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Purpose: This work presents an end-to-end open-source MR imaging work-
flow. It is highly flexible in rapid prototyping across the whole imaging process
and integrates vendor-independent openly available tools. The whole workflow
can be shared and executed on different MR platforms. It is also integrated in
the JEMRIS simulation framework, which makes it possible to generate simu-
lated data from the same sequence that runs on the MRI scanner using the same
pipeline for image reconstruction.
Methods: MRI sequences can be designed in Python or JEMRIS using the
Pulseq framework, allowing simplified integration of new sequence design tools.
During the sequence design process, acquisition metadata required for recon-
struction is stored in the MR raw data format. Data acquisition is possible
on MRI scanners supported by Pulseq and in simulations through JEMRIS.
An image reconstruction and postprocessing pipeline was implemented into a
Python server that allows real-time processing of data as it is being acquired. The
Berkeley Advanced Reconstruction Toolbox is integrated into this framework for
image reconstruction. The reconstruction pipeline supports online integration
through a vendor-dependent interface.
Results: The flexibility of the workflow is demonstrated with different exam-
ples, containing 3D parallel imaging with controlled aliasing in volumetric
parallel imaging (CAIPIRINHA) acceleration, spiral imaging, and B0 mapping.
All sequences, data, and the corresponding processing pipelines are publicly
available.
Conclusion: The proposed workflow is highly flexible and allows integration
of advanced tools at all stages of the imaging process. All parts of this workflow
are open-source, simplifying collaboration across different MR platforms or sites
and improving reproducibility of results.
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1 INTRODUCTION

Open science and open-source software tools are of
increasing importance in today’s MR research because
the number of available open-source softwares has con-
stantly grown over the years. The International Soci-
ety for Magnetic Resonance in Medicine (ISMRM) web-
site MR-Hub1 and the website of the Open Source
Imaging Initiative2 currently list over 40 MRI-related
open-source tools. Many of these tools are actively devel-
oped and contain state-of-the-art algorithms for MR imag-
ing. Open-source imaging software and hardware readily
helps many researchers to collaborate and improve their
own research, as well as reproduce outcomes of published
literature.

Recently, results from the first ISMRM reproducibil-
ity challenge targeting MR image reconstruction were
published.3 In this challenge, reconstruction results from
conjugate gradient-SENSE implementations of different
submissions were compared. It concluded that small vari-
ations in implementation details or input parameters can
lead to significant differences in images, and that access
to the original source code and data is indispensable for a
reliable reproduction of research results. Well-maintained
online resources consolidating open-source tools, such as
opensourceimaging.org,2 are expected to play an increas-
ingly important role in promoting reproducibility and sus-
tainability of MR imaging studies.

Open-source software tools are available for many parts
of the MR imaging process, including sequence develop-
ment, data acquisition, image reconstruction, and image
postprocessing or analysis. In the case of development
or modification of MRI sequences, the exact time course
of RF pulses and gradients may be of high importance
for reproducibility. However, publications typically do not
contain the detailed fine-grained timing information of
new sequences but only the general idea and high-level
features. Sequence source code itself may also not be share-
able for intellectual property or contractual reasons, and
hardware and software versions may be incompatible.

The Pulseq4 and TOPPE5 file formats provide an
open-source description of a complete pulse sequence’s
timing and waveforms defined in one file, which can be
executed on scanners running different software versions
and also from different vendors.

On the other end of the imaging pipeline, reconstruc-
tion of MR images is increasingly dependent on parameter
choices as algorithms get more complicated and allow
more tuning parameters. The results may depend on the
specific implementation of a reconstruction algorithm,
making comparisons between studies difficult. Novel
reconstruction algorithms are often executed offline due

to the difficulty of integrating them into the existing ven-
dors’ reconstruction frameworks. The Gadgetron6 project
addresses this problem by using an extensible image recon-
struction framework based on streaming data pipelines
that can be integrated into the existing reconstruction envi-
ronment of the MRI scanner.

The diversity in input raw data such as format, order-
ing, and preprocessing further complicates the develop-
ment of a generalizable pipeline. Therefore, widely used
open-source data formats, such as the MR Raw Data
(MRD, originally ISMRMRD)7 or the Neuroimaging Infor-
matics Technology Initiative format8 for image data, are
crucial for standardizing data structures and sharing algo-
rithms efficiently.

