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Abstract

This dissertation is about the computational analysis and prediction of RNA-protein inter-
actions. Ribonucleic acids (RNAs) and proteins both are essential for the control of gene
expression in our cells. Gene expression is the process by which a functional gene prod-
uct, namely a protein or an RNA, is produced from a gene, starting from the gene region
on the DNA with the transcription of an RNA. Once regarded primarily as a messenger
to transmit the protein information, recent years have seen RNA moving further into the
biomedical spotlight, thanks to its increasingly uncovered roles in regulating gene expres-
sion. In addition, RNA has showcased its therapeutic potential, as famously demonstrated
by the groundbreaking success of RNA vaccines in the COVID-19 pandemic. However, RNAs
rarely function on their own: In humans, more than 1,500 different RNA-binding proteins
(RBPs) are involved in controlling the various stages of an RNA’s life cycle, creating a highly
complex regulatory interplay between RNAs and proteins. It is therefore of fundamental im-
portance to study these RNA-protein interactions, in order to deepen our understanding of
gene expression.

Over the last decade, CLIP-seq has become the dominant experimental method to identify
the set of cellular RNA binding sites for an RBP of interest. However, analysing the resulting
CLIP-seq data can be challenging, as there are many analysis steps and CLIP-seq protocol
variants available, each requiring specific adaptations to the analysis workflow. Consequently,
there is a need for analysis guidelines, providing easy access to tools, as well as the constant
improvement of tools and workflows to increase the accuracy of the analysis results.

The first set of works included in this thesis (publications P1, P4, and P5) deals with
these topics, by providing a review article on CLIP-seq data analysis, as well as two articles
on how to further improve CLIP-seq data analysis. Publication P1 supplies readers with an
overview of tools and protocols, as well as guidelines to conduct a successful analysis, drawing
largely from our own experience with analysing CLIP-seq data. Publication P4 demonstrates
the issues current binding site identification tools have with CLIP-seq data from RBPs that
bind to processed RNAs, and that the integration of RNA processing information improves
the resulting binding site quality. On top of this, publication P5 presents Peakhood, the
first tool that utilizes RNA processing information in order to increase the quality of RBP
binding sites identified from CLIP-seq data.

A natural drawback of experimental methods is that a target RNA needs to be sufficiently
expressed in the observed cells for an RNA-protein interaction to be detected. Hence, since
gene expression is a dynamic process that differs between cell types, time points, and condi-
tions, a CLIP-seq experiment cannot recover the complete set of cellular RBP binding sites.
This creates a demand for computational methods which can learn the binding properties
of an RBP from existing CLIP-seq data, in order to predict RBP binding sites on any given
target RNA. Besides interacting with proteins, RNAs can also interact with other RNAs,
further increasing the amount of possible regulatory interactions between RNAs and pro-
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teins. In this regard, long non-coding RNAs (lncRNAs), a large class of non-protein-coding
RNAs whose functions are still vastly unexplored, have become especially important, as it
has been shown that they can engage in RNA-RNA interactions, whose regulatory mecha-
nisms also include RNA-protein interactions. As such mechanistic studies are typically slow
and expensive, computational tools that combine RNA-protein and RNA-RNA interaction
predictions to infer potential mechanisms could be of great help, e.g., by screening a set of
target RNAs and proteins and suggesting plausible mechanisms for experimental validation.

The second set of works included in this thesis (publications P2 and P3) thus deals
with the computational prediction of RNA-protein interactions, RNA-RNA interactions and
the functional mechanisms that can be inferred from these interactions. Publication P2
introduces MechRNA, the first tool to infer functional mechanisms of lncRNAs based on
their predicted interactions with RBPs and other RNAs, as well as gene expression data.
We demonstrated MechRNA’s capability to identify formerly described lncRNA mechanisms
and experimentally validated one prediction, underlining its value for functional lncRNA
studies. Finally, publication P3 presents RNAProt, a flexible and performant RBP bind-
ing site prediction tool based on recurrent neural networks. Compared to other popular
deep learning methods, RNAProt achieves state-of-the-art predictive performance, as well
as superior runtime efficiency. In addition, it is more feature-rich than any other available
method, including the support of user-defined predictive features. We further showed that
its visualizations agree with known RBP binding preferences, and demonstrated that its
additional predictive features can increase the specificity of predictions.



Zusammenfassung

Diese Dissertation beschäftigt sich mit der computergestützten Analyse und Vorhersage von
RNA-Protein-Interaktionen. Ribonukleinsäuren (RNAs) und Proteine sind essentielle Be-
standteile der Genexpressionskontrolle in den Zellen unseres Körpers. Genexpression be-
zeichnet den Prozess der Herstellung eines funktionellen Genprodukts, welches ein Protein
oder eine RNA sein kann, angefangen mit der Transkription einer RNA von der betreff-
enden Genregion auf der DNA. In den letzten Jahren hat sich unser ursprüngliches Bild
der RNA als Überträger der Proteininformation erheblich erweitert: Diverse Forschungsar-
beiten haben zahlreiche neue RNA-Funktionen bei der Regulierung der Genexpression offen-
gelegt, wodurch sich der wissenschaftliche Fokus in der biomedizinischen Forschung weiter
in Richtung RNA verschoben hat. Darüber hinaus hat der bahnbrechende Erfolg der RNA-
Impfstoffe in der COVID-19 Pandemie auf beeindruckende Weise das therapeutische Poten-
tial von RNA aufgezeigt. RNAs führen ihre Funktionen jedoch in den seltensten Fällen
alleine aus: Mehr als 1500 RNA-Bindeproteine (RBPs) sind im Menschen an der Kon-
trolle der verschiedenen Phasen des RNA-Lebenszyklus beteiligt, was zu einem hochkom-
plexen regulatorischen Zusammenspiel zwischen RNA und Proteinen führt. Es ist daher von
grundlegender Bedeutung, diese RNA-Protein-Interaktionen zu untersuchen, um ein tieferes
Verständnis der Genexpression zu erlangen.

Im Laufe des letzten Jahrzehnts hat sich CLIP-seq als experimentelle Methode zur Identi-
fizierung der zellulären RNA-Bindestellen eines bestimmten RBPs durchgesetzt. Die Analyse
der resultierenden CLIP-seq-Daten ist jedoch alles andere als trivial, da sie ein fundiertes
Wissen über die zahlreichen Analyseschritte und die unterschiedlichen CLIP-seq-Protokolle
voraussetzt. Es ist daher notwendig, dem Anwender Anleitungen und Programme für die
einzelnen Analyseschritte und Protokollvarianten zur Verfügung zu stellen. Ebenso wichtig
ist die kontinuerliche Verbesserung der Programme und Workflows, um die Qualität der
Analyseergebnisse weiter zu erhöhen.

Die ersten drei in dieser Dissertation enthaltenen Publikationen (Publikationen P1, P4
und P5) behandeln diese Themen: Publikation P1 ist ein Übersichtsartikel zur Analyse von
CLIP-seq-Daten, der die wichtigsten Analyseschritte, Protokolle und Programme beschreibt,
mit dem Ziel, dem Leser eine erfolgreiche Datenanalyse zu ermöglichen. Die enthaltenen
Anleitungen basieren dabei weitgehend auf unseren eigenen Erfahrungen mit der Analye von
CLIP-seq-Daten. Publikation P4 stellt die Probleme aktueller Programme zur Identifizierung
von Bindestellen dar, wenn die CLIP-seq-Daten von RBPs stammen die an prozessierte
RNAs binden. Weiterhin zeigen wir, dass die Integration von Informationen zur RNA-
Prozessierung die Qualität der resultierenden Bindestellen verbessert. Darauf aufbauend
präsentieren wir in Publikation P5 Peakhood, das erste Programm welches Informationen
zur RNA-Prozessierung benutzt um die Qualität der aus CLIP-seq-Daten ermittelten RBP-
Bindestellen zu erhöhen.

Ein offensichtlicher Nachteil experimenteller Methoden ist, dass diese auf eine ausreichend
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hohe Expression der RNA angewiesen sind, um die sich darauf befindlichen RBP-Bindestellen
detektieren zu können. Da die Genexpression dynamisch ist und deshalb unterschiedlich
ausfällt zwischen verschiedenen Zelltypen, Zeitpunkten und Konditionen, kann ein CLIP-
seq-Experiment folglich niemals den kompletten Satz an zellulären RBP-Bindestellen ermit-
teln. Dies führt zu einem Bedarf an computergestützten Methoden, welche die Bindeeigen-
schaften eines RBP aus existierenden CLIP-seq-Daten lernen können, um damit neue RBP-
Bindestellen auf beliebigen RNAs vorherzusagen. Neben der Interaktion mit Proteinen kön-
nen RNAs auch mit anderen RNAs interagieren, wodurch sich die Anzahl der möglichen
regulatorischen Interaktionen zwischen RNAs und Proteinen nochmals deutlich erhöht. In
diesem Zusammenhang sind vor allem lange nicht-kodierende RNAs (lncRNAs) zu nen-
nen, eine große noch weitgehend unerforschte Klasse nicht-proteinkodierender RNAs, da
gezeigt werden konnte, dass diese RNA-RNA-Interaktionen ausbilden können, deren regu-
latorische Mechanismen auch RNA-Protein-Interaktionen mit einbeziehen. Diese mecha-
nistischen Studien sind allerdings mit einem erheblichen Zeit- und Kostenaufwand verbun-
den. Dementsprechend entsteht ein Bedarf an computergestützten Methoden zur Vorhersage
potentieller Mechanismen anhand von vorausberechneten RNA-Protein- und RNA-RNA-
Interaktionen. Diese dienen dann beispielsweise zur Vorauswahl plausibler Mechanismen,
welche anschließend experimentell validiert werden können.

Die restlichen zwei in dieser Dissertation enthaltenen Publikationen (Publikationen P2
und P3) befassen sich deshalb mit der computergestützten Vorhersage von RNA-Protein-
Interaktionen, RNA-RNA-Interaktionen, sowie den funktionellen Mechanismen, die sich aus
diesen Interaktionen ableiten lassen. In Publikation P2 stellen wir MechRNA vor, das erste
Programm zur Vorhersage funktioneller Mechanismen von lncRNAs, abgeleitet aus voraus-
berechneten Interaktionen der lncRNA mit RBPs und anderen RNAs sowie aus Genexpres-
sionsdaten. Wir zeigen dass MechRNA in der Lage ist, bekannte lncRNA-Mechanismen
zu identifizieren. Ebenso konnten wir eine Vorhersage erfolgreich experimentell validieren,
was nochmals den Wert des Programms für funktionelle lncRNA-Studien unterstreicht.
Schließlich präsentieren wir in Publikation P3 RNAProt, ein flexibles und leistungsfähiges
Programm zur Vorhersage von RBP-Bindestellen, basierend auf rekurrenten neuronalen Net-
zen. Im Vergleich zu anderen populären Deep-Learning-Methoden bietet RNAProt sowohl
eine überragende Vorhersageleistung als auch eine überlegene Laufzeiteffizienz. Darüber hin-
aus bietet das Programm mehr Funktionen als jede andere verfügbare Methode, einschließlich
der Unterstützung benutzerdefinierter Vorhersage-Features. Zudem haben wir gezeigt, dass
die in RNAProt enthaltenen Visualisierungen mit bekannten RBP-Bindepräferenzen über-
einstimmen, und dass die zusätzlichen Vorhersage-Features von RNAProt die Spezifität der
Vorhersagen weiter erhöhen können.
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Chapter 1

Introduction

1.1 Motivation
Throughout evolution, life on earth has taken on a stunning variety of forms. Still, their
common ancestry has preserved the fundamental aspects of life in every single living or-
ganism: All organisms are made up of cells. In addition, cells share many fundamental
biochemical processes, as well as the same biomolecules responsible for the flow of genetic
information inside the cell: the genetic information is stored in DNA, which gets transcribed
into RNA, and RNA is translated into protein. The units of genetic information are known
as genes, while the sum of the genetic information of a particular organism is also referred to
as genome. Proteins thus execute the gene function, while RNA can either be protein-coding
or non-coding, meaning that an RNA molecule either acts as a messenger by coding for a
protein, or executes the gene function on its own. As a consequence, genes can be further
divided into protein-coding and non-(protein-)coding genes.

There are approximately 20,000 protein-coding genes in the human genome, with less than
2% of the human genome being transcribed into protein-coding RNA [1]. The roughly three-
billion-letter long DNA sequence of the human genome was famously first determined by an
enormous publicly-funded international research effort known as the Human Genome Project
(HGP) (1990 - 2003). Before the finishing stage of the HGP in the early 2000s, little attention
was paid to the non-coding genome fraction, and scientists expected the number of protein-
coding genes to be 80,000 or more [2]. This changed with the release of the initial human
genome draft sequence in 2001, suddenly narrowing down the estimate to 30,000-40,000 [3].
The steep drop was especially puzzling to scientists because: (i) the numbers of protein-
coding genes became more and more similar to the ones of much less complex organisms,
such as the well-studied roundworm Caenorhabditis elegans (genome sequencing finished
in 1998); and (ii) prior to the HGP, the functional elements in the genome were thought
to be almost exclusively (apart from some well-studied non-coding RNA classes) protein-
coding genes, while the non-coding fraction was considered to be mostly non-functional,
appropriately termed “junk DNA”. The finding propelled a shift of focus towards studying
the functions of the non-coding regions of DNA, consequently dropping the “junk DNA”
designation in favor of the more promising “dark matter of the genome” [4].

In 2003, the Encyclopedia of DNA Elements (ENCODE) consortium was founded, with
the goal to identify all functional elements (i.e., DNA regions with some biochemical function)
in the human genome [5]. Their first set of comprehensive results was published in 2012
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over various articles and journals, concluding that functional elements could make up an
astounding 80% of the human genome. Besides protein-coding genes, these include elements
that regulate the transcription of genes, either on the DNA level or by transcribing regulatory
RNAs [6]. The activity of a functional element is further controlled by various reversible
chemical modifications (e.g., DNA or histone methylations), which together form the subject
of epigenetics. Interestingly, epigenetic modifications can also be inherited and are sensitive
to environmental stimuli, although mechanistic evidence in humans is still sparse [7]. The set
of functional elements and their regulatory interplay forms our current understanding of the
genome, which can be described as a dynamic and reactive system of interacting molecules
(DNA, RNA, and proteins) to orchestrate gene expression.

Based on the observed pervasive transcription of regulatory RNAs, many new non-coding
genes were annotated, with recent estimates even surpassing the number of protein-coding
genes [8]. This has led to an increased and ongoing effort in elucidating their functions,
further contributing to the popularity of RNA studies. Once seen primarily as a messenger,
RNA is now recognized as a central player involved in all major biochemical processes. This
is due to RNA’s versatility regarding interaction partners (proteins, RNA, and DNA), as well
as its diversity (both in numbers and functions): the total number of transcribed RNAs (i.e.,
the transcriptome) in humans is much higher than the number of genes, as different RNAs
can be produced from the same gene (see section 2.1.4 Splicing). Moreover, numerous non-
coding RNA classes exist besides protein-coding RNAs, often with distinct cellular functions
(see section 2.1.4 Classes and functions).

Regulatory potential is especially rich between RNAs and the more than 1,500 RNA-
binding proteins (RBPs) encoded in the human genome, which can recognize and bind spe-
cific sequence or structural elements of RNA molecules [9]. Consequently, RBPs of various
functions interact with target RNAs at different positions (i.e., binding sites), time points,
and cellular locations. This leads to a complex regulatory interplay, with changing RNA-
protein complex compositions throughout the RNA life cycle. RBPs are thus involved in all
stages of the cycle, essentially controlling the processing, localization, stability, translation,
and decay of an RNA molecule. In addition, RNAs can sequester proteins to other RNAs
through RNA-RNA interactions, further expanding the set of possible regulatory mecha-
nisms [10]. Given their fundamental roles in post-transcriptional gene regulation, it is not
surprising that RBPs have also been implicated in various diseases, such as genetic disorders,
neurodegeneration, and cancer [11, 12, 13]. All this underlines the importance of studying
RNA-protein interactions and their functional characterization.

Early genome sequencing in the 1990s was a tremendously labor-intensive and time-
consuming effort: back then state-of-the art capillary sequencers could only determine the
sequences of less than 100 small DNA fragments in one run [14]. As a result, the HGP relied
on huge factory-like sequencing centers, equipped with hundreds of sequencers to speed up
the sequencing and meet its ambitious time schedule [15]. This changed in the mid 2000s
with the introduction of so called next-generation sequencing (NGS) technologies. While
similar in concept to previous approaches, these methods achieve a much higher throughput
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by simultaneously sequencing millions of DNA fragments in a single machine run [16]. The
drastically reduced runtimes and costs made genome-scale sequencing accessible to more and
more scientists, with machines and methods becoming affordable also for smaller research
institutions. Adaptations for the high-throughput sequencing of RNA (i.e., RNA-seq) quickly
followed, allowing the sequencing of whole transcriptomes to measure and compare gene
expression between different experimental conditions, or to identify new RNAs [17]. RNA-
seq has subsequently become part of many specialized transcriptome-wide methods, which
cleverly combine RNA-seq with for example protein detection techniques to identify RBP
binding sites. One particular successful and widely-used method in this regard is CLIP-
seq (crosslinking and immunoprecipitation followed by high-throughput sequencing), which
allows the identification of RBP binding sites on a transcriptome-wide level [18].

The widespread application of NGS methods over the last decade has led to a tsunami-like
flood of NGS data. A single high-throughput experiment typically produces several gigabytes
(GBs) of raw data, and as of 2021 dedicated online databases such as the Sequence Read
Archive (SRA) contain more than 20 petabytes (i.e., 20 million GBs) of NGS data [19]. This
naturally has created a high demand for efficient computational methods to process and study
these datasets. Moreover, the introduction of a novel experimental method often results in
the development of computational methods specialized on the respective experimental data.
Bioinformatics, the study of biological data by computational methods, has thus become
a central part of today’s biomedical research and its increasingly data-driven approach to
knowledge gain. This includes the statistical analysis of experimental datasets to learn the
properties of biological systems and to generate new hypotheses. Furthermore, predictive
models can be learned from the data to complement or replace experimental results. Both
classical machine learning and deep learning methods have successfully been applied to these
and many other bioinformatics tasks [20]. Given the ever increasing amount of experimental
data and non-stop advancements in deep learning, there is no doubt that we will see many
more exciting applications in the near future.

1.2 Objectives

As motivated in the previous section, the study of RNA-protein interactions is critical to our
understanding of cellular mechanisms. CLIP-seq is by far the most common experimental
method used to identify the RNA binding sites of a specific RBP on a transcriptome-wide
scale. CLIP-seq data thus allows the study of RBP binding properties, as well as global
RBP binding patterns to learn more about their cellular functions. However, conducting
a successful CLIP-seq data analysis can be challenging, as there are many analysis steps
and protocol variants available, each requiring specific adaptations to the different steps.
Moreover, CLIP-seq data analysis could be further improved, e.g., by integrating information
on transcript structure and splicing events into the binding site definition process. The first
set of thesis objectives deals with these issues, by providing guidelines and tools for the
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analysis of CLIP-seq data, as well as ways and methods to improve the definition of RBP
binding sites from CLIP-seq data (see publications P1, P4, and P5).

A natural limitation of the CLIP-seq protocol is its dependency on target RNA expression,
meaning that it can only recover RBP binding sites on expressed RNAs. This causes a need
for computational methods which can learn the principal binding properties of an RBP from
CLIP-seq data, and use these to predict binding sites on any given RNA. Transcriptome-
wide RBP binding site predictions can further be combined with other types of predictions,
such as RNA-RNA interaction predictions, to learn more about regulatory mechanisms.
As described in the motivation, non-coding RNAs (especially long non-coding RNAs, see
section 2.1.4 Long non-coding RNA) make up a huge fraction of the transcribed genome,
urging the need to speed up their functional characterization by computational methods.
Lately, various long non-coding RNAs (lncRNAs) have been reported to interact with other
RNAs and RBPs to exert their functions. It therefore makes sense to develop a method
which can predict these interactions and infer their functional mechanisms. Besides applying
existing RBP binding site prediction tools, there is also a need for the development of new
tools, as current methods often have issues regarding runtimes, usability, or feature support.
The second set of thesis objectives therefore includes the development of novel methods for
the functional characterization of lncRNAs, as well as the prediction of RBP binding sites
(see publications P2 and P3).

Together, the described objectives are addressed by the following works presented in this
thesis:

• Publication P1 is a review article on CLIP-seq data analysis, with the goal to assist
readers in performing a successful CLIP-seq data analysis. It describes the available
CLIP-seq protocol variants and their specialities regarding data processing, as well as
the major analysis steps, including data preprocessing, identification of RBP binding
sites from CLIP-seq data (also termed peak calling), and the analysis of RBP binding
properties.

• Publication P2 presents MechRNA, the first tool capable of inferring functional mecha-
nisms for lncRNAs based on their interactions with RBPs and other RNAs. MechRNA
utilizes RNA-protein and RNA-RNA interaction predictions together with expression
data to deduce possible mechanisms, and reports the most likely mechanism for each
lncRNA-target RNA pair, ranked by their joint p-values. The results demonstrate that
MechRNA is capable of detecting known lncRNA mechanisms, making it a valuable
tool for the study of non-coding RNA functions.

• Publication P3 introduces RNAProt, a flexible and performant RBP binding site pre-
dictor based on Recurrent Neural Networks (RNNs). RNAProt offers state-of-the-art
predictive performance, as well as superior runtimes compared to other recent meth-
ods. In addition, it supports more predictive features and input data types than any
other available method, including user-defined predictive features.
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• Publication P4 investigates the consequences of ignoring transcript information in
CLIP-seq data analysis, as well as the benefits of adding them. The results demonstrate
that ignoring transcript information compromises peak calling, and that a substantial
amount of publicly available CLIP-seq data is susceptible to this problem. Moreover,
including transcript information influences the performances of RBP binding site pre-
diction tools, and known motifs of spliced-RNA-binding RBPs are enriched in sites
where the genomic (i.e., unspliced RNA) context is exchanged with transcript (i.e.,
spliced RNA) context.

• Publication P5 presents Peakhood, the first tool that takes RBP binding sites identified
by CLIP-seq and determines the most likely context individually for each site. Moti-
vated by the findings described in P4, Peakhood was developed to include transcript
information in the site context selection process. P5 shows that Peakhood’s context
extraction agrees with known RBP roles, demonstrating its capability to improve the
quality of RBP binding data. Peakhood can be applied as a post-processing tool inside
a CLIP-seq analysis pipeline, or to reanalyze any of the millions of publicly available
CLIP-seq peak regions determined by various peak callers.

1.3 Thesis structure
Chapter 2 provides the biological, experimental, and computational background necessary
to understand the topics presented in this thesis. This includes experimental methods such
as RNA-seq, CLIP-seq, and CLIP-seq protocol variants, as well computational methods for
the prediction of RNA-protein interactions, and an introduction into deep neural networks
and RNNs. Chapter 3 summarizes the contents of the five publications (P1-P5). Chapter 4
concludes the findings presented in this thesis, and also gives an outlook on possible future
research directions. Detailed descriptions on the contributions of all co-authors can be found
in Chapter 5, together with the five publications in their published form. The thesis is
completed by the bibliography, an index of keywords, and the appendix, which includes a
list of abbreviations and the supplementary material for all five publications.





Chapter 2

Background

2.1 Biology
This section provides an introduction into the biological background necessary to understand
the presented scientific work. The focus in the content is on human biology, as the included
work was conducted mainly on human data. Given the topics of this thesis, special attention
is paid to the description of RNA and its defining features, its lifecycle, long non-coding
RNAs, as well as the regulatory interplay between RNA and RNA-binding proteins.

2.1.1 A very brief history of life
Life on earth has come a long way since its emergence around 3.42 billion years ago, possibly
earlier [21]. The current scientific notion is that its origin can be traced back to molecules
with the ability to self-replicate, in a (periodically) aquatic environment [22]. This way
they could serve as templates for future versions of themselves, which changed over time,
clearing the way to new molecules and functions. At some point these reactions started to
become enclosed by membranes. Molecules that catalyze the replication of other molecules
could emerge. Auto-catalytic loops evolved, in which one molecule catalyzes the synthesis
of another, and vice versa. Sooner or later, autonomous systems of reactions able to main-
tain and reproduce themselves could follow; a key characteristic of life. The enclosure led
to the development of new functions, by containing and concentrating chemical processes
and molecules, eventually allowing interactions with and movement within the environment.
Through time and space, these tiny membrane-enclosed entities went their separate ways and
evolved into an enormous variety of life forms. Today, we observe that all living things, also
termed organisms, are made up of these entities, which we call cells. Despite the staggering
diversity of organisms on this planet, they are all related by some last common ancestor.
Among many other evidence, this is backed by the fact that their cells still share the same
fundamental biomolecules, as well as many fundamental biochemical processes.

2.1.2 Molecules of life
All cells are made up of water, inorganic ions, and organic (i.e, carbon-containing) molecules.
Among these organic molecules, we can spot four types of large and interestingly repetitive
molecules (also termed macromolecules), which can be found in all present life forms: DNA
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(deoxyribonucleic acids), RNA (ribonucleic acids), proteins, lipids, and (complex) carbohy-
drates. The first three are usually of particular interest to bioinformatics, since they store,
convey, and execute the genetic information.

2.1.3 DNA

The structure of DNA

All organisms store their genetic information, i.e., the information necessary to maintain
and reproduce themselves, in DNA molecules. DNA is a chain-like polymer made up of
four distinct monomers, or nucleotides (nt) (Figure 2.1 a). Each nucleotide is made up of
a common sugar-phosphate part, as well as one of the four distinct nucleobases: adenine
(A), cytosine (C), guanine (G), and thymine (T) (Figure 2.1 b). In RNA molecules, the
deoxyribose sugar and T are replaced by ribose and the nucleobase uracil (U). The structure
of DNA is that of a double(-stranded) helix, with two polynucleotide chains wrapped around
each other in an anti-parallel orientation. [23, 24]. The double strand is formed by interactions
between complementary nucleotides via hydrogen bonds, with two possible base pairings (A
with T, C with G, see Figure 2.1 c). Since the two strands are complementary to each
other, and because of the strict pairing rules, the sequence of the second strand can be easily
deduced by reversing the first strand and taking the complementary nucleotides (i.e., taking
the reverse complement). A single DNA molecule is also termed chromosome, while the sum
of all unique DNA molecules present in an organism is called genome.

Genomes of different forms and sizes occur throughout the three domains of life (Archaea,
Bacteria, Eukaryota). While Bacteria often have a single, circular genome, the genomes
of Eukaryotes (e.g., including animals, plants, and fungi) feature multiple chromosomes.
Eukaryotic cells further contain several membrane-enclosed compartments, also termed or-
ganelles. Most of the eukaryotic genome is stored in the nucleus. Other DNA-containing
organelles are the mitochondria (mitochondrial DNA, mtDNA) and the chloroplasts (present
in plants and algae). Nuclear chromosomes are tightly packed, which is necessary due to their
increased number and sizes. Packaging is achieved through DNA-protein complexes, also
termed chromatin. Packaging is hierarchical, with the basic unit, the nucleosome, created
by a DNA segment of ∼ 147 base pairs (bp) wrapped around a set of 8 histone proteins [25].
Depending on the density of packaging, chromatin can be further divided into euchromatin
(light) and heterochromatin (tight). Chromosomes can have remarkable lengths, for example
the human chromosome 1 with a length of close to 250 million bp. For humans, the size of
the (haploid) reference genome is about 3.1 billion bp.

DNA strands (just like RNA strands) are directed, i.e., their two ends differ from each
other. This is because the nucleotides are connected via a sugar-phosphate backbone, which
contains a 5’ (five prime) and a 3’ (three prime) end, derived from the numbering of the
carbon atoms in the (deoxy)ribose sugar (see Figure 2.1 a + c). The direction is important,
since strand synthesis (during DNA replication or RNA transcription) only works in 5’ to
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Figure 2.1: The structure of DNA. (a) Structural formula of a nucleotide (Deoxyadenosine
monophosphate), with sugar carbon numbering. A nucleotide consists of a (nucleo)base (here ade-
nine), and a sugar-phosphate backbone (deoxyribose sugar and phosphate group). In RNA, a second
hydroxyl group (-OH) is attached to the sugar at C2. (b) Structural formulas of the four DNA
bases (adenine, cytosine, guanine, thymine), and the RNA base uracil, which substitutes thymine
in RNA molecules (together with ribose instead of deoxyribose in the sugar-phosphate backbone).
(c) Structure of a DNA double strand with a length of 4 base pairs. Sugar-phosphate backbone in
grey, bases in their respective colors. Solid lines denote covalent bonds, dashed lines denote hydrogen
bonds. A-T pairs feature two hydrogen bonds, G-C pairs three hydrogen bonds. Structures drawn
with [26] and adapted.

3’ direction. Moreover, DNA or RNA sequences by convention are written and stored in
5’ to 3’ direction (left to right), with index 1 to the length of the sequence. The written
strand is also called forward strand (denoted with a “+” symbol), while the reverse strand
(3’ to 5’ direction, denoted with “-” symbol) as described is the (reverse) complement of the
forward strand. Due to the 5’ to 3’ convention, upstream is frequently used as a synonym
for “towards the 5’ end”, while downstream equals to “towards the 3’ end”.

Genes are the units of genetic information

The genetic information is stored in DNA regions called genes. Genes are defined as regions
from which a functional RNA (also different versions of it) can be produced1. The process
is also termed transcription, since the initial (unprocessed) RNA sequence is an exact copy
of the transcribed DNA sequence (with T replaced by uracil (U)). Genes can be located
on the plus and minus strand, and they can partially or fully overlap, which also allows

1for ongoing discussions about the difficulties of defining a gene see [27]
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for a more compact storage of the genetic information. RNA transcribed from a gene can
either be protein-coding or non-coding. For protein-coding RNAs (also termed messenger
RNA or mRNA), the gene function is executed by the protein (into which the RNA gets
translated). For non-coding RNAs, the RNA itself exerts the gene function. Here we also
use the term gene expression, i.e., a gene is expressed at a certain point if there is RNA
or protein produced from the gene at that time point. Besides genes, the genome also
contains functional elements outside of gene regions which are involved in the regulation of
gene expression, either on the DNA level, or by transcribing regulatory RNAs [6] (also see
sections 1.1 and 2.1.4 Transcription).

The estimated number of protein-coding genes in the human genome interestingly has
decreased over past two decades. In 2001, when the first draft sequence of the human genome
was published, it was estimated to be about 30,000 to 40,000 [3]. The current estimate, which
is considered to be fairly robust, settled down at 19,000 to 20,000, resulting in only 1.9% of
the human genome ending up in processed protein-coding transcripts [1]. On the other hand,
the widespread use of high-throughput sequencing since the late 2000s has shown that most of
the human genome is transcribed [28]. Subsequently, a lot of new potentially functional long
non-coding RNA (lncRNA) genes were annotated, often surpassing (depending on the source)
the mentioned number of protein-coding genes [8, 29]. Long non-coding RNAs, defined as
non-protein coding RNAs with lengths > 200 nt, have consequently become of high interest
to research. But because of their poor functional characterization, it is still unclear how
many of these are actually functional. Some long non-coding RNAs have shown to possess
protein-coding potential, namely to encode for small proteins [30]. It has also been argued
that even though most are likely non-functional, their abundant existence might provide a
strategy for swift function generation and evolutionary adaptation [31]. Interestingly, the
amount of non-protein-coding DNA strongly correlates with organism complexity, while the
genome size or number of protein-coding genes does not [32]. A similar correlation has
also been brought up for lncRNA genes (although so far only tested for a small number of
organisms), further hinting at their functional importance [33].

Genetic information flow

Figure 2.2 illustrates the genetic information flow inside cells. Its principal flow DNA →
RNA → Protein was famously first described by Francis Crick in 1958, who named it the
central dogma of molecular biology [34, 35]. Even though his use of the term “dogma” has
been criticized, it proved to be remarkably accurate and valid (with two adaptations) to
this day for all observed organisms and viruses. The two adaptations are the less common
information flows from RNA to DNA (reverse transcription) and from RNA to RNA (RNA
replication)1.

Reverse transcription requires the presence of an enzyme, a protein that catalyzes chem-
ical reactions, termed reverse transcriptase. This enzyme catalyzes the synthesis of DNA

1Crick regarded these as possible flows in [34], but there was no evidence for them yet in 1958
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Figure 2.2: Genetic information flow. The principle genetic information flow from DNA over RNA
to protein (DNA replication, transcription, translation) is colored in blue. Subsequently discovered
and less frequent flows (reverse transcription, RNA replication) are depicted in pink.

from an RNA template [36]. Reverse transcription is applied by retroviruses (e.g., HIV),
to insert their RNA-based genome into the DNA-based host genome, and has also been
brought up for the SARS-CoV-2 virus [37, 38]. It is also found in Eukaryotes, enabling
retrotransposition and telomere synthesis [39, 40]. Synthesizing RNA from another RNA
(RNA replication) is achieved by enzymes termed RNA-dependent RNA polymerases, which
are typically found in RNA viruses (e.g., SARS-CoV-2), to replicate their genome. RNA
replication is observed in Eukaryotes as well, for example in RNA interference [41]. Apart
from the flows depicted in Figure 2.2, many important modification steps are carried out
between protein and DNA, RNA, or protein. These include: RNA processing by proteins
(e.g., splicing, processing of RNA ends, RNA modification, RNA editing), DNA processing
by proteins (e.g., DNA methylation), and protein processing by proteins (post-translational
modification).

2.1.4 RNA

Classes and functions

RNA in the cell can be divided into protein-coding RNA and non-coding RNA (ncRNA).
Protein-coding RNA is also termed messenger RNA (mRNA), as it stores and delivers the
message necessary to produce a protein. The sequence portion of the mRNA that contains
the protein information (i.e., that gets translated into protein) is also termed the coding
sequence (CDS) or open-reading frame (ORF), while the 5’ and 3’ regions surrounding the
CDS are termed 5’ and 3’ untranslated regions (5’UTR, 3’UTR). The protein information is
stored in the CDS as consecutive, non-overlapping triplets of nucleotides, also termed codons.
Each triplet encodes for a specific amino acid, the building blocks of proteins, including the
first codon (start codon), which also marks the translation start. The last codon (stop codon)
marks the end of translation, but does not encode for an amino acid. UTR regions usually
have regulatory functions, often by providing binding sites for RNA-binding proteins, which
can influence the stability, localization, or the translation of the RNA. For mRNAs, the gene
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function is carried out by the produced protein. This is in contrast to ncRNAs, where the
function is provided by the RNA itself.

A great variety of classes exists among ncRNAs, often with primary, class-defining func-
tions [6]. For example, transfer RNA (tRNA) and ribosomal RNA (rRNA) have distinct
roles in translation, while microRNAs (miRNAs) repress the translation of target RNAs. In
contrast, long non-coding RNAs (lncRNAs), a more recently discovered class of ncRNAs,
are defined solely based on their length (non-coding RNAs of > 200 nt length). Not surpris-
ingly, lncRNAs show a diverse range of functions, although most of the potential lncRNAs in
the human genome still await functional characterization (see section 2.1.4 Long non-coding
RNA below for more details). RNA is not present in a straight linear form inside the cell,
but instead folds into complex secondary and tertiary structures. Consequently, RNA is
often regulated and functions based on its structural conformation, on top of its sequence
composition (see section 2.1.4 RNA structure below for more details). In addition, RNAs can
also be present in circular form, which are termed circular RNAs (circRNAs). Similarly to
lncRNAs, circRNAs have gained considerable interest in recent years, since their widespread
appearance has first been shown in 2013 [42].

Transcription

RNA is the primary gene product, transcribed from gene regions. A gene can have one
or more transcript variants (also termed isoforms) encoded in its region. Gene expression,
the production of functional RNA and protein products, determines cellular identity and
behavior. Depending on its gene expression profile, a cell might for example maintain its
cellular state, communicate with other cells, metabolize fat, progress in the cell cycle, divide,
differentiate, migrate, and so on. Consequently, gene transcription is a highly regulated and
complex process. Transcription is carried out by DNA-dependent RNA polymerases, as well
as a multitude of regulating cis and trans-acting factors. In gene regulation, a cis-acting
factor is a factor which regulates a target gene based and depending on its location. The
target gene is often in near proximity, but can also be farther away on the chromosome. Such
factors include DNA regions (e.g., promoters and enhancers) to which regulatory proteins can
bind, but also cis-acting long-non coding RNAs, which are transcribed from these regions [43].
In contrast, a trans-acting factor is an RNA or protein transcribed from a genomic region
whose relative location to the target gene has no influence on the regulatory function. Trans-
acting factors that bind to cis-acting DNA regions like promoters or enhancers are also called
transcription factors. Eukaryotes possess three different DNA-dependent RNA polymerases
(Pol I, Pol II, Pol III) for transcribing their nuclear genes, each transcribing different classes of
RNA [44]. Pol II transcribes all protein-coding but also certain non-coding RNAs, including
microRNAs and most long non-coding RNAs [45, 29]. Most ribosomal RNAs are transcribed
by Pol I, while Pol III transcribes tRNA, as well as the remaining ribosomal RNAs and other
short non-coding RNAs [46].

The transcription process can be divided into three phases: initiation, elongation, and
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termination. The following briefly describes them for protein-coding genes (Pol II transcrip-
tion). Transcription typically starts at promoter regions located at the gene 5’ end, which
include the transcription start site (TSS) (i.e., the site where RNA synthesis begins). A
pre-initiation complex (PIC) is formed by binding of general transcription factors (GTFs),
to recruit Pol II to the core promoter [47]. PIC then activates Pol II, opens the double-
stranded DNA (i.e., creating a transcription bubble), and positions Pol II on the TSS. After
a few synthesized nucleotides, Pol II is set free from the GTFs and the core promoter and
leaves the TSS (promoter escape). After 30-50 synthesized nucleotides, Pol II comes to a
hold (promoter-proximal pausing), awaiting further instructions. Pause-release is signaled
by positive transcription elongation factor P-TEFb through phosphorylation of Pol II and
other bound proteins, unleashing Pol II into productive elongation. During elongation, Pol II
and associated proteins interact with various other RNA processing pathways. For example,
5’ end capping is induced early on during elongation, and splicing factors to assemble the
splicing machinery are recruited [48]. The last phase, transcription termination, results in
the release of the Pol II complex and the synthesized transcript. It is the least understood
phase of the three, since there are many different termination pathways, which depend on the
given context and transcribed gene type [49]. The best studied pathway occurs in protein-
coding genes, which usually contain specific nucleotide elements at their 3’ends, including the
polyadenylation signal (PAS) (AAUAAA motif). The cleavage and polyadenylation (CPA)
complex recognizes these elements, cleaves the RNA and adds a poly(A) tail to its 3’ end.
However, only a fraction of Pol II reaches the 3’ end, since promoter-proximal and premature
termination are frequently occurring events.

Whether transcription continues after initiation is controlled to a large extent by enhancer
elements. The same holds for the elongation and transcription in general [50]. Surprisingly,
RNA is also transcribed from enhancers, and these non-coding enhancer RNAs (eRNAs)
have shown to regulate transcription as well, mostly in cis, but possibly also in trans [51].
Apart from enhancers, other important cis-acting factors are silencers and insulators. While
proteins binding to silencer regions repress gene transcription, insulators can restrain en-
hancer or silencer activities [52]. Such seemingly long-range interactions work because of the
three-dimensional structure of the chromosome, which can bring two distant genomic regions
close enough for protein-protein interactions to occur. Finally, chromatin accessibility plays
a huge role in gene transcription [25]. Transcription can be initiated by transcription factors
in accessible genomic regions (euchromatin), while tightly packed genomic regions (hete-
rochromatin) are usually transcriptionally silenced. Histone modifications (mainly methy-
lations and acetylations) largely contribute to chromatin accessibility [53]. Moreover, DNA
methylation, which can also be inherited (thus termed an epigenetic modification), strongly
influences accessibility and therefore also gene transcription [54].
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Splicing

Most nuclear mRNAs are made up of two different kinds of regions, termed exons and
introns. While exons are the regions that end up in the mature RNA which serves as a
template for translation, introns get removed prior to translation in a process called splicing.
This process of intron removal usually occurs co-transcriptonally, i.e., during transcription,
and is often coupled with other precursor mRNA (pre-mRNA) processing steps [55]. The
splicing machinery, also termed spliceosome, is a large and dynamic RNA-protein complex,
where small nuclear RNAs (snRNAs) are associated with proteins to form small nuclear
ribonucleoproteins (snRNPs), and together with various other non-snRNP proteins recognize
and remove intron regions. Two different spliceosomes exist in the nucleus, the major (U2-
dependent) spliceosome and the minor (U12-dependent) spliceosome. U2 and U12 refer to
the use of functionally analog U2 and U12 snRNAs in the two complexes. Over 99% of
human introns are spliced by the major spliceosome (U2-type introns), while minor (U12-
type) introns only occur in 700-800 genes, typically present only once per gene among several
major introns [56]. In addition to spliceosomal introns, there are also introns capable of self-
splicing, i.e., the intron acts as a ribozyme to catalyze its own removal. Three such groups
(I, II, III) have been described in the three domains of life and in viruses, of which group II
introns are regarded as the ancestors of spliceosomal introns [57]. While the human genome
does not contain self-splicing introns anymore, it is assumed that they had a profound impact
on eukaryotic evolution, not only as progenitors of spliceosomal introns, but, e.g., also on the
development of the nuclear envelope [58]. Looking at a recent reference annotation of the
human genome, human transcripts feature a median number of 8 introns, with a minimum of
1 and a maximum of 362 introns, a mean length of 6,938 nt (median 1,747 nt), and a minimum
and maximum length of 26 and 1,160,411 nt, respectively [1]. In contrast, exons are usually
much shorter, with a mean and maximum length of 160 and 21,693 nt, respectively. Besides
mRNAs, lncRNAs also contain introns, although these tend to be spliced less efficiently [59].

In order to recognize and remove an intron, spliceosomes depend on three characteristic
sequence elements present in both U2-type and U12-type introns (see Figure 2.3 a): the 5’
splice site (5’SS), the branch point sequence (BPS), and the 3’ splice site (3’SS). U2-type
introns additionally feature a polypyrimidine tract (PPT), i.e., a sequence stretch rich in
pyrimidines (cytosines and uracils), immediately upstream the 3’SS. Splicing out an intron
involves two transesterification reactions, also termed branching and exon ligation (Figure
2.3 b) [61]. To catalyze these reactions, the spliceosome needs to adopt various functional
states or complexes, each with different snRNP as well as additional protein compositions [55,
62]. The principle splicing process is best studied in budding yeast but well conserved in
humans. For U2-type introns it works as follows: U1 snRNP recognizes the 5’SS through
base pairing of U1 snRNA with the 5’SS, while the 3’ splicing elements are bound by U2
snRNP and associated proteins. These include branchpoint binding proteins, as well as U2
auxiliary factors (U2AFs), recognizing the PPT and the 3’SS. Additional proteins can bind to
nearby exonic regions and interact with the snRNPs, further aiding in the exon-intron border
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Figure 2.3: Intronic sequence elements recognized by the splicing machinery and the principal
splicing process. (a) Intronic sequence elements necessary for intron recognition and removal: 5’
splice site (5’SS), branch point sequence (BPS) including an adenosine, polypyrimidine tract (PPT)
and 3’ splice site (3’SS). A PPT between BPS and 3’SS is found in U2-type introns, but not in U12-
type introns. 5’SS and 3’SS nucleotides GU and AG are canonical, i.e., they occur in most (U2-type)
introns. (b) The principal splicing process, consisting of two transesterification reactions (branching
and exon ligation) to remove the intron and ligate the exons. For U2-type and U12-type introns,
these steps are catalyzed by the major and minor spliceosome, with varying snRNP and additional
protein compositions in each step. For group II introns, these reactions are catalyzed by the intron
itself [60].

recognition. Interestingly, the spliceosome also interacts with the transcription machinery,
and the 5’SS remains attached via U1 snRNA to Pol II during intron synthesis, which
might ease the splicing process and increase its precision, especially for longer introns [63].
For the branching reaction, the 2’OH group of the branch point adenosine performs a so
called nucleophilic attack (nucleophilic substitution) on the phosphodiester group of the
first 5’SS nucleotide (G in Figure 2.3 b), leading to a cleaved 5’ exon, a lariat intron with its
characteristic 2’-5’ phosphodiester bond, and the yet connected 3’exon. For the exon ligation
reaction, the now uncovered 3’OH group of the last 5’ exon nucleotide performs a second
nucleophilic attack, this time on the phosphodiester group of the first 3’ exon nucleotide,
consequently ligating the two exons and releasing the lariat intron.

Compared to yeast, human splice sites are rather short and loosely conserved, with a
few canonical nucleotides found in most splice sites, like the 5’SS GU, the 3’SS AG, as
well as the branch point adenosine [55, 61]. In addition, distances between the elements
(e.g., between BPS and 3’SS) are more variable, and intron regions as noted often have
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considerable (> 1,000 nt) lengths. This development has two important consequences: 1)
to secure splicing fidelity in the light of increased intron lengths and splice site variability,
the spliceosome has to rely on additional RNA-binding proteins for guidance; and 2) more
additional factors (proteins and their RNA binding sites) increase the flexibility, but also
the complexity of splicing and its regulation. Not surprisingly, alternative splicing (AS), the
generation of different transcripts (also termed isoforms or splice variants) from the same
gene, is ubiquitous in multicellular eukaryotes [64]. Various types of alternative splicing
exist, such as exon skipping, alternative 5’SS and 3’SS usage, mutually exclusive exons, or
intron retention. In humans, there are ∼ 150 additional proteins associated with splicing,
and 95% of multi-exon genes undergo AS [65, 66]. AS events are often tissue-specific, with
fundamental roles in organ development, and many human diseases are caused by splicing
errors [67, 68, 69]. The extent of AS is correlated with organism complexity, as measured by
the number of distinct cell types [70]. A similar correlation has been shown for the amount of
non-protein-coding DNA in general (including introns and intergenic regions), and has also
been indicated for the number of lncRNA genes [32, 33]. AS (together with these factors
and other RNA processing steps described below) therefore can help to explain the increased
complexity we observe in our dear selves Homo sapiens, even though humans only have
four times as many protein-coding genes as the budding yeast Saccharomyces cerevisiae, and
about the same as the roundworm Caenorhabditis elegans.

Additional RNA processing

Apart from splicing, RNA goes through various additional co- and post-transcriptional pro-
cessing steps. For example, mRNA processing usually involves the modification of RNA ends,
such as 5’ end capping, as well as 3’ end cleavage and polyadenylation [71]. Other impor-
tant processing steps include internal modifications of nucleobases (reversible or irreversible)
within a specific RNA sequence and structure context. The most common reversible (also
termed dynamic) RNA modification in mRNA is the m6A methylation, where a methyl group
is added to the amino group at position 6 of the adenine base [72]. Other frequent internal
modifications include m1A and m5C, and specific reader, writer, and eraser proteins have
already been identified for many of these modifications. As for irreversible modifications,
the most abundant form of RNA editing (i.e., changing the identity of specific nucleotide(s)
in an RNA sequence) in Metazoans is adenosine to inosine (A-to-I) editing, catalyzed by
adenosine deaminases acting on RNA (ADAR) [73]. All together, over 150 different RNA
modifications have been reported so far [74]. These can influence the structure of the RNA,
as well as its interactions with proteins or other RNA molecules. This in turn affects the
further processing, localization, translation, or decay of the RNA. RNA modifications thus
serve as important control elements in post-transcriptional gene regulation.
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RNA localization

In order to execute its function, an RNA molecule needs to be at the right location in the cell
at the right time. Consequently, RNA localization plays a vital role in post-transcriptional
gene regulation, although there is still a considerable lack of understanding its precise mech-
anisms [75]. The prime example is the translation of mRNA, which in order to be translated
into protein must travel to the cytoplasm, but often also further to more remote subcellular
spaces for local(ized) translation [76]. Other examples include the transport of RNAs to spe-
cific membrane-less compartments, such as stress granules or processing bodies (P-bodies),
for their transient silencing or degradation. Localization is not just important for the func-
tion of mRNA, but also for small and long non-coding RNA [6, 77]. Subcellular localization
is typically determined by specific cis elements present in the RNA, also termed zip codes.
These can be single or recurring sequence or structure elements (in mRNAs often located in
the 3’UTR region), which are recognized by trans-acting RNA-binding proteins. The result-
ing ribonucleoprotein (RNP) complexes can then interact with other proteins along the way
to lead the RNA to its destination. Localization is often active, through interactions with
cytoskeletal proteins, but can also be passive through diffusion of the RNA. Even though
there are presumably thousands of RNAs that travel to subcellular locations, localization
elements so far have only been characterized for a few dozen. A classic RNA localization
example is the localized translation of β-actin mRNA in developing neurons. The transport
is mediated by a bipartite zip code element in the β-actin 3’UTR, which is recognized by the
RNA-binding protein IGF2BP1 [78].

RNA quality control and decay

The detection and disposal of aberrant transcripts, i.e., transcripts with incomplete or er-
roneous information content, is handled by a number of RNA quality control pathways in
mammals. Such RNA surveillance pathways are necessary in order to prevent the accu-
mulation of RNAs or proteins with no or differing function, which otherwise can cause cell
death or disease. Three major pathways with well-studied roles in mRNA quality control
are no-go decay (NGD), nonsense-mediated decay (NMD), and non-stop decay (NSD) [79].
All three detect abberant mRNAs by interactions with ribosomes (the molecular machines
that translate RNA into protein): NGD and NSD both detect abberant mRNAs based on
the occurence of slowly moving or stalled ribosomes, due to a persistent RNA structure or a
specific tRNA shortage (NGD), or due to a missing stop codon (NSD). NMD on the other
hand detects mRNAs containing premature stop codons or extended 3’UTRs. NMD has
recently also been implicated in lncRNA quality control [80]. In addition, RNA surveillance
pathways prior to translation have been described, which can detect abberant mRNAs as
well as ncRNAs [81]. In general, these pathways compete with regular RNA processing path-
ways, such as 5’ and 3’ end processing, transcription elongation, splicing, or nuclear export,
and transcripts that fail to form or feature the respective RNP complexes at certain time
points or locations are usually targeted for degradation.
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RNA decay (or degradation) is the ultimate step in the RNA lifecycle, and therefore also
part of many regulatory pathways, including the described RNA surveillance pathways. As
such it is highly regulated, and there are a number of RNA-degrading complexes coupled
with various pathways [82]. RNA-degrading enyzmes (also termed ribonucleases or RNases)
can be classified into three types based on their mode of action: endouncleases cleave the
RNA backbone internally, while exonucleases digest RNA by removing single nucleotides
either at the 3’ end (3’ to 5’) or at the 5’ end (5’ to 3’). Exonucleases typically require single-
stranded RNA as substrates. This means that RNA ends can be protected from degradation,
either by RNA structure (which includes double-stranded RNA), RBP binding, or chemical
modification. RNA decay thus usually starts with the removal of protective ends, e.g., 5’ cap
removal and 3’ deadenylation for most mRNAs and many lncRNAs. Other ways of grant-
ing RNase access include RNA helicase activity for unwinding structured RNA (e.g., MTR4
against aberrant nuclear RNAs), or the enzymatic addition of short A or U tails [81]. 5’
to 3’ degradation is usually catalyzed by cytoplasmic Xrn1/2 exonucleases, whereas 3’ to 5’
decay is catalyzed by cytoplasmic Dis3L2 exonuclease or the (nuclear or cytoplasmic) RNA
exosome complex. Furthermore, RNA stability can be regulated by chemical modifications
(as described in the above section 2.1.4 Additional RNA processing), miRNA binding medi-
ated by RBPs (AGO1-4 in mammals [83]), as well as RBP binding in general to regulatory
sequences or structures. For example, histone mRNAs lack a poly(A) tail, but instead form
a conserved stem loop structure at their 3’ end bound by the RBP SLBP, which is also
involved in their degradation [84]. Another prominent example are Pumilio RBPs (PUM1
and PUM2 in mammals), which usually inhibit translation and promote decay of their target
RNAs [85].

RNA structure

Because of their innate base pairing abilities, RNA sequences tend to fold into complex
three-dimensional (3D) structures. RNA structure can be described with regard to its pri-
mary, secondary, tertiary, and quaternary structure. The primary structure is the sequence
of nucleotides, connected by the ribose-phosphate backbone. The secondary structure is
described by the base pairing of complementary sequence stretches, interspersed by various
loop regions. The tertiary structure is the actual 3D structure determining the function of
the RNA, such as the catalysis of chemical reactions, the binding of ligands, or interactions
with proteins and other nucleic acids. In case of interactions with other molecules, the qua-
ternary structure describes the 3D structure of the formed complexes. In the following, we
will refer to RNA structure meaning the folded sequence (i.e., secondary or higher structure).

RNA structure is formed spontaneously in the cell, since stacks of base pairs (also termed
duplexes, helices, or stems) increase the thermodynamic stability. This means that the Gibbs
free energy G of the formed structure is lower than the energy of the single-stranded RNA,
or, in other words, ∆G is negative. In addition to the two canonical Watson-Crick base
pairs (A-U, C-G), many non-canonical base pairs occur in RNA structures, albeit with lower
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frequencies [86]. Of these the G-U wobble base pair is the most common base pair in well-
studied RNA structures such as rRNA and tRNA, with crucial roles in RNA function [87].
RNA folding is hierarchical, meaning that secondary structure forms faster and is more stable
than tertiary interactions [88]. Consequently, secondary structure folding is less dependent
on tertiary contacts, making it possible to predict RNA secondary structure without taking
into account tertiary information. RNA structure is dynamic, meaning that an RNA can
adopt different structural conformations with varying probabilities and formation times,
often guided by interactions with other molecules [89].
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Figure 2.4: RNA secondary and tertiary structure examples. (a) Structural elements used to
described RNA secondary structure: stacks of base pairs create five distinct loop regions: external
loops, interior loops, multi(branched) loops, bulge loops, and hairpin loops. (b) Secondary structure
of a frameshifting element inside mouse mammary tumor virus mRNA [90]. The structure contains a
pseudoknot, formed by base pairing between two loop regions (hairpin loop and external). Structures
drawn with forna [91] and adapted. (c) Secondary and tertiary structure of a tRNA (phenylalanine
tRNA from yeast), with its characteristic cloverleaf (2D) and L-shape (3D). The single structural
elements are colored: 3’ CCA tail in yellow, acceptor arm in violet, D-arm in red, T-arm in green,
variable loop in orange, anticodon arm in blue, and anticodon in grey. Figure adapted from [92]
(author: Yikrazuul, license: CC BY-SA 3.0 [93]).

Figure 2.4 a illustrates the elements used to describe RNA secondary structure. Energet-
ically favorable stacks of base pairs create five distinct loop regions: external loops, interior
loops, multi(branched) loops, bulge loops, and hairpin loops. Base pairing can also occur be-
tween nucleotides from different loop contexts, an interaction termed pseudoknot [94]. Figure
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2.4 b shows the secondary structure of a pseudoknot found in the mouse mammary tumor
virus, which causes a frameshift during the translation of the RNA. Since tertiary struc-
ture elements (also termed tertiary motifs) are described as interactions between distinct
secondary structure elements, pseudoknots are usually also regarded as tertiary motifs [95].
Besides pseudoknots, many other types of tertiary motifs have been observed in RNA, such
as coaxial stacking of helices, triplexes, tetraloops, kink turns, or quadruplexes [95, 96]. For
example, the two highly abundant human lncRNAs MALAT1 and NEAT1 have been shown
to form triplex structures at their 3’ends, protecting them from rapid nuclear deadenylation-
dependent decay [97]. Figure 2.4 c depicts the typical cloverleaf secondary structure and
resulting L-shaped tertiary structure of a tRNA (phenylalanine tRNA from yeast). The L-
shape is formed by tertiary motifs, including a pseudoknot between the D- and T-arm loop
region, as well as coaxial stacking between stems of the D- and anticodon arm, and the T-
and acceptor arm.

Long non-coding RNA

As described (Section 2.1.3 Genes are the units of genetic information), long non-coding
RNAs (lncRNAs) are ncRNAs of > 200 nt length which are ubiquitous and widely expressed
in the human genome. While the functions of most annotated lncRNAs are still unknown,
great effort has been put into their functional characterization over the last years [98]. Just
like its vague length-only definition suggests, lncRNAs make up a functionally diverse class.
Any two lncRNAs can exert their functions through different subcellular localization and in-
teraction partners [29]. These interactions include conventional RNA-RNA and RNA-protein
interactions, but also RNA-DNA interactions, e.g., through the formation of triple helices
(also termed triplexes) with double-stranded DNA, or R-loop formation with single-stranded
DNA [99]. In addition, some lncRNAs bind large numbers of the same RBP or miRNA, effec-
tively acting as sponges to regulate the function of their interaction partners [100]. LncRNAs
can be further categorized based on their genomic location relative to protein-coding genes:
long intergenic non-coding RNAs (lincRNAs), sense lncRNAs (intragenic or intronic lncR-
NAs), antisense lncRNAs, bidirectional lncRNAs, and enhancer RNAs (eRNAs). LincRNAs
do not overlap with protein-coding genes, while sense lncRNAs overlap on the sense strand,
and antisense lncRNAs on the opposite strand. Bidirectional lncRNAs are transribed from
the same promoter as the protein-coding gene, but in opposite direction. Enhancer RNAs are
transcribed from enhancer regions in both directions. The location of the lncRNA can give
clues about or determine its function, e.g., by acting in cis to regulate chromatin structure
or transcription of nearby genes [43]. But lncRNAs also frequently travel from the nucleus to
the cytoplasm, where they are involved in various processes, such as translational regulation
or signalling pathways [101]. Interestingly, lncRNAs often show tissue- or condition-specific
expression, which can hint at their biological functions or can be used for disease diagnosis.
For example, certain lncRNAs are upregulated in specific cancer types, which makes them
promising biomarkers as well as potential drug targets [102]. Moreover, lncRNAs and RBPs
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can have connected roles in cancer [103].

2.1.5 Protein

The genetic code

The elucidation of the genetic code was a major scientific breakthrough in the early 1960s,
and arguably one of the great discoveries of the 20th century [104]. The riddle to solve: how
do the 4 building blocks (nucleotides) of RNA translate to the 20 building blocks (amino
acids) of proteins? It was found that RNA encodes the information necessary to produce a
protein in triplets (groups of three nucleotides). Each triplet (or codon) codes for a specific
amino acid. Some triplets code for the same amino acid, since there are 64 possible triplets,
but only 20 amino acids (i.e., the code is degenerate). Moreover, the triplets do not overlap,
there are no non-coding nucleotides in the coding sequence (introns get removed prior to
translation), and the coding sequence is read consecutively from 5’ to 3’ starting from a
specific mRNA position. Due to the triplet grouping, there are three possible reading frames,
and skipping one or two nucleotides (e.g., by deletions, insertions, or roadblocks during
translation) leads to a frameshift. Frameshifting events can also be programmed, and are
often used by RNA viruses such as SARS-CoV-2 to produce different proteins from the same
genomic region [105]. Besides coding for amino acids, special triplets mark the start and
end of translation. The start codon (AUG) is recognized by the ribosome, but also encodes
for the amino acid methyonine. On the other hand, the three stop codons that provide the
translation termination signal for the ribosome (UAA, UAG, UGA) do not encode for amino
acids.

The genetic code has shown to be almost universal throughout all present organisms,
although exceptions have been identified over the years in various species: besides the co-
translational incorporation of additional amino acids (e.g., selenocysteine in eukaryotes, also
referred to as the 21st amino acid), the meaning of individual codons can differ (e.g., UGA
codes for tryptophan in vertebrate mitochondria) [106, 107]. Despite its remarkable conser-
vation, these changes reflect the evolvability of the genetic code, including the translation
machinery, as well as tRNAs and their amino acid loading enzymes (aminoacyl-tRNA syn-
thetases). Moreover, the context of a triplet can change its encoding or affect translation
efficiency [108].

Translation

The translation of mRNA into protein is achieved by an enormous ribonucleoprotein complex
called the ribosome, with the help of many additional factors, including initiation factors,
release factors, tRNAs, and aminoacyl-tRNA synthetases. The eukaryotic ribosome (also
termed 80S ribosome, where S is the Svedberg unit as a measure of particle size) contains
four different rRNAs (together > 5,500 nucleotides) and around 80 proteins, and is made up
of a large (60S) and a small (40S) subunit [109]. Assigning the correct amino acid to a codon
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on the mRNA is accomplished by tRNA, which recognizes the codon by forming a duplex
with its anticodon (situated in the loop region of the tRNA anticodon arm, see Figure 2.4
c). The tRNA is loaded (or charged) with the corresponding amino acid, i.e., the amino
acid is covalently linked to the tRNA 3’ end by aminoacyl-tRNA synthetases. There are 20
different synthetases in humans, one for each amino acid. Since there are more anticodons
and tRNAs, tRNAs with anticodons corresponding to the same amino acid are recognized
and charged by the same synthetase. As with amino acid → codon, there is again no one-to-
one mapping for anticodon → codon. Instead, for some tRNAs, optimal (i.e., Watson-Crick)
base pairing is necessary only for the first two codon positions, whereas the third position also
tolerates wobble base pairing. While non-optimal codons were shown to decrease translation
rates, synonymous codons in general can have various effects on translation and mRNA
metabolism [110].
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Figure 2.5: Peptide bond formation between two amino acids. The condensation reaction produces
a dipeptide and a water molecule. Peptide bond highlighted in pink. R: amino acid side chain (also
termed residue) different for each amino acid. The carboxyl group tail marks the C-terminus of a
protein, the amino group tail the N-terminus. Structures drawn with [26] and adapted.

Just like transcription, translation can be divided into three phases: initiation, elongation,
and termination. In the canonical model of translation by the eukaryotic ribosome, mRNA
translation starts with the recognition of its 5’ cap by a cap-binding protein complex [108].
This recruits the small (40S) ribosomal subunit, additional initiation factors, as well as the
methionine-carrying initiator tRNA, positioned in the peptidyl transfer (P) site of the 40S
subunit. The resulting pre-initiation complex (PIC) proceeds by scanning the mRNA in 3’
direction, until it detects an AUG start codon through basepairing with the initiator tRNA
anticodon. This causes scanning arrest and the release of certain initiation factors, which
allows binding of the large (60S) ribosomal subunit and subsequent ribosome assembly. In
the elongation phase, the ribosome moves along the mRNA from 5’ to 3’, codon by codon,
each time pausing for the duplex formation with a matching tRNA anticodon. Once a stable
codon-anticodon duplex is formed, the addition of the amino acid from the tRNA to the
growing amino acid chain is catalyzed in the peptidyl transferase center of the 60S ribosomal
subunit. For this the amino acid chain attached to the P-site tRNA forms a peptide bond
(see Figure 2.5) with the A-site tRNA amino acid, resulting in an uncharged P-site tRNA
and an A-site tRNA connected to the peptide chain. Both tRNAs are then translocated in
the 5’ direction, the uncharged tRNA to the exit (E) site, and the A-site tRNA to the P-
site, clearing the way for the next codon-anticodon interaction in the A-site. The elongation
cycle continues until a stop codon is detected in the A-site by a protein release factor. This
triggers the termination of translation, which includes release of the amino acid chain and
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the dissociation of the ribosomal subunits from the mRNA through recycling factors.
Translation is of course a highly regulated process, with many factors that influence

the different phases of translation, such as post-translational modifications of involved pro-
teins, mRNA sequence (e.g., codon usage), mRNA structure, mRNA modifications, or trans-
acting RNAs and RBPs [110, 111, 112, 113]. There are many examples of RBPs involved
in translational regulation, such as RBPs that bind to AU-rich elements (AREs) located
in 3’UTRs to repress or enhance translation (e.g., HuR, TIA1), or RBPs binding to inter-
nal ribosome entry sites (IRESs) in 5’UTRs to facilitate cap-independent translation ini-
tiation (e.g., PTBP1) [114]. The most important and by far best-studied class of trans-
acting RNAs are microRNAs, which through their association with the RNA-induced silenc-
ing (RISC) complex bind to microRNA-responsive elements (MREs) located mainly in the
3’UTR [115]. In addition, translation regulation has been implicated for lncRNAs [111, 116].
Moreover, regulatory crosstalk between RBPs and microRNAs has been described in many
works [117, 118, 119].

Protein structure

Most proteins need to fold into distinct three-dimensional structures in order to execute their
biological functions, while an estimated 15 to 30% of proteins in mammalian proteomes ei-
ther partially or fully lack such ordered (i.e., stable) structures [120]. The modular building
blocks and functional units of structured proteins are called domains, which can be defined
as protein regions that fold and evolve independently of each other, with specific structures
and functions [121]. Through this modular concept, the function of a protein largely de-
pends on the unique combination of its domain functions, and new protein functions and
proteins typically emerge by adaptations and combinations of existing domains. The major-
ity of eukaryotic proteins contain both multiple domains and unstructured regions, which
are also known as intrinsically disordered regions (IDRs) [122, 123]. Nevertheless, IDRs can
still be functional, as they can contain small peptide motifs (typically < 10 amino acids),
which serve as binding sites to domains of other proteins or post-translational modification
sites [124]. Protein structure can be described in terms of its primary structure (i.e., the
amino acid sequence), secondary structure (i.e., local structure elements such as α-helices,
β-sheets and turns), tertiary structure (i.e., the three-dimensional atomic arrangement of
the protein), and its quaternary structure (i.e., the combined tertiary structures of protein
oligomers) [125]. Proteins often engage in protein complexes or form oligomers with same or
different proteins to fulfill their biological functions. To distinguish the two terms, protein
complexes are typically regarded as dynamic assemblies, whereas in oligomers (e.g., homod-
imers, heterodimers, etc.) the protein subunits are permanently associated and degraded
together [126].

Protein folding is a cotranslational process that starts as soon as the polypeptide chain
emerges from the ribosomal exit tunnel of the 60S subunit, or even earlier inside the tunnel
for some small structure elements and proteins [120]. Protein folding is essentially assisted
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by proteins termed molecular chaperones, which start interacting with the protein as it exits
the tunnel to guide its folding process and guarantee its efficient and correct folding. Folding
does not just take place in the cytoplasm, but also in the endoplasmatic reticulum (ER).
Proteins destined to be folded in the ER, including secretory or membrane proteins, typically
carry a signal peptide at their N-terminus (the first part that emerges from the tunnel), which
gets recognized by a signal recognition particle, leading to the translocation of the ribosome
to the ER membrane and the insertion of the polypeptide chain into the ER lumen. This
for example also includes immunoglobulins (i.e., antibodies), which specialized antibody-
producing cells can fold and assemble at a staggering pace, secreting 1000s of antibodies per
second and cell [126]. As protein structure is dynamic and misfolding frequent, organisms
from all domains of life have evolved a complex network of chaperones, cofactors, and protein
degradation pathways termed the proteostasis network (PN), to keep up cellular homeostasis
and prevent toxic aggregations of misfolded proteins. In mammals, the PN consists of ≈
1,400 components, and the mutation or age-related decline of PN functionality is connected
to many chronic and neurodegenerative diseases, such as Alzheimer or Parkinson. Besides
folding, proteins often also undergo further processing steps, known as post-translational
modifications (PTMs). These include the proteolytic cleavage of protein parts, as well as the
addition of functional groups (e.g., phosphoryl, glycosyl, or methyl). PTMs in turn effect
various properties of the protein, such as the folding, enzymatic functions, interactions with
other molecules, or its subcellular localization [127]. This of course also includes RBPs, for
which various regulatory PTMs have been described [128].

RNA-binding proteins

RNA-binding proteins (RBPs) are defined as proteins with the ability to interact with RNA
in a functional manner, either independently (i.e., without the aid of other RBPs) or depen-
dently (i.e., with the aid of other RBPs as part of an RNA-binding protein complex) [129]. For
example, in Drosophila, Nanos RBP binding to its target mRNA is dependent on Pumilio
RBP binding [130]. RNAs are usually bound by various RBPs to form ribonucleoprotein
(RNP) complexes, with changing compositions throughout time and cellular location. RBPs
are essentially involved in every stage of the RNA life cycle, including transcription, splic-
ing, additional processing, localization, stability, translation, and decay (see Figure 2.6 for
a visual overview). Examples of RBP functions in the different stages can be found in the
respective subsections above. RBPs typically bind to specific RNA sequence or structural
motifs, and the binding properties of an RBP are largely defined by the set of RNA-binding
domains (RBDs) it carries. Humans contain about 1,500 RBPs with around 600 structurally
distinct (i.e., known or canonical) RBDs, although only 20 RBDs are found in 10 or more
genes [129]. Among these prevalent RBDs are domains such as the RNA recognition motif
(RRM), the K homology (KH) domain, the DEAD motif, the double-stranded RNA-binding
motif (DSRM), or the zinc-finger domain. These RBDs usually occur in repeats or combi-
nations with other RBDs, which typically increases the sequence specificity and affinity of
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Figure 2.6: RNA-binding proteins are essentially involved in all stages of the cellular RNA life cycle.
These include transcription, splicing, additional processing such as 5’ capping and 3’ polyadenylation,
RNA export into the cytoplasm, localization, translation, or regulating the stability and the degra-
dation of the RNA. Moreover, they are involved in controlling RNA quality, RNA-protein granule
formation, or RNA modifications. Reprinted by permission from Springer Customer Service Centre
GmbH: Springer Nature, Nature Reviews Genetics, Gebauer et al. [11], copyright 2020.

the RBP [131]. Apart from the mentioned class of domains whose sole function is to bind
to RNA, there are also several classes of enzymatic RNA-interaction domains, including nu-
cleotidyltransferases, ribonucleases, RNA-modifying enzymes, helicases, and GTPases [132].
More recently, high-throughput proteomic methods have identified 100s to 1000s of poten-
tially new RBPs lacking canonical RBDs, also termed uncoventional RBPs [11]. Subsequent
experimental approaches to pinpoint the RNA-binding protein regions in these RBPs showed
that for many of these RBPs IDRs seem to be involved in the interactions, e.g., through short,
unstructured RNA-binding motifs, or PTM sites [9]. However, the amount of RNA-specific
binding in these datasets is still hard to tell, as: (i) the binding modes are not well under-
stood yet; and (ii) a possibly large amount of these proteins could just be opportunistic (i.e.,
weak and non-specific) binders, which may not exhibit any RNA-related functions [133].
Interestingly, some RBPs have been shown to interact with chromatin as well, pointing at
additional roles of RBPs as transcriptional regulators [134].

