characterization of topography from millimeters down to
atomic distances allows us to quantitatively compare theory and experiment.

Such a comprehensive surface topography description required Abhijeet Gujrati and cowork-
ers to perform multiple measurements using three different techniques, because each instru-
ment only resolves a limited range of length scales, see Sec. 4.1. We build a comprehensive
description of the surface topography by stitching together and averaging the PSDs obtained
from more than 60 individual measurements for each substrate. Figure 4.6 shows this averaged
PSD for UNCD and NCD, as well as the ACF, scale-dependent slopes and scale-dependent
curvatures obtained by the same procedure.

The power-spectrum has the characteristic transition between fractal scaling (below' 1 µm)
and a rolloff region where the PSD is nearly flat, characteristic of random noise. Similar scal-
ing regions can be seen in the height-difference autocorrelation function. The height fluctua-
tions increase over distance until the rolloff length, where

√
A becomes independent of scale

and gives an intrinsic value for the rms height. Hence, it is important to measure the surface
over distances larger than the rolloff length in order to determine the rms height. In contrast,
the rms slopes and curvatures increase as we account for progressively smaller length scales
by decreasing the spacing of the stencil `. This means that instruments with nanometer reso-
lution such as TEM are required to determine an intrinsic value of slopes and curvatures. Note
that while NCD is rougher than UNCD at large length scales, the small-scale roughness of
the two surfaces is similar. Since the contact area and the adhesion of stiff elastic materials
depend on small-scale roughness, these coatings might have similar tribological performance
despite they look so different at large scales.

The PSD below the rolloff cannot be described by a single power-law, so that these surfaces
deviate from the common self-affine idealization presented in section 4.3. Self-affinity implies
that the PSD scales as q−1−2H , where H is the Hurst exponent and is in the range [0, 1]. NCD
can be considered self-affine below λ = 37 nm, where a power-law with Hsmallerλ = 0.75
reasonably fits the PSD. In contrast, for λ ∈ [37 nm, 224 nm], the power spectrum is much
steeper, giving an apparent Hurst exponent of Hlargerλ = 1.27. This larger-than-expected
exponent implies that NCD is not self-affine in this intermediate range of length scales.

This steep scaling of the PSD is a signature of the faceted grains of NCD that are visible
in Fig. 4.2 and introduces kinks in the profiles (Fig. 4.1b). Church and Takacs [122] have
mathematically shown that kinks lead to q−4 scaling of the PSD, corresponding to an apparent
Hurst exponent H = 1.5 very similar to the fitted value Hlargerλ = 1.27. Our numerical tests
on artificially generated profiles indicate that the wavelength of transition from q−4-scaling
to the rolloff corresponds to the mean grain size, and Ref. [123] made a similar observation
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4.5 Roughness of polycrystalline diamond coatings
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Figure 4.6: Multiscale roughness measures for nanocryscalline diamond (NCD) (black lines) and ultra-
nanocrystalline diamond (UNCD) (red lines), as a function of the distance scale `. (a) One-dimensional
power spectral density C1D (PSD), where the wavelength λ = 2`. The vertical line represents the grain
size of NCD. (b) Autocorrelation function. (c) Scale-dependent rms slopes computed with a finite difference
scheme. (d) Scale-dependent rms curvatures computed with a finite difference scheme.
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4 Roughness

on sandstones. The grain size extracted independently on AFM scans (as indicated by the
vertical line in Fig. 4.6a) is similar to the rolloff wavelength, confirming our numerical result
experimentally.

Faceting has a clear signature in the scale-dependent slope. Crystal facets are flat so that
when the spacing between sample points is smaller than the grain size, the measured slopes
become independent of ` and the curve flattens. The slope rises again for ` below 36 nm,
because the grain facets are not perfectly flat and have self-affine surface roughness on top of
them.
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5 Adhesion of rigid spheres

5.1 Introduction

Our goal is to understand how roughness affects the force required to separate two macro-
scopic solid objects. In publication [V], we address this question experimentally for the con-
tact between some of the hardest materials: ruby and diamond. These materials are so stiff that
they are effectively rigid and only touch on the top of the tallest asperity. Adhesion studies on
hard materials commonly use AFM or colloidal probes and are sensitive only to the nanoscale
roughness because of the small radius of the probe [124–126]. By using a spherical probe
of 0.5 mm diameter, Luke Thimons’ experiments allow us to understand the role of surface
roughness up to the macroscopic scale and are representative of technological application.

5.2 Experiment

In these experiments, Luke Thimons brought the ruby sphere into contact by applying a
preload of 5 µN and then measured the force needed to detach the sphere. He repeated the
experiment more than 2000 times for each of the diamond coatings characterized in publi-
cation [VII], yielding the distributions of pull-off forces shown in Fig. 5.1 for pUNCD and
NCD. The pull-off forces decrease with surface roughness and have large fluctuations approx-
imately described by a log-normal distribution. Similar adhesion distributions were observed
in various contexts including particle adhesion [127–130], biological samples and cell adhe-
sion [131, 132], and AFM adhesion [133–135]. Simple analytical models [51, 136] cannot

a b

Figure 5.1: Probability distribution of pull-off forces in the contact between a ruby sphere and the diamond
coatings pUNCD (a) and NCD (b). Luke Thimons repeated the experiments more than 2000 times for each
substrate. The red lines show the fit to a log-normal distribution. The figure is adapted from publication [V]
(CC BY 4.0).
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5 Adhesion of rigid spheres

explain the pull-off force of these materials.

5.3 Numerical model

Luke Thimons and I carried out brute-force numerical calculations on these topographies in
order to unravel the role of surface roughness and to identify the main mechanisms. The
geometry is given by areal AFM scans of the ruby sphere and of the four diamond substrates.
Boundary element simulations of the elastic contact show that adhesive interactions are too
weak to deform the material and that at the preload, most of the contact area is plastified.
AFM measurements after contact reveal indents that were not present in the same region before
contacting, confirming that ruby was deformed plastically. These plastic deformations let the
highest peaks of diamond penetrate into the ruby sphere and thereby increase the pull-off force
compared to an elastic or purely rigid contacts. We therefore determined the pull-off force
by integrating the interaction pressures in a rigid contact, but where the highest peak were
initially flattened by plastic deformation. We accounted for plasticity using a simple bearing-
area approach where the contact stresses equal the hardness in the plastified area [137], and
modeled the adhesive interactions using an exponential cohesive law (Eq. (3.9)).

5.4 Work of adhesion and range of interaction

The cohesive law is parametrized by the work of adhesion wint and the interaction range ρ.
We determined these two unknowns by fitting our numerical simulations to the experimental
results for the four different rough surfaces. This approach is valid because the four coatings
are chemically identical. For ρ ' 5 nm and wint ' 46 mJ/m2, our numerically predicted aver-
age pull-off forces agree with the experiments for all four topographies. The work of adhesion
is consistent with findings by Refs. [138–140] and realistic for van der Waals adhesion. How-
ever, the interaction range is higher than theoretically expected for atomic interactions such
as covalent bonds or van der Waals interactions, which typically act over distances around
0.5 nm [19]. Refs. [140–142] reported similar values for ρ, but the origin for this large range
of interaction is still unclear. Possible explanation are electrostatic interactions [143–145],
capillary adhesion [146–148] and Casimir forces [141].

5.5 Role of scales

Plastic deformation and the long range of interaction make the pull-off force insensitive to
small-scale roughness. We carried out an additional numerical study to identify which scales
of roughness affect the normal force. Because an individual AFM scan captures only a limited
range of length scales, we extended this surface by superposing synthetic roughness at large
and small scales. This synthetic surface roughness was generated using a Fourier filtering
algorithm [14, 15] based on the power-spectral density of the specific diamond substrate. The
advantage of using such a compound topography instead of a fully synthetic one is that the
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5.6 Discussion

AFM scan covers the range of scales where NCD and MCD are faceted. Over these length
scales, they differ the most from our synthetic topographies at equal PSD.

Filtering out small-scale roughness with an increasing cutoff wavelength reveals that the
features below 43 nm do not affect the pull-off force (Fig. 5.2a). Small scales do not matter
because they are flattened by the plastic deformation in the contact area, and because the
adhesive interaction is insensitive to gap variations smaller than the interaction range [149].
The role of the interaction range can be understood with the ACF shown in Fig. 4.6b, which
characterizes variations in heights (or gaps in a rigid-plastic contact) as a function of lateral
distance. For the large interaction range ρ = 5 nm that we found, height variations over lateral
distances ` . 40 nm are smaller than the interaction range and do not alter the attractive
pressure. In contrast, for the value expected for van der Waals interactions ρ ' 0.5 nm [19],
roughness down to the single digit nanometer scale would matter. Hence, plastic deformation
and the larger-than-expected range of interaction make the contact insensitive to small-scale
roughness.

By repeating this procedure to filter out large-scale roughness (Fig. 5.2b), we find that
roughness above 1.8 µm is unimportant. The unimportance of large scales might be related
with the radius of the sphere, but we would need to vary the sphere radius in order to check
that hypothesis. A similar numerical study [130] found that the pull-off force is independent
of the sphere radius above a certain amplitude of roughness.

5.6 Discussion

The simulations reveal in detail which parts of the surface come into contact and which parts
feel attractive interactions. The pull-off force fluctuates a lot because the contact area is limited
to the top of one or a few single asperities. For roughness larger than the interaction range, the
force is determined by the local geometry of this peak. The adhesion of a spherical asperity
depends on the curvature [28, 29], but on our surfaces the contact occurs on the corners of
faceted grains and cannot be considered spherical. There is no theory linking pull-off forces
to geometrical parameters for our faceted surfaces. In the case of pUNCD, the rms height
is small compared to the range of adhesion, so that attractive forces in the regions far from
the contact point contribute the most to the total force. The height of the contacted asperity
determines the pull-off force by setting the average separation between the surfaces. In both
cases, adhesion is now determined by the extreme value statistics of the highest peaks of the
surface. Accounting for these finite-size effects in a model is an open theoretical challenge.
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5 Adhesion of rigid spheres

Figure 5.2: The contribution to pull-off force from various length scales can be directly demonstrated by recal-
culating pull-off force after filtering out small (a) and large (b) scales of roughness. Specifically, the pull-off
force calculated from the filtered surfaces is normalized by the pull-off force calculated from the unfiltered
surfaces. In panel (a), the x-axis indicates a short-wavelength cutoff, where all roughness below this size scale
has been removed. A value near 1 indicates that there is almost no effect on pull-off force of filtering out
roughness below that size scale. In panel (b), the x-axis indicates a long-wavelength cutoff, where all rough-
ness above this size is removed. Here, a value of 1 indicates no contribution to pull-off force from roughness
above that size scale. The figure is reproduced from publication [V] (CC BY 4.0).
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6 Theory for the adhesion of stiff
elastic contacts

6.1 Introduction

The contact of ruby and diamond coatings is not sticky because only a single asperity holds
them together, and the micronewton pull-off force of this asperity is imperceptible. In this
section, I consider elastic contacts that comply to the peaks over a finite fraction of the nominal
area of contact A0. This elastic deformation increases the area that falls into the range of
molecular attraction, but the adhesive forces now also compete with the repulsive pressures
inside the contact area Arep. Pastewka and Robbins [24] showed that most objects are not
sticky because the repulsive force increases faster with contact area than the attractive force.
In publication [VI], Joe Monti and I numerically test the adhesion theory by Pastewka and
Robbins [24]. We consider elastic contacts where adhesion is confined to the top of the highest
asperities (see Fig. 1.1b), the relative contact area Arep/A0 is small (. 10%), and the adhesive
tractions are too weak to deform the surface (DMT approximation).

The Pastewka and Robbins model describes the contact between infinite nominally flat sur-
faces with self-affine roughness. The study of this infinite system allowed the authors to
predict the contact area and adhesion of rough spheres via homogenization [94]. When the
contact area of the sphere covers a statistically significant number of surface features, the the-
ory of the infinite system gives the relation between mean pressure and contact area inside a
representative surface element of the spherical contact. Reported over the nominal area of the
system A0, the pull-off force of a single asperity is vanishingly small, so that the surfaces are
not sticky. The surfaces are only sticky when a finite mean pressure is required to separate
them, allowing macroscopic spheres to stick with macroscopic forces. At a finite contact area
fraction, stickiness depends on the competition between the attractive tractions outside the
contact area and the repulsive pressures inside the contact area.

The theory by Pastewka and Robbins predicts how the contact area increases due to adhesive
interactions and explains why most objects are not sticky despite the universal van der Waals
attractions. However, these molecular attractions still play an important role in nonsticky
contacts because they increase the contact area and thereby the friction force [19, 41, 43, 49].
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6 Theory for the adhesion of stiff elastic contacts

6.2 Pastewka and Robbins model

For nonadhesive contacts with small contact area fractions Arep/A0 . 10%, the normal force
Frep is proportional to the contact area Arep,

Frep/Arep = κ−1
reph

′
rmsE

′, (6.1)

where the proportionality constant κ−1
rep ' 1/2 [46–48]. For an adhesive contact, Pastewka

and Robbins split the total force F = Frep + Fatt in a repulsive contribution Frep > 0 and
an attractive contribution Fatt < 0. In the DMT approximation, Frep is still proportional to
the area of repulsive contact Arep and given by Eq. (6.1). They argue and verify numerically
that Fatt is proportional to Arep as well, defining the constant κ−1

att = −(Fatt/Arep)/(h′rmsE
′).

The total force in an adhesive contact is hence proportional to the repulsive contact area and
described by the constant

F

Areph′rmsE
′ = κ−1 = κ−1

rep − κ−1
att. (6.2)

When κ−1
att exceeds κ−1

rep ' 1/2, the attractive force grows faster with contact area than the
repulsive force and the solids spontaneously come into contact. The contact is sticky because
a finite mean pressure F/A0 needs to be overcome to separate it.

The attractive force is the integral of the interaction stress outside the contact area, given
by the local gap g(x) via the cohesive law −v′(g) (Eq. (3.9)). In a statistical description, this
integral is given by the probability density of gaps p(g),

Fatt = A0

∫ ∞

0+
dg p(g) (−v′(g)). (6.3)

Using the DMT approximation, p(g) is identical to the distribution of gaps in a nonadhesive
contact, shown for a numerical simulation by the blue dots in Fig. 6.1. Before contact, the gap
distribution equals the height distribution, which is Gaussian and corresponds to an inverted
parabola in the log-log representation in Fig. 6.1. When we squeeze the surfaces together, the
repulsive contact stresses flatten the roughness in and close to the contact area and thereby
increase the probability of small gaps. The key element in Pastewka and Robbins’ theory is
an analytical expression approximating the gap distribution near the contact edge in a nonad-
hesive contact.

When deriving their approximation for the gap distribution, they assumed that the interac-
tion range ρ is short, so that attractive interactions are confined to a narrow rim around the
contact perimeter, symbolized in red in Fig. 6.2. They observed in their simulations that the
contact perimeter is given by

Prep = πArep/drep, (6.4)

with a constant drep, the typical width of a contacting region [48]. In contrast with com-
pact two-dimensional objects like disks for which Prep ∝ A

1/2
rep , the contact perimeter is pro-

portional to Arep because the contact patches are fractals with many internal bubbles. This
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Eq. (8)). For both H = 0.3 and H = 0.8 , the uptick in p(g) in 
the range g∕g0 ∼ 1 − 10 is the peak of this Gaussian height 
distribution. Since h0 ∝ (!max∕!min)

H , the power-law regime 
extends much further for H = 0.8 (Fig. 2b) than for H = 0.3 
(Fig. 2a). Increasing !max∕!min shifts the Gaussian peak out 
to larger g∕g0 (most prominently for H > 0.5 ), and extends 
the range over which p(g) ≈ pn(g) . However, for the largest 
!max∕!min we studied, p(g) < pn(g) for 0.1 ≲ g∕g0 ≲ 1 . This 
suggests that the cutoff of the integral in Eq. (11) may be up 
to an order of magnitude smaller than g0 , about equal to the 
point where the near-contact area matches the contact area. 
Still larger calculations may be required to verify this result.

The crucial question for adhesive theories is how appli-
cable our results are for gap distributions in the presence 
of attractive interactions. We quantify the strength of the 
attractive interaction by the value of 1∕!att (see Ref. [23] 
and discussion below), since interfaces become sticky for 
1∕!att ≳ 1∕2 [23]. For the data collapse, we use the values 
of drep measured in the non-adhesive calculations.

Figure 3 shows the gap distributions for adhesive cal-
culations as w increases (with constant ! ), using surfaces 
with H = 0.8 and !min = 128a0 . To facilitate the compari-
son between non-adhesive and adhesive calculations, the 
adhesive simulations are conducted with the constraint that 
the mean gap is identical to the non-adhesive simulation 
( 1∕!att = 0 ). This choice of constraint means that the con-
tact areas are not equal, particularly for sticky surfaces. For 
non-sticky surfaces (up to 1∕!att ≈ 0.2 ), the gap distribution 

(a) (b)

Fig. 2  The probability distribution of interfacial separations for 
H = 0.3 (a) and H = 0.8 (b) normalized to 1 − c and divided by the 
prefactor in Eq.  (13) for the ratios !max∕!min indicated in the leg-
end, with !min = 32a0 (solid symbols) and !min = 128a0 (open sym-

bols, color matches !max∕!min in the legend). Here, A∕A0 ≈ 0.03 for 
!min = 32a0 and A∕A0 ≈ 0.04 for !min = 128a0 . The power-law pn(g) 
from Eq. (13) is shown as a dashed black line
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Fig. 3  Comparison of the interfacial probability distributions for 
adhesive contact with increasing w, for H = 0.8 , !min = 128a0 , 
!max∕!min = 256 , and L∕!max = 2 . The corresponding non-adhe-
sive contact distribution from Fig.  2b is replotted ( 1∕!att = 0 , 
Arep∕A0 ≈ 0.04 ), and the adhesive distributions are normalized by 
g0 and c obtained from the non-adhesive result. The power-law pn(g) 
from Eq. (13) is shown as a dashed black line. The dotted gray line 
corresponds to g∕g0 = !∕g0 with ! = 4a0.

Figure 6.1: Distribution of gaps extracted from boundary element simulations of the contact of a self-affine
surface. The strength of the adhesive interaction σ0 increases with 1/κatt, and 1/κatt = 0 (blue circles)
corresponds to the nonadhesive case. The power-law pn(g) from Eq. (6.8) is shown as a dashed black line.
Note that we used the prefactor of Eq. (6.8) to normalize the y-axis, with c = Arep/A0 the relative area of
contact. For small gaps, the numerical data deviates from the prediction because of discretization artifacts,
which are determined by the ratio between the smallest wavelength in the PSD λs and the pixel size ∆x.
Here, λs/∆x = 128, and the simulation was performed on a large grid of 65536 pixels in order to have a
large enough region of self-affine scaling in the PSD, λr/λs = 256. The dotted gray line corresponds to
g/g0 = ρ/g0 with ρ = 4∆x. The figure is reproduced from publication [VI] (CC BY 4.0).
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Frep > 0 and an attractive contribution Fatt < 0 . Repulsive 
and attractive contributions originate from repulsive surface 
patches of total area Arep and attractive surface patches of area 
Aatt (see Fig. 1). The total force is then given by

where !att is the mean stress in the attractive patches that 
is roughly constant and of order !att = w∕Δr , where w is 
the work of adhesion and Δr the range of the attractive 
interaction.

Like in the purely non-adhesive limit, the geometry of 
contact is fractal in the DMT-like limit with proportionality 
between Arep and the contact perimeter Prep given by

where the mean contact diameter drep is approximately con-
stant [7, 23, 36]. Note that Eq. (2) holds generally for any 
geometric object, but drep varies with Arep in most cases. 
Short-ranged attractive interactions generate narrow bands 
of approximately constant width datt located around contact 
regions (see Fig. 1). If datt is small, then the total area con-
tributing to attractive forces Aatt = Prepdatt , which can be 
related to Arep via mutual proportionality with Prep given 

(1)F = !repArep − !attAatt,

(2)Prep = !Arep∕drep,

by Eq. (2). This means, that for non-sticky interfaces, the 
(repulsive) contact area is given by the expression

with an effective 1∕! = 1∕!rep − 1∕!att . The adhesive inter-
action hence increases the effective value of the dimension-
less constant ! . A macroscopic force is required to separate 
the two surface when |Fatt| ≈ Frep or equivalently !att ≈ !rep . 
Interfaces that require a macroscopic force for separation are 
called “sticky”.

This theory depends sensitively upon the distribution of 
interfacial separations or gaps, that is assumed to be unaltered 
from the non-adhesive scenario. Previous work has primarily 
focused on the behavior of the mean gap ḡ , which is com-
monly found to be exponentially related to the normal load 
in non-adhesive contact as F ∝ exp

(
−ḡ∕"h0

)
 , where h0 is 

the rms surface height and ! is a dimensionless constant of 
order unity [8, 9, 12–17, 21, 24, 29]. Almqvist et al. [16], 
the contact mechanics challenge [29] and Wang and Müser 
[37] have reported distributions of interfacial separations, but 
these works have either not focused on the behavior at small 
gaps that is important for understanding short-ranged adhe-
sion or indirectly reported it through analysis of percolation 
in Reynolds flow.

In this paper, we derive the distribution of interfacial sepa-
rations in the vicinity of contacting regions and show numeri-
cally that our expression holds even in the weakly adhesive 
limit. This distribution can be used to compute the total attrac-
tive contribution to the force and hence the force–area relation-
ship for weakly adhesive interfaces.

2  Simulation Methods

In our simulations, we invoke the standard mapping that allows 
the contact of two rough, elastic solids to be treated as contact 
between an initially flat, elastic solid and a rough, rigid surface 
[38]. If the elastic properties of the two original surfaces are 
encoded by the Young’s moduli E1 and E2 and Poisson’s ratios 
!1 and !2 , the combined elastic response is given by the elastic 
contact modulus

The roughness profile of each periodic, L × L surface with 
nominal area A0 = L2 is described by a self-affine fractal 
between an upper cutoff length scale !max and a lower cutoff 
!min , where length scales are given in terms of the pixel 
size a0 . This means that the power spectral density (PSD) 

(3)Arep = !
F

h′
0
E∗

(4)1

E∗
=

1 − !2
1

E1

+
1 − !2

2

E2

.

(a)

(b)

Fig. 1  a Contact map for a self-affine surface with H = 0.8 and 
!min = 16a0 . Arep is the sum over all pixels shown in black, and the 
contact perimeter Prep is marked in red. b Schematic of a contact 
region created by a contacting asperity, showing the mean contact 
diameter drep . The gap Δ(x) between surfaces grows as the lateral dis-
tance x3∕2 (Color figure online)

Figure 6.2: (a) Contact map for a self-affine surface with H = 0.8. The area of repulsive contact Arep is the sum
over all pixels shown in black, and the contact perimeter Prep is marked in red. (b) Schematic cross-section
of a contact region created by a contacting asperity, showing the mean contact diameter drep. The gap ∆x
between surfaces grows as the lateral distance x3/2. The figure is reproduced from publication [VI] (CC BY
4.0).

porous, or snake-like contact morphology is the result of roughness at small lateral length
scales preventing the surfaces to elastically conform. Pastewka and Robbins argue and ver-
ify numerically that the mean width of the contact region is determined by the small-scale
geometry of asperities via

drep ' 4h′rms/h
′′
rms. (6.5)

The width of the contacting regions determines the interfacial separation close to the contact
edge. A cross-section through an asperity (Fig. 6.2b) resembles the contact of a cylinder where
the gaps separate following the universal power law [87]

∆(x) = g0

(
x

drep

)3/2

, (6.6)

with

g0 = 4h′rmsdrep/3 =
16

3

[h′rms]
2

h′′rms

(6.7)

corresponding to how much the asperity penetrates into the substrate. Hence, not only the
width of a contacting region is independent of the load, but also the deformed geometry near
the perimeter. The area that feels attractive forces is then proportional to Prep and hence to
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6.3 Numerical validation of the Pastewka and Robbins model

Arep via Eq. (6.4). More precisely, the probability density at small gap pn(g) increases linearly
with Arep and Eqs. (6.4) to (6.7) yield Pastewka and Robbins’ prediction

pn(g) =
Arep

A0

2π

3g0

(
g0

g

)1/3

. (6.8)

Integrating pn(g) with the cohesive law gives the adhesive force Fatt and the correction for
the load area relationship

κ−1
att = −2π

3

σ0

h′rmsE
′

(
ρ

g0

)2/3

. (6.9)

The nondimensional term σ0/h
′
rmsE

′ is the ratio between the maximal adhesive stress σ0 and
the repulsive stress in the contact area, and the term ρ/g0 compares the range of interaction
ρ to the local deformation of the substrate by an asperity g0. Both the mean repulsive stress
h′rmsE

′ and the deformation g0 are determined by slopes and curvatures, which depend on
small lateral length scales. In conclusion, the contact area and the stickiness are determined
by the surface roughness at small lateral length scales.

6.3 Numerical validation of the Pastewka and Robbins
model

Pastewka and Robbins’ model accurately predicts the contact area observed in their weakly ad-
hesive simulations. However, this agreement does not directly validate the individual assump-
tion made on the morphology of contact patches and on the deformed geometry. Pastewka
and Robbins verified that their expression for drep Eq. (6.5) describes the geometry of contact
patches in their simulations. Concerning the deformed geometry, numerical results for gap
distributions reported in [40, 55, 56, 150] do not resolve small gaps well enough in order to
verify Eq. (6.8). In publication [VI], Joe Monti and I compare Eq. (6.8) to gap distributions
extracted from finely discretized simulations (Fig. 6.1). The numerical results follow the pre-
dicted power-law (dashed line) for gaps below 0.1g0. This means that the Pastewka-Robbins
model is no longer valid for interaction ranges ρ & 0.1g0 in the case of an exponential cohesive
law (Eq. (3.9)).

Our simulations also show that the gap distribution is unaltered by weak adhesive inter-
actions. In the adhesive simulations in Fig. 6.1, the distribution of gaps changes when κ−1

att

increases from 0.2 to 1, corresponding to where the surfaces become sticky. Müser [40] found
that adhesion alters the contact patch morphology and the gap distribution when a generalized
Tabor parameter exceeds one. This parameter also depends on the strength of the adhesive
interaction and the small-scale roughness, but is not equivalent to κ−1

att. A more systematic
parameter variation is required to conclude when Pastewka and Robbins’ assumptions break
down due to strong adhesive stresses.
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6 Theory for the adhesion of stiff elastic contacts

6.4 Discussion

The importance of small-scale features of the surface roughness predicted by Pastewka and
Robbins is still actively debated [70, 81, 151, 152], because other models predict that large
scales dominate adhesion. The Pastewka-Robbins model is valid in an intermediate regime
where the interaction range is shorter than g0, but at the same time long-ranged enough for the
cohesive stresses to be weak (at a fixed work of adhesionwint). In both limits of weak attractive
stresses with long range, and strong attractive stresses with short range, large-scale roughness
dominates adhesion. For long interaction ranges, the Gaussian peak of the gap distribution
at large gaps and the contact stiffness determine the adhesive force, and both quantities are
governed by large-scale roughness [53, 81]. For short-ranged adhesion with strong cohesive
stresses (JKR regime), the surfaces conform at small scales and the contact area is governed
by the elastic energy required to conform to the large-scale roughness [26, 41]. Note that in
the case H < 0.5 the small-scale roughness remains the hardest to conform to and determines
the contact area, but most surfaces have H > 0.5 [33, 37, 38]. An additional complication is
that the transition between the DMT regime and the JKR regime might occur within the same
surface depending on length scale [53, 82].

The numerical studies of Refs. [24, 40] agree with the stickiness criterion κ−1
att > 1/2. In

contrast, Wang and Müser [70] observed that the onset of stickiness is well described by the
energetic criterion wint/eel > 0.5, where eel is the elastic energy for fully conformal contact
and usually depends on large length scales [26]. However, their results do not clearly contra-
dict with Pastewka and Robbins either. A discussion of the impact of surface roughness on
stickiness unifying different adhesion regimes is still lacking. Further analysis of multiscale
contact theories [53, 82] might provide valuable insights.

It is hard to reach conclusions with experimental methods, because roughness is rarely
known down to the atomic scale. The comprehensive surface topography characterization in
publication [VII] might allow such an experiment in the future. Luke Thimons’ experiments
with ruby spheres [V] are not such a test because they transgress two fundamental assump-
tions of the models. First the ruby deforms plastically and second, the contact is confined to
one or a few asperities. In contrast, the Pastewka-Robbins theory considers the limit of an
infinite system, where a statistically significant number of surface features come into contact.
Since the geometries and materials that Luke Thimons used are technologically relevant, his
experiments motivate the development of adhesion theories accounting for finite-size effects
and predicting distributions of pull-off forces.
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7 Adhesion hysteresis in soft contacts

7.1 Introduction

In the previous section, I focused on stiff materials where the adhesive tractions are too weak to
deform the solid significantly, which is called the DMT regime. I now focus on soft materials
such as rubber, jelly or the tip of an insect’s foot, where the adhesive stresses are strong and
confined to a vanishingly small region. These soft contacts are in the JKR regime, where the
contact perimeter is a crack described by the balance of elastic and surface energy [16, 27].
Experiments with rubber [36, 62, 153, 154] show that the force needed to break such contacts
is higher than the force measured during approach and the origin of this adhesion hysteresis is
unclear.

I develop a crack-front model for the contact of spheres with heterogeneity in work of
adhesion [III] or surface roughness [I], allowing me to better understand the role of surface
roughness in adhesion hysteresis.

7.1.1 Crack-front theory for smooth spheres

Johnson, Kendall and Roberts (JKR) [16] described the contact of smooth spheres using linear
elastic fracture mechanics. In their description, the adhesive interaction is represented by a
gain of surface energy per unit contact area, the work of adhesion wint, while the non-contact
area, or crack face, is pressure free. Their model represents the limit of short interaction ranges
and infinite cohesive stress. The contact pressures σ have a tensile singularity as the distance
to the edge of the contact area −ξ goes to 0,

σ(ξ) = −KJKR(b, a)/
√

2π(−ξ) +O((−ξ)1/2), (7.1)

with the stress-intensity factor

KJKR(b, a) =

(
a2

R
− b
)

E ′√
πa
. (7.2)

Here a is the radius of the circular contact area, R is the radius of the sphere and b is the rigid
body penetration.

Within my assumptions of small deformations and linear elasticity, stresses and thereby
stress-intensity factors superpose linearly as I superpose displacements. JKR obtained KJKR

and the normal force FJKR by superposing the solutions for the nonadhesive contact of a
sphere [50] and for the circular flat punch under tensile load [100, 155].
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Figure 7.1: Contact of a smooth sphere as predicted by Johnson Kendall and Roberts (JKR) [16]. (a) Normal
force FJKR versus rigid body penetration b (solid line). For b between -1 and 0, there are two metastable
solutions of Eq. (7.4), and the dotted line represents an unstable equilibrium. The shaded area represents the
work done by the force during an indentation retraction cycle, corresponding to the energy dissipated during
the jump-in and jump-out instabilities (symbolized by the vertical arrows). (b) Contact radius as a function of
normal force. I have nondimensionalized units following the conventions of Refs. [99, 100] as described in
Sec. 7.1.1.

Irwin [156] showed that the amplitude of this stress singularity KJKR determines the cost
in elastic energy Uel needed to increase the contact area,

GJKR(b, a) =
∂Uel

∂(πa2)
=
K2

JKR(b, a)

2E ′
. (7.3)

G is called the elastic energy release rate and is a generalized force resisting against an in-
crease in contact radius. The equilibrium contact radius is such that this elastic restoring force
balances the driving force for new contact area wint [27]:

GJKR(b, a) = wint. (7.4)

Once nondimensionalized using distinct vertical and lateral length units, the JKR contact is
parameter free [100, 101, 157], and thus, I present my numerical results in the nondimensional
units defined in Refs. [99, 100]. Specifically, lengths along the surface of the half-space (e.g.,
the contact radius) are normalized by (3πwintR

2/4E ′)1/3, lengths in the vertical direction (e.g.,
displacements) by (9π2w2

intR/16E ′2)1/3 and normal forces by πwintR. The equations are in
dimensional form but can be nondimensionalized by substituting R = 1, wint = 1/π and
E ′ = 3/4. Note that this nondimentionalization implies that the pull-off force is proportional
to the work of adhesion wint.

Figure 7.1 shows the normal force and contact radius predicted by JKR as I pull the sphere
in and out of the contact at prescribed rigid body penetration b. As I approach the sphere that
is initially out of contact (panel a), there is no force until they first touch at b = 0. However,
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7.1 Introduction

during retraction, the surfaces separate at a negative penetration b ' −1. During a full inden-
tation cycle, the indenter has performed mechanical work corresponding to the shaded area.
This energy is dissipated during the jump-in and jump-out instabilities symbolized by the ar-
rows. In the snap-in instability, the contact area is initially out of equilibrium and suddenly
increases to a finite value (panel b). This fast, unstable growth of the contact area radiates
elastic waves that dissipate the energy, independently of the pulling rate and even for purely
elastic materials. In conclusion, energy can be dissipated in purely elastic contacts when the
solid jumps between metastable states.

7.1.2 Adiabatic theory of the contact of rough spheres

In the theory by Persson and Tosatti [26] the contact of rough spheres is still described by
JKR’s equations for a smooth sphere, Eqs. (7.2) to (7.4), but with an apparent work of adhesion
wPT containing the effect of surface roughness. This formalism splits the energy balance
between macroscopic contributions, represented by GJKR, and interfacial contributions now
including the surface roughness in addition to the surface energy wint. Energy conservation
implies that wPT is the difference in areal energy between a surface element in contact with
the surface roughness and a surface element out of contact. Straining the solid to conform to
the surface roughness costs the elastic energy per unit area eel (see Eq. (3.6)), reducing the
apparent work of adhesion to

wPT = wint − eel. (7.5)

wPT is the gain in interfacial energy per unit apparent, or projected, contact area Aapp, but
surface roughness increases the true area of contact Atrue. Following Persson and Tosatti, this
effect increases the surface energy term in Eq. (7.5) by a factor of

Atrue/Aapp ' 1 + h′2rms/2. (7.6)

This increased contact area implies that roughening the surfaces can increase the pull-off force,
provided that the material is soft enough for eel to be small. However, Eq. (7.6) is a small-slope
approximation that overestimates Atrue for the diamond coatings [VII] considered here, and
Persson and Tosatti neglected that stretching the surface from Aapp to Atrue also has an ener-
getic cost due to the surface tension of the elastic substrate. Dalvi et al. [62] refined the model
to account for these effects when comparing theoretical predictions to their experimental re-
sults. In this thesis, I neglect the increase in true area of contact for simplicity and because it
does not affect the conclusions in the comparison of my model to the experiments.

7.1.3 Adhesion hysteresis

Dalvi et al. [62] investigated the effect of surface roughness in the adhesion of soft rubber
spheres. They varied surface roughness using the four diamond surfaces that Abhijeet Gujrati
measured over all length scales [VII], allowing them to quantitatively test adhesion theories.
Figure 7.2 illustrates a typical force contact radius relationship on the example of NCD. Their
refined version of the Persson and Tosatti model captures the effect of surface roughness on
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Figure 7.2: Contact radius as a function of the normal force in an adhesion experiment between a rubber sphere
and nanocrystalline diamond [62]. The contact area is larger and the force more negative (more adhesive)
during retraction than during approach. The sphere has Young’s modulus E = 0.7 MPa and radius R =
1.2 mm. The dashed lines are JKR curves using two distinct apparent work of adhesion for approach wappr

and for retraction wretr. The curve during approach is a fit of wappr to the experimental data of Ref. [62],
while wretr is a prediction of my theory based on this fit and the power spectral density of the nanocrystalline
diamond. This figure is adapted from publication [I].

the adhesion measured during approach. The theories presented above assume that the contact
follows thermodynamic equilibrium, so that the area should follow the same equilibrium curve
during retraction than during approach. However, the force measured during retraction is
much higher than during approach (Fig. 7.2), in contrast with this expectation. Such adhesion
hysteresis has been reported in several previous experiments [36, 63, 153, 154] and can often
be described by two distinct JKR curves with apparent work of adhesion wappr and wretr for
approach and retraction, defining the work of adhesion hysteresis wappr − wretr.

Adhesion hysteresis is most commonly attributed to material specific dissipation mecha-
nisms, such as viscoelastic energy dissipation in the bulk of the material or chemical bonds
only formed once the surfaces reached intimate contact [63]. These mechanisms lead to a
dependence of the force on the retraction speed and/or the contact time (contact aging). Rate
independent adhesion hysteresis can emerge even in purely elastic contacts because of elastic
instabilities [63, 64, 72]. Simple analytical models qualitatively explain how surface rough-
ness can trigger elastic instabilities and adhesion hysteresis. These models either focus on the
limit of very small contact fractions or on the opposite limit of fully conformal contact.

Asperity models focus on the limit where a small fraction of the area comes into contact [71,
73–76]. Following the ideas of Greenwood and Williamson [45] and Fuller and Tabor [34],
surface roughness can be thought of a set of hemispheres with random heights, each of which
are independently described by the JKR theory. The force during retraction is higher than
during approach because asperities need to be pulled out further out than they entered into
contact (each individual asperity behaves like in Fig. 7.1). The energy is dissipated when
asperities jump into or pop out of contact. However, modeling the contact area as disconnected
patches is not suited for the experiments by Dalvi et al. [62], where the sphere is soft enough
for a large fraction of the contact area to come into contact.
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7.2 Pinning of crack fronts by axisymmetric work of adhesion heterogeneity

For soft materials and small roughness, the contact area is simply connected and described
by a single external crack. The surface roughness causes energy barriers that pin the crack
front and lead to energy dissipation during depinning instabilities. Guduru [72] and Ke-
sari and Lew [158] demonstrated this effect with a one-dimensional analytical model where
roughness is axisymmetric around the sphere apex.

Numerical simulations confirm that two-dimensional random surface roughness can trigger
elastic instabilities and thereby cause adhesion hysteresis [61, 64, 65, 68, 70]. However, the
crack tip requires fine discretization, preventing boundary element simulations on representa-
tive random surface roughness [III, 61].

In order to understand the role of elastic instabilities in Dalvi’s experiments [62], I need
to theoretically predict the adhesion hysteresis caused by elastic instabilities on the diamond
coatings characterized in publication [VII]. State-of-the-art simulation models are too expen-
sive to account for a realistic surface roughness and analytical theories make oversimplifying
assumptions on the geometry of the roughness. The crack-front model that I developed in pub-
lications [I, III] addresses this gap in the limit where the solids can come into fully conformal
contact and the contact area is nearly circular. Below I summarize the main ingredients and
insights of my model. First I illustrate in more detail how disorder causes adhesion hysteresis
on the contact of a sphere with axisymmetric heterogeneity in work of adhesion.

7.2 Pinning of crack fronts by axisymmetric work of
adhesion heterogeneity

I now illustrate that adhesion hysteresis can arise in purely elastic contacts on a simple ax-
isymmetric model system similar to Guduru [72] and Kesari [36]. Instead of a wavy sphere,
consider a smooth sphere but where the local work of adhesion W (a) depends on the contact
radius (Fig. 7.3a). The equilibrium contact radius is now determined by the balance of the
elastic force GJKR and the driving force for contact area W (a).

Figure 7.3b shows W as a function of the contact radius a (gray line) along with GJKR(b, a)
at a fixed rigid body penetration b = 0. Fluctuations of W lead to several metastable states A,
B at a fixed b, so that the contact radius now depends on history. As the solids first touch, the
contact radius is initially 0 and suddenly jumps into the metastable state with smallest radius,
A. Pushing the sphere further into the substrate shifts the black line representing GJKR to the
right. The contact radius increases following the green curve until it looses stability and jumps
to the next valley ofW . During retraction, the contact radius follows a different path sampling
only the regions of highest adhesion and jumping over regions of low adhesion.

In conclusion, the adhesion force and contact radius at a given b (Fig. 7.3c) are higher during
retraction than during approach because the fluctuations ofW pin the contact line into different
metastable states. In the limit of roughness with small wavelength d, the line mainly evolves
in jumps between the deepest valleys (approach) and highest crests (retraction) of the work
of adhesion heterogeneity (Fig. 7.3d). The force-radius curve then becomes indistinguishable
from equilibrium curves predicted by the JKR theory, using two distinct apparent work of
adhesion for approach wappr and retraction wretr (Fig. 7.3d). The work of adhesion hysteresis
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Figure 7.3: Contact of a sphere against axisymmetric work of adhesion heterogeneity W (a) with wavelength
d. (a) Cross-section of the contact at rigid body penetration b = 0 (top) and top view of the axisymmetric
work of adhesion heterogeneityW (a) (bottom). The blue color indicates regions of high adhesion. (b) Elastic
energy release rates in an indentation retraction cycle for a sinusoidal work of adhesionW (a) with wavelength
d = 0.36 (gray line). The black line shows the elastic energy release rate GJKR(b, a) as a function of contact
radius for fixed rigid body penetration b = 0. Fluctuations of W (a) lead to several metastable states A, B
at fixed b. During approach, the contact perimeter is pinned in metastable states with low adhesion (green
curve), while during retraction the contact perimeter is pinned at higher radii by adhesion peaks (red curve).
Arrows indicate elastic instabilities where the contact radius jumps between metastable states. (c) The contact
radius and the normal force during an indentation retraction cycle for wavelength d = 0.36 (darker colors)
and d = 0.05 (lighter colors). The dashed lines are the prediction by the JKR theory using wretr and wappr

for the work of adhesion. The solid black line corresponds to increasing energy release rates at fixed rigid
body penetration b = 0. (d) Energy release rates in an indentation retraction cycle for a work of adhesion
heterogeneity with smaller wavelength d = 0.05. Note that the slope of GJKR appears to be flatter than
in panel (b) because I show a smaller range of contact radii. For short wavelengths, the work of adhesion
sampled during approach (light green curve) and retraction (light red curve) stay close to the constant values
wappr and wretr. I have nondimensionalized units following the conventions of Refs. [99, 100] as described
in Sec. 7.1.1. This figure is adapted from publication [I].
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7.3 Crack-front model for the contact of rough spheres

a dcb

Figure 7.4: Contributions to the energy release in the contact of a sphere with roughness h(x, y) superposed to it.
(a) Because of surface roughness, the contact perimeter is no longer circular. I describe it by the contact radius
a(θ), the planar distance between the tip of the sphere and the perimeter of the contact. The energy release
rate G at the point P along the crack is decomposed into three contributions, G = GJKR + (eel + G⊥) +G‖,
illustrated in panels (b) to (d). (b) The energy release rate GJKR(a) for the smooth contact is given by the
theory of Johnson, Kendall and Roberts [16]. (c) Surface roughness leads to out-of-plane displacements of
the contact perimeter. This increases the average energy release rate by eel and leads to additional local
fluctuations G⊥([h], θ). Here, eel is the elastic energy needed to fully conform to surface roughness. (d) The
in-plane deflection of the perimeter from circularity leads to the additional contributionG‖([a], θ). This figure
is reproduced from publication [I].

wretr − wappr is given by the amplitude of W . This toy model shows that fluctuations in the
energy balance lead to instabilities and adhesion hysteresis by pinning the crack tip.

7.3 Crack-front model for the contact of rough spheres

By describing the contact of spheres as a circular external crack, the theories by Johnson
Kendall and Roberts [16] and Guduru [72] are limited to the one-dimensional, axisymmetric
case. Publication [III] derives a crack-front model for the contact of spheres against two-
dimensional heterogeneity in work of adhesion, where the contact area is no longer circular,
and publication [I] extends this model to randomly rough surfaces. The crack-front model
is a first-order perturbation of the JKR model with respect to the amplitudes of the surface
roughness using Rice’s weight function theory [83, 84, 159]. It is valid in the limit of small
roughness or weak heterogeneity, where the contact area is simply connected and nearly cir-
cular. I now summarize the formulation of the crack-front model for rough spheres introduced
in more details in the supplementary material of publication [I].
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7 Adhesion hysteresis in soft contacts

b
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Figure 7.5: The contact of a rough sphere (a) is equivalent to the contact of a sphere with an effective work of
adhesion heterogeneity Weff (b). The solid is stretched at the crack tip and surface roughness perturbs this
elastic deformation and the elastic energy, which can effectively be described by fluctuations of the work of
adhesion. This figure is reproduced from publication [I].

7.3.1 Equilibrium equation for the crack front

On rough spheres, Griffith’s balance of line forces Eq. (7.4) needs to be evaluated locally for
each angle θ along the perimeter:

wint = G([h, a]; b, θ). (7.7)

The energy release rate G([h, a]; b, θ) is now a functional of the surface roughness h(x, y) and
the shape of the contact perimeter a(θ) (Fig. 7.4a). Note that I explicitly indicate functional
dependency by square brackets. I compute G by a perturbation of the circular contact de-
scribed by JKR (Fig. 7.4b). This perturbation is decomposed in contributions from surface
roughness and in-plane perturbation of the crack-shape. The surface roughness h deflects the
crack out of the plane and locally perturbs the elastic energy by G⊥ (Fig. 7.4c). In order to
satisfy equilibrium with the uniform work of adhesion wint, the perimeter distorts within the
plane, perturbing the energy release rate by G‖ (Fig. 7.4d). I derive first-order approximations
for G⊥ and G‖ using crack-perturbation equations developed by Rice and coworkers [83–86].

The fluctuations of the energy release rate caused by the surface roughness G⊥ are given by
a simple integral transform of the height profile [86]. Formally, the effect of surface rough-
ness in the energy balance Eq. (7.7) can be remapped into the effective work of adhesion
heterogeneity

Weff([h]; a(θ), θ) = wint − eel([h])−G⊥([h]; a(θ), θ), (7.8)

generalizing Persson and Tosatti’s result, Eq. (7.5), to resolve the spatial fluctuations that
are critical for hysteresis. This expression establishes that surface roughness is equivalent to
work of adhesion heterogeneity, where roughness peaks and valleys correspond to regions of
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7.3 Crack-front model for the contact of rough spheres

Figure 7.6: Effect of in-plane perturbation of the perimeter on the elastic energy release rate. Moving the crack
front within the plane leads to out-of-plane deformations of the crack faces. In a point P that is hold fixed, the
energy release rate G is perturbed due to the nonlocal interaction of surface displacements, which is why G is
a functional of the contact radius a(θ). This figure is adapted from publication [I].

increased and reduced adhesion, respectively. Our mapping from roughness to adhesion is
illustrated in Fig. 7.5 and can be intuitively understood as follows. First note that solid is
always dilated near the crack tip. In order to conform to a valley, the elastic solid needs to
stretch even more, increasing the elastic energy release rate. This additional elastic energy
manifests as an effectively decreased local work of adhesion. Conversely, conforming to a
peak decreases the overall strain near the crack tip and releases elastic energy, leading to an
increased effective work of adhesion.

Using this effective work of adhesion, the equilibrium condition is now given by

Weff([h]; a(θ), θ) = GJKR(b, a(θ)) +G‖([a], θ), (7.9)

where G‖([a]; θ) is the elastic restoring force of the line against deviations from circularity
within the crack plane. Based on a first-order approximation of the stress intensity factor by
Gao and Rice [83, 85],

G‖([a]; θ) = c(−∆s)
1/2a(θ), (7.10)

with line tension c = wint. The operator (−∆s)
1/2 is the half-fractional Laplacian with respect

to the arclength ds = a dθ and can be interpreted as a generalized curvature that scales like a
slope.

This curvature describes that the energy release rate is reduced where the perimeter is con-
vex, and Fig. 7.6 illustrates this effect. The green solid represents a small section of the JKR
contact with constant radius which I perturb by δa(θ) (red). Advancing the contact area brings
the crack-faces closer together even in front of the point P that I hold fixed, because of the
nonlocal interaction of the surface displacements. The crack tip is initially stretched so that
bringing the crack faces together relieves some of the strain and decreases the elastic energy
release rate in point P.

7.3.2 Discussion

There is no unique way to extrapolate the elastic response of the contact line within first-order
accuracy in the disorder, and Eq. (7.10) is a slight simplification of the expression I originally
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7 Adhesion hysteresis in soft contacts

derived in [III] for “true” work of adhesion heterogeneity. The current formulation is better
suited for surface roughness and is easier to use for theoretical predictions. The crack front
possesses an elastic potential [III, 160], and I chose my first order approximations so that they
respect this property.

I implemented the equilibrium equation (7.9) in an efficient simulation model of the adhe-
sion of rough spheres, allowing me to simulate the indentation retraction process for realistic
surface roughness. The predictions of the crack-front model agree with boundary element
method simulations on weak adhesion heterogeneity [III] and small surface roughness [I], but
with a computational speed-up of nearly two orders of magnitude. By its efficiency, my new
simulation model allows me to predict hysteresis on self-affine synthetic surfaces representa-
tive of the experiment in [62] and to conduct a parametric study linking adhesion hysteresis to
geometrical measures of the roughness.

The equilibrium condition Eq. (7.9) belongs to the family of equations of the pinning of
an elastic line by quenched disorder. These equations of the pinning of elastic lines (or more
generally interfaces) describe many phenomena such as sliding friction [161, 162], contact
angle hysteresis [163, 164], fracture of heterogeneous materials [165, 166], and pinning by
randomness is the subject of many theoretical studies [18, 164, 166–177]. My mapping
from surface roughness to an equivalent work of adhesion heterogeneity, Eq. (7.8), makes this
analogy explicit and thereby helps to theoretically understand the adhesion hysteresis.