These openly available tools contribute toward improv-
ing reproducibility of published research results. How-
ever, there is currently no open-source workflow cover-
ing all aspects of the MR imaging process from sequence
design to image reconstruction. For example, results may
only be partly reproducible if specific raw datasets are
needed to reproduce the results of an image reconstruction
algorithm because the sequence may not be made avail-
able. The proposed workflow aims at combining different
tools to form an open-source end-to-end imaging pipeline,
which is completely shareable and can easily be extended
by new tools. The pipeline covers MRI sequence develop-
ment, data acquisition, image reconstruction, and postpro-
cessing of images. MRI sequence development and data
acquisition is based on the Pulseq framework, whereas the
MRD format is used for storage of MR raw- and metadata.
Acquired raw data are processed by a Python-based server.
The data can be streamed to the reconstruction server
either offline or online, for which the latter requires a
vendor-dependent streaming interface. Reconstruction is
done with the Berkeley Advanced Reconstruction Toolbox
(BART).9

The pipeline was also integrated into the JEMRIS10,11

simulation framework by adding an interface to the image
reconstruction pipeline to the framework. As a result,
sequences designed and simulated in JEMRIS can be exe-
cuted without modification on the MRI scanner, and sim-
ulated and acquired data can be reconstructed with the
same pipeline.

The whole workflow is based on openly available
tools, with the exception of the interfaces for on-scanner
sequence execution and data streaming for online recon-
struction. These interfaces are vendor-dependent and thus
not entirely open-source. However, the streaming interface
is optional because the image reconstruction pipeline can
also be executed offline. The Pulseq interpreter sequence
is also shared in the source code form within the respective
vendor communities.

http://opensourceimaging.org
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F I G U R E 1 Overview of the whole workflow with data acquisition at an MRI scanner (light blue) or in JEMRIS simulations (light
green). Pulseq sequence and MRD metadata files are created with either PyPulseq or JEMRIS. The sequence file is executed at the scanner
using a vendor-specific interpreter. Raw data are sent to the reconstruction server via the FIRE interface, and the metadata from the MRD file
are merged. Images are reconstructed with BART and sent back to the scanner via FIRE. In an offline reconstruction, the FIRE interface is
replaced by an MRD converter and a Python-based client. Acquired data from JEMRIS simulations is merged with the metadata inside
JEMRIS and saved in the MRD format. The same reconstruction pipeline as for data from an MRI scanner data is executed. BART, Berkeley
Advanced Reconstruction Toolbox; FIRE, framework for image reconstruction environments; MRD, MR raw data.

2 METHODS

The open-source imaging workflow contains sequence
design, data acquisition, image reconstruction, and
optional postprocessing of images. An overview of the
whole pipeline is shown in Figure 1.

2.1 Sequence development

Sequence design can be done with the Pulseq framework
using the MatLab (MathWorks, Natick, MA) implementa-
tion,12 the Python implementation PyPulseq13 or JEMRIS.
All tools generate Pulseq sequence files, which contain the
complete timing for RF pulses, gradients, and ADC sam-
pling points. In the present paper, PyPulseq and JEMRIS
are used because neither depends on commercial software.

The Pulseq format currently has no support for trans-
ferring metadata and k-space information to the MRI scan-
ner; it only contains the sequence timing. The vendor’s
raw data files that originate from the Pulseq sequence
execution therefore contain only the acquired data with
no information on k-space sampling. These raw data

files do contain a header section, but only with dummy
values. For this reason, an additional MRD metadata
file is created together with the Pulseq sequence. This
file contains all relevant information about the measure-
ment and is merged with the raw data before image
reconstruction.

For identification of the files, the Message-Digest
Algorithm 5 (MD5) hash of the Pulseq sequence file is
calculated and appended to both the sequence and the
metadata file as a signature.

