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Abstract: Due to increasing rates of antibiotic resistance and very few novel developments of an-
tibiotics, it is crucial to understand the mechanisms of resistance development. The aim of the
present study was to investigate the adaptation of oral bacteria to the frequently used oral anti-
septic chlorhexidine digluconate (CHX) and potential cross-adaptation to antibiotics after repeated
exposure of supragingival plaque samples to subinhibitory concentrations of CHX. Plaque samples
from six healthy donors were passaged for 10 days in subinhibitory concentrations of CHX, while
passaging of plaque samples without CHX served as control. The surviving bacteria were cultured
on agar plates and identified with Matrix-assisted Laser Desorption/Ionization-Time of Flight-Mass
spectrometry (MALDI-TOF). Subsequently, the minimum inhibitory concentrations (MIC) of these
isolates toward CHX were determined using a broth-microdilution method, and phenotypic antibiotic
resistance was evaluated using the epsilometertest. Furthermore, biofilm-forming capacities were
determined. Repeated exposure of supragingival plaque samples to subinhibitory concentrations
of CHX led to the selection of oral bacteria with 2-fold up to 4-fold increased MICs toward CHX.
Furthermore, these isolates showed up to 12-fold increased MICs towards some antibiotics such as
erythromycin and clindamycin. Conversely, biofilm-forming capacity was decreased. In summary,
this study shows that oral bacteria are able to adapt to CHX, while also decreasing their susceptibility
to antibiotics.

Keywords: chlorhexidine; antibiotic resistance; antiseptic; biofilm

1. Introduction

The World Health Organization (WHO) declared that resistance to antimicrobials is
an increasing global threat because the efficacy of antimicrobial therapy is severely compro-
mised as a result of the lack of development of new classes of antibiotics [1]. The Review
on Antimicrobial Resistance from 2016 predicted up to 10 million deaths connected to
antimicrobial resistance by the year 2050—more than those caused by cancer [2]. Antibi-
otic resistance is not a novel phenomenon and some antibiotic resistance genes that were
detected are thought to be 30,000 years old [3], thereby indicating that they existed long
before the use and discovery of antibiotics as therapeutic agents. Compared to bacteria with
resistance to individual antibiotics, multi-resistant pathogens which are no longer treatable
pose a greater health risk [4]. Recently, there has been a discussion concerning a causal
context between resistance toward antiseptics and cross-resistance toward antibiotics [5–9].
For instance, cross-resistances between antiseptics such as the quaternary ammonium
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compound (QAC) benzalkonium chloride and antibiotics have been described as being
based on the mechanism of enhanced efflux [10], as well as the reduction in porins and the
stabilization of the cell surface itself [11]. In the fields of dentistry and oral care, antiseptics
are frequently used for oral biofilm control [12,13], with bisbiguanide chlorhexidine diglu-
conate (CHX) being considered the gold standard [8,14]. Recently, it was shown by our
group that microorganisms display the ability to adapt to antiseptics and are thereby able to
also increase their biofilm formation. While major changes in antibiotic susceptibility could
not be detected [15], the frequent treatment with subinhibitory CHX concentrations led to a
genetic adaptation in the sense of the upregulation of efflux pumps in the bacteria [7].

However, these studies were conducted on planktonic bacteria in single cultures, while
the oral cavity harbors more than 700 bacterial taxa which are organized as biofilms [16].

The growth of bacteria in biofilms differs significantly from planktonic growth and
microorganisms can evolve genetically due to horizontal gene transfer [17]. In this context,
biofilms are said to increase the resistance against environmental threats such as the
increased concentration of antibiotics or antiseptics with the mechanism of horizontal gene
transfer [18].

Furthermore, Mao et al. recently showed that multi-resistant phenotypes with addi-
tional resistance to CHX could be isolated from microcosm biofilms that were cultured
in vitro and subjected to antiseptic treatment twice daily [19].

