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environmental conditions. Hence, managers need to

adapt to changing conditions.
* Different types of management actions come with

different probabilities of (un)desired regime shifts.

KEYWORDS

critical thresholds, ecosystem management, multistability,
regime shift, resilience, stochastic process, tipping points

1 | INTRODUCTION

Many ecosystems are characterized by a duality of apparent stability and a surprising susceptibility
to abrupt changes in the ecosystem’s state and services (Petraitis, 2013). These changes, or: regime
shifts, often occur in a catastrophic manner and may be difficult or impossible to reverse (Scheffer
et al, 2001). Regime shifts have been observed, for example, in shallow lakes, coral reefs,
grasslands, and fisheries (Folke et al., 2004) and have been hypothesized for global systems like the
Amazon rainforest (Lovejoy & Nobre, 2018), the Antarctic Ice Sheet (Rosier et al., 2021), or the
Earth's climate at large (Steffen et al., 2018).

The prevalent concept to explain this behavior is the notion of alternative stable states going
back to the seminal works of Lewontin (1969), Holling (1973), Noy-Meir (1975), and May (1977).
This means that more than one stable equilibrium state of the ecosystem exists for given
environmental conditions. The related concepts of critical thresholds, tipping points, and
resilience have been particularly influential and have stimulated research across disciplines as
well as informed policy and management of ecosystems (Barnosky et al., 2012; Beisner
et al., 2003; Dakos et al., 2019; Folke, 2006; Lenton et al., 2008; Ludwig et al., 1997; Scheffer, 2009;
Walker et al., 2004). Beyond its sound conceptual core, the success of multistability theory has
also been due to the appealing intuitiveness with which it has been propagated. In particular, the
use of heuristic devices to reduce complex stochastic interactions and processes in ecosystems to
a deterministic, mechanistic relationship makes the theory easy to communicate. The dichotomy
between complex reality and simple theory has necessarily rendered many of the key concepts
fuzzy and weakened conceptual boundaries. In part, the use of multistability theory as a
“boundary object” (Brand & Jax, 2007) has been useful to facilitate the exchange of ideas across
disciplinary borders (Strunz, 2012). However, imprecise terminology and lack of conceptual
clarity have also led to confusion and have created a divide between researchers with different
understandings of concepts like alternative stable states, thresholds, or resilience.

In this paper, we construct a generic ecosystem model that incorporates the key elements of
multistability theory as well as two different stochastic influences: continuous diffusion and
discrete jumps. While the model is more detailed and complex in its treatment of stochasticity,
it is simple enough to provide rigorous definitions and a clear understanding of alternative
stable states. It thus helps bringing together different discourses of ecosystems with alternative
stable states. In addition, our model easily lends itself to a number of applications, such as
finding economically optimal management strategies, identifying criteria for sustainable
ecosystem management in a stochastic viability framework, deriving the probability of a regime
shift, or empirically identifying the factors which have caused a specific regime shift.
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In particular, we use a mean-reverting jump-diffusion process to model the evolution of
the ecosystem state over time. Jump-diffusion processes have been used in fields as diverse
as finance (Merton, 1976), soil hydrology (Daly & Porporato, 2006), or neuroscience
(Jahn et al., 2011), but not yet to capture stochasticity in ecosystems with alternative stable
states. In this context, either pure diffusion or pure jump processes have been used.
Continuous diffusion has been used to capture natural fluctuations in ecosystems, for
example, in models of lake eutrophication (Contamin & Ellison, 2009) or early warning
signals for regime shifts (Biggs et al., 2009). Miler et al. (2007) used a specific diffusion
process—an Ornstein-Uhlenbeck process—to model natural groundwater table dynamics.
Jump processes have been used to model rare disturbances such as fire in savannahs that
may switch between tree-dominated and grassland-dominated states (D'Odorico et al., 2006).
Our model combines and enhances these existing approaches: we extend the basic
Ornstein-Uhlenbeck model by introducing a novel bistability mechanism for endogenous
reversible regime shifts and adding a jump process to allow for infrequent disturbances of
the ecosystem state.

The paper is organized as follows. In the next section, we review the key concepts and
mechanisms of the theory of alternative stable states in ecology. In Section 3, we formalize
these concepts in a mathematical ecosystem model and introduce stochastic dynamics. In
Section 4, we sketch a number of potential applications of the model. In Section 5, we discuss
our model and conclude.

2 | THEORETICAL FRAMEWORK

The prevalent concept to explain how abrupt changes in state variables may arise in response to
gradual changes in environmental conditions is the notion of alternative (or: multiple) stable states
(e.g., Beisner et al., 2003; May, 1977; Petraitis, 2013; Scheffer et al., 2001). This means that more
than one stable equilibrium of the state variables exists for given environmental conditions.
Alternative equilibria are stabilized by negative feedbacks that counteract deviations of state
variables from stable equilibria (DeAngelis et al., 1986) due to perturbations. The domains in state
space in which negative feedbacks cause the state variables to return to the same equilibrium after
a perturbation are called basins of attraction. The boundary between two basins of attraction is
called the separatrix or “breakpoint curve” (May, 1977) and contains an unstable equilibrium
point of the ecosystem state (Petraitis, 2013). An intuitive way to visualize this is the ball-and-cup
heuristic, also called stability landscape. Figure 1 shows such a diagram for the simplest possible
case with one state variable and two locally stable equilibria.

The horizontal axis measures the value of the state variable, the vertical axis shows
the dynamic potential of the system. The position of the ball in the landscape represents the
stability of the ecosystem: the ball always rolls downhill; the force attracting the ball are
ecological feedbacks. The shape of the landscape is determined by, and constant for, given
environmental conditions. Points where the ball comes to rest are equilibria, valleys are basins
of attraction. If the ball is pushed over the ridge by a sufficiently strong perturbation the state
variable moves into the other basin of attraction (“basin crossing”) where feedbacks induce a
convergence to the alternative equilibrium. As a consequence, a potentially large shift in the
ecosystem state occurs, where the extent of the shift depends on environmental conditions.