2.1.1 PyPulseq

The PyPulseq toolbox implements the functionalities of
Pulseq in Python. It provides common RF pulses and gra-
dient waveforms, as well as example sequences. Arbitrary
gradient and RF waveforms are also possible, allowing for
high flexibility. The additional metadata file is created with
the Python implementation of the MRD format.7

First, all elements of a sequence containing RF pulses,
gradient waveforms, and ADCs are defined. Sequence
parameters such as the FOV, resolution, number of slices,
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F I G U R E 2 Left: Sequence development and metadata file creation with PyPulseq. The metadata file is initialized, and a header is
created from global sequence parameters (full header function not shown). The sequence object is created, and event blocks are added. At the
same time, readout information such as k-space flags, counters, and the k-space trajectory are added to the metadata file. Right: Dump of the
sequence tree from a sequence developed with the JEMRIS simulation framework. The metadata header is generated from the global
parameters in JEMRIS. Acquisition-specific k-space information is generated from the new JEMRIS loop-type and ADC-type parameters and
added to the metadata, together with the k-space trajectory. Green color indicates new features.

and k-space trajectory type are added to the MRD header
as illustrated in Figure 2 (left). The timing of the sequence
is represented as a gapless concatenation of time slices
termed blocks in Pulseq. Each block may define a single
RF, ADC or gradient pulse event per gradient axis, whereas
each of these events may be delayed by an arbitrary period
of time. The duration of each block is defined by the dura-
tion of the longest event within that block, or an optional
additional delay object that can be used to increase the
duration of the block.

For each ADC/readout event present in the sequence,
acquisition parameters are added to the MRD metadata
file, containing k-space counters, flags, and optionally the
k-space trajectory. Further sequence-specific information
for reconstruction and postprocessing (e.g., b values for
diffusion sequences) can be added by using user defined
parameters and arrays. Auxiliary information, such as the
sequence name or the FOV, can be added to the Pulseq file.
Knowledge about the FOV is useful for a correct visualiza-
tion of the acquisition volume at the scanner.

2.1.2 JEMRIS

JEMRIS provides a graphical user interface for sequence
development and the sequence timing is defined in XML
files, that can also be edited directly. JEMRIS also provides
common RF and gradient shapes, as well as the ability

to import user-defined shapes via Hierarchical Data For-
mat (HDF5) files. Sequences can be simulated directly
in JEMRIS or exported to the Pulseq format for scan-
ner execution. The export of the JEMRIS sequence XML
file to Pulseq is done automatically based on the pro-
vided XML file. For this work, the Pulseq file export
was extended to support rotations of gradient waveforms
with a given rotation angle. This simplifies sequence
development for rotationally symmetrical k-space trajec-
tories such as radial or spiral trajectories. Additionally,
a new time-optimized spiral gradient14 was implemented
in JEMRIS.

An MRD metadata file is automatically created during
export to the Pulseq format. Header information is taken
directly from the parameter module in JEMRIS. K-space
positions are defined by the k-space trajectory, which is
calculated for each ADC event in the sequence. However,
because JEMRIS does not distinguish between different
types of loops or ADCs, different k-space acquisitions
cannot be separated easily. Therefore, the loop-type and
ADC-type parameters were added to each pulse module,
which is shown in Figure 2 (right). The loop type classifies
loops to distinguish if different lines in k-space (e.g., phase
encoding and partition loop) or different images (e.g., slice,
contrast, set, or average loop) are acquired. The ADC type
defines the ADC sampling as an imaging ADC or some sort
of calibration ADC (noise, parallel imaging calibration,
phase calibration).
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F I G U R E 3 Detailed view of the reconstruction pipeline for raw data from an MRI scanner or the JEMRIS simulation framework. Raw
data from the scanner are first converted to MRD. The data is streamed to the reconstruction server, which is where the reconstruction
pipeline is started. The pipeline supports an optional correction of gradient imperfections with the GIRF. Image reconstruction and optional
calculation of coil sensitivity maps are done with BART. Reconstructed images are displayed in the GUI of the scanner, the JEMRIS GUI, or
saved to a file. GIRF, gradient impulse response function; GUI, graphical user interface.

2.2 Data acquisition and simulation

Raw data in the presented workflow can originate either
from a real acquisition on an MRI scanner or from a sim-
ulation with the JEMRIS framework. For the latter, the
sequence must be designed in JEMRIS because there is
currently no efficient import of Pulseq sequences in JEM-
RIS.

