Stitched Passive CMOS Strip Sensors

Niels Sorgenfrei*, Jan-Hendrik Arling, Marta Baselga, Leena Diehl, Ingrid-Maria Gregor, Marc Hauser, Tomasz Hemperek, Karl Jakobs, Fabian Lex, Ulrich Parzefall, Arturo Rodriguez, Surabhi Sharma, Dennis Sperlich, Jens Weingarten

> *Faculty of Physics Albert Ludwig University of Freiburg

40th RD50 Workshop, CERN, June 2022

Stitched Passive CMOS Strip Sensors

- $\bullet~$ L-Foundry $150\,\mathrm{nm}$ process
- float-zone silicon, $3-5 \,\mathrm{k}\Omega \,\mathrm{cm}$ resistivity
- (150 \pm 10) $\mu \mathrm{m}$ thickness
- $\bullet~40$ strips with $75.5\,\mu\mathrm{m}$ pitch
- $4.1\times1\,\mathrm{cm^2}$ or $2.1\times1\,\mathrm{cm^2}$
- 3 designs in one unit: *Regular & Low Dose 30/55*

- \bullet frontside processing: reticle stitching with $1\,{\rm cm}^2$ masks for larger areas
- \bullet backside processing: laser annealing, highly doped p^+ layer and add. metallization

Stitched Passive CMOS Strip Sensors

IV & CV Measurements

- unirradiated sensors
- $\bullet\,$ breakdown at $\sim 250\,{\rm V}$, full depletion at $\sim 30\,{\rm V}$
- second batch improved over first batch

IN IN

Edge-TCT: 2D Scan

- unirradiated, short LD30 sensor at 100 V (fully depleted)
- homogeneous charge collection (apart from scratches on edge of sensor)
- stitches not visible

IN IN

Edge-TCT: Charge Collection & Electron Velocity

LD30

Sensor tor

- sensors deplete top to back
- full depletion at 30-40 V
- complete sensor volume sensitive to charge
- collected charge remains constant after full depletion

Niels Sorgenfrei (ALU-Freiburg)

Velocity [a.u.] -U=100 V -U=80 V -U=60 V - U=50 V 25 11=40 V -U=30 V 20 U=25 V U=20 V 15 -U=15 V U=10 V 10 11=5 V 160 180 80 100 140 Scanning Distance [um]

- velocity still increases after full depletion
- expected approx. triangular shape visible
- similar results for Regular design

Charge Collection: Short Sensor

- ⁹⁰Sr β-decay source gives MIP-like e⁻ for charge creation in sensors
- unirradiated
- $\bullet\,$ full depletion at $\sim 40\,{\rm V}$
- constant signal after full depletion
- Regular and LD30 reach expected charge of $\sim 11.5 \, \rm ke^-$
- LD55 systematically low charge
 → highest capacitance, maybe read-out
 electronics unable to handle it
- no effect of stitching visible

Charge Collection: Short Sensor

- \bullet irradiated up to $1\cdot 10^{14}\,\mathrm{n_{eq}/cm^2}$
- $\bullet\,$ full depletion at $\sim 80\,{\rm V}$
- LD30/55 have suspiciously high charge → sensor specific measurement error?
- *Regular* significantly less charge after irradiation
- small increase of signal after full depletion: higher bias voltage ⇒ stronger E-field ⇒ lower trapping probability
- no effect of stitching visible

Charge Collection: Long Sensor

- \bullet irradiated up to $1\cdot 10^{14}\,\mathrm{n_{eq}/cm^2}$
- $\bullet\,$ full depletion at $\sim 90\,{\rm V}$
- behaves more expectedly than short sensor
- LD30/55 show higher signal than Regular
- slight signal increase after full depletion
- no effect of stitching visible

Charge Collection: Short Sensor

- \bullet irradiated up to $5\cdot 10^{14}\,\rm n_{eq}/cm^2$
- full depletion at $\sim 300\,{\rm V}$
- increase of signal after full depletion
- Regular collects more charge again: this already happens at $3\cdot 10^{14} \, {\rm n_{eq}/cm^2}$
- LD30/55 collect more charge than Regular at low voltages: simulations show lower E-field at sensor top and stronger field in bulk ⇒ lower trapping probability
- no effect of stitching visible