A threshold value of the MIC for defining the resistance against CHX has not yet been
established [20], but the adaption of oral bacteria to the antiseptic has been observed [15].
Different mechanisms of action are discussed for such adaptations, including changes in
the membrane that complicate the penetration of CHX into the inside of the cell and the
expression of multidrug efflux pumps [21]. Such adaptions could be promoted by the
mutagenicity of substances. Although it has not yet been clarified whether CHX possesses
mutagenic effects, CHX was highlighted as being the only bisguanide that showed increased
mutagenicity [22]. Furthermore, different studies have shown an increased mitotic crossing
that is over-induced by the presence of CHX [23] and, in animal experiments, there were
changes in cells from the blood and the kidneys after treatment with CHX [24]. Nevertheless,
there are experiments showing that there is negative genotoxic potential CHX [25].

At present, there is too little knowledge to assess the risks associated with the
widespread use of CHX in dentistry with regard to selection for antibiotic-resistant pheno-
types or the development of cross-resistances to antibiotics.

Therefore, the present study aimed to investigate the phenotypic adaptation of bacteria
from supragingival plaque to CHX upon multiple exposures to subinhibitory concentra-
tions in vitro. Furthermore, cross-resistance to antibiotics and biofilm-forming capacity
were assessed.

2. Materials and Methods
2.1. Study Design

Supragingival plaque samples were collected from six healthy volunteers (P1–P6) who
had been recruited in an earlier clinical study approved by the ethical committee of the
University of Freiburg (604/16). To be included, the test persons had to be aged between
18 and 80, be non-smokers, do not suffer from systemic diseases or conditions, display
periodontal and dental health (no decayed, missing, or filled teeth), and have not used
antibiotics in the last six months. After 24 h of abstaining from oral hygiene measures,
plaque samples were taken from different teeth, pooled in 1.5 mL reduced transport fluid
(RTF), and stored at −80 ◦C.

2.2. Passaging of Supragingival Plaque with Subinhibitory Concentrations of CHX and Isolation
of Bacteria

Supragingival plaque samples were thawed in a water bath at 36 ◦C. Afterward, a
dilution series (10−1 to 10−3) was prepared in Peptone-Yeast-Bouillon (PY) (Merck, Darm-
stadt), and aliquots from each dilution step were plated on Columbia blood agar (CBA)
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plates and incubated for five days at 36 ◦C under aerobic conditions (5% CO2). Colonies
were quantified visually, discriminated according to their respective colony morphology
and hemolysis behavior, and separated on fresh CBA plates. These pure cultures were
subsequently identified using matrix-assisted laser desorption/ionization time-of-flight
mass spectrometry (MALDI-TOF MS) on a MALDI Biotyper® sirius (Bruker, Billerica, MA,
USA), as described previously [26]. The bacteria were stored at −80 ◦C.

A 96-well-microtiter-plate (Greiner bio-one, Frickenhausen, Germany) was inoculated
with 200 µL brucella broth (BBF) (Becton Dickinson, Francis Lakes) containing CHX (Glaxo-
SmithKline, London-Brentford, GB) in concentrations from 0.02% to 1.5 × 10−5% CHX to
reach a volume of 100 µL per well. Subsequently, 10 µL of the 1:100 diluted plaque sample,
which was defrosted before, was added to each well, and thoroughly mixed by pipetting up
and down. The well plates were incubated for 24 h at 36 ◦C under aerobic conditions (5%
CO2). Afterward, the minimum inhibitory concentrations (MICs) were assessed and the
bacterial population from the well with the highest antiseptic concentration still exhibiting
bacterial growth (Sub-MIC) was used for the inoculation of the next passage. The content
of the Sub-MIC well was used as the inoculum for a newly prepared microtiter plate and
subsequently, the next passage of MIC evaluation and growth was conducted as described
previously. This procedure was executed for 10 passages (P1 to P10). At the end of pas-
saging, each well was plated on CBA and incubated for five days at 36 ◦C under aerobic
conditions (5% CO2). These experiments were conducted in quadruplicate. Cultures were
identified by MALDI-TOF MS as described above and stored at −80 ◦C.