Figure 2 illustrates the effect of changing environmental conditions on the equilibrium
ecosystem state. For a low level of conditions only one equilibrium exists at a relatively large
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FIGURE 1 Ball-and-cup diagram.

Perturbation

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

A

I
|
|
1
|
|
1
|
|
1
|
|
|
|
|
|
1

/ Gy

Ecosystem state

FIGURE 2 Ball-in-cup diagram and ecosystem response curve: two heuristic devices to illustrate alternative
stable states. Reprinted from Scheffer et al. (2001) with permission from Springer Nature.

value of the state variable. As illustrated in the corresponding stability landscape above, this
equilibrium is globally stable, since the ball will always return to the same single valley floor.
As conditions increase the stability landscape changes and a second locally stable equilibrium
emerges. This enables the possibility of crossing the boundary between alternative basins of
attraction due to a perturbation. In this more detailed illustration a second mechanism for
abrupt shifts becomes apparent: when conditions change further beyond a level corresponding
to point F;, the first stable equilibrium ceases to exist. If the state variable was attracted by this
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equilibrium before the feedbacks to the state variable change suddenly, causing an abrupt shift
in the ecosystem state (“critical transition”).

Reversing environmental conditions to preshift levels after a critical transition does not
necessarily entail a return of the state variable to preshift levels. Ensuring a reverse shift would
require changing environmental conditions below a level corresponding to point F;. The
phenomenon that forward and reverse shifts occur at different critical conditions is known as
hysteresis and makes critical transitions very difficult to reverse (Scheffer et al., 2001).

Ecosystems exhibit alternative stable equilibria only over a certain range of environmental
conditions known as the bifurcation set—the range of conditions between the bifurcation points
F, and F, in Figure 2. These points mark the location of a fold (or: saddle-node) bifurcation
where a single equilibrium bifurcates (or: splits) into three—two locally stable and one unstable
—and nonlinear dynamics become possible (Petraitis, 2013). The bifurcation points'
correspond to critical levels of environmental conditions at which critical transitions between
alternative stable states occur. Figure 3 shows the ecosystem response curve in more detail by
rotating the bottom plane of Figure 2 clockwise by 90°.

The red arrows represent the effect of ecological feedbacks on the state variable. For constant
environmental conditions (i.e., a fixed position on the horizontal axis) the arrows indicate in
which direction on the vertical axis the state variable is attracted. The blue curve contains all
equilibria of the state variable across a range of conditions. The solid upper and lower branches
contain stable equilibria, the dotted section in between represents unstable equilibria on the
boundary between the basins of attraction (separatrix). We should distinguish between individual
equilibrium points with distinct values of the state variable and collections of equilibrium points
with similar, but different values of the state variable. The terms alternative stable states, dynamic
regimes, and equilibria are often used interchangeably for one or the other concept. We use the
terms as follows: for given environmental conditions an equilibrium is a unique point on the blue
curve with zero rate of change of the state variable and a distinct numerical value attached to it.
In contrast, a dynamic regime is a set of many equilibrium points and the feedbacks stabilizing
them across different environmental conditions—meaning a whole branch of the blue curve and
the basins of attraction surrounding it (Scheffer & Carpenter, 2003). Dynamic regimes typically

b
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FIGURE 3 Ecosystem response curve. Redrawn from Scheffer et al. (2001) with permission from
Springer Nature.
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consist of qualitatively similar equilibrium states of the ecosystem with relatively small variation
in the equilibrium value of the state variable across a wide range of conditions. For instance, a
shallow lake may be in a clear, oligotrophic or a turbid, eutrophic regime.> With this, a regime
shift is defined as a shift from one dynamic regime to the alternative one.

In Figure 3, the vertical distance between the current value of the state variable (indicated
by a black dot) and its threshold value (represented by the dotted line) may be interpreted as a
measure of resilience (Kinzig et al., 2006).> In an elementary sense we understand resilience as
a descriptive ecological concept meaning the amount of disturbance an ecosystem can absorb
without changing its basic function, structure, identity, and controls (Gunderson &
Holling, 2001; Walker et al., 2004). In the particular case of a single state variable we define
resilience as the maximum possible magnitude of a perturbation of the state variable without
entering an alternative basin of attraction. Resilience changes considerably with varying
environmental conditions (Carpenter, 2003).*

So far, we have discussed the theory of alternative stable states in a deterministic world in
which the dynamic behavior of ecosystems is predictable. In reality, ecosystems are subject to
stochastic perturbations arising from continuously occurring fluctuations and rare disturbances
which cause unexpected and random behavior. In this uncertain world resilience is a key
property of ecosystems with alternative stable states, because it determines the likelihood of
flipping from one regime to the other (Gunderson & Holling, 2001). In many cases, erosion of
resilience by changing environmental conditions makes the shift to an alternative regime due
to stochastic perturbations more likely (Scheffer & Carpenter, 2003). We focus on the
interaction between stochastic perturbations and the two key deterministic mechanisms for
regime shifts (basin crossing and critical transitions) in detail in the next section and leave aside
other mechanisms for the occurrence of abrupt shifts in state variables, such as phase shifts
(Scheffer et al., 2001).

3 | MODEL

We now develop a formal model based on the concepts discussed in the previous section. We
first present the deterministic dynamics under constant conditions, before turning to
stochasticity and changing environmental conditions. Finally, we introduce management.