7.4 Theory for adhesion hysteresis by crack pinning

My crack-front simulations and the analogy to the pinning of an elastic line allow me to
understand the role of surface roughness in adhesion hysteresis [I]. In my simulations on
random roughness, adhesion hysteresis is described by two distinct JKR curves with work of
adhesion wappr during approach and wretr during retraction (Fig. 7.7). Based on theoretical

Figure 7.7: Contact radius as a function of the rigid-body penetration in a simulation on self-affine random
roughness (nondimensionalized). The dashed lines are JKR curves with work of adhesion wappr and wretr

predicted by my theory, Eq. (7.11). The shape of the PSD is shown by the blue circles in the inset of Fig. 7.9
and the elastic energy for fully conformal contact eel/wint = 0.05. I have nondimensionalized units following
the conventions of Refs. [99, 100] as described in Sec. 7.1.1. This figure is adapted from publication [I].
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Dissipated energy

Figure 7.8: Evolution of the contact line during retraction in a crack-front simulation on 2D random roughness.
Each colored patch corresponds to an elastic instability during which the perimeter jumps between two pinned
configurations (dark lines). The color scale represents the energy dissipated during each instability. The
random roughness has a flat power spectral density with nondimensionalized short-wavelength cutoff λs =
2d = 0.07. I have nondimensionalized units following the conventions of Refs. [99, 100] as described in
Sec. 7.1.1. This figure is adapted from publication [I].

arguments from the pinning literature [164, 166–168],

w retr
appr

= wint − eel ± keel, (7.11)

with k ' 3 determined from crack-front simulations. The reversible term wint − eel is the
average of the effective work of adhesion field, while the hysteretic contribution comes from
the fluctuations of the local effective adhesion W 2

rms = 4eelwint. This scaling of hysteresis
with W 2

rms is in contrast with the one-dimensional case presented in section 7.2. Larkin [168]
explained that this scaling arises because several asperities collectively pin the crack front.

7.4.1 Collective pinning

The key difference with the one-dimensional case is that the contact line is wiggly and evolves
in jumps that are spatially localized (Fig. 7.8). The smallest size of these jumps corresponds
to the number of asperities required to collectively pin the crack front and is called the Larkin
length ` [168].

The crucial role of the deformation of the contact line can best be understood on two hypo-
thetical limiting cases. On 2D heterogeneity, the apparent work of adhesion measured is now
the average of the work of adhesion over the perimeter of the crack. In the limit of a rigid line
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Figure 7.9: Work of adhesion hysteresis as a function of the elastic energy for fully conformal contact eel,
or equivalently the variance of the effective work of adhesion W 2

rms. The dotted line shows the hysteresis
predicted by our theory, Eq. (7.11). The symbols show results of crack-front simulation on randomly rough
surfaces with different shapes of the power-spectra represented in the inset. I used a flat PSD with short
wavelength cutoff λs = 0.005 (green squares), and three different self-affine PSDs parametrized by the
rolloff wavelength λr, the short-wavelength cutoff λs and the Hurst exponent H . The blue circles correspond
to λs = 0.000625, λr = 0.01, H = 0.8; the purple triangles to λs = 0.000625, λr = 0.1, H = 0.3; and the
pink crosses to λs = 0.005, λr = 0.1, H = 0.3. I varied eel by scaling the amplitudes of the heights. I have
nondimensionalized units following the conventions of Refs. [99, 100] as described in Sec. 7.1.1. This figure
is adapted from publication [I].

that remains perfectly circular (corresponding to an infinite line tension c), the fluctuations
cannot trigger instabilities because they average out over the perimeter. The apparent work of
adhesion is identical during approach and retraction and is given by the spacial average 〈W 〉,
corresponding to Persson and Tosatti’s theory. Without the line tension penalizing deviations
from circularity (c � Wrms), the line can freely distort and meander along valleys during
approach and peaks during retraction. Each individual asperity independently triggers insta-
bilities similarly as in the axisymmetric model presented in subsection 7.2 and Fig. 7.3. This
hypothetical case would lead to a hysteresis scaling with Wrms as in my axisymmetric model.

In my simulations, the line tension c = wint maintains the line straight at small scales,
so that the line is collectively pinned by several asperities over the length `. The hysteresis
now additionally depends on the freedom of the line to meander between asperities. Stronger
heterogeneities lead to lines with more wiggles that can sample more effectively the deepest
valleys and highest peaks (Fig. 7.8), so that the hysteresis increases faster than linearly with
Wrms. I point to publication [I] and to the classic literature [164, 166–168] for the explanation
of the exact scaling W 2

rms.
Larkin’s theory makes strong assumptions on the geometry of the pinning field, and cannot

be applied to surface roughness where the work of adhesion field has power-law correlations.
Démery et al. [177] predicted that this scaling remains unaffected by the geometry of the
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7.5 Role of surface roughness

random field by analytically solving a small disorder expansion of the equation of motion of
the line. My numerical simulations in [I] further confirm that Eq. (7.11) remains valid in the
presence of power-law correlations (Fig. 7.9).

7.4.2 Discussion

Equation (7.11) is the first theory quantitatively linking adhesion hysteresis to random surface
roughness, and establishes that the elastic energy for fully conformal contact eel is the central
parameter governing adhesion hysteresis. In their theory for axisymmetric contacts, Kesari
and Lew [158] found that adhesion hysteresis increases linearly with eel, in contrast with my
finding. This discrepancy highlights that it is crucial to model how two-dimensional random
roughness distorts the contact perimeter. Boundary element simulations on two-dimensional
patterns [69] and two-dimensional random roughness [61, 70, 178] confirm the dominant role
of eel in adhesion hysteresis, but do not allow conclusions concerning the functional depen-
dence of wretr − wappr on this parameter.

My crack-front model allows me to theoretically understand the role of surface roughness in
adhesion hysteresis by making use of the equivalence with the classic problem of the pinning
of an elastic line by a random field. The broad literature on this topic will allow further insights
on adhesion hysteresis. For example, hysteresis disappears for small eel (Fig. 7.9), and the
critical eel for hysteresis depends on the size of the heterogeneity. This finite size effect can
be understood using a simple argument by Larkin [168] or a more advanced theory by Tanguy
and Vettorel [173]. The fluctuations of pinning force and the slight dependence of the adhesion
hysteresis on the geometry of the roughness was studied using renormalization group theory
and numerical simulations [174, 176]. However, as for the prediction of work of adhesion
hysteresis, these theories need to be tested or adapted to self-affine random roughness.

7.5 Role of surface roughness

The dominating parameter for adhesion hysteresis is the elastic energy for fully conformal
contact. This elastic energy can be written as

eel =
E ′

4

[
h(1/2)

rms

]2

, (7.12)

where h(1/2)
rms is the rms half-derivative (or quarter fractional Laplacian) of the heights. This

roughness parameter is a generalized measure of the sharpness of peaks sensitive to larger
length scales than curvatures and slopes. It is defined by

(h(α)
rms)

2 =
1

4π

∫
d2 q |q|2αC2D(~q), (7.13)

which contains the rms heights of the topography, h(0)
rms, and the rms gradient of the topography,

h
(1)
rms. Hence, the rms half-derivative is a roughness parameter intermediate between rms height

and rms gradient (or slope).
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7 Adhesion hysteresis in soft contacts

For a self-affine topography, the range of scales determining h(1/2)
rms depends on the Hurst

exponent [26]. For H < 0.5, it is dominated by small-scale roughness, like the rms slope,
while for H > 0.5 it depends on the large scales, like the rms height. However, most natural
and engineered surfaces have H > 0.5 [33, 37, 38], so that my model is consistent with the
increase in pull-off force with hrms reported in Refs. [35, 36].

This increase in pull-off force is usually explained by the increase in true area of contact
Atrue/Aapp Eq. (7.6) [26, 62], which increases with the rms gradient of the topography. Ref-
erences [35, 36] only reported hrms so that it is not clear which effect dominated in their
experiment. For the experiments by Dalvi et al. [62], Abhijeet Gujrati measured the topog-
raphy over all scales, allowing me to quantify these two effects. Following Dalvi et al., the
increased true area of contact enhances adhesion by a factor of 1.16 for NCD. My theory pre-
dicts that crack-front pinning further enhances the work of retraction by a factor of 1.46 in
the case of a rubber sphere with Young’s modulus E = 0.7 MPa. The range of scales that
dominates h(1/2)

rms and hence pinning is at the transition between power-law scaling and the flat
rolloff at 1 µm, while the surface area increase is determined by roughness below 0.5 µm
down to the atomic scale. In conclusion, crack-front pinning is as relevant to the pull-off force
as the surface area increase, and soft adhesion depends on roughness on lateral length scales
ranging from nanometers up to micrometers.

7.6 Comparison to experiment

For NCD, the hysteresis predicted by my model Eq. (7.11) is very similar to the measurements
by Dalvi [62] with a sphere with Young’s modulus E = 0.7 MPa and radius R = 1.2 mm
(Fig. 7.2). Since there is no direct way to measure the intrinsic work of adhesion, I extracted
wint = 65 mJ/m2 by fitting wappr to the data, which is in the range expected for van der Waals
interaction. The good agreement of the corresponding retraction curve using wretr shows that
crack pinning quantitatively reproduces the hysteresis observed in this experiment.

This result confirms that crack pinning plays an important role in adhesion hysteresis, how-
ever, my crack-front model does not explain Dalvi’s experiments. Figure 7.10 shows how
the apparent work of adhesion measured during approach (open symbols) and retraction (full
symbols) changes between different substrates. The dashed lines show the predictions of
Eq. (7.11) using wint = 50 mJ/m2 fitted to the data during approach. While my model rea-
sonably describes the behavior during approach, it fails to explain howwretr varies with surface
roughness. In particular, the adhesion of UNCD during retraction is significantly higher than
predicted by my model.

This discrepancy suggests that an additional mechanism toughens the contact during re-
traction, such as contact aging [179] or viscoelasticity [154]. Additional experiments varying
contact time or velocity are necessary to test this hypothesis. I could not conclude whether
my model agrees with experiments from other groups [36, 180] because these authors did not
report the surface roughness in enough details.

Since viscoelasticity plays an important role in many experiments [36, 154, 181–183] and
in practical application, it would be interesting to extend our crack-front model to account for
viscoelasticity [184–187]. This would allow investigating the interplay of random roughness
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Experiment

Theory

Black  - NCD

Blue   - pUNCD

Green - MCD

Red    - UNCD

Topography

Figure 7.10: Apparent work of adhesion for approach (open symbols) and retraction (closed symbols) reported
by Dalvi et al. [62] for adhesion experiments between a rubber sphere and different diamond substrates.
These values result from fitting JKR curves to force vs. contact radius measurements similar to Fig. 7.2, and
the elastic energies for fully conformal contact eel were computed from the PSDs of the respective topography.
The dashed lines represent the predictions from my theory, with wint = 50 mJ/m2 fitted to the data during
approach. The sphere has Young’s modulus E = 0.7 MPa and radius R = 1.2 mm.

and viscoelasticity, while viscoelastic formulations of BEM with adhesion were restricted to
simple geometries [188–190].

7.7 Limitations of the model

The assumptions I made in my model also need to be checked. My numerical study behind
Eq. (7.11) focuses on random Gaussian surfaces, but the surfaces used by Dalvi deviate sig-
nificantly from this idealization of roughness [VII]. NCD is faceted exactly at the scales
contributing the most to crack pinning, so that future work should check whether including
such features in the simulations affects the predicted hysteresis.

When eel approaches wint, my assumption of fully conformal contact breaks down and my
correlation between pull-off force and eel no longer holds. While for large eel & 2wint, the
contact area and adhesion nearly vanish [41, 56, 64, 70], it is unclear whether an intermediate
regime with large pull-off forces exists.

Higher-order crack perturbation methods [191–193] might provide some insights in this
intermediate regime. Bower and Ortiz [192] used such a model to study crack pinning by
periodic arrays of tough inclusions, and their results indicate that my theory might underesti-
mate the pull-off force due to crack bridging. Above a critical toughness of the inclusion, the
crack circumvents the obstacle rather than crossing it, leaving behind a contact island bridging
between the crack faces. These bridges effectively toughen the material because they hold the
crack faces together and significantly enhance the force needed to propagate the crack front.
However, their work considers flat interfaces, while for rough contacts the interface might
be initially weakened because the surfaces do not come into fully conformal contact during
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7 Adhesion hysteresis in soft contacts

approach.
BEM simulations can account for disconnected contact areas. However, I found very diffi-

cult to draw conclusions on adhesion hysteresis because it is computationally challenging to
sufficiently discretize the crack tip and at the same time include a representative amount of
surface roughness [III, 61]. It hence remains unclear how the pull-off force increases and how
adhesion hysteresis changes when the contact area is no longer simply connected.

In using my crack-front model and my theoretical predictions, I make the important assump-
tion that the errors due to the first-order approximation are small compared to the predicted
hysteresis. This assumption is not guaranteed even in the limit of small roughness, because
these errors scale to same order with roughness as the predicted hysteresis [194]. This means
that the first-order approximation of the elastic line only allows for conclusions on the scaling
of hysteresis. Predictions of the effective toughness of heterogeneous materials [166, 195]
and wetting angle hysteresis [164] have the same limitation. Predicting quantitatively the
adhesion hysteresis in rough contacts requires to understand the effect of second-order (and
possibly higher-order) terms in the equilibrium equation of the line on the adhesion force in
rough contacts.
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8 Conclusion

My collaborators and I investigated how surface roughness affects adhesion in three different
regimes of material compliance: rigid solids that touch on a single, vanishingly small asper-
ity, stiff elastic solids that conform over a small fraction of the nominal area of contact, and
soft solids that fully conform to surface roughness. Abhijeet Gujrati characterized four poly-
crystalline diamond coatings over an unprecedented range of length scales. Using this data
as input for numerical and theoretical models, we unraveled the role of roughness in exper-
iments with rigid ruby spheres and in the contact with soft rubber spheres. Joe Monti and
I performed large-scale boundary element method (BEM) simulations that clarify the range
of validity of the theory for the adhesion of stiff elastic contacts (DMT limit) by Pastewka
and Robbins [24]. For soft spheres that can conform to the surface roughness, I introduced
an efficient crack-front simulation model and derived a quantitative theory that links adhesion
hysteresis to statistical metrics of roughness representative of real systems.

Theory for adhesion hysteresis I developed a crack-front model for the contact of soft
spheres describing how work of adhesion heterogeneity [III] or surface roughness [I] distorts
and pins the perimeter of the contact. Surface roughness is equivalent to work of adhesion
heterogeneity, where roughness peaks increase local adhesion and pin the crack front. The
crack front is pinned at larger contact radii during retraction than during approach, explaining
why breaking contacts is harder than making them even in the absence of material specific en-
ergy dissipation. The energy is dissipated during jumps (elastic instabilities) between pinned
configurations. Using the power-spectra characterized in publication [VII], my model predicts
hysteresis similar in magnitude as in experiments performed by Dalvi et al. [62] on the same
surface, so that crack pinning plays an important role in adhesion hysteresis.

By establishing the equivalence of rough adhesion with the pinning of an elastic line, my
equations pave the way to better understanding adhesion. I used this analogy to derive a quan-
titative expression showing that the pull-off force increases linearly with the elastic energy
for fully conformal contact eel, which is the product of the contact modulus and a simple
roughness parameter. For self-affine surfaces with small Hurst exponent, this parameter is
determined by roughness at the nanometer scale, but on most surfaces, including the diamond
coatings in publication [VII], it is dominated by large scale roughness around the rolloff wave-
length.

My crack-front simulations allow me to predict adhesion hysteresis on roughness two orders
of magnitude finer than the boundary element method. The assumption of nearly circular and
simply connected contact area behind this computational speed-up is also the main limitation
of my model. When eel exceeds the work of adhesion wint, surfaces no longer conform to
each other, and thus the contact area becomes disconnected and can only be described by the
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BEM. Understanding hysteresis in this regime of partial contact remains a great computational
challenge.

While partial contact might explain some discrepancies between my model and the mea-
surements by Dalvi [62], other mechanisms may also play an important role. Further inves-
tigations both in modeling and experiment are required to better understand the role surface
roughness in adhesion hysteresis.

Theory for the adhesion of stiff elastic contacts The theory by Pastewka and Rob-
bins [24] describes the adhesion between two nominally flat, infinite rough surfaces in the
limit of weak adhesive interactions (DMT limit). Using finely discretized boundary element
method simulations, Joe Monti and I show that their equation for the distribution of interfacial
gaps is accurate below a critical gap determined by the small-scale geometry of the surfaces.
This result means that their prediction of the contact area is valid provided that the interac-
tion range is small enough. Our own work on the contact of ruby and diamond [V] and other
studies [140–142] show that the range of interaction is larger than usually expected for van
der Waals interactions, so that their theory might be applicable to less contact systems than
assumed before.

We also verified that the gap distribution remains unaffected by weak adhesive interactions.
However, the transition between DMT-like contacts and contacts where adhesive stresses sig-
nificantly affect the deformation remains poorly understood.

Contact of rigid spheres Luke Thimons conducted thousands of adhesion tests between a
macroscopic ruby sphere and the diamond coatings. By comparing these experimental results
to brute-force numerical computation on the rough surfaces measured in publication [VII], we
determine the parameters of the adhesive interaction and show that the pull-off force is mostly
affected by roughness with wavelength between 43 nm and 1.8 µm. Roughness below 43 nm
does not matter because small-scale features deform the ruby plastically and because the range
of interaction ρ = 5 nm is large compared to height fluctuations over small lateral distances.
The range of interaction is larger than expected for van der Waals interaction (' 0.5 nm), and
its physical origin remains unclear.

The pull-off forces have large fluctuations, approximately described by a log-normal distri-
bution. These fluctuations occur because the contact is confined to one or a few of the highest
asperities. Predicting the magnitude and distribution of these pull-off forces theoretically is an
open challenge.

Nature of surface roughness Surface roughness is fractal, and often idealized as self-
affine in theoretical work. The comprehensive surface topography characterization in publi-
cation [VII] reveals that polycrystalline diamond coatings deviate from this idealization, with
different regions of scaling of the power spectral density (PSD). At small scales, the rough-
ness is self-affine and is similar between all unpolished surfaces. However, at large scales, the
surfaces with larger grains have higher roughness. These grains are faceted, and the surface is
not self-affine at scales similar to the grain size. Faceting leads to a characteristic q−4-scaling
in the PSD and a constant scale-dependent slope.
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The numerical study in publication [V] accounts for faceting, but we did not check whether
faceting has an effect on adhesion hysteresis. We also need to test whether scale-dependent
roughness parameters defined via finite differences and Fourier filtering are still equivalent on
such surfaces.

Besides self-affinity, theoretical work usually assumes that the distributions of heights,
slopes and curvatures are Gaussian. The scale-dependent derivatives introduced in publica-
tion [IV] provide a tool allowing us to test this assumption over different length scales in
future work.

Statistical characterization of surface roughnesss Our work illustrates that it is im-
portant to analyze surface topography over multiple scales and to document surface roughness
in publications. Publication [IV] and the web service contact.engineering described in publi-
cation [II] make the process of analyzing and publishing surface roughness easier than before.

The statistics of slopes and curvatures are used in simple contact theories [24, 26], and
thus it is important to understand how these quantities depend on the scale. Publication [IV]
demonstrates that scale-dependent derivatives can be computed using a new approach that
is easy to interpret and to implement. This approach is based on finite-difference schemes,
and my collaborators and I show that for self-affine surfaces, it is equivalent to the common
approach which uses Fourier filtering. By demonstrating four equivalent ways to compute
scale-dependent roughness parameters, we clarified the relationship between scale-dependent
derivatives, the autocorrelation function (ACF), the variable bandwidth method (VBM) and
the PSD.

The web-platform contact.engineering described in publication [II] is a public database
where the community can publish and analyze surface topography in a standardized way. It
automatizes the workflow used in publication [VII] to combine several measurements into a
comprehensive statistical representation of the surface roughness. If in the future, researchers
publish their measurements on our public database, it will become easy to compare surface
roughness among different publications and for theoreticians to apply their models to real
experiments.

contact.engineering also allows the user to compute force-area relationships by performing
nonadhesive BEM simulations. However, a BEM simulation is restricted to an individual areal
scan (such as an AFM measurement) and the result is often not representative of the whole
surface. An important enhancement would be to implement the multiscale contact theories
introduced by Persson [41, 52, 53, 82], that account for all scales of the PSD or ACF [79].

Conclusion Which scale of roughness matters in adhesion? The answer is not unique,
as the force needed to break a contact might either be reduced or enhanced by increasing
roughness amplitudes. For infinite contacts between stiff materials, it is expected by theory
that roughness close to the atomic scale makes most of the interfaces unsticky. However, the
pull-off force in Luke Thimons’ experiments with ruby spheres is not affected by roughness
below 43 nm, and is still affected by roughness up to 1.8 µm. Here, plastic deformations,
a long range of attraction and the finite size of the contact play an important role. For stiff
contacts, the rougher surfaces are the least adhesive. On the other hand for soft spheres, the
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pull-off force increases with surface roughness, because roughness increases the true area of
contact and because it pins the crack front. The true area of contact increases with surface
slopes, set by small-scale roughness, while the strength of pinning is increased by roughness
at large scales, around the rolloff wavelength. Hence, the adhesion of soft contacts might be
controlled either by tuning small-scale roughness or large-scale roughness.

Our results provide guidelines for practitioners on how to vary roughness to control the
tribological performance of an interface. Being able to precisely tune the adhesion of soft
solids is important for applications such as pick and place systems [196–198] and skin ad-
hesives [199–202]. Adhesion between hard solids can lead to catastrophic failure of micro-
electromechanical devices [203], and this problem might be suppressed by roughening the
surfaces at the appropriate length scales.
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Zusammenfassung

Obwohl sich an der atomaren Skala alle Moleküle anziehen, haften die meisten makroskopis-
chen Objekte nicht. Die Erklärung für dieses scheinbare Paradox ist, dass die meisten Ober-
flächen rau sind, so dass sich Objekte mit steifen elastischen Eigenschaften nur auf ihren höch-
sten Rauheitsspitzen berühren. Die Fähigkeit von Geckos und Insekten, senkrechte Wände
hochzuklettern beruht darauf, dass ihre Fußspitzen nachgiebige fibrilläre Strukturen oder we-
iche Polster besitzen, die sich an die Rauheit anschmiegen können. Die genaue Rolle von
Oberflächenrauheit in Haftung zu verstehen ist eine Herausforderung, weil Oberflächen bis
zur atomaren Skala rau sind.

Meine Kollaboratoren und ich untersuchen den Einfluss von Oberflächenrauheit auf die
Haftung sowohl steifer als auch weicher Materialien. Ich entwickle theoretische Modelle und
helfe Experimentatoren die Topographie skalenübergreifend zu analysieren. Indem wir meine
neuen Modelle und Abhijeet Gujrati’s skalenübergreifende Charakterisierung von Oberflächen-
topographie kombinieren, gelingt es uns, die Rolle von Oberflächenrauheit in Adhäsionsex-
perimenten zu entziffern.

Steife Materialien haften nicht, weil die Rauheit den größten Teil der Oberfläche außerhalb
der Reichweite molekularer Attraktionskräfte hält. Eine letztlich entwickelte Theorie quan-
tifiziert diesen Effekt mithilfe einer Näherungsgleichung für die Wahrscheinlichkeitsverteilung
von Spalthöhen nahe der Kontaktkante. Die Theorie ist akkurat unter der Voraussetzung, dass
adhäsive Spannungen schwach sind, und sie über eine geringere Reichweite wirken als ein
geometrischer Parameter, der von der Rauheit auf kleinen Skalen abhängt.

Weiche Objekte (wie Pudding) haften, weil die elastische Verformungsenergie, die benötigt
wird, um sich der Rauheit anzuschmiegen, klein ist im Vergleich zur Oberflächenenergie,
die durch intimen Kontakt gewonnen wird. Auf diesem simplen thermodynamischen Argu-
ment beruhende Theorien können jedoch nicht erklären, warum die Kraft, die benötigt wird
um die Objekte zu trennen, in vielen Experimenten deutlich größer ist als die Kraft, die
während der Entstehung des Kontaktes gemessen wird. Diese Adhäsionshysterese wird oft
durch materialspezifische Irreversibilität erklärt, sie kann aber auch aufgrund von elastischen
Instabilitäten entstehen, die von der Rauheit ausgelöst werden. Die Rolle dieser elastischen
Instabilitäten in Adhäsionshysterese ist stets unklar weil existierende numerische und ana-
lytische Modelle keine realistische Rauheit berücksichtigen können. Ich führe ein effizientes
Riss-Perturbationsmodell ein, das große Simulationen mit realistischer Oberflächenrauheit er-
möglicht. Dieses Modell etabliert die Analogie zwischen Haftung von rauen Oberflächen und
anderen, schon besser verstandenen Phänomenen, wie zum Beispiel die Propagation von Ris-
sen in heterogenen Materialien oder die Kontaktwinkelhysterese von Tropfen. Ich verwende
Erkenntnisse über diese verwandten Phänomene um eine simple Theorie herzuleiten, die die
Hysterese als Funktion der statistischen Eigenschaften der Oberflächentopographie vorher-
sagt. In Kombination mit der skalenübergreifenden Oberflächencharakterisierung klärt mein
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Zusammenfassung

Modell die Rolle elastischer Instabilitäten in Adhäsionsexperimenten auf.
Weil Oberflächen von der makroskopischen Skala bis zur atomaren Skala rau sind, ist der

Mangel an skalenübergreifender Oberflächencharakterisierung das größte Hindernis, Experi-
mente und Theorie zu vereinbaren. Abhijeet Gujrati und Kollaboratoren haben die Topogra-
phie von vier Diamantbeschichtungen über acht Dekaden von Längenskalen gemessen. Damit
haben sie es ermöglicht, Adhäsionstheorien mit Messungen der Haftung dieser Beschich-
tungen zu vergleichen. Nicht nur Rauheit auf der atomaren Skala zu messen ist eine Her-
ausforderung, auch die Komplexität etablierter multiskaliger Rauheitsmetriken erschwert die
Dokumentation von Oberflächentopographie. Wir gehen dieses Problem an, indem wir einen
neuen Ansatz zur Analyse der Topographie einführen, der einfach zu interpretieren und zu
implementieren ist. Wir nennen diese Analysen “scale-dependent roughness parameters”
(SDRPs), ins Deutsche übersetzt skalenabhängige Rauheitsparameter. Die SDRPs, zusam-
men mit weiteren, etablierten Rauheitsmetriken, können auch auf unserer freien web-Plattform
contact.engineering berechnet werden. contact.engineering ist eine Datenbank, die es Wis-
senschaftlern ermöglicht, Messungen der Oberflächentopographie zu publizieren und in einem
vereinheitlichten Verfahren zu analysieren. Wir regen die wissenschaftliche Gemeinschaft
dazu an, Oberflächentopographie über mehrere Skalen zu messen, zu analysieren und zu pub-
lizieren, indem wir diesen Prozess vereinfachen. Dadurch fördern wir den Ausbau des Wissens
über die Rauheit von Oberflächen.

Die SDRP-Analyse berechnet die Fluktuationen der Steigung und der Krümmung der Ober-
fläche auf unterschiedlichen Längenskalen. Steigungen und Krümmungen sind wichtige Pa-
rameter in Theorien zum Kontakt von rauen Oberflächen, jedoch ist stets unklar, auf welcher
Längenskala sie wichtig sind. Luke Thimons hat die Ablösekraft zwischen makroskopis-
chen Rubinkugeln und Diamantbeschichtungen gemessen, und wir zeigen, dass die Rauheit
auf lateralen Skalen zwischen 43 nm und 1.8 µm diese Haftung kritisch beeinflusst. Kleine
Längenskalen sind unwichtig, weil die Rubinkugel sich plastisch verformt, und weil die Re-
ichweite der Attraktionskräfte lang ist ('5 nm). Die Oberflächentopographie auf Skalen
länger als 1.8 µm spielt aufgrund des endlichen Radius der Kugel keine Rolle. Wir bestim-
men den kritischen Längenbereich der Oberflächenrauheit sowie die Parameter der adhäsiven
Interaktionskräfte, indem wir die experimentell gemessenen Ablösekräfte mit Vorhersagen
aus numerischen Simulationen vergleichen. Die numerischen Simulationen sind mithilfe der
skalenübergreifenden Topographiecharakterisierung von Abhijeet Gujrati parametrisiert.

Die Forschung über Haftung findet Anwendung in mikroelektromechanischen Systemen
(MEMS), Softrobotik und Hautklebebändern. Die Erkenntnisse aus dieser Dissertation geben
Leitlinien für Ingenieure, auf welcher Längenskala sie die Rauheit ändern müssen, um die Haf-
tung zu kontrollieren. Unsere Werkzeuge zur Analyse von Topographie fördern ein besseres
Verständnis von Oberflächenrauheit in der wissenschaftlichen Gemeinschaft.
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Why breaking soft contacts is harder than making them
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Insects, pick-and-place systems, engineered ad-
hesives, and soft robots employ soft materials to
stick to surfaces even in the presence of rough-
ness. Experiments ubiquitously show that the
force required for making contact is lower than
for releasing it, a phenomenon known as the ad-
hesion hysteresis.1,2 The common explanation for
this hysteresis is either contact aging or viscoelas-
ticity, ignoring the influence of surface rough-
ness.3,4 Here, we use an efficient numerical crack-
perturbation model5–7 to simulate the contact of
soft solids on rough surfaces across orders of mag-
nitude in length scale, allowing us to study real-
istic rough geometries.8,9 The simulations show
that adhesion hysteresis emerges even for per-
fectly elastic contacts and in the absence of con-
tact aging and viscoelasticity. The adhesive con-
tact line is pinned by surface heterogeneity,10–12

leading to a hysteresis between advancing and re-
ceding motion. Our model quantitatively repro-
duces the hysteresis observed in experiments and
allows us to derive analytical predictions for its
magnitude, requiring as input only simple statis-
tical measures of the rough geometry.13 Our re-
sults explain why adhesion hysteresis is ubiqui-
tous and show that soft pads in nature and engi-
neering are efficient in adhering even to surfaces
with significant roughness.

Two solids stick to each other because of attractive
van-der-Waals or capillary interactions at small scales.3

The strength of these interactions is commonly described
by the intrinsic work of adhesion wint, the energy that is
gained by these interactions per surface area of intimate
contact. While for hard substrates roughness limits this
area to the highest protrusions,14,15 soft solids are sticky
because they can deform to come into contact over a large
portion of the rough topography. The overall strength of
the adhesive joint is then determined by the balance of
the energy gained by making contact and the elastic en-
ergy spent for conforming to the surface. In the presence
of roughness, this energy balance defines an effective work
of adhesion,16

W = wint − eel, (1)

where eel is the elastic energy per unit contact area re-
quired to conform to the roughness. This effective work
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FIG. 1. Phenomenology of adhesive contact. (a) Many
contacts can be described as spheres making contact with a
flat surface. For soft materials, microscopic interactions are
strong enough that they deform significantly near the con-
tact edge. (b) Dependency of contact radius versus normal
force. The pull-off force is the most negative force on these
curves. The diamonds are experimental results from Dalvi et
al.,2 that show hysteresis between approach and retraction.
The dashed lines are obtained from the JKR model, with two
distinct apparent works of adhesion for approach wappr and
for retraction wretr. The values for wappr and wretr are a pre-
diction of our theory, Eq. (6), with only a single adjustable
parameter, the intrinsic work of adhesion wint. The rough sur-
face is nanocrystalline diamond (NCD), and the sphere has
Young’s modulus E = 0.7 MPa and radius R = 1.2 mm.

of adhesion is most commonly measured from the pull-off
force Fpulloff = −3πWR/2 of a soft spherical probe (see
Fig. 1a) with radius R.17 As shown in Fig. 1b, exper-
iments typically follow different paths during approach
and retraction, leading to different effective works of ad-
hesion for making and breaking contact.

In this letter, we present an analytic theory that al-
lows us to predict these effective works of adhesion and
thereby the adhesive hysteresis. For soft spherical probes,
we can describe the circular contact perimeter as a crack
(see red line in Fig. 1a). The crack front is in equilibrium
when Griffith’s criterion is fulfilled:18 The energy per unit
area required for opening the crack, W , is equal to the en-
ergy released from the elastic deformation, GδA = WδA,
where δA is the contact area swept by the crack front. A
more common way of writing this equation is in terms of
a balance of forces rather than energies,

G = W, (2)

where both the energy release rate G and W should be
interpreted as forces per unit crack length. Johnson,
Kendall and Roberts (JKR)17 derived the expression for



2

the energy release rate G for a smooth spherical indenter,
G = GJKR(b, a). Equation (2) then allows to evaluate
not just the pull-off force, but all functional dependen-
cies between rigid body displacement b, contact radius
a and normal force F during contact. In the presence
of roughness, we will show below that W becomes a lo-
cal quantity that describes the effective work of adhesion
at a specific position on the surface. Equation (2) must
then hold independently for each point on the contact
perimeter.

In order to illustrate why hysteresis emerges from spa-
tial fluctuations in W , we first discuss a simple toy model.
We assume that W (a), rather than being random, varies
in concentric rings of wavelength d as a function of dis-
tance a from the apex of the contacting sphere (Fig. 2a).
Figure 2b also shows W (a) alongside GJKR(b, a) for a
fixed b. Because of the spatial variations of W , there are
multiple solutions to Eq. (2) indicated by the labels A
and B. Moving into contact from the solution denoted
by A leads to an instability where the solution A disap-
pears, at which the contact radius jumps to the next ring
of W (a). This samples the lower values of W shown by
the green line in Fig. 2b. Conversely, moving out of con-
tact progresses along a different path that samples the
higher values of W (a), shown by the red line. The com-
bination of fluctuations in W and the elastic restoring
force GJKR acts like a ratchet that makes increasing the
contact area easier than decreasing it.

In the limit of roughness with small wavelength, d→ 0,
GJKR does not decrease significantly before the contact
line arrests at the next peak (see Fig. 2c). In this limit,
the contact line samples the minimum values wappr of W
during approach and the maximum values wretr during
retraction. The functional relationship between b, a and
F then becomes identical to the JKR solution for smooth
bodies, but with a work of adhesion that differs between
approach (wappr) and retraction (wretr, see Fig. 2d). In
the limit of small wavelength, the hysteresis wretr−wappr

becomes equal to the peak-to-peak amplitude of W (a).21

For non-axisymmetric work of adhesion fields, the con-
tact line is no longer perfectly circular (see Fig. 3a).
The energy release rate G then becomes a functional
of the contact shape a(s), here parameterized by the
length s of the corresponding path along the contact cir-
cle. Based on the crack-perturbation theory by Gao and
Rice,5,7,22 we recently derived the approximate expres-
sion G([a]; s) = G◦(a(s)) +G‖([a]; s) with5,6

G‖([a]; s) = c(−∆s)
1/2a(s), (3)

where we used the square brackets to indicate a func-
tional dependency. Equation (3) can be interpreted as
the restoring force of an elastic line that penalizes excur-
sions from circularity through the fractional Laplacian
(−∆s)

1/2. The fractional Laplacian represents the effect
of the non-local interaction of surface displacements on
the energy release rate, and Fig. 3b illustrates this ef-
fect. Supplementary Section S-I derives this expression

and shows that near equilibrium the stiffness of the line
is given by c = wint.

Numerical solution of Eq. (2) (see Supplementary Sec-
tion S-II) on a random field W (x, y) with lateral correla-
tion of length d yields force-area curves similar to those
of our toy model. The key difference is that the con-
tact line now advances and recedes in jumps (Fig. 3a)
that are localized over a spatial length `, the Larkin
length.10–12,23,24 Between these jumps, the contact line
is pinned. At the same rigid body penetration, pinning
occurs at lower contact radii in approach than during
retraction, leading to a hysteresis in apparent adhesion
described by two JKR curves with constant apparent
work of adhesion wappr and wretr (Fig. 3c), similar to the
curves obtained from our 1D toy model (Fig. 2d). Our
numerical data shows that the magnitude of hysteresis,
wretr − wappr ∝W 2

rms (Fig. 3d).
We now summarize why this scaling emerges in our ad-

hesive problem, starting with the discussion of two lim-
iting cases. In the limit c → 0 the line is floppy and
deviations from circularity are not penalized. In this
individual-pinning limit,12,25,26 each angle θ along the
contact perimeter independently yields our toy model
and we obtain wretr − wappr ∝ Wrms. In the opposite
limit, c → ∞ the line is stiff and the contact remains
circular. There is no hysteresis, wretr − wappr = 0, and
the contact radius is obtained from the JKR expression
evaluated for the mean work of adhesion, 〈W 〉.

Our simulations are in an intermediate regime, char-
acterized by local jumps over length ` or N = `/d
pinning sites. The line is stiff over ` and hence sam-
ples a coarse-grained work of adhesion field W (`) with

W
(`)
rms = Wrms/

√
N . From force-balance Eq. (3) we ob-

tain that an excursion of the contact line by distance
δa over this length leads to a restoring force δG ∝ cδa/`,
which must balance W

(`)
rms. We note that δa ≈ d, which is

the distance to the closest local stable configuration.10,11

The equilibrium condition δG = W
(`)
rms then yields

N ∝
(
c/Wrms

)2
(4)

or ` = Nd for the Larkin length. This means, the mag-
nitude of the hysteresis must scale as

wretr − wappr ∝W (`)
rms ∝W 2

rms/c, (5)

exactly as observed in our simulations. Identical results
were obtained previously for cracks in heterogeneous me-
dia.12,27

We now turn to discussing topographic roughness,
rather than heterogeneity in the work of adhesion. For
this we need to consider excursions of the contact line
normal to the surface in additional to the lateral excur-
sions that are described by the contact radius a(θ) (see
Fig. 4)a. First note that the solid is always dilated near
the crack tip. In order to conform to a valley, the elastic
solid needs to stretch even more, requiring elastic energy.
Using the same arguments that lead to Eq. (1), this ad-
ditional elastic energy manifests as an effective decreased
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FIG. 2. Contact of a sphere against an axisymmetric work of adhesion heterogeneity W (a) with wavelength
d. (a) Cross-section of the contact at rigid body penetration b = 0 (top) and top view of the axisymmetric work of adhesion
heterogeneity W (a) (bottom). The blue color indicates regions of high adhesion. (b) Elastic energy release rates in an
indentation retraction cycle for a sinusoidal work of adhesion W (a) with wavelength d = 0.36 (gray line). The black line shows
the elastic energy release rate GJKR(b, a) as a function of contact radius for fixed rigid body penetration b = 0. Fluctuations of
W (a) lead to several metastable states A, B at fixed b. During approach, the contact perimeter is pinned in metastable states
with low adhesion (green curve), while during retraction the contact perimeter is pinned at higher radii by adhesion peaks (red
curve). Arrows indicate elastic instabilities where the contact radius jumps between metastable states. (c) Energy release rates
in an indentation retraction cycle for a work of adhesion heterogeneity with smaller wavelength d = 0.05. Note that the slope
of GJKR appears to be flatter than in panel (b) because we show a smaller range of contact radii. For short wavelengths, the
work of adhesion sampled during approach (light green curve) and retraction (light red curve) stay close to the constant values
wappr and wretr. (d) The contact radius and the normal force during an indentation retraction cycle for wavelength d = 0.36
(darker colors) and d = 0.05 (lighter colors). The dashed lines are the prediction by the JKR theory using wretr and wappr

for the work of adhesion. The solid black line corresponds to increasing energy release rates at fixed rigid body penetration
b = 0. Energy release rates are displayed in units of wint and lengths and forces have been nondimensionalized following the
conventions of Refs.19,20 as described in the Supplemental Material.

local work of adhesion. Conversely, conforming to a peak
decreases the overall strain near the crack tip and releases
elastic energy, leading to an increased effective work of
adhesion. Supplementary Section S-I derives an inte-
gral transformation for transforming a topographic field
h(x, y) into an effective work of adhesion field Weff(x, y).
Supplementary Section S-III also shows that a crack-front
simulation on Weff(x, y) yields results virtually indistin-
guishable from an exact boundary-element calculation.

The effective work of adhesion field has the intu-
itive property that its mean corresponds to the Persson-
Tosatti expression, Eq. (1). Furthermore, it has local
fluctuations with amplitude Wrms =

√
2winteel that de-

termine the adhesion hysteresis. These arguments on
simple roughness suggest that the main parameter deter-
mining the hysteresis is eel. We carried out crack-front
simulations on self-affine randomly rough topographies
(Fig. 3d) with varying parameters to confirm that the
work of adhesion during approach and retraction is in-
deed given by

w ret
appr

= wint − eel ± keel, (6)

with a numerical factor of k ≈ 3.
Our theoretical prediction reproduces the hysteresis

measured by Dalvi et al.2 when contacting hard rough
diamond substrates with soft rubber spheres. The rough-
ness of the diamond substrates used in Dalvi’s exper-
iments were characterized from atomic to macroscopic

scales,8,9 allowing us to quantitatively test our theory.
Since there is no direct way to measure the intrinsic work
of adhesion, we extracted wint = 65 mJ m−2 by fitting
our wappr to the data, which is in the range expected for
van der Waals interaction. The final prediction of our
model is shown by the dashed line in Fig. 1b. The good
agreement of the corresponding retraction curve, wretr,
shows that crack pinning quantitatively reproduces the
hysteresis observed in this experiment.

The central parameter governing hysteresis is the elas-
tic energy for fully conformal contact. This energy can
written as

eel =
E′

4

[
h(1/2)

rms

]2
, (7)

where E′ is the elastic contact modulus28 and h
(1/2)
rms is a

geometric descriptor of the rough topography. In terms
of the power-spectral density of the rough topography13

C iso, we define

(h(α)
rms)

2 =
1

4π2

∫
d2 q |~q|2αC iso(|~q|), (8)

where ~q is the wavevector. This expression contains the

rms amplitude of the topography, h
(0)
rms, the rms gradient

of the topography, h
(1)
rms, as well as arbitrary derivatives

of order α. The elastic energy is given by a roughness pa-
rameter intermediate between rms heights and rms gra-
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FIG. 3. Crack-front pinning by two-dimensional random roughness. (a) Evolution of the contact line during retraction
in a crack-front simulation on 2D random roughness. Each colored patch corresponds to an elastic instability during which
the perimeter umps between two pinned configurations (dark lines). The color scale represents the energy dissipated during
each instability. The random roughness has a flat power spectral density with short-wavelength cutoff λs = 0.07. (b) Effect of
in-plane perturbation of the perimeter on the elastic energy release rate. The green solid represents a small section of the JKR
contact with constant radius that we perturb by δa(θ) (red). Moving the crack front within the plane leads to out-of-plane
deformations of the crack faces. In a point P that we hold fixed, the energy release rate G is perturbed due to the non-local
interaction of surface displacements, which is why G is a functional of the contact radius a(θ). (c) Contact radius as a function
of the rigid body penetration in a simulation on self-affine random roughness. The shape of the PSD is shown by the blue circles
in the inset of panel (d) and the elastic energy for fully conformal contact eel/wint = 0.05. The dashed lines are JKR curves
with work of adhesion wappr and wretr predicted by our theory Eq. (6). (d) Work of adhesion hysteresis as a function of the
elastic energy for fully conformal contact eel, or equivalently the variance of the effective work of adhesion W 2

rms. The dashed
line shows the hysteresis predicted by our theory, Eq. (6). The symbols show results of crack-front simulation on randomly
rough surfaces with different shapes of the power-spectra represented in the inset. We used a flat PSD with short-wavelength
cutoff λs = 0.005 (green squares), and three different self-affine PSDs parameterized by the rolloff wavelength λr, the short-
wavelength cutoff λs and the Hurst exponent H. The blue circles correspond to λs = 0.000625, λr = 0.01, H = 0.8; the purple
triangles to λs = 0.000625, λr = 0.1, H = 0.3; and the pink crosses to λs = 0.005, λr = 0.1, H = 0.3. We varied eel by scaling
the amplitudes of the heights. Units have been nondimensionalized following the conventions of Refs.19,20 as described in the
Supplemental Material.

dients. For a self-affine topography, this parameters dif-
fer for Hurst exponents H above and below 1/2.16 For
H < 0.5, it is dominated by small-scale roughness, like
the rms slope, while for H > 0.5 it depends on the large
scales, like the rms height. However, most natural and
engineered surfaces have H > 0.5.29–31 Our model is then
consistent with the increase in pull-off force with hrms

reported in Refs.21,32 We note that most measurements
report insufficient details on surface roughness to allow
definite conclusions on the applicability of a certain con-
tact model.

The only experiment for which we know the topog-
raphy across all scales is the one shown in Fig. 1 (and
reported in Refs.2,8,9). For nanocrystalline diamond

(NCD), the range of scales that dominates h
(1/2)
rms and

hence contact-line pinning is at the transition between
power-law scaling and the flat rolloff at 1 µm, a length
scale that is accessible with an atomic-force microscope.

We illustrate the respective scales that contribute to h
(α)
rms

in Fig. 5.

It is important to emphasize that our model is valid for

soft materials. Increasing h
(1/2)
rms increases adhesion only

as long as the energy needed to fully conform the surface

roughness eel is lower than the gain in surface energy
wint.

15,34,35 When eel approaches wint, our assumption of
fully conformal contact breaks down. When the objects
are able to only conform partially, our correlation be-
tween pull-off force and scalar descriptors of roughness no
longer holds. Experiments then often observe that pull-
off force decreases with hrms, as for example reported in
the classic adhesion experiment by Fuller and Tabor.36

We note unlike the theory presented here for soft solids
and our understanding of nonadhesive contact,15 there is
presently no unifying theory that quantitatively describes
contact behavior in this intermediate region. Large scale
simulations with boundary-element methods are needed
to better understand this intermediate regime.14,35,37,38

In summary, the pinning of the contact line explains
why breaking soft contacts is always harder than making
them, even in the absence of material specific dissipation.
Roughness peaks increase local adhesion, which pins the
crack front and increases the pull-off force. By describing
rough adhesion as the pinning of an elastic line, we were
able to derive parameter-free, quantitative expressions
for the hysteresis in terms of a simple statistical rough-
ness parameter. This analogy paves the way to better
understanding the role of surface roughness in adhesion,
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FIG. 4. Mapping topographic roughness to effective
work of adhesion. The contact of a rough sphere (a) is
equivalent to the contact of a sphere with an effective work
of adhesion heterogeneity Weff (b). The solid is stretched at
the crack tip and surface roughness perturbs this elastic de-
formation. The associated perturbation of the elastic energy
can effectively be described by fluctuations of the work of ad-
hesion.

and provides guidance for practitioners which scales of
roughness to control in order to tune adhesion.
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FIG. 5. Roughness parameters. Power spectral den-
sity (PSD) extracted from more than 60 measurements of
Ref.,9 combining stylus profilometry, atomic force microscopy
(AFM), transmission electron microscopy (AFM) and trans-
mission electron microscopy (TEM). Black bars indicate the

range of scales that dominates h
(α)
rms (Eq. (8)). Specifically,

short wavelengths and long wavelengths beyond this range

respectively contribute to only 10% of the value of (h
(α)
rms)

2.
Evaluating Eq. (8) requires the 2D or isotropic power-spectral
density of the surface topography, while only the 1D PSD is
known. Following Refs.,2,13 we converted the 1D PSD C1D

to the isotropic 2D PSD using the approximation C iso(q) '
π
q
C1D(q). The data used in this figure is available online in

Ref.33



6

[1] Chaudhury, M. K. & Whitesides, G. M. Direct measure-
ment of interfacial interactions between semispherical
lenses and flat sheets of poly(dimethylsiloxane) and their
chemical derivatives. Langmuir 7, 1013–1025 (1991).

[2] Dalvi, S. et al. Linking energy loss in soft adhesion to
surface roughness. Proc. Natl. Acad. Sci. U.S.A. 116,
25484–25490 (2019).

[3] Israelachvili, J. N. Intermolecular and Surface Forces
(Academic Press, London, 1991).

[4] Chen, Y. L., Helm, C. A. & Israelachvili, J. N. Molec-
ular mechanisms associated with adhesion and contact
angle hysteresis of monolayer surfaces. J. Phys. Chem.
95, 10736–10747 (1991).

[5] Gao, H. & Rice, J. R. Nearly circular connections of
elastic half spaces. J. Appl. Mech. 54, 627–634 (1987).

[6] Sanner, A. & Pastewka, L. Crack-front model for adhe-
sion of soft elastic spheres with chemical heterogeneity.
J. Mech. Phys. Solids 160, 104781 (2022).

[7] Rice, J. R. Weight function theory for three-dimensional
elastic crack analysis. In Wei, R. & Gangloff, R. (eds.)
Fracture Mechanics: Perspectives and Directions (Twen-
tieth Symposium), 29–57 (American Society for Testing
and Materials, Philadelphia, USA, 1989).

[8] Gujrati, A., Khanal, S. R., Pastewka, L. & Jacobs, T.
D. B. Combining TEM, AFM, and profilometry for quan-
titative topography characterization across all scales.
ACS Appl. Mater. Interf. 10, 29169–29178 (2018).

[9] Gujrati, A. et al. Comprehensive topography characteri-
zation of polycrystalline diamond coatings. Surf. Topogr.
Metrol. Prop. 9, 014003 (2021).

[10] Larkin, A. I. & Ovchinnikov, Y. N. Pinning in type II su-
perconductors. J. Low. Temp. Phys. 34, 409–428 (1979).

[11] Robbins, M. O. & Joanny, J. F. Contact angle hysteresis
on random surfaces. Europhys. Lett. 3, 729–735 (1987).
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[35] Wang, A. & Müser, M. H. Is there more than one stick-
iness criterion? Friction (2022).

[36] Fuller, K. N. G. & Tabor, D. The effect of surface rough-
ness on the adhesion of elastic solids. Proc. R. Soc. Lon-
don, Ser. A 345, 327–342 (1975).

[37] Medina, S. & Dini, D. A numerical model for the deter-
ministic analysis of adhesive rough contacts down to the
nano-scale. Int. J. Solids Struct. 51, 2620–2632 (2014).

[38] Popov, V. L., Pohrt, R. & Li, Q. Strength of adhesive
contacts: Influence of contact geometry and material gra-
dients. Friction 5, 308–325 (2017).



Supplementary Material for
“Why breaking soft contacts is harder than making them”

Antoine Sanner1,2, and Lars Pastewka1,2

1 Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-
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S-I. CRACK-FRONT MODEL

Our goal is to model the contact of a rough sphere on a deformable elastic flat (Fig. S-1a). The

contact perimeter of the adhesive contact between a smooth sphere and flat can be regarded as a

circular crack (Fig. S-1b). This is the basis of the Johnson, Kendall and Roberts (JKR) model for

adhesion [1]. JKR derived an expression for the elastic energy release rate GJKR for this spherical

geometry, and balanced it with the intrinsic work of adhesion, GJKR = wint. Here, we extend

this result to rough spheres, where the crack shape deviates from circularity. Surface roughness

perturbs the shape of the crack in the surface normal direction. This perturbs the local balance of

energy, leading to additional deviation of the crack shape in direction parallel to the surface.

