Status of the CMOS Strip Detector Project in Freiburg

N. Sorgenfrei L. Diehl M. Hauser C. Hönig K. Jakobs S. Mägdefessel U. Parzefall A. Rodriguez D. Sperlich

> Faculty of Physics Albert Ludwig University of Freiburg

DPG Spring Meeting Heidelberg, March 2022

What is CMOS?

- Complementary metal-oxide-semiconductor
- combine n- and p-MOSFETs on one substrate
 → circuits integrated in substrate
- used in computers, phones, cameras, ...

• many vendors, established industry production lines, fast, cheap and bulk production capabilities

Why CMOS?

- current and future colliders rely on silicon detectors
- need to cover big areas and be radiation hard
- large areas limits us to microelectronics foundries
- only few vendors meet requirements

 \rightarrow silicon is and will be a big cost driver

Passive CMOS Strip Sensors

- $\bullet~$ L-Foundry $150\,\mathrm{nm}$ process
- float-zone silicon, 3-5 k $\Omega \, \mathrm{cm}$ resistivity
- (150 \pm 10) $\mu \mathrm{m}$ thickness
- $\bullet~40$ strips with $75.5\,\mu\mathrm{m}$ pitch
- $4.1\times1\,\mathrm{cm}^2$ or $2.1\times1\,\mathrm{cm}^2$
- 3 designs on one unit: regular & low dose 30/55

- \bullet frontside processing: reticle stitching with $1\,{\rm cm}^2$ masks for larger areas
- \bullet backside processing: 2^{nd} batch has additional metal and p^+ layer

Sensor Design

Niels Sorgenfrei (ALU)

IV & CV measurements

charge collection - unirradiated

- collimated 90 Sr β -decay source
- MIP-like e⁻
- placed in front of different design and stitch regions

- regular and low dose 30 reach expected charge of $\sim 11.5\,\mathrm{ke^-}$
- low dose 55 systematically low charge \rightarrow highest capacitance, maybe read-out electronics unable to handle it
- no stitching effect

charge collection - irradiated

Conclusion

- no effects of stitching detected
- promising radiation hardness
- BUT still ongoing investigation: more sensors, more fluences

- larger areas, more strips
- fully utilise CMOS process and include electronics on substrate

Back-up

Niels Sorgenfrei (ALU)

Passive CMOS Strips

DPG 2022

DB & Bonds

Preiburg

Sensor Design

regular

low dose 30/55

Niels Sorgenfrei (ALU)

Passive CMOS Strips

Sensor Design

low dose 30/55 design

Niels Sorgenfrei (ALU)

Passive CMOS Strips

DPG 2022

ALIBAVA setup

⁹⁰Sr β-decay source scintillators collimated gives MIP-like e⁻ two scintillators trigger in coincidence low energy cut sensor on daughterboard with beetle electronics

- inside freezer, additional liquid nitrogen cooling possible
- external motherboard for further signal processing and communication with software

ALIBAVA measurement & analysis

- position source for different sensor design & stitch regions
- pedestal and source run
- motherboard 40 MHz signal sampling (LHC timing, 25 ns)
- TDC compares signal sample and trigger times
 - \rightarrow sort snapshots of signals acc. to time
- time cut: bias to smaller charge collected if too long
- $\bullet\,$ seed & neighbour cut $\to\,$ cluster algorithm
- get collected charge from Landau-Gauss signal-fits

ALIBAVA measurement & analysis

- position source for different sensor design & stitch regions
- pedestal and source run
- motherboard 40 MHz signal sampling (LHC timing, 25 ns)
- TDC compares signal sample and trigger times
 - \rightarrow sort snapshots of signals acc. to time
- time cut: bias to smaller charge collected if too long
- $\bullet\,$ seed & neighbour cut $\to\,$ cluster algorithm
- get collected charge from Landau-Gauss signal-fits

ALIBAVA measurement & analysis

- position source for different sensor design & stitch regions
- pedestal and source run
- motherboard 40 MHz signal sampling (LHC timing, 25 ns)
- TDC compares signal sample and trigger times
 - \rightarrow sort snapshots of signals acc. to time
- time cut: bias to smaller charge collected if too long
- $\bullet\,$ seed & neighbour cut $\to\,$ cluster algorithm
- get collected charge from Landau-Gauss signal-fits

Niels Sorgenfrei (ALU)

Passive CMOS Strips

DPG 2022

7/7

FREIBURG