The majority of RBDs recognize short RNA sites of 3 to 6 nucleotides, usually with a high
degree of tolerable sequence variation [131]. To further increase their sequence specificity,
RBPs often contain several RBDs, whose unique combinations shape the binding behavior of
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the RBP. For example, IGF2BP1 contains six RBDs (two RRM and four KH domains), and
recognizes a bipartite sequence motif, with a variable-length spacer sequence between the two
sequence elements [135]. There are, however, also single domains that exhibit high sequence
specificity, such as the RBP PUM2, which features the Pumilio homology domain, allowing
it to bind a well-defined 8-nucleotide sequence motif [85]. RBP binding site specificity can
also be increased by interactions with other RBPs, which includes structure remodelling
to modify binding behavior [136], by the cellular context (i.e., co-localization of interaction
partners), or by RNA modifications [137]. Apart from recognizing certain sequence elements,
RBPs can also have an affinity for structured RNA, or a combination of sequence and struc-
tural elements. For example, Roquin and SLBP bind to conserved stem loop structures
with specific loop nucleotide compositions [138, 139]. Binding to stem loops is likely not
uncommon among RBPs, as a large-scale in vitro study on RBP binding preferences has
found that around 30% of the observed 86 RBPs showed affinity for stem loop motifs [140].
Moreover, DSRM-containing RBPs such as Staufen proteins can recognize double-stranded
RNA (dsRNA) through the shape of their backbone, but also to some extent the underlying
sequence [141]. The target dsRNA site can be formed both from intramolecular and inter-
molecular interactions, e.g., as part of the target RNA structure, or between an mRNA and
a lncRNA [142]. Furthermore, various studies have pointed out the impact of site context
on RBP binding, including the surrounding sequence and structure composition, and its
influence on site structure and accessibility [143, 144]. Based on their fundamental cellular
functions, it is not surprising that RBPs are also involved in many diseases, such as cancer
or in general genetic diseases which are caused by mutations in functional regions of the
respective RBPs [145, 11].

2.2 Experimental methods
The following section briefly introduces the experimental methods that produced the high-
throughput sequencing data used to generate most of the results in this thesis. This includes
a primer on high-throughput sequencing and the detection of RNA-protein interactions, as
well as a more detailed description of the CLIP-seq protocol and its most commonly applied
variants.

2.2.1 High-throughput sequencing
Experimental methods to determine (or read out) the nucleotide sequence of DNA or RNA
molecules are generally referred to as sequencing methods. The emergence of high-throughput
sequencing (also termed second-generation or next-generation sequencing (NGS)) methods
in the mid 2000s has revolutionized biomedical research, as it led to a steep decline in se-
quencing times and costs, thanks to the methods’ massively parallel sequencing design. For
example, the costs of sequencing the human genome have dropped from around 100,000,000$
in 2001 to as little as 1,000$ in 2021 [146]. Besides the sequencing of DNA, NGS was quickly
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adapted to RNA sequencing (RNA-seq) [17]. The key concept behind NGS is the massively
parallel sequencing of millions of short DNA fragments in a single machine run, which is why
NGS methods are also referred to as short-read sequencing methods. The determined short
read sequences subsequently can be used for example to assemble a genome or transcriptome,
or to map them to an existing reference genome or transcriptome. RNA-seq thus for instance
allows to measure and compare gene expression between different experimental conditions,
observe expressed transcripts and splice isoforms, or to detect novel transcripts. Upon their
successful introduction, short-read RNA-seq methods have been adapted and become parts
of many more specialized transcriptome-wide experimental procedures. These include meth-
ods to detect DNA-protein interactions (e.g., ChIP-seq), RNA-protein interactions (e.g.,
RIP-seq, CLIP-seq), RNA-RNA interactions (e.g., PARIS, SPLASH, LIGR-seq), ribosome
footprints (Ribo-seq), or the cellular entity of RNA structures (e.g., SHAPE-seq) [147]. Il-
lumina short-read sequencing platforms have been by far the most widely applied ones to
generate NGS data, as of 2019 accounting for > 95% of the NGS data deposited in the
Sequence Read Archive (SRA) [147]. In the following we will therefore focus on the Illumina
sequencing technology, also known as “sequencing by synthesis”.

Sequencing library preparation starts with DNA or RNA extraction from the observed
biological sample. For RNA, this often involves two options: enrichment of poly(A)-tailed
RNAs or total RNA extraction with rRNA depletion. The first approach is more exclusive
with a focus on mRNAs (but also other Pol II transcripts such as most lncRNAs), since only
poly(A)-tailed RNAs are selected, while the second one also allows the recovery of RNAs
without poly(A) tails, or in general fragmented RNAs. As rRNA constitutes by far the
largest amount of RNA in cells, rRNA depletion (typically through binding to DNA oligos
and enzymatic digestion) is necessary in order to focus sequencing on the RNA species of
interest [148]. This is usually followed by RNA fragmentation, which is necessary mainly
due to the read length restrictions of short-read sequencing platforms (commonly 100 to
300 bp), thus allowing a relatively even coverage of the transcriptome. The read length
limitation mainly stems from dephasing issues, where nucleotide read-out from a cluster (see
next paragraph for details) becomes increasingly out-of-phase (i.e., desynchronized extension
of individual cluster strands), and thus more noisy after each sequencing cycle. The next
step is to synthesize complementary DNA (cDNA) strands from the fragmented RNAs, also
termed reverse transcription (RT), which allows the use of conventional DNA sequencing
machines. In addition, DNA is chemically more stable than RNA, mostly because of RNA’s
2’OH group reactiveness and the notorious pervasiveness of RNases. cDNA synthesis is
frequently coupled with sequencing adapter ligation. For this, platform-specific adapters
necessary to sequence the fragments are added to both ends of the RNA fragments before
cDNA synthesis, avoiding the use of oligo(dT) or random primers [148]. A primer is a short
DNA sequence complementary to the sequence to be replicated, which DNA polymerases
need to start strand synthesis, i.e., by adding nucleotides to the 3’ end of the primer. In order
to retain the strand information, i.e., from which strand the sequenced fragment originated
from, there are also several methods available, such as applying specific 5’ and 3’ adapters,
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or the use of dUTP in second strand synthesis, to degrade the second strand and suppress its
amplification [149]. If the amount of cDNA is less than the amount of input DNA required
by the sequencing machine, it is further necessary to add a PCR amplification step, i.e.,
the cyclic duplication of cDNAs by the famous polymerase chain reaction (PCR) method
(awarded Nobel Prize in chemistry 1993) [150]. Unfortunately, differing cDNA lengths and
compositions can lead to uneven amplification (i.e., PCR biases), resulting among other
things in the accumulation of PCR duplicates. To detect these, short typically random
sequences termed unique molecular identifiers (UMIs) can be introduced into the sequencing
adapters or RT primers. As PCR duplicates originate from the same PCR template, they
will contain the same UMI, which allows to collapse them into one read later on in the
computational analysis. This is especially important for applications where read counts or
in general read coverage is used to infer results, such as in RNA-seq or CLIP-seq. In general,
the choice of preparation steps determines the bias types introduced into the sequencing
library [148]. It therefore makes sense to keep some common biases in mind, which otherwise
can become an issue in subsequent data analysis steps.

The Illumina sequencing technology was originally commercialized by Solexa in 2006, be-
fore being acquired by Illumina the following year. It is based on a sequencing-by-synthesis
chemistry using four reversible terminator nucleotides labelled with different fluorescent
dyes [151]. The two main steps carried out in the sequencing machine are cluster gener-
ation and sequencing by synthesis. First, the purified DNA is washed over the flow cell,
which is coated by a lawn of two different oligos, complementary to the two adapter se-
quences. The DNA fragments spread out on the flow cell and their ends basepair with the
complementary oligos. Next, a copy of the hybridized fragments is created with the attached
oligo as primer, and the fragments are washed away, leaving their reverse complementary
(RC) strands covalently attached to the surface. This is followed by bridge amplification,
which involves the strands being hybridized with the second surface oligo and copied with
the second oligo as a primer. Through repeated bridge (or clonal) PCR amplification, clus-
ters of identical strands are generated (cluster generation), typically containing around 1,000
copies per cluster, and 10s to 100s of millions of clusters over the entire flow cell. At the
end, the RC strands are cleaved and washed off, leaving the remaining oligos and the for-
ward strands which are now ready to be sequenced. Sequencing by synthesis starts with
sequencing reagents (including DNA primers, polymerases, and the labelled nucleotides) be-
ing washed over the cell, and attached to the chain. Due to the reversible terminator, only
one nucleotide per cycle is added, and a camera system detects the identity of the nucleotide
by the fluorescent light the attached fluorescent dye is emitting upon excitation (also termed
base calling). To reliably call the added base, one light signal is recorded for an entire clus-
ter, in order to get sufficient light intensity. After detection, fluorescent dye and terminator
are cleaved from the nucleotide, and a new cycle begins. This is repeated until the desired
read length is obtained. Ideally, strand extension of a cluster is synchronized, resulting in
a unison fluorescent signal. However, due to dephasing issues from uneven extension, base
calling becomes increasingly unreliable from cycle to cycle, until the noise exceeds the signal
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and prevents further sequencing. It is also possible to sequence multiple samples per run
(also termed multiplexing), by using sample-specific barcode sequences (also termed indices)
as parts of the sequencing adapters. Moreover, the fragments can be sequenced from one end
(single-end, as described) or from both ends (paired-end). For this, the process is repeated
by copying the present forward strands, cleaving them off and sequencing the RC strands
with the same number of cycles. Even though more expensive, paired-end sequencing allows
for a more accurate read mapping, including the detection of genetic or splice variants, and
thus is usually preferred over single-end sequencing if possible.

Despite their huge success, short-read RNA-seq methods also have a number of draw-
backs, which besides platform-specific biases [152] are mainly related to their limited read
lengths: multi-mapped reads can occur more often, which due to their ambiguity usually
cannot be considered in data analysis. Furthermore, it is often difficult or impossible to
detect new or differentiate between certain splice isoforms, as reads cannot always be un-
ambiguously assigned to one isoform. Long-read or direct RNA-seq methods, which are
currently transforming the sequencing field, avoid these problems through their extended
read lengths, opening up exciting new possibilities in biomedical research [147] (also see the
thesis outlook 4.2). For example, they enable direct end-to-end sequencing of native RNA
molecules, including the detection of modified bases [153]. Still, short-read RNA-seq meth-
ods so far provide a much higher throughput, lower error rates, and are well established, and
thus will likely not fade away any time soon. Moreover, individual strengths of short- and
long-read methods can be combined to create interesting hybrid sequencing approaches, e.g.,
to improve genome assemblies [154].

2.2.2 Detecting RNA-protein interactions
Methods for the detection of RNA-protein interactions can be grouped into RNA-centric and
protein-centric methods [155]. While the first group typically starts with an RNA molecule
to detect its protein interaction partners, the second group takes an RBP to identify its
RNA interaction partners. The two approaches can thus be utilized as complementary
methods, in order to get a more complete picture of cellular RNA-protein interactions and
the compositions of RNP complexes.

RNA-centric methods can further be subdivided into in vitro and in vivo methods, and
the second group again into cross-linking and non-cross-linking-based approaches [155]. In
vitro methods typically use immobilized in-vitro-transcribed RNA, which gets incubated
with a cell lysate, to extract and identify proteins bound to the RNA. Their in vitro design
makes it easy to conduct mutagenesis studies, i.e., by mutating parts of the RNA or protein
to better understand their binding contributions. An obvious drawback of in vitro methods
is their inability to capture certain in vivo properties that might fundamentally influence
binding, such as cellular RNA localization, structure, modifications, or RNA-RNA interac-
tions. In vivo methods that use cross-linking apply UV radiation or formaldehyde to cells
in order to covalently cross-link proteins with RNA, which helps to preserve specific and get
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rid of unspecific interactions during RNA extraction. Both cross-linking approaches have
their pros and cons: UV cross-linking is more specific, cross-linking only close interactions
between RNA and proteins, while formaldehyde also can cross-link and thus recover typi-
cally less tight protein-protein interactions. This means that UV cross-linking could miss
less stable interactions, e.g., for structure-binding RBPs [156], whereas formaldehyde cross-
linking might also recover proteins that do not directly interact with RNA. A number of these
methods have been proposed over the years, using various experimental strategies to extract
the target RNA after cross-linking and cell lysis. For example, RNA affinity purification
(RAP) uses biotin-labelled nucleotide probes which hybridize to the RNA of interest, this
way enabling its purification via streptavidin beads and subsequent identification (typically
via mass spectrometry) of cross-linked proteins [157, 158]. In contrast, in vivo methods based
on proximity proteomics circumvent cross-linking by recruiting a specific labelling enzyme to
the target RNA, which subsequently labels the bound proteins, enabling the identification.
For example, RNA-protein interaction detection (RaPID) utilizes a modified biotin ligase
together with a stem loop RNA element fused to the RNA of interest. The modified enzyme
binds to the stem loop with high affinity, and biotinylates all proteins in its neighborhood
(within ≈ 10 nm) [159]. This way, biases from cross-linking and RNA purification are omit-
ted, which also allows the detection of more transient interactions, as well as using less cells.
On the downside, the construct of stem loop and target RNA has to be brought into the
cells and expressed artificially, causing various other issues (e.g., non-physiological concen-
trations). In addition, the range of biotinylation limits the approach to shorter RNAs, or in
general local RNA environments.

Protein-centric methods typically involve purifying the protein of interest, together with
its bound RNAs. The by far most commonly used set of methods uses UV cross-linking of
RNA-protein complexes in combination with immunoprecipitation (CLIP) of the protein of
interest, together with high-throughput sequencing of the cross-linked RNAs (CLIP-seq, de-
scribed in the following sections). As such, these methods rely on a sufficient UV cross-linking
efficiency of the observed RNA-protein interactions, as well as a good antibody specificity.
For RBPs with lower cross-linking efficiencies (e.g., double-strand-binding RBPs), it might
thus make sense to omit UV cross-linking, instead relying on formaldehyde [160], or to skip
cross-linking altogether. The second option is more common, and is also known as RNA
immunoprecipitation sequencing (RIP-seq) [161]. This has the advantage of capturing less
proximate (or more transient) interactions as well, although signal-to-noise ratio and reso-
lution are typically lower than in CLIP-seq [155]. Other options to increase cross-linking
efficiency are the use of modified nucleotides (e.g., 4-thiouridine (4SU) in PAR-CLIP [162]),
or different cross-linking reagents (e.g., methylene blue for dsRNA-binding RBPs [163]). In
addition, there are also some more recent methods that instead of protein purification rely
on the chemical modification of interacting RNAs. For example, targets of RNA-binding
proteins identified by editing (TRIBE) fuses the catalytic domain of an A-to-I RNA editing
(ADAR) enzyme to the RBP of interest, which catalyzes deamination of adenosines at the
RBP binding site, this way allowing the identification of RBP binding sites through char-
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acteristic A to G mutations in the RNA sequencing data [164]. This way, the number of
preparation steps is reduced, as well as the amount of required cells. On the other hand,
overexpression of the fused RBP can be problematic, as well as the fused domain itself, po-
tentially influencing the functions and binding of the RBP. Still, further improvements might
make these methods an interesting alternative to CLIP-seq in the near future, especially for
RBPs which are hard to CLIP.

2.2.3 The CLIP-seq procedure

CLIP-seq is currently the by far most widely applied experimental procedure to identify
RBP binding sites on a transcriptome-wide scale. The identification of RNAs bound by a
specific RBP through cross-linking and immunoprecipitation (CLIP) was initially proposed
in 2003 [165]. In 2008, the first high-throughput sequencing extension HITS-CLIP (high-
throughput sequencing of RNA isolated by CLIP) was presented, allowing the transcriptome-
wide identification of RBP binding sites [166]. More CLIP-seq variants followed over the
years, each providing their own take on improving the original protocol [18]. The currently
most popular ones are PAR-CLIP (photoactivatable-ribonucleoside-enhanced CLIP) [162],
iCLIP (individual-nucleotide CLIP) [167], and eCLIP (enhanced CLIP) [168]. In addition,
several CLIP-seq variants specialized on detecting the binding sites of dsRNA-binding RBPs
have been described [169, 170, 171]. CLIP-seq typically identifies the transcriptome-wide
binding sites for a single specific RBP, but it can also be applied to obtain global RBP
occupancy profiles, i.e., which transcript regions are bound by RBPs [172].

Figure 2.7 depicts the principle CLIP-seq workflow (for variant-specific steps see the fol-
lowing section). The process starts with UV radiation of the observed cell or tissue culture,
to covalently cross-link cellular RBPs to their bound RNAs. UV radiation is typically done
at a wavelength of 254 nm (apart from PAR-CLIP), which has long been known to covalently
cross-link nucleic acids and proteins [174]. Nearly all amino acid residues (except 4) have
been shown to cross-link to RNA at 254 nm, whereas the preferably cross-linked nucleotide is
U [175]. Cells are subsequently lysed, followed by RNA fragmentation through partial RNase
digestion, and immunopurification of the RBP of interest together with its crosslinked RNA
fragments (i.e., corresponding to its binding sites). After 3’ adapter ligation, stringent pu-
rification of RBP-RNA complexes continues with a denaturing (sodium dodecyl sulphate
(SDS)) polyacrylamide gel electrophoresis (PAGE) step, which separates the complexes in
the sample by their molecular weight. Here the desired RNA-protein complex is extracted
(together with nitrocellulose membrane transfer to remove unbound RNA, not shown) based
on its known weight (i.e., molecluar weight of the RBP + estimated weight of the attached
RNA fragments). Visualization of RBP-RNA complexes at this point also serves as a control
step, i.e., to assess sample and purification quality, and is typically achieved by radioactive
labelling (except from eCLIP). This is followed by proteinase K treatmeant, to cleave off the
RBP from the RNA fragments, and RNA isolation. The RNA fragments are subsequently
reverse transcribed into cDNA, amplified by PCR, and submitted to high-throughput se-
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Figure 2.7: Principle CLIP-seq workflow. RBPs are crosslinked to their interacting RNAs by UV
radiation. Cells are lysed, RNAs fragmented, and the RBP of interest immunopurified together
with its cross-linked RNA fragments. After 3’ adapter ligation, stringent purification of RBP-RNA
complexes continues with SDS-PAGE, followed by proteinase K digestion of the RBP, and RNA
isolation. RNAs are reverse-transcribed to cDNAs, often resulting in cDNAs truncated at cross-link
sites. cDNAs are consequently amplified by PCR and sequenced. Data analysis follows, including the
determination of binding regions (i.e., peak calling), as well as further data analysis and integration
with different datasets. Reprinted by permission from Springer Customer Service Centre GmbH:
Springer Nature, Nature Reviews Methods Primers, Hafner et al. [173], copyright 2021.

quencing. Reverse transcription results both in cDNAs that extend over (i.e., read through),
as well as cDNAs that truncate at the the cross-link site, presumably due to physical hinder-
ance by the remaining amino acid residue. Protocol variants like PAR-CLIP do not amplify
truncated cDNAs, while variants like iCLIP or eCLIP can recover both truncated and read-
through cDNAs. Read-through cDNAs also frequently contain characteristic mutations at
their cross-link positions, which is exploited (e.g., by PAR-CLIP) to achieve single-nucleotide
resolution in subsequent computational binding site detection. After sequencing, computa-
tional analysis of sequenced reads includes pre-processing (e.g., quality control), mapping
of the reads to a reference genome or transcriptome, as well as binding site detection (i.e.,
peak calling) from the mapped read profiles. Afterwards, the resulting peak regions can
be further analysed and complemented with other types of data, to learn more about the
binding properties and functions of the RBP.
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2.2.4 CLIP-seq variants

PAR-CLIP

Compared to the original HITS-CLIP, PAR-CLIP serves photoactivatable ribonucleoside 4-
thiouridine (4SU) to the cell culture dish, which the cells readily incorporate into RNA
instead of uridine [162]. The substitution considerably increases UV cross-linking efficiency
at 4SU positions, which is done at 365 nm. Moreover, the modification results in a high
number of T to C mutations during cDNA synthesis at cross-link sites. This makes it pos-
sible to pinpoint the cross-link positions through mutational analysis, effectively achieving
single-nucleotide resolution in binding site identification. On the other hand, 4SU addition
can also be seen as a drawback, since it is not clear how much the uridine analog influences
celluar well-being, and in particular RNA interactions with other molecules. For example,
4SU has an increased affinity towards G:U base pairing [176], which might modify cellular
RNA structures and thus also RBP binding. Other problems include the use of inducible
tagged proteins instead of endogenously expressed proteins, or the application of RNase
T1 for RNA fragmentation, which results in the depletion of G-containing binding sites,
although these issues have been addressed in subsequent publications [177]. Several PAR-
CLIP adaptations have been proposed over the years, from iPAR-CLIP (in vivo PAR-CLIP
in the model organism C. elegans) to fPAR-CLIP (fluorescence-based PAR-CLIP, discard-
ing radioactive labelling) [178, 179]. Overall, PAR-CLIP has been applied in many works,
including a large-scale study with 64 distinct RBPs [180].

iCLIP

HITS-CLIP and PAR-CLIP by design are unable to detect truncated cDNAs, which origi-
nate from reverse transcriptase stalling at cross-link sites due to left-over peptide residues.
iCLIP [167] addresses this drawback, which as shown can result in the loss of up to 80% of
cDNA fragments [181]. The issue is solved by using a two-part cleavable adapter combined
with an additional circularization step. Moreover, the introduction of UMIs into the adapters
allows for an easy removal of PCR duplicates. Single-nucleotide resolution is achieved by the
observation that most cDNAs truncate at the cross-link position, this way pinpointing the
position to the read 5’ end. However, like HITS-CLIP and PAR-CLIP, the protocol remains
time-intensive (≈ 5 days) and there are various error sources due to the many preparation
steps [182]. Moreover, in order to generate a sufficiently complex library, the amount of cells
needed is relatively high (≈ 106 to 108 cells), which can be problematic especially for lowly
expressed RBPs or RBPs where CLIP in general is more difficult. Recently, two improved
versions (named iCLIP2 and iiCLIP) have been proposed, promising faster, more efficient
workflows and increased library complexities [183, 184].
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eCLIP

Inspired by the shortcomings of previous methods, eCLIP takes on improving preparation
times and efficiency, mainly by omitting or modifying certain protocol steps [168]. In par-
ticular, the inefficient circularization step from iCLIP gets replaced by two separate adapter
ligation steps, while radioactive labelling of RBP-RNA complexes is completely omitted.
This considerably increases the amount of recovered RNA, which also results in a much
lower amount of input material (typically around 20,000 cells) [182]. Just like its cousin
iCLIP, eCLIP achieves single-nucleotide resolution through the recovery of truncated cD-
NAs. In addition, eCLIP introduces a new control library concept, termed size-matched
input control, which promises to improve background normalization and thus the specificity
of recovered binding sites. On the downside, omission of radioactive labelling in eCLIP means
that IP quality can no longer be monitored, which can influence the quality of results [18].
Being the CLIP-seq method of choice for the ENCODE consortium, eCLIP is currently the
most widely applied method by the numbers of CLIPped RBPs, which currently amounts to
150 RBPs (altogether 223 eCLIP datasets) [185].

2.3 Computational methods
This section briefly describes the computational methods and concepts necessary to under-
stand the presented work. At first, an overview on sequencing data analysis is given, which
basically applies to both RNA-seq and CLIP-seq data analysis. Next, an outline of common
methods for the computational prediction of RBP binding sites is supplied. Finally, an intro-
duction into deep learning is given with a focus on binary classification through supervised
learning and recurrent neural networks (as applied in publication P3).

2.3.1 Sequencing data analysis
Computational analysis of short-read sequencing data such as RNA-seq or CLIP-seq data
basically involves three major steps, namely pre-processing of raw sequence data, mapping
of processed reads, and the actual data analysis to draw conclusions from the experimental
data. In the case of CLIP-seq, another major step before the actual analysis is peak calling,
i.e., the identification of RBP binding sites from the mapped read data. The following briefly
describes these steps. A more detailed review on commonly used RNA-seq and CLIP-seq
data analysis tools and workflows can be found, e.g., in the following papers [186, 187, 188].

Pre-processing of raw sequencing data involves various quality control steps, such as
the removal of adapter, UMI, and low-quality sequence parts, as well as PCR duplicates.
Moreover, if the sequencing data is made up of several samples, it has to be de-multiplexed,
i.e., through index-specific assignment of each read to its respective sample. Numerous
quality control tools are available, which can detect and remove known or repetitive sequences
in the read library. These can stem from adapters, barcodes, or even contamination due to
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sloppy lab work. In addition, they can trim off bases based on specified quality cutoffs,
as the raw sequencing data coming from the sequencing machine includes quality scores
(i.e., base call accuracies) for each base. In addition, PCR duplicates are removed, e.g., by
UMI-tools [189], to obtain more accurate read counts (more on UMIs in Section 2.2.1).

Exon 1 Exon 2 Exon 3 Exon 4
Gene

Splice 
isoforms

Mapped
reads

Figure 2.8: Mapped RNA-seq reads to a gene with multiple exons and splice isoforms. Continuously
mapped reads (green) cover the exons, while for intron-spanning reads (pink) the mapping is split,
resulting in a two-part mapping to separate exons.

After the raw sequencing data has been checked and filtered in pre-processing, the reads
are ready to be mapped to the respective reference genome or transcriptome. This is nec-
essary as the raw reads do not contain any information on where they originate from in
the genome or transcriptome, except for their sequence. The read sequence is thus aligned
against the set of reference sequences (chromosomes or transcripts), with the best match
being the most likely region of origin. As sequencing errors can occur during library prepa-
ration as well as sequencing, a certain amount of mismatched bases (i.e., mutations) are
allowed too, as well base deletions or insertions. If there is a single best match, the read
becomes a uniquely-mapped read. If there are no matches of sufficient quality, the read is
assigned as unmapped. If there are several equally good matches, the read becomes a multi-
mapped read, which frequently happens if the read originates from repeat-rich regions. In
addition, reads originating from multi-exon transcripts which are mapped to the reference
genome can also become split reads (also termed intron-spanning or chimeric reads) (illus-
trated in Figure 2.8). As many genes contain multiple splice isoforms, mapping of short-read
sequencing data can be ambiguous. For example, a read might map to an exon which is
shared by several splice isoforms of the same gene. In this case, intron-spanning reads can
help to resolve which isoform is the dominant isoform, or in general which isoforms are
present in the observed sample. Nevertheless, certain unambiguities cannot be resolved by
short-read sequencing, which is one of the main reasons why, despite of their own drawbacks,
direct or long-read read sequencing have become increasingly popular in recent years (see
Section 2.2.1 for more details). To be able to map split reads, a splice-aware mapping soft-
ware such as STAR [190] has to be used, which typically also allows the discovery of novel
splice junctions. Mapping accuracy and rates can be further enhanced by using paired-end
sequencing instead of single-end sequencing. Here, twice the read information is obtained by
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sequencing the cDNA fragments from both ends, which if the fragment size is known and
sufficiently large, allows for a much more precise mapping, especially for multi-exon genes.
CLIP-seq data is usually treated no different from RNA-seq data during the mapping stage.
After mapping, read coverage refers to the number of mapped reads overlapping with a given
reference position, whereas read depth refers to the total number of sequenced reads in the
sample before mapping. The read coverage distribution over the reference is also termed
read profile.

Following pre-processing and mapping, the actual data analysis deals with obtaining
interesting new insights from the mapped read information. For RNA-seq data, this often
includes differential gene expression analysis, where read counts of genes are first normalized
and then compared between different conditions [186]. However, there are countless other
applications for RNA-seq, such as variant detection, transcript discovery, alternative splicing
analysis, or de novo transcriptome assembly. For CLIP-seq data, data analysis is usually
preceded by peak calling, i.e., the identification of binding sites from the read profiles [187].
The identified binding sites can subsequently be analysed in a number of ways. For example,
RBP functions can be deduced from the set of target RNAs (i.e., their gene functions) and
binding site locations (e.g., in 3’UTRs or introns). Moreover, the binding sites can be utilized
to extract binding motifs or to learn binding properties of the RBP, which can then be used
to predict new binding sites on unseen RNA sequences.

2.3.2 Predicting RNA-protein interactions

Many approaches for the prediction of RBP binding sites have been proposed over the years.
In the simplest case, sequence motif discovery tools such as the ones included in the MEME
suite [191] can be used to identify sequence motifs in the binding sites, which can then
be utilized to search for potential binding sites in RNA sequences. From the early 2010s
on, more sophisticated approaches appeared, including classical machine learning methods,
which incorporated both RNA sequence and structure features. For example, RNAcontext
uses a probabilistic motif model encompassing both sequence and structure information [192],
while GraphProt applies a combination of graph kernel and support vector machine, which
showed superior performance over motif-based approaches [193]. It is not surprising that
the appearance and success of machine learning methods such as GraphProt coincided with
the increasing availability of large-scale RBP binding site collections in the early 2010s, gen-
erated by CLIP-seq or by in vitro methods such as RNAcompete [194]. Machine learning
models typically depend on large amounts of training data in order to obtain their supe-
rior prediction performances, which these high-throughput experimental methods enabled
for the first time. In 2015, the first deep-learning based approach named DeepBind [195]
was proposed, using a convolutional neural network (CNN) architecture to train predictive
models based on RNA sequence information. From 2015 on, numerous deep-learning based
approaches have been presented, typically following the CNN architecture, or expanding it
by an additional recurrent neural network (RNN) part [196]. Moreover, certain methods



2.3. Computational methods 37

have incorporated additional predictive features such as secondary structure, evolutionary
conservation scores, or region type information such as transcript region annotations. Most
approaches treat RBP binding site prediction as a binary classification problem, i.e., they
train an RBP-specific model to predict whether a given RNA sequence is bound by the RBP
or not, although multi-class classification has also been proposed [197].

As deep learning models are hard to interpret, prediction methods usually also supply
visualizations to better understand what the model has learned, and thus also learning more
about the RBP binding properties. Various visualization techniques are available, which
can be grouped into local and global model interpretability methods [198]. The first group
visualizes local (i.e., site-level) position-wise binding preferences, whereas the second group
attempts to visualize global model preferences. In addition, visualization techniques can be
applicable independent of the network type, such as in silico mutagenesis and saliency maps,
or specifically for certain network architectures, such as first layer filter visualizations for
CNNs. More information on upcoming architectures and trends regarding the computational
prediction of RBP binding sites can be found in the thesis outlook (Section 4.2).

2.3.3 Deep learning concepts

Introduction

Since the early days of programmable computers, scientists have been interested in designing
intelligent computers, i.e., machines with the ability of human-like cognition and reasoning,
a discipline widely known as artificial intelligence (AI) [199]. Inside the realm of AI, the field
of machine learning (ML) studies how computers can learn from experience (i.e., data), a
prerequisite for intelligent behavior. Instead of applying hard-coded knowledge, ML algo-
rithms obtain their knowledge to achieve a specific task by taking the data at hand and learn
relevant patterns from it. ML can be categorized into three major types: supervised learn-
ing, unsupervised learning, and reinforcement learning. Supervised learning uses labelled
data to learn a model which can predict the target class (classification) or a real-numbered
value (regression) for a given input. For example, e-mails could be classified as spam or
non-spam based on specific word occurrences, or housing prices could be predicted based on
various properties of the house and surroundings. In contrast, unsupervised learning utilizes
unlabelled data to learn specific properties of the dataset, e.g., whether the data can be
clustered to identify similar subsets. For example, RBPs could be clustered to find RBPs
with similar binding characteristics, based on the k-mer frequencies of their binding sites.
The third type reinforcement learning encompasses models that learn tasks from trial and
error (i.e., without external guidance), typically applied in real-time applications, e.g., to
balance a pole, fly a helicopter, or to play video games.

ML methods can be further divided into methods that depend on manually designed
features (i.e., that rely on feature engineering by the user), and methods that learn informa-
tive features (also termed representations) on their own, directly from the raw input data.
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In ML, a feature is defined as a certain characteristic representation of the data at hand,
e.g., the frequency of a specific k-mer in an RNA sequence. The ML branch that deals with
the second type of methods is therefore also known as representation learning. Represen-
tation learning is necessary because for many real-life problems, decisive features are either
unknown or highly complex and thus impossible to grasp by humans, making manual fea-
ture engineering unfeasible. In addition, hand-designed features are often specific to solving
a certain task, urging the need for methods that integrate feature identification into their
learning algorithms. Deep learning (DL) again is a part of representation learning, and refers
to methods with particularly deep architectures, specifically deep neural networks (DNNs).
Due to the strikingly increased popularity of DL methods in recent years, ML methods which
do not apply DL are nowadays also referred to as classical ML methods.
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Figure 2.9: Scheme of a common feedforward artificial neural network, also known as multilayer
perceptron (MLP). An MLP consists of an input layer with several inputs x, one or several hidden
layers of hidden neurons (or units), and an output layer, here with one output unit producing one
output value (y), thus suitable for binary classification or regression. Information flows from the
inputs to the outputs, with weighted connections between the inputs, hidden and output neurons.
The input to a neuron is the sum of the weighted inputs and (usually) a weighted bias term b.
The output of the neuron is the sum fed into an activation function f , which is typically non-linear
for hidden neurons (e.g., sigmoid or ReLU), while output neurons apply both linear and non-linear
functions (depending on the prediction task).

DL methods are based on artificial neural networks (ANNs), named after and inspired by
neural networks in the animal brain, which enable intelligent behavior through vast numbers
of small interconnected units (i.e., neurons). The prime example for an ANN is the multilayer
perceptron (MLP) (see Figure 2.9). An ANN architecture is termed deep if it exceeds a
certain number of hidden layers (usually > 2), although there is no strict definition. MLPs
are fully connected, feedforward ANNs, meaning that each neuron in the current layer is
connected to each neuron in the next layer, and that there are no cycles in the network.
The layers that make up a feedforward ANN are also termed linear layers. A neural network
(NN) is basically a mathematical function, composed of many simple functions inside its
neurons. It can be trained to map its input values to one or more desired output values by
tuning the network parameters (i.e., its weights). Training is usually done in a supervised
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learning setting, to enable classification or regression of given inputs (see section 2.3.3 Model
training below for more details). DNNs tackle the challenge of learning representations from
raw data by first learning simple features and then in deeper layers combine these into more
and more complex or abstract features. For example, a DNN to recognize faces in an image
would typically start recognizing simple features in the first layer such as edges, followed by
contours and larger facial parts in subsequent layers (see Figure 1.2. [199]). Certain network
architectures by design are particularly well suited for specific tasks, such as convolutional
neural networks (CNNs) for image recognition, or recurrent neural networks (RNNs) for
sequential data learning taks [200].

Input encoding

Categorical features such as the characters of an RNA sequence first have to be converted into
a numerical encoding, as deep learning methods require numeric input variables. The most
common way to do this is to apply a one-hot encoding (see Figure 2.10) to each character in
the sequence. For this, a vector of size 1 × N is created for each character, with N being the
size of the alphabet (e.g., N = 4 for RNA). The vector consists of 0s in all positions, except
for 1 at the position designating the respective character. Additional predictive features can
be added to the vector, such as base pair probabilities, or region type annotations (again
one-hot encoded), or conservation scores (as done in publication P4). The input to the
network thus consists of a matrix of L × N , with L being the length of the sequence.
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Figure 2.10: One-hot input sequence encoding. Each character of the RNA sequence is encoded as
a one-hot vector of length equals the alphabet size (N = 4), with 0s in all positions except for 1 at
the position designating the respective character. Additional numeric features can be added to the
vector, such as base pair probabilities or conservation scores.

Model training

Training a DNN model essentially involves two steps: (i) fitting the network weights to the
training data at hand, which is done by an optimization algorithm; and (ii) making sure that
the model is able to generalize well on unseen data, which is done by constantly monitoring
the model performance on a separate validation set. The following explanations focus on
binary classification, although the basic principles of model training apply to both classifi-
cation and regression tasks. In a typical DNN binary classification task, the dataset gets
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split into a training, validation, and test set. For the optimization, gradient-based methods
such as stochastic gradient descent (SGD) and its derivatives (including adaptive gradient
methods such as Adam [201]) are typically used. SGD is a first-order iterative optimization
method which iteratively adapts the network weights such that the error on the training
set gets minimized. More specifically, in each SGD step, a single instance of the training
set is put through the network, and the predicted and true label are compared. The error
is calculated using an appropriate differentiable error (or loss) function (for binary classifi-
cation typically the cross-entropy loss function). The gradient of the loss function is then
computed by backpropagating the loss through the network, using the backpropagation al-
gorithm [202]. The gradient is the slope (i.e., first-order iterative) of the loss function at the
position defined by the currently set weights. In other words, it is a vector containing the
partial derivatives of each network weight with respect to the loss. This makes it possible
to decrease the loss, by adjusting the weights into the opposite direction of the gradient. In
SGD, the weight update is done for every input example. Alternatively, gradient descent
can be performed with batches (i.e., the entire training set), or mini-batches (e.g., 50 input
examples), to calculate the average loss and do a weight update for each (mini-)batch. Mini-
batches are usually the preferred way for training DNNs, as they provide the most practical
solution in terms of computational costs and convergence speed. Typically, training contin-
ues over several rounds of training set run-throughs, also termed epochs. In addition, the
generalization performance of the adapted network on the validation set is monitored after
each epoch. Once the validation error does not decrease anymore for a number of epochs,
training is stopped and the model (i.e., a network with a specific weight configuration) with
the lowest validation error is stored.
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Figure 2.11: Learning curve to observe model fitting and generalization performance. Validation
and training set errors are plotted over the number of training epochs. To avoid overfitting, early
stopping is applied, i.e., training is stopped once the validation error stops decreasing for a certain
number of epochs, and the model with the minimum validation error is selected.

Monitoring the validation error is an essential part of learning, mostly to avoid overfit-
ting. As DNNs are highly complex function approximators, they can easily overfit on the
training data, up to a point where the model basically memorizes the training set. This
includes learning the noise inherent to the training dataset, which counteracts the model’s
ability to generalize well on unseen data. In order to obtain a model that generalizes well,
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training therefore needs to be stopped once the validation error stops decreasing. Measures
to counteract overfitting are also known as regularization techniques. There are various such
techniques, which can be applied at different stages of the learning. As regions of large curva-
ture in the network function are connected to large weights, regularization methods typically
aim at preventing or penalizing large weights. For example, as described, training is stopped
once the validation error does not decrease anymore over a certain number of epochs, which
is also termed early stopping (see Figure 2.11). Other techniques such as weight decay add a
regularization term to the error function, which increases with larger weights, thus leading to
increasingly smaller weight updates. Temporarily decreasing the complexity of the network
during training is also popular, as done by the dropout method, which randomly selects and
ignores certain neurons (i.e, their contributions to following neurons) during training (i.e.,
in the forward pass). All these regularization techniques are parameterized, i.e., they can
be fine-tuned to improve model performances just like the network parameters. Network
parameters which do not get tuned during training but have to be set before training are
termed hyperparameters. These include network architecture settings such as the number of
layers or the number of neurons per layer, as well as optimizer settings such as learning rate,
dropout rate, batch size, or the number of epochs to wait before early stopping kicks in (also
termed patience). All these hyperparameters can have large effects on the model’s predic-
tive performance, and thus need to be tuned as well, in a procedure called hyperparameter
optimization (HPO). Various tools are available for automatic HPO, such as BOHB [203].

In the end, the generalization performance of the selected model is calculated on the
remaining test dataset. This is done as the validation set can become biased towards the
training set, because model training continues as long as the validation error decreases. In
order to get an accurate estimate of the generalization performance over the entire set, the
whole procedure is repeated several times through cross-validation. In cross-validation, the
dataset is typically split into k equally-sized subsets (i.e., k-fold cross validation, typically
with k = 10), resulting in k different train-validation-test splits (i.e., for 10 folds: 80%, 10%,
10%). Importantly, each split is used once as a test set, which averages out the bias from
using a single small test dataset. In each fold, the model is trained on the training set,
monitored on the validation set, and finally evaluated on the test set. This way, k test set
performance measures are generated, and the average is taken and returned as the model
generalization performance. The procedure can also be coupled with HPO, where in each
fold a model is trained for each hyperparameter combination. In this case, the validation set
is used for monitoring, as well as for the selecting the best hyperparameter combination.

Recurrent neural networks

Recurrent neural networks (RNNs) describe a specific type of NN architecture, which can
take sequences of variable length as inputs and process the input sequence one step at a time
(i.e., in a recurrent fashion). In contrast to feedforward NN hidden layers, an RNN layer is
made up of only one neuron, also termed cell, which takes the input sequence parts one at a
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time, with the cell output being part of the cell input in the next time step (see Figure 2.12).
This cycle is repeated until the last sequence part was processed, resulting in a final output
which can then be forwarded to a linear output layer to produce the network output, just
as in feedforward NNs. Intermediate RNN layer outputs (i.e., at each time step) can also be
output, depending on the application. Typically the outputs of the RNN cell correspond to
its hidden state vector h, which gets recurrently fed into the cell throughout the cycles. In
addition, the basic RNN cell also has two weight matrices and a bias vector. Formally, at
time step t, the cell computes the hidden state vector ht by:

ht = f(Wxhxt + Whhht−1 + b) (2.1)

where f is a non-linear activation function (in basic RNN cell implementations usually the
hyperbolic tangent (tanh) function), Wxh the weight matrix connecting the input feature
vector to the hidden state vector, xt the input feature vector at time step t, Whh the weight
matrix connecting the previous with the current hidden state, ht−1 the hidden state vector
at time step t−1, and b the bias vector connecting the bias weight to the hidden state vector.
An RNN layer processing an input sequence of length 10 can thus be seen as a feedforward
NN encompassing 10 single-neuron hidden layers, with the distinction that the weights are
shared between the layers and new input is supplied in each layer. The hidden state vector
length is also referred to as the dimension of the RNN layer, while a 2-layer RNN means that
the final hidden state serves as input to the next RNN layer. Furthermore, an RNN layer
can be extended to a bidirectional RNN (BRNN), meaning that the sequence is processed
both in forward and backward direction [204]. A BRNN thus contains separate weights for
each direction, and outputs two final hidden state vectors, which then get concatenated and
forwarded to the output layer. This way, both past and future time steps (or for RNA
sequences both up- and downstream context) are considered by the model, which depending
on the task or dataset can improve predictive performance.

As long sequences require the RNN cell to unfold many times, backpropagation for stan-
dard RNNs can run into the problem of vanishing or exploding gradients. Both hinder or
prevent the optimizer to converge during model training, either through oscillating weights
that diverge from a good solution (exploding gradients), or too small or falsely-directed
weight updates (vanishing gradients). Likewise, the problem makes it difficult for standard
RNNs to capture long-term dependencies between more distant time steps [205]. In order
to counteract the vanishing gradient problem and to better capture long-term dependen-
cies, different gated RNNs have been proposed, most prominently the long-term short-term
(LSTM) unit and the gated recurrent unit (GRU) [206, 207]. These methods replace the
simple non-linear activation function in the original RNN cell by a small network of different
gate structures, which effectively control what content to keep, to add, and to remove from
the cell memory. This way, important content will not be overwritten, enabling long-term
dependencies to be kept in memory. Moreover, the additive nature of the introduced gates
counteracts the vanishing gradient problem [208].
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Figure 2.12: Standard RNN architecture showing the forward propagation of information in the
RNN layer. (a) An RNN layer is made up of a special neuron, the RNN cell, which cyclically processes
the input sequence, one step at a time. Example input sequence (one-hot encoded RNA sequence)
of length 3, with 4 predictive features. (b) unfolded RNN cell, showing the processing of the 3
input sequence parts. At each step, the input feature vector is combined with the former hidden
state through weighted connections and put through an activation function. All steps share the same
weights. h0: initial hidden state. *optional outputs.

Predictive performance measures

Various performance measures are applied in ML, depending on the type of task and whether
the dataset is balanced or not (i.e., equal numbers of positive and negative examples). In a
binary classification setting, all common measures can be deduced from the confusion matrix
(see Figure 2.13). Of the measures used or mentioned in this thesis, these include the true
positive rate (i.e., sensitivity or recall), the false positive rate, the true negative rate (i.e.,
specificity), the precision, the accuracy, the F-score, as well as the area under the curve
(AUC).
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Figure 2.13: Confusion matrix for binary classification tasks, with the two classes
{positive, negative}. The confusion matrix contrasts the predicted class with the actual class for
each dataset example and displays their numbers, resulting in the four possible outcome categories:
true positives (TP), false positives (FP), false negatives (FN), and true negatives (TN).

Based on the four categories (TP, FP, FN, TN) from Figure 2.13, the true positive rate
(TPR), also known as sensitivity or recall, is the proportion of correctly classified positive
examples:

TPR = TP

TP + FN
(2.2)
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Likewise, the false positive rate (FPR) is the proportion of misclassified negative examples:

FPR = FP

FP + TN
(2.3)

In contrast, the true negative rate (TNR), also termed specificity, is the proportion of cor-
rectly classified negatives:

TNR = TN

TN + FP
(2.4)

The precision is defined as the proportion of predicted positive examples that were correct:

Precision = TP

TP + FP
(2.5)

The accuracy is defined as the proportion of correctly classified examples (i.e., negatives and
positives):

Accuracy = TP + TN

TP + TN + FP + FN
(2.6)

For binary classification, the accuracy of a random classifier is expected to be 0.5, while
for multi-class classification it is 1/N for N classes. Moreover, for imbalanced classes the
accuracy measure might not be the best choice. This is because even a dummy classifier
which, e.g., always outputs negative can have high accuracies if the dataset contains many
negative examples.

The F-score (also known as F1 score) incorporates both precision and recall:

F − score = 2 ∗ Precision · Recall

Precision + Recall
(2.7)

This means that the F-score assesses both how many of the positive predictions were correct,
but also how many of the positive examples are correctly classified. Perfect precision and
recall results in a maximum F-score of 1.0, while either a precision or recall of 0 results in a
minimum F-score of 0. The F-score thus focuses on false negatives and false positives, while
the accuracy focuses on true positives and true negatives. Moreover, the F-score can also be
used in case of imbalanced sets.

Probably the most common performance measure for binary classification with balanced
datasets is the area under the curve (AUC), more precisely the receiver operator characteristic
(ROC) curve (see Figure 2.14). The curve is constructed by taking the prediction scores of
a binary classification model on the test dataset, and for each test score s calculating the
TPR and the FPR with scores > s being positive predictions, and scores ≤ s being negative
predictions. Consequently, an AUC of 1.0 corresponds to a TPR of 1.0 and a FPR of 0, while
an AUC of 0.5 corresponds to a random classifier. The AUC is thus more informative than a
single threshold performance measure such as the accuracy, whose threshold can be chosen
arbitrarily, and thus can make comparisons between different models or methods difficult.
However, for imbalanced datasets, the precision-recall curve is more informative [209].
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hyperparameter settings. FPRs and TPRs are recorded for different model score thresholds to con-
struct the ROC curve. The dotted line corresponds to an AUC of 0.5, which would be expected from
a random classifier.





Chapter 3

Publication summaries

This chapter summarizes the contents of the five publications (P1-P5) included in this thesis.
Each summary contains an overview of the work, as well as a concise description of the
methodology (for the method papers P2, P3, P5), and the results and discussion. For full
details please refer to the attached published articles, their supplements, and the tool online
manuals. The focus of the descriptions will be on my own contributions. However, given
that the presented works are collaborative efforts, including some co-author contributions
for clarity reasons as well as overlapping contributions (i.e., parts done together with other
authors) is inevitable. I therefore opted for using the common first person plural form (i.e.,
“we” instead of “I”) for summarizing the contents of P1-P5 in Chapters 3 and 4, even if a
depicted part was done exclusively by myself. Detailed author contributions can be found in
Chapter 5, preceding the published articles.
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3.1 Computational analysis of CLIP-seq data
This section sums up the contents of the following publication:

• [P1] Michael Uhl*, Torsten Houwaart*, Gianluca Corrado, Patrick R. Wright, and
Rolf Backofen*. Computational analysis of CLIP-seq data. Methods, 2017.

In addition, the section also references some work which I contributed to papers where I
was not a main contributor. While these contributions do not qualify as principal papers that
make up the cumulative thesis, they provide application examples for the topics discussed
in P1, and thus help to better understand their relevance.

3.1.1 Overview
Over the last decade, CLIP-seq has become the go-to method for determining RBP binding
sites on a transcriptome-wide scale. Several protocol variants have been published, each
requiring specific adaptations to the computational analysis of the generated datasets. Con-
ducting a CLIP-seq data analysis thus demands detailed knowledge about protocol specifics,
as well as the various steps of the data analysis. The lack of comprehensive and up-to-date
reviews on the topic prompted us to write this review article (P1), in order to assist readers
in performing a successful CLIP-seq data analysis. For the article we mainly drew from our
own experience with analysing CLIP-seq data, which already resulted in several publications
prior to P1.

The first part of P1 describes the different CLIP-seq protocol variants and their char-
acteristics. In the second part, the various CLIP-seq data analysis steps are discussed. We
further divided the data analysis part into three sections, corresponding to the three prin-
cipal analysis steps: preprocessing of the raw sequencing data and mapping to the genome,
binding site identification from the mapped read data (also termed peak calling), and anal-
ysis of binding site properties (which also includes the learning of predictive models). Since
peak calling is arguably the most critical part, we enhanced this section and added a peak
caller comparison.

3.1.2 Results and discussion

Peak caller comparison

As mentioned, various CLIP-seq protocol variants exist, of which PAR-CLIP, iCLIP, and
eCLIP are currently the most popular ones. We described their individual characteristics in
the first part of P1. For example, PAR-CLIP induces characteristic T-to-C mutations in its
read library, which can be utilized to detect crosslink positions, i.e., RNA positions where
the protein and RNA got covalently linked via UV radiation as part of the protocol. The

* joint first authors
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distribution of crosslink counts across the mapped read profiles thus allows the discovery of
RBP binding sites with single-nucleotide resolution. On the other hand, iCLIP and eCLIP
pinpoint the majority of crosslink positions to the 5’ end of the sequenced reads (second read
of the pair in eCLIP, first read of the pair in iCLIP). Consequently, the protocol at hand
affects the processing and types of tools applied in the following data analysis, in particular
the peak calling. For example, PARalyzer is a peak caller specialized on PAR-CLIP data, by
taking into account T-to-C mutations to determine binding site locations from the read data.
In contrast, peak callers such as Piranha, CLIPper, or the block-based method described in
P1 can be applied to data generated by various CLIP-seq protocols. These can be further
divided into methods that only take into account read starts (Piranha), and methods that
use the full-length read information (CLIPper, block-based method) to define peak regions.
Another popular method called PureCLIP (released shortly after P1) also focuses on read
starts [210].

For the peak caller comparison in P1, we chose three popular peak callers which can be
applied to various CLIP-seq data: Piranha, CLIPper, and the block-based method (later
also implemented in the PEAKachu peak caller). In general, comparing peak callers is dif-
ficult, as these tools often include various parameters, which can drastically influence their
behavior. Most importantly however, there exists no transcriptome-wide set of experimen-
tally confirmed binding sites for a particular RBP. Without such evidence, ideally recorded
under same conditions (cell type and transcriptional state), we cannot be certain whether
a CLIP-seq peak region is a true or false positive. Binding motifs have been reported and
confirmed for a number of RBPs. However, these cannot safely rule out false positive sites
detected in a CLIP-seq experiment, as RBPs often do not have clearly defined motifs, but
can bind to sites with varying structure or sequence composition [140]. An alternative is
to use an RBP which is known to target a specific set of RNAs. One particularly special
RBP in that regard is SLBP (Stem-Loop Binding Protein), which shows high specificity for
a stem-loop containing region at the 3’ end of histone mRNAs. We thus chose SLBP for the
comparison, for which an eCLIP dataset is available.

To make the comparison more even, the identified peak regions of the three peak callers
were normalized and filtered by the same procedure , instead of using tool specific quality
scores for filtering. Figure 3.1 shows the peaks called by the three peak callers on the histone
gene HIST2H2AC (H2AC20), containing a stem-loop motif region (SLM) at its 3’ end. As
expected, the peaks called by CLIPper and the block-based method (track 6 and 7) follow the
full read profile (track 4), while Piranha by design focuses on the read starts (i.e., crosslink
positions) (track 5). In this case, Piranha misses the actual SLBP binding site, due to the
accumulation of crosslink positions upstream of the SLM. A known issue of CLIP-seq is that
double-stranded regions are less efficiently crosslinked with UV [156], which might explain the
scattering of crosslink positions around the SLM. Large-scale in vitro binding motif studies
suggest that most RBPs recognize short unstructured motifs, so this problem might be less
relevant for the majority of RBPs [194, 131, 140]. This is also indicated by the results of a
subsequent study from our group, where we can see a clear enrichment of known motifs for
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Figure 3.1: Peaks called on human SLBP eCLIP data by three peak callers (CLIPper, block-based
method, Piranha), covering the histone HIST2H2AC (H2AC20) gene region on chromosome 1. A
stem-loop motif region (SLM) recognized by SLBP is located at its 3’ end. 1: chromosomal region,
2: chromosome coordinates, 3: gene annotations, 4: read profile (coverage), 5: crosslink positions
profile, 6: CLIPper peak regions, 7: Block-based method peak regions, 8: Piranha peak regions.
Coverage of control library in red (tracks 4 and 5). Figure adapted from publication P1 [187].

several RBPs in the called peaks of all tested peak callers [188]. In our comparison, all three
peak callers call similar amounts of peaks, with the block-based method calling the broadest
peaks and Piranha the smallest (see P1, Table 1). Moreover, they share a substantial amount
of called genomic positions (block-based method 42.4%, CLIPper 64.8%, Piranha 88,7%).
The higher number of unique positions of the block-based method can be explained by its
higher peak number and the increased length of its peaks. Note that we did not use replicate
information in this comparison, as CLIPper and Piranha do not support it. The block-based
method however does, which in theory should yield more robust binding sites (Pros and Cons
of the three tools are listed in P1, Table 2).

In conclusion, both crosslink-position-based (e.g., Piranha, PureCLIP) and read-profile-
based peak callers (CLIPper, block-based method) have their advantages and disadvantages.
We have seen that structure binding RBPs can be problematic for the first group. An easy
solution here is to extend the called sites by a certain amount, although this also increases
the amount of non-specific background. The second group of peak callers have their own
issues, which are further discussed in publication P4. The support of replicate information is
an important feature, which has long become a standard in other high-throughput protocols
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(e.g., RNA-seq, ChIP-seq). Unfortunately, many published CLIP-seq experiments consist of
few or even no replicates. For example, eCLIP datasets available from ENCODE ([211]) offer
two replicates and one control, but ideally one would aim for at least three replicates, both
for experiment and control, in order to more accurately estimate the biological variation in
the samples [186]. For a comprehensive analysis, we suggest to run more than one peak caller,
especially if little is known about the binding properties of the studied RBP. Moreover, if
replicate information is available, one should definitely include peak callers which can take
advantage of it.

a b

Figure 3.2: hnRNPL binding site prediction on DSCAM-AS1 lncRNA and experimental verification
of the binding site. (a) Position-wise binding scores on DSCAM-AS1 predicted by the GraphProt
model trained on hnRNPL iCLIP data. The highest-scoring site (around top-scoring RNA position
923, marked red) was subjected to mutational analysis. (b) Mutational analysis results, verifying
the hnRNPL binding site on DSCAM-AS1. Western blot of hnRNPL and the different mutant forms
demonstrated hnRNPL binding to forms including the predicted binding site, but not to forms missing
the site. Figures taken from [212] (license: CC BY 4.0 [213]).

Application examples

As detailed in the postprocessing section of publication P1, binding sites identified by CLIP-
seq can be further utilized to learn predictive binding models for the CLIPped RBP. The
main reason to do this is the expression dependency of a CLIP-seq experiment, meaning that
CLIP-seq can only recover binding sites on transcripts which are sufficiently expressed in the
studied cell type or condition. Since gene expression is dynamic, we have to rely on binding
site prediction tools to get binding profiles for transcripts with no or too low expression,
or across the entire transcriptome for systematic studies. One of the collaborations I was
involved with included the prediction of hnRNPL binding sites on a newly identified breast
cancer-associated lncRNA (DSCAM-AS1 ) [212]. For this I utilized a GraphProt model,
which I trained on hnRNPL iCLIP data from the literature. The predicted binding site
(Figure 3.2 a) was subsequently verified (Figure 3.2 b), establishing the interaction between
hnRNPL and DSCAM-AS1 as an important factor of DSCAM-AS1 oncogenicity. To obtain
peak regions from the data, I did not apply a peak caller, but instead defined genomic sites
with high crosslink counts as peak regions, since the raw data was not available. Notably, the
DSCAM-AS1 gene region did not contain any crosslink positions. In general, it is important
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to correct for unspecific binding or expression differences in CLIP-seq by using a control
library, e.g., by calculating a fold change (i.e., read coverage of experiment versus control),
to filter the peak regions. This is because a strong signal in the experiment could be due to
specific RBP binding, but also due to unspecific binding, especially in combination with a
high expression of the underlying transcript. Since such unspecific binding signals are ideally
detected in the control library as well, using a control can help to remove low confidence
sites. On the other hand, machine learning methods such as GraphProt are typically robust
to a certain amount of noise in the data, as long as the principal binding preferences are
captured in the sites. Whether peak calling or a more simple approach is sufficient therefore
depends on the quality of the data, as well as the goal of the study.

In a second collaboration, I applied the block-based method described in P1 to RIP-seq
data for the archaeal L7Ae protein, in order to identify novel L7Ae-RNA interactions [214].
L7Ae recognizes and stabilizes specific RNA structures termed kink-turn (k-turn) motifs,
which are found in various RNAs, most notably rRNA. L7Ae-RNA interactions are essen-
tially involved in the regulation of translation, and have also been applied in synthetic biology
as translational on-off switches. RIP-seq is similar to CLIP-seq, but omits certain steps such
as UV crosslinking and RNAse digestion, which leads to a lower specificity and resolution.
However, UV crosslinking applied in CLIP-seq requires close association of RNA nucleobases
and aromatic amino acid residues, which, depending on the binding modes of the CLIPped
RBP, might lead to a decreased sensitivity. RIP-seq can therefore help to uncover RNA-
protein interactions with lower specificity or in general more diverse interactions, such as
protein interactions with dsRNA or the RNA backbone, or indirect interactions where the
immunopurified protein is connected to the RNA via another protein [215]. Due to the
decreased resolution, we focused on transcript-level interactions, and chose the block-based
method, since the experiment offered replicates (i.e., two replicates and one control). As
a result, we identified several novel L7Ae interactions, including ncRNAs as well as mR-
NAs. Interestingly, L7Ae also binds to its own mRNA to regulate its translation, which was
experimentally confirmed in the paper.

Installing and running data analysis pipelines can be challenging, especially for scientists
working in the wet lab or with less experience in bioinformatics. Moreover, reproducing
earlier results often fails due to a lack of documentation and missing datasets. To help
making CLIP-seq data analysis accessible and results reproducible, I integrated several useful
CLIP-seq related tools into the Galaxy framework [216]. These include GraphProt [193],
PureCLIP [210], and the functional annotation tool RCAS [217], which are also part of
the Galaxy CLIP-Explorer pipeline published by our group [188]. Galaxy is a free web-
based data analysis platform, driven by an immensely prolific open-source community and
tens of thousands of active users from all around the world. It offers easy access to a
multitude of different data analysis pipelines, from various scientific disciplines. Results are
fully reproducible, since all analysis steps and intermediate results are stored in the project
history, and histories and datasets can be shared among users.
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3.2 MechRNA: prediction of lncRNA mechanisms from
RNA-RNA and RNA-protein interactions

This section summarizes the contents of the following publication:

• [P2] Alexander R. Gawronski, Michael Uhl, Yajia Zhang, Yen-Yi Lin, Yashar S.
Niknafs, Varune R. Ramnarine, Rohit Malik, Felix Feng, Arul M. Chinnaiyan, Colin C.
Collins, S. Cenk Sahinalp, and Rolf Backofen. MechRNA: prediction of lncRNA
mechanisms from RNA-RNA and RNA-protein interactions. Bioinformatics,
2018.

3.2.1 Overview
As detailed in chapter 2, lncRNAs make up a number rich and functionally diverse class
of ncRNAs. Estimates of up to 100,000 lncRNAs in the human genome combined with a
generally poor functional characterization has spurred great interest among the scientific
community in determining their modes of action. In addition, lncRNAs often show tissue- or
condition-specific expression, and are upregulated in various cancer types, further contribut-
ing to the importance of studying their mechanisms. The function of a lncRNA is essentially
determined by its interactions with other biomolecules (RNA, DNA, or protein). Due to the
availability of prediction tools for RNA-RNA and RNA-protein interactions, we decided to
combine the two approaches with expression data in order to predict lncRNA interactions
and infer their mechanisms on a transcriptome-wide scale. Publication P2 introduces this
approach we named MechRNA, the first tool to offer mechanistic function predictions for
lncRNAs.

P2 starts with describing the method, which essentially consists of an RNA-RNA inter-
action prediction part using IntaRNA2 [218], an RNA-protein interaction prediction part
using GraphProt, a gene expression correlation part including cancer RNA-seq data, and a
combination part where the predicted interactions and correlations are merged and potential
mechanisms are evaluated using a combined p-value. In the end, MechRNA reports the most
likely mechanism (i.e., the mechanism with the lowest combined p-value) for each lncRNA-
target RNA pair. This is followed by the results and discussion section, where MechRNA
predictions are compared with (partially) known lncRNA mechanisms of 3 prostate cancer-
associated lncRNAs. In addition, we ran MechRNA on 5 more lncRNAs to find out more
about their potential mechanisms. The results demonstrate that MechRNA is capable of
detecting known lncRNA mechanisms, underlining its value for lncRNA research.



54 Chapter 3. Publication summaries

3.2.2 Methods

MechRNA workflow

Figure 3.3 outlines the MechRNA workflow. Given a user-specified lncRNA, MechRNA
first predicts RNA-RNA interactions (either transcriptome-wide or on a subset), and re-
trieves precomputed RNA-protein interactions for a set of (up to) 22 RBPs involved in
post-transcriptional gene regulation. Next, interaction p-values are merged with precom-
puted partial correlation p-values of all interaction partners (calculated from a large cancer
gene expression set) to obtain a joint p-value, using Stouffer’s Z-score method. The partial
correlation between two genes (in our case the interacting RNA or RBP genes) is the corre-
lation of their gene expression values, with the effects of all other genes removed. Depending
on the combination of interactions (lncRNA, target RNA, RBPs), various candidate mech-
anisms are generated (see section below for a description of supported mechanisms). For
example, if the specified lncRNA and its target RNA have a negative partial correlation, one
possible mechanism would be “direct downregulation”. In the end, the mechanism with the
lowest joint p-value is reported for each lncRNA-target RNA pair.
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Figure 3.3: Overview of the MechRNA workflow. For a given lncRNA, MechRNA predicts RNA-
RNA interactions using IntaRNA2, and retrieves precomputed RNA-protein interactions for a set of
22 RBPs involved in post-transcriptional gene regulation. Resulting p-values are combined with p-
values of all interaction partners obtained from gene expression correlation data to a joint p-value. The
Mechanism with the lowest joint p-value is reported for each lncRNA-target RNA pair. *precomputed
models and predictions to speed up runtime. Figure taken from publication P2 [219].
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MechRNA offers two modes of operation: 1) hypothesis-driven and 2) screening mode.
In screening mode, the user only needs to specify a lncRNA, for which MechRNA then
infers potential mechanisms, using the correlation data, as well as (by default) all available
mechanisms, all 22 RBP prediction sets, and the entire reference transcriptome. This is the
mode of choice for lncRNAs without any known mechanisms. If more is known about the
lncRNA function (e.g., mechanisms or specific targets), the user can also run MechRNA
in hypothesis-driven mode, which does not rely on correlation data. Instead, p-values and
mechanisms are deduced solely from RNA-RNA and RNA-protein interactions, which are
based on the user-specified RNA targets, RBPs, and mechanisms.

Supported mechanisms

Depending on the existence, location, and number of predicted RNA-protein interaction
sites relative to the predicted RNA-RNA interaction site, various lncRNA mechanisms can
be inferred. Figure 3.4 a visualizes possible mechanisms, as well as the mechanisms which
are supported by MechRNA (marked in green). Due to MechRNA’s reliance on RNA-RNA
interactions for inference, mechanisms without RNA-RNA interactions are not supported
(“direct RBP regulation” and “decoy”). Moreover, “dsRNA binding” is not inferred since
GraphProt does not predict binding sites occurring between two different RNAs, and CLIP-
seq in general does not inform about the RNA structure at the binding site (i.e., which
regions are interacting). As for the supported mechanisms, the simplest mechanism “direct
RNA regulation” involves only the RNA-RNA interaction. The remaining mechanisms all
include RBP interactions on the lncRNA, the target RNA (mRNA), or both. In addition,
the RBP binding site can overlap the RNA-RNA interaction, and the mechanisms can be
further divided into downregulatory or upregulatory (destabilizing or stabilizing), based on
the partial correlations between lncRNA or RBP(s) and the target RNA. A list of known
lncRNA mechanisms corresponding to the mechanisms in 3.4 a can be found in P2 (Table
2).

Based on the configuration of RBP binding sites at the RNA-RNA interaction site,
MechRNA infers different candidate mechanisms and assigns p-values to each mechanism.
Figure 3.4 b shows an inference example, with three RBPs (A,B,C). RBP B, RBP C, and the
lncRNA are negatively correlated with the target RNA. RBP A is positively correlated with
the target RNA, and its predicted binding site overlaps with the RNA-RNA interaction site.
This configuration leads to the six shown candidate mechanisms for the given lncRNA-target
RNA interaction (described as tuples with the format: (target_peak, lncRNA_peak, mecha-
nism_type). Finally, MechRNA reports the most likely mechanism for each lncRNA-target
RNA pair, i.e., the mechanism with the lowest joint p-value. In addition, the user can specify
which mechanisms to consider, as well as which RNA targets and RBPs (by default all).
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Figure 3.4: Possible lncRNA mechanisms defined by different combinations of RNA-protein inter-
actions with the RNA-RNA interaction. (a) Possible mechanisms and mechanisms supported by
MechRNA (marked in green). Supported mechanisms can be inferred by MechRNA. Depending on
the partial correlations of the interaction partners, certain mechanisms can be further categorized
into downregulatory or upregulatory. Figure adapted from publication P2 [219]. (b) Inference exam-
ple with three different RBPs (A,B,C). RBP A binding site overlaps with the lncRNA-target RNA
interaction region. RBP A is positively correlated with the target, RBP B, C, and the lncRNA are
negatively correlated with the target. Resulting candidate mechanisms extracted by MechRNA are
shown below, encoded as tuples with the format: (target_peak, lncRNA_peak, mechanism_type).

Integrating RBP binding site information

As mentioned in section 3.1.2 Application examples (also see publication P1, section 3.3),
CLIP-seq alone cannot provide a complete transcriptome-wide RBP binding landscape, since
binding site detection by CLIP-seq requires sufficient expression of the target RNA. In order
to obtain the complete transcriptome-wide binding profiles needed for MechRNA, we there-
fore relied on the RBP binding site prediction tool GraphProt. More specifically, GraphProt
was utilized to train models on a collection of 17 CLIP-seq datasets, encompassing 22 RBPs
with known roles in post-transcriptional gene regulation. The discrepancy in numbers is
due to two CLIP-seq datasets which contain the merged CLIP-seq regions of 3 and 4 RBPs,
respectively (AGO1-4, IGF2BP1-3) [162]. These have been merged by the authors because
the RBPs are highly related and bind similar sets of targets. Datasets with called peaks
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were obtained from the original GraphProt publication, as well as from ENCODE [211]. We
further undertook an extensive literature search to evaluate RBP functions. Based on our
findings, RBPs were further annotated as destabilizing or stabilizing the target RNA, which
is included as additional information for mechanism inference in hypothesis-driven mode.
For example, HuR is known to stabilize target RNAs [220], while PUM2 is known to inhibit
their translation and downregulate them [85]. For most RBPs however roles are less clear
or more diverse, so we always decided based on the amount of available studies and the
described main functions of the RBPs. Hyperparameter optimization was run for all models,
using 500 positive and 500 negative sites separately from the training set (see P2 Table S1
for full hyperparameter, dataset, and model details). Negative sites were randomly sampled
from gene regions containing CLIP-seq peak regions (i.e., positive sites), such that they did
not overlap with any positive sites. GraphProt structure models were chosen over sequence
models in seven cases, where the structure models showed superior performance.

To identify binding site locations, GraphProt was run in profile prediction mode. This
returns position-wise scores for each given input sequence (in our case the human reference
transcriptome). Scores were further averaged to smooth out the profiles and incorporate more
context information into each position-wise score, by using a moving window approach. For
this the new position-wise score is calculated by averaging over all scores up to 5 positions left
and right to the score (i.e., windows of length 11). Binding sites were subsequently defined
from the averaged position-wise score profiles as continuous regions with GraphProt model
scores > 0. The highest position-wise score inside the GraphProt peak region was further
taken as the peak score.

In order to make model scores between models comparable and to integrate them into the
MechRNA workflow, we further calculated p-values for each peak score. For this, each model
was run on 5,000 randomly selected transcripts, and the resulting position-wise scores were
used to generate an empirical cumulative density function (ECDF). The ECDF was then used
to calculate the p-value px for the peak score x with the formula px = 1−ecdf(x). This non-
parametric approach was chosen since the GraphProt scores for most models did not show
a clear unimodal distribution, preventing the use of conventional fitting procedures, such as
to fit a gamma distribution on the data as done for the IntaRNA2 RNA-RNA interaction
energies. In addition to the p-value assignment, we also prefiltered the predicted binding
sites to include only high-confidence site predictions in the inference process. The site score
thresholds we obtained by constructing a second ECDF from the position-wise scores of the
positive training sites (top position-wise score for each site), and by selecting the score at
50% of the distribution. This gave us a model-specific threshold score for filtering (or p-value
when inserted into the first ECDF, see Table S1), which allows us to keep sites comparable
score-wise to the sites in the positive set.
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3.2.3 Results and discussion

To check whether MechRNA is capable of detecting known lncRNA mechanisms, we selected
3 prostate cancer-associated lncRNAs (7SL, PCAT1, ARlnc1 ) whose mechanisms have been
studied in various publications. For these we used MechRNA’s hypothesis-driven mode, since
there is a priori information available on their mechanisms. A more systematic study of
MechRNA’s prediction quality was not possible due to only a handful of studied mechanisms
available so far. In addition, we predicted potential mechanisms for 5 mostly prostate cancer-
associated lncRNAs without known mechanisms, by utilizing MechRNA’s screening mode.
In the following we summarize and discuss the results for 7SL and PCAT1.

