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Sample Collection
A large network of collaborators (i.e., hunting administrations, non-governmental organizations, and National Parks; see Acknowledgments) collected tissue samples (muscle, blood and hair) across the Alps and the Tatra Mountains, mainly between 2017 and 2019 (Figure S7).
 
DNA Extraction
We used the Qiagen DNeasy Blood and Tissue kit (Qiagen, Inc., Valencia, CA, USA) to extract genomic DNA following the manufacturer’s instructions. We assessed DNA quality and checked for DNA degradation on agarose gels. We quantified DNA concentration for each sample using the QuantiFluor dsDNA System kit (Promega, US). We used samples with a minimum DNA concentration of 6.40 ng/µl after extraction for subsequent ddRADSeq library preparation.
 
ddRADSeq Library Construction and Sequencing
We used a modified version of the double-digested (restriction site associated DNA sequencing) (ddRADseq) protocol by Peterson, Weber, Kay, Fisher, & Hoekstra (2012) to produce a data set of single‐nucleotide polymorphisms (SNPs) from the 563 selected individuals. We digested the genomic DNA (200 ng) using the enzymes SbfI and MspI and selected fragments between 300 bp and 500 bp using the BluePippin size-selection system (Sage Science, Canada). To control for library quality and to assess genotyping errors as described by Gagnon et al. (2019), we replicated ~12.5% of the samples (n=81). We included 47 samples per library including replicates and a negative control. We then sequenced the 14 libraries on seven full lanes (two libraries per lane) of paired-end (2 x 125 bp) Illumina Hi-Seq 2500 (Fasteris SA, Switzerland).
 
ddRADSeq Data Processing
We used STACKS (v.1.44; Catchen et al. 2011, 2013) to demultiplex data, build a de novo SNP catalog, and call genotypes. We tested different sets of STACKS core parameters (ustack − m (2 to 6), −M (2 to 6), −max_locus_stacks (2 to 6), and cstack −n (0 to 5); see Supporting Information Figures S1 and S2), by varying one parameter at a time while holding the others at their default values (following Mastretta‐Yanes et al. 2015). We then selected the set of parameters that minimized error rates between replicates (n=73 pairs; see below) and maximized the amount of data recovered. The optimal values were: −m (3), −M (3), −max_locus_stacks (4) and −n (2; error rates for each set of parameters are presented in Supporting Information Figures S1 to S6). To produce the final data set, we ran STACKS with all parameters set to their optimal values. We performed the next filtering steps in R v3.6.2 (R Core Team 2019) from the original VCF file obtained from stacks and by keeping: (i) only SNPs with an SNP error rate <2.5% based on analyses of replicates (mean ± sd = 0.8% ± 0.0%), (ii) only SNPs with a minimal sequencing read depth greater than 10X and less than 25X (Li, 2014), (iii) only SNPs with <15% missing data, and finally (iv) individuals with <25% missing data. In addition, a single SNP was randomly selected per RAD-fragment in STACKS for further analyses. The samples from one library (n=47 individuals) were also excluded from the data set, because of their unexpected behavior in preliminary genetic analyses. These samples, regardless of their origin, grouped together in the analysis, due to a failure in the size-selection procedure that led to the absence of a set of common SNPs (n ≈ 200 SNPs) for all the individuals in this library.
Overall, our final data set included 449 individuals out of the 563 left after filtering and exclusion of chamois from the Tatra mountains in Slovakia. The retained samples originated from France (n=115), Austria (n=110), Italy n=95), Switzerland (n=85), Slovenia (n=23), and Croatia (n=21) (see Figure 2 and S7 for a map showing the sampling locations). The data set encompassed 30,970 SNPs distributed over 20,998 RAD loci at the end of the de novo SNP calling procedure. Individuals scored on average 20,102 SNPs ± 893 (SD), resulting in 5.7% missing data in the genotype matrix.
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Figure S1. Boxplots showing the effect of variation in the STACKS parameters on the total number of missing loci in a replicate pair from the genotyped Northern chamois. Each panel represents the result of a single STACKS run in which all parameters were set to their default values (m = 3, M = 2, N = M+2, n = 1, max_locus_stacks (mx.lcs) = 3, model = SNP) except for one that varied (indicated on the x axis). The scale of the y axis varies across the plots.
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Figure S2. Boxplots showing the effect of variation in the STACKS parameters on the proportion of missing loci relative to the total number of loci from the genotyped Northern chamois. Each panel represents the result of a single STACKS run in which all parameters were set to their default values (m = 3, M = 2, N = M+2, n = 1, max_locus_stacks (mx.lcs) = 3, model = SNP) except for one that varied (indicated on the x axis).
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Figure S3. Boxplots showing the effect of variation in the STACKS parameters on the proportion of missing loci that differed within a replicate pair from the genotyped Northern chamois. Each panel represents the result of a single STACKS run in which all parameters were set to their default values (m = 3, M = 2, N = M+2, n = 1, max_locus_stacks (mx.lcs) = 3, model = SNP) except for one that varied (indicated on the x axis).
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Figure S4. Boxplots showing the effect of variation in the STACKS parameters on the locus error rate, i.e., the proportion of missing loci in only one of the two replicates of a pair, from the genotyped Northern chamois. Each panel represents the result of a single STACKS run in which all parameters were set to their default values (m = 3, M = 2, N = M+2, n = 1, max_locus_stacks (mx.lcs) = 3, model = SNP) except for one that varied (indicated on the x axis).
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Figure S5. Boxplots showing the effect of variation in the STACKS parameters on the SNP error rate, i.e., the proportion of SNP mismatch within a replicate pair, from the genotyped Northern chamois. Each panel represents the result of a single STACKS run in which all parameters were set to their default values (m = 3, M = 2, N = M+2, n = 1, max_locus_stacks (mx.lcs) = 3, model = SNP) except for one that varied (indicated on the x axis).
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Figure S6. Plots showing the effect of variation in the STACKS parameters on the total number of loci retrieved from the genotyped Northern chamois. Each panel represents the result of a single STACKS run in which all parameters were set to their default values (m = 3, M = 2, N = M+2, n = 1, max_locus_stacks (mx.lcs) = 3, model = SNP) except for one that varied (indicated on the x axis).
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Figure S7. Sampled Northern chamois individuals in the Alps, colored according to the assigned cluster using the ‘adegenet’ R-package (Jombart, 2008). Cluster 1 from the eastern Alps covers nearly half of the Alpine arch. The map is projected in the world geodetic system 1984 (WGS 84) and shows the same extent as Figure 2 (from main text).
 