2.3. Minimum Inhibitory Concentrations (MICs) of Bacterial Isolates before and after Passaging
with CHX

For evaluation of the effects of passaging supragingival plaque samples in subin-
hibitory concentrations of CHX, MICs of the isolates before and after passaging were
determined for CHX. These isolates were subsequently cultivated on Columbia blood agar
(CBA) plates for 24 h at 36 ◦C in an aerobic atmosphere with 5% CO2.

The assorted bacteria were cultured from their stocks at −80 ◦C in Barnes glucose
phosphate medium mixed with 15% glycerol. Afterward, the colonies were suspended in
NaCl (0.9%) yielding 0.5 MacFarland (corresponding to approximately 1 × 108 CFU/mL).
BBF served as a culture medium for the MIC-Testing. The suspension was diluted 1:10 in
BBF (1 × 107 CFU/mL) and 5 µL of the dilution were inoculated in a 96-well-microtiter-
plate (Greiner bio-one, Frickenhausen, Germany) with 100 µL of BBF so that the final
concentration of the inoculum was 5× 105 CFU/mL. The concentration of 5× 105 CFU/mL
was ensured with an inoculum control.

The MIC-Testing was conducted with eight concentrations from 0.02% CHX (1:10) to
1.5 × 10−5% CHX (1:1280). The MIC was defined as the lowest concentration of CHX at
which bacterial growth inhibition was apparent [27]. A total of 10% of the volume of the
wells was spread out on CoBl and incubated for five days at 36 ◦C and 5% CO2 after which
the cultures were counted, and the minimum bactericidal concentration (MBC) was identi-
fied as the well in which 99.9% growth was inhibited. All tests were performed sixteenfold.

2.4. Biofilm Forming Capacity

The biofilm-forming capacity of the asserted bacteria isolated before and after passag-
ing in CHX was determined, as described in detail earlier [28,29]. The asserted bacteria
were cultured from their stocks at−80 ◦C in Barnes glucose phosphate medium mixed with
15% glycerol. Afterward, the colonies were suspended in NaCl (0.9%) yielding 0.5 MacFar-
land (corresponding to about 1× 108 CFU/mL). Tryptic-soy-broth (TSB) served as a culture
medium for the biofilm assay, which was conducted using a microtiter plate assay [29,30].
The suspension was diluted 1:10 in TSB (1 × 107 CFU/mL). A total of 5 µL of the dilution
were inoculated in a 96-well-microtiter-plate (Greiner bio-one, Frickenhausen, Germany)
with 100 µL of TSB so that the final concentration of the inoculum was 5 × 105 CFU/mL.
The concentration of 5 × 105 CFU/mL was ensured with an inoculum control.
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Subsequently, the wells of polystyrene 96-well tissue-culture plates (Greiner bio-one,
Frickenhausen, Germany) were filled with 100 µL of the diluted isolates and the diluted
antiseptic (final concentration of 0.02%–1,5 × 10−5% CHX). The plates were incubated for
24 h at 36 ◦C in an aerobic atmosphere with 5% CO2 after which 100 µL of medium were
changed and the plates were incubated for another 24 h. After draining the culture medium,
the 96-well-plates were washed three times using 300 µL NaCl to remove the non-adherent
bacteria and air-dried for 30 min. The adherent microorganisms that remained were stained
with 0.1% gentian-violet (Carl Roth GmbH, Karlsruhe, Germany) for 10 min. Excessive dye
was removed by rinsing the plates with distilled water. Afterward, the plates were dried
for 60 min at 36 ◦C. The dye was resolubilized by the addition of 50 µL of absolute ethanol
(99.9%) (Honeywell, Muskegon, USA) for a density check in each well. The optical density
was measured with a Tecan Infinite-M200Plate-Reader (Tecan, Crailsheim, Germany) and
proceeded at a wavelength of 595 nm (OD595). All tests were conducted sixteenfold and
the mean values were detected.

