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A B S T R A C T

Radiation therapy of head and neck tumors requires precise tumor segmenta-
tions for an optimal treatment outcome. For treatment planning, tumors are
best segmented on magnetic resonance imaging (MRI) data.

Today, convolutional neural networks (CNNs) can automate the tedious seg-
mentation process for some tumors, with an excellent performance: However,
this has not been realized in head and neck cancer so far. This thesis focuses
on the connection of automatic tumor segmentation using CNNs to the MR
image acquisition and protocol optimization. Therefore, the patient setup for
head and neck cancer patients is improved to reduce artifacts in diffusion
weighted MRI, and the effect of additional distortion correction in ADC pa-
rameter maps on the CNN performance is evaluated. For the segmentation,
a feed-forward CNN with 2 pathways for high- and low-resolution features
is realized for multi-parametric MRI data of head and neck cancer patients,
achieving a segmentation Dice coefficient of up to 65%. The relative influence
of each of 7 MRI input channels is quantified: It is shown that each of the 7

channels improves segmentation performance of the CNN, and that T*
2 has the

largest overall influence, with a difference in segmentation performance to the
reference network of 6%.

Furthermore, a new sequence is developed to simultaneously measure T2

and ADC parameter maps. The multiecho spin echo sequence with interleaved
diffusion blocks is designed to eliminate geometric distortion artifacts present
in conventional diffusion weighted MRI using a highly undersampled radial
readout in combination with a regularized iterative reconstruction. The se-
quence is extensively tested in simulations as well as in MRI phantoms, and
first in vivo results are presented.

With the optimized MRI protocol and sequences for the segmentation perfor-
mance of the CNN, the imaging time can be reduced and/or image quality can
be improved.

Z U S A M M E N FA S S U N G

Bei der Bestrahlung von Kopf-Hals-Tumoren werden hochpräzise Tumorseg-
mentierungen benötigt, die auf Basis von magnetresonanztomographischen

v



(MRT)-Bildern erstellt werden, um bestmögliche Behandlungsergebnisse für
die Patienten zu erzielen.

Neuste Entwicklungen zeigen, dass durch den Einsatz von neuronale Fal-
tungsnetzwerken (engl.: convolutional neural networks, CNNs) der zeitaufwän-
dige Segmentierungsprozess bei einigen Tumorentitäten automatisiert werden
kann. Derartige Ergebnisse, die für einen klinischen Einsatz ausreichen würden,
konnten bei Kopf-Hals-Tumor allerdings noch nicht gezeigt werden. Deshalb
soll in dieser Arbeit das Zusammenspiel von automatischer Tumorsegmentie-
rung mit Hilfe von CNNs, sowie der Bildaufnahme und Protokolloptimierung
untersucht werden. Dazu wird zunächst der Patienten-Messaufbau optimiert
um Bildartefakte in der Diffusionsbildgebung zu reduzieren. Weiterhin wird der
Effekt der zusätzlichen Korrektur von Verzerrungsartefakten in der Diffusions-
bildgebung auf die Qualität der CNN-Segmentierungen ausgewertet. Hierfür
wird ein Feed-Foreward CNN verwendet, welches mit Hilfe zwei separater
Verarbeitungswege hoch- und niedrigaufgelöste Kontextinformationen von mul-
tiparametrischen MRT-Bildern verarbeitet. Mit dem CNN werden für die Kopf-
Hals-Tumorpatienten Segmentierungsergebnisse (Dice-Sørensen-Coefficient,
DSC) von bis zu 65% erreicht. Zusätzlich wird der relative Informationsgehalt
von 7 MRT Eingabekanälen auf die Segmentierungsqualität quantifiziert: Für
jeden der 7 Kanäle zeigt sich eine Verbesserung des Ergebnisses, wobei T*

2

mit einem Unterschied von 6% zum Referenznetzwerk den größten Einfluss
aufweist.

Außerdem wird im Rahmen dieser Arbeit eine MRT-Sequenz zur gleichzeiti-
gen Messung von T2- und ADC-Parameterkarten entwickelt. Diese basiert auf ei-
ner Multiecho Spin-Echo Sequenz mit zwischengeschalteten Diffusionsblöcken,
um die starken Verzerrungsartefakte von konventioneller Diffusionsbildgebung
im Kopf-Hals-Bereich zu umgehen. Zur Reduzierung der Aufnahmedauer wird
eine stark unterabgetastete radiale Trajektorie verwendet, und die Bilder wer-
den mit Hilfe eines regularisierten iterativen Algorithmus rekonstruiert. Die
Sequenz wird in Simulationen sowie in MRT-Phantomen getestet und erste in
vivo Ergebnisse werden gezeigt.

Mit Hilfe der daraus für die automatische Tumorsegmentierung abzuleiten-
den MRT-Protokoll- und Sequenzoptimierungen kann die Patienten-Messzeit
verkürzt und/oder die Bildqualität signifikant verbessert werden.
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I N T R O D U C T I O N

Since Paul Lauterbur [Lau73] and Peter Mansfield [Man77] introduced magnetic
resonance imaging (MRI) in the 1970s, MRI has become one the most important
and versatile diagnostic imaging tools. MRI is a noninvasive imaging technique
that is free of ionizing radiation, and it offers capabilities of generating superior
soft tissue contrast with arbitrary tomographic slice positioning.

The free choice between several image contrasts is a characteristic feature
of MRI, which allows the acquisition of various tissue and disease-specific
information. Clinically, the most common contrasts are based on the T1 and
T2 relaxation times, in combination with the proton density. In many cases,
contrast agents such as gadolinium-chelates are used to shorten the relaxation
times, which can increase the contrast, for example, in well-perfused tumors.

Moreover, MRI can be used to quantitatively assess the underlying physical
parameters that contribute to the measured signal. For example, the measure-
ment of the molecular self-diffusion, as described by Stejskal and Tanner for
the nuclear magnetic resonance (NMR) experiment [ST65], is an essential part
of many clinical imaging protocols. There, diffusion information is a surrogate
parameter for changes in cell structure, such as cell density. Other parameters,
such as T1, T2, T*

2, or quantitative perfusion using dynamic contrast enhanced
(DCE) MRI can also be acquired. However, due to the longer acquisition times,
these quantitative methods are often not implemented in clinical routine.

With the large variability in image contrasts, standardized protocols are
needed, such as BI-RADS [MCL13; MSK21] for breast and PI-RADS [Wei16;
ST16] for prostate cancer imaging. With the potential to acquire various func-
tional and anatomical information in a single exam, MRI has become one of
modern medicine’s central cornerstones in tumor imaging.

For cancer patients, treatment options include surgery, chemotherapy, or
radiation therapy (RT), or a combination thereof. In RT, ionizing radiation
(high-energy photons, electron beams or alpha-radiation) is delivered to the
lesion to initiate the cell death in the tumor. In RT, photon beams with energies
in the range of 4-20 MeV are created by a linear accelerator (LINAC). Modern
RT systems can shape the photon beam and irradiate from different angles
to achieve a high radiation dose within the target structure, while sparing
the surrounding healthy tissue. This dose plan is calculated from attenuation
coefficients of the tissue, which can be derived from CT images. To achieve the
best treatment result, an accurate segmentation of a lesion (i. e., the tumor) is

1



2 introduction

important in RT, which can best be achieved on MR images due to their high
soft-tissue contrast.

In this thesis, MR imaging and post processing methods are developed for
head and neck tumors. The vast majority of tumors (> 90%) in the region
are head and neck squamous cell carcinoma (HNSCC). HNSCC is a cancer of
the mucosa and can appear in any of the anatomical regions of the pharynx
(oro- and hypopharynx), oral cavity, and the larynx. As it can spread to
the lymphatic system, imaging down to the shoulder level is necessary for a
complete diagnosis. Major risk factors for the development of head and neck
cancer are tobacco or alcohol abuse, increasing the risk by 5-25 fold [Wys13;
Blo88]. Additionally, a chronic infection with viruses of the human papilloma
family can increase the risk of HNSCC [Ang10].

Although HNSCC is well curable in early stages, e. g. with radiation therapy,
about 50% of the patients already developed advanced tumors, resulting in an
average survival rate of only 52-64% [GP06], and more than 380.000 deaths per
year, which makes head and neck cancer the 9

th most common cause for cancer
related-death.

MRI protocols of the head and neck area include T1-weighted images that
should have excellent contrast between fat and the lesion, which typically
shows similar signal behavior as muscle and considerably lower intensity
than fat [RSH08]. T2-weighted images with fat suppression are acquired for a
better delineation of the lesion from the surrounding tissue. Additionally, T1-
weighted contrast-enhanced images are acquired, as the increased vascularity of
the tumor leads to an early signal enhancement with respect to the surrounding
healthy tissue. Lymph node metastases are detected by their change in size and
shape, and, if necrotic, can present with a reduced signal in T1-weighted and
an increased signal in T2-weighted imaging [RSH08].

In RT planning, contours of tumor and lymph node metastases are created
manually based on all available images. This manual segmentation task is
very time-consuming, taking up to two hours per patient for a complete seg-
mentation. Additionally, the manual tumor delineations are subject to a large
inter-observer variability [HST10; Gue19; vGN19], leading to different treatment
outcomes depending on the performing radiation oncologist.

With the success of computer vision starting in the early 2000s, artificial
intelligence based image classification and segmentation have become feasible.
Automatic segmentation algorithms are trained on large databases of segmented
images, allowing them to extrapolate to unseen data after a training phase.
Thus, their ability to generalize is critically dependent on the amount and
variability of the data used during training. Therefore, the availability of large
public databases, including a million images with 1000 different class labels,
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marked the breakthrough of neural networks in the computer vision community
[LBH15; KSH12].

A similar development is seen for medical images, despite significant dif-
ferences between tomographic and natural images. Recently, neural networks
have been introduced into clinical workflows as assistance systems with the
potential to drastically reduce the time for segmentation. However, as opposed
to the vast publicly available natural image databases, medical image databases
first needed to be established and carefully curated. Such publicly available
databases do now exist for certain cancer entities, e. g. prostate [Lit17a], breast
[New21] or brain tumors [Bak17]. Still, they are limited to specific diseases and
the imaging modalities and contrasts included. Therefore, automatic segmen-
tation of less frequent tumors or studies including MRI contrasts that are not
commonly used in clinical routine cannot rely on large image databases.

Most of the current research work aims to develop more efficient or more
precise neural networks, disregarding the choice of image contrast in MRI. The
main goal of this thesis is to close this gap between improvements in computer
vision and MR method development. Hence, a method to find optimal MR
image contrasts is described that maximizes the segmentation performance of
state of the art convolutional neural networks (section 5.6 and 7.4). Furthermore,
improvements in the acquisition and post-processing of diffusion weighted
(DW) MR images used for automatic tumor segmentation are presented. The
patient setup for head and neck MRI was improved to increase the quality
as well as the quantity of DW-MRI, which were used to train segmentation
algorithms (sections 5.3 and 7.2). Next, additional post-processing to correct
for distortion artifacts in DW-MRI was explored as a means to improve the
segmentation quality of a neural network (sections 5.5 and 7.3).

From these results, the need for faster, artifact-free acquisition of different
parameters becomes apparent, and therefore a new MRI sequence was proposed
(chapter 6). The sequence was designed for simultaneous quantitative T2 and
diffusion parameter mapping, which is insensitive to geometric distortion as
seen in conventional DW-MRI. In chapter 8, simulations and first in vivo results
of the proposed sequence are presented.
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T H E O RY





1
N U C L E A R M A G N E T I C R E S O N A N C E

Magnetic Resonance Imaging (MRI) is based on the resonant excitation of
nuclear magnetic spin states. In nearly all clinical applications, the relevant
nucleus is the hydrogen atom. A rigorous physical description of the MRI
signal behavior requires a thorough understanding of atomic physics on a
quantum mechanical level - however, most effects observed by and necessary
for MRI sequences can be described by classical models. This chapter introduces
nuclear magnetic resonance (NMR), i. e. basics of excitation and relaxation
of spin ensembles, which lies the groundwork for MRI. This chapter is based
on textbooks from Levitt [Lev08] and Brown et. al. [Bro14], which are also
excellent resources for further reading.

1.1 nuclear spin

Spin is an inherently quanumechanical internal degree of freedom of elementary
particles, similar to charge. In general, spin is always associated with a total spin
quantum number I, analogous to the angular momentum quantum numbers L,
with a total angular momentum

Itot =  h
√

I(I+ 1) . (1.1)

Due to the quantum mechanical nature of spin, the spin quantum number I is
associated with 2I+ 1 eigenstates mi along their quanitization axis, with

mi ∈ [−I,−I+
1

2
, · · · , I−

1

2
, I] . (1.2)

A nucleon, i. e. a proton or neutron, consists of three permanent elementary
particles (quarks) with spin I = 1

2 and a "sea" of force particles (gluons) and
additional quarks. Neutrons and protons combine two quarks with antiparallel
spin and therefore have a net spin of 1

2 . Combining protons and neutrons can
create atoms with larger spin, both integer (bosons) and half integer (fermions).
Here, only hydrogen nucleus (1H) is discussed, which is (almost) exclusively

7
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used for imaging in the human body due to its vast natural abundance in tissue
water.

Measurement of the spin angular momentum along any axis can only yield
the eigenstates of the wave function along that axis. For 1H, I = 1

2 , such that
mi = ±1

2 (in units of  h).
Spin is coupled to the magnetic moment µ̂ of a particle by a linear relationship

µ̂ = γÎ , (1.3)

where the hat symbol (·̂) marks the argument to be a quantum mechanical op-
erator. The gyromagnetic ratio γ is dependent on the atom and can be positive
or negative. For hydrogen, γ

2π = 42.577MHz/T. Spin and magnetization have
a directionality, and a particle is referred to as "polarized" along the axis of
magnetization.

To simplify notation and to be consistent with the literature resources, ener-
gies will be given in units of  h if not stated otherwise.

Given an external magnetic field B0 in z direction, there are two eigenstates
of the z-angular momentum operator Îz, called |α⟩ or up and |β⟩ or down.
The external field leads to an energy difference of the two states, the Zeeman
splitting, with energy levels given by

Ĥ0|α⟩ = +
1

2
ω0|α⟩

Ĥ0|β⟩ = −
1

2
ω0|β⟩ .

(1.4)

Here, Ĥ0 is the Hamilton operator (energy operator), and therefore ±1
2ω0 are

the energy eigenvalues of the two eigenstates. ω0 is given by

ω0 = γB0 (1.5)

and describes the precession frequency of the magnetic moment about the
B0-axis and is called the Larmor frequency.

1.2 spin ensembles

In an NMR or MRI experiment individual spins are not considered, but rather
the combined action of many independent (≈10

22) molecules is observed.
Therefore, the spin dynamics are described by the spin density operator

ρ̂ =

(
ραα ραβ

ρβα ρββ

)
, (1.6)
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where ραα and ρββ denote the populations of the eigenstates |α⟩ and |β⟩ and
ραβ and ρβα denote coherence states. The density operator averages the states
of all spins in the ensemble. Physically, the difference in populations is a
measure for the magnetization of the spin ensemble along an external field
axis, while the coherences can be interpreted as the magnetization state of the
ensemble in the transversal plane, relative to an external field direction.

Thus, the thermal equilibrium magnetization can be derived from the spin
density operator, given that in equilibrium the coherence states ραβ = ρβα = 0

and that the energy eigenstates are populated according to the Boltzmann
statistics:

ραα =
e
−

 hω0
2kBT

Z

ρββ =
e
+

 hω0
2kBT

Z

Z = e
−

 hω0
2kBT + e

+
 hω0
2kBT .

(1.7)

The difference of the two populations denotes the amount of particles, which
effectively contribute to the net magnetization M⃗0, which is normalized to the
volume V and the total number of particles N:∣∣∣M⃗0

∣∣∣ = Nγ h

V

(
ραα − ρββ

)
. (1.8)

At room temperature and typical clinical MRI field strengths of 1.5 - 3 T, the
factor

(
ραα − ρββ

)
is in the order of magnitude of 10−6, which means that only

about 1 ppm of the available spins can be detected in an MRI experiment.
It is possible to translate the spin density operator in a vector representation

of the magnetization, with Mz linked to the populations, and Mx and My

linked to the coherence states. This representation conveniently links to the
classical description of a moment M⃗ in an external field B⃗, which is described
by the differential equation

dM⃗
dt

= γM⃗× B⃗ . (1.9)

Equation (1.9) describes the precession of the magnetization vector M⃗ about
the axis defined by B⃗ (here, the z-axis). The precession frequency is given by
ω0, as shown in figure 1.1 a).
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Figure 1.1: Dynamics of the magnetization vector in the presence of an external field.
a) Precession of M around B0 with the Larmor frequency ω0. b) In the rotating frame,
M′ is turned around the y′-axis by the transmit field B′

1. In the laboratory frame, B′
1

rotates with ω0, such that it appears stationary in the rotating frame.

1.3 excitation

In the equilibrium state, M⃗ is parallel or antiparallel (γ < 0) to the external field
B⃗0, and dM⃗

dt = 0. However, as suggested by equation (1.9), additional magnetic
fields can be introduced to rotate the magnetization from the equilibrium state.
This process is called radio frequency (RF) excitation and lies at the basis of
any NMR experiment.

The dynamics of the magnetization vector can be simplified if the frame
of reference is rotating with the same angular frequency as the precession
frequency, called the rotating frame. A basis change into the rotating frame of
reference with angular frequency ω0 creates a virtual magnetic field, which is
equal and opposite to B0, resulting in a net external magnetic field of B′

0 = 0.
Generally,

B⃗′ = B⃗+
Ω⃗

γ
, (1.10)

where Ω⃗ is the angular velocity of the rotating frame and B⃗′ is the effective
magnetic field in the rotating frame. From here, the rotating frame of reference
is marked by the prime (·′) sign. In the example above, Ω⃗ = −γB0e⃗z and
B⃗0 = B0e⃗z.
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If an additional magnetic field B⃗1 is applied with the same angular frequency
ω0 in the transverse x-y plane, it will appear stationary in the rotating frame,
i. e. B⃗′

1 = const. However, equation (1.9) still holds, and M⃗′ will now precess
about B⃗′

1. Typically, B⃗1 is applied perpendicular to the B0-field, and, without
loss of generality, B⃗′

1 = B′
1e⃗

′
y. Consequently, M⃗′ is rotated from its equilibrium

position along the z′-axis around the y′-axis. The angle ϕ of rotation can be
taken from the solution of the differential equation:

M′
z(t) = M′

0Re(eiϕ)

M′
x(t) = M′

0Im(eiϕ)

M′
y(t) = 0 and

ϕ = γ

∫t1
t0

B′(t)dt .

(1.11)

The angle ϕ is commonly called the flip angle, and is governed by the amplitude
and duration of the B1 field. The effect of the B⃗′

1 field on the magnetization is
depicted in figure 1.1 b).

A common simplification of the magnetization is performed by splitting the
vector M⃗ into two parts: the transversal component M⊥ = ∥(Mx,My)∥ and the
longitudinal component M∥ = Mz. However, the information about the axis
of rotation is lost in this notation. In sequence development this axis can be of
major importance when applying excitation pulses. Therefore, pulses are often
described by their flip angle together with the rotation axis, e. g. 90°x for a 90°
pulse around the x-axis.

