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Figure 1. IFN restricts HSV-1 infection in keratinocytes, epithelial cells, and macrophages. HaCat, RPE, M, or
Mg, cells were mock-treated or treated with human IFN-a (1000 U/mL) for 16 hr and were infected with HSV-1(177)
Lox at 2.5 x 106 (MOI 5), 2.5 x 107 (MOI 50), or 5 x 107 PFU/mL (MOI 100), and the amount of cell-associated

and extracellular virions was titrated on Vero cells. Each data point represents the mean of the three technical
replicates of the combined cell-associated and extracellular titers. The error bars represent the standard deviation.
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Figure 2. Cytosolic IFN-induced macrophage proteins binding to HSV-1 capsids. Volcano plots of iBAQs counts of proteins identified in capsid-host
protein complexes assembled in cytosol from resting THP-1 ¢ cells (A - C) or treated with interferon-o. (D - F) using Vo, (A, D), Vs (B, E), or V; (C,

F) capsids in comparison to D capsids. Proteins identified as highly specific interactions are indicated with larger symbols (log, difference >1.5; Welch’s t-
test, two-tailed, permutation-based FDR < 0.01); those with a log, difference >4 are annotated. ISGs (interferome.org) are indicated by filled black circles,

Figure 2 continued on next page
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Figure 2 continued

and are annotated in red if significantly enriched (permutation-based FDR < 0.05, and log, difference 21.5). Proteins with a g-value = 0 were imputed to
- logig g-value = 3.1 (maximum of the graph), and were indicated with empty circles.
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Figure 2—figure supplement 1. Experimental strategy to generate host protein-capsid complexes. Tegumented viral Vg, Vo5, or V, capsids (red) were
isolated from extracellular particles released from BHK-21 cells infected with HSV-1(17*)Lox. They were lysed in 1% Triton X-100 to solubilize the viral

envelope, and to extract different amounts of tegument (green) in the presence of 0.1 M, 0.5 M, or 1 M KCI. D capsids were generated from V,; capsids
by mild trypsin digestion. These different capsid types were purified through sucrose cushions. Tegument-free nuclear A, B, and C capsids were isolated

from the nuclei of BHK cells infected with HSV-1(17")Lox by gradient sedimentation

. The capsids were resuspended in BRB80 buffer, treated with

benzonase to degrade DNA and RNA, sedimented again, and incubated with cytosol fractions (yellow) from control or IFN-induced macrophages (THP-
1 @) or epithelial A549 cells. After sedimentation through sucrose cushions, the capsid-host protein complexes were analyzed by mass spectrometry
(MS), immunoblot, or electron microscopy (EM). PNS, post-nuclear-supernatant; ND, nocodazole.
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Figure 2—figure supplement 2. Characterization of cytosolic extracts and calibration of capsids. (A) Cytosols were prepared from rested Mg or IFN-
induced M@y macrophage cells. After swelling in hypotonic buffer, the cells were homogenized (L), and nuclei and mitochondria were sedimented
(P1). The post-nuclear supernatant (S1) was adjusted to isotonic salt concentration, and centrifuged to sediment membrane compartments (P2), like
the PM, ER and GA. To control the nucleotide concentration, the cytosols (S2) were dialyzed against a 7 kDa membrane prior to the addition of an

Figure 2—figure supplement 2 continued on next page
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Figure 2—figure supplement 2 continued

ATP regeneration system (S2'). The remaining actin filaments and microtubules were sedimented in P3 to obtain a soluble cytosol fraction (S3). To
reduce ATP and GTP levels, some cytosols were treated with 10 U/mL of apyrase (S4). Nocodazole (ND) was added to prevent polymerization and
sedimentation of microtubules. (B) All fractions generated were analyzed by immunoblot for the respective compartment marker proteins as indicated.
Nup, nucleoporins. MW, Molecular Weight (kDa). (C) Volcano plot summarizing the effect of IFN induction on the cytosol proteome. ISGs associated
with the interferomeDB were enriched in cytosol from M@y as compared to M@y with an FDR of 7.96 x 107 and an FC >2 in at least 1 experiment
(Fisher's exact test). IFN-inducible proteins are indicated by black circles, and those with an abundance log, difference >1.5 (vertical lines), and an
uncorrected p-value < 0.05 (horizontal line) are labeled in red. (D) The slot blot used for the estimation of capsid concentrations (capsids equivalent;
CAP.,) of all preparations was labeled with anti-capsid antibodies (rabbit pAb SY4563) and adjusted to a calibration curve of a standard preparation.
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Figure 2—figure supplement 3. HSV-1 capsids interactomes. Unbiased hierarchical clustered heat map showing the log, fold changes of host proteins
identified from capsids-host protein sediments (c.f. Figure 2; abundance log, difference larger than 1; significance permutation-based FDR smaller than
0.05) from (A) cytosol of resting M, or (B) IFN-induced M@y macrophages. For each protein, the fold change was calculated based on their abundance
(iBAQs) in V, Vys, or Vo capsids compared to D capsids using a linear scale from violet being the lowest to dark green being the highest.
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Figure 2—figure supplement 4. HSV-1 capsids interactomes. Unbiased hierarchical clustered heat map showing the log, fold changes of host proteins
identified from capsids-host protein sediments (c.f. Figure 2; abundance log, difference larger than 1; significance permutation-based FDR smaller than
0.05) from (A) cytosol of resting macrophages (M,), or (B) IFN-induced macrophages (My). For each protein, the fold change was calculated based