DAPC
We performed a discriminant analysis of principal components (DAPC) using the ‘adegenet’ R-package (Jombart et al., 2010). We used a cross-validation (100 repetitions; 90% of data as training data, 10% of data for validation) to calculate the optimal number of principal components (PCs) to retain (Gagnon et al., 2019). The cross-validation analysis identified 50 PCs out of 448 as the optimal number of PCs to retain, as 50 PCs resulted in the highest predictive success (98.8%) and the lowest root mean error (2.1%), though they captured only 27% of the variance. Subsequently, we performed the DAPC with 50 PCs to retain. The first two axes of this DAPC explained 15% and 8.4% of the total variance, respectively.
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Occurrence Data
Table S1. Collected data sets of chamois observations and the number of occurrences used for the habitat suitability modeling. Data sets marked with an asterisk indicate citizen science projects. Records from faune-france and ornitho have been validated by experts. We used hunting records from Slovenia as surrogate data because no citizen science data were available for that area. We did not use the records from the Global Biodiversity Information Facility (GBIF) for France, due to the data arrangement in a 10 km grid.
	Data set
	# of occurrences
	Provider
	Range

	ZGS
	34,508
	Slovenian Forest Service
	Slovenia

	www.faune-france.org *
	13,062
	Ligue pour la protection des oiseaux France
	France

	www.ornitho.ch *
	6,362
	Centre Suisse de Cartographie de la Faune
	Switzerland

	www.ornitho.it *
	4,577
	Associazione Teriologica Italiana onlus – Italian Mammal Society
	Italy

	www.gbif.org
	1,887
	GBIF.org (2019)
	Alps (except France)

	www.naturgucker.info *
	724
	Naturgucker
	Alps

	DNA sampling
	563
	This study
	Alps


 
 
Sampling Occurrences
We used two approaches to sample Northern chamois occurrences, and repeated each of them 10 times (Barbet-Massin et al., 2012; Iturbide et al., 2018). First, we randomly sampled 10,000 occurrences without replacement (hereafter “random occurrence sampling”; Barbet-Massin et al., 2012). Second, we sampled occurrences with a proportional effort per country according to the fraction of the rough distribution range estimation (Aulagnier et al., 2008) covered by the respective country (“proportional occurrences”). We applied a filter of a minimum distance of 4 km between two occurrences to avoid clustering in the “proportional occurrences” method.
The modeling approaches used in this study (see section below) require presence and absence data to model habitat suitability; otherwise the response variable would have no variation. We had to specifically sample absence data, as the existing data set encompassed presence data only, without knowing whether Northern chamois was present or not. Such so-called pseudo-absences are often used for HSMs, sampled across large areas of the study area, and combined with true presences as model input (Guisan et al., 2017). We sampled the pseudo-absences from the entire rectangular study area in central Europe, excluding oceans, on a 0.00833° (~1 km) grid from cells without occurrences (Croft et al., 2017). We sampled 10,000 pseudo-absences randomly for the proportional occurrence sampling (Barbet-Massin et al., 2012). These pseudo-absences were sampled in a density-dependent manner using the ‘spatstat’ R-package v.1.61-0 (Baddeley & Turner, 2005) for the random occurrence sampling to account for regions with higher densities of occurrences (Phillips et al., 2009). We applied three density sampling settings using different density smoothing parameters, from strong to slight density dependence. 