Figure S-1 illustrates this decomposition in terms of the energy release rate G. The surface

roughness h locally perturbs the elastic energy by G⊥ (Fig. S-1c) [2] and the perimeter distorts

within the plane to satisfy equilibrium with the uniform work of adhesion wint (Fig. S-1d). As we

show in detail in this supplementary material, we describe the effect of surface roughness by an

effective work of adhesion field

Weff([h]; a(θ), θ) = wint − eel([h])−G⊥([h]; a(θ), θ), (S-1)

where eel is the elastic energy required to fully conform to the surface roughness and the square

brackets indicate a functional dependency.

The effect of the in-plane deflection on the elastic energy G‖ was derived by Gao and Rice [3]

and later extended by us to spheres [4]. In our simulations, the equilibrium condition

W ([h]; a(θ), θ) = GJKR(b, a(θ)) +G‖([a], θ) (S-2)

1
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FIG. S-1. We consider the contact of a sphere of radius R with roughness h(x, y) superposed to it. (a)

Because of surface roughness, the contact perimeter is no longer circular. We describe it by the contact

radius a(θ), the planar distance between the tip of the sphere and the perimeter of the contact. The energy

release rate G at the point P along the crack is decomposed into three contributions, G = GJKR + (eel +

G⊥) + G‖, illustrated in panels (b) to (d). (b) The energy release rate GJKR(b, a) for the smooth contact

is given by the theory of Johnson, Kendall and Roberts [1]. (c) Surface roughness leads to out-of-plane

displacements of the contact perimeter. This increases the average energy release rate by eel and leads to

additional local fluctuations G⊥([h], θ). Here, eel is the elastic energy needed to fully conform to surface

roughness. (d) The in-plane deflection of the perimeter from circularity leads to the additional contribution

G‖([a], θ).

determines the contact radius with O(h2) errors in the strength of the disorder. The left hand

side represents the driving force to increase the contact radius that fluctuates according to the

surface roughness, while the right hand side represents the elastic response of the line that only

depends on the spherical geometry and the material properties. The numerical implementation

follows Refs. [4, 5] and is summarized in supplementary material S-II. We validate our equations

by comparing crack-front simulations to boundary element method simulations in supplementary

material S-III. Equations (S-1) and (S-2) establish the equivalence between the adhesion of rough

spheres and the classic problem of the pinning of an elastic-line by quenched disorder [5–10].
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A. Axisymmetric contact: The JKR model

We consider the contact of a sphere (to be exact, a paraboloid) adhering an elastic half-space

at a fixed rigid body penetration b (Fig. S-1a). This case can be mapped to the contact of two

spheres with the same composite radius R and contact modulus E ′ [11]. When only one half-

space deforms, E ′ = E/(1− ν2), where E is Young’s modulus and ν is Poisson’s ratio. Fracture

mechanics typically considers the contact of two elastic half-spaces where E ′ = E/2(1− ν2). We

assume the contact is frictionless and consider only vertical displacements of the half space.

The equilibrium radius and force for a perfect sphere against the axisymmetric work of adhesion

heterogeneity W (a) is given by the JKR theory [1, 12, 13]. JKR described the adhesion of a

paraboloid with radiusR by superposing the displacements and the stress fields of the nonadhesive

Hertzian contact [14] and the circular flat punch under tensile load [15].

The contact pressures p have a tensile singularity as the distance to the edge of the contact −ξ
goes to 0,

p(ξ) = −KJKR/
√

2π(−ξ) +O((−ξ)1/2), (S-3)

with the stress intensity factor

KJKR =

(
a2

R
− b
)

E ′√
πa
. (S-4)

Here and below we use the subscript JKR to indicate the circular contact to a smooth sphere. The

energy release rate depends solely on the amplitude of this singularity [16]

GJKR = K2
JKR/(2E

′) (S-5)

and the equilibrium condition GJKR(b, a) = W (a) yields the contact radius. The normal force is

given by

FJKR(a, b) =
4E ′

3R
a3 + 2aE ′

(
b− a2

R

)
. (S-6)

Once nondimensionalized using distinct vertical and lateral length units, the JKR contact is

parameter free [13, 17, 18], and we present our numerical results in the nondimensional units

defined in Refs. [12, 13]. Specifically, lengths along the surface of the half-space (e.g., the contact

radius) are normalized by (3πwintR
2/4E ′)1/3, lengths in vertical direction (e.g., displacements) by

(9π2w2
intR/16E ′2)1/3 and normal forces by πwintR. The equations are in dimensional form but can

be nondimensionalized by substituting R = 1, wint = 1/π and E ′ = 3/4.
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B. Circular contact with surface roughness: Out-of-plane perturbation of the elastic energy re-

lease rate

We now determine the energy release rate at the perimeter of the contact with a rough sphere but

where the contact perimeter remains circular (Fig.S-1c). We denote the respective energy release

by G◦([h]; b, a, θ), where the brackets indicate a functional dependency on the height field h(x, y)

that describes the roughness. Out-of-plane deflections of the surface of the solid make the elastic

energy release rate G◦([h]; b, a, θ) fluctuate along the contact perimeter, and θ parameterizes the

angle along the perimeter of the circular crack front. In the main text and in our simulations, we

formally describe this perturbation of the energy release rate by the effective work of adhesion

Weff . In order to justify this mapping, we first discuss the true elastic energy release rate G◦ and

show that the effects of the spherical geometry, surface roughness and in-plane distortion of the

crack-front are decoupled.

The JKR contact is the superposition of the (adhesive) flat punch [15] and the Hertz solu-

tion [14]. For the rough sphere, we now additionally superpose the stresses and displacements

needed to conform to the surface roughness. We do not need to determine the whole distribution

of contact stresses because the energy release rate only depends on the stress intensity factor at the

contact edge via Irwin’s relation [16]

G◦([h]; b, a, θ) =
{
KJKR(b, a) +K⊥([h]; a, θ)

}2
/(2E ′), (S-7)

where K⊥ captures the effect of roughness. K⊥ can be thought of as the stress intensity factor in

the conforming contact of a flat punch with roughness h at zero external load. Note that the stress

intensity factors of the JKR solution and the influence of roughness can be superposed linearly,

because in linear elasticity we can simply superpose stresses originating from different geometric

contributions.

1. Stress intensity factor caused by roughness at the tip of a semi-infinite crack

We compute K⊥ approximately by treating the contact as a semi-infinite crack (Fig. S-2a,b),

i.e. the roughness features are small compared to the contact radius. We describe the semi-infinite

crack in the coordinate system ξ, ζ , where ξ points in the normal to the crack front with ξ < 0 in

the contacting area. ζ points parallel to it. This is essentially a locally rotated coordinated system
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FIG. S-2. We compute the stress intensity factor caused by surface roughness for a straight crack K̄⊥ using

a superposition. (a) We consider a semi-infinite crack located at x, for which the positive x and ξ directions

point towards the cracked area. The local coordinate system ξ, ζ is centered on the crack tip, so that ξ < 0

corresponds to the contact area. (b) For ξ > 0, the surface is free to move vertically and the pressure p = 0.

For ξ < 0, the solid fully conforms to the surface roughness so that the displacements u are prescribed

to be equal to the heights h. Note that the positive direction for displacements and heights, corresponding

to roughness peaks, points into the elastic halfspace (downwards). In the contact area, surface roughness

causes fluctuating contact pressures p(x, y) with stress intensity factor K̄⊥(x, y). We compute K̄⊥(x, y)

by superposing the solutions of two elastic problems (c) and (d). (c) Displacements and pressures in an un-

cracked contact with the roughness h. The displacements u(x, y) = h(x, y) cause the pressure distribution

p∞(x, y) (d) Semi-infinite crack with pressures applied on his crack faces. We apply the pressures −p∞
so that the pressures cancel out on the crack faces when superposing to (b). The displacements are 0 in the

contact area so that the contact condition u = h remains satisfied for ξ < 0 after superposition. Loading the

crack faces at fixed displacements in the contact area causes the stress intensity factor. This stress intensity

factor corresponds to K̄⊥ because there is no stress singularity in solution (b).
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at the angle θ on the crack, as shown in Fig. S-1c. The semi-infinite crack hence represents a small

subsection of the circular perimeter centered at ξ = 0 and ζ = 0.

We compute the stress intensity factor by a classic superposition [19, 2.6.4 Full Stress Field for

Mode-I Crack in an Infinite Plate], where we first compute the pressures needed to conform the

surface roughness in the absence of a crack (Fig. S-2c) and subsequently cancel out these pressures

on the crack faces (ξ > 0) (Fig. S-2d). Loading the crack-faces while keeping the displacements

fixed in the contact area (ξ < 0) leads to the stress intensity factor K⊥(ζ).

The pressures needed to conform to the surface roughness in the infinite contact are [20, 21]:

p̃∞(~q) =
E ′

2
|~q|h̃(~q), (S-8)

where ~q = (qx, qy) is the wavevector and the tilde denotes the Fourier transform,

h̃(qx, qy) =

∞∫

−∞

dx dy e−i(qxx+qyy)h(x, y). (S-9)

The stress intensity factor at the edge of the contact results from the crack-face loading needed to

cancel p∞ outside the contact area,

K⊥([h];x, y) =

∫ ∞

x

dxP

∫ ∞

−∞
dyP k(xP − x, yP − y)

{
−p∞([h];xP, yP)

}
. (S-10)

The quantity K̄⊥ is the stress intensity factor at position y along the tip of a crack advanced to

position x (Fig. S-2a). The bar over K̄⊥ indicates that the result is valid for a straight crack. The

crack-face weight function [22]

k(ξ, ζ) =

√
2/π3
√
ξ

ξ2 + ζ2
, (S-11)

is the stress intensity factor at the origin of a semi-infinite crack caused by a unit point force

at (ξ, ζ). Evaluating the convolution Eq. (S-10) for each position of the crack x yields a two-

dimensional field of stress intensity factors, which can be most easily represented in terms of its

Fourier modes,
˜̄K⊥(qx, qy) = − E

′
√

2

√
iqx + |qy|h̃(qx, qy) (S-12)

with

K̄⊥([h];x, y) =
1

4π2

∞∫

−∞

dqx dqy
˜̄K⊥(qx, qy)e

i(qxx+qyy). (S-13)

Note that K̄⊥ has zero average (because of symmetry of the elastic surface response) and that

the solids overlap where the stress intensity factor is negative. Our final result has no overlap
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provided that |K̄⊥| < KJKR. Anderson and Rice [2] derived an equation equivalent to Eq. (S-12)

to understand the interaction of crack tips with dislocations.

We now detail the steps leading from Eq. (S-10) to Eq. (S-12). The pressures needed to conform

to the surface roughness in the infinite contact p∞ are easier to express in Fourier space, see

Eq. (S-8). Using the Heaviside step function Θ(ξ), we now define the weight function on the

whole plane as

f(ξ, ζ) = Θ(ξ)k(ξ, ζ). (S-14)

This allows us to extend the integration bound on Eq. (S-10) to infinity. The convolution theorem

then yields the simple expression

˜̄K⊥(qx, qy) = f̃ ∗(qx, qy)(−p̃∞(qx, qy)), (S-15)

where the star is the complex conjugate. We now compute the Fourier transform of this generalized

weight-function

f̃(qx, qy) =

∞∫

−∞

dξ dζ Θ(ξ)k(ξ, ζ)e−iqxξe−iqyζ . (S-16)

Using that
∞∫

−∞

dy e−iqyyk(x, y) =

∞∫

−∞

dy e−iqyy
√

2/π3
√
x

x2 + y2
=

√
2

π

e−x|qy |√
x

(S-17)

and evaluating the step function, we get a classic Laplace transform [23, Eq. 29.3.4]

f̃ ∗(qx, qy) =
√

2

∞∫

0

dx
1√
πx
e−(|qy |−iqx)x =

√
2√

|qy| − iqx
. (S-18)

Inserting Eq. (S-8) into Eq. (S-15) and using that |q| =
√
|qy| − iqx

√
|qy|+ iqx yields Eq. (S-12).

C. Circular contact with surface roughness: Effective work of adhesion

We now switch from the straight crack back to the contact of a sphere. The first step is to

approximate the stress intensity factor K⊥ by the result for the straight crack, K̄⊥, obtained above.

This approximation requires us to rotate the straight crack to be tangential to the contact circle, i.e.

to rotate it by the angle θ that gives the circumferential position (Fig. S-1c). Note that for isotropic

random fields, this rotation becomes inconsequential and we do not carry it out for the results

shown in the main text. We do carry out this rotation when comparing the crack-front results to

the boundary element method, shown in Sec. S-III below.
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We now rewrite Eq. (S-7) as

G◦([h]; b, a, θ) = GJKR(b, a) +KJKR(b, a)K⊥([h]; a, θ)/E ′ +K2
⊥([h]; a, θ)/(2E ′). (S-19)

The term K⊥ is stochastic, as it describes the influence of surface roughness, which is typically a

random field. SinceK⊥ is linear in h, its spatial average 〈K⊥〉a,θ vanishes. For a random field with

a short correlation length, even partial averages over just the angle θ must vanish. This means the

middle summand in Eq. (S-19) does not contribute to the average energy release rate. However,

the variance 〈K2
⊥〉a,θ must be positive and nonzero. Parseval’s theorem tells us that,

〈
K2
⊥/2E

′〉
a,θ

=
E ′

16π2

∫
dqx dqy |q|C2D(qx, qy) = eel, (S-20)

where C2D(qx, qy) = (LxLy)
−1|h̃(qx, qy)|2 is the power spectral density of the heights [24] and

Lx, Ly are the period of the system in the respective direction. Note that while we consider the

limit of an infinite system size Lx, Ly → ∞, C2D remains finite. The variance gives the elastic

energy eel for fully conformal contact. The average of Eq. (S-19) then becomes

〈G◦〉a,θ = GJKR + eel. (S-21)

This equation is equivalent to a classic results by Persson and Tosatti [21]. They approximated

equilibrium by 〈G◦〉a,θ = wint. Formally, this can be described by the equilibrium of a smooth

sphere, whereG◦ = GJKR, with the effective work of adhesionW = wint−eel. This approximation

only works in the adiabatic limit. Fluctuations become crucial when they are able to pin the crack

front.

We now show how to generalize Persson and Tosatti’s result to describe local fluctuations. This

means we need to consider the effect of the second term in Eq. (S-19),

G⊥([h]; a, θ) = KJKR(b, a)K⊥([h]; a, θ)/E ′, (S-22)

that disappears in the average but represents the leading-order effect of roughness on the fluctua-

tions of G◦. G⊥ depends on the geometry and position of the indenter via KJKR. This coupling

between macroscopic boundary conditions and the microscopic disorder is a second-order effect

of the roughness, which we can neglect because our final equilibrium equation determines the

crack shape with first-order accuracy only. To first order in h, we approximate KJKR ≈
√

2wintE ′,

yielding

G⊥([h]; a, θ) ≈
√

2wint/E ′K⊥([h]; a, θ). (S-23)
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This first-order approximation allows us to describe the effect of surface roughness by the equiva-

lent quenched disorder in work of adhesion

Weff([h]; a, θ) = wint − eel([h7])−G⊥([h]; a, θ). (S-24)

The effective work of adhesion Eq. (S-24) contains only the essential leading-order contributions

of the roughness and is independent of the macroscopic geometry, so that our results generalizes

to other adhesion setups where our approximations are valid.

Our mapping to an effective work of adhesion establishes a link to the pinning of elastic lines

by quenched disorder. Theoretical work on the pinning of elastic lines [7–10] allow us to link

the hysteresis in apparent adhesion to the root-mean-square (rms) fluctuations of W . Inserting

Eq. (S-12) into Eq. (S-23) and (S-24) yields

Wrms =

√〈
W 2

eff − 〈Weff〉2a,θ
〉
a,θ

= 2
√
eelwint = h(1/2)

rms

√
E ′wint. (S-25)

The quantity h(1/2)
rms is the rms half-derivative (or quarter fractional Laplacian) given by

[
h(α)

rms

]2

=
1

4π2

∫
d2 q |~q|2αC2D(~q) (S-26)

with α = 1/2.

The fluctuations of Weff are linear in the roughness amplitudes. Since our assumption of fully

conformal contact requires that eel < wint, Wrms is larger than the (second-order) shift in average

adhesion. This strong linear perturbation of the local energy arises because the solid is stretched

by a distance u(ξ) ∝ √ξK/E ′ with K =
√

2wintE ′ at an equilibrium crack tip. In valleys,

the solid needs to stretch even more, increasing the elastic energy and decreasing the effective

adhesion, while on roughness peaks, the effective adhesion increases because the solid needs to

stretch less than for a perfect sphere (see also Fig. 4 of the main text). The amplitude of these

energy fluctuations are given by h(1/2)
rms , a generalized measure of the sharpness of peaks sensitive

to larger length scales than curvatures and slopes. For self-affine roughness, this parameter is

dominated either by large scales like the rms height, or by small scales like slope and curvatures,

depending on the Hurst exponent [21].

D. Non-circular contact: In-plane perturbation of the elastic energy release rate

Above, we discussed the effect of out-of-plane perturbation on a perfectly circular contact. In

reality, the contact shape will deviate from circularity. We now compute the energy release rate at

9



a cb

FIG. S-3. Effect of in-plane perturbations of the crack front on the energy release rate, G‖. (a) The green

solid represent a small section of the circular reference configuration with constant radius a(θP ) that we

perturb by δa(θQ, θP ) = a(θQ) − a(θP ) (red). Advancing the contact area brings the crack faces closer

together even in front of the point P that we hold fixed, because of the nonlocal interaction of the surface

displacements. (b) At the crack tip, the displacements u(ξ) ' Ξ
√
ξ with displacement intensity factor Ξ,

so that closing the crack faces requires displacements δu(θQ, ξ) = Ξ(θQ)
√
ξ. The length Ξ2 is the out-of-

plane diameter at the crack tip (red circle) and corresponds to the elastic energy release via G ∝ E′Ξ2. At

equilibrium, this diameter is proportional to the elastoadhesive length `a = wint/E
′. (c) The diameter of

the crack tip decreases by δ(Ξ2) = 2ΞΞ‖ as the crack faces come together at the point P.

point P on a nearly circular outer contact to a rough sphere,

G([h, a]; b, θP) = G◦([h]; b, a(θP), θP) +G‖([a]; θP), (S-27)

with first-order accuracy in the deviation from circularity δa(θ, θP) = a(θ) − a(θP), see Fig. S-3.

Our approximation is based on Gao and Rice’s [3] first-order perturbation of the stress intensity

factor at the perimeter of an initially circular external crack. Their result applies to arbitrary

indenter geometries, where the stress intensity-factor can vary along the perimeter [4, 25, 26],

as is the case here due to surface roughness. We show that the first-order effect of the in-plane

perturbation G‖ is independent of the out-of-plane geometry, so that the contact of a rough sphere

is equivalent to the contact of a smooth sphere discussed in Ref. [4] using the effective work of

adhesion heterogeneity Eq. (S-24). In Ref. [4], we only considered the case where G◦ is uniform

over the contact perimeter, such as when G◦ = GJKR. Here, we highlight the key changes required

when G◦ is a function of θ.

The line-elasticity emerges from the elastic coupling of the surface displacements caused by
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moving an initially stretched crack tip. The more the solid is stretched, the larger the elastic energy

required to distort the contact line. In this section, we discuss perturbation of stress intensity factor

in terms of displacements rather than pressures and introduce a displacement intensity factor [27,

28],

Ξ =
√

8/πK/E ′, (S-28)

in order to shorten the notation. Close to the crack tip, the geometry of the solid is described by

u(ξ, θ) = Ξ(θ)
√
ξ +O(ξ3/2), (S-29)

so that Ξ2 corresponds to the diameter at the crack tip, see Fig. S-3b. This length gives a geometric

interpretation of the energy release rate via Eq. (S-5),

G = (π/16)E ′Ξ2. (S-30)

At equilibrium, G = wint, so that the diameter of the crack tip Ξ2
eq = (16/π)`a, with the elastoad-

hesive length `a = wint/E
′ [29].

Rice explained how distorting an initially circular contact perimeter affects the energy release

rate in a point P that we hold fixed, see Fig. S-3a. Making use of symmetries of the elastic potential,

Rice showed that the crack-face weight-function describes how the surface of the solid moves as

we distort the crack front within the plane. For the energy release rate, only the perturbation of

crack-face displacements close to the crack tip matter. They are described by [3]

Ξ‖([h, a]; b, θP ) =Ξ([h, a]; b, θP)− Ξ◦([h]; b, a(θP), θP)

=− PV

2π∫

0

dθQ a(θP)
δa(θQ)Ξ◦([h]; b, a(θQ), θQ)

||~rP − ~rQ||2
+O([a− a(θP)]2),

(S-31)

where Ξ◦ is the displacement intensity factor for the perfectly circular contact including roughness.

The kernel of the integral was obtained from the ξ → 0 limit of the crack-face weight-function

of a circular external crack by Gao and Rice [3, 30, 31]. Equations (S-30) and (S-31) combined

with the results from section S-I B yield the energy release rate for the nearly circular contact to a

rough sphere.

Equation (S-31) captures the dominating effect of the long-ranged elastic coupling of the sur-

face displacements on the energy release rate. We illustrate this effect in Fig. S-3, where we hold

a(θP ) fixed and advance the contact area in the neighborhood, corresponding to a locally convex
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perturbation of the contact perimeter (Fig. S-3a). Closing the adhesive neck over the surface ele-

ment dθ a(θQ)δa(θQ) requires the displacement δu(θQ, ξ) = Ξ(θQ)
√
ξ (Fig. S-3b), which perturbs

the whole surface of the solid with amplitudes decaying with distance as ||~rP − ~rQ||−2. We hold

the crack front locally pinned in θP , yet this nonlocal interaction along the crack front brings the

crack faces together (Fig. S-3c) and thereby reduces the energy release rate G(θP ).

We now show that within our first-order approximation, the reduction of G for convex a dis-

cussed in the previous paragraph is independent of the indenter geometry and corresponds to a

generalized curvature, the half-fractional Laplacian (−∆s)
1/2a(s), where s = a θ is an arclength

along the contact perimeter. The principal value integral in Eq. (S-31) depends on roughness, in-

denter geometry and indenter position via Ξ◦, but this coupling of the in-plane elastic response to

the out-of-plane geometry is only O(δa2). Near equilibrium, where

Ξ◦([h]; b, a(θ), θ) +O([aeq − aeq(θ)]) = Ξeq =

√
16wint

πE ′
, (S-32)

deviations of Ξ◦ from the material property Ξeq manifest in Eq. (S-31) through the second-order

term Ξ◦δa. Approximating Ξ◦ by the constant value Ξeq simplifies the principal value integral to

Ξ‖([a]; θP) ≈ −Ξeq PV

2π∫

0

dθQ a(θP)
δa(θQ)

||~rP − ~rQ||2
= Ξeq (−∆s)

1/2 a(θP). (S-33)

Here, the half-fractional Laplacian of the contact radius with respect to the arclength ds =

a(θP) dθP is defined by

(−∆s)
1/2 a(θP) =

1

a(θP)
(−∆θ)

1/2 a(θP) =
1

a(θP)

∑

n∈Z\{0}

|n| ãn einθP , (S-34)

where ãn are the coefficients of the Fourier series

a(θ) =
∑

Z

ãn e
inθ. (S-35)

The wavelength of a Fourier mode is `n = 2πa(θ)|n|. The Fourier amplitude of (−∆s)
1/2 a(θP),

ãn/`n, is the slope of the Fourier mode, but unlike slopes, the maxima and minima of the fractional

Laplacian are in phase with maxima and minima of a. Hence, (−∆s)
1/2 a can be interpreted as a

generalized curvature scaling like a slope.

Equations (S-32) and (S-33) yield the first-order perturbation of the energy release rate

G‖([a], θP) ≈ π

8
ΞeqΞ‖([a], θP) = wint (−∆s)

1/2 a(θP), (S-36)
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describing that the line penalizes deviations from circularity with a strength proportional to

the equilibrium energy release rate wint and a generalized curvature. This means that for a fixed

jump-depth δa = d, it is easier to deflect the line over a wider lateral section `, δG = wintd/`,

explaining why a row of several asperities can collectively pin the crack front while an individual

asperity cannot [6].

S-II. NUMERICAL IMPLEMENTATION OF THE CRACK-FRONT MODEL

Our numerical simulations use the algorithm by Rosso and Krauth [5] to solve for the equilib-

rium configurations (metastable states) visited by the crack front as we pull the sphere in and out

of the contact. We discretize the crack front in N collocation points at equally spaced angles θ

following Ref. [4].

The surface roughness h(x, y) is a Gaussian random field, where the height spectrum h̃(qx, qy)

has uncorrelated phases and random amplitudes scaling according to the PSD, and defines the

effective work of adhesion field via Eqs. (S-12) and (S-24). Equation (S-12) describes the stress

intensity factor for a straight crack that is rotated to be tangential to the contact circle. Note that

the prefactor in Eq. (S-12) is a complex number that introduces a minor phase-shift between Weff

and h in the direction normal to the front. While this phase-shift, and thereby the orientation

of the crack, are important when comparing deterministically the crack-front model to the BEM,

they have no effect on the power-spectrum of Weff and on the work of adhesion hysteresis. When

the correlation length is much smaller than the contact radius, the heights decorrelate before the

orientation of the crack changes significantly along the perimeter. For this reason, and because

the rotation becomes computationally intractable on large grids, we generate the effective work of

adhesion fields used in the main text using a constant orientation of the crack.

S-III. VALIDATION AGAINST THE BOUNDARY ELEMENT METHOD

We compare the crack-front model to a boundary element method (BEM) simulation to val-

idate our mapping from surface roughness to an effective work of adhesion heterogeneity. The

implementation of the BEM and the parameters of the simulation are similar to Ref. [4], where

we validated the crack-front model for spheres with heterogeneous work of adhesion. In the BEM

simulation we perform here, the sphere is rough the work of adhesion is uniform. The surfaces
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(a) (b)

BEM
Crack Front

approach

retraction

FIG. S-4. (a) Force-penetration curves from a boundary element method (BEM) and a crack-front sim-

ulation on the random roughness shown in panel (b). The arrows indicate the jump into contact and the

jump out of contact instabilities. (b) Contact areas at the penetration b = 0.45, indicated by the dots in the

force-penetration curve, on top of the surface topography. The tensile pressures of the contact mechanics

simulation during approach are shown in green, so that the perimeter of the contact is indicated by the

darkest green pixels. The dashed lines represent the contact perimeter calculated with the crack-front model

during approach (pink) and retraction (purple). The BEM simulation was discretized on a 1024 × 1024

grid with pixel size `pix = 0.005. The roughness is a random Gaussian field with a flat power spectrum at

wavelengths above the cutoff wavelength λr = 0.2 and 0 below. The interaction is a cubic polynomial with

a cutoff distance gc = 0.24, corresponding to a cohesive zone size `coz = (π/36)g2
c/`a ' 0.012. In both

simulations, we increased the penetration b in steps of 0.01 until the maximum penetration bmax = 1 was

reached and then decreased it until pull off. The results are nondimensionalized following the conventions

of Refs. [12, 13].

interact with a cubic cohesive law with a hard-wall repulsion. Our implementation of the BEM is

described in detail in Ref. [4] and is based on [32–36].

Figure S-4 shows a BEM and a crack front simulation on random roughness with eel/wint '
0.03 and a power spectrum that is flat for wavelengths above the correlation length λr = 0.2 and

0 below. The force-penetration curves computed with the BEM and the crack-front model nearly

overlap and contact perimeters agree well, confirming that the contact of rough spheres is equiv-

alent to the pinning of a crack by the effective work of adhesion heterogeneity Weff . Note that
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in the BEM, the jump into contact instability occurs too early because of the finite interaction

range [4, 37–39]. This particular event converges slowly with interaction range, while the re-

mainder of the force-penetration curve, including depinning instabilities, is well converged. Other

discrepancies in the force-penetration curves are due to the linearization in the crack-front model.
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Abstract
The optimization of surface finish to improve performance, such as adhesion, friction, wear, fatigue
life, or interfacial transport, occurs largely through trial and error, despite significant advancements in
the relevant science. There are three central challenges that account for this disconnect: (1) the
challenge of integration ofmany different types ofmeasurement for the same surface to capture the
multi-scale nature of roughness; (2) the technical complexity of implementing spectral analysis
methods, and of applyingmechanical or numericalmodels to describe surface performance; (3) a lack
of consistency between researchers and industries in how surfaces aremeasured, quantified, and
communicated. Herewe present a freely-available internet-based application (available at https://
contact.engineering)which attempts to overcome all three challenges. First, the application enables
the user to uploadmany different topographymeasurements taken from a single surface, including
using different techniques, and then integrates all of them together to create a digital surface twin.
Second, the application calculatesmany of the commonly used topographymetrics, such as root-
mean-square parameters, power spectral density (PSD), and autocorrelation function (ACF), as well
as implementing analytical and numerical calculations, such as boundary elementmodeling (BEM)
for elastic and plastic deformation. Third, the application serves as a repository for users to securely
store surfaces, and if they choose, to share thesewith collaborators or even publish them (with a digital
object identifier) for all to access. The primary goal of this application is to enable researchers and
manufacturers to quickly and easily apply cutting-edge tools for the characterization and properties-
modeling of real-world surfaces. An additional goal is to advance the use of open-science principles in
surface engineering by providing a FAIR databasewhere researchers can choose to publish surface
measurements for all to use.

1. Introduction: The challenges impeding a
scientific and practical understanding of
roughness-dependent surface properties

Surface topography controls the function of material
interfaces [1]. More than 100 years ago, Binder [2]
showed that the electrical resistance between two flat
surfaces in contact was far higher than would be
expected given the material properties and overall

geometry of the contact. In the following years, it
became clear that, because of surface roughness, the
area of true contact between materials is typically far
lower than the apparent area of their macroscopic
contact [3, 4]. Since then it has been shown that
virtually all engineering materials, even the most
highly polished ones, have surface roughness over
some range of length scales [5]. For emerging manu-
facturing approaches, such as additive manufacturing
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(3D printing) the effect of surface finish can be even
more dramatic, with severe consequences e.g. for
fatigue [6]. However, whether mature or advanced
manufacturing techniques are used, this surface
roughness significantly alters surface properties—
including adhesion, friction, lubrication, elastic and
plastic deformation under load, electrical transport,
and thermal transport [7–10].

Over the last sixty years, a wide variety of analytical
and numerical models have been proposed to describe
roughness-dependent properties [3, 11–16], as descri-
bed in Sect. 5. Especially in the last two decades, sig-
nificant advances have been made in accounting for
the multi-scale nature of roughness. However, there
remains no consensus in the scientific community
about which models best describe real surfaces under
which conditions. Even themost effectivemodels have
only limited application in industrial contexts to
improve product performance. To date, the modifica-
tion of surface finish is mostly empirical, and it
remains impossible to rationally design the optimal
surface topography to precisely tune a given surface
property [17–19].

The disconnect between scientific advancement of
roughness theories and experimental validation and
use of these theories arises because of three central
challenges, as described below.

Central challenge 1: The difficulty of integrating dif-
ferent surface measurements to capture the multi-scale
nature of roughness. Surface roughness is known to
exist at many length scales and therefore cannot be
fully described from any singlemeasurement, such as a
line scan from a stylus profilometer or a topographic
map from an atomic force microscope (AFM).
Instead, a comprehensive description requires many
surface measurements across a wide range of magnifi-
cations, including using different instruments and
techniques. However, it is challenging to fuse these
disparate measurements into one comprehensive
description of a surface, because of their different size
scales, resolutions, collection/analysis software, and
file formats.

Central challenge 2: The technical complexity of
implementing spectral analysis methods, and of applying
mechanical or numerical models to describe surface per-
formance: Spectral analysis methods can be complex,
often relying on signal processing tools, while techni-
cal implementation choices affect the precise value of
the outcome. (See, for example, the wide array of cal-
culations and units that are commonly used for the
power spectral density [20].) Furthermore, analytical
and numerical models of contact tend to be evenmore
challenging to implement, often requiring complex
calculations or even numerical solvers that are not
accessible for typical experimentalists in either
research or manufacturing contexts. This technical
complexity and the ambiguity surrounding specific
implementations present a significant barrier to the

validation and use of roughness models to real-world
surfaces.

Central challenge 3: A lack of consistency between
researchers and industries in how surfaces are measured,
quantified, and communicated: The characterization
and specification of surface roughness varies enor-
mously. Manufacturing contexts favor simple scalar
parameters that are easy to measure and that are spe-
cified clearly using reference standards (e.g., ISO 4287
and ASME B46.1), yet there is not even agreement
about which of the dozens of scalar parameters
should be measured and specified (Ra, Rq, Rz, R q∆
etc.). In the context of scientific research, more com-
prehensive descriptions are preferred such as the
power spectral density and the autocorrelation func-
tion, but there is a lack of agreement about which is
most meaningful. Furthermore, the very act of shar-
ing surface data (with collaborators, or publishing it
with a scientific paper) is made complicated by pro-
prietary software applications with varying file for-
mats, and a lack of agreement about how to save and
report raw data.

These three central challenges cause a gap in the
current understanding of topography, which must be
filled in order to predict and control roughness-
dependent properties. The remainder of the paper
describes a software platform that attempts to close
this gap.

2. Contact.engineering: overview and
guiding principles

In order to address all three of the central challenges
discussed in the previous section, we have created a
freely-available internet-based application for
rough-surface analysis that can be accessed at
https://contact.engineering/. The source code
behind this application is freely available6 such that
power-users can directly use the computational
engine for surface topography analysis in their work-
flows. The present paper describes the choices made
for the web application that is accessible at contact.
engineering. These choices are implemented as
defaults in the computational engine and serve to set
a standard for topography analysis. Users of the
back-end Python code can deviate from these choices
by overriding these defaults. The application and
back-end code are designed around functionalities
and guiding principles that address each of the
central challenges laid out in the previous section (see
figure 1).

We note that a variety of software tools for hand-
ling topography data already exist. A popular tool is
the open-source software Gwyddion [21] that is used
by many researchers around the world. Commercial
offerings with related functionality include OmniSurf

6
See https://github.com/ContactEngineering/.
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[22] andMountainsMap [23] or software developed by
metrology manufacturers and shipped with instru-
ments (e.g. Talysurf ). While each of these excellent
tools serves an important purpose in characterizing
topography, there are remaining gaps that these are
not designed to address. For instance, while some of
the existing tools can do very sophisticated correlative
microscopy where the same region of interest is char-
acterized with multiple techniques (e.g. optical and
scanning electronmicroscopy), this is a different func-
tionality than combiningmany different types of mea-
surements in many locations for the statistical
characterization of a material’s surface (Challenge 1).
Additionally, without the integration of information
from multiple different scales and sources, it is diffi-
cult or impossible to accurately predict functional
properties of surfaces (Challenge 2). Finally, it is com-
mon for the source code of commercial software, and
thus the implementation of mathematical algorithms,
to be hidden from the user. Therefore, these tools can-
not be used for fulfilling reproducibility requirements
of scientific research [24]. The aim of contact.engineer-
ing is to address the remaining gaps left by current
offerings.

2.1. Addressing central challenge 1: The creation of
digital surface twins
The application allows the user to stitch togethermany
individual measurements of the same surface, such
that many limited-size-scale measurements can be
combined into a complete statistical representation of
thewhole surface, called a digital surface twin.

Many instruments exist for measuring surface
topography. The most popular instruments use either
optical methods (white light interferometry, confocal
microscopy, and others) or contact-based techniques
(atomic force microscopy, stylus profilometry, and
others). Any individual measurement of a surface is
inherently incomplete, limited in scan size and resolu-
tion, and subject to any artifacts of that method. This
raw topography data is uploaded to the application as a
measurement.

Many different measurements are collected in a
digital surface twin, which is an abstract representation
of the surface of a physical object. We have imple-
mented analysis tools (described below) that can com-
pute properties of the digital surface twin by
combining the individual properties of the measure-
ments. While a single topographic measurement can
never be representative of the full surface, a collection

Figure 1. Illustration of the concepts behind contact.engineering, addressing the three central challenges. First, the digital surface twin
combinesmultiplemeasurements (frommultiple techniques) in a statistical description of the surface of the part or specimen. Second,
this representation can be used for surface analytics, and third, it can be shared privately with collaborators, or publicly with aDOI.
The hip implant image has been reproducedwith permission, copyrightMathys AG Switzerland.
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of many measurements can comprise a comprehen-
sive statistical description, especially if the same sur-
face is measured many times with many different
instruments at various locations, scan sizes, and reso-
lutions. The main idea behind contact.engineering is to
provide a natural way of combining many measure-
ments for the comprehensive description of the sur-
face topography of a specimen, component, or system.

We call this collection of measurements a digital
surface twin to reflect the intent, which is to create a
virtual model designed to accurately reflect a physical
object, i.e. the surface. The virtual version is intended
to be a construct of a wide variety of independentmea-
surements, and to enable calculations and simulations
to be performed on the construct which could not be
accurately performed from the independent measure-
ments in isolation. In the more general context of
manufacturing, this digital surface twin would be a
part of the full digital twin of a component or system.
In the context of scientific research, the digital surface
twin is useful to analyze the functional properties of a
surface and their dependence on the multi-scale
topography.

2.2. Addressing central challenge 2:Open-source
digital workflows for statistical analysis of surface
topography and the prediction of properties
The data uploaded to contact.engineering are analyzed
through a set of digital analysis workflows. There is a
continuously growing number of available analysis
workflows, for example for statistical analysis or
contact mechanics. These workflows can operate on
measurements, digital surface twins, or both, and
produce results that are displayed to the user through
theweb application. The currently available workflows
are described in this paper.

Briefly, the application enables statistical analysis
to describe surfaces (described in Sect. 4) for the calc-
ulation of mathematically consistent scale-dependent
statistical descriptors, such as the power spectral den-
sity [20], the height-difference autocorrelation func-
tion [25], the variable bandwidthmethod [26–30], and
the newly established scale-dependent roughness
parameters (SDRP) analyses [31]. Additionally, the
application performs mechanics calculations to com-
pute contact properties (described in Sect. 5), such as
the contact area, contact stress, and contact stiffness as
a function of load, through the application of numer-
ical models of continuum mechanics. All computa-
tional workflows are composed of open-source
software.

All of the available analysis workflows are auto-
matically run on each uploaded topography. Some of
these have parameters that can be changed by the user,
which results in the re-running of the workflow with
the new parameters. The database stores all workflow
results such that requesting a calculationwith identical
parameters will immediately yield the result already

stored in the database. The idea is that results are avail-
able to the user at the click of a button without incur-
ring long delays, even for those workflows that require
significant computational effort.

2.3. Addressing central challenge 3: Enabling
(optional)data sharing, fulfilling open-data and
FAIRprinciples
Digital surface twins are securely stored on contact.
engineering, but enable the user to choose to share the
surfaces and analyses with colleagues and collabora-
tors, or to publish them for the general public, for
example, as a companion to a journal article. This
publishing of digital surface twins generates a digital
object identifier (DOI) [32] that points back to the full
collection of measurements that comprises the digital
surface twin. Attached to these published digital
surface twins are theworkflow results described above,
such that not only the underlying raw data is available
but also a set of derived properties. Once logged in, a
user can individualize the parameters of the workflows
of these published surfaces and hence directly reuse
this data for future scientific work.

Users can log into the system using anORCID [33]
identifier (which anyone can create), or can access a
limited functionality without logging in. As with sci-
entific publications, the ORCID identifier of the
owner of a digital surface twin is attached to the pub-
lished versions, and that owner has responsibility for
the correctness of the data. Co-authors can be speci-
fied upon publication of the data set.

Anyone can search the database of published digi-
tal surface twins and download the underlying raw
data from the repository. The download contains the
original (as-uploaded) dataset as well as a normalized
variant that uses the binary, self-describing NetCDF
format [34] that represents the measured data after
potential detrending and filling of missing values (see
Sect. 3.2). NetCDF is directly readable with common
mathematical software tools such as MATLAB or
Python/numpy. This conversion of vendor-specific
data formats to NetCDF hence enables subsequent
reuse of the data in custom analysis scripts. In this way,
the website aids the FAIR principles of data handling
[35]—making data findable, accessible, interoperable,
and reusable. In particular in tribology, solutions for
FAIR data are presently lacking [36]. To date no com-
mercial or open-source software solution offers the
possibility to share and publish topography data
according to these principles; contact.engineering pro-
vides this needed capability.

3.Data handling: The creation, sharing,
and publishing of digital surface twins

3.1.Data formats
A digital surface twin can be created by uploading a
collection of measurements from a single physical
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specimen (see figure 1). Individual measurements can
take various forms, and derive from a wide variety of
different measurement approaches. Many topography
instruments, including optical profilometry and scan-
ning probe microscopy, measure the height h over a
square area. These are referred to as area scans. These
measurements are therefore described by a function h
(x, y), where x and y describe the position in the plane
of the surface. The lateral ordinates x and y run from 0
to Lx or Ly , respectively, the size of the topographic
map. Topographies are exclusively stored on a regular
rectilinear grid such that the function h(x, y) is
discretized into N Nx y´ equally spaced points,
h h m x n y, ,m n, ( )= D D with grid spacing xD and

y,D L N xx x= D and L N yy y= D where
m N0, 1x[ ]Î - and n N0, 1 .y[ ]Î -

Other topography measurements, such as many
stylus profilometers, yield the height of the sample
along a line profile, and are called line scans. Most
commonly, line scans can be stored on regular grids
such that h h m x .m ( )= D However, an alternative way
of producing line scans is to take an optical- or elec-
tron-microscope image of a cross-section or side-view
of a material, and then to use edge-finding or other
image analysis to extract its surface contour [37, 38].
This typically yields line scans on a nonuniform grid,
h h x ,m m( )= but with irregularly spaced x .m

A variety of data formats exists for area scans, and
contact.engineering supports reading several native for-
mats (e.g., with file suffixes .di, .spm, .opd, .opdx, .zon,
and many others). When reading height data from a
native format, we extract additional metadata from
these files such as the date of the measurement or the
name of the instrument, so that this information does
not need to be provided manually by the user. As the
application continues to develop, we will further
expand the number of supported data formats and the
amount of metadata that is automatically extracted.
For any unsupported format, or unconventional
approach (such as cross-sectioning and contour digiti-
zation), topography data can be uploaded using gen-
eric formats. As generic data formats for height data,
we support plain text,MATLAB, numpy, NetCDF and
HDF5 files. Plain text files are parsed for metadata
(header) information and we support standardized
metadata as for example provided by the text export
function in Gwyddion [21]. Line scans on irregular
grids can only be uploaded in text format where the
text file contains rows of (x, y)-coordinates separated
by a space.

A specific feature of irregular grids is that reentrant
surfaces can be represented, i.e. those for which there
are cliffs or overhangs leading to more than one value
of height for a single lateral position. Some methods,
in particular cross-sectioning and contour digitiza-
tion, lead to a discretization of the surface in terms of a
set of points x h,k k( ) connected by straight lines (linear
interpolation) that describe the bounding surface. A
description of a surface in terms of a discretized curve

can therefore be incompatible with a description in
terms of a function h(x) where a single position x is
assigned a single height value. The web application
supports line scans on nonuniform grids but has only
limited support for reentrant surfaces at present.

3.2.Data preprocessing
Experimental measurements often need to be purified
from instrument artifacts before performing analyses.
contact.engineering implements some basic preproces-
sing filters to remove such artifacts, so that preproces-
sing parameters are documented and editable and the
original data is stored.

Sample tilt and artificial curvature from the tool
can be removed by subtracting the first- or second-
order polynomial that minimizes the RMS height of
the detrended profile (least-squares fit). Otherwise the
mean value of the heights is set to 0.

When using optical profilometers, it is common
that individual patches of the surface are left unde-
fined. While contact calculations can still be per-
formed leaving these values undefined, computing the
power-spectrum or autocorrelation function requires
the interpolation of themissing values. Ourmethod to
choose these values is to minimize the RMS slope of
the resulting topography, which implies filling each
island of missing values (patch) using a harmonic
function. The harmonic function is constructed by
solving the Laplace equation with the values on the
edge of the patch as Dirichlet boundary conditions.
This construction leads to exact filling for linear fields
and has the property that the mean of the interpolated
field is equal to the mean of the height over the edge
(by virtue of the mean value property of harmonic
functions). For line scans, this is simply a linear inter-
polation of missing data. For area scans, this leads to
well-behaved interpolations without jumps even if
large patches aremissing.

3.3.Data sharing
Once created, the digital surface twin, along with all
corresponding analysis (see Sect. 4 and 5), is securely
stored on the database. The digital surface twins and
their analysis can also be readily sharedwith colleagues
and collaborators within the same institution or across
the world. The owner(s) of the topography control
access rights (such as view-only, editing, etc.). Addi-
tionally, the digital surface twin can be published, such
that anyone can access the data for viewing, down-
loading, verifying, reusing, or re-running contact.
engineering workflows. Publication of a digital surface
twin triggers the creation of a DOI, which links to the
twin. All analyses of the twin and individual measure-
ments can be reached from the DOI landing page and
retriggered with user-defined parameters. These DOIs
can be referenced in publications, facilitating the goal
of open data in the scientific community, and can be
used for satisfying data availability requirements of
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funding agencies. This publication function could
even be used by amanufacturer to demonstrate a high-
performance surface finish of a novel coating or
manufacturing process to the scientific community or
a customer.

4. Statistical analysis: Scalar parameters
and correlation functions

Theweb application displays the uploaded topography
and also computes scalar roughness parameters, scale-
dependent roughness parameters [31], the power
spectral density [20], the height-difference autocorre-
lation function [25], and performs a variable band-
width analysis [26–30]. These methods are described
briefly below, including the specific algorithms used
and recommendations for their use in the context of
surfacemetrology.

4.1. Spectral analysis using a Fourier representation
To generate synthetic topographies [20, 39], to mea-
sure Hurst exponents [29, 40], or to formulate contact
theories [12, 13], it is often convenient to work with a
spectral (Fourier) representation h q k,( ) of the topo-
graphy rather than the topography h(x,y) itself. The
Fourier representation is required to compute the PSD
as described in more detail below. In computing the
Fourier transform, we follow the conventions laid out
in [20]. The discrete Fourier transform (DFT) of the
discrete topographymap hm,n is given by

h x y h e , 1o p
m n

m n
i q x k y

,
,

, o m p n˜ ( )( )å= D D - +

with pixel size x L Nx x/D = and y L Ny y/D = . The
wavevector q q k, ,o p o p, ( )

= with q o L2o x/p= and
k p L2p y/p= . The inverseDFT is then given by

h
L L

h e
1

2m n
x y o p

o p
i q x k y

,
,

, o m p n˜ ( )( )å= +

Note that it is important to lay out conventions for the
DFT, as different authors use different prefactors in
equations (1) and (2). We use a Fast-Fourier-Trans-
form (FFT) algorithm to numerically compute
theDFT.

4.2. Computing derivatives
Statistical analysis often involves the computation of a
local derivative of the heights h x y, ,( ) e.g. h x./¶ ¶ For
a discrete set of data h ,x y, there are multiple ways of
computing a derivative that lead to different numerical
answers. The simplest example is the forward-differ-
ences expression for the derivative,

h

x
D h

h h

x
3

x y
x m n

m n m n

,
,

1, ,

m n

⎛⎝ ⎞⎠ ( ) ( )¶
¶

» º
-

D
+

and the central-differences expression for the second
derivative

h

x
D h

h h h
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4
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,
1, , 1,

2
m n
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- +
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Higher-order schemes can be systematically derived,
for example from finite-difference approximations.
Equation (3) is used in the computation of the root-
mean-square slope parameter S qD described in Sect.
4.4. More details on such scalar roughness measures
are given in the next section.

Within an analysis in terms of the Fourier repre-
sentation of the topography, the derivative is usually
computed by taking the analytical derivative of the
Fourier-interpolated function. The result of this con-
struction differs from equation (3) and has the addi-
tional problem that it may introduce Gibbs ringing
into the solution [41]. However, we can also represent
discrete derivatives (of the form given by equations (3)
and (4)) using their respective Fourier representations.
Inserting equation (2) into (3) yields

D h
L L

e

x
h e

1 1
x m n

x y o p

iq x

o p
i q x k y

,
,

,
o

o m p n( ) ˜ ( )åº
-

D

D
+

L L
D q k h e

1
,
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x y o p
x o p o p

i q x k y

,
, o m p n˜ ( ) ˜

( )

( )å= +

with

D q k
e

x
,

1
6x

iq x˜ ( ) ( )=
-

D

D

Here D q q,x x y
˜ ( ) is the Fourier-space representation of

the discrete derivative operator Dx given by
equation (3). (Dx is an operator while Dx˜ is a complex
number.)We can turn any discrete derivative defined
in terms of a local ‘stencil’ into a scalar function such
as equation (6). Note that the Fourier derivative (in x-
direction) is given by D q k iq,x

˜ ( ) =F and that
D q k D q k, ,x x
˜ ( ) ( ) F for q x 1.D The discrete
representation of the derivative in not unique but this
limiting behavior must be true for any representation.
Evaluating derivatives in real-space (via equation (3)
or similar) or in Fourier-space (via equation (5)) is
numerically identical. Within contact.engineering, we
use a unique representation of the derivative for real-
space and Fourier-space analysis. The derivative
operators used by contact.engineering are summarized
in table 1.

4.3. Nonperiodic surfaces andwindowing
The web application supports both nonperiodic and
periodic measurements. Truly periodic surfaces are a
rare case that typically only occur in roughness models
[20, 39] or computer simulations [42, 43]. Treatment of
periodic surfaces is straightforward, as the DFT inher-
ently assumes periodicity. When uploading a topogra-
phy measurement, the user can declare whether it
should be treated as periodic or nonperiodic.