on their abundance (iBAQs) in Vi, Vg5, or Vo, capsids compared to D capsids using a linear scale from violet being the lowest to dark green being the
highest.

Serrero et al. eLife 2022;11:e76804. DOI: https://doi.org/10.7554/eLife.76804 9 of 22



ELlfe Research article Immunology and Inflammation | Microbiology and Infectious Disease

\ Innate immunit% Transport membrane

immune response regulation cytoskeleton organisation trafficking
©e ¢ 6 ® 666 666 6
C3 C6- IGBP1 ANXA1 SDCBP FLNA FLNC TLN1 TPT1 COL4A3BP NAPA NAPG RAB1B
(3 ® 0 6 6 &
ubiquitin-like modifier s100A9 \IMPDH1 PPP2RIA SNTB2 / WDR1  PLEC RAB12 VAPA COG7 RAB3GAP1
@6 6 ® 6 ©
USP7- UBAS — UBXN1 proteasome NCKAPL CYFIPL  CFLL | ARAPL FLOT2 ~/IST1 ANKRD28 KDELR1
e e e O O (.

UBE3A RNF123 PSMB4 PSMA2 | RAD23B = RABSA SH3GLB1 motors
¢ 66
\Nucleotide metabolism\ adhesion/ GJAT - CTNNDI SOriNE  DNAAFS KIF2A MYOLC

motility (9 . ‘ ( }
sensors RNA processing @

ZYX PXN
. @ @ VPS4B' VPS4S DCTNT

e UDT21WDRSSHNRNP AN cytoplasmic
homeostasis d L. SH3GLB2 transporters

C140rf166 SMU1 @ .

@TRIPB . . . nuclear transport APOB  AP1B1
v 00 ee 6. 6

@ @ . . KPNAL KPNB1 RANBP1 IPOS SH3GLB1‘ EHD2
mcms () ok PCBPI’ ® ‘NRNPM PDCDEIP
RTCB

HIST1IH2BN ZC3H14 TXNRD1 — "
Signaling
GPCR signaling stress response
Protein metabolism| ¢ © "
regulation of ) FKBPIA  ARHGEF10L
gene expression ribosomes translation MAPKS  SET  ATXN2L
. . . . . ' . . @ proliferation / survival
CNOT1 DCPS  GRB2 HEATR3 RPL34 EIF4H  EIFSA CSNK2B FNTA . @

@ @ @ @ @ MAPK / ERK signaling ABI1  EFHD2
ARID3A IGF2BP3 RPL18A EIF2D"LARP4B . . . .
ATG3 .ANP3ZB

molecular YES1 CAPNS1
others PTPNG

chaperonnes ‘ ‘ . . cellular homeostasis
. ‘ @ carbon metabolism
SCAMP3 “METAP1  PPIA LYPLA2
HSPD1  HSPA9 @ TRIMT2 @ ‘
@ . . @ @ @ PON1 CSNK2A1 GALM GAPDH

LRPAPL  CETS PAHB  DPP9  LAP3  PLTP
ASL CA2 LDHB PGK1

GBA CYBSR3 @ PCYOX1 COLGALTL T capsids
00 —_V, >0
. . other — Vos >D
CAPN2 FAM160B1 ‘ . . w—V, >0
‘ ‘ @ YWHAH S100A4 WNK1 D >v
ISGs

SPRYD7  CECRS TMEM33

Figure 3. Cytosolic proteins of IFN-induced macrophages binding to HSV-1 capsids. Host proteins from cytosol of IFN-stimulated M@ (c.f. D, E,
F, abundance log;, difference larger than 1.5; significance permutation-based FDR smaller than 0.01) interacting with V4, Vys, V4, or D capsids were
assembled into a functional interaction network of known protein-protein-interactions (gray lines; STRING database, confidence score of 0.7), and
grouped according to their known functions (Gene Ontology, Pathway analysis). The Pie chart for each protein indicates its relative enrichment on V;