2.5. Antibiotic Susceptibility Testing

Antibiotic susceptibility was tested using the epsilometertest (Etest). The follow-
ing thirteen antibiotics were tested: erythromycin, clindamycin, penicillin G, ampicillin,
gentamicin, tetracycline, vancomycin, meropenem, ciprofloxacin, cefuroxime, tigecycline,
moxifloxacin, and amoxicillin. For the testing, an overnight culture of the isolate was
suspended in 0.9% NaCl to a turbidity of 0.5 McFarland. Thereafter, Müller-Hinton with
horse blood Plates (MHPBM) were inoculated for Streptococcus oralis isolates and brucella
blood agar plates (BBA) for Granulicatella adiacens isolates. The testing strips were put
on the plates, which were then incubated for 24 h at 36 ◦C and 5% CO2. The MIC of the
antibiotics was determined where the ellipse was cutting the scale and tests were repeated
when the MICs were different by two or more levels.

2.6. Statistical Analysis

For descriptive analyses, the mean, median, and standard deviation were computed.
Bar charts were used for the graphical presentation of the results.

The range of values was previously tested for distribution. With the distribution
classified as nonparametric, the statistics were performed as a non-parametric calculation.

The Kruskal–Wallis-Test was used for each state of passage to check for differences
between concentration groups concerning the biofilm values as well as the MIC and MBC.
For pairwise tests in subgroups, the Wilcoxon rank-sum test was applied. For the antibiotic
resistance analysis of G. adiacens, the t-test was used because a non-parametric test does
not have enough power due to the low case numbers. For multiple statistical tests, the
Bonferroni correction was used.

The calculations were performed with the statistical software STATA 17.0 (StataCorp,
College Station, TX, USA) and the charts were generated using GraphPad Prism 9.2.0
(GraphPad Software, San Diego, CA, USA).

3. Results
3.1. Selection of Isolates by Passaging in Sub-Inhibitory Concentrations of CHX

After passaging the samples of supragingival plaque for 10 days in subinhibitory
CHX-concentrations, only bacteria identified as Streptococcus oralis were found in the
biofilms of all six samples. Another isolate that was not consistently found except in one
of the experiments was identified as G. adiacens. The isolates of G. adiacens after treatment
showed an increased MIC of CHX by four levels (from 0.00062% CHX to 0.0025% CHX)
and MBC by two levels (from 0.0025% CHX to 0.005% CHX) in comparison to the original
isolates (Figure 1). In contrast to the original before treatment with subinhibitory CHX
concentrations and to the growth control passaged without CHX, the S. oralis isolates
gained a reduced susceptibility to CHX by two (from 0.0025% CHX to 0.005% CHX)
and (from 0.0025% CHX to 0.01% CHX) four levels with regard to their MIC and MBC,
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respectively. The original isolates and the isolates from the growth control both showed
the same susceptibility so that an effect of the subinhibitory CHX concentrations could be
presumed (Figure 2). The exact rating-values of the MALDI-TOF-analysis are given in the
Supplementary Materials (Table S1).
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Figure 1. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)
of G. adiacens isolated before (Org) and after passaging, with and without the addition of chlorhexidine
(CHX). Values are depicted in percent of CHX. P5: Proband 5.

3.2. Biofilm-Forming Capacity

The biofilm-forming capacity was investigated without CHX and under the influence
of various subinhibitory CHX concentrations. The original isolates before passage, as well
as the original isolates after passaging without CHX, and the CHX-passaged isolates were
examined. For S. oralis isolates, no significant differences in biofilm formation occurred by
the 10-day passage without CHX compared to the original isolate. For the concentration
of 0.00032% CHX, 0.00015% CHX, and 0% CHX no statistically relevant differences were
detected. The isolate passaged 10 times (for 10 days, one day for each passaging) in
CHX showed no significant change in response to a CHX concentration of 0.00032% in
comparison to the original isolate. However, it showed a significant decrease in biofilm
formation as compared to the original germ for 0.00015% CHX (p = 0.0002) and 0% CHX
(p = 0.00001). When comparing the CHX-treated isolate to that of the growth control, there
were no significant differences in biofilm formation for the 0.00032% CHX and 0.00015%
CHX (p = 0.2420) concentrations, but for biofilm formation without CHX addition, the
values of the growth control isolate were higher. In summary, isolates after CHX-treatment
showed a tendency of being limited in their biofilm formation capacity (Figure 3).