Fourier analysis of nonperiodic surfaces is slightly
more complicated. Nonperiodicity introduces ringing
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artifacts into the Fourier transform that has a signature
in the power spectral density q2µ and that hides
meaningful trends in the data. As is well described in
the signal-processing literature, this can be overcome
by windowing. We define the windowed topography
by

h x y h x y w x y, , , 7windowed ( ) ( ) ( ) ( )=

where w x y,( ) is the windowing function. We use a
Hann window, but care needs to be taken that the
window is spherically symmetric for topographymaps
and that it is normalized according to

w x y x y, d d 1.2( )ò = (See [20] for a detailed discus-
sion.) For periodic surfaces, w x y, 1.( ) = Some analy-
sis outlined below is carried out on the windowed
topography h x y, ,windowed ( ) but for simplicity we will
refer towindowed and bare topographies as h x y, .( )

4.4. Scalar roughness parameters
The web application also displays the distribution of
heights, slopes, and curvatures (computed via the
respective operators in table 1) in the uploaded
measurement. It also computes the root-mean-square
values of these quantities, with the appropriate discrete
representations for the first and second derivative.
Table 2 summarizes these parameters and the symbols
we use. One-dimensional (1D, profile) and two-
dimensional (2D, area) versions of these numbers are

computed and reported. For area scans, we report
profile properties in x- and y-directions. These
properties are averages over the respective consecutive
line scans in the area scan. Note that for isotropic area
scans, the RMS slope the 2D value is larger than the 1D
value by a factor of 2 , i.e., S R2 .q q=D D We
therefore explicitly call the 2D value S qD RMS gradient
and not RMS slope to highlight this difference.

Our RMS parameters are similar to R- and S-para-
meters of common standards (SEMI MF1811 or ISO
4287) but we would like to point out a couple of differ-
ences. First, ISO 16610 recommends the application of
two Gaussian filters: one small-wavelength filter to
remove instrument noise; and one large-wavelength
filter to distinguish ‘roughness’ from ‘waviness’. Here
we do not apply such filters; The properties reported
by contact.engineering are all computed on the unfil-
tered data that is only corrected using detrending and
filling of missing values as described in section 3.2. For
the detection of instrument noise and other artifacts,
we apply a reliability cut-off based on tip-radius or
instrument resolution. As for the separation of rough-
ness and waviness, there is not a clear justification in
the scientific literature for a sharp cutoff of size scales
—therefore it is preferable to consider all of the multi-
scale topography data in determining which scales
matter, rather than making a priori assumptions.
Second, there are distinctions in theway that slopes are

Table 1.Discrete derivative operators used for surface topography analysis.

Operator Real-space representation Fourier-space representation

Derivative in x-direction D h
h h

x
x m n

m n m n
,

1, ,( ) º
-

D
+ Dx

e

x

1iq x˜ = -
D

D

Derivative in y-direction D h
h h

y
y m n

m n m n
,

, 1 ,( ) º
-

D
+ Dy

e

y

1ik y
=~ -

D

D

Second derivative in x-direction D hxx m n
h h h

x,
2m n m n m n1, , 1,

2( ) = - +

D
+ -

Dxx
e e

x

2iq x iq x

2
˜ = - +

D

D - D

Second derivative in y-direction D hyy m n
h h h

y,
2m n m n m n, 1 , , 1

2( ) = - +

D
+ -

Dyy
e e

y

2ik iky y

2=~ - +
D

D - D

Table 2. Scalar parameters and their continuous and discrete expressions.

Name Symbol Continuous Discrete

Area properties

RMSheight S hq rms» h h x y x y, d d
L Lrms

2 1 2
x y

( )ò= S h
N N

m n
m nq

2 1

,
,

2

x y
å=

RMS gradient S hq rms» ¢D h h x yd d
L Lrms

2 1 2
x y

∣ ∣ò¢ =  S D h D h
N N

m n
x m n y m nq

2 1

,
,
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calculated. For instance, SEMIMF1811 is inconsistent
in proposing the forward differences (also shown in
table 1) for a real-space calculation of R qD but the
Fourier derivative for the reciprocal space calculation
of this quantity. ISO 4287 on the other hand proposes
a sixth-order finite-difference scheme that will intro-
duce significant smoothing at small scales. By contrast,
the present web app computes these quantities in a
way that avoids these inconsistencies, as shown in
table 1.

Overall, while scalar parameters provide simple,
clear descriptors, they must be interpreted with care.
The RMS parameters of the measurement are not
necessarily representative of the RMS parameters of
the physical surface as represented by the digital surface
twin. As shown in [37, 44, 45], the RMS parameters for
a given measurement will vary by orders of magnitude
depending on the scale at which they are measured. It
can be useful to make relative comparisons of RMS
parameters between topographies, as long as the mea-
surements were performed in the samemanner. How-
ever, the technique and size-range should always be
explicitly specified along with the value. If it is instead
desired to describe the parameters of the full physical
surface rather than a measurement, then a stitched-
together PSD may be used, with Parseval’s law, to
compute RMSparameters (as described in [20]). How-
ever, even these descriptors cannot reflect the size-
dependent variation. In order to describe the height,
slope, and curvature of a surface as a function of size,
the scale-dependent roughness parameter (SDRP)
analysis can be used, as described in the next section.

4.5. Scale-dependent roughness parameters (SDRP)
The purpose of the scale-dependent roughness para-
meters analysis is to explicitly show how the height,
slope, and curvature vary as a function of the size scale
that is being considered. We have described this
approach in detail in [31], so only a brief description is
included here.

The RMS parameters described in the previous
section are all computed at the smallest relevant scale.
For example, to compute the local slope, the discrete
expression

D h
h h

x
8x m n

m n m n
,

1, ,( ) ( )º
-

D
+

considers the height difference between two adjacent
pixels.We can generalize this derivative to

D h
h h

x
9x m n

m n m n
,

, ,( ) ( )( )
h

º
-

D
h h+

which now considers the height difference between
two pixels at distance x.ℓ h= D Note that the scale
factor h in equation (9) is an integer, but a similar
expression can be defined for fractional scale factors,
which however requires interpolation of the height
values. We use linear interpolation for evaluating
equation (9) at arbitrary .ℓ

Using the scaled derivative to compute the RMS
values summarized in table 2 yields the scale-depen-
dent roughness parameters (SDRPs). Of particular
interest is the scale-dependent RMS slope hrms ℓ( )¢ and
the scale-dependent RMS curvature h .rms ℓ( ) The true
value of the underlying physical surface is the short
distance limit 0ℓ  of these properties, but care
must be taken in interpreting this limit as it is most
strongly affected by instrumental noise.

4.6. Power spectral density (PSD)
As discussed in detail in [20], there are many different
mathematically valid forms of the PSD. The web
application makes use of the conventions recom-
mended in [20], and computes two different types of
PSDs: the radially-averaged 2D-PSD C iso; and the one-
dimensional PSD C1D (referred to in [20] as C1D+;
however, the ‘+’ is omitted here for simplicity). The
1D-PSD of a single line scan is given by
C L h ,o

D
x o

1 1 2∣ ˜ ∣= - and the 2D-PSD of an area scan is
given by C L L h .o p x y o p,

2D 1
,

2( ) ∣ ˜ ∣= - We compute C qiso( )
by (radially) averaging Co p,

2D over bins logarithmically
spaced in themagnitude of thewavevector q q .o p,∣ ∣

=
The ‘correct’ PSD to use for analysis of 2D mea-

surements will depend on the surface, the measure-
ment technique and parameters, and the desired
application:

• The radially-averaged 2D-PSD C isoiso (units of m4)
is commonly used because it contains a full statis-
tical description of the surface for an isotropic
measurement. However, for a measurement that
contains anisotropy due to instrumentation artifacts
(as many AFM scans do), Ciso will deviate from a
‘true’ description of the surface.

• The 1D-PSD C1D (units of m3) is computed as the
average of the individual PSDs computed from each
line in a single direction. This is computed along
both the x- and y-directions and the deviation
between them serves as another measure of aniso-
tropy (real or artifacted). For measurements that
introduce artificial anisotropy (such as AFM), the
C1D that is computed along the fast-scan direction
may represent the most accurate possible descrip-
tion of the surface.

For comparisons betweenmultiple surfaces, any of
the above PSDs can be used and researchers should
choose the most appropriate one based on anisotropy
and ease of comparison.However, for quantitative cal-
culations, such as the implementation of theoretical
roughness models, a particular PSD must be used
which is determined by the derivation of the model.
For example, in the models developed by Persson (for
example, [1, 46]), amodified version of Ciso is required
[20], C C 4 ,Persson iso 2/ p= to account for the differ-
ences in normalization between those models and the
present calculations.
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Radially-averaged 2D-PSDs can be converted into
an equivalent one-dimensional (profile) representa-
tion via

C q
q

C q 101D iso( ) ( ) ( )
p

»

Note that this conversion is valid only where the PSD
is self-affine; more information is given in [20]. To
facilitate comparison between area scans and line
scans, the web application displays both the pure 1D-
PSDs C1D and the 2D-PSD Ciso in the equivalent 1D
representation (in units of m3) as obtained from
equation (10).

4.7.Height-difference autocorrelation
function (ACF)
The height-difference autocorrelation function (ACF),
also sometimes called the structure function [47], is the
real-space equivalent of the PSD. It is formally defined
as

A
L

h x h x x
1

2
d 112ℓ ℓ( ) ( ( ) ( )) ( )ò= - +

i.e., as the correlation of the difference of heights
between two points at distance ℓ on the surface. The
ACF and PSD are connected by the Wiener-Khinchin
theorem; one is the Fourier transform of the other.
More information can be found in [25].

The ACF can be used to directly estimate some
roughness parameters. For self-affine surfaces with
Hurst exponent H, the ACF is a power-law
A .H2ℓ ℓ( ) µ The height-difference ACF furthermore
saturates at the RMS height for distances where
heights become uncorrelated, which we can formally
write as h Alim .rms

2 ℓ( )ℓ= ¥ Dividing the square-
root of the ACF by the distance yields the scale-depen-
dent RMS slope of the surface, h A2 .rms /ℓ ℓ ℓ( ) ( )¢ =
This is because equation (11) contains the first-order
forward differences expression for the derivative (for
more information see [31]). It alsomeans that for small
distances, the slope of the ACF corresponds to the RMS
slope, h h A0 lim 2 .rms rms 0 /ℓ ℓ( ) ( )ℓ¢ º ¢ = 

It is important to note that theweb application dis-
plays the ACF on a double-logarithmic scale. The
slope in this double-logarithmic scale is then propor-
tional to the Hurst exponent H, not the RMS slope.
The ACF needs to be plotted on a linear scale to esti-
mate the slope. Alternatively, the slope can be esti-
mated from the limiting value at small ℓ of the scale-
dependent RMS slope described in the previous
section. Like the PSD, the ACF can be reported for line
scans, i.e., along certain directions, or as the radial
average over all directions:
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A
L L

h r h r r r
1

2
1 1

2
, d d

x y

2 2∬
( )

ℓ ℓ( ) ( ( ) ( ( )))  
òp f f= - + D

with r , cos , sin .ℓ ℓ ℓ( ) ( )
f f fD = Unlike the PSD,

the units for A ℓ( ) are independent of whether we

compute it for line scans, along certain directions, or
as the radial average.

4.8. Variable bandwidthmethod (VBM)
While both ACF and PSD are commonly used to
analyze the statistical properties of rough surfaces,
contact.engineering also implements a slightly less
common method for statistical analysis, the variable
bandwidthmethod (VBM) [26–30]. The VBMdirectly
encodes that, for a self-affine topography, the rough-
ness parameters are intrinsically dependent on the
lateral size of the measurement. The VBM displays the
RMS height hrms as a function of the lateral size of the
measurement, which we call the bandwidth. In the
simplest incarnation, this is the size of the physical
measurement, as for example demonstrated in
[37, 44, 45].

The VBM approach can also be carried out on a
single measurement. The measurement is subdivided
into a checkerboard pattern (see inset to figure 2) of
squares of equal lateral length L/ℓ z= where we call
z the magnification. We then compute hrms within
each of these squares (after tilt correction in the indivi-
dual square) and report the value hrms⟨ ⟩ that is
obtained as the average over all squares. This proce-
dure is repeated for magnifications that are an integer
power of 2, i.e. 1,2,4,8, .z = ¼ An example of this pro-
cedure is shown in figure 2. The VBM can be thought
of as a specific example of themore general SDRP ana-
lysis described above, though the implementation is
slightly different (see [31] formore details.)

At the largest bandwidth ( 1z = ), this simply
yields the RMS height of the full measurement. For
self-affine topographies, h .H

rms ℓ ℓ⟨ ( )⟩ µ The VBM
has a simple intuitive interpretation in that it reports
the width of the height distribution at different scales.
While the one-dimensional PSD and ACF depend on
the direction (or is reported as a radial average over
different directions), the VBM has no directional
dependence.

4.9. Reliability analysis
The SDRP, PSD, ACF, and VBM constitute four
different methods that can be used to look at statistical
properties of a measurement as a function of scale
(denoted above by length ℓ or wavevector q). The
measurement is accurate only over a portion of the full
scale of the measurement. In particular, the smallest
scales can be artifacted, because of instrumental noise,
tip-radius artifacts, the diffraction limit, or other
physical mechanisms that limit resolution. Contact.
engineeringhas the capability to remove the inaccurate,
artifacted portions of SDRP, PSD, ACF andVBM. This
is of particular importance when stitching together
individualmeasurements (see next section).

For optical profilometry, the user is asked to pro-
vide the resolution limit of the instrument. All data on
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length scales below this resolution limit is eliminated
from the respective scale-dependent analysis.

For tip-based profilometry, the user is asked to
provide the tip radius Rtip which is used to auto-
matically detect tip artifacts. We use a tip radius analy-
sis technique that originated in the work of Church &
Takacs [48, 49] and was recently extended by the pre-
sent authors [31]. Briefly, if the probe-tip radius Rtip is
larger than the radius of curvature of a valley, the scan-
ning probe cannot fit into this valley on the rough
topography. In this case, the peaks on the measured
height data are rounded with a radius of curvature that
cannot be smaller than the tip curvature. The valleys of
the topography then develop cusps (figure 3). Church
&Takacs pointed out [48] that the cusps lead to a (one-
dimensional)PSD that scales as C q q .1D 4( ) µ -

We have recently extended this idea [31], but we
look at the rounded peaks instead of the cusps. We
compute the local curvature at a certain scale ℓ via the
scale-dependent second derivative, i.e., equation (9) or

rather its equivalent for the second derivative.We then
find the length ℓ below which the maximum of the
(negative) curvature rises above the user-specified tip
curvature,

D

D x
h x

c

R
max . 13

x
m

2

2
tipm

⎡⎣⎢ ⎤⎦⎥( ) ( )ℓ

ℓ

( )
( )

- >

Any ℓ for which this condition is fulfilled must be
unreliable, as a scanning probe with tip radius Rtip is
unable to scan regions with this curvature. The factor c
must be of order unity; we use c 1 2/= based on
numerical experiments (see [31]). Criterion
equation (13) hence adjusts the reliable region of the
scale-dependent surface roughness data, with rougher
surfaces generally leading to a larger unreliable region.
Note that equation (13) expects peaks on the rough
topography to have positive height values and care
must be taken not to accidentally upload height data
that has been flipped upside down.

Figure 2.Variable-bandwidth analysis of the surface of a high entropy alloy from amolecular dynamics simulation [42].

Figure 3. Scanning the topography of a rough surfacewith a stylus can only capture features with a radius of curvature larger than the
radius of the stylus tip. Peaks are smoothened to the tip radius and valleys turn into cusps.
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4.10. The stitching together of surface descriptors:
SDRP, PSD, ACF, andVBM
Almost all geometric properties of rough surfaces
depend on scale, yet the existing engineering practice
is to report only single values, such as Rq or Sq. contact.
engineering therefore promotes the use of SDRP, PSD,
ACF, or VBM to report properties as a function of
scale. The utility of reporting these properties as a
function of scale is that measurements taken at
different resolution, and even with different instru-
ments, can be easily stitched together. The web
application therefore displays the individual measure-
ments of a surface in a single plot, exposing the
underlying statistical structure of the physical surface.

The collection of all measurements of the same
physical specimen constitute our digital surface twin.
To obtain a single representation for SDRP, PSD, ACF,
and VBM, we compute the averaged curves. Averages
are taken over individual measurements after relia-
bility analysis, i.e., portions of themeasurement detec-
ted to be unreliable are not included in the average.
The average is computed as the arithmetic mean over
the datasets at specific logarithmically spaced colloca-
tion points. Note that we currently assign identical
weights to each dataset, even though an individual line
scan contains fewer points than an area scan. The
underlying rationale is that consecutive lines on an
area scan are correlated and it is presently unclear how
to account for this when selecting weights for the aver-
aging procedure.

For SDRPs, we compute the individual curves for
all measurements at exactly the same collocation
points. This requires interpolation of the line or area
scan for the computation of the discrete derivative (see
equation (9)) at fractional .h For PSD, ACF, and VBM
we collect the measurements into logarithmically
spaced bins over which we carry out the average. All
averages are carried out over 1D (profile) representa-
tions of the respective analysis technique, since 2D
representations are not available for line scans that
may be part of the digital surface twin. In section 6 we
will show examples of how this feature can be used to
obtain a comprehensive description of the topography
of a surface that goes beyond the individual
measurement.

5. Contact calculations: Relationship
between topography and surface
properties, such as contact area, load, and
normal displacement

5.1.Overview of commonmodels to describe surface
performance
A wide variety of models have been proposed to link
the (elastic or plastic) mechanical deformation of
rough topography to contact area or contact stiffness
as intermediate properties from which other func-
tional properties can be derived (e.g. [50]). These have

been extensively reviewed elsewhere [1, 51–53]. In the
broadest sense, they can be categorized into bearing-
area models, independent-asperity models, renorma-
lization group theory, and ‘brute-force’ numerical
models. Bearing-area models assume that the surfaces
in contact are rigid and treat contact as interpenetra-
tion of the rough topography; the contact area is then
simply a slit-island analysis [54] of the rough topogra-
phy. The resulting behavior of contact area versus
penetration is often called the Abott-Firestone curve
[55]. Independent-asperity contact models (such as
the famous Greenwood and Williamson model [3]
and its extensions, such as [56]) approximate rough-
ness as a series of non-interacting hemispherical
asperities. Persson’s scaling theory [12, 13] and the
approach by Joe, Thouless, & Barber [57] solve the
contact problem at a specified scale given that the
solution at larger scales is known, leading to a
renormalization of contact properties. Bearing-area,
independent-asperity and renormalization models
require as input statistical descriptions of the topogra-
phy in the formof RMSparameters, the power spectral
density, or others. By contrast, ‘brute-force’ numerical
calculation solve for the elastic deformation using a
specific realization of topography [16, 53, 58–78].
While these calculations require fewer simplifications
than the other categories and so may result in more
accurate predictions, they are resource-intensive to
run and do not typically yield simple equations that are
generalizable to other surfaces with similar statistics.

All four categories of rough-surface models have
been proven successful in certain contexts, but all are
based on simplifying assumptions, and it remains dif-
ficult to experimentally validate their predictions and
to directly apply them to real-world surfaces to optim-
ize roughness for a desired surface property. At pre-
sent, the web application focuses primarily on the
fourth class of models: the numerical implementation
of continuum contact mechanics. However, addi-
tional computational workflows are constantly being
added.

5.2. Assumptions behind the boundary element
method (BEM)
Contact.engineering computes exactly the elastic defor-
mation of two frictionless contacting topographies for
a linear-elastic, isotropic solid, and is able to consider
plasticity using approximate models. The geometry
considered is that of a rigid rough surface on an elastic
half-space, and we only consider the displacements of
the surface in the normal direction. For frictionless
contact, the only error introduced by the latter
approximation is that asperities can be displaced
within the plane of contact, leading to slightly different
contact geometries. This latter approximation is
commonly employed in state-of-the-art contact calcu-
lations [16, 53, 58–78] and allows to map the contact
of any two elastic solids with arbitrary geometry onto
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that of a rigid rough surface on an elastic flat surface.
This approach is exact for the contact of two elastic
solids with Poisson ratio 1 2./n = We note that
consideration of the relative motion of the two solids
during contact, introduced by differences in the elastic
moduli, would require frictional constitutive laws,
significantly complicating the analysis.

All results with units of pressure (such as
normal pressure or normal force) are expressed in
terms of the effective contact modulus E*, with
*E E E1 1 1 ,1

2
1 2

2
2/ / /( ) ( )n n= - + - where E1 and

E2 are the Young’s moduli of the two contacting bod-
ies and 1n and 2n their Poisson ratios [79]. Conversion
to real pressure units is therefore the responsibility
of the user. For plastic calculations, as discussed
below, there is then only a single material parameter
pY/E

*, the ratio of hardness pY to the modulus E*.
For the contact of two rough surfaces, the user is at
present required to take a measurement of each sur-
face, h1(x, y) and h2(x, y), and then to create a com-
pound topography h1(x, y)+h2(x, y) for upload. We
note that the analysis is carried out for individual
measurements or compound topographies and can-
not be averaged to be representative for a full digital
surface twin. Contact properties also depend on the
scale of the measurement and care has to be taken in
their interpretation. In particular, contact area
depends on small-scale properties (in particular hrms¢ )
[11, 14, 80]while contact stiffness depends on the lar-
gest scale (in particular hrms) [68, 81, 82].

5.3. Solution of the elastic problem
The elastic deformation of the substrate is computed
using a boundary element method that considers just
the degrees of freedom of the surface and treats the
bulk as an elastic half-space. Such boundary element
methods have been extensively described in the
literature. Examples include direct summation of the
(regularized) Boussinesq-Cerutti solution [79] for
point load or multilevel summation techniques [60].
We solve the elastic problem in reciprocal space using
a fast Fourier transform (FFT) technique, that is
similar to the following: the approach of Stanley &
Kato [59]; the DC-FFT technique [83]; and related
techniques for atomic lattices [84–86].

The FFT can be used to accelerate the computation
of a convolution in real-space. In linear elasticity, the
surface displacements u(x, y) are related to the surface
pressure p(x, y) through a linear operator, the elastic
surfaceGreen’s functionG(x, y):

u x y G x x y y p x y dx dy

G x y p x y

, , ,

, ,
14

AG
( ) ( ) ( )

( ) ( )
( )

ò= - ¢ - ¢ ¢ ¢ ¢ ¢

= *

The Fourier transform of equation (14) turns the
convolution G p* into a simple product

u q k G q k p q k, , , , 15˜ ( ) ˜ ( ) ˜ ( ) ( )=

where a tilde f̃ indicates the Fourier transform of a
function f :

f q k f x y e x y, , d d 16
A

iqx iky

G

( ) ( ) ( ) ò= - -

Note that the integral is carried out over the area of
support of the Green’s function, A .G For nonperiodic
calculations, this differs from the nominal area of the
measurement A0 by a factor of 4, since the computa-
tion requires a padding region as described below.

The Green’s function for the elastic problem can
be analytically or semi-analytically derived for peri-
odic [84–88] and non-periodic [58, 89, 90] systems in
the continuum limit [87, 89, 90], for atomic lattices
[84–86] and for substrates of finite thickness [91–94].
The web service uses the continuum expressions and
can handle periodic and non-periodic systems.

The linear-elastic Green’s function for periodic
pressure distributions takes the particularly simple
form in reciprocal (Fourier) space [88]

*G q E q2 . 17/˜ ( ) ( ∣ ∣) ( ) 
=

Surface topographies are typically provided as mea-
surements of rectangular sections of size L L ,x y´
measured on a homogeneous grid of N Nx y´ pixels.
The nominal measurement resolution is then

x L Nx x/D = and y L N .y y/D = (The true resolution
can of course be lower because of instrumental
artifacts, see discussion above.) Data and calculations
are therefore provided on a discrete grid. The discrete
version of equation (14) replaces the integral with a
sum. Equation (16) then becomes the discrete Fourier
transform, which we compute with a standard FFT
algorithm on the same grid as the uploaded surface.
This discretization limits the range of wavevectors that
enter the periodic Green’s function, equation (17),
to G G m L n L2 , 2mn x y/ /˜ ˜( )p p= with m 0,1, ,[Î ¼

N N1 2 , 2 , , 1x x/ /⌊( ) ⌋ ⌊ ⌋ ]- - ¼ - and n 0,1, ,[Î ¼
N N1 2 , 2 , , 1 .y y/ /⌊( ) ⌋ ⌊ ⌋ ]- - ¼ -
The situation for nonperiodic contacts is more

complicated. First, we can no longer straightforwardly
use equation (17) for the Green’s function because this
would require a numerical grid of infinite size to
decouple images. Carrying out the inverse Fourier
transform of equation (17) analytically for this case
yields the Boussinesq-Cerutti functions that describe
the response of the elastic solid to a concentrated nor-
mal force [79],

*G r E r1 . 18BC /( ) ( ∣ ∣) ( ) p=

This function diverges as r 0 and must be regular-
ized. The typical approach is to distribute the contact-
ing force over the area associated with the discrete
surface element (of size x yD ´ D ) and assume
constant pressure on that element [58]. Our elements
are rectangles and we use the expression for constant
pressure on a rectangular surface area [79, 95]. We
note that more sophisticated schemes such as linear or
quadratic interpolation of pressure between discreti-
zation points have been described in the literature
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[58, 89, 96], but practical differences only occur at
small scales where other effects (e.g. measurement
artifacts)dominate.

The final Green’s function for nonperiodic sys-
tems that contact.engineering uses is [79]

*E G x y,( )p

x a
y b x a y b

y b x a y b
ln

2 2 1 2

2 2 1 2

/

/
⎡⎣⎢ ⎤⎦⎥( ) ( ) {( ) ( ) }

( ) {( ) ( ) }= +
+ + + + +
- + + + -

y b
x a x a y b

x a x a y b
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2 2 1 2
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- + - + +
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y b x a y b

y b x a y b
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/
⎡⎣⎢ ⎤⎦⎥( ) ( ) {( ) ( ) }

( ) {( ) ( ) }
( )

+ -
- + - + -
+ + + + -

where a x 2/= D and b y 2/= D are half the grid
spacing in x- and y-directions.

The use of the nonperiodic real-space Green’s
function, equation (19), with the FFT convolution
technique, equation (15), requires an additional trick to
decouple periodic images. This trick was described by
Hockney in the context of the solution of the Poisson
equation for electrostatic problems [97] and later
employed, e.g., to decouple images in plane-wave den-
sity functional calculations [98]. In contact mechanics,
this method was introduced by multiple authors to
decouple periodic images [73, 83]. In brief (see also
figure 4), we solve the equation (14) on a grid of at least

N N2 1 2 1x y( ) ( )- ´ - grid points (and area AG) and
require that all pressures p 0ij º for i Nx or j N .y
The reciprocal space Green’s function is then obtained
by discretizing equation (19) on a regular grid, Gmn =
G xm yn,( )D D with m Î N0,1, , 1,x[ ¼ - - N 1 ,x( )-

, 1]¼ - and n N N0,1, , 1,y y[ (Î ¼ - - -1 , , 1 ,) ]¼ -
and then computing the discrete Fourier transform of

G .mn Note that this is the minimum grid size required
to decouple the periodic images. Large grid sizes are
possible and sometimes beneficial for optimal FFT
performance.

The regions with p 0ij º are padding regions that
decouple the images (see figure 4). This works because
the Green’s function Gkl has a maximum range of
N 1x - in x- and N 1y - in y-direction. Because of the
padding region, any two points in the ‘active’ region
(see figure 4) are at most N N1, 1x y( )- - apart and
any distance vector crossing the padding region is
longer than N N1, 1 .x y( )- - Note that displace-
ments ukl within the padding region have no physical
meaning: They come from a superposition of repeat-
ing images and must be ignored. The web app returns
just pressure and displacements in the active region
with area A0; the inactive padding region is hidden
from the user.

5.4. Solution of the contact problem
The previous section discussed the calculation of the
relationship between local pressure and elastic displa-
cement of the substrate’s surface. We use an FFT-
based algorithm, but this FFT algorithm can in
principle be replaced by any other (equivalent) solu-
tion of this problem described in the literature, such as
direct summation [58] or multilevel summation [60].
In our experience, the FFT-based formulation yields
the best numerical performance across application
scenarios.

The second part to any solution of a contact pro-
blem is the contact condition itself. The continuum
mechanics picture, which is also the one employed at
present in contact.engineering, is that of two impene-
trable solids. One of those is flat and deformable.
When not contacted, it is located at u 0.ij º The coun-
terbody is described by the discrete function h .ij In
mathematical terms, the contact condition then

Figure 4. Illustration of the algorithmused for decoupling of periodic images into nonperiodic domains in the FFT-accelerated
boundary-elementmethod. Themethod uses the nonperiodic Green’s functions and the FFT to compute the convolution of the
Green’s functionwith the pressurefield pij. Since theGreen’s function extends byNx grid points in both positive and negative x-
direction (Ny in y-direction), we employ a full computational domain of size (2Nx-1)× (2Ny-1) to decouple the images. The padding
regionmust carry zero pressure and displacement values obtained there are discarded.

13

Surf. Topogr.:Metrol. Prop. 10 (2022) 035032 MCRöttger et al



becomes a linear complementarity problem [58]:

p u h p u h0, 0, 0. 20ij ij ij ij ij ij( ) ( )- - = 

We use the constrained conjugate gradient algorithm
of Polonsky & Keer [60] to solve equation (20). The
variable in Polonsky&Keer’s algorithm is the pressure
p .ij The conjugate gradient scheme optimizes pij so
that the overlap h uij ij- is close to zero within the
contacting regions I i j p, 0 .c ij{( )∣ }= > After each
step, the algorithm constrains p 0ij  and whenever a
point outside the contact region (defined by pij = 0)
enters into contact (u hij ij ), the conjugate gradient
iteration is reset. More information on this algorithm
can be found in [60]. Our implementation of this
algorithm also allows to specify an upper limit to the
pressure on the surface, corresponding to an indenta-
tion hardness py [62, 99].

We note that the algorithm is fast at low contact
area but requires many iterations to converge at large
contact area. By default, we stop the algorithm after
100 iterations. These non-converging calculations are
reported to the user but the dataset is shown with
translucent markers to make the user aware that the
data may be unreliable. The user can change the num-
ber of iterations up to a hard upper limit of 1000.

6. Examples of use

In the following section, we present two examples of
how to use contact.engineering. We note that all figures
presented here are reproduced as shown by the web
service to illustrate that publication-ready figures can
be directly obtained from contact.engineering. The first
example illustrates the use of statistical analysis
techniques to stitch together many measurements,
while the second example illustrates contact calcula-
tions on individual topographies.

6.1. Ultrananocrystalline diamond
In order to illustrate that many measurements can be
stitched together to arrive at a statistical representa-
tion of a rough surface, we analyze the data of more
than 100 measurements of an ultrananocrystalline
diamond film reported in [37, 45]. The dataset
contains topography data obtained from stylus profi-
lometry, atomic force microscopy (AFM), and also
using a less-common microscopy approach: side-
views and cross-sections in a transmission electron
microscope (TEM). The TEM and stylus profilometry
approaches yield line scans while the AFM yields area
scans. This illustrates that it is possible to combine
and analyze structurally distinct data within a single
digital surface twin. We note that we are repeating the
analysis of [31, 37, 45]; this shows that anyone can
repeat this sophisticated analysis without the need for
complex mathematical calculations or specialized
knowledge.

The whole dataset was uploaded to create a digital
surface twin, and then analyzed using the PSD, ACF,
VBM, and scale-dependent curvature, as shown in
figure 5. All data has been tilt-corrected before analy-
sis. Data from the scanning probe techniques (AFM
and stylus) has been filtered to remove unreliable por-
tions (see discussion on tip artifacts in section 4.9); the
remaining dataset contains only data deemed reliable
and the averages (thick black curves) are only com-
puted over this reliable dataset. The plot illustrates that
the individual measurements of all four methods line
up and can be used to obtain a statistical representa-
tion of the surface.

All analysis methods show a region of power-law
scaling, which occurs at large wavevectors for the PSD
(figure 5(a)) and at short distances or bandwidths for
ACF, VBM, and SDRP (figures 5(b)–(d)). The VBM
(figure 5(c)) saturates at the RMS height of the surface
of roughly 10 nm. The ACF saturates at the square of
this value. The SDRP shows that the curvature is a
function of scale that appears to grow unbounded as
resolution increases (distance decreases). Note that the
curvature shown in figure 5(d) cannot be straightfor-
wardly extracted from the other plots, showing that
the SDRP is useful to obtain parameters that are
straightforward to interpret geometrically but difficult
to obtain by othermeans. The ACF (figure 5(b)) shows
larger deviation from the average, e.g., at distances in
the range 10-100 nm. Those are artifacts introduced by
tilt-correcting individual measurements: Tilt correc-
tion forces the ACF to go to zero at the size of themea-
surement, resulting in a downtick of the ACF curve.
None of the other techniques is sensitive to this
artifact.

To illustrate the advancement of FAIR data prac-
tices, we note that this digital surface twin of the ultra-
nanocrystalline diamond has been published and is
DOI-accessible at [100]. This means that anyone can
access the surface, including all of the underlying raw
topography data, for examination or re-use. Further-
more, all of the above analysis can be repeated, and any
other desired analysis can be run, by anyone who
accesses the site.

6.2. Smooth- and rough-sphere contacts
As an example of the use of elastic contact-mechanics
simulations, we simulate the contact of a rough sphere.
This digital surface twin is not based on real-world
measurements but on computer-generated topogra-
phy, defined on a 1024-by-1024 grid with a pixel size
of 1 nm by 1 nm. Elasticity was computed using free
boundaries as described in section 5. The sphere was
generated by superposing a nominally flat self-affine
random field generated by Fourier-synthesis [20, 39]
and a paraboloid.

The relationship between contact area and load
(mean pressure) is shown infigure 6(a), as displayed by
contact.engineering. For reference, we also show
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contact areas for the smooth paraboloid and for the
roughness alone, where we used periodic boundary
conditions for the nominally flat roughness. It can be
observed that the contact-area-versus-pressure curve
corresponds to the rough surface at low loads but
crosses over to Hertzian for high pressures, as descri-
bed in [73]. For the periodic nominally flat roughness
at high contact ratios, some simulations did not reach
convergence in the number of allowed iterations

(1000). These simulations are indicated by a translu-
cent datapoint.

In addition to the plot of contact area versus load,
contact.engineering allows the visualization of a map of
the contact pressure for each simulation (figure 6(b)),
as well as the gap distribution and other quantities.
The contact pressure reflects the rough topography of
the sphere, but appears highest in the center and low-
est as the edges as would be predicted by Hertz theory.

Figure 5.Comprehensive statistical topography analysis of an ultrananocrystalline diamond film. The dataset contains transmission
electronmicroscopy, atomic forcemicroscopy and stylus profilometry data, bridgingmore than 7 orders ofmagnitude in length. The
data from this digital surface twin is stitched together into a statistical representation of the underlying physical surface using (a) the
one-dimensional power-spectral density (PSD,C1D), (b) the height-difference autocorrelation function (ACF), (c) the variable-
bandwidthmethod (VBM) and (d) the scale-dependent curvature (from the SDRP analysis). Colored lines are individual
measurement results and the thick black line is the average of thosemeasurements. The individual panels (a), (b), (c), and (d) are
reproduced here as obtained from theweb application. This dataset is available at [100].

Figure 6.Contact of a rough sphere on an elastic flat. (a) Fractional contact areaA/A0 as a function of normalized pressure p/E*,
where the pressure p is computed over the reference areaA0. For comparison, we also show the results of a smooth sphere and a rough
surface that is nominally flat. (b) Spatialmap of contact pressures for the rough sphere at a load indicated by the black circle in (a). The
individual panels (a) and (b) are reproduced here as obtained from theweb application. This dataset is available at [101].
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The specific pressure map of figure 6(b) is obtained
right where the rough sphere crosses over from flat-
on-flat to Hertz behavior and is indicated by the black
circle in figure 6(a). The pressure is more homo-
geneous below this crossover (lower loads) and
becomes more Hertzian-like at higher loads. More
details can be found in [73].

7. Software implementation and
infrastructure

We here briefly comment on the software implemen-
tation of the methods described here. All software is
published under the MIT license and available at
https://github.com/ContactEngineering and we
encourage engagement from the scientific commu-
nity. We follow established practices in development
of scientific software [102], such as continuous inte-
gration with an appropriate automated testing frame-
work to ensure software quality.

We distinguish between back-end and front-end
modules. Back-end modules handle the topography
data and carry out numerical analyses. The package
SurfaceTopography implementsfilters for reading topo-
graphy measurement data and performing statistical
analysis (PSD, ACF, etc.) on it. It also has provisions for
computing averages over multiple measurements. The
package ContactMechanics implements boundary-ele-
ment calculations for obtaining contact area, pressure,
and other associated quantities. These back-end codes
use numpy [103] for numerical calculations and imple-
ment all the scientific, algorithmic functionality descri-
bed in this paper. The back-end is parallelized using the
message passing interface (MPI) and can be used inde-
pendently of the web front, for example on high-per-
formance computing systems.

The web front end TopoBank is based on Django
that provides bookkeeping of uploaded data via inter-
action with an underlying PostgreSQL database and a
storage system, currently a NetApp StorageGRID
instance running georedundantly in Freiburg and
Tübingen, Germany. Django also renders HTML
pages and handles user interaction. TopoBank is split
into a manager that handles upload and visualization
of measurements and digital surface data (including
their metadata), and an analysis module that orches-
trates running pre-defined analyses and visualizing
them. Analyses themselves are short functions that call
the respective analysis methods in SurfaceTopography
or ContactMechanics and place results in the storage
system. Analysis functions are distributed among
compute nodes and prioritized via the Celery task
queue. All analyses are computed asynchronously, i.e.,
they are placed in the Celery task queue and become
available for visualization once they have run. This
means that once they have run, the results are instantly
available to the user for visualization. Some analyses
allow specification of parameters. Changing a

parameter only triggers a new calculation if no calcul-
ationwith the same parameter set has already run. Cal-
culations with a default parameter set run immediately
after upload for all analyses.

8. Summary and conclusions

We have described a web-based application that is
designed to standardize the analysis of topography
data and the calculation of surface performance. The
contact.engineering application addresses the three
central challenges of surface analysis, which are
described in the Introduction section. First, the
application puts a focus on collecting many measure-
ments for the surface of a real-world specimen or
device, at various length scales and using different
instruments, and integrating them into a digital sur-
face twin of the real-world incarnation. The measure-
ments are stitched together to describe all measured
scales of the physical surface. Themoremeasurements
that are uploaded and the wider the variety of length
scales, the more accurate the representation of the
digital surface twin, with the goal of a comprehensive
description ofmulti-scale surface topography. Second,
the web application implements advanced analysis
tools, including statistical metrics to describe the
comprehensive surface topography, as well as
mechanical models to predict the surface perfor-
mance. Third, the application allows users to securely
store, share, and optionally publish the digital surface
twins and all associated analysis, in a manner that
implements a FAIR data policy [35]. The published
datasets receive digital object identifiers (DOIs) and
can be cited in publications, in reports to funding
agencies, or even in advertising a new material or
technique. We hope that the service will become a
central repository of surface topography data for
scientific research and industry applications.

This document describes the current state of the
service; we are constantly evolving it towards better
usability and more analysis features. Right now, the
digital surface twin only contains topography data, but
in the future will incorporate an even broader set of
surface characterizations, such as chemical composi-
tion, as well as computationalmodels for the evolution
of roughness [42, 43]. We will also work towards
incorporating standardized ontologies that are cur-
rently being developed for tribological problems [36].
The overarching goal is to get ever closer to a complete
digital surface twin that accurately reflects surface
performance.

To aid in this process, we would like to encourage
suggestions from the scientific and industry commu-
nities about ways to further improve data standardiza-
tion, data analysis, and the advancement of
understanding and application of surface finish
as a means to improve surface performance. A
starting point is the discussion forum on the
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GitHub repository at https://github.com/Contact
Engineering/TopoBank/discussions or by email to
the authors of this article. The web service itself is free
of charge to the scientific community and accessible at
https://contact.engineering/.
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A B S T R A C T

Adhesion hysteresis can be caused by elastic instabilities that are triggered by surface roughness
or chemical heterogeneity. However, the role of these instabilities in adhesion hysteresis remains
poorly understood because we lack theoretical and numerical models accounting for realistic
roughness. Our work focuses on the adhesion of soft elastic spheres with low roughness
or weak heterogeneity, where the indentation process can be described as a Griffith-like
propagation of a nearly circular external crack. We discuss how to describe the contact of
spheres with chemical heterogeneity that leads to fluctuations in the local work of adhesion.
We introduce a variational first-order crack-perturbation model and validate our approach using
boundary-element simulations. The crack-perturbation model faithfully predicts contact shapes
and hysteretic force-penetration curves, provided that the contact perimeter remains close to a
circle and the contact area is simply connected. Computationally, the crack-perturbation model
is orders of magnitude more efficient than the corresponding boundary element formulation,
allowing for realistic heterogeneity fields.

1. Introduction

At atomic scales, all molecules attract each other, but macroscopic objects usually do not stick. The explanation for this apparent
paradox is that most surfaces are rough, so that the objects only touch on the top of their asperities (Kendall, 2001; Persson et al.,
2004; Pastewka and Robbins, 2014). Geckos and insects have compliant fibrilar structures or soft pads at the tip of their feet that
conform to surface roughness, sustaining enough adhesion to climb vertical walls (Autumn et al., 2000; Persson et al., 2004; Zhou
et al., 2014). Similarly, a soft layer makes tapes adhere to diverse surfaces (Creton and Leibler, 1996). Being able to tune or switch
off adhesion is important for applications such as pick and place systems (Carlson et al., 2012; Hensel et al., 2018; Deneke et al.,
2021) or skin adhesives (Karp and Langer, 2011; Kwak et al., 2011; Yu and Cheng, 2018; Hwang et al., 2018).

Soft materials stick to rough surfaces if the elastic energy needed to conform to surface roughness is small compared to the surface
energy gained by contact (Fuller and Tabor, 1975; Briggs and Briscoe, 1977; Persson and Tosatti, 2001). In an indentation experiment
with such materials, the force needed to break the contact is often higher than the force measured during indentation (Chen et al.,
1991). This observation contradicts expectations from classical theories on smooth surfaces (Johnson et al., 1971) and theories for
rough contacts that assume the contact follows thermodynamic equilibrium (Persson and Tosatti, 2001; Persson, 2002a,b). This
adhesion hysteresis can be caused by several mechanisms like viscoelasticity, molecular rearrangements and elastic instabilities.
Recent experiments with spherical indenters indicate that in some cases, elastic instabilities triggered by surface roughness play
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the dominant role (Kesari et al., 2010; Dalvi et al., 2019). Details of how roughness gives rise to elastic instabilities remain poorly
understood, mainly because we lack theoretical models accounting for realistic surface roughness.

In this paper, we discuss how to describe the contact of elastic spheres with chemical heterogeneity, local fluctuations in the
work of adhesion, using a first-order crack-perturbation model. Understanding the hysteresis caused by quenched disorder in the
work of adhesion is a first step towards a general model for geometrically rough surfaces. Our model will permit efficient numerical
simulations of realistic system sizes and clarify the link between adhesive contact mechanics and classic theories on pinning of
elastic lines.

Depending on the compliance of the elastic material, hysteresis arises from disconnected patches snapping in and out of contact
or depinning instabilities in the motion of the contact perimeter, the crack front. Brute-force numerical methods like the boundary-
element method (BEM) can capture these different regimes of instabilities (Medina and Dini, 2014; Dapp and Müser, 2015; Carbone
et al., 2015; Deng and Kesari, 2017; Wang et al., 2021). However, for soft materials it is challenging to sufficiently discretize
the adhesive neck (or crack tip) and at the same time include a representative amount of surface roughness (Wang et al., 2021).
Insufficient discretization in boundary element models can additionally lead to ‘‘lattice trapping’’, that causes artificial pinning of
the crack front alike physical lattice trapping in atomic crystal (Thomson et al., 1971).

More coarse-grained models either concentrate on the two opposite limits of very low contact fraction or full contact. Asperity
models describe surface roughness as a set of spherical peaks with random heights (Greenwood and Williamson, 1966; Fuller and
Tabor, 1975), that dissipate energy during snap in and out of contact instabilities (Zappone et al., 2007; Wei et al., 2010; Greenwood,
2017; Deng and Kesari, 2019; Violano and Afferrante, 2021). This type of approximation breaks down when asperities coalesce and
a larger fraction of the surface comes into contact. In the limit of small roughness and low stiffness, the contact area is simply
connected. In that limit, the surface roughness causes energy barriers that pin the crack front and the crack front dissipates energy
during depinning instabilities. This phenomenon has to date only been studied on one-dimensional roughness (Guduru, 2007; Guduru
and Bull, 2007; Kesari et al., 2010; Kesari and Lew, 2011; Carbone et al., 2015).

The pinning of a crack front by quenched disorder in the work of adhesion (or equivalently, the fracture toughness) is better
understood (Gao and Rice, 1989; Schmittbuhl et al., 1995; Xia et al., 2012; Démery and Ponson, 2014; Xia et al., 2015; Chopin et al.,
2015; Ponson, 2016; Lebihain et al., 2021). An essential step towards this understanding was Rice’s description of a semi-infinite
crack as an elastic line with long-range elasticity (Rice, 1985a). This equation belongs to the class of elastic interfaces pinned by a
random field and the current understanding on fracture of heterogeneous media benefited from works in other fields (Larkin and
Ovchinnikov, 1979; Fisher, 1983; Robbins and Joanny, 1987; Middleton, 1992; Amaral et al., 1995; Zhou, 2000; Rosso and Krauth,
2002; Tanguy and Vettorel, 2004; Rosso et al., 2007).

Rice’s first-order perturbation was applied to several geometries with finite sizes (Lazarus, 2011; Patinet et al., 2013). To our
knowledge, this perturbation approach was never applied to the contact of spheres or similar indenters, except recently by Argatov
(2021) to investigate the effect of indenter ellipticity on the pull-off force. Applying crack perturbation to spheres is of particular
interest because most of the experiments reporting adhesion hysteresis were performed using spherical indenters (Chaudhury and
Whitesides, 1991; Chen et al., 1991; Kesari et al., 2010; Dalvi et al., 2019). Crack perturbation is a promising approach to understand
how surface roughness affects adhesion hysteresis in indentation experiments where the contact area is simply connected. The first
step towards this end is to understand how the adhesion hysteresis depends on the geometry and strength of quenched disorder in
the work of adhesion.

In this paper, we discuss how to describe the contact of spheres with fluctuating work of adhesion as a perturbation from the
homogeneous, perfectly circular contact. In the circular contact, the stress intensity factor is provided by the Johnson–Kendall–
Roberts (JKR) theory (Johnson et al., 1971; Barthel, 2008), and its first functional derivative by Gao and Rice (1987a). We use these
equations to write first-order approximations of the distortion of the contact area caused by work of adhesion heterogeneity. The
extrapolation of the contact line’s elastic response can be done in several ways. In the past , either the stress intensity factor (Gao
and Rice, 1989; Fares, 1989) or the energy release rate (Bonamy et al., 2008; Ponson and Bonamy, 2010; Patinet et al., 2013;
Chopin et al., 2015; Ponson, 2016) was linearly extrapolated. However, the latter approaches violate the symmetry of the second
derivatives of the elastic energy. We here propose a third equation that satisfies these symmetries and therefore constitutes a
variational approach to crack perturbation. In order to validate our model and to discriminate between different variants of the
perturbation, we compare the crack-perturbation models to finely discretized BEM simulations. Fig. 1 illustrates schematically the
two types of models used in this paper.

2. Problem definition

We consider the contact of a sphere (to be exact, a paraboloid) adhering to an elastic half-space at a fixed rigid body penetration
𝛥. This case can be mapped to the contact of two spheres with the same composite radius 𝑅 and contact modulus 𝐸′ (Johnson,
1985). When only one half-space deforms, 𝐸′ = 𝐸∕(1−𝜈2), where 𝐸 is Young’s modulus and 𝜈 is Poisson’s ratio. Fracture mechanics
typically considers the contact of two elastic half-spaces where 𝐸′ = 𝐸∕2(1 − 𝜈2). We assume the contact is frictionless and consider
only vertical displacements.

The equilibrium contact area minimizes the total energy 𝛱 = 𝛱mech +𝛱surf . The mechanical energy 𝛱mech contains the elastic
strain energy 𝑈el and the potential of external forces. The surface energy 𝛱surf results from adhesive interactions. We consider the
limit of infinitesimally short interaction range (JKR-limit), where

𝛱surf = ∫𝐴𝑐

d𝑥 d𝑦 𝑤(𝑥, 𝑦). (1)



Journal of the Mechanics and Physics of Solids 160 (2022) 104781

3

A. Sanner and L. Pastewka

Fig. 1. Schematic illustration of the two types of models used in this work to describe the contact of a sphere. (a) In the boundary-element method (BEM), the
surface displacements 𝑢(𝑥, 𝑦) are computed using the Green’s function of the elastic half-space and adhesive attractions are modeled using a cohesive law that
relates the interaction pressure to the gap between the two surfaces. The integral over the cohesive law gives the work of adhesion 𝑤. Spatial heterogeneity is
encoded into the cohesive law. (b) In the crack-front model, the state of the nearly circular contact is described by the contact radius as a function of angle
𝑎(𝜃). The heterogeneous work of adhesion distorts the shape of the crack front. The elastic response of the contact line is approximated using the first-order
variation of the stress intensity factor with respect to the contact shape developed by Gao and Rice (1987a).

𝐴𝑐 is the contact area and the work of adhesion 𝑤(𝑥, 𝑦) depends on the position (𝑥, 𝑦). Note that the work of adhesion is the same
for a receding crack (indentation) as for an opening crack (retraction), i.e. there is no intrinsic hysteresis in the work of adhesion.

Once nondimensionalized using distinct vertical and lateral length units, the JKR contact is parameter free (Muller et al., 1980;
Maugis, 2010; Müser, 2014). We present our numerical results in nondimensional units (Maugis, 2010) and indicate by an asterisk∗
when quantities are normalized. Specifically, lengths along the surface of the half-space (e.g., the contact radius) are normalized by
(3𝜋𝑤𝑚𝑅2∕4𝐸′)1∕3, lengths in vertical direction (e.g., displacements) by (9𝜋2𝑤2

𝑚𝑅
2∕16𝐸′2)1∕3 and normal forces by 𝜋𝑤𝑚𝑅. 𝑤𝑚 is the

median work of adhesion. The equations are in dimensional form but can be nondimensionalized by substituting 𝑅 = 1, 𝑤𝑚 = 1∕𝜋
and 𝐸′ = 3∕4.