3.1 | Deterministic dynamics, states, and regimes of the system

At any point in time t € [0, o), the state of the ecosystem is characterized by the value of a
continuous state variable X; > 0, which captures the numerical value of some important
quantity in the system, for instance the spawning stock biomass of a fish species or an index of
the (multidimensional) ecosystem state. Its evolution over time is given by:

dx, _ dz,
i Ou(c) — X;) + I (1)

where 6 > 0 parametrizes the strength of feedbacks from ecological processes to the state
variable. The parameter u(c) determines the equilibrium value of X; in the absence of
stochastic influences and depends on the underlying environmental conditions, which are
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denoted by the normalized parameter ¢ € [0, 1]. For now, ¢ is constant; we consider changing
environmental conditions in Section 3.3. Z;, represents stochastic perturbations, such as
fluctuations in external forcing or rare events like pest outbreaks. To start with, we discuss the
deterministic part of (1) (i.e., the first summand) and elaborate on the stochastic component in
Section 3.2. That is, we set Z; = 0 for all ¢. Then, the evolution of the state variable is given by:

X, = Xoe™ + u(c)(1 — 7). ()

The deterministic equilibrium satisfies dX;/dt = 0 with Z, = 0 and, from Equation (1), is
given by X; = u(c). Thus, the equilibrium ecosystem state is determined by environmental
conditions, as proposed by multistability theory (Figure 3). The rate of increase of the state
variable is positive when X; < u(c) and negative when X; > u(c). Thus, deterministic equilibria
of (1) are stable. The rate at which the state variable converges to its deterministic equilibrium
u(c) is determined by the parameter 6. The larger 0, the greater the speed of convergence toward
the equilibrium value. Equation (1) describes an ecosystem with multiple stable states when p(c)
takes on more than one possible value for a given level of ¢ across a certain range of
environmental conditions. In particular, the bi-stable case depicted in Figure 3 is obtained when
there are three possible values of u(c) for a given value of ¢ across the range of conditions
F, < ¢ £ F, (corresponding to the interval on the horizontal axis between the bifurcations points
in Figure 3). In this case, one may rewrite (1) as:

dz, for0<c<H,

Oua(0) = X + dt’ orFE<c<F A X > u,(c),

dX, dz
d—tt = d_tt’ for F<c<F AN X =ulo), 3)

dz, forFF<c<F AN X <ulc),

6 - X —_—,
(b45() 0+ dt orF<c<l1,

where u,(c) represents unstable equilibria located on the separatrix (corresponding to the
dotted blue line in Figure 3) with a corresponding threshold value of the state variable that
varies with environmental conditions. If X; > u,(c) the deterministic equilibrium is given by
uy(c), and by uz(c) if X; < u,(c). Together with (1), it follows that 1, (c) and ug(c) are locally
stable equilibria of X;. In Figure 3, equilibria with subscript A are points located on the upper
branch of the blue curve in Figure 3, those with subscript B on the lower branch. The basins of
attraction b [, (c)] and b[uz(c)] comprise the set of all points in state space that converge over
time either to u,(c) or to ug(c), respectively, for given environmental conditions:

Definition 1. The basin of attraction b[u(c)] is the set of all values of X, for which
lim X, = u(o),
m r = u(c) (4)
given Equations (1), (3) and Z;, = 0 for all ¢.
To generalize these concepts to different environmental conditions we additionally

define the concept of dynamic regimes—collections of qualitatively similar equilibrium states
of the ecosystem across a range of environmental conditions, such as a clear and a turbid
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regime across different nutrient levels in a shallow lake. This corresponds to the solid upper
and lower branches of the blue curve in Figure 3. The dynamic regimes r4, and rg encompass
the set of all basins of attraction corresponding to equilibria with subscript A or B, respectively,
over the entire range of conditions:

ra = (bl ()1}e2o, 15 = (bl (), (5)

With that, a regime shift occurs when the state variable moves from one regime into the
alternative regime. We assume that the ecosystem is initially in regime r4. At the time of a
regime shift the feedbacks to the state variable change abruptly, but not necessarily the value of
the state variable itself. Only over time does X; converge to the alternative equilibrium u,(c),
where 6 determines the speed of convergence.

3.2 | Stochastic dynamics

We now specify the stochastic component Z; to incorporate continuous diffusion and discrete
jumps, and analyse its consequences for the system dynamics. To focus on the stochastic
dynamics, we begin with a case in which only one stable equilibrium exists (i.e.,c < F; orc > F,)
and regime shifts are not possible. Multiplying (1) by dt and specifying dZ, = odW, + ydN;, the
evolution of the state variable over time is given by the stochastic differential equation

dX, = 0(u(c) — X,)dt + odW, + ydN,. (6)

The right-hand side consists of three additive components: a drift term 6(u(c) — X;), a diffusion
term odW,, and a jump term ydN;. Hence, Equation (6) describes an Ornstein-Uhlenbeck (O-U)
process’ (the first two terms) with an additional jump process (the third term). The deterministic
drift term, discussed in detail in Section 3.1, specifies the change in the expected value of the
process over time—the drift of the stochastic process X; (Schuss, 2010).

The diffusion term odW; captures continuously occurring perturbations to the state variable, for
instance random events of individual mortality and reproduction in population dynamics (Lande
et al., 2003). It consists of the diffusion coefficient ¢ which determines the relative influence of
these perturbations on X;, and the infinitesimal increment dW; of a Wiener process. The Wiener
process W, describes Brownian motion: it is a series of identically and independently distributed
(iid.) random variables following a normal distribution with zero mean and time-dependent
variance. That is, for all 0 < s < t, one has W; — W, ~ M(0, t — s). The infinitesimal increment
dW; = W 4 — W, is thus a random variable with mean zero and variance dt.

The jump term ydN; captures discrete jumps in the value of the state variable, which may
arise from rare events like pest outbreaks or extreme weather events and occur at random
times. Such behavior can be modeled by a compound Poisson process (Privault, 2013):

J= 2 @

j=1

The size of jumps is modeled by a random variable y with i.i.d. realizations y; drawn from a
normal distribution with mean y and variance 2. The individual jumps can be observed when
they happen, for instance when a hurricane hits a reef and reduces the coral cover. The arrival
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of jumps follows a homogeneous Poisson counting process N; with intensity 4 > 0. That is, the
probability of n jumps occurring up to time ¢ is given by:

= e_/lt_(/lt)” .