In a real experiment, the sequence file is exported to
the MRI scanner and selected in the scanner graphical
user interface (GUI) for execution as shown in Figure 1.
Pulseq sequences are run with a vendor-specific inter-
preter sequence, which supports integrated FOV position-
ing. Currently, sequence interpreters for Siemens (Siemens
Healthineers, Erlangen, Germany), GE (General Electric
Healthcare, Waukesha, WI, USA), and tabletop MRI scan-
ners are available. During sequence execution, both the
sequence name and the MD5 signature are saved in the
raw data header in order to identify the correct metadata
file in the reconstruction.

Simulation of a sequence in JEMRIS is executed
either from the command line or in the GUI by pro-
viding the sequence XML file, the digital phantom and
its MRI-relevant parameters, and optionally receive and
transmit coil sensitivities. An MRD file is generated after
simulation (Figure 1), containing both the MRI signal
and the metadata as well as receive coil sensitivities for
multi-coil simulations.

2.3 Image reconstruction
and postprocessing

The image reconstruction is initiated by streaming the raw
data to a Python server running inside a Docker container.
Data processing scripts are selected by a configuration
string sent to the server together with the raw data. An
overview of the pipeline is given in Figure 3.

2.3.1 MRI scanner data

Raw data from the scanner are converted to the MRD for-
mat and streamed to the reconstruction server by a client
using a format initially developed by the Gadgetron frame-
work and extended for other workflows. This is done either
online with a vendor-dependent interface or offline with
a converter and a Python-based client. Converters from
the most common vendor data formats to MRD are pro-
vided by the MRD project (https://github.com/ismrmrd).
The prototype Siemens framework for image reconstruc-
tion environments (FIRE)15 was used as the vendor inter-
face for online reconstruction in this work. This interface
allows real-time streaming of acquired data, which can
be selected in the scanner GUI prior to execution of the
sequence. The online pipeline is configured with an XML
file that is linked to the Pulseq interpreter sequence,15 sim-
ilar to the configuration used by the Gadgetron project.6

https://github.com/ismrmrd
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Prior to image reconstruction, the MRD metadata file
is transferred to the reconstruction server. The header
and k-space information from the metadata file are auto-
matically merged with the corresponding raw data in
the reconstruction pipeline. Optional trajectory correc-
tion with the gradient impulse response function (GIRF)16

can be performed by supplying gradient shapes instead
of k-space trajectories. This requires knowledge of the
scanner-specific GIRF as well as additional informa-
tion for aligning the trajectory with the ADC readout
samples.

Image reconstruction is triggered when all data for
a complete image is collected, for example, by a meta-
data flag identifying the last acquisition in a slice. The
pipeline contains processing steps for sorting the data,
noise prewhitening with noise scans, and parallel imag-
ing calibration using reference k-space data. Prescan data
is separated from imaging data by reading the correspond-
ing metadata flags. Calculation of coil sensitivity maps is
done with the eigenvector-based iterative self-consistent
parallel imaging reconstruction (ESPIRiT) algorithm,17

implemented in BART. Other reconstruction steps, such as
k-space filtering and application of phase navigator data,
can be integrated into the existing pipeline.

Fully sampled Cartesian data are reconstructed with
a simple fast Fourier transform (FFT) in Python, whereas
undersampled and non-Cartesian data are processed with
BART using its parallel imaging and Nonuniform fast
Fourier transform (NUFFT) implementations. If sensi-
tivity maps were calculated, the parallel imaging with
compressed sensing reconstruction (pics) implemented in
BART is executed. Online reconstructed data are streamed
back to the MRI scanner in real time and can be viewed
in the scanner console GUI while the acquisition is still
ongoing. Images that were reconstructed in offline mode
are stored in the MRD image format.

2.3.2 JEMRIS simulation data

For simulated data, the reconstruction pipeline can either
be started from the JEMRIS GUI or from the command
line. In the first step, the MRD data are streamed to the
server application (Figure 3). Simulated data are processed
with the same pipeline as data from the MRI scanner that
were acquired with a JEMRIS sequence. The MRD file cre-
ated after simulation already contains both metadata and
imaging data. In the case of multiple simulated receiver
coils, the coil sensitivities that were used during the sim-
ulation are directly passed to the pipeline. If no additional
reference data for parallel imaging calibration are acquired
in the simulation, these coil sensitivities are also used in
the reconstruction.