Habitat Suitability Models

Building the models
We used the four following modeling approaches in R (R Core Team, 2019): (1) generalized linear models (GLM)  implemented in R with linear and quadratic terms with a binomial distribution (Nelder & Wedderburn, 1972); (2) generalized additive models (GAM; Hastie & Tibshirani, 1990) using the ‘gam’ R-package v1.16.1 (Hastie, 2019) (except for the model with a binary classification of suitable terrain slopes) with a smoothing factor of 3; (3) generalized boosted regression models (GBM) with the ‘gbm’ R-package v2.1.5 (Greenwell et al., 2019) with 1,000 trees and an interaction depth of 3, and (4) random forests (RF; Breiman, 2001) using the ‘randomForest’ R-package v4.6-14 (Liaw & Wiener, 2018) with 1,000 trees. We averaged the habitat suitability of 10 occurrence/pseudo-absence sets for each of the four sampling strategies (Barbet-Massin et al., 2012). We weighted occurrences and pseudo-absences equally (Barbet-Massin et al., 2012; Liu et al., 2019). We evaluated the model performance using Kappa (Cohen, 1960) and the true skills statistics (TSS; Allouche et al., 2006; Hanssen & Kuipers, 1965) using the ‘PresenceAbsence’ R-package v.1.1.9 (Freeman & Moisen, 2008) and the area under ROC-curve (AUC; Fielding & Bell, 1997; Swets, 1988) from the ‘pROC’ R-package v.1.15.3 (Robin et al., 2020). We repeated a cross-validation approach (70% calibration data, 30% evaluation data; Araújo et al., 2005) 20 times and averaged the model performance of the 20 runs for the model evaluation. Models with AUC > 0.7 (Swets, 1988), TSS > 0.4 (Allouche et al., 2006) and Kappa > 0.4 (Landis & Koch, 1977) were considered reliable (see Table S3 for the results of the cross-validation). We converted the habitat suitability probabilities into a binary classification (presence/absence) for each single model type by maximizing the TSS value (Liu et al., 2013) using the ‘PresenceAbsence’ R-package (Freeman & Moisen, 2008).

Hindcasting
We predicted habitat suitability at 0.0083° resolution for all four model types from the present to 20,000 years before present (BP) in 100-year time steps for the 20 scenarios (4 sampling strategies and 5 terrain slope variables) individually, as ensembles are considered to be more robust and to provide better results under changing environmental conditions (Araújo & New, 2007; Guisan et al., 2017; Guo et al., 2015; Svenning et al., 2011). Glaciated areas were classified as unsuitable (Aellen et al., 1995) after the habitat suitability modeling step (Yannic et al., 2014). We provide the full SDM description following the ODMAP protocol (Zurell et al. 2020) in EnviDat (see below).

Validation with fossils
We validated the hindcasted habitat suitability with a comprehensive fossil collection using the Boyce index (Boyce et al., 2002; Yannic et al., 2014). The fossil collection included data provided by Callou (pers. comm.) and the IANUS data portal (Heinrich et al., 2016), and also from literature research (see Table S2 for a list of fossils per data source). We had to estimate the time span for certain records that were only dated within an epoche. Fossils that were dated with an uncertainty of >5,000 years (or for which age was given only as an epoche lasting longer than 5,000 years) were excluded. We considered a time interval of 4,000 years centered around each of the time points (15,000 years BP; 10,000 years BP; 5,000 years BP) and 2,000 years for the oldest and youngest time step and extracted the maximum habitat suitability value of each cell within this time span, due to dating uncertainty (Brewer et al., 2012). The Boyce values of the five points in time are averaged. We calculated the Boyce index as implemented in the ‘ecospat’ R-package v.2.1 (Di Cola et al., 2017), modified to account for spatial uncertainties in fossil records (Brewer et al., 2012) by applying a buffer of 12 km around each fossil, because, e.g., humans who hunted chamois were likely able to carry carcasses for several hours away from the hunting spots (Baumann et al., 2005). We extracted the 80% quantile of the habitat suitability within this buffer. The Boyce index ranges from -1 to 1: a value of 0 indicates a random predictive performance, index values near -1 indicate a predictive performance inferior to a random model, and values near 1 indicate a good performance (Hirzel et al., 2006).
The averaged Boyce values of the five points in time from the twenty HSM scenarios range from 0.084 to 0.68 (Table S4). Generally, the modified Boyce index calculation using all fossils which partially lie within the time intervals exhibited the highest values. The best performance of the HSM scenario included the slope heterogeneity as an environmental variable and a strong density-dependent pseudo-absence sampling. The Spearman rank correlation between the AUC values of the HSM scenarios today and their values of the modified Boyce index calculation method averaged over the five points in time was 0.144 (p-value: 0.54). The low correlation could be caused by (I) bias and errors in the fossil records used to calculate the Boyce index or (II) a shift in the ecological niche occupied by Northern chamois. First, although we conducted extensive literature research to find fossil records, our data set has relatively few occurrences per time step. Additionally, most of the fossils originate from human settlements, which further limits their value for validation. Incorrect identifications (or datings) could impede the validation, too. Second, this low correlation might indicate that Northern chamois partially used another niche in the past, e.g., due to lower hunting pressure from humans (Baumann et al., 2005).

Full ODMAP Protocol

A detailed description of the habitat suitability modeling part using the ODMAP protocol (Zurell et al., 2020) is provided at EnviDat (https://doi.org/10.16904/envidat.291).