7SL is an ubiquitously expressed lncRNA which constitutes the RNA component of the
signal recognition particle RNP complex. In addition, it was shown to be highly expressed
in cancer tissues, where it promotes cancer cell growth [10]. Based on their experimental
results, the authors proposed a mechanism of competitive downregulation, where 7SL bind-
ing to the TP53 mRNA (encoding the tumor suppressor protein p53) competes with HuR
binding to TP53, causing inhibition of p53 translation. We therefore ran MechRNA with
7SL in hypothesis-driven mode, using all 16 TP53 isoforms, all downregulatory mechanisms,
and all RBP models. In agreement with the postulated mechanism, MechRNA predicted
“competitive downregulation” with HuR as the most likely mechanism for all 16 TP53 iso-
forms. Moreover, our predicted RNA-protein and RNA-RNA interaction sites overlap with
the interaction sites postulated in the paper (see P2 Table S2 for predicted interaction coor-
dinates and [10] Figure S2B for a graphical view). It should be noted that the authors used
a simple BLAST search to find TP53 3’UTR regions complementary to 7SL, as well as HuR
PAR-CLIP data to identify HuR binding sites in the TP53 3’UTR. Nevertheless, MechRNA
successfully identifies the proposed mechanism, and on top suggests the most likely interac-
tion site, whereas [10] simply reported all HuR PAR-CLIP sites and sites complementary to
7SL in the TP53 3’UTR.

Similarly to 7SL, PCAT1 is a prostate cancer-associated lncRNA which has been shown
to post-transcriptionally repress the tumor suppressor BRCA2 via an interaction with the
BRCA2 3’UTR [221]. The authors further found that the first 250 nt of PCAT1 are essential
for this mechanism. We therefore reused the settings from 7SL (hypothesis-driven mode, all
RBPs, all downregulatory mechanisms), this time with PCAT1 as lncRNA and the BRCA2
3’UTR region used in the study as target RNA. Again, MechRNA predicted “competitive
downregulation” with HuR as the most likely mechanism. In addition, the predicted RNA-
RNA interaction agreed with [221], as it is located in the first 250 nt of PCAT1. To test
our proposed mechanism, we applied immunoprecipitation assays to check HuR binding to
BRCA2, as well as PCAT1 ’s ability to compromise this interaction. Figure 3.5 a + b show the
binding assay results. The binding assays confirm the interaction between HuR and BRCA2
(Figure 3.5 a). Furthermore, full-length PCAT1 inhibits HuR binding to BRCA2, whereas
PCAT1 with its first 250 nt deleted does not (Figure 3.5 b). MechRNA’s proposed mechanism
of competitive binding involving PCAT1 and HuR thus offers a plausible explanation for the
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Figure 3.5: HuR binding assay results to check HuR binding to BRCA2 mRNA, as well as PCAT1 ’s
ability to disrupt the interaction. (a) Amount of BRCA2 RNA pulled down by immunoprecipitation
of HuR in LNCaP cells, compared to other proteins (IgG, AR, AGO2), normalized by IgG control to
get fold enrichment. BRCA2 RNA amount was measured by qPCR. (b) Amount of BRCA2 RNA
pulled down by immunoprecipitation of HuR in LNCaP cells, when stably expressing Lac-Z, PCAT1-
FL, or PCAT1-(∆ 1-250), again normalized by IgG control to get fold enrichment. BRCA2 RNA
amount was measured by qPCR. PCAT1-FL: full-length PCAT1. PCAT1-(∆ 1-250): PCAT1 with
first 250 nt deleted. Figure taken from publication P2 [219].

repression of BRCA2 by PCAT1 observed in [221].
Summing up, MechRNA is the first tool capable of inferring lncRNA mechanisms from

interactions with other RNAs and proteins. Even though there exist only a few studies on
such mechanisms so far, we have shown that MechRNA is able to detect known mecha-
nisms. In addition, MechRNA can offer new clues about existing mechanisms, and suggest
binding sites and hypotheses for experimental testing. In screening mode, MechRNA can
further provide lists of potential targets and mechanisms for initial examination. A number
of improvements could further enhance MechRNA’s usability and performance: For exam-
ple, MechRNA is currently restricted to reference transcriptome interactions, as it relies on
precomputed RBP interaction predictions as well as correlation data. Adapting MechRNA’s
workflow so that users can easily compute and integrate these data by themselves would
greatly increase its flexibility. As for the RNA-RNA interaction prediction part, including
experimental structure probing data and constraint folding to inform structure prediction
about RBP binding sites could further improve its accuracy. For the RNA-protein interaction
prediction part, using more advanced models (as presented in publication P3) would likely
boost performance too. In addition, microRNA binding site predictions could be integrated
similarly to RBP binding site predictions.
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3.3 RNAProt: an efficient and feature-rich RNA bind-
ing protein binding site predictor

This section summarizes the following publication:

• [P3] Michael Uhl, Van Dinh Tran, Florian Heyl, and Rolf Backofen. RNAProt:
an efficient and feature-rich RNA binding protein binding site predictor.
GigaScience, 2021.

3.3.1 Overview
As described in section 3.1.2 Application examples (also see publication P1, section 3.3), RBP
binding profiles obtained by CLIP-seq offer incomplete information, since detection of RBP
binding sites by CLIP-seq depends on the expression of the target RNA. Furthermore, there
can be mapping or antibody specificity issues in CLIP-seq, necessitating the development of
computational methods to learn RBP binding preferences from CLIP-seq data, in order to
predict transcriptome-wide binding profiles. Over the years, various prediction methods have
been proposed, from simple motif-based approaches to more sophisticated classical machine
learning methods, including GraphProt (see P1 and P2 for application examples). Lately,
deep learning methods have become the state-of-the-art in terms of predictive performance,
typically implementing convolutional neural networks (CNNs) in combination with recurrent
neural networks (RNNs). While these methods certainly provide improved performance over
older but still popular tools like GraphProt, we encountered several issues: many are not well
documented or maintained, complicating their installation and usage, or not even available.
Moreover, we experienced runtime efficiency issues, as well as limited sets of options for
processing datasets and supported predictive features. To counteract these problems, we im-
plemented RNAProt, an RNA-protein interaction prediction tool based on RNNs. RNAProt
offers state-of-the-art predictive performance as well as superior runtime efficiency. It is
easy to install and use, facilitated by its comprehensive documentation on GitHub and the
availability of a Conda package. In addition, it supports more input types and features than
any other tool available so far, including user-defined features. Taken together, RNAProt
provides a flexible and performant solution for large-scale RBP binding site predictions and
related studies.

Publication P3 starts with describing the RNAProt method, including the utilized RNN
model architecture, the general RNAProt workflow with its various program modes, and
a summary of supported features. The methods are completed by descriptions on how
RNAProt visualizes what was learned by the model, and how the benchmark datasets for the
tool comparison were constructed. This is followed by the results and discussion section, in
which RNAProt is compared to GraphProt as well as two deep learning methods, including
benchmarks on predictive performance as well as runtime. Next, RNAProt visualizations
are compared to known RBP binding preferences, and RNAProt’s additional features are
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benchmarked against baseline models using sequence information only. Finally, we present a
use case on how additional features (i.e., secondary structure information) can improve the
specificity of predictions for the structure-binding RBP Roquin.

3.3.2 Methods

Model architecture

RNAProt utilizes a recurrent neural network (RNN)-based model to learn RBP binding
preferences from CLIP-seq or related data. Various hyperparameters can be adjusted or
optimized for the dataset at hand using state-of-the-art hyperparameter optimization by
Bayesian Optimization and Hyperband (BOHB) [203]. By default, the type of RNN is a
Gated Recurrent Unit (GRU) [207], and the network consists of one GRU layer, followed by
one fully connected layer (see P3 for full settings). All results reported in P3 were generated
using the default settings. RNN-based models are known to work well with linear sequence
information, since they can learn dependencies between parts of variable distance in a given
sequence. As such they have been successfully applied to a range of tasks, from natural
language processing over time-series data studies to the analysis of biological sequences like
DNA or RNA. In our case, the input to the network is a one-hot encoded RNA sequence,
optionally with additional feature channels (for details see Supported features section below).
The output of the network is a value which can be interpreted as a score, with values > 0
corresponding to the RNA sequence being classified as positive, and values ≤ 0 to a negative
classification.

RNAProt workflow

Figure 3.6 shows the RNAProt workflow, which is organized into five different program
modes: training set generation (rnaprot gt), prediction set generation (rnaprot gp), model
training (rnaprot train), model evaluation (rnaprot eval), and model prediction (rnaprot
predict). Since training RNAProt models is fast, we decided to separate dataset generation
from training and prediction. This way, the time-consuming extraction of additional features
(e.g., conservation scores, secondary structure, region annotations) has to be done only once.
In model training, the user can then select which features to take into account, allowing for
a quick assessment of which features work best for the given dataset.

For dataset generation, RNAProt accepts binding sites in three different formats (or input
types): sequences, genomic regions, or transcript regions (a motivation for using transcript
regions is given by publications P4 and P5). While genomic regions include the genomic
coordinates of binding regions, transcript regions contain their coordinates on transcripts.
Various options are available for input site filtering and negative set generation (in case of
training set generation). For genomic or transcript regions, RNAProt by default generates a
negative training set, by randomly selecting sites which do not overlap with any input sites,
from genes or transcripts covered by input sites. Negatives can be further filtered based on
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Figure 3.6: Overview of the RNAProt workflow. Yellow boxes mark mandatory inputs, blue boxes
the five program modes of RNAProt, and green boxes the workflow outputs. Arrows show the
dependencies between inputs, modes, and outputs. Figure taken from publication P3 [222].

their sequence complexity, in order to remove low-complexity sites (e.g., di-nucleotide repeat
regions). By default, RNAProt centers and extends all training sites, i.e., to obtain sites of
same length (unless not possible, e.g., at transcript ends).

To train a model, the user provides the generated training set to rnaprot train and
specifies which features the model should include for training. Due to its use of RNNs,
RNAProt natively supports training sets with variable site lengths, while popular CNN-
based methods need to apply workarounds (i.e., padding techniques). In training, the user
can specify various hyperparameters, and learning curves (displaying training loss versus
validation loss) can be plotted. In addition, 10-fold cross-validation can be run to assess
model generalization performance, as well as hyperparameter optimization using BOHB.

Once a model is trained, it can be further evaluated with respect to its learned binding
preferences (evaluation mode), or utilized to predict binding sites on a generated prediction
set (prediction mode). In evaluation mode, binding preferences can be visualized through
sequence and additional feature logos, as well as whole-site profiles (see Visualization of
RBP binding preferences section below). Model prediction can be run in two ways: (i) whole
site prediction and (ii) top-scoring windows prediction. In the first case, each input site is
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scored as a whole by RNAProt, meaning that each input site gets one score assigned. In the
second case, RNAProt applies a sliding window approach, running over each input sequence
to report high-scoring windows and peak regions. The amount of reported regions can be
controlled by setting three different threshold levels (termed relaxed, standard, strict). The
actual threshold scores behind the levels are extracted from the whole-site model scores of the
positive set during model training, and thus are individually set for each model. In addition,
profiles can be plotted for each reported region to visualize local binding preferences.

Supported features

In addition to the RNA sequence information, RNAProt supports several additional predic-
tive features, which can be extracted or calculated in dataset generation and selected in model
training. Table 3.1 lists the available additional features for each input type (sequences, ge-
nomic regions, transcript regions). Since conservation scores and region annotations (exon-
intron, transcript, and repeat regions) require genomic or transcript coordinates of the input
sites, they are not supported when only sequences are supplied. On the other hand, sec-
ondary structures can be calculated for sequences and regions (after sequence extraction).
In case of regions, RNAProt automatically extends the provided genomic or transcript re-
gions, in order to get the most accurate structure predictions (an important feature which
to our knowledge is not used by any other related tool). In addition, RNAProt also supports
user-defined features (from version 0.4 on also for sequences). Here, numerical or categorical
features can be defined for each sequence or region position.

Table 3.1: Additional features available for each of RNAProt’s three supported input types (se-
quences, genomic regions, transcript regions). *also available for sequences since version 0.4.

Input
Additional feature Sequences Genomic regions Transcript regions

structure YES YES YES
conservation scores NO YES YES
exon-intron regions NO YES NO
transcript regions NO YES YES

repeat regions NO YES YES
user-defined NO* YES YES

Visualization of RBP binding preferences

In order to visualize RBP binding preferences learned by the model, RNAProt applies two
different techniques: (i) saliency maps and (ii) in silico mutagenesis (see Figures 3.9 and 3.10
for visualization examples). Both approaches evaluate which positions in the input sequence
contribute most to the model prediction. Saliency maps show the importance the trained
model attributes to each sequence position, by visualizing the gradient with respect to the
input for each sequence position [223]. In contrast, in silico mutagenesis works by mutating
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each sequence position three times (inserting the three non-wild-type nucleotides), and each
time plotting the model score differences compared to the wild type sequence. This way,
the visualization shows us the effect of each possible mutation on the whole-site score, at
each sequence position. In silico mutagenesis thus provides us with additional information
(positive or negative effect), while the saliency value is always positive. On the other hand,
in silico mutagenesis is computationally more expensive, since for a sequence of length n we
need to generate 3 ∗ n sequences to calculate scores for. Moreover, additional features are
not mutated, limiting the observed effects on the sequence feature. For the logo generation,
we therefore relied on the top saliency positions over a specified number of top-scoring sites.

3.3.3 Results and discussion

Predictive performance comparison

To evaluate RNAProt’s predictive performance, we compared it with GraphProt and two
deep learning approaches (DeepCLIP [224] and DeepRAM [225]). Both approaches showed
superior performance compared to various other RBP binding site prediction methods in their
original publications. The cross-validation comparison was conducted between GraphProt,
DeepCLIP, and RNAProt, while DeepRAM and RNAProt were compared in a hold-hout
validation setting. This was done because DeepRAM did not offer a cross-validation option,
and because its hyperparameter optimization could not be disabled, which would further
have resulted in unfeasible cross-validation runtimes. Both comparisons utilized the same
benchmark data, consisting of two sets of CLIP-seq data: (i) a set of 23 CLIP-seq datasets
from various protocols and 20 different RBPs; and (ii) a set of 30 eCLIP datasets from 30
different RBPs.

For the cross-validation comparison, all three methods were run using their default hy-
perparameters. Figure 3.7 a and 3.7 b show the 10-fold cross-validation results for Graph-
Prot, DeepCLIP, and RNAProt. RNAProt produces the highest total average AUC on both
benchmark sets (87.26% and 89.30%), followed by DeepCLIP and GraphProt. To signify
the differences, we calculated two-sided Wilcoxon tests on the AUC distributions for each
method combination and each of the 53 datasets. Figure 3.7 c and 3.7 d contrast the sin-
gle dataset AUCs of GraphProt with RNAProt and DeepCLIP with RNAProt, using the
method colors (GraphProt: red, DeepCLIP: yellow, RNAProt: blue) to highlight signifi-
cantly better AUCs (gray: no significant difference). We can see that RNAProt performs
significantly better in 49 (versus GraphProt) and 42 (versus DeepCLIP) out of 53 cases, while
GraphProt and DeepCLIP both score higher in only two cases. Out of the box, DeepCLIP’s
CNN+RNN architecture thus performs worse than RNAProt’s RNN-only architecture. In
addition, RNAProt is superior with regard to its runtime (see Runtime comparison below).

For the comparison with DeepRAM, we chose DeepRAM’s best performing network archi-
tecture, featuring a Word2Vec embedding, a CNN layer, and a bidirectonal Long Short-Term
Memory (LSTM) layer. We used a hold-out setting (i.e., one train-test split) as motivated,
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Figure 3.7: 10-fold cross-validation results for GraphProt, DeepCLIP, and RNAProt. (a) Results
for the first benchmark set (23 CLIP-seq datasets). (b) Results for the second benchmark set (30
eCLIP datasets). (c) Comparing all 53 single dataset AUCs between GraphProt and RNAProt.
(d) Comparing all 53 single dataset AUCs between DeepCLIP and RNAProt. Blue dots indicate a
significantly better AUC for RNAProt (49, 42), gray dots no significant difference (2, 9), red and
yellow dots a significantly better AUC for GraphProt or DeepCLIP (2, 2). Two-sided Wilcoxon test
was used to calculate p-values (significance threshold = 0.05). Figure taken from publication P3 [222].

and reduced the number of random search iterations for its hyperparameter optimization
from 40 to 20, to make the comparison more fair. DeepRAM runtimes remained an issue
though, with model training on a typical dataset still taking ∼ 5-6 h versus 1-2 min for the
RNAProt model. As shown in publication P3 Figure 3, both methods perform very similar to
each other (average AUCs: DeepRAM 87.42% and 89.28%, RNAProt 87.50% and 89.34%),
even though DeepRAM could have a slight advantage due to its active hyperparameter op-
timization. We can thus conclude that a more complex architecture like the one applied by
DeepRAM is not necessary to achieve top predictive performances on the datasets at hand.
As further discussed in P3, this could change for larger datasets. On the other hand, the
used benchmark datasets feature typical set sizes, similar to or even larger than the typical
set sizes obtained from ENCODE. Since different methods can learn different features of a
dataset, it would be interesting to closer examine ensemble predictions in future studies.



66 Chapter 3. Publication summaries

Runtime comparison

Model training is known to be the computationally most expensive part in deep learning.
We therefore compared training runtimes for the three methods GraphProt, DeepCLIP, and
RNAProt. As shown in Figure 3.8, RNAProt’s training time is comparable to GraphProt’s
(72 sec versus 40.3 sec), and 31 times faster than DeepCLIP’s (72 sec versus 37 min). Even
in CPU mode (i.e., disabling GPU support), RNAProt achieves a speedup of 4.7x. This
clearly demonstrates RNAProt’s ability for on-the-fly model training, which also enables
quick testing of hypotheses regarding dataset, parameter, or predictive feature choices. In
addition, it shows the benefits of using a GPU (even an average consumer-grade GPU as
applied in this study).

0 5 10 15 20 25 30 35 40

DeepCLIP

RNAProt*

RNAProt

GraphProt

Training time (min)

Figure 3.8: Model training runtime comparison. Training times in minutes (averaged over three
runs) for training a single model with 10,000 instances for GraphProt, RNAProt, and DeepCLIP.
*RNAProt using CPU for calculations (no GPU). Figure taken from publication P3 [222].

RNAProt captures known RBP binding preferences

Deep neural networks by design are complex and hard to interpret, necessitating the use of
visualization methods that help to explain what was learned by the model. To check whether
RNAProt models capture known RBP binding preferences, we compared preferences of 6
RBPs to the outputs of RNAProt’s two visualization methods (i.e., saliency maps, in silico
mutagenesis). As we can see in Figure 3.9, RNAProt sequence logos and profiles clearly
capture known RBP binding preferences. While the logos provide a compact view on local
preferences, the site profiles give further clues about the scatteredness and the importance
of individual motifs. Moreover, the mutation tracks inform about which mutations have
the strongest influence on the model score. In the future, the integration of global model
interpretability methods should give further insight into what the model has learned from
the data [198].

Additional features to improve predictions

As described, RNAProt offers various additional predictive features which can be included in
model training. We thus first checked their effects on predictive performance for all 53 CLIP-
seq datasets. P3 Figure 6 shows that additional features can strongly boost the overall model
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Figure 3.9: Comparison of RNAProt sequence logos and profiles with known RBP binding pref-
erences. Literature knowledge was obtained from ATtRACT [226]. Sequence logos were generated
from top site saliency positions (top 200 scoring training sites), with character heights corresponding
to their respective saliency values at each position. Training site profiles on the right offer several
tracks: site nucleotide sequence (top), position-wise saliency (middle), and single mutation effects
(bottom). Figure taken from publication P3 [222].

performance, i.e., when using conservation scores and exon-intron annotations. Secondary
structure information did not boost the overall performance, but this also depends on the
dataset and probably can be tuned by adapting structure calculation parameters. Regarding
the region type and conservation features, the resulting performances of course strongly
depend on the selected negative regions. A large imbalance of intronic and exonic regions
in the positive and negative regions will naturally boost predictive performances. The focus
of the prediction thus becomes more important: a natural preference of an RBP for exon
or intron regions could be exploited when predicting on whole gene regions, while training
and predicting on transcript regions (i.e., containing only exons) would make exon-intron
annotations meaningless. In this regard, RNAProt offers several options to fine-tune negative
site selection, e.g., by defining genomic regions which should be excluded from negative site
selection.

To check whether additional features can be useful in a more defined use case, we also
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Figure 3.10: Roquin structure model predictions on the UCP3 gene transcript ENST00000314032.9.
(a) ENST00000314032.9 transcript (length 2,277 nt, 5’UTR (light gray), CDS (dark gray), 3’UTR
(light gray)) together with verified and predicted Roquin binding sites (CDEs). (b) RNAProt site
profile for the second verified CDE. Shown profile tracks from top to bottom: sequence, saliency map,
in silico mutation track, structural elements track. Figure taken from publication P3 [222].

trained models on a set of predicted structurally conserved binding sites of the RBP Roquin
(also termed constitutive decay elements (CDEs)) [138]. A CDE consists of a stem loop,
with variable stem sequences and a more conserved trinucleotide loop sequence. 10-fold
cross-validation results produced an average AUC for the sequence model of 79.22%, while
the structure model performs almost 20% better (99.02%). As a reference, the GraphProt
structure model achieved an average AUC of 78.49%. This shows that additional structure
information can be detected and utilized by RNAProt, in order to obtain a much improved
predictive performance. The authors of [138] also verified 2 CDEs in the 3’UTR of the UCP3
gene (ENSEMBL transcript ID ENST00000314032.9), which we further used to assess the
specificity of the model. We thus retrained the structure model leaving out the 2 CDEs, and
ran a sliding window prediction on the whole transcript. Figure 3.10 a shows the predicted
site and verified CDE locations. As we can see, both verified sites are predicted by the
model, plus two additional sites in the 3’UTR. To visualize the learned model preferences,
Figure 3.10 b shows the RNAProt profile of the higher-scoring second site. As presumed, the
saliency track highlights the loop nucleotides, and to a lesser extent the stem parts, while
the mutations track focuses on the loop. Moreover, the stem loop can be recognized in the
structural elements track. As a comparison, the sequence model predicted 18 sites on the
transcript, including only one verified CDE, making the structure model predictions much
more specific (F-score sequence model = 0.10; F-score structure model = 0.67).
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3.4 Improving CLIP-seq data analysis by incorporating
transcript information

This section sums up the contents of the following publication:

• [P4] Michael Uhl, Van Dinh Tran, and Rolf Backofen. Improving CLIP-seq data
analysis by incorporating transcript information. BMC Genomics, 2020.

3.4.1 Overview
CLIP-seq enables the transcriptome-wide identification of RBP binding sites by producing
a library of reads bound by the target RBP. The precise binding locations are subsequently
identified from the mapped read profiles by tools termed peak callers. All currently available
peak callers identify binding sites by analysing the genomic read profiles, effectively ignoring
the underlying transcript information (i.e., information on splicing events and transcript
structure). Intuitively, this is far from optimal, especially for RBPs that predominantly bind
to spliced RNA. We therefore decided to closer examine this issue and assess its significance,
as there were no studies available on the topic.

Publication P4 begins with an example illustrating the problems current peak callers
have with CLIP-seq data from predominantly exon-binding RBPs. Next, the extent of
exon and exon border binding in a large collection of 223 eCLIP datasets is quantified,
which turns out to be substantial. Based on this finding, we further verified that different
sequence contexts (i.e., transcript versus genomic context) influence predictive performances
of binding site prediction tools. Moreover, we found out that RBP binding motifs of exon-
binding RBPs are more frequent in transcript context surrounding the sites compared to
genomic context. Finally, we discuss possible strategies to improve CLIP-seq data analysis
workflows by integrating transcript information.

3.4.2 Results and discussion

Ignoring transcript information compromises peak calling

To showcase the problems current peak callers have with predominantly exon-binding RBPs,
we chose one out of the many RBP eCLIP datasets (RBP: YBX3, cell line: K562) with high
amounts of exonic binding regions from the ENCODE eCLIP dataset collection (see P4 Table
S1 for full dataset statistics). Figure 3.11 shows two genomic regions with mapped YBX3
eCLIP data, together with the peak regions called by CLIPper, CLIPper IDR (reporting only
high-confidence CLIPper peaks reproducible between replicates), PEAKachu, and PureCLIP.
As we can see, the read profiles clearly follow the exon region annotations, with high amounts
of reads mapping to exons and many intron-spanning reads (petrol blue lines). This shows
that the RBP actually binds to the spliced RNA (which we refer to as transcript context),
and not to the unspliced RNA (which we refer to as genomic context). As expected, all
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reported peak regions are located in exons. However, extending these peak regions with
genomic context as routinely done in CLIP-seq data analysis (e.g., for motif search, secondary
structure prediction, or predictive model learning) is obviously wrong. Instead, the peak
regions should be extended with their transcript context.
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Figure 3.11: Two genomic regions with mapped YBX3 eCLIP reads. 1: read profile (coverage
range in brackets), 2: read alignments, 3: crosslink positions profile, 4: input control profile, 5: gene
annotations (thick blue regions are exons, thin blue regions introns), and peak regions called by
CLIPper, CLIPper IDR, PEAKachu, and PureCLIP. (a) PRDX6 whole gene region (length 11 kb,
maximum read coverage 1,141). (b) DDOST gene exons 6 and 7 region (length 562 bp, maximum
read coverage 167). Figure taken from publication P4 [227].

Looking closer at two neighboring exon regions, Figure 3.11 b brings up a second problem:
peak regions in a transcript context called at two adjacent exon borders arguably should be
merged, instead of being interpreted as two separate binding events. However, none of the
three peak callers are aware of this, as they work directly and only on the genomic read
profiles. And even if there is only one peak called, the first problem (i.e., context choice) still
remains. As described in section 3.1.2 Peak caller comparison, peak callers can be categorized
into methods that take into account the full read profile (e.g., CLIPper, PEAKachu) and
methods that focus on single positions or read starts (e.g., PureCLIP) to identify binding
locations. Split exon border sites should thus be more prevalent in the first group, since
these methods usually treat the mapped parts of intron-spanning reads as separate reads. In
contrast, methods like PureCLIP count each read only once (i.e., at the read start position),
which should reduce the calling of split peaks. In addition, there is also a PEAKachu-specific
problem when dealing with exon-binding RBP read profiles: since PEAKachu was originally
designed for bacterial CLIP-seq data, the existence of introns was never considered. More
precisely, PEAKachu replaces each read with a Gaussian, and takes the genomic center of
the read as the mean of the Gaussian. This explains why PEAKachu in our example (3.11
b) falsely called a peak over the entire intron.
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Figure 3.12: Exon binding statistics of eCLIP datasets and prediction results for different sequence
contexts. (a) Distribution of exonic site ratios for 223 eCLIP datasets over four percentage ranges.
For each range, the percentage (number) of sets within this range is given. (b) Correlation plot
of exonic site ratios for RBPs present in two cell lines (HepG2, K562). (c) Site score distributions
for all exonic sites and exonic sites that form pairs at adjacent exon borders. CLIPper log2 fold
change values were taken as site scores. Only pair sites with an exon border distance of < 10 nt
were considered. (d) Average classification accuracies over 6 eCLIP datasets for 3 RBP binding
site prediction methods, comparing genome and transcript context. Figure taken from publication
P4 [227].

Exon binding is substantial in public CLIP-seq data

We next determined the extent of exon and near exon border binding in a collection of 223
eCLIP datasets, covering 150 different RBPs in two cell lines (HepG2, K562). As shown
in Figure 3.12 a, exonic site percentages of ≥ 50% are observed for 61 datasets (27.4%),
out of which 14 datasets reach percentages of ≥ 75% (see P4 Table S1 for full dataset
statistics). Looking closer at the 61 datasets, 63.3% of exonic sites are located within ≤ 50
nt to exon borders, and 20.7% form pair sites (i.e., sites at adjacent exon borders). The
datasets thus contain a substantial amount of sites susceptible to split peak calling and
false context choice. We also compared exonic site percentages across the cell lines (Figure
3.12 b), showing a general agreement (R2 = 0.76). On the other hand, the deviations also
indicate that strict RBP classifications do not work, and that site context should ideally
be determined individually for each site based on the mapped read data. One might ask
whether pair sites on average feature lower scores (i.e., log2 fold changes), but this is not
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the case, as shown in Figure 3.12 c (mean score for pair sites 2.47 versus 2.17 for all exonic
sites).

Sequence context influences model performances

To check whether context choice also influences the performance of RBP binding site pre-
diction tools, we randomly chose 6 eCLIP datasets from 6 different RBPs with exonic site
percentages ≥ 80%, keeping only sites ≤ 10 nt from exon borders. Sites were centered and
extended either with transcript or genomic context (uniform length of 161 nt), to obtain two
training sets for each RBP (i.e., transcript versus genomic context set). Figure 3.12 d shows
the average accuracies obtained for three binding site prediction tools, both for the transcript
and genomic context sets. As we can see, the transcript context models of all methods per-
form considerably higher, meaning that context choice influences predictive performances.
To exclude the possibility that the models primarily learned RBP-unspecific context infor-
mation, we also looked at GraphProt’s sequence logos (P4 Figure S1). These provide a
simplified view on what sequence information the models regard as most important, and we
observed a general agreement between logos and known RBP binding preferences in both
contexts. This shows that the models do not primarily detect generic context information,
but rather a mixture of site-specific and context information. Depending on the prediction
task, including the authentic context could thus be favorable and make models more specific.

Known motifs are enriched in transcript context

Given the influence of context choice on predictive performance, we also looked at motif
enrichment for known RBP motifs in sites with added transcript context versus the same
sites with genomic context. CLIPper IDR peak regions for 9 RBPs with known motifs (in
total 28 motifs) and increased percentages of exonic sites (40.23 to 84.06%) were filtered to
keep only sites near exon borders, which were again extended with transcript and genomic
context. Table S2 summarizes the motif search results, showing that out of the 23 motifs
with > 10 hits, 20 are 10 - 57% more frequent in transcript context sets, while the remaining
3 motifs showed minor frequency changes (< 3%). Moreover, the five motifs with < 10 hits
were all enriched from 35 to 709%. While a certain transcript context motif enrichment is
expected for exon-binding RBPs, more well-defined motifs showed clear enrichment in the
transcript context set as well (PUM2 107 vs. 89 hits, IGF2BP3 7 hits vs. 1). This indicates
that more authentic sites were recovered by adding the transcript context. As an example,
Figure 3.13 shows two genomic regions with mapped IGF2BP3 and PUM2 eCLIP data,
where the known binding motifs (IGF2BP3: GGC-N15-25-CA-N7-20-CA-N15-25-GGC-N2-8-
[CA]4, PUM2: UGUANAUA, N: any nucleotide) are split by the exon border. In addition,
both CLIPper and PureCLIP falsely call split peak regions.
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Figure 3.13: Two genomic regions with mapped IGF2BP3 and PUM2 eCLIP reads and split binding
motifs. 1: read profile (coverage range in brackets), 2: read alignments, 3: crosslink positions profile,
4: input control profile, 5: gene annotations (thick blue regions are exons, thin blue regions introns),
split IGF2BP3 / PUM2 motif locations, and peaks called by CLIPper, CLIPper IDR, PEAKachu,
and PureCLIP. (a) RACK1 gene exons 7 and 8 region (length 911 bp, maximum read coverage 150)
with split IGF2BP3 motif. (b) RTRAF gene exons 4 and 5 region (length 1,599 bp, maximum read
coverage 58) with split PUM2 motif. Figure taken from publication P4 [227].

Strategies to improve CLIP-seq data analysis workflows

In this study we used a relatively simple approach to select representative transcripts for each
gene to extract the transcript context from. This of course can be further improved, ideally
leading to approaches which select the most likely context based on the available read data,
individually for each peak region. Context selection on a site level is important, as RBPs
often have diverse functions, e.g., in the nucleus or the cytoplasm, which likely also result
in binding to different contexts. Here we used reference annotations to define the transcript
context. However, it is known that these do not cover the full transcript diversity present
in a specific cell type or condition. It would thus make sense to substitute or refine the
reference annotations with de novo transcript assemblies, ideally constructed from RNA-seq
data of the same cell type or condition. As for the influence of context choice on recovering
complete binding sites, we expect this to be especially important for RBPs with multiple
RNA-binding domains, as exemplified by IGF2BP3 and its extended binding motif. While
combinatorial binding studies are still scarce, most RBPs in fact are comprised of multiple
RNA-binding domains [228]. CLIP-seq studies combined with a proper context selection
could thus be of great help to determine the binding modes of these RBPs.
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3.5 Peakhood: individual site context extraction for
CLIP-seq peak regions

This section summarizes the contents of the following publication:

• [P5] Michael Uhl, Dominik Rabsch, Florian Eggenhofer, and Rolf Backofen. Peak-
hood: individual site context extraction for CLIP-seq peak regions. Bioin-
formatics, 2021.

3.5.1 Overview
In publication P4 we demonstrated the importance of including transcript information, i.e.,
information on transcript structure and splicing events, to improve CLIP-seq data analysis.
P4 also introduced the terms genomic and transcript context, to denote RBP binding to an
unspliced or spliced RNA context. As described, all currently available peak callers only
take into account the genomic context for determining peak regions, effectively ignoring
the underlying transcript information. While this can be acceptable for RBPs binding to
unspliced RNA, P4 showcased that peak calling is compromised for spliced-RNA-binding
RBPs. Moreover, selecting the more likely transcript context showed an enrichment of known
binding motifs, underlining the importance of a proper context selection. We therefore
decided to implement a tool which can assign the most likely context to a given set of peak
regions, based on the original CLIP-seq read data and individually for each region. This tool
is called Peakhood and is presented in publication P5.

Publication P5 briefly describes the concept behind Peakhood, with a more detailed
method description found in the supplement, and a full documentation on GitHub. Peakhood
offers several program modes, including site context extraction for a single set of peak regions,
as well as multiple sets. Moreover, the extracted transcript context sites of multiple sets can
be merged into comprehensive transcript context site collections. We further show that
Peakhood’s site context extraction results agree with known RBP roles. As a supplement,
P5 provides several precomputed transcript context site collections for 49 RBPs with known
roles in post-transcriptional gene regulation, from two different cell lines (HepG2, K562).

3.5.2 Methods

Approach

Peakhood’s idea is to take peak regions determined by current peak callers, together with
the original CLIP-seq read data and genomic annotations, in order to determine the most
likely context individually for each input peak region. Peakhood therefore can be applied
as a post-processing step after peak calling inside a CLIP-seq data analysis pipeline, or to
reanalyze any of the millions of publicly available CLIP-seq peak regions identified by various
peak callers. Context selection needs to be performed at the site level because: (i) the RBP
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might have different roles in the cell, and thus bind to different contexts; (ii) in cases of
inconclusive read information the tool should rather vote for a genomic context. The second
point is important to assure that there is a certain amount of evidence for the selected
transcript context, independent of whether the RBP has a tendency to bind to spliced RNA
or not. Peakhood therefore uses rather conservative default settings for transcript context
assignment.
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Figure 3.14: Two genomic regions with mapped PUM2 and U2AF2 eCLIP reads. 1: read profile
(coverage range in brackets), 2: read alignments, 3: gene annotations (thick blue regions are exons,
thin blue regions introns), and peaks called by CLIPper IDR. (a) Example region for the predomi-
nantly spliced-RNA-binding RBP PUM2, where an exon border site is falsely split in two peaks. (b)
Example region for the splicing factor U2AF2, with higher read counts over exon borders and introns.
Figures taken from publication P5 [229].

As for the concept behind Peakhood’s site-level context assignment, consider the exonic
peak regions of two RBPs: the spliced-RNA-binding translational repressor PUM2 (Figure
3.14 a), and the unspliced-RNA-binding splicing factor U2AF2 (Figure 3.14 b). The read
profile in Figure 3.14 a shows a typical transcript context region, featuring considerable cov-
erage drops from exons to introns, and high amounts of intron-spanning reads. In contrast,
the read profile in Figure 3.14 b suggests a genomic context because of the higher intron
coverage, as well as the presence of reads that cover the exon-intron border. When selecting
the context of an exonic peak region, Peakhood therefore essentially looks at coverage differ-
ences between potential transcript exons and introns, as well as coverage drops at the exon
borders. In addition, it merges exon border sites connected by intron-spanning reads, as
these very likely constitute single peak regions (for example in Figure 3.14 a). The following
sections provide more details on Peakhood’s workflow, its site context extraction, choosing
the most likely transcript, and the generation of transcript context site collections (i.e., the
merging of transcript context datasets).

Peakhood workflow

Figure 3.15 shows the Peakhood workflow, comprising the two main program modes peakhood
extract and peakhood merge and their connection. In site context extraction (peakhood
extract), Peakhood uses the input peak regions, CLIP-seq read data, and exon annotations
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to extract the most likely context for each input site (see Site context extraction section
for more details). Given an exonic peak region assigned to transcript context, peakhood
extract further determines the most likely transcript (see Choosing the most likely tran-
script section for more details). Next, peakhood merge can be used to merge different tran-
script context sets to obtain comprehensive transcript context site collections (see Merging
transcript context sets section for more details).
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Figure 3.15: Overview of the Peakhood workflow for the two main program modes peakhood

extract and peakhood merge. Yellow boxes mark necessary inputs, blue boxes the two program
modes, and green boxes the outputs. Arrows show the dependencies between inputs, modes, and
outputs. Figure taken from publication P5 [229].

Site context extraction

For the individual site context extraction, Peakhood’s input consists of the genomic CLIP-seq
peak regions, the mapped CLIP-seq reads, a genomic annotations file containing transcript
and exon annotations, and a genome sequence file. Peakhood first intersects the peak re-
gions with transcript and exon regions extracted from the annotations file, to obtain exonic,
intronic, and intergenic sites. In the next step, the most likely context (i.e., genomic or
transcript) is determined for each exonic site. For this Peakhood utilizes the exon-intron
and exon-intron border region coverage ratios in the site neighborhood, as well as over the
whole transcript. Here we make use of the observation that an exonic site inside a transcript
context (for example Figure 3.14 a) usually features considerably more reads mapping to the
transcript exons, as well as a sharp drop in coverage at the exon borders. Ideally we can
observe this both locally (i.e., around the overlapping exon) and globally (i.e., on the whole
transcript). However, due to how the CLIP-seq protocol works, read coverage is frequently
limited to the peak region and its neighborhood, so Peakhood weighs the local context infor-
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mation higher than the global one. In addition, intron-spanning reads are weighted higher
than continuously mapped reads, as they provide strong support for a transcript context.
Sites with sufficiently high local and global ratios (see Peakhood’s online manual for full
details on filter steps and default thresholds) get assigned to transcript context. Exonic sites
with lower ratios (for example Figure 3.14 b) get assigned to genomic context.

Choosing the most likely transcript

An assigned transcript context site can have several possible site-transcript combinations,
because there usually is > 1 transcript isoform for a gene, and several exons and transcripts
can overlap the site and pass the filters. Peakhood therefore also determines the most likely
combination, based on a number of informative filters: co-occurrence of other sites on the
same transcript, read coverage, intron-spanning read numbers, and transcript support level.
A combination score is assigned to each site-transcript combination, informing about the
support level of a combination, and to make them comparable. Settings for filter order,
choice of filters, and filter behavior (serial filtering or majority vote) can be specified. In
addition, sites at exon borders connected by intron-spanning reads (for example in Figure
3.14 a) are merged into single sites. Peakhood further supports custom annotation files, and
we recommend to use these if there is RNA-seq data available for the cell type or condition
at hand. Peakhood also accepts RNA-seq data input to extract additional intron-spanning
read information for transcript selection.

Merging transcript context sets

Transcript context sets extracted from single CLIP-seq datasets can be further merged by
Peakhood into transcript context site collections. The resulting output table files include
information on transcripts and their overlapping sites, both for all possible and the most
likely site-transcript combinations. Moreover, site pairs on transcripts together with their
transcript and original genomic distances are reported. This for example allows us to quickly
filter for and spot interesting site pairs (for the same or two different RBPs), where the
transcript site distance is lower than the original genomic distance, or in general lower than
some desired value.

3.5.3 Results and discussion

Agreement with known RBP roles

To check Peakhood’s agreement with known RBP roles, we selected three typical spliced-
RNA-binding RBPs (IGF2BP1, PUM1, PUM2), as well as the splicing factor U2AF2, and
ran site context extraction on their eCLIP datasets with default parameters. Among other
statistics, Peakhood reports three informative percentages when performing the site context
extraction: the percentage of exonic sites (divided by all sites), the percentage of extracted
transcript context sites (divided by all exonic sites), and the percentage of exon border sites
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(divided by all transcript context sites). Figure 3.16 shows these three percentages obtained
for each of the four datasets. We can see that for the spliced-RNA-binding RBPs, most sites
overlap with exons (>= 95%), and out of these >= 95% are assigned to transcript context.
This is in contrast to U2AF2, where we get around 20% of exonic sites, and out of these
only 5.9% are assigned to transcript context. We can thus see a general agreement between
Peakhood’s site context selection and known RBP roles. Interestingly, exon border site per-
centages can be quite substantial, reaching almost 25% for PUM1. Even higher percentages
(up to 39%) were observed in the supplementary transcript context site collections. These
numbers again underline the importance of a proper site context selection, including the
merging of split peaks connected by intron-spanning reads.
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Figure 3.16: Peakhood site context extraction results for four eCLIP datasets and four RBPs
(number of all sites in brackets): IGF2BP1 (4,776), PUM1 (2,146), PUM2 (4,578), and U2AF2
(3,250). The plot shows percentages of exonic sites (exonic sites divided by all sites), transcript
context sites (TCS) (TCS divided by all exonic sites), and exon border sites connected by intron-
spanning reads (EXBS) (EXBS divided by TCS). Figure taken from publication P5 [229].

Conclusion

Publication P5 presented Peakhood, the first tool capable of selecting the most likely context
for a set of CLIP-seq peak regions, based on the available CLIP-seq read data and individually
for each input peak region. As shown, Peakhood’s context extraction agrees with known RBP
roles. In addition, Peakhood offers various command-line parameters for the filtering and
selection of sites, allowing for adaptations to different input data. As the current default
parameters were chosen manually, it would make sense to further optimize them using some
objective function. For example, an objective could be formulated based on the maximization
and minimization of site percentages over several datasets (i.e., maximized for spliced-RNA-
binding RBPs, minimized for unspliced-RNA-binding RBPs). The optimization could then
also be repeated for different CLIP-seq data (i.e., from different protocols) and peak callers,
in order to obtain a number of default settings, each optimized for a specific combination of
input data.
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Conclusion and outlook

4.1 Conclusion
This thesis presented three novel computational methods (publications P2, P3, and P5), as
well as a research and a review article (publications P1 and P4) on CLIP-seq data analysis, all
aimed at improving the computational analysis and prediction of RNA-protein interactions.

Publication P1 reviewed the principal CLIP-seq data analysis steps, to provide readers
with a practical and informative guide on how to analyse CLIP-seq data. As the identification
of the precise RBP binding locations (i.e., peak calling) is arguably the most critical analysis
step, we also conducted a peak caller comparison, showcasing the pros and cons of current
peak callers. The summary of P1 (Section 3.1) further contains application examples related
to the analysis of RNA-protein interaction data, drawn from work I contributed to other
publications. These included the discovery of an RNA-protein interaction involved in prostate
cancer progression, the identification of an RBP-RNA interactome, as well as the integration
of CLIP-seq-related tools into the Galaxy platform. Integrating tools into Galaxy facilitates
their usage and helps to make data analysis easily accessible, especially for users with less
experience in bioinformatics. Moreover, it ensures long-term tool availability and support,
as well as full reproducibility of results.

Publication P2 introduced MechRNA, the first tool capable of inferring the functional
mechanisms of lncRNAs based on their predicted interactions with other RNAs and proteins.
Despite the scarcity of studies on functional lncRNA mechanisms involving RNA-RNA in-
teractions, we showed that MechRNA is able to detect known mechanisms, demonstrating
its usefulness by providing plausible functional hypotheses. Computational methods like
MechRNA should therefore become valuable assistants for the study of lncRNA mecha-
nisms, especially since the huge majority of annotated lncRNAs in the human genome are
still lacking functional characterization.

Publication P3 presented RNAProt, a novel RNA-protein binding site prediction tool
based on recurrent neural networks. Compared to other recent deep learning-based meth-
ods, RNAProt offers both state-of-the-art predictive and superior runtime performance. In
addition, it supports more predictive features and input data types than any other available
method, including user-defined predictive features. The fast runtimes allow for on-the-fly
model training, enabling the quick testing of different features, parameter settings, or input
data types before moving on to predictions. We showed that RNAProt’s visualizations agree
with known RBP binding preferences. Moreover, its additional features can boost predictive
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performance and enhance the specificity of predictions compared to models using only se-
quence information. RNAProt comes with a comprehensive documentation on GitHub and
is available as a package for the Conda package manager, ensuring easy installation and
usage. All this makes RNAProt a valuable tool for the large-scale prediction of RBP binding
sites and related studies.

Publications P4 and P5 both dealt with improving CLIP-seq data analysis through the in-
corporation of transcript information. As RBPs can either bind to a genomic (i.e., unspliced
RNA) or transcript (i.e., spliced RNA) context, CLIP-seq data also includes information on
the underlying transcript structure and splicing events. However, none of the currently avail-
able peak callers takes into account transcript information when determining RBP binding
site locations, instead relying solely on the genomic context. Publication P4 investigated
the consequences of ignoring this information and its effects on the quality of peak calling.
We showed that peak calling of current peak callers is compromised for RBPs binding pre-
dominantly to exons (i.e., to a transcript context), and that the amount of publicly available
CLIP-seq peak regions susceptible to the problem is substantial. Furthermore, changing the
genomic context of peak regions to transcript context boosted performances of RBP bind-
ing site prediction tools, and led to an enrichment of RBP binding motifs associated with
exon-binding RBPs. The findings of P4 enabled us to develop a method to specifically target
the described problems. Introduced in P5, Peakhood is the first tool capable of selecting
the most likely context for a set of CLIP-seq peak regions, individually for each region. We
showed that its context extraction is in agreement with known RBP roles. In addition, Peak-
hood determines the most likely transcript for each transcript context site, and can merge
transcript context sets into comprehensive transcript site collections. These for example al-
low the user to quickly identify interesting site pairs of same or different RBPs, where the
distance on the transcript is lower than the original genomic distance, or within some desired
interval. Just like RNAProt, Peakhood comes with a Conda package and a comprehensive
documentation for easy installation and usage. Peakhood is thus ideally suited for the ap-
plication in CLIP-seq data analysis pipelines, as a post-processing step after peak calling, or
to reanalyze any of the millions of publicly available CLIP-seq peak regions determined by
various peak callers.

4.2 Outlook

Throughout its life cycle, an RNA can travel to different cellular locations and interact with
various proteins and RNAs to form RNP complexes of changing composition. Consequently,
to solve the gene expression puzzle, scientists will have to elucidate the composition and
functions of these RNP complexes, how they form, their dynamics, and their localization.
A continuously growing amount of experimental and computational methods enables and
supports these studies. This section briefly describes some trends regarding experimental
and computational methods to investigate RNA-protein interactions and RNP complexes,
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as well as a more broader outlook on upcoming research directions at the end.

Experimental outlook

As each experimental approach provides a certain type of information, but also has its own
biases and limitations, combining data obtained from different methods allows us to get a
less biased and more complete view on RNA-protein interactions. There are many factors
that determine or influence RNA-protein interactions in the cell, such as competing or co-
operatively binding RBPs, RNA structure and RNA-RNA interactions, RNA modifications,
the subcellular location of RNAs and proteins, as well as the precise identity of the tar-
get RNA (i.e., which splice isoform is targeted). Many of these can already be detected
by current experimental approaches, and future approaches will undoubtedly improve upon
them to further increase their accuracy. For example, various protocols are available for
the transcriptome-wide identification of RNA structures and RNA-RNA interactions, which
also include CLIP variants to detect the binding sites of double-stranded RNA binding pro-
teins [230]. Moreover, RNA-centric approaches can identify the set of proteins bound by
a specific RNA [155]. In addition, in vitro CLIP approaches can be used to investigate
RBP binding isolated from in vivo factors and their contributions to the binding [231, 232].
Studying RNP complexes while considering the subcellular locations in which they occur
will be especially important, as the availability of RNA and proteins inside a subcellular
compartment determines the types of possible interactions. While there are already some
methods available to identify RNA-protein interactions and RNA structuromes specific to
certain subcellular compartments [233, 234, 235], more primary research will be needed to
better understand RNA localization and RNP granule formation [75, 236]. In this regard,
a number of recently developed microscopy techniques to visualize the insides of cells with
unprecedented detail, including proteins and other biomolecules, will likely be of great help
as well [237]. Another important task is to study the dynamics of RNA-protein interactions,
to learn more about RBP binding kinetics and affinities towards different target sequences.
In this regard, a number of in vitro studies have been carried out to measure RBP or sin-
gle protein domain affinities to rather short sequences, but so far in vivo studies are still
scarce [132, 238]. As for determining which splice isoforms are present in a given sample,
long-read or direct sequencing methods allow us to differentiate between isoforms which
cannot be distinguished by standard short-read sequencing methods [147].

Computational outlook

Advancements in experimental methods and the combined analysis of the datasets they
produce will further improve our understanding of the molecular processes that underlie
RNA-protein interactions. Moreover, the increasing quality and quantity of datasets will
allow for more accurate computational models, which in turn enable the generation of new
hypotheses to test and further deepen our knowledge. In addition, more and more powerful
machine learning and in particular deep learning methods get published and refined at a
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staggering pace. Typically, such methods are successfully applied in bioinformatics within a
few years after their original publication, but this could be further accelerated by interdisci-
plinary cooperations and a focus on biological tasks early on in their development [239]. As
deep learning methods are typically hard to interpret, they might not be the best choice if
explainability of the model predictions is the prime goal. On the other hand, the develop-
ment of methods to explain model predictions by visualizing model preferences is a highly
active research area on its own, which will likely further increase the usability and acceptance
of deep learning methods in the near future, especially for tasks that depend on explainable
predictions [240]. The same holds for the required amount of training data and computa-
tional resources, which is typically high for deep learning methods, especially for the more
recently developed top-performing methods. Nevertheless, there are also plenty of promising
techniques to counteract these issues, such as data augmentation, transfer learning, gener-
ative models (including autoencoders), or meta learning [241, 242, 243, 244]. For example,
highly popular transformer methods such as BERT use transfer learning, meaning that they
rely on pre-trained models which can be fine-tuned with relatively small amounts of data
and training time to a new task [245]. Transformers present the current state-of-the-art
in natural language processing, and have recently also shown great potential on biological
sequence data [239, 246, 247]. Furthermore, they have been part of two recent deep learn-
ing methods, obtaining unprecedented accuracies in predicting the 3D structures of proteins
from their primary sequences, which has spurred hopes for similarly capable methods to
predict 3D RNA structures in the near future [248]. Merging these approaches and combin-
ing them with additional information on RNA modifications, localization, or transcript and
protein identity could eventually allow us to realistically model the 3D complex structures
of RNA-protein interactions. Another drawback of deep learning methods is that they usu-
ally demand a profound knowledge of the subject matter in order to successfully implement
them. One solution to this issue can be automated machine learning (AutoML) approaches,
which ease the implementation of machine learning applications by automatising, e.g., data
preparation, neural architecture search, and hyperparameter optimization, this way making
them available also to less-experienced users [249].

From a broader perspective

From a broader perspective, there are a number of key challenges that have been or need to
be taken up, which will eventually allow us to get a more profound understanding of gene
expression. The following discusses three of them: ncRNAs’ roles in genome organization,
single-cell studies, and extensions of the reference genome.

A number of recent studies indicate that ncRNAs strongly contribute to 3D genome
organization, and therefore to gene expression as well [250]. Although their mechanisms
are not well understood yet, RNA-DNA triple helix (or triplex) interactions could play an
important part in them [251]. Moreover, there is evidence that RNAs bound to DNA can
act as scaffolds for the recruitment of protein complexes to specific genomic loci [251, 252],



4.2. Outlook 83

motivating the development of new computational methods that combine triplex and RNA-
protein interaction predictions.

The second challenge lies in better understanding the cellular diversity of gene expres-
sion, both in between cells of same and different cell types and tissues, but also over time
and developmental stages, which can be captured by single-cell experimental procedures.
Naturally, the limited amount of biological material obtained from single cells amplifies cer-
tain issues, such as an increased technical variability between experiments or the problem
of missing data [253, 254], calling for specialized experimental and computational methods.
Over the last years, various methods have been proposed to study single-cell genomics, epige-
nomics, transcriptomics, and more recently also proteomics [255, 256]. As even optimized
CLIP-seq protocols typically require > 20,000 cells [182], they cannot be easily adapted to
single cells. However, a recent approach which relies on fusing a C-to-U editing enzyme
to an RBP of interest promises the transcriptome-wide identification of RBP binding sites
at single-nucleotide and single-cell resolution [257], yielding hope for more methods alike to
come out in the near future. Moreover, the method can be coupled with long-read sequencing
for the detection of isoform-specific RBP binding sites, allowing for an even more accurate
site identification.

The third challenge is the extension of the reference genome. This is necessary since our
current reference only includes one copy of the genome (i.e., the haploid genome), whereas
most of the cells in our body contain two sets of chromosomes (i.e., a diploid genome), one
from each parent (also termed maternal and a paternal haplotypes). Higher ploidy levels can
be found in other organisms, e.g., in many plants such as crops [258]. Extended references
will allow us to to study and understand genetic variation between haplotypes, as well as on a
broader scale between individuals in a population. Over the last years, various solutions have
been proposed to generate such references (also termed consensus references or pan-genomes),
including the implementation of computational methods to efficiently represent and process
these new references [259, 260]. Long-read sequencing methods again play an important
part in this development, since, due to their extended read lengths, they can identify genetic
variants which commonly used short-read sequencing methods fail to or have problems to
detect, such as structural variants and repeat regions [261, 262]. Nevertheless, there are also
approaches which utilize short-read sequencing methods, since these are widely available and
currently still offer higher efficiency with regards to costs and throughput [263].
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Rolf Backofen*. Computational analysis of CLIP-seq data. Methods, 2017.

Contributions of individual authors:
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of CLIP-seq variants, as well as parts of the analysis of CLIP-seq data and the conclusion.
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caller comparison. Rolf Backofen contributed the postprocessing section. Gianluca Corrado
provided the section on PARalyzer, and Patrick R. Wright the section on block-based peak
calling. All authors contributed to the revision and approved the final manuscript.”
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a b s t r a c t

CLIP-seq experiments are currently the most important means for determining the binding sites of RNA
binding proteins on a genome-wide level. The computational analysis can be divided into three steps. In
the first pre-processing stage, raw reads have to be trimmed and mapped to the genome. This step has to
be specifically adapted for each CLIP-seq protocol. The next step is peak calling, which is required to
remove unspecific signals and to determine bona fide protein binding sites on target RNAs. Here, both
protocol-specific approaches as well as generic peak callers are available. Despite some peak callers being
more widely used, each peak caller has its specific assets and drawbacks, and it might be advantageous to
compare the results of several methods.
Although peak calling is often the final step in many CLIP-seq publications, an important follow-up task

is the determination of binding models from CLIP-seq data. This is central because CLIP-seq experiments
are highly dependent on the transcriptional state of the cell in which the experiment was performed.
Thus, relying solely on binding sites determined by CLIP-seq from different cells or conditions can lead
to a high false negative rate. This shortcoming can, however, be circumvented by applying models that
predict additional putative binding sites.

� 2017 Published by Elsevier Inc.
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1. Introduction

The rise of next-generation sequencing (NGS) techniques over
the past decade has led to an enormous boost in RNA research
thanks to numerous discoveries concerning the fundamental role
of RNA in gene regulation [1]. To exert these functions, RNAs in
eukaryotic cells can form ribonucleoprotein complexes by interact-
ing with a multitude of RNA-binding proteins (RBPs), allowing for
the evolution of complex regulatory networks. Recent studies
revealed more than 1500 RBPs in human cells, which emphasizes
their fundamental importance for virtually all aspects of post-
transcriptional gene regulation (PTGR), including RNA maturation,
alteration, transport, stability, and translation [2–5]. Beside their
physiological roles, various diseases have been linked to dysregu-
lated or deficient RNA-binding proteins [6,7]. Hence, a comprehen-
sive understanding of RNA-based networks is only possible when
also considering the contributions of these RBPs. The scientific
community is therefore increasingly turning to the characteriza-
tion of RBP-based regulation. RBPs regulate their target gene(s)
by directly binding to the transcribed RNA. Typically, specific
sequence motifs are required for binding site recognition, although
the relative contributions of RNA sequence, structure and back-
bone to the binding can differ greatly among RBPs [8,9]. The major-
ity of RBPs appears to prefer single-stranded regions [4]. There are,
however, also many RBPs that prefer structured RNA such as Stau-
fen 1 [10], Roquin [11], or MLE [12]. It is currently unclear to what
extent the observed general tendency towards single-stranded
RNA regions is caused by biases in the experimental protocols. As
RNA molecules generally form extensive secondary structures, it
is not surprising that the binding specificity of RBPs also strongly
depends on the structural context of their binding sites. Indeed,
the importance of binding site accessibility has been shown for
many RBPs [13].

The recent development of high-throughput protocols for deter-
mining RBP binding sites on a genome-wide scale has greatly influ-
enced the field and opened up new avenues for the investigation of
regulatory relationships. Particularly, CLIP-seq (cross-linking and
immunoprecipitation followed by next generation sequencing)
[14] has become the standard experimental procedure for studying
transcriptome-wide RBP binding. Briefly, RBPs are crosslinked to
their RNA binding sites, followed by extraction and sequencing of
the crosslinked RNA fragments. After mapping of the sequenced
fragments, binding regions are identified based on the read profiles
and various additional information (e.g. from control experiments
or replicates). The process of determining significantly enriched
binding regions is also known as peak calling. Subsequently, bind-
ing motifs or predictive models can be derived from the identified
sites. These can then be employed to identify potential binding
sites in yet unreported target sequences.

In this paper, we describe selected tools and pipelines required
for a comprehensive bioinformatics analysis of CLIP-seq datasets.
We do not intend to give a complete overview of available meth-
ods, since there is already plenty of literature available on CLIP-
seq data analysis [15–17]. Rather, we will concentrate on tools
which have proven valuable to us in the past. For these, we will
describe important aspects of a comprehensive analysis. A special
focus will lie on the process of peak calling, which is the process
of recovering bona fide protein binding sites by signal detection
and removal of false positives originating from unspecific interac-
tions. To our knowledge, this component of the data analysis is still
lacking a more comprehensive discussion in literature, even

though it is arguably the most critical part of the whole analysis.
We will start with a description of the different CLIP-seq variants
available, addressing specific features and (dis) advantages. In
the following section on CLIP-seq data analysis, we will describe
the different steps of pre-processing, mapping and peak calling in
greater detail. The last section considers the task of determining
binding models for computational binding site prediction. Such
models are needed to reduce the false negative rates of CLIP-seq
experiments which originate from their dependency on the expres-
sion of the detected RNA binding sites. Without these models,
information from published data cannot be transferred to different
cells or conditions.

2. Overview of CLIP-seq variants

In recent years CLIP-seq has become the standard experimental
procedure to identify binding sites of RBPs on a transcriptome-
wide level. Several variants have been proposed since the introduc-
tion of CLIP [18,19] in 2003 and its first high-throughput sequenc-
ing extension HITS-CLIP (high-throughput sequencing of RNA
isolated by CLIP) [14] in 2008, each addressing various shortcom-
ings of the previous versions. The most widely used modifications
over the last years are PAR-CLIP (photoactivatable-ribonucleoside-
enhanced CLIP) [20] and iCLIP (individual-nucleotide CLIP) [21],
while recently the eCLIP (enhanced CLIP) protocol [22] was intro-
duced and promoted by the ENCODE consortium. Another protocol
termed irCLIP (infrared-CLIP) [23], which has been compared to
eCLIP [24,25], has also been published in 2016. Besides, several
specialised modifications for double-strand binding RBPs exist
[26,10,27]. These protocols add an additional ligation step to the
standard protocol in which the two double-strand RNA segments
bound by the RBP are connected, leading to chimeric reads that
allow for the simultaneous identification of both RNA strand
regions. So far, CLIP-seq has been applied in numerous studies on
single RBPs. Furthermore, the method has been employed by a
study on global mRNA binding preferences [2].

2.1. Principle CLIP-seq workflow

The principle workflow of a CLIP protocol starts with UV radia-
tion of the cell or tissue culture, which induces covalent crosslinks
between RBPs and their bound RNAs. This is followed by immuno-
precipitation of the RBP-RNA complexes and partial RNase diges-
tion to narrow down the binding sites to appropriate sequencing
and mapping lengths. Further steps aim at stringent purification,
including radioactive labeling, recovery by SDS–PAGE, transfer to
nitrocellulose membrane to abolish loose RNA fragments, excision
and proteinase K treatment to remove the RBP and recover the
trimmed RNA fragments. Finally, the fragments are reverse-
transcribed and their cDNAs are subjected to deep sequencing.
The resulting sequencing data is then analysed to obtain RBP bind-
ing sites which can be identified based on the mapped read
profiles.

2.2. PAR-CLIP

PAR-CLIP [20] marked the first successful adaptation of the orig-
inal protocol, introducing a number of modifications over HITS-
CLIP. To increase crosslinking efficiency, cells are additionally sup-
plemented with 4-thiouridine (4SU), and UV radiation is applied at
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365 nm instead of 256 nm. Interestingly, these modifications also
lead to a high number of thymidine to cytidine transitions in the
cDNA at the crosslink sites, which can be exploited in a subsequent
mutational analysis for pinpointing the crosslink position, thus
basically enabling PAR-CLIP to achieve single-nucleotide resolu-
tion. On the other hand, 4SU usage restricts the method to cell cul-
tures and preferential crosslinking to 4SU naturally biases site
recovery towards U-containing sites. Also, 4SU exhibits an
increased affinity towards G:U base pairing [28], which might
influence cellular RNA structure and thus also RBP binding. In addi-
tion, RNase T1 digestion leads to a depletion of G-containing sites,
due to the enzyme’s preferential cleaving after G nucleotides [29].
Another problem is the usage of inducible tagged proteins in the
original publication, which can result in the recovery of non-
physiological binding events due to overexpression. The last two
problems can and have been addressed in subsequent PAR-CLIP
versions [29,30], where the latter one also describes an in vivo
approach for C. elegans.

2.3. iCLIP

iCLIP [21] has been particularly designed to address a specific
problem inherent to HITS-CLIP and PAR-CLIP: during cDNA synthe-
sis, the reverse transcriptase frequently stalls at crosslink sites still
containing residual peptides, leading to an estimated loss of over
80 % of cDNA fragments [31]. To solve this issue, the authors devel-
oped a two-part cleavable adapter together with an additional cir-
cularization and linearization step, allowing for the recovery of
both complete and truncated cDNAs. Additionally, random bar-
codes are used, enabling easy identification and removal of PCR
duplicates after mapping. These measures lead to increased effi-
ciency, while single-nucleotide resolution is achieved due to the
truncated cDNAs which pinpoint the crosslink position to the
reads’ 5’ ends. Still, as with PAR-CLIP and the original HITS-CLIP,
the protocol remains time-intensive (up to 5 days) and error-
prone due to its many different steps [24]. Also, a fairly huge
amount of starting material (typically 106–108 cells) is required
in order to generate a library of sufficient complexity. This often
makes successful library preparation difficult. This is especially
true for lowly expressed RBPs, RBPs with widespread binding or
RBPs with low crosslinking efficiencies and/ or antibody affinities.

2.4. eCLIP

Both eCLIP [22] and irCLIP [23] have been developed to deal
with the shortcomings of previous CLIP-seq variants. Particularly,
high demands in cell numbers, many different preparation steps
including radioactive reagents and long preparation times fre-
quently result in poor library generation efficiency. In the eCLIP
protocol, the inefficient circularization step from iCLIP is
exchanged by two separate adapter ligation steps, which results
in much higher RNA fragment recovery. This ultimately leads to
a significantly improved library complexity. Furthermore less cells
are needed. Both aforementioned improvements enable the appli-
cation of this method on formerly difficult RBPs. Single-nucleotide
resolution is achieved the same way as in iCLIP, meaning that the
reads’ 5’ end should mark the crosslink position for the huge
majority of reads. Moreover, the autoradiographic visualization
step is omitted and different samples can be pooled early in the
protocol. This allows for much faster preparation times, but leaving
out the autoradiographic step is also a clear drawback since the
quality of the IP can no longer be monitored. Another new feature
is the inclusion of a size-matched input control (SMInput), which
enables efficient background normalization and thus leads to a
higher specificity in subsequent binding site identification. For

SMInput, 2 % of the pre-immunoprecipitation sample is taken
and sequenced together with the immuno-purified sample. It
was shown that normalization by SMInput significantly improves
authentic binding site recovery, whereas an IgG control, which is
frequently employed as a CLIP-seq control, was found unsuitable
for this task. The authors also provide a peak calling pipeline called
CLIPper [32], which will be discussed in a later section. The
described improvements have made eCLIP the method of choice
for the ENCODE consortium. So far, the consortium has published
eCLIP data for more than 70 diverse RBPs, which underlines its
usability and will likely help eCLIP to become more popular in
the near future.

2.5. irCLIP

Compared to eCLIP, irCLIP [23] uses a complementary approach
to deal with the described shortcomings of previous CLIP proto-
cols: the circularization step from iCLIP is kept but optimized
and applied in a single-tube reaction together with reverse tran-
scription to reduce preparation time. In addition, both circulariza-
tion and reverse transcription are performed at 60�C using
thermostable enzymes to resolve potential RNA secondary struc-
tures. It will be interesting to see whether this step also helps to
improve binding site recovery in the case of structure-binding
RBPs, which might yield low library complexities for other CLIP
protocols. irCLIP achieves single-nucleotide resolution analogous
to iCLIP and eCLIP. Like eCLIP, irCLIP too skips radioactivity steps,
but instead introduces an infrared fluorescent dye to visually check
IP quality. It can thus prevent certain IP-related quality issues
which can become a problem in the eCLIP protocol, since eCLIP
ommits the autoradiographic visualization without substitution.
Infrared dye labeling also improves other steps of the protocol,
which as with eCLIP results in lesser starting material (typically
only 20,000 cells) and overall increased efficiency. On the other
hand, working with infrared dyes also requires specialized equip-
ment, such as a gel documentation system with near-infrared
capabilities, which might not be highly available or affordable
[24]. It remains to be seen which of the two protocols will be
applied more frequently by the field. In any case, future compar-
isons in recovered binding profiles should help to reveal
protocol-specific advantages and biases.

3. Analysis of CLIP-seq data

The analysis of CLIP-seq data usually involves three major steps
which will be addressed here. As in many other protocols, the
reads first have to be mapped to a reference genome. If the CLIP
experiment was performed for a specific RBP, the generated reads
should agglomerate in regions to which the RBP binds. To identify
these regions, a second step is performed under application of a
peak caller. Peak callers are used on the coverage profiles to deter-
mine regions that are bound by the RBP with high affinity. Once the
peaks are identified, they can be quantified and their statistical sig-
nificance should be evaluated by comparing them to a control
experiment. In a third step, the resulting data can be utilized to
find binding motifs and to train binding models, which enable
the prediction of novel RBP binding sites on transcripts not present
in the CLIP-seq data. The last step is especially important when
investigating RBP binding sites in cells or conditions for which no
CLIP-seq data is publicly available.

3.1. Preprocessing of raw data and mapping

Most CLIP-seq studies are performed on organisms with well
annotated genomes like human, mouse or C. elegans [33]. Reads
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from CLIP-seq experiments performed on these organisms can be
mapped to the according reference genome or transcriptome. A
major problem regarding the quantification of read data is the reli-
ance of sequencing-based techniques on PCR amplification of the
sequence libraries prior to sequencing. Although necessary in order
to generate a sufficient amount of sequencing material, the occur-
rence of some sequences can be artificially boosted in the process
because of biases in the PCR protocol, where so-called PCR dupli-
cates are introduced. With the introduction of random barcodes
or unique molecular identifiers (UMI) in iCLIP this problem is mit-
igated, as reads which contain the same random barcodes and map
to the same coordinates can be collapsed to unify all PCR dupli-
cates into just one representative. The methodology is not com-
pletely flawless though, as it has been shown that during library
preparation mutations can be introduced in the random barcodes
which can have a big effect on the crosslinking-event counts
[12]. Before mapping the reads, these UMIs have to be removed.
Tools such as flexbar [34] can be used to accomplish this. If no
UMIs were used then tools such as FastUniq can be employed to
collapse potential PCR duplicates [35]. Adapters that are used in
the amplification steps of the sequences also have to be trimmed
from the sequences. Several programs can be used for this, e.g.
cutadapt [36], Trim Galore2, which is based on cutadapt and fastqc,
or trimmomatic [37], which is specifically made for Illumina
sequencing data.

A few things have to be considered in order to correctly map the
trimmed reads to a reference genome. In most cases, this step con-
sumes the most computational power. The sequences stem from
RNA molecules which can be subject to splicing in eukaryotes.
The choice of the mapping software depends on prior knowledge
about the targets of the RBP and is not independent from the fol-
lowing peak calling step, since the peak caller has to deal with gaps
which occur in spliced reads. The reads can either be mapped to
the genome or the transcriptome. The advantage of mapping the
reads to the transcriptome is that a higher sensitivity can be
achieved, but it also comes at the cost of limiting the analysis to
known transcripts. Since RBP binding sites can be located in
introns (especially in the case of splicing regulators), mapping only
to exonic parts would lead to the exclusion of these sites. Mapping
to exons also leads to a depletion of sites spanning exon borders,
since the read parts are often too short to be mapped to their cor-
responding exons with sufficient quality. All these issues have to
be considered in order to choose a meaningful mapping strategy.
A layered procedure of first mapping strictly to the transcriptome
and afterwards mapping the remaining reads to the genome is
often used and might work best in such cases. A wide range of
mapping algorithms originally developed for RNA-seq are avail-
able. To list a few good choices for this task, TopHat [38], GSnap
[39] and segemehl [40] fulfill the aforementioned requirements
and are widely used, but also STAR [41] should be mentioned,
which is the mapper of choice in the eCLIP pipeline used by the
ENCODE consortium. Of course this list is not comprehensive and
many other good choices exist. Benchmarking and isolating the
best program for this task go beyond the scope of this review
and can be found elsewhere [42–44].