Physically, the excitation of magnetization is achieved using a radio-frequency
(RF) coil, which is resonant to the desired frequency ω0 [MLB15]. The received
signal is generated by the same principal considerations as before. The rotating
magnetization vector creates a magnetic field, which induces a voltage in the
coil proportional to the transverse magnetization M⊥. This process is governed
by the well-known Faraday’s law of induction:∫

dΩ
E⃗ d⃗l = −

∫∫
Ω

dB⃗
dt

dA⃗ . (1.12)

1.4 relaxation

In equation (1.9), M⃗ precesses around B0 indefinitely once it is excited (i. e., if
M⃗ ∥/B⃗0). In an experiment it is observed that the magnetization vector returns
to equilibrium via a relaxation mechanism.

The T1, or spin-lattice relaxation, describes the energy transfer of spins
with their surrounding (lattice). Nearby spins can couple to each other and
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transfer energy by a mechanism involving the dipole-dipole interaction and
the tumbling motion of the molecules. The relaxation causes the spin system
to return to equilibrium M⃗0 at an exponential rate, which is defined by the
longitudinal relaxation time T1:

M∥(t) = M∥(0)e
−t/T1 +M0

(
1− e−t/T1

)
. (1.13)

The T2, or spin-spin relaxation, describes the loss of coherence in a sample
of spins. In any finite volume, the microstructure of the magnetic field is a
superposition of the homogeneous external field B0 and additional randomly
fluctuating fields Brand arising from the molecular fine structure. Since the
Larmor frequency is dependent on the actual magnetic field at the position
of the particle, different spins will have different Larmor frequencies, and,
therefore, lose coherence (i. e. lose their constant phase relationship). This
results in a decay of the transverse magnetization with the transverse relaxation
time T2:

M⊥(t) = M⊥(0)e
−t/T2 . (1.14)

The relaxation times T1 and T2 can be added to equation (1.9) to formulate
the Bloch equations:

dMx

dt
= γ

(
M⃗(t)× B⃗(t)

)
x
−

Mx(t)

T2
dMy

dt
= γ

(
M⃗(t)× B⃗(t)

)
y
−

My(t)

T2
dMz

dt
= γ

(
M⃗(t)× B⃗(t)

)
z
−

Mz(t) −M0

T1
.

(1.15)

In equation (1.15), the magnetization vector is precessing around B0 with an
exponentially decreasing amplitude of the transversal component and a parallel
component that tends toward B0. Figure 1.2 shows the dynamics of an initial
state M(t = 0) to a later time t.

For MRI, it is important that T1 and T2 are not constant for different tissue
types. Thus, different tissue contrasts can be achieved by designing experiments
with different weightings on T1, T2, and the spin density ρ (equation (1.8)).

1.5 resonance effects - the echo

A fundamental concept in MRI is the spin echo. For a thorough description of
an echo in MRI, the review [hennigEchoesHowGenerate1991] is an excellent
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Figure 1.2: Dynamics of M, which is not in equilibrium state at time t = 0. In the
presence of just the B0 field, M precesses around the z-axis while it loses coherence
in the x-y-plane (reduced amplitude, T2-decay) and simultaneously tends toward its
equilibrium state along B0 (T1-decay).

source. Here, a short summary of the most important types of echoes will be
presented.

Consider the case where a magnetization in equilibrium state is excited by a
90° pulse. The resulting signal, measured by a nearby receive coil, will start
at maximum amplitude and oscillate at a frequency ω0, while it decays with
the time constant T2. This is called the free induction decay or FID. In MRI,
FID experiments are not used, as they do not provide any spatial information.
Instead, the signal is deliberately dephased during excitation, e. g. for slice
selection (see chapter 2). The dephasing is achieved by applying an additional
magnetic field, which varies linearly in space and is called the gradient G (unit:
[T/m]), with

G⃗ = ∇B ≡ const. . (1.16)

Note, that the scalar field B = B(x,y, z) is the z-component of the vector field B⃗.
However, ignoring Maxwell-terms, the x– and y–components of B⃗ are given by
Bx = By = 0.

Assuming that a gradient Gz is applied in z-direction, the total magnetic
field has the form

B(z) = B0 +Gz · z

with Gz =
dB
dz

.
(1.17)
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Thus, the Larmor frequency ω is spatially varying:

ω(z) = ω0 +∆ω = ω0 + γGz · z . (1.18)

The spatially varying field leads to a signal dephasing, as the spatial phase
offset ∆ϕ is given by

∆ϕ(z) =

∫
∆ω(z) dt = γ

∫
Gz · z dt . (1.19)

This dephasing is similar to the T2 decay, but is reversible due to its deterministic
nature: if the negative of the 0th gradient moment

∫
Gzdt is applied later, the

spins will rephase (∆ϕ = 0) and the signal will be restored (i. e., only the
contribution of Gz; T2 decay can not be compensated). For an arbitrary gradient
G⃗(t), the signal maximum is now observed at a later time TE, when the total
gradient moment becomes zero:

0
!
= γ

∫TE

0

G⃗(t) dt (1.20)

This is called a gradient echo, and the basic principle is shown in figure 1.3
[Lau73].

In tissue, additional, inhomogeneous magnetic field gradients are present that
are caused by susceptibility differences. In contrast to the random fluctuations
causing the T2 decay, these gradients are stationary. They lead to an additional
signal decay mechanism T′

2, resulting in an effective decay T*
2, with

1

T∗
2

=
1

T2
+

1

T ′
2

. (1.21)

The spin echo [Hah50] restores coherence of a spin isochromat (i. e., an en-
semble of spins with identical Larmor frequency ω0 in the absence of gradient
fields), which has been dephased by the T′

2 related gradients. Therefore, after
a time TE/2 after free precession (e. g., after a 90° excitation pulse), a 180°
refocusing pulse is applied to the sample. Since-susceptibility-induced gradients
are stationary, the spin echo refocuses the T′

2 component, resulting in a signal
amplitude proportional to e−t/T2 . The spin echo can be formed if the echo
condition (equation (1.20)) is fulfilled, i. e. also without any gradients (G(t) = 0).
The gradient echo, on the other hand, cannot discriminate between T2 and T′

2,
such that the amplitude is proportional to e−t/T∗

2 .
The spin echo can be understood by tracing the signals phase: Therefore,

consider a constant gradient, which dephases the isochromat. The refocusing
pulse inverts the phase accumulated during the time TE/2, such that after a
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Gradient echo Spin echo
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t
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TE/2

Figure 1.3: Schematic of a simple gradient echo and spin echo experiment. The
echotime TE is the time after the excitation pulse (90◦) when the spin coherence is
restored. The signal amplitudes are proportional to e−t/T∗

2 for the gradient echo and
e−t/T2 for the spin echo. The striped regions are of equal area.

total time of TE the net accumulated phase of all spins is zero. Mathematically,
a spin accumulates a phase ϕ1 from the first gradient G⃗1, with

ϕ1 = γ

∫TE/2
0

G⃗1(⃗x, t) · x⃗dt . (1.22)

The excitation pulse inverts ϕ1 and after time TE the total phase is then given
by

ϕ2 = −ϕ1 + γ

∫TE
TE/2

G⃗2(⃗x, t) · x⃗dt . (1.23)

If ∫TE
TE/2

G⃗1(⃗x, t) · x⃗dt =
∫TE
TE/2

G⃗2(⃗x, t) · x⃗dt (1.24)

is fulfilled, the total phase ϕ2 at TE is 0 and an echo is observed. Since the
susceptibility induced gradients are stationary, this condition is always met.
A simple spin echo example is shown in figure 1.3. Note, that the same echo
appears even if the refocusing pulse is applied with a different phase than the
excitation pulse, e. g. at a 90° angle from the excitation. Still, after the time TE,
all spins will be in phase again, but the angle ϕ2 can be unequal to 0.

Apart from the gradient echo and spin echo, higher order spin echoes and
stimulated echoes can be created by applying multiple pulses after signal excita-
tion. A more general description of the echo formation can derived for arbitrary
pulses with flip angle α. Each pulse can then be split into three components: a
pure 0°, 90°, and 180° component with different weightings. Thus, each pulse
acts partially as an excitation pulse and a refocusing pulse simultaneously.
Figure 1.4 shows four different kinds of signal formations, given these consid-
erations: b) shows primary (or first order) spin echoes, resulting from the first
excitation pulse. c) shows a second order spin echo, which is created by the 90°
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e)

b)

c)

d)

a)

α3α1 α2

α3α1 α2

f) dϕ

t

Figure 1.4: Graphical representation echoes: a) Excitation pulses. b) Spin echoes.
c) Second-order spin echo. d) Stimulated echo. e) FIDs. f) Corresponding phase
graph diagram. Figure adapted from [BKZ04, p.310, fig. 10.9] and concepts from
[hennigEchoesHowGenerate1991].

component of the second pulse in combination with the 180° component of the
third pulse. d) shows a stimulated echo, which is a result of the combination of
all three pulses. Graph e) shows the FIDs created by each 90° component.

Finally, figure 1.4 f) shows the corresponding extended phase graph, which can
be used to track the echo formation for any series of pulses. The blue lines
track the phase evolution of an isochromat, splitting any line before the pulse
into four new parts:

• one part continuous without being affected (0° component),

• one part is stored on the z-axis, i. e. the phase stays constant,

• one part is newly excited, i. e. a new line starts at dϕ = 0,

• one part continues with inverted phase, i. e. dϕpost = −dϕpre.
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At the zero-crossings (marked by blue dots), dϕ = 0 for any isochromat and,
thus, an echo is observed.





2
I M A G I N G

In the previous chapter, the principles of signal formation in MRI were de-
scribed. Now, the systematic manipulation of the signal for spatial encoding
will be explained (section 2.1). Two pulse sequences, the Fast Spin Echo (FSE)
and the Echo Planar Imaging (EPI), are presented (section 2.2), and the principles
of image acceleration are described (section 2.3). This chapter is built on the
textbooks by Bernstein [BKZ04] and Levitt [Lev08], where a more detailed
description of the imaging process and pulse sequence design can be found.

2.1 k-space - measuring in the fourier domain

In section 1.5 magnetic field gradients were introduced to generate gradient
echoes. The same principle of changing the Larmor frequency with respect to
the position of the magnetization will now be used for the spatial encoding
of an MR signal. In Cartesian MRI, there are three different types of spatial
encoding gradients: The slice selection gradient Gs, which selects a tomographic
slice in an object. The frequency encoding gradient Gx and the phase encoding
gradient Gy, which, together, encode the two-dimensional image in the slice.

As shown in equation (1.18), the Larmor frequency has a spatial dependency
during slice selection:

ω(z) = ω0 + γGs · z . (2.1)

In the previous chapter, RF-pulses resonant to ω0 were used to excite the signal.
However, if the RF-pulse is designed such that it covers a certain range of
frequencies ω0 ±∆ω and has no frequency components outside of this range,
the pulse can selectively excite spins based on their spatial position and the
gradient Gz (see figure 2.1).

After this slice selective RF excitation, transverse magnetization is only
present in the excited slice, which can be treated like a two-dimensional distri-
bution of the signal S(x,y). The measured signal in the receive coil is given by

19
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FT

ω = γGs · z

∆ω

∆z

B′
1 ∼

sin(∆ωt)
∆ωt

z

ω

ωt

Time domain Frequency domain
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∆ω

0

Figure 2.1: Principle of slice selection: In the time domain, the RF-pulse has the shape
of a sinc-function, which translates to a rectangular bandwidth in in frequency domain.
Therefore, a rectangular region along the z-direction of the object can be selected.

the integral over all spins in the (2D) object, which are now modulated by the
frequency (or readout) encoding gradient Gx, applied in x direction:

S̃(kx) =

∫ ∫
S(x,y)e−ikx(t)xdxdy ,

with kx = γ

∫t
0

Gx(t
′)dt′ ,

(2.2)

where S(x,y) is given by the spin density ρ(x,y) and the relaxation times T1,
T2 and T*

2. Note, that S̃(kx) has the form of a Fourier transform of S(x,y),
projected onto the y-axis.

Finally, phase encoding is applied prior to the frequency encoding. Therefore,
consider the effect of the phase encoding gradient Gy along the y-axis. The
gradient is turned off before the frequency encoding is turned on, and, thus,
the signal S̃(k⃗) contains an additional, spatially dependent, phase:

S̃(k⃗) = S̃(kx,ky) =
∫ ∫

S(x,y)e−ikx(t)xe−ikyydxdy ,

with ky = γ

∫
Gy(t

′)dt′ .
(2.3)

Note, that ky is independent of t, because Gy is applied before the readout
begins. To sample the complete image, the experiment is repeated Ny times
with different gradient moments ky in each experiment, where Ny is the desired
matrix size.

In MRI, the space defined by kx and ky is called k-space, and the spatial
coordinates x and y define the image space. As seen from equation (2.3), the
acquired data is the superposition of all individual frequency components,
encoded by read and phase gradients. This can be transformed into a spatial
decomposition via the Fourier transform. An example of the relationship
between k-space and image space is shown in figure 2.2.
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abs(·) phase(·) abs(·) phase(·)
Image Space k-Space

Figure 2.2: The human neck in a T2-weighted MRI. The left images display the magni-
tude and phase in image space, while the right side shows the same in k-space. Both
representations contain the same information.

Cartesian Multiecho Cartesian EPI Radial Spiral

Figure 2.3: Different schemes k-space sampling. Often, k-space is sampled on a
Cartesian grid (a) and b)), but generally arbitrary sampling patterns can be used. To
reconstruct an image, which can be displayed on a computer screen, the image space
representation has to be on a Cartesian grid.

The line-by-line acquisition method in k-space describes a Cartesian MRI, as
shown in the first panel of figure 2.3. However, from equation (2.3) it can be
seen that there are other, sometimes more efficient, ways to sample k-space. In
echo planar imaging (EPI, panel 2), the complete k-space is sampled within
a single excitation. If the readout is performed while the different gradients
are switched on simultaneously, the effective gradient direction can be rotated,
resulting in, e. g., radial or spiral k-space trajectories (panels 3 and 4).

It is important to note that the Fourier relationship between k-space and
image-space is continuous. The measurement process however discretizes the
acquisition matrix, so that the image can be obtained by a discrete Fourier
transform. To be able to display the image, it has to be sampled on a Cartesian
grid, but, as described before, the measured data can be sampled along an
arbitrary trajectory. This discrepancy is usually solved by gridding, i. e. the
interpolation of the measured data onto a Cartesian grid in k-space. From there,
the Fast Fourier Transform (FFT) algorithm can be used to obtain the image.
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2.1.1 image space and k-space

The encoding of spatial positions through the Larmor frequency implies that the
measurement must be sensitive to a certain range of frequencies. This receiver
bandwidth (not to be confused with the bandwidth of the RF pulse), is connected
to the field of view (FOV) of the image via the gradient amplitude. Given a
receiver bandwidth BW, the lowest and the highest measured frequencies are

ωmin = ω0 −
1

2
BW

ωmax = ω0 +
1

2
BW .

(2.4)

With equation (1.18) and a readout gradient with amplitude Gr, we find

ωmin/max = ω0 + γGx · xmin/max

⇔ xmin/max = ∓ BW
2γGx

.
(2.5)

From equation (2.5), the FOV is given by

FOV = xmax − xmin =
BW
γGx

. (2.6)

Now, let the dwell time ∆t be the time between two acquired samples in k-
space. K-Space and image space are connected through the Fourier relationship:

FOV =
1

∆k
=

1

γGx∆t
, (2.7)

assuming a constant gradient Gx and discrete k-space steps ∆k. Combining
this with equation (2.6), it follows

∆t =
1

γGxFOV
(2.6)
=

1

BW
. (2.8)

The bandwidth plays an important role for the geometric accuracy of an
image. If the main magnetic field is not completely homogeneous (B′

0 =

B0 + ∆B(x,y, z)), the shift of the Larmor frequency at any location leads to
a shift in the measured position, which is related to the pixel bandwidth
BWPx = BW/N, where N is the total number of acquired samples, i. e. the
number of frequency encoding steps. Thus, a shift of the Larmor frequency by
BWPx due to ∆B leads to a shift of one pixel in image space, or, more generally,

∆xPx =
γ∆B

BWPx
, (2.9)
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where ∆xPx is the image shift in pixels.
Considering this, a very high bandwidth always appears to be favorable.

However, according to equation (2.8), a large bandwidth leads to short dwell
times. The dwell time on the other hand can be seen as a signal averaging time,
and therefore affects the SNR. In general, a compromise between bandwidth
and SNR has to be found to acquire distortion free, high SNR images.

2.2 pulse sequences

An MRI pulse sequence is a sequence of RF-pulses, gradients in x-, y- and
z-directions and data acquisition blocks. Pulse sequences are designed to
probe tissue parameters, such as T1 or T2, or to generate an image from a
composition of these parameters (contrast-weighted image). The echo time
TE (see section 1.5) and the repetition time TR a two key parameters of a
sequence, which often determine the expected contrast. The repetition time TR
is defined by the time between two excitation pulses and is closely related to
the T1 contrast.

Here, the Carr-Purcell-Meiboom-Gill (CPMG) and the EPI sequence are
presented, which are closely related to the work in chapters 5 and 6.

2.2.1 carr-purcell-meiboom-gill sequence

The first sequence, shown in figure 2.4, is based on the CPMG (Carr-Purcell-
Meiboom-Gill) sequence [CP54] and known as RARE [HNF86]. Today, RARE
is commonly called fast spin echo (FSE) or turbo spin echo (TSE), which are
vendor-specific terms for the same sequence with only few modifications.

The CPMG sequence starts with a slice selective 90° pulse, which is, after time
∆TE/2, followed by a train of slice selective 180° refocusing pulses to create
and refocus spin echoes. Note, that often the refocusing pulses can be applied
with α <180° in order to reduce the energy deposited in the body. Typically, a
Cartesian readout with fully refocussed readout and phase encoding gradients
(i. e., they have a gradient moment of zero) is employed. Additional gradients,
called crusher gradients, around the slice selection pulses are used to suppress
FID signals, which occur for refocusing pulses that do not perfectly invert the
signal [BKZ04, pp.305 ff.]. Imperfect refocusing is especially relevant due to
limitations of the RF slice-profile, which can only approximate a rectangular
shape for finite times of the RF-pulse.

Specific to the CPMG sequence are two conditions:
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Figure 2.4: Sequence diagram for the RARE sequence. The signal is refocused multiple
times, and each readout block is sorted in a different phase-encoding line of the same
k-space. Here, the center of k-space corresponds to the first echo, and phase encoding
is centric, i. e., positive and negative phase encoding steps are acquired in alternating
echo polarity.

1. The refocusing pulses must have a phase shift of 90° with respect to
the 90° pulse, and are spaced at an even time interval (∆TE), which is
twice the time interval between the excitation and first refocusing pulse
(∆TE/2). Note, that other phase-cycling combinations than the 90° with
respect to the excitation pulse can be found to achieve the same result.

