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Controls on carbon dioxide and methane fluxes
from a low-center polygonal peatland in the
Mackenzie River Delta, Northwest Territories

June Skeeter, Andreas Christen, and Greg H.R. Henry

Abstract: Growing season surface–atmosphere exchange of carbon dioxide and methane
were quantified at Fish Island, a wetland site in the lower northeast Mackenzie River
Delta, Northwest Territories, Canada. The terrain consists of low-center polygonal tundra
and is subject to infrequent flooding in high water years. Carbon dioxide and methane
fluxes were continuously measured using eddy covariance and the relevance of different
environmental controls were identified using neural networks. Net daily carbon dioxide
uptake peaked in mid-July before gradually decreasing and transitioning to net daily emis-
sions by September. Variations in light level and temperature were the main controls over
diurnal net carbon dioxide uptake, whereas thaw depth and phenology were the main sea-
sonal controls. Methane emissions measured at Fish Island were higher than comparable
studies on river delta sites in the Arctic and were influenced by the interaction of a large
number of factors including thaw and water table depth, soil temperatures, and net radia-
tion. Spikes in methane emissions were associated with strong winds and turbulence. The
Fish Island tundra was a net sink for carbon during the growing season and methane emis-
sions only slightly reduced the overall sink strength.

Key words: carbon dioxide, methane, river delta, permafrost, peatland.

Résumé : Les échanges de dioxyde de carbone et de méthane entre la surface et
l’atmosphère pendant la saison de croissance ont été quantifiés à Fish Island, une zone
humide située dans le delta inférieur nord-est du fleuve Mackenzie, dans les Territoires du
Nord-Ouest, au Canada. Le terrain consiste en une toundra polygonale concave et il est sujet
à des inondations occasionnelles lors des années de hautes eaux. Les flux de dioxyde de car-
bone et de méthane ont été mesurés en continu par covariance des turbulences et la perti-
nence des différents contrôles environnementaux a été examinée à l’aide de réseaux
neuronaux. L’absorption quotidienne nette de dioxyde de carbone a atteint un pic à la mi-
juillet avant de diminuer progressivement et de passer à des émissions quotidiennes nettes
en septembre. Les variations du niveau de lumière et de la température constituaient les
principaux contrôles de l’absorption diurne nette de dioxyde de carbone, tandis que la pro-
fondeur de dégel et la phénologie constituaient les principaux contrôles saisonniers. Les
émissions de méthane mesurées à Fish Island étaient plus élevées que celles d’études com-
parables sur des sites de deltas fluviaux dans l’Arctique et elles étaient influencées par l’in-
teraction d’un grand nombre de facteurs, y compris le dégel et la profondeur de la nappe
phréatique, les températures du sol et le rayonnement net. Les pics d’émissions de
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méthane étaient associés à des vents forts et à de la turbulence. La toundra de Fish Island
constituait un puits net de carbone pendant la saison de croissance et les émissions de
méthane n’ont que légèrement réduit la force globale du puits. [Traduit par la Rédaction]

Mots-clés : dioxyde de carbone, méthane, deltas fluviaux, pergélisol, tourbière.

Introduction

The Canadian Arctic has experienced significant recent warming: mean annual temper-
atures increased 2.3 K from 1948 to 2016 (Zhang et al. 2019). Warming in the north is
expected to accelerate with median estimates from CMIP5 suggesting an additional 2.1 K
and 7.8 K by the 2080’s under RCP2.6 and RCP8.5, respectively (Zhang et al. 2019).
Warming has, and will continue to have, significant impacts across the Canadian Arctic,
including permafrost degradation and increased active layer thickness, decreased snow
cover and longer snow free seasons, changes in surface energy balance, and tundra
greening (Derksen et al. 2019; Frost et al. 2020).

Approximately 500 Pg of carbon (C) is contained in the top meter of permafrost soils
globally, with some of the highest concentrations in wetland areas, which are primarily
located along river lowlands on river deltas (Hugelius et al. 2014). Climate change related
disturbances put these shallow permafrost C stocks at risk for release into the atmosphere,
as carbon dioxide (CO2) and methane (CH4) via aerobic and anaerobic respiration, respec-
tively (Tarnocai et al. 2009; Hugelius et al. 2014; Schuur et al. 2015; Turetsky et al. 2020).
Conversely, longer growing seasons, more liquid water availability, and consequently,
enhanced plant growth, could have the opposite effect, increasing CO2 uptake in some
areas (Prowse et al. 2009).

The Mackenzie River Delta is the second largest Arctic delta after the Lena Delta in
Siberia (Burn and Kokelj 2009) and is in one of the fastest warming regions in the world
(Zhang et al. 2019; IPCC 2013). The Delta is a broad alluvial plain (12 000 km2) that grades
from boreal forest in the south to low shrub tundra and sedge wetlands in the north
(Burn and Kokelj 2009). Major Arctic delta lowlands, such as the Mackenzie River Delta,
are important in the regional C-balance as they contain high C-stocks in a relatively small
area (Schuur et al. 2015). Further, frequent flooding and water-saturated peatlands provide
an environment particularly conducive to anerobic conditions and hence CH4 emissions.
Despite its size and potential importance as a hotspot for C emissions, to date there has
been little work done to quantify the C balance of the Mackenzie Delta. A series of airborne
CH4 flux observations in July of 2012 and 2013 provided delta-scale estimates of peak grow-
ing season methane emissions, but considerable spatial and interannual variability was
observed (Kohnert et al. 2014). Delta-wide emissions were estimated to be 38 Gg CH4

annually, with pockets of geologic strong emissions (>87 nmol·m−2 s−1) observed over
discontinuous permafrost in the northwestern delta accounting for 17% of annual
emissions (Kohnert et al. 2017). Kohnert et al. (2018) estimated fluxes from the boreal
southern half of the delta and the tundra northern half to be to be 23 nmol·m−2 s−1 and
42 nmol·m−2 s−1 respectively. However, their estimates for the northern delta could be up
to 40% geologic in origin (Kohnert et al. 2017). In situ observations of fluxes in the
Mackenzie Delta are needed to put these airborne estimates in context, especially given
the considerable emissions reported by Kohnert et al. (2017) for the northern portions of
the delta.

This contribution reports field-scale measurements of CO2 and CH4 fluxes from a repre-
sentative peatland site in the Northern Mackenzie River Delta. Net ecosystem exchange
(NEE) of CO2 and net methane exchange (NME) of CH4 were measured at Fish Island, a
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low-center polygonal peatland during the growing season and early senescent period using
the eddy covariance (EC) approach (Aubinet et al. 2012) in 2017. NEE of CO2 was calculated
from fluxes and storage change and NEE was separated into ecosystem respiration (ER)
and gross primary productivity (GPP), NEE = ER − GPP. NME was calculated from fluxes
and storage change. The primary goals of our study were to: (1) measure growing season
NEE and NME at Fish Island, (2) determine the main environmental drivers of CO2 and
CH4 fluxes using neural network analysis, and 3) investigate the role of microtopography
and landscape heterogeneity in driving the observed fluxes.

Materials and Methods

Study Site
The study took place at Fish Island (69°22′20.20″N, 134°52′51.92″W, WGS 84), which is

located on the Big Lake Delta Plain in the northeastern part of the Mackenzie River Delta,
Northwest Territories, Canada (Fig. 1). Fish Island is in the sparsely populated Inuvialuit
Settlement Region, and the nearest communities are Tuktoyaktuk and Inuvik. The Big
Lake Delta Plain is crisscrossed by a network of low-center ice wedge polygons and is sub-
ject to infrequent episodic flooding; sedimentation rates are low compared with western
portions of the delta (Morse et al. 2012; Morse and Burn 2013). Fish Island (19 km2) is domi-
nated by low-center polygons that are broadly representative of this portion of the delta.
Permafrost under the Big Lake delta plain is continuous and thick (400 to 600 m), so we
can expect CH4 emissions observed in this area are strictly biogenic in origin (Kohnert et al.
2017). The Mackenzie Delta sits atop one of the largest oil and gas deposits in the Arctic
(Gautier et al. 2009). Continuous permafrost acts as a cap, but there are sporadic strong
natural gas emissions in the western portions of the delta where permafrost is discontinu-
ous (Walter Anthony et al. 2012; Kohnert et al. 2017).