3.2. Methods for peak calling

The next task after mapping reads to a reference genome or
transcriptome is to extract authentic binding sites from the
mapped read profiles. Many reads stem from unspecific binding
and thus have to be discarded, which is done in the process of peak
calling. This task can typically be divided into two parts: one first

extracts potentially interesting peaks based on peak shape or
height and then filters the resulting peaks such that only sites
enriched over a certain threshold or background are kept. The first
part usually results in a huge number of initial sites, including
many false positive predictions. The second part therefore should
incorporate additional experimental information like read profiles
from replicates, controls, or RNA-seq samples in order to increase
the signal-to-noise ratio. Information on underlying transcript
abundances is particularly important to peak calling on CLIP-seq
data, since transcript amounts differ between transcripts from dif-
ferent loci, and thus directly influence the peak heights found in
the read profiles. Therefore one cannot be sure if e.g. a high peak
corresponds to a strong binding site or if this is just the result of
the underlying transcript being highly expressed in the observed
cell type or condition. A correction for transcript abundance is
therefore of fundamental importance in CLIP-seq peak calling.
Interestingly, correction for transcript abundance has been shown
to significantly improve peak calling results even in the case of
external RNA-seq data [45]. Ideally however, one should choose a
CLIP-specific control for background correction, which also incor-
porates protocol-intrinsic biases. The authors of eCLIP [22] e.g.
showed that using a pre-immunoprecipitation control (as
described in the eCLIP section) led to a significant enrichment of
true binding sites, whereas an IgG control, which is frequently used
in CLIP, was not suitable for background correction. In general, con-
trols that produce low complexity libraries and thus poor coverage
of the underlying transcriptome should be avoided. Besides using
controls, results from different replicates can be intersected to fur-
ther increase specificity. In order to assign significance values to
peaks, it is also important to find a suitable probability distribution
for modeling the underlying read counts. In the following, some
prominent CLIP-seq peak callers which have been used by our
group will be discussed in more detail.

3.2.1. Piranha
Piranha [45] is a CLIP-seq peak caller which can be applied to all

available CLIP-seq as well as RIP-seq datasets in order to identify
significant peaks. It was the first generic CLIP-seq peak caller devel-
oped, i.e. it does not depend on certain CLIP variant properties in
order to call peaks, as opposed to PARalyzer [46], which relies on
PAR-CLIP data, or CIMS [47] and CITS [48], which were developed
for HITS-CLIP. Based on the mapped reads as input, Piranha first
divides the genome into non-overlapping bins of a user-defined
size and counts the number of read starts falling into each bin. Pir-
anha assumes that the read starts define the site where the cross-
link events take place. Bins with zero counts are discarded, and the
counts of the remaining bins are then used to fit a probability dis-
tribution. Covariates, e.g. in the form of reads from RNA-seq or a
CLIP-seq control experiment, can be supplied to correct for differ-
ent transcript abundances or protocol biases. In the case of covari-
ates, Piranha uses a zero-truncated negative binomial regression
for fitting the read counts together with the supplied covariate
data. If no covariates are given, the user has the choice between
four different distributions. However, the zero-truncated negative
binomial distribution is set as default and recommended, as it
was shown to have the best fit on a collection of over 100 CLIP-
seq datasets. Since Piranha assumes that most read-covered sites
represent background binding, the fitted distributions essentially
model background probabilities. Therefore, the p-value of a given
bin corresponds to the probability of the site being background.
By default, Piranha reports p-values corrected for multiple testing
using the Benjamini-Hochberg method [49] with a default thresh-
old of 0.05. As for the bin size, the authors suggest the size to be
adapted to the depth of coverage and the CLIP-seq variant used.
This is of course not intuitive, especially for novice users. According
to the authors, a good starting point for RIP-seq is 100, while e.g.2 Felix Krueger. Trim galore. https://github.com/FelixKrueger/TrimGalore, 2016.
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for iCLIP, one could start with low sizes (e.g. 5 nt) and then depend-
ing on the amount of noise in the dataset gradually increase the
window size. Either way, having to deal with manually adjustable
bin sizes is a clear drawback of Piranha. In addition, it lacks support
for the integration of replicate information, although one could still
do a manual intersection by calling peaks on all replicates sepa-
rately and merging the results afterwards.

3.2.2. PARalyzer
PARalyzer [46] is a computational tool3 for the discovery of

crosslinking sites from PAR-CLIP sequencing data. In the PAR-CLIP
protocol the protein crosslinking is boosted by additionally culturing
the cells with a photoreactive ribonucleoside analogue, usually 4SU.
The crosslink product of 4SU is known to have a preferential base
pairing to guanine (G) instead of adenine (A), resulting in thymine
(T) to cytosine (C) conversions in PCR-amplified cDNA.

The rationale of PARalyzer is to examine the pattern of T to C
conversions in order to spot, with high confidence, RNA–protein
interaction sites. A kernel-density-based classifier is used to char-
acterize crosslinked regions, identified by T to C conversions (the
signal), against not crosslinked ones, characterized by the absence
of T to C conversions (the background).

Class-specific densities (one for the signal and one for the back-
ground) are assessed by employing a Gaussian kernel density esti-
mator that, for each T nucleotide, considers the number of T to C
conversions and the number of non T to C conversions in the
aligned reads. For each T nucleotide in the RNA sequence, the num-
ber of T to C conversions occurring in that position is represented
using a Gaussian distribuion with fixed variance. The distribution
is peaked on the T nucleotide and the variance distributes the sig-
nal over the neighbouring nucleotides. The function in green,
shown in Fig. 1A, is the sum of all the individual Gaussian distribu-
tions that indicate T to C conversions and represents the signal. The
background (red function in Fig. 1B) is estimated by summing all
the Gaussian contributions of T nucleotides that have not turned

Fig. 1. Crosslink site indentification with PARalyzer on a synthetic example. Class-specific densities for both the signal and the background are estimated using a Gaussian
kernel density estimator. (A) Density estimation of the signal (green function). For each T nucleotide a Gaussian with fixed variance is peaked representing the number of T to
C conversions occurring in the position, normalized by the total number of T to C conversion in the associated read group. The normalized sum of all their Gaussian functions
is the signal. (B) Density estimation of the background (red function). The estimation is based on the number of T nucleotides that have not turned into Cs. (C) After estimating
the class-specific densities, the interaction sites are defined by the nucleotides where the density estimate of the signal (T to C conversions, green line) is greater than the one
for the background (non T to C conversions, red line) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.).

3 PARalyzer is available at https://ohlerlab.mdc-berlin.de/software/PARalyzer_85/.
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into C nucleotides instead of the T to C conversions. After estimat-
ing the class-specific densities, the interaction sites are defined by
the nucleotides for which the density estimate of the signal (T to C
conversions) is greater than the one for the background (non T to C
conversions) (Fig. 1C).

3.2.3. CLIPper
To distinguish peak regions from non-peak regions, the CLIPper

software [50] utilizes different statistical measures. CLIPper is
intended for calling CLIP-seq peaks on known genes only and
therefore requires annotation. It provides annotations for a few
genome assemblies, i.e. hg19, mm9, mm10, and ce10. For other
species the user has to provide the annotation. The program
defines sections on the genome where reads agglomerate and iden-
tifies peaks on the read profiles. A threshold is defined based on the
amount of reads in each section, the amount of reads in the vicinity
of the section, and the amount of reads in the gene. The threshold
specifies the minimum amount of reads necessary within this
region to be deemed statistically significant. This procedure makes
sure the false positive rate of peaks is controlled. By default, CLIP-
per then fits a spline function to the read profile and defines
regions which are above the threshold and those that are in
between local minima of the fitted spline as peaks. For these peaks,
a p-value is calculated with the amount of reads in the peak region

X being modeled as X � Poisson 1þ reads in gene � peak length
gene length

� �
. This

procedure assigns p-values to all peaks which in turn can be cor-
rected for multiple testing with respect to all tested peaks using
the Benjamini-Hochberg procedure [49]. The local maxima in the
fitted splines are explicitly highlighted (in the resulting BED file)
because these positions are the best candidates for where the anal-
ysed RBP binds to. In the eCLIP pipeline that is used by the ENCODE
consortium [51] the peaks are annotated qualitatively after their
identification. Each CLIP experiment dataset can be compared to
one control dataset. For each peak a log2-fold-change is calculated
based on the mapped reads within the peak region for the experi-
ment in comparison with the control. Furthermore, a p-value is
determined for each peak using a v2 test or Fisher’s exact test using
the mapped and total reads of the experiment and control. Given
that eCLIP pinpoints the crosslink positions to the read starts, it
is surprising that CLIPper does not take advantage of this informa-
tion, instead considering the full-length reads for peak calling.

3.2.4. Block-based peak calling
A recent CLIP-seq study on the transcriptome-wide binding

sites of the bacterial RBPs Hfq and CsrA in the human pathogen Sal-
monella enterica [52] introduced an experimental procedure
including paired-end signal and background libraries in triplicates.
The library preparation for the background data solely differs in the
fact that no UV induced cross linking is performed. The identifica-
tion of significant peaks in the signal data was performed based on
a three step procedure. In the first step, the blockbuster algorithm
[53] subdivides the pooled signal sequencing data into clusters (C)
of blocks (B). A block is fundamentally a pile of similar reads which
is characterized by its beginning position b(B), its ending position e
(B), its size S(B) and its length l(B) (see Fig. 2). Since the block
boundaries set in this initial structure do not provide appropriate
peak boundaries, overlapping blocks are joined into peaks in the
second step of the procedure. The biggest block (Bm) is selected
from C if SðBmÞ P SðCÞ � 0:01. Then, all B overlapping with Bm are
selected and removed from C. The peak boundaries are extended
using all blocks that overlap with at least half of Bm and also fulfill
SðBÞ P SðBmÞ � 0:1. The leftmost and rightmost coordinates of the
remaining B are set as final boundaries and the procedure restarts
by selecting the next Bm. In the last step, the DESeq2 algorithm [54]
assesses the statistical significance of each peak based on the indi-

vidual amount of reads counted for each of the peaks in the signal
and background libraries. The final output is a p-value sorted list.

3.2.5. Summary and comparison
A meaningful and fair comparison of the different peak callers is

problematic. On the one hand each tool incorporates several
parameters which change the behaviour of each peak caller signif-
icantly. On the other hand no datasets of absolute truth exist on
which the different tools can be benchmarked. Tools that work
only with very specific protocols because they rely on signatures
in the data that are introduced in these protocols can not be fairly
compared. In the following discussion, PARalyzer was not consid-
ered because its method of finding peaks is specific to PAR-CLIP
data and not applicable to other CLIP-seq methods. For the other
tools (CLIPper, Piranha and block-based peak calling) specific filter-
ing steps were undertaken as explained in the following. To give a
quantitative measure for the comparison of the different peak call-
ers we propose a genomic position based metric. One position cor-
responds to one nucleotide in the reference genome of the
investigated organism. Each position that is assigned to a peak
by at least one peak caller is evaluated on whether it is also within
a peak region defined by the other tools.

The problem of peak calling can be considered as two distinct
steps. The first step consists of defining regions of interest solely
based on the fact that one or more signal libraries show an agglom-
eration of reads in these areas. The second step is a statistical eval-
uation of these regions of interest where both the signal and the
background libraries are taken into account. The two peak callers
CLIPper and Piranha can perform a statistical analysis on just signal
libraries and report a p-value for the peaks they find. The block-
based method can only perform the first step of finding read-
enriched areas and relies on other programs, i.e. DESeq2, to do
the statistical analysis. If no replicate or control samples are avail-
able, CLIPper’s or Piranha’s built-in functionality to estimate the
background distribution is obviously the only possibility to assign
significances to peaks in the read profiles. In theory this is also pos-

Fig. 2. The figure shows a specific cluster (C) of blocks (B) and their attributes e(B),
b(B), l(B), S(B). The first Bm selected for this C is shown in blue, while overlapping
blocks that reach at least into the middle of Bm are green. The dotted green lines
show the borders of the first peak. All B not used for the definition of the boundaries
of the first peak are red. The density of sequencing reads at nucleotide resolution is
shown as black line (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.).
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sible for the block-based method, but has not yet been imple-
mented. Piranha offers the possibility to add covariate datasets to
improve estimation of the background. CLIPper itself does not offer
this capability, yet the significance of the regions can be reevalu-
ated with the scripts used in the eCLIP pipeline of the ENCODE con-
sortium [51]. Both Piranha and CLIPper cannot handle replicate
samples which are essential for the estimation of the technical or
biological variance in the experiments, which is why splitting up
the two tasks as mentioned above is advised when replicates are
available. In the following paragraphs the three tools Piranha, CLIP-
per, and blockbuster based peak calling are compared with each
other on one example dataset to illustrate similarities and some
distinguishing features between the tools.

For this example the human RBP Histone Stem-Loop-Binding
Protein (SLBP) was chosen. An eCLIP experiment [22] was recently
published for this RBP and is available on the ENCODE consortium
website.4 For the analysis we utilized the files that provide the
already mapped reads to reference genome hg19. The second-in-
pair reads which should contain the cross link position at their 5’
ends have an average length of approximately 38 nucleotides. SLBP
targets histone protein mRNAs and has a well known stem-loop
binding motif [55]. One target of SLBP are transcripts of HIST2H2AC
with the aforementioned stem-loopmotif in its 3’ UTR. In Fig. 3 eCLIP
read profiles for this one target site are depicted. The 3’ end of gene
HIST2H2AC lies in the region 149.858800 mb – 149.858910 mb (see
Fig. 3 tracks 1–3). The read coverage and the read start coverage
(tracks 4,5) are the determining signals for the three different peak

callers CLIPper (track 6), extended blockbuster (track 7) and Piranha
(track 8). Comparing the coverage tracks with its size matched input
counterparts for this region (track 4,5 red), it can be safely stated
that this region is targeted by SLBP. This one example already clearly
illustrates some of the three tools’ major differences. Where CLIPper
and the block-based approach follow the overall read coverage, Pir-
anha is more aligned with the read start distribution. It should be
noted that in this example the stem-loop motif starts right after
the peak that was called by Piranha (a more detailed discussion of
this issue can be found in the Conclusion section).

As stated above, a fair comparison is difficult to achieve when
the tools are very flexible with different parameter settings. For
the following more general analysis the tools were called with
standard parameters where possible. The other parameter settings
are best guesses as a thorough evaluation of these settings is
beyond the scope of this review. To achieve an even higher parity
in the evaluation of the peak callers, the normalization and the sta-
tistical analysis were done with the same pipeline. For CLIPper the
ENCODE consortium offers peak files in a BED-like format where
the signal library is normalized with a size matched input library
(SMI). The peak boundaries in these BED files were taken as input
for the second step of the peak analysis: counting the reads of the
signal and the input library that fall into each peak region and eval-
uating the fold change in the region with DESeq2. Piranha was
called with the signal library only to define the peak boundaries
and the normalization with the SMI was done thereafter with the
same pipeline as for CLIPper and the block-based approach. Pir-
anha can be used with covariates that should normalize the results,
but the results of this analysis did not allow for the filtering steps
that were applied afterwards as the output of Piranha in this mode

Fig. 3. Comparison of called peaks on data stemming from an eCLIP experiment of the RBP SLBP. Tracks from top to bottom. (1) and (2) location on chromosome 1. (3) gene
HIST2H2AC (thick) with 3’ UTR (thin) and stem-loop motif region (SLM), (4) read coverage (SMI coverage in red), (5) read start coverage (SMI coverage in red), (6) peaks called
by CLIPper, (7) peaks called by extended blockbuster, (8) peaks called by Piranha. The figure was generated in the R environment [56] with gviz [57].

4 Datasets available at https://www.encodeproject.org/experiments/ENCSR483NOP/.
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was not verbose enough. Furthermore it has to be mentioned that
Piranha was called with a bin size of 20 (-z 20) and the merging of
bins was disabled (-u 0). Piranha calculates p-values for merged
bins counter-intuitively such that results with merged bins were
inconsistent because the implicit output filtering of peaks relies
on these p-values. In the block-based approach blockbuster was
called with a minimum block height of 10 (-minBlockHeight 10),
the blocks were extended as described and the resulting regions
were again evaluated with DESeq2. Afterwards the identified peak
regions were filtered such that only those peaks were kept that had
a normalized fold change of at least 2 when comparing signal
library to SMI.

The genomic position based overlap between the different peak
callers is depicted in Fig. 4 and the overall distribution of the peaks
determined by the different tools is shown in Table 1. The block-
based approach is the most inclusive as it generates the biggest
total number of positions in peaks. The number of peaks is quite
similar for all three peak callers with the block-based approach
generating the longest peaks. Piranha generates many small peaks
that are adjacent to each other as expected due to disabled bin

merging. Only 11.3 % of peak positions generated by Piranha are
exclusive to that tool, for CLIPper and extended blockbuster this
percentage is much higher (35.2 % and 57.6 % respectively). This
shows that there are significant differences between the tools
and it might be worth applying the different tools to the same
dataset to find significant regions and subsequently motifs. In
any case, an in-depth knowledge of the tools is advisable and the
most appropriate tools should be chosen based on the given wet-
lab protocol. Table 2 gives an overview of the three tools, address-
ing strengths, weaknesses and some general observations we gath-
ered during this analysis.

3.3. Postprocessing

The purpose of peak calling is to reduce the false positive rate
and provide a set of high affinity binding sites. Albeit peak calling
corrects for differences in expression levels to some extent, the
results of a CLIP-seq experiment will still be highly dependent on
the expression state of the cells in which the experiment was per-
formed. This implies that the problem of false negatives remains
since binding sites in lowly expressed genes or genes that are
not expressed at all cannot be detected in a CLIP-seq experiment.
Consider Fig. 5, where we display the read starts of a CLIP-seq
experiment on an artificial genomic locus. Due to unspecific bind-
ing, reads can be detected outside of true binding sites. Most of
these reads are discarded by peak calling. However, the false neg-
atives, i.e. the binding sites which are not covered by reads from
the experiment, cannot be found by the analysis described so far.
This is a problem when using published CLIP-seq data to analyse
cell lines or tissues different from the cell lines that were used to
produce the CLIP-seq data. Even for same cell lines there can be
considerable variances in expression profiles and thus also differ-
ences in recovered binding sites. To give one example, Maticzka
et al. [58] re-analysed data from an AGO knockdown by Schmitter
et al. [59] using more recent CLIP-seq data [29]. Schmitter et al.
showed that genes up-regulated in an AGO knockdown are
enriched with putative miRNA-binding sites, consistent with a
direct regulation by miRNAs in the wild type. However, one may
be inclined to perform an analysis using published CLIP-seq data
from the same cell line (which exists), instead of in silico seed-
based miRNA-binding site prediction, as it was done by Schmitter
et al. in the original publication. Surprisingly, Maticzka et al.
showed that CLIP binding sites are not enriched in the up-
regulated genes, probably due to the low expression of the
miRNA-regulated genes in the wild type.

Another example is the work in [60], which shows that publicly
available data can be more or less useless (or even harmful by lead-
ing to wrong biological conclusions) when only the peak-called
sites are used. The group was studying the tumor suppressor
ANXA7, which is alternatively spliced in glioblastoma compared

Table 2
Observed assets and drawbacks of the described CLIP-seq peak callers.

Tools Pros Cons Observations

Piranha
� models background
� fast

� p-value for merged bin counterintuitive
� fixed bin width
� no replicates

� calls peaks on read starts
� takes read ends instead of starts for minus strand

CLIPper
� models background
� dynamic peak width

� slow
� needs specific annotation
� no replicates

� calls peaks only on known transcripts
� broad peaks

Block-based
� dynamic peak width
� fast
� supports replicates

� does not model background � relies on blockbuster and DESeq2
� broad peaks
� peaks can overlap

Fig. 4. Venn diagram of genomic positions contained in peak regions defined by the
three peak callers.

Table 1
General statistics of called peaks for the three methods (in brackets: adjacent peaks
not merged).

Tools Number of peaks Average peak length Positions in peaks

Piranha 116 (312) 53.79 (20.00) 6240
CLIPper 135 (180) 58.05 (43.54) 7837
Block-based 146 (180) 115.89 (97.97) 17635
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to normal tissue. They did several experiments to show that an
RNA-binding protein, namely the splice factor PTBP1, is involved.
Firstly, they showed that ANXA7 is alternatively spliced. Secondly,
they searched for differentially expressed splice factors (again
between glioblastoma and normal tissue) and showed that PTBP1
is the only such factor. Thirdly, they did an RNA immunoprecipita-
tion with PTBP1, finding that PTBP1 coprecipitates ANXA7 RNA. The
final step would have been to determine binding sites from a pub-
licly available CLIP-seq dataset, which exists [61]. In this publica-
tion a set of binding sites was determined by peak calling.
However, as shown in Fig. 6B, there are no called binding sites in
the vicinity of the alternatively spliced gene, which would lead
one to wrongly conclude that there are no binding sites in this
transcript region.

Thus, to overcome these kinds of problems and to make publicly
available CLIP-seq data usable for a wider community, one has to
predict these missing binding sites. Of course, these predictions
have to be accompanied by additional experimental approaches
to verify them. The general approach for predicting binding sites
is to learn a model from the sites detected by a CLIP-seq experi-
ment, and to use this model to determine missing binding sites.
In the following we will focus on two approaches for binding site
identification most commonly used in CLIP-seq data analysis.

3.3.1. Affinity-based approaches
The first types are affinity-based approaches, which try to learn

a model that estimates the affinity of the RNA-binding protein P for
a specific sequence s. In more detail, consider the binding reaction
of a protein P to an RNA sequence s at equilibrium. Then the affinity
can be determined by

KaðsÞ ¼ ½P � s�
½P�½s� ¼ kon

koff
¼ e�DG=RT ð1Þ

where kon (resp. koff ) is the rate of association (resp. dissociation),
and DG is the free energy of binding. ½P � s�; ½P� and ½s� are the con-
centrations of the protein-sequence complex, the protein, and the
sequence, respectively. Now given a set of sequences fs1; . . . ; sng

that are bound by P, let f½P � s1�; . . . ; ½P � sn�g be the associated
counts indicating how often the sequence si occurs as a binding site
of protein P. The purpose of motif finding tools is to determine
parameters H for their models such that the associated score
SHðsÞ for a sequence s is a good estimate for the affinity, i.e. that
SHðsÞ � KaðsÞ. If we had enough data and knew the concentration
½s� of unbound s for each sequence, then the following score

SHðsÞ ¼ ½P � si�
½si�

Pn
j¼1½P � sj�

provides such an estimate for the (relative) affinity. However, there
are two caveats. First, ½si� is usually unknown, and is thus often esti-
mated from the background distribution of sequences. Secondly,
datasets are usually too small to provide a reliable estimate for
SHðsÞ for all sequences s. Hence, these scores are often approximated
by assuming fixed-length motifs and independent contributions of
each position. This basically assumes that the free energy contribu-
tion for each base is additive. Since the affinity is related to the free
energy as described by equation (1), additivity in the free energy
contribution translates to multiplicity in the score. Examples of
these types of models are position weight matrices (PWM) [63],
as used by the popular MEME tool [64], or position-specific affinity
matrices (PSAM) [65].

Given fixed-length motifs, the question is how to score binding
sites that are longer than the motif size. Early approaches used the
sum of the different subsequences, however, this does not take the
concentration of the protein and the effect of binding on the con-
centration into account. A better approach is to model the occu-
pancy of the sequence by the protein. For a sequence s, the
occupancy NðsÞ is the probability that s is bound by P:

NðsÞ ¼ ½P � s�
½P � s� þ ½s� ¼

½P � s� ½P�
½P�s�

½P � s� ½P�
½P�s� þ ½s� ½P�

½P�s�
¼ ½P�

½P� þ KdðsÞ ;

where KdðsÞ ¼ KaðsÞ�1 is the dissociation constant. Assuming that
the protein concentration ½P� is small compared to KdðsÞ to ensure
an efficient regulatory scheme [66], one yields

Fig. 5. False positives and negatives for a CLIP-seq experiment with respect to true but unknown binding sites.

Fig. 6. Exon structure of ANXA7 with the alternative exon E6, which is differentially spliced in glioblastoma. Since exon E6 is repressed by PTBP1, one would expect binding
sites of PTBP1 to the left and right of exon E6 [61]. Albeit the raw data from the publicly available CLIP-seq experiment [61] shows some reads in that region (A), no binding
sites from the CLIP-seq experiment (as determined by peak calling) can be found (B). We predicted ten binding sites with GraphProt (C). Nine out of the ten predicted sites
could be validated by mutation experiments [60]. Track (D) shows the raw read data of a newer CLIP-seq experiment [62]. Some reads accumulate around our predicted
binding sites. However, as shown in the mappability track (E), the predicted sites M6,M7, M9-10 and M11 cannot be identified by the CLIP-seq experiment since the reads
cannot be uniquely mapped in that region.
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NðsÞ � ½P�
KdðsÞ ¼ ½P�KaðsÞ:

Thus, for the small k-mers recognized by the models explained
above, the occupancy can be estimated from the score
SHðsÞ � KaðsÞ. For larger sequences, one can determine the occu-
pancy as the probability that at least one k-mer of the sequence
binds. This can be done using a ‘‘noisy OR” function [67] by calcu-
lating this probability as 1 minus the probability that none of the k-
mers bind. RNAcontext [68] is a recent approach for learning
sequence and structure preferences for RNA-binding proteins
which directly estimates the occupancy of the k-mers using a logis-
tic regression formulation of the occupancy term.

However, it is already known that pure sequence-based models
are not good for modeling binding sites on RNAs due to the disre-
gard of secondary structure. Examples of early models that take
secondary structure into account are BioBayesNet [69] for DNA
and MEMERIS [70] for RNA. More recently, RNAcontext presented
a more integrated approach, where the occupancy for a k-mer s
is determined by taking a sequence contribution NseqðsÞ, which is
interpreted as the occupancy of the sequence s in its optimal con-
text, and multiplying it with a contribution of the structural con-
text Nstructðs; pÞ. Here, p is the matrix that assigns to each position
a distribution of possible structural states such as being in a hair-
pin, internal or multi loop, or being in a stem. p is calculated from s
using SFOLD [71].

3.3.2. Classification- and regression-based approaches
Another type of approach is not based on a physical model but

considers the problem of determining binding sites as a classifica-
tion or regression problem. As a classification task, in contrast to
the previous approaches, one needs a positive set (i.e. the regions
determined by the peak caller) and a negative set, which are sites
that are not bound by protein. Since the latter is usually not avail-
able, the set of negative instances has to be generated, e.g. by shuf-
fling the true regions on the genome. The idea is to determine
features that differentiate the binding sites from the non-binding
sites. Oversimplifying, when using k-mers, one would try to deter-
mine k-mers that are highly enriched in the positive data and
depleted in the negative data. However, a simple k-mer approach
would not work due to the complexity of the task. Instead,
advanced machine learning approaches have to be used.

One example for such an approach is GraphProt [58], which
uses sequence- and structure-based features for that purpose.
The binding site together with a collection of different near optimal
foldings is encoded as a graph. Then, GraphProt considers small

subgraphs that are determined by two different parameters,
namely radius r and distance d, as features. Starting from each
node of the graph, the radius defines how many edges can be vis-
ited to determine the subgraph. The distance parameter d includes
as features all possible pairs of subgraphs determined by the radius
r that have an edge distance of exactly d. Thus, these features can
be considered as the upgrade from sequence k-mers with gaps to
graphs. The number of occurrences of these subgraphs are stored
into a huge but sparse feature vector (see Fig. 7). These feature vec-
tors for each binding and non-binding site are then used by a sup-
port vector machine as input to discriminate positive from
negative sites. If quantitative binding data is available, support
vector regression instead of support vector classification can be
used.

Another example for a regression-based approach is iONMF
[72], which uses orthogonal matrix factorization to determine a
model for the strength of binding sites. iONMF basically uses as
features the probability of each position around the binding site
to be double-stranded, the number of occurrences for all possible
4-mers in a region around the binding sites, the region type, the
GO annotation of the RNA, and the CLIP-seq counts for a collection
of proteins different from the one investigated as possible features.
The idea for training a model is to determine a coefficient matrix
for a linear regression task. I.e. multiplying these coefficients with
the values for the features listed above should approximate the
CLIP-seq counts of the actual experiment as well as possible, using
the determined values for all features. Once this is achieved, new
binding sites can be scored by determining the feature values
and multiplying them with the coefficients. However, due to the
large number of features, one would immediately run into overfit-
ting problems. Omitting a lot of details, iONMF introduces a new
approach for orthogonal matrix factorization. The idea is to yield
a low-rank approximation of the feature matrices by determining
modular projection of the original data matrices, yielding an effec-
tive regularization by avoiding multicollinearity between feature
vectors.

4. Conclusion

CLIP-seq is currently one of the most important means to deter-
mine binding sites of RNA-binding proteins on a genome-wide
level. Since peak height alone is not a good measure of significance,
we advise preparing signal and background CLIP-seq libraries in
replicates. This enables highly specific removal of background
noise from the signal data under application of statistical
modeling.

Fig. 7. A folded binding site in graph representation (left) and its associated feature vector (right). The red shaded areas on the left indicate two subgraphs of radius (r) 1 with
the centre indicated by a red circle (two occurences). The blue shaded area is an example of a subgraph with r = 2 (one occurence). Again, the blue circle indicates the central
node of the subgraph (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.).
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The computational analysis of CLIP-seq data requires three
steps, which have to be adapted to the specificities of the CLIP pro-
tocols to different extents. The first and most protocol-specific step
is the preprocessing of the raw data. Sequenced reads have to be
trimmed and mapped to the genome or the transcriptome. What
exactly has to be trimmed depends on the adapter sequences, as
well as barcode sequences for PCR duplicate removal and de-
multiplexing. For the mapping part, several widely-applied tools
exist which can also handle splice-sensitive mapping.

The second, and one of the most important steps, is peak calling,
which determines high confidence binding sites by removing sig-
nals corresponding to unspecific binding. Here, both protocol-
specific and generic peak callers exist. However, as shown in the
comparison of different peak callers, results can vary drastically.
This can even hold within individual tools when they are run using
slightly different parameter settings. Thus, depending on the data,
it might be worth to apply and compare the results of different
peak calling techniques.

In the example case (see Fig. 3) Piranha did not include the
actual binding motif, which forms a stem-loop structure recog-
nized by SLBP. Instead, bins get called in the upstream vicinity
where most read starts occur. This is expected and not a flaw of
the algorithm, since Piranha only takes read starts into account.
It is known that double-stranded regions are less efficiently cross-
linked in CLIP, which would explain the upstream accumulation of
crosslink events. On the other hand, transcriptome-wide RBP bind-
ing preferences, whether sequence- or structure-dependent or
both, are usually not known in advance, and thus one has to rely
on the called sites to extract these preferences. Clearly, one may
extend the called sites to include more nucleotides, but this can
increase the amount of noise and other potentially (non-) RBP
specific motifs returned by the analysis. All tested tools can be a
reasonable choice, depending on the CLIP-seq protocol, but one
should keep in mind their assets and drawbacks (Table 2). For a
comprehensive analysis, we recommend trying more than one
peak caller, especially if control experiments and replicates are
present, which should become standard in future CLIP-seq experi-
ments. A compound strategy, where the steps of site definition and
their statistical evaluation are split between programs, could fur-
ther improve results. Newly developed peak callers should com-
bine the aforementioned strengths of the described programs. In
addition, a more thorough study with true positive sets for RBPs
targeting structure and sequence features could help to answer
the question of which peak caller is suitable in which scenario.

In the last step, which is more or less protocol-independent,
motifs are determined and binding models are inferred from the
regions identified by the peak caller. The importance of this step
is currently largely underestimated. However, without training
binding models, published CLIP-seq data can hardly be utilized as
they are. In the worst case, the direct use of regions identified in
CLIP-seq data on different cells/ conditions can lead to wrong con-
clusions concerning the underlying regulatory mechanisms. The
reason is simply that a CLIP-seq experiment is expression-
dependent, and binding sites in lowly or not expressed genes are
not discovered. If an RNA is expressed in the currently investigated
cell type but not in the cell type used for the original CLIP-seq
experiment, then binding models can be applied to determine
potential missing binding sites. Utilizing these prediction
approaches in combination with validation experiments can there-
fore largely extend the explanatory power of CLIP-seq datasets.
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Abstract

Motivation: Long non-coding RNAs (lncRNAs) are defined as transcripts longer than 200 nt that do

not get translated into proteins. Often these transcripts are processed (spliced, capped and polya-

denylated) and some are known to have important biological functions. However, most lncRNAs

have unknown or poorly understood functions. Nevertheless, because of their potential role in can-

cer, lncRNAs are receiving a lot of attention, and the need for computational tools to predict their

possible mechanisms of action is more than ever. Fundamentally, most of the known lncRNA

mechanisms involve RNA–RNA and/or RNA–protein interactions. Through accurate predictions of

each kind of interaction and integration of these predictions, it is possible to elucidate potential

mechanisms for a given lncRNA.

Results: Here, we introduce MechRNA, a pipeline for corroborating RNA–RNA interaction predic-

tion and protein binding prediction for identifying possible lncRNA mechanisms involving specific

targets or on a transcriptome-wide scale. The first stage uses a version of IntaRNA2 with added

functionality for efficient prediction of RNA–RNA interactions with very long input sequences,

allowing for large-scale analysis of lncRNA interactions with little or no loss of optimality. The sec-

ond stage integrates protein binding information pre-computed by GraphProt, for both the lncRNA

and the target. The final stage involves inferring the most likely mechanism for each lncRNA/target

pair. This is achieved by generating candidate mechanisms from the predicted interactions, the rel-

ative locations of these interactions and correlation data, followed by selection of the most likely

mechanistic explanation using a combined P-value. We applied MechRNA on a number of recently

identified cancer-related lncRNAs (PCAT1, PCAT29 and ARLnc1) and also on two well-studied

lncRNAs (PCA3 and 7SL). This led to the identification of hundreds of high confidence potential tar-

gets for each lncRNA and corresponding mechanisms. These predictions include the known com-

petitive mechanism of 7SL with HuR for binding on the tumor suppressor TP53, as well as
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mechanisms expanding what is known about PCAT1 and ARLn1 and their targets BRCA2 and AR,

respectively. For PCAT1-BRCA2, the mechanism involves competitive binding with HuR, which we

confirmed using HuR immunoprecipitation assays.

Availability and implementation: MechRNA is available for download at https://bitbucket.org/comp

bio/mechrna.

Contact: agawrons@sfu.ca or cenksahi@indiana.edu or backofen@informatik.uni-freiburg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

With the advance of large-scale transcriptome analysis, it has

become evident that the majority of the human genome is tran-

scribed into RNA (Djebali et al., 2012). Out of all currently anno-

tated genes, only a minority is known to code for proteins, while

most are believed to be non-coding RNAs (ncRNAs). Beside several

small ncRNAs, including small nucleolar RNAs (snoRNAs) and

microRNAs (miRNAs), manifold analyses showed that especially

long non-coding RNAs (lncRNAs), a designation given to any

ncRNA longer than 200 nt, play an important role in cell regulation

(Marchese et al., 2017). The major classes of lncRNAs include natu-

ral antisense transcripts (NATs), promoter-associated ncRNAs

(pncRNAs), pseudogenes and long intergenic non-coding RNAs

(lincRNAs). They have a variety of known functions influencing

transcription, splicing, mRNA stability and translation (Kung et al.,

2013).

For some lncRNAs, the specific mechanism of action is known,

however often only isolated examples exist. For many others, the

precise mechanism still needs to be determined. At the most funda-

mental level, every lncRNA mechanism involves RNA–RNA inter-

action and/or RNA–protein interaction (and via proteins, DNA

interactions). So in order to model lncRNA mechanisms computa-

tionally, algorithms for predicting these kinds of interactions are

essential. There are a number of tools to predict RNA–RNA interac-

tions. These follow four general approaches, in order of complexity:

hybridization-only [RNAHybrid (Rehmsmeier et al., 2004),

RNADuplex (Lorenz et al., 2011)], sequence concatenation

[PairFold (Andronescu et al., 2005), RNAcofold (Bernhart et al.,

2006)], accessibility-based [RNAup (Muckstein et al., 2006),

IntaRNA2 (Mann et al., 2017)] and full joint structure prediction—

leading to the first joint free energy model for interacting RNA

strands (Alkan et al., 2006) and follow-up work [piRNA (Chitsaz

et al., 2009), inRNAs (Salari et al., 2010), RIP (Huang et al., 2009)].

Hybridization-only methods, where only intermolecular base-paring

is considered, and sequence concatenation methods, where standard

algorithms for secondary structure prediction are applied to the con-

catenation of the input RNA, are very fast but produce unrealistic

interactions. Accessibility-based tools compute the partition func-

tion of each input sequence and determine the energy required for

any given region to be unpaired. These energies are then used as pen-

alties when predicting hybridizations. At the expense of a little

higher complexity, the modeled interactions are much more realistic.

Accessibility-based tools are efficient enough to have been success-

fully applied to prokaryotic sRNA and eukaryotic miRNA target

prediction on a transcriptome-wide scale. However, due to the com-

plexity of these algorithms, the problem of predicting lncRNA inter-

actions on a transcriptome-wide scale quickly becomes intractable

for any method more complex than hybridization-only predictions.

It is possible to use RNA–RNA interaction prediction software

for transcriptome-wide, lncRNA–RNA interaction prediction,

through the use of existing tools such as IntaRNA [on a

supercomputer (Terai et al., 2016)] or by new pipelines such as

RISearch2 (Alkan et al., 2017). All these approaches need to apply

the following steps (not necessarily in order): (i) determine accessible

regions on every target sequence [e.g. using Raccess (Kiryu et al.,

2011) and remove repeat regions]; (ii) determine ‘seeds’ with perfect

complementary and extend each seed with flanking sequences of

fixed length; and (iii) predict (and refine) the interaction between

the lncRNA and each of these sequences [e.g. using IntaRNA or

RactIP (Kato et al., 2010)]. Unfortunately, the targets of ncRNAs

identified through the above approach are typically not very specific.

For short ncRNAs such as sRNAs and miRNAs, it is possible to

improve specificity via sequence conservation (Wright et al., 2013,

2014) across species. However this does not extend to lncRNAs,

which are typically poorly conserved (Iyer et al., 2015). As we will

discuss below, one way to improve specificity may be to incorporate

RNA–protein interactions with RNA–RNA interactions with RNA–

protein interactions.

RNA–protein interactions can be determined experimentally

using CLIP-Seq, which is currently the standard protocol for the

transcriptome-wide identification of RNA-binding protein (RBP)

binding sites. Several protocol variants exist, most notably photoac-

tivatable-ribonucleoside-enhanced CLIP (PAR-CLIP) (Hafner et al.,

2010) and individual-nucleotide CLIP (iCLIP) (Konig et al., 2010).

Lately, enhanced CLIP (eCLIP) (Van Nostrand et al., 2016) and

infrared-CLIP (irCLIP) (Zarnegar et al., 2016) have been introduced

to further improve protocol efficiency with varying approaches, as

discussed by Uhl et al. (2017).

A drawback of CLIP-Seq protocols to identify RBP binding sites

is that they naturally rely on the expression of the target transcripts,

which is often cell- or tissue-specific, especially in the case of

lncRNAs (Brunner et al., 2012; Liu et al., 2016). Computational

prediction of missing binding sites is therefore in high demand.

While initial prediction methods such as MEME (Bailey and Elkan,

1994) have relied solely on sequence information, more recent tools

such as MEMERIS (Hiller et al., 2006), RNAcontext (Kazan et al.,

2010) and GraphProt (Maticzka et al., 2014) also incorporate struc-

tural information to further improve their predictions.

To our knowledge, no tool exists that integrates both RNA–

RNA and RNA–protein interactions. This is crucial for lncRNA

interaction prediction since their long length increases the probabil-

ity of protein binding. The type of RBP, whether it binds to the

lncRNA or the target and the location of the RBP relative to the

RNA–RNA interaction site can allow inference of the potential

lncRNA mechanism.

To solve this problem, we propose MechRNA, a pipeline for

combining interaction predictions and biological data to discover

potential mechanisms. Specifically, this pipeline aims to discover

potential mechanisms of an input lncRNA by (i) predicting

lncRNA–target interactions using IntaRNA2 with a new feature

improving transcriptome-wide performance, (ii) identifying RBP

binding sites predicted by GraphProt on both the targets and the
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lncRNA, (iii) finding correlation between the lncRNA and targets

using the cancer genome atlas (TCGA) expression or user-provided

data, (iv) combining this evidence to generate candidate mechanisms

and finally (v) computing joint P-values to select the candidate

mechanisms that best explain the observed data.

2 Materials and methods

MechRNA has four inputs (Ensembl IDs of lncRNA sequence, tar-

get sequences and RBPs and a list of mechansims) and two modes

(screening and hypothesis-driven modes). In screening mode, the

user only specifies the lncRNA, and the entire transcriptome with all

available RBP models is used to predict all possible mechanisms.

Since nothing is known about the relationships between the

lncRNA, targets and RBPs, correlation data are used to reduce the

number of candidates. Hypothesis-driven mode allows the user to

specify any a priori information they may have on the lncRNA. For

example, a common case would be that the lncRNA was experimen-

tally shown to downregulate a set of targets. In this case, the user

would specify a list of all downregulatory mechanisms from those

that are available and the list of suspected targets. From these

inputs, MechRNA predicts lncRNA–target interactions, RBP bind-

ing sites and determines the most likely mechanism given these inter-

actions. Here we will describe each stage in detail. An overview of

the pipeline is shown in Figure 1.

2.1 Sequence decomposition by accessibility
Since IntaRNA2 uses accessibility to predict RNA–RNA interac-

tions, areas of low accessibility can be removed from the search

space. An added benefit of this approach is that long transcripts can

be naturally split into smaller sequences that can be analyzed inde-

pendently. Since IntaRNA2 complexity increases quadratically with

sequence length, sequence splitting makes cases tractable that are

intractable otherwise, i.e. even transcripts with length >20 kb can

be considered. To accomplish a proper splitting, we developed a

new algorithm that incrementally detects the least accessible (most

structured) positions in the sequence to be used as split positions.

The minimal number of splits are selected that are necessary to

make every subsequence shorter than a user-specified length and for

each of these subsequences to contain no position less accessible

than its split positions. A default maximum length threshold of

1500 nt was selected to ensure that the memory usage does not

exceed the typical amount of RAM on a PC or the per-core resource

availability of a computing cluster. It should be noted that the

majority of transcripts are less than the default threshold and there-

fore the heuristic will usually not be used, i.e. it is mainly applicable

to extreme cases.

The algorithm finds the minimal set of most structured points at

which to split a long input sequence according to a given length

restriction as follows: given a sequence S, the algorithm begins with

position x¼0 and y ¼ jSj � l where l is a fixed window length

(IntaRNA seed length by default). First, the algorithm computes

maxiðEDði; iþ lÞÞ, where x � i � y and ED is the accessibility

energy for that range. Accessibility energy is the energy required for

a region of RNA to be single stranded, inversely proportional to the

probability of the bases being paired in that region and computed

via the partition function. With the detected position i, a new inter-

val ðiþ l; jSj � 1Þ is created and put on the stack. Furthermore, for

the current interval, y is updated to i – 1. This process is repeated

until y� xþ 1 is less than the length threshold, at which time it is

added to the final list of intervals. The algorithm then moves to the

next interval from the stack, i.e. the interval created in the last itera-

tion. The iteration continues until the last interval is reached (the

first interval created with endpoint jSj � l). Highly structured

regions will produce many maximum ED windows in close proxim-

ity, so a minimum interval length is enforced (again, IntaRNA seed

length by default) and regions shorter than this minimum are dis-

carded. The final output is a set of intervals, which are then used as

input for IntaRNA. More specifically, IntaRNA will sequentially go

through each interval and find the optimal hybridization of the

lncRNA with the subsequence contained within the interval. An

example execution is shown in Figure 2.

In a test with 100 random sequences of length over 1500 nt, the

algorithm reduced the runtime by 13% and peak memory usage by

65%. Since peak memory has a constant upper bound when using

this approach, the peak usage reduction is even more dramatic for

extreme cases. It must be noted that the full accessibility matrix for

the entire target/lncRNA structure is used for computing hybridiza-

tion energies and is reused for each interval within a target. This

allows us to limit the search space of possible hybrids as described

without any loss in optimality. In other words, any interaction cal-

culated in an accessible region using subsequences of the input

RNAs will be identical to those computed using the full input

sequences. In the test above, out of the top 10% of predictions using

the vanilla algorithm, 95% of them were identical to those found

when using the decomposition. This number increases to 97% when

we allow for small differences in predicted sites. The only case where

an ‘optimal’ interaction may be missed is if a highly energetic hybrid

exists between highly structured regions of both RNAs where the

difference in energy is still greater than the difference in energy for

interactions in more accessible regions. It is unclear whether this
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Fig. 1. Overview of the MechRNA pipeline. IntaRNA2 computes the optimal

RNA–RNA interaction sites between the lncRNA and the accessible regions of

targets/transcriptome. GraphProt predicts protein binding sites for all specifi-

cied RBPs on all targets and the lncRNA. Information derived from these pre-

dictions, as well as correlation data, is used to generate candidate

mechanisms. Finally, the candidate with the lowest joint P-value is selected

for each lncRNA-target pair, and a output list of mechanisms is produced.

(*)Since at the time of publication only 22 RBP CLIP-Seq datasets were avail-

able for non-splicing related, post-transcriptional regulation proteins

lncRNA pipeline 3103

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/18/3101/4959546 by guest on 15 O
ctober 2021



type of interaction actually occurs in nature as such interactions

exhibit slow kinetics.

2.2 RNA–RNA interaction predictions
The next stage is the prediction of RNA–RNA interactions using

IntaRNA2 (Mann et al., 2017) with the modifications outlined

above. Details on the IntaRNA2 algorithm can be found in the

Supplementary Section 1. IntaRNA2 is executed with the parame-

ters –tAccL 150 –tAccW 200 –qAccL 150 –qAccW 200 -n 5 –

tRegionLenMax 1500. The AccL and AccW options used by

RNAplfold within IntaRNA2 are recommended by Lange et al.

(2012). The n option specifies the number of predictions (opti-

malþ suboptimals). The tRegionLenMax option specifies the maxi-

mum length of an accessible sequence. This value was selected based

on the available computational resources and the average RNA

length in the reference transcriptomes. This reduces the usage of the

heuristic to minimize the effect on the sensitivity of the algorithm.

MechRNA can run IntaRNA2 on a standard machine or distrib-

ute the computation across multiple jobs on a computing cluster.

Interactions are predicted between the lncRNA and one of the two

reference transcriptomes (Ensembl GRCh37.75 and GRCh38.86).

The transcriptomes include all mRNA and ncRNA transcripts,

excluding sequences <40 nt. This threshold was selected in order to

include primary miRNA transcripts while removing dubious, unclas-

sified transcripts. A subset of these transcriptomes is used if the user

specifies a list of targets. Once all predictions are completed, the top

most energetic interactions (default 3%) are selected for further

analysis. P-values are computed for each of these interactions using

a distribution estimated from the free energies of all interactions

(details in Supplementary Section 2.1).

2.3 RNA–protein interaction predictions
For determining RBP binding sites on transcripts, we rely on pub-

licly available CLIP-Seq data. However, since CLIP-Seq depends on

transcript expression, binding sites on transcripts specific to certain

cell types or conditions cannot be recovered. As we want to study

interactions across a reference transcriptome including lncRNAs

specifically expressed in certain cancers, we would consequently

miss many sites by relying only on direct binding evidence from

CLIP-Seq. Therefore, to comprehensively capture protein binding

information into our interaction models, we used GraphProt to cre-

ate transcriptome-wide binding site predictions for 22 RBPs which

are known to participate in post-transcriptonal gene regulation and

influence transcript stability. As an example, using this approach,

we successfully predicted the interaction between hnRNP-L and the

lncRNA DSCAM-AS1, for which there were no reads present in the

hnRNP-L CLIP-Seq data (Niknafs et al., 2016). Based on the bind-

ing sites inferred from CLIP-Seq data for a given RBP, GraphProt

learns its binding preferences and integrates these into a predictive

model, incorporating either sequence (referred to as sequence

model) or sequence and structure information combined (referred to

as structure model). A detailed description of the algorithm can be

found by Maticzka et al. (2014).

For the 22 RBPs, we trained 20 sequence and 8 structure models

based on various CLIP-Seq data sources (Table 1). Models for each

RBP were selected based on their performance in 10-fold-cross vali-

dation, preferring models with higher area under the receiver operat-

ing characteristic and mean average precision values. The trained

models were then used to predict nucleotide-wise binding score pro-

files (GraphProt setting: -action predict_profile) on two different

reference transcriptomes (described in the previous section).

Nucleotide-wise profile scores were further averaged with a sliding

window approach, taking all scores up to 5 nt up- and downstream

of the score position to calculate the new average score. Peaks were

extracted from the average score profiles, where a peak is defined as

the maximum score in a contiguous region of positive scores. In

order to estimate score significances and to make scores comparable

between models, P-values for each peak score were calculated

(details in Supplementary Section 2.2).

2.4 Correlation data from TCGA protstate tumor

samples
If screening mode is selected, correlation data are also incorporated

for all RNA–RNA and RNA–protein pairs predicted in the previous

stages. To obtain correlation data, we used the GeneNet R package

(Schafer and Strimmer, 2005). This approach first computes partial

correlations for every pair of genes. The partial correlation is the

correlation when the effects of all other variables (genes) are

negated. These partial correlations are then used to create a graph

where each edge is assigned a P-value. We used default parameters

and a FDR cutoff of 0.2 to obtain the final correlation network. We

deliberately allow a false discovery rate of 20% since the main infor-

mation will be provided by the RNA–RNA and RNA–protein

interactions.

The gene expression data used for correlation computation were

derived from TCGA (Weinstein et al., 2013) patient samples.

Specifically, this includes 551 RNA-Seq samples, 499 tumor and 52

normal. Only the tumor samples were used in the analysis. The raw

read counts were normalized using DeSeq2 (Love et al., 2014). All

genes with an average read count <1 were removed, resulting in

32 709 genes (coding/non-coding).

2.5 Combining evidence
At this stage, we incorporate the RNA–RNA and RNA–protein pre-

dictions in order to infer a potential mechanism for the lncRNA. For

each target transcript, all combinations of RNA–RNA and RNA–

protein interactions are classified into candidate mechanisms as

shown in Figure 3. The number of combinations is reduced by con-

sidering the a priori information provided by the user and known

functions of the RBPs [for example, HuR is primarily known to
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Fig. 2. Example execution of the splitting algorithm with a max sequence

length of 1000 nt, where the red interval is the one being processed. (i) The

first iteration starts with the entire sequence which is longer than the thresh-

old. (ii) The first split occurs at the position with max ED at �1700 nt. (iii) The

interval is still too long, so a second split is made at the next position of max

ED at �250 nt. (iv) The interval is now below the threshold so the iteration

continues to the next interval. (v) This interval is over the threshold and is

split at �800 nt. (vi) and (vii) The next two intervals are below the threshold.

(final) The end result is four intervals, all below the length threshold and

more accessible than their split positions
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stabilize its bound RNA (Srikantan and Gorospe, 2012)]. In screen-

ing mode, the correlations are also used at this stage to determine

whether a candidate mechanism is valid. For example, let a target

RNA has a peak for RBP A and B, a lncRNA has a peak for C and

the RNA–RNA interaction between the two overlaps at the A peak.

A is positively correlated with the target, B, C, and the lncRNA are

negatively correlated with the target. Then the following tuples

would be generated, where ð½target peak�; ½lncRNA peak�; ½mechanis

m type�Þ and a dash indicates absence of binding:

• ð�;�;direct downregulationÞ
• ðA;�; competitive downregulationÞ
• ð�;C; localization downregulationÞ
• ðB;�; destabilizationÞ

• ðA;C; competitive downregulationÞ
• ðB;C; complex downregulationÞ

An explanation of each mechanism type with known examples is

shown in Table 2. Decoy and direct RBP mechanisms are not

included in the predictions since they do not include RNA–RNA

interactions, making target prediction too non-specific (fully

dependant on correlations). Double-stranded RNA binding mecha-

nisms are not predicted either since the CLIP-Seq protocol does not

capture such interactions.

The free energies of the RNA–RNA interactions and the peak

scores of the RNA–protein interactions both have associated P-val-

ues. As mentioned before, each lncRNA-target and protein-target

pair of correlations also has a P-value. These P-values can be used to

quantitatively assess whether one mechanism is more likely than

another. This requires the combining of up to six P-values (depend-

ing on the number of interactions involved) into a single P-value for

each candidate. The intuitive way to accomplish this is to multiply

the P-values together, however this is not correct since the product

of P-values is not uniform under the null model. To solve this prob-

lem, we use the Stouffer’s Z-score method (Stouffer, 1949), which

involves computing the sum of the inverse of a normal distribution

of each P-value, followed by normalization. This approach also

allows for weighting P-values, but we set all weights to be equal.

The final output of the pipeline is the list of potential mechanisms

sorted and filtered by the joint P-values.

3 Results and discussion

We selected eight lncRNAs to analyze using MechRNA, as summar-

ized in Table 3. 7SL (Abdelmohsen et al., 2014), PCAT1 (Prensner

et al., 2011) and ARlnc1 (Accepted in principle, Zhang et al. Nature

Genetics 2018) recently investigated lncRNAs with known roles in

prostate cancer and mechanistic hypotheses are used to test the

hypothesis-driven mode. The remaining five lncRNA are used to test

the screening mode. PCA3 (Bussemakers et al., 1999) and PCAT29

(Malik et al., 2014) are well-studied prostate cancer related

Table 1. List of RBPs used in the analysis including the source CLIP-Seq data and model type

Gene ID Gene symbol Protein Model type Protocol Reference

ENSG00000092199 HNRNPC hnRNP C Sequence eCLIP (Van Nostrand et al., 2016)

ENSG00000165119 HNRNPK hnRNP K Sequence eCLIP (Van Nostrand et al., 2016)

ENSG00000066044 ELAVL1 HuR Sequence PAR-CLIP (Mukherjee et al., 2011)

ENSG00000102081 FMR1 FMR-1 Structure eCLIP (Van Nostrand et al., 2016)

ENSG00000121774 KHDRBS1 Sam68 Structure eCLIP (Van Nostrand et al., 2016)

ENSG00000172660 TAF15 TAF15 Sequence PAR-CLIP (Hoell et al., 2011)

ENSG00000092847 AGO1 argonaute Structure PAR-CLIP (Hafner et al., 2010)

ENSG00000123908 AGO2 argonaute-2 Structure PAR-CLIP (Hafner et al., 2010)

ENSG00000126070 AGO3 argonaute-3 Structure PAR-CLIP (Hafner et al., 2010)

ENSG00000134698 AGO4 argonaute-4 Structure PAR-CLIP (Hafner et al., 2010)

ENSG00000182944 EWSR1 EWS Structure eCLIP (Van Nostrand et al., 2016)

ENSG00000089280 FUS FUS Sequence PAR-CLIP (Hoell et al., 2011)

ENSG00000159217 IGF2BP1 IGF2BP1 Structure PAR-CLIP (Hafner et al., 2010)

ENSG00000073792 IGF2BP2 IGF2BP2 Structure PAR-CLIP (Hafner et al., 2010)

ENSG00000136231 IGF2BP3 IGF2BP3 Structure PAR-CLIP (Hafner et al., 2010)

ENSG00000155363 MOV10 MOV-10 Sequence PAR-CLIP (Sievers et al., 2012)

ENSG00000055917 PUM2 Pumilio-2 Sequence eCLIP (Van Nostrand et al., 2016)

ENSG00000112531 QKI Hqk Structure eCLIP (Van Nostrand et al., 2016)

ENSG00000120948 TARDBP TDP-43 Sequence eCLIP (Van Nostrand et al., 2016)

ENSG00000116001 TIA1 TIA-1 Sequence eCLIP (Van Nostrand et al., 2016)

ENSG00000090905 TNRC6A TNRC6A Structure eCLIP (Van Nostrand et al., 2016)

ENSG00000197157 SND1 SND1 Structure eCLIP (Van Nostrand et al., 2016)
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Fig. 3. Illustration of the possible mechanisms that can be inferred from RNA–

RNA and RNA–protein interactions
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lncRNAs without a known mechanism. SSTR5-AS1 is one of the

highest expressed lncRNAs in neuroendocrine prostate cancer

(NEPC) and LINC00514 is one of the highest persistently expressed

lncRNAs identified in the neuroendocrine transdifferentiation proc-

ess, which is shown to cause NEPC (Ramnarine et al., 2018). Finally

we selected TINCR (Kretz et al., 2013) as a well-known regulator of

cell differentiation mediated by interaction with target mRNAs.

3.1 Hypothesis-driven mode results on prostate cancer

lncRNAs
We first tested our hypothesis-driven mode with three prostate can-

cer lncRNAs. The first lncRNA is 7SL, which we use as a validation

case since it has a good deal of evidence supporting the proposed

mechanism. The next two lncRNAs, PCAT1 and ARlnc1, are less

understood and so we aim to build a more complete picture of their

potential mechanisms.

3.1.1 7SL downregulation of TP53 through competitive binding

with HuR (ELAVL1)

Abdelmohsen et al. (2014) provided the first experimental evidence

supporting a competitive lncRNA mechanism. 7SL is a housekeep-

ing ncRNA that is part of the signal recognition particle ribonucleo-

protein complex, but also leads to increased cell proliferation when

over-expressed in cancer cells. It was demonstrated that 7SL binds

to the transcript of the tumor suppressor TP53 near HuR binding

sites, preventing HuR from binding and subsequently reducing the

stability of TP53. The experimentally validated RNA–RNA interac-

tion was between nucleotide positions 10–56, 256–298 of 7SL and

positions 2167–2300 of TP53 (ENST00000269305). Using PAR-

CLIP data, they determined that HuR binds at positions 2125–

2160, 2452–2472 and 2531–2556.

For this case, we ran MechRNA with 16 protein-coding TP53

transcripts as targets, all downregulatory mechanisms and all RBP

models. For all 16 transcripts, ‘competitive downregulation’ with

HuR was predicted to be the most likely mechanism (P < 10�15�

for the combined P-value as described in Section 2.5). The pre-

dicted binding locations of 7SL and HuR for each transcript are

shown in Supplementary Table S2. The IntaRNA2 interaction pre-

diction was in agreement with the crude BLAST search done in the

experimental study. The 10–56 (actually 10–96 is more energeti-

cally favorable) interaction was also predicted but not included in

the final results since it is not close enough to the HuR binding site

to have an effect. In terms of RBP binding, GraphProt only pre-

dicts the 2125–2160 as significant when compared to all HuR

binding across the transcriptome. This demonstrates the superior-

ity of using GraphProt over raw PAR-CLIP data. We also show

here that this mechanism appears to be ubiquitous across splice

variants of TP53.

Another RBP, EWS, was included in this prediction. GraphProt

detected a binding site for EWS on 7SL at 140–161, in between the

two RNA–RNA interaction sites. EWS is best known for its role in

Ewing sarcoma through its translocation with other genes.

However, wild-type EWS also acts as a translation repressor by

causing mRNA to be retained in the nucleus (Huang et al., 2014). It

may be that EWS is aiding in the displacement of HuR and further-

ing the downregulation of TP53.

3.1.2 PCAT1 downregulation of BRCA2 through competitive

binding with HuR (ELAVL1)

PCAT1 was identified by Prensner et al. (2011) as the most differen-

tially expressed lncRNA in prostate cancer. Shortly afterward it was

discovered that this lncRNA regulates the important tumor suppres-

sor BRCA2 (Prensner et al., 2014). Specifically, it was shown that

PCAT1 reduces BRCA2 mRNA stability and that the first 250 nt of

PCAT1 were essential for this process. Furthermore, they demon-

strated that this regulation was occurring via the BRCA2 30 UTR.

Since mRNA stability was decreased, our hypothesis is that a similar

Table 2. Descriptions of known lncRNA mechanisms

Mechanism Description Example

Direct RBP RBP interaction directly impacts the target or lncRNA hnRNPL binding to DSCAM-AS1 (Niknafs et al., 2016)

Direct RNA RNA–RNA interaction directly impacts the target with

no RBP involvement

TINCR stabilization of various mRNAs (Kretz et al., 2013)

(De-)stabilization RNA-RNA interaction increases/decreases the affinity

of RBP binding nearby

iNOS stabilization by AS via HuR (Matsui et al., 2007)

Localization RBP bound to the lncRNA is brought into the vicinity

of the target through RNA-RNA interaction

MALAT1 localization of splicing factors (Bernard et al.,

2010)

Decoy RBP is sequestered from the target by the lncRNA Gas5-AS binding transcription factors (Kino et al., 2010)

Competitive RBP and lncRNA compete for the same binding loca-

tion on the target

7SL disrupts HuR stabilization of TP53 (Abdelmohsen

et al., 2014)

dsRNA binding A dsRNA binding protein interacts with stems created

from lncRNA interaction

STAU1-mediated decay (Kim et al., 2007)

Complex The lncRNA facilitates the formation of a complex

between multiple proteins

HOTAIR and the polycomb complex (Zhang et al., 2014)

Note: Mechanisms in italics are not included in the predictions.

Table 3. Selected LncRNAs for MechRNA analysis

LncRNA Length Target Protein

binding

Mechanism Cancer type

7SL 299 TP53 HuR Competitive Prostate

PCAT1 1992 BRCA2 HuR Competitive? Prostate

ARlnc1 2786 AR Unknown Unknown Prostate

PCA3 3922 Unknown Unknown Unknown Prostate

PCAT29 694 Unknown Unknown Unknown Prostate

LINC00514 3385 CLDN9 Unknown Unknown NEPC

SSTR5-AS1 2864 SSTR5 Unknown Unknown NEPC

TINCR 3733 STAU1 Many Stabilization Various

Note: The lncRNAs vary in terms of what is known about their mecha-

nisms, allowing MechRNA to be tested with various amounts of a priori data.

PCAT1 has a question mark indicating that competitive binding is the hypoth-

esis not been validated yet.
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mechanism to 7SL exists for PCAT1 and BRCA2, so we used the

same parameters of all downregulatory mechanisms and all RBP

models. For this analysis, we used the BRCA2 30UTR from the

RefSeq transcript as it was used by Prensner et al. (2011).

Figure 4 summarizes the interaction predictions by showing the

frequency of interaction for each position of PCAT1 and the signifi-

cant RBP binding peaks. Our findings appear to support that the

first 250 nt play an important role due to high frequency of interac-

tion with targets an no significant binding with RBPs. The predicted

mechanism was ‘competitive downregulation’ (combined P-value

P < 10�4Þ involving HuR on the 30UTR. The RNA–RNA interac-

tion is between 11204–11237 on BRCA2 and 65–90 on PCAT1

(�12.493 kcal/mol), with a HuR peak at 11216–11236 on BRCA2.

There are also two other HuR binding sites predicted by GraphProt

downstream and upstream of the interaction site with similar bind-

ing affinity.

To validate this mechanism experimentally, we first confirmed

that HuR indeed binds to BRCA2 30UTR. As shown in Figure 5A,

immunoprecipitation of HuR in LNCaP cells pulled down more

BRCA2 mRNA than the IgG control. Next, we conducted a compet-

itive binding assay in RWPE cells. This assay immunoprecipitated

HuR using an anti-HuR antibody and the bound RNA (BRCA2)

was detected by qPCR. In the presence of unmodified PCAT1, the

amount of bound BRCA2 RNA was reduced. When using a modi-

fied PCAT1 construct with the first 250 nt deleted, there was no

affect on the amount of bound BRCA2. This suggests that an inter-

action involving the 50 end of PCAT1 is competitively reducing the

amount of HuR bound to BRCA2 (Fig. 5B).

3.1.3 ARlnc1 upregulatory feedback loop with androgen receptor

ARlnc1 has recently been identified as an upregulator of androgen

receptor (AR) in prostate cancer (Zhang et al. 2018). In turn, AR

upregulates ARlnc1, leading to a positive feedback loop contribu-

ting to cancer progression. The mechanism was identified with the

aid of the first stage of MechRNA, which predicted an RNA–RNA

interaction between ARlnc1 and the 30UTR of AR. However, how

exactly ARlnc1 upregulates AR remains unclear. Similarly to 7SL,

we ran MechRNA with all RBPs on all AR protein coding tran-

scripts but with all upregulation mechanisms.

The most common and important AR transcript, ENST00000374690,

as well as two other splice variants (ENST00000612452 and

ENST00000396044) had predicted mechanisms involving the experimen-

tally validated interaction at 815–851 on ARlnc1 (�35.8kcal/mol). In all

three cases, a ‘stabilization’ mechanism was predicted (respectively,

P < 10�6, P < 10�5, P < 10�4 for the combined P-values) involving

the protein Sam68, which has a strong binding site upstream of the

ARlnc1 interaction on the AR 30UTR. In agreement, Sam68 30UTR inter-

action has been shown to enhance target translation (Paronetto et al.,

2009). Sam68 is known to increase AR-V7 (ENST00000504326) expres-

sion (Stockley et al., 2015), but the authors observed that upregulation of

AR-V7 (and full-length) was still present when using a mutated exonic

splicing enhancer site. They suggested a synergistic stabilization mechanism

via the 30UTR. Although the 30UTR of AR-V7 and full-length AR is not

shared, a similar binding pattern is observed for Sam68 and ARLnc1 in

the AR-V7 30UTR. Our findings appear to support the additional stabiliza-

tion mechanism they observed and that all major AR isoforms are regu-

lated in the same manner.

3.2 Screening mode results on prostate cancer lncRNAs
We ran MechRNA on all eight lncRNAs (three from the hypothesis-

driven analysis and five additional cancer-related lncRNA as

described in Table 3) using the entire transcriptome for potential tar-

gets for a broad, unbiased screen. This yielded several hundred to

several thousand potential targets for each lncRNA. The number of

predictions increased with the length of the lncRNA, since longer

lncRNAs are more likely to have RNA–RNA and RNA–protein

interactions and consequently more viable combinations of interac-

tions, indicating potential mechanisms. Since our focus here is on

cancer, we extracted predicted mechanisms involving known cancer
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in LNCaP cells and the bound BRCA2 RNA was detected by qPCR. The result

confirms binding of BRCA2 mRNA to HuR protein in cells. (B) RWPE cells sta-

bly expressing lac-Z, PCAT1-FL or PCAT1-delta-1-250 were harvested. HuR

was immunoprecipitated using anti-HuR antibody and bound RNA (BRCA2)

was detected by qPCR. As shown in A, HuR can bind to BRCA2. In presence

of FL-PCAT1 this binding is inhibited. In presence of PCAT1-delta-1-250 there

was no effect on HuR and BRCA2 binding. The result confirms the role of

PCAT1 in mediating BRCA2-HuR binding
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genes from the TSGene (Zhao et al., 2015) and ONGene (Liu et al.,

2017) database. These mechanisms are shown in Table 4.

As shown in the table, these prostate cancer lncRNAs generally

act as positive regulators of oncogenes with the exception of the

PCA3–ABI1 and PCAT1–LEFTY2 interaction. Also the most favor-

able RNA–RNA interactions commonly occur in the 50 and 30 UTRs,

as would be expected for post-transcriptional regulation. It is unclear

whether the coding sequence (CDS) interactions have any functional-

ity. TINCR-DAXX falls within a small simple repeat region, which

may indicate non-specific binding. Another observation is that

PCAT1 and PCA3 share the target gene HOXC13 and even bind to

the same location on the HOXC13 transcript. HOXC13 is commonly

dysregulated in prostate cancer (Komisarof et al., 2017). It may be

that the same phenotype is induced by both lncRNAs.

Our most significant result is an interaction involving AKT1, an

important and well-studied prostate cancer gene (Cariaga-Martinez

et al., 2013). LINC00514 binds very strongly to the 50UTR and has

a strong positive correlation, implying a direct upregulatory effect.

No significant protein binding was detected in the region for the

included proteins. This would suggest the lncRNA alone is able to

regulate AKT1. We observed several other cases like this, labeled as

‘direct’ in the table. It may be the case that some other RBP, which

was not included in our analysis due to missing CLIP data, also

interacts with AKT1 in this region. As the number of RBPs with

available CLIP data is ever increasing, it is likely that a future run of

MechRNA with more RBPs might provide additional evidence.

Another significant result was the predicted competitive downre-

gulation of LEFTY2 by PCAT1. This is the most significant result

for PCAT1 involving a known cancer gene. It has a close similarity

to the PCAT1-BRCA2 mechanism, as it involves the same part of

PCAT1 (61–97) binding to a 30UTR overlapping a protein binding

site (in this case IGF2BP2). LEFTY2 is an important tumor suppres-

sor in endometrial cancer (Alowayed et al., 2016). We do not have

data for PCAT1 expression in endometrial cancer, but there is high

expression in ovarian and breast cancer (Iyer et al., 2015).

The PCA3-ABI1 mechanism is an interesting example demon-

strating the importance of sequence accessibility for interaction pre-

diction. ABI1 is known to negatively regulate cell growth and

transformation and is down-regulated in a variety of cancers (Chen

et al., 2010; Cui et al., 2010; Zhang et al., 2015). The gene has 11

annotated protein-coding isoforms in Ensembl, 9 of which have an

identical 50 UTR sequence. However, three of the splice variants

exclude exon three, leading to a much more energetic binding to

PCA3 (�13 kcal/mol difference). This is because the exclusion

affects the accessibility of the 50UTR by reducing the probability

that this region is bound by intramolecular interactions. If PCA3 is

indeed down-regulating ABI1, as the correlation indicates, there

may be selection for these isoforms in cancer cells to increase the

effect of PCA3. Naive approaches to RNA–RNA interaction predic-

tion computing only the hybridization would not capture the differ-

ence in interaction energy between the different splice variants. This

is because the sequence of the best hybridization site is always the

same, the only feature considered when computing the optimal

interaction. However, the accessibility can differ between different

isoforms, which may affect the location of the true optimal interac-

tion site, as we see in the case of PCA3-ABI1.

4 Conclusion

Recent discoveries of lncRNA mechanisms indicate that there exists

a complex interplay between RBPs, lncRNAs and their target

RNAs. Until now, RNA–RNA and RNA–protein interaction predic-

tions were carried out independently, failing to capture this com-

plexity. Here we present MechRNA, the first tool to integrate both

kinds of interactions in order to more accurately predict lncRNA

mechanisms. We accomplish this by combining the output of

IntaRNA2 and GraphProt into a novel inference tool, which deter-

mines the most likely combination of interactions. These sets of

interactions are then classified into mechanisms using correlation

data from publicly available patient gene expression samples or

Table 4. Select lncRNA mechanisms predictions for known cancer genes, selected based on rank (joint p-value) and agreement with known

roles of the cancer genes and RBPs

lncRNA Target RNA–RNA interaction RBP–target interaction RBP–lncRNA interaction Mechanism

Gene

symbol

Gene

symbol

Iso. FE Context Cor. Cor.

FDR

RBP Cor. Cor.

FDR

RBP Cor. Cor.