(red), Vos (blue), V, (green), or D capsids (gray).
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Figure 3—figure supplement 1. Cytosolic proteins of resting macrophage binding to HSV-1 capsids. Host proteins from cytosol of resting Mg (c.f.
Figure 3A, B and C; abundance log, difference larger than 1.5; significance permutation-based FDR smaller than 0.01) interacting with Vo, Vs, Vi, or D
capsids were assembled into a functional interaction network of known protein-protein-interactions (grey lines; STRING database, confidence score of
0.7), and grouped according to their known functions (Gene Ontology, Pathway analysis). The Pie chart for each protein indicates its relative enrichment

on Vo (red), Vs (blue), V; (green), or D capsids (grey).
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Figure 4. HSV-1 capsids associate with proteins involved in type | IFN response. Unbiased hierarchical clustered heat map showing the log, fold
changes of IFN-induced proteins (GO type-I IFN) identified from capsids-host protein sediments from cytosol of resting M@, or IFN-induced M@;ey
macrophages. For each protein, the fold change was calculated based on their abundance (iBAQs) in Vi, Vs, and Vq; capsids as compared to their
abundance in D capsids, using a linear scale from violet being the lowest to dark green being the highest. (*) and (**) design the proteins with an FDR
corrected p-value < 0.05 and < 0.01, respectively.
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Figure 4—figure supplement 1. HSV-1 capsids binds to a few ISG proteins. Box and whisker plot of iBAQs showing the differential detection of
PRKDC, DHX9, FLOT1, IFI16, STAT1, XRCC5, XRCCé, HSPD1, IFIT2, SHMT2, HLA-A, ADAR, IFIT3, OAS2, POLR1C and MxB[MX2] in D, V, Vs, and Vy,
capsids-host protein sediments after incubation in (A) cytosol of resting M@R macrophages, (B) IFN-induced M@IFN macrophages or (C) no cytosol. (¥)
design the significant binding to D or V0.1, V0.5, and V1 capsids as assessed by Welch's t-test (two-tailed, permutation-based FDR < 0.05) comparing D
vs Vo4, Vs, or V; capsids in each cytosol separately.
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Figure 5. Tegumentation reduces MxB binding to HSV-1 capsids. The binding of MxB to viral V4, Vys, Vi, or D, or to nuclear A, B, or C capsids was
analyzed after incubation in 0.2 mg/mL cytosol prepared from (A; Figure 5—source data 1) THP-1 ¢ stimulated or not with IFN, or (B-C; Figure 5—
source data 1; Figure 5—source data 1) A549 cells stably expressing MxA, MxB(1-715) full length, the short MxB(26-715), or MxB mutants defective

in GTP-hydrolysis MxB(T151A), GTP-binding and hydrolysis MxB(K131A), or dimerization MxB(M574D). Sedimented capsid-host protein complexes
were then analyzed by immunoblot for VP5 (capsid), MxB, MxA, and GAPDH as a loading control. As control cytosols were sedimented without capsids
(A: sed), or with uncoated agarose beads (A, B: beads). The amounts of MxA/MxB found in the capsid-host protein complexes were quantified, and
normalized to their respective VP5 levels. Error bars: SEM. summarized from three experiments. One asterisk denotes p < 0.05, two asterisks indicate p
< 0.01 and three asterisks represent p < 0.001 as determined by Welch's t-tests comparisons.
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Figure 6. MxB induces disassembly of herpesviral capsids. (A) Experimental design: Capsids were adsorbed onto hydrophilic enhanced carbon-coated
EM grids for 20 min at RT. The capsids were incubated in cytosol with ATP/GTP"¢", and the incubation was stopped at different times by extensive
washing. The samples were analyzed by EM after negative staining with uranyl acetate. (B-D) Capsids after incubation in cytosol derived from rested
M or IFN-induced M@y macrophages, or control or MxB(1-715) A549 expressing cells for 1 hr at 37 °C, and classified as (B) intact, (C) punched or

Figure 6 continued on next page
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Figure 6 continued