2. The gradient moments between any two refocusing pulses are identical.

The first condition ensures artifact suppression from imperfect refocusing
pulses and B1 field inhomogeneity. The second condition guarantees that
higher order spin echoes and stimulated echoes coincide with the primary echo.
In combination, the conditions create multiple echoes with identical phase that
interfere constructively.

Typically, the number of refocusing pulses before the next excitation (echo
train length ETL) ranges between 8-32 echoes. To acquire a fully sampled
image, the sequence is repeated until the total number of phase encoding lines
is reached, resulting in total image acquisition times of a few seconds for an
entire slice.

The echoes in the sequence are sampled at a different TE. Hennig et. al.
[HNF86] proposed to sort all echoes into a single k-space, such that the shortest
TE (the first echo) is placed in k-space center and echoes with longer TE are
placed in the k-space periphery. Since the signal amplitude is proportional to
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Figure 2.5: Sequence diagram of a double-refocused spin echo EPI sequence. During
signal acquisition, the complete k-space is traversed in a meandering-fashion (see
figure 2.3 b)). The phase encoding lines are changed by small blips in between the
readouts, which switch direction every line.

e−t/T2 , the signal decay acts as a filter in k-space, effectively blurring short
T2 components along phase encoding direction. Still, the image quality is
sufficient for many clinical applications, and the gain in acquisition speed
prevents problems such as patient motion during an exam. Note, that in order
to achieve different T2 contrasts, the central k-space line can also be acquired
later in the echo train. Depending on the sorting of echos into k-space, different
T2 filtering applies.

2.2.2 spin echo epi

The spin echo EPI sequence is presented as a precursor for a diffusion sequence
(section 3.2.2). The sequence can be split into the signal preparation (spin echo,
SE) and the signal readout (EPI).

Figure 2.5 shows the sequence diagram of the SE-EPI sequence: The SE signal
preparation includes a 90° excitation pulse and two 180° refocusing pulses.
This setup is called double-refocused spin echo – one SE is formed after the first
refocusing pulse at time TE/2 and refocused again at time TE. Slice selection
gradients are applied as in 2.2.1, and crusher gradients again prevent signal
interference from FIDs.

The EPI readout is a method to sample the complete k-space after a single
excitation [STM91]. Therefore, a train of gradient echoes is acquired: the first
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gradient echo is sampled in positive kx direction, which is followed by a small
step in phase encoding direction (blip), and another gradient echo in negative
kx direction. This is repeated until the complete k-space is traversed. The
timing is chosen such that the spin echo coincides with the ky = 0 gradient
echo.

A main advantage SE-EPI sequence is the acquisition speed, which allows to
sample a complete image slice in less than 100 ms [STM91].

2.3 accelerated imaging

Acquisition speed is a major concern in pulse sequence design for several
reasons: long acquisition times can lead to severe patient discomfort, resulting
in incomplete examinations (premature interruption); patient motion is un-
avoidable for long acquisition times, leading to inconsistent data; or dynamic
processes, e. g. heartbeat, breathing motion or systemic distribution of contrast
agent, require a certain temporal resolution, which can only be met with fast se-
quences. Finally, faster image acquisition can also increase patient throughput,
which is economically beneficial.

Here, image acceleration is split in two topics: first, hardware based accelera-
tion using multiple receiver coils and, second, image acceleration by deliberate
undersampling of acquired data.

2.3.1 parallel imaging

So far, the MRI signal was assumed to be acquired by a single receive RF-coil,
which covered the whole FOV. Parallel imaging is based on the application of
multiple receive coils with limited FOV [Des12]. Importantly, each receive coil
has a sensitivity profile, with higher sensitivity the closer to the coil [Roe90;
KEN91]. Consequently, the measured signal is a product of the coil sensitivity
and the true signal (in image space).

Image acceleration is then achieved by deliberately skipping phase encoding
lines during signal acquisition. According to equation (2.6), this undersampling
of phase encoding lines leads to an increase in ∆k, and, therefore, to a decrease
in FOV. As a result of the Nyquist sampling theorem, the parts of the image
that are now outside the FOV will be folded in and possibly overlap with
the original image (wrap-around or aliasing artifact, see for example [Pus88]).
Using a single receive coil, the overlapping signal cannot be separated, but
with multiple coils with different spatial sensitivities, multiple unique images
of the same object are acquired simultaneously. These images are formed by
a linear combination of the true full-FOV image and the coil sensitivities. A
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matrix inversion of this set of linear equations can then recover the complete
image. Principally, this procedure can be performed in k-space as well as in
image space, and the two corresponding algorithms are known as GRAPPA
[Gri02] and SENSE [Pru99].

2.3.2 undersampling

Image acquisition can generally be accelerated by acquiring less data, i. e.
reducing the number of echoes. In the previous section, this reduction of
data was compensated by the information gained by additional receive coils.
Alternatively, prior knowledge about the image or the image statistics can be
used to recover the lost information:

First, partial Fourier imaging [Fei86] is based on the assumption that the image
to be reconstructed is primarily real, i. e. its phase contribution does not contain
the structural information of the image. For an entirely real image, its Fourier
transform is Hermitian, i. e. all the image information is contained in one half
of k-space. In practice, different amounts between 1/2 and 1 times the k-space
can be acquired, compromising between acceleration factor and SNR. Even if
a phase component is present, different iterative algorithms can be used to
recover the image [MPV88; McG93; HLL91].

Second, compressed sensing is based on the assumption that there is a sparsity
transform, i. e., a transformation of the image into a space where the majority
of the information content can be represented by only a few basis vectors
[Don06; BUF07]. For MRI, this relation is often fulfilled because within certain
areas such as organs, blood vessels, gray or white matter in the brain, the
signal variation is very small. Therefore, a transformation into wavelet space
[Mey93] or application of the total variation (TV) [ROF92] yields only few
non-zero coefficients (noiseless case). This property is exploited by choosing
undersampling patterns, which produce noise-like artifacts in the image after
Fourier transform. Then, the image x is reconstructed by an iterative algorithm
minimizing a loss function Φ, which takes into account two parts:

1. Data consistency: ∥F(x) − y∥2
!
= 0, and

2. Regularization: ∥W(x)∥1 → 0.

Here, y are the acquired data, F(·) is the Fourier transform and W(·) is the
wavelet or TV transform. Together, the compressed sensing algorithm mini-
mizes the following function:

Φ = arg min
x

(
∥F(x) − y∥2) + λ∥W(x)∥1

)
. (2.10)
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The additional parameter λ is a weighting parameter between data consistency
and regularization, which is usually determined empirically.

Compressed sensing is especially useful for sequences with non-Cartesian
trajectories, where conventional parallel imaging or partial Fourier methods
are not applicable. In radial imaging, fewer spokes can be acquired, such that
the outer k-space areas are highly undersampled, while the k-space center
is fully sampled (or even oversampled). This is often combined with an
angular increase of the spokes by the golden angle, which increases the artifact
incoherency necessary for the regularization term[Win07].
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Q UA N T I TAT I V E M R I

The main clinical application of MRI is anatomical imaging with high soft tissue
contrast. Depending on the anatomical region and the medical indication, T1-
weighted, T2-weighted or spin-density weighted images are required. Especially
in cancer imaging protocols, diffusion weighed imaging and dynamic contrast
enhanced (perfusion) imaging are additionally included in standard protocols
[ST16; KN08].

With the exception of DWI, quantitative imaging is rarely used in clinical
MRI. However, recent developments show that the quantitative parameter
T*

2 could be used as a surrogate parameter for the detection of hypoxia in
squamous cell carcinoma of the head and neck (HNSCC), where positron
emission tomography (PET) is the current gold standard, often using ([18F]-
fluoromisonidazole FMISO) tracer molecules [Wie18].

Additionally, with the increasing usage of AI in clinical decision-making,
imaging protocols can be optimized for computer vision. As the parameter
maps are the basis of any contrast weighted MR image, the might carry a larger
information content than the contrast weighted images [Bie20b]. In addition,
parameter maps are independent of the specific MRI system (assuming the
same field strength), imaging protocol, or vendor, which is typically not the case
for conventional imaging protocols due to different sequence implementations.
Since most AI methods are dependent on large amounts of data to perform
well, this intrinsic homogenization of quantitative MRI data could prove to be
beneficial in future studies.

The following sections describe methods for T2 and apparent diffusion co-
efficient (ADC) measurements, which are at the basis for the experiments in
chapters 5 and 6.

3.1 t2 measurements

In T2 measurements (1.5), the spin echo recovers the loss of coherence due to
the T*

2-effect, and the SE formed by the refocusing pulse has only experienced a

29
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Figure 3.1: Envelope of the signal magnitude for a multi-echo-sequence. The expected
signal (blue curve) is the result of the signal subjected to T*

2 decay (yellow line), and the
refocusing of signal due to the 180° pulses which recover the signal up to an equivalent
of pure T2 decay (orange line). The refocusing pulses are played at times t1, t2, t3,
and echoes occur at times TE1, TE2, TE3.

T2 decay. Repeated application of refocusing pulses, as it is done in the CPMG
sequence, will then repeatedly restore the coherence. Figure 3.1 shows the
signal behavior.

For T2 parameter mapping, the signal from each echo is assigned to a unique
k-space, with a specific echotime TEi. The sequence is repeated for all phase
encoding steps, until the k-space for each TE is fully sampled. The contrast of
each image is given by:

Si = S(TEi) = S0e
−TEi/T2 , i = 1, ...,n (3.1)

where S0 is the signal at TE = 0 and n is the number of unique TEs. The T2

parameter map can be obtained by a pixelwise linear regression of the following
equation: 

−TE1 1

−TE2 1
...

...

−TEn 1

 ·

(
(T2)

−1

ln(S0)

)
=


ln(S(TE1))

ln(S(TE2))
...

ln(S(TEn))

 . (3.2)

This general concept can be applied to any series of SE images with different
TE, if the remaining signal contributions, e. g. T1 contrast, are identical for each
image in the sequence.
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3.2 diffusion

Molecular self diffusion describes the random movement of particles in liquids
or gases. In the case of free diffusion, no boundaries restrict the movement,
whereas in structured media like human tissue, particle diffusion is typically at
least partly restricted. For example in neural axons in the brain, the diffusion
along the fiber is essentially unrestricted, but across the fiber, there are tight
cell boundaries which prevent particles from crossing.

MRI can be used to measure the diffusion without external tracers (e. g. dyes
or pollen [Ein05]), since the MR signal stems from the tissue water itself. The
basics of diffusion, and especially the theory of diffusion measurements using
MRI, is excellently summarized in [Jon10], which also forms the basis for this
section.

3.2.1 molecular self-diffusion

The mathematical description of diffusion is based on Ficks first and second
law, describing a net flux J⃗ due to a gradient in particle concentrations n [Fic55]:

J⃗ =−D∇n(⃗r, t)
∂n

∂t
=D∇2n .

(3.3)

Treating the concentration n(⃗r, t) as a local particle probability density, the diffu-
sion coefficient D for a medium of spherical particles was derived (Sutherland-
Einstein relation [Sut04; Sut05; Ein05]):

D =
kBT

6πηR
, (3.4)

where η is the viscosity of the medium and R is the radius of the particle in the
liquid.

In general, the diffusion coefficient is then defined based on the autocorrela-
tion function of the molecular velocity v(t):

D = lim
t→∞

∫t
0

⟨v(τ)v(0)⟩dτ (3.5)

Since the molecular velocity can be anisotropic in structured media, D can
be written in tensor form D̂ with entries

D̂ =

 Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 , (3.6)
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forming an ellipsoid with different diffusivities in all spatial dimensions. Hence,
there is an orthonormal coordinate system in which D̂ can be written in diagonal
form. In general, however, the orientation of this coordinate system is unknown,
and therefore D̂ is given by six independent values.

3.2.2 diffusion measurements

To account for molecular self-diffusion in MRI, the Bloch-equations (equa-
tion (1.15)) were extended (Bloch-Torrey equations [Tor56]):

dMx

dt
= γ

(
M⃗(t)× B⃗(t)

)
x
−

Mx(t)

T2
+∇ ·D∇(Mx −M0,x)

dMy

dt
= γ

(
M⃗(t)× B⃗(t)

)
y
−

My(t)

T2
+∇ ·D∇(My −M0,y)

dMz

dt
= γ

(
M⃗(t)× B⃗(t)

)
z
−

Mz(t) −M0,z

T1
+∇ ·D∇(Mz −M0,z) .

(3.7)

Using this, the amplitude of measured signal additionally depends on the
gradients as follows:

S(t) = S(0) exp

−Dγ2

∫t
0

[∫t′
0

G(t′′)dt′′
]2

dt′


= S(0) exp

(
−D

∫t
0

k⃗(t′) · k⃗(t′)dt′
) (3.8)

The integral in equation (3.8) is known as the b-value:

b = γ2

∫t
0

[∫t′
0

G(t′′)dt′′
]2

dt′ . (3.9)

Equation (3.9) shows that the b-value is approximately proportional to t3 and
G2. In practice, the short, low-amplitude gradients used in most imaging
sequences will not add significantly to the b-value. For diffusion measurements,
Stejskal and Tanner [ST65] proposed long rectangular gradient pulse pairs after
excitation, which were separated by a 180° refocusing pulse. Then, the b-value
can be simplified to

brect = γ2G2δ2(∆− δ/3) , (3.10)

with G the gradient amplitude, δ the gradient duration and ∆ the time between
the two rectangular diffusion gradients. For more realistic trapezoidal gradients,
this equation becomes

btrap = γ2G2
(
δ2(∆− δ/3) + ζ3/30− δζ2/6

)
, (3.11)
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Figure 3.2: Schematic of a bipolar diffusion weighted EPI sequence. This sequence
diagram is the natural extension of the sequence in figure 2.5 to incorporate diffusion
weighing.

where ζ is the gradient rise, ∆ the time between the gradient pulses and
δ = ∆ − ζ is the gradient flat time plus ζ [BKZ04, p.278]. The diffusion
gradient can be rewound if instead of the 180° RF-pulse the second gradient has
opposite polarity with respect to the first one, i. e. the total gradient moment
after diffusion sensitization is zero.

The EPI-sequence presented in section 2.2.2 (figure 2.5), can now be extended
into a diffusion weighted sequence by adding diffusion encoding gradients in
between the two 180° pulses, as shown in figure 3.2. The b-value is then given
by equation (3.11), and ∆ = δ+ ζ.

Using this method, two measurements are sufficient to quantify the diffusion
coefficient in an isotropic medium. However, in anisotropic media, additional
measurements have to be performed, with at least six directions of the gradient
axis, as discussed in the previous section. In practice, for a proper quantification
of the diffusion tensor, often more than 100 measurements in different directions
are taken to minimize errors. In clinical practice, however, diffusion tensor
imaging is of minor importance. Instead, the ADC [Le 86] is often used for
clinical decision-making. The ADC represents a mean of diffusion over multiple
compartments with different diffusion values, as well as pseudo-diffusion
such as vascular blood flow. The ADC can be computed by measuring three
orthogonal diffusion directions of D̂, calculating Dαα for each of the directions
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α by linearly fitting the logarithmic signal, and finally taking the mean of these
values:

Si = S0e
−biDαα

⇔ ln(Si) = ln(S0) − biDαα

⇒ Dαα = b⃗−1 ·
(

ln(S⃗0) − ln(S⃗i)
)

ADC =
1

3

3∑
α=1

Dαα

(3.12)

Because the trace of a matrix is independent of the choice of basis, the ADC
is calculated using three orthogonal b-value directions. Hence, the ADC is
independent on patient position or choice of the b-value direction.

3.2.3 artifacts in dw-epi

The additional diffusion sensitization gradients can lead to a number of practical
problems in the MRI experiment. The random phase artifact in consecutive
measurements is one of the reasons for the popularity of EPI for diffusion
MRI. However, EPI in general suffers from Nyquist ghost artifacts and geometric
distortion of the images. Finally, because of the random phase artifact, biased
ADC measurements due to signal averaging on magnitude data are another
common source of error in DW-MRI.

Random Phase Artifact

In a DW-MRI experiment, in contrast to molecular self-diffusion, patient motion
is directed. The isochromats from a moving region will experience a total
gradient moment which is not 0, resulting in a residual phase in the image.
Since the diffusion gradient amplitude is often maximized for the given system,
even small (e. g., pulsation) and involuntary patient motion will result in
an additional phase. However, since the motion is not predictable, the phase
artifact in the image appears to be random, leading to inconsistent image phases
for consecutive measurements. Consequently, conventional SE or gradient-echo
sequences, which sample k-space with multiple excitations, are not suited for
DWI. Thus, to circumvent this phase artifact, single shot sequences such as EPI
are used for the data readout.

Nyquist Ghost Artifact

The cause of the Nyquist ghost artifact are gradient timing errors, which
introduce a small delay between the intended gradient execution and the actual
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a) b)

Figure 3.3: The k-space trajectory is plotted in orange, and the acquisition window
is overlaid in blue. a) shows the k-space trajectory for an EPI measurement without
gradient delay errors and b) shows the same with a gradient delay error. The echo
always appears in k-space center (kx = 0), but the acquisition window is not centered
around this point in b), such that in the acquisition matrix each line appears shifted.
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Figure 3.4: 2D image and Fourier domain representation of the mask which is applied
to odd and even k-space for the simulation of the Nyquist ghost artifact.

onset of the imaging gradient. In k-space, this gradient delay results in a shift
of each acquisition window along the read direction. Since the read direction is
reversed in every other line, the actual k-space center (kx = 0) is encoded at
different positions kx for even and odd k-space lines. This behavior is shown
in figure 3.3.

For a mathematical description of the artifact, we can assume that k-space is
separated into two parts by making use of the linearity of the Fourier transform:

k = kodd + keven , (3.13)

where the odd k-space contains all odd lines and zeros instead of the even lines,
and vice versa for the even k-space. Each space can be seen as the complete
k-space multiplied with a mask that sets every second line to zero. The Fourier
transform of the kodd-mask shows a delta-peak at k = 0 and another one at
k = kmin, while the keven-mask shows the same peak at k = 0 and the second
peak with inverted sign (figure 3.4). The multiplication in Fourier domain
equates to a convolution in image domain, such that the second peak in either
kodd or keven produces a ghost image shifted by half the field of view. However,
the inverted sign in the keven-mask leads to a phase-shift of the ghost image
with respect to the kodd-mask. Therefore, if odd and even k-spaces are not
shifted due to gradient delays, the ghosts (shifted images) cancel out and only
the original (unshifted) image is be left. If a shift in k-space is present, it leads
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Figure 3.5: Simulation of the Nyquist ghost artifact in a EPI-acquired image. The true
k-space (left) is shifted by +1/-1 pixel for even/odd k-space lines. Upon recombining
the shifted k-spaces, the ghosts in image space sum incoherently, resulting in a residual
ghost image.

to a linear phase in image space, according to the Fourier shift theorem. Hence,
the ghosts do not sum coherently and cancel, but sum up incoherently resulting
in the residual Nyquist ghost artifact. Figure 3.5 shows a simulation with a
k-space shift of 1 pixel, both for the image and the Fourier domain.