FDR

Type P-value

LINC00514 AKT1 3 �65.97 5’UTR þ 1.3�1013 None NA NA None NA NA Direct 2.6�1020

PCAT1 LEFTY2 2 �31.63 30UTR � 0.001 IGF2BP2 þ 1.3�1013 None NA NA Competitive 1.2�1019

PCAT29 BMPR1A 1 �28.32 30UTR þ 0.182 IGF2BP3 þ 2.3�1010 None NA NA Stabilization 6.6�1016

PCA3 ABI1 5 �44.55 50UTR � 0.023 TAF15 þ 0.111 None NA NA De-stabilization 6.8�1015

PCAT1 HOXC13 1 �26.57 50UTR þ 1.3�1013 None NA NA None NA NA Direct 4.8�1014

LINC00514 FLI1 1 �60.4096 5’UTR þ 0.083 EWSR1 � 0.006 None NA NA Competitive 5.5�1014

SSTR5-AS1 TP53 7 �33.18 30UTR þ 0.006 HNRNPC þ 0.081 None NA NA Stabilization 1.6�1013

SSTR5-AS1 RAC1 1 �32.97 30UTR þ 0.159 KHDRBS1 þ 4.1�1005 None NA NA Stabilization 2.2�1013

SSTR5-AS1 HLF 5 �27.25 30UTR þ 2.4�1007 None NA NA None NA NA Direct 5.6�1013

PCA3 HOXC13 1 �48.02 50UTR þ 0.013 None NA NA None NA NA Direct 1.7�1012

ARlnc1 CAMK1D 1 �27.7706 50UTR þ 1.4�1011 None NA NA None NA NA Direct 2.0�1012

TINCR DAXX 7 �106.10 CDS None NA None NA NA IGF2BP2 þ 0.046 Localization 2.7�1012

PCAT1 CCND1 1 �30.86 30UTR þ 0.007 ELAVL1 þ 0.001 none NA NA Stabilization 1.1�1011

ARlnc1 BRD4 2 �31.95 30UTR þ 0.039 ELAVL1 þ 0.052 none NA NA Stabilization 3.0�1011

LINC00514 CHD4 4 �36.99 CDS þ 0.029 TAF15 þ 0.002 none NA NA Stabilization 7.2�1011

PCAT29 ALK 2 �32.85 CDS þ 4.6�1007 None NA NA none NA NA Direct 8.6�1011

TINCR NAB2 3 �66.93 50UTR None NA None NA NA IGF2BP2 þ 0.045 Localization 5.4 �1009

Note: Genes in boldface indicate oncogenes, italics indicate tumor suppressors and normal text are uncategorized. The first section indicates the target and how

many isoforms (Iso) it interacts with. The next three sections describe the interactions involved. For RNA-RNA, the free energy in kcal/mol (FE) and genomic con-

text are included. For RBP-RNA, the protein name is provided. In all three cases the correlation (þ positive, � negative) and the correlation FDR are shown if

applicable. The final section displays the mechanism categorization and the combined P-value.
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user-defined a priori data. We demonstrated the functionality of

MechRNA by analyzing eight prostate cancer lncRNAs with varying

amounts of information available with respect to their mechanisms.

The results confirm one known mechanism, provide new insights

into poorly understood mechanisms and offer new hypotheses for

the remaining lncRNAs without known mechanisms. Despite the

challenges involved in this kind of analysis (discussed in

Supplementary Section 3), our results show that MechRNA is a use-

ful tool for identifying potential roles of lncRNAs in cancer and for

furthering our understanding on lncRNA mechanisms in general.
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Abstract

Background: Cross-linking and immunoprecipitation followed by next-generation sequencing (CLIP-seq) is the
state-of-the-art technique used to experimentally determine transcriptome-wide binding sites of RNA-binding proteins
(RBPs). However, it relies on gene expression, which can be highly variable between conditions and thus cannot provide a
complete picture of the RBP binding landscape. This creates a demand for computational methods to predict missing
binding sites. Although there exist various methods using traditional machine learning and lately also deep learning, we
encountered several problems: many of these are not well documented or maintained, making them difficult to install and
use, or are not even available. In addition, there can be efficiency issues, as well as little flexibility regarding options or
supported features. Results: Here, we present RNAProt, an efficient and feature-rich computational RBP binding site
prediction framework based on recurrent neural networks. We compare RNAProt with 1 traditional machine learning
approach and 2 deep-learning methods, demonstrating its state-of-the-art predictive performance and better run time
efficiency. We further show that its implemented visualizations capture known binding preferences and thus can help to
understand what is learned. Since RNAProt supports various additional features (including user-defined features, which no
other tool offers), we also present their influence on benchmark set performance. Finally, we show the benefits of
incorporating additional features, specifically structure information, when learning the binding sites of an hairpin loop
binding RBP. Conclusions: RNAProt provides a complete framework for RBP binding site predictions, from data set
generation over model training to the evaluation of binding preferences and prediction. It offers state-of-the-art predictive
performance, as well as superior run time efficiency, while at the same time supporting more features and input types than
any other tool available so far. RNAProt is easy to install and use, comes with comprehensive documentation, and is
accompanied by informative statistics and visualizations. All this makes RNAProt a valuable tool to apply in future RBP
binding site research.

Keywords: CLIP-seq; eCLIP; RBP binding site prediction; deep learning; recurrent neural networks; visualization

Introduction

RNA-binding proteins (RBPs) regulate many vital steps in the
RNA life cycle, such as splicing, transport, stability, and trans-
lation [1]. Recent studies suggest there are more than 2,000 hu-

man RBPs, including hundreds of unconventional RBPs, such
as those lacking known RNA-binding domains [2–4]. Numerous
RBPs have been implicated in diseases like cancer, neurodegen-
eration, and genetic disorders [5–7], lending urgency characteriz-
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2 RNAProt: an efficient and feature-rich RNA binding protein binding site predictor

ing their functions and shedding light on their complex cellular
interplay.

An important step to understanding RBP functions is to
identify the precise RBP binding locations on regulated RNAs.
In this regard, CLIP-seq (cross-linking and immunoprecipi-
tation followed by next-generation sequencing) [8], together
with its popular modifications photoactivatable-ribonucleoside-
enhanced cross-linking and immunoprecipitation (PAR-CLIP) [9],
individual-nucleotide resolution UV cross-linking and immuno-
precipitation (iCLIP) [10], and enhanced CLIP (eCLIP) [11], has be-
come the state-of-the-art technique used to experimentally de-
termine transcriptome-wide binding sites of RBPs. A CLIP-seq
experiment for a specific RBP results in a library of reads bound
and protected by the RBP, making it possible to deduce its bind-
ing sites by mapping the reads back to the respective reference
genome or transcriptome. In practice, a computational analysis
of CLIP-seq data has to be adapted for each CLIP-seq protocol
[12]. Within the analysis, arguably the most critical part is the
process of peak calling: that is, inferring RBP binding sites from
the mapped read profiles. Among the many existing peak callers,
some popular tools are Piranha [13], CLIPper [14], and PureCLIP
[15].

While peak calling is essential to separate authentic binding
sites from unspecific interactions and thus reduce the false pos-
itive rate, it cannot solve the problem of expression dependency.
In order to detect RBP binding sites by CLIP-seq, the target RNA
has to be expressed at a certain level in the experiment. Since
gene expression naturally varies between conditions, CLIP-seq
data cannot be used directly to make condition-independent
binding assumptions on a transcriptome-wide scale. Doing so
would only increase the false negative rate: for example, mark-
ing all regions not covered by CLIP-seq reads as non-binding,
while in fact one cannot tell due to the lack of expression in-
formation. Moreover, expression variation is especially high for
long non-coding RNAs, an abundant class of non-coding RNAs
gaining more and more attention due to their diverse cellular
roles [16]. It is therefore of great importance to infer RBP binding
characteristics from CLIP-seq data in order to predict missing
binding sites. To give an example, Ferrarese et al. [17] investi-
gated the role of the splicing factor Polypyrimidine tract-binding
protein 1 (PTBP1) in differential splicing of the tumor suppressor
gene Annexin A1 (ANXA7) in glioblastoma. Despite strong bio-
logical evidence for PTBP1 directly binding ANXA7, no binding
site was found in a publicly available CLIP-seq data set for PTBP1.
Instead, only a computational analysis was capable to detect and
correctly localize the presence of potential binding sites, which
were then experimentally validated.

Over the years, many approaches for RBP binding site predic-
tion have been presented, from simple sequence motif searches
to more sophisticated methods incorporating classical machine
learning and, lately, also deep learning. Some popular earlier
methods include RNAcontext [18] and GraphProt [19], which
can both incorporate RNA sequence and structure information
into their predictive models. While RNAcontext utilizes a se-
quence and structure motif model, GraphProt uses a graph ker-
nel coupled with Support Vector Machine, showing improved
performance over motif-based techniques. From 2015 on, var-
ious deep learning–based methods have been proposed, start-
ing with DeepBind [20], which uses sequence information to
train a convolutional neural network (CNN). Subsequent meth-
ods largely built upon this methodology, often using CNNs in
combination with recurrent neural networks (RNNs) [21]. Some
of them also incorporate additional features, usually special-
izing in a specific feature, such as structure, evolutionary con-

servation, or region type information, to demonstrate its bene-
fits. While these methods can certainly provide state-of-the-art
predictive performance, we encountered several issues: many
lack proper documentation, are not maintained, or are not even
available, even though they are presented as prediction tools in
the original papers. Moreover, efficiency in terms of run time can
be a problem, as well as restricted options regarding data pro-
cessing and, in general, only a few supported features.

Here, we present RNAProt, a computational RBP binding site
prediction framework based on RNNs that takes care of the de-
scribed issues: RNAProt provides both state-of-the-art perfor-
mance and efficient run times. It comes with comprehensive
documentation and is easy to install via Conda. The availabil-
ity of a Conda package, which no other related deep-learning
tool offers to our knowledge, also allows for easy integration into
larger workflows, such as Snakemake pipelines [22] or inside
the Galaxy framework [23]. RNAProt offers various position-wise
features on top of the sequence information, such as secondary
structure, conservation scores, or region annotations, which can
also be user supplied. Through its use of an RNN-based archi-
tecture, RNAProt natively supports input sequences of variable
lengths. In contrast, CNNs are constrained to fixed-sized inputs
that, for example, exclude the direct usage of variable-sized in-
puts, usually defined by peak callers. Moreover, RNAProt is cur-
rently the most flexible method with regard to the support of
input data types: apart from sequences and genomic regions, it
can also handle transcript regions, providing automatic feature
annotations for all 3 types. Comprehensive statistics and visu-
alizations are provided as well in the form of HTML reports, site
profiles, and logos. In addition, the short run times allow for on-
the-fly model training to quickly test hypotheses regarding data
set, parameter, or feature choices.

Methods
The RNAProt framework

RNAProt utilizes RBP binding sites identified by CLIP-seq and
related protocols to train an RNN-based model, which is then
used to predict new binding sites on given input RNA sequences.
Fig. 1 illustrates the RNAProt framework and its general work-
flow. RNAProt accepts RBP binding sites in FASTA or Browser Ex-
tensible Data (BED) formats. The latter also requires a genomic
sequence file (.2bit format) and a genomic annotations file (Gene
Transfer Format (GTF)).Compared to FASTA, genomes in binary
2bit format occupy less disk space, allow for faster sequence ex-
traction, and also store repeat region information, which can be
used as a feature. Binding sites can be supplied either as se-
quences, genomic regions, or aranscript regions (GTF file with
corresponding transcript annotation required). Additional in-
puts are available depending on the binding site input type, as
well as the selected features (see the “Supported features” sec-
tion).

RNAProt can be run in 5 different program modes: genera-
tion of training and prediction sets, model training and evalu-
ation, and model prediction (see the “Program modes” section).
Depending on the executed mode, various output files are gen-
erated. For the data set generation modes, HTML reports can be
output, which contain detailed statistics and visualizations re-
garding the positive, negative, or test data set. This way, for ex-
ample, one can easily compare the positive input set with the
generated negative set and spot possible similarities and differ-
ences. Reports include statistics on: site lengths, sequence com-
plexity, di-nucleotide distributions, k-mer statistics, target re-
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Uhl et al. 3

Figure 1: Overview of the RNAProt framework. The yellow boxes mark necessary framework inputs, the blue boxes mark the 5 program modes of RNAProt, and the

green boxes mark the framework outputs. Arrows show the dependencies between inputs, modes, and outputs.

gion biotype, and overlap statistics, as well as additional statis-
tics and visualizations for each selected feature. In the model
evaluation mode, sequence and additional feature logos are out-
put, as well as training site profiles for a subset of training sites
to illustrate binding preferences. In the model prediction mode,
whole site or moving window predictions are supported. In case
of moving windows, position-wise scoring profiles are calcu-
lated and peak regions and top-scoring windows are extracted
from the profiles. For a complete and up-to-date description,
please refer to the online documentation on GitHub [24].

Model architecture

RNAProt features an RNN-based model for binary classifica-
tion of input sequences, which can be further customized from
the command line or optimized using state-of-the-art hyperpa-
rameter optimization by Bayesian Optimization and Hyperband
(BOHB) [25]. RNN-based models are well suited to learn from lin-
ear sequence information: in particular to learn dependencies
between near or distant parts in a given sequence. This has been
demonstrated in a number of related tasks over the years, from
natural language processing to the analysis of time-series data
and biological sequences like DNA or RNA. The type of RNN net-
work used by RNAProt can be adjusted (Long Short-Term Mem-
ory [LSTM] [26] or Gated Recurrent Unit [27]), as can the numbers
of hidden and full connected layers and dimensions, use of bidi-
rectional RNN, or an embedding layer instead of 1-hot encoding
for the sequence feature. As the optimizer, RNAProt applies an

improved version of the Adam optimizer, termed AdamW [28].
RNAProt’s default hyperparameter setting was used to generate
all the results presented in this work: a batch size of 50, learning
rate of 0.001, weight decay of 0.0005, RNN model type of Gated
Recurrent Unit, number of RNN layers set as 1, RNN layer dimen-
sions set at 32, number of fully connected layers set as 1, dropout
rate of 0.5, and no sequence embedding.

Program modes

RNAProt is logically split into 5 different program modes:
training set generation (rnaprot gt), prediction set generation
(rnaprot gp), model training (rnaprot train), model evaluation
(rnaprot eval), and model prediction (rnaprot predict). Sepa-
rating data set generation from training or prediction has the
advantage that feature values of interest have to be calculated
or extracted only once (e.g., secondary structure, conservation
scores, region annotations). Since model training is fast, one can
then quickly train several models to assess which features or
settings in general work best and move on to predictions. In the
following we briefly introduce the mode functionalities.

Training set generation
This mode (rnaprot gt) is used to generate a training data set
from a given set of RBP binding sites, which can be sequences,
genomic regions, or transcript regions. In case sequences (FASTA
format) are given as input, negative training sequences can be
supplied or generated by k-nucleotide shuffling of the positive
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4 RNAProt: an efficient and feature-rich RNA binding protein binding site predictor

Table 1: RNAProts’s 3 supported input types (sequences, genomic
regions [Genomic], transcript regions [Transcript]) and the features
available for them

Input

Feature Sequences Genomic Transcript

structure YES YES YES
conservation scores NO YES YES
exon-intron regions NO YES NO
transcript regions NO YES YES
repeat regions NO YES YES
user-defined NO YES YES

input sequences. In case genomic or transcript regions (BED for-
mat) are given as input, negatives can be supplied or selected
randomly from gene or transcript regions containing positive
sites (i.e., RBP binding sites identified by CLIP-seq). In general,
we recommend supplying BED regions, as this allows RNAProt
to automatically generate a negative set by randomly sampling
sites from the genome or transcriptome. By default, negative
sites are sampled based on 2 criteria: (i) sampling only from
gene regions covered by positive sites; and (ii) no overlap with
any positive site. The number of generated negative sites can
be further specified, as can regions from which not to extract
them. Output site lengths can be of variable or fixed size, and
various filtering options are available to filter the sites by score,
sequence complexity, region, or length. Concerning site lengths,
RNAProt can train and predict on sequences of variable length
due to its solely RNN-based architecture. For CNN-based meth-
ods this is usually not the case (unless the method internally ap-
plies padding before training and predicting). To keep data sets
compatible with other tools, RNAProt therefore offers both vari-
able and fixed-size outputs. Depending on the input type (see
Table 1), different additional features can be selected for anno-
tating the positive and negative sites (see the “Supported fea-
tures” section for more details). An HTML report can be gen-
erated, providing statistics and visualizations to compare the
positive with the negative set. The whole training data set is
stored in a folder that forms the main input to the model training
mode.

Model training
After generating a training set, a model can be trained on the
data set in model training mode (rnaprot train). By default,
all features of the training set are used to train the model,
but specific features can be selected as well. Cross-validation
is supported to estimate generalization performance, as well
as learning curve plots and hyperparameter optimization us-
ing BOHB [25]. Unless cross-validation is specified, a model is
trained using the default hyperparameters (or if BOHB is en-
abled, using the optimized hyperparameters after BOHB has
finished) and output data are stored in a new folder, which
serves as input to the model evaluation and model prediction
modes.

Model evaluation
This mode (rnaprot eval) is used to visualize binding prefer-
ences of the model trained with rnaprot train. Sequence and
additional feature logos of various lengths can be output, as well
as training site profiles for a user-defined subset of training sites
(see “Visualization” section for more details).

Prediction set generation
The prediction set generation mode (rnaprot gp) resembles
rnaprot gt but, instead of generating a training set contain-
ing positives and negatives, it generates a prediction set from a
given set of sites or sequences. Note that the types of additional
features that can be added to the prediction set are dictated by
the types used to train the model. Its output folder forms the
input of rnaprot predict.

Model prediction
Model prediction mode (rnaprot predict) is used to predict
whole binding sites or peak regions and top-scoring windows
from sliding window profiles for a given set of sequences, ge-
nomic sites, or transcript sites. The prediction data set needs
to be generated by rnaprot gp beforehand, as does the model,
which needs to be trained through rnaprot train. Profiles of
top-scoring windows can also be plotted and the input sites on
which to predict can be specified.

Supported features

RNAProt supports the following position-wise features, which
can be utilized for training and prediction in addition to the se-
quence feature: secondary structure information (structural el-
ement probabilities), conservation scores (phastCons and phy-
loP), exon-intron annotation, transcript region annotation, and
repeat region annotation. In addition, it also accepts user-
defined region features (categorical or numerical; see documen-
tation on GitHub [24] for details and examples), which no other
tool so far offers. Table 1 lists the features available for each bind-
ing site input type.

Secondary structure information
RNAProt can include position-wise structure information, en-
coded as unpaired probabilities for different loop contexts (prob-
abilities for the nucleotide being paired or inside external, hair-
pin, internal, or multi loops). ViennaRNA’s RNAplfold [29] is used
with its sliding window approach, with user-definable parame-
ters (by default these are window size = 70, maximum base pair
span length = 50, and probabilities for regions of length u = 3).
Note that genomic or transcript input sites are automatically ex-
tended on both sides (by window size) to get the most accurate
structure predictions. This important feature is also not offered
by any related tool.

Conservation scores
RNAProt supports 2 scores measuring evolutionary conserva-
tion (phastCons and phyloP). Human conservation scores were
downloaded from the University of California Santa Cruz (UCSC)
Genome Browser website, using the phastCons and phyloP
scores generated from multiple sequence alignments of 99 ver-
tebrate genomes to the human genome (as described in the
GitHub manual [24]). RNAProt accepts scores in .bigWig format.
To assign conservation scores to transcript regions, transcript
regions are first mapped to the genome using the provided GTF
file.

Exon-intron annotation
Exon-intron annotation in the form of 1-hot encoded exon or
intron labels can also be added. Labels are assigned to each
input BED site position by overlapping the site with genomic
exon regions using BEDTools [30]. To unambiguously assign la-
bels, RNAProt by default uses the most prominent isoform for
each gene. The most prominent isoform for each gene gets se-
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lected through hierarchical filtering of the transcript informa-
tion present in the input GTF file (for the benchmark results we
used the Ensembl Genes 99 GRCh38.p13 version): given that the
transcript is part of the GENCODE basic gene set, RNAProt se-
lects transcripts based on their transcript support level (highest
priority) and by transcript length (longer isoform preferred). The
extracted isoform exons are then used for region type assign-
ment. Alternatively, all exons can be used for labeling. Note that
this feature is only available for genomic regions, as it is not in-
formative for transcript regions, which would contain only exon
labels. A user-defined isoform list can also be supplied, substi-
tuting the list of most prominent isoforms for annotation. Re-
gions not overlapping with introns or exons can also be labeled
separately (instead of labeled as intron).

Transcript region annotation
Similarly to the exon-intron annotation, binding regions can be
labeled based on their overlap with transcript regions. Labels are
assigned based on untranslated region (UTR) or coding region
(CDS) overlap (5’UTR, CDS, 3’UTR, None), by taking the isoform
information in the input GTF file. Again, the list of most promi-
nent isoforms is used for annotation or, alternatively, a list of
user-defined isoforms can be used. Additional annotation op-
tions include start and stop codon or transcript and exon border
labeling.

Repeat region annotation
Repeat region annotation can also be added analogously to other
region type annotations. This information is derived directly
from the genomic sequence file (in .2bit format, from the UCSC
website), where repeat regions identified by RepeatMasker and
Tandem Repeats Finder are stored in lowercase letters.

Visualization

To better understand the sequence or additional feature prefer-
ences of a model, RNAProt can plot logos and whole-site profiles.
Both show position-wise features for each position, and the pro-
file plots also include a saliency map track, plus a track that visu-
alizes the effects of single-position mutations (also known as in
silico mutagenesis) on the whole site score. Saliency maps visu-
alize the gradient with respect to the input for each sequence
position, thus showing the importance the trained model at-
tributes to each sequence position and also its influence on the
network output [31]. In contrast, in silico mutagenesis treats the
network as a black box, where the input sequence is mutated at
each position (3 mutations possible at each position, since there
are 3 non-wild-type nucleotides) and the mutated sequences are
scored by the network. For example, given a sequence AC, the
mutated sequences would be CC, GC, UC, AA, AG, and AU. For a
sequence of length n, we thus need to generate 3∗n mutated se-
quences for which to calculate scores. The score difference (mu-
tated sequence score minus wild-type sequence score) is then
plotted for each mutated nucleotide at each position, with the
height of the nucleotide corresponding to the score difference.
This difference can be positive (i.e., the mutation increases the
whole-site score) or negative (i.e., the mutation decreases the
whole-site score). This way, both visualizations help in under-
standing what parts in a given sequence the model regards as
important.

To generate the logo, RNAProt extracts top saliency value po-
sitions from a specified number of top scoring sites, and extends
them to a defined logo length. The extracted subsequences

(weighted by saliency) are then converted into a weight matrix
and plotted with Logomaker [32].

Tool comparison

Benchmark sets
For the tool comparison, we constructed 2 different benchmark
sets. The first consists of 23 different PAR-CLIP, iCLIP, and High-
throughput sequencing of RNA isolated by CLIP (HITS-CLIP) data
sets (20 different RBPs) extracted from the original GraphProt
publication. The second includes 30 eCLIP data sets (30 differ-
ent RBPs) extracted from the Encyclopedia of DNA elements
(ENCODE) website, [33]. For the GraphProt data sets, we de-
fined a maximum number of positive and negative sites (each
5,000), and randomly selected these numbers for larger data
sets. This was done since run times for DeepCLIP and Deep-
RAM can become very long as the number of sites increases
(see the ”Run time comparison” section for more details). For
the eCLIP data sets, we aimed for 6,000 to 10,000 positive sites
per data set during preprocessing and filtering. All sites were
length-normalized to 81 nucleotides (nt) due to the fixed-size
input required by DeepRAM. To generate the negative sets, we
used RNAProt, which can automatically generate a set of ran-
dom negative sites for a given set of positive input sites (i.e., RBP
binding sites identified by CLIP-seq). By default, RNAProt ran-
domly selects negative sites based on 2 criteria: (i) negative sites
are sampled from gene regions containing positive sites; and (ii)
a negative site should not overlap with any positive site. This set-
ting was used to create the benchmark sets. The same number
of random negative and positive instances was used throughout
the benchmarks. More details on data preprocessing and data
set construction can be found in the Supplementary Methods.
For the run time comparison, we recorded single model training
run times. Here, we randomly selected 5,000 positive and 5,000
negatives sites from the eCLIP RBFOX2 set, all with lengths of
81 nt, and trained each method 3 times on this set.

Tool setup and performance measurement
DeepCLIP, GraphProt, and RNAProt were benchmarked using
their default parameters. For DeepRAM, we used their best-
performing network architecture k-mer embedding with single
layer CNN and bidirectional LSTM (ECBLSTM). The area under
the receiver operating curve (AUC) was used in combination with
10-fold cross-validation to estimate and compare model gener-
alization performances for the first 3 tools. Since DeepRAM does
not offer a 10-fold cross-validation setting, we compared it sep-
arately to RNAProt using a hold-out setting (1 split with 90% of
data for training and 10% for testing). For DeepCLIP, we set pa-
tience (early stopping) to 20 epochs and the maximum number
of epochs to 200, which corresponds to the setting used for most
data sets in the original publication. For RNAProt, we set the pa-
tience to 30 and the maximum number of epochs to 200 in cross-
validation, while for the hold-out comparison we increased pa-
tience to 50, since we found that smaller data sets can some-
times benefit from increased patience. For the run time compar-
ison, both DeepCLIP and RNAProt were set to a patience of 20
and a maximum number of epochs of 200. To signify differences
in 10-fold cross-validation performance between the 3 methods,
we calculated P-values using the 2-sided Wilcoxon test in R (ver-
sion 3.6.2) for each data set and method combination. For com-
paring window prediction performances, we used the F-score
(also known as F1 score or harmonic mean of precision and re-
call).
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6 RNAProt: an efficient and feature-rich RNA binding protein binding site predictor

Computing benchmark results
To compute the benchmark results, we used 2 different desk-
top PCs: an AMD Ryzen7-2700X (32 GB RAM, GeForce RTX 2070
8 GB) and a Intel i7-8700k (32 GB RAM, Geforce GTX 1060 GPU
6 GB), both with Ubuntu 18.04 LTS installed. Tool run times were
measured using solely the Intel i7, running single-model train-
ing 3 times and recording run times. In general, we found that
RNAProt runs fine on a PC with 8 GB RAM and no GPU with the
data set sizes found in the benchmark set. However, even an av-
erage consumer-grade GPU like the GTX 1060 drastically reduces
run times (see the “Run time comparison” section results) and
is thus recommended for on-the-fly model training (specifically
an Nvidia card with ≥ 4 GB GPU RAM).

Results and discussion

Below, we demonstrate RNAProt’s state-of-the-art performance
and show its run time efficiency. In particular, we compared
it to 2 recent deep-learning methods (DeepCLIP [34] and Deep-
RAM [35]), as well as GraphProt. We chose the first 2 because
both provide usage instructions and are easy to install. More-
over, both compare favorably with many other methods in the
field in their respective papers. As a reference, we also included
the popular classical machine learning method GraphProt. Fur-
thermore, we illustrate that RNAProt’s built-in visualizations can
uncover known RBP binding preferences, and show that addi-
tional built-in features can boost performance. Finally, we exem-
plify the benefits of including structure information by improv-
ing the binding site prediction quality of the stem loop binding
RBP Roquin.

Cross-validation comparison

We first compared RNAProt in a standard 10-fold cross-
validation setting with GraphProt and DeepCLIP, on 2 different
sets of RBP data sets. The first set consists of 30 eCLIP data sets
from 30 different RBPs, while the second set consists of 23 data
sets from 20 RBPs, generated by various CLIP-seq protocols (see
the “Benchmark sets” section for data set details). GraphProt is
a popular classical machine learning method that uses a graph
kernel with a Support Vector Machine classifier, while DeepCLIP
is a recent deep-learning method featuring a combination of
CNN and bidirectional LSTM. All 3 tools were trained using only
sequence features.

Fig. 2a and b show the 10-fold cross-validation results over
the 2 benchmark sets for GraphProt, DeepCLIP, and RNAProt.
For both sets, RNAProt achieves the highest total average AUC
(87.26% and 89.30%), followed by DeepCLIP (84.03% and 87.00%),
and GraphProt (81.71% and 83.81%). We note that both deep-
learning methods outperform GraphProt on both sets. To signify
performance differences between 2 methods, we calculated the
2-sided Wilcoxon test on the AUC distributions for each method
combination and each of the 53 data sets (see Supplementary
Tables S3 and S4 for AUCs and P-values). Fig. 2c and d contrast
the single data set AUCs of GraphProt with RNAProt (Fig. 2c)
and DeepCLIP with RNAProt (Fig. 2d), coloring significantly bet-
ter method AUCs (GraphProt: red; DeepCLIP: yellow; RNAProt:
blue). We can see that RNAProt outperforms GraphProt in 49
cases and DeepCLIP in 42 cases, while DeepCLIP and GraphProt
both only perform better on 2 data sets. The 2 data sets are the
same for both methods (ALKBH5, C17ORF85), which are from the
original GraphProt publication. We can only speculate here that
RNAProt’s lower performance might be due to some intrinsic in-
compatibilities of the data set and the utilized RNN network.

As for the largely lower performances of DeepCLIP, we assume
that it is possible to tune its hyperparameters (e.g., CNN filter or
regularization settings) to increase its performance. Out of the
box, however, RNAProt clearly outperforms DeepCLIP. Moreover,
DeepCLIP has a clear disadvantage regarding run time (see the
“Run time comparison” section below).

Hold-out validation comparison

We also compared results to DeepRAM, a tool which allows the
testing of various deep neural network architectures to com-
pare their performances on DNA or RNA sequence data derived
from chromatin immunoprecipitation with high-throughput se-
quencing (ChIP-seq) or CLIP-seq. For the comparison, we chose
their best-performing architecture (ECBLSTM), a Word2Vec em-
bedding of the input sequence (k-mer length = 3, stride = 1),
followed by 1 CNN layer and 1 bidirectional LSTM layer. Since
DeepRAM does not support cross-validation, we used a hold-
out setting (i.e., 1 train-test split) for comparison, where mod-
els were trained on 90% of the data and tested on the remaining
10% for each data set. Note that we ran RNAProt with default
hyperparameters, while DeepRAM does not offer default hyper-
parameters and requires hyperparameter optimization for each
training run. We therefore manually reduced the number of ran-
dom search iterations from 40 to 20 inside the DeepRAM code,
to make the comparison more fair and run times more bearable.
By this, the run time for a data set with 10,000 instances (81 nt
long) got reduced to 5–6 hours, while for the same set RNAProt
needs 1–2 minutes.

Fig. 3 shows the hold-out results over the 2 benchmark sets
for DeepRAM and RNAProt. As we can see, average hold-out AUC
performances of the 2 methods are very close for the 2 sets
(DeepRAM: 87.42% and 89.28%; RNAProt: 87.50% and 89.34%).
Again, there are only 2 data sets (ALKBH5, C17ORF85) where
RNAProt performance drops considerably compared to Deep-
RAM, consistent with the cross-validation results above. For the
remaining 51 data sets, there can be differences of 2% to 3% (both
ways) but in general the performance is very similar (for full re-
sults, see Supplementary Tables S5 and S6). We thus can con-
clude that for the given data sets, there is no real advantage of
using a more complex architecture like DeepRAM’s ECBLSTM.

As shown in the DeepRAM paper, more complex architec-
tures like ECBLSTM can benefit from larger data sets (>10,000
positive instances). As our benchmark data sets contain be-
tween 1,338 and 9,206 positive sites (on average 6,389.4),
ECBLSTM might perform better as data set sizes increase. How-
ever, >10,000 sites is often not a realistic estimate of the real
number of RBP binding sites coming from a CLIP-seq experi-
ment. For example, in order to get a high-confidence set of RBP
binding sites from an eCLIP data set, the ENCODE consortium
advises use of a strict filtering routine [36], leaving often only
a few thousand sites, if not less, for subsequent analysis and
model training. In addition, as pointed out in the DeepRAM pa-
per, more complex models tend to be harder to interpret. On
top of that, high test set performance does not guarantee that
the model learned something biologically meaningful. We are
also facing a trade-off between accuracy, interpretability, and
run time. Depending on the application, the user might prefer a
faster or a more accurate method, or they might care more about
the interpretation of the prediction. In this regard, it would be in-
teresting to explore in future studies whether ensemble predic-
tions (including various more interpretable and more complex
models) could help to combine individual model strengths.
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Figure 2: The 10-fold cross-validation results for GraphProt, DeepCLIP, and RNAProt. (a) Results for the first benchmark set contain 23 CLIP-seq data sets from 20
different RBPs and various CLIP-seq protocols (average method AUCs on top). (b) Results for the second benchmark set contain 30 eCLIP data sets from 30 different
RBPs (average method AUCs on top). (c) Comparing single data set AUCs between GraphProt and RNAProt for all 53 data sets, the blue dots indicate a significantly

better AUC for RNAProt (n = 49), the gray dots indicate no significant difference (n = 2), and the red dots indicate a significantly better AUC for GraphProt (n = 2). (d)
Comparing single data set AUCs between DeepCLIP and RNAProt for all 53 data sets, the blue dots indicate a significantly better AUC for RNAProt (n = 42), the gray dots
indicate no significant difference (n = 9), and the yellow dots indicate a significantly better AUC for DeepCLIP (n = 2). A 2-sided Wilcoxon test was used to calculate
P-values (significance threshold = 0.05).

Run time comparison

Model training is known to be the computationally most ex-
pensive part of working with deep neural networks. We there-
fore compared the times it takes to train a single model with
DeepCLIP, RNAProt, and, as a reference, the classical machine
learning method GraphProt. Note that DeepRAM always runs a
hyperparameter optimization for model training, making it un-
suitable for this comparison. Specifically, we took 10,000 train-
ing instances (5,000 positives) of length 81 nt from the RBFOX2
eCLIP data set and trained a sequence model for all 3 methods (3
times each). We used default parameters for all methods, and for
DeepCLIP and RNAProt set the patience and maximum number
of epochs to 20 and 200, respectively (also see the “Computing
benchmark results” section).

Fig. 4 shows the obtained average training times for Deep-
CLIP, RNAProt (CPU and GPU modes), and GraphProt (for full
results, see Supplementary Table S7). We note that Graph-
Prot model training is the fastest, at 40.3 seconds, followed by

RNAProt (GPU) at 72 seconds, RNAProt (CPU) at 8 minutes, and
DeepCLIP at 37.4 minutes. In other words, RNAProt GPU is 31
times faster (RNProt CPU 4.7 times faster) than DeepCLIP. This
clearly shows RNAProt’s ability for on-the-fly model training, as
well as the benefit of using a GPU (even an average consumer-
grade GPU as described here). Since RNAProt supports many dif-
ferent features and settings, fast model training allows the user
to try different settings for a specific task in a short amount of
time. As for the run time difference, it seems that DeepCLIP cur-
rently does not support GPU computing, or at least we could not
find any hints in the code. This would explain the slow run time,
which unfortunately makes it less useful for on-the-fly training
and testing. Still, its run times are much more practical than the
ones we got with DeepRAM: due to its hard-coded hyperparam-
eter optimization, DeepRAM can easily take 12 hours for model
training (with the default number of random search iterations
and benchmark data set sizes), even though it uses GPU com-
puting.
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8 RNAProt: an efficient and feature-rich RNA binding protein binding site predictor

Figure 3: Hold-out validation results for DeepRAM and RNAProt. (a) Results for the first benchmark set contain 23 CLIP-seq data sets from 20 different RBPs and various
CLIP-seq protocols. (b) Results for the second benchmark set contain 30 eCLIP data sets from 30 different RBPs. For both sets, we also report the average method AUC

on top.

Figure 4: Model training time comparison. Training times are in minutes (averaged over 3 runs) for training a single model with 10,000 instances (81 nt) for GraphProt,
RNAProt, and DeepCLIP. ∗RNAProt using CPU only for calculations (no GPU).

Visualizations capture known binding preferences

As deep-learning models are complex by design and thus hard
to interpret, the development of visualizations that help to ex-
plain what is learned by a model is an important and active area
of research. For RNAProt, we chose to visualize position-wise im-
portances using 2 approaches: saliency maps and in silico muta-
genesis (see the “Visualization” section for details).

To compare RNAProt sequence logos and profiles with known
RBP binding preferences from the literature, we trained se-
quence models on 6 different RBP data sets with known bind-
ing preferences. Fig. 5 shows the obtained sequence logo and
known preferences (based on RBP motifs listed in the ATtRACT
database [37]), as well as the top scoring training site profile for
each RBP. As we can see, the logos clearly capture the literature
preferences, both for RBPs without a single dominant motif (hn-
RNPK, KHDRBS1, PTBP1, SRSF1) and for RBPs with strong individ-
ual motifs (QKI, RBFOX2). This shows that saliency can be used
to extract meaningful logos, which provide a rough idea about
global model preferences. In addition, the saliency and mutation
tracks give clues to local position-wise preferences. As shown,
both match literature knowledge, but can also give interesting
new insights. For example, important positions for the first 3
RBPs are more scattered in the observed profiles, while for QKI

and RBFOX2 the model pays much more attention to the precise
binding motif locations, with other positions having little effect
on the model prediction. Both tracks are thus helpful to under-
standing local model decisions, but they are only informative for
individual sites. To better understand global model preferences,
we hope to integrate new visualizations in the near future, since
this is also a very active area of research, albeit less mature than
work on local preferences [38].

Additional features boost performance

Since RNAProt supports various additional features on top of
the sequence information, we also checked how including these
features in training influences model performance. When gen-
erating training sets with RNAProt, the user can specify which
features to compute and then, for training, can select which
feature information the model should be trained on (see the
“Supported features” section for details). For the comparison, we
used RNA secondary structure, phastCons conservation scores,
phyloP conservation scores, exon-intron annotation, and a com-
bination of exon-intron and conservation scores.

Fig. 6 shows the 10-fold cross-validation results for the 2
benchmark sets, for each described feature. We observe that
the conservation and exon-intron features can, depending on
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Figure 5: Comparison of RNAProt sequence logos and profiles with known RBP binding preferences. Literature knowledge was obtained from the ATtRACT database
[37]. All models were trained using only the sequence feature. Logos were generated by extracting the top site saliency positions for each of the top 200 scoring training
sites, and extending them by 3 on each side to generate logos of length 7. Logo character heights correspond to their respective saliency values at each of the 7

positions. On the right site, profiles for the top scoring training sites are shown, offering several tracks: the site nucleotide sequence, the position-wise saliency, and
single mutation effects. The single mutations track shows how much every possible single nucleotide mutation at each position changes the total site score (positive
or negative).

the data set, strongly boost model performance on the bench-
mark sets. As for the structure feature, individual data set
performances are usually very similar between structure and
sequence-only models (see Supplementary Tables S1 and S2
for full results), although for the eCLIP set the overall perfor-
mance with structure is slightly higher (89.41% vs 89.30% for the
sequence-only model). We assume that this can be further tuned
on the data set level by changing the structure calculation set-
tings of RNAProt (different modes available, plus RNAplfold set-
tings for window length, maximum base pair span, and mean
probability region length). As for region type and conservation
features, these performances of course highly depend on the
selected negative regions. For example, using exon-intron an-
notations with negative regions located only inside introns and
positive regions with a high amount of exonic sites will naturally
lead to higher performance. But this does not make the model
more useful. Thus, what the focus of the prediction should be is
important. If the prediction should be on transcripts only, then
exon-intron distinction becomes meaningless. However, some
intrinsic bias of an RBP regarding regions can also be natural and

of interest, such as when predicting on gene sequences contain-
ing introns and exons. In this regard, RNAProt offers several op-
tions to control negatives selection: users can either supply their
own negative regions or the sampling of negative regions can be
further specified by excluding certain genomic or transcript re-
gions (see documentation for details).

Regarding the tested features, note that we did not include
transcript or repeat region annotations in the comparison. As
for the first feature, our tests showed performances similar to
exon-intron inclusion, but we think that this feature needs an
accurate (i.e., condition-specific) CDS and UTR region annotation
to make sense. In line with this, it has been shown that context
choice (i.e., selecting the authentic transcript or genomic con-
text surrounding binding sites) affects the performances of RBP
binding site prediction tools [39]. As RNAProt supports both ge-
nomic and transcript region annotations, it can easily be com-
bined with isoform detection tools in future workflows. Regard-
ing repeat region annotations, it did not make sense to test this
feature since the eCLIP pipeline that produced the benchmark
set binding sites only considers uniquely mapped reads. How-
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10 RNAProt: an efficient and feature-rich RNA binding protein binding site predictor

Figure 6: The 10-fold cross-validation results for RNAProt models trained with additional features. (a) Results for the first benchmark set contain 23 CLIP-seq data sets
from 20 different RBPs and various CLIP-seq protocols. (b) Results for the second benchmark set contain 30 eCLIP data sets from 30 different RBPs. The “sequence” is

included for reference, using only sequence information for training. For both sets, we report the average AUC with included additional feature(s) on top.

ever, a recent pipeline update [36] now also allows mapping to
certain repeat elements and has already led to the discovery of
many new RBP binding sites overlapping with these elements.
Repeat region annotation could thus become an informative fea-
ture once these data sets are available.

Structure information can increase specificity

Given that additional features can increase predictive perfor-
mance, we next checked whether they also can help in a more
practical scenario. For this, we downloaded a data set consist-
ing of predicted structurally conserved binding sites of the RBP
Roquin (also termed constitutive decay elements [CDEs]) [40].
The CDEs were predicted using a biologically verified consensus
structure consisting of a 6–8 bp long stem capped with a YRN
(Y: C or U; R: A or G; N: any base) tri-nucleotide loop, including
all human 3’UTRs as potential target regions. After preprocess-
ing and training set generation (same number of random nega-
tives; 81 nt site length), we trained a structure and a sequence
model on the resulting 2,271 CDEs. For the structure prediction,
we used an RNAplfold window length of 70 nt, a maximum base
pair span of 50 nt, and a mean probability region length of 3 (see
Supplementary Methods for more details).

Comparing the 10-fold cross-validation results of the 2 mod-
els, the sequence model achieves an average AUC of 79.22%,
while the structure model performs almost 20% better (99.02%).
We also note a high standard deviation for the individual se-
quence model AUC (7.66%), which is not the case for the struc-
ture model (0.43%). This means that the sequence model has

problems with consistently classifying the test sites correctly,
while the added structure information almost completely re-
solves this issue. We can thus conclude that the addition of
structure information allows us to predict the given set of po-
tential CDEs with high accuracy. As a reference, we also trained
2 GraphProt models (1 with sequence and 1 with structure infor-
mation), which resulted in average AUCs of 70.81% and 78.49%,
respectively.

To complete the use case, the authors also experimentally
verified 2 CDEs in the 3’UTR of the UCP3 gene (transcript ID
ENST00000314032.9; length 2,277 nt). We therefore trained an-
other structure model, excluding the 2 sites from the training
set, and ran RNAProt using its window (profile) prediction mode
on the transcript. Fig. 7a shows the transcript, along with ver-
ified and predicted CDEs. We note that our model predicts 4
CDEs in total (all in the 3’UTR), with 2 of them perfectly over-
lapping the verified CDEs. Fig. 7b shows the profile of the sec-
ond site (compare to the red hairpin in Fig. 1C of Braun et al.
[40]), with saliencies and the single mutations track highlighting
the hairpin loop portion and parts of the surrounding stem. The
stem loop can also be recognized in the structural elements track
on the bottom. The single mutations track (measuring effects
of single nucleotide changes on the whole-site score) indicates
that the loop nucleotides are a particularly important sequence
feature. In contrast, the structure feature contributes more to
the area surrounding the loop, by providing the stem informa-
tion. This again matches what is known about Roquin binding,
with few sequence preferences in the hairpin aside from the de-
scribed loop preferences. As a reference, we also trained a se-

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/10/8/giab054/6354214 by guest on 15 O

ctober 2021



Uhl et al. 11

Figure 7: Roquin structure model predictions on the UCP3 gene transcript ENST00000314032.9. (a) The ENST00000314032.9 transcript (length 2,277 nt; 5’ and 3’ un-
translated regions (UTRs) in light gray, coding sequence (CDS) in dark gray) is displayed together with verified and predicted Roquin binding sites (CDEs). (b) RNAProt
site profile for the second verified CDE is shown with sequence, saliency map, single mutations, and structural elements tracks.

quence model (validation set AUC 94.73%) and predicted CDEs
on the transcript. This resulted in 18 predictions, with only 1
overlapping the first verified site, despite the very good valida-
tion AUC. This clearly demonstrates how additional features like
structure information can help to make predictions more spe-
cific (F-score, sequence model = 0.10; F-score, structure model
= 0.67).

Conclusion

In this article we presented RNAProt, an RBP binding site pre-
diction framework based on RNNs. Devised as an end-to-end
method, RNAProt includes all necessary functionalities, from
data set generation over model training to the evaluation of
binding preferences and binding site prediction. We compared
it to other popular tools in the field, showing its state-of-the-
art performance and improved run time efficiency. The short
training times allow for on-the-fly model training, which is
great for quickly testing hypotheses regarding data set, param-
eter, or feature selections. Moreover, RNAProt is currently the
most flexible method when it comes to supported position-wise
features for learning, as well as input data types. RNAProt is
easy to install and use, assisted by comprehensive documen-
tation. Furthermore, it provides comprehensive statistics and
visualizations, informing the user about data set characteris-
tics and learned model properties. All this makes RNAProt a
valuable tool to apply and include in RBP binding site analysis
workflows.

Availability of source code and requirements� Project name: RNAProt� Project page: https://github.com/BackofenLab/RNAProt� Operating system(s): Linux� Programming language: Python� Other requirements: Anaconda� Installation: conda install -c bioconda rnaprot� License: MIT� biotools ID: biotools:rnaprot� RRID: SCR 021218

Data Availability

All benchmark and training data sets used to create the reported
results can be downloaded from Zenodo [41]. Supplementary
Methods and Tables can be found on the GigaScience website and
on GitHub [24]. A code snapshot as well as Supplementary Data
are also available via GigaDB [42].

Additional Files

Supplementary Table S1: 10-fold cross validation results for
GraphProt, DeepCLIP, RNAProt, and RNAProt with additional fea-
tures. Results for the first benchmark set, containing 23 CLIP-seq
datasets from 20 different RBPs and various CLIP-seq protocols.
Supplementary Table S2: 10-fold cross validation results for
GraphProt, DeepCLIP, RNAProt, and RNAProt with additional fea-

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/10/8/giab054/6354214 by guest on 15 O

ctober 2021



12 RNAProt: an efficient and feature-rich RNA binding protein binding site predictor

tures. Results for the second benchmark set, containing 30 eCLIP
datasets from 30 different RBPs.
Supplementary Table S3: 10-fold cross validation single fold
AUC results for GraphProt, DeepCLIP, and RNAProt. Benchmark
Set 1: Set from Table S1 (23 datasets). Benchmark Set 2: Set from
Table S2 (30 datasets).
Supplementary Table S4: Two-sided Wilcoxon Test on Table S3
single fold AUCs, to determine significantly different AUCs be-
tween methods and single datasets. Calculated p-values for two
method comparions are shown: RNAProt vs. GraphProt, and
RNAProt vs. DeepCLIP.
Supplementary Table S5: Hold out validation results for Deep-
RAM and RNAProt. Results for the first benchmark set, contain-
ing 23 CLIP-seq datasets from 20 different RBPs and various CLIP-
seq protocols.
Supplementary Table S6: Hold out validation results for Deep-
RAM and RNAProt. Results for the second benchmark set, con-
taining 30 eCLIP datasets from 30 different RBPs.
Supplementary Table S7: Single model training runtime com-
parison for GraphProt, DeepCLIP, and RNAProt. Runtime is given
in minutes (min), together with the mean runtime over three
runs for each method.
Supplementary methods
Dataset construction
Cross validation comparison
Hold-out comparison
Roquin CDE dataset preparation and prediction
Runtime comparison

List of abbreviations

AUC: area under the receiver operating curve; eCLIP: enhanced
CLIP; CDE: constitutive decay element; CDS: coding region;
CLIP-seq: cross-linking and immunoprecipitation followed by
next-generation sequencing; CNN: convolutional neural net-
work; iCLIP: individual-nucleotide resolution UV cross-linking
and immunoprecipitation; LSTM: Long Short-Term Memory;
PAR-CLIP: photoactivatable-ribonucleoside-enhanced crosslink-
ing and immunoprecipitation; RBP: RNA-binding protein; RNN:
Recurrent neural network; UTR: untranslated region.
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Improving CLIP-seq data analysis by
incorporating transcript information
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Abstract

Background: Current peak callers for identifying RNA-binding protein (RBP) binding sites from CLIP-seq data take
into account genomic read profiles, but they ignore the underlying transcript information, that is information
regarding splicing events. So far, there are no studies available that closer observe this issue.

Results: Here we show that current peak callers are susceptible to false peak calling near exon borders. We quantify
its extent in publicly available datasets, which turns out to be substantial. By providing a tool called CLIPcontext for
automatic transcript and genomic context sequence extraction, we further demonstrate that context choice affects
the performances of RBP binding site prediction tools. Moreover, we show that known motifs of exon-binding RBPs
are often enriched in transcript context sites, which should enable the recovery of more authentic binding sites.
Finally, we discuss possible strategies on how to integrate transcript information into future workflows.

Conclusions: Our results demonstrate the importance of incorporating transcript information in CLIP-seq data
analysis. Taking advantage of the underlying transcript information should therefore become an integral part of future
peak calling and downstream analysis tools.

Keywords: CLIP-seq, eCLIP, Peak calling, RBP binding site prediction

Background
Over the last decade, CLIP-seq (cross-linking and immu-
noprecipitation followed by next generation sequencing)
[1] has become the state-of-the-art procedure to experi-
mentally determine the precise transcriptome-wide bind-
ing locations of RNA-binding proteins (RBPs). Many vari-
ants have been introduced, out of which PAR-CLIP [2],
iCLIP [3], and eCLIP [4] are currently the most widely
used. Regardless of the variant, CLIP-seq is usually applied
in vivo to a specific RBP, producing a library of reads
bound by the RBP. Identification of binding sites is sub-
sequently achieved by mapping the reads back to the
corresponding reference genome and running a so called
peak caller tool on the read profiles. A number of popular

*Correspondence: backofen@informatik.uni-freiburg.de
1Bioinformatics Group, Department of Computer Science, University of
Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany
2Signalling Research Centres BIOSS and CIBSS, University of Freiburg,
Schaenzlestr. 18, 79104 Freiburg, Germany

peak callers have emerged over the years, such as Piranha
[5], CLIPper [6], PEAKachu [7], and PureCLIP [8].
While there exist various protocol-specific as well as

more generic peak callers [9], none of the current tools
takes into account the transcript information underlying
the mapped reads. Instead, they extract binding regions
directly from the genomic read profiles. This can be
acceptable if the studied RBP binds intronic sequences or
in general unspliced RNAs. However, if the RBP is actually
predominantly binding to spliced RNAs, which should be
true for most cytoplasmically active RBPs, ignoring tran-
script information potentially leads to false peak calling
and the inclusion of non-authentic sequence context. This
in turn can compromise the results of downstream analy-
sis tools likemotif finders or binding site predictors, which
usually take the genomic sequence context for extending
the binding sites as well.
Here we show that current peak callers indeed have

problems with correctly defining binding sites for RBPs
binding predominantly to exonic regions. We further
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4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
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Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative
Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies
to the data made available in this article, unless otherwise stated in a credit line to the data.
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look at publicly available eCLIP datasets with binding
sites identified by CLIPper and present comprehensive
statistics regarding exonic binding frequencies. Focus-
ing specifically on sites near exon borders, we report
the extent of sites mostly affected by context sequence
selection and false peak calling. To compare different
sequence contexts, we implemented a tool called CLIP-
context. CLIPcontext automatically extracts the transcript
and genomic context for a given set of transcript or
genomic sites, and also offers other useful functions
such as identifying sites at exon borders or motif search.
We then trained three different binding site prediction
tools on sites near exon borders, and demonstrate that
sequence context choice can have a large impact on pre-
dictive performance. Moreover, we show for a selection
of predominantly exon-binding RBPs that known motifs
are enriched in transcript context sequences, enabling the
identification of more authentic binding sites. In the end,
we discuss possible ways on how to integrate transcript
information in order to improve CLIP-seq data analysis
workflows.

Results and discussion
Ignoring transcript information compromises peak calling
To illustrate the issues current peak callers have with pre-
dominantly exon-binding RBPs, we chose one out of many
eCLIP RBP cell type combinations (YBX3 K562) with
large amounts of exonic binding regions (see Table S1 for
eCLIP overlap statistics). In this paper, we call or count
peak regions as overlapping or exon binding if they have

an overlap of ≥90% with exonic regions. 84.6% of YBX3
K562 merged peak sites overlap with exonic regions, out
of which 51.0% are ≤50 nt away from exon borders.
Figure 1 shows the YBX3 K562 genomic reads profile
visualized via IGV (Integrative Genomics Viewer) [10]
over two genomic regions, with added peak regions from
CLIPper, CLIPper IDR, PEAKachu, and PureCLIP (see
Methods section “Peak caller setup”). Figure 1a depicts
a genomic region of 11 kb, containing the PRDX6 gene.
We can see that the read alignments clearly follow the
exon annotations: most reads map to exons, including
many intron-spanning ones (blue-gray lines), while only
few reads map to introns. Not surprisingly, all three peak
callers only report exonic peaks, often close or directly at
exon borders. Given the alignment information, extend-
ing these peak regions with genomic context, as usually
done prior to further analysis, is not correct. Instead, the
transcript context of the spliced RNA should be used,
which is where the actual RBP binding occurs. Zooming
in on the matter, Fig. 1b shows a genomic region of 563
bp, comprising exon 6 and 7 of the DDOST gene. Again
the mapped reads strongly suggest a spliced RNA con-
text, given the many intron-spanning reads and almost no
intron coverage. Keeping the intron therefore leads to an
artificial split-up of peak regions spanning the exon bor-
der. Unaware of the split, peak callers might consequently
call two peaks, whereas they should have treated the split
peaks as one contiguous region.
In the Fig. 1b example, both CLIPper and PureCLIP

call peaks at adjacent exon borders, while PEAKachu

Fig. 1 IGV snapshot of two genomic regions with mapped YBX3 K562 eCLIP data. 1: read profile (coverage), 2: read alignments, 3: crosslink positions
profile, 4: input control profile, 5: gene annotations (thick blue regions are exons, thin blue regions introns), CLIPper / CLIPper IDR: CLIPper replicate 1
and IDR peaks, PEAKachu: PEAKachu peaks, PureCLIP: PureCLIP peaks (nearby crosslink positions merged). For clarity only gene strand reads from
replicate 1 are displayed. a PRDX6 whole gene region (length 11 kb, maximum read coverage 1141). b DDOST gene exons 6 and 7 region (length
563 bp, maximum read coverage 167)
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even calls a single peak over the entire intron. In general,
PEAKachu and CLIPper define peak regions by fitting
functions (Gaussian density versus splines) on themapped
reads. More precisely, CLIPper fits splines on the genomic
read coverage profile counting each base of a read once,
while PEAKachu replaces each readwith aGaussian, using
the genomic mean of read start and end as the center of
the Gaussian. Both methods thus have problems with split
reads, leading to PEAKachu calling peaks over introns
in the presence of intron-spanning reads, and CLIPper
calling peaks at exon ends with shared read coverage.
Using more robust peaks (like CLIPper IDR) is the recom-
mended way to obtain high-confidence binding sites, but
it does not solve the underlying issue (see also Fig. 3). In
contrast, PureCLIP uses read starts to identify crosslink
sites, which later can be merged into peak regions. This
circumvents the described problems, as each read is con-
sidered only once at one genomic position. For example,
Fig. 1b shows a peak called by CLIPper and CLIPper
IDR at the start of exon 6 (downstream exon). But since
there are no read starts (i.e., crosslink sites) present, Pure-
CLIP does not call a peak here. On the other hand, it
still can be fooled since intron-spanning reads are treated
no different to contiguously aligned reads. For the YBX3
dataset and with default settings, PEAKachu tends to call
broader peaks than CLIPper, while PureCLIP peaks are
much shorter (see Table S2 for peak statistics).

Exon binding is substantial in public CLIP-seq data
To quantify the extent of exon and near exon border
binding in eCLIP data, CLIPper peak regions from 223
eCLIP datasets were overlapped with exon regions fea-
turing strong experimental evidence (seeMethods section
“Data preparation and exon overlap statistics”). As shown
in Fig. 2a, 61 datasets (27.4%) feature ≥50% exonic sites,
with 14 datasets (6.3%) even reaching ≥75% (see Table S1
for full statistics on each dataset). Table S1 also lists the
ratios of sites near exon borders and pair sites, i.e., two
sites located at adjacent exon borders. Looking closer at
the 61 datasets, 63.3% of exonic sites lie within ≤50 nt to
exon borders, and 20.7% form pairs (<10 nt distance of
site ends to exon borders required for both sites of the
pair). We thus have a substantial amount of sites suscepti-
ble to split peak calling and false sequence context choice.
Since the selection procedure for splice isoforms (i.e.,
their exon regions) was quite strict, the actual percentages
should be even higher. As the data features experiments
from K562 and HepG2 cell lines, we also looked at the
correlation of percentages for RBPs with experiments in
both lines. Figure 2b shows the correlation plot of exon
site ratios, resulting in an R2 score of 0.76. This suggests
a general agreement in the amount of exon binding across
cell lines. On the other hand, it also shows that classify-
ing RBPs into spliced or unspliced binding oversimplifies

actual binding patterns. Instead, the correct site context
needs to be determined directly from the mapped data.
One might wonder whether potentially problematic pair
sites could easily be filtered out based on their assigned
scores (i.e., log2 fold changes) prior to data analysis. As
shown in Fig. 2c, this is not the case, with an average score
of 2.47 for pair sites and 2.17 for all exonic sites.

Sequence context influences binding site prediction
performances
Based on the considerable amount of sites near exon bor-
ders, we further investigated whether different sequence
contexts could also influence the performances of bind-
ing site prediction tools. For this we constructed different
context datasets for 6 RBPs, by focusing on RBPs with high
amounts of exonic sites (≥80%) and choosing 5 RBPs ran-
domly within this range (see “Methods” sections). Briefly,
we kept only sites ≤10 nt from exon borders and extended
the centered sites 80 nt up- and downstream with both
genomic and transcript context (total length 161 nt, see
Table S3 for dataset details). Note that this also includes
sites at transcript ends, where full extension is only pos-
sible in the genomic context case. To assess any effects,
three different prediction tools (DeepBind [11], Graph-
Prot [12], and GraphProt2 [13]) were run on both context
sets, using 10-fold cross validation and no additional fea-
tures (i.e., only sequence information). Figure 2d shows
the performance results as average accuracies over the 6
datasets, for both genomic and transcript context sets (see
Table S4 for detailed results). As we can see, using the
more authentic transcript context considerably improves
accuracies for all three tools, showcasing that context
sequence choice can have a large influence on predic-
tive performance and thus on what is learned. One could
argue that including large amounts of context sequence
bears the risk of learning binding site-unspecific patterns.
We acknowledge that this can influence predictions. Some
bias from the negative set is also possible, although we
tried tominimize this by random sampling from the whole
gene sequence and no overlap with positive sites. On the
other hand, intronic context near exon borders also har-
bors various recognizable regions, like the polypyrimidine
tract, or splice donor and acceptor sites, which can lead to
wrong conclusions for spliced RNA binding RBPs. More-
over, learning the transcript context for RBPs binding to
spliced RNA can also be advantageous, especially when
predicting on gene sequences that contain introns.
To check whether the trained models learned any RBP

specific binding information or rather generic context fea-
tures, we generated GraphProt sequence logos for each
RBP-context combination (see Figure S1). Sequence logos
are generated from the top 200 scoring sites (taking the
highest scoring 8-mer sequence for each site) of each
positive training set, therefore providing a visualization
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Fig. 2 Exon binding statistics of eCLIP datasets and prediction results for different sequence contexts. a Distribution of exonic site ratios for 223
eCLIP datasets over four percentage ranges. For each range, the percentage (number) of sets with ratios falling into this range is given. b Correlation
plot of exonic site ratios for RBPs present in two cell lines (HepG2 and K562). c Site score distributions for all exonic sites and exonic sites that form
pairs by being located at adjacent exon borders. log2 fold change values of the sites determined by CLIPper were taken as site scores. Only pair sites
with a distance of <10 nt to exon borders were considered. d Average classification accuracies over 6 eCLIP datasets for 3 RBP binding site
prediction methods, comparing genome and transcript context

aid of what sequence information the model regards as
most important. Comparing the generated sequence logos
with known RBP binding preferences obtained from the
ATtRACT database [14], we can see a general agreement
(more or less pronounced depending on the RBP). For
example, the Pumilio Response Element (PRE) of PUM2
(UGUANAUA) clearly shows up for both context sets, as
well as the preference for CA-rich elements for IGF2BP1
and YBX3 or GA-rich elements for SRSF1. FMR1 and
FXR2 are less distinguishable, although both RBPs are
closely related and thus also might have common tar-
gets. This indicates that the models do not primarily pick
up generic context information, but instead are capable
of prioritizing RBP specific binding sites, independent
of the context. Nevertheless, since we included a large
amount of context (sequence lengths 161 nt), the context
is expected to contribute to the increased performances
for the transcript context sets. As discussed, this can be,
depending on the prediction task, beneficial, as it can offer
new insights into what other elements tend to be associ-

ated with core binding elements. In addition, choosing a
more authentic context could also help to improve RNA
secondary structure predictions, which often include hun-
dreds of nucleotides of context.

Knownmotifs are enriched in transcript context
To check whether known binding motifs are more fre-
quent in eCLIP sites with added transcript context com-
pared to the respective sites with genomic context, we
collected 28 motifs from 9 RBPs known to bind predom-
inantly to spliced or exonic RNA (FMR1, FXR1, FXR2,
IGF2BP1-3, PUM2, SRSF1, and YBX3) [15–20]. Since we
could not find reported human motifs for YBX3, we used
the correspondingmouse motif [21], as well as two human
motifs from YBX1 and YBX2. We then took the CLIPper
IDR peak regions (high-confidence reproducible peaks
between replicates) of the respective eCLIP datasets, and
used CLIPcontext to select sites near exon borders and
to look for motifs in both genomic and transcript con-
text sites. As shown in Table S5, there are 23 motifs that
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have >10 hits in both genomic and transcript context
sites (counting hits at same genomic or transcript posi-
tions only once). Out of these 23, 20 are 10 - 57% more
frequent in transcript context sites, while the remaining
three change by 2.8%, -2.3%, and -2.4%. The other five
motifs with less than 10 hits are all enriched by 35% up
to 709% (ratios calculated with counts normalized by total
context set length).
On the one hand, when taking the transcript con-

text, we expect higher frequencies for motifs that are
commonly found in exonic regions. On the other hand,
well-defined motifs like the PUM2 PRE (107 vs. 89 hits,
27.5%) or the extended compound motif for IGF2BP3 (7
vs. 1 hit, 709%) also show increased frequencies, indi-
cating that more authentic binding sites are recovered
by using the transcript context. To illustrate this (Fig. 3),
we chose two example regions that contain IDR peaks
as well as known binding motifs mapped by CLIPcon-
text of IGF2BP3 (the mentioned recently published com-
pound motif GGC-N15−25-CA-N7−20-CA-N15−25-GGC-
N2−8-[CA]4) and PUM2 (the mentioned PRE UGUA-
NAUA). As shown, the motifs are even split in these
examples by the exon border, and the read profile accord-
ingly suggests one split peak, although multiple CLIPper
IDR peaks are reported, either in one of the two exons
(IGF2BP3), or one at each adjacent exon end (PUM2).
Naturally, we would expect the influence of context choice

on recovering complete binding sites to be higher for
multi-domain RBPs like IGF2BP1-3, which prefer to bind
to several disconnected elements with long stretches of
variable length in between. Since most RBPs in fact con-
tain multiple RNA-binding domains and systematic stud-
ies on their combinatorial RNA recognition are still scarce
[20], identifying the correct context in CLIP-seq studies
could further help to uncover their combinatorial binding
modes.

Strategies to improve CLIP-seq data analysis workflows
In this study we used CLIPcontext to extract the tran-
script context of genomic sites from a set of well annotated
splice isoforms, completely ignoring the context informa-
tion given in the eCLIP data. This is of course far from
optimal, and future workflows should implement a more
sophisticated, data-driven way to incorporate transcript
information, in order to identify the most likely con-
text and therefore increase the accuracy of peak calling
and downstream processes. In this regard, one major fac-
tor will be the ability to correctly identify exon regions
and their corresponding isoforms in a given sample, or
at least the correct site neighborhood for accurate con-
text extraction. The presence and quantity of split reads
at exon borders therefore marks an important feature to
decide which context is appropriate. Unfortunately, ref-
erence annotations often lag behind and do not cover

Fig. 3 IGV snapshot of two genomic regions with mapped IGF2BP3 K562 and PUM2 K562 eCLIP data. 1: read profile (coverage), 2: read alignments, 3:
crosslink positions profile, 4: input control profile, 5: gene annotations (thick blue regions are exons, thin blue regions introns), IGF2BP3 / PUM2
motif: RBP motifs mapped with CLIPcontext, CLIPper IDR: CLIPper IDR peaks, PEAKachu: PEAKachu peaks, PureCLIP: PureCLIP peaks (nearby crosslink
positions merged). For clarity only gene strand reads from replicate 1 are displayed. a RACK1 gene exons 7 and 8 region (length 911 bp, maximum
read coverage 150) with split IGF2BP3 motif hit. b RTRAF gene exons 4 and 5 region (length 1.599 bp, maximum read coverage 58) with split PUM2
motif hit
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the present transcript diversity [22], which is why de
novo transcriptome assemblies from RNA-seq data, e.g.
by tools like Ryūtō [23], might be an interesting alterna-
tive to isoform detection or mapping approaches that rely
on reference annotations. Since all these tools were devel-
oped for RNA-seq data, it will also be interesting to see
whether it is possible to adapt them to work directly with
CLIP-seq data, omitting the need to conduct additional
RNA-seq experiments.
In any case, context selection should ideally be done

on site level, as RBPs often have several biological roles
and can bind to both contexts, depending on subcellular
location and the time point in the RNA life cycle. In this
regard, applying CLIP-seq to different subcellular frac-
tions might be a way to further dissect binding events,
as already done for some multi-function SR proteins [24].
In the presence of several likely contexts (i.e., for alter-
native splice isoforms), it is possible to keep all events if
the goal is to learn general binding characteristics. This is
because binding site prediction tools are typically robust
when it comes to noisy data, as long as the principal bind-
ing preferences are still present in sufficient quantities.
However, if the focus lies on specifically studying these
events, it would be most convenient to label and output
them separately.
An alternative approach could be to adapt or fine-tune

peak calling based on specific features of the dataset at
hand. These features could be learned from publically
available CLIP-seq datasets, ideally produced with the
same protocol (including read mapping), and possibly also
the same cell type or condition. For example, dataset
properties could be extracted and used as features, like
exon-intron read distributions for typical exon-, intron-,
or mixed context binding RBPs, either at defined genomic
locations or over the whole genome. Additional labeled
test data (either derived from CLIP-seq data or artificially
constructed) could then be used to evaluate what features
or strategies work best.

Conclusions
In this paper we raised the issue of ignoring transcript
information in the process of peak calling and beyond.
We showed that current peak callers by design are prone
to false peak calling near exon borders, and that peak
regions near exon borders are frequent in publicly avail-
able datasets. We also saw that sequence context choice
has a profound effect on predicting sites near exon bor-
ders. Moreover, motif analysis confirmed that choosing
the transcript context enriches for known RBP binding
motifs, leading to the recovery of more authentic binding
sites. Finally, we discussed ways on how to improve CLIP-
seq analysis workflows in order to identify the correct site
context.
Taken together, incorporating transcript information

leads to more authentic results and thus should become
an integral feature of future peak calling and downstream
analysis methods.

Methods
Data preparation and exon overlap statistics
eCLIP datasets out of two cell lines (HepG2, K562)
were downloaded from the ENCODE project web-
site [25] (https://www.encodeproject.org, November 2018
release). Altogether the data covers 150 RBPs, divided into
103 HepG2 and 120 K562 sets, resulting in 223 datasets.
We directly used the genomic binding regions (genome
assembly GRCh38) determined by CLIPper, available in
BED format for each replicate (2 replicates per dataset).
For each RBP cell type combination, replicate binding sites
were merged by keeping only the sites with the high-
est log2 fold change (LFC) in case of overlapping sites.
After filtering sites by LFC ≥1, sites were overlapped
with exon regions of the most prominent transcripts using
intersectBed (bedtools 2.29.0 [26]) and a required exon
overlap ≥90% for a region to be counted as exon overlap-
ping. We defined the most prominent isoform of a gene
based on the information Ensembl (Ensembl Genes 97,
GRCh38.p12) provides for each transcript through hierar-
chical filtering: APPRIS annotation [27] (highest priority,
labels principal1-5), and transcript support level (TSL,
labels 1-5). We considered only genes with isoforms fea-
turing these labels and transcripts that belong to the
GENCODE basic gene set, resulting in 29,798 isoforms
and 238,271 exon regions. Exon overlap statistics for the
223 datasets are stored in Table S1.

Peak caller setup
To illustrate potential peak caller problems (Fig. 1), we
chose an RBP cell type combination with a high amount
of exonic peak regions (YBX3 K562, 84.6%), out of which
51.0% are close to exon borders (region ends ≤50 nt from
exon borders, see Table S1 for statistics). To illustrate
false peak calling at sites containing knownmotifs (Fig. 3),
we chose the IGF2BP3 (HepG2) and PUM2 (K562)
eCLIP sets. Mapped eCLIP reads in BAM format (repli-
cate 1, size-matched input) and CLIPper peak regions
(BED) for the three sets (ENCODE IDs ENCSR529FKI,
ENCSR993OLA, ENCSR661ICQ) were obtained from the
ENCODE website.
We collected peak regions identified by three peak

callers: CLIPper, PEAKachu, and PureCLIP. For CLIPper,
we took the peak regions called on replicate 1, filtered
by a minimum LFC of 1. In addition, we also display the
CLIPper IDR peaks (high-confidence peaks reproducible
between replicates, Figs. 1 and 3). For PEAKachu and
PureCLIP, we took the mapped reads (replicate 1, size-
matched input), and used the R2 reads (second pair reads)
as experiment and control libraries. PEAKachu was run



Uhl et al. BMC Genomics          (2020) 21:894 Page 7 of 8

on Galaxy [28] (https://usegalaxy.eu, Galaxy tool version
0.1.0.2) with default settings and a fold threshold of 2.
PureCLIP (version 1.3.1) was installed locally and run
with default parameters, setting −dm 8 for merging called
crosslink sites into peak regions.

Construction of sequence context sets
For comparing the effects of different sequence contexts
on predictive performance, we chose 6 eCLIP sets from
RBPs with documented binding preferences (IGF2BP1,
FMR1, FXR2, PUM2, SRSF1, YBX3), which also feature
relatively high percentages of exonic peak regions (from
40.23 to 84.06%, see Table S1). CLIPper replicate 1 peaks
were obtained and filtered (maximum length of 80, min-
imum LFC of 3, maximum p-value of 0.01). We further
selected all exonic sites within ≤10 nt of exon borders
(clipcontext exb), and extracted their transcript and
genomic context (clipcontext g2t), merging nearby
sites (distance ≥10 nt) by selecting the site with the
highest LFC, and extending sites to 161 nt length. To gen-
erate one negative set for both genome and transcript
context sets, we used GraphProt2 (https://github.com/
BackofenLab/GraphProt2) to randomly select genomic
sites based on two criteria: 1) their location on genes
covered by eCLIP peak regions and 2) no overlap with
any eCLIP peak regions from the experiment. Sequence
context set statistics are stored in Table S3.