Table S2. Number (#) of Northern chamois fossil records per source used to calculate the Boyce index (179 in total). Callou (pers. comm.) and IANUS are data sets. If multiple records are from the same data source (e.g., Callou), the age refers to the time span covered by the different records. Most of the fossil records were from settlements.
	Data source
	# of fossil records

	Callou (pers. comm.)
	79

	IANUS data portal: Heinrich, Driesch & Benecke (2016)
	66

	Baumann et al. (2005)
	19

	Fahlke (2009)
	5

	Cech & Döppes (1997)
	2

	Crezzini et al. (2014)
	1

	Cvitkušić et al. (2018)
	1

	Klindžić et al. (2015)
	1

	Kind (2006)
	1

	Leuzinger et al. (2016)
	1

	Pucher (2003)
	1

	Rahezek & Schibler (2012)
	1

	Töchterle et al. (2011)
	1


 


Table S3. Averaged model evaluation results on habitat suitability from the 20 different occurrences and pseudo-sampling strategies used. AUC values ranged from 0.82 to 0.93, Kappa values from 0.39 to 0.72, and TSS values from 0.49 to 0.77. All five environmental variable data sets exhibited the highest AUC and TSS values (AUC > 0.9 and TSS > 0.69) for the proportional occurrence sampling and the highest Kappa values for the random occurrence and weak density-dependent pseudo-absence sampling. The strategies selected for the population simulation are indicated with an asterisk.
	
	AUC
	Kappa
	TSS

	Climate only, strong density-dependent pseudo-absence sampling
	0.823
	0.494
	0.494

	Climate only, medium density-dependent pseudo-absence sampling
	0.860
	0.574
	0.574

	Climate only, weak density-dependent pseudo-absence sampling *
	0.883
	0.627
	0.627

	Climate only, random pseudo-absence sampling
	0.907
	0.389
	0.691

	Slope heterogeneity, strong density-dependent pseudo-absence sampling
	0.882
	0.608
	0.608

	Slope heterogeneity, medium density-dependent pseudo-absence sampling
	0.909
	0.678
	0.678

	Slope heterogeneity, weak density-dependent pseudo-absence sampling *
	0.926
	0.724
	0.724

	Slope heterogeneity, random pseudo-absence sampling *
	0.934
	0.424
	0.773

	Slope mean, strong density-dependent pseudo-absence sampling
	0.875
	0.594
	0.594

	Slope mean, medium density-dependent pseudo-absence sampling
	0.903
	0.666
	0.666

	Slope mean, weak density-dependent pseudo-absence sampling
	0.920
	0.713
	0.713

	Slope mean, random pseudo-absence sampling
	0.930
	0.408
	0.761

	Slope suitable binary, strong density-dependent pseudo-absence sampling
	0.836
	0.532
	0.532

	Slope suitable binary, medium density-dependent pseudo-absence sampling
	0.874
	0.614
	0.614

	Slope suitable binary, weak density-dependent pseudo-absence sampling *
	0.898
	0.669
	0.669

	Slope suitable binary, random pseudo-absence sampling *
	0.923
	0.386
	0.738

	Slope suitable count, strong density-dependent pseudo-absence sampling
	0.868
	0.581
	0.581

	Slope suitable count, medium density-dependent pseudo-absence sampling
	0.899
	0.660
	0.660

	Slope suitable count, weak density-dependent pseudo-absence sampling
	0.917
	0.709
	0.709

	Slope suitable count, random pseudo-absence sampling
	0.929
	0.395
	0.766


 


Table S4. Boyce values of the validation from the hindcasted habitat suitability and the fossil records. The left column shows the values for fossils within the time span of each interval and is calculated with the function implemented in the ‘ecospat’ R-package (Di Cola et al., 2017). The second column shows the values for the modified function to account for spatial uncertainty. The Boyce index ranges from -1 to 1: a value of 0 indicates a predictive performance not better than random, values near -1 indicate a predictive performance inferior to a random model, and values near 1 indicate a good performance (Hirzel et al., 2006). The strategies selected for the population simulation are indicated with an asterisk.

	
	Boyce value normal
	Boyce value modified

	Climate only, weak density-dependent (dens-dep.) pseudo-absence sampling (PAS) *
	0.237
	0.465