Vegetation at Fish Island varies with microtopography. The flat low-polygon centers
make up the most land area and are covered by a dense mat of Sphagnum spp. moss along
with Equisetum spp., and Carex spp. A patchwork of ridges ∼10–20 cm high bound the poly-
gon centers and hosted a more diverse mix of vegetation including a canopy of dwarf Salix
spp. Degraded ridges form troughs 5–10 cm deep that are frequently ponded and host
Carex spp. and Eriophorum angustifolium Honck. Fish Island is largely undisturbed with the
exception of the defunct Taglu microwave tower, which has since been removed.

Data collection
A tripod equipped with an EC system was placed 400 m southeast of the river channel

and 300 m northeast of Taglu tower on Fish Island. EC measurements were done from
0:00 day of year (DOY) 174 (23 June) to 12:30 DOY 256 (13 September) 2017 and drone imagery
was collected on DOY 174, 191, 233, and 256 using a Phantom 3 drone (DJI, Shenzhen, China).
The drone images were used to map the study site and monitor vegetation change in the
vicinity of the EC station though the study period (Fig. 2). The imagery was processed using
Open Drone Map (2020) to create georeferenced 10 cm resolution orthophotos for each date.
The orthophotos were used to create a landscape classification by manually digitizing the
boundaries between microtopographic features within a 150 m radius of the EC tower.
The landscape classification was then converted to a 2 m resolution raster image centered
on the tripod, henceforth referred to as the landscape classification map (LCM), to match
the resolution of the flux footprint analysis (discussed in the EC fluxes section).

A sensitivity analysis was conducted to assess spatial variability within the LCM and esti-
mate the distribution of LCM classes. A random sample of points (n= 100) were generated
within the 150 m radius of the EC tower, and the proportion of points falling within each
LCM class was calculated. This was repeated 2501 times (equivalent to the number of CO2
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flux samples) and used to calculate the mean landscape fraction (LF) of each class with a 95%
confidence interval. The LF for polygon centers, rims, and troughs, were 66.1 (CI95% ± 0.3) %,
28.7 (CI95% ± 0.2) %, 5.1 (CI95% ± 0.3) % respectively.

Since 2008 there has been an automatic weather station (AWS) at the site operated by
the Northwest Territories Water Resources Department recording temperature, radiation,
wind speed and direction, snow depth, and rainfall (NWT Water Resources 2019). Mean
annual air temperature (Ta) over the last decade (August 2008 – July 2019) was –8.5 °C,
whereas the 30 year (1980–2010) climate normal at Tuktoyaktuk (60 km east) was –10 °C
(Environment Canada 2016). Over the ten years at Fish Island, July was the warmest month
with a mean of 11.6 °C and January was the coldest at –24.5 °C. Mean annual precipitation
was 117 mm·yr−1, with the majority falling as rain in the summer and autumn. Snow cover
typically lasts from late September or October to late May.

EC fluxes
The EC system measured fluxes of CO2 (FCO2

) and CH4 (FCH4
) over the study period. It con-

sisted of a closed-path infrared CO2/H2O gas analyzer (IRGA, model LI-7200, LI-COR Inc.,
Lincoln, NE, USA; LI-COR), an open-path CH4 analyzer (model LI-7700, LI-COR), and a

Fig. 1. False color composite 100 m resolution LANDSAT8 image (bands 3, 4, and 5) of the Mackenzie Delta with
imagery spanning the dates of the 2017 study period. Labeled on the map are the study site at Fish Island and the
nearby communities of Tuktoyaktuk and Inuvik. The approximate bounds of the Big Lake Delta Plain are
represented with the white hatch marks (Morse and Burn 2013). Coordinate Reference System: NAD83 UTM zone
10N. LANDSAT8 data is provided by the United States Geological Survey and was downloaded using Google Earth
Engine.
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CSAT3 sonic anemometer (Campbell Scientific Inc, Logan, UT, USA; CSI) mounted on a tri-
pod at a measurement height (zm) of 2.87 m (Fig. 1). The EC data and air pressure (Pa) were
logged on a LI-7550 Analyzer Interface Unit (LI-COR). The CSAT3 was oriented to the north-
east (35°) because northerly and easterly winds are most common for this time of year
(NWTWater Resources 2019). Due to an error setting up the LI-7550, fluxes were only logged
at 1 Hz until 12:00 DOY 193; the settings were corrected after this and the fluxes were logged
at 10 Hz for the remainder of the study period. In principle, the low sampling frequency
does not cause a bias in the mean flux, but does increase the variance (Bosveld and
Beljaars 2001). This is supported by experimental observations (Rinne et al. 2008; Holl et al.
2019). To confirm this error had limited impact on our results we down sampled the July
flux data for the period following the error correction (13–29 July). We artificially generated
a 1 Hz data set by selecting every tenth value from the raw data, and processed it using the
same steps as detailed below. Student’s t tests indicated no significant difference between

Fig. 2. (a) The cumulative flux footprint climatology (25%, 50%, 75% and 90%) is shown overlain on the landscape
classification map (LCM). Labels on the map correspond to: the eddy covariance system (EC), soil stations 1–3 (S1,
S2, S3), the power supply (PS), and the Northwest Territories Water Resource Department’s Automated Weather
Station (AWS). (b–e) Oblique drone photos showing the EC system and vegetation at different points during
summer and fall 2017: (b) looking southeast on DOY 174 and (c) DOY 191 and looking northeast from behind the
EC system on (d) DOY 233 and (e) DOY 256. ( f) Inset map showing the location of the EC station, 75% and 90% flux
footprint contours and the area covered by the LCM, and a 10 cm orthophoto created from drone imagery
captured on 23 June. This is overlain on a 10 m resolution composite Sentinel 2 image generated using Google
Earth Engine with imagery spanning the summer 2020. Also shown are the location of the Taglu tower and the
River Channel. Coordinate Reference System: NAD83 UTM zone 10N. Sentinel 2 data is provided by the
Copernicus Sentinel Data and was downloaded using Google Earth Engine.
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the mean values of the 10 Hz data and the down sampled 1 Hz data for either CO2 or CH4

fluxes. Boxplots of the results 1 and 10 Hz fluxes are shown in Supplementary Fig. S11.
Half-hourly fluxes were calculated with EddyPro V.6.2.0 (LI-COR). The software per-

formed statistical assessments (Vickers and Mahrt 1997), low and high frequency spectral
corrections (Moncrieff et al. 1997 and 2004), and a double rotation (Wilczak et al. 2001).
For the open path LI-7700, the Webb, Pearman, and Leuning (WPL) density correction was
applied (Webb et al. 1980) with spectroscopic correction following McDermitt et al. (2011).
For the closed path LI-7200 density corrections were calculated following Ibrom et al.
(2007). Quality control flags (0–2) were assigned following Mauder and Foken (2004) and
fluxes with a flag of 2 were discarded (4.6% and 10.8% of FCO2

and FCH4
data, respectively).

Post processing treatments were conducted as follows. (1) Removing LI-7700 observations
during precipitation events (0.2% of FCH4

data). (2) Removing LI-7700 observations when sig-
nal strength (received signal strength indicator, RSSI) from the LI-7700 was below 20% (13.3%
of all data). Methane concentrations and FCH4

were plotted against RSSI to confirm this was
an acceptable threshold (Supplementary Fig. S21). Low RSSI values can result from conden-
sation or dust on the mirror of the LI-7700. We elected not to use a cleaning pump at this
site because of the limited power supply. This resulted in more missing FCH4

data but
extended the lifespan of the power supply for measuring fluxes. (3) Removing observations
with mean wind direction from 215° ± 30° (8.3% and 7.1% of FCO2

and FCH4
data, respectively)

to avoid uncertainties associated with the wake of the sonic anemometer. (4) Storage cor-
recting by calculating net fluxes (NEE and NME) as the sum of the observed scalar flux
(FCO2

and FCH4
) and the rate of change in their scalar concentrations at zm following

Aubinet et al. (2012). (5) Removal of spurious half-hourly measurements (4.1% and 3.3% of
NEE and NME data, respectively) using the median absolute deviation about the median
method following Papale et al. (2006). (6) Filtering fluxes by friction velocities (u*) below
an 0.1 m s–1 (4.4% and 2.3% of NEE and NME data). We confirmed that this value was suitable
by calculating an iteratively determined u* threshold (0.094 m s−1) following Papale et al.
(2006). In total, quality control and post processing removed 22% and 55% of FCO2

and FCH4

observations, respectively. Additionally, there was a 14 day gap in flux observations from
00:30 DOY 240 to 16:30 DOY 254 due to insufficient power supply from the solar
panels. The CSAT3 and climate station remained operational, but the Li-7200 and Li-7700
were shut down.