Currently, it is not possible to define Cartesian k-space
sampling for JEMRIS sequences in the metadata or
to detect Cartesian sampling during the reconstruction.
Therefore, the image reconstruction treats all simulated
data as non-Cartesian and thus requires the k-space tra-
jectory, even if all data points lie on a Cartesian grid.
Reconstruction is done either with BART’s NUFFT or with
its parallel imaging reconstruction implementation. After
reconstruction, images are saved in the MRD image for-
mat and displayed in the JEMRIS GUI if the pipeline was
started from the GUI.

2.4 Experiments

Different imaging sequences were created with the JEM-
RIS GUI, as well as with PyPulseq, to demonstrate the flex-
ibility of the presented workflow. Experimental data were
mainly acquired on a 7 Tesla (T) scanner in Bonn (Siemens
Magnetom 7T Plus, Siemens Healthineers), whereas one
example sequence was additionally executed on several 3T
scanners as described below.

The first example sequence designed with JEMRIS
contains a 3D GRE Cartesian readout. Signal excitation
was achieved by a nonselective block excitation pulse with
a duration chosen to achieve water excitation (suppress-
ing fat signal) at 7T (d = 1.02 ms). The acquisition was
accelerated by a factor of R = 4 in the first phase-encoding
direction, with and without a CAIPIRINHA18 shift of
𝛿 = 1. FLASH-based low-resolution reference scans were
acquired prior to the measurement in order to obtain coil
sensitivity maps. The FOV was 210 × 210 × 160 mm3 at
1 mm isotropic resolution. The measurement was repeated
with 4 different variations:

1 TE = 5 ms, TR = 10 ms, with RF spoiling
2 TE = 5 ms, TR = 10 ms, with RF spoiling, fat-selective

sinc-pulse (1 kHz bandwidth) instead of water excita-
tion

3 TE = 25 ms, TR = 30 ms, no RF spoiling
4 TE = 25 ms, TR = 30 ms, no RF spoiling, no CAIPIR-

INHA shift

As a non-Cartesian example, a 2D spiral sequence with
a time-optimized14 k-space trajectory was created using
both JEMRIS (without fat saturation pulse) and PyPulseq
(with fat saturation pulse). One slice with a slice thickness
of 1 mm and a FOV of 220 × 220 mm2 at 1 mm isotropic
resolution was acquired. The PyPulseq version of this
sequence was additionally executed at 2 3T scanners in
Bonn (3T Skyra, Siemens Healthineers) and Freiburg (3T
Prisma, Siemens Healthineers) to demonstrate portability.
It was successfully executed also on a 3T Vida scanner
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(Siemens Healthineers) running on a different vendor’s
software version (results not shown in the present paper).
Additionally, the sequence was converted to the TOPPE5

file format using the PulseGEq converter provided by the
TOPPE project.19 It was then executed on a 3T UHP scan-
ner (General Electric Healthcare) to show the compatibil-
ity of the pipeline across 2 different vendors. At 3T, both
the slice thickness (3 mm) and TR (200 ms) were increased
for higher SNR and better contrast. Because the TOPPE
format currently does not support ADC sampling inter-
vals of different duration, coil sensitivity calibration was
performed with the spiral data.

A slightly modified version of the same spiral sequence
was simulated in JEMRIS, demonstrating the influence
of chemical shift and susceptibility in a sample. In the
simulation, gradient spoiling was replaced with long TR
spoiling because correct simulation of gradient spoiling
needs many simulated spins resulting in exceedingly long
computation times.20

A 2D Cartesian B0 mapping sequence was developed to
show the postprocessing capabilities of the reconstruction
pipeline and to allow for B0 correction of the spiral imaging
data. One slice with 2 mm slice thickness and a FOV of 220
× 220 mm2 at 2 mm isotropic resolution was acquired.

All images were reconstructed with BART. Calculation
of the B0 field map from raw GRE images was done with
Python, using the scikit-image21 and SciPy22 libraries for
phase unwrapping and filtering. The spiral data acquired
with the PyPulseq sequence were reconstructed with a
GIRF predicted trajectory. The PowerGrid toolbox23 was
used in the pipeline to achieve B0 correction of the spiral

data with a time-segmented reconstruction approach24

using the B0 field map calculated before. Online recon-
struction was performed exclusively on the 7T MRI
scanner.