	Slope mean, weak dens-dep. PAS
	0.395
	0.310

	Slope heterogeneity, weak dens-dep. PAS *
	0.421
	0.517

	Slope suitable binary, weak dens-dep. PAS *
	0.186
	0.337

	Slope suitable count, weak dens-dep. PAS
	0.321
	0.428

	Climate only, medium dens-dep. PAS
	0.223
	0.523

	Slope mean, medium dens-dep. PAS
	0.448
	0.347

	Slope heterogeneity, medium dens-dep. PAS
	0.447
	0.592

	Slope suitable binary, medium dens-dep. PAS
	0.222
	0.357

	Slope suitable count, medium dens-dep. PAS
	0.320
	0.463

	Climate only, strong dens-dep. PAS
	0.184
	0.503

	Slope mean, strong dens-dep. PAS
	0.466
	0.486

	Slope heterogeneity, strong dens-dep. PAS
	0.494
	0.657

	Slope suitable binary, strong dens-dep. PAS
	0.262
	0.339

	Slope suitable count, strong dens-dep. PAS
	0.393
	0.527

	Climate only, random PAS
	0.085
	0.363

	Slope mean, random PAS
	0.171
	0.496

	Slope heterogeneity, random PAS *
	0.371
	0.681

	Slope suitable binary, random PAS *
	0.409
	0.344

	Slope suitable count, random PAS
	0.146
	0.624 
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Figure S8. Habitat suitability map for the Northern chamois today (a) and 20,000 years BP (b) in Central Europe, based on the best-performing habitat suitability model (HSM) scenario at a resolution of 0.0083°. The white points represent fossil records between 20,000 to 18,000 years BP and 2,000 to 0 years BP (today). The predicted suitability values per cell are averaged from all ten runs and four modeling techniques (GLM, GAM, GBM, RF). The fossils around the Massif Central at 20,000 years BP lie in an area with relatively low habitat suitability. Human overexploitation probably pushed the chamois toward alpine areas after the Neolithic (Baumann et al., 2005), and the ecological niche the chamois occupies today is therefore different from those during the last glaciation. Incorrect identification of the fossils could have additionally resulted in “false positives”. Cells covered by glaciers (Seguinot et al., 2018) are set as non-suitable habitat (habitat suitability of 0). All scenarios predicted suitable habitat during the last glaciation (20,000 years BP) around the Alps. The largest areas were at the south-western edge of the Alps, in the central-southern and south-eastern part of the Alps, and in the Dinaric Alps. Additionally, larger suitable areas existed in the Massif Central, Jura, Vosges and Black Forest. The map is projected in the world geodetic system 1984 (WGS 84).
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Table S5. Median dispersal ability (d) (95% quartile range in brackets) for the Weibull distribution parameter settings explored to simulate dispersal in the model GEN3SIS (Hagen et al., 2021) per time step of 100 years. The Weibull distribution with a shape of 1 corresponds to the exponential distribution.

	 
	 
	Range (scale parameter in the function)

	 
	 
	8 km
	10 km
	16 km
	25 km
	50 km
	80 km

	 
	 
	 
	 
	 
	 
	 
	 

	Shape
	1 (more variability in d)
	5.5 km
(0.2–29.5)
	6.9 km
(0.3–36.9)
	11.1 km
(0.4–59.0)
	17.3 km
(0.6–92.2)
	34.7 km
(1.3–184.4)
	55.5 km
(2.0–295.1)

	
	2.5 (less variability in d)
	6.9 km
(1.8–13.5)
	8.6 km
(2.3–16.9)
	13.8 km
(3.7–27.0)
	21.6 km
(5.7–42.1)
	43.2 km
(11.5–84.3)
	69.0 km
(18.4–134.8)


 



Table S6. Dispersal costs for different landscape feature scenarios of the population simulation: four connectivity scenarios are used. The minimum cost to cross land is 1 for all scenarios, while the maximum cost to cross land (MC) varies. Scenarios 2 and 3 build on scenario 1, which scales the dispersal costs in a manner reciprocal to the habitat suitability (HS). (a), (b) and (c) in scenarios 1–4 indicate different maximum costs to cross land and glaciers.

	 
	 
	Scenario 1: Scaled dispersal costs reciprocal to habitat suitability (HS)
	 
	Scenario 2: 
Scaled dispersal costs reciprocal to HS + large rivers as barriers
	 
	Scenario 3: 
Scaled dispersal costs reciprocal to HS + medium-sized rivers as barriers
	 
	Scenario 4: Dispersal costs identical for all unsuitable cells (except glaciers)

	 
	 
	a
	b
	c
	 
	a
	b
	c
	 
	a
	b
	c
	 
	a
	b
	 

	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 

	Max. cost to cross land (MC)
	 
	5
	10
	10
	 
	5
	10
	10
	 
	5
	10
	10
	 
	1.25
	1.25
	 

	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 

	Cost to cross glaciers
	 
	10
	5
	10
	 
	10
	5
	10
	 
	10
	5
	10
	 
	10
	5
	 

	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 

	Barriers
	 
	No
	No
	No
	 
	Yes: Large rivers according to their elevation.
	 
	Yes: Rivers according to the Strahler order (Horton, 1945; Strahler, 1952).
	 
	No
	No
	 

	 
	 
	 
	 
	 
	 
	Elevation [m a.s.l.]:
0–500
501–1000
1001–1500
1501–2000
2001–2500
2501–3000
	Cost:
3*MC
MC–0.1
MC–0.2
MC–0.3
HS
HS
	 
	Order:
1
2
3
4–9
	Cost:
HS
MC
2*MC
3*MC
	 
	 
	 
	 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	






Table S7. Overview of the parameters used for the different GEN3SIS simulations and the number (#) of different settings. In total, we ran 1,320 simulations with different settings. Details about landscape connectivity are shown in Table S6. We tested two scenarios for the speed of the accumulation of divergence. First, the divergence was increased at the same speed then reduced, assuming a fast mixing of the entire population (resulting quickly in panmixia). Second, the divergence was increased twice as fast as it was decreased, assuming limited gene flow within populations, e.g., through philopatry (Esler, 2000; Schaschl et al., 2003).
	 