If image acceleration methods are used, some k-space lines are not acquired.
Therefore, the k-space is not divided into odd and even, but into additional sub-
k-spaces where only every 3

rd, 4
th, 5

th, etc. line contains data. For these higher
acceleration factors, the above argument still holds, but the corresponding
masks produce additional peaks in their respective Fourier domain, which are
expressed as additional ghost images.

To prevent the Nyquist ghost artifact, the same k-space line can be acquired
twice, with opposite readout direction, prior to the actual measurement. From
the acquired data, the shift due to timing errors can be estimated by computing
the cross-correlation of the two measured echoes. This shift can then be used to
retrospectively correct the acquired EPI-data.
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Geometric Distortion Artifact

In multi-echo Cartesian imaging techniques, each phase encoding line is subject
to the same free precession period. In contrast, for EPI, the signal phase evolves
freely and continuously between phase encoding lines. Therefore, an effective
bandwidth in phase encoding direction is defined, which is

BWPh =
1

tf
, (3.14)

where tf is the time needed for one frequency encoding line (i. e., the time taken
by one of the red trapezoids in figure 2.5). BWPh is approximately a factor of Nx

times lower than the frequency encoding bandwidth, where Nx is the number
of samples per frequency encoding line. Therefore, B0 offresonance leads to a
significant shift of the corresponding signal in phase encoding direction, which
manifests in image distortion as described in section 2.1.1. The amount of
distortion is then given by

∆yPx =
γ∆BNy

BWPh
, (3.15)

where Ny is the number of phase encoding steps and ∆yPx is the pixel-shift in
phase encoding direction.

Signal Averaging of Magnitude Data

DW-EPI inherently suffers from low SNR for multiple reasons: First, the
diffusion sensitization takes time, which results in relatively long TE of typically
50-100 ms, even if image acceleration is used. Because T2 of soft tissues is in
the same order of magnitude, a significant portion of the signal has decayed.
Secondly, only in k-space center a SE is formed, such that all other lines
are subject to T*

2-decay, further decreasing the signal amplitude. Lastly, the
diffusion-weighted signal relies on an exponential signal attenuation, such that
for high b-values a considerable portion of the signal is deliberately destroyed.

For these reasons, signal averaging becomes crucial for data analysis. How-
ever, if the complex data were averaged directly, the random phase artifacts
described in the beginning of this section would lead to signal cancellation in
the image. To prevent those signal voids, only magnitude images are used for
averaging.

The use of magnitude images has two major implications: First, the noise
distribution in the magnitude image will be Rician [GP95]. The Rice distribution
includes only positive values, is asymmetric for low SNR and converges against
a Gaussian distribution for high SNR. The first property (only positive values)
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Figure 3.6: Ideal (blue) and noisy (orange) diffusion signal vs. b-value. The right plot
shows the logarithmic signal, which is often used for ADC estimation. When the noisy
signal approaches the noise level, a systematic deviation from the ideal signal becomes
visible.

leads to a bias when several low SNR-images are averaged, since the noise does
not add up strictly incoherently anymore. Figure 3.6 demonstrates this effect
for a noisy diffusion signal. In the logarithmic scale, a clear deviation from the
ideal exponential decay becomes visible for b-values larger than 1000 s/mm2.
Since ADC maps are conventionally calculated by a linear regression of the
logarithmic signal, a bias towards lower ADC is expected if low SNR images
are used.
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A RT I F I C I A L I N T E L L I G E N C E

The term artificial intelligence (AI) is used to describe an algorithm a machine
(sometimes called agent) uses to perform a certain task; however, there is no
coherent definition of the term among the scientific community [Wan19]. This
work is centered around artificial neural networks (ANNs), which are one
type of AI algorithm. The concepts of modern ANNs were invented in 1986

by Smolensky [RM86], but only in the last two decades these concepts could
be effectively used. One milestone was the introduction of efficient training
algorithms [Lec98; Hin02], and a second precondition for the training of modern
neural networks (NNs) was reached due to the dramatic increase in computing
power, especially with the rise of graphical processing units (GPUs) [Nil10].
An ANN learns to solve a problem by training on existing data, i. e., a model
is established by training on data with known results. This is in contrast to
model-based approaches, which assume a known relationship between the data
and the result, and, therefore, no training is needed. This concept is also known
as learning from example: the NN derives a functional relationship between input
and output, similar to a parameter fit. However, the number of free parameters
in the NN is very high (millions or even billions of free parameters), such
that the network could principally model arbitrary functions [HSW89]. The
quality of the network can then only be evaluated by its power to generalize to
previously unseen data.

In this thesis, the focus lies entirely on pattern recognition, i. e. the automatic,
pixelwise labeling of tumors in MRI images, given a large set of already labeled
images. This kind of algorithm is characteristic for nearly all modern computer
vision tasks, with ever increasing performances on image classification (i. e.,
assigning a label to an entire image) [Lec98; He15; KSH17] and segmentation
(i. e., labeling to each pixel within an image) [Per15; RFB15; Kam17; Akk17;
Hav17].

In the following sections, the concept of a convolutional neural network
(CNN) is established. Thus, the necessary basic building blocks, the perceptron
and the artificial neural network are introduced. Following this, the most
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Figure 4.1: a) Schematics of a perceptron and b) a multilayer perceptron (MLP). Dia-
mond shapes represent scalar values and each colored line represents a multiplication
with a unique weight w. Each node consists of the summation (Σ) of the weighted
inputs, the bias and a consecutive application of a (nonlinear) function f .

commonly encountered additional building blocks and the most important
parameters of CNNs are presented.

The textbooks [TK06] and [Nil10] are recommended sources for understand-
ing the origins and algorithms involved in pattern recognition, and form the
basis of the following sections.

4.1 the perceptron

The perceptron was originally designed as a linear classifier. It takes scalar inputs
xi and assigns a weight wi to each input. The output y of the perceptron is
then given by

y = b0 +
∑
i

wixi

= b0 + w⃗⊤x⃗ ,
(4.1)

where b0 is an additional scalar called bias, and (·)⊤ is the transpose operation.
This perceptron can be used to find a hyperplane (i. e. a multi-dimensional
linear function) which separates inputs x⃗ that belong to different classes ω1

and ω2. This is achieved by finding an appropriate weight vector w⃗ and bias
b0, which yields y > 0 for all x⃗ ∈ ω1 , and y < 0 for the other. The algorithm
to find the correct weights and bias is called the perceptron algorithm, and it
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Figure 4.2: Schematic of a complete ANN. The nodes include the bias, the summation
and the nonlinearity.

minimizes a loss function J(w⃗) using an iterative gradient descent method. The
loss function is given by

J(w⃗) = δxb0 +
∑

x⃗∈Xmis

δxw⃗
⊤x⃗ ,

and δx ≡ −1 ∀x⃗ ∈ ω1 ,

δx ≡ +1 ∀x⃗ ∈ ω2 ,

(4.2)

where Xmis contain all vectors x⃗ that were assigned to the wrong class y

(misclassified).
The perceptron can be visually represented as shown in figure 4.1 a): Here,

the additional function f is given by

f (x) = x . (4.3)

As shown later, f will be replaced by a nonlinear function for more complex
cases.

4.2 artificial neural networks

An artificial neural network is an assembly of multiple perceptrons, organized
in a number of layers Lj (also known as multilayer perceptron MLP). In the
example in figure 4.1 b), each input value xi is connected to each node in layer
L1 with a weight wij. Hence, the output of the first layer are three values y1

j ,
given by

y1
j = f

(
b1
j +

l∑
i=1

w1
ijxi

)
. (4.4)
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Here, the superscript 1 is used to indicate the layer number. The output vector
y⃗1 is then the input vector for the next layer L2, following the same principle
as in equation (4.4). To model nonlinear functions, the function f is introduced:
It introduces a nonlinearity (e. g., a logistic sigmoid [Hin12]) which allows to
model arbitrary functional relationships between input vectors x⃗ and output
vectors y⃗, given enough layers.

Figure 4.2 shows the complete schematic of an ANN. Here, the nodes, in-
cluding the bias, the summation and the nonlinear function f are represented
as a single circle. The input layer is given by x⃗, and the output layer by y⃗. The
layers in between (L1 to Ln) are called hidden layers. Each hidden layer can have
a different number of nodes, which define the width of the layer. In the example
shown here, the layers are referred to as fully connected, because each node
is connected to every other node of the next layer. ANNs with more hidden
layers are said to be deeper (hence the terms deep neural net and deep learning).
Deeper networks show a higher capacity to model arbitrary functions due to
their increasing number of nonlinear connections.

So far, the gradient descent algorithm to update the weights and biases
in the network involved the minimization of a loss function based on all
available data. Using this method, and assuming a convex loss function,
a guaranteed minimum is found. However, with increasing network size
and increasing amounts of input data, this problem becomes computationally
too expensive, as the memory requirements cannot be met even by modern
supercomputers. Thus, the successful training of a large ANN only became
feasible by introducing the stochastic gradient descent (SGD) algorithm [RM51]:
Intuitively, it states that the average gradient direction taken from calculating
the gradients based on many single input vectors x⃗ is the same as the gradient
direction calculated from all x⃗ at once. Hence, many iterations with small
subsets of x⃗ yields the same result as few iterations with all available x⃗. In
order to achieve a satisfactory result, the randomly drawn input data x⃗ may
have to be used multiple times.

The process of iteratively adapting the learnable parameters (learnables) of
the network (i. e., the weights and biases) is called training, and the calculation
of the gradients given the input vectors x⃗ is called backpropagation. Two terms
are often encountered in the network training:

• The epoch is the training cycle when all x⃗ have been seen once. Complete
training of a network usually takes many epochs.

• The training mini-batch describes a compromise between pure SGD and
conventional gradient descent. In SGD, all learnables are updated after
a single input was processed. Using a mini-batch means that a larger
number of inputs are processed simultaneously and the learnables are
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updated based on the mean gradient over these inputs. However, the
mini-batch can be much smaller than the complete training set, which
would be the case for conventional gradient descent.

The specific implementation of the gradient descent optimization algorithm
is independent of the network architecture. Many of these algorithms depend
on a number of additional parameters (hyperparameters), but common to all of
them is the learning rate, which controls the step size in the gradient direction
when updating the weights. Often, an adaptive approach is chosen, which
decreases the learning rate either after a preset amount of epochs, or when the
performance change of the network during training becomes too small.

4.3 convolutional neural networks

In early attempts, image classification was performed by fully connected ANNs,
using the complete image as an input vector, such that each pixel corresponds to
one entry in x⃗. Hence, the input vector size scaled quadratically with the image
size. Furthermore, the layers of fully connected networks typically contain
at least as many nodes as the input, such that, for images, ANNs became
computationally very expensive. For example, a 128×128 image with 5 fully
connected layers of the same size results in a network that contains 1 342 259 200
learnable parameters. Since all of the parameters need to be updated in one
training pass, they have to be stored in the computer memory. Hence, for larger
networks, this method becomes unfeasible.

Convolutional neural networks (CNNs) are designed specifically for image
processing. In a CNN, each input xi ∈ x⃗ is an image (2D, 3D or arbitrary
dimension) itself. The weights, previously just scalars, now become matrices
that match the dimension of the input image, but can have a smaller size,
e. g. a 3n matrix, where n is the image dimension (2D, 3D, ...) (these weight
matrices often are called kernels). In the ANN, there is a multiplicative relation
between input and weight (equation (4.4)) – this relationship is replaced by a
convolution with the kernel for CNNs. Therefore, equation (4.4) becomes

ŷL
j = f

(
bL
j +

l∑
i=1

x̂i ⊗ ŵL
ij

)
, (4.5)

where ⊗ is the convolution operator and the ˆ(·) marks whether the variable is a
matrix (or higher dimensional) object. The superscript L again marks the layer
number.

A key difference of CNNs to fully connected ANNs is the decoupling of pixel
position in an image and the associated weights. Common to all convolution
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Figure 4.3: Example for a CNN. From a large image, a patch is extracted which is then
processed in the CNN. In the convolutional layers, the feature maps as calculated by
equation (4.6) are shown. In the end, the computed segmentation is compared against
the ground truth to compute the gradients for network training.

kernels is the translational invariance, which is an inherent feature due to
the convolution operation. Thus, structures are detected irrespective of their
image position, which leads to a superior performance of CNNs in image
classification over fully connected ANNs despite their reduced number of
learnable parameters.

The convolution in a CNN is typically implemented as a sliding window
multiplication. Mathematically, this can be described as follows: assuming 2D
inputs x̂ and kernels ŵ, and a kernel size of 3× 3 = 32, equation (4.5) can be
written as

(ŷL
j )m,n = f

(
bL
j +

l∑
i=1

(
x̂i ⊗ ŵL

ij

)
m,n

)
and

(
x̂⊗ ŵ

)
m,n =

smax∑
u,v=−smax

xm+u,n+v ·wu,v .

(4.6)

Here, (m,n) denotes the matrix indices, and xm,n and wu,v denote the respec-
tive matrix elements. In this notation, w0,0 is the central element. Equation (4.6)
is only defined for the ranges 1 ⩽ m± smax ⩽ mmax and 1 ⩽ n± smax ⩽ nmax.
Thus, the matrix size of the output ŷ is decreased, depending on the kernel size
smax.
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In CNNs, the intermediate outputs ŷL
j in each layer L are called feature maps.

Figure 4.3 shows a CNN evaluated with an example input. From the original
image, a patch of a smaller size is taken and subsequently processed in the
convolutional layers. The kernels in the CNN can be seen as filters which
identify recurring structures in an image. In early layers, they can often be
interpreted as edge or intensity filters, while they become increasingly abstract
in deeper layers.

In contrast to an ANN, a CNN cannot necessarily include all information
from the image for the classification of a single pixel. The receptive field φ

defines the neighborhood of pixels which contribute to an output pixel in a
given feature map. Hence, in the last layer, it describes the amount of contextual
information the CNN can utilize. The receptive field is calculated given the
kernel sizes κ for each dimension and the layer number l:

φl = φl−1 + (κl − 1)

φlast =
∑
l

(κl − 1) . (4.7)

It can be shown that smaller kernel sizes (minimum of 3n) can increase the
networks’ segmentation performance, because they achieve deeper networks
with fewer learnable parameters but constant receptive field as compared to
networks with larger kernel sizes [SZ15].

4.4 network architecture

A CNN is not only defined by the width and depth of the network: layers can
include additional building blocks, and they can be arranged in more complex
structures. Additionally, the choice of parameters within the network can have
a significant influence on the performance. The choice of the best parameters is
usually not clear a priori, and depends on the specific task and the data used
to train the network. Unfortunately, this point applies to many of the design
choices in a CNN, and the optimal architecture and parameter set can often
only be found by excessive testing or systematic optimization procedures, like
the Bayesian optimization [SLA12].

One of these important design decisions for a CNN is the activation function
f . The initially proposed logistic sigmoid

f (x) =
1

1+ e−x
(4.8)

was the natural choice for the nonlinearity [Hin02]. However, when more
efficient training algorithms were developed, f did not need to be differentiable
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1

logistic sigmoid ReLU leaky ReLU

Figure 4.4: Three common activation functions for NNs. The logistic sigmoid is a
shifted version of the tangent hyperbolicus. The leaky ReLU is linear (y = x) for x ⩾ 0

and 0 for x < 0. The leaky ReLU is an extension of the ReLU, where negative x are still
linear, but with a small factor: y = αx , 0 < α < 1 , ∀x < 0.

everywhere anymore, and functions that were only locally differentiable were
proposed. The logistic sigmoid was especially unsuited for deep neural net-
works, where the neurons would saturate, which could be prevented by using
other activation functions [GB10]. Two important activation functions are the
rectified linear unit (ReLU) and the leaky ReLU (figure 4.4), but a plethora of
others are available [Sza21].

The nonlinearity is a function specific to a convolutional or fully connected
layer. However, in most networks additional layers are introduced, which serve
different purposes:

• (Batch-) Normalization layers introduce additional learnable parameters,
variance and a mean, which are used to normalize the data, and thereby
increase the training speed [IS15]. The batch normalization layer can be
applied after every hidden convolutional layer, and, thus, is different from
a normalization during data preprocessing.

• Pooling layers are used to compress the network by decreasing the size of
the feature maps, which can increase the networks performance [Nag11].

• Residual connections add the output of a previous layer to the output of the
current layer. This operation can increase the training success, because
the current layer is then trained to approximate the residuals of a function
instead of the function itself, which can be beneficial in deep networks
[He15].

The performance of a trained NN is not only dependent on the general ar-
chitectural decisions, but also on the training process itself. The optimization
algorithm can have a significant influence whether a minimum is reached
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slowly or fast, or not at all [LeC12]. For example, one variant of the previously
introduced SGD is called Adam, which updates the gradient direction based
on a momentum rather than the the current gradient itself, which can help to
reach the optimum more efficiently [KB17].

In addition to the optimization algorithm, the cost function plays a major role
in the optimization process. The cost function (or loss function) is the function
which is optimized by the optimization algorithm. In semantic segmentation, a
typical example is the cross entropy, which computes the current cost based
on the L2-norm, i. e., it sums over all misclassified pixels. Other cost functions
implement the Dice Sørensen Coefficient (DSC)

DSC =
2TP

2TP + FP + FN
, (4.9)

where TP are true positives, FP are false positives and FN are false negatives
[Sud17], or variants of the cross entropy which modulate the loss based on
contextual information like the focal loss [Lin17].

Often, the available training data for a specific task is limited or does not
cover the complete space of expected data which the network should be able
to generalize. To (partially) overcome this limitation, data augmentation is per-
formed: The pool of available training data is extended by artificially modifying
the existing data [PW17]. Typical data augmentation strategies involve rotation,
flipping, or general affine transformations, as well as the artificial introduction
of artifacts like noise or image blurring. The idea of data augmentation is to
prevent overfitting, i. e. training the network to be highly accurate on the already
seen training data, but performing poorly on unseen data. Another effective
method to prevent overfitting is the introduction of additional dropout layers,
which randomly deactivate connections in the network by either multiplying
a weight (or kernel, in CNNs) with 0 or 1 [Sri14]. When the network training
is finished, the dropout layers are deactivated, such that all weights always
contribute to the final result.
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AU T O M AT E D T U M O R S E G M E N TAT I O N

5.1 fmiso study

5.1.1 mri data of head and neck tumors

In this thesis, the development of CNNs for tumor segmentation is centered on
MRI data from the FMISO trial, a prospective clinical phase II trial [GN15]. The
trial is designed to study the changes of head and neck squamous cell carcino-
mas under radiochemotherapy using PET-CT and MR imaging. Specifically, the
response of hypoxic subareas within the tumor is investigated using the PET
tracer [18F]-fluoromisonidazole (FMISO). MRI is used to provide an accurate
anatomical tumor delineation as well as additional functional contrasts, such as
tissue perfusion, diffusion or T*

2-parameter maps. In this context, possibilities
for MRI based hypoxia imaging by a single or a combination of different MRI
contrasts are investigated [Wie18]. Therefore, an extensive MRI protocol was
designed, including 7 different MRI-contrasts. Figure 5.1 shows the central
slice from an example dataset with all relevant contrasts. Further details on the
measurement protocol are found in section 5.1.4.