The flux footprint was calculated following Kljun et al. (2015). All variables needed for
footprint calculations were collected onsite, except planetary boundary layer height.
Inverse distance weighting was used to interpolate these values from 3 hour reanalysis data
for the 25 nearest grid points spanning the domain 68°30′N to 70°N and 134°W to 135°40′W.
Half-hourly values were then approximated from the 3 hour value using linear
interpolation. The flux footprint was calculated at a spatial resolution of 2 m2 over a
2000 m × 2000 m grid centered on the tripod for all valid half-hourly measurement periods:
u* > 0.1 m s−1 and mean wind direction ≠ 215° ± 30°. The half-hourly footprints were inter-
sected with the landscape classification to determine the relative flux contribution of low-
center polygons (FCnt), rims (FRim), and troughs (FTro) to each measurement. The contribution
from outside the landscape classification (FOut) was calculated as 1 – (FCnt + FRim + FTro).
To allow for a direct comparison with the source area fractions, the LF values weighted by
(1 – FOut), using the median value of FOut to calculate the adjusted landscape fraction (ALF).

Neural networks (NN) were used to identify relevant environmental controls over NEE
and NME, gap fill the time series, and partition NEE into its component fluxes ER and

1Supplementary data are available with the article at https://doi.org/10.1139/as-2021-0034.
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GPP. Various studies have applied NNs to flux data to identify and analyze flux drivers
(Moffat et al. 2010; Briegel et al. 2020; Skeeter et al. 2020), investigate the influence of spatial
heterogeneity (Morin et al. 2014; Skeeter et al. 2020), and to gap-fill time series of NEE and
NME (Papale and Valentini 2003; Dengel et al. 2013; Knox et al. 2016; Skeeter et al. 2020).
The steps for identifying relevant controls, gap filling, and flux partitioning are discussed
in the Feature identification and gap-filling section.

Weather and soil measurements
Climate data at the EC site were logged on a CR1000 datalogger every 1 s and averages/

totals stored at 5 minute intervals. A NRLite net radiometer (Kipp & Zonen, Delft,
Netherlands) measured net all-wave radiation (Rn) and a SQ-110 quantum sensor (Apogee
Instruments, Logan, UT, USA) measured photosynthetic photon flux density (PPFD) at 3 m
a.g.l, and a HMP35 (CSI) measured Ta and humidity (RH) in a shielded, naturally ventilated
screen all at 2 m a.g.l. on the same tripod as the EC system. A tipping bucket rain gauge
(R.M Young Company, Travers City, MI, USA) was mounted 2 m south of the tripod at a
height of 0.4 m.

Soil temperature, moisture, and water table depth data were recorded at 30 minute
intervals on three separate, automatic soil sites, each operated by a CR10x datalogger (CSI)
at three locations near the tripod (Fig. 2a): one in polygon a center (S1), one on a polygon
rim (S2), and one on a border between the rim and the center (S3). At each of the soil sites,
soil temperatures (Ts) were recorded with custom made type-T thermocouples at depths of
2.5, 5, and 15 cm, volumetric water content (θw) was measured with CS616 water content
reflectometers (CSI) at 0.1 m depth, and water table depth (Wtd) was sampled with PLS
probes (CSI). The climate and soil stations S1 and S2 operated uninterrupted from 23 June
(DOY 175) until 13 September 2017 (DOY 257). On 17 July an animal dug up and destroyed
the thermocouples and CS616 at S3. The PLS probes were installed at the base of the active
layer and adjusted to account for increasing thaw depth on 10 July and 1 August. Thaw
depth (TD) was measured during each site visit by inserting a graduated steel probe into
the ground to point of refusal. Thaw depths were measured ten times for both polygon rims
and centers and the median value calculated for each set of observations. Canopy heights
were also measured for polygon rims and centers on each site visit using the median value
of 10 replications.

The sun remains above the horizon much of the summer at 69°N. The date of the first
sunset and timing subsequent sunrises and sunsets is important for understanding NEE
and partitioning GPP and ER. We obtained the timing of sunrises and sunsets from a
sunrise/sunset calculator (National Research Council Canada 2012). We used this informa-
tion to one-hot encode a Daytime variable. Every half-hourly measurement period occurring
before the first sunset or between sunrise and sunset was assigned a value of one.
Measurements between sunset and sunrise were assigned a value of zero. If a sunrise or
sunset occurred during a measurement period, the encoding was set to 1, as the purpose
of this coding is to identify periods with no GPP.

Chamber measurements
In addition to EC measurements, ER was independently measured using the closed

chamber method on two site visits (DOY 191, and DOY 233). Closed chamber measurements
were sampled using a LI-700 (LI-COR) mounted in a custommade portable automated cham-
ber as described by Christen et al. (2017). ER was measured at polygon centers (ERCnt) and
rims (ERRim) using eight and four replications, respectively. Opaque PVC collars were
inserted 10 cm into the ground on DOY 173. Before each measurement, chamber heights
were measured with four repetitions per collar. Then the transparent PVC sensor head
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was placed over the collar and covered with and opaque canvas bag to block out all sun-
light. The sampling period lasted 2 min and fluxes were then calculated following
Christen et al. (2017). Due to limited time and resources, we were only able to collect a small
number of samples and we were unable to collect chamber observations of GPP. The small
sample size limits the conclusions we can draw from the chamber data, but this data are
still valuable because they provide context to our EC observations and allow for comparison
with other sites.

Feature identification and gap-filling
Neural networks

NN are flexible machine learning methods that make no prior assumptions about func-
tional relationships within a data set and are ideally suited to perform non-linear, multi-
variate regression (Hornik 1991; Melesse and Hanley 2005; Desai et al. 2008). The goal of a
NN is to approximate a target function as:

f ðX,wÞ = tðXÞ − εðXÞ(1)

where t(X) is the target (e.g., NEE’s response to environmental drivers), ε(X) the noise, and
X = ½x0, x1, : : : , xM� is the set of input variables; M denotes the number of inputs variables,
and x0 = 1 is a bias term (Khosravi et al. 2011). In the context of EC measurements, this
means that if all relevant climate and ecosystem information are available to a network,
the remaining variability can be attributed to noise in the measurement (Moffat et al. 2010).

Here, we used feed-forward dense NN with a single hidden layer:

f ðX,wÞ =P
H
h=1 βhgð

P
M
m=0 γhmxmÞ(2)

Where g(·) is a non-linear transfer function, here we used the rectified linear activation
unit (ReLu) (Anders and Korn 1999). H denotes the number of hidden nodes in the network.
The weights w = ½β1 : : : βH, γ10 : : : γHM� are randomly initialized and after each model iteration
are updated by backpropagating the error through the network, β are the weights of the
output layer and γ are the weights of the hidden layer. Weights are adjusted in the direction
that decrease the error and training continues. We used early stopping to terminate train-
ing when the mean squared error (MSE) of a test data set failed to improve for 10 consecu-
tive iterations. The test set consisted of 10% of the training data, and was not used if
fitting f(X,w). Early stopping prevents f(X,w) from overfitting the training data (Weigend
and Lebaron 1994; Sarle 1995; Tetko et al. 1995; Sarle 2014). When using early stopping,
the choice of H is somewhat arbitrary, but H must be large enough to ensure the model
has sufficient flexibility (Sarle 2014). We set H to 1/30th the number of training samples.

To account for the random initialization of w and further minimize overfitting, stratified
bootstrapping (with replacement) was used to generate a set of 30 bootstrapped training
data sets (B). Separate f(X, w)i were trained on each bootstrapped training set and for each
model and validation metrics: root mean squared error (RMSE) and the coefficient of deter-
mination (r2) were calculated using the out of bag (OOB) bootstrapped samples. Thus, the
final response model response was calculated as:

FðXÞ = 1
B

P
B
b=1 f bðX,WÞ(3)

where F(X) is the response of NEE or NME to a set of inputs (environmental drivers). The
variance of the model outputs is:
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σ2ðXÞ = 1
B − 1

XB
b=1

ðf bðX,WÞ − FðXÞÞ2(4)

A confidence interval (CI) for F(X) can be calculated as FðXÞ ± tð1−∝,df ÞσðXÞ, where tð1−∝,df Þ is
the students t score, 1-α is the desired confidence level, and df are the degrees of freedom
that are set to the number of bootstrapped samples B.