	Parameter
	# of different settings

	Habitat suitability
	Terrain slope variables
	3

	
	Occurrence / pseudo-absence sampling strategy
	2 (except for one slope variable only 1)

	 
	 
	 

	Dispersal
	Shape (Weibull distribution)
	2

	
	Range
	6

	 
	 
	 

	Landscape features
	Connectivity
	4

	
	Costs to cross land/glaciers
	3 (except for one connectivity setting only 2)

	 
	 
	 

	Genetics
	Speed of divergence
	2
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Figure S9. Fit between simulated divergence and the genomic differentiation of all simulations of Northern chamois across the Alps for the two metrics used. x-axis: Procrustes correlation based on the simulated and genetic distance matrices; y-axis: Cramer’s V for the comparison between the group assignment for the simulations using hierarchical clustering and the group assignment for the genetic data using ADMIXTURE. Each simulation is colored (a) according to the dispersal ability (Disp. Ab.) or (b) according to the landscape features (Land. Feat.) used: geographic distance (Geogr. Dist.); habitat suitability with large barrieres (HS + lBarr.); habitat suitability with medium barrieres (HS + mBarr.), and habitat suitability (HS). Simulations with a high dispersal ability resulted in one cluster across the Alps and thus had a fit of 0 and were excluded from this figure.


Table S8. Results of the generalized linear model (GLM) used to analyze the importance of the single parameters in the fit between the simulations and the genetic data. Log odds with an asterisk indicate p-values < 0.05. The reference parameter settings are specified with Ref. level and indicate the parameters of the best-performing simulation. Most of the deviance was explained by the dispersal range.
	 
	Parameter name
	Parameter setting
	Log-odds
	Deviance explained

	Habitat suitability
	Terrain slope
	Slope suitable bin
	0.626 *
	<0.001

	
	
	Slope heterogeneity
	0.659 *
	

	
	
	No slope
	Ref. level
	

	
	Sampling
	Random occurrence sampling and weak density-dependent pseudo-absence sampling
	-0.832 *
	0.017

	
	
	Proportional occurrence and random pseudo-absence sampling
	Ref. level
	

	 
	 
	 
	 
	 

	Dispersal
	Range [km/100 years]
	8
	Ref. level
	0.388

	
	
	10
	-0.559 *
	

	
	
	16
	-1.207 *
	

	
	
	25
	-2.189 *
	

	
	
	50
	-3.803 *
	

	
	
	80
	-19.647 
	

	
	Weibull shape
	1
	Ref. level
	0.035

	
	
	2.5
	0.867 *
	

	 
	 
	 
	 
	 

	Landscape features
	Connectivity
	Suitability only (scenario 1)
	0.162
	0.108

	
	
	Large rivers as barriers (scenario 2)
	1.088 *
	

	
	
	Medium + large rivers as barriers (scenario 3)
	1.363 *
	

	
	
	All unsuitable cells identical (scenario 4)
	Ref. level
	

	
	Costs to cross land/glaciers
	Land max. 5; glaciers 10
	-0.203 *
	< 0.001

	
	
	Land max. 10, glaciers 5
	-0.151 *
	

	 
	
	Land max. 10, glaciers 10
	Ref. level
	

	 
	 
	 
	 
	 

	Genetics
	Speed of divergence
	1
	Ref. level
	0.072

	
	
	2.5
	1.220 *
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Figure S10. Violin plots showing the fit between the genomic differentiation and the simulated divergence of Northern chamois in the Alps using different median dispersal distances and the landscape features. Points correspond to the median. Scenario 1 included the habitat suitability (HS), scenario 2 the HS plus large rivers as barriers, scenario 3 the HS plus medium rivers as barriers and scenario 4 mainly the geographic distances.  The model fit increased when barriers were included and generally decreased with increasing dispersal distance. Only data for simulations with the Weibull shape of 1 (as the best-performing simulation) are shown.


[bookmark: _heading=h.tyjcwt]5 - References 

Aellen, V., Arlettaz, R., Andresbeck, M. B., Berthoud, G., Blant, J.-D., Blant, M., … Zwahlen, R. (1995). Säugetiere der Schweiz. Basel, CH: Springer.
Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43(6), 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x
Araújo, M. B., & New, M. (2007). Ensemble forecasting of species distributions. Trends in Ecology & Evolution, 22(1), 42–47. https://doi.org/10.1016/J.TREE.2006.09.010
Araújo, M. B., Pearson, R. G., Thuiller, W., & Erhard, M. (2005). Validation of species-climate impact models under climate change. Global Change Biology, 11(9), 1504–1513. https://doi.org/10.1111/j.1365-2486.2005.01000.x
Aulagnier, S., Giannatos, G., & Herrero, J. (2008). Rupicapra rupicapra. The IUCN Red List of Threatened Species, e.T39255A1. 
Barbet-Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution, 3(2), 327–338. https://doi.org/10.1111/j.2041-210X.2011.00172.x
Baumann, M., Babotai, C., & Schibler, J. (2005). Native or Naturalized? Validating Alpine Chamois Habitat Models with Archaeozoological Data. Ecological Applications, 15(3), 1096–1110. https://doi.org/10.1890/02-5184
Baddeley, A., & Turner, R. (2005). spatstat: an R package for analyzing spatial point patterns. Journal of Statistical Software, 12(6), 1–42.
Boyce, M. S., Vernier, P. R., Nielsen, S. E., & Schmiegelow, F. K. (2002). Evaluating resource selection functions. Ecological Modelling, 157(2–3), 281–300. https://doi.org/10.1016/S0304-3800(02)00200-4
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Brewer, S., Jackson, S. T., & Williams, J. W. (2012). Paleoecoinformatics: applying geohistorical data to ecological questions. Trends in Ecology & Evolution, 27(2), 104–112. https://doi.org/10.1016/J.TREE.2011.09.009
Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., & Cresko, W. A. (2013). Stacks: an analysis tool set for population genomics. Molecular Ecology, 22(11), 3124–3140. https://doi.org/10.1111/mec.12354
Catchen, J. M., Amores, A., Hohenlohe, P., Cresko, W., & Postlethwait, J. H. (2011). Stacks: building and genotyping loci de novo from short-read sequences. G3: Genes, Genomes, Genetics, 1(3), 171–182. https://doi.org/10.1534/g3.111.000240
Cech, P., & Döppes, D. (1997). Pliozäne und Pleistozäne Faunen Oesterreichs : ein Katalog der wichtigsten Fossilfundstellen und ihrer Faunen. Wien, AT: Verlag der Österreichischen Akademie der Wissenschaften.
Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46.