Charge Collection: Long Sensor

- \bullet irradiated up to $1\cdot 10^{15}\,\rm n_{eq}/cm^2$
- $\bullet\,$ after beneficial annealing of 80 $\min\,$ at 60 $^{\rm o}{\rm C}$
- Regular still reaches $\sim 10\,{
 m ke}^-$
- LD30/55 significantly lower signal
- no effect of stitching visible

Conclusion

several unirrad. and irrad. stitched strip sensors have been investigated:

- no effects of stitching observed
- promising radiation hardness

BUT still ongoing investigation:

- unclear systematic errors
 - low charge in unirrad. LD55 short sensor
 - high charge in irrad. LD30/55 short sensor
- more sensors need to be measured

outlook:

- \bullet even higher fluences ($\mathcal{O}\left(10^{17}\right)\mathrm{n_{eq}/cm^{2}}$ for FFC)
- 3rd batch: separate *LD30* and *55* sensors
- larger areas (more stitches), more strips
- fully utilise CMOS process and include electronics on substrate

Thank you for your attention!

Back-up

Niels Sorgenfrei (ALU-Freiburg)

Charge Collection: Long Sensor

- \bullet irradiated up to $3\cdot 10^{14}\,\rm n_{eq}/cm^2$
- $\bullet\,$ full depletion at $\sim 160\,{\rm V}$
- \bullet after beneficial annealing of 80 \min at 60 $^{\circ}\mathrm{C}$
- *Regular* collects more charge than lower fluence
- so far promising radiation hardness

Statistical Fluctuations

Niels Sorgenfrei (ALU-Freiburg)

Ballistic Deficit

- bottom curve shows pulse shape with practical shaping time constant
- upper shows pulse shape with very large shaping time constant
 - \rightarrow allows full charge collection
- difference in pulse height is called ballistic deficit

//ns.ph.liv.ac.uk/~ajb/radiometrics/glossary/ballistic_deficit.html

DB & Bonds

Niels Sorgenfrei (ALU-Freiburg)

Stitched Passive CMOS Strips

40th RD50 Workshop

Sensor Design

regular

low dose 30/55

Niels Sorgenfrei (ALU-Freiburg)

Sensor Design

low dose 30/55 design

Niels Sorgenfrei (ALU-Freiburg)

Stitched Passive CMOS Strips

40th RD50 Workshop

ALIBAVA Setup

- 90 Sr β -decay source
 - gives MIP-like e⁻
 - collimated
 - placed in front of different design and stitch regions
- two scintillators
 - trigger in coincidence
 - low energy cut
- sensor on daughterboard with beetle electronics
- inside freezer, additional liquid nitrogen cooling possible
- external motherboard for further signal processing and communication with software
- signal distribution: Landau-Gauss fit to determine MPV

N

BURG

ALIBAVA measurement & analysis

- position source for different sensor design & stitch regions
- pedestal and source run
- motherboard 40 MHz signal sampling (LHC timing, 25 ns)
- TDC compares signal sample and trigger times
 - \rightarrow sort snapshots of signals acc. to time
- time cut: bias to smaller charge collected if too long
- $\bullet\,$ seed & neighbour cut $\to\,$ cluster algorithm
- get collected charge from Landau-Gauss signal-fits

ALIBAVA measurement & analysis

- position source for different sensor design & stitch regions
- pedestal and source run
- motherboard 40 MHz signal sampling (LHC timing, 25 ns)
- TDC compares signal sample and trigger times
 - \rightarrow sort snapshots of signals acc. to time
- time cut: bias to smaller charge collected if too long
- $\bullet\,$ seed & neighbour cut $\to\,$ cluster algorithm
- get collected charge from Landau-Gauss signal-fits

ALIBAVA measurement & analysis

- position source for different sensor design & stitch regions
- pedestal and source run
- motherboard 40 MHz signal sampling (LHC timing, 25 ns)
- TDC compares signal sample and trigger times
 - \rightarrow sort snapshots of signals acc. to time
- time cut: bias to smaller charge collected if too long
- $\bullet\,$ seed & neighbour cut $\to\,$ cluster algorithm
- get collected charge from Landau-Gauss signal-fits

10/10

Niels Sorgenfrei (ALU-Freiburg)