G. adiacens showed a slight increase in the biofilm formation capacity after CHX-
passaging compared to the untreated bacterium. Due to the small sample numbers, it was
not possible to define how G. adiacens in general is changing its biofilm building capacity
after CHX-treatment (Figure 4).

3.3. Antibiotic Susceptibility Testing

When evaluating the Etests, differences depending on the passaging (with and without
CHX) of the isolates were discovered. The CHX concentrations from which the isolate was
obtained did not influence the phenotypic antibiotic resistance patterns. The susceptibility
of CHX-passaged S. oralis isolates towards erythromycin decreased significantly in com-
parison to that of the original isolates (p = 0.0016). The MIC of clindamycin also showed a
significant increase for the CHX-treated isolates compared to the untreated ones (p = 0.001).
An increase in the MIC values was also shown for amoxicillin (p = 0.0118) and ampicillin
(p = 0.0156). For the comparison of the initial isolate and the isolate after passaging without
CHX, there were significant diminutions of the susceptibility for the antibiotics amoxicillin
(p = 0.0159) and ampicillin (p = 0.0260). Between the individual sample throughputs, major
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differences were detected in the direction of increased as well as in the direction of de-
creased sensitivity for tetracycline (Figures 5 and 6). G. adiacens isolates exhibited lower
susceptibility to erythromycin (p = 0.00001) and clindamycin (p = 0.00001). Higher MICs
also appeared for penicillin G (p = 0.0497), tetracycline (p = 0.0075), cefuroxime (p = 0.0014),
and ciprofloxacin (p = 0.0227) (Figure 7). The actual values of the Etests have been added in
the Supplementary Materials (Table S2).
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Figure 2. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)
of the original S. oralis isolate and the isolates after passaging with and without the addition of
chlorhexidine (CHX). Values are depicted in percent of CHX. P1–P6: Probands 1–6.
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Figure 3. Biofilm formation at different subinhibitory concentrations of chlorhexidine (CHX). Graph-
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shown on the Y-axis. p-values in comparison to the original isolate (* significant difference).
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Figure 5. Antibiotic susceptibility testing of S. oralis isolates from Subject 1–Subject 3. Graphical
depiction of the difference in susceptibilities in levels between the original isolate and the isolates
after passaging with and without CHX. The levels are drawn on the X-axes, and the antibiotics are
shown on the Y-axes. P1–P3: Probands 1–3.
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shown on the Y-axes. P4–P6: Probands 4–6.
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4. Discussion

Because of the widespread use of antiseptics such as CHX in dental practice and oral
care products, there is increased clinical interest in whether bacteria in biofilms can adapt
to CHX and if this adaptation is accompanied by the development of cross-resistance to
antibiotics. Hence, the present study simulated the frequent exposure of dental plaque
bacteria to CHX by passaging biofilm samples in subinhibitory concentrations of CHX.
After the cultivation of the surviving microorganisms, the bacterial colonies visible on the
plates were classified according to chemical and morphological criteria and transferred into
pure cultures. Such modified microdilution methods have been used by other authors to
investigate the adaption of bacteria to antiseptics after frequent exposure to subinhibitory
concentrations [6,9,15,31,32].