Crezzini, J., Boschin, F., Boscato, P., & Wierer, U. (2014). Wild cats and cut marks: Exploitation of Felis silvestris in the Mesolithic of Galgenbühel/Dos de la Forca (South Tyrol, Italy). Quaternary International, 330, 52–60. https://doi.org/10.1016/J.QUAINT.2013.12.056
Croft, S., Chauvenet, A. L. M., & Smith, G. C. (2017). A systematic approach to estimate the distribution and total abundance of British mammals. PLoS ONE, 12(6). https://doi.org/10.1371/JOURNAL.PONE.0176339
Cvitkušić, B., Radović, S., & Vujević, D. (2018). Changes in ornamental traditions and subsistence strategies during the Palaeolithic-Mesolithic transition in Vlakno cave. Quaternary International, 494, 180–192. https://doi.org/10.1016/J.QUAINT.2017.08.053
Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F. T., D’Amen, M., Randin, C., … Guisan, A. (2017). ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography, 40(6), 774–787. https://doi.org/doi:10.1111/ecog.02671
Esler, D. (2000). Applying metapopulation theory to conservation of migratory birds. Conservation Biology, 14(2), 366–372. https://doi.org/10.1046/j.1523-1739.2000.98147.x
Fahlke, J. M. (2009). Der Austausch der terrestrischen Säugetierfauna an der Pleistozän/Holozän-Grenze in Mitteleuropa. Rheinischen Friedrich-Wilhelms-Universität Bonn.
Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1), 38–49.
Freeman, E. A., & Moisen, G. (2008). PresenceAbsence: An R package for presence absence analysis. Journal of Statistical Software. 23(11), 1–31. https://doi.org/10.18637/jss.v023.i11
Gagnon, M., Yannic, G., Perrier, C., & Côté, S. D. (2019). No evidence of inbreeding depression in fast declining herds of migratory caribou. Journal of Evolutionary Biology, 32(12), 1368–1381. https://doi.org/10.1111/jeb.13533
GBIF.org. (2019). GBIF Occurrence Download. https://doi.org/10.15468/dl.rj9loq
Greenwell, B., Boehmke, B., Cunningham, J., & Developers GBM. (2019). gbm: Generalized Boosted Regression Models. Retrieved from https://cran.r-project.org/package=gbm
Guisan, A., Thuiller, W., & Zimmermann, N. E. (2017). Habitat suitability and distribution models. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/9781139028271
Guo, C., Lek, S., Ye, S., Li, W., Liu, J., & Li, Z. (2015). Uncertainty in ensemble modelling of large-scale species distribution: Effects from species characteristics and model techniques. Ecological Modelling, 306, 67–75. https://doi.org/10.1016/J.ECOLMODEL.2014.08.002
Hagen, O., Flück, B., Fopp, F., Cabral, J. S., Hartig, F., Pontarp, M., … Pellissier, L. (2021). gen3sis: A general engine for eco-evolutionary simulations of the processes that shape Earth’s biodiversity. PLoS Biology, 19(7), e3001340. https://doi.org/10.1371/journal.pbio.3001340
Hanssen, A. J., & Kuipers, W. J. (1965). On the relationship between the frequency of rain and various meteorological parameters. Meded Verhand, 81, 2–15.
Hastie, T., & Tibshirani, R. (1990). Generalized Additive Models. New York, NY: Chapman and Hall. https://doi.org/10.1201/9780203753781
Hastie, T. (2019). gam: Generalized Additive Models. Retrieved from https://cran.r-project.org/web/packages/gam/index.html
Heinrich, D., von den Driesch, A., & Benecke, N. (2016). Holozängeschichte der Tierwelt Europas. https://doi.org/10.13149/001.mcus7z-2
Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C., & Guisan, A. (2006). Evaluating the ability of habitat suitability models to predict species presences. Ecological Modelling, 199(2), 142–152. https://doi.org/10.1016/J.ECOLMODEL.2006.05.017
Horton, R. E. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56(3), 275–370.
Iturbide, M., Bedia, J., & Gutiérrez, J. M. (2018). Background sampling and transferability of species distribution model ensembles under climate change. Global and Planetary Change, 166, 19–29. https://doi.org/10.1016/J.GLOPLACHA.2018.03.008
Jombart, T. (2008). adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24(11), 1403–1405. https://doi.org/10.1093/bioinformatics/btn129
Jombart, T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics, 11(1), 94. https://doi.org/10.1186/1471-2156-11-94
Kind, C.-J. (2006). Die letzten Jäger und Sammler. Das Mesolithikum in Baden–Württemberg. Denkmalpflege in Baden-Württemberg–Nachrichtenblatt Der Landesdenkmalpflege, 35(1), 10–17.