P(N;=n) -

®)

Over an infinitesimally small time interval dt, there may be either a single jump or no jump.
Hence, the infinitesimal Poisson increment dN, = N, 4 — N, is drawn from a Poisson
distribution with mean Adt (Chiarella et al., 2015):

1 with prob. Adt,
dN; = { 0 . B 9)
with prob. 1 — Adt.
Thus, a jump occurs with probability Adt in the time interval dt, causing the value of X; to
jump discontinuously by the random amount y; at the jump time ¢;. In between jumps, the
state variable follows the O-U process. Table 1 summarizes the parameters of the overall
process (6).

The stochastic differential Equation (6) describes the evolution of X; over the infinitesimally
small time interval dt. To obtain the evolution of X; over the entire time interval [0, c0), we
solve (6) with the initial condition X;—¢ = X, > u,(c), given dW, as the infinitesimal increment
of a Wiener process and dN; according to (7), (8), and (9). Assuming for the moment that no
regime shifts occur (for instance, ¢ < F; or ¢ > F,), this initial value problem has the general
solution (Appendix A.1):

t t
X; = Xoe ™ + u(c)1 — e%) + of e 0U=dw, + f e~9U=9y dN. (10)
0 0

Attimet = 0, X; is equal to the observable initial value X,. For any later point in time, the
deterministic part of (10) can be calculated. For the stochastic part, the realizations of the
Wiener and compound Poisson process are not known ex ante, but one can calculate their
expected value. The Wiener process has an expected value of zero by definition as its

TABLE 1 Parameters describing the stochastic process X;.

Symbol Parameter name Ecological interpretation
Drift term ] Mean reversion speed Strength of ecological feedbacks
u(e) Mean reversion level Deterministic equilibrium value
(of diffusion process) (depending on conditions)
Diffusion term o] Diffusion coefficient Strength of random fluctuations
Jump term y Jump size (random variable) Magnitude of rare events
y Mean jump size Average magnitude of rare events
B2 Variance of jump size Variability of rare events
A Intensity of Poisson process Frequency of rare events
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increments are drawn from a normal distribution with zero mean. For the jump term, the
expected value with respect to the frequency and size of jumps is given by:

t
[Ey,dN[ f e‘e“‘s’ysts] =y g(l — ™). (11)
0

The expected value of the jump component of (10) consists of the expected size y and the
arrival rate 4 of jumps. The absolute value of this expression is decreasing in 6 (proof in
Appendix A.2), which means that the relative contribution of jumps to the expected value of
the state variable depends negatively on the strength of deterministic feedbacks. The expected
value of X; is thus given by:

FIX] = Xoe ™ + (@1 — ) + 7 (1 — &), (12

and its variance is given by (Das, 2002):

2 2
o+ B a

Var[X;] = 8

— e ) + E[X ] (13)

Over time, the expected value of X; tends away from its initial value X, and toward u(c) as a
result of deterministic ecological feedbacks, but is perturbed by random jumps. In the limit, X;
converges to its stationary mean, which is known as mean reversion:

mE[X] = pu(c) +y
t— o0

D>

(14)

That is, the state variable is expected to converge to its deterministic equilibrium u(c)
plus a deviation due to jumps. The expected deviation from the equilibrium due to rare
events depends positively on the arrival rate 4 and the mean size of jumps y, and
negatively on the strength of deterministic feedbacks 6, which counteract the effect of
random jumps. These results only hold when a single value of u(c) exists for a given level
of c (i.e., ¢ < F, or ¢ > F,) and regime shifts are not possible. When u(c) may take on
three values (i.e., F; < c < F,), stochastic perturbations can induce endogenous regime
shifts and we cannot make closed-form statements about the behavior of X; over an
infinite time horizon.

Consider the case of a single regime shift at time fgg due to basin crossing under constant
environmental conditions. At this point in time X; falls below its threshold value u,(c) and
the state variable moves from regime r, into the alternative regime r5. Once in the alternative
regime, the feedbacks acting on the state variable change instantaneously and X; is attracted
by its alternative deterministic equilibrium wug(c). The evolution of X; after the shift is
described by the same stochastic process (10) as before, but resets at time tgg with initial
value X; . and the alternative equilibrium ug(c). This is possible because the process X;
(Equation 6) fulfills the Markov property: future values of X; depend solely on the current
value of the process and not on past realizations—the process is memoryless. In case of a
single regime shift at time tgs, one can rewrite (10) more precisely as:
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t
Xoe™% + w, ()1 — e7%) + o-f e 0U=dw, + Z?’;l e~0t=1y, for 0 <t < tgg
0

X, = t t
t XtRse—S(t—tRs) + IMB(C)(I _ e—S(t—tRs)) + O.f e—@(t—s)du/; + f e—@(t—s)ysdl\]s’

[Rs Igs
fOI' t>t RS

(15)

where N; is the number of jumps that have occurred up to time ¢ and ¢; is the time of jump j. At
time tgg, one has observed the times and sizes of all jumps up to this point and the first line of
Equation (15) gives the value of X; at every prior time from an ex post perspective. The further
development beyond fgg is not known ex ante: one can calculate the expected value based on
the updated initial value of the state variable X;,,, which is known with certainty. Equation
(15) holds until the next regime shift happens, say at trs,, When the process resets again. This
succession of regime-shift-and-resetting can go on indefinitely, but updating (15) every time a
regime shift occurs accurately describes the dynamics.