The limitations of determining the bacterial diversity of natural niches on agar plates
have been reported for the culture technique in general [33,34]. In the present study, the
intensive treatment of the plaque samples with subinhibitory concentrations of CHX greatly
reduced the bacterial diversity. However, if the phenotypic expression, virulence factors of
various bacteria, and their resistance towards antimicrobials are to be studied, the culture
technique is the method of choice [35]. MALDI-TOF-MS was used for the identification
of bacterial isolates depicted in the present study. This method is characterized by short
analysis times and high precision at low cost while being easy to use [26]. Mass spectrom-
etry identifies bacteria deposited in the database with high confidence, regardless of the
culture medium used. Hence, MALDI-TOF-MS can be used to replace the time-consuming
biochemical identification approach [36]. To verify phenotypic adaptions of the bacteria
regarding their susceptibility to CHX, the species were isolated and spread out again in
an antiseptic-free nutrition medium. Subsequently, the bacteria were tested to determine
their MIC for CHX. The adaptions found in the microdilution assay could be reproducibly
verified in the MIC testing. Although no exact threshold values exist to define the resistance
towards antiseptics to date [37], Chapman defined MIC increases by a factor of at least four
as clinically relevant [38]. In the present study, bacteria that survived the treatment with
CHX and gained at least a fourfold increase in their MICs to CHX (S. oralis and G. adiacens)
were both Gram-positive cocci. Other Gram-positive cocci such as Enterococcus faecalis were
also shown to develop resistance against CHX in previous studies [39]. Furthermore, we
recently showed that twice-daily treatment of microcosm biofilms with CHX led to an
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ecological shift toward Gram-positive cocci in these biofilms. [19]. S. oralis was reported
to have lower environmental requirements for a high growth rate in combination with a
high adherence ability [40,41]. This allows S. oralis, as an initial colonizer, to take advantage
of the selection pressure of the environment and overgrow other germs. Additionally, in
the literature, S. oralis was considered to have the ability to grow under coaggregation,
which favors the development of resistance [42,43]. Coaggregation enables S. oralis to gain
firm adhesion in a very short time, which gives it a growth advantage over other oral
bacteria [44]. The effect of coaggregation is also discussed for G. adiacens and possibly
provides a higher initial tolerance to antiseptics and the associated development of resis-
tance [45]. Considering that both S. oralis and G. adiacens are under suspicion of being
co-triggers for endocarditis [46,47] and that S. oralis appears to induce sepsis under certain
conditions [48], the resistance of corresponding isolates poses a high general medical risk.
However, acquired resistance from in vitro experiments could not necessarily be connected
to resistance in vivo. At the end of the CHX selection, both bacterial species grew at low
CHX concentrations in the range of 0.005% to a maximum of 0.01%, which are much lower
than the therapeutic dosage of 0.2% in which CHX has usually been used. In this respect,
it can be assumed that it is improbable for these bacteria to grow at the therapeutically
applied concentrations of CHX. On the other hand, it could not be excluded that areas with
subinhibitory CHX concentrations exist within the oral biofilm due to low diffusion caused
by the extracellular substances when bacteria grow in biofilms [8]. Such areas may lead to
the adaptation of some oral bacteria and subsequently to the development of resistance
to CHX. Hence, the growth of bacteria in biofilms and resistance against antiseptics can
synergistically influence each other [49]. It should be emphasized that bacteria within
biofilms are highly protected against the host immune system and antimicrobials [40,48].

CHX is considered the gold standard to control the growth of oral biofilm. However,
the effects of sub-inhibitory concentrations of CHX on the adaptation capabilities of oral
bacteria have not been investigated sufficiently to date. A recent study showed that sub-
inhibitory concentrations of antibiotics as a stress factor can increase the biofilm formation
capacity of clinical Enterococcus faecalis isolates [28]. Frequent subinhibitory CHX-treatment
was also shown to increase the synthesis of glucan in S. mutans, thereby promoting biofilm
formation [7].

