
Advanced Techniques
for Autonomous Navigation
in Precision Agriculture

Freya Fleckenstein

Technische Fakultät
Albert-Ludwigs-Universität Freiburg

Dissertation zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

Betreuer: Prof. Dr. Wolfram Burgard

Advanced Techniques
for Autonomous Navigation
in Precision Agriculture

Freya Fleckenstein

Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften
Technische Fakultät, Albert-Ludwigs-Universität Freiburg

Dekan Prof. Dr. Roland Zengerle
Erstgutachter Prof. Dr. Wolfram Burgard
Zweitgutachter Prof. Dr. Cédric Pradalier
Drittgutachter Prof. Dr. Joschka Boedecker
Tag der Disputation 02. November 2022

Abstract
A decrease in farmers and the rural exodus call for increased automation in agriculture to
feed the growing world population. Furthermore, sustainable and efficient farming tech-
nologies are more important than ever to be able to produce a sufficient amount of food.
Thus, agriculture is moving from uniform field treatment with large machines towards
treatment of individual plants, also called precision farming, using autonomous robots.
Two goals of precision farming are to reduce the use of chemicals and thus relieve the
burden of chemicals on the environment, and to increase the crop yield by treating each
plant as needed.

For any robot to be able to perform a variety of tasks on the field autonomously, it
requires a reliable and robust navigation approach for agricultural environments. This
poses several challenges: the environment changes quickly and drastically in the context
of agriculture due to varying weather conditions and fast plant growth. This makes it
hard for a robot to reliably extract semantic information from sensor data. Furthermore,
agricultural environments such as fields and greenhouses are quite narrow, and finding
and executing safe and efficient paths there is difficult. In this thesis, we present building
blocks for a navigation approach suitable for precision farming applications that tackle
these challenges.

Various tasks in the context of navigation on a field, such as localization or mapping,
employ the position of crops or crop rows as a distinct feature and thus need a reliable de-
tection thereof. Depending on the lighting conditions and the size of plants, either camera
or lidar sensors are more suitable for extracting vegetation features. We provide a repre-
sentation of vegetation features that has the potential to make crop and crop row detection
methods independent of the input sensor modality by being able to capture information
from both sensor types. We run a crop row detection on the resulting vegetation fea-
ture maps and develop a quality measure for the detections that is based on their feature
support. This enables us to filter out unreliable detections in applications such as map-
ping, localization or weed detection based on crop rows. We perform experiments using
a crop-row-based localization and show that we are able to increase the robustness and
avoid localization pose divergence by applying our quality measure to filter out unreliable
detections.

In narrow environments such as fields and greenhouses, movement flexibility is im-
portant for navigating efficiently. We therefore consider two elements for path planning
that impact the flexibility in motions. First, we factor in the configuration of robot joints
that impact possible movement. Second, we take the ground clearance of a robot into ac-
count, which enables it to pass over low obstacles. We evaluate a path planning approach
that makes use of joint configurations such as manipulator arm angles or adjustable wheel
positions to increase the motion possibilities. Our evaluation includes the planning time

vi

and the path efficiency. Additionally, we investigate how a heuristic for planning with
high ground clearance affects path planning performance. We perform experiments in si-
mulated and real world environments and test the limits of this planning approach in a
particularly challenging environment with many obstacles. The results show that the path
planner is able to efficiently incorporate the joints into the planning problem. We also de-
monstrate the necessity of including these joint configurations, as reaching some planning
goals takes considerably more planning time if the joints cannot be adjusted, or they may
not be reachable at all. We also establish that the studied planning approach is well suited
for real world application in agricultural environments.

Lastly, path execution plays a crucial role in an efficient and safe navigation approach.
We present a local planning method to efficiently execute a computed global path with a
robot that has independently steerable omnidirectional wheels. An advantage of omnidi-
rectional wheels is that they provide great motion flexibility. However, the wheel angles
often have underlying constraints, such as a maximum steering velocity, limiting the speed
at which the wheels are able to turn. If these constraints are not considered during motion
command computation, the robot may diverge from the planned path or it needs to stop to
adjust its wheel angles. We introduce a method to represent common steering constraints
in a compact manner and show two techniques to integrate them into local planning, re-
sulting in motion commands that satisfy all constraints. We demonstrate the efficiency of
our approach in simulation and real world experiments. In the results, we see that path
execution accuracy can be retained despite the additional constraints. At the same time,
our approach is able to substantially reduce the path execution time.

The methods presented in this thesis contribute towards a flexible, robust and efficient
autonomous navigation approach for precision agriculture. We hope to hereby advance
sustainable farming technologies that are critical to ensure sufficient food production for
the growing world population.

Zusammenfassung
Die Abnahme an Landwirten und die zunehmende Landflucht erfordern erhöhte Automa-
tisierung in der Landwirtschaft, um die wachsende Weltbevölkerung zu ernähren. Zusätz-
lich sind nachhaltige und effiziente Methoden für die Agrarwirtschaft wichtiger denn je,
um genügend Nahrung zu produzieren. Daher bewegt sich die Landwirtschaft weg von
einheitlicher Feldbehandlung mit großen Maschinen. Die Tendenz steigt zur Behandlung
einzelner Pflanzen, auch Präzisionslandwirtschaft genannt, unter Verwendung autonomer
Roboter. Ziel ist es, die Verwendung von Chemikalien zu reduzieren und dadurch die Um-
welt zu entlasten, sowie den Ertrag zu erhöhen, indem jede Pflanze genau die Behandlung
erhält, die sie benötigt.

Für die Ausführung verschiedener Aufgaben auf dem Feld benötigt ein Roboter einen
verlässlichen und robusten Navigationsansatz für landwirtschaftliche Umgebungen. Dies
stellt uns vor verschiedene Herausforderungen: Die Umgebung auf einem Feld ändert sich
schnell, durch wechselnde Wetterbedingungen sowie durch das Wachstum der Pflanzen.
Dadurch wird es einem Roboter erschwert, aus Sensordaten verlässliche semantische In-
formationen zu generieren. Des Weiteren finden sich auf Feldern und in Gewächshäusern
häufig enge Räume, was es schwierig macht, einen sicheren und effizienten Pfad zu einem
gegebenen Ziel zu kalkulieren und auszuführen. In dieser Arbeit stellen wir Bausteine für
einen Navigationsansatz vor, der für die Anwendung in der Präzisionslandwirtschaft ge-
eignet ist.

Diverse Aufgaben im Kontext der Navigation auf dem Feld, wie beispielsweise Loka-
lisierung oder Kartierung, verwenden die Position von Nutzpflanzen oder Pflanzenreihen,
und benötigen daher für diese eine akkurate Erkennung. Abhängig von Lichtverhältnissen
und von der Pflanzengröße können entweder Kamera- oder LiDAR-Daten bessere Infor-
mationen für die Extraktion von Vegetationsmerkmalen bieten. Wir stellen eine Repräsen-
tation für Vegetationsmerkmale vor, die das Potential hat, Methoden zur Nutzpflanzen-
und Pflanzenreihenerkennung unabhängig von der Art des Eingabesensors zu machen,
indem sie Informationen aus beiden Sensortypen erfasst. Wir führen auf den resultieren-
den Vegetationskarten eine Pflanzenreihenerkennung aus und entwickeln ein Qualitäts-
maß für diese Erkennungen, basierend darauf, wie gut eine Erkennung von den Vegetati-
onsmerkmalen unterstützt wird. Dadurch sind wir imstande, unzuverlässige Erkennungen
herauszufiltern, was in verschiedenen Anwendungen wie beispielsweise Kartierung, Lo-
kalisierung oder Unkrauterkennung nützlich ist. In den Experimenten verwenden wir als
Anwendungsszenario eine Lokalisierung basierend auf Pflanzenreihen. Wir zeigen, dass
wir durch die Anwendung eines Filters, der auf unserem Qualitätsmaß basiert, die Ro-
bustheit erhöhen und eine Divergenz der Lokalisierungspose vermeiden können.

In engen Umgebungen wie Feldern und Gewächshäusern ist Flexibilität in Bewegun-
gen wichtig, um effizient navigieren zu können. Für die Pfadplanung betrachten wir dabei

viii

zwei Elemente, die eine wichtige Rolle für Bewegungsflexibilität spielen. Zum einen be-
rücksichtigen wir die Konfiguration mechanischer Gelenke, die mögliche Bewegungen
beeinflussen. Zum anderen beachten wir die Bodenfreiheit eines Roboters, die es ihm er-
möglicht, über niedrige Hindernisse zu fahren. Wir evaluieren einen Pfadplanungsansatz,
der Gelenkkonfigurationen wie etwa Manipulatorarmwinkel oder anpassbare Radpositio-
nen in die Planung mit einbezieht. Dadurch werden die Bewegungsmöglichkeiten eines
Roboters erweitert. In die Auswertung beziehen wir die Planungszeit und die Pfadeffizi-
enz mit ein. Zudem untersuchen wir, inwiefern die Verwendung einer Heuristik für Pfad-
planung mit hoher Bodenfreiheit die Leistung des Pfadplaners beeinflusst. Wir führen Ex-
perimente in simulierten und realen Umgebungen durch und testen die Einschränkungen
dieser Methode in einer besonders anspruchsvollen Umgebung mit vielen Hindernissen.
Die Ergebnisse zeigen, dass der Pfadplaner die Gelenkkonfigurationen effizient integriert
und nutzt. Wir demonstrieren die Notwendigkeit, diese Gelenkkonfigurationen zu berück-
sichtigen, da manche Planungsziele sonst erst nach sehr viel längerer Planungszeit oder
sogar überhaupt nicht erreicht werden können. Zudem zeigen wir, dass der untersuchte
Pfadplanungsansatz gut für die Anwendung in realen landwirtschaftlichen Umgebungen
geeignet ist.

Die Pfadausführung spielt ebenfalls eine entscheidende Rolle in einem effizienten und
sicheren Navigationsansatz. Wir stellen eine Methode vor, um einen globalen Pfad mit
einem Roboter mit omnidirektionalen Rädern effizient auszuführen. Der Vorteil von om-
nidirektionalen Rädern ist, dass sie sehr flexible Bewegungen ermöglichen. Allerdings
haben die erreichbaren Radwinkel oft dennoch Beschränkungen, wie beispielsweise ein-
geschränkte Lenkgeschwindigkeit, d.h. die Räder können sich nur mit einer gewissen Ge-
schwindigkeit drehen. Wenn diese Einschränkungen in der Berechnung von Bewegungs-
befehlen nicht berücksichtigt werden, kann es passieren, dass der Roboter vom geplanten
Pfad abweicht oder stehen bleiben muss, um die Radwinkel entsprechend anzupassen.
Wir präsentieren eine Methode, um übliche Lenk-Einschränkungen in einer kompakten
Art und Weise zu darzustellen. Wir zeigen außerdem zwei Techniken, wie sie in einen
lokalen Planer integriert werden können, so dass die berechneten Bewegungsbefehle alle
Beschränkungen einhalten. Wir demonstrieren die Effizienz unseres Ansatzes in Simula-
tion und in einem realen Szenario. In der Auswertung sehen wir, dass die Genauigkeit der
Pfadausführung trotz zusätzlicher Einschränkungen erhalten werden kann. Gleichzeitig
kann unser Ansatz die Zeit, die zur Pfadausführung benötigt wird, beträchtlich verkürzen.

Die Methoden, die in dieser Arbeit beschrieben werden, bieten Beiträge zu einem fle-
xiblen, robusten und effizienten autonomen Navigationsansatz für die Präzisionslandwirt-
schaft. Wir hoffen, damit nachhaltige Technologien in der Landwirtschaft voranzubrin-
gen, die notwendig sind, um die Nahrungsmittelproduktion für die wachsende Weltbevöl-
kerung sicherzustellen.

Acknowledgments
I would like to thank my supervisor, all my colleagues, friends, and family for their con-
tinued help, support and encouragement in the past years of working on my PhD. My
special thanks goes to my supervisor Wolfram Burgard for giving me the opportunity to
pursue my PhD at the Autonomous Intelligent Systems lab, for providing a great environ-
ment for my research, the time and freedom to conduct said research, and his guidance
and advice.

I also want to give special thanks to my friends and colleagues Christian Dornhege
and Wera Winterhalter for their invaluable ideas and contributions in interesting discus-
sions, their help with implementation issues and various administrative challenges, the
hard work they put into our joint papers, and for the fun we had at work and in after-work
activities. Thank you also for the effort you put into our experiments, and to Wera’s dad
for driving us and the BoniRob to vegetable fields at an ungodly hour several times so we
could collect data. Thanks in particular to Wera Winterhalter for our joint venture and her
continuous support.

Thanks also goes to Michael Ruhnke for pointing out that the BoniRob is not driving
quite as smoothly as you would want it to even before I started my PhD, and to Cédric
Pradalier for providing the initial idea on how to fix it. Thank you also for your continued
interest in my research and the contribution to our local planning method and the resulting
publication.

Thank you also to all my other colleagues from AIS for fun and interesting chats in the
kitchen, and to colleagues from the Flourish project for their work in making the project
a huge success.

I also want to thank Susanne Bourjaillat, Tatjana Ferl, Evelyn Rusdea and Michael
Keser for their assistance with administrative and computer related problems. A big thank
you also goes to Noha Radwan, Tim Welschehold, Bastian Steder, Brigitte Fleckenstein,
Jonas Fuchs and, once more, Wera Winterhalter, for providing constructive feedback to
earlier versions of this thesis.

Finally, I want to thank my friends and family for being there for me in happy and in
demanding times, enabling me to push for deadlines and to relax when work was done.
Thank you to my parents for supporting my decisions and believing in me no matter what.
A big thank you also goes to Jonas for encouraging and motivating me on the hard days
and sharing my enthusiasm on the good ones.

This work has been partially supported by the European Commission under the grant
number H2020-ICT-644227-FLOURISH.

Contents

1 Introduction 1
1.1 Challenges for Robots in Agricultural Environments 1
1.2 Contributions . 3
1.3 Publications . 5
1.4 Collaborations . 6

2 Features and Quality Measure for Crop Row Detection 9
2.1 Introduction . 10
2.2 Related Work . 11
2.3 Generalized Vegetation Feature Representation 11

2.3.1 Vegetation Features in Lidar Data 12
2.3.2 Vegetation Features in Image Data 13

2.4 Quality Measure for Detected Crop Rows 13
2.5 Experiments . 20

2.5.1 Evaluation of Pattern Classification using our Crop Row Pattern
Quality Measure . 20

2.5.2 Evaluation of the Impact of Filtering Patterns in a Crop-Row-
Based Localization Method . 27

2.6 Conclusions . 33

3 Evaluation of a Path Planner for In-Field Navigation 35
3.1 Introduction . 35
3.2 Related Work . 36
3.3 Planning with High Ground Clearance and Adjustable Joints 38
3.4 Experiments . 44
3.5 Conclusions . 53

4 Smooth Local Planning for Robots with Four-Wheel Independent Steering 55
4.1 Introduction . 55
4.2 Related Work . 57
4.3 Local Planning for Smooth Trajectory Execution 58

4.3.1 Steering Constraints in ICR Space 60
4.3.2 Incorporating Steering Constraints in the Local Planner 65

4.4 Experiments . 71
4.5 Conclusions . 84

xii Contents

5 Conclusions and Outlook 87

Bibliography 95

Chapter 1

Introduction
A growing world population and the rural exodus increase the need for sustainable au-
tomated farming technologies with low impact on the environment. In the past decades,
treatment methods such as fertilizing and weed control of crop fields and orchards have
shifted from a uniform approach towards individual plant treatment. These methods for
treating only parts of the field or trees and only where it is needed are consolidated un-
der the term precision farming [14]. They result in saving resources such as herbicides,
pesticides, and fertilizer, and by lowering the application thereof also reduce the chemi-
cal burden on the environment. Additionally, administering these chemicals only where
needed has the potential to increase harvesting yield, as too much fertilizer or herbicides
can harm the crop plants [3, 47].

Treatment of individual plants is tedious, time consuming and costly when done manu-
ally. Thus, automation in agriculture has been rising from tractors with simple row guided
applications for uniform mechanical weeding [55, 62, 84] to fully automated robots that
are able to perform complex tasks such as individually spraying plants [8], harvesting
fruit [70], or stamping weeds into the ground [92]. A key component for a robot perform-
ing any of these tasks without human supervision or intervention is a fully autonomous
navigation approach. In this thesis, we present methods that contribute to such a naviga-
tion approach for precision farming.

1.1 Challenges for Robots in Agricultural Environments
The domain of precision agriculture poses novel challenges for autonomous navigation
that are quite different from those that robots face in urban or indoor environments, which
have been explored more extensively [15, 16, 40, 58, 77, 91, 94]. Urban and indoor
environments tend to have a clear semantic structure, defined, e.g., by buildings, walls,
streets, lamp poles, doors, etc. This structure is easily recognizable and mostly remains
unchanged over the course of several weeks or even years. On an agricultural field, de-
tecting and recognizing any semantics is a hard task, since the environment can change
within a few hours due to weather conditions or within a few days due to fast growing
plants that change their size and shape entirely. In urban and indoor environments, certain
fixed structures such as walls, lamp poles, doors or street signs are employed to estimate
the robot pose and the semantics of the scene [20, 75, 77, 91]. In indoor environments,
additional infrastructure such as bluetooth or wifi emitters is also often used for pose esti-

2 Chapter 1: Introduction

Figure 1.1: This picture shows our agricultural robot BoniRob on a production vegetable
field. It has a high ground clearance and is able to adjust its wheel positions by changing
the angles of the lever arms to which the wheels are attached. We use it as an experiment
platform to test our approaches in real world scenarios.

mation [1, 4, 95]. While there are sometimes buildings or trees near a field, the commonly
used landmarks and infrastracture are not prevalent and thus cannot be used for estimating
the semantics of the scene. The only structure available on most crop fields is defined by
the crop rows. Tasks that require or benefit from semantic structure, such as localization,
mapping, or obstacle avoidance, therefore often make use of the position of individual
crops or crop rows [5, 7, 51, 90], for which a robust detection method is needed. De-
pending on the lighting conditions and the size of plants, different sensor modalities are
suitable for detecting vegetation. For small plants in sunlight, a high-resolution camera is
better able to capture vegetation, while large plants at dawn are more easily recognizable
in lidar data. In order to be flexible regarding the lighting conditions and plant size, a crop
or crop row detection method that is independent of the input sensor modality is desir-
able. An additional challenge is detecting when there are no crops or crop rows visible in
the sensor data, as it is often the case near the end of the field. Most crop row detection
methods will still produce a detection, even when the sensor data does not show any crop
rows [7, 66, 89]. These false detections can easily mislead a localization or row following
approach.

Early approaches of automation in farming used a uniform treatment of the field, which
requires traversing it entirely. However, for precision farming, the robot may only need
to go to specific points in the field. It thus needs to be able to find a path from its current
position to a given goal position. Crop fields and greenhouses are narrow environments,
which makes it difficult to find a feasible path to a goal position. It is therefore impor-
tant to consider robot joints that enable certain movements to ensure the greatest possible
flexibility for a path planner. This could include the joints of a manipulator arm for har-
vesting, or joints responsible for changing the track width or wheelbase of a robot, which
is possible for a variety of robots such as the Ted robot [67], TREKTOR [81], the robots
proposed by Kim et al. [50] and Karamipour et al. [46], or the BoniRob (see Figure 1.1).
Taking these joints into account during planning leads to additional degrees of freedom,

1.2 Contributions 3

which potentially increases the planning time considerably [38]. As an autonomous robot
should perform its task efficiently, another challenge is to treat these additional degrees
of freedom in a way that minimizes planning time consumption while the resulting path
is still efficient.

Once a path has been found to reach a goal position in the field, it has to be executed
in a safe, accurate and efficient manner. For accurate and efficient path execution, a robot
with omnidirectional wheels provides great flexibility. However, even omnidirectional
wheels have some underlying constraints, such as a maximum steering velocity, limiting
the speed at which the wheels are able to turn [43]. This especially holds for large, heavy
vehicles. These limitations have to be considered when a motion command is computed in
a local planner to ensure that the computed global path is executed in an efficient manner.
The complexity of these steering limitations increase the planning difficulty.

1.2 Contributions

In this thesis, we present novel techniques for different key tasks in autonomous nav-
igation in agricultural settings. We propose an approach to increase the robustness of
crop-row-based applications by providing a vegetation feature representation that is inde-
pendent of the input sensor type and by evaluating the quality of detected crop rows with
respect to the extracted vegetation data. We summarize a planning method from earlier
work that allows us to include additional robot joints and takes into account the ground
clearance of a robot. We extensively evaluate it with regards to real world applicability
and test its limits in a cluttered environment. Lastly, we show how steering constraints for
omnidirectional wheels can be formulated and integrated into a local planner to increase
path execution efficiency while retaining accuracy. This section outlines the thesis and
summarizes its main contributions.

Sensor Independent Vegetation Feature Representation

As discussed before, a robust crop or crop row detection is crucial for several tasks in
precision agriculture. Depending on the type and size of crop plants, different sensor
modalities are better suited for vegetation feature detection. Small plants in broad day-
light are more easily recognizable in camera data, while large overlapping plants in low
lighting conditions are better distinguishable in lidar data. Crop row detection methods
often rely directly on the raw input data from a sensor, thus lacking the flexibility to adapt
to fundamentally different crop fields that require different sensors to gain useful infor-
mation. In Chapter 2, we propose a representation of vegetation features that can capture
data extracted from lidar or camera data, enabling crop row detection methods that are
independent of the specific sensor type used to collect the data.

4 Chapter 1: Introduction

Estimating Crop Row Detection Quality
Approaches that use crop row detections, such as localization, mapping or row following,
often rely on the detection robustness and accuracy. Crop row detection methods usually
return a set of lines that best explains the sensor data as crop rows, without regard for
the quality of the detection [7, 66, 89]. Therefore, the produced crop row detections can
be incorrect if insufficient crop row structure is visible in the sensor, e. g., at the edge of
the field or when there is high weed pressure. This potentially misleads methods that use
these detections in further processing. In the second part of Chapter 2, we thus present a
novel approach to estimate the quality of a crop row detection based on its support in our
vegetation feature representation. Using this quality measure, we define a classifier that
determines unreliable crop row detections and enables us to filter them out. We test the
classifier on three crop types of different sizes. The experiments show that our classifier
is able to recognize the majority of incorrect pattern detections. We further investigate
the impact of filtering out unreliable detections according to our classifier in a crop-row-
based localization approach. The results show that our approach increases localization
robustness considerably.

Investigating Path Planning with Adjustable Joint Configurations
and High Ground Clearance
In the narrow environments of crop fields and greenhouses common in agricultural set-
tings, movement flexibility is key. A high ground clearance ensures flexibility by enabling
a robot to pass over plants or other obstacles without any danger to itself or the environ-
ment, which is a huge advantage. Path planning approaches often make use of heuristics
as a basis to guide the search for a feasible path in a suitable direction. However, heuris-
tics that are commonly used do not cover the possibility of passing over obstacles, e. g.,
the Dijkstra heuristic based on the Dijkstra algorithm [26], or they do not consider obsta-
cles at all, such as the Euclidean distance heuristic. In previous work, we thus developed
a heuristic that considers the positions of all wheels of a robot and aims to find a path
for each of them to provide an estimate of the cost to reach a given goal from the start
position.

Joints that are not directly linked to steering can still impact which movements are pos-
sible in a given situation. For example, an outstretched manipulator arm might need to be
retracted to get closer to an obstacle, lever arms connecting the robot wheels to its chassis
might need to be adjusted so that the robot is able to pass over a wide obstacle, or pris-
matic joints for changing the track width could be adjusted for navigating in fields with
different inter-row distance. In order to reach the highest possible movement flexibility,
these joints have to be considered in path planning. This increases the planning complex-
ity by introducing additional degrees of freedom. In earlier work, we proposed a state
space representation for a search-based planning approach that includes the additional
joints. Compared to planning when ignoring the additional joints, this representation is
able to retain the planning efficiency and optimality despite the higher complexity of the
planning problem [29].

1.3 Publications 5

In Chapter 3, we investigate the suitability of this planning approach from previous
work for real world application. We perform an analysis of the planning time as well
as the reached suboptimality bounds in environments with various challenges, including
a real world environment of an agricultural field as a common use case. We see that
the planning approach with the proposed state space representation and heuristic is well
suited for navigation in real world environments, considering a robot with high ground
clearance and adjustable joints. Furthermore, we test the limits of this approach in a par-
ticularly demanding environment with a high density of obstacles and narrow passages.
We show that considering additional joint angles is needed to find feasible paths in clut-
tered environments.

Smooth Local Planning for Robots with Omnidirectional Wheels

In the context of movement flexibility, omnidirectional wheels have great potential in path
execution. However, even with omnidirectional steering, some steering constraints have
to be considered to ensure efficient execution. If these constraints are ignored, a robot may
have to stop to turn its wheels in order to follow a given path accurately. In Chapter 4,
we propose two variants for local planning that take the steering constraints into account.
One variant uses motion commands computed solely from velocity and acceleration con-
straints and filters them to avoid steering constraint violations. The other variant includes
steering constraints directly into the motion command computation. We investigate the
capabilities of both variants in simulation and real world experiments and compare it with
the performance when steering constraints are ignored. We show that there is no loss of
accuracy when including the steering constraints in the motion command computation.
We further demonstrate that both variants are able to increase path execution efficiency
substantially.

The approaches and results presented in this thesis provide agricultural robots with capa-
bilities needed for autonomous navigation, enabling them to perform various tasks on a
field and contributing towards more sustainable farming technologies.