3 RESULTS

Reconstructed images from the 3D GRE sequence
designed with JEMRIS are displayed in Figure 4. Images
with water excitation in the upper row show a typical
T1 weighted contrast at short TE. Fat signal in the skull
is suppressed, whereas it is the dominant signal in the
fat excited images in the lower row. However, images
acquired with fat excitation still show some residual water
signal in the brain. Figure 5 shows images from the same
3D GRE sequence with a longer TE time with and without
CAIPIRINHA shifts, demonstrating a T2* contrast. The
CAIPIRINHA shift reduces artifacts, which are especially
visible in the sagittal view where stripe-shaped artifacts
disappear.

In Figure 6A the magnitude GRE image from the B0
mapping sequence at the first TE (TE = 2.04 ms) is shown.
The phase difference map in Figure 6B, which was calcu-
lated from both echoes, has no visible phase wraps in the
brain. Figure 6C is the resultant B0 field map, which was
smoothed with Gaussian (𝜎 = 0.5 pix) and median filters
(kernel size 2 × 2 pix).

Images acquired with the 2D spiral sequence are
shown in Figure 7. The image (A), acquired without
fat suppression, shows a stripe-shaped artifact at the

F I G U R E 4 Reconstructed
images from a T1 weighted 3D
GRE sequence created with
JEMRIS, with a TE of 5 ms and
4× undersampling with a
CAIPIRINHA shift. Water images
were acquired with block pulses
of 1.02 ms length suppressing fat
signal (upper images), whereas
fat excitation was achieved with
fat-selective sinc-pulses (lower
images). CAIPIRINHA,
controlled aliasing in volumetric
parallel imaging; GRE, gradient
echo.
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F I G U R E 5 Images from the
same 3D GRE sequence as in
Figure 4, with a TE of 25 ms. Upper
images were acquired with a
CAIPIRINHA shift, whereas lower
images were acquired without this
shift. The red arrow indicates
artifacts in images without
CAIPIRINHA

F I G U R E 6 Reconstructed images from a B0 mapping sequence. Image (A) is the first magnitude image with TE = 2.04 ms; (B) is the
phase difference map of the 2 echoes; and (C) shows the corresponding filtered B0 field map

periphery of the brain caused by folded fat signal. The
overall blurring in this image is mainly due to B0 inhomo-
geneities. In image (B), fat artifacts are removed due to the
fat suppression pulse and blurring is reduced significantly.
In (C), the same image with additional B0 correction using
the map in (C) has even less blurring, and signal is recov-
ered especially in the anterior part of the brain. The images
acquired at all three 3T scanners in (D)–(F) show only
minor artifacts in the frontal brain, mostly caused by B0
inhomogeneities. Slight geometric distortions presumably
due to gradient imperfections are visible in the posterior
part of the brain.

Reconstructed images from one simulated slice
acquired with a spiral sequence are shown in Figure 8.
Simulating a clean digital phantom yields artifact-free

images. Adding the chemical shift of fat to the digital brain
phantom results in stripe-shaped artifacts similar to the
artifacts in Figure 6D. Including magnetic susceptibility
in simulations that is causing B0 inhomogeneities leads to
the typical blurring artifact, well-known in spiral imaging.
Both chemical shift and susceptibility differences lead to
signal loss, especially in the lower brain (upper row in
Figure 8).

4 DISCUSSION

4.1 Flexibility and extensibility

The examples presented in this paper demonstrate the
high flexibility of the proposed workflow regarding the
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F I G U R E 7 Reconstructed images from a 2D spiral GRE sequence acquired at 7T (A–C) and 3T (D,E) scanners from 4 different subjects.
Image (A) was acquired with a spiral sequence without fat suppression; whereas in (B) fat suppression was added to the sequence, and GIRF
trajectory correction was done in the reconstruction. Image (C) was reconstructed from the same raw data, but with an additional B0

correction using the field map shown in Figure 6C. Images (D–F) were acquired at 3 different 3T scanners with fat suppression, but without
GIRF correction in the reconstruction. Red arrows indicate artifacts from gradient imperfections and from off-resonance due to chemical
shift and magnetic susceptibility. T, Tesla.