The weights method
Our NN analysis used the Weights method (Gevrey et al. 2003) to quantify the relative

influence of various inputs on NEE and NME and to prune the NN to reduce the number
of input variables. This method has been used to study the influence of inputs for ecological
modelling (Lee et al. 2003; Olden, et al. 2004; Fischer 2015; Liyanaarachchi et al. 2020), but to
our knowledge, it has yet to be applied to EC flux data. For both NEE or NME, F(X) were
initially trained on 21 initial inputs X including: radiation (Rn, PPFD, Daytime), atmospheric
conditions (Ta, vapor pressure deficit (VPD), Pa), wind (U, u*), flux contribution (FCnt, FRim,
FTro), and sub-surface (Ts (all depths, polygon center and rim), VWC (polygon center and
rim), water table depth (WTD), thaw depth (TD)) variables. These X were chosen because they
potentially influence NEE or NME.

After training, we calculated the partial derivatives (dji) of each input factor xm in X for
every sample (j=1, : : : , N), where N is the total number of flux observations:

djm = Sj
XH
h=1

βhγmhmax

�
0, Ihj ≤ 0
1, Ihj > 0(5)

where Sj is the derivative of the output with respect to the input, βh and γmh are the weights
of the output and hidden neurons, and Ihj is the response of the of the h

th hidden neuron for
the input xj,m. The max function is the first derivative of the ReLu activation function.
dji were averaged over the bootstrapped data sets and plotted to visualize the influence of
factors. Because the inputs and the target must be standardized (mean = 0, standard
deviation = 1) before training a NN, dji are not in the units of NEE or NME, rather they
can be interpreted in terms of relative magnitude (i.e., compared between inputs). When
dji < 0 the respective input has a negative influence on the target and when dji > 0 it has a
positive influence.

Next, the sum the of partial derivatives (SDm) and sum of the squared partial derivates
were calculated (SSDm) for each input m:

SDm =
XJ

j=1

dji(6)

SSDm =
XJ

j=1

ðdjiÞ2(7)

The sign of the SDm indicates whether the variable has a net positive or negative influ-
ence on the output (over the input domain). The SSDm describes the relative magnitude of
the variables influence (if dji changes sign, SDm is reduced but SSDm is not). The SSDm values
for each input were then normalized by the sum of all SSD values to quantify the relative
influence (RI) of each input factor. The 21-input model served as a benchmark to gauge the
performance of a “pruned” model using only the inputs X with over 2.5% influence. Amiri
et al. (2020) suggest removing inputs that have less than a 5% influence on the model; we
used twice as many initial inputs as they did, so we chose 2.5%. The SSDm of the pruned
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models were calculated and used to gauge the relative influence of the flux drivers.
Additionally, the partial derivatives for some the most important drivers were plotted to
visualize their relative influence.

The B = 30 pruned models for both NEE and NME were then run on the time series of
drivers over the full study period. The 30 bootstrapped model outputs were averaged and
used to estimate mean NEE and NME by gap-filling the NEE and NME time series. Most driv-
ers just had nearly complete records (>99%); brief gaps in the drivers were gap-filled with
linear interpolation (up to 60 minutes). Wind speed and u* had slightly more missing
records (99% and 98% complete, respectively) and were also gap-filled with linear interpola-
tion. The footprint drivers had more missing values (95% complete), FCnt, FRim, and FTro were
gap-filled using their respective mean values, binned by wind direction in 10° intervals.
Confidence intervals for NEE and NME were calculated using the total variance of multiple
imputations, which is the sum of variance between and within imputations.

Partitioning NEE
Typically, NEE is gap-filled using flux-partitioning algorithms that model ER using Ts or

Ta and GPP using PPFD (e.g., Aubinet et al. 2012; Lee et al. 2017) where NEE = ER − GPP.
However, these methods require nighttime observations to estimate ER and, thus, do not
perform well for Arctic summertime measurements due to the limited number of samples
available during low light conditions (Kutzbach et al. 2007; Runkle et al. 2013). We tested a
Q10 Ta response curve (eq. 9.4 in Aubinet 2012) and a logistic Ts response curve (eq. 1 in Lee
et al. 2017) using each of the six Ts measurements to gauge their effectiveness when trained
on the limited number (n= 186) of ER samples.

A NN trained on CO2 fluxes will just estimate NEE rather than the component fluxes ER
and GPP. To compensate for this, we estimated daytime ER with the pruned NN by using an
artificial “dark” input set (Skeeter et al. 2020). The inputs Daytime and PPFD were both set to
zero and any Rn> 0 were also set to zero. This approximation projects ER well beyond con-
ditions under which it was actually observed, so caution needs to be taken when interpret-
ing the output. However, the NN performed better than the traditional methods when
estimating nighttime ER (see Ecosystem respiration section). Therefore, we feel this is the
best option for estimating ER and is useful for comparing to the ER chamber observations.
The ER estimate and confidence interval were obtained by “gap-filling” the sparse record of
nighttime NEE (n= 186) observations using the same procedure as for NEE and NME.

Results

The spring flood peaked on 1 June in 2017 at the nearby (4 km) Big Lake gauge station
(Environment Canada 2020). It is unclear whether the site was inundated during the flood,
but satellite imagery indicated Fish Island was snow free by 1 June. Vegetation had started
to turn green at the onset of the study period, but was still mostly brown (Fig. 2b). A rapid
green-up occurred over the first couple weeks of the study period. Vegetation height
increased from 8 to 14 cm in the polygon centers and 13 to 23 cm on polygon rims between
23 June and 21 August after which it did not change appreciably. Thaw depths increased
steadily from 20 cm (DOY 174) to 50 cm (DOY 256) for polygon centers and was consistently
2 cm deeper for polygon rims.

Compared with the same dates (23 June to 13 September) from the AWS record on Fish
Island (2009–2018) the 2017 study period was the third warmest and second wettest on rec-
ord. Over the 82 day study, Ta ranged between –0.1 and 24.8 °C and mean Ta was 10.6 °C
(Fig. 3a). Soil temperatures peaked in August before decreasing along with a decline in daily
Rn. Polygon rim Ts were warmer than centers at all depths, and the difference was most pro-
nounced at 5 cm depth with a mean difference of 2.3 °C. PPFDwas highly variable day to day
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depending on cloud conditions and decreased through the study period (Fig. 3b). The first
sunset was on DOY 206 (25 July), after which the day length began to rapidly decrease.
Precipitation during the study period (100 mm) fell on 33 days contributing to the near-
record wet conditions in 2017. The water table depth in polygon centers averaged 13 cm
below the surface, ranging from 19 cm in July to 5 cm in September (Fig. 3c). The base of
the active layer under polygon rims was above the water table until 21 July, after which a
perched water table formed.

The flux footprint climatology is shown in Fig. 2a. Analysis of half-hourly footprints indi-
cates that the source area of NEE and NME observations were predominately sourced from
within the LCM, median FOut was 10.9% and 11% for NEE and NME, respectively. Relative to
the ALF, FCnt tended to be slightly overrepresented, whereas FRim and FTro were slightly
underrepresented, but they were all within the interquartile range (Table 1). A chi square
test (χ2 = 3.58, p = 0.61) indicated the median values of FCnt, FRim, and FTro were not signifi-
cantly different than the expected ALF values. Wind speeds were highly variable and there
were multiple strong storm events with gusts up to 30 m·s−1 (see Fig. 3d). The 2017 study
period had the second highest average wind speed on the AWS record.

Seasonal and daily trends
Figure 4 shows the course of observed NEE and NME and daily gap-filled NEE and NME

over the study period. During the entire study period, Fish Island was a net sink for CO2

with mean NEE of –0.60 (CI95% ± 0.04) μmol·m−2 s−1. Day to day NEE varied depending on

Fig. 3. Climate and water level measurements during the 2017 study period: (a) Daily mean Ta in red and daily
mean Ts at 5 cm for polygon centers (dotted line), rims at 5 cm (solid black line), and rims at 15cm (solid grey
line). (b) Mean daily photosynthetic photon flux density (PPFD) and length of each night after the first sunset.
(c) Total daily precipitation (black bars) and mean daily water table depth (WTD) (blue line). (d) Daily maximum
sustained half-hourly wind speed at 2.89 m (black line).
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Table 1. Descriptive statistics of the source area for half-hourly
net methane exchange (NME) observations. Despite net
ecosystem exchange (NEE) having over 1,000 more half-hourly
observations, the quantiles for NEE were nearly identical (±1%).
Column headers for the landscape class flux contributions
show their fractional cover in landscape classification map.
The adjusted landscape fraction (ALF) values shown at the
bottom are the landscape fraction (LF) estimates weighted by
(1− FOut), using the 50th percentile value of FOut.