1.3 Publications

Parts of this thesis were published in international peer-reviewed conferences and jour-
nals. The publications are listed in chronological order below.

• Fleckenstein, F., Dornhege, C., and Burgard, W. (2017). Efficient Path Planning for
Mobile Robots with Adjustable Wheel Positions. In International Conference on
Robotics and Automation (ICRA).

6 Chapter 1: Introduction

• Winterhalter, W., Fleckenstein, F., Dornhege, C., and Burgard, W. (2018). Crop
Row Detection on Tiny Plants With the Pattern Hough Transform. Robotics and
Automation Letters (RA-L), 3(4):3394–3401.

• Fleckenstein, F., Winterhalter, W., Dornhege, C., Pradalier, C., and Burgard, W.
(2019). Smooth Local Planning Incorporating Steering Constraints. In Interna-
tional Conference on Field and Service Robotics (FSR).

• Pretto, A., Aravecchia, S., Burgard, W., Chebrolu, N., Dornhege, C., Falck, T.,
Fleckenstein, F., Fontenla, A., Imperoli, M., Khanna, R., Liebisch, F., Lottes, P.,
Milioto, A., Nardi, D., Nardi, S., Pfeifer, J., Popović, M., Potena, C., Pradalier,
C., Rothacker-Feder, E., Sa, I., Schaefer, A., Siegwart, R., Stachniss, C., Walter,
A., Winterhalter, W., Wu, X., and Nieto, J. (2021). Building an Aerial-Ground
Robotics System for Precision Farming: An Adaptable Solution. Robotics & Au-
tomation Magazine, 28(3):29–49.

• Winterhalter, W., Fleckenstein, F., Dornhege, C., and Burgard, W. (2021). Localiza-
tion for Precision Navigation in Agricultural Fields – Beyond Crop Row Following.
Journal of Field Robotics, 38(3):429–451.

1.4 Collaborations
Parts of this thesis are results from joint work with other researchers. As the supervisor
of this thesis, Wolfram Burgard contributed ideas and suggestions to all of its parts. The
remaining collaborations are outlined in the following.

• Chapter 2 is the result of joint work with Wera Winterhalter and Christian Dorn-
hege, leading to two journal publications [89, 90]. Wera Winterhalter developed
the Pattern Hough transform, which is the crop row detection method presented
in a joint publication [89]. She also proposed the localization correction mea-
sures presented in a second joint publication [90]. Wera Winterhalter and Christian
Dornhege both contributed in data collection and experiment design for the work
presented in this thesis. The author of this work is the main contributor to the gen-
eralized vegetation feature representation for capturing data from camera and lidar
sensors, as well as the quality measure on detected crop row patterns developed
for filtering in crop-row-based approaches to increase robustness. Large parts of
Chapter 2 have been previously published in two journal papers [89, 90].

• Chapter 3 builds upon previous work [29], where we presented a path planning
approach for robots with adjustable wheel positions and high ground clearance. In
this thesis, we investigate the limits of this approach and its suitability for real world
application. Christian Dornhege provided ideas and advice regarding the planning
space in the previous work as well as for evaluation methods in both previous work
and the work presented here. The author of this work is the main contributor to the

1.4 Collaborations 7

idea for a heuristic for robots with high ground clearance as well as implementa-
tion and evaluation in both previous and this work. Large parts of Chapter 3 were
published at a conference [30].

• Chapter 4 is the result of joint work with research colleagues from the Flourish
project, leading to a conference publication [31]. Cédric Pradalier contributed the
formulation and unification of steering constraints in the space of the instantaneous
center of rotation (ICR) of a robot. He further provided an efficient implementa-
tion for the steering constraints. Christian Dornhege helped with data collection
and experiment design for the evaluation. Wera Winterhalter also helped with data
collection and experiment execution. The author of this work provided the ideas
and implementation for velocity rollouts with different constraints, including how
to translate an ICR path into a valid velocity path, and performed most of the ex-
periments. Large parts of Chapter 4 have been previously published at a conference
[31].

• All work presented in this thesis has been used in a fully autonomous navigation
approach developed in collaboration with research colleagues from the Flourish
project. Most parts of this navigation approach were presented in a journal publi-
cation [73]. The author of this work contributed the global and local planner for
the system as presented in Chapter 3 and Chapter 4, respectively. Further improve-
ments were made to the navigation system after the mentioned journal publication,
including filtering the crop row detections according to our crop row quality mea-
sure presented in Chapter 2 for localization. Fully autonomous navigation on an
agricultural field using earlier versions of all components presented in this thesis
was successfully showcased at the final review meeting of the Flourish project.

Chapter 2

Features and Quality Measure for Crop
Row Detection

In precision agriculture, crop treatment is often performed on sin-
gle plants. This is tedious and labor-intensive when done manually.
Therefore, automated methods are desirable for individual plant
treatment. Automating tasks such as weeding, fertilizing, or har-
vesting requires an autonomous navigation approach. Navigation
within the narrow environments of agricultural fields needs to be
precise with respect to crop rows in order to avoid damage to the
crops. To achieve this, accurately detecting crop rows from sensor
data is key. Depending on the growth stage of crops and on weather
and lighting conditions, different sensor modalities are more suited
for detecting crops or vegetation in general. For small plants in day-
light, a high resolution camera yields more decisive data, whereas
in the dark or when the plants are large and overlapping, more in-
formation can be gained from lidar data. We thus propose a unified
representation for vegetation features extracted from either lidar
or camera data, so that any crop row detection method using this
representation is independent of the type of input sensor.
Irrespective of the type of input data, crop row detection methods
may produce inaccurate results or provide false positive detections
when there are no crop rows visible in the data. These incorrect de-
tections can lead to errors in algorithms relying on this data, e. g.,
in a localization, an obstacle avoidance, or a mapping algorithm.
To avoid this, we provide a quality measure for crop row detections
and formulate a classifier based on this measure. Thus, crop-row-
based applications can choose to ignore detections with low quality.
In extensive experiments on real world data, we show the accuracy
of the crop row classifier that is based on our quality measure, and
demonstrate the increased robustness in a crop-row-based localiza-
tion when employing this classifier.

10 Chapter 2: Features and Quality Measure for Crop Row Detection

2.1 Introduction
Precision agriculture entails the individual treatment of single plants or parts of a field,
as opposed to a large scale uniform treatment. This allows for more efficient use of re-
sources such as fertilizer or herbicides, which ensures a higher sustainability and less
chemical contamination of the soil [10, 35, 68]. Since manual treatment of single plants
is tedious and inefficient, automated approaches are required for precision agriculture.
Autonomous navigation is a key component for such approaches. To enable various tasks
in autonomously navigating a field, accurately detecting crop rows from sensor data is
crucial. Common use cases are crop-row-based localization [6, 12, 27, 90] or row fol-
lowing [5, 84]. Considering crop rows in either application ensures that an autonomously
navigating robot will not traverse the rows and thereby crush the crops. The information
gain for crop row detection from different sensor modalities highly depends on the growth
stage and type of plants as well as lighting conditions. While small plants in daylight are
more easily recognizable in camera images, large overlapping plants and plants in bad
lighting conditions are more distinguishable in lidar data. Therefore, having a range of
sensors at hand is helpful for detecting crop rows in a wide span of scenarios. We thus
propose a novel representation of vegetation features that can capture both camera and
lidar data. As representation we chose a 2d grid map located on the ground plane, where
the value of each cell indicates the likelihood that this cell contains vegetation. We call it
a vegetation feature map. A crop row detection method is then able to directly operate on
this vegetation feature map and does not need to be adapted to lidar or camera input data.

Crop row detection methods usually return the detected crop rows as lines in an image
or in 3d space. Most methods assume that there is a crop row present in the sensor
data, and return those lines that best explain the sensor data as crop rows [7, 66, 88, 89].
However, when close to the end of a field, the crop rows may not always be visible in
the sensor data. In extreme cases, with huge overlapping plants or when some plants
are missing from the regular seeding pattern, the crop rows might also not be visible
in the middle of the field. This means that detected crop row patterns can potentially
be wrong. If those are integrated in any crop-row-based approach regardless, e. g., to
correct a localization pose estimate or to correct the steering angle for row following, their
accuracy and safety can suffer as a result. We therefore present a method to detect false
positive crop row detections in feature maps by determining whether a crop row detection
is sufficiently supported by the vegetation features to safely be used by an application for
autonomous navigation.

Overall, we pursue novel methods for making crop row detection approaches indepen-
dent of the type of sensor data, and for ensuring the robustness of crop-row-based appli-
cations with regard to unreliable detections. In this chapter, we show two contributions to
achieve this. First, we present a representation of vegetation features that is independent
of the type of sensor data from which the features are extracted. Second, we provide a
quality measure for detected crop rows. This allows for filtering out detections with low
quality, thus increasing the robustness of any crop-row-based application.

Substantial parts of the ideas, figures and results presented in this chapter have been
previously published [89, 90]. Section 1.4 outlines the author’s contribution to this work.

2.2 Related Work 11

2.2 Related Work

Detecting the semantics of a field, i. e., the crop rows, is useful for several tasks in au-
tonomous navigation in agriculture. In localization and row following they can be used
to determine the robot pose relative to the rows, enabling the navigation system to avoid
driving over the crops. The first step to crop row detection is to extract vegetation features
from the sensor data. Two main data sources are used for this: cameras (RGB or near in-
frared) and lidar sensors [2, 39, 79]. For extracting vegetation features from RGB vision
data, several approaches have been proposed. The triangular greenness index [25], the
excess green index [64] and the excess green minus excess red index [64] are commonly
used for finding pixels in camera images that likely belong to plants. From lidar data, a
3d point cloud can be generated. Extracting the ground plane and assuming that plants
rise above the ground, all remaining points above ground level are likely to be caused by
vegetation. Data from a stereo camera allows to build an elevation map of the environ-
ment [51], from which vegetation features can be extracted in a similar way. While all
these methods provide vegetation features on the given sensor data, any crop row detec-
tion that uses these features needs to be adapted to their respective outputs. To remedy this
dependency on the sensor type and the vegetation feature detection method, we propose a
representation that is able to capture the output from any of these methods.

Running a crop row detection on this representation of vegetation features gives us po-
tential input for crop-row-based localization or row following. In order to avoid causing
errors in these applications, it is helpful to filter out these incorrect detections. We there-
fore present a quality measure for detected crop rows on the representation we developed.
Crop row detection approaches usually assume that crop rows are sown in equidistant,
straight and parallel lines [5, 7, 63, 82, 89]. All of these assumptions hold when only
considering a small local area on most fields. A set of crop rows that satisfies these con-
straints can be described by their heading, the spacing between two rows, and the offset of
one of the rows to a given reference point. This is the output on which we base our qual-
ity measure. Some of the mentioned crop row detection methods require specific sensor
data. As we aim for a generalized crop row quality measure, we use the Pattern Hough
transform [89], which is able to use our unified representation of vegetation features, and
is thus compatible with the most common types of sensor input.

2.3 Generalized Vegetation Feature Representation

Crop row detection profits from different sensor modalities, depending on the size and
type of plants as well as lighting conditions. In order to make crop row detection inde-
pendent of the sensor modality, we developed a novel representation of vegetation features
that is able to incorporate data from camera images as well as lidar point clouds. The base
idea is to have a 2d grid map of the ground plane, where the value of each cell indicates
how likely it is that this cell contains vegetation. In the following, we detail how features
are extracted from the different sensor modalities and how they are transferred into this
vegetation feature map representation.

12 Chapter 2: Features and Quality Measure for Crop Row Detection

Figure 2.1: Both images show the point cloud of three crop rows from a top down view.
On the left, the points are colored according to their intensity values, where green corre-
sponds to a high intensity, and red corresponds to a low intensity. On the right, the points
are colored according to their height. Here, red points are low and yellow points are high.

2.3.1 Vegetation Features in Lidar Data

In lidar data, there are two straightforward ways to detect plants. They show a much
higher intensity than the soil as can be seen in Figure 2.1 on the left. Thus, one way to
extract vegetation features is to set the intensity of a point as the vegetation weight for
that point. As intensity values decrease with distance, the values have to be normalized
accordingly. A second method is to make use of the fact that crops usually rise above the
ground, and thus the height of points above the ground can be employed as indicator of
whether vegetation is present as visible in Figure 2.1 on the right. The first step for either
method is to transform the points of the point cloud into a coordinate frame that is located
on and parallel to the ground plane. The z-axis of this frame will thus point upwards. We
call this frame the ground frame. One possibility is to use the robot base frame, which is
usually located on the ground. While the ground in the real world is not planar in most
cases, especially not in an agricultural setting, it is sufficiently close to being planar in a
local environment for our requirements. Once the point cloud has been transformed into
the ground frame, a grid map of suitable size considering the field of view of the sensor is
created.

If the intensity is used as indicator, the weight of each grid cell is computed as fol-
lows: All points falling into this cell are determined. Among all these points, the highest
intensity value is chosen. The weight of the cell is the appropriately scaled intensity value.

If the height of the points is used as an indicator, again all points falling into a grid cell
are computed. Among these, the highest z value is determined and assigned as weight.
To reduce noise, only the highest 10% of grid cell weights are considered as vegetation.
Thus, a lower bound is applied dynamically.

Depending on the density of the lidar sensor that is used, the resulting grid map may be
rather sparse, which makes it hard for a crop row detection to reliably find the right pattern.
To overcome this issue, we suggest integrating the point clouds using robot odometry, if
it is available.

2.4 Quality Measure for Detected Crop Rows 13

Raw Processed

Figure 2.2: On the left, a portion of the raw feature map obtained by applying the trian-
gular greenness index on an image is shown. On the right, we show the feature map after
processing by weighting each point with its squared distance to the camera, applying a
lower bound and smoothing the weights. The color scheme is a heat map on the rainbow
spectrum, where blue corresponds to low feature weights, and red corresponds to high
feature weights. The white space has feature weight 0.

2.3.2 Vegetation Features in Image Data
As stated before, there are several methods to detect vegetation in image data, e.g., the
triangular greenness index or the excess green index. These both assign a weight to
each pixel that indicates the likelihood that this pixel shows vegetation. We apply any of
the methods suitable for indicating vegetation in images. Under the assumption that the
ground is flat, and given the intrinsic and extrinsic calibration of the camera, we project
the camera image to the ground plane. Here we make use of the previously defined ground
frame. Just as for the lidar data, we create a grid map with fitting size considering the field
of view of the camera. All pixels that are projected into one grid cell are computed. The
highest weight among these pixels determines the weight of the grid cell. In order to
account for the fact that the size of plants in the image space differs depending on their
distance to the camera, the weight of the grid cells is scaled with their squared distance
to the camera. While this does not increase the size of plants far away in the grid map, it
ensures that any crop row detection algorithm considering the weights has an inclination
to incorporate far away plants. As a last step, we only keep the best 25% of features in
the vegetation grid map to get rid of noise and smooth the values. A comparison between
the raw grid map and the processed version is shown in Figure 2.2.

2.4 Quality Measure for Detected Crop Rows
Any crop row detection method that does not depend on one specific type of sensor input
can be run on our generalized representation of vegetation features. Crop row detection
algorithms usually output the lines that are best explained as crop rows. They do not
provide a measure of how well the data matches the hypothesis that the detected lines
are crop rows. Especially near the end of a field, when there is more noise due to grass,
bushes or trees visible in the sensor data, the detected rows might not be correct. When
they are used for tasks related to autonomous navigation, e. g., by integrating them into
a localization or using them to correct the steering angle for row following, this can be
misleading and introduce errors. We therefore present a quality measure for a set of crop

14 Chapter 2: Features and Quality Measure for Crop Row Detection

Figure 2.3: The schematic on the left shows a crop row pattern overlaid on a vegetation
feature map. Dark green corresponds to a high feature value, lighter shades to lower
feature values. In this case, the feature map overlaps with 5 lines l1, . . . , l5 of the pattern
P . The vegetation feature clusters lying on the pattern lines likely correspond to crops,
while vegetation features that diverge from the pattern are presumably weeds.
The schematic on the right illustrates which feature map cells are relevant for computing
the feature support of a cell on a pattern line. The pattern line li crosses cells c1, . . . , cm
(marked in dark blue) in the feature map. For cell cj on this line, we determine the line
loi,j that is orthogonal to li and goes through cj . It crosses feature map cells co1, . . . , c

o
q. For

computing the feature support of cell cj , only those cells on loi,j that are less than half the
pattern spacing s away from cj are relevant (marked in light blue).

rows extracted from the previously defined vegetation feature map. Using this measure,
detected crop rows that are not well supported by the data can be filtered out before using
them in other approaches.

Our quality measure is based on the support of the detected crop rows in the feature
map data. There are several criteria that are relevant to ensure that detected crop rows are
backed up by the obtained data. The first is how well the vegetation features support the
theory that crop centers lie on the crop row lines. This incorporates different aspects: It is
crucial that there are vegetation features on or close to the crop row lines. Furthermore,
they should be distributed among a set of crop row lines, i. e., not all vegetation features
should fall on a single line. It is also important that there are few vegetation features far
away from crop row lines, otherwise the robot might be standing on grass and not in the
field, so that the detected crop rows are just random lines. A second criterion is based
on the assumption that the robot is close to the field from which crop rows should be
detected: the crop row lines which are supported by vegetation features should be close
to the robot. If this is not the case, i. e., all supported crop row lines are far away from the
robot, they likely correspond to a different field from the one the robot is driving in.

2.4 Quality Measure for Detected Crop Rows 15

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0 s/4 s/2

Figure 2.4: This plot shows the sigmoid function we designed for computing the feature
support of a cell cj . When the relevant cells are determined, we weight their feature values
according to this sigmoid. We expect high feature values close to cj , if cj lies in the center
of a crop plant, and low feature values farther away. Thus, small distances get a high
positive weight and large distances get a high negative weight. The inflection point is at
(s/4, 0) where s is the pattern spacing, reflecting that we expect a crop plant to take up at
most s/2 in width.

For the following definitions, see Figure 2.3 for an illustration. We define a crop row
pattern as a set of parallel equidistant lines P = {l1, . . . , ln} in the feature map space,
with spacing s. For each line li ∈ P we compute all cells c1, . . . , cm that it crosses in
the feature map. In the following, we use the name of a cell cj equivalently with the 2d
coordinates of its center. We are interested in how well the feature map data supports the
claim that a line li represents a crop row, i. e., it is a line that goes through the center of
crop plants. Consequently, we want to know whether a cell cj on li represents the center
of a crop plant. In order to determine this, we find the line loi,j that is orthogonal to li and
goes through cell cj . We omit the indices i, j for simplicity and write lo from here on.
This line lo crosses cells co1, . . . , c

o
q within the feature map. If cj represents the center of

a crop plant, we expect high feature values in the feature map close to cj on lo, and low
values in cells on lo that are farther away from cj . The latter only holds for cells that are
not closer to a different pattern line, i. e., we only consider cells cok on lo that are no further
than half the pattern spacing away from cj: ∥cok − cj∥ < s/2. To model that high feature
values close to cj and no features far away from cj are desirable, we design a sigmoid
function shown in Figure 2.4. It is defined on the distance of a cell c to cj with values in
[-1, 1], where large distances get negative values and small distances get positive values.
We set the inflection point of the sigmoid at s/4, which implies that a crop plant takes up
half of the pattern spacing. Note that different inflection points may yield better results for
different plant sizes, but as shown in our experiments, this value works well for different
crop sizes. The sigmoid is defined by

16 Chapter 2: Features and Quality Measure for Crop Row Detection

sigmcj
(cok) =− 2

−1

2
+

1 + exp

−2

(
∥cj−cok∥

s
− 1

4

)
1
4
· 1
2




−1
 . (2.1)

Multiplying the feature value f(cok) of a cell cok with its sigmoid value indicates how
well this cell supports the claim that cj is the center of a crop plant. Summing over all
relevant cells on the orthogonal line lo results in the local feature support of cj , a measure
of how well cj is supported as crop center by the feature map:

g(cj) =
∑

cok,k∈{1...q},∥cj−cok∥<s/2

f(cok) · sigmcj
(cok) (2.2)

In the real world, crops are not always sown in exact lines. Thus, we allow for some
deviation d of the crop center to the left and right and compute the feature support of cell
cj as

h(cj) = max
cok,k∈1...q,∥cj−cok∥<d

g(cok).

We say a cell is supported if its feature support is higher than a given threshold. We then
define a reference cell

crj = argmax
cok,k∈1...q,∥cj−cok∥<d

g(cok).

It is the cell on line lo with the highest evidence that it is a crop center and is sufficiently
close to li to belong to it (see Figure 2.5 for an illustration). Intuitively, if the crop is
slightly off the pattern line, this cell is likely its center. We call its distance to the pattern
line the reference cell offset.

Once we have determined the feature support and reference cell for each cell on the
detected crop row pattern, we check for segments of pattern lines that are supported by
the feature maps. This indicates how the feature support is distributed among the pattern
lines, which is another criterion for the data supporting the detected crop rows. Following
each pattern line through the cells of the feature map, we create supported line segments
as follows: If a cell c is supported, a supported segment of this line exists and it is not
too far from the considered cell, add c to the supported segment, along with all cells
in between c and the supported segment. Therefore, a sequence of crop cells is still
recognized as a continuous supported crop line segment if there are gaps between the
crops, as long as they are close enough together. If the last supported segment is too far
away or none exists, we create a new supported segment that only contains c. All cells
between the last and the new supported segment form an unsupported line segment. This
might be the case when the robot is near the end of the field and perceives the end of
crop rows (a long supported line segment) as well as weeds growing on the headlands (a
short supported line segment that is not connected to the longer one). We perform some
additional checks to see if a supported line segment is valid. First, it has to be longer than

2.4 Quality Measure for Detected Crop Rows 17

Figure 2.5: This schematic shows examples for supported line segments (marked in
orange) and reference cells (marked with a dark green border) to pattern line cells
cj1 , cj2 , cj3 . The vegetation features in the feature map are shown in different shades of
green, where a darker shade represents a higher feature value. For cell cj1 , there appears
to be a crop directly on cj1 . Within the distance threshold of s/2 along the line loi,j1 , cj is
the cell with the highest local feature support, i. e., it is its own reference cell, crj1 = cj1 .
For cell cj2 , while there are two cells with high feature values on the line loi,j2 , one of them
has more cells with feature support closeby and thus gets chosen as reference cell crj2 .
In this case, the center of the crop might be slightly off the pattern line, or the detected
vegetation features were caused by a weed.
For cell cj3 , vegetation features are similar in all cells within the distance threshold. When
computing the local feature support for each cell on loi,j3 , they cancel each other out due to
multiplication with the sigmoid function. Thus, cj3 has no feature support. This is desired
behavior, since a vegetation distribution like this contains no evidence for crop rows.

18 Chapter 2: Features and Quality Measure for Crop Row Detection

Figure 2.6: This graphic illustrates how we compute pattern extensions. Pattern lines are
shown in black, supported line segments are represented by solid orange line segments.
The robot pose r is in the lower left of the picture, and v is the direction of the pattern
lines. cmin is computed as the cell in all supported segments over all pattern lines that is
closest to r in direction v. Similarly, cmax is the cell that in all supported line segments is
farthest from r in direction v. The pattern extension is then given by the distance between
those two cells along the pattern, i. e., |(cmax − cmin) · v|.

a given threshold. This allows us to prune supported segments generated by weeds, which
are usually short because weeds do not grow in straight lines. Second, we check that the
density of supported cells is high enough, i. e., the number of supported cells divided by
the total number of cells in a segment is higher than a threshold.

When the valid supported segments of each pattern line have been determined, we
extract the length of the supported pattern part, i. e., how well the feature support is dis-
tributed along the pattern lines. If only a short part of the pattern is supported, it is likely
that only a small part of the field of view of the sensor covers crop row data, making the
estimated crop rows more prone to errors. We find the cells cmin and cmax belonging to a
valid supported line segment that are closest to and farthest from the robot pose along the
pattern lines (see Figure 2.6 for an illustration). Given the direction of the pattern lines v
with ∥v∥ = 1, the distance of these two cells in direction v defines the pattern extension,
e(P) = |(cmax − cmin) · v|.

All previously computed values impact how well the feature map data fits the detected

2.4 Quality Measure for Detected Crop Rows 19

crop row pattern. We compute a likelihood that the detected pattern is correct using the
following steps.

First, we determine whether a sufficient amount of supported pattern lines was detected.
A pattern line is supported if it contains at least one valid supported segment. We denote
the number of supported pattern lines by a. The threshold t1 depends on the field of view
of the sensor and the resulting size of the feature map. It expresses the minimum of how
many crop rows we expect to see in the sensor data. We here account for the fact that the
robot might be at the edge of the field so that not all sensor data lies in the field, e. g., only
half of the sensor data contains crop rows. We define

p1(P) =

{
0 for a < t1

1 else

as the likelihood that the pattern is correct, given the number of supported pattern lines.
Second, we check whether the pattern is off-center, i. e., whether there are only sup-

ported lines to the left or to the right of the robot. If this is the case, the robot is likely at
the edge of the field. During in-field navigation, if all supported crop rows are far away
from the robot, they are likely incorrect or belong to a different field than the one the
robot is driving on. We compute the offset o of the robot position to the closest supported
pattern line and model the likelihood that the detected pattern is correct given this offset
as

p2(P) =

{
1− t2 · o for o < 1/t2

0 else

where t2 is the maximum distance we expect the crop rows to have from the robot.
If the pattern is not off-center, i. e., there are supported pattern lines to the left and right

of the robot, it is likely at a position in the field. In most cases, we expect the same amount
of crop rows to be visible to the left and right of the robot, given the field of view of the
sensors is symmetrical with regard to the robot position. We thus determine the number
of supported lines to the left and to the right of the robot. The minimum b of these two
values is the symmetry of the pattern support. We define the likelihood that the pattern is
correct given its symmetry as

p3(P) =

{
1
t3
· b for b < t3

1 else

where t3 is the number of crop rows we expect to see on either side of the robot.
Lastly, we investigate how far the assumed crop centers deviate from the pattern lines,

i. e., how much the reference cells for the pattern lines deviate from those lines. For each
supported pattern line li, we compute the mean µi and variance σi of the reference cell
offset across all supported segments. We scale both to values in [0,1] and call the results
µs
i and σs

i . We then define the likelihood that the pattern is correct given the reference cell
offset mean as

p4(P) =
∑
i

µs
i

20 Chapter 2: Features and Quality Measure for Crop Row Detection

and given the reference cell offset variance as

p5(P) =
∑
i

σs
i .