Tool setup for context predictions
ThreeRBPbinding site prediction tools (DeepBind, Graph-
Prot, and GraphProt2) were trained on the described
context sets (see previous Methods section). DeepBind
models were trained using the DeepRAM [29] framework,
which includes hyperparameter optimization. GraphProt
andGraphProt2models were trained using default param-
eters (no hyperparameter optimization). All three meth-
ods used only sequence features for classification. The
accuracy measure, i.e., the proportion of correctly clas-
sified instances, was used in combination with 10-fold
cross validation to measure model performances over 6
datasets. Accuracies are reported in Table S4, together
with standard deviations from cross validation (except for
GraphProt, since it does not output single accuracies dur-
ing cross validation). GraphProt sequence logos for the
top 100 scoring sites of each dataset-context combina-
tion are shown in Table S5, together with a description of
known binding preferences.

Motif search
For the motif search, CLIPper IDR peaks for 9 RBPs
were downloaded from ENCODE and filtered by a maxi-
mum length of 80. Sites near exon borders were selected
and their transcript and genomic context was extracted
as described in section “Construction of sequence con-

text sets”. CLIPcontext (clipcontext mtf) was then
used to obtain motif frequencies in the transcript and
genomic context sets, as well as to map the PUM2 and
IGF2BP3 motifs to the genome, to generate the split motif
annotations seen in Fig. 3.

CLIPcontext availability and documentation
CLIPcontext is available together with a comprehensive doc-
umentation onGitHub (https://github.com/BackofenLab/
CLIPcontext), as well as on Bioconda (https://anaconda.
org/bioconda/clipcontext). Besides mapping sites of inter-
est in BED format (transcript or genomic coordinates) to a
user-definable transcriptome or the genome, CLIPcontext
also offers modes for the extraction of: sites near exon bor-
ders, a list of most prominent transcripts, intronic sites,
or exon and intron regions for a given set of transcripts.
Moreover, a motif search can be conducted on genomic
and transcript regions (including split motif discovery) for
comparative analysis.
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The online version contains supplementary material available at
https://doi.org/10.1186/s12864-020-07297-0.

Additional file 1: Table S1: Exon overlap statistics of ENCODE eCLIP
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Abstract

Motivation: CLIP-seq is by far the most widely used method to determine transcriptome-wide binding sites of
RNA-binding proteins (RBPs). The binding site locations are identified from CLIP-seq read data by tools termed
peak callers. Many RBPs bind to a spliced RNA (i.e. transcript) context, but all currently available peak callers only
consider and report the genomic context. To accurately model protein binding behavior, a tool is needed for the
individual context assignment to CLIP-seq peak regions.

Results: Here we present Peakhood, the first tool that utilizes CLIP-seq peak regions identified by peak callers, in
tandem with CLIP-seq read information and genomic annotations, to determine which context applies, individually
for each peak region. For sites assigned to transcript context, it further determines the most likely splice variant, and
merges results for any number of datasets to obtain a comprehensive collection of transcript context binding sites.

Availability and implementation: Peakhood is freely available under MIT license at: https://github.com/BackofenLab/
Peakhood.

Contact: uhlm@informatik.uni-freiburg.de or backofen@informatik.uni-freiburg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

CLIP-seq (cross-linking and immunoprecipitation followed by
next generation sequencing) (Licatalosi et al., 2008) is the most
widely used procedure to experimentally determine the exact
transcriptome-wide binding locations of RNA-binding proteins
(RBPs). The most popular protocol variants are PAR-CLIP (Hafner
et al., 2010), iCLIP (König et al., 2010) and eCLIP (Van Nostrand
et al., 2016). CLIP-seq is usually performed in vivo for a specific
RBP, resulting in a library of reads bound by the target RBP.
Binding sites are subsequently identified by mapping the reads back
to the reference genome, and analyzing the read profiles with tools
referred to as peak callers. A number of peak callers have been
popular over the years, such as Piranha (Uren et al., 2012), CLIPper
(Lovci et al., 2013) or PureCLIP (Krakau et al., 2017).

Calling peaks in the genomic context, as done by all currently
available peak callers, is unbiased for RBPs that predominantly bind
to unspliced RNA. However, for RBPs that predominantly bind in a
spliced (i.e. transcript) context, this is clearly suboptimal. Indeed, a
recent study (Uhl et al., 2020) has demonstrated this to be a substan-
tial problem, and that the inclusion of transcript context can im-
prove the identification of authentic binding sites. Peak callers
applied to CLIP-seq data have produced millions of publicly avail-
able binding sites, e.g. from ENCODE (Van Nostrand et al.,
2020b). Consequently, a tool is required that can analyze CLIP-seq

peak regions to extract the individual site context for each peak
region.

Here, we present Peakhood, the first tool capable of extracting
the most likely site context, individually for each CLIP-seq peak re-
gion. The necessary information are extracted directly from the
CLIP-seq read profiles, in combination with a genomic annotations
file (both reference and custom annotations are supported). For sites
assigned to transcript context, Peakhood further determines the
most likely splice variant. In addition, Peakhood can merge
extracted transcript context sets into comprehensive transcript con-
text site collections. Peakhood also supports batch processing, i.e.
context extraction of multiple datasets and merging in one run. As a
supplement, we provide four precomputed transcript context site
collections, using eCLIP datasets of 49 RBPs with known roles in
posttranscriptional gene regulation (see Data availability section).

2 Approach

Here, we briefly describe how Peakhood works. A detailed descrip-
tion can be found in the Online Supplementary (Section 1.2). For
full details, please check out the comprehensive manual on GitHub.
Peakhood first extracts the site context for each input peak region.
Figure 1a shows two peak regions inside a typical transcript con-
text. Peakhood uses the given exon annotations (GTF) and CLIP-seq

VC The Author(s) 2021. Published by Oxford University Press. 1
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read information (BAM), essentially looking for differences in exon
and surrounding intron coverage, as well as coverage drops at exon
borders. If these differences exceed the configured thresholds, the
site is assigned to transcript context, otherwise to genomic context
(Supplementary Fig. S1 example). In addition, sites at exon borders
connected by intron-spanning reads are merged into single sites (as
in Fig. 1a). For sites assigned to transcript context, Peakhood fur-
ther selects the most likely site-transcript combination, using various
read, site and transcript statistics. Moreover, Peakhood can merge
single datasets into comprehensive transcript context site collections
(see Fig. 1b for the extraction and merge workflow). The collections
also include tabular data, e.g. to identify which sites on transcripts
are in close distance, or if site distances decreased compared to the
original genomic context. Percentages of extracted transcript con-
text sites agree with known RBP roles (see Supplementary Section
1.3 and Fig. S2). Peakhood requires a Linux operating system and is
easy to install, e.g. via Conda (Conda package available). The tool
was tested (Intel i7-8700k, Ubuntu 18.04 LTS), with single dataset
site context extraction (example dataset with 2146 input peak
regions, see Supplementary Section 1.6) taking about 2 min and 30 s.

3 Conclusion

Here we presented Peakhood, the first tool capable of extracting the
most likely site context, individually for each CLIP-seq peak region.
Peakhood is easy to install and use, thanks to its comprehensive online
manual, and it works with standardized file formats (BAM, BED,
GTF, 2 bit). We demonstrated Peakhood’s capabilities with eCLIP
data and peak regions obtained from ENCODE (Van Nostrand et al.,
2020b). However, it is not limited to this type of data, and should
work fine with other HTS peak data (iCLIP, PAR-CLIP, OOPS), as
well as other peak caller outputs, e.g. from PureCLIP. The flexibility
is further increased through Peakhood’s various command line param-
eters, to adapt it for individual datasets or new input types. Summing
up, Peakhood allows for an improved modeling of protein binding be-
havior, by providing a more authentic sequence and structure context,
especially for spliced RNA-binding proteins.
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Fig. 1. (a) Genomic region (IGV screenshot) with mapped PUM2 K562 eCLIP data (details in Supplementary Section 1.4). 1: Read profile (coverage range in brackets), 2: read

alignments, 3: gene annotations (thick blue regions are exons, thin blue regions introns), Peaks: peaks called by CLIPper IDR method (high-confidence peaks reproducible be-

tween replicates). Example transcript context region for the predominantly spliced RNA-binding RBP PUM2, where an exon border site is falsely split in two peaks. (b)

Overview of the Peakhood workflow for the two main program modes extract and merge. Yellow boxes mark necessary inputs, blue boxes the two program modes and green

boxes the outputs. Arrows show the dependencies between inputs, modes and outputs
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Appendix - List of abbreviations

Table 1: List of abbreviations used in this thesis and their meanings.

Abbreviation Meaning

3D three-dimensional
A adenine

ANN artifical neural network
AS alternative splicing

AUC area under the curve (performance metric)
BOHB Bayesian optimization and hyperband method

bp base pair(s)
BPS branch point sequence

C cytosine
CDE constitutive decay element
cDNA complementary DNA
CDS coding DNA sequence
CLIP cross-linking and immunoprecipitation

CLIP-seq CLIP followed by high-throughput sequencing
CNN convolutional neural network
DL deep learning

DNA deoxyribonucleic acid
DNN deep neural network

dsRNA double-stranded RNA
ECDF empirical cumulative density function
eCLIP enhanced CLIP

ER endoplasmatic reticulum
eRNA enhancer RNA

G guanine
GRU gated recurrent unit (a type of RNN)

h hours
HITS-CLIP high-throughput sequencing of RNA isolated by CLIP

HPO hyperparameter optimization
HTS high-throughput sequencing

iCLIP individual-nucleotide CLIP
IDR intrinsically disordered region
IP immunoprecipitation

lncRNA long non-coding RNA
LSTM long short-term memory (a type of RNN)
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164 List of abbreviations

min minutes
miRNA microRNA

ML machine learning
MLP multilayer perceptron

mRNA messenger RNA
ncRNA non-coding RNA

NGS next-generation sequencing
NMD nonsense-mediated decay
nm nanometer
NN neural network
nt nucleotide(s)

ORF open reading frame
PAR-CLIP photoactivatable-ribonucleoside-enhanced CLIP

PCR polymerase chain reaction
Pol I RNA Polymerase I
Pol II RNA Polymerase II
Pol III RNA Polymerase III
PPT polypyrimidine tract
PTM post-translational modification
PTM post-translational modification
qPCR real-time quantitative PCR
RBD RNA-binding domain
RBP RNA-binding protein

RIP-seq RNA immunoprecipitation sequencing
RNA ribonucleic acid
RNN recurrent neural network
RNP ribonucleoprotein
rRNA ribosomal RNA

RT reverse transcription
sec seconds

SGD stochastic gradient descent
snRNA small nuclear RNA

SS splice site
tRNA transfer RNA
TSS transcription start site
T thymine

UMI unique molecular identifier
UTR untranslated region

U uracil
UV ultraviolet (radiation)
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1 Methodological Details of IntaRNA2
The next stage is the prediction of RNA-RNA interactions using
IntaRNA2 (Mann et al., 2017) with the modifications outlined above.
IntaRNA is a popular accessibility-based tool known for its highly
competitive performance (Lai and Meyer, 2016). The hybridization
calculation follows that of RNAHybrid (Rehmsmeier et al., 2004) with
a time and space complexity of O(nm). The accessibility is calculated
in O(nL2) using RNAplfold (Bernhart et al., 2006), an algorithm that
computes accessibility in a locally folded region of length L. Both
energy contributions are calculated for every combination of intervals
on both sequences requiring a time and space complexity of O(n2m2).
Using the same restriction on interaction length w as RNAup (Muckstein
et al., 2006), the time and space complexity is O(nmw2). By using
sparsification (Figure 1), this complexity is further reduced to O(nm)

space and O(nm̄) time where m̄ = max(m,L3).

Fig. 1. Heuristic for reducing time complexity of IntaRNA (figure taken from (Busch et al.,
2008)). The top energies are of the hybridization and the two bottom energies are for the
accessibilities. The accessibilities are not additive so the contribution needs to be subtracted
and then added back with the extended region.

2 P-value Computation for Predicted Interactions

2.1 RNA-RNA Interactions

In a previous work, RNA-RNA interaction energies were fitted to
a generalized extreme value (GEV) distribution in order to compute
interaction p-values (Wright et al., 2014). From our recent experience
we found that a gamma distribution fits the data better(data not shown),
so it was used for all experiments. Regardless, we support a CopraRNA-
style GEV approach through a user-specified parameter. We first compute
a background gamma cumulative distribution function (CDF), which has
two parameters: shape (α) and rate (β) (Equation 1- 3). The background
values are obtained by assuming that a top percent (default 3%) are true
interactions and the rest are background. The parameters of the function
are estimated using maximum-likelihood fitting. This is done using the
“fit” function in the python “stats” package from the scipy library (Jones
et al., 01 ). With these estimatedα and β parameters, the p-values for each
energy value (x) can be computed using the survival function (1−cdf(x)).

F (x;α, β) =

∫ x

0
f(u;α, β)du (1)

f(x;α, β) =
βαxα−1e−xβ

Γ(α)
(2)

Γ(α) =

∫ ∞

0
xα−1e−xdx (3)

2.2 RNA-Protien Interactions

P-values for each peak score were calculated based on position-wise
score data from 5000 randomly selected transcripts, using R’s empirical
cumulative distribution function (ECDF). The function returns the p-value
of a given score based on the constructed ECDF and the ecdf() object can be
stored on disk for subsequent recalculations (found together with models
in Supplementary file 1). We chose this non-parametric approach since
the scores did not show a clear unimodal distribution for most models,

© The Author . Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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Table 1. Used GraphProt models with model parameters, training set information and filter p-values. GraphProt model parameters are: epochs, lambda, R, D, bitsize,
abstraction. PMID: data source pubmed ID, method: CLIP-seq protocol, filter_p: p-value used for filtering predicted sites, pos_tr: number of positive training sites,
neg_tr: number of negative training sites

RBP PMID method model_type filter_p epochs lambda R D bitsize abstraction pos_tr neg_tr ROC APR
AGO1-4 20371350 PARCLIP structure 0.02376089 20 0.000001 4 1 14 3 36802 31310 0.85584 0.86766
ELAVL1 21723170 PARCLIP sequence 0.001640548 10 0.001 3 5 14 - 7747 7750 0.92887 0.94365
EWSR1 20371350 PARCLIP sequence 0.005115178 50 0.001 1 2 14 - 16292 14720 0.94345 0.9496
FMR1 27018577 eCLIP structure 0.04819012 40 0.0001 4 5 14 3 2587 2587 0.88109 0.87115
FUS 22081015 PARCLIP sequence 0.003591709 40 0.0001 1 1 14 - 34581 31480 0.96988 0.97034

HNRNPC 27018577 eCLIP sequence 0.0006383588 50 0.001 3 6 14 - 2511 2511 0.95636 0.95178
HNRNPK 27018577 eCLIP sequence 0.0011904 10 0.001 2 1 14 - 2674 2673 0.9823 0.98059

IGF2BP1-3 20371350 PARCLIP structure 0.01519445 50 0.0001 4 0 14 3 8539 6838 0.88223 0.89533
KHDRBS1 27018577 eCLIP structure 0.003200621 40 0.001 3 2 14 3 2552 2552 0.9234 0.92122

MOV10 22844102 PARCLIP sequence 0.02331425 20 0.001 4 2 14 - 13793 12987 0.79824 0.7715
PUM2 27018577 PARCLIP sequence 0.002040983 40 0.001 4 4 14 - 9116 8227 0.94144 0.95158
QKI 27018577 eCLIP structure 0.0006862552 40 0.000001 4 2 14 3 2650 2650 0.94722 0.95187

SND1 27018577 eCLIP structure 0.04999487 50 0.0001 3 4 14 3 2413 2413 0.89622 0.88589
TAF15 22081015 PARCLIP sequence 0.003209317 50 0.001 3 2 14 - 7298 6606 0.96794 0.964

TARDBP 27018577 eCLIP sequence 0.0003341065 30 0.001 4 5 14 - 2752 2752 0.98524 0.98712
TIA1 27018577 eCLIP sequence 0.009658455 30 0.001 2 5 14 - 3073 3073 0.84148 0.86061

TNRC6A 27018577 eCLIP structure 0.04627634 50 0.001 3 0 14 3 2653 2653 0.83569 0.85761

which prevented the use of conventional fitting procedures for unimodal
distributions. For each model, we then calculated the top position-wise
score of each positive training site to construct a second ECDF. To get a
threshold for filtering the peak score p-values, the score at 50 % of the
distribution was taken and inserted into the first ECDF to get its p-value.
This way we obtain an individual p-value threshold for each RBP model,
allowing us to select binding sites with scores comparable to the scores
found in the respective positive training sites. The obtained filter p-values
for each model can be found in Supplementary Table 1.

3 Challenges and Limitations
Predicting combined interactions between lncRNAs, RBPs and target
RNAs on a transcriptome-wide scale is an inherently difficult task, due to
several reasons: firstly, the limited number of known lncRNA mechanism
cases makes it difficult to tune the model. Specifically, the selection
of various parameters in terms of distances between interactions and
various cutoffs becomes nearly ad hoc. Moreover, it is unknown to what
extent the studied cases occur in the cell or whether they are typical
representatives of a certain class of interactions. Secondly, even with
the careful filtering applied in this work, RNA-RNA and RNA-protein
predictions are fairly non-specific. With thousands of predicted targets, it
is likely that many are false positives. Given that only the most significant
interaction combinations are included, it is difficult to determine which
are true predictions since they are all plausible. Despite these difficulties,
the presented work provides a solid starting point for further experimental
investigation.

One way to improve the current approach would be the development
of more realistic interaction models. As for the RBP-target prediction,
information on RBP affinities for a range of target RNAs as well as the
relative importance of target sequence, structure and context should help
to design more accurate models. So far, detailed affinity distributions have
only been reported for the E. coli C6 protein, utilizing the high-throughput
sequencing kinetics (HiTS-KIN) protocol (Lin et al., 2016). Lately, a more
simple affinity approach was combined with estimating the sequential and
structural binding properties of 78 human RBPs, using an RNA Bind-n-Seq
variant with 5 different protein concentrations (Dominguez et al., 2017).
In order to improve prediction specificity, it is also possible to use CLIP
data to cluster RBPs with common binding sites and to learn properties

from these sites, as shown by Li et al. (Li et al., 2017). As for the lncRNA-
target prediction, integrating protein binding information directly into the
RNA-RNA interaction calculation might lead to the prediction of more
realistic hybrids. Moreover, incorporating RNA structure probing data of
the involved RNAs, e.g. determined by selective 2-hydroxyl acylation and
profiling (SHAPE), could improve the hybrid prediction. As the number
of studied lncRNA mechanisms gradually increases, machine learning
approaches could further help to improve model performance by learning
optimal parameter combinations from the data.

Another more immediate extension of this work would be the
incorporation of additional data, such as new RBP predictions or miRNA
interaction information. It is conceivable to assume that lncRNAs might
block or sequester miRNAs, just as they do RBPs. Inclusion of miRNA
target sites would therefore broaden the scope of mechanisms MechRNA
can predict. The modular nature of MechRNA makes such extensions
possible, which might open exciting new avenues for lncRNA research.
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Table 2. Selected LncRNAs for MechRNA analysis. The lncRNAs vary in terms of what is known
about their mechanisms, allowing MechRNA to be tested with various amounts of a priori data.
PCAT1 has a question mark indicating that competitive binding is the hypothesis not been validated
yet.

Protein Binding RNA-RNA Interaction

TP53 Transcript HuR S HuR E TP53 S TP53 E 7SL S 7SL E FE

ENST00000618944 1950 1971 1980 2022 256 298 -51.563
ENST00000504937 1817 1838 1847 1889 256 298 -51.563
ENST00000445888 2071 2092 2101 2143 256 298 -51.563
ENST00000420246 2201 2222 2231 2273 256 298 -51.563
ENST00000269305 2125 2146 2155 2197 256 298 -51.563
ENST00000610292 2185 2206 2215 2257 256 298 -51.563
ENST00000620739 2125 2146 2155 2197 256 298 -51.563
ENST00000455263 2128 2149 2158 2200 256 298 -51.563
ENST00000610623 1877 1898 1907 1949 256 298 -51.563
ENST00000504290 1877 1898 1907 1949 256 298 -51.563
ENST00000610538 2128 2149 2158 2200 256 298 -51.563
ENST00000619485 2071 2092 2101 2143 256 298 -51.563
ENST00000510385 1950 1971 1980 2022 256 298 -51.563
ENST00000622645 2201 2222 2231 2273 256 298 -51.563
ENST00000619186 1817 1838 1847 1889 256 298 -51.563
ENST00000617185 2270 2291 2300 2342 256 298 -51.563
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Supplementary methods

Dataset construction

For the tool comparison we constructed two different benchmark sets: the first one in-
cludes 23 different PAR-CLIP, iCLIP, and HITS-CLIP datasets (20 different RBPs) ex-
tracted from the original GraphProt publication [3]. The second one consists of 30 eCLIP
datasets (30 different RBPs) extracted from ENCODE.

For the first set, CLIP-Seq datasets used for benchmarking GraphProt were obtained
from here. Sets for hyperparameter optimization and training were merged, hg19 genomic
regions (corresponding to uppercase sequence parts, also termed viewpoint regions) were
extracted from the FASTA headers, and lifted over to hg38, using the UCSC’s liftOver
command line tool. Viewpoint regions were filtered by a maximum length of 60 nt and
extended to a new constant length of 81 nt, for CNN method compatibility. For each of the
24 datasets, we randomly selected a maximum of 5,000 positive and negative sites each,
in order to keep model training times for DeepRAM [5] and DeepCLIP [2] reasonable.
Note that we removed the PTB dataset from the benchmark set, as the sampled 10,000
sites showed to be non-informative (resulting AUCs of 50% for all methods). This led
us to the final benchmark set size of 23 datasets.

For the eCLIP set we extracted data out of two cell lines (HepG2, K562) from
ENCODE [4] (November 2018 release). We directly used the genomic binding regions
(genome assembly GRCh38) identified by ENCODE’s in-house peak caller CLIPper,
which are available in BED format for each RBP and each replicate, often for both
cell lines (thus 4 replicate BED files per RBP). Binding sites were further filtered by their
log2 fold change (FC) to obtain ∼ 6,000 to 10,000 binding regions for each replicate. We
next removed sites with length > 0.75 percentile length and selected for each RBP the
replicate set that contained the most regions, centered the sites, and extended them to
make all sites of equal length. We chose a binding site length of 81 nt (40 nt extension up-
and downstream of center position) and selected 30 RBP sets (some based on previous
knowledge about binding preferences for comparison, the remaining ones random). To
generate the eCLIP negative sets, RNAProt randomly selected sites based on two crite-
ria: 1) their location on genes covered by eCLIP peak regions and 2) no overlap with

1



any eCLIP peak regions from the experiment. The same number of random negative and
positive instances was used throughout the benchmarks.

Cross validation comparison

All three methods (GraphProt, DeepCLIP, RNAProt) were run using default parameters.
For DeepCLIP we set patience (early stopping) to 20 and the maximum number of epochs
to 200, since this setting was used the most in the DeepCLIP paper. For RNAProt we
used a patience of 30 and maximum number of epochs to 200, which also is the tool
default. An example call for DeepCLIP thus looked like this:

./DeepCLIP.py --runmode cv -n runtime_test_model

-P runtime_test_model_pred_fct

--predict_PFM_file pfms.json --sequences positives.5000.fa

--background_sequences negatives.5000.fa --num_epochs 200

--early_stopping 20 > runtime_test_model.log.txt

Likewise, an RNAProt call looks the following, with the dataset generated by rnaprot

gt stored in data gt out used as input for training:

rnaprot train --in data_gt_out --out data_cv_train_out

--verbose-train --cv --only-seq

Hold-out comparison

For the hold-out comparison, DeepRAM was executed with its highest performing setting
(ECBLSTM). This was achieved by calling DeepRAM with the following parameters
(replace ”data” with specific dataset ID):

python deepRAM.py --train_data data.train.gz --test_data data.test.gz

--data_type RNA --train True --evaluate_performance True

--model_path data.model.pkl --out_file data.predictions.txt --Conv True

--conv_layers 1 --Embedding True --RNN True --RNN_type BiLSTM --kmer_len 3

--stride 1 --word2vec_train True

--word2vec_model data.word2vec_train.model

We used 90% of a dataset for training, and the remaining 10% for testing. The same
split was used for DeepRAM and RNAProt. For RNAProt, we used its option --test-ids

to provide the same test IDs as used for DeepRAM for model training:

rnaprot train --in data_gt_out --out data_train_out --only-seq

--verbose-train --test-ids hold_out/data.test_ids

--val-size 0.2 --patience 50

Roquin CDE dataset preparation and prediction

To further assess the impact of adding structure information on RNAProt’s predictive
performance, we downloaded a dataset consisting of genomic regions containing potential
human CDEs (constitutive decay elements) identified by [1] (Supplementary Table 6, table
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”all”). A CDE consists of a short single hairpin with a tri-nucleotide loop that is prefer-
ably bound by the RBP Roquin. We then filtered the CDE containing sites by a minimum
folding probability of 0.15, centered and extended them to 81 nt, and ran rnaprot gt with
RNAplfold settings --plfold-l 50, --plfold-w 70, and --plfold-u 3 to focus more
on local hairpin structures. Finally we calculated the average model AUC with 10-fold
cross validation, for both the sequence-only set and the sequence set with added struc-
ture information. We chose the most basic GRU model architecture (non-bidirectional
GRU with one GRU layer, RNAProt default setting), corresponding to the following set
parameters for training (rnaprot train):

--str-mode 1 --patience 30 --epochs 300 --batch-size 50

--lr 0.001 --weight-decay 0.0005 --n-rnn-layers 1 --n-hidden-dim 32

--dr 0.5 --model-type 1 --n-fc-layers 1

Note that we increased the maximum number of epochs from 200 to 300, which can
help with smaller datasets like the described CDE set. We also ran GraphProt on the same
set using the Galaxy version, to train a sequence and a structure model. For GraphProt
we used the Galaxy default parameters.

For the window prediction, we used the UCP3 gene transcript (ENST00000314032.9).
We trained a sequence model and a structure model, after excluding the CDE site on the
UCP3 gene from the training set. For reporting peak regions, we used threshold levels
--thr 2 for the sequence and --thr 1 for the structure model.

Runtime comparison

For the runtime comparison we took 5,000 positive and 5,000 negative training sequences,
all with a length of 81 nt. Each tool was run three times using only the sequence infor-
mation in train mode with default parameters. For GraphProt (sequence model mode),
these are R: 1, D: 4, bitsize: 14, epochs: 10, and lambda: 0.001. For DeepCLIP and
RNAProt, we used the default parameters together with a patience (early stopping) of 20
and a maximum number of 200 training epochs. For DeepCLIP, an example single model
training call looked like this:

./DeepCLIP.py --runmode train -n TEST_MODEL

-P TEST_MODEL_PREDICTION_FUNCTION

--sequences positives.5000.fa --background_sequences negatives.5000.fa

--num_epochs 200 --early_stopping 20
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[P3] Table S1: 10-fold cross validation results for GraphProt, DeepCLIP, RNAProt, and RNAProt with additional features. 
Results for the first benchmark set, containing 23 CLIP-seq datasets from 20 different RBPs and various CLIP-seq 
protocols.

GraphProt DeepCLIP RNAProt RNAProt structure
RNAProt exon-

intron
RNAProt
phastCons RNAProt phyloP RNAProt eia+con

Dataset_ID AUC STDEV AUC STDEV AUC STDEV AUC STDEV AUC STDEV AUC STDEV AUC STDEV AUC STDEV

ALKBH5_Baltz2012 70.10% 2.49% 70.38% 2.73% 62.17% 2.53% 64.31% 3.03% 83.03% 2.54% 80.53% 2.44% 81.83% 2.82% 86.43% 2.29%

C17ORF85_Baltz2012 80.37% 3.03% 80.75% 2.21% 75.48% 3.02% 74.81% 4.36% 89.12% 1.79% 90.04% 0.88% 90.58% 1.07% 91.06% 1.04%

C22ORF28_Baltz2012 74.12% 2.01% 74.54% 1.61% 74.71% 1.32% 73.51% 2.08% 88.12% 1.14% 87.10% 0.91% 88.52% 1.09% 90.99% 0.98%

CAPRIN1_Baltz2012 68.52% 1.36% 68.88% 1.54% 73.77% 2.62% 74.29% 1.66% 90.55% 0.67% 86.18% 0.60% 86.73% 0.80% 91.97% 0.95%

CLIPSEQ_AGO2 72.10% 1.26% 72.21% 1.57% 78.09% 1.60% 78.06% 1.85% 95.69% 0.59% 90.00% 0.97% 90.79% 1.07% 96.44% 0.60%

CLIPSEQ_ELAVL1 91.49% 0.65% 94.46% 1.72% 97.48% 0.45% 97.35% 0.45% 99.52% 0.14% 98.31% 0.36% 98.26% 0.38% 99.56% 0.15%

CLIPSEQ_SFRS1 85.36% 1.00% 86.66% 1.01% 89.23% 0.67% 89.10% 0.80% 92.34% 0.67% 91.90% 0.59% 92.27% 0.43% 92.99% 0.69%

ICLIP_HNRNPC 92.48% 0.48% 93.78% 1.35% 97.32% 0.37% 97.30% 0.44% 97.33% 0.53% 97.28% 0.41% 97.36% 0.39% 97.21% 0.44%

ICLIP_TDP43 84.89% 1.07% 85.60% 1.00% 89.63% 0.67% 89.67% 0.61% 89.65% 0.49% 89.44% 0.81% 89.61% 0.85% 89.21% 1.01%

ICLIP_TIA1 82.45% 1.58% 85.39% 2.26% 91.61% 0.74% 91.43% 0.66% 94.64% 0.45% 93.93% 0.54% 93.93% 0.56% 94.93% 0.45%

ICLIP_TIAL1 80.29% 1.67% 83.13% 2.02% 90.30% 0.90% 90.23% 1.04% 92.57% 1.00% 91.83% 1.16% 92.02% 0.71% 93.02% 0.89%

PARCLIP_AGO1234 70.67% 1.91% 71.08% 1.58% 80.44% 0.97% 80.28% 1.57% 91.92% 0.82% 88.46% 1.19% 87.94% 1.22% 92.62% 0.78%

PARCLIP_ELAVL1A 87.66% 1.03% 96.11% 1.43% 97.30% 0.55% 97.18% 0.46% 99.47% 0.10% 98.07% 0.21% 98.07% 0.30% 99.47% 0.09%

PARCLIP_ELAVL1 91.41% 1.14% 88.26% 2.07% 93.68% 0.72% 93.62% 0.90% 96.45% 0.65% 94.63% 0.93% 94.70% 0.86% 96.50% 0.75%

PARCLIP_EWSR1 82.33% 1.64% 88.64% 1.31% 94.22% 0.66% 94.18% 0.51% 96.72% 0.57% 95.88% 0.68% 95.90% 0.52% 96.75% 0.50%

PARCLIP_FUS 84.19% 0.88% 90.20% 3.10% 96.19% 0.70% 96.04% 0.52% 96.58% 0.55% 96.24% 0.55% 96.32% 0.69% 96.43% 0.63%

PARCLIP_HUR 93.68% 0.73% 95.64% 1.07% 98.90% 0.49% 98.84% 0.43% 99.02% 0.42% 98.93% 0.52% 98.95% 0.52% 99.02% 0.47%

PARCLIP_IGF2BP123 77.85% 0.91% 81.22% 2.48% 87.33% 0.68% 87.12% 0.95% 96.97% 0.69% 92.52% 0.73% 92.63% 0.52% 97.10% 0.63%

PARCLIP_MOV10 74.69% 1.52% 75.06% 1.88% 80.41% 1.60% 80.31% 1.35% 94.36% 0.72% 84.15% 1.29% 85.73% 1.49% 94.78% 0.57%

PARCLIP_PUM2 88.47% 1.27% 91.31% 1.10% 93.89% 0.83% 93.83% 0.68% 97.35% 0.42% 95.44% 0.53% 95.53% 0.61% 97.34% 0.52%

PARCLIP_QKI 92.58% 0.76% 95.65% 0.88% 96.73% 0.62% 96.46% 0.60% 98.30% 0.51% 97.55% 0.49% 97.64% 0.43% 98.27% 0.40%

PARCLIP_TAF15 83.90% 0.82% 94.05% 3.01% 97.70% 0.53% 97.87% 0.45% 98.14% 0.43% 98.04% 0.49% 97.96% 0.47% 98.24% 0.29%

ZC3H7B_Baltz2012 69.73% 1.22% 69.59% 1.13% 70.37% 1.40% 69.80% 1.87% 84.66% 1.12% 81.00% 1.14% 80.67% 1.40% 85.89% 1.11%

Mean 81.71% 84.03% 87.26% 87.20% 94.02% 92.06% 92.34% 94.62%

[P3] Table S1 legend:

AUC Area under the receiver operating characteristic curve

STDEV Standard deviation

RNAProt structure RNAProt with secondary structure feature

RNAProt exon-intron RNAProt with exon-intron annotations feature

RNAProt phastCons RNAProt with phastCons convervation scores feature

RNAProt phyloP RNAProt with phyloP convervation scores feature

RNAProt eia+con RNAProt with exon-intron annotations + conservation scores (phastCons + phyloP) features



[P3] Table S2: 10-fold cross validation results for GraphProt, DeepCLIP, RNAProt, and RNAProt with additional features. 
Results for the second benchmark set, containing 30 eCLIP datasets from 30 different RBPs.

GraphProt DeepCLIP RNAProt RNAProt structure
RNAProt exon-

intron RNAProt phastCons RNAProt phyloP RNAProt eia+con

Dataset_ID AUC STDEV AUC STDEV AUC STDEV AUC STDEV AUC STDEV AUC STDEV AUC STDEV AUC STDEV

AGGF1_HepG2 80.16% 1.19% 81.56% 2.00% 86.06% 1.45% 86.33% 1.23% 92.92% 1.02% 92.23% 0.93% 92.99% 0.71% 93.53% 0.79%

BUD13_K562 78.67% 0.94% 82.95% 3.73% 85.91% 0.98% 86.03% 0.99% 94.75% 0.44% 94.26% 0.69% 94.87% 0.64% 95.76% 0.45%

CSTF2T_HepG2 92.27% 0.42% 92.81% 1.25% 95.59% 0.48% 95.62% 0.45% 95.81% 0.52% 95.72% 0.52% 96.11% 0.50% 96.20% 0.49%

DDX55_HepG2 74.53% 0.59% 76.58% 1.31% 78.68% 0.93% 78.52% 1.18% 92.35% 0.54% 88.71% 0.79% 89.42% 0.73% 92.88% 0.52%

EFTUD2_HepG2 86.96% 0.81% 86.96% 0.99% 89.33% 0.81% 89.48% 0.81% 91.76% 0.77% 91.92% 0.76% 92.33% 0.73% 93.08% 0.61%

EWSR1_K562 85.52% 1.00% 87.20% 2.40% 90.13% 1.14% 90.35% 1.03% 90.49% 1.12% 90.58% 1.07% 91.28% 1.10% 91.40% 1.10%

FASTKD2_HepG2 80.78% 0.84% 84.37% 1.66% 86.75% 0.90% 86.06% 0.62% 95.69% 0.49% 95.34% 0.52% 95.96% 0.41% 96.60% 0.39%

FMR1_K562 82.92% 1.32% 89.14% 1.12% 90.24% 0.86% 90.21% 0.91% 97.05% 0.49% 96.86% 0.44% 97.27% 0.27% 97.59% 0.35%

FUS_HepG2 80.47% 1.03% 85.39% 3.57% 87.59% 0.81% 87.89% 0.74% 87.91% 0.74% 87.99% 0.90% 88.26% 0.69% 88.61% 0.74%

FXR2_K562 85.97% 1.05% 89.92% 1.26% 91.00% 1.02% 91.08% 0.89% 98.13% 0.28% 97.88% 0.32% 98.21% 0.32% 98.89% 0.26%

HNRNPA1_K562 88.15% 0.90% 92.76% 0.51% 93.67% 0.56% 93.78% 0.35% 93.86% 0.52% 93.59% 0.53% 93.71% 0.48% 93.82% 0.44%

HNRNPC_HepG2 93.70% 0.35% 96.89% 0.50% 97.39% 0.38% 97.67% 0.30% 97.35% 0.30% 97.32% 0.32% 97.35% 0.34% 97.28% 0.36%

HNRNPK_HepG2 96.39% 0.30% 97.14% 0.69% 98.38% 0.31% 98.45% 0.41% 98.39% 0.37% 98.38% 0.36% 98.43% 0.31% 98.35% 0.40%

IGF2BP1_HepG2 77.91% 1.98% 84.81% 2.56% 87.58% 0.69% 87.96% 1.12% 97.73% 0.55% 93.75% 0.73% 94.31% 0.73% 97.79% 0.51%

KHDRBS1_K562 87.08% 1.22% 90.39% 1.51% 91.65% 0.95% 91.82% 0.74% 92.21% 0.90% 91.73% 0.87% 91.90% 0.73% 92.14% 0.85%

LIN28B_K562 77.76% 1.69% 79.96% 2.12% 83.51% 1.49% 85.37% 0.94% 94.87% 0.67% 92.52% 0.74% 93.15% 0.55% 95.28% 0.39%

PCBP2_HepG2 95.87% 0.58% 97.16% 0.42% 97.88% 0.40% 97.95% 0.25% 97.96% 0.34% 97.88% 0.33% 98.01% 0.33% 98.03% 0.37%

PTBP1_HepG2 93.16% 0.56% 94.97% 0.56% 95.76% 0.80% 95.85% 0.61% 95.91% 0.71% 95.86% 0.72% 95.93% 0.70% 95.89% 0.73%

PUM2_K562 66.58% 1.15% 69.48% 1.37% 73.15% 1.52% 72.23% 1.15% 80.22% 0.95% 76.92% 0.71% 77.34% 0.76% 80.17% 1.10%

QKI_HepG2 83.18% 2.13% 88.74% 1.65% 91.18% 0.65% 91.16% 0.56% 91.13% 0.74% 91.22% 0.78% 91.07% 0.62% 91.06% 0.75%

RBFOX2_K562 76.86% 1.18% 79.22% 1.95% 84.11% 0.97% 84.39% 1.18% 86.25% 0.89% 85.61% 0.83% 86.51% 0.74% 86.85% 0.81%

SF3B4_K562 77.51% 1.41% 81.82% 2.21% 85.80% 0.94% 85.43% 1.23% 94.13% 0.77% 94.40% 0.32% 95.26% 0.47% 96.02% 0.56%

SFPQ_HepG2 78.03% 1.08% 78.33% 1.54% 82.35% 1.12% 82.77% 0.76% 82.67% 1.00% 82.52% 0.96% 83.90% 1.08% 84.39% 0.96%

SMNDC1_K562 85.34% 0.70% 85.71% 0.75% 88.91% 0.64% 89.22% 0.71% 91.24% 0.67% 90.87% 0.65% 91.68% 0.72% 92.28% 0.62%

SRSF1_HepG2 92.97% 0.83% 95.59% 0.62% 96.38% 0.35% 96.19% 0.28% 98.27% 0.22% 98.05% 0.20% 98.17% 0.19% 98.53% 0.27%

TAF15_HepG2 88.76% 0.47% 89.44% 1.19% 92.14% 0.74% 92.52% 0.60% 92.17% 0.64% 92.33% 0.62% 92.41% 0.58% 92.33% 0.53%

TARDBP_K562 97.40% 0.41% 97.95% 0.55% 98.35% 0.37% 98.36% 0.25% 98.66% 0.29% 98.50% 0.18% 98.53% 0.30% 98.57% 0.29%

TIA1_K562 79.92% 1.13% 89.06% 1.05% 89.41% 0.73% 89.64% 0.63% 92.32% 0.53% 91.10% 0.70% 91.54% 0.62% 92.97% 0.62%

U2AF2_HepG2 80.77% 1.50% 93.71% 0.82% 93.73% 0.42% 93.58% 0.51% 94.69% 0.56% 94.54% 0.65% 94.83% 0.58% 95.17% 0.48%

UPF1_K562 68.73% 1.18% 70.09% 1.73% 76.41% 0.88% 76.37% 1.01% 96.64% 0.38% 81.19% 1.46% 83.20% 1.12% 96.91% 0.30%

Mean 83.81% 87.00% 89.30% 89.41% 93.45% 92.32% 92.80% 93.94%

[P3] Table S2 legend:

AUC Area under the receiver operating characteristic curve

STDEV Standard deviation

RNAProt structure RNAProt with secondary structure feature

RNAProt exon-intron RNAProt with exon-intron annotations feature

RNAProt phastCons RNAProt with phastCons convervation scores feature

RNAProt phyloP RNAProt with phyloP convervation scores feature

RNAProt eia+con RNAProt with exon-intron annotations + conservation scores (phastCons + phyloP) features



[P3] Table S3: 10-fold cross validation (CV) single fold AUC results for GraphProt, DeepCLIP, and RNAProt. Benchmark 
Set 1: Set from Table S1 (23 datasets). Benchmark Set 2: Set from Table S2 (30 datasets).