FCnt FRim FTro FOut

Minimum 33.0% 5.1% 0.0% 7.3%
25th percentile 58.7% 20.6% 1.8% 10.5%
50th percentile 62.8% 22.4% 3.4% 11.0%
75th percentile 63.7% 28.3% 4.8% 11.4%
Maximum 77.5% 56.4% 9.4% 18.1%
ALF 58.8% 25.6% 4.6% N/A

Fig. 4. Daily measured (a) net ecosystem exchange (NEE) and (b) net methane exchange (NME) (boxplot) and mean
gap-filled (black line) (a) NEE and (b) NME over the study period. For the boxplots, the red line indicates the median,
the red square is the mean, the box represents the inner quartile range (Q1–Q3), the whiskers are 1.5 times the
inner quartile range ending at the farthest data point within that interval, and circles represent outliers. Grey
shading represents a net sink and no shading represents a net source.
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cloud conditions. CO2 uptake increased during the early season until peaking in early–mid
July (DOY 190) as vegetation matured (Fig. 2c). Net CO2 uptake remained high through July,
then as day length and sun angle decreased through August. The site became a net CO2

source by the end of the study period as plant life senesced (Figs. 2d and 2e).
The site was a net CH4 source during the study period with mean NME of 27.7

(CI95% ± 0.35) nmol·m−2 s−1. Day to day NME was less variable than NEE, but there were sig-
nificant spikes associated with high wind events (discussed below). Methane emissions
increased slightly through the beginning of the study period, peaking on DOY 202 then
abruptly decreasing. Through the rest of the period, NME was consistently lower and
continued to decrease through September. Light precipitation, condensation, and fog
were common in the latter half of the study period, resulting in a large number of missing
observations from this period due to low RSSI values.

Figures 5a and 5b shows the daily cycle of CO2 and CH4 exchange for the period when
both CO2 uptake and CH4 emission were greatest. During this period, NEE was negative

Fig. 5. Diurnal (hourly) course of measured net ecosystem exchange (NEE) and net methane exchange (NME)
(boxplot) and mean gap filled (black line) NEE and NME early in the study period (a and b) and late in the study
period (c and d). For the boxplots, the red line indicates the median, the red square is the mean, the box
represents the inner quartile range (Q1–Q3), the whiskers are 1.5 times the inner quartile range ending at the
farthest data point within that interval, and circles represent outliers. Grey shading represents a net sink and no
shading represents a net source.
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for most of the day, about 18 hours on average. Average maximum CO2 uptake peaked at
9:00 LST (–3.16 μmol·m−2 s−1) and plateaued over an extended period in the middle of the
day. Maximum net CO2 emissions occurred around 0:00 LST, but these observations do
not represent ER because the sun was still above the horizon. Methane fluxes had a distinct
daily cycle as well, and were negatively correlated with NEE (Pearson’s r = –0.63).
Average maximum daily NME (49.2 nmol·m−2 s−1) was double the average minimum
(24.3 nmol·m−2 s−1) and similar to NEE, there was a mid-day plateau. Figure 5c and 5d shows
the daily cycle in late August, just before the power system failed, when there were five to
six hours of nighttime per day. Nighttime NEE (0.95 μmol·m−2 s−1) during this period do re-
present ER. Peak CO2 uptake occurred at noon and there was no mid-day plateau. The diurnal
cycle in NMEwas still present as well, but the magnitude of emissions decreased substantially.

Net ecosystem exchange
Flux drivers

The model trained on NEE performed very well on the OOB validation data (r2 = 0.93,
RMSE =0.39 μmol·m−2 s−1) and performance only dropped slightly compared with the
benchmark (r2 = 0.95). Pruning selected 8 inputs for NEE, which are listed in Table 2.
PPFD is the dominant driver of GPP, and is the primary control over NEE (64% RI). The partial
first derivatives of PPFD (Fig. 6a) show a strong negative influence that begins to decrease in
magnitude at 100 μmol·m−2 s−1. The function reaches a minimum around 750 μmol·m−2 s−1

(dependent upon the other drivers), above which it has a weak positive influence. The PPFD
response is modulated by the other drivers, primarily VPD (8% RI). It had a strong
negative effect over NEE at low VPD, that reached an “optimal” value around 340 Pa
(Fig. 6b). At higher VPD, it was a strong limiting factor over GPP. The response curve of
NEE to PPFD shows that all else being equal, high VPD (1000 Pa) can limit CO2 uptake by
more than 0.5 μmol·m−2 s−1 relative to the optimal value (Fig. 7a).

Thaw depth (7% RI) gave the model a seasonal signal that influenced both GPP and ER.
Low thaw depths (early season) had a negative influence, NEE trended more negative as
vegetation matured (Fig. 6c). The model response shows a minimum around 0.35 m, below
this point, all else being equal, NEE trends positive. Figure 7b shows the model response
to TD for “typical” daytime and nighttime conditions. During daytime, maximum CO2

uptake can be seen around the timing of the minima identified in Fig. 6c. With radiative
inputs fixed to “dark” values, ER decreases steadily from a maximum during the early sea-
son, then leveled out around 0.4 m (corresponds to DOY 226) at about 1.0 μmol·m−2 s−1.
We had limited nighttime NEE observations, and none before DOY 206, so the confidence
interval around the modeled ER was broader.

The model identified soil temperature at 5 cm (TCnt5 RI 7%) as the main driver of ER.
Above 3 °C, increasing TCnt5 consistently increased ER (Fig. 6d). This was modulated by

Table 2. The relative influence (RI) of the inputs of the pruned neural network (NN) over
net ecosystem exchange (NEE), along with their correlation (r) to half-hourly NEE.

Rank Symbol Factor RI Sign r

1 PPFD Photosynthetic photon flux density 64% − −0.79
2 VPD Vapour pressure deficit 8% − −0.44
3 TCnt5 Soil temperature 5 cm, polygon centers 7% + 0.12
4 TD Thaw depth 7% − 0.20
5 Daytime Day/night 6% − −0.36
6 TRim5 Soil temperature 5 cm, polygon rims 5% − −0.35
7 TRim15 Soil temperature 15 cm, polygon rims 3% + 0.49
8 U Wind speed 1% − −0.09
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TRim5 (5% RI) and TRim15 (3% RI) that had moderately negative influences at lower tempera-
tures (Fig. 6e and f). At higher temperatures the negative TRim5 influence was negligible
and TRim15 became a positive driver. Polygon center and rim temperatures at 5 cm were
highly correlated (r = 0.81) and moderately to weakly correlated with TRim15 (TCnt5 r = 0.58,
TRim5= 0.19). Rims were consistently warmer than centers, but the magnitude of the temper-
ature gradient (TΔ5= TRim5 – TCnt5) decreased through the study (Fig. 3a). Daily maximum TΔ5
was in the late afternoon and minimum was in the late night/early morning. The response
of NEE to typical late afternoon and late night TΔ5 is shown in Fig. 7c. There was a strong
response to TCnt at higher temperatures, but the response was muted or even reversed at
lower values. Temperatures at 15 cm also had a diurnal signal, but they were much more
muted. In the model, TRim15 had more impact on the seasonality of NEE, with higher temper-
atures at depth indicating increased respiration throughout the soil profile.