Figure 4 depicts the case of a regime shift due to basin crossing caused by a negative jump. In
this realization of the stochastic process (15), the state variable is initially below its deterministic
equilibrium , (¢) by which it is attracted continuously over time. Stochastic diffusion causes the
state variable to fluctuate and thereby keeping it from actually reaching the equilibrium. The first
jump at 4 brings the state variable precariously close to its threshold value, but the system is able
to recover from this perturbation due to ecological feedbacks. The second jump at ¢, is smaller, but
stochastic diffusion counteracts the deterministic feedbacks. The next jump happens before the
system can recover and pushes the state variable below its threshold value, causing a shift to the
alternative regime rp at time fgs, That is, the ecosystem is resilient against the first two jumps, but
cannot cope with the additional perturbation of another negative jump in its state of decreased
resilience. When the stochastic process resets at time tgs the expected value of the further
development is formed anew. Over time, the new regime stabilizes itself as the state variable is
attracted by its new deterministic equilibrium (c); resilience against a reverse shift back to the
initial regime r4 increases.

Figure 5 shows a situation in which the state variable does not remain in regime ry after crossing
the threshold. After the shift the state variable fluctuates around its deterministic equilibrium wu (c)
which is located close to the threshold. This represents a case where conditions are unfavorable for
regime 73 (i.e., c is only slightly greater than F;, compare Figure 3) and resilience against a shift to
regime 14 is low. Stochastic diffusion causes the state variable to cross the threshold between the
basins of attraction a second time at fggy. After this reverse regime shift, the state variable quickly
converges to its deterministic equilibrium u, (c) due to ecological feedbacks.

3.3 | Changing environmental conditions

So far, we have focused on ecosystem dynamics under constant environmental conditions.
In reality, “conditions are never constant” (Scheffer et al., 2001). That is, we have

¢ = c(t) with ¢(0) = ¢, (16)

which influences the dynamics of the state variable by changing the deterministic
equilibrium wu(c) as well as the threshold value u,(c) continuously over time.
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FIGURE 4 Sample path for a random realization of the stochastic process X;. Parameter values:
Xy =60, u,(c) =75, up(c) =20, u,(c) =48,0 = 1,0 = 5,1 = 04,y = —10, 8 = 5. The simulation was
performed with the Euler-Maruyama discretisation scheme using time steps of At = 0.05.
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FIGURE 5 Sample path for a random realization of the stochastic process X;. Parameter values:
Xo = 50, u,(c) =32, u,(c) =80, ug(c) =256 =1,0 =51 =04,y = —10, § = 10. Again, At = 0.05.

For simplicity, we assume that changes in environmental conditions are deterministic and
thus foreseeable.

Essentially, conditions are quantities in the ecosystem that change very slowly relative to
state variables (Beisner et al., 2003).® A useful special case of (16), which we will assume in the
following, is the basic exponential convergence process:

¢ =¢co+ Ac(1 — e™7), 17)

where Ac indicates the absolute change in normalized conditions ¢ and y parametrizes the rate of
convergence. We assume that 0 < y <« 6, that is, environmental conditions change much less
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quickly than the state variable. When environmental conditions change, this modifies the
equilibria of the system and the values of u, (c), uz(c), and u,(c) change. That is, changing
environmental conditions have no instantaneous effect on the value of state variable, but
influence its deterministic trend over time and its susceptibility to regime shifts. Taken together,
changing environmental conditions (Equation 17) and state dynamics (Equation 10) result in a
continuously ongoing dual adjustment process.” Figure 6 illustrates the resulting dynamics.

As described in Section 2, changing environmental conditions pose an additional mechanism
for regime shifts. If environmental conditions move beyond one of the bifurcation points, a critical
transition to the alternative regime is inevitable, regardless of the value of the state variable. The
mechanism for critical transitions is simple: when ¢ increases beyond F,, equilibrium u, (c) ceases
to exist according to (3) and the state variable is attracted by the alternative equilibrium p(c).
Already before environmental conditions actually increase beyond F,, a regime shift is likely to
happen due to stochastic perturbations as a result of decreased resilience. The two mechanisms for
regime shifts often act in combination. In general, a change in environmental conditions influences
the resilience of the ecosystem to stochastic perturbations, which determines the likelihood of a
regime shift (Gunderson & Holling, 2001, p. 50).

Once the state variable is in regime rp, conditions need to be reversed to less than F; to
ensure a reverse shift to regime r4. Hence, our model captures hysteresis of the ecosystem state
in response to changing environmental conditions.

3.4 | Ecosystem management

We include ecosystem management in the model as follows. There is a single ecosystem
manager who chooses the type and intensity of a management action a = {v, q, z} taken at time

100

_— X
- E(X)
- 1)
ua(c)
ua(c)

FIGURE 6 Sample path for a random realization of the stochastic process X;. Parameter values:
Xo = 50, p, (c;) = 90 — 25¢;, pg(cy) = 35 — 25¢;, u,(c;) = 80c, 6 =1,0=5,1=03,y = —-10,5 =5,
co = 0.5, Ac = 0.2,y = 0.2. Again, At = 0.05.
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t = 0. There are three different types of management actions, each of which affects the
ecosystem in a different way: type v directly and instantaneously influences the state variable,
type q changes the environmental conditions over time, and type z modifies the system's
susceptibility to stochastic influences.

Action v > —X), instantaneously changes the value of the state variable by the amount v at the
time of action t = 0. Management may increase or decrease the value of the state variable. For
instance, if the state variable is the biomass of a fish stock, harvesting a certain amount of fish
immediately reduces the state variable by this amount while restocking increases it immediately.
Other aspects of the stock dynamics, such as the equilibrium level of the state variable u(c) or the
threshold level u,(c) are unaffected by this type of management action. If no regime shift occurs
the state variable tends to return to its equilibrium level over time due to ecological feedbacks. In
this case, the time path of X, resulting from taking management action v at time ¢ = 0 is given by:

t t
X,(v) = Xo +v)e % + u, (c)(1 — e7%) + of e 0U=)dw, + f e =9y dN,.  (18)
0 0

A shift to regime rz may occur at any time in analogy to (15) and can be made either more or
less likely by management action v. Indeed, for sufficiently strong actions, thatis, X, + v < u,,
the state variable falls below its threshold value directly at the time of action t = 0 and a regime
shift occurs with certainty.