The first patient was included in the FMISO study in August 2014, before
the beginning of the works related to this thesis. After an extension to increase
the total number of patients, recruitment is still ongoing. Within the scope of
this thesis, 33 patients have been included, 24 of whom received the complete
imaging protocol. According to the study protocol, patients received an MRI
before treatment start (week 0), and at weeks 2 and 5 during radiation therapy.
The therapy included 7 weeks of radiation treatment with a 2 Gy daily dose up
to a total dose of 70 Gy. Additional concomitant chemotherapy with cisplatin
(100 mg/m2 body surface area) in weeks 1, 4 and 7 was administered. The trial
was approved in advance by the local Independent Ethics Committee (reference
no. 479/12) and was carried out in accordance with the Declaration of Helsinki
(revised version of 2015). The trial was registered with the German Clinical
Trial Register (DRKS00003830).

51
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T1 weighted T2 weighted T1 post-constrast Ktrans map
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*  map GTV-T

GTV-Ln

Figure 5.1: Seven different MRI contrasts of the same slice in a head and neck cancer
patient. The last image (bottom right) shows the contours of the lymph node metastases
(GTV-Ln) and gross tumor volume (GTV-T) overlaid on the T2-contrast. Figure adapted
from [Bie20b, fig. 1].

5.1.2 ground truth segmentations

To provide a ground truth for the CNN training, manual segmentations were
performed in the data set. Ground truth (GT) segmentations are logical masks
which assign a label to each pixel in an image. The labels used in this work are
background (BG), gross tumor volume (GTV-T) and lymph node metastases
(GTV-Ln), typically associated with numbers 0, 1 and 2.

Since patients undergo radiotherapy, this segmentation must be of highest
quality to avoid unnecessary damage to nearby healthy tissue without miss-
ing any of the diseased tissue. Hence, given the imaging data, GT tumor
segmentations were generated in consensus by a radiologist and a radiation
oncologist for each patient. This procedure was performed within the software
environment IPlan (Brainlab AG, Munich, Germany). Within IPlan, the user
imports MRI, CT and PET data and can display fused versions of the data. The
underlying fusion algorithm is based on the mutual information metric [VI97]
and can be applied semi-automatically, allowing manual adjustments based on
sub-regions of the images. In the next step, the user defines different regions of
interest, including GTV-T and GTV-Ln, by manually drawing the outline on
a slice in one of the available image sets, while a co-registered version of the
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Figure 5.2: Tumor segmentations as polygons. a) shows a segmentation as drawn by
an expert on a single image slice of a T2-weighted image. b) shows the same contours
as stacked polygons overlayed on two example slices. As can be seen, there is no
connection between the polygons in axial direction. Axis ticks denote voxel indices.

contour appears on all other available image sets. In this study, with only a few
exceptions, the regions were defined on the T2-weighted image set.

For further processing of the data, the contours were transferred to MATLAB.
The contours were exported as RT-structure files, which are defined by the
DICOM standard [DIC21]: Each RT-structure file contains the contours as sets
of multiple points linked to a reference coordinate system. The points define
planar polygons in the coordinate system of the image set in which they were
drawn, as depicted in figure 5.2. Additionally, affine transformation matrices
M are stored in the RT-structure file that connect two coordinate systems Σ and
Σ′, with

M =


Xxdi Yxdj Zxdk Sx

Xydi Yydj Zydk Sy

Xzdi Yzdj Zzdk Sz

0 0 0 1

 (5.1)

and 
Px

Py

Pz

1

 = M ·


i

j

k

1

 . (5.2)

Here, (i, j,k) are pixel indices in the original image (Σ) and P(x,y,z) are the
positions in the output coordinate system Σ′. (Xx,Xy,Xz) and (Yx, Yy, Yz) are
the row and column direction cosines of the image orientation, as stated in the
DICOM standard [DIC21]. (Zx,Zy,Zz) is then given by the cross product of
X and Y. (di,dj,dk) are the voxel resolutions (including spacing in between



54 automated tumor segmentation

Figure 5.3: 3D rendered tumor segmentation masks. a) Original contour as defined
by the radiotherapist, given in the T2 reference space (0.68×0.68×4.8 mm3). It shows
the same contour as fig. 5.2. b) Result of standard warping of the logical mask from a)
to a resolution of 0.45×0.45×2.0 mm3. c) Warping with linear interpolation in axial
direction to the same reference space as in b).

the voxels) for each dimension, while (Sx,Sy,Sz) define translations. With the
transformation matrix, any point in one coordinate system can be transferred
to another coordinate system by application of equation (5.2).

However, the polygon points need to be transformed into a logical mask on a
matrix grid. While, with a set of polygons, it is easy to create a 3-dimensional
logical mask for the reference image set, the problem can become complex (i.e.
inaccurate) if the mask has to be transferred to another coordinate system.

This interpolation problem can be split into two parts. First, the number
of slices is increased in through-plane direction, which requires a careful
interpolation strategy. Second, rotation of the new coordinate system with
respect to the reference system leads to oblique polygons in the new coordinate
system, preventing slice-based treatment of the problem. In an initial attempt,
the logical region mask was warped to the new coordinate system using nearest
neighbor interpolation. While this works well for voxels within the same plane,
it shows staircasing artifacts in axial direction. Figure 5.3 a) and b) show this
behavior with the original and warped versions of a logical mask.

To overcome this artifact, the interpolation between adjacent polygons was
treated as a linear interpolation between two distance maps. A distance map
D(⃗x) assigns the value of the closest distance to the edge of the polygon to each
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pixel within the plane of the polygon (2D problem). Pixels inside the polygon
are assigned negative values and those outside are positive, such that

D(⃗x) =

{
minp⃗i∈P (∥x⃗− p⃗i∥) , ∀x⃗ outside polygon P

−minp⃗i∈P (∥x⃗− p⃗i∥) , ∀x⃗ inside polygon P
. (5.3)

For any point in between the two polygons, a linear combination of the corre-
sponding distance maps yields a new map:

D′(⃗x) =
∂z− ∂z1

∂z
D1(⃗x) +

∂z− ∂z2
∂z

D2(⃗x) , (5.4)

where ∂z is the absolute distance between two slices and ∂z1 and ∂z2 are the
distances of the point x⃗ to the slice directly above and below. The interpolated
logical mask is then a thresholded version of this new distance map D′(⃗x).

In the case of rotated coordinate systems, the described interpolation method
can not be applied directly, since the polygons are oblique with respect to
the new image planes. However, the same general strategy can be applied by
treating each voxel in the new frame of reference separately: For this, each voxel
is projected into the (oblique) planes of the polygons that lie directly above and
below the voxel. Next, for each voxel, equations (5.3)-(5.4) can be applied, using
the distances of the projected locations to their respective polygons. Figure 5.3
c) shows the result of the method.

In comparison, the linear axial interpolation method results in a smoother
and much more confined volume, as can be seen in Figure 5.3 c). The nearest
neighbor interpolation is unable to achieve results below the original voxel
resolution, which explains the staircasing artifact.

5.1.3 measurement setup

For all patient measurements, a clinical 3 T whole-body MRI system (Tim
Trio, Siemens, Erlangen, Germany) was used (figure 5.4). Each patient was
provided with an individually fitted stereotactic radiation therapy mask that
covered the complete head and part of the neck (figure 5.5). The mask is used to
enable robust reproducible patient positioning as well as patient immobilization.
Thus, the shared imaging information between CT, PET and MRI is nearly free
from non-rigid deformations in the neck area. For the MR system, a special
fitted headrest compatible with the masks is available, which allows seamless
attachment of the mask directly to the patient table.

However, this setup prevents the use of a specialized head and neck receive
coil. Therefore, flexible 4 and 6 (4-channel flex coil and Body Matrix Coil,
Siemens Healthineers, Erlangen, Germany) channel receive coils are wrapped
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Figure 5.4: 3 T whole-body MRI system (Tim Trio, Siemens, Erlangen, Germany) used
in the FMISO trial.

Figure 5.5: Thermoplastic fixation mask as used in the FMISO trial.

Figure 5.6: Patient in the FMISO setup. Flexible signal receive coils are placed on
the head and the chest of the patient, because a dedicated head and neck coil is
incompatible with the thermoplastic fixation mask.
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sequence te tr resolution comments / other

[ms] [ms] [mm3]

T1 FSE 11 504 0.7×0.7×4

T2 FSE 100 5000 0.7×0.7×4

Multiecho
GRE

5–33 600 1.1×1.1×3 nEchoes=12,
reconstructed map: T*

2

ss
DW-EPI

71 3500 2×2×3 b={50, 400, 800} s/mm2

reconstructed map: ADC

rs
DW-EPI

51 2510 2×2×3 b={50, 400, 800} s/mm2

reconstructed map: ADC

DCE 1.56 4.65 1.4×1.4×3 nTimepoints=36,
reconstructed maps: Ktrans, kep,
ve

T1 VIBE
Dixon

2.45 8.67 0.45×0.45×2 Post contrast. Water image
used.

Table 5.1: Sequence parameters of the FMISO MRI protocol.

around the anterior part of the head and neck area and are used in combination
with additional spine array coils, as seen in figure 5.6.

The tight wrapping and immobilization due to the mask can lead to increased
patient heating and result in additional discomfort and stress which, in extreme
cases, lets the patient stop the measurement completely. Hence, the measure-
ment protocol has to be kept as short as possible to increase patient compliance
and reduce additional motion, such as tongue motion and swallowing.

5.1.4 measurement protocol

The MR protocol of the FMISO trial included 7 different sequences: anatomi-
cal T1- and T2-weighted fast spin echo (FSE), multiecho gradientecho (GRE),
diffusion-weighted (DW) echo planar imaging (EPI), dynamic contrast en-
hanced (DCE) T1-weighted VIBE and a post contrast T1-weighted VIBE Dixon
measurement. For the diffusion weighted imaging, two alternative sequences
could be used: either conventional single shot (ss) or readout segmented (rs)
EPI. Details on the most important sequence parameters are listed in table 5.1.

The T1 and T2 weighted FSE sequences are routinely used in many clinical
MRI protocols, as they deliver high quality, high resolution anatomical reference
images for diagnostic purposes, especially in tumor imaging.
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For diffusion imaging, conventional ssEPI has been integrated in the mea-
surement protocol as a gold standard. An additional rsEPI sequence was added
to evaluate improvements in image quality, especially with regard to image
artifacts such as distortion and Nyquist-ghosts. The differences of conventional
ssEPI vs. rsEPI are discussed in section 5.2.

T*
2 measurements were performed using a multiecho GRE sequence to evalu-

ate T*
2 as a possible substitute marker for hypoxic areas in tumors. The influence

of blood oxygenation on T*
2 is well known from functional brain imaging, where

it is called the BOLD (blood oxygen level dependent) effect [Oga90]. This effect
relies on magnetic properties oxygenated and deoxygenated blood, i. e. due to
diamagnetic oxyhemoglobin becoming paramagnetic deoxyhemoglobin.

5.2 single shot epi vs . readout segmented epi

The FMISO protocol (section 5.1.4) also includes two separate sequences for
ADC quantification: conventional diffusion weighted ssEPI and rsEPI. ADC
values from both sequences are compared in GTV-T and GTV-Ln in a region
based approach. Therefore, ground truth volumes as defined in section 5.1.2
are used in combination with the original co-registrations as defined in the
radiation therapy planning system. No additional region-based co-registration
is employed.

Additionally, image quality with respect to apparent image artifacts is ana-
lyzed. The image artifacts under investigation are Nyquist ghosts and geometric
distortions, that can lead to signal cancellation or signal voids due to ill-defined
Fourier relationships (i. e. overlapping resonance frequencies for different spa-
tial positions). Figure 5.7 shows examples of patients with good, medium
and bad diagnostic quality, including the 4-fold Nyquist ghost and distortion
artifacts in both rs- and ssEPI images.

The conventional ssEPI and rsEPI sequences were performed using a partial
Fourier factor of 6/8 and an acceleration R factor of 2 (GRAPPA) in both
cases. The resulting effective pixel bandwidths (see equation (3.14)) in phase
encoding direction are BWPE = 19.5/48.8 Hz. From equation (3.15), an inverse
dependence between pixel bandwidth and geometric distortion is expected. To
confirm that the geometric distortion is caused solely by B0 inhomogeneity, a
B0 field map was measured in a volunteer experiment.
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Figure 5.7: Examples for different qualities of rsEPI and ssEPI with respect to the
Nyquist ghost artifact. The top row shows a grade 2 (good) example, the central row is
rated 2 for rsEPI and 1 for ssEPI, and the bottom row is rated 0 (bad quality) for both.
The three slices represent the most inferior, central and superior slice of the acquisition.

5.3 b0 field homogenization

As discussed in the previous section, imaging of the head and neck region
is prone to artifacts from B0 inhomogeneities. Large scale B0 inhomogeneity
can be prevented by B0 shimming, which typically allows to compensate field
distortions up to second order in x and y direction and up to fifth order in
z-direction (along B0) [Web16, p.166-207]. The specific geometry of the head
and neck area, consisting of the head, smaller, approximately cylindrical neck
and wide shoulders with air-filled lungs, imposes field distortions that typically
cannot be compensated sufficiently by the shim gradients. This is especially
critical in sequences with long TE and low bandwidth, such as diffusion
weighted EPI .

To overcome the limited shim capabilities, liquid filled water bags were
placed close to the region of interest in an attempt to simplify the complex
geometry, similar as in [Oud16]. In volunteer measurements, a single U-shaped
pillow was placed around the anterior part of the neck and resting on both
sides on the patient table. The pillow was filled with pineapple juice, which
closely matches tissue susceptibilities due to its high manganese content. B0

field maps with and without the pillow were acquired using a 2-point GRE
sequence (Siemens B0 field mapping) [SG91] to quantify improvements in B0

homogeneity.
Following the volunteer experiments, the patient measurement setup was

adapted to account for additional limitations: Therefore, two commercially
available hot water bags (figure 5.8) were placed on both sides of the head. The
bags were filled with tap water doped with a gadolinium based contrast agent
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Figure 5.8: Hot water bag used to reduce the geometric complexity of the head and
neck area. Two water bags were filled with water doped with contrast agent and placed
to both sides of the patients head.

Lower end of
RT-mask

Water bag Receive coils

Figure 5.9: Patient setup in combination with anatomical MRI. The water bags are
positioned as close as possible to the patient, but the thermoplastic fixation mask
(white mesh seen in the photograph) prevents direct contact.

(ProHance 0.5 M, Bracco Imaging Deutschland GmbH) to reduce T1 (20±1 ms)
and T2 (16±1 ms) to make them invisible in all sequences with a TE of more
than 50 ms. Gadolinium doped water was preferred to the previously chosen
pineapple juice due to its considerably longer storage times. This setup created
a similar geometry as the U-shaped pillow did, without placing any weight
on the anterior part of the patients neck, which could not be tolerated due to
the proximity to the diseased area. The complete patient setup including an
axial and a coronal MR image slice in the head and neck region is shown in
figure 5.9.

An additional volunteer measurement in the patient setup, including the ther-
moplastic fixation mask, was performed to quantify the expected improvements
on B0 homogeneity.
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Out of 29 patients in the FMSIO study, 9 patients were measured using the
improved setup with the water bags. An analysis comparing the amount of
Nyquist artifact within ssEPI and rsEPI before and after adding the water bags
was then performed. The analysis uses a 3-point scale, consisting of grade
2: good image quality without Nyquist artifact, grade 1: acceptable image
quality with some artifact in the outer, non-tumor bearing, slices and grade
0: diagnostically unusable due to corruption of Nyquist artifact. Figure 5.7
shows examples for the grading of the images. Because single patients are
imaged multiple times during their therapy, a total of 20/22 measurements
using the new setup were performed with ssEPI/rsEPI respectively, which were
compared against 47/54 measurements with the original setup.

5.4 segmentation algorithm

This section describes the details of the algorithm, especially the CNN archi-
tecture, that was used for tumor segmentation. Two CNN experiments using
the CNN which are described in detail in this thesis: (1) the analysis of influ-
ence of distortion correction on the segmentation algorithm (section 5.5) and
(2) the analysis of input channel contribution to the segmentation (section 5.6).
Between these two experiments, additional patients were included in the study,
and some of the methods of the CNN itself evolved. Therefore, this section
will start with common methods for both experiments in subsection 5.4.1,
while details on the specific parameters used for each experiment are found in
sections 5.5 and 5.6.

5.4.1 cnn architecture

For all subsequent experiments, the general CNN architecture of DeepMedic
as defined by [Kam17] has been chosen for segmentation. The basic building
blocks of the network consist of a 3D-convolution layer, a batch-normalization
layer, the activation layer (i. e., a leaky ReLU-layer) and, finally, a dropout layer.

The DeepMedic architecture does not utilize padding after each convolution
layer, resulting in constantly decreasing feature map dimensions (see equa-
tion (4.7)). Additionally, smaller image patches cropped from the full image
are used as input to the network. The decrease of feature map size and the use
of image patches both lead to a receptive field which is much smaller than the
original input images. Therefore, to segment the whole MRI volume, results
from several patches have to be combined in a checkerboard fashion.

The architecture has a unique way of combining information of different
scales of resolution, distinguishing it from other classical encoder networks: in a
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Figure 5.10: CNN Architecture of the DeepMedic implementation. The input is split
into a high- and a low-resolution pathway, which are recombined before classification.
Image adapted from [Bie18b, fig. 1], concept from [Kam17, fig. 5].

first step, the input patch is chosen, together with a larger patch centered around
the input patch. The larger patch is then downsampled by a user specified factor
(e. g. 2×2×1 for x, y and z direction). The high-resolution, small-FOV patch
(figure 5.10 blue), and the low-resolution, large-FOV patch (figure 5.10 orange)
then enter separate pathways with a chosen number of convolution layers of
the basic building blocks. Next, the low-resolution pathway is interpolated to
the original resolution and concatenated to the output of the high-resolution
pathway. In doing so, the low-resolution patches are cropped such that all
pixel locations in the high- and low-resolution feature maps coincide. Then,
information of the concatenated feature maps are merged by one or more fully
connected layers, which are realized as convolutions with kernel sizes of 1

3.
In a final step a conventional classification using a softmax layer is applied.
Figure 5.10 shows the full schematics of the architecture. The use of multiple
pathways with different resolutions allows large scale contextual information
to be incorporated in the segmentation process, without the need for overly
excessive computer memory requirements.

The input to the network are multiple 3D MRI volumes (input channels).
Each channel is a 3D image data set from a separate sequence or a parameter
map. For the two experiments, different input channels were used: experiment 1

(section 5.5) used 5 and experiment 2 (section 5.6) used 7 unique channels. The
network output can also be multiple channels, depending on the training data.
If trained for background, GTV-T and GTV-Ln, there will be 3 output channels.
The final softmax layer converts these pseudo-probability maps from the last
convolution layer into binary segmentation maps.
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To refine the results, the conditional random field (CRF) as proposed by
[Kam17] and [KK11; KK12] was applied to the CNNs segmentation results. The
application of the CRF decreases the amount of outliers, i. e. small false positive
segmentations far from the lesion.