sequence design methods and the applied reconstruction
algorithms. Advanced imaging techniques such as paral-
lel imaging with CAIPIRINHA or non-Cartesian sampling
are integrated in the workflow. The workflow allows users
to prototype new sequences and reconstruct the acquired
data with vendor-independent tools. Existing code for
sequence generation can easily be extended with addi-
tional sequence design tools, such as Sigpy25 or the gradi-
ent optimization toolbox GrOpt.26

Based on the example of a spiral sequence, we showed
that sequence execution across different scanners and
vendors is possible using the same image reconstruction
pipeline (with minor modifications). However, porting a
sequence from 1 acquisition system to another requires
adhering to any differences in hardware properties and
safety limits that may exist. For example, in the presented
spiral sequence, the gradient slewrate had to be slightly

reduced from 7T to 3T scanners due to peripheral nerve
stimulation limits.

For the conversion of the spiral sequence to the
GE-compatible format TOPPE, prescans for noise and coil
sensitivity calibration had to be removed. These prescans
can be acquired with separate sequences, but this does
require manual integration of the calibration data into the
spiral reconstruction. Small timing changes were needed
to fit the requirements of the TOPPE format with only
minimal effect on the acquired data for this particular
sequence. Because TOPPE is a relatively young file format
under active development, future improvements regarding
the compatibility of Pulseq and TOPPE are expected.

Furthermore, the workflow allows for comparison of
data from the JEMRIS MRI simulator with an actual
acquisition at the MRI scanner. This is useful for testing
sequences before running them on a real MRI scanner or
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F I G U R E 8 Images reconstructed from data simulated with the JEMRIS simulation framework. A spiral sequence was simulated for 2
different slices either with a clean digital phantom, with additional chemical shift from fat or with susceptibility differences across the digital
brain phantom. Artifacts from chemical shift and susceptibility are indicated by red arrows. The B0 maps on the right show both chemical
shift (at approximately 1 kHz) and susceptibility-induced off-resonance effects

to investigate the influence of specific physical properties
(e.g., presence of fat) on data acquisition. However, simu-
lating the exact same sequence that is running on the MRI
scanner sometimes is not feasible because some physical
effects might not be included in the simulated model or
require excessively long computation times.

The available reconstruction pipelines for both Pulseq
and JEMRIS data can reconstruct images from many dif-
ferent MR imaging sequences and can be used as a starting
point for more elaborate reconstructions or postprocessing
techniques. Additional sequence-specific meta informa-
tion such as inversion times or b values can be transferred
and accessed in the reconstruction pipeline by adding
them as user-defined parameters or arrays to the MRD
metadata file. BART already provides much functionality
for preprocessing and calibration of data, as well as for
advanced image reconstruction algorithms. However, inte-
gration of new reconstruction or postprocessing tools into
the existing pipeline is also possible.

Online integration of the reconstruction pipeline
simplifies testing of novel sequences that require nonstan-
dard reconstruction techniques such as non-Cartesian
sequences. It also allows using reconstructed images from
novel sequences for calibration such as B0 or B1-shimming.
Because reconstruction scripts can be dynamically
embedded into the Docker container without rebuilding,

reconstruction scripts can be changed and tested during a
scanning session.

4.2 Openness and reproducibility

All file formats used in the workflow are open-source,
including the Pulseq sequence file, MRD metadata file,
and JEMRIS XML files. Source code of the reconstruc-
tion pipelines and sequences developed in Python can
be made openly available because no proprietary code
is used. Reconstruction pipelines can be shared and
deployed via Docker images, which require no additional
modifications of the system because all dependencies are
already installed inside the container.

In summary, the presented workflow allows sharing
the whole imaging workflow by providing the sequence
file, metadata file, and reconstruction pipeline. In this
way, it is potentially possible to reproduce data acquisi-
tion and reconstruction with the same parameters at MRI
scanners from different vendors, with different software
versions and at different sites. Sharing the source code of
both sequences and reconstruction can simplify collabo-
rations between different sites. For sites already using the
Pulseq framework, integration of the proposed workflow
into existing pipelines would not require much effort.
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In the present paper, we demonstrated the portabil-
ity of the workflow by acquiring images with the same
sequence at three different 3T scanners located at three dif-
ferent sites using the same image reconstruction pipeline.