Overall, we compute the likelihood that the pattern is correct or the pattern quality as

q(P) =
5∏

l=1

(αl + (1− αl) · pl(P))

where the αl ∈ [0, 1] are introduced for numerical stability and to allow for weighting the
different factors.

To achieve higher robustness in crop-row-based applications, such as localization, we
implement a classifier based on thresholding the pattern quality. Patterns P with a quality
higher than threshold tq, q(P) > tq, are classified as valid patterns, patterns with equal or
lower quality are classified as invalid. In a crop-row-based localization, mapping or row
following approach, the detected crop row patterns can be filtered using this classifier to
avoid feeding them misinformation.

2.5 Experiments
In order to evaluate our quality measure for crop row detection, we performed two dif-
ferent experiments. In the first experiment, we determine how well we are able to filter
out wrong crop row detections using the classifier based on our quality measure. This
gives us a baseline on the potential increase in robustness for any application using the
classifier. In the second experiment, we test how filtering the detected crop rows accord-
ing to our quality measure impacts a localization method. This shows how we are able
to increase the robustness of the localization method in practice. Both experiments were
run on real world data from a production vegetable field. There were three types of crops
on the field: kohlrabi, Chinese cabbage, and pointed cabbage (see Figure 2.7 for some
examples of the data). The crops have varying sizes, allowing us to test the flexibility
of our approach with regard to plant size. We recorded data of the same field twice in
order to test reproducability and from here on refer to the two runs as Run 1 and Run 2,
respectively. We performed Run 1 in the morning and Run 2 in the afternoon, to ensure
at least slightly different lighting conditions applied.

2.5.1 Evaluation of Pattern Classification using our Crop Row
Pattern Quality Measure

For the first experiment, we manually labeled crop rows in vegetation feature maps. We
ran the Pattern Hough transform [89] as crop row detection on the same feature maps. By
using a threshold on the lateral and angular error between the labeled and the detected
crop rows as introduced by Winterhalter et al. [89], we determine the ground truth of
whether a detected crop row pattern is valid. We then compute the quality measure on the

2.5 Experiments 21

Figure 2.7: On the left, we show example images for the three crop types present in our
data set. From top to bottom we see kohlrabi, Chinese cabbage, and pointed cabbage. On
the right, the corresponding vegetation feature maps are shown. The color scheme is a
heat map on the rainbow spectrum, where blue corresponds to low feature weights, and
red corresponds to high feature weights. The white space has feature weight 0. Images
and vegetation feature maps show the variety of plant sizes in the different crop types.

22 Chapter 2: Features and Quality Measure for Crop Row Detection

Figure 2.8: These two figures illustrate the computation of the angular and lateral crop
row pattern error according to Winterhalter et al. [89]. The detected pattern is shown in
red, the manually labeled pattern in black. The angular error errθ is defined as the angular
difference between the normals of the detected and labeled pattern, as illustrated on the
left. On the right, our reference point p is orthogonally projected onto the pattern lines,
creating new points pdi or pmj , respectively. As examples, only pm1 , p

m
5 , p

d
2 and pd5 and the

error between the line pairs (ld2, l
m
1) and (ld5, l

m
5) are labeled.

detected crop row pattern. Applying our classifier by thresholding the quality measure
gives us a classification as valid pattern for patterns with high quality, and invalid pattern
for those with low quality. Comparing the classification results with the ground truth
determined from labels, we establish which detected patterns were correctly classified as
valid or invalid.

The detected crop row pattern is given as

P d =
{
ldi |i ∈ {1, . . . , n}

}
, ldi =

{(
x
y

)
∈ R2

∣∣∣∣n⃗d ·
((

x
y

)
− a⃗di

)
= 0

}
where the normal vector n⃗d is the same for all pattern lines because they are parallel
to each other, and adi is a support vector for line ldi . Analogously, the manually labeled
crop row pattern is given as Pm = {lmi |i ∈ {1, . . . , n}} with equivalent definitions for
the manually labeled pattern lines lmi . The error measures between the manually labeled
ground truth pattern and the detected crop row pattern were introduced by Winterhalter
et al. [89]: The angular error is the angle difference between the normal vectors, i. e.,

errθ(P d, Pm) = arccos(n⃗d · n⃗m).

See also Figure 2.8 on the left for an illustration. For computing the lateral error, we
define a reference point p. We project the robot position 1 m forward and define this as the
reference point. This is a point a row following approach could use for steering correction.
We project the reference point onto all pattern lines ldi and lmj from the detected as well as
the labeled pattern (see Figure 2.8 on the right), which gives us projected points for each
line, pdi and pmj . We then create all pairs of lines from the detected pattern and the labeled

2.5 Experiments 23

pattern. For each line pair (ldi , l
m
j), we compute the distance between the reference point

projections,
errlat

i,j(P
d, Pm) =

∥∥pdi − pmj
∥∥ .

We then define the lateral error for the detected pattern as

errlat(P d, Pm) = min
i,j

errlat
i,j(P

d, Pm).

A threshold on both error values determines our ground truth label on whether a pattern is
valid (both values are below or equal to a threshold) or invalid (at least one value is higher
than the threshold).

We divide each run into an in row, a transition and an out of field data set. The in row
data set contains only feature maps where crop rows are visible in the whole feature map.
Examples are shown in Figure 2.7. The transition data set consists of feature maps where
crop rows are only partially visible, i. e., the robot is leaving or entering the field. This
poses a more challenging scenario. Figure 2.9 shows examples for this data set. Lastly,
the out of field data set is comprised of feature maps where crop rows are not visible at
all. Here, the scenarios range from grassy headlands to pure earth headlands as shown in
Figure 2.10. In the transition and the out of field data set, we evaluate on feature maps
from every image. In the in row data set, we only consider feature maps every 5 s, because
here the data changes more slowly due to low driving speed and almost no rotation.

Table 2.1 presents the results of this experiment. The out of field data set for each
run has more patterns than the other two, because we evaluate every feature map and it
contains almost all feature maps of when the robot is turning at the end of the field. At
the top of both tables, the confusion matrices are given. In this scenario, a true positive
is a valid pattern according to ground truth that our classifier also identifies as valid. A
false positive is an invalid pattern that is classified as valid, thus potentially misleading
an approach such as localization that uses it in further processing. A true negative is an
invalid pattern that is classified as such. It provides incorrect data that will be filtered
out. A false negative is a valid pattern that is classified as invalid. These are patterns that
would be filtered out in an application such as localization, even though they are valid. A
high number here would indicate that we lose a lot of correct data. We particularly aim
for a low false positive rate to avoid misleading approaches using the filtered crop row
detections.

The pattern quality estimate has the best classification results in the in row data set.
In this data set in both runs, the pattern classification achieves more than 95% of true
positives. Only less than 2% of the patterns are false positives. These are the patterns
that potentially mislead an application that uses them, since they are wrong but will not
be filtered out. Additionally, less than 3% of the patterns yield false negatives.

The transition data sets are more challenging. Only about 49% and 58% of the detected
patterns are true positives in Run 1 and Run 2, respectively. Around 40% and 25% of the
patterns are false negatives. This is correct data that we lose when filtering. Less than
4% of patterns are false positives. We will show in the second experiment that these false
positive and false negative rates are still sufficient to enable an accurate pose estimation.
Lastly, about 10% and 14% of the patterns are correctly filtered out as true negatives.

24 Chapter 2: Features and Quality Measure for Crop Row Detection

Figure 2.9: On the left, two example images from the transition data set are shown. On
the right, we show the corresponding vegetation feature maps. The color scheme is a
heat map on the rainbow spectrum, where blue corresponds to low feature weights, and
red corresponds to high feature weights. The white space has feature weight 0. The top
image was taken when the robot entered a crop row, while the bottom one was taken when
it was leaving a crop row.

2.5 Experiments 25

Figure 2.10: On the left, images from the out of field data set are shown with their cor-
responding vegetation feature maps on the right. The color scheme is a heat map on the
rainbow spectrum, where blue corresponds to low feature weights, and red corresponds
to high feature weights. The white space has feature weight 0. The top image shows
grassy headlands which produces a rather dense feature map. The middle image shows
headlands with a mixture of grass, other larger weeds and bare soil, resulting in a feature
map that has dense parts and some features distributed in the whole field of view of the
camera. The bottom image shows mostly bare soil with a few weeds, giving us a sparse
feature map with some feature clusters from large weeds.

26 Chapter 2: Features and Quality Measure for Crop Row Detection

Table 2.1: These tables show the confusion matrices and the precision and recall values
for the detected crop row classification according to our quality measure. Results are
given for both runs on all data sets.

Run 1
in row transition out of field

(267 patterns) (337 patterns) (1456 patterns)
classified as classified as classified as

valid invalid valid invalid valid invalid
valid 98.13% 1.12% 48.66% 39.17% 0.00% 0.00%
invalid 0.75% 0.00% 1.78% 10.39% 23.76% 76.24%
precision 99.24% 96.47% -
recall 98.87% 55.41% -

Run 2
in row transition out of field

(273 patterns) (462 patterns) (1117 patterns)
classified as classified as classified as

valid invalid valid invalid valid invalid
valid 95.97% 2.56% 58.01% 24.46% 0.0% 0.00%
invalid 1.47% 0.00% 3.90% 13.64% 23.90% 76.10%
precision 98.50% 93.71% -
recall 97.40% 70.34% -

The out of field data sets provide a special case, as there are no crop row patterns
visible in the data and thus all detected crop row patterns are invalid. About 76% of the
patterns are true negatives in both runs and would be filtered out for usage in a crop-
row-based application. However, the remaining 24% would be integrated and potentially
cause errors in localization estimates or mapping approaches based on crop rows. We will
present a solution for this issue in the second experiment.

In the lower part of the tables in Table 2.1, we show the precision and recall values.
Note that, for the out of field data sets, these values carry no information since there are
no correct patterns, which is why we omit them. We aim for a high precision value. A
high precision implies a high true positive to false positive ratio. Thus, when filtering
according to our quality measure, for example in a localization approach, the ratio of
valid to invalid patterns that will be used is high. The higher this value, the less likely it
is that the localization pose diverges – a lot of valid patterns will be used, but only few
invalid patterns will be integrated. The recall value indicates how many correct patterns
are filtered out, i. e., how much correct data we lose. While it is desirable to keep as much
correct data as possible, it is not as crucial as filtering out wrong data. In the in row data
sets, precision and recall are both high with values above 97%. In the transition data set,
the precision values are still high (about 96% and 94%, respectively), but the recall drops

2.5 Experiments 27

Figure 2.11: These images show how we acquired the ground truth poses of the robot.
We placed markers at the beginning, mid and end of each crop row (left). On the robot, we
rigidly mounted a laser pointer with a clearly visible mid point and orientation. Whenever
the robot passed a marker, we marked its position and orientation on the marker using the
laser pointer (right). The coordinate system enables us to accurately determine the robot
pose.

to about 55% and 70%. This means that we filter out about 45% and 30% of correct data,
respectively.

Overall, the detected pattern classification using our quality measure yields high pre-
cision. While the recall is not that high in more challenging data sets, the results of the
following experiment show that enough correct data remains to robustly localize a robot
in the field.

2.5.2 Evaluation of the Impact of Filtering Patterns in a
Crop-Row-Based Localization Method

To evaluate how filtering detected crop row patterns according to our quality measure
impacts the performance of a localization method, we used the following setup. We placed
markers with coordinate systems (see Figure 2.11, bottom left) at the front, mid and end
of each row. We rigidly installed a laser pointer at the bottom of the robot, pointing
downwards. The laser pattern has a clear midpoint and orientation. Whenever the robot
passed one of the markers, we marked its pose on the marker, using the laser pattern (see
Figure 2.11, right). We additionally marked the corresponding time stamp. This gives us

28 Chapter 2: Features and Quality Measure for Crop Row Detection

R
un

1
R

un
2

Figure 2.12: In this schematic, we indicate the ground truth poses of the robot for both
runs as red arrows. The red numbers indicate the marker index of the respective position.
The crop rows are represented as green lines. These correspond to the semantic map of
the field that the localization algorithm uses. The images were taken from Winterhalter
et al. [90].

the ground truth poses of the robot at certain timestamps. We estimate the measurement
error of this method to 5 cm in either translational direction, and 3 ° for the angle. We
then run a crop-row-based localization as presented by Winterhalter et al. [90] on the data
collected during the runs.

The localization approach uses a semantic map of the field, where crop rows are given
as lines (see Figure 2.12). In this figure, we added the ground truth poses of the robot
at the marker positions in both runs. The localization algorithm uses the odometry of
the robot as initial guess for its movement. It employs the detected crop row patterns for
lateral and angular pose correction with respect to the crop rows in the semantic map.
In addition, the detected pattern extension as explained in Section 2.4 is used to provide
a longitudinal correction whenever the end of the field is visible. Whenever the end of
the field is not visible, a longitudinal correction is computed using a global navigation
satellite system (GNSS) sensor. All these corrections are applied in an Extended Kalman
Filter [83].

Filtering the detected crop row patterns according to our quality measure helps to pre-
vent integrating wrong patterns in the localization algorithm. Patterns with low quality
are not used for pose correction and thus cannot mislead the localization method. As the
robot approaches the end of the field, the crop rows leave its field of view. Thus, once
the end of field was detected and, according to the localization pose and extrinsic sensor
calibration, the crop rows cannot be visible in the sensor data anymore, we disable pattern

2.5 Experiments 29

Figure 2.13: This schematic shows how the lateral and longitudinal localization errors are
computed as introduced in Winterhalter et al. [90]. The ground truth position of the robot
is denoted by pgt, the localization position estimate by pl. The lateral and longitudinal
errors are computed with respect to crop rows in the semantic map, here shown as lines
lmi and lmi+1. The lateral error is the difference from the position estimate to the ground
truth position orthogonal to the crop rows, denoted by errlat. The longitudinal error of the
position estimate is its difference to the ground truth position in the direction of the crop
rows, denoted by errlong. In this example, the localization position estimate is roughly one
crop row off to the side.

integration in the localization. It is re-enabled once the robot has turned so that it should
be able to see the crop rows again. This solves the issue we discovered in the previous ex-
periment, that about 23% of wrong patterns are not filtered out in the out of field data set.
The lateral and longitudinal localization errors are computed with respect to the crop row
direction in the map as proposed in Winterhalter et al. [90] and shown in Figure 2.13. We
provide lateral and longitudinal error separately instead of providing a translational error
that contains both, because the lateral error with respect to crop rows is more relevant for
in-field navigation. A lateral error of 15 cm means that the robot is potentially driving
over crops, which we want to avoid. On the other hand, a longitudinal error of 15 cm is
not relevant in this scenario. A localization pose estimate is sufficiently accurate for our
purpose, when the lateral error is below 10 cm and the angular error is below 10 °.

The localization errors are shown in Figure 2.14 for localization with filtering out unre-
liable crop row detections according to our quality measure (quality) and without filtering
(no quality). We do not provide longitudinal localization errors for markers in the mid-
dle of the field, as it is difficult to obtain a longitudinal ground truth estimate relative to
the beginning or end of the crop rows when they are far away. To investigate the cause
of localization errors in greater detail, we show when and how patterns were integrated
close to specific marker positions in Figure 2.15. To give an intuition about how to read

30 Chapter 2: Features and Quality Measure for Crop Row Detection

Run 1 Run 2

la
te

ra
le

rr
or

in
m

3 6 9 12 15 18
marker

0.0

0.1

0.2

0.3

0.4
no quality
quality

3 6 9 12 15 18
marker

0.0

0.1

0.2

0.3

0.4
no quality
quality

an
gu

la
re

rr
or

in
de

g

3 6 9 12 15 18
marker

0.0
2.5
5.0
7.5

10.0
12.5
15.0

no quality
quality

3 6 9 12 15 18
marker

0.0
2.5
5.0
7.5

10.0
12.5
15.0

no quality
quality

lo
ng

itu
di

na
le

rr
or

in
m

3 6 9 12 15 18
marker

0

1

2

3

4
no quality
quality

3 6 9 12 15 18
marker

0

1

2

3

4
no quality
quality

Figure 2.14: These graphs show the lateral (top), angular (middle) and longitudinal (bot-
tom) localization errors for both runs. Markers in the middle of a row are marked in light
gray to provide a better overview. Dashed lines indicate the measurement error, dotted
lines indicate the threshold used for successful localization. The graphs labeled quality
show the respective localization pose errors when our crop row pattern quality filter was
applied. The graphs labeled no quality show the errors when the filter is not applied.

2.5 Experiments 31

(a) Run 1, Marker 15 (b) Run 2, Marker 6

(c) Run 2, Marker 9 (d) Run 2, Marker 10

(e) Run 2, Marker 15

Figure 2.15: These bar plots show if and how the detected crop row pattern was integrated
into the localization estimate in the last 30 s before a marker was reached. The left bar
shows the result when we apply our quality measure, the right one when we don’t use
it to filter out patterns. Success (dark blue) indicates that a pattern was integrated using
lateral and angular correction. End of field (light blue) indicates that the end of the field
was detected using the pattern extension, and a corresponding longitudinal correction
was applied in addition to lateral and angular correction. Low quality (orange) are cases
where the detected crop row pattern was filtered out by our quality measure and no pose
correction from the pattern was applied. No data association (no da, yellow) indicates that
the localization algorithm did not find crop rows in the map that would match the detected
crop rows. Pattern invalid (red) means that the detected pattern has too few lines. Thus,
red, orange and yellow all indicate that the pattern was not integrated into the localization
estimate, for different reasons.

32 Chapter 2: Features and Quality Measure for Crop Row Detection

these plots: In Run 2, Marker 9 (Figure 2.15c) at about -23 s, the plot for using quality
shows low quality (orange). This indicates that about 23 seconds before the marker was
reached, the quality of the detected pattern was so low that it did not get integrated into
the localization pose estimate.

The most distinct observation in Figure 2.14 is that in both runs, the localization pose
diverges after a time when low quality patterns are not filtered out, especially in terms of
the lateral error (top). In Run 1, this happens at Marker 15, where first the lateral and
angular error are high and then the longitudinal error rises as well. Studying the pattern
integration before Marker 15 was reached in Run 1 (Figure 2.15a), we observe that some
detected crop row patterns get filtered out by our quality measure, but they get integrated if
we do not apply our classifier. For example, around 30 s, 8 s and 1 s before the marker was
reached, patterns are filtered out. Some of these are not integrated into the localization
pose when the quality filter is not applied because no data association is found. Of those
few that do get integrated, some are wrong. This suffices to mislead the localization and
causes the pose estimate to diverge.

In Figure 2.14 on the top right we observe that, when the quality filter is not applied, the
lateral error goes up to about 15 cm in Run 2 at Marker 9 and higher than 40 cm at Marker
10. The localization pose gets lost irrevocably. Similar to what we saw in Figure 2.15a,
some patterns that are integrated into the localization pose when the quality filter is not
active are classified as invalid and ignored when the filter is applied, as shown in Fig-
ure 2.15c and Figure 2.15d. This again causes divergence of the localization pose when
the quality filter is not applied. The angular error remains below our threshold for suc-
cessfull localization for Markers 11 to 18 (Figure 2.14, middle right) and the longitudinal
error remains below 2 m (Figure 2.14, bottom right). This indicates that the localization
pose estimate moves parallel to the ground truth pose and follows a different crop row
starting at Marker 11.

In Run 2, the lateral error already has a peak at Marker 6 when our quality measure is
not used, but the localization algorithm is able to recover the pose. Figure 2.15b shows
that some detected crop row patterns are filtered out about 18 s before reaching the marker
and then again a single one about 10 s before reaching it when the filter is applied. All of
them are integrated when this is not the case. This causes the high lateral error in Run 2
at Marker 6 when the quality filter is not applied.

Interestingly, at Markers 15 and 16 in Run 2, the longitudinal error is larger when fil-
tering patterns than without filtering (Figure 2.14, bottom right). In the pattern integration
(Figure 2.15e), we observe that the end of the field is detected in some of the crop row
patterns, as indicated by the light blue parts in the right bar. However, these patterns
are filtered out by our classifier when it is applied due to their low quality score. Thus,
the localization algorithm is missing some longitudinal correction data that is evidently
correct.

In conclusion, integrating even only a few patterns with low quality in a crop-row-
based localization method can cause the irrevocable loss of the correct localization pose
as observed in Figure 2.14. Filtering out patterns with low quality prevents the localization
pose from diverging. However, we also discovered that the loss of data with low quality
that might still be correct can cause errors in the localization pose.

2.6 Conclusions 33

When the quality filter is applied, both lateral and angular localization errors are low
enough to ensure safe navigation in a crop field without crushing any crops. Overall,
filtering the detected crop row patterns according to our quality measure is able to pre-
vent the localization pose from diverging and decreases the localization error to suitable
bounds.

2.6 Conclusions
Multiple tasks in autonomous navigation in agriculture require reliable crop row detec-
tions. Examples include localization, row following, or mapping approaches. Many crop
row detection methods require input from a specific sensor type. In this chapter, we pre-
sented a vegetation feature representation that generalizes over different types of sensor
data. This enables crop row detection approaches to be independent of the input sensor
type and thus be more flexible in their application to various plant types, plant sizes, and
lighting conditions. Our vegetation feature representation is a 2.5-dimensional grid map
located on the ground plane, where the value of each cell indicates the likelihood that this
cell contains vegetation.

Furthermore, we aim to prevent crop-row-based methods such as a localization or row
following approach from integrating incorrect or unreliable crop row detections, thus sav-
ing them from divergence. To achieve this, we provided a novel quality measure for crop
row detections and defined a binary classifier on it. Applying the classifier allows crop-
row-based applications to filter out potentially incorrect detections. The quality measure
analyses the support of the detected crop rows in the vegetation feature map. Two key as-
pects are that there is a high vegetation feature density close to the detected crop rows, and
low feature density farther away from the crop rows, which corresponds to crop centers
being close to the detected crop rows.

We tested our crop row detection classifier in extensive experiments with different plant
types and sizes and applied it in a crop-row-based localization as a common use case. We
determined that our vegetation feature representation is suitable for usage in this sce-
nario. More importantly, we showed that our approach is able to reliably filter out most
invalid crop row detections and applying it in a crop-row-based localization prevents the
estimated pose from diverging. We used this method in a fully autonomous navigation
approach on the BoniRob presented by Pretto et al. [73].

We also observed that, while the lateral and angular localization errors improve by fil-
tering out crop row detections with low quality, the longitudinal pose estimate sometimes
suffers when correct patterns are not integrated due to low quality. A next step would be
exploring methods to improve longitudinal localization errors, for example by mapping
and localizing with respect to the positions of individual plants. Additionally, using the
crop row quality as a confidence score instead of employing a binary classifier on it should
be investigated.

The presented crop row classification method helps robustify crop-row-based localiza-
tion algorithms which provide a key component for autonomous navigation in agriculture.
An estimate of the current pose is needed for global planning to reach a given goal pose

34 Chapter 2: Features and Quality Measure for Crop Row Detection

and it is crucial for executing a computed path accurately. We cover global path planning
and local planning for path execution in the following chapters.

Chapter 3

Evaluation of a Path Planner for
In-Field Navigation

For precision farming, it is often unnecessary to traverse the whole
field, as only certain parts of it need to be treated. Thus, a pure
row following approach that proceeds row by row is suboptimal. A
global path planner enables a robot to find an efficient path to any
point in the field. In previous work, we developed a global planner
that considers robots with high ground clearance and additional
intrinsic configuration parameters that are relevant for the feasibil-
ity of some motions. Examples for such configuration parameters
are settings of joints for adjusting wheel positions or manipulator
arm joints that have to be considered for collision free navigation.
Robots that are able to actively control these joints are particularly
useful for navigation in narrow spaces with many obstacles like
greenhouses or on uneven paths to a field. In this chapter, we sum-
marize the technical contribution of our previously developed ap-
proach [29] and present a new evaluation with regard to real world
applicability. We create a particularly challenging environment in
order to determine the limits of this approach. In addition, we de-
termine the performance of our planner by evaluating the planning
time consumption and the cost of the resulting plans.