Benchmark Set Dataset ID Method CV Fold Fold AUC

1 ALKBH5_Baltz2012 DeepCLIP 1 0.695965335169881

1 ALKBH5_Baltz2012 DeepCLIP 2 0.685663452708907

1 ALKBH5_Baltz2012 DeepCLIP 3 0.70830463728191

1 ALKBH5_Baltz2012 DeepCLIP 4 0.726842286501377

1 ALKBH5_Baltz2012 DeepCLIP 5 0.702823691460055

1 ALKBH5_Baltz2012 DeepCLIP 6 0.745781680440771

1 ALKBH5_Baltz2012 DeepCLIP 7 0.69751492194674

1 ALKBH5_Baltz2012 DeepCLIP 8 0.721705693296602

1 ALKBH5_Baltz2012 DeepCLIP 9 0.709653351698806

1 ALKBH5_Baltz2012 DeepCLIP 10 0.643910697887971

1 C17ORF85_Baltz2012 DeepCLIP 1 0.813108254235252

1 C17ORF85_Baltz2012 DeepCLIP 2 0.774720653610477

1 C17ORF85_Baltz2012 DeepCLIP 3 0.781040490207858

1 C17ORF85_Baltz2012 DeepCLIP 4 0.787372341703713

1 C17ORF85_Baltz2012 DeepCLIP 5 0.840105731106572

1 C17ORF85_Baltz2012 DeepCLIP 6 0.807365132764628

1 C17ORF85_Baltz2012 DeepCLIP 7 0.809671993271657

1 C17ORF85_Baltz2012 DeepCLIP 8 0.827802475069086

1 C17ORF85_Baltz2012 DeepCLIP 9 0.801069325964196

1 C17ORF85_Baltz2012 DeepCLIP 10 0.833089030397693

1 C22ORF28_Baltz2012 DeepCLIP 1 0.729921487603306

1 C22ORF28_Baltz2012 DeepCLIP 2 0.774834710743802

1 C22ORF28_Baltz2012 DeepCLIP 3 0.730621900826446

1 C22ORF28_Baltz2012 DeepCLIP 4 0.763669421487603

1 C22ORF28_Baltz2012 DeepCLIP 5 0.727047520661157

1 C22ORF28_Baltz2012 DeepCLIP 6 0.756719008264463

1 C22ORF28_Baltz2012 DeepCLIP 7 0.738188016528926

1 C22ORF28_Baltz2012 DeepCLIP 8 0.735276859504132

1 C22ORF28_Baltz2012 DeepCLIP 9 0.752675619834711

1 C22ORF28_Baltz2012 DeepCLIP 10 0.745107438016529

1 CAPRIN1_Baltz2012 DeepCLIP 1 0.677022727272727

1 CAPRIN1_Baltz2012 DeepCLIP 2 0.70326652892562

1 CAPRIN1_Baltz2012 DeepCLIP 3 0.685545454545455

1 CAPRIN1_Baltz2012 DeepCLIP 4 0.694409090909091

1 CAPRIN1_Baltz2012 DeepCLIP 5 0.657012396694215

1 CAPRIN1_Baltz2012 DeepCLIP 6 0.689204545454545

1 CAPRIN1_Baltz2012 DeepCLIP 7 0.708123966942149

1 CAPRIN1_Baltz2012 DeepCLIP 8 0.705904958677686

1 CAPRIN1_Baltz2012 DeepCLIP 9 0.685871900826446

1 CAPRIN1_Baltz2012 DeepCLIP 10 0.681927685950413

1 CLIPSEQ_AGO2 DeepCLIP 1 0.695427685950413

1 CLIPSEQ_AGO2 DeepCLIP 2 0.730280991735537

1 CLIPSEQ_AGO2 DeepCLIP 3 0.725568181818182

1 CLIPSEQ_AGO2 DeepCLIP 4 0.721710743801653

1 CLIPSEQ_AGO2 DeepCLIP 5 0.735088842975207

1 CLIPSEQ_AGO2 DeepCLIP 6 0.726270661157025

1 CLIPSEQ_AGO2 DeepCLIP 7 0.694760330578512

1 CLIPSEQ_AGO2 DeepCLIP 8 0.744345041322314

1 CLIPSEQ_AGO2 DeepCLIP 9 0.723876033057851

1 CLIPSEQ_AGO2 DeepCLIP 10 0.723545454545454

1 CLIPSEQ_ELAVL1 DeepCLIP 1 0.923099173553719

1 CLIPSEQ_ELAVL1 DeepCLIP 2 0.964935950413223

1 CLIPSEQ_ELAVL1 DeepCLIP 3 0.94870041322314

1 CLIPSEQ_ELAVL1 DeepCLIP 4 0.970613636363636

1 CLIPSEQ_ELAVL1 DeepCLIP 5 0.949824380165289

1 CLIPSEQ_ELAVL1 DeepCLIP 6 0.934309917355372

1 CLIPSEQ_ELAVL1 DeepCLIP 7 0.926909090909091

1 CLIPSEQ_ELAVL1 DeepCLIP 8 0.950092975206612

1 CLIPSEQ_ELAVL1 DeepCLIP 9 0.922231404958678

1 CLIPSEQ_ELAVL1 DeepCLIP 10 0.955262396694215

1 CLIPSEQ_SFRS1 DeepCLIP 1 0.862460743801653

1 CLIPSEQ_SFRS1 DeepCLIP 2 0.862097107438017

1 CLIPSEQ_SFRS1 DeepCLIP 3 0.876731404958678

1 CLIPSEQ_SFRS1 DeepCLIP 4 0.862477272727273

1 CLIPSEQ_SFRS1 DeepCLIP 5 0.890884297520661

1 CLIPSEQ_SFRS1 DeepCLIP 6 0.863030991735537

1 CLIPSEQ_SFRS1 DeepCLIP 7 0.854607438016529

1 CLIPSEQ_SFRS1 DeepCLIP 8 0.866099173553719

1 CLIPSEQ_SFRS1 DeepCLIP 9 0.863929752066116



1 CLIPSEQ_SFRS1 DeepCLIP 10 0.86401652892562

1 ICLIP_HNRNPC DeepCLIP 1 0.925673553719008

1 ICLIP_HNRNPC DeepCLIP 2 0.95846694214876

1 ICLIP_HNRNPC DeepCLIP 3 0.931295454545455

1 ICLIP_HNRNPC DeepCLIP 4 0.959148760330578

1 ICLIP_HNRNPC DeepCLIP 5 0.93654958677686

1 ICLIP_HNRNPC DeepCLIP 6 0.924675619834711

1 ICLIP_HNRNPC DeepCLIP 7 0.947526859504132

1 ICLIP_HNRNPC DeepCLIP 8 0.938628099173554

1 ICLIP_HNRNPC DeepCLIP 9 0.920756198347107

1 ICLIP_HNRNPC DeepCLIP 10 0.93500826446281

1 ICLIP_TDP43 DeepCLIP 1 0.865297520661157

1 ICLIP_TDP43 DeepCLIP 2 0.849667355371901

1 ICLIP_TDP43 DeepCLIP 3 0.838014462809917

1 ICLIP_TDP43 DeepCLIP 4 0.858493801652893

1 ICLIP_TDP43 DeepCLIP 5 0.855092975206611

1 ICLIP_TDP43 DeepCLIP 6 0.848318181818182

1 ICLIP_TDP43 DeepCLIP 7 0.873929752066116

1 ICLIP_TDP43 DeepCLIP 8 0.85879132231405

1 ICLIP_TDP43 DeepCLIP 9 0.850644628099174

1 ICLIP_TDP43 DeepCLIP 10 0.861462809917355

1 ICLIP_TIA1 DeepCLIP 1 0.868694214876033

1 ICLIP_TIA1 DeepCLIP 2 0.823855371900826

1 ICLIP_TIA1 DeepCLIP 3 0.895382231404959

1 ICLIP_TIA1 DeepCLIP 4 0.875183884297521

1 ICLIP_TIA1 DeepCLIP 5 0.824318181818182

1 ICLIP_TIA1 DeepCLIP 6 0.861547520661157

1 ICLIP_TIA1 DeepCLIP 7 0.842805785123967

1 ICLIP_TIA1 DeepCLIP 8 0.859721074380165

1 ICLIP_TIA1 DeepCLIP 9 0.843010330578512

1 ICLIP_TIA1 DeepCLIP 10 0.844607438016529

1 ICLIP_TIAL1 DeepCLIP 1 0.818371900826446

1 ICLIP_TIAL1 DeepCLIP 2 0.841609504132232

1 ICLIP_TIAL1 DeepCLIP 3 0.817504132231405

1 ICLIP_TIAL1 DeepCLIP 4 0.875729338842975

1 ICLIP_TIAL1 DeepCLIP 5 0.832150826446281

1 ICLIP_TIAL1 DeepCLIP 6 0.847638429752066

1 ICLIP_TIAL1 DeepCLIP 7 0.818051652892562

1 ICLIP_TIAL1 DeepCLIP 8 0.83695867768595

1 ICLIP_TIAL1 DeepCLIP 9 0.817090909090909

1 ICLIP_TIAL1 DeepCLIP 10 0.807743801652893

1 PARCLIP_AGO1234 DeepCLIP 1 0.71025

1 PARCLIP_AGO1234 DeepCLIP 2 0.708464876033058

1 PARCLIP_AGO1234 DeepCLIP 3 0.694588842975207

1 PARCLIP_AGO1234 DeepCLIP 4 0.686780991735537

1 PARCLIP_AGO1234 DeepCLIP 5 0.706840909090909

1 PARCLIP_AGO1234 DeepCLIP 6 0.694590909090909

1 PARCLIP_AGO1234 DeepCLIP 7 0.725423553719008

1 PARCLIP_AGO1234 DeepCLIP 8 0.734584710743802

1 PARCLIP_AGO1234 DeepCLIP 9 0.726950413223141

1 PARCLIP_AGO1234 DeepCLIP 10 0.719202479338843

1 PARCLIP_ELAVL1A DeepCLIP 1 0.95879132231405

1 PARCLIP_ELAVL1A DeepCLIP 2 0.951619834710744

1 PARCLIP_ELAVL1A DeepCLIP 3 0.975431818181818

1 PARCLIP_ELAVL1A DeepCLIP 4 0.966688016528926

1 PARCLIP_ELAVL1A DeepCLIP 5 0.971022727272727

1 PARCLIP_ELAVL1A DeepCLIP 6 0.926152892561984

1 PARCLIP_ELAVL1A DeepCLIP 7 0.960221074380165

1 PARCLIP_ELAVL1A DeepCLIP 8 0.971572314049587

1 PARCLIP_ELAVL1A DeepCLIP 9 0.95971694214876

1 PARCLIP_ELAVL1A DeepCLIP 10 0.96996694214876

1 PARCLIP_ELAVL1 DeepCLIP 1 0.885322314049587

1 PARCLIP_ELAVL1 DeepCLIP 2 0.922103305785124

1 PARCLIP_ELAVL1 DeepCLIP 3 0.871382231404959

1 PARCLIP_ELAVL1 DeepCLIP 4 0.857382231404959

1 PARCLIP_ELAVL1 DeepCLIP 5 0.877256198347107

1 PARCLIP_ELAVL1 DeepCLIP 6 0.859847107438016

1 PARCLIP_ELAVL1 DeepCLIP 7 0.881049586776859

1 PARCLIP_ELAVL1 DeepCLIP 8 0.891801652892562

1 PARCLIP_ELAVL1 DeepCLIP 9 0.870039256198347

1 PARCLIP_ELAVL1 DeepCLIP 10 0.910037190082645

1 PARCLIP_EWSR1 DeepCLIP 1 0.881078512396694

1 PARCLIP_EWSR1 DeepCLIP 2 0.879477272727273



1 PARCLIP_EWSR1 DeepCLIP 3 0.88104132231405

1 PARCLIP_EWSR1 DeepCLIP 4 0.903373966942149

1 PARCLIP_EWSR1 DeepCLIP 5 0.89074173553719

1 PARCLIP_EWSR1 DeepCLIP 6 0.867378099173554

1 PARCLIP_EWSR1 DeepCLIP 7 0.883888429752066

1 PARCLIP_EWSR1 DeepCLIP 8 0.889836776859504

1 PARCLIP_EWSR1 DeepCLIP 9 0.911471074380165

1 PARCLIP_EWSR1 DeepCLIP 10 0.875311983471074

1 PARCLIP_FUS DeepCLIP 1 0.899227272727273

1 PARCLIP_FUS DeepCLIP 2 0.876642561983471

1 PARCLIP_FUS DeepCLIP 3 0.902487603305785

1 PARCLIP_FUS DeepCLIP 4 0.956111570247934

1 PARCLIP_FUS DeepCLIP 5 0.874822314049587

1 PARCLIP_FUS DeepCLIP 6 0.912051652892562

1 PARCLIP_FUS DeepCLIP 7 0.954210743801653

1 PARCLIP_FUS DeepCLIP 8 0.875239669421488

1 PARCLIP_FUS DeepCLIP 9 0.875340909090909

1 PARCLIP_FUS DeepCLIP 10 0.893526859504132

1 PARCLIP_HUR DeepCLIP 1 0.962828512396694

1 PARCLIP_HUR DeepCLIP 2 0.955045454545454

1 PARCLIP_HUR DeepCLIP 3 0.95021694214876

1 PARCLIP_HUR DeepCLIP 4 0.963890495867769

1 PARCLIP_HUR DeepCLIP 5 0.975235537190083

1 PARCLIP_HUR DeepCLIP 6 0.946530991735537

1 PARCLIP_HUR DeepCLIP 7 0.965669421487603

1 PARCLIP_HUR DeepCLIP 8 0.955231404958677

1 PARCLIP_HUR DeepCLIP 9 0.938431818181818

1 PARCLIP_HUR DeepCLIP 10 0.950770661157025

1 PARCLIP_IGF2BP123 DeepCLIP 1 0.837014462809917

1 PARCLIP_IGF2BP123 DeepCLIP 2 0.823111570247934

1 PARCLIP_IGF2BP123 DeepCLIP 3 0.782440082644628

1 PARCLIP_IGF2BP123 DeepCLIP 4 0.817824380165289

1 PARCLIP_IGF2BP123 DeepCLIP 5 0.830964876033058

1 PARCLIP_IGF2BP123 DeepCLIP 6 0.77750826446281

1 PARCLIP_IGF2BP123 DeepCLIP 7 0.82201652892562

1 PARCLIP_IGF2BP123 DeepCLIP 8 0.830855371900826

1 PARCLIP_IGF2BP123 DeepCLIP 9 0.82804958677686

1 PARCLIP_IGF2BP123 DeepCLIP 10 0.771894628099173

1 PARCLIP_MOV10 DeepCLIP 1 0.762588842975207

1 PARCLIP_MOV10 DeepCLIP 2 0.77246694214876

1 PARCLIP_MOV10 DeepCLIP 3 0.763657024793388

1 PARCLIP_MOV10 DeepCLIP 4 0.761535123966942

1 PARCLIP_MOV10 DeepCLIP 5 0.764646694214876

1 PARCLIP_MOV10 DeepCLIP 6 0.730944214876033

1 PARCLIP_MOV10 DeepCLIP 7 0.749510330578512

1 PARCLIP_MOV10 DeepCLIP 8 0.737371900826446

1 PARCLIP_MOV10 DeepCLIP 9 0.711799586776859

1 PARCLIP_MOV10 DeepCLIP 10 0.751867768595041

1 PARCLIP_PUM2 DeepCLIP 1 0.919359504132231

1 PARCLIP_PUM2 DeepCLIP 2 0.907832644628099

1 PARCLIP_PUM2 DeepCLIP 3 0.902925619834711

1 PARCLIP_PUM2 DeepCLIP 4 0.919884297520661

1 PARCLIP_PUM2 DeepCLIP 5 0.924334710743802

1 PARCLIP_PUM2 DeepCLIP 6 0.918045454545454

1 PARCLIP_PUM2 DeepCLIP 7 0.915382231404959

1 PARCLIP_PUM2 DeepCLIP 8 0.892628099173554

1 PARCLIP_PUM2 DeepCLIP 9 0.927276859504132

1 PARCLIP_PUM2 DeepCLIP 10 0.9035

1 PARCLIP_QKI DeepCLIP 1 0.955012396694215

1 PARCLIP_QKI DeepCLIP 2 0.973130165289256

1 PARCLIP_QKI DeepCLIP 3 0.956665289256198

1 PARCLIP_QKI DeepCLIP 4 0.953576446280992

1 PARCLIP_QKI DeepCLIP 5 0.957518595041322

1 PARCLIP_QKI DeepCLIP 6 0.95

1 PARCLIP_QKI DeepCLIP 7 0.954654958677686

1 PARCLIP_QKI DeepCLIP 8 0.940347107438016

1 PARCLIP_QKI DeepCLIP 9 0.95704132231405

1 PARCLIP_QKI DeepCLIP 10 0.966789256198347

1 PARCLIP_TAF15 DeepCLIP 1 0.945986818998822

1 PARCLIP_TAF15 DeepCLIP 2 0.950288205276532

1 PARCLIP_TAF15 DeepCLIP 3 0.971850918331508

1 PARCLIP_TAF15 DeepCLIP 4 0.973288845732702

1 PARCLIP_TAF15 DeepCLIP 5 0.889667995785385



1 PARCLIP_TAF15 DeepCLIP 6 0.954542073838398

1 PARCLIP_TAF15 DeepCLIP 7 0.900450385306696

1 PARCLIP_TAF15 DeepCLIP 8 0.907202032931843

1 PARCLIP_TAF15 DeepCLIP 9 0.955236245687251

1 PARCLIP_TAF15 DeepCLIP 10 0.956678305063736

1 ZC3H7B_Baltz2012 DeepCLIP 1 0.682989669421487

1 ZC3H7B_Baltz2012 DeepCLIP 2 0.704981404958678

1 ZC3H7B_Baltz2012 DeepCLIP 3 0.687650826446281

1 ZC3H7B_Baltz2012 DeepCLIP 4 0.703907024793388

1 ZC3H7B_Baltz2012 DeepCLIP 5 0.71251652892562

1 ZC3H7B_Baltz2012 DeepCLIP 6 0.682927685950413

1 ZC3H7B_Baltz2012 DeepCLIP 7 0.696161157024793

1 ZC3H7B_Baltz2012 DeepCLIP 8 0.703727272727273

1 ZC3H7B_Baltz2012 DeepCLIP 9 0.681365702479339

1 ZC3H7B_Baltz2012 DeepCLIP 10 0.702995867768595

1 ALKBH5_Baltz2012 RNAProt 1 0.671473

1 ALKBH5_Baltz2012 RNAProt 2 0.620525

1 ALKBH5_Baltz2012 RNAProt 3 0.625856

1 ALKBH5_Baltz2012 RNAProt 4 0.620581

1 ALKBH5_Baltz2012 RNAProt 5 0.6281

1 ALKBH5_Baltz2012 RNAProt 6 0.642128

1 ALKBH5_Baltz2012 RNAProt 7 0.611491

1 ALKBH5_Baltz2012 RNAProt 8 0.600317

1 ALKBH5_Baltz2012 RNAProt 9 0.622138

1 ALKBH5_Baltz2012 RNAProt 10 0.574514

1 C17ORF85_Baltz2012 RNAProt 1 0.746041

1 C17ORF85_Baltz2012 RNAProt 2 0.734188

1 C17ORF85_Baltz2012 RNAProt 3 0.746105

1 C17ORF85_Baltz2012 RNAProt 4 0.713947

1 C17ORF85_Baltz2012 RNAProt 5 0.777528

1 C17ORF85_Baltz2012 RNAProt 6 0.752332

1 C17ORF85_Baltz2012 RNAProt 7 0.762515

1 C17ORF85_Baltz2012 RNAProt 8 0.811864

1 C17ORF85_Baltz2012 RNAProt 9 0.784016

1 C17ORF85_Baltz2012 RNAProt 10 0.719181

1 C22ORF28_Baltz2012 RNAProt 1 0.758924

1 C22ORF28_Baltz2012 RNAProt 2 0.760816

1 C22ORF28_Baltz2012 RNAProt 3 0.733948

1 C22ORF28_Baltz2012 RNAProt 4 0.745224

1 C22ORF28_Baltz2012 RNAProt 5 0.746432

1 C22ORF28_Baltz2012 RNAProt 6 0.752184

1 C22ORF28_Baltz2012 RNAProt 7 0.722864

1 C22ORF28_Baltz2012 RNAProt 8 0.760972

1 C22ORF28_Baltz2012 RNAProt 9 0.756056

1 C22ORF28_Baltz2012 RNAProt 10 0.733748

1 CAPRIN1_Baltz2012 RNAProt 1 0.750992

1 CAPRIN1_Baltz2012 RNAProt 2 0.759872

1 CAPRIN1_Baltz2012 RNAProt 3 0.68384

1 CAPRIN1_Baltz2012 RNAProt 4 0.763152

1 CAPRIN1_Baltz2012 RNAProt 5 0.720044

1 CAPRIN1_Baltz2012 RNAProt 6 0.744432

1 CAPRIN1_Baltz2012 RNAProt 7 0.76816

1 CAPRIN1_Baltz2012 RNAProt 8 0.731292

1 CAPRIN1_Baltz2012 RNAProt 9 0.742484

1 CAPRIN1_Baltz2012 RNAProt 10 0.713072

1 CLIPSEQ_AGO2 RNAProt 1 0.799356

1 CLIPSEQ_AGO2 RNAProt 2 0.78198

1 CLIPSEQ_AGO2 RNAProt 3 0.752816

1 CLIPSEQ_AGO2 RNAProt 4 0.806516

1 CLIPSEQ_AGO2 RNAProt 5 0.772572

1 CLIPSEQ_AGO2 RNAProt 6 0.775868

1 CLIPSEQ_AGO2 RNAProt 7 0.795964

1 CLIPSEQ_AGO2 RNAProt 8 0.779056

1 CLIPSEQ_AGO2 RNAProt 9 0.768304

1 CLIPSEQ_AGO2 RNAProt 10 0.776428

1 CLIPSEQ_ELAVL1 RNAProt 1 0.978216

1 CLIPSEQ_ELAVL1 RNAProt 2 0.972724

1 CLIPSEQ_ELAVL1 RNAProt 3 0.965664

1 CLIPSEQ_ELAVL1 RNAProt 4 0.97236

1 CLIPSEQ_ELAVL1 RNAProt 5 0.978996

1 CLIPSEQ_ELAVL1 RNAProt 6 0.9718

1 CLIPSEQ_ELAVL1 RNAProt 7 0.978248

1 CLIPSEQ_ELAVL1 RNAProt 8 0.97332



1 CLIPSEQ_ELAVL1 RNAProt 9 0.980952

1 CLIPSEQ_ELAVL1 RNAProt 10 0.975888

1 CLIPSEQ_SFRS1 RNAProt 1 0.886392

1 CLIPSEQ_SFRS1 RNAProt 2 0.890536

1 CLIPSEQ_SFRS1 RNAProt 3 0.893044

1 CLIPSEQ_SFRS1 RNAProt 4 0.891524

1 CLIPSEQ_SFRS1 RNAProt 5 0.891112

1 CLIPSEQ_SFRS1 RNAProt 6 0.902168

1 CLIPSEQ_SFRS1 RNAProt 7 0.90234

1 CLIPSEQ_SFRS1 RNAProt 8 0.893736

1 CLIPSEQ_SFRS1 RNAProt 9 0.892012

1 CLIPSEQ_SFRS1 RNAProt 10 0.879652

1 ICLIP_HNRNPC RNAProt 1 0.973276

1 ICLIP_HNRNPC RNAProt 2 0.976224

1 ICLIP_HNRNPC RNAProt 3 0.971496

1 ICLIP_HNRNPC RNAProt 4 0.971404

1 ICLIP_HNRNPC RNAProt 5 0.973904

1 ICLIP_HNRNPC RNAProt 6 0.972724

1 ICLIP_HNRNPC RNAProt 7 0.968132

1 ICLIP_HNRNPC RNAProt 8 0.980944

1 ICLIP_HNRNPC RNAProt 9 0.974692

1 ICLIP_HNRNPC RNAProt 10 0.969192

1 ICLIP_TDP43 RNAProt 1 0.891928

1 ICLIP_TDP43 RNAProt 2 0.895744

1 ICLIP_TDP43 RNAProt 3 0.88938

1 ICLIP_TDP43 RNAProt 4 0.908696

1 ICLIP_TDP43 RNAProt 5 0.90494

1 ICLIP_TDP43 RNAProt 6 0.896848

1 ICLIP_TDP43 RNAProt 7 0.897088

1 ICLIP_TDP43 RNAProt 8 0.888088

1 ICLIP_TDP43 RNAProt 9 0.890616

1 ICLIP_TDP43 RNAProt 10 0.899716

1 ICLIP_TIA1 RNAProt 1 0.921588

1 ICLIP_TIA1 RNAProt 2 0.907312

1 ICLIP_TIA1 RNAProt 3 0.913384

1 ICLIP_TIA1 RNAProt 4 0.921816

1 ICLIP_TIA1 RNAProt 5 0.918488

1 ICLIP_TIA1 RNAProt 6 0.92972

1 ICLIP_TIA1 RNAProt 7 0.908756

1 ICLIP_TIA1 RNAProt 8 0.917008

1 ICLIP_TIA1 RNAProt 9 0.90618

1 ICLIP_TIA1 RNAProt 10 0.916816

1 ICLIP_TIAL1 RNAProt 1 0.904104

1 ICLIP_TIAL1 RNAProt 2 0.912764

1 ICLIP_TIAL1 RNAProt 3 0.899492

1 ICLIP_TIAL1 RNAProt 4 0.90546

1 ICLIP_TIAL1 RNAProt 5 0.88866

1 ICLIP_TIAL1 RNAProt 6 0.89194

1 ICLIP_TIAL1 RNAProt 7 0.914472

1 ICLIP_TIAL1 RNAProt 8 0.908528

1 ICLIP_TIAL1 RNAProt 9 0.909888

1 ICLIP_TIAL1 RNAProt 10 0.894196

1 PARCLIP_AGO1234 RNAProt 1 0.804044

1 PARCLIP_AGO1234 RNAProt 2 0.820364

1 PARCLIP_AGO1234 RNAProt 3 0.792572

1 PARCLIP_AGO1234 RNAProt 4 0.81052

1 PARCLIP_AGO1234 RNAProt 5 0.802304

1 PARCLIP_AGO1234 RNAProt 6 0.807448

1 PARCLIP_AGO1234 RNAProt 7 0.80488

1 PARCLIP_AGO1234 RNAProt 8 0.812796

1 PARCLIP_AGO1234 RNAProt 9 0.786304

1 PARCLIP_AGO1234 RNAProt 10 0.802364

1 PARCLIP_ELAVL1A RNAProt 1 0.979088

1 PARCLIP_ELAVL1A RNAProt 2 0.967804

1 PARCLIP_ELAVL1A RNAProt 3 0.975376

1 PARCLIP_ELAVL1A RNAProt 4 0.981136

1 PARCLIP_ELAVL1A RNAProt 5 0.970176

1 PARCLIP_ELAVL1A RNAProt 6 0.976244

1 PARCLIP_ELAVL1A RNAProt 7 0.967904

1 PARCLIP_ELAVL1A RNAProt 8 0.976916

1 PARCLIP_ELAVL1A RNAProt 9 0.971388

1 PARCLIP_ELAVL1A RNAProt 10 0.964232

1 PARCLIP_ELAVL1 RNAProt 1 0.93812



1 PARCLIP_ELAVL1 RNAProt 2 0.922324

1 PARCLIP_ELAVL1 RNAProt 3 0.928512

1 PARCLIP_ELAVL1 RNAProt 4 0.94532

1 PARCLIP_ELAVL1 RNAProt 5 0.939104

1 PARCLIP_ELAVL1 RNAProt 6 0.943384

1 PARCLIP_ELAVL1 RNAProt 7 0.93552

1 PARCLIP_ELAVL1 RNAProt 8 0.935172

1 PARCLIP_ELAVL1 RNAProt 9 0.93644

1 PARCLIP_ELAVL1 RNAProt 10 0.94418

1 PARCLIP_EWSR1 RNAProt 1 0.947188

1 PARCLIP_EWSR1 RNAProt 2 0.945832

1 PARCLIP_EWSR1 RNAProt 3 0.936344

1 PARCLIP_EWSR1 RNAProt 4 0.947436

1 PARCLIP_EWSR1 RNAProt 5 0.942368

1 PARCLIP_EWSR1 RNAProt 6 0.945584

1 PARCLIP_EWSR1 RNAProt 7 0.944404

1 PARCLIP_EWSR1 RNAProt 8 0.943456

1 PARCLIP_EWSR1 RNAProt 9 0.943892

1 PARCLIP_EWSR1 RNAProt 10 0.925788

1 PARCLIP_FUS RNAProt 1 0.9641

1 PARCLIP_FUS RNAProt 2 0.958076

1 PARCLIP_FUS RNAProt 3 0.961832

1 PARCLIP_FUS RNAProt 4 0.95502

1 PARCLIP_FUS RNAProt 5 0.969548

1 PARCLIP_FUS RNAProt 6 0.9536

1 PARCLIP_FUS RNAProt 7 0.95326

1 PARCLIP_FUS RNAProt 8 0.961384

1 PARCLIP_FUS RNAProt 9 0.96938

1 PARCLIP_FUS RNAProt 10 0.9729

1 PARCLIP_HUR RNAProt 1 0.978412

1 PARCLIP_HUR RNAProt 2 0.994096

1 PARCLIP_HUR RNAProt 3 0.992792

1 PARCLIP_HUR RNAProt 4 0.991736

1 PARCLIP_HUR RNAProt 5 0.990992

1 PARCLIP_HUR RNAProt 6 0.986708

1 PARCLIP_HUR RNAProt 7 0.993028

1 PARCLIP_HUR RNAProt 8 0.983684

1 PARCLIP_HUR RNAProt 9 0.987616

1 PARCLIP_HUR RNAProt 10 0.990632

1 PARCLIP_IGF2BP123 RNAProt 1 0.868612

1 PARCLIP_IGF2BP123 RNAProt 2 0.87558

1 PARCLIP_IGF2BP123 RNAProt 3 0.864236

1 PARCLIP_IGF2BP123 RNAProt 4 0.88156

1 PARCLIP_IGF2BP123 RNAProt 5 0.876564

1 PARCLIP_IGF2BP123 RNAProt 6 0.871012

1 PARCLIP_IGF2BP123 RNAProt 7 0.886092

1 PARCLIP_IGF2BP123 RNAProt 8 0.866108

1 PARCLIP_IGF2BP123 RNAProt 9 0.869652

1 PARCLIP_IGF2BP123 RNAProt 10 0.873532

1 PARCLIP_MOV10 RNAProt 1 0.809648

1 PARCLIP_MOV10 RNAProt 2 0.799192

1 PARCLIP_MOV10 RNAProt 3 0.814072

1 PARCLIP_MOV10 RNAProt 4 0.772404

1 PARCLIP_MOV10 RNAProt 5 0.814704

1 PARCLIP_MOV10 RNAProt 6 0.811008

1 PARCLIP_MOV10 RNAProt 7 0.814176

1 PARCLIP_MOV10 RNAProt 8 0.777816

1 PARCLIP_MOV10 RNAProt 9 0.814588

1 PARCLIP_MOV10 RNAProt 10 0.813436

1 PARCLIP_PUM2 RNAProt 1 0.935624

1 PARCLIP_PUM2 RNAProt 2 0.931008

1 PARCLIP_PUM2 RNAProt 3 0.94436

1 PARCLIP_PUM2 RNAProt 4 0.946616

1 PARCLIP_PUM2 RNAProt 5 0.940932

1 PARCLIP_PUM2 RNAProt 6 0.92826

1 PARCLIP_PUM2 RNAProt 7 0.944904

1 PARCLIP_PUM2 RNAProt 8 0.928228

1 PARCLIP_PUM2 RNAProt 9 0.952452

1 PARCLIP_PUM2 RNAProt 10 0.93668

1 PARCLIP_QKI RNAProt 1 0.973776

1 PARCLIP_QKI RNAProt 2 0.9757

1 PARCLIP_QKI RNAProt 3 0.960444

1 PARCLIP_QKI RNAProt 4 0.96808



1 PARCLIP_QKI RNAProt 5 0.971432

1 PARCLIP_QKI RNAProt 6 0.965848

1 PARCLIP_QKI RNAProt 7 0.972836

1 PARCLIP_QKI RNAProt 8 0.957104

1 PARCLIP_QKI RNAProt 9 0.965496

1 PARCLIP_QKI RNAProt 10 0.962004

1 PARCLIP_TAF15 RNAProt 1 0.980596

1 PARCLIP_TAF15 RNAProt 2 0.975508

1 PARCLIP_TAF15 RNAProt 3 0.971112

1 PARCLIP_TAF15 RNAProt 4 0.981196

1 PARCLIP_TAF15 RNAProt 5 0.97776

1 PARCLIP_TAF15 RNAProt 6 0.98022

1 PARCLIP_TAF15 RNAProt 7 0.977044

1 PARCLIP_TAF15 RNAProt 8 0.980196

1 PARCLIP_TAF15 RNAProt 9 0.964724

1 PARCLIP_TAF15 RNAProt 10 0.981263

1 ZC3H7B_Baltz2012 RNAProt 1 0.690232

1 ZC3H7B_Baltz2012 RNAProt 2 0.694452

1 ZC3H7B_Baltz2012 RNAProt 3 0.716808

1 ZC3H7B_Baltz2012 RNAProt 4 0.719332

1 ZC3H7B_Baltz2012 RNAProt 5 0.71634

1 ZC3H7B_Baltz2012 RNAProt 6 0.706228

1 ZC3H7B_Baltz2012 RNAProt 7 0.713876

1 ZC3H7B_Baltz2012 RNAProt 8 0.711316

1 ZC3H7B_Baltz2012 RNAProt 9 0.685012

1 ZC3H7B_Baltz2012 RNAProt 10 0.683536

1 ALKBH5_Baltz2012 GraphProt 1 0.678038379530917

1 ALKBH5_Baltz2012 GraphProt 2 0.723207271911121

1 ALKBH5_Baltz2012 GraphProt 3 0.703288070923578

1 ALKBH5_Baltz2012 GraphProt 4 0.728537762316238

1 ALKBH5_Baltz2012 GraphProt 5 0.692234317136124

1 ALKBH5_Baltz2012 GraphProt 6 0.74189204354169

1 ALKBH5_Baltz2012 GraphProt 7 0.676803950173942

1 ALKBH5_Baltz2012 GraphProt 8 0.703188602442334

1 ALKBH5_Baltz2012 GraphProt 9 0.699983040307536

1 ALKBH5_Baltz2012 GraphProt 10 0.662728249194415

1 C17ORF85_Baltz2012 GraphProt 1 0.813224620605147

1 C17ORF85_Baltz2012 GraphProt 2 0.762324441511924

1 C17ORF85_Baltz2012 GraphProt 3 0.75541084537059

1 C17ORF85_Baltz2012 GraphProt 4 0.780108927302865

1 C17ORF85_Baltz2012 GraphProt 5 0.838290314941984

1 C17ORF85_Baltz2012 GraphProt 6 0.804404451811508

1 C17ORF85_Baltz2012 GraphProt 7 0.800402557423632

1 C17ORF85_Baltz2012 GraphProt 8 0.825076959507459

1 C17ORF85_Baltz2012 GraphProt 9 0.810632251953587

1 C17ORF85_Baltz2012 GraphProt 10 0.846744020838267

1 C22ORF28_Baltz2012 GraphProt 1 0.724242

1 C22ORF28_Baltz2012 GraphProt 2 0.759692

1 C22ORF28_Baltz2012 GraphProt 3 0.73311

1 C22ORF28_Baltz2012 GraphProt 4 0.781328

1 C22ORF28_Baltz2012 GraphProt 5 0.712068

1 C22ORF28_Baltz2012 GraphProt 6 0.744456

1 C22ORF28_Baltz2012 GraphProt 7 0.729476

1 C22ORF28_Baltz2012 GraphProt 8 0.731128

1 C22ORF28_Baltz2012 GraphProt 9 0.756092

1 C22ORF28_Baltz2012 GraphProt 10 0.74014

1 CAPRIN1_Baltz2012 GraphProt 1 0.689732

1 CAPRIN1_Baltz2012 GraphProt 2 0.6885

1 CAPRIN1_Baltz2012 GraphProt 3 0.675188

1 CAPRIN1_Baltz2012 GraphProt 4 0.680048

1 CAPRIN1_Baltz2012 GraphProt 5 0.655592

1 CAPRIN1_Baltz2012 GraphProt 6 0.680014

1 CAPRIN1_Baltz2012 GraphProt 7 0.69066

1 CAPRIN1_Baltz2012 GraphProt 8 0.69868

1 CAPRIN1_Baltz2012 GraphProt 9 0.704244

1 CAPRIN1_Baltz2012 GraphProt 10 0.689548

1 CLIPSEQ_AGO2 GraphProt 1 0.691756

1 CLIPSEQ_AGO2 GraphProt 2 0.731388

1 CLIPSEQ_AGO2 GraphProt 3 0.730616

1 CLIPSEQ_AGO2 GraphProt 4 0.714992

1 CLIPSEQ_AGO2 GraphProt 5 0.728888

1 CLIPSEQ_AGO2 GraphProt 6 0.731288

1 CLIPSEQ_AGO2 GraphProt 7 0.711244



1 CLIPSEQ_AGO2 GraphProt 8 0.729272

1 CLIPSEQ_AGO2 GraphProt 9 0.7193

1 CLIPSEQ_AGO2 GraphProt 10 0.720874

1 CLIPSEQ_ELAVL1 GraphProt 1 0.914366

1 CLIPSEQ_ELAVL1 GraphProt 2 0.913888

1 CLIPSEQ_ELAVL1 GraphProt 3 0.909156

1 CLIPSEQ_ELAVL1 GraphProt 4 0.916188

1 CLIPSEQ_ELAVL1 GraphProt 5 0.916856

1 CLIPSEQ_ELAVL1 GraphProt 6 0.92654

1 CLIPSEQ_ELAVL1 GraphProt 7 0.91994

1 CLIPSEQ_ELAVL1 GraphProt 8 0.907148

1 CLIPSEQ_ELAVL1 GraphProt 9 0.919404

1 CLIPSEQ_ELAVL1 GraphProt 10 0.905156

1 CLIPSEQ_SFRS1 GraphProt 1 0.851756

1 CLIPSEQ_SFRS1 GraphProt 2 0.862892

1 CLIPSEQ_SFRS1 GraphProt 3 0.856764

1 CLIPSEQ_SFRS1 GraphProt 4 0.846304

1 CLIPSEQ_SFRS1 GraphProt 5 0.87144

1 CLIPSEQ_SFRS1 GraphProt 6 0.842176

1 CLIPSEQ_SFRS1 GraphProt 7 0.844928

1 CLIPSEQ_SFRS1 GraphProt 8 0.842892

1 CLIPSEQ_SFRS1 GraphProt 9 0.864308

1 CLIPSEQ_SFRS1 GraphProt 10 0.852328

1 ICLIP_HNRNPC GraphProt 1 0.92134

1 ICLIP_HNRNPC GraphProt 2 0.922112

1 ICLIP_HNRNPC GraphProt 3 0.929112

1 ICLIP_HNRNPC GraphProt 4 0.922832

1 ICLIP_HNRNPC GraphProt 5 0.926884

1 ICLIP_HNRNPC GraphProt 6 0.922844

1 ICLIP_HNRNPC GraphProt 7 0.923944

1 ICLIP_HNRNPC GraphProt 8 0.933984

1 ICLIP_HNRNPC GraphProt 9 0.917116

1 ICLIP_HNRNPC GraphProt 10 0.928096

1 ICLIP_TDP43 GraphProt 1 0.850252

1 ICLIP_TDP43 GraphProt 2 0.845876

1 ICLIP_TDP43 GraphProt 3 0.834964

1 ICLIP_TDP43 GraphProt 4 0.848368

1 ICLIP_TDP43 GraphProt 5 0.847716

1 ICLIP_TDP43 GraphProt 6 0.839356

1 ICLIP_TDP43 GraphProt 7 0.8741

1 ICLIP_TDP43 GraphProt 8 0.855392

1 ICLIP_TDP43 GraphProt 9 0.842096

1 ICLIP_TDP43 GraphProt 10 0.850902

1 ICLIP_TIA1 GraphProt 1 0.816096

1 ICLIP_TIA1 GraphProt 2 0.823352

1 ICLIP_TIA1 GraphProt 3 0.815076

1 ICLIP_TIA1 GraphProt 4 0.846392

1 ICLIP_TIA1 GraphProt 5 0.823424

1 ICLIP_TIA1 GraphProt 6 0.789724

1 ICLIP_TIA1 GraphProt 7 0.8309

1 ICLIP_TIA1 GraphProt 8 0.83676

1 ICLIP_TIA1 GraphProt 9 0.824136

1 ICLIP_TIA1 GraphProt 10 0.839024

1 ICLIP_TIAL1 GraphProt 1 0.81781

1 ICLIP_TIAL1 GraphProt 2 0.778216

1 ICLIP_TIAL1 GraphProt 3 0.798048

1 ICLIP_TIAL1 GraphProt 4 0.791628

1 ICLIP_TIAL1 GraphProt 5 0.816502

1 ICLIP_TIAL1 GraphProt 6 0.780398

1 ICLIP_TIAL1 GraphProt 7 0.80719

1 ICLIP_TIAL1 GraphProt 8 0.829228

1 ICLIP_TIAL1 GraphProt 9 0.813128

1 ICLIP_TIAL1 GraphProt 10 0.7973

1 PARCLIP_AGO1234 GraphProt 1 0.737648

1 PARCLIP_AGO1234 GraphProt 2 0.68928

1 PARCLIP_AGO1234 GraphProt 3 0.701574

1 PARCLIP_AGO1234 GraphProt 4 0.691216

1 PARCLIP_AGO1234 GraphProt 5 0.69142

1 PARCLIP_AGO1234 GraphProt 6 0.689328

1 PARCLIP_AGO1234 GraphProt 7 0.734464

1 PARCLIP_AGO1234 GraphProt 8 0.726604

1 PARCLIP_AGO1234 GraphProt 9 0.70678

1 PARCLIP_AGO1234 GraphProt 10 0.699172



1 PARCLIP_ELAVL1A GraphProt 1 0.918198

1 PARCLIP_ELAVL1A GraphProt 2 0.894212

1 PARCLIP_ELAVL1A GraphProt 3 0.92646

1 PARCLIP_ELAVL1A GraphProt 4 0.92038

1 PARCLIP_ELAVL1A GraphProt 5 0.924456

1 PARCLIP_ELAVL1A GraphProt 6 0.89714

1 PARCLIP_ELAVL1A GraphProt 7 0.91562

1 PARCLIP_ELAVL1A GraphProt 8 0.920168

1 PARCLIP_ELAVL1A GraphProt 9 0.91984

1 PARCLIP_ELAVL1A GraphProt 10 0.904424

1 PARCLIP_ELAVL1 GraphProt 1 0.885584

1 PARCLIP_ELAVL1 GraphProt 2 0.880868

1 PARCLIP_ELAVL1 GraphProt 3 0.877632

1 PARCLIP_ELAVL1 GraphProt 4 0.85862

1 PARCLIP_ELAVL1 GraphProt 5 0.880568

1 PARCLIP_ELAVL1 GraphProt 6 0.862504

1 PARCLIP_ELAVL1 GraphProt 7 0.881648

1 PARCLIP_ELAVL1 GraphProt 8 0.892348

1 PARCLIP_ELAVL1 GraphProt 9 0.870068

1 PARCLIP_ELAVL1 GraphProt 10 0.876332

1 PARCLIP_EWSR1 GraphProt 1 0.806944

1 PARCLIP_EWSR1 GraphProt 2 0.828436

1 PARCLIP_EWSR1 GraphProt 3 0.81732

1 PARCLIP_EWSR1 GraphProt 4 0.847428

1 PARCLIP_EWSR1 GraphProt 5 0.816844

1 PARCLIP_EWSR1 GraphProt 6 0.821012

1 PARCLIP_EWSR1 GraphProt 7 0.803072

1 PARCLIP_EWSR1 GraphProt 8 0.807152

1 PARCLIP_EWSR1 GraphProt 9 0.836214

1 PARCLIP_EWSR1 GraphProt 10 0.848244

1 PARCLIP_FUS GraphProt 1 0.851916

1 PARCLIP_FUS GraphProt 2 0.835232

1 PARCLIP_FUS GraphProt 3 0.833256

1 PARCLIP_FUS GraphProt 4 0.830524

1 PARCLIP_FUS GraphProt 5 0.845296

1 PARCLIP_FUS GraphProt 6 0.844092

1 PARCLIP_FUS GraphProt 7 0.85832

1 PARCLIP_FUS GraphProt 8 0.83426

1 PARCLIP_FUS GraphProt 9 0.841308

1 PARCLIP_FUS GraphProt 10 0.84484

1 PARCLIP_HUR GraphProt 1 0.935776

1 PARCLIP_HUR GraphProt 2 0.93492

1 PARCLIP_HUR GraphProt 3 0.926512

1 PARCLIP_HUR GraphProt 4 0.941332

1 PARCLIP_HUR GraphProt 5 0.932716

1 PARCLIP_HUR GraphProt 6 0.941828

1 PARCLIP_HUR GraphProt 7 0.952896

1 PARCLIP_HUR GraphProt 8 0.936592

1 PARCLIP_HUR GraphProt 9 0.929662

1 PARCLIP_HUR GraphProt 10 0.93576

1 PARCLIP_IGF2BP123 GraphProt 1 0.7891

1 PARCLIP_IGF2BP123 GraphProt 2 0.79134

1 PARCLIP_IGF2BP123 GraphProt 3 0.786036

1 PARCLIP_IGF2BP123 GraphProt 4 0.763652

1 PARCLIP_IGF2BP123 GraphProt 5 0.781024

1 PARCLIP_IGF2BP123 GraphProt 6 0.772724

1 PARCLIP_IGF2BP123 GraphProt 7 0.776328

1 PARCLIP_IGF2BP123 GraphProt 8 0.781384

1 PARCLIP_IGF2BP123 GraphProt 9 0.776036

1 PARCLIP_IGF2BP123 GraphProt 10 0.766956

1 PARCLIP_MOV10 GraphProt 1 0.75242

1 PARCLIP_MOV10 GraphProt 2 0.772204

1 PARCLIP_MOV10 GraphProt 3 0.750744

1 PARCLIP_MOV10 GraphProt 4 0.757194

1 PARCLIP_MOV10 GraphProt 5 0.754772

1 PARCLIP_MOV10 GraphProt 6 0.73686

1 PARCLIP_MOV10 GraphProt 7 0.739712

1 PARCLIP_MOV10 GraphProt 8 0.730856

1 PARCLIP_MOV10 GraphProt 9 0.719436

1 PARCLIP_MOV10 GraphProt 10 0.7552

1 PARCLIP_PUM2 GraphProt 1 0.891888

1 PARCLIP_PUM2 GraphProt 2 0.884252

1 PARCLIP_PUM2 GraphProt 3 0.880012



1 PARCLIP_PUM2 GraphProt 4 0.883924

1 PARCLIP_PUM2 GraphProt 5 0.899016

1 PARCLIP_PUM2 GraphProt 6 0.894496

1 PARCLIP_PUM2 GraphProt 7 0.884052

1 PARCLIP_PUM2 GraphProt 8 0.855796

1 PARCLIP_PUM2 GraphProt 9 0.897748

1 PARCLIP_PUM2 GraphProt 10 0.876032

1 PARCLIP_QKI GraphProt 1 0.919164

1 PARCLIP_QKI GraphProt 2 0.941688

1 PARCLIP_QKI GraphProt 3 0.927496

1 PARCLIP_QKI GraphProt 4 0.929772

1 PARCLIP_QKI GraphProt 5 0.920684

1 PARCLIP_QKI GraphProt 6 0.926424

1 PARCLIP_QKI GraphProt 7 0.933156

1 PARCLIP_QKI GraphProt 8 0.916908

1 PARCLIP_QKI GraphProt 9 0.920664

1 PARCLIP_QKI GraphProt 10 0.921752

1 PARCLIP_TAF15 GraphProt 1 0.840484

1 PARCLIP_TAF15 GraphProt 2 0.846024

1 PARCLIP_TAF15 GraphProt 3 0.851888

1 PARCLIP_TAF15 GraphProt 4 0.832872

1 PARCLIP_TAF15 GraphProt 5 0.829184

1 PARCLIP_TAF15 GraphProt 6 0.842212

1 PARCLIP_TAF15 GraphProt 7 0.833604

1 PARCLIP_TAF15 GraphProt 8 0.841504

1 PARCLIP_TAF15 GraphProt 9 0.826428

1 PARCLIP_TAF15 GraphProt 10 0.846228456913827

1 ZC3H7B_Baltz2012 GraphProt 1 0.67914

1 ZC3H7B_Baltz2012 GraphProt 2 0.708596

1 ZC3H7B_Baltz2012 GraphProt 3 0.683972

1 ZC3H7B_Baltz2012 GraphProt 4 0.696876

1 ZC3H7B_Baltz2012 GraphProt 5 0.710076

1 ZC3H7B_Baltz2012 GraphProt 6 0.685844

1 ZC3H7B_Baltz2012 GraphProt 7 0.687612

1 ZC3H7B_Baltz2012 GraphProt 8 0.708116

1 ZC3H7B_Baltz2012 GraphProt 9 0.703076

1 ZC3H7B_Baltz2012 GraphProt 10 0.709972

2 AGGF1_HepG2 DeepCLIP 1 0.813963210702341

2 AGGF1_HepG2 DeepCLIP 2 0.839787469187951

2 AGGF1_HepG2 DeepCLIP 3 0.821732765504392

2 AGGF1_HepG2 DeepCLIP 4 0.852424749163879

2 AGGF1_HepG2 DeepCLIP 5 0.780299961810418

2 AGGF1_HepG2 DeepCLIP 6 0.809326937542674

2 AGGF1_HepG2 DeepCLIP 7 0.802882445521982

2 AGGF1_HepG2 DeepCLIP 8 0.810725775653563

2 AGGF1_HepG2 DeepCLIP 9 0.820657960213399

2 AGGF1_HepG2 DeepCLIP 10 0.804311661709736

2 BUD13_K562 DeepCLIP 1 0.800243344606313

2 BUD13_K562 DeepCLIP 2 0.874049745635334

2 BUD13_K562 DeepCLIP 3 0.87017646548734

2 BUD13_K562 DeepCLIP 4 0.800314704012024

2 BUD13_K562 DeepCLIP 5 0.797921002428026

2 BUD13_K562 DeepCLIP 6 0.857793350387328

2 BUD13_K562 DeepCLIP 7 0.785012176263152

2 BUD13_K562 DeepCLIP 8 0.860008201815239

2 BUD13_K562 DeepCLIP 9 0.789770674355417

2 BUD13_K562 DeepCLIP 10 0.859411131344664

2 CSTF2T_HepG2 DeepCLIP 1 0.923782190939054

2 CSTF2T_HepG2 DeepCLIP 2 0.925688509021842

2 CSTF2T_HepG2 DeepCLIP 3 0.924741834055559

2 CSTF2T_HepG2 DeepCLIP 4 0.956675405204817

2 CSTF2T_HepG2 DeepCLIP 5 0.914336389826586

2 CSTF2T_HepG2 DeepCLIP 6 0.925022145610381

2 CSTF2T_HepG2 DeepCLIP 7 0.920135148076324

2 CSTF2T_HepG2 DeepCLIP 8 0.943456869927458

2 CSTF2T_HepG2 DeepCLIP 9 0.926827711141437

2 CSTF2T_HepG2 DeepCLIP 10 0.920130160326239

2 DDX55_HepG2 DeepCLIP 1 0.761969555162194

2 DDX55_HepG2 DeepCLIP 2 0.761996683554091

2 DDX55_HepG2 DeepCLIP 3 0.762068743345066

2 DDX55_HepG2 DeepCLIP 4 0.768146350892185

2 DDX55_HepG2 DeepCLIP 5 0.757394182316358

2 DDX55_HepG2 DeepCLIP 6 0.754876328443441



2 DDX55_HepG2 DeepCLIP 7 0.745032960996155

2 DDX55_HepG2 DeepCLIP 8 0.787837324597991

2 DDX55_HepG2 DeepCLIP 9 0.775863530624563

2 DDX55_HepG2 DeepCLIP 10 0.782432840274811

2 EFTUD2_HepG2 DeepCLIP 1 0.888228605930981

2 EFTUD2_HepG2 DeepCLIP 2 0.852305975439777

2 EFTUD2_HepG2 DeepCLIP 3 0.86996764755359

2 EFTUD2_HepG2 DeepCLIP 4 0.87242261847544

2 EFTUD2_HepG2 DeepCLIP 5 0.874993241132366

2 EFTUD2_HepG2 DeepCLIP 6 0.859195514515044

2 EFTUD2_HepG2 DeepCLIP 7 0.866595723589349

2 EFTUD2_HepG2 DeepCLIP 8 0.874749170912237

2 EFTUD2_HepG2 DeepCLIP 9 0.863352969095453

2 EFTUD2_HepG2 DeepCLIP 10 0.873985418869557

2 EWSR1_K562 DeepCLIP 1 0.869257779030545

2 EWSR1_K562 DeepCLIP 2 0.90789019288673

2 EWSR1_K562 DeepCLIP 3 0.846763971827673

2 EWSR1_K562 DeepCLIP 4 0.833999436254791

2 EWSR1_K562 DeepCLIP 5 0.856024700253685

2 EWSR1_K562 DeepCLIP 6 0.879112119961994

2 EWSR1_K562 DeepCLIP 7 0.854373598803815

2 EWSR1_K562 DeepCLIP 8 0.899092407546719

2 EWSR1_K562 DeepCLIP 9 0.88226965314736

2 EWSR1_K562 DeepCLIP 10 0.891045038015468

2 FASTKD2_HepG2 DeepCLIP 1 0.82073606301128

2 FASTKD2_HepG2 DeepCLIP 2 0.848145707011353

2 FASTKD2_HepG2 DeepCLIP 3 0.85661465584263

2 FASTKD2_HepG2 DeepCLIP 4 0.842427420163412

2 FASTKD2_HepG2 DeepCLIP 5 0.864970192258699

2 FASTKD2_HepG2 DeepCLIP 6 0.868584596621625

2 FASTKD2_HepG2 DeepCLIP 7 0.847198959893096

2 FASTKD2_HepG2 DeepCLIP 8 0.824360329323355

2 FASTKD2_HepG2 DeepCLIP 9 0.828641237082901

2 FASTKD2_HepG2 DeepCLIP 10 0.834917545886828

2 FMR1_K562 DeepCLIP 1 0.894409098040511

2 FMR1_K562 DeepCLIP 2 0.873720097768016

2 FMR1_K562 DeepCLIP 3 0.8881489310752

2 FMR1_K562 DeepCLIP 4 0.899428585584172

2 FMR1_K562 DeepCLIP 5 0.877499938069247

2 FMR1_K562 DeepCLIP 6 0.887504851242331

2 FMR1_K562 DeepCLIP 7 0.889174917219227

2 FMR1_K562 DeepCLIP 8 0.89552488377662

2 FMR1_K562 DeepCLIP 9 0.913581827039792

2 FMR1_K562 DeepCLIP 10 0.895260645896468

2 FUS_HepG2 DeepCLIP 1 0.872265775298192

2 FUS_HepG2 DeepCLIP 2 0.870332339361293

2 FUS_HepG2 DeepCLIP 3 0.803094339168911

2 FUS_HepG2 DeepCLIP 4 0.884312475952289

2 FUS_HepG2 DeepCLIP 5 0.873741102347056

2 FUS_HepG2 DeepCLIP 6 0.865922590419392

2 FUS_HepG2 DeepCLIP 7 0.789174923047326

2 FUS_HepG2 DeepCLIP 8 0.878405155829165

2 FUS_HepG2 DeepCLIP 9 0.882697672181608

2 FUS_HepG2 DeepCLIP 10 0.819156406310119

2 FXR2_K562 DeepCLIP 1 0.901286255429764

2 FXR2_K562 DeepCLIP 2 0.893356449020077

2 FXR2_K562 DeepCLIP 3 0.904194599309095

2 FXR2_K562 DeepCLIP 4 0.89321856722646

2 FXR2_K562 DeepCLIP 5 0.909893713445292

2 FXR2_K562 DeepCLIP 6 0.909010842425693

2 FXR2_K562 DeepCLIP 7 0.891644149536546

2 FXR2_K562 DeepCLIP 8 0.90862284947156

2 FXR2_K562 DeepCLIP 9 0.870072596367616

2 FXR2_K562 DeepCLIP 10 0.910788341827137

2 HNRNPA1_K562 DeepCLIP 1 0.929803691968591

2 HNRNPA1_K562 DeepCLIP 2 0.934290535886486

2 HNRNPA1_K562 DeepCLIP 3 0.928666482986637

2 HNRNPA1_K562 DeepCLIP 4 0.925641961702714

2 HNRNPA1_K562 DeepCLIP 5 0.917540983606557

2 HNRNPA1_K562 DeepCLIP 6 0.933818019010883

2 HNRNPA1_K562 DeepCLIP 7 0.931998209119713

2 HNRNPA1_K562 DeepCLIP 8 0.924717591954815

2 HNRNPA1_K562 DeepCLIP 9 0.925118473618956



2 HNRNPA1_K562 DeepCLIP 10 0.9243725030996

2 HNRNPC_HepG2 DeepCLIP 1 0.976428690181392

2 HNRNPC_HepG2 DeepCLIP 2 0.968424000070002

2 HNRNPC_HepG2 DeepCLIP 3 0.968236745622709

2 HNRNPC_HepG2 DeepCLIP 4 0.966339700567888

2 HNRNPC_HepG2 DeepCLIP 5 0.971398195707148

2 HNRNPC_HepG2 DeepCLIP 6 0.96902513934706

2 HNRNPC_HepG2 DeepCLIP 7 0.959825170847808

2 HNRNPC_HepG2 DeepCLIP 8 0.976076931827131

2 HNRNPC_HepG2 DeepCLIP 9 0.964078646867863

2 HNRNPC_HepG2 DeepCLIP 10 0.969519526088745

2 HNRNPK_HepG2 DeepCLIP 1 0.966860386992744

2 HNRNPK_HepG2 DeepCLIP 2 0.975308123562961

2 HNRNPK_HepG2 DeepCLIP 3 0.967926968556839

2 HNRNPK_HepG2 DeepCLIP 4 0.976197408104154

2 HNRNPK_HepG2 DeepCLIP 5 0.981633894711697

2 HNRNPK_HepG2 DeepCLIP 6 0.961994983427394

2 HNRNPK_HepG2 DeepCLIP 7 0.968606296097226

2 HNRNPK_HepG2 DeepCLIP 8 0.980139934008182

2 HNRNPK_HepG2 DeepCLIP 9 0.962362641464362

2 HNRNPK_HepG2 DeepCLIP 10 0.973122704470125

2 IGF2BP1_HepG2 DeepCLIP 1 0.864793026053959

2 IGF2BP1_HepG2 DeepCLIP 2 0.813108831968161

2 IGF2BP1_HepG2 DeepCLIP 3 0.815058251191633

2 IGF2BP1_HepG2 DeepCLIP 4 0.869174880836688

2 IGF2BP1_HepG2 DeepCLIP 5 0.829271079179971

2 IGF2BP1_HepG2 DeepCLIP 6 0.863702623906706

2 IGF2BP1_HepG2 DeepCLIP 7 0.824404761904762

2 IGF2BP1_HepG2 DeepCLIP 8 0.852672786801796

2 IGF2BP1_HepG2 DeepCLIP 9 0.863403269471054

2 IGF2BP1_HepG2 DeepCLIP 10 0.885896790689065

2 KHDRBS1_K562 DeepCLIP 1 0.912188186296384

2 KHDRBS1_K562 DeepCLIP 2 0.901138322352591

2 KHDRBS1_K562 DeepCLIP 3 0.893958404423795

2 KHDRBS1_K562 DeepCLIP 4 0.912945026292534

2 KHDRBS1_K562 DeepCLIP 5 0.896848395761696

2 KHDRBS1_K562 DeepCLIP 6 0.909704176181852

2 KHDRBS1_K562 DeepCLIP 7 0.867865361227043

2 KHDRBS1_K562 DeepCLIP 8 0.920030448591752

2 KHDRBS1_K562 DeepCLIP 9 0.910878371875301

2 KHDRBS1_K562 DeepCLIP 10 0.913888232669239

2 LIN28B_K562 DeepCLIP 1 0.783524020561058

2 LIN28B_K562 DeepCLIP 2 0.799666862629826

2 LIN28B_K562 DeepCLIP 3 0.822445318741615

2 LIN28B_K562 DeepCLIP 4 0.821230347156273

2 LIN28B_K562 DeepCLIP 5 0.825981700055774

2 LIN28B_K562 DeepCLIP 6 0.820505283468246

2 LIN28B_K562 DeepCLIP 7 0.784161654532025

2 LIN28B_K562 DeepCLIP 8 0.779306290417402

2 LIN28B_K562 DeepCLIP 9 0.769453865750162

2 LIN28B_K562 DeepCLIP 10 0.790076727113764

2 PCBP2_HepG2 DeepCLIP 1 0.968460717271859

2 PCBP2_HepG2 DeepCLIP 2 0.972336172658863

2 PCBP2_HepG2 DeepCLIP 3 0.970888825848065

2 PCBP2_HepG2 DeepCLIP 4 0.978857165253225

2 PCBP2_HepG2 DeepCLIP 5 0.974711090539895

2 PCBP2_HepG2 DeepCLIP 6 0.974635503762542

2 PCBP2_HepG2 DeepCLIP 7 0.965924360965122

2 PCBP2_HepG2 DeepCLIP 8 0.973444778726708

2 PCBP2_HepG2 DeepCLIP 9 0.971755740862398

2 PCBP2_HepG2 DeepCLIP 10 0.964970661132346

2 PTBP1_HepG2 DeepCLIP 1 0.950021908497291

2 PTBP1_HepG2 DeepCLIP 2 0.950004809182332

2 PTBP1_HepG2 DeepCLIP 3 0.959017216872749

2 PTBP1_HepG2 DeepCLIP 4 0.947100063053724

2 PTBP1_HepG2 DeepCLIP 5 0.944803411313334

2 PTBP1_HepG2 DeepCLIP 6 0.945169977877761

2 PTBP1_HepG2 DeepCLIP 7 0.942513171816054

2 PTBP1_HepG2 DeepCLIP 8 0.948898697245941

2 PTBP1_HepG2 DeepCLIP 9 0.949954579944641

2 PTBP1_HepG2 DeepCLIP 10 0.95940195145932

2 PUM2_K562 DeepCLIP 1 0.684246535791715

2 PUM2_K562 DeepCLIP 2 0.694859200646734



2 PUM2_K562 DeepCLIP 3 0.70198534699827

2 PUM2_K562 DeepCLIP 4 0.72048795510659

2 PUM2_K562 DeepCLIP 5 0.704052760605228

2 PUM2_K562 DeepCLIP 6 0.698921410285798

2 PUM2_K562 DeepCLIP 7 0.674760755712728

2 PUM2_K562 DeepCLIP 8 0.697619543401687

2 PUM2_K562 DeepCLIP 9 0.695219663789378

2 PUM2_K562 DeepCLIP 10 0.676021501801441

2 QKI_HepG2 DeepCLIP 1 0.902052869730888

2 QKI_HepG2 DeepCLIP 2 0.874261728983091

2 QKI_HepG2 DeepCLIP 3 0.906968325791855

2 QKI_HepG2 DeepCLIP 4 0.888525839485592

2 QKI_HepG2 DeepCLIP 5 0.874934508216242

2 QKI_HepG2 DeepCLIP 6 0.875169087878066

2 QKI_HepG2 DeepCLIP 7 0.911705167897118

2 QKI_HepG2 DeepCLIP 8 0.85994403429388

2 QKI_HepG2 DeepCLIP 9 0.893294832102882

2 QKI_HepG2 DeepCLIP 10 0.887389854727316

2 RBFOX2_K562 DeepCLIP 1 0.815162068300212

2 RBFOX2_K562 DeepCLIP 2 0.800923210495852

2 RBFOX2_K562 DeepCLIP 3 0.751194289021802

2 RBFOX2_K562 DeepCLIP 4 0.804189658498939

2 RBFOX2_K562 DeepCLIP 5 0.771378545244067

2 RBFOX2_K562 DeepCLIP 6 0.781450897163805

2 RBFOX2_K562 DeepCLIP 7 0.800793941732587

2 RBFOX2_K562 DeepCLIP 8 0.799289021802045

2 RBFOX2_K562 DeepCLIP 9 0.809806096855103

2 RBFOX2_K562 DeepCLIP 10 0.787416554119236

2 SF3B4_K562 DeepCLIP 1 0.823942802203672

2 SF3B4_K562 DeepCLIP 2 0.828462567593002

2 SF3B4_K562 DeepCLIP 3 0.827124696689914

2 SF3B4_K562 DeepCLIP 4 0.767583506713941

2 SF3B4_K562 DeepCLIP 5 0.845180866919997

2 SF3B4_K562 DeepCLIP 6 0.832020897238288

2 SF3B4_K562 DeepCLIP 7 0.826413369891631

2 SF3B4_K562 DeepCLIP 8 0.793741511132815

2 SF3B4_K562 DeepCLIP 9 0.823194171020258

2 SF3B4_K562 DeepCLIP 10 0.81414107501064

2 SFPQ_HepG2 DeepCLIP 1 0.800241901100569

2 SFPQ_HepG2 DeepCLIP 2 0.776583828938526

2 SFPQ_HepG2 DeepCLIP 3 0.769800119956931

2 SFPQ_HepG2 DeepCLIP 4 0.781381202893419

2 SFPQ_HepG2 DeepCLIP 5 0.765339673225757

2 SFPQ_HepG2 DeepCLIP 6 0.813303476583106

2 SFPQ_HepG2 DeepCLIP 7 0.780070528894445

2 SFPQ_HepG2 DeepCLIP 8 0.766381166761813

2 SFPQ_HepG2 DeepCLIP 9 0.788851412384469

2 SFPQ_HepG2 DeepCLIP 10 0.791452887999249

2 SMNDC1_K562 DeepCLIP 1 0.849927928668516

2 SMNDC1_K562 DeepCLIP 2 0.860294294813557

2 SMNDC1_K562 DeepCLIP 3 0.852615898779819

2 SMNDC1_K562 DeepCLIP 4 0.847640354843236

2 SMNDC1_K562 DeepCLIP 5 0.847295943170657

2 SMNDC1_K562 DeepCLIP 6 0.86978049779534

2 SMNDC1_K562 DeepCLIP 7 0.860349570761008

2 SMNDC1_K562 DeepCLIP 8 0.862554230665111

2 SMNDC1_K562 DeepCLIP 9 0.863402503858686

2 SMNDC1_K562 DeepCLIP 10 0.857284590341449

2 SRSF1_HepG2 DeepCLIP 1 0.950728719556306

2 SRSF1_HepG2 DeepCLIP 2 0.96139956595129

2 SRSF1_HepG2 DeepCLIP 3 0.959733783457921

2 SRSF1_HepG2 DeepCLIP 4 0.966014950566675

2 SRSF1_HepG2 DeepCLIP 5 0.949306004340487

2 SRSF1_HepG2 DeepCLIP 6 0.955578490475042

2 SRSF1_HepG2 DeepCLIP 7 0.954891728960694

2 SRSF1_HepG2 DeepCLIP 8 0.960515071135761

2 SRSF1_HepG2 DeepCLIP 9 0.945552929828792

2 SRSF1_HepG2 DeepCLIP 10 0.955081745840366

2 TAF15_HepG2 DeepCLIP 1 0.890354608527941

2 TAF15_HepG2 DeepCLIP 2 0.887798053783343

2 TAF15_HepG2 DeepCLIP 3 0.885716261318049

2 TAF15_HepG2 DeepCLIP 4 0.893229112003151

2 TAF15_HepG2 DeepCLIP 5 0.890645392706812



2 TAF15_HepG2 DeepCLIP 6 0.886247822205539

2 TAF15_HepG2 DeepCLIP 7 0.892596918798981

2 TAF15_HepG2 DeepCLIP 8 0.912720912630158

2 TAF15_HepG2 DeepCLIP 9 0.884924167684309

2 TAF15_HepG2 DeepCLIP 10 0.919501555170587

2 TARDBP_K562 DeepCLIP 1 0.984751559377821

2 TARDBP_K562 DeepCLIP 2 0.984091845507872

2 TARDBP_K562 DeepCLIP 3 0.982692632877567

2 TARDBP_K562 DeepCLIP 4 0.979717966366501

2 TARDBP_K562 DeepCLIP 5 0.975327415755491

2 TARDBP_K562 DeepCLIP 6 0.970497452837603

2 TARDBP_K562 DeepCLIP 7 0.981741168288959

2 TARDBP_K562 DeepCLIP 8 0.971372704993581

2 TARDBP_K562 DeepCLIP 9 0.986154344465906

2 TARDBP_K562 DeepCLIP 10 0.978745067031216

2 TIA1_K562 DeepCLIP 1 0.880887227350949

2 TIA1_K562 DeepCLIP 2 0.898441036596221

2 TIA1_K562 DeepCLIP 3 0.877731152988649

2 TIA1_K562 DeepCLIP 4 0.893657333231607

2 TIA1_K562 DeepCLIP 5 0.892398463925129

2 TIA1_K562 DeepCLIP 6 0.900322134906708

2 TIA1_K562 DeepCLIP 7 0.904972745691446

2 TIA1_K562 DeepCLIP 8 0.872714325678391

2 TIA1_K562 DeepCLIP 9 0.889046565448488

2 TIA1_K562 DeepCLIP 10 0.896186939972703

2 U2AF2_HepG2 DeepCLIP 1 0.940906513252517

2 U2AF2_HepG2 DeepCLIP 2 0.939846311896445

2 U2AF2_HepG2 DeepCLIP 3 0.948987877542634

2 U2AF2_HepG2 DeepCLIP 4 0.938690774604479

2 U2AF2_HepG2 DeepCLIP 5 0.94644832545716

2 U2AF2_HepG2 DeepCLIP 6 0.934776248202178

2 U2AF2_HepG2 DeepCLIP 7 0.923152660776659

2 U2AF2_HepG2 DeepCLIP 8 0.938588041914938

2 U2AF2_HepG2 DeepCLIP 9 0.925550030819807

2 U2AF2_HepG2 DeepCLIP 10 0.933897678241216

2 UPF1_K562 DeepCLIP 1 0.685387861617612

2 UPF1_K562 DeepCLIP 2 0.714188843825371

2 UPF1_K562 DeepCLIP 3 0.672631232871083

2 UPF1_K562 DeepCLIP 4 0.686235478145621

2 UPF1_K562 DeepCLIP 5 0.714140041661637

2 UPF1_K562 DeepCLIP 6 0.700449750466831

2 UPF1_K562 DeepCLIP 7 0.69705414728493

2 UPF1_K562 DeepCLIP 8 0.733572292699967

2 UPF1_K562 DeepCLIP 9 0.701353874763374

2 UPF1_K562 DeepCLIP 10 0.703489611560462

2 AGGF1_HepG2 RNAProt 1 0.853701

2 AGGF1_HepG2 RNAProt 2 0.86463

2 AGGF1_HepG2 RNAProt 3 0.869311

2 AGGF1_HepG2 RNAProt 4 0.845606

2 AGGF1_HepG2 RNAProt 5 0.849559

2 AGGF1_HepG2 RNAProt 6 0.83565

2 AGGF1_HepG2 RNAProt 7 0.877478

2 AGGF1_HepG2 RNAProt 8 0.858047

2 AGGF1_HepG2 RNAProt 9 0.871095

2 AGGF1_HepG2 RNAProt 10 0.880425

2 BUD13_K562 RNAProt 1 0.870656

2 BUD13_K562 RNAProt 2 0.854339

2 BUD13_K562 RNAProt 3 0.849152

2 BUD13_K562 RNAProt 4 0.863991

2 BUD13_K562 RNAProt 5 0.854536

2 BUD13_K562 RNAProt 6 0.864529

2 BUD13_K562 RNAProt 7 0.844847

2 BUD13_K562 RNAProt 8 0.850729

2 BUD13_K562 RNAProt 9 0.863746

2 BUD13_K562 RNAProt 10 0.874557

2 CSTF2T_HepG2 RNAProt 1 0.954988

2 CSTF2T_HepG2 RNAProt 2 0.950453

2 CSTF2T_HepG2 RNAProt 3 0.953535

2 CSTF2T_HepG2 RNAProt 4 0.958816

2 CSTF2T_HepG2 RNAProt 5 0.950734

2 CSTF2T_HepG2 RNAProt 6 0.95511

2 CSTF2T_HepG2 RNAProt 7 0.956441

2 CSTF2T_HepG2 RNAProt 8 0.966616



2 CSTF2T_HepG2 RNAProt 9 0.952799

2 CSTF2T_HepG2 RNAProt 10 0.959619

2 DDX55_HepG2 RNAProt 1 0.791566

2 DDX55_HepG2 RNAProt 2 0.791855

2 DDX55_HepG2 RNAProt 3 0.782849

2 DDX55_HepG2 RNAProt 4 0.781657

2 DDX55_HepG2 RNAProt 5 0.792056

2 DDX55_HepG2 RNAProt 6 0.770434

2 DDX55_HepG2 RNAProt 7 0.79856

2 DDX55_HepG2 RNAProt 8 0.780573

2 DDX55_HepG2 RNAProt 9 0.799451

2 DDX55_HepG2 RNAProt 10 0.778878

2 EFTUD2_HepG2 RNAProt 1 0.888508

2 EFTUD2_HepG2 RNAProt 2 0.904184

2 EFTUD2_HepG2 RNAProt 3 0.886408

2 EFTUD2_HepG2 RNAProt 4 0.893422

2 EFTUD2_HepG2 RNAProt 5 0.881384

2 EFTUD2_HepG2 RNAProt 6 0.905182

2 EFTUD2_HepG2 RNAProt 7 0.901726

2 EFTUD2_HepG2 RNAProt 8 0.893985

2 EFTUD2_HepG2 RNAProt 9 0.891402

2 EFTUD2_HepG2 RNAProt 10 0.887217

2 EWSR1_K562 RNAProt 1 0.906963

2 EWSR1_K562 RNAProt 2 0.893386

2 EWSR1_K562 RNAProt 3 0.900523

2 EWSR1_K562 RNAProt 4 0.914654

2 EWSR1_K562 RNAProt 5 0.891752

2 EWSR1_K562 RNAProt 6 0.891573

2 EWSR1_K562 RNAProt 7 0.918433

2 EWSR1_K562 RNAProt 8 0.907535

2 EWSR1_K562 RNAProt 9 0.905702

2 EWSR1_K562 RNAProt 10 0.882434

2 FASTKD2_HepG2 RNAProt 1 0.870994

2 FASTKD2_HepG2 RNAProt 2 0.871385

2 FASTKD2_HepG2 RNAProt 3 0.847306

2 FASTKD2_HepG2 RNAProt 4 0.85671

2 FASTKD2_HepG2 RNAProt 5 0.879699

2 FASTKD2_HepG2 RNAProt 6 0.868465

2 FASTKD2_HepG2 RNAProt 7 0.869428

2 FASTKD2_HepG2 RNAProt 8 0.870597

2 FASTKD2_HepG2 RNAProt 9 0.870473

2 FASTKD2_HepG2 RNAProt 10 0.86947

2 FMR1_K562 RNAProt 1 0.890927

2 FMR1_K562 RNAProt 2 0.902266

2 FMR1_K562 RNAProt 3 0.905021

2 FMR1_K562 RNAProt 4 0.907039

2 FMR1_K562 RNAProt 5 0.908555

2 FMR1_K562 RNAProt 6 0.883618

2 FMR1_K562 RNAProt 7 0.903366

2 FMR1_K562 RNAProt 8 0.905954

2 FMR1_K562 RNAProt 9 0.912195

2 FMR1_K562 RNAProt 10 0.90469

2 FUS_HepG2 RNAProt 1 0.869512

2 FUS_HepG2 RNAProt 2 0.875199

2 FUS_HepG2 RNAProt 3 0.888433

2 FUS_HepG2 RNAProt 4 0.87162

2 FUS_HepG2 RNAProt 5 0.859778

2 FUS_HepG2 RNAProt 6 0.878289

2 FUS_HepG2 RNAProt 7 0.881512

2 FUS_HepG2 RNAProt 8 0.883561

2 FUS_HepG2 RNAProt 9 0.878853

2 FUS_HepG2 RNAProt 10 0.872518

2 FXR2_K562 RNAProt 1 0.903459

2 FXR2_K562 RNAProt 2 0.916091

2 FXR2_K562 RNAProt 3 0.905216

2 FXR2_K562 RNAProt 4 0.906803

2 FXR2_K562 RNAProt 5 0.893128

2 FXR2_K562 RNAProt 6 0.912073

2 FXR2_K562 RNAProt 7 0.901734

2 FXR2_K562 RNAProt 8 0.911837

2 FXR2_K562 RNAProt 9 0.928562

2 FXR2_K562 RNAProt 10 0.921193

2 HNRNPA1_K562 RNAProt 1 0.937501



2 HNRNPA1_K562 RNAProt 2 0.940886

2 HNRNPA1_K562 RNAProt 3 0.937795

2 HNRNPA1_K562 RNAProt 4 0.938914

2 HNRNPA1_K562 RNAProt 5 0.925591

2 HNRNPA1_K562 RNAProt 6 0.936279

2 HNRNPA1_K562 RNAProt 7 0.931477

2 HNRNPA1_K562 RNAProt 8 0.937839

2 HNRNPA1_K562 RNAProt 9 0.934038

2 HNRNPA1_K562 RNAProt 10 0.94652

2 HNRNPC_HepG2 RNAProt 1 0.980129

2 HNRNPC_HepG2 RNAProt 2 0.976512

2 HNRNPC_HepG2 RNAProt 3 0.972743

2 HNRNPC_HepG2 RNAProt 4 0.969151

2 HNRNPC_HepG2 RNAProt 5 0.971324

2 HNRNPC_HepG2 RNAProt 6 0.975249

2 HNRNPC_HepG2 RNAProt 7 0.97496

2 HNRNPC_HepG2 RNAProt 8 0.977686

2 HNRNPC_HepG2 RNAProt 9 0.972937

2 HNRNPC_HepG2 RNAProt 10 0.968153

2 HNRNPK_HepG2 RNAProt 1 0.982736

2 HNRNPK_HepG2 RNAProt 2 0.985045

2 HNRNPK_HepG2 RNAProt 3 0.987351

2 HNRNPK_HepG2 RNAProt 4 0.989522

2 HNRNPK_HepG2 RNAProt 5 0.980138

2 HNRNPK_HepG2 RNAProt 6 0.984945

2 HNRNPK_HepG2 RNAProt 7 0.981901

2 HNRNPK_HepG2 RNAProt 8 0.983724

2 HNRNPK_HepG2 RNAProt 9 0.979531

2 HNRNPK_HepG2 RNAProt 10 0.983091

2 IGF2BP1_HepG2 RNAProt 1 0.87074

2 IGF2BP1_HepG2 RNAProt 2 0.885933

2 IGF2BP1_HepG2 RNAProt 3 0.884697

2 IGF2BP1_HepG2 RNAProt 4 0.868739

2 IGF2BP1_HepG2 RNAProt 5 0.883662

2 IGF2BP1_HepG2 RNAProt 6 0.874693

2 IGF2BP1_HepG2 RNAProt 7 0.872547

2 IGF2BP1_HepG2 RNAProt 8 0.871946

2 IGF2BP1_HepG2 RNAProt 9 0.877855

2 IGF2BP1_HepG2 RNAProt 10 0.866766

2 KHDRBS1_K562 RNAProt 1 0.919074

2 KHDRBS1_K562 RNAProt 2 0.912072

2 KHDRBS1_K562 RNAProt 3 0.925576

2 KHDRBS1_K562 RNAProt 4 0.912208

2 KHDRBS1_K562 RNAProt 5 0.918088

2 KHDRBS1_K562 RNAProt 6 0.905741

2 KHDRBS1_K562 RNAProt 7 0.911789

2 KHDRBS1_K562 RNAProt 8 0.909903

2 KHDRBS1_K562 RNAProt 9 0.938403

2 KHDRBS1_K562 RNAProt 10 0.911805

2 LIN28B_K562 RNAProt 1 0.829168

2 LIN28B_K562 RNAProt 2 0.851151

2 LIN28B_K562 RNAProt 3 0.837563

2 LIN28B_K562 RNAProt 4 0.807007

2 LIN28B_K562 RNAProt 5 0.850777

2 LIN28B_K562 RNAProt 6 0.83831

2 LIN28B_K562 RNAProt 7 0.824533

2 LIN28B_K562 RNAProt 8 0.833244

2 LIN28B_K562 RNAProt 9 0.82392

2 LIN28B_K562 RNAProt 10 0.855171

2 PCBP2_HepG2 RNAProt 1 0.977661

2 PCBP2_HepG2 RNAProt 2 0.970131

2 PCBP2_HepG2 RNAProt 3 0.977618

2 PCBP2_HepG2 RNAProt 4 0.977978

2 PCBP2_HepG2 RNAProt 5 0.981006

2 PCBP2_HepG2 RNAProt 6 0.979527

2 PCBP2_HepG2 RNAProt 7 0.978636

2 PCBP2_HepG2 RNAProt 8 0.977

2 PCBP2_HepG2 RNAProt 9 0.982784

2 PCBP2_HepG2 RNAProt 10 0.985241

2 PTBP1_HepG2 RNAProt 1 0.96837

2 PTBP1_HepG2 RNAProt 2 0.942114

2 PTBP1_HepG2 RNAProt 3 0.962348

2 PTBP1_HepG2 RNAProt 4 0.951491



2 PTBP1_HepG2 RNAProt 5 0.960935

2 PTBP1_HepG2 RNAProt 6 0.967956

2 PTBP1_HepG2 RNAProt 7 0.958462

2 PTBP1_HepG2 RNAProt 8 0.956332

2 PTBP1_HepG2 RNAProt 9 0.955583

2 PTBP1_HepG2 RNAProt 10 0.952087

2 PUM2_K562 RNAProt 1 0.711181

2 PUM2_K562 RNAProt 2 0.740589

2 PUM2_K562 RNAProt 3 0.709025

2 PUM2_K562 RNAProt 4 0.725998

2 PUM2_K562 RNAProt 5 0.749344

2 PUM2_K562 RNAProt 6 0.716488

2 PUM2_K562 RNAProt 7 0.729325

2 PUM2_K562 RNAProt 8 0.743384

2 PUM2_K562 RNAProt 9 0.746556

2 PUM2_K562 RNAProt 10 0.743113

2 QKI_HepG2 RNAProt 1 0.897736

2 QKI_HepG2 RNAProt 2 0.913076

2 QKI_HepG2 RNAProt 3 0.908768

2 QKI_HepG2 RNAProt 4 0.909082

2 QKI_HepG2 RNAProt 5 0.918698

2 QKI_HepG2 RNAProt 6 0.910587

2 QKI_HepG2 RNAProt 7 0.920328

2 QKI_HepG2 RNAProt 8 0.917133

2 QKI_HepG2 RNAProt 9 0.908413

2 QKI_HepG2 RNAProt 10 0.913773

2 RBFOX2_K562 RNAProt 1 0.842158

2 RBFOX2_K562 RNAProt 2 0.827617

2 RBFOX2_K562 RNAProt 3 0.825756

2 RBFOX2_K562 RNAProt 4 0.845179

2 RBFOX2_K562 RNAProt 5 0.842518

2 RBFOX2_K562 RNAProt 6 0.855372

2 RBFOX2_K562 RNAProt 7 0.843959

2 RBFOX2_K562 RNAProt 8 0.832072

2 RBFOX2_K562 RNAProt 9 0.846309

2 RBFOX2_K562 RNAProt 10 0.850253

2 SF3B4_K562 RNAProt 1 0.859502

2 SF3B4_K562 RNAProt 2 0.870749

2 SF3B4_K562 RNAProt 3 0.846293

2 SF3B4_K562 RNAProt 4 0.851742

2 SF3B4_K562 RNAProt 5 0.841469

2 SF3B4_K562 RNAProt 6 0.870853

2 SF3B4_K562 RNAProt 7 0.858903

2 SF3B4_K562 RNAProt 8 0.859915

2 SF3B4_K562 RNAProt 9 0.858971

2 SF3B4_K562 RNAProt 10 0.861991

2 SFPQ_HepG2 RNAProt 1 0.825707

2 SFPQ_HepG2 RNAProt 2 0.839411

2 SFPQ_HepG2 RNAProt 3 0.824836

2 SFPQ_HepG2 RNAProt 4 0.836155

2 SFPQ_HepG2 RNAProt 5 0.815469

2 SFPQ_HepG2 RNAProt 6 0.834349

2 SFPQ_HepG2 RNAProt 7 0.81438

2 SFPQ_HepG2 RNAProt 8 0.81218

2 SFPQ_HepG2 RNAProt 9 0.806136

2 SFPQ_HepG2 RNAProt 10 0.826035

2 SMNDC1_K562 RNAProt 1 0.887304

2 SMNDC1_K562 RNAProt 2 0.888073

2 SMNDC1_K562 RNAProt 3 0.896902

2 SMNDC1_K562 RNAProt 4 0.898097

2 SMNDC1_K562 RNAProt 5 0.877747

2 SMNDC1_K562 RNAProt 6 0.894258

2 SMNDC1_K562 RNAProt 7 0.889942

2 SMNDC1_K562 RNAProt 8 0.881965

2 SMNDC1_K562 RNAProt 9 0.886071

2 SMNDC1_K562 RNAProt 10 0.891111

2 SRSF1_HepG2 RNAProt 1 0.965327

2 SRSF1_HepG2 RNAProt 2 0.963777

2 SRSF1_HepG2 RNAProt 3 0.959609

2 SRSF1_HepG2 RNAProt 4 0.95958

2 SRSF1_HepG2 RNAProt 5 0.960553

2 SRSF1_HepG2 RNAProt 6 0.963382

2 SRSF1_HepG2 RNAProt 7 0.962422



2 SRSF1_HepG2 RNAProt 8 0.965732

2 SRSF1_HepG2 RNAProt 9 0.967328

2 SRSF1_HepG2 RNAProt 10 0.970565

2 TAF15_HepG2 RNAProt 1 0.921458

2 TAF15_HepG2 RNAProt 2 0.922439

2 TAF15_HepG2 RNAProt 3 0.926178

2 TAF15_HepG2 RNAProt 4 0.924318

2 TAF15_HepG2 RNAProt 5 0.929484

2 TAF15_HepG2 RNAProt 6 0.928782

2 TAF15_HepG2 RNAProt 7 0.925556

2 TAF15_HepG2 RNAProt 8 0.906682

2 TAF15_HepG2 RNAProt 9 0.912488

2 TAF15_HepG2 RNAProt 10 0.916414

2 TARDBP_K562 RNAProt 1 0.980408

2 TARDBP_K562 RNAProt 2 0.991677

2 TARDBP_K562 RNAProt 3 0.981342

2 TARDBP_K562 RNAProt 4 0.983115

2 TARDBP_K562 RNAProt 5 0.984958

2 TARDBP_K562 RNAProt 6 0.981208

2 TARDBP_K562 RNAProt 7 0.983431

2 TARDBP_K562 RNAProt 8 0.984747

2 TARDBP_K562 RNAProt 9 0.978256

2 TARDBP_K562 RNAProt 10 0.986119

2 TIA1_K562 RNAProt 1 0.896467

2 TIA1_K562 RNAProt 2 0.888961

2 TIA1_K562 RNAProt 3 0.895587

2 TIA1_K562 RNAProt 4 0.888512

2 TIA1_K562 RNAProt 5 0.882988

2 TIA1_K562 RNAProt 6 0.896022

2 TIA1_K562 RNAProt 7 0.903493

2 TIA1_K562 RNAProt 8 0.891318

2 TIA1_K562 RNAProt 9 0.890568

2 TIA1_K562 RNAProt 10 0.907333

2 U2AF2_HepG2 RNAProt 1 0.939694

2 U2AF2_HepG2 RNAProt 2 0.935132

2 U2AF2_HepG2 RNAProt 3 0.939556

2 U2AF2_HepG2 RNAProt 4 0.934077

2 U2AF2_HepG2 RNAProt 5 0.936482

2 U2AF2_HepG2 RNAProt 6 0.930495

2 U2AF2_HepG2 RNAProt 7 0.943387

2 U2AF2_HepG2 RNAProt 8 0.942016

2 U2AF2_HepG2 RNAProt 9 0.9325

2 U2AF2_HepG2 RNAProt 10 0.939215

2 UPF1_K562 RNAProt 1 0.767225

2 UPF1_K562 RNAProt 2 0.766626

2 UPF1_K562 RNAProt 3 0.759644

2 UPF1_K562 RNAProt 4 0.761995

2 UPF1_K562 RNAProt 5 0.772848

2 UPF1_K562 RNAProt 6 0.746114

2 UPF1_K562 RNAProt 7 0.778927

2 UPF1_K562 RNAProt 8 0.758209

2 UPF1_K562 RNAProt 9 0.766629

2 UPF1_K562 RNAProt 10 0.762816

2 AGGF1_HepG2 GraphProt 1 0.816942763503764

2 AGGF1_HepG2 GraphProt 2 0.815343228822944

2 AGGF1_HepG2 GraphProt 3 0.808164897484368

2 AGGF1_HepG2 GraphProt 4 0.795363027259203

2 AGGF1_HepG2 GraphProt 5 0.776539905985129

2 AGGF1_HepG2 GraphProt 6 0.807982218786239

2 AGGF1_HepG2 GraphProt 7 0.798768087931295

2 AGGF1_HepG2 GraphProt 8 0.792387242791438

2 AGGF1_HepG2 GraphProt 9 0.801980919088195

2 AGGF1_HepG2 GraphProt 10 0.802983703355126

2 BUD13_K562 GraphProt 1 0.791531355993361

2 BUD13_K562 GraphProt 2 0.802334560150105

2 BUD13_K562 GraphProt 3 0.781027639460201

2 BUD13_K562 GraphProt 4 0.786898318539366

2 BUD13_K562 GraphProt 5 0.79733889009165

2 BUD13_K562 GraphProt 6 0.773812874359529

2 BUD13_K562 GraphProt 7 0.777611495994804

2 BUD13_K562 GraphProt 8 0.777664718192971

2 BUD13_K562 GraphProt 9 0.785391859709894

2 BUD13_K562 GraphProt 10 0.793633115100012



2 CSTF2T_HepG2 GraphProt 1 0.924120977062154

2 CSTF2T_HepG2 GraphProt 2 0.922567628449981

2 CSTF2T_HepG2 GraphProt 3 0.924195412430706

2 CSTF2T_HepG2 GraphProt 4 0.930163953693365

2 CSTF2T_HepG2 GraphProt 5 0.918483477307007

2 CSTF2T_HepG2 GraphProt 6 0.925662572721396

2 CSTF2T_HepG2 GraphProt 7 0.916968748283627

2 CSTF2T_HepG2 GraphProt 8 0.921097850905068

2 CSTF2T_HepG2 GraphProt 9 0.92607238974021

2 CSTF2T_HepG2 GraphProt 10 0.917525833862957

2 DDX55_HepG2 GraphProt 1 0.749655747270151

2 DDX55_HepG2 GraphProt 2 0.755630574310244

2 DDX55_HepG2 GraphProt 3 0.739349837459365

2 DDX55_HepG2 GraphProt 4 0.7488272068017

2 DDX55_HepG2 GraphProt 5 0.743313328332083

2 DDX55_HepG2 GraphProt 6 0.747598566308244

2 DDX55_HepG2 GraphProt 7 0.735210469283988

2 DDX55_HepG2 GraphProt 8 0.74029674085188

2 DDX55_HepG2 GraphProt 9 0.747899264867897

2 DDX55_HepG2 GraphProt 10 0.745221808251374

2 EFTUD2_HepG2 GraphProt 1 0.877399235069138

2 EFTUD2_HepG2 GraphProt 2 0.851403353927626

2 EFTUD2_HepG2 GraphProt 3 0.866630626654898

2 EFTUD2_HepG2 GraphProt 4 0.880928949691086

2 EFTUD2_HepG2 GraphProt 5 0.872359517505148

2 EFTUD2_HepG2 GraphProt 6 0.866219476316564

2 EFTUD2_HepG2 GraphProt 7 0.866444542512504

2 EFTUD2_HepG2 GraphProt 8 0.871612238893792

2 EFTUD2_HepG2 GraphProt 9 0.86777875845837

2 EFTUD2_HepG2 GraphProt 10 0.875125188519182

2 EWSR1_K562 GraphProt 1 0.863431506985793

2 EWSR1_K562 GraphProt 2 0.875480256281598

2 EWSR1_K562 GraphProt 3 0.844384284728348

2 EWSR1_K562 GraphProt 4 0.839662783557257

2 EWSR1_K562 GraphProt 5 0.855975647089298

2 EWSR1_K562 GraphProt 6 0.849319535041274

2 EWSR1_K562 GraphProt 7 0.860736999795308

2 EWSR1_K562 GraphProt 8 0.854087227764202

2 EWSR1_K562 GraphProt 9 0.855811712366113

2 EWSR1_K562 GraphProt 10 0.853557733817517

2 FASTKD2_HepG2 GraphProt 1 0.804871108901695

2 FASTKD2_HepG2 GraphProt 2 0.808430249671313

2 FASTKD2_HepG2 GraphProt 3 0.802714202549696

2 FASTKD2_HepG2 GraphProt 4 0.817806005978506

2 FASTKD2_HepG2 GraphProt 5 0.807953571732262

2 FASTKD2_HepG2 GraphProt 6 0.810064690837972

2 FASTKD2_HepG2 GraphProt 7 0.798451082868375

2 FASTKD2_HepG2 GraphProt 8 0.820972684637071

2 FASTKD2_HepG2 GraphProt 9 0.813152877074326

2 FASTKD2_HepG2 GraphProt 10 0.793651001568584

2 FMR1_K562 GraphProt 1 0.82974042214404

2 FMR1_K562 GraphProt 2 0.813598416704018

2 FMR1_K562 GraphProt 3 0.822126847877921

2 FMR1_K562 GraphProt 4 0.834826371620197

2 FMR1_K562 GraphProt 5 0.80973433189452

2 FMR1_K562 GraphProt 6 0.824333575185181

2 FMR1_K562 GraphProt 7 0.847776807637599

2 FMR1_K562 GraphProt 8 0.827502244303159

2 FMR1_K562 GraphProt 9 0.851188353398838

2 FMR1_K562 GraphProt 10 0.831496898967415

2 FUS_HepG2 GraphProt 1 0.812006089788982

2 FUS_HepG2 GraphProt 2 0.82006207808148

2 FUS_HepG2 GraphProt 3 0.801220318179672

2 FUS_HepG2 GraphProt 4 0.807122456686966

2 FUS_HepG2 GraphProt 5 0.798707100033045

2 FUS_HepG2 GraphProt 6 0.802815937308219

2 FUS_HepG2 GraphProt 7 0.782539064344049

2 FUS_HepG2 GraphProt 8 0.807101803332861

2 FUS_HepG2 GraphProt 9 0.80093986294896

2 FUS_HepG2 GraphProt 10 0.814416351606805

2 FXR2_K562 GraphProt 1 0.857067787703626

2 FXR2_K562 GraphProt 2 0.85287849594208

2 FXR2_K562 GraphProt 3 0.850324049746015



2 FXR2_K562 GraphProt 4 0.875916472737282

2 FXR2_K562 GraphProt 5 0.85336019151048

2 FXR2_K562 GraphProt 6 0.865400495458299

2 FXR2_K562 GraphProt 7 0.863784915967791

2 FXR2_K562 GraphProt 8 0.875292358581977

2 FXR2_K562 GraphProt 9 0.859547804804704

2 FXR2_K562 GraphProt 10 0.843481656587256

2 HNRNPA1_K562 GraphProt 1 0.896588465699769

2 HNRNPA1_K562 GraphProt 2 0.887416428544005

2 HNRNPA1_K562 GraphProt 3 0.870680198980963

2 HNRNPA1_K562 GraphProt 4 0.869804721135968

2 HNRNPA1_K562 GraphProt 5 0.879019519659516

2 HNRNPA1_K562 GraphProt 6 0.880346790691552

2 HNRNPA1_K562 GraphProt 7 0.886142632274624

2 HNRNPA1_K562 GraphProt 8 0.891678641357107

2 HNRNPA1_K562 GraphProt 9 0.872413329750067

2 HNRNPA1_K562 GraphProt 10 0.881391605284952

2 HNRNPC_HepG2 GraphProt 1 0.936101151673186

2 HNRNPC_HepG2 GraphProt 2 0.940447088222512

2 HNRNPC_HepG2 GraphProt 3 0.929835193937418

2 HNRNPC_HepG2 GraphProt 4 0.938696830182529

2 HNRNPC_HepG2 GraphProt 5 0.93911954041721

2 HNRNPC_HepG2 GraphProt 6 0.938499904932638

2 HNRNPC_HepG2 GraphProt 7 0.935963643524554

2 HNRNPC_HepG2 GraphProt 8 0.936453001840932

2 HNRNPC_HepG2 GraphProt 9 0.933053312232593

2 HNRNPC_HepG2 GraphProt 10 0.941340055652919

2 HNRNPK_HepG2 GraphProt 1 0.968308992910339

2 HNRNPK_HepG2 GraphProt 2 0.967792737384355

2 HNRNPK_HepG2 GraphProt 3 0.962948881384236

2 HNRNPK_HepG2 GraphProt 4 0.960682575537316

2 HNRNPK_HepG2 GraphProt 5 0.962225750900186

2 HNRNPK_HepG2 GraphProt 6 0.96170763163584

2 HNRNPK_HepG2 GraphProt 7 0.967300830123324

2 HNRNPK_HepG2 GraphProt 8 0.963837006181134

2 HNRNPK_HepG2 GraphProt 9 0.959958867090686

2 HNRNPK_HepG2 GraphProt 10 0.964665636477649

2 IGF2BP1_HepG2 GraphProt 1 0.757619856091842

2 IGF2BP1_HepG2 GraphProt 2 0.753961516694963

2 IGF2BP1_HepG2 GraphProt 3 0.793654643521245

2 IGF2BP1_HepG2 GraphProt 4 0.762257025051107

2 IGF2BP1_HepG2 GraphProt 5 0.80069068443704

2 IGF2BP1_HepG2 GraphProt 6 0.782926095608311

2 IGF2BP1_HepG2 GraphProt 7 0.756510597436253

2 IGF2BP1_HepG2 GraphProt 8 0.79104481928826

2 IGF2BP1_HepG2 GraphProt 9 0.785326715720302

2 IGF2BP1_HepG2 GraphProt 10 0.806628603822481

2 KHDRBS1_K562 GraphProt 1 0.887354733015922

2 KHDRBS1_K562 GraphProt 2 0.858628986842779

2 KHDRBS1_K562 GraphProt 3 0.855617924729805

2 KHDRBS1_K562 GraphProt 4 0.886002819428425

2 KHDRBS1_K562 GraphProt 5 0.858305779828271

2 KHDRBS1_K562 GraphProt 6 0.866287325387671

2 KHDRBS1_K562 GraphProt 7 0.863011662181212

2 KHDRBS1_K562 GraphProt 8 0.882272630184972

2 KHDRBS1_K562 GraphProt 9 0.880111068392499

2 KHDRBS1_K562 GraphProt 10 0.870179845358623

2 LIN28B_K562 GraphProt 1 0.746428050523614

2 LIN28B_K562 GraphProt 2 0.770960590414515

2 LIN28B_K562 GraphProt 3 0.794830955923106

2 LIN28B_K562 GraphProt 4 0.777057262040197

2 LIN28B_K562 GraphProt 5 0.784589131005513

2 LIN28B_K562 GraphProt 6 0.804690644963682

2 LIN28B_K562 GraphProt 7 0.78395029316531

2 LIN28B_K562 GraphProt 8 0.757177295638834

2 LIN28B_K562 GraphProt 9 0.776334283000949

2 LIN28B_K562 GraphProt 10 0.780021915406531

2 PCBP2_HepG2 GraphProt 1 0.954189250059074

2 PCBP2_HepG2 GraphProt 2 0.964441310255198

2 PCBP2_HepG2 GraphProt 3 0.958779386924376

2 PCBP2_HepG2 GraphProt 4 0.966051929591375

2 PCBP2_HepG2 GraphProt 5 0.958958148476782

2 PCBP2_HepG2 GraphProt 6 0.959762274475007



2 PCBP2_HepG2 GraphProt 7 0.949336364980775

2 PCBP2_HepG2 GraphProt 8 0.964636017450458

2 PCBP2_HepG2 GraphProt 9 0.960653283052351

2 PCBP2_HepG2 GraphProt 10 0.950227373558119

2 PTBP1_HepG2 GraphProt 1 0.928248433900841

2 PTBP1_HepG2 GraphProt 2 0.932706610340929

2 PTBP1_HepG2 GraphProt 3 0.94145296602606

2 PTBP1_HepG2 GraphProt 4 0.928848077291396

2 PTBP1_HepG2 GraphProt 5 0.92515375284629

2 PTBP1_HepG2 GraphProt 6 0.929590772701155

2 PTBP1_HepG2 GraphProt 7 0.927306292694346

2 PTBP1_HepG2 GraphProt 8 0.928269243046541

2 PTBP1_HepG2 GraphProt 9 0.933796897278202

2 PTBP1_HepG2 GraphProt 10 0.94106105424443

2 PUM2_K562 GraphProt 1 0.669065462135989

2 PUM2_K562 GraphProt 2 0.679598077763215

2 PUM2_K562 GraphProt 3 0.670067123982347

2 PUM2_K562 GraphProt 4 0.674736506674707

2 PUM2_K562 GraphProt 5 0.671848873386146

2 PUM2_K562 GraphProt 6 0.666833420136509

2 PUM2_K562 GraphProt 7 0.66109498780187

2 PUM2_K562 GraphProt 8 0.669788725638003

2 PUM2_K562 GraphProt 9 0.656196890162002

2 PUM2_K562 GraphProt 10 0.638820550423508

2 QKI_HepG2 GraphProt 1 0.832702351412029

2 QKI_HepG2 GraphProt 2 0.844698097601323

2 QKI_HepG2 GraphProt 3 0.838291386033321

2 QKI_HepG2 GraphProt 4 0.83638662412856

2 QKI_HepG2 GraphProt 5 0.787418173224625

2 QKI_HepG2 GraphProt 6 0.851716885265272

2 QKI_HepG2 GraphProt 7 0.856481153255347

2 QKI_HepG2 GraphProt 8 0.839725865532317

2 QKI_HepG2 GraphProt 9 0.827002245066761

2 QKI_HepG2 GraphProt 10 0.804009467455621

2 RBFOX2_K562 GraphProt 1 0.786744560838034

2 RBFOX2_K562 GraphProt 2 0.771607668234545

2 RBFOX2_K562 GraphProt 3 0.753815377696157

2 RBFOX2_K562 GraphProt 4 0.772754738224808

2 RBFOX2_K562 GraphProt 5 0.769418277350347

2 RBFOX2_K562 GraphProt 6 0.749849878025896

2 RBFOX2_K562 GraphProt 7 0.766027397260274

2 RBFOX2_K562 GraphProt 8 0.767380371551886

2 RBFOX2_K562 GraphProt 9 0.785651154062676

2 RBFOX2_K562 GraphProt 10 0.762949896791143

2 SF3B4_K562 GraphProt 1 0.788647259084277

2 SF3B4_K562 GraphProt 2 0.802670279534033

2 SF3B4_K562 GraphProt 3 0.781976522979094

2 SF3B4_K562 GraphProt 4 0.765509358054345

2 SF3B4_K562 GraphProt 5 0.787615011265397

2 SF3B4_K562 GraphProt 6 0.767770708644745

2 SF3B4_K562 GraphProt 7 0.765615229625512

2 SF3B4_K562 GraphProt 8 0.766308357567998

2 SF3B4_K562 GraphProt 9 0.761807864124466

2 SF3B4_K562 GraphProt 10 0.762718868896475

2 SFPQ_HepG2 GraphProt 1 0.793129680704075

2 SFPQ_HepG2 GraphProt 2 0.764407025693134

2 SFPQ_HepG2 GraphProt 3 0.774779618249885

2 SFPQ_HepG2 GraphProt 4 0.785179092093497

2 SFPQ_HepG2 GraphProt 5 0.772665281321892

2 SFPQ_HepG2 GraphProt 6 0.795649981516773

2 SFPQ_HepG2 GraphProt 7 0.773505101729528

2 SFPQ_HepG2 GraphProt 8 0.77431351859628

2 SFPQ_HepG2 GraphProt 9 0.793996360778234

2 SFPQ_HepG2 GraphProt 10 0.775498777953638

2 SMNDC1_K562 GraphProt 1 0.84774038247597

2 SMNDC1_K562 GraphProt 2 0.858300051174795

2 SMNDC1_K562 GraphProt 3 0.858876462931648

2 SMNDC1_K562 GraphProt 4 0.839817328230687

2 SMNDC1_K562 GraphProt 5 0.846341694326257

2 SMNDC1_K562 GraphProt 6 0.855793059856096

2 SMNDC1_K562 GraphProt 7 0.849545287474104

2 SMNDC1_K562 GraphProt 8 0.859163724354548

2 SMNDC1_K562 GraphProt 9 0.859597413735493



2 SMNDC1_K562 GraphProt 10 0.859071835111715

2 SRSF1_HepG2 GraphProt 1 0.917904436211646

2 SRSF1_HepG2 GraphProt 2 0.939089959152655

2 SRSF1_HepG2 GraphProt 3 0.930018048826826

2 SRSF1_HepG2 GraphProt 4 0.943588866723663

2 SRSF1_HepG2 GraphProt 5 0.918461100028498

2 SRSF1_HepG2 GraphProt 6 0.931045882017669

2 SRSF1_HepG2 GraphProt 7 0.926795719381688

2 SRSF1_HepG2 GraphProt 8 0.929510582639714

2 SRSF1_HepG2 GraphProt 9 0.924794292508918

2 SRSF1_HepG2 GraphProt 10 0.935705112960761

2 TAF15_HepG2 GraphProt 1 0.889247773353339

2 TAF15_HepG2 GraphProt 2 0.88729284491382

2 TAF15_HepG2 GraphProt 3 0.879397987842413

2 TAF15_HepG2 GraphProt 4 0.893688442597722

2 TAF15_HepG2 GraphProt 5 0.888512571175746

2 TAF15_HepG2 GraphProt 6 0.886392928593413

2 TAF15_HepG2 GraphProt 7 0.888927362265312

2 TAF15_HepG2 GraphProt 8 0.888174726839027

2 TAF15_HepG2 GraphProt 9 0.880723178693165

2 TAF15_HepG2 GraphProt 10 0.893990602191538

2 TARDBP_K562 GraphProt 1 0.97450569758143

2 TARDBP_K562 GraphProt 2 0.975202211960817

2 TARDBP_K562 GraphProt 3 0.973645021563804

2 TARDBP_K562 GraphProt 4 0.978544073882118

2 TARDBP_K562 GraphProt 5 0.969973663782894

2 TARDBP_K562 GraphProt 6 0.968687340088976

2 TARDBP_K562 GraphProt 7 0.979369572405836

2 TARDBP_K562 GraphProt 8 0.967409224476969

2 TARDBP_K562 GraphProt 9 0.97566415264254

2 TARDBP_K562 GraphProt 10 0.977000911320099

2 TIA1_K562 GraphProt 1 0.794103613502416

2 TIA1_K562 GraphProt 2 0.796857254222025

2 TIA1_K562 GraphProt 3 0.79779977554216

2 TIA1_K562 GraphProt 4 0.795221702519438

2 TIA1_K562 GraphProt 5 0.812240008601977

2 TIA1_K562 GraphProt 6 0.822920236823182

2 TIA1_K562 GraphProt 7 0.798030418494014

2 TIA1_K562 GraphProt 8 0.782709301680066

2 TIA1_K562 GraphProt 9 0.802544743717207

2 TIA1_K562 GraphProt 10 0.789802520351053

2 U2AF2_HepG2 GraphProt 1 0.792557737505584

2 U2AF2_HepG2 GraphProt 2 0.807426723384418

2 U2AF2_HepG2 GraphProt 3 0.839874327447896

2 U2AF2_HepG2 GraphProt 4 0.814208845885804

2 U2AF2_HepG2 GraphProt 5 0.809893680815546

2 U2AF2_HepG2 GraphProt 6 0.806765692614382

2 U2AF2_HepG2 GraphProt 7 0.806196820148782

2 U2AF2_HepG2 GraphProt 8 0.803597996790976

2 U2AF2_HepG2 GraphProt 9 0.78230498695321

2 U2AF2_HepG2 GraphProt 10 0.81444385018071

2 UPF1_K562 GraphProt 1 0.675274895850024

2 UPF1_K562 GraphProt 2 0.705545986220157

2 UPF1_K562 GraphProt 3 0.683608145729851

2 UPF1_K562 GraphProt 4 0.694689102307323

2 UPF1_K562 GraphProt 5 0.692815153821503

2 UPF1_K562 GraphProt 6 0.681786772953052

2 UPF1_K562 GraphProt 7 0.674640231933985

2 UPF1_K562 GraphProt 8 0.670724593414517

2 UPF1_K562 GraphProt 9 0.694627763980131

2 UPF1_K562 GraphProt 10 0.699482436959618



[P3] Table S4: Two-sided Wilcoxon Test on Table S3 single fold AUCs, to determine significantly different AUCs between 
methods and single datasets. Calculated p-values for two method comparions are shown: RNAProt vs. GraphProt, and 
RNAProt vs. DeepCLIP.