3. Reference model

We used the BEM to validate the crack-front models. BEM computes the surface displacements 𝑢(𝑥, 𝑦) (Fig. 1a) minimizing the
total energy 𝛱 at prescribed rigid body penetration 𝛥. This method makes no assumptions on the contact morphology, allowing
for holes and disconnected contact islands, but it is computationally too expensive to properly discretize contacts with small
heterogeneities.

The mechanical energy 𝛱mech = 𝑈el and its gradients were computed using the Green’s function for pressures that are constant on
each pixel (Love, 1929; Johnson, 1985). While the Green’s function is nonperiodic, we accelerated calculations with a fast Fourier
transform (Stanley and Kato, 1997; Campañá and Müser, 2006; Pastewka et al., 2012) by introducing a padding region that decouples
periodic images (Hockney, 1970; Liu et al., 2000; Pastewka and Robbins, 2016).

The surface energy needs to be regularized using an interaction potential 𝜙 between the surfaces (cohesive law),

𝛱surf = ∫
+∞

−∞
d𝑥 d𝑦 𝜙 (𝑤(𝑥, 𝑦), 𝑔(𝑥, 𝑦)) , (2)

where 𝑤(𝑥, 𝑦) is the (spatially varying) work of adhesion and 𝑔(𝑥, 𝑦) is the gap between the surfaces. The results converge to the
JKR limit for small pixel size and interaction range, i.e. high Tabor parameter 𝜇T (Muller et al., 1980; Maugis, 1992; Greenwood,
1997; Müser, 2014), but the point of instability where the two interfaces jump into contact converges particularly slowly with the
interaction range (Wu, 2010; Ciavarella et al., 2017). Wang et al. (2021) could slightly retard the premature jump into contact by
using a potential with a cutoff. Our choice of cohesive law,

𝜙(𝑤, 𝑔) =
⎧⎪⎨⎪⎩

−𝑤
(
1 − 𝑔

𝑔𝑐

)3
, 𝑔 < 𝑔𝑐

0, else,
(3)
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is based on the same observation. Eq. (3) describes a cubic potential where 𝑤 is the work of adhesion, 𝑔 is the gap and 𝑔𝑐 the cutoff
distance. The derivative of 𝜙 (interaction pressure) is illustrated in Fig. 1a. The maximum attractive stress 𝜎0 = 3𝑤∕𝑔𝑐 occurs at
the perimeter of the contact area, where 𝑔 = 0. To model (chemical) heterogeneity, the interaction parameters are different in each
pixel. We keep 𝑔𝑐 constant, so that 𝜎0 and 𝑤 vary proportionally from pixel to pixel.

The surfaces repel each other with a hard-wall potential, which is implemented as inequality constraints (𝑔(𝑥, 𝑦) ≥ 0) in the
minimization algorithms. We used the constrained quasi-newton algorithm L-BFGS-B (Byrd et al., 1995) and a constrained conjugate
gradient algorithm (Polonsky and Keer, 1999; Vollebregt, 2014; Bugnicourt et al., 2018) to minimize the energy. The latter algorithm
is parallelized with the message passing interface and was used to produce precise reference solutions for the contact shape, but
could not be used in the presence of instabilities. Note that in general, these minimization algorithms have better convergence
properties when the potential has a continuous second derivative, justifying our choice of a third-order polynomial. BEM with
hard-wall repulsion and finite-ranged attraction (Müser, 2014, 2016; Müser et al., 2017; Wang and Müser, 2017; Bazrafshan et al.,
2017; Rey et al., 2017; Bugnicourt et al., 2018; Monti et al., 2021) or soft (Lennard-Jones type) repulsion (Greenwood, 1997; Feng,
2000; Wu, 2010; Medina and Dini, 2014; Pastewka and Robbins, 2014, 2016; Persson and Scaraggi, 2014; Monti et al., 2019;
Ghanbarzadeh et al., 2020; Wang et al., 2021) have been used in the past to study the adhesion of spheres and rough surfaces.
During retraction, these models are similar to fiber-bundle models of quasi-brittle fracture (Batrouni et al., 2002; Schmittbuhl et al.,
2003; Stormo et al., 2012; Gjerden et al., 2013, 2014) and threshold-force models (Pohrt and Popov, 2015; Hulikal et al., 2017; Li
et al., 2019).

The finite interaction range introduces a cohesive zone around the contact perimeter in which the surfaces attract each other.
This cohesive zone needs to be small in comparison to the scale of the heterogeneity (Chen et al., 2008) in order to mimic a JKR-like
contact. We estimate the width of the cohesive zone using a Dugdale model and assume it is small in comparison to the contact
radius (Maugis, 2010):

𝓁coz = 𝜋𝐸′𝑤
4𝜎20

(4)

For uniform work of adhesion, Müser (2014) showed that the (nondimensionalized) contact radius difference with the JKR limit
is asymptotically ∼ 𝓁∗

coz ∼ 𝜇−2
T , where 𝓁∗

coz = 𝓁coz∕(3𝜋𝑤𝑚𝑅2∕4𝐸′)1∕3 is the nondimensionalized cohesive zone width, see Section 2.
We use 𝓁∗

coz as a proxy for interaction range and Tabor parameter 𝜇T (Tabor, 1977; Muller et al., 1980; Maugis, 1992). We chose
the pixel size 𝓁pix small enough so that further grid refinement affects the contact radius and the force less than decreasing the
interaction range.

4. Crack-front model

4.1. Axisymmetric contact: The JKR model

We briefly review the JKR model of the adhesion of a sphere against an elastic half-space. JKR described the contact by the
balance of elastic and surface energy of a circular crack (Griffith and Taylor, 1921). At equilibrium, the contact radius 𝑎 is such that
the increment of mechanical energy equals the increment of surface energy:

𝜕𝛱mech(𝑎, 𝛥)
𝜕𝑎

= 2𝜋𝑎𝑤(𝑎) (5)

𝛱mech is the mechanical potential and 𝑤 is the work of adhesion at the perimeter of the contact. In this paper, we consider only
boundary conditions with fixed rigid body penetration 𝛥, where 𝛱mech is the elastic energy 𝑈el.

The elastic energy release rate,

𝐺JKR(𝑎, 𝛥) =
1

2𝜋𝑎
𝜕𝛱mech(𝑎, 𝛥)

𝜕𝑎
, (6)

can be related to the intensity 𝐾 of the singularity of the stress field near the crack tip (Irwin, 1957):

𝐺 = 𝐾2

2𝐸′ . (7)

JKR obtained the stress intensity factor 𝐾JKR for sphere on flat contact by superposing contact pressures of the Hertzian sphere (Hertz,
1881) and of the circular flat punch (Sneddon, 1946; Maugis, 2010):

𝐾JKR(𝑎, 𝛥) =
(
𝑎2

𝑅
− 𝛥

)
𝐸′
√
𝜋𝑎

. (8)

Here and below we use the subscript JKR to indicate that the contact area is perfectly circular. Inserting Eqs. (6) to (8) into Eq. (5)
yields an equilibrium equation for the contact radius as a function of the rigid body penetration. The normal force follows from the
same superposition (Johnson et al., 1971; Maugis, 2010):

𝐹JKR(𝑎, 𝛥) =
4𝐸′

3𝑅
𝑎3 + 2𝑎𝐸′

(
𝛥 − 𝑎2

𝑅

)
. (9)

The increment in surface energy is the integral of the work of adhesion within the area swept by the contact line. The JKR theory
applies to any axisymmetric work of adhesion, where 𝑤 depends on the radius in Eq. (5).
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Fig. 2. The crack-face weight function 𝑘 is central in the derivation of the first-order variation of the stress intensity factor. 𝑘JKR(𝑎, 𝑟P , 𝜃P , 𝜃) corresponds to the
stress intensity factor at angle 𝜃 when a unit point force 𝐹P is applied on the face of a circular external crack at 𝑟P , 𝜃P. The origin of the coordinate system is
aligned with the tip of the spherical indenter.

4.2. Equilibrium condition for non-circular contacts

We now consider the perimeter of a nearly circular contact. The function 𝑎(𝜃) represents the planar distance between the point at
angle 𝜃 on the contact perimeter (or crack front) and the tip of the sphere. The mechanical potential 𝛱mech([𝑎]) is now a functional
of the contact radius 𝑎. (We use square brackets [⋅] to indicate a functional dependence.) The functional derivative 𝛿𝛱mech∕𝛿𝑎(𝜃)
is defined by

𝛿𝛱mech([𝛿𝑎]) = ∫
2𝜋

0
d𝜃𝛿𝑎(𝜃)

𝛿𝛱mech
𝛿𝑎(𝜃)

, (10)

where 𝛿𝛱mech([𝛿𝑎]) is the first variation of the mechanical potential due to a perturbation of the crack front 𝛿𝑎 (Giaquinta and
Hildebrandt, 2004; Finnis, 2010). We omit the penetration 𝛥 and the contact shape 𝑎 from the arguments for brevity.

𝛿𝛱mech([𝛿𝑎]) depends on the energy release rate 𝐺(𝜃) along the crack front,

𝛿𝛱mech([𝛿𝑎]) = ∫
2𝜋

0
d𝜃𝑎(𝜃)𝛿𝑎(𝜃)𝐺(𝜃), (11)

so that
𝛿𝛱mech
𝛿𝑎(𝜃)

= 𝑎(𝜃)𝐺(𝜃). (12)

The mechanical energy release rate 𝐺(𝜃) is the local work per surface area needed to close the crack faces and is linked to the stress
intensity factors 𝐾(𝜃) by Irwin’s relation, Eq. (7).

The stationarity of the total potential, i.e. the Griffith criterion, requires that the mechanical energy release rate at point 𝜃 on
the contact perimeter equals the local work of adhesion at the point (𝑎(𝜃), 𝜃) on the heterogeneous plane:

𝐺(𝜃) = 𝑤(𝑎(𝜃), 𝜃) (13)

𝐺 is available in closed form only for simple crack and contact shapes. Rice’s weight function theory allows us to compute efficient
approximations of 𝐺 when perturbed from a reference configuration.

4.3. First-order variation of the stress intensity factor

Rice showed that the sensitivity of the stress intensity factor to the contact shape 𝛿𝐾∕𝛿𝑎 is linked to the crack-face weight
function. The crack-face weight function 𝑘([𝑎];𝑃 , 𝜃) is the stress intensity factor caused by a unit force at point 𝑃 outside the contact
area and is known for simple geometries (Tada et al., 2000). While Rice’s first variation of 𝐾 was almost exclusively applied to
flat-on-flat contact geometries (planar crack problems), 𝛿𝐾∕𝛿𝑎 is unaffected by the presence of the Hertzian displacements in the
contact area (Rice, 1985b; Borodachev, 1991). To make explicit that the first-order variation of 𝐾 for circular connections (Gao and
Rice, 1987a) applies also to the contact of spheres, we review the main steps leading to 𝛿𝐾∕𝛿𝑎.
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We apply a force 𝐹P on the elastic half-space at point 𝑃 outside the contact area (on the crack face). This point force causes the
displacement 𝑢P at 𝑃 . At fixed rigid body penetration 𝛥 and fixed force 𝐹P, the mechanical potential is the Legendre transform of
the elastic strain energy 𝑈el,

𝛱mech(𝐹P) = min
𝑢P

{
𝑈el(𝑢P) − 𝑢P𝐹P

}
, (14)

with derivatives
𝜕𝛱mech
𝜕𝐹P

||||𝑎
= −𝑢P and

𝛿𝛱mech
𝛿𝑎(𝜃)

||||𝐹P
=

𝛿𝑈el
𝛿𝑎(𝜃)

||||𝑢P
= 𝐺(𝜃)𝑎(𝜃). (15)

𝑈el is the strain energy and −𝑢P𝐹P is the potential of the applied force 𝐹P. Because the second derivatives of 𝛱mech are continuous,
the order of differentiation does not matter (Schwartz’s theorem):

𝛿𝑢P
𝛿𝑎(𝜃)

= − 𝜕𝐺(𝜃)
𝜕𝐹P

𝑎(𝜃). (16)

From Eq. (7) and 𝜕𝐾∕𝜕𝐹P = 𝑘([𝑎];𝑃 , 𝜃) we obtain
𝛿𝑢P
𝛿𝑎(𝜃)

= − 1
𝐸′𝐾(𝜃)𝑘([𝑎];𝑃 , 𝜃)𝑎(𝜃). (17)

Setting 𝐹P = 0 (for arbitrary 𝑃 ) we see that the crack-face weight function 𝑘 describes how the crack faces deform when the crack
front moves.

Knowing that the displacements near the crack tip correspond to the stress intensity factor, we can now deduce how the stress
intensity factor is affected by a perturbation of the contact radius 𝛿𝑎. At the perpendicular distance 𝜌P away from the point 𝜃P on
the crack tip,

𝑢(𝜌P, 𝜃P) =
4
𝐸′

√
𝜌P
2𝜋

𝐾(𝜃P) + (𝜌3∕2P ). (18)

From Eq. (18), the perturbation of the stress intensity factor becomes

𝛿𝐾(𝜃P) = lim
𝜌P→0

𝐸′

4

√
2𝜋
𝜌P ∫

2𝜋

0
d𝜃 𝛿𝑎(𝜃)

𝛿𝑢(𝜌P, 𝜃P)
𝛿𝑎(𝜃)

= − lim
𝜌P→0

√
𝜋
8𝜌P ∫

2𝜋

0
d𝜃𝑎(𝜃) 𝛿𝑎(𝜃)𝐾(𝜃)𝑘([𝑎]; 𝜌P, 𝜃P, 𝜃),

(19)

for 𝛿𝑎 restricted to 𝛿𝑎(𝜃P) = 0. Rice introduced this restriction to ensure that 𝛿𝜌P = 0. As a consequence, Eq. (19) is not a first-order
variation because 𝛿𝑎 is not arbitrary. This restriction will be relaxed later by expanding the circular reference configuration by
𝛿𝑎(𝜃P).

When the contact perimeter is a circle (𝑎(𝜃) = const.), we know 𝐾 from Johnson et al. (1971) and 𝑘 from Galin (Galin, 2008),
enabling us to evaluate Eq. (19).

The crack-face weight function for the JKR contact is the same as for a circular connection. For a circular connection with radius
𝑎 and fixed displacements at infinity (Gao and Rice, 1987a; Rice, 1989; Galin, 2008),

𝑘JKR(𝑎, 𝑟P, 𝜃P, 𝜃) =

√
(𝑟2P − 𝑎2)∕(𝑎𝜋3)

𝐷2(𝑟P, 𝜃P, 𝑎, 𝜃)
, (20)

where 𝐷2(𝑟P, 𝜃P, 𝑎, 𝜃) = 𝑎2 + 𝑟2P − 2𝑎𝑟P cos(𝜃P − 𝜃) is the square of the distance between the point of application of the force on the
crack face, 𝑃 = (𝑟P, 𝜃P), and the point on the crack-front where the stress intensity factor is calculated, 𝜃. Note that 𝑘JKR is not a
functional of the whole radius, since in JKR the underlying contact area is a circle with radius 𝑎.

First applying a uniform perturbation of magnitude 𝛿𝑎(𝜃P) to the circular reference contact (radius 𝑎̃0) and then using 𝐾 = 𝐾JKR
and inserting Eq. (20) into Eq. (19) yields the first-order variation of 𝐾(𝜃P) at 𝑎 = 𝑎̃0 = const.:

𝛿𝐾(𝜃P) =
𝜕𝐾JKR(𝑎̃0)

𝜕𝑎̃0
𝛿𝑎(𝜃P) −

𝐾JKR(𝑎̃0)
8𝜋

PV∫
2𝜋

0
d𝜃

𝑎̃0(𝛿𝑎(𝜃) − 𝛿𝑎(𝜃P))
𝐷2(𝑎̃0, 𝜃P, 𝑎̃0, 𝜃)

(21)

We point to Gao and Rice (1987a,b) for details on how the limit 𝜌P → 0 leads to the Cauchy principal value integral PV ∫ .
Alternatively, this limit can be taken without applying the preliminary uniform perturbation, leading to a finite part of Hadamard
instead of a Cauchy principal value integral (Salvadori and Fantoni, 2014).

Note that Eqs. (8), (20) and (21) are exact only for an infinite elastic halfspace. Furthermore, we assume that the stress field
at the crack tip is only mode-I, which requires either that the contact is frictionless or that the lateral displacements of the two
contacting solids match. Lateral displacements match when the Poisson ratio 𝜈 = 0.5 or when the two contacting materials have the
same elastic properties. Piccolroaz et al. (2007) derived 𝛿𝐾 for a straight crack between two halfspaces with mismatching elastic
properties; Legrand et al. (2011) and Xia et al. (2015) discussed the perturbation of a straight mode-I crack in thin plates.

We now recast Eq. (21) using the Fourier series of 𝑎. Inserting

𝑎(𝜃) =
∑
𝑛∈Z

𝑎̃𝑛𝑒
𝑖𝑛𝜃 (22)
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into Eq. (21) yields

𝛿𝐾(𝜃P) =
𝜕𝐾JKR(𝑎̃0)

𝜕𝑎̃0
𝛿𝑎(𝜃P) +

𝐾JKR(𝑎̃0)
𝑎̃0

∑
𝑛∈Z∖{0}

|𝑛|
2

𝛿𝑎̃𝑛 𝑒𝑖𝑛𝜃P . (23)

From the inverse of Eq. (22),

𝑎̃𝑛 =
1
2𝜋 ∫

2𝜋

0
d𝜃 𝑒−𝑖𝑛𝜃𝑎(𝜃), (24)

we obtain 𝛿𝑎̃𝑛∕𝛿𝑎(𝜃) = exp(−𝑖𝑛𝜃)∕2𝜋. The functional derivative of 𝐾 then becomes
𝛿𝐾(𝜃P)
𝛿𝑎(𝜃)

=
𝜕𝐾JKR(𝑎̃0)

𝜕𝑎̃0
𝛿(𝜃 − 𝜃P) +

𝐾JKR(𝑎̃0)
2𝜋𝑎̃0

∑
𝑛∈N

|𝑛| cos 𝑛(𝜃P − 𝜃), (25)

which depends only on |𝜃 − 𝜃P|. The translational invariance reflects the axial symmetry of the unperturbed state. As will be discussed
in a few paragraphs, 𝜃 and 𝜃P commute because 𝛿𝐾∕𝛿𝑎(𝜃) is related to the second derivative of the energy.

The key step leading to 𝛿𝐾∕𝛿𝑎(𝜃) was recognizing the symmetry of the derivatives of the elastic energy, Eq. (16), that follows
from the smoothness of the elastic energy. Hence, Eq. (25) not only applies to flat indenters (Rice, 1985a; Gao and Rice, 1987a,b;
Rice, 1989), but also to contacts against spheres or any smooth indenters. All the relevant information of the axisymmetric contact
geometry is in 𝐾JKR and its derivatives. Knowing the first-order variation of 𝐾 when the contact is perfectly circular allows us to
approximate the equilibrium Eq. (13) to first order in the perturbation from circularity.

4.4. Quadratic approximation of the deformation energy

The straightforward approach to construct a first-order model is to linearly extrapolate either 𝐺 or 𝐾. However, these
approximations do not conserve the variational property of 𝑎𝐺, i.e. that it is the gradient of a potential, Eq. (12). We now guess
a quadratic approximation for the elastic energy and verify a posteriori that it possesses the exact first and second derivatives at
𝑎(𝜃) = 𝑎̃0. Our guess for the elastic energy is

𝑈el =
1
2𝜋 ∫

2𝜋

0
d𝜃 𝑈JKR(𝑎(𝜃)) + 𝜋𝐺JKR(𝑎̃0)

∑
𝑛∈𝐙

|𝑛||𝑎̃𝑛|2 (26)

with first derivative
𝛿𝑈el
𝛿𝑎(𝜃)

= 1
2𝜋

𝜕𝑈JKR(𝑎(𝜃))
𝜕𝑎(𝜃)

+ 𝐺JKR(𝑎̃0)
∑
𝑛∈𝐙

|𝑛|𝑎̃𝑛𝑒𝑖𝑛𝜃 + 1
2
𝜕𝐺JKR(𝑎̃0)

𝜕𝑎̃0

∑
𝑛∈𝐙

|𝑛||𝑎̃𝑛|2 (27)

and second derivative
𝛿2𝑈el

𝛿𝑎(𝜃)𝛿𝑎(𝜃P)
= 1
2𝜋

𝜕2𝑈JKR(𝑎(𝜃))
𝜕𝑎2(𝜃)

𝛿(𝜃 − 𝜃P) +
1
2𝜋

𝐺JKR(𝑎̃0)
∑
𝑛∈𝐙

|𝑛|𝑒𝑖𝑛(𝜃−𝜃P)

+ 1
2𝜋

𝜕𝐺JKR(𝑎̃0)
𝜕𝑎̃0

∑
𝑛∈𝐙

|𝑛|𝑎̃𝑛(𝑒𝑖𝑛𝜃 + 𝑒𝑖𝑛𝜃P ) + 1
4𝜋

𝜕2𝐺JKR(𝑎̃0)
𝜕𝑎̃20

∑
𝑛∈𝐙

|𝑛||𝑎̃𝑛|2.
(28)

𝑈JKR is the elastic energy in the perfectly circular contact (Johnson et al., 1971) and 𝜕𝑈JKR∕𝜕𝑎 = 2𝜋𝑎𝐺JKR(𝑎). It is straightforward
to show that Eq. (28) for 𝑎(𝜃) = 𝑎̃0 gives Eq. (25). We determine the contact shape by solving (see also Eq. (12))

𝛿𝑈el
𝛿𝑎(𝜃)

−𝑤(𝜃, 𝑎(𝜃))𝑎(𝜃) = 0 (29)

using a minimization algorithm (see Section 4.7). We will call this model CF-E when presenting our results.
The normal force applied on the indenter follows directly from our approximation of the energy:

𝐹 ([𝑎];𝛥) =
𝜕𝑈el([𝑎];𝛥)

𝜕𝛥
(30)

Using Eq. (26),

𝐹 ([𝑎];𝛥) = 1
2𝜋 ∫

2𝜋

0
d𝜃 𝐹JKR(𝑎(𝜃), 𝛥) + 𝜋

𝜕𝐺JKR(𝑎̃0, 𝛥)
𝜕𝛥

∑
𝑛∈𝐙

|𝑛||𝑎̃𝑛|2. (31)

4.5. Other first-order approximations

As a benchmark we also consider two common first-order approximations of the crack front. The first approximation linearly
extrapolates the stress intensity factor (Gao and Rice, 1989; Fares, 1989),

𝐾(𝜃) = 𝐾JKR(𝑎̃0) +
𝜕𝐾JKR(𝑎̃0)

𝜕𝑎̃0

(
𝑎(𝜃) − 𝑎̃0

)
+

𝐾JKR(𝑎̃0)
𝑎̃0

∑
𝑛∈𝐙

|𝑛|
2
𝑎̃𝑛𝑒

𝑖𝑛𝜃 , (32)

and solves for

𝐾(𝜃) = 𝐾c(𝜃, 𝑎(𝜃)) =
√
2𝐸′𝑤(𝜃, 𝑎(𝜃)). (33)
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We will refer to this model as CF-K.
The second approximation linearly extrapolates the energy release rate (Bonamy et al., 2008; Chopin et al., 2015; Ponson, 2016),

𝐺(𝜃) = 𝐺JKR(𝑎̃0) +
𝜕𝐺JKR(𝑎̃0)

𝜕𝑎̃0
(𝑎(𝜃) − 𝑎̃0) +

𝐺JKR(𝑎̃0)
𝑎̃0

∑
𝑛∈𝐙

|𝑛|𝑒𝑖𝑛𝜃 𝑎̃𝑛, (34)

and solves for Eq. (13) We will refer to this model as CF-G.
An alternative first-order extrapolation,

𝐺(𝜃) = 𝐺JKR(𝑎(𝜃))

(
1 + 1

𝑎(𝜃)
∑
𝑛∈𝐙

|𝑛|𝑒𝑖𝑛𝜃 𝑎̃𝑛
)
,

should in principle be more accurate, because 𝐺JKR(𝑎(𝜃)) is not linearized. However we observed that using the latter equation does
not improve the prediction of the normal force and Eq. (34) is better suited for analytical models. We did the same observation
with the analogous expression for the stress intensity factor.

Because these crack-front models do not possess an elastic energy, we cannot use Eq. (30) to compute the normal force. As an
approximation, we neglect the effect of the undulations of the crack front on the normal force and insert the mean contact radius
𝑎̃0 into the expression for a perfectly circular contact, Eq. (9). We will discuss in Section 5 that the crack shape affects the normal
force only to second order.

4.6. Symmetries

Rice obtained the first-order variation of 𝐾, Eq. (23), from the symmetry of second derivatives (or the path independence of the
work) with respect to the contact radius and a point force applied on the crack face. Similarly, the second derivatives with respect
to the contact radius are symmetric (Gao and Rice, 1989; Leblond et al., 2012; Salvadori and Fantoni, 2014):

𝛿2𝑈el
𝛿𝑎(𝜃)𝛿𝑎(𝜃P)

=
𝛿2𝑈el

𝛿𝑎(𝜃P)𝛿𝑎(𝜃)
(35)

For the energy release rate, it follows from Eq. (12) that 𝑎(𝜃)𝛿𝐺(𝜃)∕𝛿𝑎(𝜃P) should be symmetric.
The linear extrapolation of 𝐾, Eq. (32), violates this symmetry. Linearizing 𝐺, Eq. (34), fulfills the symmetry only for translational

invariance in the crack propagation direction, 𝜕𝐺JKR(𝑎̃0)∕𝜕𝑎̃0 = 0, i.e. in the case of a semi-infinite crack (Leblond et al., 2012).

4.7. Numerical implementation of the crack-front model

We describe the crack front with 𝑁 collocation points (contact radii 𝑎𝑗) at equally spaced angles 𝜃𝑗 . Accordingly, the Fourier
series is truncated for |𝑛| > 𝑁∕2 and 𝑎̃𝑛 is now the discrete Fourier transform of 𝑎𝑗 :

𝑎̃𝑛 =
1
𝑁

𝑁∑
𝑗=0

𝑎𝑗𝑒
−𝑖𝑛𝜃𝑗 . (36)

For the crack-front model CF-E, we require that the equilibrium equation Eq. (29) is satisfied in each 𝜃𝑗 ,

𝜕𝑈el
𝜕𝑎𝑗

− 2𝜋
𝑁

𝑎𝑗𝑤(𝜃𝑗 , 𝑎𝑗 ) = 0, (37)

with the discretized gradient of the elastic energy

𝜕𝑈el
𝜕𝑎𝑗

= 1
𝑁

𝜕𝑈JKR(𝑎𝑗 )
𝜕𝑎𝑗

+ 2𝜋
𝑁

𝐺JKR(𝑎̃0)
𝑁∕2−1∑
𝑛=−𝑁∕2

|𝑛|𝑎̃𝑛𝑒𝑖𝑛𝜃𝑗 + 𝜋
𝑁

𝜕𝐺JKR(𝑎̃0)
𝜕𝑎̃0

𝑁∕2−1∑
𝑛=−𝑁∕2

|𝑛||𝑎̃𝑛|2. (38)

We introduced the factor 2𝜋∕𝑁 between Eqs. (29) and (37) so that the left hand side of Eq. (37) is the gradient of the discretized
total energy, with

𝑈el =
1
𝑁

𝑁−1∑
𝑖=0

𝑈JKR(𝑎𝑖) + 𝜋𝐺JKR(𝑎̃0)
𝑁∕2−1∑
𝑛=−𝑁∕2

|𝑛||𝑎̃𝑛|2, (39)

and

𝛱surf =
2𝜋
𝑁

𝑁−1∑
𝑖=0

∫
𝑎𝑖

0
d𝑟 𝑟𝑤(𝜃𝑖, 𝑟). (40)

For CF-G and CF-K we proceed similarly and require that Eqs. (13) and (33), respectively, are satisfied for each 𝜃𝑗 .
We are interested in stable equilibria, therefore it is important to use a minimization algorithm and not a root finder to solve for

the equilibrium condition. When we simulate the indentation and retraction process, we use the solution obtained at the previous
penetration as initial guess. This procedure mimics the quasi-static dynamics of the contact, where the crack front moves to the
closest metastable state.
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When the crack front moves to the next metastable state through an instability, we need a robust minimization algorithm. We
use a trust-region Newton conjugate-gradient algorithm (Steihaug, 1983; Nocedal and Wright, 2006, Algorithm 7.2), where we fix
the radius of the trust region. Since the work of adhesion field is the source of nonlinearity, the trust radius needs to be slightly
smaller than the size of the heterogeneity. If the minimum contact radius is smaller than this value during a Newton step, the trust
region is further reduced below the contact radius in order to avoid negative contact radii. Note that trust-region algorithms usually
tune the radius according to the discrepancy between the quadratic subproblem and the actual potential. We omitted that feature
because, as discussed above, some crack-front models do not possess an elastic energy. An alternative to fixing the trust radius would
be to tune it according to gradients instead of energies. We observed that the minimization algorithm performed well even though
CF-G and CF-K do not satisfy the symmetries associated with the existence of a potential.

5. Validation and comparison of the perturbation methods

We investigate which first-order crack-perturbation method — linear extrapolation of 𝐾 (CF-K, Eq. (32)), linear extrapolation
of 𝐺 (CF-G, Eq. (34)) or quadratic extrapolation of the energy (CF-E, Eqs. (26)–(28)) — describes most accurately the contact area
and the normal force. We use BEM simulations with 𝓁∗

coz ≃ 0.0007 and pixel size 𝓁∗
pix = 0.00015625 as a reference, the grid size is

32768 × 32768 without the padding region. As a test case, we consider the ray-shaped work of adhesion heterogeneity (see inset
to Fig. 3a)

𝑤(𝑟, 𝜃) = 𝑤𝑚 + 𝛥𝑤 cos(𝑛rays 𝜃), (41)

where we vary 𝑛rays and 𝛥𝑤. We fix the value of the penetration to 𝛥∗ = 1.
Fig. 3a,b compares the contact geometry obtained from BEM and the different crack-front models for 𝛥𝑤 = 0.4 and 4 rays (Fig. 3a)

and 64 rays (Fig. 3b). To estimate the remaining deviations of BEM from the short-ranged limit, we also show a BEM simulation with
a four times larger cohesive zone (𝓁∗

coz ≃ 0.0028) and pixel size (𝓁∗
pix = 0.000625, 8192 × 8192 pixels). For decreasing 𝓁∗

coz, the contact
radius increases and the normal force decreases and when the work of adhesion is uniform, the normal force converges towards
the JKR solution (Fig. 3c). This convergence behavior is consistent with reports in Maugis (1992), Greenwood (1997) and Müser
(2014).

For 𝑛rays = 4 (Fig. 3a), the contact shapes of all crack-front models are similarly close to the BEM results. While CF-K fits better in
the peak and the valley of the undulation, CF-G and CF-E are closer to BEM between these two locations. For 𝑛rays = 64 (Fig. 3b), the
crack-front models differ more clearly but the errors due to the finite interaction range in BEM are also relatively large. However,
as we mentioned in the previous paragraph, the short-ranged limit has slightly higher contact radii than our reference simulation.
Therefore we conclude that for large 𝑛rays, the contact radius is significantly underestimated by CF-K.

The crack-front models unambiguously differ in the prediction of the normal force. The CF-E model best captures how the normal
force depends on the heterogeneity wavelength (Fig. 3c) and amplitude (Fig. 3d). The deviations of CF-G from CF-E are small and
disappear for small heterogeneities. CL-K has the largest discrepancies and predicts less adhesive normal forces. However, all errors
are relatively small because the leading order contribution of 𝛥𝑤 to the normal forces is of second order in BEM and in all the
crack-front models. This scaling has been pointed out by Argatov (2021) and is visible in Fig. 3d, where we represent the normal
force as a function of 𝛥𝑤2.

We now discuss qualitatively how the crack shapes depend on 𝛥𝑤 (Fig. 3e). In all crack-front models, the amplitude of the
contact radius undulation is smaller than in BEM. This is consistent with the numerical simulations of Fares (1989) and the second
order perturbation by Leblond et al. (2012). As in Fares’ simulations, the relation between contact radius and work of adhesion
(i.e. stress intensity factor) is more nonlinear for the minimum contact radius than for the maximum contact radius.

Leblond et al. (2012) pointed out that for a semi-infinite crack (𝑛rays → ∞), the mean contact radius depends only on the mean
work of adhesion along the crack front. Leblond’s statement follows from the existence of an elastic potential and hence is satisfied
by construction in CF-E. In CF-G (Eq. (34)), the mean contact radius 𝑎̃0 is independent of 𝛥𝑤 at any 𝑛rays; in fact, CF-E and CF-G
are identical in the limit 𝑛rays → ∞. CF-G conserves energy only in that limit. In contrast, in the CF-K model (Eq. (32)), 𝑎̃0 decreases
with increasing 𝛥𝑤. The reason is that 𝑎̃0 depends only on the average fracture toughness: taking the average of Eq. (32) yields
⟨𝐾c⟩ = 𝐾JKR(𝑎̃0). At fixed 𝑤𝑚, ⟨𝐾c⟩ ∝

⟨√
𝑤
⟩

decreases with increasing heterogeneity. This contact radius offset is independent of
𝑛rays and becomes large compared to the undulation when 𝑛rays increases (Fig. 3b). Therefore, by predicting too small contact radii,
CF-K violates energy conservation. In summary, for large 𝑛rays, the contact area is more accurate in CF-G and CF-E than in CF-K.
Because CF-K underestimates the contact area, it also predicts less adhesive normal forces.

The main benefit of CF-E is that it allows us to define rigorously the normal force by Eq. (30). Inserting the Taylor expansion of
𝐹JKR into Eq. (31), only terms of second order in the amplitude of the contact radius remain.1 𝜕2𝐹JKR∕𝜕𝑎2 and 𝜕𝐺JKR∕𝜕𝛥 are both
negative, so that small-scale fluctuations of the contact radius lead to a more negative (more adhesive) force. Hence, fluctuations
of the work of adhesion along the contact line slightly increase adhesion, which is in agreement with the BEM results in Fig. 3d.
However, this effect vanishes for small heterogeneities (Fig. 3c): for large 𝑛, 𝑎̃𝑛 ∝ 𝛥𝑤∕𝑛, so that 𝐹 (𝑎) − 𝐹JKR(𝑎̃0) ∝

∑
𝑛 |𝑛||𝑎̃𝑛|2 → 0.

To conclude, while all the crack-perturbation methods are valid first-order approximations, the ansatz possessing an elastic energy
(CF-E) yields the best overall results. At large 𝑛rays (small heterogeneities), the CF-G model and the CF-E model are equivalent. The
CF-G equation is simpler and can be used in analytical theories for crack pinning (Démery and Ponson, 2014). For an amplitude of
the heterogeneity of 𝛥𝑤 ≤ 0.4𝑤𝑚, the errors due to the finite interaction range in expensive BEM simulations are comparable to the
errors of the first-order perturbation models.

1 The first term in the Taylor expansion of 𝐹JKR around 𝑎(𝜃) = 𝑎̃0 disappears by averaging over the perimeter.
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Fig. 3. Comparison of the different crack-front models with BEM simulations for ray-shaped work of adhesion heterogeneity. (a,b) Contact radii computed using
BEM and the different CF models on the cosinusoidal work of adhesion landscapes illustrated in the insets. We show the contact radii 𝑎(𝜃) only over a half
period of heterogeneity. We used the radii predicted by CF-G (Eq. (34)) to normalize the contact radius. Since the amplitude of the contact radius is roughly
proportional to the wavelength of the heterogeneity, the magnification is higher for 𝑛rays = 64 and the effect of the cohesive zone size in the BEM simulations
is more apparent. (c) Normal force as a function of the number of rays. 𝑛rays = 0 corresponds to a uniform work of adhesion, where it can be verified that BEM
is close to the short-range limit (JKR). 𝐹 ∗ is the normal force normalized by 𝜋𝑤𝑚𝑅, as discussed in Section 2. (d) Normal force as a function of the (squared)
amplitude of the work of adhesion heterogeneity, for 𝑛rays = 16. In the crack-front models CF-K and CF-G, the normal force is computed by inserting the mean
contact radius into the JKR equation (Eq. (9)). In CF-E, the normal force is computed by taking the derivative of the elastic energy (Eq. (31)). (e) Contact
area, minimum contact radius and maximum contact radius in BEM simulations and different crack-front models as a function of the amplitude of the work of
adhesion heterogeneity.

6. Application to a random heterogeneity

To illustrate the usefulness of the crack-front model to study the adhesion hysteresis, we simulated the indentation and retraction
of a sphere with randomly fluctuating work of adhesion. We compare the results of BEM and the CF-E model in Fig. 4. The crack-
front simulation yields almost the same result as BEM, but requires only one minute instead of one day of computational time. (Both
simulations were performed on a single core.)

The BEM simulation was discretized on a 1024 × 1024 grid with pixel size 𝓁∗
pix = 0.005. On the same grid, we generated a

random Gaussian toughness field with mean ⟨𝐾c⟩ =
√
2𝐸′𝑤𝑚 and standard deviation 𝐾c,rms = 0.2 ⟨𝐾c⟩ (Fig. 4b). We chose a Gaussian

fracture toughness field instead of a work of adhesion field because it is easier to avoid negative work of adhesion values. Because
the work of adhesion is the square of a Gaussian field, the mean ⟨𝑤⟩ exceeds the median 𝑤𝑚 by a factor 1.04. The standard deviation
𝑤rms ≃ 0.39𝑤𝑚. The Fourier spectrum is flat at wavelengths above the correlation length 𝓁∗

het = 0.2 and 0 below. The interaction
range corresponds to a cohesive zone size 𝓁∗

coz ≃ 0.012.
We performed a crack-front simulation on the same work of adhesion field. In order to evaluate the equilibrium condition of the

crack front (Eq. (29)), we interpolated the work of adhesion with bicubic splines between the grid points. We used 512 collocation
points on the crack front so that the largest spacing between the collocation points (at the maximal penetration) is ≃ 𝓁∗

het∕10.
In both simulations, we increased the penetration 𝛥∗ in steps of 0.01 until the maximum penetration 𝛥∗

max = 1 was reached and
then decreased it until pull off. The starting penetration was chosen to be lower than the jump into contact instability.
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Fig. 4. (a) Force-penetration curves from a boundary-element method (BEM) and a crack-front simulation (CF-E) on the spatially random work of adhesion
shown in panel (b). We also show the prediction by the JKR model for a homogeneous surface at the same average work of adhesion. The arrows indicate
the jump into contact and the jump out of contact instabilities. (b) Contact areas at the penetration 𝛥∗ = 0.2, indicated by the cross in the force-penetration
curve, on top of the work of adhesion field. The tensile pressures of the contact mechanics simulation are shown in green, so that the perimeter of the contact
is indicated by the darkest green pixels. The pink dashed line is the contact perimeter calculated with the crack-front model. The work of adhesion field has a
standard deviation ≃ 0.4𝑤𝑚 and a short wavelength cutoff at 𝓁∗

het = 0.2. We used the median work of adhesion 𝑤𝑚 = ⟨𝐾c⟩2 ∕2𝐸′ for nondimensionalization.

In Fig. 4a, the force-penetration curves computed with BEM and the crack-front model nearly overlap. For reference, we also
show the force-penetration curve resulting from a homogeneous work of adhesion (JKR model) having the same mean value. The
homogeneous contact has one hysteresis loop corresponding to the jump into and the jump out of contact instabilities; the force
is reversible at positive penetrations. In our simulations, the heterogeneities are energy barriers that pin the crack front and alter
the normal force. The kinks in the force curve correspond to depinning instabilities that dissipate energy and lead to additional
hysteresis loops (Joanny and de Gennes, 1984). The adhesion hysteresis caused by crack-front pinning will be discussed in more
detail in an upcoming publication.

We now discuss the differences between the crack front and BEM results. In BEM, the jump into contact instability occurs too
early: it converges much slower with interaction range than other quantities (Wu, 2010; Ciavarella et al., 2017; Wang et al., 2021).
The remainder of the force-penetration curve, including depinning instabilities, is well converged. Other discrepancies in the force-
penetration curves are due to the linearization in the crack-front model. The contact perimeters agree well, with the most significant
deviations in the regions with low work of adhesion. This is consistent with what we observed in the previous section. The two
simulations deviate more significantly at a few penetration values, where the instabilities occur at slightly different penetrations.
An animation comparing the contact shape of BEM and the contact line during the whole indentation retraction process is provided
in the supplementary material.

As mentioned at the beginning of this section, the crack-front simulations are computationally much cheaper than the BEM
simulations. Furthermore, in BEM and in the crack-front model, the number of pixels in the linear dimension 𝑛 scales with 𝓁−1

het
(the total number of pixels in BEM is then ∼ 𝑛2). While in BEM, the computation time of the elastic deformations increases as
𝑛2 log 𝑛 (two dimensional fast Fourier transform), in the crack-front model it only increases as 𝑛 log 𝑛 (one dimensional fast Fourier
transform). The crack-front model will enable us to simulate smaller heterogeneities and softer spheres than possible with traditional
BEM approaches.

7. Conclusion

We described the adhesion of a sphere against a chemically heterogeneous surface by first-order crack perturbation and validated
this model against a boundary-element method (BEM). We compared different variants of the first-order perturbation and found
that the best approach is to approximate the energy quadratically. Linearizing the energy release rate is equivalent in the limit of
small heterogeneity size, but linearizing the stress intensity factor underestimates adhesion in that limit.

By its efficiency, the crack-front model allows us to simulate orders of magnitude larger systems than possible with BEMs. This
simplified model requires, however, that the work of adhesion heterogeneity is sufficiently small for the contact area to be nearly
circular. The crack-front model can be adapted to describe the effect of surface roughness in the limit of small roughness amplitudes
and soft materials. For contacts meeting these conditions, the crack-front model will allow to better understand the role of surface
roughness in adhesion hysteresis, and to make theoretical predictions based on previous work on pinning of elastic lines by a random
field (Démery and Ponson, 2014).
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A B S T R A C T   

The failure of roughness parameters to predict surface properties stems from their inherent scale-dependence; in 
other words, the measured value depends on how the parameter was measured. Here we take advantage of this 
scale-dependence to develop a new framework for characterizing rough surfaces: the Scale-Dependent Roughness 
Parameters (SDRP) analysis, which yields slope, curvature, and higher-order derivatives of surface topography at 
many scales, even for a single topography measurement. We demonstrate the relationship between SDRP and 
other common statistical methods for analyzing surfaces: the height-difference autocorrelation function (ACF), 
variable bandwidth methods (VBMs) and the power spectral density (PSD). We use computer-generated and 
measured topographies to demonstrate the benefits of SDRP analysis, including: novel metrics for characterizing 
surfaces across scales, and the detection of measurement artifacts. The SDRP is a generalized framework for 
scale-dependent analysis of surface topography that yields metrics that are intuitively understandable.   

1. Introduction 

Surface roughness is primarily characterized in terms of scalar pa
rameters; especially common are the root-mean-square (rms) height and 
slope, which are the rms deviations from the mean height and mean 
slope. Some variant of these quantities is computed by all surface 
topography instruments, and they are often reported to describe surface 
topography in publications. These quantities are useful for describing 
the amplitude of spatial fluctuations in height and slope across the 
measured topography. However, a core issue with these roughness pa
rameters is that all of them explicitly depend on the scale of the mea
surement [1]: The rms height depends on the lateral size (largest scale) 
of the measurement; the rms slope depends on the resolution (smallest 
scale) of the measurement. A direct demonstration of this effect on 
real-world measurements can be found in Refs. [2,3]. We note that some 
standardized expressions for obtaining these values, such as Rq from ISO 
4287 [4] include high- and low-frequency filtering. These values are still 
strongly scale-dependent, but now the relevant scale is the size of the 
filter rather than the size of the measurement. 

The scale dependence of these values is typically a signature of the 
multi-scale nature of surface topography. A simple illustration is given in 

a classic article by Benoit Mandelbrot on the length of coastlines [5]. 
Mandelbrot illustrated, that the length Lcoast of a coastline depends on 
the length of the yardstick ℓ used to measure it. A smaller yardstick picks 
up finer details and hence leads to longer coastlines. For (self-affine) 
fractals [6], the functional relationship Lcoast(ℓ) is a power-law whose 
exponent characterizes the fractal dimension of the coastline. In the case 
of a surface topography measurement, ℓ corresponds to the resolution of 
the scientific instrument used to measure the topography and the 
property corresponding to the length of a coastline is the true surface 
area S(ℓ) of the topography. We have in prior work directly demon
strated that S(ℓ) (and also the rms slope and curvature) scales with 
measurement resolution ℓ [2,3,7]. This scaling of the surface area has, 
for example, direct relevance to adhesion between soft surfaces [7]. 
Many surfaces do not behave as ideal fractals, but nearly all surfaces 
exhibit some form of size dependence of the roughness parameters dis
cussed above. This is because processes that shape surfaces, such as 
fracture [8–10], plasticity [11–14] or erosion [15], all lead to 
multi-scale, fractal-like topography over a range of length scales. 

Here, we suggest a route to generalize these (and other) geometric 
properties of measured topography to explicitly contain a notion of 
measurement scale. We define the individual roughness parameter as a 
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function of scale ℓ over which it is measured, leading to curves identi
fying the value of the parameter as a function of ℓ. Unlike above, where 
ℓ was restricted to the resolution of the instrument or some fixed filter 
cutoff, we now broaden the concept of this scale ℓ to refer to any size 
over which a parameter is computed. For a given topography scan, it can 
range from the pixel size up to the scan size. We term the resulting 
curves the scale-dependent roughness parameters (SDRPs) and outline the 
relationship to three common characterization techniques: the height- 
difference autocorrelation function (ACF), the variable bandwidth 
method (VBM) and the power spectral density (PSD). SDRPs are useful 
because they are easily interpreted: While it is difficult to attach a 
geometric meaning to a certain value of the PSD (where even units can 
be unclear [1]), the slope and curvature both have simple geometric 
interpretations. Since slope and curvature are also the primary in
gredients for modern theories of contact between rough surfaces 
[16–24], SDRPs are directly connected to functional properties of rough 
surfaces. Finally, we illustrate below how SDRPs can be used to estimate 
tip-radius artifacts in contact-based measurements, such as scanning 
probe microscopy and stylus profilometry. 

2. Analysis methodology 

2.1. Computing typical roughness parameters in real space 

Surface topography is commonly described by a function h(x, y), 
where x and y are the coordinates in the plane of the surface. This is 
sometimes called the Monge representation of a surface, which is an 
approximation as it excludes overhangs (reentrant surfaces). A real 
measurement does not yield a continuous function but height values 

hkl = h(xk, yl) (1)  

on a set of discrete points xk and yl. Measurements are often taken on 
equidistant samples where xk = kΔx and yl = lΔy, where Δx and Δy are 
the distance between the sample-points in their respective directions. 
Furthermore k ∈ [0,Nx − 1] and l ∈ [0,Ny − 1] where Nx ×Ny is the total 
number of sample points. 

Topographies are often random such that hkl is a random process and 
its properties must be described in a statistical manner. Starting with 
Longuet-Higgins [25,26] and Nayak [27], many authors have discussed 
this random process model of surface roughness, yet the most commonly 
used roughness parameters have remained simple. 

We will illustrate the following concepts using the one-dimensional 
case, i.e. for line scans or profiles. In many real scenarios, even areal 
topographic measurements are interpreted as a series of line scans. This 
is for example the case in atomic force microscopy (AFM), where a 
topographic map is stitched together from a series of adjacent line scans. 
Because of temporal (instrumental) drift, these line scans may not be 
perfectly aligned and the “scan”-direction is then the preferred direction 
for statistical evaluation. In the following mathematical development, 
we will implicitly assume that all values are obtained by averaging over 
these consecutive scans, but we will not write this average explicitly in 
the equations that follow. Extension to true two-dimensional topog
raphy maps of the ideas presented here is straightforward and briefly 
discussed in Appendix A. 

The most straightforward statistical property is the root-mean-square 
(rms) height, 

hrms =
〈
h2

k

〉1/2
≡

〈
h2(x)

〉1/2
, (2)  

where the average 〈⋅〉 is taken over all indices k. (We will omit the 
explicit index k in the following equations.) The rms height measures the 
amplitude of height fluctuations on the topography, where the midline is 
defined as h = 0. In addition to the height fluctuation, we can also 
quantify the amplitude of slopes, 

h
′

rms =

〈(
D
Dx

h(x)
)2〉1/2

, (3)  

where D/Dx is a discrete derivative in the x-direction. 
A common way to compute discrete derivatives on experimental data 

is to use a finite-differences approximation. Finite-differences approxi
mate the height h(x) locally as a polynomial (a Taylor series expansion). 
The first derivative can then be computed as 

∂
∂x

h(x) ≈
D
Dx

h(x) =
h(x + Δx) − h(x)

Δx
. (4)  

This expression is called the first-order right-differences scheme. We will 
use the symbol D for the discrete derivatives, and the term “order” here 
refers to the truncation order, or how fast the error decays with grid 
spacing Δx: it drops linearly with decreasing Δx in this scheme. Another 
interpretation is that the truncation order gives the highest exponent of 
the polynomial used to interpolate between the points x and x+ Δx. The 
derivative of a linear interpolation is constant between these points and 
given by Eq.  (4). 

We can also quantify the amplitude of higher derivatives, 

h(α)
rms =

〈(
Dα

Dxα h(x)
)2〉1/2

, (5)  

where α = 2 yields the rms curvature. A discrete formulation of the 
second derivative is 

D2

Dx2 h(x) =
h(x + Δx) − 2h(x) + h(x − Δx)

Δx2 . (6)  

This expression is called the second-order central-differences approxi
mation. Again, this can be interpreted as fitting a second-order poly
nomial to the three points x − Δx, x, and x+ Δx, and interpreting the 
(constant) second derivative of this polynomial as the approximate 
second derivative of the discrete set of data points. The third derivative 
is given by 

D3

Dx3 h(x) =
h(x + 2Δx) − 3h(x + Δx) + 3h(x) − h(x − Δx)

Δx3 , (7)  

which again can be interpreted in terms of fitting a cubic polynomial to 
(four) collocation points. 