Klindžić, R. Š., Radović, S., TežaN-Gregl, T., Šlaus, M., Perhoč, Z., Altherr, R., … VuNosavljević, N. (2015). Late upper Paleolithic, early Mesolithic and early Neolithic from the cave site Zemunica near Bisko (Dalmatia, Croatia). Eurasian Prehistory, 12(1–2), 3–46.
Landis, J. R., & Koch, G. G. (1977). An Application of Hierarchical Kappa-type Statistics in the Assessment of Majority Agreement among Multiple Observers. Biometrics, 33(2), 363. https://doi.org/10.2307/2529786
Leuzinger, U., Affolter, J., Beck, C., Benguerel, S., Cornelissen, M., Gubler, R., … Jagher, R. (2016). Der Frühmesolithische Abri Berglibalm im Bisistal, Gemeinde Muotathal (SZ). In U. Niffeler (Ed.), Jahrbuch Archäologie Schweiz 99 (pp. 7–26). Basel, CH: Archäologie Schweiz.
Liaw, A., & Wiener, M. (2018). randomForest: Breiman and Cutler’s random forests for classification and regression. Retrieved from https://cran.r-project.org/web/packages/randomForest/index.html
Li, H. (2014). Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics, 30, 2843–2851. https://doi.org/10.1093/bioinformatics/btu356
Liu, C., Newell, G., & White, M. (2019). The effect of sample size on the accuracy of species distribution models: considering both presences and pseudo-absences or background sites. Ecography, 42(3), 535–548. https://doi.org/10.1111/ecog.03188
Liu, C., White, M., & Newell, G. (2013). Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography, 40(4), 778–789. https://doi.org/10.1111/jbi.12058
Mastretta‐Yanes, A., Arrigo, N., Alvarez, N., Jorgensen, T. H., Piñero, D., & Emerson, B. C. (2015). Restriction site‐associated DNA sequencing, genotyping error estimation and de novo assembly optimization for population genetic inference. Molecular Ecology Resources, 15(1), 28–41. https://doi.org/10.1111/1755-0998.12291
Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized Linear Models. Journal of the Royal Statistical Society. Series A (General), 135(3), 370–384. JSTOR. https://doi.org/10.2307/2344614
Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S., & Hoekstra, H. E. (2012). Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE, 7(5), e37135. https://doi.org/10.1371/journal.pone.0037135
Phillips, S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., & Ferrier, S. (2009). Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications, 19(1), 181–197. https://doi.org/10.1890/07-2153.1
Pucher, E. (2003). Einige Bemerkungen zu den bisher übergebenen Knochenaufsammlungen aus dem Keutschachersee in Kärnten. In B. Samonig (Ed.), Die Pfahlbaustation des Keutschacher Sees (pp. 263–282). Wien, AT: Verlag der Österreichischen Akademie der Wissenschaften.
Rahezek, A., & Schibler, J. (2012). Die Siedlungsreste aus dem jüngeren Neolithikum von Zug-Vorstadt, Rettungsgrabung 1991. In A. B. Widmer (Ed.), Jahrbuch Archäologie Schweiz 95 (pp. 62–67). Basel, CH: Archäologie Schweiz.
Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-C., & Müller, M. (2020). pROC: Display and Analyze ROC Curves. Retrieved from https://cran.r-project.org/web/packages/pROC/index.html
Schaschl, H., Kaulfus, D., Hammer, S., & Suchentrunk, F. (2003). Spatial patterns of mitochondrial and nuclear gene pools in chamois (Rupicapra r. rupicapra) from the Eastern Alps. Heredity, 91(2), 125–135. https://doi.org/10.1038/sj.hdy.6800290
Seguinot, J., Ivy-Ochs, S., Jouvet, G., Huss, M., Funk, M., & Preusser, F. (2018). Modelling last glacial cycle ice dynamics in the Alps. The Cryosphere, 12(10), 3265–3285. https://doi.org/10.5194/tc-12-3265-2018
Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin, 63(11), 1117–1142.
Svenning, J.-C., Fløjgaard, C., Marske, K. A., Nógues-Bravo, D., & Normand, S. (2011). Applications of species distribution modeling to paleobiology. Quaternary Science Reviews, 30(21–22), 2930–2947. https://doi.org/10.1016/J.QUASCIREV.2011.06.012
Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285–1293.
Töchterle, U., Bachnetzer, T., Brandl, M., Deschler-Erb, S., Goldenberg, G., Krismer, M., … Vavtar, F. (2011). 2.2 Der Kiechlberg bei Thaur-eine neolithische bis frühbronzezeitliche Höhensiedlung. In G. Goldenberg, U. Töchterle, K. Oeggl, & A. Krenn-Leeb (Eds.), Forschungsprogramm HiMAT. Neues zur Bergbaugeschichte der Ostalpen (pp. 31–58). Wien, AT: Österreichische Gesellschaft für Ur- und Frühgeschichte.
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