5.4.2 data pre-processing

In section 5.1.2 the specific pre-processing of the ground truth segmentations
was presented. In this section, general pre-processing of all available MR image
data is described. As listed in table 5.1, from up to 7 different pulse sequences
up to 9 different image contrasts and tissue parameter maps are extracted. For
the two experiments, different subsets of this data were used as input to the
segmentation algorithm.

The subject of data pre-processing can be split into two separate topics: data
registration and interpolation on the one hand, and data normalization on the
other.

Data registration is necessary if patient movement occurs in between scans of
the same imaging session. Due to the fixation of the patient, the FMISO database
contained only minor bulk registration errors. These were either corrected by
an additional registration step in the whole MATLAB pre-processing chain
(section 5.5.3), or during contouring using the IPlan software (section 5.6.2).
Data interpolation deals with the different orientations and resolutions of the
various MRI sequences. To process multiple MRI contrasts in a CNN, they need
to be sampled on the same matrix grid. The DICOM information, which is
stored with the image data, contains the orientation and location information
of each image volume. Using this geometric information, data is gridded to
the chosen reference frame, typically using cubic spline interpolation, with
common matrix size, orientation and resolution.

Data normalization is a necessary pre-processing step in most segmentation
tasks using CNNs. Contrast-weighted (e. g., T2, T1, FSE, or, T1 VIBE Dixon)
sequences yield images without quantitative information to their absolute
magnitudes, and, therefore, the dynamic range of the data can be different
across different images. To make them comparable across patients (and possibly
different MRI systems, coil setups, etc.), normalization to a common mean
and standard deviation is necessary. The proposed normalization implicitly
assumes identical positioning of the FOV and comparable anatomy across
various patients. In the case of the FMISO study, this assumption is valid
due to the rigid patient setup and measurement protocol, in combination
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with a homogeneous patient cohort. Most commonly found is the z-score
normalization

S′(⃗x) =
S(⃗x) − µ

σ
,

which transforms an image S(⃗x) with mean µ and standard deviation σ to
S′(⃗x) with unit standard deviation and zero mean. For parameter maps, the
physical meaning with respect to the absolute values should be conserved,
particularly across the patient cohort. Therefore, constant values µ′ and σ′ must
be extracted from the total patient cohort, which are the same for all images for
normalization. This procedure is described in more detail in section 5.6.2.

5.5 distortion correction

In the first major CNN based experiment (CNN-DistCorr), the influence of dis-
tortion in the ADC maps on the segmentation performance of the CNN was in-
vestigated. As discussed in sections 5.2 and 5.3, and described in 3.2.3, diffusion-
weighted imaging can suffer from severe geometrical distortion. Therefore, a
method for retrospective distortion correction without the knowledge of the
true B0 field map has been developed and applied to all available ADC data.
Then, CNNs were trained based on five MRI input contrasts. These CNNs
were trained from scratch, either with distortion corrected ADC maps or with
original (distorted) ADC maps. Finally, segmentation results from the CNNs
were compared to assess the influence of the distortion correction.

5.5.1 retrospective distortion correction

The employed distortion correction algorithm [Bie18a; Bie19b] is based on the
Lucas-Kanade method in a pyramidal layout [Bou00], which is, e. g., used in
optical microscopy, 2-photon imaging or particle imaging [LK81; Vin14; PG17;
GK09; AHI09]. Non-rigid motion is estimated between a T2-w. acquisition
as reference and a potentially distorted diffusion-weighed image with lowest
available b-value. A schematic of the algorithm is shown in figure 5.11. A
rigid registration (translation only) is found by optimization of the mutual
information metric between the distorted and the reference image [VI97]. In
the next step, the registered image is broken into smaller patches. Unlike
in figure 5.11, the image is broken into 9 (2D) or 27 (3D) patches, which are
overlapping by half their side length in each dimension, to account for the
continuous properties of naturally occurring field distributions. Each patch is
then registered with its corresponding patch from the reference image, which
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Figure 5.11: Schematic of the distortion correction algorithm. Given a distorted (blue)
and a reference (orange) image, the algorithm employs mutual information based rigid
registration on the full image. After registration, the image is divided into smaller,
overlapping patches (not shown in the figure). The smaller patches are registered
again, and are sub-divided subsequently. Registration results are passed on to the next
level for patch selection. Each pyramid level decreases the patch size by 2

n, where n is
the image dimension (2 or 3). When a preset limit is reached, the resulting distortion
field can be used to correct the deformed image. Figure adapted from [Bie18a, fig. 1]

leads to registration features with finer resolution than in the previous step.
This procedure is repeated until a predefined minimal patch size is reached.
The final distortion field is given by interpolation of the finest features to the
original matrix size.

In this study, the minimal patch size was set to 10×10×10 pixels. Tests on
smaller patch sizes did not yield more accurate results, as the registration be-
comes unstable due to the small number of pixels per patch. The algorithm was
implemented for 3D data in MATLAB. Since the distortions are only expected
to occur along the phase-encoding direction, the algorithm was implemented
such that the registration was limited to a single spatial dimension. This was
achieved by ignoring translation in dimensions different from the selected
dimension during steps 1 and 2 in the algorithm, thereby ensuring a smooth
convergence of the registration. After the distortion field is estimated from the
reference T2-w. image and the DW image it is applied to the corresponding
ADC map. Since the amount of distortion should only depend on the echo train
length, which is equal in all diffusion-weighted images with differing b-values
from the same acquisition, the use of the distortion field can also be applied to
the calculated ADC map. The lowest b-value image was chosen as a basis as it
has the highest SNR and is most comparable in contrast to the T2-w. image.
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To validate the algorithm performance and the assumption, that distortion
in DW MRI is mainly caused by B0 inhomogeneity, diffusion weighted and
T2-w. images of a volunteer were acquired in the head and neck region with
the same protocol as in the patient measurements. Additionally, a B0 field
map was acquired using a multiecho gradient echo sequence. From the DW
and T2-w. images, a distortion map was calculated using the retrospective
correction algorithm. The resulting distortion field was then compared against
the measured field map.

5.5.2 available data

For this experiment, a total of 18 complete datasets were available with 5 input
channels to the model: T1- and T2-FSE and Ktrans-, T*

2- and ADC- parameter-
maps. From the available data, 12 out of 18 ADC maps were calculated from
the rsEPI sequence, while for the rest only ssEPI data was available.

5.5.3 data pre-processing

T1 and T2 weighted data were subject to a z-score normalization. The nor-
malization was done per 3D volume, and mean and standard deviation were
calculated only within a region mask. The mask was created by a simple thresh-
holding of the image, setting all values below 10% of the maximum intensity
to 0, and all others to 1. The threshold value was found experimentally by
visual inspection of the results: when most of the empty volume (i. e., air) was
masked and the anatomy was still completely present, the threshold value was
accepted.

To preserve the physical properties of the parameter maps, no normalization
was applied to Ktrans, T*

2 and ADC.
All imaging data was interpolated to a common isotropic resolution of 1 mm3

and additionally registered to the T2-w. image using the mutual information
metric limited to similarity transformations (i. e., translation, rotation and
scale). After registration, all image sets were checked visually for potential
misregistrations. Additionally, only regions containing information from all 5

input images were used, i. e., proper masks were applied to the data. Therefore,
for each of the 5 channels a specific mask was generated by threshholding as
described before. Then, a combined mask was calculated as the intersection of
all single masks. The resulting combined mask was then applied to each single
channel.
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The retrospective distortion correction algorithm was then applied to the
ADC maps. As a result, two sets of input data for the subsequent CNN were
available:

• the uncorrected set: T2, T1, Ktrans, T*
2 and original ADC,

• the corrected set: T2, T1, Ktrans, T*
2 and distortion corrected ADC.

5.5.4 cnn architecture

The general layout of the CNN has been discussed in section 5.4.1. For this
experiment, the original Python model DeepMedic V0.6 [Kam17] was used and
hyperparameters were adapted [Bie19b].

The network output was either GTV-T or non-GTV-T (i.e. background).
Thus, lymph node metastases were counted as background in this task. One
subsampled resolution pathway was chosen with a factor of 3×3×3 lower spatial
resolution in x, y and z direction in addition to the high-resolution pathway
(1 mm3 isotropic). Each pathway included 8 hidden layers, each with {30, 30,
40, 40, 50, 50, 70, 70} channels, followed by two fully connected layers with
100 channels reconnecting the two pathways. Following [Kam17], convolution
kernel sizes in the two pathways were chosen as 3

3. During training, the input
data was segmented into patches of size 20×20×20 and batches of 10 patches
were processed before updating network weights. For validation and inference,
combinations of larger patches and/or batch sizes were chosen to leverage
the computing power, but they do not influence the training outcome. The
last fully connected layer and the classification layer used a dropout rate of
50%. To account for the inherent class imbalance, patches centered on GTV-
T and background were chosen with a relative frequency of 0.5/0.5 and a
random mirroring of the input data in each dimension was performed for data
augmentation. The initial learning rate was set to 0.001 and was decreased
by a factor of 2 on epochs {10, 14, 17, 20, 23, 25, 29, 31 and 34}. In total, the
network was trained for 35 epochs. Figure 5.12 shows the training progress for
a network trained on the described parameters. Detailed configuration files are
found in the appendix 11.1 and 11.2.

Parameter optimization was performed by manually exploring the parameter
space. The largest influence on training outcome was given by the depth
and width of the network architecture, i.e. the number of hidden layers
and their respective number of channels. Deeper networks were expected
to generate more precise segmentations, but with more than 8 hidden layers
the results became increasingly noisy. The number of channels per layer and
the batch size/patch size were then optimized together, as both are limited
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Figure 5.12: Training progress for the network. Figure adapted from [Bie19b, fig. 2].

by GPU memory. While the number of channels per layer is expected to
increase the power of generalization, the batch size had to be chosen sufficiently
large to catch a statistically representative part of the tumor and background
distributions in each optimization step.

5.5.5 experiment design

The experiment was designed to identify whether distortion correction of
ADC maps improves tumor segmentation of a CNN. From the training curves
(figure 5.12) in the CNN testing phase, the need for a larger database to
discriminate between subtle changes became apparent. Thus, with 18 valid
patient data sets in total, a 14-fold leave-one-out cross validation strategy was
employed: the complete dataset was split into subsets consisting of a training
set (13 patients), a validation set (4 patients) and a test set (1 patient). 14

different permutations of these subsets were generated, each permutation with
a unique patient in the test set. For the corrected and uncorrected dataset, as
described in section 5.5.3, the same permutations were chosen to keep them
comparable.

Then, for each of the 14 permutations, a segmentation network was trained
from scratch for uncorrected and corrected data. After complete training of
the networks, the corresponding test sets were segmented and results between
the corrected and uncorrected datasets were compared. Statistical analysis,
including a paired students t-test was employed to reveal statistically significant
differences between the two sets.
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As a performance marker, the DSC was chosen predominantly, because of
the robustness against the relative size of the target region with regard to the
total image size.

5.5.6 computational resources

The high computational load for CNN training demanded a local server infras-
tructure with up to 4 NVIDIA Tesla C2075. Training times for 35 epochs on the
given hardware were between 50–75 hours per GPU, depending on the total
computational load on the server.

5.6 channel-wise importance analysis

The second major CNN based experiment (CNN-Info) deals with the relative
importance of each input channel towards the overall segmentation performance
of a CNN [Bie20b]. Since the first experiment CNN-DistCorr, (section 5.5) the
patient database as well as the CNN methods were expanded. Similarly to the
previous section, the available data will be described first, followed by the CNN
methods. Importantly, transitioning from the first to the second experiment, the
whole CNN structure was ported to the MATLAB framework. This allowed a
more direct access to the methods used in the CNN and changes in the design
to be made. The porting and implementation of DeepMedic into MATLAB was
accompanied by a collaboration project with MathWorks, giving the option to
access neural network methods at the systems very basic implementation.

5.6.1 available data

Data for this experiment was taken from the same study as in section 5.5.
Because of the prospective nature of the FMISO study, 6 additional patients
were included totaling to 24 MRI patient data sets. With each patient receiving
3 MRI exams in the course of the therapy, 72 independent MRI were performed.
From this, about half of the data had to be excluded due to artifacts (motion,
B0 inhomogeneity) or patient compliance (interruption of MR measurements
due to discomfort). As a result, 36 complete MRIs, taken from 18 patients, were
available [Bie20b].

For the CNN analysis, 7 different MRI input channels were chosen: T1 and
T2 FSE, post contrast T1 VIBE Dixon (water image) and T*

2, ADC, Ktrans and ve

parameter maps (see table 5.1). These input channels represent the complete
MRI protocol. The perfusion parameter map kep was discarded because it does
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not carry additional information according to the Tofts model [Tof97; Tof99], if
Ktrans and ve are available.

5.6.2 data pre-processing

For the ground truth segmentations data were imported into a radiation therapy
planning software (see section 5.1.2). There, a registration of MR images based
on the mutual information metric was applied, if necessary. The information
generated by the registration in the planning software was subsequently ex-
ported alongside the ground truth segmentations. All data were warped to
a new, common frame of reference. The choice for such a common frame of
reference had to fulfill several requirements: First, the voxel resolution should
be in the range of the data which will be used in the segmentation algorithm to
avoid loss of information by excessive downsampling. Second, the orientation
of the common frame of reference should be the same as at least one of the
acquired image data sets to reduce the need for interpolation and associated
artifacts (preferably, the least amount of images should undergo rotational
interpolation). Finally, the common frame of reference should only include a
field of view which is covered by all of the underlying images, to avoid region
voids without any information from certain images. Unlike the ground truth
volumes, the images are then interpolated using cubic interpolation, as inte-
grated into the MATLAB software package. The T2 FSE sequence was chosen as
the reference image orientation, because it was used for manual ground truth
contouring and the MRI protocol FOV was referenced to it.

The target resolution was chosen as the highest measured resolution in x,y
and z directions, i. e. 0.45×0.45×2 mm3.

Data normalization improves the convergence behavior of CNN training.
The activation functions used in this experiment contain a nonlinearity at
x = 0 (leaky ReLU). Using the He-initializer for weight initialization [He15],
a normalization to the approximate range of [-1, 1] increases learning speed
by setting values around the point of largest gradients. Therefore, contrast
weighted images as well as parametric images (i. e. perfusion Ktrans and ve,
ADC and T*

2) were normalized. Due to the physical meaning of the parameter
maps, two different normalization strategies were applied. As mentioned
above (section 5.4.2), all contrast weighted images were subject to a z-score
normalization. However, during optimization of the network parameters,
modified values of 0.25 each have proven beneficial for both, mean and standard
deviation.

Normalization of parametric images was based on a histogram normalization
to preserve the physical absolute values of each data point (voxel) [Jac19].
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Figure 5.13: Histogram based normalization of ADC values in a) all available images
and b) for one selected 3D image. The dashed lines represent the 10% and 90%
quantiles with respect to the complete set of images. b) shows the histogram of one
sample image before and after normalization. The data shown in the histograms
exclude background, which has been removed using a region mask.

Therefore, all available data across all patients for a specific parameter (e. g.
ADC) were collected in a single histogram, as shown in figure 5.13 a). Then,
normalization parameters µ′ and σ′ were chosen such that data between the
10% (q10) and 90% (q90) quantiles fell into the range of [0, 0.5]:

µ′ = (q10 + q90)/2

σ′ = q90 − q10

ADCnorm =
ADC − µ′

2σ′ + 0.25

Note that after normalization the 10% and 90% quantiles are not equal to 0 and
0.5, respectively, for each individual image. This relation only holds for the
mean of all images.

Normalization was performed after the 3D-volumes which were warped into
the common frame of reference.

5.6.3 cnn architecture

For this experiment, the DeepMedic architecture was ported to MATLAB and
some features were added.

A network architecture with 2 separate pathways was chosen. Due to the
anisotropic resolution of the input images, the subsampling factor of the low-
resolution pathway was 3×3×1 in x, y and z direction. As input to the network,
a single large patch which covers both, high and low resolution, is chosen. This
input is then split into the two pathways, and a cropping layer makes sure that
only the smaller patch for the high-resolution pathway is processed. Next, the
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Figure 5.14: Schematic of the initial patch processing in the two-path network. The
input patch is split into a smaller patch which is processed in the convolutional layers
directly, and a larger patch which is subject to average pooling, first. Technically, the
smaller patch is also average-pooled with a kernel of 1× 1× 1, which is an identity
transformation. However, setting up the network this way allows for more flexibility,
e. g. if in some cases average pooling for the small patch is required, too.

downsampling was performed in an average-pooling layer with a pooling size
and stride that matches the downsampling factor. For a factor of 1×1×1, no
pooling is applied. In this setup, a single input to the network serves for both
the low- and high-resolution pathway. A schematic of the input processing is
shown in figure 5.14.

Each pathway contained 10 convolution layers. In this setup with an an-
isotropic input resolution, the kernel sizes of the layers were chosen such
that the receptive field would cover a physical area of approximately equal
side lengths. Therefore, kernel sizes were 3×3×3 for layers {1, 5 and 9} and
were 3×3×1 for layers {2, 3, 4, 6, 7, 8 and 10}. Applying equation 4.7, the
resulting receptive fields for high- and low-resolution pathways are 21×21×7

pixels, which equals to 9.45×9.45×14 mm3 and 28.35×28.35×14 mm3 respec-
tively. Upon upsampling of the low-resolution pathway and concatenation of
high and low resolution, another 3 convolution layers with kernel sizes 3×3×1,
1×1×1 and 1×1×1 were added. The number of feature maps was 104 for each
convolution layer in the separate pathways and 150 for the connected pathways.
In this experiment, each layer consisted of building blocks with the following
operations: first, a convolution layer with kernels and number feature maps
as described above. Next, a learnable batch normalization layer [IS15], a leaky
ReLU layer with a scale of 0.01 and finally, a dropout layer with a 20% dropout
chance (see figure 5.15). For convolutions, no zero padding was applied and all
strides were set to 1.

In section 5.5.4, the upsampling of the low-resolution pathway was realized
as a simple nearest neighbor interpolation. In this implementation, the up-
sampling operation was implemented as a learnable unpooling (or transposed
convolution) layer. The layer was applied with a kernel size of 3×3×1, matching
the downsampling factor for the low-resolution pathway.
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Figure 5.15: Schematic of the basic network structure. a) shows 3 connected hidden
layers in succession. b) shows the implementation of a skip connection between layers
L and L+1.

In the first experiment CNN-DistCorr, increasing the number of hidden
layers eventually decreased the segmentation performance. To overcome this
instability, residual connections (or skip connections) [He15] were introduced:
Layers with skip connections add the output of a layer A to the output to a
successive layer B, before the nonlinearity operation of B (see figure 5.15). This
connection can improve the learning success for large numbers of hidden layers
when the function connecting one layer to the next is close to identity. If that
happens, introducing the skip connection changes the function f(x) = x from
identity to f(x) = 0. This is generally easier (i. e., faster) to approximate using a
gradient based optimization. Typically, the feature maps in the skip connection
layer are zero-padded to retain the matrix size of the previous layer. Here, a
cropping was implemented to mimic the decreasing feature map size which is
present throughout the network. This way, memory can be saved, because no
average pooling is applied as in the original ResNet [He15].