3.1 Introduction
While classical methods for automated treatment of an agricultural field include a uniform
appliance of chemicals such as herbicides and pesticides, precision agriculture aims for
treating individual plants to minimize the usage of chemicals and reduce the resulting bur-
den on the environment. Thus, a vehicle is no longer required to traverse the whole field.
Instead, a robot with an autonomous navigation module should only drive to locations
where treatment or data collection is needed. Consequently, a path planner is necessary to
reach a given goal position in an efficient manner. While many planning approaches exist,
a method that takes the specific abilities of a robot into account is desirable to increase
efficiency. We presented such an approach in earlier work [29]. The planner presented

36 Chapter 3: Evaluation of a Path Planner for In-Field Navigation

therein is based on a state lattice planner [72], which takes into account the specific driv-
ing motions a robot is able to perform. In our earlier work, we extended the classical state
lattice planner to incorporate intrinsic joint configuration changes in an efficient manner.
It employs a novel state space representation that uses joint configuration intervals. These
joints could for example control the wheel positions. Changing them can enable a robot
to drive through narrow spaces or pass over obstacles, if the ground clearance is high
enough. A different example where considering the intrinsic configuration benefits path
planning is a robot with a manipulator arm. Such a robot might be able to drive through a
tight space with its arm retracted, but not when it is outstretched. We further presented a
novel heuristic in our earlier work, the Wheel Dijkstra heuristic, that is useful for robots
with high ground clearance. It finds a collision free path for each wheel and combines the
resulting path lengths to estimate the minimum path length the robot has to travel.

In this chapter, we extensively evaluate our planner introduced in previous work. We
perform two baseline experiments in simple, non-cluttered simulated environments. We
further investigate its suitability for path planning in real world agricultural environments
and verify the performance in a real world field environment in comparison to the perfor-
mance on a simulated field environment. Additionally, we create a cluttered environment
with many narrow passages to test the limits of this approach and the benefit of including
intrinsic configuration parameters into the planning considerations. Moreover, we inspect
the planning performance with different heuristics, namely the Euclidean heuristic and
the freespace mechanism heuristic [59] as two baselines, the Wheel Dijkstra heuristic,
and a combination of the Wheel Dijkstra with the freespace mechanism heuristic.

The experiments demonstrate that the planning performance with our state space rep-
resentation from earlier work transfers well from a simulated to a real world environment.
While the investigated heuristics lead to varying performances in the different environ-
ments, a joint result in all environments is that combining the Wheel Dijkstra heuris-
tic with the freespace mechanism heuristic yields the best results among all considered
heuristics.

Substantial parts of the ideas, figures and results presented in this chapter have been
previously published [30]. Section 1.4 outlines the author’s contribution to this work.

3.2 Related Work
Path planning in narrow spaces requires considering intrinsic joint configurations for max-
imum movement flexibility. This implies using additional degrees of freedom (DoF) in
planning instead of limiting planning to the robot pose. These additional DoF make the
planning problem more complex.

In the field of search and rescue robotics, robots with additional DoF from adjustable
joints are often used to overcome obstacles. Some approaches adjust so-called flippers
of tracked robots based on current sensor data when needed [69]. While such a reactive
method may help to overcome some obstacles, in some scenarios it is necessary to plan
ahead for changing the intrinsic configuration in time. Other approaches that do not ac-
tively control the adjustable joints [37] have the same shortcomings. Other approaches

3.2 Related Work 37

rely on partial autonomy and require tele-operation in some scenarios [18]. We aim for
an approach that does not involve human intervention.

Several sampling based approaches have been proposed to deal with many DoF. They
sample a subset of the configuration space. Examples are rapidly-exploring random
trees [57] and variants thereof [45, 54] or probabilistic road maps [48]. More sophis-
ticated approaches use additional data for generating more informative or goal oriented
samples of the configuration space [9, 17, 76, 86]. Sampling based approaches usually
assume that, if an obstacle free transition between two states exists, one is reachable from
the other in a continuous manner. Some robots are unable to change their intrinsic config-
uration while driving, or would cause great mechanical stress when doing so. Therefore,
we pursue an approach that does not rely on this assumption. In narrow environments,
sampling based approaches are prone to sampling configurations and poses that are in
collision or unreachable from a different sampled configuration. Thus, they require a lot
of sampling until a valid configuration that connects with an already sampled configura-
tion is found. Furthermore, producing efficient plans is important for navigation. This
has recently received interest for sampling-based planning [33], but is well understood
for search-based planning [53].

We therefore aim for a search based planning approach. A simple grid based method
is a Dijkstra search on a grid map of the environment [26]. Search based planning is
adaptable to various scenarios with different DoF, such as footstep planning for four-
legged robots [96], navigation planning with 3d collision checks [41] or path planning for
parking cars [59].

The main challenge for path planning in an agricultural environment for a robot with
adjustable joints is how to efficiently find a high quality path. One possibility to deal
with the additional DoF from the adjustable joints is using adaptive dimensionalities for
planning. Gochev et al. [38] propose planning for a subset of configuration parameters
that are relevant for a resulting path. The path computed in the lower dimensional con-
figuration space is later enhanced by deducing the values of the remaining configuration
parameters. As we are considering a scenario where all configuration parameters are
relevant for the feasibility of a motion, the space containing only crucial configuration
parameters is the same as the original planning space. A different idea in the context of
adaptive dimensionalities is to change the relevant configuration space according to the
current planning phase. The planning phase is determined by the distance to the start
or goal [59] or the distance to obstacles [49, 87]. For our planning challenge, obstacles
can be encountered at any point and changing joint configurations might be required at
any time. Thus, we cannot only focus on the start and goal areas. In addition, while
navigating on a field, obstacles in the form of crops are always close to the robot. An
approach that adapts the dimensionality dependent on the distance to an obstacle would
therefore always choose the highest dimensionality. We thus decided against an approach
with adaptive dimensionalities and instead extended a state lattice planner [72] to fit our
needs in earlier work [29], which this chapter is based on.

Guiding a search based planner towards the goal by using an informative heuristic is an
important tool for increasing planning efficiency [13, 23, 61]. The Euclidean distance to
the goal position is often used as a heuristic. However, it does not take into account any

38 Chapter 3: Evaluation of a Path Planner for In-Field Navigation

motion constraints or obstacles and thus tends to underestimate the true cost considerably.
The freespace mechanism heuristic [59] remedies the first shortcoming of the Euclidean
distance heuristic by explicitly modeling the motion capabilities of the robot. It still does
not consider obstacles. For taking into account obstacles, the Dijkstra heuristic based
on the Dijkstra algorithm [26] is often used [41]. When using the Dijkstra heuristic,
algorithms usually check whether the robot center is located on an obstacle cell on a
grid map. For a robot with high ground clearance, collision with an obstacle is only
immediately implied when one of the wheels is located on a cell containing an obstacle,
as it is able to pass over low obstacles. The Wheel Dijkstra heuristic we proposed in
previous work employs this information [29].

3.3 Planning with High Ground Clearance and
Adjustable Joints

Here, we will briefly summarize the concept of our previous work on path planning to
make the evaluation more accessible to the reader. The planner we developed is suitable
for ground robots with high ground clearance and intrinsic configuration parameters that
are relevant for the feasibility of some motions, such as angles of specific hinge joints or
the configuration of prismatic joints. A high ground clearance enables a robot to drive over
certain obstacles, and adjustable joints make certain motions in tight spaces possible that
would result in collisions if the joints remain fixed. Relevant joint configurations are for
example those that control the wheel positions or width of a robot as for the BoniRob (see
Figure 1.1), the Ted robot [67], TREKTOR [81], or a robot designed for space exploration
presented by Karamipour et al. [46]. The Ted and TREKTOR robots are additionally able
to change their height, which can be another important setting. For any robots with ma-
nipulator arms, like the PR2 [42], the arm configuration may also be relevant for collision
free navigation.

In the evaluation, we concentrate on the BoniRob as an experimental platform, which
has individually adjustable wheel positions. The approach is also viable for other robots
with different joints for changing wheel positions or other configurations that are relevant
for collision free planning, such as adjustable robot height. Some valid joint settings for
two robot types are shown in Figure 3.1. For the BoniRob, we consider the angles of the
lever arms to which the wheels are attached as relevant joint configuration in the planning
problem. Similarly, for a robot with prismatic joints for changing wheel positions, these
joints have to be considered. Figure 3.2 illustrates how different joint settings enable
certain motions.

Our robot navigates in a 3-dimensional environment, where the only relevant informa-
tion in the third dimension (up/down) is the height of obstacles and the ground. There-
fore, we represent the environment as a 2.5-dimensional grip map containing elevation
and traversability information.

Those parts of the robot configuration that are relevant for planning are its 3d pose in
the environment and the intrinsic configuration parameters that enable or disable certain

3.3 Planning with High Ground Clearance and Adjustable Joints 39

Figure 3.1: Some robots are able to change their wheel positions. At the top, possible con-
figurations for a robot with prismatic joints for adjusting wheel positions are shown. At
the bottom, possible configurations for robots like the BoniRob that can change wheel po-
sitions by adjusting lever arm angles are shown. The leftmost schematics show the widest
possible track width setting, the schematics in the middle show the most narrow track
width setting, and on the right we show an example setting for individually controllable
joints. The light gray background shows the extent of valid joint settings, Φ1, . . . ,Φ4.

40 Chapter 3: Evaluation of a Path Planner for In-Field Navigation

Figure 3.2: This schematic illustrates how changing joint configurations enables certain
motions. Obstacles are shown in red. In order to keep driving in this narrow passage,
robots have to first change one of their front wheel positions by changing the correspond-
ing joint, and then one of their back wheel positions. The top shows the procedure for
a robot with prismatic joints for adjusting wheel positions. The bottom shows the same
procedure for robots that change their wheel positions by adjusting lever arm angles, such
as the BoniRob.

Figure 3.3: Examples of invalid robot configurations for robots like the BoniRob. Un-
traversable grid map cells are marked in red, where a darker shade represents a higher
elevation. On the left, two of the wheels are in collision with an obstacle. On the right,
while the robot is able to pass above the lower parts of an obstacle due to its high ground
clearance, it collides with the higher parts of the obstacle.

3.3 Planning with High Ground Clearance and Adjustable Joints 41

motions. We describe the robot pose as rigid body motion in SE (3) relative to a fixed
coordinate frame in the environment. We denote the relevant intrinsic configuration space
by CR. The space that represents the robot state relevant for planning, called the con-
figuration space, is therefore defined by C = SE (3) × CR. For a robot with adjustable
wheel positions, the relevant intrinsic configuration is comprised of the joint settings that
control the wheel positions. We use the BoniRob as an example. The set of feasible
joint angles for all four lever arms construct the relevant intrinsic configuration space
CR = Φ1 × Φ2 × Φ3 × Φ4, where Φi is the set of valid angles for the i-th joint as shown
in Figure 3.1 at the bottom. Likewise, for a robot with prismatic joints to adjust the wheel
positions, CR contains all valid settings of these joints. It is noteworthy that the robot
pose can be changed by modifying the intrinsic configuration. For example, moving one
wheel to a lower part of the ground can change the roll or pitch of the robot.

The set of valid configurations Cf ⊂ C contains all configurations that are safe for the
robot in the given environment. This entails that the robot is not in collision and is stable.
Figure 3.3 shows examples of invalid robot configurations for the BoniRob.

For ground vehicles, the roll, pitch and height are not directly controllable. We define
the actively controllable configuration space Ca of the robot as Ca = SE (2)×CR. Given
these values, the roll, pitch and height can be computed from the traversability grid map
of the environment.

A motion m can be applied to a robot configuration c1 and yields a new robot config-
uration c2. A feasible motion given the environment and a robot configuration c ∈ Cf is
a motion where the robot configuration remains in the valid configuration space Cf at all
times during the execution of the motion. For the BoniRob, this means that the wheels
do not cross untraversable cells and the robot is not in collision, considering the ground
clearance of the robot and the height of obstacles.

A given goal robot configuration cg is reachable from a given start configuration cs if
there exists a sequence of feasible motions m1, . . . ,mn that yields configuration cg when
applied to cs.

Some robots are unable to change their joint configuration while driving, either due to
physical constraints or to avoid mechanical stress on these joints. We therefore distinguish
between drive motions that only change the robot pose, and configuration change motions
that change the intrinsic configuration and may change the roll, pitch or height of the
robot.

We aim for a planning approach that is flexible with regard to the robot being used and
to the task at hand. As such, we chose a search based method, where the cost function
can be easily adjusted to the current needs. Since we model drive motions and configu-
ration change motions separately, we employ a state lattice planner [72] and extend it to
represent the configuration change motions.

In order to use a state lattice planner, we discretize the actively controllable configura-
tion space and construct predefined actions, so called motion primitives, between them.
These motion primitives are short standard actions the robot is able to perform and thus
have to be defined for each robot individually. Examples for motion primitives are driv-
ing one grid cell forwards, backwards or sideways, or turning on the spot by a certain
amount. Together with the configuration change motions, the motion primitives form the

42 Chapter 3: Evaluation of a Path Planner for In-Field Navigation

Figure 3.4: This schematic shows how, for robots like the BoniRob, valid joint angle
intervals get reduced and sometimes split by certain motions in a given environment.
This concept of reducing and splitting valid joint setting intervals by moving transfers to
robots with other joint types and different motion capabilities. The currently valid angle
intervals are shown in light blue, obstacles in red. In the first step, the robot encounters
an obstacle on the front left, due to which the valid angle interval for the front left lever
arm gets reduced accordingly. Equivalently, the back left wheel potentially encounters
the same obstacle in the next step and the corresponding joint angle interval gets reduced.
Additionally, there is an obstacle on the front right of the robot. It is still valid to have
the wheel left or right of the obstacle (provided the ground clearance of the robot is high
enough to pass over the obstacle), only the part of the interval that would lead to a wheel
colliding with the obstacle has to be removed. The result is an interval split for the front
right wheel.

set of valid motions M . We build a directed search graph where the valid robot config-
urations are represented as nodes. A node ni is connected to node nj by an edge, if and
only if there is a valid motion m ∈ M that is also feasible and connects the robot con-
figurations represented by ni and nj , respectively. This edge represents the motion that
connects the two configurations.

We further define a cost function u on the graph edges, which gives us for any motion
m the cost to execute it in the current state s: u : Ca ×M → R; (s,m) 7→ u(s,m). It is
based on the time it takes to execute a certain action and user preference, e. g., it might be
prefered if the robot drives forwards instead of backwards.

For any given start configuration cs and goal configuration cg, the goal of our planner is
to find a sequence of feasible motions from cs to cg with the lowest cost. Thus, we find the
nodes in our graph that correspond to cs and cg, respectively. Running a search algorithm
on the graph between these two nodes provides us with a sequence of feasible motions,
represented by the edges in the graph.

In order to increase the efficiency of our planning approach, we extended it twofold.
The first extension concerns the representation of the intrinsic robot configuration in the
state space. Initially, each robot state s ∈ Ca includes a single value for each of the
joints. If we consider a robot with four wheels where the position of each is controlled
individually by a single joint, a robot state is given by s = (x, y, θ, φ1, φ2, φ3, φ4), where
the φi are the settings for each joint. We proposed to instead include a whole interval of
valid joint settings in the state space representation. The new state space is thus defined as

3.3 Planning with High Ground Clearance and Adjustable Joints 43

Figure 3.5: The Wheel Dijkstra heuristic provides an estimate of how long it takes to
move all wheels from their start positions to their desired goal positions. Obstacles are
shown in red. They are low enough so that the robot can pass over them. We assume
an 8-connected grid and perform a Dijkstra search from each wheel start position to their
respective goal position. For two of the robot wheels, a path that is a possible result of
this search is shown as a dotted line. The path lengths for each wheel are quite different
in this example. As the robot has to move all wheels to their desired goal positions, we
use the maximum over all wheel path lengths as the most informative value.

Cs = SE2×CI where CI includes all sets of valid joint setting intervals. In our example,
this means

CI = {[φ1,1, φ1,2][φ1,1, φ2,2][φ3,1, φ3,2][φ4,1, φ4,2], φi,j ∈ Φi}.

As the current robot configuration is fixed when planning starts, the initial configuration
contains only a single value in the interval for each joint. Applying a configuration change
motion increases the intervals of all joints by one discretization step in either direction or
to the boundary of valid joint settings. This represents that when a configuration change
occurs, we do not consider each joint and its setting separately. Instead, we only need to
know that any or all joint settings may have changed to either direction. Drive motions
may reduce or even split intervals when the robot is close to obstacles, as illustrated in
Figure 3.4. This results in two or more successor nodes in the search graph. We expect
that including intervals of joint setting in the robot state leads to less node creations, as
there will be a single successor node for all possible joint changes instead of a set of up to
2 · J nodes, where J is the number of joints (changing any joint in either direction). For
the BoniRob, this would yield up to 8 successor nodes – two for each of the four arms.

Our second contribution to increase the efficiency in solving the planning problem at
hand was a novel heuristic function. It makes use of the high ground clearance of the robot
and considers that the robot is able to drive over certain obstacles. Given a certain start

44 Chapter 3: Evaluation of a Path Planner for In-Field Navigation

configuration cs and goal configuration cg of the robot, the wheel positions of the robot
are fixed on the traversability grid map of our environment, i.e., we know for each wheel
where it starts moving and where it is supposed to go. As the wheels should never collide
with any obstacle, we run a Dijkstra search for each wheel from its start to its goal cell,
where untraversable cells in the traversability grid map cannot be crossed. This yields
the minimum path length that each wheel has to travel (with the given discretization and
connectivity between grid cells), i.e., we get four values hi(cs, cg) ∈ R, i ∈ {1, . . . , 4}.
The most informative value is the maximum distance any of the wheels has to travel,
h(cs, cg) = maxhi(cs, cg), i ∈ {1, . . . , 4}. Introducing a factor b that encodes how long
it takes the robot to move a wheel through a cell, we get the Wheel Dijkstra heuristic
hb(cs, cg) = b · h(cs, cg) as an estimate of how long the robot will take to move from
the start to the goal configuration. An illustration is shown in Figure 3.5. While this
heuristic gives us an estimate of the minimum distance a wheel has to travel, it is not
a given that the Wheel path computed by the Dijkstra search is executable. Since each
wheel is considered separately, there may not be valid wheel positions for all other wheels
following one wheel path. Furthermore, the robot chassis and possible collisions with it
are not considered at all. Thus, a wheel path is not suitable to be executed, it only serves
as an estimate of how long it takes to get to the goal.

In the following, we investigate how the planning performance with these extensions
transfers to a real world environment and to more challenging environments that are dif-
ficult to navigate.

3.4 Experiments
In previous work [29], we evaluated our path planner on simulated environments that were
relatively easy to navigate and did not require a lot of intrinsic configuration changes. In
order to test the applicability in a real world scenario, we extend the evaluation to in-
clude planning requests in a real world environment. We computed the corresponding
traversability grid map from a data set recorded on a leek field. To test the limits of
the approach, we also created a particularly challenging environment with a multitude of
obstacles and narrow passages. In this environment, the usefulness of changing joint con-
figurations becomes apparent. Furthermore, we include an analysis of the suboptimality
that is reached in the plans to investigate the efficiency gain from representing the intrinsic
configuration as intervals instead of single values. We also include an analysis of the time
it takes to get a first plan, the number of node expansions until a first plan is found, as
well as the amount of successfully handled planning requests.

Overall, we determine the performance of the planner on four different environments,
using our experiment platform BoniRob with the motion primitives shown in Figure 3.6.
The three simulated environments all have sizes of 30 m × 30 m. The first is a freespace
environment. It has no obstacles and serves as a baseline for our experiments. The second
is a field environment, showing a common use case for the planner on our robot. The third
is the rocks environment, which has a lot of obstacles and narrow passages, pushing the
planning algorithm to its limits and showing the necessity of considering the joint con-

3.4 Experiments 45

Figure 3.6: This schematic shows the motion primitives we use for planning on the
BoniRob. The current robot pose is indicated as a light blue arrow. The movement
patterns for all motion primitives are represented as red lines, with arrows at the end
to illustrate the resulting robot pose. While the robot is mostly symmetric and able to
drive in any direction due to its omnidirectional wheels, its sensors are mostly located at
the front. We therefore decided against completely symmetric motion primitives. They
are defined as follows. 1: Turn 22.5° clockwise. 2: Turn 22.5° counter-clockwise. 3:
Move sideways, one grid cell to the right. 4: Move sideways, one grid cell to the left. 5:
Move backwards one grid cell. 6: Move forwards one grid cell. 7: Move forwards eight
grid cells. 8: Move eight grid cells forwards and one to the right in a curve, turn 22.5°
clockwise on the way. 9: Move eight grid cells forwards and one to the left in a curve,
turn 22.5° counter-clockwise on the way. 10: Diagonally move eight grid cells forwards
and one to the right without changing orientation. 11: Diagonally move eight grid cells
forwards and one to the left without changing orientation.

Figure 3.7: This picture was taken on the leek field we used as real world environment.

46 Chapter 3: Evaluation of a Path Planner for In-Field Navigation

Rows Rocks

Leek

Figure 3.8: These are the rows, rocks and leek environments we use for testing the planner
performance. Traversable grid map cells are marked in light blue, untraversable cells in
dark red. The freespace environment is not shown, as it is just an empty map. The
bordered box shows a magnification of the leek map, as it is rather sparse.

figurations. The real world environment is the leek environment, which is a traversability
grid map that was created from real world data recorded on a leek field. The map size is
roughly 15 m × 90 m. An example picture of the leek field is shown in Figure 3.7. This en-
vironment provides a sense of the real world applicability of the planning approach. The
traversability grid maps corresponding to all environments are displayed in Figure 3.8.
For the discretization of the robot position, we chose a resolution of 15 cm in the sim-
ulated environments and 5 cm in the real world environment. The resolution in the real
world environment is higher due to the noise in the data. The robot orientation and the
four arm angles are discretized with a resolution of 22.5 °. As search algorithm, we used
the Anytime Repairing A* algorithm [60], which provides an upper bound for the sub-
optimality of a computed plan. We used an initial heuristic inflation factor of 5, which
means that the first path that is found may have a cost that is up to five times higher than
the cost of the optimal path.

We uniformly sampled 25 poses in each of the environments and created planning
queries between each of those. To create realistic robot poses in the leek environment,
we aligned them with the rows of the field. Here, we only ran planning queries for start
and goal poses with a distance between 0.5 m and 20 m and used a timeout of 90 s. This
often implies that the robot has to drive to the end of a crop row in the field, turn at the end,
and then reenter the correct row. In the freespace and the field environment, we reduced
the timeout to 30 s, as the environments are smaller and thus we expect a plan to be found
faster. For the rocks environment, we reduced the maximum allowed distance between
start and goal to 10 m and increased the timeout to 3 min, as planning is a lot harder there.

3.4 Experiments 47

We investigate two main points: The impact of different heuristics, and the influence
of employing an interval representation for the intrinsic configuration. In particular, we
are interested in how well our results on simulated planning environments transfer to a
real world environment, and how the planner behaves in extremely hard conditions with
a multitude of obstacles and narrow gaps.

Evaluation of the Impact of Heuristics on Planner Performance

We study the effect of four different heuristics. The first is the freespace mechanism
heuristic [59]. It was especially designed for state lattice planning and employs the pro-
vided motion primitives. It computes the path with the lowest cost assuming that there
are no obstacles present in the environment. This was used as a first baseline. The sec-
ond heuristic is the standard Euclidean heuristic on the robot base frame, which serves as
another baseline. The third is the Wheel Dijkstra heuristic that we proposed in previous
work [29] and explained in the previous section. The last is a combination of the Wheel
Dijkstra and the freespace mechanism heuristic. We combine them by maximizing over
their values, so that we get a better estimate of the true cost. Note that for two admissible
heuristics, the maximum of both is again admissible. For all planning runs in this section,
we use the interval representation for joint configurations.

We consider the percentage of solved planning queries over time and the reached sub-
optimality after the timeout. The percentage of solved planning queries indicates how
fast the planner was able to find an initial plan. This initial plan is not necessarily opti-
mal. This measure is important to know how much time passes until the robot could start
moving towards its goal. The reached suboptimality indicates the efficiency of the best
path computed within the timeout. A path with suboptimality 1 is an optimal path. The
suboptimality value corresponds directly to the increase in cost, i. e., it is the factor by
which the cost of the path is higher than the cost of the optimal path.