Ecosystem respiration
Mean estimated ER was 1.54 (CI95% ± 0.87) μmol·m−2 s−1, which suggests a mean GPP

around 2.14 μmol·m−2 s−1. This is an extrapolation well beyond conditions the model was
trained on (see Fig. 8b), so there is more uncertainty around this prediction. The nighttime
ER validation statistics for the model (r2= 0.58, RMSE= 0.23 μmol·m−2 s−1) show this method
outperformed the Q10 response curve (r

2= 0.32, RMSE= 0.28 μmol·m−2 s−1) and the best logis-
tic soil temperature curve fit (TRim2.5: r

2= 0.45, RMSE= 0.26 μmol·m−2 s−1). The NN does a bet-
ter job of approximating ER, especially at higher and lower NEE (Fig. 8a). The chamber data
gave us increased confidence in our NN derived ER estimate (Fig. 8b). Due to the limited

Fig. 6. The mean sum of squared derivatives (SSD) for six (a–f) of the input factors for the net ecosystem exchange
(NEE) model are shown in red, with a 95% confidence interval shown in blue. Y-axis labels on the left correspond to
the SSD values. Also shown (a–f) are histograms (grey bars) of the distribution of the input variables in the training
set. The Y-axis labels on the right correspond to the number of training samples (half-hourly observations).

Skeeter et al. 485

Published by Canadian Science Publishing

A
rc

tic
 S

ci
en

ce
 D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

A
L

B
E

R
T

-L
U

D
W

IG
S-

U
N

IV
E

R
SI

T
A

E
T

 o
n 

06
/0

3/
22

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 



sample size, here, we report the median and inner quartile range (IQR). Median ERRim over
the two collection days was 2.77 (IQR 2.33 – 4.05) μmol·m−2 s−1 and was more than double
ERCnt 1.09 (IQR 0.90– 1.39) μmol·m−2 s−1. Median values between sites also decreased from
1.57 μmol·m−2 s−1 n DOY 191 to 1.08 μmol·m−2 s−1 n DOY 233. Our NN derived ER estimate is
between median ERCnt and ERRim and also showed a decreasing seasonal pattern.

Net methane exchange
The model trained on NME performed reasonably well on the OOB validation data

(r2 = 0.73, RMSE = 6.53 nmol·m−2 s−1) and performance dropped only slightly compared
with the benchmark (r2 = 0.74). Pruning selected 8 inputs for NME, which are shown with
their RI in Table 3. The model could not resolve NME as accurately as it could NEE, which
is partly due to the smaller number of training samples for NME (1441) vs. NEE (2501). This
meant the model had fewer nodes (reduced flexibility) in addition to having less exposure
to training data. Additionally, CH4 fluxes do not have one dominant driver like CO2 fluxes
so the response function is more difficult for the model to resolve.

Net radiation (RI= 34%) had the highest influence, themodel derivatives of (Fig. 9a) show a
positive influence that begins to decrease in magnitude around 150 W·m−2 s−1 and reached a
maximum around 320 W·m−2 s−1. Thaw depth was the primary seasonal control (RI= 12%),
which had a consistently negative influence (Fig. 9b). The increase in magnitude of negative
effect around 0.3 m coincided with the decrease in NME after DOY 202 (Fig. 4b). The influence
of Rn in the early and late season is plotted in Fig. 10a. Leaving all other drivers fixed, a TD
increase from 0.3 to 0.45 m decreases NME from 10 to 17 nmol·m−2 s−1 at low (0 W·m−2 s−1)
and high (350 W·m−2 s−1) Rn respectively. The shape of the curves is similar, but later in the

Fig. 7. Modeled estimated net ecosystem exchange (NEE) under different conditions; unless otherwise specified,
all inputs were fixed to their median value. (a) Daytime NEE response to photosynthetic photon flux density
(PPFD) at optimal and high vapor pressure deficits (VPD). (b) NEE response to thaw depth (TD) for daytime and
nighttime. (c) NEE response to polygon center temperatures at 5 cm daytime and nighttime conditions, with
center-rim temperature gradients of 4 °C and 1 °C, respectively. For each plot, the solid lines represent the mean
modeled net methane exchange (NME) response, the dotted line is the mean response estimated outside
conditions that were actually observed, and the shaded area bounded by the dots is the 95% confidence interval
around the estimate.
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season NME does not increase as rapidly with Rn. This would explain the lack of a mid-day
plateau seen in the late season (Fig. 5d).

Polygon center temperatures at 15 cm (RI = 6%) had a daily and seasonal signal. The
seasonal trend closely mirrored TRim15 (Fig. 3c), peaking in mid-August, then decreasing.
The daily maxima and minima occurred around 1:00 LST and 14:00 LST respectively;
the mean daily range was greater in the early season (3 °C) than late season (2 °C). This
pattern corresponds well with the cycles shown in NME (Figs. 5b and 5d). The derivative
of TCnt15 shows a net negative influence on NME, emissions increase until 2.5 °C above
which they decrease (Fig. 9c). The parabolic response with to TRim15 is shown at two water
table depths (Fig. 10b). Water table depth (RI = 4%) had a modest negative influence over
NME. NME decreased as the WTD got closer to the surface, which was unexpected.

The model identified two highly correlated sets of inputs U and u* (r
2= 0.92) and FRim and

FPly (r
2 = 0.94) as well. The wind and footprint variables had combined RIs of 37% and 6%,

respectively. The model derivatives of U (negative) and u* (positive) had inverse effects,

Fig. 8. (a) Nighttime net ecosystem exchange (NEE) measurements plotted against modeled ecosystem
respiration (ER) derived by the neural network (NN) (blue) and logistic temperature response curve fit to
TRim2.5 (red). (b) Boxplots of the distribution of flux chamber observations of ecosystem respiration (ER) for
polygon centers (ERCnt, n = 16) and rims (ERRim, n = 8) aggregated over the two measurement days. Also shown
are the nighttime ER observations from the eddy covariance (EC) system (n= 186). For the boxplots, the red line
indicates the median, the box represents the inner quartile range (Q1–Q3), the whiskers are 1.5 times the inner
quartile range ending at the farthest data point within that interval, and circles represent outliers. Note the
Y-axes for a and b are not the same scale.

Table 3. Environmental controls over net methane exchange (NME) identified by model
pruning, along with their relative influence on the model and their Pearson’s
correlation coefficient on half-hourly NME.

Rank Symbol Factor RI Sign r

1 Rn Net radiation 34% + 0.66
2 u* Friction velocity 20% + 0.23
3 U Wind speed 17% − 0.34
4 TD Thaw depth 12% − −0.46
5 TCnt15 Soil temperature 15 cm, polygon center 6% − −0.58
6 WTD Water table depth 5% − −0.45
7 FRim Rim fraction 4% − −0.19
8 FPly Center fraction 2% − 0.19
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indicating that the ratio between the two was important (Fig. 9d and 9e). Friction velocity
increases proportionally with wind speed, but the ratio is not fixed. It was on average 8.1%
of U with a standard deviation of 1.1%. All else equal, at U = 5 m·s−1, a difference of ± 1 std.
can result in a 10 nmol·m−2 s−1 difference in NME (Fig. 10c).

With source area fractions, FRim increased roughly proportionally with decreasing FPly
with deviations caused by FTro to a much lesser extent FOut. The effect of changing land cover
in the source was generally small, but not insignificant. Supplementary Figure S11 shows
projections of NME across the range of FRim and FCnt with deviations in FRim to reflect the
range of FTro. Estimating NME over the study period with FRim and FCnt fixed to ALF, the
model predicts a slightly lower NME 26.6 (CI95% ± 4.3) nmol·m−2 s−1.

Discussion

Flux drivers
NN are ideally suited for modeling the numerous nonlinear relationships that influence

carbon fluxes. However, a NN will fit any pattern in a data set, real or artificial, so care must
be taken to ensure the results are plausible and repeatable. If a NN is treated as a black box
(e.g., Jarvis and Stauch 2006), we have no way of knowing what it is actually doing. Plotting
the model output response to specific drivers is beneficial (Moffat et al. 2010; Skeeter et al.
2020), but when working in multidimensional feature space there is no way to assess all
possible combinations of drivers. To our knowledge, this is the first study to apply the
weights method (Gevrey et al. 2003) to a NN analysis of EC data. This method allowed us
to assess each variable’s relative influence and visualize the relationship by plotting their

Fig. 9. The mean sum of squared derivative (SSD) for six (a–f) of the input factors for the net methane exchange
(NME) model are shown in red, with a 95% confidence interval shown in blue. Y-axis labels on the left correspond
to the SSD values. Also shown (a–f) are histograms (grey bars) of the distribution of the input variables in the
training set. The Y-axis labels on the right correspond to the input counts for each bin.
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partial first derivatives, which was especially useful for highly correlated inputs like wind
speed and friction velocity.

Spatial variability
In low-center polygonal landscapes, polygon centers are depressed relative to rims.