(D) disassembled flat phenotypes. The number of capsomers per flat particle was counted, and is displayed at the bottom of each figures. (E) Nuclear
VZV capsids remain intact (Ei) after incubation in the cytosol of A549 control cells, or but appear punched (Eii) or as flat shells (Eiii, Eiv) after incubation in
the cytosol of A549 cells expressing MxB. Scale bar: 50 nm.
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Figure 6—figure supplement 1. Capsid disassembly intermediates by anti-capsid immunoEM. Images of capsids after negative staining and labeling
with antibodies raised against the major capsid protein VP5 (NC-1), after incubation in ATP-complemented cytosol from A549 control or MxB(1-715)
expressing cells for 60 min at 37 °C, and classified as (A) intact, (B) punched, or (C) flattened shells. Scale bar: 50 nm.
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Figure 7. MxB GTP hydrolysis and dimerization required for capsid disassembly and vDNA release of viral genomes. HSV-1 (A-H), HSV-2 (G) or VZV
capsids (G) were incubated with cytosol at ATP/GTP"<" for 1 hr or the indicated time (E,F) at 37 °C, and classified into intact, punched and flat capsids
by electron microscopy (A-G), or the amount of released viral DNA was measured by gPCR (H). (A) Quantification of punched and flat D capsid shells
in cytosol prepared from rested M or IFN-induced M@;sy macrophages, or from control A549 (mock) or A549-MxB(1-715) cells. (B) Increasing amounts

Figure 7 continued on next page
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Figure 7 continued

of MxB(1-715) [%] were added to control A549 cytosol, and the amounts of punched and flat capsids were quantified after incubation in these mixtures.
(C) Cytosols of A549 cells expressing MxB(1-715) and Mx(25-715) or MxB(1-715)-FLAG and MxB(26-715)-FLAG were incubated with anti-FLAG antibodies
coupled to magnetic beads, the flow-through fractions (FT) were harvested, capsids were treated with anti-FLAG treated or control cytosols, and

the amount of punched and flat capsids were quantified. (D) Capsids were incubated in cytosols prepared from A549 cells expressing full-length (FL)
MxB(1-715), MxB(26-715), MxB(K131A), MxB(T151A), or MxB(M574D) at ATP/GTP"" or ATP/GTP"" levels. (E) Time-course of MxB-induced disassembly
of capsids pre-adsorbed onto EM grids, incubated with cytosol from A549-MxB(1-715). (F) Analysis of D, Vqs, or Vg, capsids treated with MxB(1-175)
cytosol for broken (punched +flat) capsids after negative stain and EM as described for panel E. (G) Quantification of MxB cytosol disassembly of D
capsids of HSV-1(17%)Lox, HSV-1(KOS), or HSV-2(333), or nuclear C capsids of VZV, after incubation in cytosol from A549-MxB(1-715) cells. (H) D capsids
were incubated with different cytosols for 1 hr at 37 °C or treated with 1% SDS and 10% Tx-100 only, and the released DNA not protected by capsid
shells was quantified by gPCR. Error bars: SEM from 100 capsids in three biological replicates. One symbol of *or § denotes p < 0.05, two p < 0.01, and
three p < 0.001 as determined in One-way analysis of variance with a Bonferroni post-test, and comparing the relative amounts of (*) punched and (8§)
flat capsids, or indicating the differences with the mock-treated samples (*).
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Figure 7—figure supplement 1. Cytosol immunodepleted for MxB. Cytosols prepared from A549-MxB(1-715)
and MxB(26-715) expressing MxB(1-715) and MxB(26-715), or A549-MxB-FLAG cells expressing MxB(1-715)-FLAG
and MxB(26-715)-FLAG, respectively, were incubated with agarose beads coupled to anti-FLAG antibodies. After
immunodepletion with anti-FLAG beads to deplete MxB(1-715)-FLAG and MxB(26-715)-FLAG, the flow through
(FT) was harvested. To determine to what extend the FLAG-tagged MxB proteins had been depleted, the starting
cytosols (MxB, Mxb-FLAG) as well as the respective FT fractions were probed by immunoblot using antibodies
directed against MxB, FLAG, or GAPDH as a loading control. Figure 7—figure supplement 1—source data 1.
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Figure 8. Structural and tegument characterization of V1, Vis, Vi, and D capsids. The composition of HSV-1(17%)
Lox derived Vy; (red), Vys (blue), V, (green), and D (gray) capsids was analyzed by quantitative mass spectrometry
in four biological replica. The sum of all the peptides intensities (iBAQ, intensity-based absolute quantification)
of each viral protein known to participate in the structure of the capsids was normalized to the one of VP5 and

displayed in a bar plot for each viral protein.
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Figure 8—figure supplement 1. Membrane and non-structural proteins on V capsids versus D capsids. The
composition of HSV-1 derived V,; (red), Vs (blue), V; (green), and D (gray) capsids were analyzed by quantitative
mass spectrometry in four biological replicates. The sum of all the peptides intensities (iBAQ, intensity-based
absolute quantification) of each viral protein unknown to participate in the structure of the capsids was normalized
to the one of VP5 and displayed in a bar plot.
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