Figure 3.9 shows an overview of solved planning queries over time as well as the
reached suboptimality in all four environments. In the freespace environment, the freespace
heuristic shows better planner performance than either Euclidean and Wheel Dijkstra
heuristic, as can be seen at the top of the figure. The planner is able to solve all plan-
ning queries in less than 5 s, and the reached suboptimality is no more than 2.2 for all
queries. The Euclidean and Wheel Dijkstra heuristic yield planner performances similar
to each other in the freespace environment. Both result in longer planning times, and only
for about 10 % of queries, a suboptimality below 2 is reached. The similar performance of
these two heuristics in the freespace environment can be explained by the fact that when
there are no obstacles, there is a straight path from each wheel start position to each wheel
goal position as well as from the robot start position to the robot goal position. Thus, the
wheels have to travel roughly as far as the robot base. The main difference in this en-
vironment is that the Wheel Dijkstra heuristic indirectly considers orientation changes,
which the Euclidean heuristic does not do. To illustrate the timing difference between the
freespace mechanism and the Wheel Dijkstra heuristic further, we directly compare the
time until a first plan is found in Figure 3.10 on the left. In this scenario, the freespace
mechanism heuristic yields faster planning times. This can be explained by the next graph

48 Chapter 3: Evaluation of a Path Planner for In-Field Navigation

Time to First Plan Reached Suboptimality

Fr
ee

sp
ac

e

0
20

40
60

80
10

0

0 5 10 15 20 25 30pe
rc

en
ta

ge
 o

f s
ol

ve
d

qu
er

ie
s

time in s

Euclidean
Freespace

Wheel Dijkstra
Combined WD + F

5 4 3 2 1
suboptimality

0
20

40
60

80
10

0
pe

rc
en

ta
ge

 o
f q

ue
rie

s

Euclidean
Freespace
Wheel Dijkstra
Combined WD + F

R
ow

s

0
20

40
60

80
10

0

0 5 10 15 20 25 30pe
rc

en
ta

ge
 o

f s
ol

ve
d

qu
er

ie
s

time in s

Euclidean
Freespace

Wheel Dijkstra
Combined WD + F

5 4 3 2 1
suboptimality

0
20

40
60

80
10

0
pe

rc
en

ta
ge

 o
f q

ue
rie

s
Euclidean
Freespace
Wheel Dijkstra
Combined WD + F

L
ee

k

0
20

40
60

80
10

0

0 20 40 60 80pe
rc

en
ta

ge
 o

f s
ol

ve
d

qu
er

ie
s

time in s

Euclidean
Freespace

Wheel Dijkstra
Combined WD + F

5 4 3 2 1
suboptimality

0
20

40
60

80
10

0
pe

rc
en

ta
ge

 o
f q

ue
rie

s

Euclidean
Freespace
Wheel Dijkstra
Combined WD + F

R
oc

ks

0
20

40
60

80
10

0

0 50 100 150pe
rc

en
ta

ge
 o

f s
ol

ve
d

qu
er

ie
s

time in s

Euclidean
Freespace

Wheel Dijkstra
Combined WD + F

5 4 3 2 1
suboptimality

0
20

40
60

80
10

0
pe

rc
en

ta
ge

 o
f q

ue
rie

s

Euclidean
Freespace
Wheel Dijkstra
Combined WD + F

Figure 3.9: These graphs show the performance of the planner in all four environments
with different heuristics. The left column shows the percentage of solved planning queries
over time until the timeout is reached. A planning query counts as solved when a first plan
is found, irrespective of the suboptimality of the plan. The right column shows a cumu-
lative histogram of which path suboptimality bound was reached for which percentage of
planning queries. The suboptimality indicates the upper bound of the factor by which the
computed path cost is higher than that of the optimal path. A low suboptimality for a high
percentage of planning queries is desirable.

3.4 Experiments 49

Freespace Rows

0 5 10 15 20 25
0

5

10

15

20

25

Time to first plan

Wheel Dijkstra

F
re

es
pa

ce

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Time to first plan

Wheel Dijkstra

F
re

es
pa

ce

5 10 20 50 100 500

5

10

20

50

100

200

500

1000

Expands to first plan

Wheel Dijkstra

F
re

es
pa

ce

10 20 50 200 500 2000

10

20

50

100

200

500

1000

2000

5000

Expands to first plan

Wheel Dijkstra

F
re

es
pa

ce

Figure 3.10: These graphs directly compare the time until a first plan is found and the
number of node expansions between the Wheel Dijkstra and the freespace mechanism
heuristic. Results are shown in the freespace (left) and the rows environment (right).

in this figure: It displays the number of nodes that were expanded until a first plan was
found. Using the freespace mechanism heuristics means that fewer nodes need to be ex-
panded in this environment. This is expected, as the freespace mechanism heuristic is the
optimal heuristic in this space. Finally, the combined Wheel Dijkstra Freespace heuristic
shows a performance that is close to the freespace mechanism heuristic in the freespace
environment (Figure 3.9, top). Here, it is evident that the freespace mechanism heuristic
and a combination with it outperforms other heuristics.

In the rows environment, planning with the freespace mechanism or the Euclidean
heuristic is only able to solve about 80 % of the queries, while planning with the Wheel
Dijkstra or the combined Wheel Dijkstra Freespace heuristic is able to solve 90 % of the
queries. While planning is faster with the freespace mechanism heuristic for around 70 %
of the planning queries, the Wheel Dijkstra heuristic yields plans faster for the remain-
ing queries that it is able to solve. This is also depicted in Figure 3.10 in the top right
graph, where the timings are compared directly between freespace mechanism and Wheel

50 Chapter 3: Evaluation of a Path Planner for In-Field Navigation

Dijkstra heuristic in the rows environment. Mostly, the freespace mechanism heuristic
produces faster results, but there are some outliers where the Wheel Dijkstra heuristic
is faster. Again, this is reflected in the number of node expansions until a first plan is
found as shown in the bottom right graph of this figure. In Figure 3.9, we observe that
the combined Wheel Dijkstra Freespace heuristic takes the best from both heuristics, as
it is always on par with the heuristic that yields faster results. Looking at the subopti-
mality, it appears that planning with the freespace mechanism heuristic has slightly better
results than with the Wheel Dijkstra or Euclidean heuristic for those queries that were
solved with all these heuristics. Again, the combined Wheel Dijkstra Freespace heuristic
outperforms all other heuristics.

In the leek environment, which is our real world environment, more queries get solved
faster and with better suboptimality when using the freespace mechanism heuristic or
the combined Wheel Dijkstra Freespace heuristic than either of the other two heuristics.
The reason that the Wheel Dijkstra heuristic performs worse in this scenario is likely
that the map is rather sparse (see Figure 3.8). The Wheel Dijkstra heuristic finds paths
for individual wheels through tiny gaps in the crop rows, which correspond to movements
that are not part of our motion primitives or would require other wheel to pass over plants,
which are treated as obstacles. Thus, the planner is not able to use these tiny gaps, which
is reasonable as we do not want the BoniRob to switch between crop rows while driving
in the field. The performance of the Wheel Dijkstra heuristic is better in a simulated
field environment (rows) than in a real field environment (leek) and thus does not transfer
directly due to the aforementioned reason. However, the performance of the combined
Wheel Dijkstra Freespace heuristic does transfer.

The rocks environment provides difficulties for all four tested heuristics. All of them
solve around 45 % of the planning queries in a similar time frame and with similar sub-
optimality results. Clearly, the planner reaches its limits in this environment. However, it
is possible that some of the planning queries are not solvable, as we sampled the start and
goal poses randomly and did not check for reachability.

Note that both in the leek and the rocks environment, new plans get found until the
timeout is reached, so it is likely that even more would be found if we allowed for more
planning time.

Evaluation of the Joint Configuration Interval Representation

To study the influence of the joint configuration interval representation, we run the same
planning queries once with a single value representation for the joint angles (single an-
gles), once with the interval representation (intervals), and as a baseline we also run them
with a representation that does not allow any joint value changes (fixed). We expect the
latter one to find less plans overall, as it is limited in its motion capabilities, but if a goal
can be reached, the plan will usually be computed faster due to the much smaller search
space. As heuristic, we use the combined Wheel Dijkstra Freespace heuristic.

We depict the percentage of solved planning queries over time as well as the reached
suboptimality bound in Figure 3.11. The first thing to note is that the interval represen-
tation has very similar results to the fixed representation in the freespace, rows, and leek

3.4 Experiments 51

Time to First Plan Reached Suboptimality
Fr

ee
sp

ac
e

0
20

40
60

80
10

0

0 2 4 6 8 10pe
rc

en
ta

ge
 o

f s
ol

ve
d

qu
er

ie
s

time in s

fixed
intervals
single angles

0
20

40
60

80
10

0

5 4 3 2 1

pe
rc

en
ta

ge
 o

f q
ue

rie
s

suboptimality

fixed
intervals
single angles

R
ow

s

0
20

40
60

80
10

0

0 5 10 15 20 25 30pe
rc

en
ta

ge
 o

f s
ol

ve
d

qu
er

ie
s

time in s

fixed
intervals
single angles

0
20

40
60

80
10

0

5 4 3 2 1

pe
rc

en
ta

ge
 o

f q
ue

rie
s

suboptimality

fixed
intervals
single angles

L
ee

k

0
20

40
60

80
10

0

0 20 40 60 80pe
rc

en
ta

ge
 o

f s
ol

ve
d

qu
er

ie
s

time in s

fixed
intervals
single angles

0
20

40
60

80
10

0

5 4 3 2 1

pe
rc

en
ta

ge
 o

f q
ue

rie
s

suboptimality

fixed
intervals
single angles

R
oc

ks

0
20

40
60

80
10

0

0 50 100 150pe
rc

en
ta

ge
 o

f s
ol

ve
d

qu
er

ie
s

time in s

fixed
intervals
single angles

0
20

40
60

80
10

0

5 4 3 2 1

pe
rc

en
ta

ge
 o

f q
ue

rie
s

suboptimality

fixed
intervals
single angles

Figure 3.11: These graphs show the performance of planning with different configuration
representations in all four test environments. The left column displays the percentage of
planning queries solved over time. The right column shows cumulative histograms of the
final upper suboptimality bound that was reached by the planner.

52 Chapter 3: Evaluation of a Path Planner for In-Field Navigation

Freespace Rows Leek

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Time to first plan

intervals

si
ng

le
 a

ng
le

s

0 5 10 15 20 25
0

5

10

15

20

25

Time to first plan

intervals
si

ng
le

 a
ng

le
s

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Time to first plan

intervals

si
ng

le
 a

ng
le

s

Figure 3.12: These scatter plots compare the time in s until a first plan was found between
a single joint configuration representation and a joint configuration interval representation
in the freespace, rows and leek environment.

environment, both with regard to timings and suboptimality. So even though the interval
representation has a much bigger state space, the efficiency of the representation ensures
a performance that is comparable to planning in the much smaller state space with fixed
joint angles. We also see that in the named environments, the single value representation
results in much slower planning overall. This becomes even more obvious in Figure 3.12,
where we directly compare the time until a first plan was found for the single value and
the interval representation. A first plan is found faster using the interval representation in
all three environments. While the suboptimality results are comparable among all three
representations in the freespace environment (see Figure 3.11, top right), the single value
representation gets worse suboptimality bounds in the rows and leek environment. This is
closely linked to the increased planning time. It is likely that a higher timeout for the sin-
gle value representation would result in lower suboptimality bounds. The performance for
all three representations are similar between the simulated rows environment and the real
world leek environment, within the given time limits. While planning does take longer in
the leek environment, this is to be expected as the leek map is more than a factor 10 bigger
than the rows environment. Overall, the performance transfers well from a simulated to a
real world environment.

In the rocks environment, it first becomes apparent that being able to change the joint
configuration is necessary in some environments to find any plans at all. While planning
with the fixed representation that does not allow for any joint setting changes is only able
to solve 25 % of the planning queries, employing the intervals and single value represen-
tation result in about 45 % and 50 % of solved queries, respectively. Interestingly, both
representations including joint configurations show similar performance in this environ-
ment. Presumably, the environment is so narrow that most of the time only one joint
setting is viable and the joint setting intervals include only a single value. This negates
the advantage of this representation over the single value representation and makes them
mostly equivalent. These two representations find new plans until the end of the timeout
and are thus likely to solve more planning queries if we increase the time limit. In con-

3.5 Conclusions 53

trast, the representation with fixed joints does not find any new plans after roughly 30 s.
Thus, it is likely that planning with fixed joints is inherently unable to solve the remain-
ing queries at all. This shows the necessity of considering joint configuration changes for
planning in very cluttered environments.

3.5 Conclusions
In this chapter, we extensively evaluated a planning approach from previous work with
regard to real world applicability in precision farming as well as testing its limits and its
versatility. Firstly, we investigated its performance with different heuristics, among them
the Wheel Dijkstra heuristic, which considers robots with high ground clearance that are
able to pass over some obstacles. We combined it with the freespace mechanism heuristic,
which is specifically designed for state lattice planning, which the planner we evaluated
is based on. As expected, each of the heuristics individually have advantages in different
environments and the performance of the planner when using one of them thus depends on
the environment. We determined that the performance for the individual heuristics does
not transfer well from a simulated crop field environment to a real crop field environment,
due to the sparsity of the real world map. However, using a combination of the two
heuristics improves the results so that the planner performs at least as good as with either
one of the heuristics used separately in any environment. Thus, we are able to employ the
advantages of different heuristics in this planning approach by combining them.

Secondly, we tested the impact of representing the valid configurations of one-dimensional
joints as intervals in the planning state space. We found that this representation consis-
tently yields more efficient planning performance than when planning with single values
for each joint. The planner performance with regard to single value versus interval repre-
sentation transfers well from a simulated to a real world environment. Furthermore, we
established that including the intrinsic configuration of a robot, i. e., its joint settings, is
crucial for planning in narrow and cluttered environments.

Chapter 4

Smooth Local Planning for Robots with
Four-Wheel Independent Steering

Navigation in precision agriculture requires that a computed path
is executed safely, accurately and efficiently. Some robots are
equipped with four-wheel independent steering, i. e., they have four
omnidirectional individually steerable wheels, which provides high
movement flexibility. They thus have the potential to satisfy these
requirements. To ensure that a path is executed in the desired fash-
ion, any restrictions on robot movement have to be considered when
generating velocity commands in order to follow a given path. Usu-
ally, local planning approaches consider the velocity and accelera-
tion constraints of a robot. However, omnidirectional wheels have
certain steering constraints. Few approaches take steering con-
straints into account, which especially for large robots with slow
turning wheels has a large impact on movement efficiency. In this
chapter, we present a local planner approach that accounts for ve-
locity and acceleration limits as well as steering constraints stem-
ming from a limited steering velocity, a non-continuous steering
mechanism and singularities in steering angles. We present a uni-
fied representation of all steering constraints in the space of the in-
stantaneous center of rotation of a robot. We further propose two
methods of integrating these constraints into a local planner, once
as a post-processing filter and once directly in the motion command
computation. In extensive simulation and real world experiments,
we demonstrate how including steering constraint information im-
proves local planning performance in terms of efficiency without
loss of accuracy.

4.1 Introduction
The purpose of any autonomous navigation approach is to safely and efficiently reach a
given goal pose or configuration. After a feasible and efficient path is found, it has to
be executed accurately and efficiently in a safe manner. A global planner often provides

56 Chapter 4: Smooth Local Planning for Robots with Four-Wheel Independent Steering

Figure 4.1: The ICR I of a robot with four-wheel independent steering is defined by the
interception point of all wheel normals. The wheel normals are indicated as blue dashed
lines.

the path to a goal as a series of robot poses or positions [85]. In order for a robot to
follow this path, it has to be translated into motion commands that the robot is able to
execute by a local planner. Robots with four-wheel independent steering allow for high
movement flexibility and can execute a wide variety of velocity commands [56]. For
example, they can move sideways, diagonally, or turn on the spot. However, if the desired
direction of motion changes quickly, a lot of wheel turning can be required. In agriculture,
vehicles with large wheels are commonly used to perform several tasks, as they provide
high stability and low slippage on uneven ground. Large wheels in combination with high
friction on uneven ground result in slow turning of wheels, often purposely controlled to
avoid mechanical stress on the steering mechanism. Thus, reaching the desired motion
direction may take some time. During this time, the robot either moves in the wrong
direction, or it has to stop to adjust its wheel angles. Especially on agricultural fields with
soft soil, this can have undesirable effects like soil compression and the robot digging
itself into the ground. Therefore, to ensure the accuracy and efficiency of path following,
considering the magnitude of necessary wheel angle changes when generating velocity
commands is beneficial and some planning ahead is crucial.

In this chapter, we describe a novel local planner for robots with four-wheel indepen-
dent steering that is able to follow a global path accurately, using the available motion
flexibility while avoiding large wheel movements. In order to account for wheel move-
ment, we consider several common constraints for robots with omnidirectional wheels,
such as maximum steering angles and steering velocities, i. e., how fast the wheel angles
can be adjusted. To express these constraints in a compact manner, we transfer them into
the space of the instantaneous center of rotation (ICR) of the robot (see Figure 4.1). Using
the overall velocity and acceleration limits, we compute sequences of velocity commands

4.2 Related Work 57

that are executable within a certain time frame. We score the different velocity command
sequences according to the accuracy and efficiency of the predicted path execution. We
also provide a scoring mechanism based on safety and show how to include it in the total
score computation. We propose two methods to include the steering constraints into our
planning considerations: First, we include the anticipated wheel movement into the com-
putation of velocity rollouts and their scoring. Second, we present a post-processing filter
that alters computed velocity commands in a manner that avoids large wheel movement.

We compare these two methods in simulation experiments with our agricultural robot
BoniRob and verify the results in a real world scenario. The simulation includes three
different global paths to follow. One of them is also used for our real world experiment.
As a baseline, we perform the same experiments with a local planner that is not aware
of steering constraints. As including the steering constraints mostly presents a trade off
between efficiency and accuracy, we perform our experiments in an environment without
any obstacles. This enables us to directly observe the influence of including steering
constraints, without any disruption caused by safety concerns. Since we expect a collision
free path from a global planner, following it accurately should suffice for staying clear of
obstacles. All experiments show that incorporating steering constraints into the local
planner leads to smoother and more efficient path execution. If steering constraints are
included in the planning phase, efficiency is improved without loss of accuracy.

Substantial parts of the ideas, figures and results presented in this chapter have been
previously published [31]. Section 1.4 outlines the author’s contribution to this work.

4.2 Related Work
Computing velocity commands for a robot to follow a given path is a challenge that has
been approached with a variety of ideas. Early methods set a fixed forward velocity and
send only steering commands to attempt to follow a path accurately [65]. A possible
application for such a method is controlling a vehicle on a motorway [44]. Some purely
reactive approaches compute steering commands directly from sensor data [5]. Neither of
them consider the steering angle changes. We aim for an approach that explicitly models
these changes in order to reduce the time spent for adjusting the wheel angles. A step
in this direction is presented by Cherubini et al. [21], where the authors restrict the path
that the robot has to follow to be twice differentiable. While this results in a smooth path,
following the path exactly may still result in steering constraint violations. We show in
our experiments that satisfying the constraint on the path to be twice differentiable is not
necessary for accurate and efficient path execution.

Some approaches predict the future robot state by employing model predictive track-
ing [24, 74] and are thus able to act considering a prediction of the future instead of only
reacting to current sensor data. Fox et al. [32] and Gerkey and Konolige [36] sample a set
of possible reachable velocities for the next time step. They compute scores for each sam-
pled velocity and execute the one with the highest score. We chose a similar approach, as
we also sample and score a set of velocities.

Our approach is set apart from these velocity sampling and scoring approaches in two

58 Chapter 4: Smooth Local Planning for Robots with Four-Wheel Independent Steering

ways. First, instead of only considering the velocity for the next planning time step, we
contemplate a sequence of velocity commands for a few time steps into the future. Thus,
we plan further ahead and the resulting velocity sequences are more stable. For example,
reaching specific velocities may require the robot to stop or slow down, which we can
plan for by considering several time steps. Second, we incorporate steering constraints in
the velocity command generation by the local planner. Common approaches for comput-
ing velocity commands include velocity and acceleration constraints of a robot [32, 52],
but few of them consider the mechanical constraints of the steering mechanism. For in-
tegrating these additional constraints, we leverage previous work [22, 78]. Clavien et al.
[22] provide an estimate of the ICR of a ground vehicle from its wheel angles and posi-
tions. From velocity readings from a robot, we can directly compute the homogeneous
coordinates of the ICR. The homogeneous ICR coordinates can then be mapped onto a
unit sphere in 3d. We use this representation to express steering constraints in a compact
manner, using the advantage that all ICR coordinates are bounded in this representation.
Schwesinger et al. [78] show how to express steering velocity constraints as half plane
constraints on the ICR position. We combine the results of these two papers and demon-
strate how to express mechanical steering constraints in an efficient and unified manner.

4.3 Local Planning for Smooth Trajectory Execution
A local planner that computes velocity commands from a provided global pose or po-
sition path has to follow several requirements. Most obviously, the computed velocity
commands should be feasible regarding the overall maximum acceleration and maxi-
mum velocity of the robot. Another straightforward requirement is that it needs to ac-
curately follow the given path. Most local planners take these requirements into account
[11, 71, 80]. Additionally, a smooth path execution is desirable: sudden changes of direc-
tion or sudden stops can lead to high mechanical stress on the robot chassis or joints and
lead to unnecessary time consumption [28, 34]. This is especially true for large, heavy
robots. To increase efficiency, stopping for a long time should also be avoided, unless it
is absolutely necessary to follow a given path.

In particular, for some maneuvers, stopping the robot is necessary to avoid mechanical
stress. One example is shown in Figure 4.2, where the robot first goes straight and then
switches to performing a turn on the spot. While the wheels turn from one command to the
next, the ICR is not well defined. If this command switch would be performed while the
robot is moving, the wheels would work against each other, putting a lot of strain on the
steering mechanism. Furthermore, the result is difficult to predict due to slippage. Thus,
the robot is usually stopped while the wheels are turned to their new steering orientation
for the given command. As this is time consuming and in agricultural settings leads to
soil compression and to the robot digging itself into the ground, these maneuvers should
be avoided, if possible without loss of accuracy.

A smooth and efficient path execution requires small wheel angle changes, as small
wheel angle changes imply small direction changes. There are some common constraints
on the steering mechanism that may cause large wheel movement [19, 93]. First, wheeled

4.3 Local Planning for Smooth Trajectory Execution 59

Figure 4.2: This graphic shows the procedure when a robot with four-wheel independent
steering drives straight and receives the command to turn on the spot. Wheel normals
are indicated as dashed lines. The robot first moves straight forwards and the ICR is at
infinity (left). When the next steering command is turning on the spot, turning all wheels
is required. While the wheels are being turned, the ICR is not clearly defined (middle,
purple). Attempting to drive in this wheel configuration would lead to the forces applied
by each wheel working against each other. This puts a considerable amount of stress
on the robot chassis and on the steering mechanism. Furthermore, predicting the robot
movement with this wheel configuration is difficult due to slippage and friction factoring
in. Once the wheels have reached their goal orientation, the robot can turn on the spot
(right, light blue).

Figure 4.3: While the ICR only changes position slightly from the left to the right image,
the wheel which is close to it needs to turn a lot to correct it steering angle.

60 Chapter 4: Smooth Local Planning for Robots with Four-Wheel Independent Steering

robots usually do not have continuous steering, e. g., to change a wheel steering angle
from 89 ° to 91 °, the wheel might need to turn 178 ° instead of just turning by 2 °. Second,
there is a steering angle singularity for a wheel if the robot tries to turn exactly on that
wheel. The steering angle for this wheel is then not clearly defined. If the turning spot
changes minutely, e. g., due to numerical instabilities, the wheel might have to turn a lot as
shown in Figure 4.3. To avoid that the robot stops, we also consider the steering velocity
for each wheel. If a wheel cannot turn fast enough to reach a desired angle in a given
time step, the robot will either not perform the correct motion, or it would have to stop,
adjust the wheel angles and then resume the motion. Overall, we have the robot velocity
and acceleration constraints, the non-continuous steering constraint, the steering angle
singularity, and the steering velocity to take into account.

As the robot requires velocity commands to execute a path, we aim to generate a se-
quence of velocity commands that are reachable within certain time steps. To plan ahead,
we perform a velocity rollout over a time limit, i. e., we compute a sequence of veloc-
ity commands that comply with our constraints and test the predicted robot pose path
for proximity to the desired path. The velocity rollouts are scored according to safety,
efficiency, and proximity to the desired path. We choose the one with the best score to
execute.

4.3.1 Steering Constraints in ICR Space
All three steering constraints (non-continuous steering, limited steering velocity, and
steering angle singularities) are complicated to express in velocity space, but straight-
forward to express in terms of the ICR. We therefore translate velocity commands into
ICR space to handle these constraints. We define the coordinate system of the ICR space
as the robot base coordinate frame. For a robot with individually steerable, omnidirec-
tional wheels, the ICR is defined as the point where the normals of all wheels intersect, as
illustrated in Figure 4.1. In a real world scenario, they will never intersect exactly in one
point due to slight angular variations. Thus, methods for estimating the ICR from wheel
positions and orientations have been developed. We use the least-square ICR position
estimation approach by Clavien et al. [22] to tackle this issue.

We express the steering constraints in ICR space as proposed by Fleckenstein et al.
[31]. Turning on a wheel means that the ICR lies exactly on that wheel. To avoid the
singularity and numerical instabilities when the ICR is on or close to a wheel, we constrain
the ICR to stay outside a circular area around the wheels, as indicated in Figure 4.4 on
the left. The steering velocity constraints can be formulated as half plane constraints on
the ICR, as presented by Schwesinger et al. [78]. As shown in Figure 4.4 in the middle,
the valid normal angles of each wheel after time step t create cones of valid ICR positions
according to the steering velocity constraints on that wheel. The set of valid ICR positions
considering all wheels is represented by the intersection of all cones. The non-continuous
steering constraint in our case is that the steering angle of each wheel can only be in
[−90 °, 90 °]. To avoid numerical instabilities, we forbid the steering angles to enter a
certain range around these values. In ICR space, this gives us cones that the ICR is not
allowed to enter, as illustrated in Figure 4.4 on the right.

4.3 Local Planning for Smooth Trajectory Execution 61

Figure 4.4: These images show all steering constraints we consider in our local planner.
Having an ICR close to one of the wheels causes numerical instabilities in the required
steering angles, leading to large wheel movements. The first image illustrates the areas
around the wheels that the ICR is not supposed to enter in red. The steering velocity
constraints affect the possible wheel angle change. In the second image, an example for
the sets of wheel normal angles that are reachable in one time step are indicated as light
blue cones. The area where all cones intersect represents the set of ICR positions that is
reachable within the given time step. The third constraint is the non-continuous steering
constraint. For the BoniRob, the wheel angle can not cross the line at ±90°. To avoid
numerical instabilities, a certain area around these values is forbidden. This gives us
the cones in the third image. For more clarity, we included a closeup of the front right
wheel, where only the cone corresponding to this wheel is shown. Other robots may have
different limits for non-continuous steering.