Relief was about 10–20 cm at Fish Island, whereas a site on Samoylov Island in Siberia’s
Lena Delta had up to 50 cm (Sachs et al. 2010). Anaerobic respiration is favored in the
depressed areas, promoting CH4 production, and inhibiting ER and CH4 consumption (Lai
2009). Our chamber ER data show higher ER from rims than centers at Fish Island. Similar
patterns have been found in chamber ER studies of low-center polygon sites near Barrow
(Utqiaġvik), AK (Olivas et al. 2011) and Samoylov Island, Siberia (Eckhardt et al. 2019). At
Samoylov Island, NME differed by an order of magnitude between centers and rims as well
(Sachs et al. 2010). However, rim GPP was higher and lower than center GPP at the Alaskan
and Siberian sites, respectively (Olivas et al. 2011; Eckhardt et al. 2019). The rims at Fish
Island had more shrub cover than either of the other sites, so we cannot assume the GPP
response here would be similar to either the Alaskan or Siberian sites.

At the plot scale, there was significant spatial heterogeneity at Fish Island. The NN analysis
indicated polygon rim and center fraction were both relevant for NME, with a combined in-
fluence of 6%. Polygon rims had lower NME than centers and both had lower NME than
troughs. The source area fractions are not drivers of landscape scale CH4 per se. Rather they
highlight substantial spatial heterogeneity in CH4 fluxes at Fish Island and indicate location
bias had a minor impact on observed NME (Schmid and Lloyd 1999). Following a three-tier
site-footprint representative index based on the dominant landcover fraction and chi-square
analysis, our site’s footprint would be classified as Medium (Chu et al. 2021). Projecting to the
ALF shown in Table 1 estimates that landscape scale NME is about 1 nmol·m−2 s−1 lower.

Fig. 10. Modeled estimated net methane exchange (NME) under different conditions. Unless otherwise specified,
thaw depth (TD) was set to 0.3 m and all other inputs were fixed to their median value. (a) NME response to net
radiation for TD representative of early season (0.3 m) and late season (0.45 m) conditions. (b) NME response to
polygon center temperatures (TCnt15) at two water table depths (WTD). (c) NME wind speeds (U) with friction
velocity (u*) set to 7% and 9.2% of U. For each plot, the solid lines represent the mean modeled NME response, the
dotted line is the mean response estimated outside conditions that were actually observed, and the shaded area
bounded by the dots is the 95% confidence interval around the estimate.
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This projection can also be used to infer that if permafrost degradation leads to the develop-
ment of more troughs at Fish Island in the future, landscape scale NME will go up.

For NEE the temperature gradient between rims and centers was relevant, which indi-
cates that microtopography has an effect on landscape scale CO2 fluxes at Fish Island.
Footprint source area inputs were not identified as important drivers (RI > 2.5%) of NEE by
the benchmark model, so they were pruned. In the benchmark NEE model, polygon rim
(RI= 1.9%) and center (RI= 1.7%) ranked 12th and 14th among the initial 21 inputs, indicating
they had little influence on footprint scale NEE compared with the selected drivers. At very
low values (e.g., FRim< 10%), the benchmark model predicts more negative NEE, which sup-
ports the chamber observations of reduced ER in polygon centers, but conditions like that
accounted for less than 4% of our flux observations. For further comparison, trough fraction
ranked 21st (RI = 0.5%) and 9th (RI = 2.4%) in the benchmark NEE and NME models, respec-
tively. The low importance assigned to the source area fractions suggests the placement of
the tripod relative to microtopographic features did not have an appreciable impact on
the NEE observed.

The resolution of the landscape classification and footprint function (Kljun et al. 2015)
may have been limiting factors. However, the average polygon was only 270 m2 (∼16.5 m
across), whereas the 50% and 90% contours for the typical flux footprint were 2300 m2 and
6500 m2, respectively. Given the relatively small size of the polygons and the regularity with
which they repeat across space, the spatial heterogeneity at Fish Island mostly averages out
at the footprint scale.

Net ecosystem exchange: flux partitioning
The NN analysis identified PPFD as the primary control over GPP, and highlighted VPD as

the main limiting factor of GPP, which was expected (Aubinet et al. 2012). This relationship
has been identified by NN analysis in other studies (Moffat et al. 2010; Skeeter et al. 2020)
and has been noted at other wet tundra sites across the Arctic (Kwon et al. 2006; Fox et al.
2008). The model selected polygon center temperatures at 5 cm as the dominant driver, which
makes sense given that polygon centers cover the majority of the land area (66%) at the site. It
also indicated that the center–rim temperature gradient played an important role in modulat-
ing ER. Other studies have found surface temperature rather than soil temperatures to be the
primary control over ER in tundra environments (Kutzbach et al. 2007; Runkle et al. 2013). We
lacked an observation of surface temperature and would consider adding it in a future study.
However, temperatures throughout the upper layers of peat were shown to be strong predic-
tors of ER at a polygonal peatland site in Salluit, Quebec (Gangnon et al. 2017). Further, given
the flexibility of NN to account for interactions between variables we are confident this pro-
vides a better estimate than soil surface temperature alone could.

When modeling NEE, the network does not inherently differentiate between ER and
GPP. Rather it conflates the signals of the two responses into one output. Some studies have
trained the NN separately on nighttime and daytime conditions to resolve ER (Papale and
Valentini 2003). This approach was not well suited for our site. Instead, we used the
Daytime variable to give the model the ability to differentiate between night and day
without splitting our training data. Skeeter et al. (2020) approximated ER using a NN by set-
ting radiative inputs to “nighttime” values, but they did not use a Daytime variable, and
their NN underperformed relative to a Q10 curve. We found adding Daytime drastically
increased the model’s ability to resolve ER, which we support with comparisons to the Q10

and logistic temperature response curves. It also allowed us to estimate ER over the full
study period, despite the limited number of nighttime observations, using an artificial
“dark” data set.
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Our NN derived ER (1.54 μmol·m−2 s−1) was between the ERCnt and ERRim, which gives us
confidence in our estimate. Using the half-hourly footprint source area fractions, we can
spatially weight our chamber observations. Assuming polygon center/rim distribution out-
side the LCM mirrors the distribution within it, and ER from troughs is between ERCnt and
ERRim we get an estimate of 1.62 (IQR1.34 to 2.22) μmol·m−2 s−1. This is a rough, back of the
envelope comparison, but it does further support using this method to estimate ER.

Mean gap-filled NEE, estimated ER and GPP at Fish Island all exceeded ranges observed at
a low-center polygon sites in Alaska (Olivas et al. 2011) and Siberia (Eckhardt et al. 2019)
using flux chambers. We attribute the differences in GPP to (1) The lower latitude of Fish
Island (69°) compared with the Alaskan (71°) and Siberian (72°) sites. (2) More productive
vegetation at Fish Island, e.g., Salix spp. were absent at the Alaskan and Siberian sites.
Differences in ER are attributable to colder soil temperatures and shallower thaw depths
(25 cm) and (35 cm) at the Alaskan and Siberian sites respectively (Olivas et al. 2011;
Eckhardt et al. 2019).

Net methane exchange
There was a significant diurnal cycle in NME throughout the season, and this was identi-

fied by the NN selecting Rn as the dominant driver. Many studies in Arctic, subarctic, and
peatland sites have not found a distinct diurnal cycles in CH4 fluxes (Rinne et al. 2007;
Sachs et al. 2008; Nadeau et al. 2013; Lee et al. 2017; Rößger et al. 2019b). However, mid-day
maxima in NME have been observed at subarctic fens in the Hudson Bay lowlands
(Chanton et al. 1992) and Siberia (Veretennikova and Dyukarev 2017). In the Siberian fen,
mid-day NME was three times the nighttime values (Veretennikova and Dyukarev 2017),
which is even greater than observed at Fish Island. They proposed diurnal temperature var-
iations explain the cycle. We postulate the same is occurring at Fish Island, given the model
both polygon center temperatures at 15 cm (TCnt15) as an auxiliar drivers and the diurnal
cycle in TCnt15. However, we cannot overlook the potential role of plant-mediated transport
as another driving factor (Wang and Han 2005). Given the strong positive correlation
between NEE and NME, we think this merits further investigation as well.