Finally, a softmax layer generated segmentation maps for classes background,
GTV-T and GTV-Ln. The network was then trained using the generalized Dice
loss function [Sud17], i. e. MATLABs dicePixelClassificationLayer adapted for 3D
input.

For training, input patches of size 78×78×8 px were used, which were im-
mediately cropped to a size of 38×38×8 px for the high resolution pathway
(figure 5.14). Accordingly, output patches of size 18×18×2 px were generated.

A random sampling strategy was implemented for the selection of the patches:
First, a probability map for each category is calculated from the data and the
ground truth labels. Therefore a simple threshold based mask is generated from
the MRI data to exclude low-signal areas, such as air. This mask is applied to
the ground truth label maps (GTV-T, GTV-Ln, BG), and a subsequent Gaussian
image filter with standard deviations of {10, 10, 0.01} for x, y and z directions
is applied. These maps are then vectorized (i. e. the number of dimensions
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is compressed to one) and the cumulative sum across the vector is calculated
and normalized to 1 (cumulative probability density). Next, a random category
is chosen with a probability of 1/3 each. Now, the central pixel of the image
patch is chosen by calculating the difference of the cumulative probability
density and a random number between 0 and 1. The pixel in question is
given by the index with the smallest difference and the random number. This
procedure has a significant advantage over a completely random choice of
pixels: Picking the central pixel from the smoothed probability map allows the
central pixel for a category to be outside of the region of that category itself.
Therefore, small structures and fuzzy edges can be sampled more smoothly
and a better training statistic is expected. At the same time, the probability for
these choices is reduced, as it is weighted by the amplitude of the probability
map. Additionally, areas containing only air are suppressed from the sampling.

Data augmentation was implemented by random flipping of the image in
any dimension (probability of 0.5 for each dimension x, y or z) and a chance
of 1/3 for a random rotation in the x-y-plane. Rotations about the x- or y-axis
were excluded due to the non-isotropic image resolution.

In summary, the network contains 2.78 million learnable parameters, 99.7%
of which are the weights of the convolution layers. Other learnable parameters
are the convolution layers bias (0.1%) and scale and offset parameters of the
batch normalization layers (0.2%).

5.6.4 experiment design

The goal of this experiment was to discriminate between MRI input channels
that add a lot of information to the CNN for tumor segmentation and those
that add very few or no information. Therefore, multiple networks using
the same structure and the same input data were trained from scratch. Each
network was trained on 6 out of 7 available input channels, cycling through all
7 possible configurations in a leave-one-out (LOO) fashion. Additionally, one
network with all available input channels was trained for reference. As before
(section 5.5.5), the size of the test data set was restricted to a single patient,
thereby maximizing the training data set. This, too, was done employing
a leave-one-out strategy, resulting in 288 completely trained networks for 8

different input channel configurations.
The results were compared using the DSC in terms of segmentation perfor-

mance for GTV-T and GTV-Ln. Paired Students-t-tests were employed between
the network trained on all available input channels and the LOO-networks, to
assess statistical significance between them.
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5.6.5 computational resources

The computational resources necessary for the experiment CNN-Info were not
available within the local server structure. Therefore, Amazon Web Services
(AWS) was used for the computation, which provided Linux-based host comput-
ers equipped with Tesla T4 GPUs (instance name: g4dn.xlarge). Other instances
with more powerful GPUs could have been chosen, but the g4dn.xlarge was the
most cost efficient variant. Using this, up to 6 machines were run in parallel,
each training a different network.

For data protection, the transferred data was fully pseudonomized and
formatted in the nifti file format, with all header information removed. The
remote data storage was encrypted using AWS encryption technology with an
128 bit ssh key, with the private part only being available locally. The local data
protection officer approved the procedure.





6
S I M U LTA N E O U S A D C A N D T 2 M A P P I N G

Based on the results from chapter 5, diffusion ADC acquired with SE-EPI
sequence suffered from severe artifacts, and T2 is among the most important
clinical contrasts. Therefore, a sequence for simultaneous ADC and T2 mapping
was developed, called SATM. The main goal was to design the sequence
to overcome the image distortion and ghosting artifacts (5.3). Additionally,
increased acquisition speed as compared to separate ADC and T2 measurements
is desired, with the additional benefit of intrinsic co-registration for ADC and
T2 maps.

6.1 sequence design

The proposed new pulse sequence SATM is based on a multiecho spin echo
readout train with a radial k-space trajectory and interleaved diffusion sensiti-
zation blocks (6.1). A unique pair of TE and b-values is assigned to each echo
in the echo train, since each refocusing pulse increases TE by a set amount ∆TE,
and each diffusion block increases the b-value by ∆b. The echoes are then sorted
into their corresponding k-spaces, and the acquisition is repeated nSp times.
Additionally, the acquisition can be repeated with a different echospacing ∆TE
to further increase number of unique b-TE-pairs.

The radial spokes in k-space are acquired in a golden angle fashion [Win07],
such that no angle is sampled more than once, and any set of consecutive spokes
has a homogeneous azimuthal distribution. This method allows for sparse
sampling of k-space, as undersampling artifacts are incoherent throughout the
different b-TE images.

77
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Figure 6.1: Sequence diagram of the SATM sequence. The building block, marked by
the orange parenthesis, can be chosen with different numbers of readouts. Similarly,
the diffusion block can be shifted to a different position, e. g. before the first readout.
Figure adapted from [BLB21, fig. 1].

Crusher gradients are applied in slice selection direction to suppress FID
signal contribution due to imperfect slice selection gradients [BE84]. The
crusher gradient moment Mcr is given by

Mcr,1 = 0.5
(
1

2
Mss

)
Mcr,2-n = 1.5

(
1

2
Mss

)
,

(6.1)

where Mss is the moment of the slice selection gradient, Mcr,1 is the crusher
after the 90° excitation and Mcr,2−n are all following crusher gradients.

Diffusion sensitization is achieved by interleaving Stejskal-Tanner diffusion
blocks [ST65] with identical echo spacing ∆TE in the regular echo train. The
interleaved diffusion blocks violate the CPMG conditions (see section 2.2),
which can cause severe artifacts and signal voids in the resulting images [SH98].
To force all echoes to occur at the same time, in the center of each readout block,
a soft CPMG condition is formulated: The integral of the gradients in each part
of the diffusion block must be an integer multiple of the gradient integral of a
regular readout block:∫tD+∆TE

tD

G(⃗x, t)dt ≡ N

∫tR+∆TR

tR

G(⃗x, t)dt (6.2)
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where tD is the start time of a diffusion block and tR is the time of the beginning
of a readout block. N is an integer and G(⃗x, t) are the gradients. Note that the
gradient integrals of a readout block essentially consists only of the crusher
gradients, as the readout gradients are completely rewound.

To obtain the largest possible diffusion b-value within a limited amount of
time, all three spatial gradients are switched simultaneously. The resulting
diffusion gradient is then given by a combination of the three physical gradient
directions. Here, three new virtual gradient directions are constructed, which
form a new basis Σ′. Three conditions for the new basis were enforced:

1. Σ′ is orthogonal, and all basis vectors have the same length.

2. The z-component (through-slice component) is the same for all directions.

3. Given 1. and 2., the gradient amplitude is maximized.

Condition 1 ensures that a trace-weighted ADC can be calculated from three
separate measurements, as it is done in conventional DW-EPI. Condition 2

guarantees equal conditions for through slice off-resonance effects, independent
of the gradient direction. And last, condition 3 yields the largest possible b-
value. Given this set of conditions, the new basis can be written as

Σ′ =


x′ y′ z′

1 −0.73 −0.27

0.27 0.73 −1

0.73 0.73 0.73

 , Σ =


x y z

1 0 0

0 1 0

0 0 1

 (6.3)

where Σ is the canonical basis given by the physical gradient directions, and z

is the slice selection direction for non-oblique slices.
Since eddy currents can lead to severe artifacts in multi-echo spin echo

sequences, the rise time of the diffusion gradients was set to tD,rise = 1.5 ms,
resulting in a maximum slew rate of 46.4 T/m/s and a maximum gradient
amplitude of 69.6 mT/m. The limit of 1.5 ms was found empirically as it
showed minimal artifact but still allowed reasonable b-values. This slew rate
is well below the nominal limits of the system with a maximum gradient of
80 mT/m and a slew rate of 200 T/m/s. Additionally, a variable dead time was
introduced between the diffusion gradient and the next 180

◦ pulse to eliminate
rapidly decaying eddy currents.

To ensure good slice profiles, long excitation times of tEx=3–4 ms were chosen
for the experiments. Dedicated TSE pulse shapes were used to further improve
profile sharpness [Pau91].
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6.2 image and parameter map reconstruction

In this section, the reconstruction of images and parameter maps (S0, T2, ADC)
from the measured k-space data is described. Starting with the implementa-
tion of the NUFFT as the basis for all further calculations (section 6.2.1), two
alternative reconstruction algorithms are presented (sections 6.2.2 and 6.2.3).
Finally, sections 6.2.4–6.2.6 highlight the relevant data pre-processing steps for
the reconstruction.

6.2.1 non-uniform fast fourier transform

Generally, in the reconstruction a transformation from a radially sampled k-
space to a Cartesian image space is needed. Here, the transformation is realized
using a gridding kernel, which interpolates k-space samples to a Cartesian
grid given a set of measured k-space points at arbitrary but known locations.
The Cartesian k-space can then be transformed to image space using the well-
known Fast-Fourier transform. The implementation is based on code from
[Fes] and includes an efficient interpolation mechanism which is based on
Kaiser-Bessel interpolation kernels [Jac91; Fes07]. The whole interpolation is
pre-calculated once and stored in a sparse matrix, which can be used on any k-
space data on the same grid, thereby dramatically increasing calculation speed.
Similarly, the inverse transformation from Cartesian to radial space is performed
using the same toolbox. The Kaiser-Bessel window was 6×6 pixel and a 1.5
oversampling is used to increase the accuracy. An efficient Non-Uniform-Fast-
Fourier-Transform (NUFFT) is needed because the reconstruction generally
needs to perform hundreds, or even thousands, of independent transforms.
In a typical example, with 10 iterations until convergence, a 20-channel head
coil and an average of 3 iterations in the line search of the conjugate gradient
algorithm, 1600 transformations between image and k-space are performed for
a single slice. The typical calculation time for this example was around four
minutes for a single slice with a matrix resolution of 128×128.

6.2.2 model-based reconstruction

In this work a model-based reconstruction approach was implemented based
on the works by [BUF09] who developed a model-based iterative reconstruction
algorithm for T2 mapping. Here, the measurement process is expressed in a
model function F⃗, which includes coil sensitivities Cc, the NUFFT A(·) and a
signal contribution which is defined by a physical model. The reconstruction
then minimizes a loss function Φ, as described in section 2.3.2.
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Here, the pixelwise signal model was extended to incorporate the attenuation
due to diffusion and an additional, inconsistent phase Θ which can arise in
diffusion imaging (section 3.2.3):

S(t) = S0e
−b(t)D−tE(t)R2+iΘ(t) . (6.4)

R2(x,y) = 1/T2(x,y) is the relaxivity, D(x,y) is the diffusion coefficient for each
voxel, and Θ(x,y) the image phase for each b-TE-pair. The new loss function Φ

then reads:

Φ =
1

2

∑
t

∑
c

∥⃗F (⃗x, t, c) − y⃗(t, c)∥2 + λ∥W
(
F⃗(⃗x, t, c)

)
∥1 (6.5)

with

F⃗ (⃗x, t, c) = A
(
Cc (⃗x)S0 (⃗x) e

−b(t)D(x⃗)−tE(t)R2(x⃗)+iΘ(x⃗,t)
)

(6.6)

Here, y⃗(t, c) are the measured k-space data for echo times t and coil Cc and
W(·) is the regularization transform with λ being a free parameter to balance
the contribution of regularization. A(·) is the NUFFT operation and Cc(⃗x) are
the complex coil sensitivity maps. For regularization, either total variation or
wavelet transformation are used. Both regularization reliably methods suppress
noise. Here, the wavelet regularization term was preferred to the TV term,
based on empirical results.

The cost function Φ (equation (6.5)) was iteratively minimized using a con-
jugate gradient (CG) algorithm [HZ05] which was implemented in MATLAB.
Therefore, the gradients with respect to S0, D, R2 and Θ were calculated as
follows:

∇S0
Φ(ρ⃗, x⃗) =

∑
t

∑
c

Re
[
e−b(t)D−tE(t)R2+iΘ(t)C∗

c

(
A†
(
F⃗(⃗x, t, c)

))]
∇DΦ(ρ⃗, x⃗) =

∑
t

∑
c

Re
[
−b(t)S∗0(⃗x, t)C∗

c

(
A†
(
F⃗(⃗x, t, c)

))]
∇R2

Φ(ρ⃗, x⃗) =
∑
t

∑
c

Re
[
−tE(t)S

∗
0(⃗x, t)C∗

c

(
A†
(
F⃗(⃗x, t, c)

))]
∇Θ(tj)Φ(ρ⃗, x⃗) =

∑
c

Re
[
−iS∗0(⃗x, tj)C∗

c

(
A†
(
F⃗(⃗x, t, c)

))]
(6.7)

Here, A† is the back transformation from Cartesian image space to radial
k-space, (·)∗ denotes the complex conjugate, and Re[·] is the real part of the
argument. A comprehensive derivation of the formulas (6.7) can be found in
[BUF09]. Not shown in equations (6.7) are the additional gradients given by
the regularization term in equation (6.5), which are added to each component
of (S0,D,R2,Θ(t1), · · · ,Θ(tn)).
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The direction of the gradients is dependent on the input data scaling: In
equation (6.7)), only the gradient with respect to S0 does not scale with S0,
such that an absolute scaling of the signals increases the gradients with respect
to D and R2, but not S0. Additionally, the parameter maps D and R2 scale with
−b(t) and −tE(t), respectively. Hence, k-space was chosen to be normalized to
1, and the b and tE values were normalized to a maximum value of 0.08:

bNorm(t) = 0.08 · b(t)

max (b(t))

tE,Norm(t) = 0.08 · tE(t)

max (tE(t))

(6.8)

These values have been chosen empirically, as they yielded stable convergence
for simulated as well as measured data.

During iterations of the CG algorithm, divergence of the phase maps Θ

was noticed due to diverging gradients. Therefore, the gradient with respect
to Θ (equation (6.7)) was artificially suppressed by a factor of 0.05, while
leaving the regularization part of this gradient unchanged, which ensured
stable convergence and yielded the physically expected smooth phase maps.

6.2.3 model-interleaved reconstruction

As an alternative to the model-based reconstruction, a model-interleaved
scheme was developed [BLB21]. This reconstruction method assumes only
the imaging process as a model and reconstructs each image using a conven-
tional compressed sensing algorithm [BUF07]. In contrast to the model-based
approach, the function F⃗(⃗x, t, c) is simplified:

F⃗ (⃗x, t, c) = A
(
Cc (⃗x) I⃗(⃗x, t, c)

)
, (6.9)

where I⃗(⃗x) is treated as an independent image for each echo time TE. The loss
function is given by

Φ =
1

2

∑
t

∑
c

∥⃗F (⃗x, t, c) − y⃗(t, c)∥2 + λ∥W
(
F⃗(⃗x, t, c)

)
∥1 (6.10)

and is iteratively minimized using a conjugate gradient algorithm as before.
However, after each iteration in the reconstruction, the model is incorporated
by fitting ADC and T2 to I⃗. From the fitted parameter maps, synthetic images
I⃗′ for each echo time are calculated, matched with the phase of the current
iteration of I⃗. I⃗′ is then used as the new current estimate for the next iteration,
until the algorithm converges.
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a) b) c)

TE1
TE2

Figure 6.2: K-space trajectories for two TE with 8 spokes each. In a), all spokes are
shown. Due to the golden angle sampling, k-space is sampled homogeneously. b)
and c) show the trajectories for TE1 and TE2, respectively, with their corresponding
Voronoi diagrams. The areas in the diagram are the inverse density weighting factors.

6.2.4 density compensation

Density compensation is an important processing step of the NUFFT [PM99]:
Kaiser-Bessel gridding generally sums signal contributions from different mea-
sured points with varying amplitudes which depend on their distance to the
sampled point. This sum is independent of the number of measured points
which were included, and therefore, a sampling point with a high density
of measured points will yield higher values than others. Therefore, signal
intensities are weighted with a local sampling density to counter this effect.

There are several ways of calculating a density compensation: in radial imag-
ing with equidistant angles between spokes, the sampling density decreases
linearly with the radius. This function is a good estimation for golden angle
radial sampling only if the number of acquired spokes is high enough to av-
erage out the variable angles. Here, the density compensation is calculated
by calculating a Voronoi diagram based on the actual k-space trajectory. The
trajectory for two consecutive TEs is shown in figure 6.2 a). In b) and c), the cor-
responding Voronoi diagrams are shown. The resulting density compensation
for each point is given by the inverse of the area and is capped at 1 to prevent
overcompensation and edge effects, where the Voronoi diagram has open ends.

6.2.5 echo selection for reconstruction

For the reconstruction, some data should be discarded: To prevent steady state
effects in the signal when multiple spokes are acquired, a long repetition time
TR is chosen. This choice allows to acquire very long echo trains, with echo
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times exceeding 300 ms. However, with increasing diffusion weighting and echo
times, the signal contribution exponentially decreases and noise dominates the
acquired data. Therefore, echoes with a b-value > 800 s/mm2 and TE > 200 ms
were excluded, as they systematically deviate from the imposed model. This
restriction leaves a large dead time between multiple excitations, which can be
used to acquire additional slices.

6.2.6 coil sensitivity maps

The coil sensitivity maps were calculated from the raw k-space data using
eSPIRIT [Uec14] as implemented in the BART toolbox [Uec21]. To improve ac-
curacy of the sensitivity maps, raw data from different b-TE-pairs are combined.
This combination can lead to image artifacts, but substantially improves k-space
coverage. Since sensitivity maps are inherently low in resolution, possible
frequency artifacts can be tolerated in exchange for better overall quality.

6.2.7 gradient delay correction

Radial acquisition can be sensitive to gradient delay errors, as it leads to a
blurring in k-space center, rather than a shift in multiecho Cartesian sampling
[Duy98; PDM03; Mou14]. In this work, gradient delays in the k-space trajectory
were corrected using the RING method [RHU19] as implemented in the BART
toolbox as a pre-processing step.

The RING method estimates time offsets τ for each physical gradient axis
based on the measured data. Therefore, it computes the position of the maxi-
mum in each spoke of the nominal trajectory. With small gradient delays, these
maxima are shifted related to the expected position k = 0. RING then fits an
ellipse to the calculated maximum positions, which yields a good estimator
for the actual delays τ for each axis. Using the gradient delays, a corrected
trajectory can be calculated which is used in the reconstruction.

6.3 simulation

Simulations were performed to validate various aspects of the sequence design.
Bloch simulations were used to analyze the echo formation and exclude artifacts
from stimulated echoes. Simulations based on two different analytical phantoms
were conducted to test and optimize the reconstruction: a Shepp-Logan type of
phantom [SL74] to test geometric and numeric accuracy, and a simple structured
phantom to search for limiting cases of T2-ADC combinations.
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Figure 6.3: Normalized Shepp-Logan phantom used in the Bloch simulations.