In order to efficiently determine whether reaching a given goal velocity from the current
velocity without violating any steering constraints is possible, we aim for a compact and
unified representation of these constraints as introduced by Fleckenstein et al. [31]. First,
to avoid issues with ICR positions at infinity in any direction, which corresponds to driv-
ing in a straight line, we project the ICR space onto a unit sphere centered at (0, 0, 0). The
result is bounded coordinates for any ICR position. This is done as follows. Given a finite
2d ICR position (x, y), its homogeneous coordinates are defined as (x, y, 1). Orthogonal
projection onto the unit sphere yields coordinates

Π(x, y, 1) = (
x√

x2 + y2 + 12
,

y√
x2 + y2 + 12

,
1√

x2 + y2 + 12
).

For an ICR at infinity, we find the direction (x, y) in which it lies. The homogeneous
coordinates for the ICR position are (x, y, 0), and the orthogonal projection onto the unit
sphere gives us

Π(x, y, 0) = (
x√

x2 + y2
,

y√
x2 + y2

, 0),

i. e., an ICR at infinity projects to the equator of the unit sphere.
From a point (u, v, w) on the unit sphere, we can recover the 2d ICR position as(

u
w
, v
w

)
if w ̸= 0. If w = 0, the ICR lies in direction (u, v) at infinity. Thus, dia-

metrically opposite points on the unit sphere are equivalent representations for the same

62 Chapter 4: Smooth Local Planning for Robots with Four-Wheel Independent Steering

ICR position, (u, v, w) ∼ (−u,−v,−w) as
(−u
−w

, −v
−w

)
=

(
u
w
, v
w

)
. For an ICR position

I = (x, y, z) in homogeneous coordinates we define Π+(I) = I
∥I∥ and Π−(I) = − I

∥I∥
as the equivalent projection points on the unit sphere. We further define the tuple of
equivalent representations as Π±(I) = (Π−(I),Π+(I)). A segment J = [I1, I2] in ho-
mogeneous space is projected onto two great circle segments on the unit sphere, Π(J) =
([Π−(I1),Π

−(I2)], [Π
+(I1),Π

+(I2)]). Thus, moving the ICR in a straight line from a start
position to a goal position in 2d space corresponds to moving it on a great circle segment
on the unit sphere, even if the motion includes points at infinity. To check whether a
steering constraint gets violated by an ICR movement, we only need to check whether
the corresponding great circle segment crosses any constrained areas on the unit sphere.
We therefore project our steering constraints onto the unit sphere. In the following, we
assume the ICR should move from a start position Is to a goal position Ig in homogeneous
2d space. We use the notation L = Is × Ig = (a, b, c) where (a, b, c) is the homogeneous
representation of a line, ax + by + c = 0. L is a straight line that connects Is and Ig. It
projects to a great circle on the unit sphere Π(L).

The steering velocity constraints define how fast the wheels can turn, i. e., how much
the steering angles can change in a given time step. In 2d space, these constraints for
each wheel are given as half plane constraints as proposed by Schwesinger et al. [78].
These half plane constraints form cones of valid ICR positions from each wheel: If the
current steering angle of wheel i is ϕi and the maximum steering velocity is ϑ, the steering
angle after time step t is within [ϕi − ϑ · t, ϕi + ϑ · t]. Correspondingly, the valid wheel
normal angles that define the ICR position also form cones as shown in Figure 4.4 in the
middle. Considering a wheel position in homogeneous coordinates, Wi = (xi, yi, 1), the
line connecting the wheel position to the ICR position I is defined by the cross product
Li = Wi × I = (ai, bi, ci). The wheel normal points in the direction of this line, i. e.,
the wheel normal angle is given by αi = arctan2(−ai, bi). The wheel steering angle is
then defined by ϕi = arctan2(bi, ai). The boundaries of each cone representing valid ICR
positions according to steering velocity constraints for one wheel are lines

L+
i = Wi × (Wi + (− sin(ϑ · t), cos(ϑ · t), 0))

and
L−
i = Wi × (Wi + (− sin(−ϑ · t), cos(−ϑ · t), 0)).

ICR positions that are valid considering the steering velocity of all wheels are given by
the intersection of these cones. To move the ICR from a start position Is to a goal position
Ig, we move it in a straight line given by L = Is × Ig. Intersecting L with the cone
defined by L+

i and L−
i gives us a generalized segment Mi = [M+

i ,M
−
i]. The intersection

of L with all n cones representing steering velocity constraints represents the set of valid
ICR positions considering steering velocity constraints for all wheels when moving the
ICR from Is to Ig in a straight line. It is again a generalized segment M = ∩iMi, which
translates to a great circle segment Π(M) on the unit sphere.

The non-continuous steering constraints are given as a range of steering angles that
cannot or should not be executed. They also form cones in 2d ICR space, as shown in
Figure 4.4 on the right. With a procedure analogous to dealing with the steering velocity

4.3 Local Planning for Smooth Trajectory Execution 63

constraints, we obtain segments Ni of the line L for each wheel corresponding to these
constraints. Again, they project to great circle segments on the unit sphere. These are
areas that have to be avoided, i. e., they have to be excluded from the great circle segment
of feasible ICR positions.

Lastly, the steering singularity constraints dictate that the ICR should not enter a certain
area around the wheels to avoid excessive wheel turning due to numerical instabilities. In
2d ICR space, these constraints are represented as circles with radius r around the wheels
Wi as shown in Figure 4.4 on the left. Intersecting each of these circles with the line L
gives two points C+

i and C−
i , if they intersect. The ICR cannot enter the line segments

[C−
i , C

+
i]. Projecting them onto the unit sphere gives us great circle segments that have to

be excluded from the set of feasible ICR positions.
An illustration of the steering velocity and steering angle singularity constraints is

shown in Figure 4.5, including intersection points of the constraint representations with
the line L through Is and Ig. We omit the non-continuous steering constraints for better
visibility. The first image shows the situation in 2d space. The second image shows the
projection to the unit sphere, where the plane cutting through goes through start and goal
ICR and defines the great circle Π(L) on which the ICR moves. We transform the great
circle to lie in the (x, y) plane, such that the start ICR Is lies at (1, 0, 0). The third image
in Figure 4.5 shows the transformed great circle with the constraints, the start ICR and
the goal ICR. We represent each point P = (x, y, 0) on the transformed great circle by
its angular position, θ+(P) = arctan2(y, x), which is equivalent to the opposite angle
θ−(P) = arctan2(−y,−x). We define the tuple of equivalent representations of P as
θ(P) = (θ−(P), θ+(P)). A generalized segment [p, q] is expressed as union of angle
intervals

θ([p, q]) = [θ−(p), θ−(q)] ∪ [θ+(p), θ+(q)].

We now aim to find the great circle segments that satisfy all constraints. This is achieved
by computing

S =
n⋂

i=1

θ(Mi) ∩ θ(Ci) ∩ θ(Ni).

We use the complement of θ(Ci) and θ(Ni), as the corresponding singularity and non-
continuous steering constraints define areas the ICR should avoid.

In order to check whether the goal ICR Ig is safe and reachable from Is within a time
limit, we proceed as follows. If the set of feasible ICR positions S is empty, the start ICR
is too close to a steering limit or a wheel position and there is no possible movement to
achieve a valid ICR in one time step. This also implies that Ig is not reachable. In general,
S is a set of intervals. We choose the one that includes θ+(Is) = 0. If 0 /∈ S, the start
ICR is not valid, but a suitable ICR can be reached in one time step. We then choose
the interval closest to 0. If the chosen interval also includes either value in θ(Ig), Ig is
safe and reachable in a single time step. If Ig is not contained in the chosen interval, we
select the interval endpoint θ∗ = θ(I∗) that is closest to θ(Ig). We recover the coordinates
Π(I∗) on the unit sphere and from that the ICR coordinates in homogeneous 2d space I∗.
The ICR I∗ is safe and reachable within one time step, and it lies between Is and Ig on
the line L. Note that we are in homogeneous space, so that it may be faster or even the

64 Chapter 4: Smooth Local Planning for Robots with Four-Wheel Independent Steering

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Figure 4.5: The top image illustrates the computation of a feasible ICR from a given
current and desired ICR. The robot chassis is indicated as a gray rectangle with wheels
positioned at each corner. Green lines indicate the current wheel normals, intersecting in
the green dot, which is the current ICR. The desired ICR is represented by the red dot.
Steering velocity constraints are given by red lines: for each wheel, the normal angle can
only change a certain amount in one time step, thus the next ICR has to lie within the
cones given by each of the wheel normal ranges that are reachable within one time step.
The steering angle singularities lie on each of the wheels, so that a certain area around
each wheel is excluded from the valid ICR positions, indicated as blue circles. The goal
is to find an ICR that lies on the line from the current ICR (green) to the desired ICR (red)
without violating any of the constraints. We thus find the line through the current and the
desired ICR, indicated by the magenta line segment. Starting from the current ICR, we
move towards the desired ICR until the line intersects with any of the constraints. The
intersection points are shown as black dots, the one that is hit first is shown by the blue
dot. This gives us a feasible ICR that is reachable in the next time step and is closer to the
desired ICR than the current one.
On the bottom left, we show the same situation projected onto the unit sphere. The line
through the current and the desired ICR projects to a great circle on the unit sphere.
In this representation, diametrically opposite dots are equivalent concerning the 2d ICR
position, (x, y, z) ≡ (−x,−y,−z), so that each intersection of the line from the current
to the desired ICR with any constraint shows up twice on the great circle. The same goes
for the current and the goal ICR.
On the right, we see this great circle transformed into the (x, y) plane such that the current
ICR lies on (1, 0, 0). Intersection points with constraints are again indicated by black
dots, and their diametrically opposite counterparts as unfilled dots. All images were taken
from Fleckenstein et al. [31].

4.3 Local Planning for Smooth Trajectory Execution 65

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-8 -6 -4 -2 0 2 4 6

Figure 4.6: This image illustrates the computation of a feasible ICR from a given current
and desired ICR, where moving through infinity gets us closer to the desired ICR than
staying in finite range. The robot chassis is indicated as a gray rectangle with wheels
positioned at each corner. Green lines indicate the current wheel normals, intersecting in
the green dot, which is the current ICR. The desired ICR is represented by the red dot.
Steering velocity constraints are given by red lines: for each wheel, the normal angle
can only change a certain amount in one time step, thus the next ICR has to lie within the
cones given by each of the wheel normal range that is reachable within one time step. The
steering angle singularities lie on each of the wheel angles, so that a certain area around
each wheel is excluded from the valid ICR positions, indicated as blue circles. The goal
is to find an ICR that lies on the line from the current ICR (green) to the desired ICR (red)
without violating any of the constraints. We thus compute the line through the current and
the desired ICR, indicated by the magenta line segment. Starting from the current ICR,
we move towards the desired ICR until the line intersects with any of the constraints. The
intersection dots are shown as black dots, the one that is encountered first when going
through infinity is shown by the blue dot. This results in a feasible ICR that is reachable
in the next time step and is closer to the desired ICR than the current one. The image was
taken from Fleckenstein et al. [31].

only way to reach Ig from Is by crossing infinity instead of staying in finite range. An
example is shown in Figure 4.6. We choose I∗ as next ICR in the ICR path from Is to
Ig. We then set I∗ as start ICR for the next time step. Due to the changed wheel steering
angles, the reachable ICR positions may change for the next time step. Recomputing the
ICR constraints accordingly allows us to iteratively find a feasible ICR path from Is to
Ig. When the time steps exceed the given timeout without reaching the goal ICR, it is not
reachable within the time limit. If Ig is safely reachable from Is, we call the resulting ICR
path an ICR rollout from Is to Ig. This is a feasible sequence of ICR positions that can be
executed within the time limit without violating any steering constraints. The next step to
smooth path execution is to compute velocity commands matching this ICR rollout.

4.3.2 Incorporating Steering Constraints in the Local Planner
We present two methods for including the steering constraints in order to increase path
execution efficiency and smoothness. For the first approach, we initially determine se-

66 Chapter 4: Smooth Local Planning for Robots with Four-Wheel Independent Steering

quences of velocity commands that comply with the overall acceleration and velocity
constraints and compute a score for each sequence. The sequence with the best score
is chosen to be executed. We add a post-processing filter that adjusts the next velocity
command at each time step, such that the steering constraints are also satisfied. In the
second approach, we directly integrate the steering constraints into the velocity sequence
generation, such that the velocity sequences follow the steering constraints as well as the
acceleration and velocity constraints. Again, the velocity sequences get a score and the
best one is chosen to be executed.

Velocity Rollout Generation

We present two different methods to generate a velocity rollout, i. e., a sequence of ve-
locity commands to execute. The first only takes the overall velocity and acceleration
constraints into account, while the second additionally considers steering constraints. In
both cases, we discretize the velocity space with a given resolution. Since our goal is to
develop a local planner for ground robots, we only consider the translational velocities
in x and y direction, vx, vy, and the rotational velocity, ω. Out of all velocity commands
within the velocity limits, we determine those that are reachable from the current velocity
within the time limit while satisfying the acceleration constraints. These are our candidate
goal velocities which we aim to reach in the velocity rollouts.

The first method to generate a velocity rollout to reach a candidate goal velocity does
not consider any steering constraints. We simulate acceleration from the current velocity
towards the candidate goal velocity. To ensure a smooth transition, we do not simply use
the maximum acceleration in each velocity component. Instead, we determine for each
component of the candidate goal velocity command (vgx, v

g
y , ω

g) how long it would take
to reach it from the current velocity (vsx, v

s
y, ω

s) given the respective acceleration limits.
The maximum time over the components tmax is the time it takes to reach the candidate
goal velocity. We then accelerate in all velocity components in proportionate steps over
time steps δt, such that all goal velocity components are reached at the same time:

vi = vs + i · δt

tmax
· (vg − vs), i = 1, . . . ,

⌊
tmax

δt

⌋
and define vi = vg for i =

⌈
tmax

δt

⌉
, . . . , n where n = T

δt
is the number of time steps until

the timeout T is reached. This gives us a velocity rollout v1, . . . , vn with commands that
are feasible considering acceleration and velocity constraints. For each velocity rollout,
we compute the predicted robot path incrementally using the current robot position, the
velocities and the time step length. We call this predicted path the pose rollout.

The second method for generating velocity rollouts accounts for steering constraints as
well as velocity and acceleration constraints. Once we have our candidate goal velocities
vg = (vgx, v

g
y , ω

g), we determine the candidate goal ICRs in homogeneous coordinates,
Ig = (−vgy , v

g
x, ω

g). We then go into ICR space and compute an ICR rollout from the
current ICR to the candidate goal ICR that satisfies the steering constraints as detailed in
Section 4.3.1. To increase computation efficiency, we first determine whether the goal
ICR is reachable at all within the time limit by looking for an ICR path with larger time

4.3 Local Planning for Smooth Trajectory Execution 67

steps. If a path exists, it is refined in a second step. After we found a feasible ICR path,
we compute velocity commands that correspond to the ICR rollout as explained in the
following.

Note that a velocity corresponds to an ICR up to a scale, i. e., velocities v = (vx, vy, ω)
and s ·v = (s ·vx, s ·vy, s ·ω) correspond to the same ICR I = (−vy, vx, ω) ≡ (−s ·vy, s ·
vx, s · ω), since this ICR representation uses homogeneous coordinates. Intuitively, the
ICR only indicates which point the robot is turning around, but not how fast it is moving.
Thus, we cannot directly compute a velocity rollout from the ICR rollout. Instead, we
need to determine the scale s to calculate the next velocity command from the next ICR
position in each time step of the rollout.

At each point in the ICR rollout, we know the previous ICR Ii−1 and the next ICR
Ii = (x, y, z) as well as the overall candidate goal velocity vg and the previous velocity
command vi−1, starting with the current velocity. We define an unscaled next velocity
command v̂i = (−y, x, z) = (v̂ix , v̂iy , ω̂i). We now want to find a scaling factor s such
that vi = s · v̂i is reachable within one time step considering acceleration and velocity
limits. Ideally, vi should be closer to vg than vi−1. As extensively searching for the best
scaling factors over all time steps is too computationally expensive, we propose testing
only a subset of scaling factors that are computed as follows.

We determine the velocity window for the next time step, i. e., the minimum and
maximum values of each velocity component reachable with maximum acceleration,
vmin
x , vmin

y , ωmin and vmax
x , vmax

y , ωmax . Potential scales are then given by vmin
x

v̂ix
, vmax

x

v̂ix
and

values equivalently computed from the vy and ω components. This results in scaling such
that one component is set to its minimum or maximum reachable value, respectively, i. e.,
we assume maximum acceleration in one component. Additionally, we compute scales
vgx
v̂ix

and the according scales for the other components, i. e., we scale so that one compo-
nent takes on its goal value. This produces velocities that are close to the goal velocity, if
possible. Lastly, we scale one component to its previous value by using scales vi−1x

v̂ix
and

corresponding values for the vy and ω components. These scales likely require the least
change in velocity, so that the velocity is likely reachable. Overall, we get twelve different
scales to test. We scale the unscaled next velocity command v̂i with each of the values for
s presented and check whether the resulting potential next velocity command ṽi = s · v̂i
lies within the velocity window, i. e., all velocity components are reachable within one
time step given the acceleration limits and satisfy the velocity limits. Scales that result in
velocities which do not satisfy this constraint are discarded. We compare the translational
part of each potential next velocity with the translational part of the goal velocity and
choose vi with the smallest difference ∥(vix −vgx, viy −vgy)∥. If none of the scaled velocity
commands satisfy the acceleration and velocity limits, the candidate velocity to which the
rollout is being computed is also discarded.

Performing these steps for every part of the ICR rollout results in a velocity rollout that
satisfies velocity and acceleration constraints as well as all steering constraints.

68 Chapter 4: Smooth Local Planning for Robots with Four-Wheel Independent Steering

Velocity Rollout Scoring

To chooose which of the computed velocity rollouts should be executed, we determine
which of them is best regarding safety, efficiency and accuracy using the following scores.

For the safety score, we use a traversability map of the environment. A traversability
map is a 2d grid map, where each cell c contains a traversability weight t(c). A traversabil-
ity weight of 1 means the cell contains an obstacle and is untraversable for the wheels.
A value of 0 indicates that the cell is completely safe to traverse. Values between 0 and
1 may indicate uneven terrain or proximity to obstacles. We define a safety threshold
tsafe and declare cells with traversability weights below this threshold as safe. A second
threshold tcrit defines the traversability weight above which safety concerns are considered
critical, i. e., we want to avoid these cells if possible. We define the cost of crossing a cell
c with a wheel as

f(c) =


0 if t(c) < tsafe
t(c)−tsafe
tcrit−tsafe

if tsafe < t(c) < tcrit

1 else.

For every velocity rollout, we compute the path of each wheel wi. We sum up the cost
of traversing all wheel path cells ci,j with a decay weight γ1 ∈ R, γ1 > 0 for cells further
ahead, and divide by the sum of decay weights to normalize the result between 0 and 1,

ctrav(wi) =

∑
j γ

j
1t(ci,j)∑
j γ

j
1

.

For γ1 < 1, cells further along the rollout get lower weight, while γ1 > 1 gives higher
weight to cells later in the rollout.

We define the overall traversability cost as maximum of the traversability cost over all
wheels,

ctrav = max
i

ctrav(wi)

To translate it into a safety score, we subtract the cost from 1,

ssafe = 1− ctrav.

The path following accuracy score is computed as follows. The local planner keeps
track of its current waypoint in the global path and defines a local goal. At first, the
current waypoint is the start point of the global path. The local goal is another pose on the
global path, which is at a given distance from the current waypoint along the path. After
a motion was executed, the new current waypoint to the current robot pose r is computed
as the pose on the global path between the previous waypoint and the previous local goal
that is closest to r. For each pose p = (xp, yp, θp) on the pose rollout, we determine the
waypoint wp = (xwp , ywp , θwp) on the global path between the current waypoint and the
local goal that is closest to p. Then, we compute the translational and rotational difference
between the rollout pose and its corresponding waypoint and cap them with upper bounds
dtrans
max , d

θ
max :

4.3 Local Planning for Smooth Trajectory Execution 69

dtrans(p, wp) = min
{
∥(xp − xwp , yp − ywp))∥, dtrans

max

}
dθ(p, wp) = min

{
|r(θp, θwp)|, dθmax

}
where r(θp, θwp) is the rotational difference defined such that values lie in [−π, π]. Cap-
ping the translational and rotational difference with an upper bound allows us to normal-
ize them to values in [0, 1] as dtrans(p,wp)

dtrans
max

, d
θ(p,wp)

dθmax
. The respective costs over the entire pose

rollout with poses pi, i = 1, . . . , N are then given by the average

dtrans =
1

N

N∑
i=1

dtrans(pi, wpi)

dtrans
max

∈ [0, 1]

dθ =
1

N

N∑
i=1

dθ(pi, wpi)

dθmax

∈ [0, 1]

We define the overall path distance cost with a scaling factor γ2 ∈ [0, 1],

cdist = (1− γ2) · dtrans + γ2 · dθ ∈ [0, 1].

Since this gives us the path following inaccuracy, we define the accuracy score

sacc = 1− cdist ∈ [0, 1].

For ensuring path execution efficiency, we add a score based on the length of the global
path segment that is covered by the pose rollout. We find the path waypoint corresponding
to the end pose of the rollout. We define the length l of the path that was covered as the
number of path poses between this end waypoint and the current waypoint to account for
the coverage of rotational as well as translational changes in the path. The maximum path
length lmax is the number of poses between the current waypoint and the local goal on the
path. We normalize the path length by the maximum and get a score for the covered path
length, which we define as efficiency score

seff =
l

lmax

∈ [0, 1].

In order to combine the safety, accuracy and the efficiency score, we introduce scaling
factors α1, α2, α3 ∈ [0, 1], α1 + α2 + α3 = 1 and define the rollout score as

srollout = α1 · ssafeα2 · seff + α3 · sacc.

Examples of trajectory rollouts with their scores in an environment without any obstacles
are shown in Figure 4.7.

70 Chapter 4: Smooth Local Planning for Robots with Four-Wheel Independent Steering

Figure 4.7: This image shows the simulation model of our experimental platform, the
BoniRob, following a pose path (black arrows). The viable velocity rollouts are shown
by colored dotted lines with an arrow at the end to indicate the orientation at the final
position of a rollout. The color scheme is a heat map on the rainbow spectrum applied to
the score, where red indicates a low score and blue indicates a high score.

Choosing a Velocity Rollout

We choose the velocity rollout with the highest score as the potential next velocity se-
quence to execute. However, we do not blindly follow a computed velocity rollout to
the end, as localization corrections, changes in the environment or inaccurate velocity
command execution may require different velocity sequences to ensure safe, accurate and
efficient path execution. Instead, we compute the best velocity rollout in each execution
time step and compare its score with the score of the previously chosen velocity rollout.
As the score of the previous velocity rollout may change during execution, we recompute
it. In the computation, we remove the velocity commands at the beginning of the sequence
that were already executed. Since all velocity rollouts need to have the same length in or-
der for the scores to be comparable, we add the final velocity command that is reached in
this rollout as often as needed to compensate the removal of the already executed velocity
commands. The pose rollout and the corresponding score are then computed. This simu-
lates executing the previously chosen velocity rollout to its end given the new localization
pose and environment information.

The new best rollout is only chosen if it has a score that is better than the score of
the previously chosen rollout by a given factor. Otherwise, we keep the previous rollout
and execute the next velocity in that sequence. While it may be more intuitive to use the
new best rollout in every time step, this results in numerous direction changes, especially

4.4 Experiments 71

when the robot is moving very slowly or standing. To ensure a more stable and smooth
execution, we thus give a preference to keeping the previous velocity rollout.

Integrating Steering Constraints in a Post-Processing Filter

We explained how to generate and choose velocity rollouts that conform only to velocity
and acceleration constraints as well as how to do the same for rollouts that also satisfy
steering constraints. Here, we present how to generate a velocity command v∗ that sat-
isfies steering constraints from a desired command vd = (vdx, v

d
y , ω

d) that only meets
velocity and acceleration constraints. The procedure is similar to the procedure for gen-
erating velocity rollouts that consider steering constraints. We determine the current ICR
Ic and the desired ICR Id and perform a single step of finding an ICR path from Ic to
Id. This gives us an ICR I∗ = (i∗x, i

∗
y, i

∗
z) that is reachable from Ic in one time step, lies

on the line from Ic to Id and is as close to Id as possible. We then aim to find a velocity
that is as close to the original command vd as possible. The unscaled velocity is given
by v̂∗ = (−i∗x, i

∗
x, i

∗
y). Here, we differ from the scaling procedure described above. If the

translational part of the unscaled velocity is zero, ∥(−i∗y, i
∗
x)∥ = 0, no scaling will have

an impact on that, so we set the rotational part to the desired value, v∗ = (0, 0, ωd). Oth-
erwise, we aim to keep the translational magnitude and direction of the desired velocity
command. Thus, we set v∗ = α · v̂∗ = (v∗x, v

∗
y, ω

∗) such that ∥(v∗x, v∗y)∥ = ∥(vdx, vdy)∥ and
vdxv

∗
x + vdyv

∗
y ≥ 0.