Such sub-inhibitory concentrations have been assumed to exist in deeper layers of
the oral biofilm as was discussed by Cieplik et al. This could be the cause for the results
of the present study which showed survival of S. oralis and G. adiacens after treating the
dental plaque with different CHX concentrations in vitro. Moreover, in the present study,
such sub-inhibitory CHX concentrations may have led to the fact that isolates treated with
CHX showed reduced biofilm formation compared to pretreated isolates and isolates of
the growth control. The frequent presence of subinhibitory CHX-concentration is not only
proposed to influence biofilm building capacity but also to induce cross-resistance against
antibiotics [8,20].

From the results of the present study, it can be inferred that repeated CHX treatment
as well as the passaging itself (without CHX) can induce major changes in the resistance
patterns of antibiotics. These adaptabilities can evolve in either direction of a higher or
a reduced susceptibility. A closer look at antibiotic susceptibility test results reveals that
altered resistance patterns to the macrolide erythromycin and the lincosamide clindamycin
occurred for S. oralis after pretreatment with CHX. The change in resistance to erythromycin
and clindamycin can be explained by the fact that lincosamides and macrolides have a
comparable molecular mechanism of action. Thus, if the pattern of resistance to either
antibiotic changes, it can be assumed that there is a change in the pathway that also
influences the mode of action for other antibiotics with similar mechanisms of action. This
can either be a mutation of the genes coding for the rRNA methylases, resulting in general
resistance to macrolides and lincosamides, or an enzyme that modifies the binding site
for the two antibiotics [50]. In the literature, adaptations caused by efflux pumps are
discussed for CHX-induced antibiotic resistance; this is also a possible mechanism for the
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development of cross-resistance to clindamycin and erythromycin [5]. In order to be able
to make a differentiated statement about the mechanism of resistance development, an
analysis of the genome of the bacterial strains would be conceivable in future studies.

For G. adiacens, a large shift in antibiotic resistance values was shown, whereby the
resistance of G. adiacens to some antibiotics such as penicillin, erythromycin, or clindamycin
has also been described in the literature [47]. However, resistance that spans a very broad
band of antibiotics as depicted in the present study has not been described and could
be a consequence of the intensive treatment with CHX which led to the selection of a
resistant G. adiacens isolate. As a mechanism for such changes in antibiotic resistance,
the expression of efflux pumps and changes in the binding structures of the cytoplasmic
membrane should be mentioned [51]. These adaptation mechanisms could also be due to
genetic adaptation resulting from the potential mutagenicity of CHX [24] which should
be investigated in future studies in this regard. If such a mutagenic effect of CHX does
exist, then antibiotic sensitivity could increase or decrease after CHX treatment. Based on a
possible mutagenic effect and the resulting increased gene variation, as already shown by
other authors [23], it can be assumed that the development of cross-resistance is promoted.
However, resistance patterns for isolates of the untreated growth controls were also altered.
These changes could be associated with the passaging itself and may be explained by
the fact that the bacteria have a relatively short generation time causing natural genetic
changes which could also lead to alterations in the level of antibiotic sensitivity [52]. The
resistance breeding accordingly spans about 240 generations with a duration of 10 days.
This high number of generations also allows random genetic adaptations to occur. To
verify the CHX-induced adaptions in biofilm building capacity and cross-resistance to
antibiotics, studies should be conducted with a larger number of different oral bacterial
species, whereby including oral bacterial strains from patients who underwent intensive
CHX therapy could add some new insights to this topic. Nevertheless, although CHX
appears to retain its biofilm-reducing effect, the use of alternative compounds such as
photodynamic therapy or natural compounds should be considered to avoid antimicrobial
resistance in the future [53,54].

5. Conclusions

The results from the present study suggest that frequent treatment with CHX can lead
to adaptations of some oral taxa to CHX, in addition to changes in antibiotic susceptibilities,
while biofilm formation capacity is not affected. Due to the fact that CHX is frequently used
as the “gold standard” in dentistry, the exact influence of CHX on the antibiotic sensitivity
of oral microorganisms should be evaluated with a larger number of oral bacterial species.
In vivo experiments are also required to evaluate the influence of CHX on the development
of resistance toward antiseptics and antibiotics after clinical use.
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