Action g € [—cy — Ac, 1 — ¢o — Ac] changes the conditions over time by adding the amount g
to the exogenous change in conditions Ac according to (17). Again, management may increase or
decrease the conditions such that ¢, lies in the normalized range [0, 1]. This type of management
thereby modifies the deterministic equilibrium value u(c) and the threshold value u,(c). In contrast
to action v, action q does not change the value of the state variable directly, but influences its
dynamics by changing the feedbacks acting on the state variable. Since conditions change only slowly
relative to the state variable, actions of type q take a longer time to have the same quantitative effect
on the state variable than actions of type v. In the example of fish in a lake, suppose there is
anthropogenic nutrient loading of the lake, leading to an increase in resource availability for
planktivorous fish. The higher availability of feed increases the spawning rates, which increases the
equilibrium biomass u(c) of planktivorous fish (assuming that death rates remain constant). Due to
the Allee effect, increased resource availability may also result in a lower extinction threshold u,, for
the fish stock (Petraitis, 2013, Ch. 2.2). As conditions change over time to their new level ¢y + Ac + g
with rate y, the state variable X; adjusts incrementally to the modified equilibrium value u, (c;) with
rate O (if no regime shift occurs):

t t
X(@) = Xoe¥ + py(@@)(1 = ) + 0 [ AW+ [ et Iyan. o)
0 0

Action z modifies one or more of the stochastic parameters o, y, 5, 4 by the amount z and is
bounded by nonnegativity constraints for o, 5, and A. With this action, management can modify the
susceptibility of the state variable to stochastic perturbations. Examples would be dikes against floods
or irrigation systems and water pumps against droughts. The modified time path of X; is given by:

t t
Xi(z) = Xoe™ + p, (c)(1 — ™) + 0 (2) f e~=9aw; + f e =9y (2)dNy(z).  (20)
0 0
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4 | POTENTIAL APPLICATIONS

Due to its simplicity and generality, the model hands itself to a variety of applications useful for
ecosystem management.

4.1 | Model calibration

Calibrating the model with empirical data makes it possible to understand which processes
and factors play an important role in determining the ecosystem state. For the calibration,
time series data of a characteristic state variable (or an index of the ecosystem state) and of
important environmental conditions is required. After normalizing the conditions ¢; to the
interval [0, 1], it is possible to fit the parameters of Equations (3) and (6) as well the functional
relationship u(c) using maximum-likelihood estimation. If the data exhibit abrupt regime
shifts, knowledge about the threshold value , across different conditions is required, which
may be difficult to obtain in practice. In this case, it may be necessary to run an auxiliary
model that includes higher power terms of X; to identify all possible stable and unstable
equilibria.

Once calibrated, the model may help in determining the relative importance of different
factors (external driver, management action, random variation, rare event) that caused a
regime shift. In a further step, one can quantify the extent to which different factors are
responsible for a regime shift using the concept of partial responsibility (Baumgértner, 2020;
Vallentyne, 2008). We derive the probabilistic information required for this method in
Section 4.4.

4.2 | Optimal management

Suppose the ecosystem manager faces the problem of maximizing expected intertemporal
welfare derived from net benefits enjoyed from the ecosystem. These benefits, denoted by
7 (r, a), depend on the chosen management action and differ between regimes. They consist
of different levels of ecosystem services or direct economic benefits, such as harvest.
Specifically, assume that the manager receives a flow of benefits m;(r4, a) # 7 (rs, a),
irrespective of the precise level of the state variable X;. Since the dynamic regimes are
ultimately defined by the value of the state variable by (3), (5) and Definition 1, we rewrite
the benefits as 7; (X;, a). The manager must choose a single management action a of type v, g
or z att = 0. She can choose from all feasible management actions described in Section 3.4,
but incurs costs of x,(a) associated with the action. We make no assumptions on the shape
or time profile of x;(a), other than it being a convex function. Social welfare is measured
using a well-behaved utility function U(:), that is, U'(-) > 0,U"(-) <0, and a time
preference rate p. Hence, the manager needs to solve the problem

maxE[Lme‘P‘U[ﬂt(Xt(a), a) — x(a)]dt (21)

a
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subject to (15) and (17),

7, (14, @) for X; > u,
X;, =
(X, @) {ﬂt(VB, a) for X, < . (22)
and
X(0)=Xp(a);0<X; <1;¢c(0)=cp;0<¢; < 1. (23)

This problem cannot, in general, be solved analytically, but can be solved numerically
(Kushner & Dupuis, 2001). In particular, the stochastic nature of the model dynamics suggests
using dynamic programming techniques suited to deriving optimal feedback control rules
rather than open-loop controls to account for uncertain system states (Bellman, 1966). This is
an interesting decision problem with two trade-offs: the manager needs to choose not only the
optimal intensity of the management action given costs and social risk and time preferences,
but also the type of management action. In particular, there is an interesting choice along the
temporal dimension between influencing the state variables or the conditions in the model
(setting the option of management action z influencing the stochastic parameters momentarily
aside). There is a trade-off between an immediate, but relatively short-lived intervention and a
slow, persistent change. We would expect that the main factor influencing this decision is the
size of the discount rate p. Larger values of p indicate a stronger time preference for the present
and would imply taking management action v. Management action z will be optimal if the
manager is very risk-averse.

4.3 | Viability management

Welfare-maximizing management based on discounted expected utility may not necessarily be
sustainable in the sense that long-run costs and benefits tend to be neglected due to utility
discounting (De Lara et al, 2015). In addition, economic analyses typically assume good
substitutability between between natural and other forms of capital. This notion of weak
sustainability (Neumayer, 2003) has been criticized for its inability to cope with multi-stability and
other issues (van den Bergh, 2014). For these reasons, it may be preferable to use evaluation
concepts that ensure strong sustainability under conditions of uncertainty and multi-stability, such
as stochastic viability (Béné & Doyen, 2018; Doyen et al., 2019; Oubraham & Zaccour, 2018). The
basic idea of stochastic viability is that the continued existence of certain ecosystem functions and
components is guaranteed at all times with a sufficient probability (Baumgirtner & Quaas, 2009).