Using this method, we generate velocity rollouts that only satisfy the velocity and accel-
eration constraints, and filter the result such that the velocity command that gets executed
also satisfies steering constraints. We expect this to result in smoother movements than
if we directly execute the velocity commands that were computed without any awareness
of steering constraints. Note that in this case, we only perform a single ICR path compu-
tation. In constrast, integrating the steering constraints directly into the velocity rollout
computation requires computing ICR paths for all candidate goal velocities. Therefore,
this method is less computationally expensive. However, it changes the computed veloc-
ity command after scoring. Therefore, the path rollout that was computed may no longer
be accurate and the executed velocity may be suboptimal. This potentially results in inac-
curate path following behavior. In the next section, we evaluate the execution efficiency
and the resulting accuracy loss.

4.4 Experiments
We evaluate the performance of three different planner behaviors and name them by their
ICR awareness level. As a baseline, we use the planner that generates velocity rollouts
considering only velocity and acceleration constraints. Its ICR awareness level is None.
We investigate how performance changes when adding a post-processing filter that in-
tegrates steering constraints after the velocity rollout computation. This yields an ICR
aware Filter. Lastly, we examine the performance when integrating the steering con-
straints into the velocity rollout computation, which gives us an ICR aware Planner.

72 Chapter 4: Smooth Local Planning for Robots with Four-Wheel Independent Steering

We set the BoniRob to follow different paths with the different local planner behaviors,
repeating each run three times to test for replicability and consistency. Furthermore, we
tested two maximum velocity settings: The first had a maximum of 0.2 m/s in either
translational component, |vx| ≤ 0.2, |vy| ≤ 0.2 and a maximum rotational velocity of
0.1rad/s, |ω| < 0.1. We refer to it as the 0.2 maximum velocity setting. The local goal in
this setting is 3 m from the current waypoint along the path. The second had maximum
translational components of 0.4 m/s and a maximum rotational component of 0.2rad/s.
We refer to it as the 0.4 maximum velocity setting. The local goal here is 6 m from the
current waypoint along the path. The distance to the local goal was chosen such that it is
reachable given the velocity limits, but driving with maximum velocity cannot overshoot
the local goal.

In order to directly observe the trade off between accuracy and efficiency without dis-
ruptions by any obstacles, we investigate only paths in obstacle-free environments. Thus,
we set the safety scale α1 = 0 for the velocity scoring, such that the score is given by
srollout = α2 · seff + (1 − α2) · sacc. We call α2 the path length scale (PLS), since the
efficiency score is based on the covered path length. Note that α2 presents a trade off be-
tween efficiency and accuracy: for larger values of α2, efficiency gains importance, while
accuracy loses weight. This encourages cutting corners. We tested different PLS values
to investigate its influence on path following accuracy and efficiency.

We perform experiments in three simulation scenarios and one real world scenario.
The corresponding paths are shown in Figure 4.8, Figure 4.11 and Figure 4.14. The first
simulation scenario (Figure 4.8) is a path that has wide, smooth curves that do not require
many direction changes. We expect that smooth and therefore efficient path execution
is easily attainable while following the path accurately. We call this the lines and arcs
path. The second is a path that is similar to a field traversal as a common use case for
autonomous navigation in precision agriculture (Figure 4.11). It simulates following the
crop rows and turning at the end of each row to follow the next one. We made the rows
very short, since we are primarily interested in the turns at the end of each row. This is a
more challenging scenario, since it involves tight 180 ° turns. We use the same scenario
in our real world experiment and call it the field path. Lastly, we chose a path that follows
a rectangular wave with varying side length (Figure 4.14). We expect that the wheels turn
excessively in the corners of this path in order to accurately follow the path. We call this
path the rectangular wave path.

For a qualitative analysis of the accuracy and efficiency of each planner behavior, we

Table 4.1: This table shows the mean overall execution times on the lines and arcs path
for all planner behaviors with the different velocity and path length scale settings.

PLS 0.2 m/s 0.4 m/s
Filter None Planner Filter None Planner

0.08 385s 492s 383s 182s 214s 182s
0.1 370s 493s 380s 180s 231s 177s

0.12 327s 488s 355s 175s 208s 178s

4.4 Experiments 73

PLS Maximum Velocity
0.2 m/s 0.4 m/s

0.
08

50 55 60 65

10

5

0

50 55 60 65

10

5

0

0.
1

50 55 60 65

10

5

0

50 55 60 65

10

5

0

0.
12

50 55 60 65

10

5

0

50 55 60 65

10

5

0

Figure 4.8: Shown are the original lines and arcs path (black) and the paths the different
planner behaviors took in each of their three runs (yellow: None, blue: Filter, red: Plan-
ner) for both maximum velocity settings and all three path length scales. Points where the
robot stopped are marked with a cross in the corresponding color. Units are m relative to
a fixed frame on the ground plane.

74 Chapter 4: Smooth Local Planning for Robots with Four-Wheel Independent Steering

PLS Maximum Velocity
0.2 m/s 0.4 m/s

0.
08

Filter None Planner
0

5

10

15

20

25

Filter None Planner
0

5

10

15

20

25

0.
1

Filter None Planner
0

5

10

15

20

25

Filter None Planner
0

5

10

15

20

25

0.
12

Filter None Planner
0

5

10

15

20

25

Filter None Planner
0

5

10

15

20

25

Figure 4.9: These plots depict the time spent standing in s on the lines and arcs path for
each of the three runs with each planner behavior, the different maximum velocity settings
and path length scales. The shaded areas represent standing without turning the wheels.

4.4 Experiments 75

Table 4.2: This table shows the mean overall execution times on the field path for all
planner behaviors with the different velocity and path length scale settings.

PLS 0.2 m/s 0.4 m/s
Filter None Planner Filter None Planner

0.08 169s 257s 152s 147s 192s 122s
0.1 159s 279s 150s 136s 204s 104s

0.12 159s 217s 150s 118s 196s 87s

show the paths of the robot as well as where it stopped. For the lines and arcs path,
the result is shown in Figure 4.8. All planner behaviors are able to follow the path quite
accurately. The planning behavior with ICR awareness None stops often in order to adjust
the wheel angles, as visible by the cross marks on the pose path. Both the Filter and
Planner awareness help increase the efficiency by avoiding maneuvers with large wheel
changes that would require the robot to stop for adjusting its wheel angles. This is shown
in Figure 4.9 as well: while planner ICR awareness None results in standing times of
up to 25 s, with Filter or Planner ICR awareness, the standing times are negligible or the
robot does not stop at all. Regarding the mean overall execution times (see Table 4.1),
ICR awareness Filter and Planner show similar efficiency. For a path length scale of 0.08
and maximum velocity setting 0.2, both are able to follow the path in about 380 s, while a
planner with ICR awareness None takes roughly 490 s. Behavior None consistently takes
this long with low maximum velocity and any path length scale. On the other hand, the
planner behaviors Filter and Planner are able to use the higher path length scale to further
reduce execution time with low maximum velocity. With a higher maximum velocity,
the difference between behavior None and the other two is not as large anymore, but still
notable. All behaviors result in lower execution times with higher maximum velocity.

In order to further investigate the accuracy of each planner behavior, we determine the
maximum error between poses during path execution and the original path. The error
plots in Figure 4.10 confirm that the maximum error is very similar between all planning
behaviors for this path and the maximum velocity and the path length scale have low
impact on the path execution accuracy.

The field path poses more challenges for path execution. The poses and stop points
are shown in Figure 4.11. The most striking observation is that with larger maximum
velocity, the planner is more likely to cut or overshoot the original path. Cutting the path
is likely caused by the local goal being further ahead with larger maximum velocity. On
this path, cutting the turns brings high reward in the efficiency score. This is especially
the case for larger path length scales. This could be avoided in two ways. First, we
could set the local goal closer to the current waypoint. However, this would lead to high
velocities overshooting the local goal consistently, so that the high velocities will never
be used because they would lead to overshooting the local goal. A second possibility
would be to add crop rows as obstacles and include the safety score in the velocity rollout
scoring process. The overshooting done by the Filter behavior is a result of insufficient
wheel angle changes when large changes are needed, combined with the high velocity.

76 Chapter 4: Smooth Local Planning for Robots with Four-Wheel Independent Steering

PLS Maximum Velocity
0.2 m/s 0.4 m/s

0.
08

Filter None Planner
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Filter None Planner
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.
1

Filter None Planner
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Filter None Planner
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.
12

Filter None Planner
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Filter None Planner
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 4.10: These plots depict the maximum error in m between each pose on the path
the planner took and its corresponding waypoint on the original lines and arcs path. The
error is shown for all three runs with each planner behavior, with the different maximum
velocity settings and path length scales.

4.4 Experiments 77

PLS Maximum Velocity
0.2 m/s 0.4 m/s

0.
08

52 54 56 58 60 62 64

4

2

0

52 54 56 58 60 62 64

4

2

0

0.
1

52 54 56 58 60 62 64

4

2

0

52 54 56 58 60 62 64

4

2

0

0.
12

52 54 56 58 60 62 64

4

2

0

52 54 56 58 60 62 64

4

2

0

Figure 4.11: Shown are the original field path (black) and the paths the different planner
behaviors took (yellow: None, blue: Filter, red: Planner) for both maximum velocity
settings and all three path length scales. Points where the robot stopped are marked with
a cross in the corresponding color. Units are m relative to a fixed frame on the ground
plane.

In the right middle plot, the ICR aware Filter overshoots at the first turn and has to stop
as continuing would bring it too far away from the original path. At the second turn,
it overshoots in one out of the three runs, but is able to recover without having to stop.
As shown by the cross marks, the None ICR aware planner stops often on this path to
turn its wheels. This is reflected in Figure 4.12 in the time spent standing. Here we
also observe that planning without ICR awareness and a higher maximum velocity results
in more time spent standing. While the Filter behavior also spends some time standing
here, it still outperforms the time needed with ICR awareness None. For either type
of ICR awareness (Filter or Planner), higher path length scales lead to less time spent
standing, especially with high maximum velocity. This is to be expected, since a high
path length scale reduces the need for accuracy and increases the reward for efficiency.
It is further shown in Figure 4.11 that higher path length scales lead to cutting turns.
Table 4.2 shows the quantitative results for execution times. For a maximum velocity
setting of 0.4, the Filter behavior reduces execution time from about 150 s to about 120 s,
and the Planner behavior reduces it from about 120 s to about 90 s. Again, the None
behavior takes considerably longer than the other two behaviors.

Interestingly, the path following accuracy shown in Figure 4.13 is similar between all
planner behaviors in most cases. For the higher maximum velocity, we get larger errors

78 Chapter 4: Smooth Local Planning for Robots with Four-Wheel Independent Steering

PLS Maximum Velocity
0.2 m/s 0.4 m/s

0.
08

Filter None Planner
0

5

10

15

Filter None Planner
0

5

10

15

20

0.
1

Filter None Planner
0

5

10

15

Filter None Planner
0

5

10

15

20

0.
12

Filter None Planner
0

5

10

15

Filter None Planner
0

5

10

15

20

Figure 4.12: These plots show the time spent standing in s on the field path for each of
the three runs with each planner behavior, the different maximum velocity settings and
path length scales. The shaded areas represent standing without turning the wheels.

4.4 Experiments 79

PLS Maximum Velocity
0.2 m/s 0.4 m/s

0.
08

Filter None Planner
0.0

0.5

1.0

Filter None Planner
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.
1

Filter None Planner
0.0

0.5

1.0

Filter None Planner
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.
12

Filter None Planner
0.0

0.5

1.0

Filter None Planner
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 4.13: These plots show the maximum error in m between each pose on the path
the planner took and its corresponding waypoint on the original field path. The error is
shown for all three runs with each planner behavior, with the different maximum velocity
settings and path length scales.

80 Chapter 4: Smooth Local Planning for Robots with Four-Wheel Independent Steering

PLS Maximum Velocity
0.2 m/s 0.4 m/s

0.
08

54 57 60 63 66 69 72 75
15

12

9

6

54 57 60 63 66 69 72 75
15

12

9

6

0.
1

54 57 60 63 66 69 72 75
15

12

9

6

54 57 60 63 66 69 72 75
15

12

9

6

0.
12

54 57 60 63 66 69 72 75
15

12

9

6

54 57 60 63 66 69 72 75
15

12

9

6

Figure 4.14: Shown are the original rectangular wave path (black) and the paths the dif-
ferent planner behaviors took (yellow: None, blue: Filter, red: Planner) for both maxi-
mum velocity settings and all three path length scales. Points where the robot stopped are
marked with a cross in the corresponding color. Units are m relative to a fixed frame on
the ground plane.

Table 4.3: This table shows the mean overall execution times on the rectangular wave
path for all planner behaviors with the different velocity and path length scale settings.

PLS 0.2 m/s 0.4 m/s
Filter None Planner Filter None Planner

0.08 235s 324s 221s 292s 374s 302s
0.1 257s 319s 214s 197s 380s 178s

0.12 225s 275s 211s 143s 266s 135s

especially for higher path length scales. While for the medium path length scale, large
errors in the Filter behavior are due to overshooting, behavior None is already cutting the
turns here. For the highest path length scale, all behaviors tend to use shortcuts and thus
show high errors.

The rectangular wave path is by far the most challenging due to the 90 ° corners. In
Figure 4.14 we show that the filter overshoots and stops a few times in different maximum
velocity and path length scale settings. The planner behavior without ICR awareness stops

4.4 Experiments 81

PLS Maximum Velocity
0.2 m/s 0.4 m/s

0.
08

Filter None Planner
0

10

Filter None Planner
0

10

20

30

40

50

0.
1

Filter None Planner
0

10

Filter None Planner
0

10

20

30

40

50

0.
12

Filter None Planner
0

10

Filter None Planner
0

10

20

30

40

50

Figure 4.15: These plots show the time spent standing in s on the rectangular wave path
for each of the three runs with each planner behavior, with the different maximum velocity
settings and path length scales. The shaded areas represent standing without turning the
wheels.

82 Chapter 4: Smooth Local Planning for Robots with Four-Wheel Independent Steering

PLS Maximum Velocity
0.2 m/s 0.4 m/s

0.
08

Filter None Planner
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Filter None Planner
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.
1

Filter None Planner
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Filter None Planner
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.
12

Filter None Planner
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Filter None Planner
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 4.16: These plots show the maximum error in m between each pose on the path the
planner took and its corresponding waypoint on the original rectangular wave path. The
error is shown for all three runs with each planner behavior, with the different maximum
velocity settings and path length scales.

4.4 Experiments 83

a lot on this path. We observe that, in particular for high maximum velocity with low path
length scale, the ICR aware Planner stops multiple times. Following this path accurately
without a lot of wheel angle changes is a difficult task. This is also reflected by the
time spent standing (see Figure 4.15): It is the first time the ICR aware Planner spends
a notable amount of time standing, up to roughly 30 s with high maximum velocity and
low path length scale, i. e., it tries to follow the given path fast, but accurately. It is also
the path where ICR awareness None leads to the largest amounts of standing time by far
with up to roughly 60 s, compared to the other paths. From Table 4.3 we observe that for
low path length scale, all behaviors take longer when using the higher maximum velocity
setting than when moving more slowly. This is because for the straight line segments of
the path, the planner uses maximum velocity to cover as much of the path as possible in
the given time frame, but then has to slow down drastically to avoid overshooting and turn
the wheels to stay close enough to the original path. Since we keep the previously chosen
velocity rollout until a different one has a considerably better score for stability reasons,
the maximum velocity is kept for too long. For higher path length scales, i. e., lower
expectations regarding accuracy, the execution time reduces to about half for the Filter
and Planner behaviors, and about 3/4 for the None behavior. The path following accuracy
shown in Figure 4.16 is similar among all three ICR awareness levels, with some outlier
where the Filter overshoots.

Overall, we observed in our simulation experiments that Filter and Planner ICR aware-
ness greatly increase path execution efficiency by avoiding excessive wheel turning. How-
ever, the Filter tends to overshoot the path since the filtered velocity is determined after
the score computation and is thus not tailored to staying close to the original path. We
further observed that a high path length scale tends to result in taking shortcuts. This leads
to a high inaccuracy especially with a large maximum velocity.

Path Time spent standing in s Maximum error in m

52 54 56 58 60 62 64

4

2

0

Filter None Planner
0

5

10

15

20

Filter None Planner
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 4.17: These plots show the performance of the different planning behaviors in a
real world experiment on the field path. We used the maximum velocity setting 0.4 and a
path length scale of 0.08. On the left, we see the original field path (black) and the paths
the different planner behaviors took (yellow: None, blue: Filter, red: Planner). Points
where the robot stopped are marked with a cross in the corresponding color. The plot
in the middle shows the time the robot spent standing, where the shaded areas represent
standing without turning the wheels. On the right, we see the maximum error of each
pose on a path the robot took to its corresponding waypoint on the original path.

84 Chapter 4: Smooth Local Planning for Robots with Four-Wheel Independent Steering

Table 4.4: This table shows the mean overall execution times on the field path for all
planner behaviors in our real world experiment.

Filter None Planner
133s 146s 113s

For our real world experiment, we choose a path length scale of 0.08 and maximum
velocity of 0.4 m/s based on the results of our simulation experiments. We use the field
path as our most common use case in agricultural environments. In Figure 4.17 on the
left, we show the paths taken by the different planner behaviors and the stops. This plot
confirms our simulation results, in particular that ICR awareness None stops a lot more
than either of the other two behaviors. This becomes even more apparent in the middle
plot showing the time spent standing. The tendency of the filter to overshoot in tight turns
shows again, which is also reflected in the maximum error plot on the right. In Table 4.4,
we show the mean overall execution times for all planner behaviors. The Filter and Plan-
ner execution times are very similar to the execution times in simulation (see Table 4.2,
top right for comparison). The Filter behavior takes longer than the planner behavior due
to its overshooting and the resulting longer path. The None behavior performs slightly
better in the real world setup than in simulation, but still takes longer than both other be-
haviors. In conclusion, these results validate that the Planner behavior is able to minimize
time spent standing while retaining accuracy in path following. Overall, this confirms our
observations from simulation data.

4.5 Conclusions
Robots with four-wheel independent steering have great movement flexibility, but are
subject to some steering constraints. For example, large robots may only be able to turn
their wheels slowly, to avoid mechanical stress. This leads to robots stopping to turn
their wheels when attempting to follow a path accurately. We presented a novel approach
to integrate steering constraints into local planning and thus avoiding unnecessary stops
for wheel turning. We used a unified compact representation of different steering con-
straints in ICR space developed by Fleckenstein et al. [31] and proposed two methods to
compute velocity commands that satisfy these constraints. The first method uses velocity
commands computed considering only velocity and acceleration constraints. It applies
a post-processing filter to make the commands conform with steering constraints. The
second method directly integrates steering constraints into the velocity command compu-
tation.

In our experiments, we investigated path following accuracy and execution efficiency.
While the first method, which applies a post-processing filter on the computed veloc-
ity commands, already increases path execution efficiency, it tends to overshoot in tight
turns. In contrast, we showed that integrating steering constraints directly into the veloc-
ity command computation does not affect the path execution accuracy. Furthermore, we
demonstrated that considering the steering constraints in local planning greatly improves

4.5 Conclusions 85

the efficiency of path execution by reducing the time spent standing to change wheel
angles.

Chapter 5

Conclusions and Outlook

This thesis presented advanced techniques for various components of autonomous nav-
igation in the context of precision agriculture. There are two main challenges in this
scenario: First, determining the semantics of an agricultural environment is a hard task
due to rapid changes and a wide variety of plant shapes and sizes. Plant positions are
the only reliable naturally occuring feature on a crop field. Second, the narrow spaces
in greenhouses and crop fields make navigation through them difficult and require high
movement flexibility. We contributed to semantics computation in fields on the sensor
input side as well as on the semantics output side. We introduced a vegetation feature
representation that is able to capture different sensor data types and has the potential to
make any task based on crop perception independent of the type of input sensor. More-
over, we established a quality measure for crop row detections, which are commonly used
in localization or row following on agricultural fields. With regard to movement flexibil-
ity in narrow spaces, two components have to be considered: A global path planner that
determines a feasible path to a given goal, and a local planner to execute the computed
path. We showed the suitability of an approach for path planning with an adjustable in-
trinsic configuration that enables high motion flexibility for navigation in narrow spaces.
Furthermore, we developed a local planning method that incorporates steering constraints
for four-wheel independent steering that retains path following accuracy while ensuring
efficient path execution.

First, we proposed a method for representing vegetation feature data extracted from
camera or lidar sensors in a unified manner. As the information gain from each sensor
type depends on the size of plants and the lighting conditions, being able to draw on
information from various sensor modalities is a considerable advantage for estimating
semantics in a crop field. In most cases, crop or crop row detection methods highly depend
on the type of sensor data. Representing camera and lidar data in a unified form provides
higher flexibility regarding the type and size of crops, the time of day and the weather
conditions. Our representation is based on a 2d grid map located on the ground plane
where each grid cell holds a weight that depicts how likely it is that there is vegetation
present in this cell. It can be computed from either type of sensor data by projecting it
onto the ground plane, using intrinsic and extrinsic calibration. Any crop or crop row
detection method using this representation is then independent of the type of sensor that
was used to capture the data.

Running a crop row detection method on this vegetation feature map yields crop row

88 Chapter 5: Conclusions and Outlook

patterns that best explain the data, but are not necessarily correct. High weed pressure and
vegetation at the edge of the field can mislead the detection approach. Thus, we addition-
ally proposed a quality measure for crop row detections that can be used for classifying
detections as reliable or unreliable. Unreliable detections can then be filtered out, for ex-
ample in a localization approach. The quality measure depends on different factors, all
connected to the support of the detected crop row pattern in the vegetation feature map.
We showed the performance of a classifier based on our quality measure in extensive ex-
periments on real world data from different crop types and sizes. Furthermore, we used
the classifier in a crop-row-based localization approach and evaluated the performance
gain in terms of pose estimate accuracy. The experiments show that a classifier based
on our quality measure is able to filter out a considerable amount of incorrect detections.
They also demonstrate that by applying this filter, we increase the localization robustness
and are able to prevent the pose estimate from diverging.

For global path planning in agriculture, we applied methods from our previous work [29].
We used the search-based planner presented therein, which efficiently includes adjustable
joint configurations that allow for higher movement flexibility. At the same time, these ad-
justable joints increase the size of the planning space. To keep a high planning efficiency
despite the larger planning space, we introduced an interval representation for valid joint
configurations. Another contribution in this earlier work was the Wheel Dijkstra heuristic.
We investigate this heuristic developed for vehicles with high ground clearance further in
this thesis. We evaluate the performance of this path planner in a variety of different
settings, with special attention to a real world scenario and a very cluttered scenario that
shows the limits of planning without considering the adjustable joints. While heuristics
show differing outcomes in all environments, one consistent result is that combining the
Wheel Dijkstra heuristic with the freespace mechanism heuristic that assumes an obstacle
free environment leads to the best planner performance. The experiments illustrate that
the performance of the used planner transfers well from a simulated to a real world field
environment. Moreover, planning time consumption using the joint interval representa-
tion is comparable to planning without the adjustable joints. In a cluttered environment,
the advantage of including the adjustable joints in the planning problem becomes appar-
ent, as the planner is able to solve only a small portion of the planning queries without
them.

To execute the computed path with a local planner, we proposed an approach based
on velocity rollouts that incorporates steering constraints in two different ways. The first
computes a velocity rollout based only on velocity and acceleration constraints and ap-
plies a post-processing filter so as to not violate any steering constraints. The second
directly integrates steering constraints into the velocity rollout computation. As steering
constraints are complex to formulate in velocity space, we employed a compact and uni-
fied representation in ICR space. We presented how to compute an ICR path to a given
goal velocity and how to determine a feasible velocity rollout from an ICR path. We per-
formed simulation and real world experiments on global paths with different challenges.
When the constraints are directly included in the velocity rollout computation, the path
following accuracy remains equal to path execution when steering constraints are ignored.
The experiments further show that considering steering constraints in local planning can

89

greatly improve the efficiency of path execution, as the robot spends less time standing
for turning its wheels.

In this work, we presented an approach for depicting either camera or lidar data in a
common representation. Since we may not know beforehand which sensor provides more
information on vegetation, a method for fusing the input of both sensor types into one
vegetation feature map would be worthwhile to explore.

Additionally, we tested the impact of filtering crop row detections with the quality
measure we proposed and of using the result in a crop-row-based localization. It would be
interesting to explore the impact in other applications such as mapping or row following.
Furthermore, we used a binary classifier for detection filtering. As the quality measure
provides a continuous value, it could be used as a confidence score. In localization, this
could help to avoid large longitudinal errors at the end of the field as crop row detections
in this area tend to have low quality while still carrying valuable information about the
detected end of the field.

The path planner we used from earlier work can theoretically include any adjustable
one-dimensional joints. It would be intriguing to evaluate the impact of our interval rep-
resentation for joint configurations on more complex systems such as manipulator arms
with several joints that form a kinematic chain.

For our local planning approach, we observed that including the steering constraints
helps considerably with reducing standing time for wheel turning. However, we see room
for further improvement. Currently, the accuracy score for a velocity rollout is based on
the distance of each pose in the pose rollout to the corresponding waypoint on the global
path. This ignores when parts of the global path are skipped. A more comprehensive error
estimation between the pose rollouts and the global path would be beneficial in increasing
the path following accuracy, specifically with regard to cutting corners and tight turns.

Overall, we provide contributions to advance autonomous navigation in precision agri-
culture in various areas. We hope to progress more sustainable and efficient farming
technologies to ensure sufficient food production for the future.