We can generally write the discrete derivative as a weighted sum 
over the collocation points xk, 

Dα

Dxα h(xk) =
1

Δxα

∑∞

l=− ∞
c(α)l h(xk+l). (8)  

The values c(α)l are called the stencil of the derivative operator and α 
indicates the order of the derivative. For the above derivatives, 

c(1)0 = − 1, c(1)1 = 1, (9)  

c(2)0 = − 2, c(2)±1 = 1 and (10)  

c(3)0 = 3, c(3)1 = − 3, c(3)− 1 = − 1, c(3)2 = 1, (11)  

and all other c(α)l s are zero. Higher-order derivatives lead to wider 
stencils. 

2.2. Computing scale-dependent roughness parameters in real space 

The discrete derivatives of the preceding section are all defined on 
the smallest possible scale that is given by the sample spacing Δx and 
have an overall width of αΔx. It is straightforward to attach an explicit 
scale to these derivatives, by evaluating Eq.  (8) over a sample spacing 

A. Sanner et al.                                                                                                                                                                                                                                  



Applied Surface Science Advances 7 (2022) 100190

3

ηΔx (with integer η) rather than Δx, 

Dα
(η)

D(η)xα h(x) ≡
1

(ηΔx)α

∑∞

l=− ∞
c(α)l h(xk+ηl). (12)  

We will call the factor η the scale factor. The corresponding derivative is 
measured at the distance scale ℓ = αηΔx. 

Fig. 1 a illustrates this concept. For a simple right-differences scheme 
as given by Eq.  (4), the scale-dependent first derivative is simply the 
slope of the two points at distance ℓ. For the second derivative given by 
Eq.  (6), we fit a quadratic function through three points with overall 
spacing ℓ and the curvature of this function is the scale-dependent 
second derivative. 

We now define the scale-dependent roughness parameter (SDRP) as 

h(α)
SDRP(αηΔx) =

〈( Dα
(η)

D(η)xα h(x)
)2〉1/2

domain
. (13)  

This new function defines a series of descriptors for the surface that are 
analogous to the traditional rms slope (h(1)

SDRP ≡ h′

SDRP) and to the rms 
curvature (h(2)

SDRP ≡ h′′
SDRP); but instead of being a single scalar value, 

each represents a curve as a function of the distance scale ℓ = αηΔx. 
The distance scale ℓ is only clearly defined for the stencils of lowest 

truncation order. For the n-th derivative, those can be interpreted as 
fitting a polynomial of order n to n + 1 data points (see Fig. 1a). The n-th 
derivative of this polynomial is then a constant over the width of the 
stencil; this width must then equal the distance scale ℓ. Higher trunca
tion orders can be interpreted as fitting a polynomial of order m > n to m 
+1 data points. The n-th derivative is not constant over the stencil and it 
is not clear what the corresponding length scale is. We will here only use 
stencils of lowest truncation order where the distance scale is clear. 

For non-periodic topographies we need to take care to only include 

derivatives that we can actually compute, i.e. where the stencil remains 
in the domain of the topography. This is indicated by the subscript 
“domain” in Eq.  (13). 

2.3. Beyond root-mean-square parameters: Computing the full 
distribution 

The rms value, such as the one defined in Eq.  (13), characterizes the 
amplitude of fluctuations, or the width of the underlying distribution 
function. Rather than looking at this single parameter, we can also 
determine the full scale-dependent distribution. Formally we can write 
this distribution as 

Pα(χ; η) =
〈

δ
(

χ −
Dα

(η)

D(η)xα h(x)
)〉

(14)  

where δ(x) is the Dirac-δ function and χ the value of the derivative (of 
order α) that we are interested in. In any practical (numerical) deter
mination of the distribution, we broaden the δ-function into individual 
bins and count the number of occurrences of a certain derivative value. 

To illustrate this concept on the example of the slope (α = 1), Fig. 1b 
shows the scale-dependent derivative at ℓ = 40Δx of the line scan 
shown in Fig. 1a. The distribution function of the slopes at this scale, 
P1(h

′

, 40Δx), is then obtained by counting the occurence of a certain 
slope value. The resulting distribution is shown in Fig. 1c. 

The rms parameters defined in the previous section are the square 
roots of the second moments of this distribution, 

h(α)
SDRP(αηΔx) =

[∫

dχ χ2Pα(χ; η)
]1/2

. (15)  

The second moment characterizes the underlying distribution fully only 
if this distribution is Gaussian. We will see below that, for example, 
scanning probe artifacts introduce deviations from Gaussianity that we 
can easily detect once we have the full distribution function. 

In summary, these probability distributions of arbitrary derivatives 
(such as slope, curvature, or higher-order functions) serve as an addi
tional set of descriptors for a surface. The distributions are themselves 
scale dependent, but can be used to compute a wide variety of scale- 
dependent statistical parameters, including higher cumulants, such as 
skewness or kurtosis. 

3. Analysis: Relationship of scale-dependent roughness 
parameters to other methods 

3.1. Relationship to the autocorrelation function 

A common way of analyzing the statistical properties of surface 
topography is the height-difference autocorrelation function, which will 
be designated here as ACF or A(ℓ). (See Ref. [28] for an authoritative 
discussion of properties and use.) The ACF is defined as 

A(ℓ)= 1
2
〈
[h(x + ℓ) − h(x)]2

〉

=

〈
1
2

h2(x) +
1
2
h2(x + ℓ) − h(x)h(x + ℓ)

〉

.

(16)  

Note that some authors call 2A(ℓ) the structure function and use the term 
ACF for the bare height autocorrelation function 〈h(x)h(x + ℓ)〉 [29,30]. 
The height ACF and the height-difference ACF are related by 

A(ℓ) = h2
rms − 〈h(x)h(x+ℓ)〉. (17)  

The ACF has the limiting properties A(0) = 0 and A(ℓ→∞) = h2
rms. 

Equation  (16) resembles the finite-differences expression for the first 
derivative, Eq.  (4). Indeed, we can rewrite the ACF as 

Fig. 1. Illustration of the basic idea behind the scale-dependent roughness 
parameters. (a) Example line scan showing the computation of slopes h′

(ℓ) and 
curvatures h′′(ℓ) from finite differences. A scale can be attached to this 
computation by computing these finite differences at different distances ℓ, 
shown for ℓ = 40Δx and ℓ = 80Δx where Δx is the sample spacing. Similarly, 
the curvature at a finite scale ℓ is given by fitting a quadratic function through 
three points spaced at a distance ℓ/2. (b) Local slope, obtained at a distance 
scale of ℓ = 40Δx for the line scan shown in panel (a). The slope is defined for 
each sample point since we can compute it for overlapping intervals. (c) Dis
tribution of the local slope obtained from the slope profile shown in panel (b). 
The rms slope for this length scale is the width of this distribution. 

A. Sanner et al.                                                                                                                                                                                                                                  



Applied Surface Science Advances 7 (2022) 100190

4

A(ηΔx) =
1
2

〈[
D(η)

D(η)x
h(x)

]2〉

(ηΔx)2 (18)  

using the scale-dependent derivative. The scale-dependent rms slope 
then becomes 

h′

SDRP(ℓ) = [2A(ℓ)]1/2/ℓ. (19)  

The height-difference ACF can hence be used to compute the scale- 
dependent slope introduced above. 

We now show that we can also express higher-order derivatives in 
terms of the ACF. Using the stencil of the second derivative given in Eq. 
(6), the scale-dependent second derivative can be written as 

h′′
SDRP(ℓ) =

4
ℓ2

〈
[h(x + ℓ/2) − 2h(x) + h(x − ℓ/2)]2

〉1/2
. (20)  

We can rewrite this expression as 

h′′
SDRP(ℓ) =

4
ℓ2 〈6h2(x) − 8h(x)h(x + ℓ/2)

+2h(x)h(x + ℓ)〉1/2
.

(21)  

and use Eq.  (17) to introduce the ACF into this expression, yielding 

h′′
SDRP(ℓ) = 4[8A(ℓ/2) − 2A(ℓ)]1/2

/
ℓ2
. (22)  

Similarly, the scale-dependent third derivative from the stencil given in 
Eq.  (7) becomes 

h′′′

SDRP(ℓ) =
27
ℓ3[30A(ℓ/3) − 12A(2ℓ/3) + 2A(ℓ)]1/2

. (23)  

We can therefore relate the scale-dependent root-mean-square slope, 
curvature, or any other higher-order derivative to the ACF. 

In summary, we have shown that the commonly used ACF function 
can be thought of a specific case of the SDRP analysis: being equivalent 
to the finite-differences calculation of scale-dependent slope. We further 
showed that the ACF function can be used as one method to compute 
higher-order SDRPs. 

3.2. Relationship to the variable-bandwidth method 

We now introduce an alternative way to arrive at SDRPs based on a 
different notion of scale. Notice that the discussion leading up to Eq. 
(13) does not involve the length L of the line scan. This length is only 
relevant when it comes to determining an upper limit for the stencil 
length ℓ = αηΔx, which is the notion of scale in a measurement based on 
Eq.  (13). Alternatively, we could interpret L as the relevant scale, and 
study scale-dependent roughness by varying L. This interpretation leads 
to a class of methods which have been referred to as scaled windowed 
variance methods [31] or variable bandwidth methods (VBMs). Mem
bers of this class of methods differ only in the way that the data is 
detrended and have been given a variety of names including: bridge 
method (attributed to Mandelbrot); roughness around the mean height 
(MHR) [32] (sometimes termed VBM [33]); detrended fluctuation 
analysis (DFA) [34,35]; and roughness around the rms straight line 
(SLR) [32]. 

In all cases, one performs multiple roughness measurements on the 
same specimen (or the same material) but with different scan sizes L. 
Plotting the rms height hrms from these measurements versus scan size L, 
or the rms slope h′

rms versus scan resolution (the smallest measurable 
scale) yields insights into the multi-scale nature of surface topography. 
An example of an experimental realization of this idea is the classic 
paper by Sayles & Thomas [36]. The present authors have used and 
discussed this approach in the past to characterize the topography of 
diamond thin films [2,3]. 

These methods can be generalized for the analysis of single mea
surements. Consider a line scan h(xk) of length L. The scan is partitioned 
into ζ ≥ 1 segments of length ℓ(ζ) = L/ζ (with ℓ ≤ L now being the 
relevant scale). The dimensionless number ζ, which we call the magni
fication, defines the scale. Some authors use sliding windows rather than 
exclusive segments [13,32]. 

The VBM considers the rms height fluctuations in each of the seg
ments, i.e. one computes the standard deviation of the height hVBM,i(ζ)
within segment i at magnification ζ, and then takes the average over all i 
to compute a scale-dependent hVBM(ζ). Some authors (including our own 
prior work [14]) have tilt corrected the individual segments, i.e. each 
segment is detrended by subtracting the corresponding mean height and 
slope (obtained by linear regression of the data in the segment) before 
computing hVBM,i(ζ); this approach is called the DFA [34,35] while 
without tilt correction it is called MHR. In the bridge method, the con
necting line between the first and last point in each segment is used for 
detrending (see e.g. Ref. [33]). 

These VBMs are extremely similar to the SDRP. When computing the 
slope in the SDRP, we compute it by simply connecting the two 
boundary points at x = iℓ(ζ) and x = (i + 1)ℓ(ζ) with a straight line, as is 
done in the bridge method. This is distinct from DFA, which uses all data 
points between the two boundary points and fits a straight line using 
linear regression. Detrending can be generalized to higher-order poly
nomials, but this has not been reported in the literature. The relationship 
between SDRP and VBMs with detrending of order 1 and 2 is concep
tually illustrated in Fig. 2. 

In DFA, the trend line is simply used as a reference for the compu
tation of fluctuations around it. The coefficients of the detrending 
polynomial can also be used to analyse how the slope and curvature of 
the surface depend on scale [37,38]. This yields an alternative measure 
of the scale-dependent rms slope, h′

VBM(ζ), obtained at magnification ζ or 
distance scale ℓ = L/ζ. h′

VBM(ζ) is simply the standard deviation of slopes 
obtained within all segments i at a certain magnification ζ. We show in 
the examples below that this scale-dependent slope is virtually identical 
to the slope obtained from the SDRP. 

We can use this idea to extend the DFA to higher-order derivatives. 
Rather that fitting a linear polynomial in each segment, we detrend 
using a higher-order polynomial. For extracting a scale-dependent rms 
curvature, we fit a second-order polynomial to the segment and interpret 
twice the coefficient of the quadratic term as the curvature. The stan
dard deviation of this curvature over the segments then gives the scale- 
dependent second derivative, h′′

VBM(ζ). Fig. 2 illustrates this concept, 
again in comparison to the SDRP that for the second-order derivative fits 
a quadratic function through just three collocation points. 

An alternative route of thinking about VBMs is that they use a stencil 
whose number of coefficients equals the segment length. The stencil can 
be explicitly constructed from least squares regression (at each scale) of 

Fig. 2. Illustration of the computation of scale-dependent roughness parame
ters from the variable bandwidth method (VBM). While in finite differences, the 
slope is computed between two points at distance ℓ, in the VBM we fit a trend 
line to a segment of width ℓ. Similarly for the second derivative, the finite- 
differences estimation fits a quadratic function through three points while in 
the VBM we fit a quadratic trend line through all data points in an interval of 
length ℓ. 
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the polynomial coefficients. The closest equivalent to the SDRP would 
then be the respective VBM that uses sliding (rather than exclusive) 
segments. However, even in this case, a remaining difference is that 
SDRP uses stencils of identical number of coefficients at each scale. In 
the examples provided in Section 4, we use a VBM that uses nonover
lapping segments. 

In summary, we have shown that the various methods for computing 
scale-dependent height (such as VBM, DFA, and others) can be thought 
of as a special case of SDRP analysis: where the scale-dependent 
detrending only occurs for at most linear trend lines. We have then 
shown how those analyses can be extended to define yet another method 
for computing SDRPs. 

3.3. Relationship to the power spectral density 

Finally we outline a fourth way to arrive at SDRPs using the power 
spectral density (PSD), another common tool for the statistical analysis 
of topographies [1]. Underlying the PSD is a Fourier spectral analysis, 
which approximates the topography map as the series expansion 

h(x) =
∑

n
anϕn(x), (24)  

where ϕn(x) are called basis functions. The Fourier basis is given by 

ϕn(x) = exp(iqnx), (25)  

with qn = 2πn/L where L is the lateral length of the sample. The inverse 
of Eq.  (24) gives the expansion coefficients an which are typically 
computed using a fast Fourier-transform algorithm. The PSD is then 
obtained as [1] 

C1D(qn) = L|an|
2
. (26)  

Fourier spectral analysis is useful because a notion of scale is embedded 
in the definition Eq.  (25): The wavevectors qn describe plane waves with 
wavelength λn = 2π/qn. 

This basis leads to spectral analysis of surface topography and de
rivatives are straightforwardly computed from the derivatives of the 
basis functions, 

∂
∂x

ϕn(x) = iqnϕn(x) and (27)  

∂2

∂2x
ϕn(x) = − q2

nϕn(x). (28)  

We can write the Fourier-derivative generally as 

∂α

∂xαϕn(x) = D α(qn)ϕn(x) (29)  

with D 1(qn) = iqn for the first derivative and D 2(qn) = − q2
n for the 

second derivative. The D α(qn) are complex numbers that we will call the 
derivative coefficients. 

The rms amplitude of fluctuations can be obtained in the Fourier 
picture from Parseval’s theorem, that turns the real-space average in Eq. 
(5) into a sum over wavevectors, 

h(α)
rms =

[
∑

n
|D α(qn)an|

2

]1/2

. (30)  

The notion of a scale-dependence can be introduced in the Fourier pic
ture by removing the contribution of all wavevectors |qn| >qc larger than 
some characteristic wavevector qc, i.e. setting the corresponding 
expansion coefficients an to zero. This means there are no longer short 
wavelength contributions to the topography. We will refer to this pro
cess as Fourier filtering. Fourier filtering can be used to introduce a scale- 
dependent roughness parameter, e.g. 

h(α)
PSD(qc) =

[
∑

n

⃒
⃒D F

α(qn; qc)
⃒
⃒2C1D(qn)

]1/2

(31)  

with D F
α(qn; qc)= Θ(qc− |qn|)D α(qn) that we call the Fourier-filtered 

derivative and Θ(x) is the Heaviside step function. Note that we have 
expressed Eq.  (31) in terms of the PSD, which is typically obtained using 
a windowed topography if the underlying data is nonperiodic. In the 
examples that we show in Section 4, we applied a Hann window before 
computing the scale-dependent derivatives from the PSD. 

We now show that Fourier-filtering and finite-differences are related 
concepts. We first interpret the finite-differences scheme in terms of a 
Fourier analysis. We apply the finite differences operation to the Fourier 
basis Eq.  (25). This yields 

Dα
(η)

D(η)xαϕn(xk) = D
s
α(qn; η)ϕn(xk) (32)  

with 

D
s
α(qn; η) = 1

(ηΔx)α

∑∞

l=− ∞
c(α)l exp(iqnηlΔx). (33)  

Note that the right hand side of Eq.  (32) is fully algebraic, i.e. it no 
longer contains derivative operators, and the D s

α(qn; η) are (complex) 
numbers. Inserting these derivative coefficients into Eq.  (31) yields Eq. 
(13). We have therefore unified the description of (scale-dependent) 
derivatives in the Fourier basis and finite-differences in terms of the 
derivative coefficients D α. 

The remaining question is how the scale ℓ used to compute the finite- 
differences relates to the wavevector qc used in Fourier-filtering. Fig. 3 
shows D F

1(λc) and Ds
1(ℓ) for different values of ℓ and λc. The location of 

the maximum of these derivative coefficients agrees if ηΔx ≡ ℓ/α = λc/

2 = π/qc. For first derivatives (α = 1), ℓ = Δx. This is the Nyquist 
sampling theorem, which states that the shortest wavelength we can 
resolve is λc = 2Δx. This means to compare SDRP, VBM and PSD, we 
need to choose a filter cutoff of qc = απ/ℓ in the latter. Note that in the 
SDRP, the (soft) cutoff emerges implicitly from the finite-difference 
formulation. 

In summary, we have shown that the SDRPs, which were defined in 
real-space in Section 2.2, can be equivalently computed in frequency- 
space using the PSD. The results should be the same, however, 
frequency-space calculations have the shortcomings that nonperiodic 
topographies need to be windowed, and a filter cutoff needs to be 
applied. 

Fig. 3. Derivative coefficients for finite differences D s
1 and the Fourier-filtered 

derivative D F
1 for different distance scales ℓ. The coefficients agree at small 

wavevectors q. The maximum of the coefficient agrees if the filter wavelength 
λc = 2ℓ, corresponding to the Nyquist sampling theorem (see text). 
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3.4. Summary notes about comparison to other methods 

In this section, we have shown that three of the most common 
methods for roughness characterization, namely ACF, VBM, and PSD, 
are highly related to the SDRP. In fact, some form of SDRP can be 
computed using any of these three methods, instead of using the original 
definition, Eq.  (13), with approximately equivalent results (see nu
merical experiments in the next section). Intuitively, the SDRP can be 
thought of as a general framework for analysis, which contains ACF, 
VBMs and PSD as special cases. 

4. Discussion: Application of scale-dependent roughness 
parameters, and advantages over other methods 

4.1. Application to a synthetic self-affine surface 

We first apply the concepts presented above to a synthetic self-affine 
topography. The topography has been first presented in Ref. [1] and 
consists of three virtual “measurements” of a large (65 536 ×65 536 
pixels) self-affine topography generated with a Fourier-filtering algo
rithm [1,39]. This algorithm works as follows: We superpose sine waves 
with uncorrelated random phases and amplitudes scaled according to a 
power-law. On the pixel at position x→ij = (xi, yj), the height can be 
written as 

hij =
∑

k,l≥0
| q→kl |<qs

Aklsin
(

q→kl⋅ x→ij +ϕkl

)

, (34)  

where q→kl = 2π/L(k, l) is the wavevector and L is the period of the 
topography. The phases ϕkl are uncorrelated and uniformly distributed 
between 0 and 2π. The amplitudes Akl are uncorrelated Gaussian random 
variables with variance proportional to | q→kl|

− 2− 2H. The sum runs only 
over wavevectors smaller than the short-wavelength cutoff qs = 2π /λs. 
The (two-dimensional) PSD of the surface is the square of the amplitudes 
Akl and is 0 for wavelengths below λs. We generated the surface with 
Hurst exponent H = 0.8, cutoff wavelength λs = 10 nm, pixel size Δx =
Δy = 2 nm and physical size L = 131 µm. This surface was subsampled 
in three blocks of 500 × 500 pixels at overall lateral sizes of 100 μm ×
100 μm, 10 μm × 10 μm and 1 μm × 1 μm to emulate measurement at 
different resolution. Each of these virtual measurements is nonperiodic 
and independently tilt-corrected. The data for the three subsampled 
topographies is available online [40]. 

Fig. 4a shows the topography map of these three emulated mea
surements. The measurements zoom subsequently into the center of the 
topography. The one-dimensional PSDs (C1D, Fig. 4b) of the three to
pographies align well, showing zero power below the cutoff wavelength 
of λs. Note that unlike most authors (with few exceptions in geophysics 
[41–45]) or even our own prior work, we display the PSD as a function 
of wavelength λ = 2π/q where q is the wavevector; this facilitates 
comparison with the real-space techniques introduced above, and also 
wavelengths are more intuitively understandable than wavevectors. 
Since the topography is self-affine, the PSD scales as C1D∝λ1+2H as 
indicated by the solid line. 

The ACF (or rather its square root) is shown in Fig. 4c. The ACF and 
all other scale-dependent quantities reported below are obtained from 
averages over adjacent line scans, i.e. from one-dimensional profiles 
rather than two-dimensional area scans. This is compatible with how 
C1D is computed (see Ref. [1]). The ACFs from the three measurements 
line up and follow 

̅̅̅̅
A

√
∝ℓH (see solid black line in Fig. 4c). Note that the 

ACF does not drop to zero for ℓ < ℓs ≡ λs/2 as the PSD did. This 
behavior becomes clearer by inspecting the scale-dependent slope 
h′

SDRP(ℓ) =
̅̅̅̅̅̅̅̅̅̅̅̅̅
2A(ℓ)

√
/ℓ that saturates at a constant value for ℓ < ℓs. This 

is the true rms slope that is computed when all scales are considered. For 
large ℓ, the rms slope scales as h′

SDRP∝ℓH− 1 (solid black line in Fig. 4d). 

Fig. 4. Example of scale dependent-roughness parameters for an ideal self- 
affine surface with Hurst exponent H = 0.8. (a) A large surface was sub
sampled in three topographies of 500 × 500 pixels at different resolution. (b) 
Individual PSDs displayed as a function of wavelength λ = 2π/q, where q is the 
wavevector. (c) Square root of the ACF displayed as a function of distance scale 
ℓ. (d) Scale-dependent rms slope. (e) Scale-dependent rms curvature. (f) Third 
derivative as an example of how this method can be used to go beyond tradi
tional analysis. Color is used to distinguish the three different topographies. The 
figure shows results from the four SDRPs (finite-differences based SDRP, ACF, 
VBM and PSD), showing that the results agree. The solid black lines in panels 
(b-f) shows the power-law scaling of an ideal self-affine topography with Hurst 
exponent H. Note that the deviations from power-law scaling at large scales are 
especially visible in panels (c) and (d) because of the smaller range of values on 
the y-axis. 
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Finally, we display the scale-dependent curvature h′′
SDRP(ℓ) in Fig. 4e. 

Like the rms slope, the curvature saturates for ℓ < ℓs to the “true” small- 
scale value of the curvature. The curvatures of the three individual 
measurements again line up and follow h′′

SDRP(ℓ)∝ℓH− 2 because of the 
self-affine character of the overall surface. The rms curvature computed 
from the ACF (Eq.  (22)) is strictly only applicable to periodic topogra
phies, but in our numerical experiments the ACF agrees with the original 
definition of the SDRPs (Eq.  (13)) within the thickness of the line. The 
errors occur at large distance scales and can, in principle, lead to 
negative values of h’’2

SDRP, but we have not seen this occurring in the 
numerical data presented in this paper. 

In our derivation above we have presented alternative routes for 
obtaining scale-dependent roughness parameters from the VBM and 
PSD. The plusses (+) in Figs. 4d and e show the rms slope and curvature 
obtained using the VBM, while the crosses (x) show the results obtained 
using the PSD. They align well with the respective parameters obtained 
from the SDRP and only deviate at large scales. In summary, all three 
routes (ACF, VBM, PSD) for obtaining SDRPs are equally valid and lead 
to results that are consistent with those computed using the original 
definition (Eq.  (13)). The advantage of the SDRP, ACF and the VBM over 
the PSD is that they are directly (without windowing) applicable to 
nonperiodic data. 

We have now demonstrated four independent ways of obtaining 
scale-dependent slopes, curvatures and higher-order derivatives. We 
would like to point out that all four routes constitute novel uses of the 
underlying analysis methodology. Our primary tool in what follows will 
be the SDRP; however, we have demonstrated that the ACF, VBM and 

PSD yield equivalent results. The broader importance of using scale- 
dependent slopes and curvatures over the “bare” ACF, VBM or PSD is 
that it is straightforward to interpret the meaning of these parameters. 
We all have intuitive understanding of the meaning of slopes and cur
vatures, whereas it is difficult to ascribe a geometric meaning to a value 
of the PSD (that can even differ in unit, see discussion in Ref. [1]). 

4.2. Detecting tip artifacts in simulated topography measurements 

We now turn to another example, the analysis of tip artifacts. This 
will exploit a power of the SDRP, namely the fact that we can compute 
the full underlying distribution of arbitrary derivatives outlined in 
Section 2.3. 

Fig. 5a shows two computer generated nonperiodic topographies of 
size 0.1 μm× 0.1 μm. The first topography is pristine and was generated 
using the Fourier-filtering algorithm mentioned above. As in the previ
ous example, we ensured the scan is not periodic by taking a section of a 
larger (0.5 μm) periodic scan. The second topography contains tip ar
tifacts and was obtained from the pristine surface using the following 
nonlinear procedure: For every location (xi, yi) on the topography we 
lower a sphere with radius Rtip (here 40 nm) towards a position (xi, yi, zi)

until the sphere touches the pristine topography anywhere. The result
ing z-position zi of the sphere is then taken as the “measured” height of 
the topography. This topography was discussed in Ref. [1] and the data 
files are available at Ref. [46]. The two curves underneath the maps in 
Fig. 5a are cross-sections through the middle of the respective 
topography. 

It is clear from simply looking at the data in Fig. 5a that the scanning 

Fig. 5. Scale-dependent roughness parameters for the analysis of tip artifacts. (a) A computer-generated “pristine” topography was scanned with a virtual tip of Rtip 

= 40 nm radius. The bottom row shows cross-sectional profiles of the maps shown above. The artifacted map and profile show clear blunting of the peaks and cusps 
in the valleys (see text for more discussion). (b) Distribution of slopes at distance scales ℓ = 1 nm (circles •), 16 nm (squares ▪) and 256 nm (triangles ▾). (c) 
Distribution of curvatures at these scales. Both slopes and curvatures are obtained in the x-direction. The left plots in (b) and (c) show the computed values for the 
pristine surface, while the right plots in these panels show the values for the tip-artifacted measurement. Black solid lines show the normal distribution. (d) PSDs and 
(e) ACFs of both topographies. (f) The plot of minimum curvature h′′

min (see text) shows a clear deviation between the pristine and artifacted measurement that starts 
at approximately the point where the scale-dependent minimum curvature equals the radius of the tip. 
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probe smoothens the peaks of the topography. Indeed the curvature near 
the peaks must be equal to − 1/Rtip. Conversely, the valleys look like 
cusps that originate from the overlap of two spherical bodies. These 
cusps are sharp and should lead to large (in theory unbounded, but in 
practice bounded by resolution and noise) positive values of the cur
vature. Church & Takacs [47,48] have pointed out that tip artifacts 
should lead to PSD C1D(q)∝q− 4, which is precisely a result of the cusps in 
the topography. (The Fourier transform of a triangle scales as q− 2, such 
that the PSD ∝q− 4.) We have demonstrated in Refs. [1,3] numerically 
that this is indeed the case. 

We are now in a position to more precisely look at the effect of tip 
radius. Fig. 5b shows the scale-dependent slope distribution P1(h

′

, ℓ), 
normalized by the rms slope at the respective scale. The black solid line 
shows a Gaussian distribution (of unit width) for reference. It is clear 
that both our pristine topography (left columns) and the topography 
with tip-radius artifacts (right column) follow a Gaussian distribution 
for the scale dependent slopes across scales from 1 nm to 256 nm shown 
in the figure. 

The situation is different for the scale-dependent curvature, shown in 
Fig. 5c. While the pristine surface (left column) follows a Gaussian dis
tribution, the topography with tip-radius artifacts is only Gaussian for 
larger scales (ℓ = 16 nm and 256 nm). There is a clear deviation at the 
smallest scales, showing an exponential distribution for positive curva
ture values, corroborrating the empirical discussion above that cusps 
leads to large positive values for the curvature. As argued above and in 
Refs. [47,48], these cusps lead to a PSD ∝q− 4∝λ4. Fig. 5d shows the PSDs 
of both topographies. The artifacted surface indeed crosses over to C1D∝ 
λ4 at a wavelength of λ ∼ 20 − 40 nm. 

We note this cross-over to λ4 is subtle and difficult to detect in 
measured data. Other measures, such as the ACF shown in Fig. 5e, are 
unsuitable to detect these artifacts. The region where the C1D∝λ4 shows 
up as a linear region in the square root of the ACF, 

̅̅̅̅
A

√
∝ℓ. The exponent 

of 1 from that region is too close to the exponent of H = 0.8 to be clearly 
distinguishable. The present authors have previously suggested a tip- 
radius reliability cutoff [1,2], where the scale-dependent rms curva
ture was compared to the tip curvature. Based on similar ideas, we now 
propose an additional metric that is intended to more accurately detect 
the onset of the tip-radius artifact. 

Rather than computing the width of the distribution as do the rms 
measures, we now ask the question of what is the minimum curvature 
value found at a specific scale ℓ. We therefore evaluate 

h’’
min(ℓ) = − min

k

[ D2
(ℓ)

D(ℓ)x2 h(xk)

]

. (35)  

The crosses in Fig. 5f show this quantity for the pristine and the arti
facted surface. It is clear that at small scales the curvature of the pristine 
surface is larger than the artifacted one. Additionally, the artifacted 
surface settles to h′′

min(ℓ) ≈ 1/Rtip as ℓ→0. This is a clear indicator that 
the curvature of the peaks on the artifacted surface is given by the tip 
radius and that in principle, the tip radius can be deduced from h′′

min. 
However, in real AFM data, h′′

min has no well defined ℓ→0 limit because 
there are noise sources not considered in our simulated measurement. 
The tip radius then needs to be determined from auxiliary measurements 
(see next section). 

For each tip radius and surface topography, there is a critical length 
scale ℓtip below which AFM data is unreliable. We estimate ℓtip by 
numerically solving 

h′′
min

(
ℓtip

)
= c

/
Rtip (36)  

for ℓtip using a bisection algorithm. The empirical factor c needs to be 
close to or slightly smaller than unity. Fig. 5f shows this condition as a 
dashed horizontal line. Note that ℓtip depends both on the tip radius and 
the curvature of the measured surface: measurements on rough surfaces 

have more tip artifacts than measurements on smooth surfaces because a 
tip that can conform to the valleys of a smooth surface may not be able to 
sample the valleys on a rougher surface. We also indicate the scale ℓtip in 
the ACF (Fig. 5e) and in the PSD. The factor c= 1 /2 was chosen such 
that λtip marks the crossover from artifacted C1D∝λ4 to the pristine 
C1D∝λ1+2H. We will use the same factor when analyzing experimental 
data in the next section, where there is no “pristine” measurement 
available for comparison. 

Our proposed measure is useful because it can be robustly and 
automatically carried out on large sets of measurements; by contrast, the 
detection of C1D∝λ4 is difficult because fitting exponents requires data 
over at least a decade in length and carries large errors [49]. 

4.3. Application to an experimental measurement 

As a final example, we turn to an experimental analysis of an ultra
nanocrystalline diamond (UNCD) film that has been described in detail 
in Ref. [2]. Fig. 6a shows a single representative AFM scan of that sur
face available online at Ref. [50]. The peaks have rounded tips similar to 
the synthetic scan shown in Fig. 5a. The curvature distribution (Fig. 6b) 
also has a similar characteristic to our synthetic topography (Fig. 5c). At 
large scales, the distribution is approximately Gaussian (shown by the 
solid black line). At smaller scales, we see deviations to higher curvature 

Fig. 6. AFM measurement of an ultrananocrystalline diamond film. (a) AFM 
measurement showing the smoothing of peaks similar to the emulated scans 
shown in Fig. 5a. (b) Normalized curvature distribution at distance scales ℓ =

12 nm (circles •), 47 nm (squares ▪) and 187 nm (triangles ▾). ℓ = 12 nm 
corresponds to a scale factor η = 1. (c) We use the peak curvature h′′

min (see text) 
to estimate the scale ℓtip below which the AFM data is unreliable (highlighted in 
red). The empirical constant c = 1/2. Inset: TEM image of the AFM tip. Fitting a 
parabola to the tip yields a radius Rtip of 10 nm. (d) Power spectral density 
(PSD) of the measurement. The black solid line shows scaling with λ4 that in
dicates tip artifacts. 
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values, indicative of the cusps that are characteristic of tip artifacts. We 
also see a minor deviation to higher negative curvatures, which we 
attribute to additional instrumental noise that contributes to small-scale 
features of the data. 

These negative curvatures prevent the conclusive determination of 
the tip radius from the scale-dependent tip curvature (Fig. 6c). Unlike 
the synthetic surfaces, the scale-dependent tip curvature h′′

min(ℓ) (Fig. 5f) 
does not saturate to a specific value at small distances ℓ. Instead, we 
determined the radius of AFM tip from auxiliary transmission electron 
microscopy (TEM) measurements (Fig. 6c inset). For the measured Rtip =

10 nm, we can identify the region where h′′
min(ℓ) > 1/(2Rtip) as unreli

able, leading to a lateral length-scale of around ℓtip ≈ 60 nm below 
which the data is no longer reliable. The PSD (Fig. 6d) shows λ4 scaling 
below the characteristic wavelength ℓtip. 

After having looked at tip-radius effects on single measurements, we 
now turn to applying SDRPs to the full experimental dataset from 
Ref. [2], where a total of 126 individual measurements from three 
different instruments, a stylus profilometer, an AFM and a TEM, were 
combined to extract the power spectrum of the surface over eight orders 
of magnitude. (The dataset is available online at Ref. [51].) Fig. 7 shows 
the PSD, ACF, rms slope and rms curvature for each individual mea
surement as well as an average curve representative of the whole sur
face. For each tip-based measurement (stylus and AFM), we computed 
the critical scale ℓtip using Eq.  (36) as above and excluded data on scales 
below ℓtip. The good overlap of the AFM data with the TEM data con
firms that this procedure removed tip artifacts. The full data set (see 
Ref. [2]) shows clear regions where the PSD C1D∝q− 4. 

As shown in Fig. 7, all four methods can be used to stitch together the 
data from a large set of measurements to obtain the resulting SDRP of the 
underlying physical surface. The ACF (Fig. 7b) and rms slope h′

rms 
(Fig. 7c) of the TEM measurements curve down at large ℓ, an effect also 
seen (but less pronounced) in our synthetic data of Fig. 4c and d. This is a 
consequence of tilt correction, that enforces zero slope at the size of the 
overall measurement, hence forcing h′

rms to drop towards zero. While 
more sophisticated schemes for tilt correction could be devised to 
eliminate this long-wavelength artifact, the rms curvature h′′

rms is free of 
this artifact as it is unaffected by local tilt of the measurement. We 
therefore advocate that it is important to look at a combination of these 
scale-dependent analysis techniques rather than relying on a single one. 

5. Summary & conclusions 

First, we demonstrated the calculation of scale-dependent parame
ters using a finite-differences scheme, with a variable distance scale. We 
have termed this characterization of first- and higher-order derivatives 
the scale-dependent roughness parameter (SDRP) analysis. Then we 
showed that the commonly used height-difference autocorrelation 
function (ACF) can be interpreted as the scale-dependent root-mean- 
square (rms) finite-difference slope. This leads to a straightforward 
generalization of the ACF for higher derivatives, yielding for example a 
scale-dependent rms curvature. We have further generalized this anal
ysis to compute distributions of roughness parameters as a function of 
scale; the curvature distribution analysis can be used to identify tip- 
radius artifacts. To connect our analysis to conventional techniques, 
we have shown how equivalent scale-dependent roughness parameters 
can be computed not only from the ACF, but also from the the variable 
bandwidth method and the power spectral density. We demonstrated 
the successful use of these analyses to describe computer-generated and 
experimentally measured surfaces. Additional work is ongoing to apply 
this analysis on a wide range of surfaces, for example surfaces with 
facets [3] or periodic structures. 

In summary, we proposed a novel SDRP analysis, and demonstrated 
how this is a generalization of commonly used roughness metrics. We 
suggest that this SDRP approach serves to harmonize competing 
roughness descriptors, but also offers advantages over those other 

methods, especially in terms of ease of calculation, intuitive interpret
ability, and detection of artifacts. 
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Appendix A. Generalization to two dimensions 

We here briefly outline the generalization of the SDRP to two-dimensions. The main difference is that in two dimensions the derivative becomes the 
(discrete) gradient (Dh/Dx,Dh/Dy), the curvature becomes the Hessian (D2h/Dx2,D2h/Dy2,D2h/DxDy) and higher-order derivatives contain addi
tional cross terms. All averages are carried out over areas, not line scans. We can then for example define a scale-dependent gradient as 

h
′ ,2D
SDRP(ℓ) =

〈(
D(ℓ/Δx)

D(ℓ/Δx)x
h(x, y)

)2

+

(
D(ℓ/Δy)

D(ℓ/Δy)y
h(x, y)

)2〉1/2

, (A.1)  

where the average 〈⋅〉 now runs over the area. We note that in two-dimensions the situation may arise, where the scale factors ηx = ℓ /Δx and ηy = ℓ 
/Δy are no longer integer; this in particular happens if the aspect ratio of the individual pixel is not unity, Δx ∕= Δy. In this case the additional 
(numerical) complexity arises, that one needs to interpolate between data points to measure the derivatives at the same distance scale in x- and 
y-direction. 
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[14] A.R. Hinkle, W.G. Nöhring, R. Leute, T. Junge, L. Pastewka, The emergence of 
small-scale self-affine surface roughness from deformation, Sci. Adv. 6 (2020). 
Eaax0847. 

[15] B.N.J. Persson, On the fractal dimension of rough surfaces, Tribol. Lett. 54 (2014) 
99. 

[16] A.W. Bush, R.D. Gibson, T.R. Thomas, The elastic contact of a rough surface, Wear 
35 (1975) 87. 

[17] B.N.J. Persson, Elastoplastic contact between randomly rough surfaces, Phys. Rev. 
Lett. 87 (2001) 116101. 

[18] B.N.J. Persson, Theory of rubber friction and contact mechanics, J. Chem. Phys. 
115 (2001) 3840. 

[19] B.N.J. Persson, E. Tosatti, The effect of surface roughness on the adhesion of elastic 
solids, J. Chem. Phys. 115 (2001) 5597. 

[20] B.N.J. Persson, Adhesion between elastic bodies with randomly rough surfaces, 
Phys. Rev. Lett. 89 (2002) 245502. 

[21] S. Hyun, L. Pei, J.-F. Molinari, M.O. Robbins, Finite-element analysis of contact 
between elastic self-affine surfaces, Phys. Rev. E 70 (2004) 026117. 
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Abstract
Background  Surface topography strongly modifies adhesion of hard-material contacts, yet roughness of real surfaces typically 
exists over many length scales, and it is not clear which of these scales has the strongest effect. Objective: This investigation 
aims to determine which scales of topography have the strongest effect on macroscopic adhesion.
Methods  Adhesion measurements were performed on technology-relevant diamond coatings of varying roughness using 
spherical ruby probes that are large enough (0.5-mm-diameter) to sample all length scales of topography. For each material, 
more than 2000 measurements of pull-off force were performed in order to investigate the magnitude and statistical distribu-
tion of adhesion. Using sphere-contact models, the roughness-dependent effective values of work of adhesion were measured, 
ranging from 0.08 to 7.15 mJ/m2 across the four surfaces. The data was more accurately fit using numerical analysis, where 
an interaction potential was integrated over the AFM-measured topography of all contacting surfaces.
Results  These calculations revealed that consideration of nanometer-scale plasticity in the materials was crucial for a good 
quantitative fit of the measurements, and the presence of such plasticity was confirmed with AFM measurements of the 
probe after testing. This analysis enabled the extraction of geometry-independent material parameters; the intrinsic work of 
adhesion between ruby and diamond was determined to be 46.3 mJ/m2. The range of adhesion was 5.6 nm, which is longer 
than is typically assumed for atomic interactions, but is in agreement with other recent investigations. Finally, the numerical 
analysis was repeated for the same surfaces but this time with different length-scales of roughness included or filtered out.
Conclusions  The results demonstrate a critical band of length-scales—between 43 nm and 1.8 µm in lateral size—that has 
the strongest effect on the total adhesive force for these hard, rough contacts.

Keywords  Adhesion · Nanocrystalline diamond · Multi-scale surface roughness · Range of adhesion · Pull-off force

Introduction

All real surfaces exhibit roughness, which has profound 
effects on surface properties. This includes the mechanics 
of interfaces: adhesion [1, 2], contact stiffness [3–5], wet-
ting [6], and friction [7]. Various analytical models have 

been developed to describe the dependence of functional 
properties on the geometry of the rough surface. The clas-
sic Greenwood and Williamson [8] multiasperity model for 
contact between rough surfaces was extended by Fuller and 
Tabor [1] and Maugis [9] to include adhesion. Further pro-
gress was made in connecting contact properties and rough-
ness by Bush, Gibson, and Thomas (BGT) [10] and Rumpf 
[11, 12]. These models approximate real-world roughness 
using simpler mathematical functions and typically associ-
ate properties with a single geometric parameter, such as 
the root-mean square (RMS) height. More recent models 
have attempted to explicitly account for the hierarchical, 
multi-scale nature of roughness. Mandelbrot began char-
acterizing surfaces as fractal-like and self-affine using 
spectral analysis [13]. Later, Persson [14] created a theory 
for rubber friction which draws quantitative connections 
between fractal roughness and contact properties, including 
adhesion [15]. These multi-scale models are expansions 
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that start from the limit of conforming contacts. They bal-
ance the adhesive energy gained when making contact with 
the stored elastic deformation energy, and are expected to 
work well for soft, conformal contacts.

A simpler approach is sufficient for hard contacts, in 
which the elastic energy required for creating a conform-
ing contact is much larger than the interfacial adhesive 
energy gain: An interaction potential is integrated over 
the undeformed contacting geometry. This approach can 
be applied to simple analytical geometries, such as spheres 
[16, 17], and can also be applied to more complex geom-
etries, including rough surfaces, sharp tips, etc. [18–20]. 
Pioneering work by Delrio et al. [18] showed that long-
range Casimir forces contribute strongly to surface adhe-
sion of ultra-flat (RMS height of 2–10 nm) micromachined 
surfaces at separation distances up to tens of nanometers.

Three critical questions remain for describing the 
roughness-dependent adhesion of surfaces with multi-
scale topography. First, can the classic analytical models 
such as those proposed by Fuller and Tabor, Rumpf, and 
Maugis, be applied to describe their behavior? Second, is 
the importance of long-range adhesive interactions limited 
to ultra-flat surfaces (as found in [18]) or is it generalizable 
to real-world coatings that are rough over many length 
scales? Third, and most generally, which size-scales con-
tribute most strongly to adhesion?

The purpose of the present work is to investigate these 
questions using adhesion tests of some of the hardest mate-
rials: a ruby sphere on polycrystalline diamond substrates. 
Diamond coatings are technologically relevant in a number 
of applications [21], including medical devices [22, 23], 
tool coating [24], face seals [25], and microelectrome-
chanical systems (MEMS)[26]. The roughness of these 
films can be controlled by varying the growth condition 
or by polishing. Thus, we can test substrates with varying 
roughness but nominally identical surface chemistry. This 
allows us to isolate the effects of topography on adhesion. 
The surface topography [27] of these materials and their 
adhesion to soft PDMS [28] has been extensively char-
acterized in prior publications. The present investigation 
examines their adhesion to a hard material: ruby.

Many adhesion studies have used atomic force micros-
copy (AFM) or colloidal AFM to characterize surface 
topography and then perform tip-based adhesion tests on 
the measured surface [29–32]. Such investigations pro-
vide valuable information on the atomic-scale parameters 
governing nanoscale adhesion. However, the small size of 
the contact limits their applicability in understanding the 
contribution of multi-scale roughness to macroscale adhe-
sion. The present investigation overcomes this limitation 
by using AFM to characterize the topography, while using 
a large 0.5-mm-diameter sphere to measure adhesion.

Methods

Experimental Adhesion and Topography 
Measurements

Adhesion tests were carried out between ruby spheres and 
polycrystalline diamond coatings using a MEMS-based 
force sensing probe (FT-MA02, FemtoTools, Buchs, Swit-
zerland). The 0.5-mm-diameter spheres (B0.50R, Swiss 
Jewel, Philadelphia, PA) were pre-polished to an ultra-
smooth (RMS height < 1 nm) finish using a slurry of ruby 
particles (0.05 µm). The spheres were glued to the tips of 
the force-probes to create a sphere-on-flat geometry for the 
test. The substrates comprised four different polycrystalline 
diamond coatings, which were grown by hot-filament chemi-
cal vapor deposition (HF-CVD) and are boron-doped for 
electrical conductivity. The substrates have varying grain 
size, and are denoted microcrystalline diamond (MCD), 
nanocrystalline diamond (NCD), ultrananocrystalline dia-
mond (UNCD), and a polished form of UNCD. The deposi-
tion and surface topography of the diamond coatings are 
characterized in Ref. [33].

For this work, the topography of the spheres and sub-
strates were measured using atomic force microscopy (AFM)
(Dimension V, Bruker, Billerica, MA). Measurements were 
made using diamond-like carbon (DLC)-coated probes (Tap 
DLC300, Mikromasch, Watsonville, CA) in tapping mode. 
Scans with lateral size of 2.5 µm (512 × 512 pixels) were 
performed on each of the four substrates and on the ruby 
spheres.

Representative images for the surface topography of the 
substrates, and of the polished spheres are shown in Fig. 1. 
Using the AFM measurements of 2.5-micron lateral size, the 
root-mean-square height, slope, and curvature of the surfaces 

Fig. 1   AFM measurements of the four polycrystalline diamond sub-
strates (a-d) and one instance of a ruby sphere (e). The ruby sphere 
is also shown with its spherical geometry subtracted (f) to allow for 
direct comparison of roughness against the other substrates

1110 Experimental Mechanics (2021) 61:1109–1120



are given in Table 1. The surface topography of the polycrys-
talline diamond films has been extensively measured in Ref. 
[27]. The numerical analysis included here, however, uses 
only the AFM-based topography measurements.

The MCD and NCD have the largest roughness magni-
tude of the four substrates, as is shown by the vertical scale 
bar of the AFM images in Fig. 1. These two surfaces also 
show clear faceting due to the grain structure. The unpol-
ished UNCD is significantly smoother than the MCD and 
NCD, and the faceting is not apparent at these size scales. 
The features that are visible have been shown to correspond 
to clusters of much smaller grains [27]. The polished UNCD 
is the smoothest of the four surfaces and shows no obvious 
grain structure. Similarly, the ruby tip images show a very 
smooth surface; while scratches are visible from the polish-
ing process, the peak-to-valley roughness of this ruby sphere 
is smaller than all other surfaces. These AFM images, along 
with four more measurements from different sample areas 
of the various materials, form the basis of the numerical 
analysis that was performed.

The adhesion testing was performed using a custom micro-
mechanical tester in a controlled-environment vacuum cham-
ber on a vibration-isolation table. Dry air was flowed into the 
chamber prior to testing until the relative humidity was less 
than 1% (below the minimum reading of the humidity sensor). 
Dry air was flowed in for the duration of the test at low flow 
rates to ensure consistently low humidity levels.

A three-axis slip-stick piezoelectric stage provides 
closed-loop motion control and real-time x–y-z posi-
tion data. For each individual adhesion measurement, 
the sphere was brought into contact with the substrate, 
loaded to a 10-µN preload (corresponding to a nominal 
Hertz stress of 135 MPa), and then withdrawn at a rate 
of 30 nm/s. The 10-µN preload occurs before the test and 
represents the minimum force required for the probe to 
find the point of contact. After finding contact the tip 
is lowered slowly onto the substrate up to a preload of 

5µN. Then, the force required to pull the sphere off of 
the surface is recorded as Fpull-off, with a force resolution 
of 30 nN. A single “test” comprised an array of individual 
adhesion measurements (typically 1-by-1 mm), for a total 
of 400 individual measurements per test. Tests were per-
formed in immediate sequence on all four samples in ran-
domized order, without opening the chamber or modifying 
test conditions. Six such sequences were performed with 
different spheres and different substrate samples, to ensure 
repeatability and reproducibility of results. A schematic of 
a typical test setup is shown in Fig. 2.