Under the stochastic viability approach an ecosystem manager needs to choose a
management action from the set of viable actions a"#® which consists of those actions that are
both admissible (a®) and that satisfy the state constraint of being above the threshold
X; > u, with at least the probability a:

aoz/iab(Xo, t=0)=1{a € a¥PX > My) 2 a forall ), (24)

given the uncertain dynamics (15) and (17). The solution of this stochastic viability problem
can be obtained with dynamic programming methods (Doyen & De Lara, 2010) that can readily
be applied to our model.
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4.4 | Probability of regime shift

The probability of flipping into an alternative regime is determined by the state variable's
resilience to stochastic perturbations, which in our model is equivalent to the distance of the state
variable X; from its threshold value u,(c). The larger the resilience, the lower is the probability of
a regime shift. For a known value of X, at time ¢, we can calculate the instantaneous probability
of a regime shift from r, torg as the probability of the state variable X, falling below its threshold
value u,(c) within the next infinitesimal time interval dt:

R(ra = X)) = P(cdW, + y < —[X; + O(u(cira) — Xi) — :“*(Ct+dt)]) - Adt

+P(0dW, < —[X; + 0((Crar) — X)) — py(cra)]) - (1 — Adp), )
which explicitly considers the two possible cases of either a jump of random size y or no jump
occurring. Since we have assumed independence of the three random variables, it is possible to
use a single probability distribution for the sum odW, + y ~ N(¥, B + oZdt).

This way of obtaining the probability of flipping into an alternative regime requires
knowledge of the specific realization of the stochastic process X;, which is known only once it
has happened, or: ex post. In practice, today's management actions often affect the state of the
system in the future and one needs to assess the probabilistic consequences of different actions
before taking them, or: ex ante. In this case, one only knows the value of the state variable X, at
time t = 0 and must form expectations about the state of the system at future points in time. In
this case, it is possible to use the expected value and variance given in Equations (12) and (13)
to calculate the expected instantaneous probability of regime shift at time ¢, assuming that no
shifts have happened until that point in time.

There is a very simple, well-performing approximation of the expected probability of regime
shift that is useful for management applications. The probability of a shift from regime r4 to
regime rp taking place at time ¢, conditional on having taken management action v at time 0
and no shifts having occurred until ¢, is approximately given by:

B(ra = E[X,0)]) ~ p, ) = b, + Ap(v) - e, 26)

where p = B(r4 — rglE[X;]) indicates the expected baseline probability of regime shift in the
absence of management actions. The maximum change in probability due to the management
action is denoted by Ap (v) and needs to be calibrated. The approximation for management type
q is very similar and given by:

B(ra = nlE[X(]) # pi (@) = b, + Ap(g) - (1 — 7). 27)

Figure 7 shows the fit of the approximation to the actual, calculated probability. The
probabilities due to action resemble simple exponential convergence and decay processes
because by Equation (12), the expected ecosystem state responds exponentially with rate 6 to
changes in initial value (action v) and deterministic equilibrium value. The latter is determined
by environmental conditions, which change exponentially (action q) with rate y as given by
Equation (17).

Due to the number of different parameters that may be affected by actions of type z, we do
not provide a general approximation for management type z here.
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FIGURE 7 Regime shift probability over time for two types of management actions. Solid lines indicate
calculated probabilities, dashed curves are approximations. Parameter values: v = —25, Ap(v) = 0.125, ¢ = 0.2,
Ap(q) = 0.12, Xy = 75, u, (c;) = 90 — 25¢;, u,(c) = 80c;, ¢ = 0.6,y = 02,0 =1,0=5,1=10.3,
y=-10,=5

A different and for some applications more useful way to assess the probability of regime
shift is to calculate the probability of one shift within a time interval [s, t] of arbitrary length.
This is possible if the value of X; at time s is known. The relevant time interval for ecosystem
management based on probabilistic information is [0, ¢]. In the limit case of [¢, t + dt], this
reduces to the instantaneous probability of regime shift given by (25). More generally, the
probability can be calculated for any s, ¢ using the transition probability density function B (X)
of the stochastic process X;. This density function can be obtained by solving the corresponding
Fokker-Planck equation (in shorthand notation)

OR(X) _ 0’ ’R(X) oR (X) 0XE (X) f°°
=— -0 +0 —-ARX)+4| RPX- dy,

3 S ox? X x 1 (X) . 1(X —y)Q(y)dy,  (28)
where Q(y) is the probability distribution function of the jump size y. It is not possible to solve
this equation analytically; numerical approximation methods are required to obtain the density
function (Gaviraghi, 2017).

5 | DISCUSSION AND CONCLUSIONS

We have constructed a generic model of ecosystems with alternative stable states and stochastic
dynamics, and their management. Our original contribution was to combine a novel deterministic
multistability mechanism with two different stochastic influences: continuous diffusion and
discrete jumps. Thus, we have improved the representation of stochasticity in models of ecosystems
with alternative stable states. This provides a better understanding of the role of different
deterministic and stochastic mechanisms and their interaction in causing regime shifts.

We now discuss limitations and potential extensions of the model. First, the model is
formulated in terms of a single state variable to establish a clear focus on how stochasticity
interacts with deterministic mechanisms of multistability. This neglects potential interactions
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between multiple state variables which may be relevant for some ecosystems. For some of these
systems, it may be possible to construct an index of the ecosystem state (e.g., Blenckner
et al., 2021), so that X, is the index value at time ¢.