Inline reconstruction directly on the vendor’s inter-
face significantly improves the workflow by providing
real-time feedback during experiments and improves the
user experience by automating the reconstruction. How-
ever, inline integration is optional, and all reconstruction
pipelines can also be run offline if a vendor-dependent
interface is unavailable or a fully open-source pipeline is
desired. Therefore, no proprietary software is required for
the postacquisition part of the workflow because convert-
ers to the MRD file format exist for all common vendor raw
data formats.

4.3 Performance of the pipeline

If sequence parameters are changed, both sequence and
metadata files must be recreated and transferred to the
scanner and the reconstruction server. This procedure
can be automated, depending on the local scanner setup,
although for long sequences metadata files can get quite
large due to redundant trajectory information stored for
each readout. The computation times for creating meta-
data files increases with file size, which might limit rapid
testing of different protocols as well as manual parameter
optimization at the scanner for long sequences. However,
recreation of the metadata file for online reconstruction
is only necessary if reconstruction-specific parameters are
changed.

The performance of the reconstruction pipeline
depends on many factors, including configuration of
reconstruction parameters and possible preprocessing
steps. Performance optimization is especially important
when the pipeline is to be executed online. The example
2D spiral reconstruction required about 10 s of compu-
tation, whereas the 2D Cartesian reconstruction finished
in under 1 s. The much larger accelerated 3D Cartesian
dataset required about 15 min of computation (16 core
CPU, NVIDIA A6000 GPU [NVIDIA, Santa Clara, CA,
USA]). Reconstruction times for the simulated data are
negligible compared to the simulation times.

For complex reconstructions and large datasets, the
total reconstruction time mainly depends on the time for
the coil sensitivity calibration and the reconstruction with
BART. Optimization of reconstruction parameters or the
usage of coil compression hold potential for future per-
formance improvements. For large datasets, reading and
merging the metadata takes a significant amount of time.
In future development, metadata could be stored in a less
redundant way or transferred directly to the scanner at

sequence runtime via the Pulseq format to accelerate the
merging process.

4.4 Limitations

In the current implementation of the reconstruction
pipeline, calibration data must be acquired within the
same sequence as the imaging data. Separately acquired
prescans for coil sensitivity calibration or field correc-
tion must be integrated manually into the reconstruction,
requiring modification of the reconstruction code. This
is unfavorable if the user wants to reconstruct multiple
datasets using the same calibration from a single prescan.
Future implementation of linking calibration to imaging
data would increase usability of the pipeline.

The automatic metadata and sequence file creation
from JEMRIS simplifies the development process because
no programming is necessary. However, it is currently not
possible to add arbitrary user-defined sequence-specific
information to the metadata file. Further extension of
JEMRIS to include such information may be the focus of
future work. Data acquisition by simulation in JEMRIS is
only possible for sequences designed in JEMRIS. Conver-
sion of Pulseq sequence files to the JEMRIS XML format
is possible,27 although the high-level loop structure of a
sequence cannot be recovered from Pulseq files, leading to
excessively long computation times in simulations.

Setting up the whole pipeline and extending it for one’s
own experiments might require some time and experience
with Pulseq, the MRD file format, and the processing of
streamed data. However, several examples for sequences
and reconstruction scripts are available in the GitHub
repository, which can be used or modified for one’s own
purposes.

Online reconstruction of acquired data requires
a vendor-dependent interface and is only feasible
if the reconstruction time is not excessively long.
Time-consuming reconstruction routines, for example, for
non-Cartesian 3D acquisitions may therefore have to be
performed offline depending on the computational power
of the reconstruction computer.

5 CONCLUSION

The demonstrated end-to-end open-source sequence pro-
gramming and image reconstruction workflow allows for
rapid prototyping and testing of MRI sequences. By using
the Pulseq framework, a flexible MRD-based metadata
file, and streamed reconstruction pipelines, the whole
imaging workflow becomes highly extensible. The work-
flow enables comparison of data from different MRI
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scanners and from MRI simulations in JEMRIS using
the same pipeline for image reconstruction. The (online)
image reconstruction pipeline is versatile because it is
not restricted to particular types of MRI sequences and
can be extended in various ways with one’s own code
or using available open-source tools. Because all soft-
ware in the proposed workflow is open-source, both
sequence code and image reconstruction pipelines are
vendor-independent and can be shared freely, facilitating
greater reproducibility of MRI experiments.
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