WTD is known to be a primary determinant of CH4 production and consumption in peat-
lands (Kutzbach et al. 2007; Lai 2009). However, Arctic sites with little variation inWTD have
found its influence to be negligible (Sachs et al. 2008; Rößger et al. 2019b). At Fish Island,
decreasing water table depth had a weak negative influence, which was unexpected. We
propose three explanations for this. (1) The range of water table depth was fairly small over
the study period. This reasoning was given to explain a similar pattern at a bog in the James
Bay lowlands (Nadeau et al. 2013). (2) Data during/after precipitation events when the water
table rose rapidly were generally filtered out due to low signal strength (RSSI). Using the
unfiltered data, we see strong peaks associated with rising water table, but these signals
are unreliable so more studies would be needed to verify this. Gagnon et al. (2017) found
precipitation events created conditions that suppressed ER in a polygonal peatland. It is
probable that the same thing occurs at Fish Island and leads to elevated NME. (3)
Significant loss of data in the second half of the study period means we lack NME observa-
tions for many specific combinations of thaw depths and water table levels, limiting the
model’s ability to resolve the relationship between these drivers. To adequately resolve
the influence of water table depth and its interaction with thaw depth, a multi-year data
set would be needed.

Perhaps the most interesting finding of our NN analysis is the complex relationship of
NME with wind speed (U) and friction velocity (u*). Spikes in NME associated with high fric-
tion velocity have been observed at a low-center polygon site in Siberia (Sachs et al. 2008)
and a peatland in the James Bay lowlands (Nadeau et al. 2013). One explanation is that gas
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transfer between open water and the atmosphere increases proportionally to the third
power of the windspeed (Sachs et al. 2010; Wanninkhof and McGillis 1999). This likely had
some effect because of the ponded troughs within the footprint. However, most of the land
area was consistently above the water table. Instead, we frame the hypothesis that high
winds and turbulence may enhance pressure pumping (Laemmel et al. 2017; Mohr et al.
2016) that ventilates the aerobic peat layer in the polygon center. We hypothesize that pres-
sure pumping reduces the time CH4 is subject to methanotrophy within the aerobic layer of
peat and, therefore, enhances net CH4 emissions by transporting it more quickly from the
anaerobic layer to the atmosphere. Given that high wind events ventilate CH4 that would
otherwise be consumed, a change in storm frequency paired with an increase in the dura-
tion of the snow free season could lead to an increase in emissions from sites like Fish
Island, a hypothesis that requires further exploration.

Carbon balance
The low-center polygonal terrain at Fish Island was a net CO2 sink (–0.6 μmol·m−2 s−1)

and a net CH4 source (27.7 nmol·m−2 s−1) during the 2017 study. Overall, NME had a rela-
tively minor impact on net carbon uptake (–49.5 g C·m−2) over the 82 day study period
(Fig. 11). Our estimate of NME matches well with median daytime NME measured by aircraft
(17 to 35 nmol·m−2 s−1) in vicinity of Fish Island (Kohnert et al. 2017).

A short EC study at Illisarvik, a young drained thermokarst lake basin 17 km to the
northeast, is the only observation of NEE available in the scientific literature for
comparison in the region (Skeeter et al. 2020). Peak growing season NEE and NME respec-
tively were 1.5 and 0.3 times the magnitude observed at Fish Island. Vegetation at
Illisarvik is diverse and basin scale fluxes are not representative of the Fish Island.
Compared with chamber fluxes at Illisarvik, ERRim was most similar to dense Salix spp.
plots at Illisarvik (3.4 ± 0.6 μmol·m−2 s−1) whereas ERCnt was below even bare soil plots
(1.9 ± 0.3 μmol·m−2 s−1). NME was low across vegetation types at Illisarvik, except for sedge
plots (110 ± 14.7 nmol·m−2 s−1) that were well above even maximum half-hourly NME
(73 nmol·m−2 s−1) measured at Fish Island (Skeeter et al. 2020). The only other study in the

Fig. 11. The cumulative daily carbon (C) balance in g C·m−2 with and without accounting for net methane
exchange (NME).

492 Arctic Science Vol. 8, 2022

Published by Canadian Science Publishing

A
rc

tic
 S

ci
en

ce
 D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

A
L

B
E

R
T

-L
U

D
W

IG
S-

U
N

IV
E

R
SI

T
A

E
T

 o
n 

06
/0

3/
22

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 



region is from manual chamber measurements on high-center polygons near
Tuktoyaktuk (Martin et al. 2017). Polygon and wet-trough ER (1.2 ± 0.7 μmol·m−2 s−1)
were comparable to ERCnt; polygon center NME was negligible but wet-trough NME
(150 ± 236 nmol·m−2 s−1) was very high (Martin et al. 2017). No areal fraction for this site
was given, so there is no landscape scale estimate to compare between these two types of
polygonal terrain.

Lacking more studies of carbon fluxes in the Mackenzie Delta, we can compare current
results with Samoylov Island (72°22′N, 126°30′E) in Siberia’s Lena River Delta, which has
been intensively studied with both EC and chamber methods (Sachs et al. 2008, 2010;
Eckhardt et al. 2019; Holl et al. 2019; Rößger et al. 2019a and 2019b). Mean air temperature
(–12.8 °C) and annual precipitation (321 mm) at Samoylov are colder and wetter than Fish
Island (Rößger et al. 2019b). Samoylov Island has two morphological units, a river terrace
with low-center polygonal tundra and a floodplain (Kutzbach et al. 2007). The distribution
of polygon rims (60%–65%) and centers (35%–40%) and microtopographic relief (up to
50 cm) on the terrace is quite different than at Fish Island, but the vegetation communities
present (sedges, mosses, dwarf shrubs), and mean thaw depths (0.49 m) were comparable.
Two vegetation communities were at the floodplain site: dense Salix spp. up to 1 m tall
and Carex spp. with dwarf Salix spp. Relative to Fish Island, TD (0.7–0.9 m) and WTD

(0.4–0.5 m) were deeper. Neither unit is directly analogous to Fish Island, but they can help
contextualize our results.

At the floodplain site, averaged over 2014 and 2015, peak growing season and late season
NEE respectively were more negative (–1.77 μmol·m−2 s−1) and positive (0.77 μmol·m−2 s−1),
respectively, than at Fish Island (Rößger et al. 2019a). They attribute the unexpectedly high
productivity of this site to regular nutrient input from the spring flood (van Huissteden
et al. 2005; Rößger et al. 2019a). At the adjacent river terrace, a 14 year record shows this site
is consistently a growing season CO2 sink, over comparable periods (see Fig. 9 in Holl et al.
2019), net CO2 uptake at Fish Island between DOY 200 and 234 in 2017 (–23.1 g C-CO2 m

−2)
was greater than all but one year at the terrace site at Samoylov Island. Interannual variabil-
ity was significant and, in some years, cold season emissions offset growing season uptake
(Holl et al. 2019). NME at the floodplain (15 nmol·m−2 s−1) and terrace (13 nmol·m−2 s−1) were
well below levels observed at Fish Island (Sachs et al. 2008; Rößger et al. 2019b). These lower
methane emissions can partly be explained by the better drainage of the floodplain and dif-
ference in microtopography rim/center distribution at the terrace site. Additionally, Fish
Island’s growing season is warmer; mean July air temperatures of 11.6 °C compared to
9.5 °C at Samoylov, which may also contribute to higher NME (Holl et al. 2019; NWT Water
Resources 2019).

Conclusions

This is the first study to directly and continuously measure growing season NEE and
NME within the Mackenzie River Delta by means of eddy covariance. The site, a low-center
polygonal peatland at Fish Island was a C sink during the study period with NME having
only a minor impact on net C uptake. NME was within the range observed by aircraft in
the Northern Mackenzie Delta. Fish Island was a stronger CH4 source than similar land-
scapes in the Lena River Delta (Siberia), whereas CO2 exchange was comparable. We used
a NN approach to identify major drivers of NEE and NME at different temporal scales.
Variations in light level and temperature were the main controls over diurnal net carbon
dioxide uptake, whereas thaw depth and phenology were the main seasonal controls.
Methane emissions measured at Fish Island were higher than comparable studies on river
delta sites in the Arctic and were influenced by the interaction of numerous of factors
including thaw and water table depth, soil temperatures and net radiation. The high
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NME and significant interannual variability in flood and climate conditions at this site high-
light the need for longer term studies in this region. Additionally, the enhanced NME
during high wind events calls for further studies to allow for a process-based understanding
of the mechanisms. More research is needed to carefully test the pressure pumping
hypothesis and its implications on global-level Arctic CH4 emissions.
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