Numerical Analysis of Results

The experimental data was fitted using a cohesive zone 
model, using an exponential interaction potential with 
energy U given by

with a hard-wall repulsion at r = 0. Here, Wadh,int is the 
intrinsic work of adhesion, r is the distance between inter-
acting bodies, and ρ is the “range of adhesion” [34], which 

(1)U(r) = −Wadh,intexp
(
−r
�

)

Table 1   RMS roughness values calculated from AFM data only (top) and also from the full-spectrum roughness data, (bottom) which includes 
topography data from stylus, AFM, and TEM measurements of the same surfaces

AFM Data Only Polished UNCD Unpolished UNCD NCD MCD
RMS height (nm) 3.2 ± 1.6 17.4 ± 2.1 97.1 ± 11.2 107.1 ± 12.0

RMS slope 0.04 ± 0.01 0.39 ± 0.05 0.51 ± 0.07 0.49 ± 0.07

RMS curvature (nm−1) 2.0×10–3 ± 
1.3×10–3

4.8×10–2 ± 
3.8×10–3

3.9×10–2 ± 
1.1×10–2

2.8×10–2 ± 
6.6×10–3

Stylus, AFM & TEM Data [11] Polished UNCD Unpolished UNCD NCD MCD
RMS height (nm) 4.2 ± 0.8 17.4 ± 1.3 97.2 ± 11.7 101.2 ± 8.0
RMS slope 0.31 ± 0.08 1.17 ± 0.28 0.92 ± 0.10 0.85 ± 0.10
RMS curvature (nm−1) 1.99 ± 0.35 6.32 ± 1.20 5.91 ± 1.83 5.04 ± 1.45

Fig. 2   The tester consisted of a ruby sphere glued to a MEMS-based 
force probe, as shown schematically (a) and in an optical image 
(inset). Arrays of measurements (b) were performed on a single sam-
ple, with one measurement per location. A typical force–displace-
ment curve is shown in (c), with the most-negative point recorded as 
the pull-off force
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describes the characteristic length scale of the adhesive 
interaction. Note that U and W are energies per unit surface 
area. Since we do not know the exact nature of the atomic-
scale interaction between the two surfaces, this approach 
of using an empirical exponential interaction potential is a 
pragmatic approach to simplify the mathematical calcula-
tions. Similar results would be obtained using more com-
plicated functional forms, e.g. based on instantaneous or 
retarded dispersion interactions, electrostatic interaction, or 
others. Distinguishing precisely between competing func-
tional forms from our macroscopic experiments would be 
difficult. The functional form given in Eq. (1) allows sepa-
rate fitting of the intrinsic work of adhesion (U at distance 
r = 0) and the range of adhesion ρ, which yields the strength 
and length-scale of the interaction. This interaction poten-
tial has been widely used, including in the recent Contact 
Mechanics Challenge [34].

This interaction potential can be converted into a cohe-
sive law (stress-distance relationship) for two interacting 
bodies,

where p is the (compressive) pressure acting between the 
surfaces. For the present analysis, this potential was applied 
to each pixel pairing between the substrate and the tip, 
resulting in the following calculated force Fcalc between the 
two contacting surfaces at separation d:

Here, Apix is the area for a single surface pixel and the 
sum runs over all pixels in x and y. Note that gx,y in Eq. (3) 
is the difference of the topography maps of the ruby sphere 
and the diamond coating, while gx,y + d is the gap between 
the two interacting surfaces. The calculation can only be 
carried out for distances d where the gap gx,y + d is non-
negative everywhere and the surfaces do not interpen-
etrate. The calculated adhesion values were thus found 
by summing the interaction potential pixel-by-pixel over 
every pixel pair of the two scans. The pull-off force is the 
minimum value of the force-separation curve Fcalc(d) that 
is found at the point of closest approach d = -min gx,y.

Due to random topography variation, there were some-
times significant contributions to adhesion from near the 
edges of the AFM scans. Therefore, for all substrate-tip 
combinations, the scans were stitched together so that there 
were no longer edge contributions to the adhesive interaction 
between the rough surface and a sphere of 0.5-mm diam-
eter (< 0.5% change from additional stitching). The stitch-
ing was done by mirroring the surface scans horizontally 

(2)p(r) = −
dU

dr
= −

Wadh,int

�
exp

(

−r

�

)

(3)Fcalc(d) = −
∑

x,y

Wadh,int

�
exp

(

−(gx,y + d)

�

)

Apix

and vertically to ensure that all edges matched up. This was 
needed because real topography measurements are not peri-
odic. Similar to the experiments, the tip was brought into 
contact with the substrate in many locations over a square 
array.

The above rigid analysis was supplemented by an elastic 
and a plastic analysis. For the elastic analysis, we computed 
surface deformation using a Fast-Fourier-transform-accel-
erated boundary element technique [2, 35]. The hard-wall 
constraint was realized using an L-BFGS-B optimizer [36]. 
Note that we do not report the results of the elastic analysis 
explicitly here, but it was carried out to rule out the influence 
of elastic surface deformation. From this elastic analysis, we 
generally found that the surface pressure was exceeding com-
mon hardness values in most of the contact area such that a 
purely plastic analysis is appropriate.

For the plastic analysis, we use a simple bearing-area 
approach. This assumes that the harder surface plastically 
deforms the softer surface on all points that penetrate, and 
that the pressure in the contact area is equal to the hardness 
H. The penetration of the tip is then such that the number of 
contacting (and hence plastically deformed) surface pixels 
is sufficient to support the preload, Ncontact = F∕HApix . A 
preload of 10 µN, chosen to match the experimental preload, 
was used to determine the amount of plastic deformation of 
the softer surface. No plastic deformation then occurs during 
pull-off; the pull-off force is simply a result of the plastically 
deformed geometry. Note that we did not employ a combi-
nation of elastic and plastic contact, but similar plasticity 
models were used in elasto-plastic contexts in Refs. [37–39]. 
For the plastic analysis, surfaces were brought into contact 
up to the specified preload, and the deformed surface at this 
preload was then used in a rigid pull-off calculation.

Experimental Results

The topography can be used to compute roughness metrics 
such as root-mean-square (RMS) height, slope, and curva-
ture, which are commonly used as inputs for rough-contact 
models. Table 1 shows the results of these calculations when 
performed only using the AFM measurements from this 
investigation (top) as compared to the same parameters that 
are computed when all of the many scales of roughness are 
included (bottom, using the full multi-scale spectral analysis 
from Ref. [27]). Table 1 shows the values that might serve 
as inputs to classical models, such as those of Maugis [9] 
or Rumpf [11]. Table 1 also serves to underscore just how 
widely varying these parameters can be when measured at 
different length scales. For example, the root-mean-square 
slope, a parameter that has been identified as important for 
multi-scale roughness models, varies for polished UNCD 
from 0.04 to 0.31 depending on how it is measured.
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Figure 3 shows the distributions of values for adhesion 
force that have been measured on these four substrates. More 
than 2000 adhesion tests have been performed on every sur-
face, with at least 6 different spheres. Each color on the his-
togram represents a new ruby sphere on a new sample of 
the diamond substrate. The mean adhesion of the polished 
UNCD was far higher than the unpolished version of the 
same material. Both UNCD surfaces showed higher adhe-
sion than either the MCD or the NCD. The mean (median) 
pull-off forces of all four surfaces are 0.11 µN (0.06 µN), 
0.16 µN (0.12 µN), 0.4 µN (0.31 µN), and 8.8 µN (1.75 µN), 
for MCD, NCD, unpolished UNCD, and polished UNCD 
respectively. Due to the large skew in the data, the mean 
value is shifted away from the peak of the distribution 
toward higher adhesion values.

All four of the distributions can be fit using a log-normal dis-
tribution. This is more difficult to see in the linear plots, given 
the skew of a large number of events with small pull-off force. 

Plotted on a log–log scale (Fig. 3, bottom), the log-normal dis-
tribution is shown to accurately fit the data over at least two 
decades of adhesive force. In all cases, the low end of the dis-
tribution is cut off at 30 nN, as this represents the sensitivity of 
the force probe. Similar shapes for adhesion distributions have 
been reported previously for measurements in various contexts, 
including: centrifugal adhesion studies of particle adhesion in 
powders [40, 41]; biological samples and cell adhesion [42, 
43] and many other studies using AFM adhesion measure-
ments [44–46]. The origin of this distribution shape is not yet 
clear. While the fit is good for a log-normal distribution, there 
are other distributions—such as half of a gaussian distribution 
an inverse-gaussian distribution— that also give good qualita-
tive fits. Further investigation is required to ascertain the origin 
of the shape of these distributions.

Discussion

Effective Work of Adhesion and the Application 
of Classical Rough‑adhesion Models

A standard method of analyzing adhesion in rough spheres 
is to use classical sphere-contact models (such as JKR or 
DMT [47]) to extract an effective work of adhesion Wadh,eff , 
and then to use standard roughness models (such as those 
described in the first paragraph of the introduction) to relate 
Wadh,eff to standard roughness parameters. Following the pro-
cedure of Grierson et al. [48], with material parameters of 
ruby (elastic modulus E = 365 GPa and Poisson ratio �=0.29) 
and diamond (E = 1010 GPa, �=0.22), a nominal sphere 
diameter of 0.5 mm, the Tabor parameter is determined 
to be 0.81. This falls in the transition region between the 
DMT and JKR models. Using Maugis’ analysis for the tran-
sition region between JKR and DMT, and an approximate 
equilibrium spacing of 0.3 nm, the analysis yields values of 
Wadh,eff = 0.08, 0.13, 0.32, and 7.15 mJ/m2 for MCD, NCD, 
unpolished UNCD, and polished UNCD, respectively. The 
surface chemistry is assumed to be similar for all of these 
HF-CVD diamond coatings, and therefore this difference is 
attributed primarily to surface topography.

It is clear from these measured values of effective work of 
adhesion, along with the values of RMS parameters shown 
in Table 1, that there are no simple relationships between 
RMS parameters and effective work of adhesion. Attempts 
to fit this data using simple analytical models [1, 9, 11] 
were unsuccessful, regardless of which roughness param-
eters were used (AFM-based or multi-scale). One potential 
explanation for why these models fail here is that the pull-
off force for these hard materials is most dependent on the 
behavior of the uppermost contact points. These contacts 
represent the extreme-value statistics of the distribution of 
surface heights. They do not follow the central limit theorem 

Fig. 3   Experimental pull-off data is shown for the four substrates 
across different testing sessions (different colors) on a linear scale 
(a1-d1). The same data from the top  panel is combined into single 
datasets and shown on log–log plots (a2-d2), with log-normal fits 
shown (red lines)
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and are likely not described by the many models based on 
Gaussian statistics.

Intrinsic Work of Adhesion and Range of Adhesion

Instead of a single-asperity model extracting the effective work 
of adhesion for each substrate, a numerical analysis can be 
performed using the combined roughness of the sphere and 
substrate (see Methods). Like the experiments, the calculations 
were repeated for an array of 20 × 20 contacts on each sub-
strate. Each numerical calculation yields a computed pull-off 
force Fcalc for a specific choice of input values for Wadh,int and 
ρ and a specific contact location on the rough surface (Fig. 4a). 
Then a fitting routine can be applied to all data to extract the 
best-fit values of those material parameters.

For numerical tractability, the analysis was only per-
formed over a square of size of 12.5 µm rather than the 1-mm 
size scale of the experiments. Initially, the calculations were 
performed assuming rigid and/or elastic deformation only. 
Elastic calculations were virtually indistinguishable from the 
rigid calculations and we concluded that elasticity does not 
play a significant role in these contacts. Additionally, the 
micronewton-scale adhesive forces measured experimentally 
could not be explained with adhesion models based on rigid 
or elastically deforming surfaces, thus indicating that plastic 
deformation is likely occurring in these contacts.

We incorporated plastic deformation of the ruby tip with 
hardness of H = 25 GPa [49, 50] into our model using a pen-
etration hardness model (see Methods). We first determine 
the plastic deformation in the softer sphere at a preload of 
10 µN, identical to the average load used to find contact in 
the experiments. Pull-off calculations using the plastically 
deformed topography of the sphere were able to accurately 
reproduce the micronewton scale of pull-off forces from the 
experimental data. The possibility of plastic flow in similar 
hard materials has been reported in nanopillars [51] and nan-
oparticles [52]. A more in-depth analysis of the role of plas-
ticity in these contacts is included in the following section.

The numerical analysis can be fit to the mean values of 
the experimental data from all four substrates in order to 
extract best-fit values for intrinsic work of adhesion and 
the range of adhesion. We note that while Wadh,int simply 
rescales the computed pull-off force, the dependence of Fcalc 
on ρ is nonlinear and depends on the specific topography. 
The range of adhesion ρ is extracted by analyzing the ratios 
of pull-off forces between materials, since this cancels the 
(unknown) intrinsic work of adhesion Wadh,int in our model 
equations. Figure 4b shows the ratio of the pull-off force 
of polished UNCD, NCD and MCD with respect to unpol-
ished UNCD. The solid horizontal lines are the experimen-
tal results and the data points represent calculations carried 
out at various values of ρ (x-axis). The error bars repre-
sent the variation over the contact points. Only for a range 

of adhesion of approximately ρ = 5 nm do all three lines 
cross the experimental results simultaneously. This means 
that while different values of ρ (with modified values of 
Wadh,int) can describe individual experiments, a simultane-
ous fit yields a range of adhesion around 5 nm. Note that 
the increase in pull-off force for small values for range of 
adhesion is due to the finite pixel size. Once the range of 
adhesion was fit, the data was scaled by a factor Wadh,int to 
match the magnitude of the experiments. A second relative 
error minimization was performed to find the best-fit value 
for Wadh,int at the best-fit range of adhesion. Figure 4c shows 
the computed pull-off results calculated at various points on 
the rough topography as a function of range of adhesion ρ. 
The work of adhesion used in this plot is the value that yields 
the best possible final fit.

It is clear from Fig. 4 that the range of adhesion strongly 
affects the values of adhesion force. Rougher surfaces, like 
MCD and NCD, are less strongly affected and can be fit 
over a wider band of values for ρ. Smoother surfaces, such 
as the polished UNCD, are more influenced by changes in 
ρ because the increasing range of adhesion enables more of 
the substrate to contribute to adhesion. This can be seen in 
Fig. 4c as a steeper slope for the smoothest polished UNCD 
surface and for the unpolished UNCD. The majority of the 
adhesion contribution to the rougher surfaces (MCD, NCD) 
comes from just one or two asperities, and therefore larger 
values for range of adhesion do not lead to such significant 
contributions to the area of interaction.

There is only one combination of parameters that enables 
the best fit for all samples. The fit was evaluated by comput-
ing and minimizing the mean relative error (MRE) between 

Fig. 4   Computed pull-off forces were calculated by integrating an 
interaction potential over the combined roughness of the sphere and 
substrate (a). The best-fit value of range of adhesion was found by 
fitting to ratios of pull-off force (b), to eliminate the absolute value of 
work of adhesion. Finally, the absolute values of pull-off force were 
matched (c) by finding the best-fit value of intrinsic work of adhesion
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the fitted and measured adhesion. The uncertainty in the fit 
was computed for all values around the best-fit value with 
MRE < 0.1. This match between calculated and experimen-
tal data was used to extract values for work of adhesion of 
46.3 ± 3.5 mJ/m2 and range of adhesion of 5.6 ± 0.5 nm. Pre-
vious adhesion measurements on rough contacts between 
diamond and other hard materials report similar values for 
the intrinsic work of adhesion by accounting for surface 
roughness [20, 53, 54].

The measured range of adhesion is much longer than is 
expected for typical atomic interactions such as covalent 
bonds or van der Waals forces, which are typically consid-
ered to have a range of adhesion around 0.3 to 0.6 nm [55]. 
However, there is prior nanoscale literature that supports 
a larger-than-expected value for range of adhesion. Using 
DLC-coated AFM tips, Grierson et al. have measured a 
range of adhesion between DLC and UNCD of 4–5 nm 
[56]. While for spherical (parabolic) tips the pull-off force 
does not depend on range of adhesion [57], their measure-
ments exploited the non-parabolic shapes of worn tips, 
where pull-off force does depend on range of adhesion. In 
separate experiments also involving AFM pull-off meas-
urements, Jiang et al. have measured a range of adhesion 
between UNCD and PMMA of 1.5–2.5 nm [20]. Similarly, 
in nanoindentation experiments adhesive forces were found 
to act over distances of 1.5–4.5 nm [58]. As mentioned in 
the introduction, the presence of long-range forces has also 
been observed by DelRio et al. [18] in adhesion experi-
ments involving silicon micro-cantilevers. The experiments 
showed contributions to adhesion from distances up to tens 
of nanometers.

The origin of these large values for range of adhesion is 
still in dispute. Previously proposed explanations involve 
electrostatic interactions due to contact charging [59–61], 
capillary adhesion [62–64], and Casimir forces [18]. First, 
electrostatic interactions have been proposed as a possi-
ble explanation because of the well-known phenomena of 
contact charging [60, 65–68]. While the detailed physical 
mechanism is still in discussion [69], the results are a net 
charge between the two materials that can result in measur-
able electrostatic interactions. In the present testing, these 
long-range electrostatic forces would be expected to be seen 
as measurable forces observed before and after contact. This 
can manifest as a tilting of the “out-of-contact” region of 
the force–displacement curve or as an earlier-than-expected 
snap-into-contact event as the charged sphere attracts the 
uncharged substrate in a new location. While such long-
range interactions have been observed in other, unrelated 
testing where ruby tips were brought into contact with non-
conductive substrates, the present substrates were boron-
doped for conductivity, and the tester and substrates were 
electrically grounded to the vacuum chamber. The meas-
ured force curves in the present testing were similar to that 

shown in Fig. 2d, with no interaction forces observed until 
contact was initiated. Additionally, the operation of a static-
reducing ionization bar had no measurable effect on adhe-
sive forces. Therefore, contact charging is not expected to 
have played a significant role in the present results.

A second common explanation for longer-than expected 
values for range of adhesion is capillarity. Water bridges 
across a contact can increase the area of interaction of a 
rough contact and are known to significantly increase the 
adhesive force. The relative humidity determines the pres-
ence and size of these capillary bridges, which in turn affect 
the adhesive force. The present testing was carried out in a 
dry atmosphere (< 1% RH). This is insufficient to eliminate 
all water from the contact, but will limit its contribution. 
He et al. [70] showed that, even for hydrophilic surfaces, 
capillary necks could not form below a relative humidity of 
20–40%. Numerical analyses [71] also suggests that capil-
lary formation should not play a role in adhesion at low 
humidity. Therefore, capillarity is not expected to be the 
dominant factor in explaining the effect of topography on 
adhesion.

A third common explanation for large values for range 
of adhesion is retarded dispersion, or Casimir, interactions. 
These forces arise due to the finite speed of electromag-
netic interactions and typically act over ranges larger than 
a few nanometers, even up to tens of nm [18]. The present 
investigation is consistent with these findings, since the large 
micronewton adhesive forces cannot be explained without 
considering longer-range interactions. Furthermore, the 
smoother surfaces show a stronger contribution from these 
longer-range interactions, while these interactions play a less 
important role for the rougher surfaces, with fewer, sharper 
asperities in contact. However, the interaction potential used 
here does not explicitly account for any specific attraction 
mechanism. It is an empirical potential that elucidates the 
strength and length-scale of the interaction. In this case, 
those parameters are consistent with Casimir forces, but 
further investigation would be required to conclusively dem-
onstrate the physical origin.

The Role of Plasticity in Adhesion of These Contacts

To specifically verify that plastic deformation can occur in 
these contacts, an additional investigation was performed 
with AFM imaging performed on the ruby sphere (softer 
material) in the exact location of contact before and after 
an array test was performed. The standard adhesion test 
setup does not permit this precise knowledge of test loca-
tion; therefore, an alternate custom micromechanical test 
setup was used, with a cantilever based force sensor, but 
otherwise similar setup. A ruby sphere was polished, pre-
imaged in the AFM (Fig. 5b), and then used in an array test 
of adhesion against an NCD substrate. This testing repeated 
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the 400 measurements in an array of locations from a typi-
cal adhesion experiment, but used a preload of 20 µN (the 
minimum load of the alternate test apparatus). The apex of 
the sphere was imaged again after the test (Fig. 5c) and the 
location was matched to the pre-test image. The AFM imag-
ing presented clear evidence of indentations at the tip of the 
sphere. The indentations were approximately 150 – 300 nm 
in lateral size, and approximately 2 – 10 nm in depth. These 
indentations were scattered across the tip of the sphere, with 
single indents concentrated around a region of multiple over-
lapping indents.

The numerical modelling (recalculated at a preload of 20 
µN) predicted deformations with a depth of approximately 
2 nm and edge lengths of approximately 50 nm (Fig. 5a). 
The measurements are in reasonable agreement with predic-
tions. The region of overlapping indentations makes it dif-
ficult to determine the size of a single indentation. However, 
there do appear to be single indentations scattered around 
that region. The measured deformation for what appear to be 
single indents had depths ranging from single nanometers to 
nearly 10 nm and lateral sizes for measured deformation of 
approximately 100 – 500 nm. The computed deformations 
are for a single adhesion test, while the experimental defor-
mations correspond to the cumulative effect of 400 adhesion 
tests against different contact points. Therefore, the overall 
scales of deformations compare favorably, and likely indi-
cate that the tallest asperities on the substrates are serving 
to permanently indent the polished spheres.

Determining the Most Relevant Length‑scales 
of Roughness

The numerical analysis in this investigation has demon-
strated that adhesive interactions act over a length scale 
of greater than 5 nm, and that plasticity serves to increase 

contact area above the predictions of rigid or elastic cal-
culations. These two factors may limit the impact of cer-
tain length-scales of topography on the total macroscopic 
adhesion.

To check the influence of different roughness scales, 
we repeated the pull-off force calculations on a variety 
of virtual surfaces, with different scales of roughness fil-
tered out or included. This was accomplished by taking 
advantage of the all-scale measurements performed on 
the same substrates in Ref. [27] and combining them with 
the AFM measurements performed here. Since we do not 
have multi-scale measurements taken in the exact same 
location, we used the statistics of the random roughness 
to add smaller- and larger-scale roughness to the measure-
ments. Specifically, we started with an AFM image of the 
surface of the type shown in Fig. 1, then we superimposed 
artificially generated roughness that was created using a 
Fourier-filtering algorithm [72, 73] based on the meas-
ured PSD for that particular substrate. Therefore, these 
virtual surfaces are representative of the true multi-scale 
topography of each substrate. Then, from these multi-scale 
“master” surfaces, we filtered out different scales of rough-
ness. Finally, we performed the numerical calculations on 
each of the filtered surfaces to compute the pull-off force 
and determine the sensitivity to different scales of rough-
ness. The detailed approach of creating and filtering these 
surfaces is described in the next paragraph.

To add small-scale roughness, we first stitched the 
512 × 512 pixel AFM scan using mirror images, leading 
to a 1024 × 1024 periodic topography. This stitched sur-
face was first Fourier interpolated on an 8192 × 8192 grid 
(0.625 nm pixel size) and parts of the spectrum with wave-
length smaller than �T = 20 nm were cut out. A randomly 
rough surface that follows the substrate PSD for wavelengths 
𝜆 < 𝜆T and has a constant roll-off above �T was added to this 
interpolated topography. Features below the varying cutoff 
wavelengths �S are then filtered out to check their effect 
on the calculated pull-off force. To add large-scale rough-
ness, the AFM scan was again stitched to create a periodic 
topography, and this was stitched multiple times to yield an 
8192 × 8192 (20 µm linear size) grid. Fourier components 
at wavelengths bigger than �T = 1 µm were cut out. A ran-
domly rough surface with spectrum following the substrate 
PSD for wavelengths 𝜆 > 𝜆T and zero below �T was added to 
this topography. Features with wavelength above the varying 
cutoff wavelengths �L are then filtered out to check how they 
affected the calculated pull-off force.

Figure 6 shows the change in pull-off that occurs when dif-
ferent length scales of roughness are filtered out. In Fig. 6a, 
which shows the effect of small-scale roughness, the leftmost 
datapoints represent the pull-off force computed on the unfil-
tered surface. As the short-wavelength cutoff (x axis) gets 
larger, more and more small-scale roughness is removed from 

Fig. 5   The computed deformation for a single adhesion test is shown 
in panel (a) with the red and blue lines representing x and y direction 
line scans respectively. The actual deformation of the ruby sphere after 
an array of adhesion tests is measured using AFM images taken at the 
sphere apex before (b) and after (c) testing. The images have been pre-
cisely located at the apex of the tip where contact took place, and fidu-
cial markers have been used to orient the image. The after-test image 
confirm the presence of permanent deformation, as is assumed in the 
numerical modeling, seems to be in order-of-magnitude agreement 
with what would be expected after 400 tests in different locations, 
each with the deformation shown in (a)
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the surface. Thus, the surface is perfectly smooth below this 
cutoff; the rightmost data points approach the pull-off force 
from a perfectly flat plane. The value of pull-off force remains 
constant (within 10%) until the cutoff wavelength reaches 
43 nm. Removing roughness above this size scale has a strong 
effect on the adhesive force, but removing roughness below 
this size has almost no effect. Figure 6b shows a similar calcu-
lation, but now with long-wavelength roughness filtered out; 
thus, the rightmost datapoint represents a nearly unfiltered 
surface. As the long-wavelength cutoff decreases, shorter and 
shorter wavelengths of roughness are removed from the sur-
face, along with all wavelengths above the cutoff. The results 
show that, with removal of roughness with wavelength above 
approximately 1.8 microns, the adhesion remains constant 
(within 10%). Taken together, the two plots in Fig. 6 demon-
strate that there is almost no effect on adhesion from roughness 
with lateral length scales smaller than 43 nm or larger than 
1.8 microns. The critical finding of this analysis is that there 
is a certain band of length scales of roughness, 43 nm to 1.8 
microns, that most-strongly affects adhesion in these materi-
als; roughness outside of this band plays a secondary role in 
adhesion.

The explanation for this critical band of scales of topog-
raphy may be different for the large and small scales. The 
unimportance of large-scale topography is likely linked to 
the area that is interacting with the sphere. Given a range of 
adhesion ρ, a sphere of diameter D will interact with a flat 
surface within a disk of radius r =

√

D� . For D = 500 nm 
and ρ = 5.6 nm we obtain a radius of r = 1.7 μm, almost 
exactly the wavelength above which large-scale topography 
no longer matters. This shows that macroscopic pull-off 
forces are strongly affected by finite-size effects, and that 
the magnitude of pull-off forces will depend strongly on 

the sphere radius. This also means that the scales of rough-
ness that matter are determined by the macroscopic contact 
geometry, as long as sphere radius R is much larger than 
typical scales of the roughness.

For the unimportance of small-scale topography, there 
are two effects that enhance each other: the large range of 
adhesion, and the effect of plasticity. The large range of 
adhesion (5.6 nm), which was determined from the numeri-
cal analysis, indicates that topography variations below this 
scale have a reduced contribution to adhesion. For exam-
ple, for rigid surfaces with a sinusoidal gap of amplitude 
2 nm, a range of adhesion of 0.5 nm would mean that only 
the contacting peaks contribute to adhesion and the rest of 
the surface is irrelevant; while a range of adhesion of 5 nm 
would mean that all portions of the surface are adhering, 
with only small differences in relative contributions from 
different locations. An additional explanation is the effect of 
plasticity. The small-scale roughness has the highest local 
slope, and thus the highest surface stress. This means that 
the small-scale roughness will cause deformation, which 
smooths out these scales earlier than other scales, and 
reduces their contribution to macroscale adhesion.

Implications of the Present Findings

The results demonstrated that, for the macroscale adhe-
sion of extremely stiff materials, the very smallest scales 
of roughness do not determine adhesion. This is in stark 
contrast to the adhesion of nanoscale contacts of hard 
materials [19] and to the adhesion of macroscale contacts 
of soft solids [28], both of which show a critical influence 
of smallest-scale roughness. While the present work draws 
on extensive roughness characterization at all scales using 
stylus profilometry, AFM, and TEM, in the end the AFM-
scale roughness data (which covers the critical band of 
length scales discussed in the prior section) was sufficient 
to describe adhesion in these contacts. The introduction of 
smaller-scale roughness, as measured in the TEM, had little 
influence on the predicted adhesion. This means that param-
eters like RMS slope and curvature, that are most strongly 
influenced by the smallest-scale roughness, are less impor-
tant for these hard-material contacts.

In these measurements, the larger scales of roughness 
were also less significant. This implies that measurements 
based on stylus profilometry, which is resolution-limited by 
the micron-scale radius of the tip, are not sufficient to predict 
and describe adhesion of these materials. It also implies that 
a simple scalar parameter such as RMS height is insuffi-
cient to determine macroscale adhesion. We look forward to 
investigating this point further, with the goal to understand 
the generalizability of this result beyond the current experi-
mental setup.

Fig. 6   The contribution to pull-off force from various length scales 
can be directly demonstrated by recalculating pull-off force after filter-
ing out small (a) and large (b) scales of roughness. Specifically, the 
pull-off force calculated from the filtered surfaces is normalized by the 
pull-off force calculated from the unfiltered surfaces. In panel (a), the 
x-axis indicates a short-wavelength cutoff, where all roughness below 
this size scale has been removed. A value near 1 indicates that there 
is almost no effect on pull-off force of filtering out roughness below 
that size scale. In panel (b), the x-axis indicates a long-wavelength 
cutoff, where all roughness above this size is removed. Here, a value 
of 1 indicates no contribution to pull-off force from roughness above 
that size scale
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Another key result of the calculations for hard materi-
als is that adhesion is dominated by the asperities at the 
very high end of the height distribution. This leads to highly 
variable extremes in adhesion that can far exceed common 
predictions based on the average asperity height. The adhe-
sion distributions appear to be log-normal, with a long tail, 
which strongly impacts the mean adhesion value and leads 
to rare but significant ultra-high-adhesion events. This has 
strong implications for real-world applications, such as 
MEMS devices, which must overcome such surface forces 
and the threat of stiction. The shape of the measured dis-
tributions would suggest that any moving parts should be 
significantly overdesigned to ensure they can overcome the 
long-tail events.

Another important finding is that the experimental results 
were unable to be fit without the inclusion of plasticity. The 
assumption is that at some length scale, the contact pressure 
will overcome the hardness of one of the materials. Ruby, in 
our experiments, is the softer material. Whether this results 
in plastic flow or fracture, the contact area should evolve to 
support the preload applied and will be significantly larger 
than predictions from elastic models. In recent work in 
both SEM [74] and TEM [51, 52] experiments, plasticity 
in nanoscale ruby and diamond samples has been reported. 
Simple experiments were performed to confirm the pres-
ence of small-scale plasticity on the ruby tip. These find-
ings are supported by prior work demonstrating connections 
between nanoscale plasticity and large-scale properties [75]. 
The nanometer-scale deformation is likely an important fac-
tor behind the presence of a small-wavelength cutoff in the 
roughness that affects adhesion.

The effective work of adhesion (that includes the effect of 
topography) of these surfaces varies by almost two orders 
of magnitude, from 0.08 to 7.15 mJ/m2. These values for 
Wadh,eff are calculated from the overall sphere geometry 
using spherical contact-mechanics models. Given the wide 
variability of the adhesion force between interfaces of identi-
cal large-scale geometry, it is not surprising that the effective 
work of adhesion varies so much. These variations, how-
ever, are not explained by simple analytical models, such as 
those based on a Gaussian distribution of asperity heights, 
nor those based on a balance between elastic and adhesive 
energy.

Common (elasto-)adhesion theories balance the elas-
tic energy required for deformation with the interfacial 
energy (intrinsic work of adhesion) gained during contact 
[2, 15, 76–78]. In our case, the interfaces are so stiff that 
the deformation energy vastly exceeds any energy gain 
from making contact and we expect no pull-off force (or 
no stickiness [2]) in the “thermodynamic” limit of large 
surface areas and vanishing range of adhesion. In our case, 
the pull-off force is then determined by the interfacial 
stress carried by the intermolecular potential between the 

two surfaces and we can simply compute it by summing 
up these stress contributions (as we did in our numerical 
calculations); or in other words, the interface does not sep-
arate like a crack [76]. The explanation for the appreciable 
pull-off force is tightly linked to the long range (5.6 nm) 
of interaction extracted from this analysis.

Conclusions

By combining detailed measurements of topography, thou-
sands of mm-scale adhesion measurements, and numeri-
cal integration of an interaction potential, we computed 
both the intrinsic material parameters governing adhesion 
as well as the contributions to adhesion from multi-scale 
topography. The intrinsic work of adhesion between ruby 
and polycrystalline diamond was found to be 46.3 mJ/
m2 while the range of adhesion was 5.6 nm. This large 
value for range of adhesion, along with the requirement 
for plasticity in the calculations, leads to a diminished role 
of small-scale topography on the macroscale adhesion of 
these hard contacts. While prior work on soft-material 
adhesion on the same substrates [28] demonstrated the 
important role of single-digit-nm topography on adhe-
sion, the same is not true for the present measurements 
of hard-material adhesion. In fact, based on this analysis 
incorporating plasticity and the large range of adhesion, 
it has been demonstrated that there is a critical band of 
length scales of topography—43 nm to 1.8 µm—which 
plays the most significant role in macroscale adhesion for 
these hard materials.
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Abstract
Understanding the distribution of interfacial separations between contacting rough surfaces is integral for providing quan-
titative estimates for adhesive forces between them. Assuming non-adhesive, frictionless contact of self-affine surfaces, we 
derive the distribution of separations between surfaces near the contact edge. The distribution exhibits a power-law diver-
gence for small gaps, and we use numerical simulations with fine resolution to confirm the scaling. The characteristic length 
scale over which the power-law regime persists is given by the product of the rms surface slope and the mean diameter of 
contacting regions. We show that these results remain valid for weakly adhesive contacts and connect these observations to 
recent theories for adhesion between rough surfaces.

Keywords  Surface roughness · Contact mechanics · Adhesion

1  Introduction

Contact between nominally flat, rough surfaces has been 
the subject of study for countless experimental, analytical, 
and numerical investigations over the past century [1–31]. 
A universal theme found in most cases is that contact is 
limited to the peaks or asperities of the rough topogra-
phy and the real area of contact Arep is much less than the 
apparent projected area A0 . Substantial progress has been 
made in determining the relationship between Arep and the 
applied normal force F in non-adhesive, frictionless systems 

assuming elastic response. In such cases, the proportionality 
Arep = �repF∕h�

0
E∗ is found when Arep ≲ 0.1A0 . Here, h′

0
 is 

the root mean square (rms) slope of the rough topography, 
E∗ is the elastic contact modulus, and the dimensionless con-
stant �rep ≈ 2 [2, 6, 7]. This result implies a load-independ-
ent mean compressive stress, �rep = h�

0
E∗∕�rep in contacting 

regions. Since flattening a region with slope h′
0
 introduces 

a strain of order h′
0
 into the surface, �rep reflects the stress 

required to flatten the rough topography.
Recently, interest has turned to systems including attrac-

tive interactions that lead to macroscopic adhesion. Two 
opposite limits exist in the classical literature on the adhe-
sion of smooth spheres: in the Derjaguin–Muller–Toporov 
(DMT) [32] limit, weak attractive forces between solids do 
not alter the geometry of contact, but do reduce the global 
mean pressure; in the opposite limit, known as the John-
son–Kendall–Roberts (JKR) [33] limit, strong attractive 
forces significantly change the structure of the contact edge 
and can lead to contact hysteresis. For the contact of spheres, 
the Tabor and Maugis parameters [34] describe the continu-
ous transition between the two limits in terms of the relative 
strengths of adhesive and elastic parameters.

Working in a DMT-like limit, Pastewka and Robbins devel-
oped a theory to predict the onset of stickiness in contacts of 
self-affine rough surfaces [23] that was later independently 
confirmed by Müser [35]. They split the total normal force 
as F = Frep + Fatt into the sum of a repulsive contribution 
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Frep > 0 and an attractive contribution Fatt < 0 . Repulsive 
and attractive contributions originate from repulsive surface 
patches of total area Arep and attractive surface patches of area 
Aatt (see Fig. 1). The total force is then given by

where �att is the mean stress in the attractive patches that 
is roughly constant and of order �att = w∕Δr , where w is 
the work of adhesion and Δr the range of the attractive 
interaction.

Like in the purely non-adhesive limit, the geometry of 
contact is fractal in the DMT-like limit with proportionality 
between Arep and the contact perimeter Prep given by

where the mean contact diameter drep is approximately con-
stant [7, 23, 36]. Note that Eq. (2) holds generally for any 
geometric object, but drep varies with Arep in most cases. 
Short-ranged attractive interactions generate narrow bands 
of approximately constant width datt located around contact 
regions (see Fig. 1). If datt is small, then the total area con-
tributing to attractive forces Aatt = Prepdatt , which can be 
related to Arep via mutual proportionality with Prep given 

(1)F = �repArep − �attAatt,

(2)Prep = �Arep∕drep,

by Eq. (2). This means, that for non-sticky interfaces, the 
(repulsive) contact area is given by the expression

with an effective 1∕� = 1∕�rep − 1∕�att . The adhesive inter-
action hence increases the effective value of the dimension-
less constant � . A macroscopic force is required to separate 
the two surface when |Fatt| ≈ Frep or equivalently �att ≈ �rep . 
Interfaces that require a macroscopic force for separation are 
called “sticky”.

This theory depends sensitively upon the distribution of 
interfacial separations or gaps, that is assumed to be unaltered 
from the non-adhesive scenario. Previous work has primarily 
focused on the behavior of the mean gap ḡ , which is com-
monly found to be exponentially related to the normal load 
in non-adhesive contact as F ∝ exp

(
−ḡ∕𝛾h0

)
 , where h0 is 

the rms surface height and � is a dimensionless constant of 
order unity [8, 9, 12–17, 21, 24, 29]. Almqvist et al. [16], 
the contact mechanics challenge [29] and Wang and Müser 
[37] have reported distributions of interfacial separations, but 
these works have either not focused on the behavior at small 
gaps that is important for understanding short-ranged adhe-
sion or indirectly reported it through analysis of percolation 
in Reynolds flow.

In this paper, we derive the distribution of interfacial sepa-
rations in the vicinity of contacting regions and show numeri-
cally that our expression holds even in the weakly adhesive 
limit. This distribution can be used to compute the total attrac-
tive contribution to the force and hence the force–area relation-
ship for weakly adhesive interfaces.

2 � Simulation Methods

In our simulations, we invoke the standard mapping that allows 
the contact of two rough, elastic solids to be treated as contact 
between an initially flat, elastic solid and a rough, rigid surface 
[38]. If the elastic properties of the two original surfaces are 
encoded by the Young’s moduli E1 and E2 and Poisson’s ratios 
�1 and �2 , the combined elastic response is given by the elastic 
contact modulus

The roughness profile of each periodic, L × L surface with 
nominal area A0 = L2 is described by a self-affine fractal 
between an upper cutoff length scale �max and a lower cutoff 
�min , where length scales are given in terms of the pixel 
size a0 . This means that the power spectral density (PSD) 

(3)Arep = �
F

h�
0
E∗

(4)1

E∗
=

1 − �2
1

E1

+
1 − �2

2

E2

.

(a)

(b)

Fig. 1   a Contact map for a self-affine surface with H = 0.8 and 
�min = 16a0 . Arep is the sum over all pixels shown in black, and the 
contact perimeter Prep is marked in red. b Schematic of a contact 
region created by a contacting asperity, showing the mean contact 
diameter drep . The gap Δ(x) between surfaces grows as the lateral dis-
tance x3∕2 (Color figure online)
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C(�) of the isotropic, self-affine roughness depends only on 
wavevector magnitude q = |�| and satisfies

where q1 = 2�∕�max and q2 = 2�∕�min are the wavevector 
magnitudes corresponding to the roughness cutoffs and H 
is the Hurst exponent ( 0 < H < 1 ) that determines correla-
tions in the roughness. The resolution of the calculations is 
given by �min∕a0 , while the ratio L∕�max controls the sur-
face “representativity” [18]. The distribution of heights P(h) 
for a Gaussian self-affine rough surface with mean height h̄ 
and L∕𝜆max ≫ 1 has (by construction) Gaussian form. We 
use �min ≥ 32a0 for the results presented here to ensure that 
the contact edge is sufficiently resolved. We use a Fourier-
filtering algorithm to create such self-affine surfaces for our 
calculations [36, 39].

Performing the mapping described above results in a 
rough surface that is the incoherent sum of the rough profiles 
of the original surfaces. For the combination of two pro-
files that have identical statistical properties, the commonly 
utilized statistical measures of roughness—the rms height 
h0 =

√⟨h2⟩ , rms slope h�
0
=
√⟨�∇h�2⟩ , and rms curvature 

h��
0
=
√⟨�∇2h�2⟩∕2—of the combined surface each increase 

by a factor of 
√
2 . We therefore here work in the limit of a 

rigid rough surface contacting a flat deformable elastic half-
space and all statistical properties are to be interpreted for a 
combined surface. Note that ⟨⋅⟩ denotes the spatial average 
over the domain where the topography function h(x, y) is 
defined.

We use a static boundary element method to compute 
the linear elastic deformation induced by normal contact on 
an isotropic half-space (Refs. [40–42]). In order for linear 
elasticity to be a good approximation, the surface slope must 
be small. We use h�

0
= 0.1 to ensure that this approximation 

is justified, but note that real surfaces may have values h�
0
≈ 1 

or larger [31, 43, 44].
Our simulations assume frictionless contact with a non-

interpenetration constraint. Pixels on the surface of the 
elastic solid are considered to be in contact when they bear 
a compressive pressure; each contacting pixel contributes 
an area a2

0
 to the total contact area. For non-adhesive cal-

culations, we solve the interpenetration constraint using a 
constrained conjugate-gradient optimizer [45]. For adhesive 
calculations, we assume an interaction energy of

that depends on the gap g, where � is the interaction range. 
(Note that the range defined in Ref. [23] is Δr ≈ 1.36� for 
this potential.) The overall adhesive energy is then given by

(5)C(q) =

⎧
⎪⎨⎪⎩

C0 if q ≤ q1

C0

�
q

q1

�−2(1+H)

if q1 < q ≤ q2

0 if q > q2

,

(6)v(g) = −w exp (−g∕�),

where g(x, y) is the local gap at position x, y. This attractive 
interaction is minimized with an interpenetration constraint 
realized through the constrained non-linear conjugate-gradi-
ent algorithm of Ref. [46]. Similar boundary element meth-
ods have been used extensively to study rough contacts [11, 
18–23, 25–28, 30]. The attractive interaction is identical to 
the one employed in the contact mechanics challenge [29].

3 � Theory

The distribution of interfacial separations g between a rough 
surface and an undeformed elastic solid with surface at h = 0 
is equal to the (Gaussian) distribution of heights,

where ḡ is the initial mean surface height. The width of the 
distribution is the same as for the rough surface itself and 
scales with the long wavelength cutoff, h0 ∼ �H

max
.

When the solids are pushed together under load, the 
elastic solid deforms and the mean interfacial separation ḡ 
shrinks. We now write the gap distribution as the additive 
decomposition

where pc(g) contains the distribution of the gaps g within the 
contacting area, pn(g) the contribution from near the contact 
edge, and pf (g) the contribution from farther distances from 
the contact edge. Since p(g) is normalized, the probability of 
contact for a given contact fraction c = Arep∕A0 is

where � is the Dirac �-function.
The next contribution pn(g) comes from small separa-

tions near the contact edge. As shown in numerical calcula-
tions in Refs. [7, 23], the contact edge has a total perimeter 
Prep = �Arep∕drep with a constant drep . (This means that both 
area and contact edge are fractal objects—see Fig. 1a—and 
suggests that their fractal dimensions are identical.) We can 
write this contribution as

where Δ(x) describes how the mean gap between the two 
contacting surfaces varies as a function of distance x from 
the contact edge (see Fig. 1b). Note that we take the inte-
gral in Eq. (11) out to a characteristic length � that is close 

(7)Eatt = ∫ dxdy v(g(x, y)),

(8)p(g) =
1√
2𝜋h0

exp

�
−
(g − ḡ)2

2h2
0

�
for g ≥ 0,

(9)p(g) = pc(g) + pn(g) + pf (g),

(10)pc(g) = c�(g),

(11)pn(g) =
Prep

A0
∫

�

0

dx �(g − Δ(x))
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enough to the contact edge such that the number of points 
contributing to the gap distribution is still proportional to 
Prep.

The arguments that lead to Eq. (11) rely on the geometry 
of the contact patches formed between contacting self-affine 
surfaces. Refs. [7, 23] showed that in this case Prep ∝ Arep , 
compared to Prep ∝ A

1∕2
rep  as expected for simple contact 

shapes like circles. The larger perimeter scaling exponent 
arises because fractal contact regions are not compact, and a 
significant perimeter contribution comes from regions inside 
the convex hull enclosing individual patches. As patches 
become larger, they simply contain more non-contacting 
regions. The presence of non-contacting regions makes the 
contact geometry appear locally rectangular. The deforma-
tion cross-section for each line segment drawn through a 
single continuous contact diameter looks like that of a cylin-
drical indenter, rather than a spherical one. Within Euclid-
ean geometry, a rectangle with constant thickness along 
its minor axis has the property Prep ∝ Arep , if the rectangle 
is thin enough such that the contributions to Prep from the 
shorter sides can be neglected. The characteristic width of 
the contacting rectangle, and hence the contact diameter for 
the cylinder, is drep.

Working with this analogy, we now derive an analytic 
prediction for the distribution of gaps produced by non-
adhesive contact of smooth surfaces. Assuming a non-adhe-
sive cylindrical contact [47, 48], we have

where h′
0
 is the local slope of the cylinder at the contact 

edge. It can be shown generally for non-adhesive contact that 
the local separation Δ(x) ∝ x3∕2 for small lateral distances x 
from the contact edge [38]. The characteristic scale for the 
interfacial separation at the contact edge is g0 = 4h�

0
drep∕3 , 

the prefactor in Eq. (12). Inserting Eqs. (12) into (11) yields

where Eq. (2) was used for the right-hand equality. This is 
our prediction for the gap distribution near the contact edge. 
For small g, the distribution diverges as g−1∕3.

We note that ∫ ∞

0
dg p(g) = 1 , but taking the integral out 

to infinity for the contribution to p(g) given by Eq. (13) 
diverges. The contribution pn(g) to the gap distribution can 
therefore only be valid up to g ∼ g0 , the characteristic gap 
that is reached a distance drep from the contact edge. The 
“far” contribution pf (g) looks like the undeformed distribu-
tion of heights given by Eq. (8) (see also Refs. [16, 29]).

Almqvist et al. [16] have observed a divergence of the gap 
distribution for small g but have not quantified the exponent. 

(12)Δ(x) =
4h�

0
drep

3

(
x

drep

)3∕2

= g0

(
x

drep

)3∕2

,

(13)pn(g) =
2Prepdrep

3A0g0

(
g0

g

)1∕3

=
2�c

3g0

(
g0

g

)1∕3

,

Pastewka and Robbins [23] have used this divergence for 
their theory of “stickiness” but have not provided extensive 
numerical evidence for its validity. We now supplement 
these observations with additional high-resolution numeri-
cal data.

4 � Results

We performed simulations with sufficiently fine resolution 
( �min = 32a0 and 128a0 ) to test Eq. (13). Figure 2 shows dis-
tributions of interfacial separations for non-contacting grid 
points. The distributions were normalized to the respective 
non-contacting fractional area, 1 − c , and divided by the 
prefactor of Eq. (13) to collapse all data points onto a single 
(g∕g0)

−1∕3 power-law. We used the numerically measured 
value of drep (see Ref. [23] on details of how to compute 
drep ) for the data collapse. The power-law regime emerges 
for both H = 0.3 (Fig. 2a) and H = 0.8 (Fig. 2b).

The data only collapse over a limited range of gaps. The 
divergence at small gap predicted by Eq. (13) is always cut 
off at a minimum length scale, below which p(g) is uni-
formly distributed. In our simulations, the cutoff scale is 
∼ 10−3 − 10−2a0 ; the threshold for saturation of p(g) at small 
g∕g0 is inversely proportional to the resolution a0∕�min . For 
H = 0.3 (Fig. 2a), contributions to p(g) from near-contact 
and far-from-contact overlap (i.e., pn(g) and pf (g) have 
similar magnitude) for �min = 32a0 (solid symbols). The 
power-law regime only clearly emerges over 1–2 decades 
for H = 0.3 if the resolution of the calculation is improved 
by increasing �min , as is shown for �min = 128a0 (open 
symbols). For H = 0.8 , on the other hand, the power-law 
regime extends over a much larger range of gaps even for 
our “coarse” calculations with �min = 32a0 . As for H = 0.3 , 
increasing the short-wavelength cutoff to �min = 128a0 
extends the power-law to smaller gaps.

One can integrate pn(g) to calculate the cumulative frac-
tional area cn(gc) in the near-contacting region closer than a 
cutoff gap gc . We find

which for gc = g0 yields cn∕c = � . This means the area in 
the near-contact region is ∼ 3 times the area in the contact-
ing regions. The area in the near-contact region is equal 
to the contact area when gc ≈ 0.18g0 . The breakdown of 
the power-law region at small g occurs at g∕g0 ≈ 10−3 or 
smaller (for H = 0.8 ), meaning that the area within the roll-
off region at small g is at most about 3% of the contact area.

For large gaps the power-law regime is cut off by a Gauss-
ian gap distribution that reflects the distribution of unde-
formed or weakly deformed parts of the surface (see also 

(14)cn(gc) = ∫
gc

0

dg pn(g) = �c

(
gc

g0

)2∕3

,
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Eq. (8)). For both H = 0.3 and H = 0.8 , the uptick in p(g) in 
the range g∕g0 ∼ 1 − 10 is the peak of this Gaussian height 
distribution. Since h0 ∝ (�max∕�min)

H , the power-law regime 
extends much further for H = 0.8 (Fig. 2b) than for H = 0.3 
(Fig. 2a). Increasing �max∕�min shifts the Gaussian peak out 
to larger g∕g0 (most prominently for H > 0.5 ), and extends 
the range over which p(g) ≈ pn(g) . However, for the largest 
�max∕�min we studied, p(g) < pn(g) for 0.1 ≲ g∕g0 ≲ 1 . This 
suggests that the cutoff of the integral in Eq. (11) may be up 
to an order of magnitude smaller than g0 , about equal to the 
point where the near-contact area matches the contact area. 
Still larger calculations may be required to verify this result.

The crucial question for adhesive theories is how appli-
cable our results are for gap distributions in the presence 
of attractive interactions. We quantify the strength of the 
attractive interaction by the value of 1∕�att (see Ref. [23] 
and discussion below), since interfaces become sticky for 
1∕𝜅att ≳ 1∕2 [23]. For the data collapse, we use the values 
of drep measured in the non-adhesive calculations.