List of Figures

1.1 The BoniRob in a vegetable field . 2

2.1 Lidar point clouds with highlighted intensity and height values 12
2.2 Raw and processed vegetation feature maps 13
2.3 Crop row pattern and cells used in quality computation 14
2.4 Sigmoid for cell vegetation support computation 15
2.5 Supported crop row line segments and reference cells 17
2.6 Crop row pattern extensions . 18
2.7 Crop types for crop row quality evaluation 21
2.8 Angular and lateral crop row pattern error 22
2.9 Examples from the transition data set for crop row detection quality eval-

uation . 24
2.10 Examples from the out of field data set for crop row detection quality

evaluation . 25
2.11 Marker placement and localization pose ground truth labeling 27
2.12 Ground truth localization poses . 28
2.13 Lateral and longitudinal localization pose error computation 29
2.14 Lateral, angular and longitudinal pose error plots 30
2.15 Crop row pattern integration plots . 31

3.1 Boundaries of valid joint configurations 39
3.2 Changing joint configurations enables certain motions in narrow environ-

ments . 40
3.3 Invalid robot configurations due to collision 40
3.4 Obstacles reducing the valid arm angles 42
3.5 The Wheel Dijkstra heuristic . 43
3.6 Motion primitives for the BoniRob . 45
3.7 The leek field as a real world environment for global planning evaluation . 45
3.8 The environments used for testing path planning performance 46
3.9 Overview of path planning performance with different heuristics in all

environments . 48
3.10 Comparison of the time until a first plan is found and the number of

node expansions between the Wheel Dijkstra and the freespace mecha-
nism heuristic . 49

3.11 Overview of path planning performance with different configuration rep-
resentations in all environments . 51

92 List of Figures

3.12 Comparison of the time until a first plan is found between a single joint
value representation and a joint value interval representation 52

4.1 ICR computation from wheel angles . 56
4.2 Wheel behavior when switching from driving straight to turning on the spot 59
4.3 Small ICR changes causing large wheel angle changes 59
4.4 Steering constraints for local planning 61
4.5 Steering constraint representation in ICR space in a unified manner 64
4.6 An ICR path moving through infinity . 65
4.7 Scored velocity rollouts with pose rollouts 70
4.8 Pose paths of the local planner on the lines and arcs path 73
4.9 Time spent standing of the local planner on the lines and arcs path 74
4.10 Maximum error of the local planner path on the lines and arcs path 76
4.11 Pose paths of the local planner on the field path 77
4.12 Time spent standing of the local planner on the field path 78
4.13 Maximum error of the local planner path on the field path 79
4.14 Pose paths of the local planner on the rectangular wave path 80
4.15 Time spent standing of the local planner on the rectangular wave path . . 81
4.16 Maximum error of the local planner path on the rectangular wave path . . 82
4.17 Planner performance on the real world field path 83

List of Tables
2.1 Crop row detection classification results 26

4.1 Mean overall execution times of the local planner on the lines and arcs path 72
4.2 Mean overall execution times of the local planner on the field path 75
4.3 Mean overall execution times of the local planner on the rectangular wave

path . 80
4.4 Mean execution times of the local planner on the real world field path . . 84

Bibliography
[1] Abbas, M., Elhamshary, M., Rizk, H., Torki, M., and Youssef, M. (2019). WiDeep:

WiFi-based Accurate and Robust Indoor Localization System using Deep Learning. In
International Conference on Pervasive Computing and Communications (PerCom).

[2] Agapiou, A. (2020). Vegetation Extraction Using Visible-Bands From Openly Li-
censed Unmanned Aerial Vehicle Imagery. Drones, 4.

[3] Albornoz, F. (2016). Crop responses to nitrogen overfertilization: A review. Scientia
Horticulturae, 205:79–83.

[4] Altini, M., Brunelli, D., Farella, E., and Benini, L. (2010). Bluetooth indoor localiza-
tion with multiple neural networks. In International Symposium on Wireless Pervasive
Computing, pages 295–300.

[5] Åstrand, B. and Baerveldt, A.-J. (2005). A vision based row-following system for
agricultural field machinery. Mechatronics, 15(2):251–269.

[6] Bakker, T., van Asselt, K., Bontsema, J., Müller, J., and van Straten, G. (2011). Au-
tonomous navigation using a robot platform in a sugar beet field. Biosystems Engi-
neering (BE), 109(4):357–368.

[7] Bakker, T., Wouters, H., van Asselt, K., Bontsema, J., Tang, L., Müller, J., and van
Straten, G. (2008). A vision based row detection system for sugar beet. Computers
and Electronics in Agriculture (CEA), 60(1):87–95.

[8] Baltazar, A. R., Santos, F. N. d., Moreira, A. P., Valente, A., and Cunha, J. B. (2021).
Smarter Robotic Sprayer System for Precision Agriculture. Electronics, 10(17).

[9] Berenson, D., Srinivasa, S. S., Ferguson, D., Collet, A., and Kuffner, J. J. (2009).
Manipulation planning with workspace goal regions. In International Conference on
Robotics and Automation (ICRA).

[10] Berenstein, R. and Edan, Y. (2017). Human-robot collaborative site-specific sprayer.
Journal of Field Robotics (JFR), 34(8):1519–1530.

[11] Bestaoui, Y. (1989). On line motion generation with velocity and acceleration con-
straints. Robotics and Autonomous Systems (RAS), 5(3):279–288.

[12] Biber, P., Weiss, U., Dorna, M., and Albert, A. (2012). Navigation System of the Au-
tonomous Agricultural Robot “BoniRob” . In International Conference on Intelligent
Robots and Systems (IROS).

96 Bibliography

[13] Bonet, B. and Geffner, H. (2001). Planning as heuristic search. Artificial Intelli-
gence, 129(1):5–33.

[14] Bongiovanni, R. and Lowenberg-DeBoer, J. (2004). Precision Agriculture and Sus-
tainability. Precision Agriculture (PA), 5:359–387.

[15] Boniardi, F., Valada, A., Mohan, R., Caselitz, T., and Burgard, W. (2019). Robot
Localization in Floor Plans Using a Room Layout Edge Extraction Network. In Inter-
national Conference on Intelligent Robots and Systems (IROS).

[16] Burgard, W., Brock, O., and Stachniss, C. (2008). Map-Based Precision Vehicle
Localization in Urban Environments. In Robotics: Science and Systems III, pages
121–128.

[17] Burns, B. and Brock, O. (2005). Single-Query Entropy-Guided Path Planning. In
International Conference on Robotics and Automation (ICRA).

[18] Calisi, D., Nardi, D., Ohno, K., and Tadokoro, S. (2008). A semi-autonomous
tracked robot system for rescue missions. In Society of Instrument and Control En-
gineers (SICE) Annual Conference.

[19] Chamberland, S., Beaudry, E., Clavien, L., Kabanza, F., Michaud, F., and Lauriay,
M. (2010). Motion planning for an omnidirectional robot with steering constraints. In
International Conference on Intelligent Robots and Systems (IROS).

[20] Chen, Z., Zou, H., Jiang, H., Zhu, Q., Soh, Y. C., and Xie, L. (2015). Fusion of WiFi,
Smartphone Sensors and Landmarks Using the Kalman Filter for Indoor Localization.
Sensors, 15(1):715–732.

[21] Cherubini, A., Chaumette, F., and Oriolo, G. (2011). Visual servoing for path reach-
ing with nonholonomic robots. Robotica, 29(7):1037–1048.

[22] Clavien, L., Lauria, M., and Michaud, F. (2018). Estimation of the instantaneous
centre of rotation with nonholonomic omnidirectional mobile robots. Robotics and
Autonomous Systems (RAS), 106:47–57.

[23] Cohen, B., Chitta, S., and Likhachev, M. (2014). Single- and dual-arm motion
planning with heuristic search. International Journal of Robotics Research (IJRR),
33(2):305–320.

[24] Conceição, A. S., Moreira, A. P., and Costa, P. J. (2008). A nonlinear model predic-
tive control strategy for trajectory tracking of a four-wheeled omnidirectional mobile
robot. Optimal Control Applications and Methods, 29(5):335–352.

[25] Constantin, D., Rehak, M., Akhtman, Y., and Liebisch, F. (2015). Detection of Crop
Properties by Means of Hyperspectral Remote Sensing from a Micro UAV. Bornimer
Agrartechnische Berichte, 88:129–137.

Bibliography 97

[26] Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1(1):269–271.

[27] English, A., Ball, D., Ross, P., Upcroft, B., Wyeth, G., and Corke, P. (2013). Low
Cost Localisation for Agricultural Robotics. In Australasian Conference on Robotics
and Automation (ACRA).

[28] Fang, Y., Hu, J., Liu, W., Shao, Q., Qi, J., and Peng, Y. (2019). Smooth and time-
optimal S-curve trajectory planning for automated robots and machines. Mechanism
and Machine Theory, 137:127–153.

[29] Fleckenstein, F. (2016). Planning for Outdoor Vehicles with Adjustable Wheel Po-
sitions. [Master’s thesis, University of Freiburg].

[30] Fleckenstein, F., Dornhege, C., and Burgard, W. (2017). Efficient Path Planning
for Mobile Robots with Adjustable Wheel Positions. In International Conference on
Robotics and Automation (ICRA).

[31] Fleckenstein, F., Winterhalter, W., Dornhege, C., Pradalier, C., and Burgard, W.
(2019). Smooth Local Planning Incorporating Steering Constraints. In International
Conference on Field and Service Robotics (FSR).

[32] Fox, D., Burgard, W., and Thrun, S. (1997). The dynamic window approach to
collision avoidance. Robotics & Automation Magazine, 4(1):23–33.

[33] Gammell, J. D., Srinivasa, S. S., and Barfoot, T. D. (2015). Batch informed trees
(bit*): Sampling-based optimal planning via the heuristically guided search of implicit
random geometric graphs. In International Conference on Robotics and Automation
(ICRA).

[34] Gasparetto, A. and Zanotto, V. (2007). A new method for smooth trajectory planning
of robot manipulators. Mechanism and Machine Theory, 42(4):455–471.

[35] Geiger, F., Bengtsson, J., Berendse, F., Weisser, W. W., Emmerson, M., Morales,
M. B., Ceryngier, P., Liira, J., Tscharntke, T., Winqvist, C., Eggers, S., Bommarco,
R., Pärt, T., Bretagnolle, V., Plantegenest, M., Clement, L. W., Dennis, C., Palmer,
C., Oñate, J. J., Guerrero, I., Hawro, V., Aavik, T., Thies, C., Flohre, A., Hänke,
S., Fischer, C., Goedhart, P. W., and Inchausti, P. (2010). Persistent negative effects
of pesticides on biodiversity and biological control potential on European farmland.
Basic and Applied Ecology, 11(2):97–105.

[36] Gerkey, B. P. and Konolige, K. (2008). Planning and control in unstructured ter-
rain. In Workshop on Path Planning on Costmaps, IEEE International Conference on
Robotics and Automation (ICRA).

[37] Gianni, M., Gonnelli, G., Sinha, A., Menna, M., and Pirri, F. (2013). An augmented
reality approach for trajectory planning and control of tracked vehicles in rescue envi-
ronments. In International Symposium on Safety, Security and Rescue Robotics.

98 Bibliography

[38] Gochev, K., Cohen, B. J., Butzke, J., Safonova, A., and Likhachev, M. (2011). Path
Planning with Adaptive Dimensionality. In International Symposium on Combinato-
rial Search (SOCS).

[39] Guo, X., Coops, N. C., Tompalski, P., Nielsen, S. E., Bater, C. W., and John Stadt,
J. (2017). Regional mapping of vegetation structure for biodiversity monitoring using
airborne lidar data. Ecological Informatics, 38:50–61.

[40] Hata, A. Y., Osorio, F. S., and Wolf, D. F. (2014). Robust curb detection and vehicle
localization in urban environments. In Intelligent Vehicles Symposium.

[41] Hornung, A., Phillips, M., Jones, E. G., Bennewitz, M., Likhachev, M., and Chitta,
S. (2012). Navigation in three-dimensional cluttered environments for mobile manip-
ulation. In International Conference on Robotics and Automation (ICRA).

[42] IEEE (2021). PR2. https://robots.ieee.org/robots/pr2/. Accessed: 2021-12-30.

[43] Indiveri, G., Nuchter, A., and Lingemann, K. (2007). High speed differential drive
mobile robot path following control with bounded wheel speed commands. In Inter-
national Conference on Robotics and Automation (ICRA).

[44] Jurie, F., Rives, P., Gallice, J., and Brame, J. (1994). High-speed vehicle guidance
based on vision. Control Engineering Practice, 2(2):289–297.

[45] Karaman, S. and Frazzoli, E. (2010). Incremental sampling-based algorithms for
optimal motion planning. In Robotics: Science and Systems (RSS).

[46] Karamipour, E., Dehkordi, S. F., and Korayem, M. (2020). Reconfigurable Mobile
Robot with Adjustable Width and Length: Conceptual Design, Motion Equations and
Simulation. Journal of Intelligent & Robotic Systems, 99:797–814.

[47] Katan, J. and Eshel, Y. (1973). Interactions between herbicides and plant pathogens.
Residue Reviews, 45:145–177.

[48] Kavraki, L. E., Švestka, P., Latombe, J.-C., and Overmars, M. H. (1996). Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces. Transactions
on Robotics and Automation, 12(4):566–580.

[49] Kim, D., Choi, Y., Park, T., Lee, J. Y., and Han, C. (2015). Efficient path planning for
high-DOF articulated robots with adaptive dimensionality. In International Conference
on Robotics and Automation (ICRA).

[50] Kim, I., Jeon, W., and Yang, H. (2017). Design of a transformable mobile robot for
enhancing mobility. International Journal of Advanced Robotic Systems, 14(1).

[51] Kise, M., Zhang, Q., and Más, F. R. (2005). A Stereovision-based Crop Row De-
tection Method for Tractor-automated Guidance. Biosystems Engineering, 90(4):357–
367.

Bibliography 99

[52] Klanc̆ar, G. and S̆krjanc, I. (2007). Tracking-error model-based predictive control
for mobile robots in real time. Robotics and Autonomous Systems (RAS), 55(6):460–
469.

[53] Korf, R. E. (1988). Optimal Path-Finding Algorithms. In Search in Artificial Intel-
ligence, pages 223–267. Springer New York.

[54] Kuffner, J. J. and Lavalle, S. M. (2000). RRT-Connect: An efficient approach to
single-query path planning. In International Conference on Robotics and Automation
(ICRA).

[55] Kunz, C., Weber, J., Peteinatos, G., Sökefeld, M., and Gerhards, R. (2018). Camera
steered mechanical weed control in sugar beet, maize and soybean. Precision Agricul-
ture (PA), 19:708–720.

[56] Lam, T. L., Qian, H., and Xu, Y. (2010). Omnidirectional steering interface and
control for a four-wheel independent steering vehicle. IEEE/ASME Transactions on
Mechatronics, 15(3):329–338.

[57] Lavalle, S. M. (1998). Rapidly-Exploring Random Trees: A New Tool for Path
Planning. Technical report.

[58] Levinson, J. and Thrun, S. (2010). Robust vehicle localization in urban environ-
ments using probabilistic maps. In International Conference on Robotics and Automa-
tion (ICRA), pages 4372–4378.

[59] Likhachev, M. and Ferguson, D. (2009). Planning long dynamically feasible ma-
neuvers for autonomous vehicles. International Journal of Robotics Research (IJRR),
28(8):933–945.

[60] Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., and Thrun, S. (2005). Anytime
Dynamic A*: An Anytime, Replanning Algorithm. In International Conference on
Automated Planning and Scheduling (ICAPS).

[61] Liu, X. and Gong, D. (2011). A comparative study of A-star algorithms for search
and rescue in perfect maze. In International Conference on Electric Information and
Control Engineering.

[62] Machleb, J., Peteinatos, G. G., Kollenda, B. L., Andújar, D., and Gerhards, R.
(2020). Sensor-based mechanical weed control: Present state and prospects. Com-
puters and Electronics in Agriculture (CEA), 176.

[63] Marchant, J. (1996). Tracking of row structure in three crops using image analysis.
Computers and Electronics in Agriculture (CEA), 15(2):161–179.

[64] Meyer, G. E. and Neto, J. C. (2008). Verification of Color Vegetation Indices for
Automated Crop Imaging Applications. Computers and Electronics in Agriculture
(CEA), 63(2):282–293.

100 Bibliography

[65] Micaelli, A. and Samson, C. (1994). Trajectory tracking for two-steering-wheels
mobile robots. IFAC Symposium on Robot Control, 27(14):249–256.

[66] Montalvo, M., Pajares, G., Guerrero, J., Romeo, J., Guijarro, M., Ribeiro, A., Ruz,
J., and Cruz, J. (2012). Automatic detection of crop rows in maize fields with high
weeds pressure. Expert Systems with Applications, 39(15):11889–11897.

[67] Naïo Technologies (2021). Ted. https://www.naio-technologies.com/en/ted/. Ac-
cessed: 2021-12-30.

[68] Oberti, R., Marchi, M., Tirelli, P., Calcante, A., Iriti, M., Hočevar, M., Baur, J.,
Pfaff, J., Schütz, C., and Ulbrich, H. (2013). Selective spraying of grapevine’s diseases
by a modular agricultural robot. Journal of Agricultural Engineering, 44:149–153.

[69] Ohno, K., Morimura, S., Tadokoro, S., Koyanagi, E., and Yoshida, T. (2007). Semi-
autonomous control system of rescue crawler robot having flippers for getting over
unknown-steps. In International Conference on Intelligent Robots and Systems (IROS).

[70] Onishi, Y., Yoshida, T., Kurita, H., Fukao, T., Arihara, H., and Iwai, A. (2019). An
automated fruit harvesting robot by using deep learning. ROBOMECH Journal, 6.

[71] Pamosoaji, A. K., Piao, M., and Hong, K.-S. (2019). PSO-based minimum-time
motion planning for multiple vehicles under acceleration and velocity limitations. In-
ternational Journal of Control, Automation and Systems, 17(10):2610–2623.

[72] Pivtoraiko, M. and Kelly, A. (2005). Efficient constrained path planning via search
in state lattices. In International Symposium on Artificial Intelligence, Robotics, and
Automation in Space.

[73] Pretto, A., Aravecchia, S., Burgard, W., Chebrolu, N., Dornhege, C., Falck, T.,
Fleckenstein, F., Fontenla, A., Imperoli, M., Khanna, R., Liebisch, F., Lottes, P.,
Milioto, A., Nardi, D., Nardi, S., Pfeifer, J., Popović, M., Potena, C., Pradalier, C.,
Rothacker-Feder, E., Sa, I., Schaefer, A., Siegwart, R., Stachniss, C., Walter, A., Win-
terhalter, W., Wu, X., and Nieto, J. (2021). Building an Aerial-Ground Robotics Sys-
tem for Precision Farming: An Adaptable Solution. Robotics & Automation Magazine,
28(3):29–49.

[74] Qin, S. and Badgwell, T. A. (2003). A survey of industrial model predictive control
technology. Control Engineering Practice, 11(7):733 – 764.

[75] Radwan, N., Tipaldi, G. D., Spinello, L., and Burgard, W. (2016). Do you see the
bakery? Leveraging geo-referenced texts for global localization in public maps. In
International Conference on Robotics and Automation (ICRA).

[76] Rosell, J., Suárez, R., and Pérez, A. (2013). Path planning for grasping operations
using an adaptive PCA-based sampling method. Autonomous Robots, 35(1):27–36.

Bibliography 101

[77] Schaefer, A., Büscher, D., Vertens, J., Luft, L., and Burgard, W. (2021). Long-term
vehicle localization in urban environments based on pole landmarks extracted from
3-D lidar scans. Robotics and Autonomous Systems, 136:103709.

[78] Schwesinger, U., Pradalier, C., and Siegwart, R. (2012). A novel approach for
steering wheel synchronization with velocity/acceleration limits and mechanical con-
straints. In International Conference on Intelligent Robots and Systems (IROS).

[79] Sha, Z. and Yu, M. (2008). Remote sensing imagery in vegetation mapping: A
review. Journal of Plant Ecology, 1:9–23.

[80] Simmons, R. (1996). The curvature-velocity method for local obstacle avoidance.
In International Conference on Robotics and Automation (ICRA).

[81] SITIA (2016). TREKTOR: The hybrid autonomous robot for agriculture.
https://www.sitia.fr/en/innovation-2/trektor/. Accessed: 2021-12-30.

[82] Søgaard, H. and Olsen, H. (2003). Determination of crop rows by image analysis
without segmentation. Computers and Electronics in Agriculture (CEA), 38(2):141–
158.

[83] Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic Robotics. MIT Press.

[84] Tillett, N., Hague, T., and Miles, S. (2002). Inter-row vision guidance for mechanical
weed control in sugar beet. Computers and Electronics in Agriculture, 33(3):163–177.

[85] Tsardoulias, E., Iliakopoulou, K., Kargakos, A., and Petrou, L. (2016). A Review
of Global Path Planning Methods for Occupancy Grid Maps Regardless of Obstacle
Density. Journal of Intelligent & Robotic Systems, 84:829–858.

[86] Urmson, C. and Simmons, R. G. (2003). Approaches for heuristically biasing RRT
growth. In International Conference on Intelligent Robots and Systems (IROS).

[87] Vahrenkamp, N., Scheurer, C., Asfour, T., Kuffner, J. J., and Dillmann, R. (2008).
Adaptive motion planning for humanoid robots. In International Conference on Intel-
ligent Robots and Systems (IROS).

[88] Vidović, I., Cupec, R., and Ž. Hocenski (2016). Crop row detection by global energy
minimization. Pattern Recognition, 55:68–86.

[89] Winterhalter, W., Fleckenstein, F., Dornhege, C., and Burgard, W. (2018). Crop Row
Detection on Tiny Plants With the Pattern Hough Transform. Robotics and Automation
Letters (RA-L), 3(4):3394–3401.

[90] Winterhalter, W., Fleckenstein, F., Dornhege, C., and Burgard, W. (2021). Local-
ization for Precision Navigation in Agricultural Fields – Beyond Crop Row Following.
Journal of Field Robotics, 38(3):429–451.

102 Bibliography

[91] Winterhalter, W., Fleckenstein, F., Steder, B., Spinello, L., and Burgard, W. (2015).
Accurate indoor localization for RGB-D smartphones and tablets given 2D floor plans.
In International Conference on Intelligent Robots and Systems (IROS).

[92] Wu, X., Aravecchia, S., Lottes, P., Stachniss, C., and Pradalier, C. (2020). Robotic
weed control using automated weed and crop classification. Journal of Field Robotics,
37(2):322–340.

[93] Ye, Y., He, L., and Zhang, Q. (2016). Steering Control Strategies for a Four-Wheel-
Independent-Steering Bin Managing Robot. IFAC-PapersOnLine, 49(16):39–44. 5th
IFAC Conference on Sensing, Control and Automation Technologies for Agriculture
AGRICONTROL 2016.

[94] Zafari, F., Gkelias, A., and Leung, K. K. (2019). A Survey of Indoor Localization
Systems and Technologies. Communications Surveys & Tutorials, 21(3):2568–2599.

[95] Zhuang, Y., Yang, J., Li, Y., Qi, L., and El-Sheimy, N. (2016). Smartphone-based
indoor localization with bluetooth low energy beacons. Sensors, 16(5).

[96] Zucker, M., Andrew, J., Christopher, B., Atkeson, G., and Kuffner, J. (2010). An
optimization approach to rough terrain locomotion. In International Conference on
Robotics and Automation (ICRA).

	Contents
	Introduction
	Challenges for Robots in Agricultural Environments
	Contributions
	Publications
	Collaborations

	Features and Quality Measure for Crop Row Detection
	Introduction
	Related Work
	Generalized Vegetation Feature Representation
	Vegetation Features in Lidar Data
	Vegetation Features in Image Data

	Quality Measure for Detected Crop Rows
	Experiments
	Evaluation of Pattern Classification using our Crop Row Pattern Quality Measure
	Evaluation of the Impact of Filtering Patterns in a Crop-Row-Based Localization Method

	Conclusions

	Evaluation of a Path Planner for In-Field Navigation
	Introduction
	Related Work
	Planning with High Ground Clearance and Adjustable Joints
	Experiments
	Conclusions

	Smooth Local Planning for Robots with Four-Wheel Independent Steering
	Introduction
	Related Work
	Local Planning for Smooth Trajectory Execution
	Steering Constraints in ICR Space
	Incorporating Steering Constraints in the Local Planner

	Experiments
	Conclusions

	Conclusions and Outlook
	Bibliography
	Contents
	Introduction
	Challenges for Robots in Agricultural Environments
	Contributions
	Publications
	Collaborations

	Features and Quality Measure for Crop Row Detection
	Introduction
	Related Work
	Generalized Vegetation Feature Representation
	Vegetation Features in Lidar Data
	Vegetation Features in Image Data

	Quality Measure for Detected Crop Rows
	Experiments
	Evaluation of Pattern Classification using our Crop Row Pattern Quality Measure
	Evaluation of the Impact of Filtering Patterns in a Crop-Row-Based Localization Method

	Conclusions

	Evaluation of a Path Planner for In-Field Navigation
	Introduction
	Related Work
	Planning with High Ground Clearance and Adjustable Joints
	Experiments
	Conclusions

	Smooth Local Planning for Robots with Four-Wheel Independent Steering
	Introduction
	Related Work
	Local Planning for Smooth Trajectory Execution
	Steering Constraints in ICR Space
	Incorporating Steering Constraints in the Local Planner

	Experiments
	Conclusions

	Conclusions and Outlook
	Bibliography