Second, the linearity of X; in Equation (1) is seemingly at odds with the abrupt and nonlinear
nature of regime shifts. The nonlinearity in our model arises from the bistability mechanism in
Equation (3) which entails a discontinuous shift in the deterministic equilibrium u(c) attracting
the state variable. Hence, even though the response of the state variable to changes in its
equilibrium value is linear, the overall system dynamics are nonlinear.®

Third, we assume that only the location of the deterministic equilibrium u(c) changes
when a regime shift occurs. We neglect that other parameters (listed in Table 1) could change
as well. This is to focus on the core dynamic mechanism of alternative stable states. While it is
plausible and easy to integrate in the model that other parameters change, this would not
qualitatively change the dynamics of regime shifts.’

Last, in our model the uncertainty regarding the dynamics of the ecosystem is
probabilistic. That is, we assume perfect knowledge about the distribution of stochastic
perturbations and no fundamental uncertainties regarding the location of thresholds,
consequences of management actions, or values of model parameters. Essentially, our model
is rich in environmental risk, but assumes a high degree of knowledge. Depending on the
specific system under study, consideration of deeper forms of uncertainty might be needed.
This would require a completely different approach to modeling.

With these limitations and reservations in mind, applying the model to ecosystems with
alternative stable states as outlined in Section 4 opens new pathways for assessing management
when stochastic influences are important.
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ENDNOTES

! Bifurcation points are also referred to as “tipping points” (e.g., Dakos et al, 2019) or “thresholds”
(e.g., May, 1977). A discussion of the terminology is given by van Nes et al. (2016). To avoid confusion, we stick
to the technical term and use the word threshold only for unstable equilibria between basins of attraction.
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2 In the clear and turbid regimes, the equilibrium transparency of the lake water changes only slightly across a

wide range of nutrient levels—the overall structure and characteristic state of the lake (whether it is clear or
turbid), as well as the feedbacks stabilizing it, remain unchanged within a dynamic regime.

A similar definition of the ability to withstand shocks is called resistance by Harrison (1979) and Grafton
et al. (2019).

A minimal mathematical model of the dynamics described in this section can be formulated as
dx/dt = 1 — bx + x*/(x* + h¥), where x is the state variable, [ is a factor that promotes x, b and r are the
rates at which x decays and recovers, and h is a threshold at which the last term increases steeply, with the
steepness determined by k. For the exemplary case of shallow lakes, x are suspended nutrients, [ is nutrient
loading, b is the nutrient removal rate and r represents internal nutrient recycling (Scheffer et al., 2001).

The O-U process was originally introduced by Uhlenbeck and Ornstein (1930) to model the velocity of a
Brownian particle.

o

In fact, the rate of change of environmental conditions can be several orders of magnitude slower than the
rate of change of state variables (Rinaldi & Scheffer, 2000). For instance, even though the current rate of
accumulation of greenhouse gases in the atmosphere is unprecedented in geological history, the resulting
changes in climatic conditions unfold relatively slowly compared to the changes in population densities or
species abundances they entail.

N}

Formally, in Equations (6), (10), (12), and (15), ¢ is time-dependent according to (17); and in Equation (14)
u(c) is replaced by u(co + Ac).

In cases where the response of the state variable to changes in its equilibrium value is nonlinear, one can
linearize the dynamics around the equilibrium using a first-order Taylor approximation. That is, one
may approximate some nonlinear dynamics F(X;,c¢) around the equilibrium X; = u(c) so that
F(X:, ) » Fx(u(e), o) - (X — u(0)).

For instance, if discontinuous jumps represent fire disturbances in a savannah, the jump parameters 4, and
B should depend on the vegetation regime to consider fuel available for fires (D'Odorico et al., 2006).
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APPENDIX A: MATHEMATICAL DERIVATIONS

Solution of Equation (6)
Starting with the stochastic differential equation

dX, = 6(u(c) — X,)dt + odW; + ydN,, (A1)

we employ the method of variation of parameters by setting ¥; = X;e®. Employing It6's Lemma
and the chain rule of differentiation we get:

dy, = 6X,efdt + e®dX,
= 0X,e%dt + % [0(u(c) — X,)dt + adW, + ydN;] (A2)
=e%Bu(c)dt + e%odW, + e®ydN,.
Integrating from 0 to ¢ and using the initial value Yo = Yy = X;—0e% = X,e%, we obtain:
t t
Y, = [e%u(o)], + crf e%sdw; + f ey dN; + K. (A3)
0 0
Seeing that for t = 0, K = Yj, we write:

t t
Y, =Y+ u(e)e® —1) + af e%sdw; + f e%y dN;. (Ad)
0 0

Transforming back with X; = Y;e~%, we get the solution in terms of stochastic integrals which
is given in the main text:

t t
X; = Xoe ¥ + u(c)1 — e + of e?=)aw; + f 9=y dN;. (A5)
0 0

Expected value of jumps
The expected value of the last term of (A5) is obtained as follows:

t t
[Ey,dN[ f e—e“—”ysts]: y‘[EdN[ f e-e“-”st]
0 0

_ t _ 1 t
=y j; e 8= ds = y [Ee—e(t—s)/l} (A6)
0
A4 —ez] oA ot
— — e =y=1 —e™).
y [ 5o y e( )

To check whether this expression increases or decreases in 0 take the derivative with respect
to 6:
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0 _ 4 _ A4 _ A _A _A _Ae %6+ 1
% 5(1—6‘9’):—y§+y§e‘9t+y5te‘9t:—y?+y7(62 )

(A7)
Whether this derivative is positive or negative depends on the sign of y. For y > 0, the
derivative is negative, for y < 0 it is positive. That is, the derivative will be negative if:

A e+ 1)
y 02 >y e (A8)

For y > 0, we have that

1>e %6t + 1) A
e >0t + 1, (A9)
which holds by the power series definition of the exponential function for all t > 0 (since 6 > 0
by assumption):

2 3
=14+ O O

o 3 +--->1+4 0t (A10)

For y < 0, all inequality signs are reversed and the modified form of (A9) does not hold. The
proof for the opposite case of (A7) <0 is analogous.
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