Figure 3 shows the gap distributions for adhesive cal-
culations as w increases (with constant � ), using surfaces 
with H = 0.8 and �min = 128a0 . To facilitate the compari-
son between non-adhesive and adhesive calculations, the 
adhesive simulations are conducted with the constraint that 
the mean gap is identical to the non-adhesive simulation 
( 1∕�att = 0 ). This choice of constraint means that the con-
tact areas are not equal, particularly for sticky surfaces. For 
non-sticky surfaces (up to 1∕�att ≈ 0.2 ), the gap distribution 

(a) (b)

Fig. 2   The probability distribution of interfacial separations for 
H = 0.3 (a) and H = 0.8 (b) normalized to 1 − c and divided by the 
prefactor in Eq.  (13) for the ratios �max∕�min indicated in the leg-
end, with �min = 32a0 (solid symbols) and �min = 128a0 (open sym-

bols, color matches �max∕�min in the legend). Here, A∕A0 ≈ 0.03 for 
�min = 32a0 and A∕A0 ≈ 0.04 for �min = 128a0 . The power-law pn(g) 
from Eq. (13) is shown as a dashed black line

10-5 100
10-1

100

101

0
0.001
0.01
0.02
0.1
0.19
0.97
1.94

Fig. 3   Comparison of the interfacial probability distributions for 
adhesive contact with increasing w, for H = 0.8 , �min = 128a0 , 
�max∕�min = 256 , and L∕�max = 2 . The corresponding non-adhe-
sive contact distribution from Fig.  2b is replotted ( 1∕�att = 0 , 
Arep∕A0 ≈ 0.04 ), and the adhesive distributions are normalized by 
g0 and c obtained from the non-adhesive result. The power-law pn(g) 
from Eq.  (13) is shown as a dashed black line. The dotted gray line 
corresponds to g∕g0 = �∕g0 with � = 4a0.
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follows the predicted power-law over the same range as the 
non-adhesive result. At 1∕�att ≈ 0.2 ( Arep∕A0 ≈ 0.06 ) there 
is a slight deviation toward smaller gaps. The sticky cases 
with 1∕�att ≈ 1 and 1∕�att ≈ 2 ( Arep∕A0 ≈ 0.12 and 0.16, 
respectively) clearly deviate from our prediction for the 
divergence. These sticky interfaces appear to still exhibit a 
regime where p(g) ∝ g−1∕3 , but the range of the power-law 
regime becomes narrower as 1∕�att increases. This means 
that the prefactor from Eq. (13) no longer captures the inten-
sity of the divergence and much of the non-contacting area is 
pushed out toward larger gaps. This is also reflected by the 
increase of the peak at larger gaps. The characteristic gap 
below which the distribution rolls-off and becomes constant 
appears to increase slightly in the sticky limit.

5 � Discussion and Conclusions

The behavior of the near-contact interfacial separation is an 
important consideration in the context of adhesive contact 
because it determines the attractive contribution to the force,

Assuming that the contribution from pf (g) is negligible, i.e., 
that our potential is sufficiently short-ranged, the attractive 
pressure per unit contact area is then given by

where we have used the interaction law v(g) from Eq. (6). 
Note that Eq. (16) defines the value of the dimensionless 
constant 1∕�att = Fatt∕h

�
0
E∗Arep , which we used to quantify 

the strength of adhesion in Fig. 3 and which can be used to 
determine the effective range of adhesion Δr (see Ref. [23]).

This expression can also be used to quantify what 
“short-ranged” adhesion means for rough surfaces and, 
therefore, to determine the limits of the theories of 
Pastewka and Robbins [23] and Müser [35]. Figure  4 
shows the normalized integrand of Eq. (16) as a function 
of the normalized gap g∕g0 . The integrand depends on 
the range of the interaction potential � . For � ≈ 0.1g0 and 
below, the main contribution to the integrand and thereby 
the attractive force comes from gaps with g∕g0 < 0.1 where 
the power-law holds. The roll-off region at small gap con-
tributes negligibly to this integral. This means that the 
adhesion range is short enough if 𝜌 ≲ 0.1g0 . The calcula-
tions presented here were carried out with � = 4a0 (as is 
typical for attractive interactions, e.g., Refs. [49, 50]) and 
our adhesive calculations have g0 > 25a0 , which means 
the range is sufficiently small. Interactions with a larger 

(15)
Fatt

A0

= ∫
∞

0

dg p(g)
dv

dg
.

(16)
Fatt

Arep

=
2�

3 ∫
∞

0

dg

g0

(
g0

g

)1∕3
dv

dg
= −

2�

3

w

(g2
0
�)1∕3

,

range (e.g., electrostatic interactions) interact with the full 
topography of the surface and require corrections to the 
expression for Fatt . The same is true for extremely smooth 
surfaces with small values of g0 . This defines bounds for 
theory outlined in Refs. [23, 35].

Besides leaving the gap distribution unmodified, the 
DMT-like limit also implies that the repulsive area Arep 
equals the typical definition of the contact area, namely, 
vanishing gaps g = 0 . The latter definition makes sense in 
continuum theories (like the present work), but not for mod-
els that consider the full intermolecular interaction, which 
exhibits soft repulsion (e.g., Ref. [23]), or for those that 
include thermal fluctuations (e.g., Refs. [51, 52]). Like in 
the JKR model [33], these definitions of contact no longer 
agree for sticky interfaces. In addition, JKR-like contacts 
separate as x1∕2 and not x3∕2 near the contact edge [53], lead-
ing to a gap distribution pn(g) ∝ g that is clearly distinct 
from what we observe in our calculations. Furthermore, in 
the sticky limit, the contact geometry changes substantially 
and is not expected to give rise to the simple proportional 
contact area–perimeter relationship used in our calculations. 
This is especially true for soft solids, which can deform to 
fill in interior non-contacting regions without large elastic 
energy penalties, thereby increasing the contact area at the 
expense of the overall contact perimeter.

Nevertheless, the present calculations are a powerful 
demonstration of the universal emergence of the g−1∕3 diver-
gence in the distribution of gaps between elastically stiff 
rough surfaces. Since this behavior is a direct consequence 
of the fractal character of the contacting interfaces as mani-
fested in the proportionality between perimeter and contact 
area, our results are another indirect demonstration of this 
aspect of the contact geometry. The distribution is unaltered 
by weak adhesive interactions, giving additional support for 

Fig. 4   Integrand of Eq.  (16), i.e., non-dimensionalized contribution 
to the overall attractive force as a function of gap g∕g0 for different 
ranges � of the adhesive interaction
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the DMT-like approximation that underlies the adhesive the-
ories of Pastewka and Robbins [23] and Müser [35].
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Abstract
The surface topographyof diamond coatings strongly affects surface properties such as adhesion, friction,
wear, andbiocompatibility.However, theunderstandingofmulti-scale topography, and its effect on
properties, has beenhindered by conventionalmeasurementmethods,which capture only a single length
scale.Here, four different polycrystalline diamond coatings are characterizedusing transmission electron
microscopy to assess the roughness down to the sub-nanometer scale. Then thesemeasurements are
combined, using thepower spectral density (PSD), with conventionalmethods (stylus profilometry and
atomic forcemicroscopy) to characterize all scales of topography. The results demonstrate the critical
importance ofmeasuring topography across all length scales, especially because their PSDs cross over one
another, such that a surface that is rougher at a larger scalemaybe smoother at a smaller scale and
vice versa. Furthermore, thesemeasurements reveal the connectionbetweenmulti-scale topography and
grain size,with characteristic scaling behavior at and slightly below themean grain size, and self-affine
fractal-like roughness at other length scales. At small (subgrain) scales, unpolished surfaces exhibit a
common formof residual roughness that is self-affine innature but difficult to detectwith conventional
methods. This approachof capturing topography from the atomic- to themacro-scale is termed
comprehensive topography characterization, and all of the topographydata from these surfaces has been
made available for further analysis by experimentalists and theoreticians. Scientifically, this investigation
has identified four characteristic regions of topography scaling in polycrystalline diamondmaterials.

1. Introduction

Surface topography controls surface properties of car-
bon coatings. For example, prior measurements of
diamond-like carbon (DLC) coatings show that tribolo-
gical behavior [1] and adhesion [2] are strongly affected
by surface texture, all the way down to the nanoscale.
The surface topography of diamond coatings [3] affects
their performance, including their friction [4], wear [5],
adhesion [6, 7], and biocompatibility [8]. Diamond is an
important material that is used in many industrial

applications [9] such as formechanical seals [10],MEMS
devices [11], biomedical applications [12], seals and
bearings [13], and nuclear fusion [14] because it has low
friction and wear [15, 16], and because it is robust and
chemically inert so that it can be operated in corrosive
environments.

Numerical models have been proposed to describe
the effect of surface roughness on contact and adhe-
sion [17]. Initially, the classic Greenwood-Williamson
[18] and Fuller-Tabor [19] models described contact
area and adhesion based on the average height of the
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roughness (figure 1(a)). Recently, the multi-scale nat-
ure of roughness has been included in the modeling of
surface properties [20–29]. In particular, it has been
shown that a critical quantity controlling contact area,
adhesion, friction, and wear is the root-mean-square
slope of the surface h’rms and that this quantity, for a
surface with multi-scale roughness, is strongly influ-
enced by small-scale features [22, 30]. Therefore,
understanding and prediction of the topography-
dependent surface properties of carbon coatings
requires multi-scale characterization of roughness,
down to the atomic scale.

Because conventional methods for topography
measurement cannot capture these small scales, then
researchers must choose either to ignore the small-
scale topography, or to extrapolate it from the single-
scale measurements at larger scales. Because many
real-world surfaces exhibit hierarchical topography
[32–36], this extrapolation is often done by assuming
that the material is self-similar or self-affine. Self-simi-
larity implies that the topography is statistically indis-
tinguishable at all magnifications ζ; in other words, if
the lateral length scale L is rescaled to ζL, then themea-
sured height h is rescaled to ζh. Self-affinity is related,
but characterized by the Hurst exponent H; where
rescaling the length to ζL and the height to ζHh yields
statistically indistinguishable surfaces. Mathemati-
cally, the root-mean-square slope h’rms of a self-affine,
randomly-rough surface depends strongly on the
smallest scales at which the roughness exists [22, 30].
For real surfaces, it is often assumed that surfaces are
self-affine down to the atomic scale, but this assump-
tion is largely untested.

Instead of ignoring or extrapolating for small-scale
topography, new approaches are required for char-
acterizing topography across all length scales. While
stylus profilometry and atomic force microscopy
(AFM) are indispensable tools in characterizing sur-
face topography, these tip-based techniques are unable
to provide the small-scale topography of rough sur-
faces because the radius of the scanning tip introduces

artifacts [37]. This limits the range of reliability of the
roughness measurements [30] (figure 1(b)). Optical
techniques, such as scanning white-light inter-
ferometry or laser confocal microscopy, suffer from
diffraction-limited lateral resolution and optical-
transfer-function artifacts, and are thus similarly
incapable of measuring the smallest-scale topography
[38]. The result of this is that conventional measure-
ments of surface topography are incomplete, and
computed surface metrics (such as h’rms) are unreli-
able, depending explicitly on the lateral resolution of
the measurement. Even very advanced methods of
analyzing surface topography, such as those in [39], are
limited in their effectiveness by the range of size-scales
in the underlying topography measurement. Instead,
cross-section electron microscopy provides a reliable
method to characterize surface topography down to
the Ångström-scale [40] (figure 1(c)). Further, the
small-scale topography can be stitched together with
the medium- and large-scale topography using the
power spectral density (PSD), to provide a compre-
hensive statistical description of surface topography at
all size scales [32]. The PSD is a mathematical tool
which separates the contribution to roughness from
different length scales l, and it is commonly repre-
sented as a function of wavevector p l=q 2 ./

This method of combining many different mea-
surements, from the atomic to the macroscale, is
termed comprehensive topography characterization and
was applied here to investigate the surface roughness
of four different varieties of diamond coatings, namely
ultrananocrystalline diamond (UNCD), polished
UNCD (pUNCD), nanocrystalline diamond (NCD),
andmicrocrystalline diamond (MCD).

2.Methods

Thin films of the diamond materials were deposited
(Advanced Diamond Technologies, Romeoville, IL)
using a tungsten hot-filament chemical vapor

Figure 1.Prior work has been done to study roughness and its effect on contact properties. Fuller andTabor [19] showed that
roughness is related to adhesion (a). However, in practice, artifacts from the imaging technique can strongly influence the
measurement of surface roughness, as demonstrated by the power spectral density (seemain text) of topography, shownhere for an
ultrananocrystalline diamond surface (b). Small-scale topography can bemore accurately captured using cross-section electron
microscopy (c), as shownhere for the samematerial frompanel (b). Panel (a) is reproduced from [19], copyright 1975, Royal Society,
with addition of arrow and text ‘Decreasingmodulus’. Panel (b) is reproduced from [31], Copyright 2017, IEEE.
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deposition (HF-CVD) system with parameters as
described in [41]. To improve electrical conductivity,
all materials were boron doped with a B/C ratio of
3000 ppm. All materials were deposited to a thickness
of 2 μm on polished silicon wafers after the wafers
were sonicated with slurries containing suspended
diamond nanoparticles. The deposition parameters
are listed in table 1.

The smallest-scale topography measurements
were made using transmission electron microscopy,
following the techniques described in [40]. For the
UNCD, NCD, and MCD, the ‘wedge deposition tech-
nique’ was used, whereas for pUNCD, the ‘surface-
preserving cross-section technique’ was used. These
techniques are described in detail in [40]. Briefly, the
wedge deposition technique involves depositing the
diamond film directly onto TEM-ready silicon thin-
wedge substrates. The surface-preserving cross-
section technique utilizes conventional methods for
the preparation of TEM cross-sections (sectioning,
grinding, polishing, dimple-grinding, and ion etching)
with process modifications to ensure that the original
surface is preserved. The samples were imaged using a
TEM (JEOL JEM 2100F, Tokyo, Japan) operated at
200 keV. The images were taken using magnification
levels from5000× to 600 000×.

The profiles were extracted from the TEM images
by using customMatlab scripts to trace the outermost
boundary of the material. Before tracing, the images
were rotated such that the boundary was approxi-
mately horizontal. The vast majority of the measured
surfaces were functions, i.e. for every point on the
x-axis, there was exactly one point on the y-axis; in
other words, the measured topographies were not
reentrant. However, there were some cases where two
adjacent points were captured with identical or
decreasing horizontal position (locally reentrant). For
these cases, the latter point was removed to restore
non-reentrant behavior so that the topography can be
described by a function as required by the calculation
of the PSD. They were only observed in 12 out of 160
TEM profiles, and even then, only in a small number
of points per profile, therefore the process of removing
such points should not affect the accuracy of the analy-
sis. Further, these locally reentrant points are attrib-
uted to imperfect rotation of the TEM profiles, rather
than to truly reentrant features on the surface.

The medium-scale topography was measured
using an atomic force microscope (Dimension V,

Bruker, Billerica, MA) in tapping mode with dia-
mond-like carbon-coated probes (Tap DLC300, Mik-
romasch, Watsonville, CA). For all substrates, square
measurements were taken with the following lateral
sizes: 3 scans each at 100 nm, 500 nm, and 5 μm; 1 scan
each at 250nm and 1μm. The scanning speed was
maintained at 1 μm s−1 for all scans. Each scan had
512 lines, with 512 data points per line, corresponding
to pixel sizes in the range of 0.2 to 98 nm. The wear of
the AFM tip was minimized using the best practices
described in [42]. Specifically, the values of free-air
amplitude and amplitude ratio, which is the ratio of
the amplitude of AFM probe tip vibration when per-
forming a scan to the amplitude when vibrating in free
air, were kept in the range of 37–49 nm and 0.15–0.3,
respectively. Though AFM provides a two-dimen-
sional description of the surface topography, the data
were analyzed as a series of line scans. This practice
maintained consistency with the other techniques,
which yield one-dimensional measurements, and also
eliminated artifacts due to instrumental drift in the
slow-scan axis.

The largest scales of topography were measured
using a stylus profilometer (Alpha Step IQ, KLA Ten-
cor, Milpitas, CA)with a 5-μmdiamond tip. Measure-
ments were collected at a scanning speed of 10 μm s−1,
with data points every 100 nm. A total of 8 measure-
ments were taken on each substrate, with 2 measure-
ments each at scan sizes of 0.5, 1, 2, and 5 mm. All
measurements were corrected using a parabolic fit to
remove the tilt of the sample and the bowing artifact
from the tool. For the UNCD and pUNCD, the larger
scan sizes exhibited consistent non-parabolic trends
due to instrument artifacts. These artifacts were cor-
rected by taking reference scans on polished silicon
wafers and subtracting the averaged reference profiles
from themeasurements.

Finally, the PSD was used to combine all measure-
ments from a single surface into one averaged curve
that describes the topography of that surface. The PSD
is the Fourier transform of the autocorrelation func-
tion of a line scanwith height h x ,( ) which ismathema-
tically equivalent to the square of the amplitude of
h q ;˜ ( ) i.e., = -C q L h q ,1 2( ) ∣ ˜ ( )∣ q is the wavevector and
L is the length of the scan. All data were collected and
analyzed as 1D line scans, enabling the calculation of
the one-dimensional PSD, denoted here as C (desig-
nated C D1 in [30, 32]). These calculations follow the
standards established in [30] for computing and
reporting PSDs.

Table 1.Deposition parameters for various forms of polycrystalline diamond.

Diamond type CH4/H2Ratio Pressure (Torr) Filament temperature (˚C) Filament power (KW) Polished

MCD 1.5% 25 2460 15.4 N
NCD 2.9% 10 2505 15.0 N
UNCD 4.7% 5 2550 15.1 N
pUNCD 4.7% 5 2550 15.1 Y
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3. Results

All topography data sets collected from this invest-
igation are freely available for download and analysis
[43–46].

3.1.Multi-scale topographymeasurement
Representative images of all three techniques are
shown for the four materials in figure 2. The stylus
profilometry data are shown with decreasing scan size
in figure 2(a). It is clear that the roughness on the
MCD has the largest amplitude (RMS height) while
the pUNCD surface shows the smallest. Going from
larger scans (figure 2(a1)) to smaller scans (figure 2
(a3)), the amplitude ofmeasured topography decreases
for all four diamond species. For example, while a
5-mm scan ofMCD spans a vertical range of 646 nm, a
0.5-mm scan of the same surface spans just 391 nm. In
order to interpret the stylus data correctly, an estimate
of the tip radius is needed because the tip introduces
artifacts at and below this size scale. Figure 2(a4) shows
a scanning electron microscopy (SEM) image of the
stylus tip. Fitting a circle to the tip yields a radius of
R=5.1 μm. The exact point where tip artifacts
become dominant [37] will be estimated using the
PSD in the following section.

The AFMmeasurements are shown as topography
maps of increasing resolution in figures 2(b)–(e). The
NCD andMCD clearly show grain structure and facet-
ing at scan sizes of 5 μm and 1 μm (figure 2(d1-2) and
(e1-2)). The UNCD sample (figure 2(c1-2)) also shows
strong texture, but the size indicates that these are
multi-grain clusters. The pUNCD shows topographic
features, but no grain structure. At the highest resolu-
tion (figures 2(b3)–(e3)), all features look relatively
smooth. The smoothness of the features is likely rela-
ted to tip artifacts (caused by convolution between tip
curvature and topography). Figures 2(b4)–(e4) show
TEM images of the AFM tips after they were used to
image the surfaces. The tip radii were measured as
R=17 nm for pUNCD, R=36, 47 and 31 nm for
UNCD, NCD and MCD respectively using the same
procedure used for the stylus tip. As with the stylus tip,
a circle was fitted to the tip profile for the extraction of
the radius (figures 2(b4), (c4), (d4), and (e4)). In cases
where the tip apex did not appear perfectly circular, a
best-fit circle was fitted to the region of the tip that
makes contact with the substrate.

Finally, the surfaces were analyzed using side-view
TEM (figures 2(f)–(i)). Once again, the pUNCD sur-
faces had the lowest amplitude of topography and the
MCD had the highest. The NCD and MCD materials
showed clear faceting from the individual crystallites.
At the scales accessible by the TEM, the UNCD surface
also shows faceting (see figures 2(g2), and (g3)). How-
ever, the smooth pUNCD surface shows no indication
of faceting but rather a smoothly varying surface topo-
graphy. Surprisingly, despite significant differences in

topography at larger scales, the smallest-scale topo-
graphy is nearly identical between themicrocrystalline
diamond, the nanocrystalline diamond, and the ultra-
nanocrystalline diamond. This finding is further dis-
cussed in the next paragraph.

To further investigate the similarities in roughness
at the smallest scales, representative images of the
three unpolished surfaces are shown in greater detail
in figure 3. In all cases, significant roughness is visible
on the scale of Angstroms to nanometers. This small-
scale topography is visible even on a single facet of a
single grain of the NCD and MCD materials. The
atomic lattice of the diamond is clearly visible in the
TEMwhenever a grain is aligned with a zone axis lying
near to the imaging axis. In these cases, the lattice is
observed inmany areas to extend to within 1 nmof the
surface. Therefore, it is not simply a rough and poten-
tially amorphous surface layer that is sitting on a flat
diamond facet, rather the diamond crystal itself exhi-
bits significant roughness at the small scale.

3.2. Computing topographymetrics, in real-space
and in frequency-space
Now, a more quantitative analysis of the topography
data is presented, and scalar roughness parameters are
computed for the various surfaces. First, the root-
mean-square (RMS) height h ,rms RMS slope ¢h ,rms and
RMS curvature hrms are computed in real-space from
each line scan by numerically integrating the squared
height data (or its derivatives) over the scan length L
[32]:
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using the trapezoidal rule (equation (4) of [32]).
Figure 4 shows the computed roughness parameters as
a function of scan size L (for RMS height, which
depends on the larger-scale features) and measure-
ment resolution l (for RMS slope and curvature, which
depend on smaller-scale features). Note that for TEM
data, the ‘measurement resolution’ is different from
the size of a pixel in the camera (‘pixel size’) (which can
be sub-atomic at the highest magnifications). The
measurement resolution l is determined from the
point spacing of the extracted profiles, as shown in
figure 2. Computing the RMS height as a function of
size is equivalent to an analysis of the surfaces’ self-
affine properties using a variable bandwidth
method [47].

Figure 4(a) shows that hrms increases with L for all
the surfaces studied here at small L, i.e. L less than 1
μm. There is a crossover to constant (independent of
L) hrms at a scan size of 1–10μm. All of the surfaces
studied here show this transition, which corresponds
to the thickness of these coatings (2 μm). The ampl-
itude of the pUNCD surface is much smaller than the
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other three surfaces. NCD and MCD roll off to the
same constant value. The values in figure 4(a) at large
L correspond to the observation of the amplitude in
stylus profilometry shown in figure 2, with pUNCD
being the ‘smoothest’ and MCD being the ‘roughest’
surface at large scales.

From the analysis of ideal self-affine surfaces
[22, 30, 32], it can be shown that µh LH

rms while
¢ µ -h lH
rms

1 and  µ -h l .H
rms

2 Therefore, in figure 4(a),

the small-scale data has been fit with a power-law func-
tion (solid lines), and the extracted values are used to
determine the expected trends infigures 4(b), (c) (dashed
lines). As argued above and first described in [36, 48], it is
apparent from figure 4 that no single value of RMS
height, RMS slope, and RMS curvature can be defined,
because these parameters dependon L or l.This demon-
strates a key difficulty that impedes efforts to link surface
function to a single scalar roughness parameter; these

Figure 2.Comprehensive topography characterization is achieved by performingmore than 50multi-resolutionmeasurements on
eachmaterial using stylus profilometry (top section), AFM (middle section) and side-viewTEM (bottom section). Representative data
from each technique at variousmagnifications are presented for all fourmaterials. For stylus andAFM, the radius of the scanning tip
shown in panels (a4), (b4), (c4), (d4) and (e4) ismeasured using electronmicroscopy.
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common roughness parameters (including RMS rough-
ness) are scanning-length dependent anddonot describe
an intrinsic property of thematerial.

As an alternative to analyzing the real-space mea-
surements individually (as done in figure 4), the mea-
surements can all be combined in frequency space to
create a single PSD, denoted C q ,( ) that yields a com-
plete statistical description of topography for each sur-
face, as shown in figure 5. This analysis was carried as
follows: first, the PSD of each measurement was com-
puted, following the procedures laid out in [30, 32].
Second, a reliability cutoff [30, 32] due to tip artifacts
was calculated for each PSD based on themeasured tip
radius (figure 2), and all data below this size scale was
deemed unreliable and removed [32]. Third, all of the
reliable portions of the many individual PSDs were
combined by computing the arithmetic average of all
measurements in logarithmically-spaced bins. The
result is a single whole-surface PSD that describes the
material across all length scales. There are no fitting
parameters in this analysis; rather the PSD serves to
separate the different size scales of topography, and the
various techniques agree within experimental uncer-
tainty. The only exception is for pUNCD, where the

small-size stylus data lies below the AFM and TEM
data, causing a dip around q=107 m−1. This is
believed to be an instrumental artifact, rather than
resulting from the real topography. Overall, the value
of these comprehensive PSDs is that they can be used
in analytical and numerical models (such as [22,
25–27, 49–52]) to understand and predict surface
properties (e.g. [17]).

To compute scale-invariant scalar roughness para-
meters, the full stitched-together PSD was used to
compute RMS height, RMS slope, and RMS curvature
as:
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Table 2 shows the computed RMS parameters.
Also computed from the whole-surface PSD is the area
ratio, which is the increase in full surface area, per unit
apparent area, due to the roughness. The area ratio is a
critical parameter in investigations of soft-material
adhesion, including [17], and it is calculated as

Figure 3. Significant small-scale roughness is observed on all of the as-deposited diamondmaterials. The unpolishedUNCD (left),
NCD (middle), andMCD (right) demonstrate similar roughness at the Angstrom-to-single-digit-nanometer scale, which is
superimposed on larger-scale topography that varies significantly betweenmaterials (insets). This small-scale topography is not
detectable with conventional topographymeasurements.

Figure 4. Scalar roughness parameters show systematic variationwith length scale. The RMSheight (a) is presented as a function of
scan size L; while the RMS slope (b) andRMS curvature (c) are shown as a function of resolution l (seemain text). The solid lines in
(a) show the best-fit power-law exponentH to the data at small scan sizes. This yields ameasurement of theHurst exponent from the
variable-bandwidthmodel [47], corresponding to HVBM=0.73 and 0.74 for pUNCDandUNCD, respectively and HVBM=0.93
and 1.02 forNCDandMCD, respectively. The dashed lines in (b) and (c) show the power-law dependency expected from the fits of
panel (a), -H 1, and -H 2, respectively (seemain text).
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described in [17]. While MCD is the roughest in terms
of RMS height, the unpolished UNCD is the steepest
in terms of RMS slope. However, while table 2 shows

the mathematically correct or ‘true’ values of RMS
parameters for a surface, any individual application or
surface property may depend only on a certain range

Figure 5.Topographymeasurements across eight orders ofmagnitude in length scale are combined into a single description of each
surface. Averaged power spectral densities (a) are shown for the four surfaces, eachwithmore than 50multi-resolution topography
measurements, with blue for polishedUNCD, red forUNCD, black forNCD, and green forMCD. Rawdata (b)–(e) comprises the
individual PSDs that are calculated from each topographymeasurement; their computed average is shownwith a black line. In panels
b–e, a different color scheme is used—with black representing stylus profilometry data, blue for AFM, and red for TEM.Red dashed
lines are fit to the ‘roll-off’ region and blue dashed lines arefit to ‘self-affine’ region (seemain text). In panels d and e, -q 4 scaling is
shown in the range of = ´q 2.8 107 m−1 to ´1.7 108 m−1. In panels c, d, and e the vertical dashed black lines represent themean
spacing of kinks (i.e., edges between facets, see Sect. 4.2).
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of length-scales. In that case, scale-dependent para-
meters would be recomputed by integrating only
across the relevant size scales.

4.Discussion

4.1. Evaluating the fractal nature of diamond
coatings, and themeaning ofHurst exponents
The Hurst exponent (which can be related to the
fractal dimension, as described in [53]), can be
calculated from the PSD, which is commonly sepa-
rated (somewhat arbitrarily) into the ‘self-affine’
region, where the topography appears to be described
by a power law relationship of µ bC q where b is the
power-law exponent, and the ‘roll-off’ region, where
the PSD appears to be flatter. TheHurst exponent H is
typically extracted from the self-affine region as

b= -H 1 2( )/ [53, 54]. Using this procedure, and
the region of the curves between = ´q 6.3 106 m−1

and ´1.8 1010 m−1, the resulting value was
= H 0.62 0.09 and 0.77 0.06 for pUNCD and

UNCD respectively; and = H 0.89 0.04 and
0.87 0.03 forNCDandMCDrespectively.
There are two alternative methods of extracting the

Hurst exponent: from the real-space data using the vari-
able bandwidth method (VBM) [55]; and from the roll-
off region by assuming that the full PSD is described by
Fractional Gaussian Noise (FGN) [53], a hypothesis put
forth by some of us in [32]. The VBM is nothing more
than an analysis of the functional dependence of RMS
height hrms as a function of scan size L (that scales as

µh L LH
rms ( ) for self-affine surfaces), as shown in

figure 4(a). Note that even for an individual scan, the
RMS height could be computed over a subsection of that
scan (yielding an estimate of the Hurst exponent for a
single realization of the topography [33, 47, 55]) but here
full-size scans were used for calculation. As shown in
figure 4(a), RMSheight h Lrms ( ) canbe accuratelyfitwith
a power-law form over the range from the smallest size
(L∼10 nm) up to approximately L=1−10μm.
Over this region, the Hurst exponents were
HVBM=0.73±0.18 for pUNCD; HVBM=0.74±
0.05 for UNCD; HVBM=0.93±0.09 for NCD and
HVBM=1.02±0.10 for MCD. The Hurst exponents
from this method (HVBM) yield similar results to the
above Hurst exponents (H ) that are extracted from the
more common method of fitting the ‘self-affine’ region
of the PSD. The VBM is a useful technique because it is
simpler to perform—requiring only a straightforward

calculation of the root-mean-square height, calculated in
real-space, from a series of multi-resolution measure-
ments. Additionally, it can be readily performed on reen-
trant surfaces, while the calculation of the PSD requires
surfaces to be functions (one height value for each lateral
position).

The second alternative method for computing the
Hurst exponent uses the ‘roll-off’ region and the frac-
tional Gaussian noise (FGN) approach. Here, the
Hurst exponent is given by a= +H 1 2FGN ( )/
[32, 53], where a is the scaling exponent µ aC q q( )
at low q. This results in = H 1.10 0.04FGN for
pUNCD; = H 0.82 0.04FGN for UNCD; and

= H 0.62 0.04FGN and 0.70±0.05 for NCD and
MCD, respectively. A prior paper by the present
authors ([32]) speculated that there may be a connec-
tion between HFGN and H (from the self-affine
region). This observation would be extremely useful as
it suggests that the small-scale behavior could be pre-
dicted from large-scale measurements. Unfortunately,
when these four different surfaces are compared, there
is no clear relationship that emerges.

Even in the traditional ‘self-affine’ portion of the
PSD, a range of values can be extracted forHurst expo-
nent for a single surface depending on the window
used for fitting H. This is particularly true for MCD
and NCDwhere Hurst exponents can be calculated by
dividing the ‘self-affine’ region into two parts. For q in
the range of ´2.8 107 to ´1.7 108 m−1, the extracted
values are lHlarger =1.27±0.27 and 1.32±0.09 for
NCD and MCD, respectively; for q in the range of

´1.7 108 to 1.8´1010 m−1, the extracted Hurst expo-
nents are lHsmaller =0.75±0.04 and 0.78±0.05 for
NCDandMCD, respectively. Indeed, the roughness in
these two portions of the curve seems to be qualita-
tively different, with the upper portion having a scal-
ing behavior near µ -C q ,4 corresponding to
H =1.5. The origin of these differences in scaling
behavior between different length scales is discussed in
detail in the next section.

Because there can be so much variability in the
measurement of a single surface, the whole practice of
assuming self-affinity and assigning a single Hurst
exponent to describe a surface must be done with cau-
tion. It is mathematically convenient to assume self-
affinity as this simplifies numerical and analytical
models, and it is common practice in experiments to
use assumptions of self-affinity to extrapolate to small
scales where the topography is not easily measured.

Table 2.One-dimensional roughness parameters for nanodiamond substrates computed from thewhole-surface
PSD for thesematerials.

PolishedUNCD UNCD NCD MCD

RMSheight 4.2±0.8 nm 17.4±1.3 nm 97.2±11.7 nm 101.2±8.0 nm
RMS slope 0.31±0.03 1.17±0.28 0.92±0.10 0.85±0.10

RMS curvature 1.99±0.35 nm−1 6.32±1.20 nm−1 5.91±1.83 nm−1 5.04±1.45 nm−1

Area Ratio 1.07 1.69 1.47 1.42
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However, at least for the diamond materials investi-
gated here, the best-fit value for H depends on the
region over which it is measured, and it is strongly
influenced by other factors such as grain size (see next
section). Instead, where possible, it is preferable to
measure surface topography across all size scales and
to use thewhole-surface PSD as the primary descriptor
for the surface, rather than any scalar parameter.

4.2. The effect of grain size on topography
As discussed in the previous section, the larger-grain-
size materials (NCD and MCD) demonstrate a region
where the PSD scaling is similar to -q 4 in the larger-
wavelength portion of the ‘self-affine’ region (see solid
black lines in figures 5(d) and (e)). This scaling is
characteristic of ‘kinks’ in the real-space line scan, such
as sharp peaks or valleys. Note that such kinks can arise
in topography as an artifact of the nonvanishing tip
radius [30, 37], so one must first rule out this as the
cause. However, in the present work, this -q 4 scaling is
clearly observed both in the reliable portion of the
AFM measurement and in the TEM measurement,
both of which are free from tip-based artifacts. There-
fore, this -q 4 scaling in the PSDs of the MCD and
NCD is a feature of the measured topography, rather
than emerging from an artifact. This behavior of the
PSD corresponds to kinks in the surface topography
that are directly observable in the TEM imaging, as
shown infigures 2 and 3.

Our hypothesis to describe this local -q 4 scaling is
that it is characteristic of topography at scales approxi-
mately equal to the grain size of the material. At these
scales, features are dominated by the crystal facets and
kinks between them: adjacent grains with different
orientations will create concave kinks where the grains
meet, while edges between crystal facets will create
convex kinks. It is therefore assumed that typical topo-
graphy line scans will pass through approximately two
kinks (one concave and one convex) per grain. At sizes
much below the grain size, the topography of MCD
and NCD reverts to random, self-affine behavior,
showing roughness very similar to UNCD (see
figure 3), where the PSD scales as - -q H1 2 (see blue
dashed lines in figures 5(b)–(e)). This finding agrees
with prior work [56] on fracture surfaces in sandstone.
In that work, stylus profilometry measurements
showed a transition around the grain size; however
sub-grain features were mostly inaccessible there
due to the aforementioned tip artifacts. Computer-
generated profiles were used to verify that facets can
cause -q 4-scaling at a wavevector related to the aver-
age kink spacing, designated lk. The mathematical
basis for this hypothesis linking kink spacing to -q 4

scaling in the PSD is given in the appendix.
In order to demonstrate how the PSD is affected by

the superposition of facets from a characteristic grain
size and random roughness below that size, artificial
one-dimensional surfaces were created that were

composed of: a superposition of triangular peaks
(figure 6(a1)); self-affine random roughness (figure 6
(a2)); and the summation of those two into a single
surface (figure 6(a3)). The piecewise linear surface
(figure 6(a1)) has kinks with uncorrelated heights
drawn from a Gaussian distribution and lateral dis-
tances between kinks drawn from a Rayleigh distribu-
tion. The surface is scaled in order to have an RMS
slope of 1 and an average kink spacing l .k The small-
scale self-affine random roughness (figure 6(a2)) is
generated using a Fourier-filtering algorithm [30, 57]
with aHurst exponent =H 0.8 andRMS-slope of 1.2.

When the PSDs (figure 6(b)) are computed from
these surfaces, there is a transition from a flat PSD at
the largest sizes to scaling as µ -C q 4, and the trans-
ition point occurs at a wavelength of l = l4k k, which
corresponds to = =

l
p pqk l

2

2k k
. (The transition is

somewhat gradual; the choice of this particular value
for the transition point is motivated from the mathe-
matical consideration in the appendix). Importantly,
the summed-surface PSD follows the kinked-surface
PSD and displays -q 4 scaling at larger scales, and then
transitions to self-affine scaling at smaller scales, in
this case corresponding to a Hurst exponent H of 0.8.
To ensure that these results were not unique to the
particular way that the kinked surface was generated,
this analysis was repeated using kinked surfaces with
uniform and exponential distributions of kink spa-
cings, as well as a surface with slopes alternating
between -1 and 1. These analyses are shown in the
supplemental section 1 (available online at stacks.iop.
org/STMP/9/014003/mmedia), but the results are
similar, differing only in the sharpness of transitions.
The key finding from this analysis is that the kink spa-
cing, which corresponds approximately to the grain
size, introduces a signature in the scaling of the topo-
graphy that causes deviations from the commonly
assumed fractal-like self-affine scaling.

The PSD of the summed surface (figure 6(b))
reproduces the three regions that are visible in the
PSDs ofMCD andNCD: flat behavior at small q (large
sizes); scaling like -q 4 at intermediate values; and self-
affine scaling ( ~H 0.8) at large q (small sizes). How-
ever, this does not yet explain the self-affine scaling
behavior that is observed above the grain size in
polished and unpolished UNCD. To account for this,
another synthetic surface was created that is similar to
the first, but this time with spatially correlated kink
heights (figure 6(c)). The spatial correlation of the kink
heights is enforced using themethod of [56] as follows:
a self-affine random surface was generated using the
Fourier-filtering algorithm; then facets were com-
puted by interpolating linearly between random
points (the kinks); finally this faceted surface was sum-
med with the same self-affine random roughness as
before (figure 6(a2)). While this does not substantially
alter the behavior at small wavelengths, this adds in an
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additional self-affine region above the grain size
(figure 6(d)).

To verify this proposed link between -q 4 scaling of
the PSD and the kink spacing of thematerial, an analy-
sis of kink spacing and grain size was performed on the
realmaterials using the AFMandTEMmeasurements.
For theMCD andNCD, concave kinks between grains
were readily visible, and therefore were quantified
using feature sampling, as is used in metallographic
analysis [58] (supplemental section 2.1). The mean
lineal intercept between concave kinks, which is of the
same order as the grain diameter [58], wasmeasured as
839±68nm for MCD and 647±42 nm for NCD.
Because the mean kink spacing used in the mathema-
tical analysis involves both convex and concave kinks,
it was computed as half of this value, i.e. 419±34 nm
forMCDand 323±21 nm forNCD. These values can
be converted to frequency-space using = pq ,k l2 k

as discussed above, and the values calculated are
= ´q 3.7 10k

6 m−1 for MCD and = ´q 4.9k

106 m−1 for NCD. The same approach could not be
applied to UNCD where the kink spacing was at or
below the reliability cut-off due to tip artifacts. There-
fore, the mean kink spacing for UNCD was estimated

as half of the grain size, which was computed by aver-
aging a sample of 20 different grains observed in the
TEM (see supplemental section 2.2). The mean grain
size of the UNCD was determined to be 14±
3 nm, which corresponds to a kink spacing for UNCD
of 7±2 nm and = ´q 2.2 10k

8 m−1. The mean
kink spacings of these three materials are indicated as
vertical bars in figures 5(c)–(e). Indeed, the MCD and
NCD demonstrate that the scaling transitions to
~ -C q 4 right around the mean kink spacing. For

UNCD, themean kink spacing is too small to observe a
clear -q 4 scaling regime; however, the self-affine scal-
ing behavior is confirmed for sizes much larger than
the characteristic grain size. The remainder of the
paper will frame results in terms of grain size (again,
approximately twice the value of kink spacing), since
grain size is more widely measured and reported for
polycrystallinematerials.

In summary, based on the experimental measure-
ments of these four polycrystalline diamond surfaces, and
based on the computed PSDs of artificially generated sur-
faces, four characteristic regimes of topography scaling
have been identified. (1) At the smallest size scales (if sig-
nificantly smaller than the grain size) power-law scaling
may be observed that is characteristic of self-affine

Figure 6.Computer-generated profiles support the experimental finding of characteristic regions of topography scaling for
polycrystalline surfaces. Panel (a) shows a representative section of the three types of computer-generated profiles investigated: a
faceted profile with random, uncorrelated kink heights and spacings (a1), a self-affine random roughness (a2); and the sumof these
profiles (a3). Their PSDs, averaged over logarithmically-spaced bins, are shown in (b). Three characteristic scaling regions (seemain
text) of the PSD for the summed surface are indicated by background color and labels above the graph. Panel (c) shows a surface
created by summing a faceted profile with correlated heights and the small-scale self-affine random roughness (same as a2). The
resulting PSD (d) shows four characteristic scaling regions. The RMS slope of the faceted profiles ¢hrms has been used to normalize all
PSDs and profiles.

10

Surf. Topogr.:Metrol. Prop. 9 (2021) 014003 AGujrati et al



random roughness, e.g., ~ - -C q ,H1 2 corresponding to
H in the range of 0.6–0.9. (2) At size scales similar to and
slightly smaller than the average grain size, the PSD dis-
plays characteristic scaling of ~ -C q 4 due to grain facets
and kinks. (3)At sizes larger than the grain size, but smal-
ler than the film thickness, there is another region of
power-law scaling corresponding to random roughness
( ~ - -C q H1 2 ). (4) Finally, at sizes larger than the film
thickness, the PSD flattens out, with scaling in the range
of q0 to -q .1 These four regions of topography scaling
accurately describe the polycrystalline diamond surfaces
and computer-generated surfaces investigated here.
These four regions and their boundaries may be broadly
generalizable to other materials, but further investigation
is required. For instance, the boundary between regions
(3) and (4) corresponded to the thickness of the diamond
coatings in these measurements, but this thickness was
not varied to explicitly investigate this connection. The
future application of comprehensive topography char-
acterization on other materials will elucidate the applic-
ability of these four regions to other polycrystalline
materials.

5. Conclusions

First, these results further establish a multi-resolution
approach that is designated ‘comprehensive topogra-
phy characterization,’ which combines multiple dif-
ferent techniques at multiple magnifications for the
same surface. Then the power spectral density can be
used to combine all measurements into one statistical
description of the surface. Because typical roughness
metrics are inherently scale-dependent and incom-
plete, this paper provides a method to understand
roughness at all scales, including the specific scale over
which it may be relevant in a given device. Particularly
the measurement of small-scale roughness may be
extremely important to predict and tailor surface
properties such as adhesion, friction and wear.
Furthermore, all topography measurements from this
publication have been made publicly available,
[43–46] so that other experimentalists may compare
results and so that computational modelers may use it
in models to predict properties of diamond materials.
The purpose of this data and the underlying approach
is to advance thefield towards the goal of fundamental,
predictive understanding of the performance of rough
surfaces.

Second, these results show that the surface rough-
ness of polycrystalline diamond materials varies sig-
nificantly with scale, with surfaces that are smoother
when measured at the large-scale showing roughness
that is identical or even higher when measured at the
smaller scales. Furthermore, while self-affine scaling
( ~ -H 0.6 0.9) is observed over some length-
scales, the grain size introduces a signature into the
power spectral density, showing -q 4 scaling behavior
at scales approximately equal to the grain size. All

unpolished surfaces show identical self-affine scaling
at the smallest scale. This is a signature of small-scale
roughness that is superimposed on the crystalline
facets and is not observable with conventional (AFM,
stylus) measurement techniques. Altogether, four
characteristic regions of topography scaling were
observed; these are expected to be applicable to all
unpolished polycrystalline diamond films and may
applymore broadly to other polycrystallinematerials.
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Appendix. Amathematical basis for the q−4

scaling of the PSD slightly below the
grain size
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A piecewise linear function y x( ) with kinks at
x h,k k( ) can be written as a superposition of these
peaks. Its Fourier transform is:
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=h hn 0 ensures continuity at the periodic boundary.
The PSD of the piecewise linear function has the

same features as the PSD of the triangular peak: for
large enough values of q, µ -C q q ;4( ) for
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the PSD is flat. Figure 6(b) shows that for the profiles
considered, the PSD changes between flat and µ -q 4

around = pq ,k l2 k
with lk themean kink spacing, rather

than themaximum kink spacing. Similarly, the PSD in
figure 6(d) changes between the super-grain self-affine
scaling and µ -q 4 around the same wavevector

= pq .k l2 k
This is close to the value pqk l3 k

 determined

in [56] for the sameHurst exponent of the super-grain
self-affine regime, =H 0.8.

The different exponents of the PSD of faceted ver-
sus self-affine surfaces correspond to different beha-
viors of the scale-dependent RMS slope with
increasing resolution. The scale-dependent RMS slope
can be computed from the PSD = aC q q( ) using

equation (2): ò¢ = ah q dqq q .
q

q

rms max
2

min

max

1
2⎛

⎝⎜
⎞
⎠⎟( ) As

 ¥q ,max
¢h qrms max( ) converges to a finite value for

a < -3, but diverges for a - 3, the former case
corresponding to a faceted surface and the latter to a
self-affine random surface with H 1. Since the
slope between two kinks is constant by definition, the
RMS slope of a faceted profile is finite and reaches its
limit value once the smallest resolved length is
below the kink spacing. In contrast to that, the RMS
slope of an ideal self-affine random surface with
H 1 increases indefinitely with resolution, as smal-

ler-scale features with increasing slope are resolved.
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Supplemental Section 1: Alternate ways of generating faceted random surfaces 
 
We show different ways to generate the faceted surfaces and how this affects the result. First, we 
replace the Rayleigh distribution of the kink distances used in the main text by an exponential and 
a uniform distribution (Fig. S1a2 and a3, respectively). Additionally, we generate a faceted surface 
following a different approach (Fig. S1a4). The slope is alternating between –1 and 1, the height 
of each peak is drawn from a Gaussian distribution and the distance between each valley to its 
closest peak is drawn from a Rayleigh distribution. The distance to the other peak results from the 
height difference and the slope. Fig. S1b shows the PSDs of 20 realizations of these profiles, each 
having 200 kinks resolved on 10! pixels. For the uniform and exponential distribution of kink 
spaces, there is a broad transition from the flat regime to the proper 𝑞"#	scaling, due to the high 
probability of small kink distances. One realization of the exponential and uniform distribution has 
a minimum kink distance smaller than the pixel size, so that the 𝑞"# regime is never reached. The 
profiles with alternating slopes have a sharp transition from flat to 𝑞"# scaling similar to the 
profiles with random slopes and kinks spaced according to a Rayleigh distribution. 
 



 
Supp. Figure 1: Faceted surfaces were generated using four different methods (a) with relatively little 
difference in their computed PSDs (b). Faceted surfaces were created (a1 to a3) with kink heights drawn 
from a Gaussian distribution and distances between kinks drawn from different distributions. Note that for 
a fixed RMS slope, the presence of close kinks (locally high slopes) in the surfaces with uniform and 
exponential distribution yields a smaller RMS height than for the Rayleigh distribution. Additionally, 
faceted surfaces were created with slope alternating between -1 and 1 (a4); see text for details on the 
generation. PSDs are shown (b) for 20 realizations of each type of surface.  

(a1) Rayleigh

(a2) Exponential

(a3) Uniform

(a4) Alternating slope

(b)(a)



Supplemental Section 2: Measuring the grain size and mean kink spacing  
 

 
Supp Figure 2: Calculation of mean kink spacing and grain size using TEM and AFM. TEM 
imaging (a) was used to determine the grain size for UNCD, where blue circles outline contrast 
variations that indicate the presence of a grain. The average diameter of these circles were used as 
a measure of grain diameter. For NCD (b) and MCD (c), 4-µm lines (yellow) were superimposed 
on 5-µm x 5-µm AFM images. A black or white ‘x’ was used to mark each intersection of a line 
with a grain boundary. 
 
MCD and NCD 
To get the mean kink spacing, first the mean lineal intercept was calculated following methods 
described in Ref. [1]. Specifically, an array of 9 lines of 4-µm length was super imposed on a 5-
µm x 5-µm AFM scan. Then the number of intersections of these lines with grain boundaries were 
counted and denoted by the variable 𝑃 (Fig. S2b, c). This gave the mean lineal intercept by using 
𝐿
𝑃' , where 𝐿 is length of all superimposed lines, which is 9	 × 	4	µm	 = 	36	µm. This method was 

repeated in a perpendicular direction over 3 MCD and 3 NCD images and the average gave a mean 
lineal intercept of 839 ± 68 nm for MCD and 647 ± 42 nm for NCD. Finally, since this analysis 
includes only concave kinks, the mean kink spacing is calculated by dividing the mean lineal 
intercept by 2, to obtain 419 ± 34 nm for MCD and 323 ± 21 nm for NCD in real-space and 𝑞$ =



3.7 × 10% m-1 for MCD and 𝑞$ = 4.9 × 10% m-1 for MCD in frequency-space (shown as vertical 
dashed black lines in Fig. 5d and e in main text). 
 
Polished and unpolished UNCD 
The same AFM-based procedure could not be applied for UNCD because the grain size approaches 
the reliability cut-off due to tip artifacts. So, instead a different approach was used; circles were 
superimposed (ovals if needed) on crystal grains that are visible as defined regions of TEM-
contrast variation (Fig. S2a). Then, grain diameter was calculated for all circles (for ovals, using 
the mean of the two diameters) in calibrated units. Mean kink spacing was calculated by averaging 
grain diameters and then dividing by 2. The average grain diameter was calculated for UNCD as 
14 ± 3 nm, so the mean kink spacing was 7 ± 2 nm in real-space and 𝑞$ = 	2.2 × 10& m-1 in 
frequency-space (shown as vertical dashed black lines in Fig. 5c in main text). 
 
[1] J.C. Russ, R.T. Dehoff, Practical Stereology, Second, Springer US, Boston, MA, 2000. 

https://doi.org/10.1007/978-1-4615-1233-2. 
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