[P3] Table S5: Hold out validation results for DeepRAM and RNAProt. Results for the first benchmark set, containing 23 
CLIP-seq datasets from 20 different RBPs and various CLIP-seq protocols.

DeepRAM RNAProt

Dataset_ID AUC AUC

ALKBH5_Baltz2012 72.62% 65.66%

C17ORF85_Baltz2012 82.20% 77.21%

C22ORF28_Baltz2012 75.87% 74.85%

CAPRIN1_Baltz2012 75.21% 75.48%

CLIPSEQ_AGO2 74.82% 74.57%

CLIPSEQ_ELAVL1 96.39% 97.86%

CLIPSEQ_SFRS1 89.90% 89.50%

ICLIP_HNRNPC 95.41% 97.17%

ICLIP_TDP43 87.50% 89.42%

ICLIP_TIA1 91.64% 92.13%

ICLIP_TIAL1 89.77% 90.34%

PARCLIP_AGO1234 78.70% 81.79%

PARCLIP_ELAVL1A 96.22% 97.33%

PARCLIP_ELAVL1 92.39% 93.73%

PARCLIP_EWSR1 94.86% 94.78%

PARCLIP_FUS 96.82% 96.87%

PARCLIP_HUR 98.75% 98.83%

PARCLIP_IGF2BP123 87.36% 87.54%

PARCLIP_MOV10 77.04% 80.11%

PARCLIP_PUM2 93.89% 94.04%

PARCLIP_QKI 95.95% 95.87%

PARCLIP_TAF15 95.99% 97.69%

ZC3H7B_Baltz2012 71.43% 69.80%

Mean 87.42% 87.50%



[P3] Table S6: Hold out validation results for DeepRAM and RNAProt. Results for the second benchmark set, containing 
30 eCLIP datasets from 30 different RBPs.

DeepRAM RNAProt

Dataset_ID AUC AUC

AGGF1_HepG2 86.89% 86.38%

BUD13_K562 87.91% 85.35%

CSTF2T_HepG2 94.97% 95.64%

DDX55_HepG2 79.35% 77.63%

EFTUD2_HepG2 90.07% 90.38%

EWSR1_K562 89.94% 89.81%

FASTKD2_HepG2 88.19% 86.70%

FMR1_K562 91.98% 90.35%

FUS_HepG2 87.77% 88.01%

FXR2_K562 93.10% 92.40%

HNRNPA1_K562 92.02% 94.00%

HNRNPC_HepG2 97.15% 97.38%

HNRNPK_HepG2 97.66% 98.23%

IGF2BP1_HepG2 85.84% 87.23%

KHDRBS1_K562 89.48% 92.16%

LIN28B_K562 86.87% 85.02%

PCBP2_HepG2 97.41% 97.81%

PTBP1_HepG2 95.61% 95.48%

PUM2_K562 72.28% 72.06%

QKI_HepG2 89.51% 90.14%

RBFOX2_K562 84.78% 85.03%

SF3B4_K562 87.36% 86.38%

SFPQ_HepG2 82.05% 81.34%

SMNDC1_K562 89.44% 88.48%

SRSF1_HepG2 94.76% 95.97%

TAF15_HepG2 90.50% 91.94%

TARDBP_K562 97.79% 98.24%

TIA1_K562 90.55% 90.37%

U2AF2_HepG2 92.68% 94.07%

UPF1_K562 74.61% 76.25%

Mean 89.28% 89.34%



[P3] Table S7: Single model training runtime comparison for GraphProt, DeepCLIP, and RNAProt. Runtime is given in 
minutes (min), together with the mean runtime over three runs for each method.

GraphProt DeepCLIP RNAProt

Run Runtime (min) Runtime (min) Runtime (min)

1 0.733333333333333 38.6166666666667 1.2

2 0.666666666666667 36.4 1.1

3 0.616666666666667 37.2166666666667 1.3

Mean 0.672222222222222 37.4111111111111 1.2
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[P4] Table S1: Exon overlap statistics for 223 ENCODE eCLIP datasets. The sets cover 150 RBPs, with 103 sets from 
HepG2 cells and 120 sets from K562 cells. Peak regions determined by CLIPper were downloaded and preprocessed as 
described in the methods section. Datasets are sorted by decending ex_ratio.

dataset_id c_in c_ex_ol c_close ex_ratio close_ratio c_exb_pairs_ext5 pair_ratio_ext5 c_exb_pairs_ext10 pair_ratio_ext10 avg_sc_all_ext5 avg_sc_pairs_ext5 avg_sc_all_ext10 avg_sc_pairs_ext10

FXR1_K562 42876 39548 29063 92.24% 67.78% 3862 19.53% 4684 23.69% 2.027368 2.223606 2.027368 2.241747

G3BP1_HepG2 102328 89664 63440 87.62% 62.00% 10821 24.14% 12794 28.54% 2.226725 2.465022 2.226725 2.4556

YBX3_K562 136203 115225 69421 84.60% 50.97% 10964 19.03% 12980 22.53% 2.151827 2.317076 2.151827 2.319678

NIP7_HepG2 15627 13200 8004 84.47% 51.22% 869 13.17% 991 15.02% 2.316207 2.394753 2.316207 2.382899

FXR2_K562 88390 74304 48518 84.06% 54.89% 6569 17.68% 7643 20.57% 2.504316 2.681836 2.504316 2.681516

PABPC4_K562 74186 60356 26193 81.36% 35.31% 3294 10.92% 3819 12.65% 2.781076 2.764855 2.781076 2.755974

FXR2_HepG2 86940 69886 48225 80.38% 55.47% 7135 20.42% 8443 24.16% 2.402319 2.607923 2.402319 2.595037

SERBP1_K562 3961 3177 1866 80.21% 47.11% 188 11.84% 209 13.16% 4.335801 3.809292 4.335801 3.81685

YBX3_HepG2 58775 45578 27152 77.55% 46.20% 3562 15.63% 4239 18.60% 1.740862 1.903106 1.740862 1.896541

ZNF800_K562 71381 55067 42127 77.15% 59.02% 6965 25.30% 8355 30.34% 2.531112 2.676961 2.531112 2.660587

RPS3_HepG2 72192 55591 37806 77.00% 52.37% 4962 17.85% 5748 20.68% 2.826514 3.043507 2.826514 3.029385

UCHL5_HepG2 114681 86755 66949 75.65% 58.38% 8205 18.92% 10729 24.73% 1.922036 2.138185 1.922036 2.128476

PUM1_K562 90799 68580 47220 75.53% 52.00% 6986 20.37% 8408 24.52% 2.311615 2.471084 2.311615 2.451113

IGF2BP1_K562 90314 68198 29103 75.51% 32.22% 4973 14.58% 5609 16.45% 2.276359 2.461296 2.276359 2.457866

SDAD1_HepG2 67800 50482 36707 74.46% 54.14% 4656 18.45% 5570 22.07% 2.923112 3.059941 2.923112 3.02749

UPF1_HepG2 50001 36917 6221 73.83% 12.44% 569 3.08% 679 3.68% 2.790531 2.058697 2.790531 2.065948

ZNF800_HepG2 111892 82338 61086 73.59% 54.59% 8505 20.66% 10412 25.29% 2.441855 2.651258 2.441855 2.63125

SND1_HepG2 55286 40642 26754 73.51% 48.39% 3853 18.96% 4439 21.84% 2.358222 2.764839 2.358222 2.760408

ABCF1_K562 22882 16819 10345 73.50% 45.21% 932 11.08% 1061 12.62% 2.282012 2.291283 2.282012 2.267647

FMR1_K562 96637 70756 46893 73.22% 48.52% 6381 18.04% 7347 20.77% 2.36974 2.516881 2.36974 2.513114

LIN28B_HepG2 61858 45250 26911 73.15% 43.50% 4099 18.12% 4564 20.17% 2.231164 2.491916 2.231164 2.485263

IGF2BP3_HepG2 62256 45434 18100 72.98% 29.07% 2052 9.03% 2359 10.38% 1.948257 2.042768 1.948257 2.038581

DDX24_K562 112795 82131 67547 72.81% 59.88% 11996 29.21% 14551 35.43% 3.085992 3.32024 3.085992 3.302587

GRWD1_K562 105234 75632 59348 71.87% 56.40% 8878 23.48% 10988 29.06% 2.047296 2.277933 2.047296 2.260716

IGF2BP2_K562 90856 65230 30773 71.79% 33.87% 4639 14.22% 5245 16.08% 2.068871 2.210175 2.068871 2.193717

PPIG_HepG2 175310 124528 100592 71.03% 57.38% 16705 26.83% 20878 33.53% 2.663431 3.009106 2.663431 2.982211

GRWD1_HepG2 189129 134123 101907 70.92% 53.88% 13474 20.09% 17993 26.83% 2.46591 2.707246 2.46591 2.687052

RPS3_K562 64493 45519 30846 70.58% 47.83% 3917 17.21% 4532 19.91% 2.99647 3.295472 2.99647 3.278385

RPS11_K562 17981 12477 8002 69.39% 44.50% 785 12.58% 896 14.36% 2.405243 2.473482 2.405243 2.45265

NOLC1_HepG2 42761 29195 17368 68.27% 40.62% 1908 13.07% 2185 14.97% 2.218158 2.421694 2.218158 2.406345

PCBP1_HepG2 37227 25341 13489 68.07% 36.23% 1181 9.32% 1392 10.99% 2.773932 2.582122 2.773932 2.571858

FTO_HepG2 52145 34932 24565 66.99% 47.11% 2791 15.98% 3310 18.95% 2.223239 2.337004 2.223239 2.325102

SDAD1_K562 20099 13425 8339 66.79% 41.49% 859 12.80% 996 14.84% 2.815193 2.472258 2.815193 2.482865

BCLAF1_HepG2 189044 125700 94999 66.49% 50.25% 15480 24.63% 19496 31.02% 2.770406 3.10433 2.770406 3.074721

NOL12_HepG2 76163 50142 34297 65.84% 45.03% 3279 13.08% 3980 15.87% 2.385431 2.496312 2.385431 2.479649

SUB1_HepG2 98354 64185 37502 65.26% 38.13% 4943 15.40% 5864 18.27% 2.621751 2.658771 2.621751 2.6421

LIN28B_K562 79363 51288 31578 64.62% 39.79% 5306 20.69% 5960 23.24% 2.274197 2.607313 2.274197 2.600878

METAP2_K562 110035 69471 42479 63.14% 38.60% 5507 15.85% 6661 19.18% 2.287653 2.386995 2.287653 2.378581

SBDS_K562 9795 6169 3482 62.98% 35.55% 298 9.66% 329 10.67% 2.118821 2.132128 2.118821 2.135882

ZNF622_K562 180616 113007 86240 62.57% 47.75% 14071 24.90% 17537 31.04% 2.369359 2.602152 2.369359 2.574997

DDX3X_K562 71236 44256 29528 62.13% 41.45% 4210 19.03% 4924 22.25% 2.505508 2.906072 2.505508 2.871941

PABPN1_HepG2 107849 66604 39391 61.76% 36.52% 4938 14.83% 5976 17.94% 2.165685 2.446407 2.165685 2.440729

UPF1_K562 92165 56553 14242 61.36% 15.45% 1458 5.16% 1748 6.18% 2.698008 2.146688 2.698008 2.139078

TRA2A_HepG2 54592 33473 25016 61.31% 45.82% 3062 18.30% 3625 21.66% 2.196142 2.470979 2.196142 2.44697

SRSF7_K562 62603 38149 28869 60.94% 46.11% 2694 14.12% 3291 17.25% 1.705653 1.932534 1.705653 1.915807

EIF3H_HepG2 142227 84686 52159 59.54% 36.67% 7619 17.99% 9093 21.47% 2.552285 2.663145 2.552285 2.639134

WDR43_HepG2 70346 41879 27029 59.53% 38.42% 2804 13.39% 3307 15.79% 2.219987 2.327137 2.219987 2.318145

APOBEC3C_K562 70078 41229 21565 58.83% 30.77% 2737 13.28% 3180 15.43% 2.000039 2.183544 2.000039 2.168582



DDX55_K562 98471 56710 27539 57.59% 27.97% 2714 9.57% 3297 11.63% 2.137552 2.240094 2.137552 2.216797

IGF2BP1_HepG2 104649 59673 23838 57.02% 22.78% 3469 11.63% 3967 13.30% 2.019779 2.144774 2.019779 2.122631

PCBP1_K562 45171 25746 12991 57.00% 28.76% 1154 8.96% 1340 10.41% 2.767668 2.710264 2.767668 2.696608

TRA2A_K562 58325 33214 24216 56.95% 41.52% 2971 17.89% 3510 21.14% 2.009865 2.320698 2.009865 2.317145

HLTF_K562 40534 22733 17159 56.08% 42.33% 2630 23.14% 2949 25.94% 1.653296 1.806027 1.653296 1.801402

DDX3X_HepG2 83195 45181 25894 54.31% 31.12% 3092 13.69% 3592 15.90% 2.797919 3.005128 2.797919 2.994501

LARP7_K562 17475 9448 5375 54.07% 30.76% 485 10.27% 553 11.71% 2.127963 2.125723 2.127963 2.113208

AKAP1_HepG2 77147 40593 11928 52.62% 15.46% 967 4.76% 1123 5.53% 2.340277 1.892786 2.340277 1.890883

DDX55_HepG2 127964 67120 32289 52.45% 25.23% 3204 9.55% 4038 12.03% 2.451025 2.538409 2.451025 2.50826

RBM15_K562 173586 90392 48436 52.07% 27.90% 3389 7.50% 4465 9.88% 2.301334 2.096248 2.301334 2.086693

SRSF1_HepG2 108111 55707 41646 51.53% 38.52% 3166 11.37% 4088 14.68% 1.85986 2.09535 1.85986 2.08329

DDX6_HepG2 95832 48987 20103 51.12% 20.98% 2053 8.38% 2361 9.64% 2.722469 2.676672 2.722469 2.672694

UTP18_HepG2 57454 28805 17382 50.14% 30.25% 1750 12.15% 2084 14.47% 2.33513 2.400843 2.33513 2.378666

LSM11_HepG2 137427 68385 35239 49.76% 25.64% 3989 11.67% 4838 14.15% 1.935197 2.102772 1.935197 2.093168

UCHL5_K562 232620 114745 82563 49.33% 35.49% 12846 22.39% 16148 28.15% 2.457281 2.69483 2.457281 2.672777

FAM120A_K562 103697 50811 9772 49.00% 9.42% 838 3.30% 955 3.76% 2.312904 1.894399 2.312904 1.884487

SRSF1_K562 119846 58317 43985 48.66% 36.70% 3221 11.05% 4340 14.88% 2.04066 2.259659 2.04066 2.252216

FASTKD2_HepG2 155090 74440 51013 48.00% 32.89% 6114 16.43% 7405 19.90% 1.983155 2.140801 1.983155 2.125012

DDX21_K562 57876 27556 14519 47.61% 25.09% 1260 9.15% 1431 10.39% 2.042193 2.127124 2.042193 2.111212

UTP18_K562 39679 18618 11604 46.92% 29.24% 1162 12.48% 1317 14.15% 2.329023 2.322975 2.329023 2.331786

WDR43_K562 59921 28063 16486 46.83% 27.51% 1982 14.13% 2296 16.36% 2.445895 2.467094 2.445895 2.45413

SND1_K562 149839 68273 43004 45.56% 28.70% 6518 19.09% 7730 22.64% 2.106734 2.443667 2.106734 2.436742

EXOSC5_HepG2 31517 14223 8876 45.13% 28.16% 917 12.89% 1037 14.58% 2.074931 2.103677 2.074931 2.09273

DDX6_K562 142417 64105 29307 45.01% 20.58% 3353 10.46% 4001 12.48% 2.290414 2.257308 2.290414 2.260796

GNL3_K562 47780 21440 12386 44.87% 25.92% 1397 13.03% 1592 14.85% 2.1419 2.193212 2.1419 2.174065

RBM15_HepG2 181621 80144 36676 44.13% 20.19% 2392 5.97% 3010 7.51% 2.260813 2.190111 2.260813 2.179846

PRPF4_HepG2 161949 71062 50533 43.88% 31.20% 4594 12.93% 5854 16.48% 1.924211 2.036221 1.924211 2.031062

NOLC1_K562 109392 47921 21599 43.81% 19.74% 1549 6.46% 1899 7.93% 1.907712 1.999683 1.907712 1.987895

AKAP1_K562 60535 26371 8792 43.56% 14.52% 677 5.13% 806 6.11% 2.433738 2.185164 2.433738 2.178563

NCBP2_K562 88878 38401 24066 43.21% 27.08% 1828 9.52% 2211 11.52% 2.137532 2.194221 2.137532 2.184031

LARP7_HepG2 20478 8685 4853 42.41% 23.70% 570 13.13% 650 14.97% 2.79127 2.79391 2.79127 2.824574

MTPAP_K562 166763 69187 46816 41.49% 28.07% 4813 13.91% 6071 17.55% 1.902661 2.043129 1.902661 2.032974

NPM1_K562 29113 12068 6917 41.45% 23.76% 694 11.50% 803 13.31% 2.231496 2.32131 2.231496 2.329326

BUD13_HepG2 201325 82299 56861 40.88% 28.24% 4374 10.63% 6082 14.78% 2.397343 2.628888 2.397343 2.603934

GEMIN5_K562 108146 44079 23530 40.76% 21.76% 1781 8.08% 2149 9.75% 2.640924 2.551084 2.640924 2.538515

LARP4_HepG2 157286 63818 27998 40.57% 17.80% 2525 7.91% 3099 9.71% 2.101303 2.299387 2.101303 2.290408

BUD13_K562 198860 80120 59191 40.29% 29.77% 5847 14.60% 8019 20.02% 2.150252 2.276719 2.150252 2.27567

PUM2_K562 103204 41514 14959 40.23% 14.49% 1756 8.46% 1982 9.55% 2.90275 2.774412 2.90275 2.765585

SRSF7_HepG2 76608 30335 20847 39.60% 27.21% 1032 6.80% 1307 8.62% 1.769734 1.886814 1.769734 1.879609

NIPBL_K562 129674 51325 28913 39.58% 22.30% 2907 11.33% 3511 13.68% 2.531015 2.53053 2.531015 2.510952

CPSF6_K562 83147 32844 18120 39.50% 21.79% 1818 11.07% 2167 13.20% 1.884345 2.075297 1.884345 2.062654

CPEB4_K562 55310 21392 9930 38.68% 17.95% 1103 10.31% 1289 12.05% 2.462405 2.390253 2.462405 2.417

SRSF9_HepG2 98718 37977 24953 38.47% 25.28% 2190 11.53% 2597 13.68% 1.833919 1.989541 1.833919 1.977894

PHF6_K562 51751 18727 9816 36.19% 18.97% 715 7.64% 845 9.02% 2.422461 2.385419 2.422461 2.362058

DKC1_HepG2 37603 13495 7433 35.89% 19.77% 706 10.46% 804 11.92% 1.915957 1.988029 1.915957 1.975757

UTP3_K562 70986 25138 13388 35.41% 18.86% 1512 12.03% 1775 14.12% 4.661748 4.661188 4.661748 4.639347

XRCC6_K562 151299 53319 32660 35.24% 21.59% 3382 12.69% 4161 15.61% 2.056103 2.041992 2.056103 2.02807

ZC3H11A_K562 139060 48137 16199 34.62% 11.65% 1553 6.45% 1877 7.80% 2.361979 2.260809 2.361979 2.269995

SLBP_K562 11709 4032 2136 34.44% 18.24% 208 10.32% 251 12.45% 2.736686 2.730849 2.736686 2.819039

SSB_HepG2 30559 10408 6352 34.06% 20.79% 340 6.53% 404 7.76% 1.459367 1.585167 1.459367 1.589952

GRSF1_HepG2 44753 15047 6878 33.62% 15.37% 739 9.82% 839 11.15% 1.884775 2.045244 1.884775 2.033019

AGGF1_HepG2 155040 51612 32461 33.29% 20.94% 3021 11.71% 3720 14.42% 1.744862 1.938899 1.744862 1.92588

EIF3G_K562 46297 15064 8172 32.54% 17.65% 792 10.52% 924 12.27% 1.842583 2.153443 1.842583 2.147938



EIF4G2_K562 72496 23483 14260 32.39% 19.67% 1535 13.07% 1742 14.84% 1.914714 1.932607 1.914714 1.927272

LARP4_K562 141576 45809 22651 32.36% 16.00% 2738 11.95% 3188 13.92% 2.31142 2.390509 2.31142 2.383095

FASTKD2_K562 87508 27978 15195 31.97% 17.36% 1573 11.24% 1787 12.77% 2.101812 2.056232 2.101812 2.047434

SMNDC1_HepG2 73375 23396 15452 31.89% 21.06% 954 8.16% 1181 10.10% 2.11157 2.267563 2.11157 2.251549

AARS_K562 94626 29573 16898 31.25% 17.86% 1887 12.76% 2191 14.82% 2.704416 2.734322 2.704416 2.731309

DHX30_HepG2 103084 32119 14307 31.16% 13.88% 1142 7.11% 1310 8.16% 1.956362 1.994604 1.956362 1.98866

SSB_K562 7491 2266 1111 30.25% 14.83% 60 5.30% 63 5.56% 1.537752 1.530664 1.537752 1.530284

EIF3D_HepG2 244466 72744 50124 29.76% 20.50% 5720 15.73% 7118 19.57% 1.849357 2.013681 1.849357 2.001383

U2AF1_HepG2 121076 34441 21916 28.45% 18.10% 876 5.09% 1183 6.87% 1.735404 1.843389 1.735404 1.852546

AQR_HepG2 141509 40084 28656 28.33% 20.25% 1205 6.01% 1652 8.24% 2.233538 2.356836 2.233538 2.334801

LSM11_K562 121236 34323 14892 28.31% 12.28% 1004 5.85% 1247 7.27% 1.971597 2.083928 1.971597 2.077845

HLTF_HepG2 271294 76301 44668 28.12% 16.46% 5345 14.01% 6598 17.29% 1.990481 2.074537 1.990481 2.057937

YWHAG_K562 62476 17536 8447 28.07% 13.52% 562 6.41% 655 7.47% 1.771216 1.904962 1.771216 1.904214

WRN_K562 70462 19615 8654 27.84% 12.28% 811 8.27% 952 9.71% 2.721054 2.626324 2.721054 2.650046

DHX30_K562 97046 27002 11762 27.82% 12.12% 813 6.02% 971 7.19% 2.43978 2.493698 2.43978 2.485659

PUS1_K562 45926 12680 5546 27.61% 12.08% 446 7.03% 517 8.15% 2.035007 2.136162 2.035007 2.148016

FUBP3_HepG2 72812 19801 2881 27.19% 3.96% 128 1.29% 148 1.49% 2.530361 2.006291 2.530361 1.981364

DDX51_K562 77265 20946 9906 27.11% 12.82% 681 6.50% 788 7.52% 2.342699 2.272662 2.342699 2.272827

TIA1_HepG2 68403 18400 2253 26.90% 3.29% 93 1.01% 100 1.09% 2.213177 2.122274 2.213177 2.114956

DDX42_K562 91243 24397 12655 26.74% 13.87% 646 5.30% 774 6.35% 1.931166 1.967016 1.931166 1.94996

ZC3H8_K562 47558 12371 6460 26.01% 13.58% 613 9.91% 742 12.00% 1.895616 1.996348 1.895616 1.992438

AKAP8L_K562 144983 37366 20666 25.77% 14.25% 1813 9.70% 2180 11.67% 2.002585 1.969738 2.002585 1.961093

WDR3_K562 32516 8316 3635 25.58% 11.18% 322 7.74% 386 9.28% 2.78084 2.831596 2.78084 2.882536

AATF_K562 46965 11729 5826 24.97% 12.40% 337 5.75% 408 6.96% 2.418423 2.422364 2.418423 2.368816

SUPV3L1_K562 14405 3594 1725 24.95% 11.98% 169 9.40% 199 11.07% 3.948659 3.860394 3.948659 3.946335

DGCR8_HepG2 170132 42209 24786 24.81% 14.57% 1797 8.51% 2230 10.57% 1.654405 1.757119 1.654405 1.753009

AGGF1_K562 142679 34492 19585 24.17% 13.73% 1713 9.93% 2040 11.83% 1.87102 1.952742 1.87102 1.945742

ZRANB2_K562 92688 22359 12652 24.12% 13.65% 701 6.27% 843 7.54% 2.295778 2.386069 2.295778 2.387506

SUPV3L1_HepG2 108089 25559 14026 23.65% 12.98% 845 6.61% 1007 7.88% 2.119184 2.238767 2.119184 2.213959

FTO_K562 126943 29887 17439 23.54% 13.74% 2345 15.69% 2687 17.98% 2.039177 2.20161 2.039177 2.190766

NCBP2_HepG2 157948 37035 25228 23.45% 15.97% 2395 12.93% 2818 15.22% 1.936608 2.050128 1.936608 2.022888

FAM120A_HepG2 158087 36466 7506 23.07% 4.75% 489 2.68% 546 2.99% 2.137887 1.826191 2.137887 1.81823

TARDBP_K562 75847 17256 10884 22.75% 14.35% 931 10.79% 1073 12.44% 1.844828 1.855863 1.844828 1.856069

TBRG4_HepG2 105800 24052 12141 22.73% 11.48% 1424 11.84% 1814 15.08% 3.258193 3.369326 3.258193 3.431399

DGCR8_K562 65509 14767 5721 22.54% 8.73% 297 4.02% 335 4.54% 1.798297 1.785166 1.798297 1.779806

PPIL4_K562 86805 19515 10794 22.48% 12.43% 806 8.26% 943 9.66% 1.534547 1.666217 1.534547 1.665657

SF3A3_HepG2 84733 19043 10044 22.47% 11.85% 259 2.72% 321 3.37% 2.195501 2.312704 2.195501 2.272547

TBRG4_K562 139694 31105 15825 22.27% 11.33% 1513 9.73% 1795 11.54% 1.997079 2.114986 1.997079 2.110536

TROVE2_HepG2 169712 37690 18597 22.21% 10.96% 1492 7.92% 1781 9.45% 1.954113 2.024625 1.954113 2.017843

U2AF1_K562 86034 18772 12281 21.82% 14.27% 240 2.56% 320 3.41% 1.827698 1.943479 1.827698 1.942197

DROSHA_K562 156240 33898 15372 21.70% 9.84% 1216 7.17% 1444 8.52% 2.379063 2.402503 2.379063 2.387991

ZC3H11A_HepG2 239628 51612 16393 21.54% 6.84% 1015 3.93% 1233 4.78% 1.835651 1.793552 1.835651 1.779342

DDX59_HepG2 153483 32920 16043 21.45% 10.45% 995 6.04% 1199 7.28% 1.976771 1.998519 1.976771 1.995698

RBFOX2_K562 189440 40506 23161 21.38% 12.23% 1950 9.63% 2407 11.88% 1.718739 1.825892 1.718739 1.813639

FUS_K562 131843 27616 10568 20.95% 8.02% 915 6.63% 1101 7.97% 1.733197 1.860835 1.733197 1.861174

GPKOW_K562 137894 28795 19415 20.88% 14.08% 1043 7.24% 1372 9.53% 2.292443 2.429397 2.292443 2.396474

CDC40_HepG2 219099 45611 23144 20.82% 10.56% 1067 4.68% 1395 6.12% 1.986581 2.133978 1.986581 2.110988

TROVE2_K562 127502 26237 12154 20.58% 9.53% 896 6.83% 1024 7.81% 1.895031 2.016943 1.895031 1.99242

RBM22_HepG2 187122 38339 19206 20.49% 10.26% 1224 6.39% 1474 7.69% 1.90237 1.940275 1.90237 1.925348

FKBP4_HepG2 72482 14791 6595 20.41% 9.10% 402 5.44% 454 6.14% 2.060258 2.002845 2.060258 1.991951

XRCC6_HepG2 97231 19293 8592 19.84% 8.84% 558 5.78% 663 6.87% 1.695434 1.719039 1.695434 1.709221

SMNDC1_K562 108852 21562 12528 19.81% 11.51% 346 3.21% 452 4.19% 1.846216 1.873103 1.846216 1.869856

SLTM_K562 118315 23236 8608 19.64% 7.28% 548 4.72% 632 5.44% 2.013038 1.888483 2.013038 1.892261



DDX52_HepG2 186924 35967 16935 19.24% 9.06% 1397 7.77% 1670 9.29% 1.81663 1.898391 1.81663 1.890472

DROSHA_HepG2 221598 42469 20853 19.16% 9.41% 1534 7.22% 1868 8.80% 1.674413 1.744867 1.674413 1.72964

DDX52_K562 98713 18771 8146 19.02% 8.25% 442 4.71% 520 5.54% 2.102049 2.006363 2.102049 2.006689

PTBP1_K562 118085 22423 12922 18.99% 10.94% 911 8.13% 1075 9.59% 1.868555 1.806133 1.868555 1.802244

PTBP1_HepG2 198904 37443 21210 18.82% 10.66% 1268 6.77% 1564 8.35% 1.796516 1.838135 1.796516 1.830152

TIAL1_HepG2 115966 21414 3264 18.47% 2.81% 101 0.94% 118 1.10% 2.019546 1.938451 2.019546 1.887744

EFTUD2_HepG2 201569 36645 22028 18.18% 10.93% 622 3.39% 846 4.62% 2.384744 2.482945 2.384744 2.462965

XRN2_K562 108740 19081 9826 17.55% 9.04% 212 2.22% 274 2.87% 1.909576 1.867875 1.909576 1.870783

NSUN2_K562 6406 1105 476 17.25% 7.43% 29 5.25% 31 5.61% 1.941558 2.191341 1.941558 2.188345

SF3B1_K562 70767 12037 5631 17.01% 7.96% 423 7.03% 528 8.77% 4.332806 4.353305 4.332806 4.41634

SF3B4_K562 128964 20878 13386 16.19% 10.38% 337 3.23% 484 4.64% 2.162975 2.196563 2.162975 2.177933

EFTUD2_K562 158493 25303 16612 15.96% 10.48% 653 5.16% 888 7.02% 2.184471 2.23195 2.184471 2.224184

NKRF_HepG2 220453 34898 13273 15.83% 6.02% 656 3.76% 818 4.69% 1.779856 1.729728 1.779856 1.71865

BCCIP_HepG2 57627 9121 4897 15.83% 8.50% 231 5.07% 254 5.57% 1.5437 1.609475 1.5437 1.613453

PRPF8_HepG2 168180 26473 18254 15.74% 10.85% 260 1.96% 368 2.78% 2.19639 2.317828 2.19639 2.330565

U2AF2_K562 89261 13602 9571 15.24% 10.72% 188 2.76% 246 3.62% 1.839187 2.206494 1.839187 2.157331

GTF2F1_HepG2 133766 20312 8915 15.18% 6.66% 437 4.30% 528 5.20% 1.849071 1.798863 1.849071 1.800198

CSTF2_HepG2 78957 11964 2451 15.15% 3.10% 83 1.39% 104 1.74% 1.802813 1.574541 1.802813 1.556848

AQR_K562 190362 28130 16940 14.78% 8.90% 404 2.87% 547 3.89% 2.281464 2.308159 2.281464 2.288771

SLTM_HepG2 131694 18993 4358 14.42% 3.31% 190 2.00% 207 2.18% 2.118893 1.778306 2.118893 1.79972

PCBP2_HepG2 150168 19781 5018 13.17% 3.34% 455 4.60% 509 5.15% 2.542195 2.503469 2.542195 2.514568

TIA1_K562 288350 37643 8042 13.05% 2.79% 382 2.03% 442 2.35% 2.001755 1.860152 2.001755 1.84928

RBM5_HepG2 204636 26040 12447 12.73% 6.08% 713 5.48% 845 6.49% 1.680124 1.713652 1.680124 1.711965

U2AF2_HepG2 225266 27451 16775 12.19% 7.45% 177 1.29% 278 2.03% 2.122451 2.297689 2.122451 2.235232

GTF2F1_K562 106817 12958 4640 12.13% 4.34% 222 3.43% 270 4.17% 1.960067 1.899501 1.960067 1.902695

SAFB_K562 133179 16065 5935 12.06% 4.46% 444 5.53% 534 6.65% 1.642373 1.718058 1.642373 1.723495

XPO5_HepG2 142146 17138 5775 12.06% 4.06% 295 3.44% 355 4.14% 2.000288 1.963387 2.000288 1.960378

HNRNPK_K562 96214 11010 2251 11.44% 2.34% 121 2.20% 144 2.62% 1.974375 1.985797 1.974375 1.986537

CSTF2T_K562 153043 16970 4410 11.09% 2.88% 136 1.60% 167 1.97% 1.905942 1.881079 1.905942 1.867915

POLR2G_HepG2 160963 17764 8856 11.04% 5.50% 542 6.10% 653 7.35% 1.638506 1.696298 1.638506 1.695476

PRPF8_K562 187403 19870 13257 10.60% 7.07% 208 2.09% 334 3.36% 1.851732 1.957281 1.851732 1.97059

QKI_K562 71671 7152 2503 9.98% 3.49% 192 5.37% 222 6.21% 2.139788 2.079976 2.139788 2.118728

STAU2_HepG2 201961 20067 6384 9.94% 3.16% 270 2.69% 333 3.32% 1.575533 1.527116 1.575533 1.517876

HNRNPC_K562 69359 6695 1152 9.65% 1.66% 41 1.22% 47 1.40% 1.63956 1.59421 1.63956 1.567768

RBM22_K562 45764 4361 1991 9.53% 4.35% 111 5.09% 127 5.82% 1.919876 2.01327 1.919876 2.009461

HNRNPUL1_K562 78331 7350 2281 9.38% 2.91% 85 2.31% 102 2.78% 1.593869 1.60974 1.593869 1.608842

XRN2_HepG2 211363 19826 5481 9.38% 2.59% 87 0.88% 107 1.08% 1.978506 1.799536 1.978506 1.833909

RBFOX2_HepG2 134551 12610 3763 9.37% 2.80% 144 2.28% 175 2.78% 1.94154 1.667786 1.94154 1.654443

FUS_HepG2 223994 19692 5952 8.79% 2.66% 317 3.22% 365 3.71% 1.64194 1.722518 1.64194 1.73255

KHDRBS1_K562 169322 14407 3193 8.51% 1.89% 211 2.93% 238 3.30% 1.640634 1.711684 1.640634 1.704708

SAFB_HepG2 167485 13523 3383 8.07% 2.02% 157 2.32% 187 2.77% 1.558606 1.569495 1.558606 1.577496

HNRNPA1_K562 143410 11184 3251 7.80% 2.27% 244 4.36% 270 4.83% 1.596814 1.643838 1.596814 1.634018

CSTF2T_HepG2 206660 15911 2908 7.70% 1.41% 26 0.33% 37 0.47% 1.879868 1.569028 1.879868 1.64943

HNRNPK_HepG2 153927 11638 1572 7.56% 1.02% 53 0.91% 56 0.96% 1.919198 1.649048 1.919198 1.647211

KHSRP_HepG2 323040 24226 6872 7.50% 2.13% 136 1.12% 187 1.54% 1.828877 1.654707 1.828877 1.66717

SF3B4_HepG2 77360 5585 2898 7.22% 3.75% 25 0.90% 35 1.25% 1.768827 1.631334 1.768827 1.68249

HNRNPM_K562 150895 10744 4046 7.12% 2.68% 213 3.97% 245 4.56% 1.842628 1.858093 1.842628 1.845263

SAFB2_K562 154499 10664 2550 6.90% 1.65% 170 3.19% 201 3.77% 1.804131 1.677048 1.804131 1.68894

TAF15_K562 148888 10172 3261 6.83% 2.19% 135 2.65% 159 3.13% 1.764523 1.770671 1.764523 1.748854

HNRNPUL1_HepG2 233396 15806 4468 6.77% 1.91% 186 2.35% 209 2.64% 1.767031 1.809731 1.767031 1.812858

EWSR1_K562 106301 6037 1473 5.68% 1.39% 12 0.40% 12 0.40% 2.084903 1.748293 2.084903 1.748293

EXOSC5_K562 124694 6783 2584 5.44% 2.07% 142 4.19% 157 4.63% 1.845797 1.820811 1.845797 1.806171

HNRNPA1_HepG2 62559 3332 486 5.33% 0.78% 24 1.44% 25 1.50% 1.522957 1.570181 1.522957 1.550936



HNRNPU_K562 119484 6240 1206 5.22% 1.01% 52 1.67% 59 1.89% 1.49585 1.569033 1.49585 1.556323

NONO_K562 209865 10770 3108 5.13% 1.48% 32 0.59% 40 0.74% 1.915214 1.388387 1.915214 1.380322

ILF3_K562 228091 11364 2544 4.98% 1.12% 131 2.31% 148 2.60% 1.636382 1.662335 1.636382 1.659228

HNRNPL_K562 193425 9052 1730 4.68% 0.89% 91 2.01% 96 2.12% 1.636862 1.611755 1.636862 1.605005

TAF15_HepG2 294909 12566 3136 4.26% 1.06% 153 2.44% 168 2.67% 1.520138 1.558341 1.520138 1.56555

KHSRP_K562 288127 12092 2414 4.20% 0.84% 10 0.17% 12 0.20% 1.913279 1.704802 1.913279 1.675221

HNRNPL_HepG2 274669 11428 862 4.16% 0.31% 34 0.60% 35 0.61% 1.841106 1.756588 1.841106 1.751017

QKI_HepG2 228943 9409 1990 4.11% 0.87% 95 2.02% 124 2.64% 1.857909 1.741317 1.857909 1.696284

ILF3_HepG2 182351 7007 835 3.84% 0.46% 48 1.37% 54 1.54% 1.848374 1.775099 1.848374 1.828319

HNRNPC_HepG2 348829 10667 958 3.06% 0.27% 22 0.41% 25 0.47% 1.719892 1.672577 1.719892 1.65368

MATR3_K562 125688 3558 533 2.83% 0.42% 11 0.62% 13 0.73% 1.985056 1.766817 1.985056 1.767949

HNRNPU_HepG2 178289 4778 522 2.68% 0.29% 5 0.21% 5 0.21% 1.525047 1.306024 1.525047 1.306024

HNRNPM_HepG2 227093 5030 620 2.21% 0.27% 5 0.20% 5 0.20% 1.995853 1.598302 1.995853 1.598302

SFPQ_HepG2 225115 4235 867 1.88% 0.39% 17 0.80% 19 0.90% 1.912816 1.799141 1.912816 1.871046

SUGP2_HepG2 353655 6293 1161 1.78% 0.33% 20 0.64% 24 0.76% 1.684531 1.31251 1.684531 1.330542

MATR3_HepG2 238389 4168 360 1.75% 0.15% 5 0.24% 6 0.29% 2.007953 1.584725 2.007953 1.635359

[P4] Table S1 legend:

c_in Number of sites in dataset

c_ex_ol Number of sites overlapping with exonic regions (>= 90 % exon overlap demanded)

c_close Number of exonic sites close to exon borders (<= 50 nt from site ends)

ex_ratio Ratio of sites overlapping with exonic regions

close_ratio Ratio of exonic sites near exon borders

c_exb_pairs_ext5 Number of site pairs adjacent at exon borders (ends of both sites in pair < 5 nt away from exon border)

c_exb_pairs_ext10 Number of site pairs adjacent at exon borders (ends of both sites in pair < 10 nt away from exon border)

pair_ratio_ext5 Ratio of exonic sites that are part of a pair near adjacent exon borders (ends of both sites in pair < 5 nt away from exon border)

pair_ratio_ext10 Ratio of exonic sites that are part of a pair near adjacent exon borders (ends of both sites in pair < 10 nt away from exon border)

avg_sc_all_ext5 Average site log2 fold change value over all sites (ends of both sites in pair < 5 nt away from exon border)

avg_sc_pairs_ext5 Average site log2 fold change value over pair sites (ends of both sites in pair < 5 nt away from exon border)

avg_sc_all_ext10 Average site log2 fold change value over all sites (ends of both sites in pair < 10 nt away from exon border)

avg_sc_pairs_ext10 Average site log2 fold change value over pair sites (ends of both sites in pair < 10 nt away from exon border)
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Supplementary tables

Table 1: Exon overlap statistics of ENCODE eCLIP datasets (see Additional File 1 in
.xlsx format).
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Table 2: Peak length statistics for CLIPper (replicate 1), CLIPper IDR, PEAKachu, and
PureCLIP on YBX3 K562 replicate 1 eCLIP data. Peaks were called as described in
supplementary methods section ”Peak caller setup”. Introns for determining overlapping
sites were selected based on the set of exons extracted, as described in methods section
”Data preparation and exon overlap statistics”. A site is counted as intron-spanning if it
completely overlaps with an intronic region.

Metric CLIPper CLIPper IDR PEAKachu PureCLIP

# sites 132,842 17,982 11,537 54,308

# sites > 500 nt 0 0 471 0

# intron-spanning sites 4 2 1,096 0

Minimum length 1 1 18 1

Maximum length 263 217 22,875 25

Mean length 37.9 28.0 112.4 1.6

Median length 34 27 48 1

25th percentile 19 13 42 1

75th percentile 51 50 64 2
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Table 3: Dataset statistics for the 6 eCLIP sets used for genomic and transcript context
comparison. A minimum log2 fold change (LFC) of 3 and a maximum p-value (PV) of
0.01 was used for filtering initial CLIPper replicate 1 peak sites. Moreover, only exonic
sites (overlapping ≥ 90% with exons) near exon borders (≤ 10 nt away) were selected. In
case of overlapping sites (≤ 10 nt distance), only the site with the highest LFC was kept.
Positives: number of positive training instances. Negatives: number of negative training
instances.

RBP Cell type LFC PV Positives Negatives

FMR1 K562 3 0.01 2569 2569

FXR2 K562 3 0.01 3166 3166

IGF2BP1 K562 3 0.01 2199 2199

PUM2 K562 3 0.01 1136 1136

SRSF1 K562 3 0.01 1049 1049

YBX3 K562 3 0.01 4370 4370
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Table 4: Performance results for 6 RBP eCLIP sets with genomic and transcript context.
We report average accuracies obtained by 10-fold cross validation together with standard
deviations (apart from GraphProt).

Methods RBP Cell line Genomic context Transcript context

DeepBind

FMR1 K562 80.63±1.58 88.22±1.99

FXR2 K562 76.93±2.66 86.93±1.18

IGF2BP1 K562 75.72±2.59 83.90±2.08

PUM2 K562 70.05±2.94 80.69±2.31

SRSF1 K562 79.39±4.64 85.98±3.07

YBX3 K562 76.63±2.73 87.32±1.24

GraphProt

FMR1 K562 78.47 88.50

FXR2 K562 75.71 86.73

IGF2BP1 K562 66.24 84.18

PUM2 K562 64.88 79.58

SRSF1 K562 76.41 86.61

YBX3 K562 71.63 86.61

GraphProt2

FMR1 K562 82.66±1.68 92.23±1.11

FXR2 K562 81.51±1.57 91.09±0.84

IGF2BP1 K562 75.58±1.81 88.54±1.83

PUM2 K562 73.86±1.95 86.27±2.76

SRSF1 K562 80.93±3.01 91.09±2.54

YBX3 K562 79.22±1.20 90.86±0.53
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Table 5: Motif search results for 9 RBPs and 28 binding motifs collected from various
sources (see Additional File 3 in .xlsx format).
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Supplementary figures
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Figure 1: GraphProt sequence logos generated from models trained on the 6 eCLIP sets
with genomic and transcript context (resulting in 12 models and 12 logos). Literature
knowledge regarding RBP binding preferences was obtained from the ATtRACT database
[1]. A logo is constructed for each RBP-context combination from the top 200 scoring
sites (taking highest scoring 8-mer sequence for each site) of the positive set. *: note that
IGF2BP1 binding sites are comprised of several parts, of which one dominant part are
CA(U) rich sites.

.
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[P4] Table S5: Motif search results for 9 RBPs and 28 binding motifs collected from various literature. IDR peak regions 
were processed as described in the Methods section to obtain sites with transcript and genomic context.

RBP Dataset Motif Pubmed_ID c_IDR_sites_near_exb c_gen_hits gen_hits_1000nt c_tr_hits tr_hits_1000nt tr_gen_ratio

FMR1 K562 [GU]GACA[GA]G 23846655 747 55 0.45732 56 0.47025 1.02828

FMR1 K562 [AU]GGA 23235829 747 1630 13.55318 1991 16.71901 1.23359

FMR1 K562 ACU[GU] 23235829 747 855 7.10918 826 6.93616 0.97566

FXR1 K562 A[CU]GAC[AG] 23846655 348 28 0.49975 44 0.78532 1.57143

FXR2 K562 [GAU]GAC[AG][AG][AG] 23846655 1028 298 1.80052 340 2.07118 1.15032

FXR2 HepG2 [GAU]GAC[AG][AG][AG] 23846655 1064 312 1.82132 414 2.41697 1.32704

IGF2BP1 K562 CGGAC.{10,25}[CA]CA[CU] 22215810 535 2 0.02322 6 0.0701 3.01896

IGF2BP1 K562 [CA]CA[CU].{10,25}CGGAC 22215810 535 1 0.01161 3 0.03505 3.01896

IGF2BP2 K562 [GCA][AC]A[AUC][AU]CA 23846655 426 172 2.5078 217 3.19828 1.27533

IGF2BP3 HepG2 GGC.{15,25}CA.{7,20}CA.{15,25}GGC.{2,8}[CA]{4} 31118463 155 1 0.04007 7 0.28428 7.0941

IGF2BP3 HepG2 A[AC]A[ACU][AU]CA 23846655 155 28 1.12202 27 1.09649 0.97725

PUM2 K562 UGUA[ACGU]AUA 18776931 285 89 1.93963 107 2.4729 1.27493

SRSF1 K562 UCAGAGGA 26431027 342 2 0.03632 7 0.12787 3.52033

SRSF1 K562 G[GA]AGGA 23846655 342 199 3.61411 254 4.63978 1.2838

SRSF1 K562 GGAGGA 23846655 342 139 2.52443 181 3.3063 1.30972

SRSF1 K562 GGA[GC]G[GA][GCA] 23846655 342 183 3.32353 218 3.98217 1.19818

SRSF1 K562 AGGA[GC][AC] 23846655 342 209 3.79572 248 4.53018 1.1935

SRSF1 K562 GG[GA]GGA[GCA] 23846655 342 128 2.32465 157 2.86789 1.23369

SRSF1 HepG2 UCAGAGGA 26431027 319 3 0.05841 4 0.07911 1.3543

SRSF1 HepG2 G[GA]AGGA 23846655 319 172 3.34897 224 4.43003 1.3228

SRSF1 HepG2 GGAGGA 23846655 319 130 2.5312 164 3.24341 1.28137

SRSF1 HepG2 GGA[GC]G[GA][GCA] 23846655 319 200 3.89416 218 4.31137 1.10714

SRSF1 HepG2 AGGA[GC][AC] 23846655 319 198 3.85522 247 4.8849 1.26709

SRSF1 HepG2 GG[GA]GGA[GCA] 23846655 319 139 2.70644 155 3.06542 1.13264

YBX3* K562 AACAUC[GAU] 23846655 3340 164 0.30498 214 0.39946 1.30978

YBX3* K562 AACAUC 23846655 3340 215 0.39982 283 0.52825 1.32122

YBX3** K562 AACA[AU]C[GAU] 23846655 3340 271 0.50396 357 0.66638 1.32229

YBX3*** K562 [ACU][AC]CA[CU]C[ACU] 11564883 3340 1901 3.53517 2085 3.8919 1.10091

[P4] Table S5 legend:

RBP RBP name

Dataset Dataset (K562 or HepG2 cell type)

Motif Motif or regular expression found in the literature for the respective RBP

Pubmed ID Literature reference (Pubmed ID) from which the motif information was obtained from

c_IDR_sites_near_exb Number of IDR peak regions near exon borders (<= 10 nt away) used for motif search

c_gen_hits
Number of motif or regular expression hits in the c_IDR_sites_near_exb  sites with genomic context. NOTE that motif 
positions in the genome that were counted > 1 were reduced to count = 1

gen_hits_1000nt
c_gen_hits normalized (hits per 1000 nt). Necessary since extracted transcript regions are sometimes truncated at 
transcript ends

c_tr_hits
Number of motif or regular expression hits in the c_IDR_sites_near_exb  sites with transcript context. NOTE that motif 
positions on transcripts that were counted > 1 were reduced to count = 1

tr_hits_1000nt
c_tr_hits normalized (hits per 1000 nt). Necessary since extracted transcript regions are sometimes truncated at transcript 
ends

tr_gen_ratio tr_hits_1000nt / gen_hits_1000nt ratio
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1 Supplementary methods

1.1 Data availability

The transcript context site collections generated by Peakhood from eCLIP datasets of
49 RBPs (first collection with 36 RBPs from HepG2, second collection with 40 RBPs
from K562) with known roles in post-transcriptional gene regulation (mRNA stability
and decay, translational regulation; information taken from [1] Supplementary Data 1
table) can be downloaded from Zenodo [2].

1.2 How Peakhood works

Here we briefly describe how Peakhood works. For full details, please check out Peakhood’s
comprehensive online manual at: https://github.com/BackofenLab/Peakhood

Site context extraction

To extract individual site context information for a CLIP-seq dataset, Peakhood’s in-
put consists of the genomic CLIP-seq peak regions (BED), the mapped CLIP-seq reads
(BAM), a genomic annotations file (GTF), and a genome sequence file (.2bit). Peakhood
first intersects the peak regions with transcript and exon regions from the GTF file, to ob-
tain exonic, intronic, and intergenic sites. Next it determines for each exonic site whether
it is more likely embedded in a genomic context (introns included) or transcript context
(mature or spliced RNA). For this Peakhood makes use of the exon-intron read coverage
ratios in the site neighborhood, as well as over the whole transcript. This is based on
the observation that an exonic site inside a transcript (spliced) context (Paper Fig. 1a)
usually features considerably more reads in the exon region(s), as well as a pronounced
coverage drop-off at the exon borders. Ideally this is true both locally (around the over-
lapping exon) and globally (on the whole transcript). However, due to how the CLIP-seq
protocol works, read coverage is often concentrated at and around the binding site, so
Peakhood weighs the local context information higher than the global one. In addition,
intron-spanning reads receive more weight than continuously mapped reads, since they
provide strong support for a transcript context. Sites which feature sufficiently high local
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and global ratios (see online manual for more details on filter steps and thresholds) get
assigned to transcript context. Exonic sites with lower ratios get assigned to genomic
context (Fig. S1).

Choosing the most likely transcript

Since a gene usually has many transcript isoforms, and there can be several overlapping
exons and transcripts which pass the filters, a transcript context site can have several
possible site-transcript combinations. Peakhood thus also selects the most likely combi-
nation, based on number of informative filters: co-occurrence of other sites, read coverage,
intron-spanning read numbers, and transcript support level. Filter order, choice of filters,
and filter behavior (serial or majority vote) can be further customized. In addition, sites
at exon borders connected by intron-spanning reads get merged into single sites (see Pa-
per Fig. 1a example). Reference and custom transcript annotations are supported, which
can be advantageous if created for the same cell types or conditions (see online manual
on how to create custom annotations). Incorporation of RNA-seq data is also possible,
to provide additional intron-spanning read information for transcript selection.

Merging transcript context sets

In addition to extracting transcript context sites for single CLIP-seq datasets, Peakhood
can merge any number of transcript context sets into comprehensive transcript context
site collections (see Paper Fig. 1b for general workflow). Output table files contain infor-
mation on transcripts and overlapping sites, both for all and the most likely site-transcript
combinations. Site pairs on transcripts and their genomic and transcript distances are
also reported. This way, one e.g. can quickly filter for and spot interesting site pairs
(same or different RBP), where the transcript site distance is lower than the original
genomic distance.

1.3 Agreement with known RBP roles

When Peakhood performs the site context extraction, it reports (among other statistics)
three informative percentages: the percentage of exonic sites (divided by all sites), the
percentage of transcript context sites (divided by all exonic sites), and the percentage of
exon border sites (divided by all transcript context sites). Fig. S2 shows these percent-
ages for four eCLIP datasets from four different RBPs, obtained by running site context
extraction (peakhood extract) with default parameters. We can see that for typical
spliced RNA binding RBPs (IGF2BP1, PUM1, PUM2), most sites overlap with exons
(>= 95%), and out of these >= 95% are assigned to transcript context. In contrast,
for the splicing factor U2AF2 we get around 20% of exonic sites, and out of these only
5.9% get assigned to transcript context. This shows that Peakhood’s transcript context
selection agrees with known RBP roles. We also see that the number of exon border
sites can be quite substantial, as in the case of PUM1 (around 25%). Such sites at exon
borders connected by intron-spanning reads need to be merged, and not taken as separate
binding events (see Paper Fig. 1). This again showcases the importance of a proper site
context selection as done by Peakhood.
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1.4 Displaying genomic regions

To display the genomic regions in Figure 1a and Figure S1, BAM and IDR peak files from
ENCODE were downloaded (dataset IDs ENCSR661ICQ (PUM2) and ENCSR893RAV
(U2AF2)) and pre-processed as follows:

wget https://www.encodeproject.org/files/ENCFF880MWQ/@@download/ENCFF880MWQ.bed.gz

gunzip -c ENCFF880MWQ.bed.gz | awk '{print $1"\t"$2"\t"$3"\t"$4"\t"$7"\t"$6}' > PUM2_K562_IDR_peaks.bed

wget -O PUM2_K562_rep1.bam https://www.encodeproject.org/files/ENCFF231WHF/@@download/ENCFF231WHF.bam

wget -O PUM2_K562_rep2.bam https://www.encodeproject.org/files/ENCFF732EQX/@@download/ENCFF732EQX.bam

samtools merge -f PUM2_K562_rep12.bam PUM2_K562_rep1.bam PUM2_K562_rep2.bam

samtools view -hb -f 130 PUM2_K562_rep12.bam -o PUM2_K562_rep12.R2.bam

wget https://www.encodeproject.org/files/ENCFF290DFO/@@download/ENCFF290DFO.bed.gz

gunzip -c ENCFF290DFO.bed.gz | awk '{print $1"\t"$2"\t"$3"\t"$4"\t"$7"\t"$6}' > U2AF2_K562_IDR_peaks.bed

wget -O U2AF2_K562_rep1.bam https://www.encodeproject.org/files/ENCFF835KXL/@@download/ENCFF835KXL.bam

wget -O U2AF2_K562_rep2.bam https://www.encodeproject.org/files/ENCFF936JSP/@@download/ENCFF936JSP.bam

samtools merge -f U2AF2_K562_rep12.bam U2AF2_K562_rep1.bam U2AF2_K562_rep2.bam

samtools view -hb -f 130 U2AF2_K562_rep12.bam -o U2AF2_K562_rep12.R2.bam

The merged R2 read BAM and peak region BED files were then loaded up into IGV
(Integrative Genome Viewer) for visualization [link].

1.5 Site context extraction percentages

To get the percentages of Figure S2, we used a custom GTF file generated as described
in the online manual (see ”Documentation” section, subsection ”Custom GTF files”, to-
tal RNA-seq ENCODE dataset ID: ENCSR792OIJ). The created custom GTF file for
the K562 cell line can be downloaded from Zenodo [2]. The BAM and BED files were
downloaded and pre-processed as described in the below section ”Runtime measurement”,
encompassing the following four ENCODE eCLIP datasets: ENCSR975KIR (IGF2BP1),
ENCSR308YNT (PUM1), ENCSR661ICQ (PUM2), and ENCSR893RAV (U2AF2). Us-
ing the custom GTF file, site context extraction was evoked to get the percentages from
Figure S2 by the following commands:

peakhood extract --in IGF2BP1_K562_IDR_peaks.uniq_ids.bed --bam IGF2BP1_K562_rep12.R2.bam

--gtf K562_total_rnaseq_rep12_stringtie_gffcompare.gtf --gen hg38.2bit --out IGF2BP1_K562_IDR_pm_extract_out

--pre-merge --new-site-id IGF2BP1_K562_IDR

peakhood extract --in PUM1_K562_IDR_peaks.uniq_ids.bed --bam PUM1_K562_rep12.R2.bam

--gtf K562_total_rnaseq_rep12_stringtie_gffcompare.gtf --gen hg38.2bit --out PUM1_K562_IDR_pm_extract_out

--pre-merge --new-site-id PUM1_K562_IDR

peakhood extract --in PUM2_K562_IDR_peaks.uniq_ids.bed --bam PUM2_K562_rep12.R2.bam

--gtf K562_total_rnaseq_rep12_stringtie_gffcompare.gtf --gen hg38.2bit --out PUM2_K562_IDR_pm_extract_out

--pre-merge --new-site-id PUM2_K562_IDR

peakhood extract --in IGF2BP1_K562_IDR_peaks.uniq_ids.bed --bam U2AF2_K562_rep12.R2.bam

--gtf K562_total_rnaseq_rep12_stringtie_gffcompare.gtf --gen hg38.2bit --out U2AF2_K562_IDR_pm_extract_out

--pre-merge --new-site-id U2AF2_K562_IDR

1.6 Runtime measurement

For the runtime measurement (inside conda environment with Peakhood installed), we
downloaded and pre-processed the eCLIP PUM1 data (K562 cell line) as described in
Peakhood’s online manual on GitHub [3].

wget https://www.encodeproject.org/files/ENCFF094MQV/@@download/ENCFF094MQV.bed.gz

gunzip -c ENCFF094MQV.bed.gz | awk '{print $1"\t"$2"\t"$3"\t"$4"\t"$7"\t"$6}' > PUM1_K562_IDR_peaks.bed

bed_generate_unique_ids.py --in PUM1_K562_IDR_peaks.bed --id PUM1_K562_IDR > PUM1_K562_IDR_peaks.uniq_ids.bed

wget -O PUM1_K562_rep1.bam https://www.encodeproject.org/files/ENCFF064COB/@@download/ENCFF064COB.bam
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wget -O PUM1_K562_rep2.bam https://www.encodeproject.org/files/ENCFF583QFB/@@download/ENCFF583QFB.bam

wget https://hgdownload.cse.ucsc.edu/goldenpath/hg38/bigZips/hg38.2bit

wget http://ftp.ensembl.org/pub/release-103/gtf/homo_sapiens/Homo_sapiens.GRCh38.103.gtf.gz

Now we can run the site context extraction on the dataset:

peakhood extract --in PUM1_K562_IDR_peaks.uniq_ids.bed --bam PUM1_K562_rep1.bam PUM1_K562_rep2.bam

--bam-pp-mode 2 --gtf Homo_sapiens.GRCh38.103.gtf.gz --gen hg38.2bit --report

--out PUM1_K562_IDR_extract_out

peakhood extract --in PUM1_K562_IDR_peaks.uniq_ids.bed --bam PUM1_K562_rep1.bam PUM1_K562_rep2.bam

--bam-pp-mode 2 --gtf Homo_sapiens.GRCh38.103.gtf.gz --gen hg38.2bit --out PUM1_K562_IDR_pm_extract_out

--pre-merge --new-site-id PUM1_K562_IDR

On our test machine (Intel i7-8700k, 32 GB RAM, Ubuntu 18.04 LTS), this takes about
2 minutes and 30 seconds. In case the dataset is used more than once, we recommend to
pre-merge the BAM files, as well as filter by R2 reads (in case of eCLIP data, as described
in online manual), to speed up the run:

samtools merge -f PUM1_K562_rep12.bam PUM1_K562_rep1.bam PUM1_K562_rep2.bam

samtools view -hb -f 130 PUM1_K562_rep12.bam -o PUM1_K562_rep12.R2.bam

Running this again shortens to extraction time to about 1 minute and 30 seconds:

peakhood extract --in PUM1_K562_IDR_peaks.uniq_ids.bed --bam PUM1_K562_rep12.R2.bam

--gtf Homo_sapiens.GRCh38.103.gtf.gz --gen hg38.2bit --out PUM1_K562_IDR_pm_extract_out

--pre-merge --new-site-id PUM1_K562_IDR
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Supplementary figures

EIF4G2
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Figure 1: Genomic region (IGV snapshot) with mapped U2AF2 eCLIP data. 1: read
profile (coverage range in brackets), 2: read alignments, 3: gene annotations (thick blue
regions are exons, thin blue regions introns), Peaks: peaks called by CLIPper (IDR
method). Example region for the splicing factor U2AF2, with higher read counts over
exon borders and introns.

5



0

10

20

30

40

50

60

70

80

90

100

IGF2BP1 PUM1 PUM2 U2AF2

p
e
rc

e
n
ta

g
e
 o

f 
s
it

e
s
 (

%
)

exonic / all

TCS / exonic

EXBS / TCS

Figure 2: Peakhood site extraction results for four eCLIP datasets (K562 cell line, sites
from CLIPper IDR) and four RBPs (number of all sites in brackets): IGF2BP1 (4776),
PUM1 (2146), PUM2 (4578), and U2AF2 (3250). The plot shows percentages of exonic
sites (exonic sites divided by all sites), transcript context sites (TCS) (TCS divided by all
exonic sites), and exon border sites connected by intron-spanning reads (EXBS) (EXBS
divided by TCS).
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