6.3.1 bloch simulation

A Shepp-Logan phantom (figure 6.3) was prepared with 360 isochromats in
each pixel, a matrix size of 64×64 and a constant T1 = 700 ms and T2 = 90 ms in
all pixels . An echo spacing of 12 ms was assumed, and 8 consecutive echoes
were simulated, with diffusion blocks before the 1

st, 4
th and 7

th.
Two separate simulations were performed: In the first simulation, dephasing

by the diffusion gradients was set to 5 times the dephasing of the crusher
gradients. The second simulation used maximal diffusion gradients, which are
a factor of 5.2593 greater than the crusher gradient moment and therefore the
CPMG condition is violated. Additionally, an imperfect refocusing pulse with
a flip angle of 160° was assumed determine the influence of the imperfect slice
profiles.

The pulse sequence was described by a set of vector operations which ac-
count for signal relaxation (T1 and T2), signal dephasing, including optional
offresonance, and the signal response to RF-pulses. The signal at a given time t

can then be calculated by repeated application of the matrices, given an initial
signal M(0):

M⃗(t) = (R ·D · P)n · M⃗(0) (6.11)

where R, D and P are the matrix formulations for relaxation, dephasing and
pulse response derived from the Bloch equations, and n is the echo train length.
For one isochromat R, D and P, are given by

R =


e−t/T2 0 0 0

0 e−t/T2 0 0

0 0 e−t/T1 1− e−t/T1

0 0 0 1
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D =


Re(e−iϕ) 0 0 0

0 Im(e−iϕ) 0 0

0 0 1 0

0 0 0 1



P =


cos(α) sin2(φ) + cos2(φ) sin2(α2 ) sin(2φ) − sin(α) sin(φ) 0

sin2(α2 ) sin(2φ) cos(α) cos2(φ) + sin2(φ) cos(φ) sin(α) 0

sin(α) sin(φ) − cos(φ) sin(α) cos(α) 0

0 0 0 1


(6.12)

and the magnetization vector of the isochromat is expressed as

M⃗ =


Mx

My

Mz

Meq

 , (6.13)

with Meq being the equilibrium magnetization given by the Shepp-Logan
phantom. The angle ϕ is the dephasing due to the gradient moments, φ is the
offset angle of the pulse (π/2 for the 180° pulses and 0 for the 90° pulse), and α

is the flip angle. The MATLAB implementation can be found in chapter 11.2,
listing 11.3 in the appendix, and for a similar derivation also see [Rau11]. No
dephasing due to molecular diffusion is included in the simulation (D = 0).
However, since diffusion is a purely statistical signal attenuation which cannot
be rephased, it can be omitted in the simulations without an effect on the
echo formation. Still, the diffusion gradients were included in the simulation
to account for the additional signal dephasing. To separate the the expected
artifact from radial sampling artifacts, a Cartesian readout trajectory and a fully
sampled k-space were used in the simulation.

6.3.2 analytical phantom reconstruction

The reconstruction algorithm was tested on numerical phantom data, which
was calculated analytically in k-space [KSÖ07]. Raw data was then sampled
according to the sequence parameters and the k-space trajectory was taken
directly from Pulseq after sequence construction. The phantom is defined by a
number of ellipses where position and signal amplitudes can be chosen freely.
Distinct pairs of ADC and T2 values were assigned to each ellipse. The absolute
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parameter phantom a) phantom b)

∆TE [11, 11.5, 12] ms [11, 11.5, 12] ms

#Readouts (Echoes) 15 15

#b-TE-Pairs 45 45

Diffusion block before echo 4, 7, 10, 13 1, 6, 11

Min./Max TE [11 / 288] ms [11 / 252] ms

Min./Max b-value [0 / 831] s/mm2 [132 / 581] s/mm2

Table 6.1: Sequence parameters used for the two phantom experiments.

signal amplitudes were calculated according the signal model in equation (6.4)
for each echo of the simulated sequence. No additional phase Θ was applied to
the phantom. Two different phantom models, shown in figure 6.4, were used to
test the reconstruction.

The first model (phantom a)) is similar to the original Shepp-Logan phantom
[SL74] to represent realistic anatomical features. There is a large overlap
between the two ellipses on the top left with additive mixing signals. To
conform to the monoexponential decay for both T2 and ADC, the overlapping
areas were defined using identical T2 and ADC. Hence, the resulting signal is
given by

S = S0,1e
−bD1−TE/T2,1 + S0,2e

−bD2−TE/T2,2

= (S0,1 + S0,2)e
−bD−TE/T2

with D1 = D2 = D, T2,1 = T2,2 = T2

(6.14)

and thus only the amplitude S0 is different. There are two more overlapping
regions which incorporate mixed T2 and ADC values and were kept to test
reconstruction performance in areas which do not strictly follow a monoex-
ponential model function. This simulates the case of voxels with two major
compartments, e. g. on the border between two tissue types.

The second model (phantom b)) consists of a 9×9 grid of circles with com-
binations of ADC values from 0.2 to 2 · 10

-3 mm2/s and T2 values from 0 to
200 ms. T2 increases in left-right direction and ADC increases in top-bottom
direction. This model was used to test the reconstruction accuracy for a larger
number of different combinations of ADC and T2 values.

The simulation was run for the set of parameters presented in table 6.1.
Results were compared against the analytical ground truth, qualitatively in the
form of difference images and quantitatively by a region-based analysis.
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Figure 6.4: Two numerical phantoms used to quantify the SATM reconstruction perfor-
mance. a) is a Shepp-Logan type of phantom with adjusted signal intensities. The grid
in b) is used to sample many different combinations of ADC and T2.

6.4 measurements

The SATM sequence was implemented as described above for a clinical 3T MRI
system (PRISMA, Siemens, Erlangen, Germany) using the sequence prototyping
environment Pulseq [Lay17; BLB21]. It was tested using two different phantoms,
shown in figure 6.5, and, after parameter optimization, also in vivo.

The first phantom (measurement phantom a)) is a diffusion phantom consist-
ing of 4 compartments: Three 50 ml tubes filled with a gel that were embedded
in a gel-filled bag. The phantom was originally designed for a human breast
cancer study and adopted for testing of the sequence.

Measurement phantom b) was designed in association with [Rac21] to test
the sequence in different combinations of T2 and ADC values. It consists of
12 separate tubes of 15 ml each, which are placed in a holder and submerged
in a water tank during measurements. The tubes are filled with different
concentrations of polyethylenglycol (PEG) and a Gd-based MRI contrast agent
(Gadovist, Bayer Vital GmbH, Germany) to independently vary T2 and ADC in
the tubes [Gat14]. ADC and T2 values of the tubes are listed in table 6.2.

Finally, measurements were performed of the brain of a healthy volunteer.
In this early stage of sequence development, the human brain is an optimal
target structure for sequence testing. In the head, minimal motion is expected
(no breathing motion, tongue motion, heartbeat, etc.), but good ADC and T2

contrasts are available between gray and white matter and CSF. The robustness
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Figure 6.5: Measurement phantoms a), adapted from a human breast diffusion study.
Note, that at the time of the measurements only 3 tubes were present in the phantom, a
4

th tube was added later. Measurement phantom b) systematically varies T2 and ADC
using PEG and a Gd-based contrast agent (photo reproduced from [Rac21, p. 7, fig. 2]).

tube T2 [ms] ADC [mm2/s]

1 45± 10 0.60± 0.09

2 55± 7 2.06± 0.15

3 66± 6 1.43± 0.15

4 61± 7 0.65± 0.04

5 89± 8 2.10± 0.10

6 110± 9 0.66± 0.04

7 131± 9 1.47± 0.07

8 127± 10 0.86± 0.08

9 156± 14 0.64± 0.10

10 209± 18 2.04± 0.03

11 226± 19 0.87± 0.07

12 264± 20 1.46± 0.06

Table 6.2: Reference values for the measurements phantom b), taken from [Rac21].
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to distortion artifact can be tested in areas close to the paranasal sinuses which
can cause strong susceptibility artifacts in conventional DW-EPI measurements.

For both phantoms and in vivo, T2 and ADC reference measurements were
performed in combination with the proposed sequence, which allowed a pixel-
wise and a region based comparison of the reconstructed maps. The reference
T2 map was acquired using a FSE with up to 32 echoes and TEs between
13-442 ms. The ADC map was acquired using a conventional DW-EPI with
b-values of [50, 400, 800] s/mm2. Matrix size, FOV and slice thickness were
kept identical between reference and new sequence. For the volunteer experi-
ment, an additional high-resolution T2-weighted FSE image was acquired for
anatomical reference, with the same FOV but different matrix size.
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AU T O M AT E D T U M O R S E G M E N TAT I O N

7.1 single shot epi vs . readout segmented epi

The FMISO trial MRI protocol included both, ssEPI and rsEPI diffusion se-
quences. Data from a ssEPI sequence was analyzed with respect to the apparent
Nyquist ghost artifact. Figure 7.1 shows two slices from the same acquisition,
one with a 4-fold ghost artifact, and the other without. The plots show the
corresponding three navigator lines which are acquired before each EPI readout.
For the case without any apparent ghost artifact, the navigators show a single
peak, while the corrupted slice shows a series of multiple peaks that are hard to
differentiate. The failing echo correction can then lead to the ghosting artifact
as described in section 3.2.2.

kx [a.u.]kx [a.u.]

Si
gn

al
 [a

.u
.] Nav 1

Nav 2
Nav 3

Figure 7.1: Upper row: Two slices of a DW-ssEPI sequence (b = 50 s/mm2). The left
slice shows the lower part of the neck, and a 4-fold Nyquist ghost artifact is visible.
The fat signal is clearly visible despite a spectral selective fat saturation pulse. The
right image from the same measurement shows a more cranial slice. No Nyquist ghost
artifact is visible. The bottom row shows the corresponding navigator lines, which are
acquired with each image for echo correction.
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Figure 7.2: Comparison of ADC values for ssEPI and rsEPI in tumor (GTV-T) and
lymph node metastases (GTV-Ln). The dashed gray line is the line of identity.

The clinical trial shows that rsEPI is generally less corrupted by the Nyquist
ghost artifact than ssEPI: Out of 76 measurements with rsEPI, 61 (80%) were
found without artifact, and 8 (10%) showed severe artifact throughout the image,
such that they could not be used clinically. The remaining 7 images showed
some artifacts, but could still be used because the artifacts did not obscure the
clinically relevant areas. For ssEPI, only 7 (10%) out of 67 measurements showed
good quality without the artifact, while 44 (66%) were clinically unacceptable.

The two sequences were then compared in terms of ADC values in tumor
and lymph node tissue, as defined by the ground truth regions GTV-T and
GTV-Ln drawn by clinical experts on the superposition of all available MR
images. In the tumor, rsEPI yielded significantly higher ADC values than
ssEPI, with an average difference of 420± 316µm2/s. Similarly, for lymph
node metastases, the difference was 303± 265µm2/s. Figure 7.2 shows the
differences for each patient in a scatter plot, revealing the systematic nature of
the differences between the two sequences. A linear regression yields

ADCss,T = 0.73ADCrs,T − 85.48µm2/s

ADCss,Ln = 0.82ADCrs,Ln − 102.76µm2/s
(7.1)

for tumor and lymph node metastases, respectively.

7.2 b0 field homogenization

Field map measurements on two volunteers were acquired to quantitatively
and qualitatively assess B0 field distributions in the head and neck area. The
effect of an additional pillow for field homogenization was analyzed. Figure 7.3
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Figure 7.3: 3D rendering of the B0 field distribution in the head and neck area of a
volunteer. Measurements with and without a susceptibility matching pillow are shown
from two different perspectives (rows). a) without pillow. b) with pillow. c) same as b)
but with the pillow included in the rendering. For the data of a second volunteer, refer
to figure 11.1 in the appendix.

shows a ∆B0-map for a volunteer with and without an additional susceptibility-
matching pillow. A large B0 difference of 850 Hz is visible in the head-foot
direction (figure 7.3 a), which was reduced to 350 Hz when the pillow was
included (figures 7.3 b), c) and 7.4 a)).

Additionally, the B0 homogeneity within each slice was significantly im-
proved. The mean µ(∆B0) and standard deviation σ(∆B0) were used to quan-
tify the homogeneity within the imaging volume, and were calculated only
within the body. Without the pillow, the mean of σ(∆B0) across all 30 slices
was σ (∆B0) = 220Hz. When the pillow was added, this value decreased to
σ (∆B0) = 141Hz, improving homogeneity by 36%.

Next, the setup was adapted to account for the thermoplastic fixation mask
and the patients sensibility to any additional load on the neck area, by replacing
the U-shaped pillow with two separate water bags placed on each side of the
neck. Fieldmap measurements in a volunteer showed a similar effect using two
water bags placed on each side of the head. Figure 7.5 shows representative
slices from the measurement. The B0 variation in head-foot direction is now
decreased by 38% from 362 Hz to 261 Hz. Similarly, the B0 variation within
each slice was reduced by 17% (see figure 7.4 b)).

For the patient study the amount of the Nyquist ghost artifact present in the
images was evaluated. A total of 47/54 image volumes without water bags and
20/22 with water bags were included for ssEPI/rsEPI respectively. The results
are presented in table 7.1 and show a clear reduction of artifact given the new
setup. With an increase of 21%, an overall very good image quality for 95%
of the cases could be reached with rsEPI. For ssEPI, the number of clinically
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Figure 7.4: Mean µ(∆B0) (points) and standard deviation σ(∆B0) (error bars) for two
experiments in two volunteers. µ(∆B0) and σ(∆B0) were measured with and without
a U-shaped pillow on top of the neck in a). b) shows data from a different volunteer,
who was imaged with two water bags to each side of the neck, in the same setup as
patients in the FMISO trial.
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Figure 7.5: Field map measurements in the volunteer experiment. The first row shows
magnitude images of the gradient echo fieldmap sequence, for reference. The second
and third rows show the ∆B0-maps which were acquired with and without the water
bags to each side of the head. The last row shows the difference image of the two cases.
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ssepi rsepi

grade w/o water

bag

w/ water

bag

w/o water

bag

w/ water

bag

0 40 (85%) 4 (20%) 8 (15%) 0 (0%)

1 5 (11%) 11 (55%) 6 (11%) 1 (5%)

2 2 (4%) 5 (25%) 40 (74%) 21 (95%)

Total 47 20 54 22

Table 7.1: Analysis of the Nyquist ghost artifact frequency in the FMISO trial in the
original setup (w/o water bag) and the new setup (w/ water bag).

unusable images could be reduced from 85% to 20%, while still only 25% of
the images were free of artifact. In terms of usability, the new setup was not
perceived as uncomfortable by the patients, and the arrangement of the water
bags was fast, not significantly increasing the overall examination time in the
MRI for the patients.

7.3 distortion correction

7.3.1 retrospective distortion correction

To test the distortion correction algorithm, fieldmaps data were acquired in a
volunteer experiment in the head and neck area (figure 7.6) [Bie19b]. Anatomi-
cally precise T2 weighted FSE data is shown in green, while the purple overlay
shows DW-EPI data (b = 50 s/mm2). Further, the respective correction fields
are shown in figure 7.6 a), which are calculated either from the measured
fieldmap (left) or from the proposed correction algorithm by comparison of
T2-w and EPI images. Generally, the measured fieldmap is considered ground
truth. The computed map from the correction algorithm reproduces the ground
truth map well, with an Euclidean image distance D2

D2 =
1

N

N∑
x=1

(
I1(x)

2 − I2(x)
2
)

between the two maps I1(x) and I2(x) of 5.4 px2. Here, x are all pixels inside the
neck area. For some patients, the B0 offresonance leads to a field gradient above
1 pixel shift per image pixel, that retrospective correction becomes impossible.
This happens especially at tissue-air boundaries, as seen in figure 7.6 a) around
the trachea. Here, both distortion correction algorithms fail. Since the artifact
affected distorted and undistorted images similarly, no difference due to the
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Figure 7.6: a) T2-weighted (green) and DW-EPI (magenta) images as an overlay. Left:
the the original DW-EPI, middle: the distortion corrected DW-EPI using the measured
field map (bottom row, left). Right: the distortion corrected DW-EPI using the new
algorithm, with the corresponding correction map in the bottom row (right). b) shows
the histogram of all pixels of correction maps across all patients, with a mean and
standard deviation of 0.46± 4.24 pixels. Figure adapted from [Bie19b, fig. 1].

correction are expected in the comparison of segmentation performance. Severe
misalignments in the uncorrected data are seen (white arrows), which are
corrected using either correction method.

The validated algorithm was then applied to all available DWI data. Fig-
ure 7.6 b) shows the relative amount of distortion across all patients in a
histogram, as calculated from the distortion correction maps. The mean and
standard deviation are 0.46± 4.24 pixels. The standard deviation of > 4 pixels
confirms the presence of strong distortion across the whole dataset.

7.3.2 segmentation results

In this experiment, 28 complete CNNs were trained from scratch as described
in section 5.5.5. The training showed a progression up until the 20

th epoch,
when the validation curve flattens out (see figure 5.12). During training, the
validation data of the distortion corrected CNN yields higher sensitivity than
the uncorrected CNN. Figure 7.6 shows the segmentation result (red) for a
patient trained on data with and without distortion correction. The DSCs were
0.59 and 0.40 respectively. Both segmentations correctly located the tumor,
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a) b)

d)c)

Figure 7.7: 3D visualization of a tumor segmentation. The green regions are the ground
truth segmentations and red regions are predicted by the CNN. a) and b) show the
results from a CNN trained on distortion corrected DWI, and c) and d) are based on
uncorrected DWI. Reproduced from [Bie19b, fig. 3].

but the distortion corrected segmentation shows significantly higher overlap
between the predicted and the ground truth segmentation. Additionally, both
CNNs segmented smaller regions far from the ground truth as seen in the 3D
visualization, which could easily be identified as false positives by a trained
viewer.

Across all test patients, the segmentation performance reached DSCs of up
to 0.68/0.65 for the corrected/uncorrected sets respectively. On average, the
segmentation performance were 0.40± 0.18 and 0.37± 0.21 respectively, but
the improvement of using distortion corrected ADC for training could not
be shown to a statistical significant degree (p = 0.313). Figure 7.8 shows the
reported results in terms of the DSC for all test patients in a scatter plot.
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Figure 7.8: Results from the 14-fold leave-one-out test strategy. Most segmentations are
close to the line of identity (solid gray line), while for 3 cases the distortion corrected
segmentation performed significantly better. Reproduced from [Bie19b, fig. 4].
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Figure 7.9: Box plot of the reference CNN for all 36 test patients for tumor (GTV-T) and
lymph node metastases (GTV-Ln). Figure reproduced from [Bie20b, fig. 2].

7.4 channel-wise importance analysis

This experiment analyzes the relative information content of each of the 7 input
channels (T1-w, T2-w, T1-w contrast enhanced (CE), Ktrans, ve, ADC and T*

2) on
the performance of a CNN trained to segment GTV-T and GTV-Ln [Bie19a;
Bie20b]. The general performance of a network trained on all available channels
(reference CNN) is shown in figure 7.9. The best segmentations score 65% / 58%
DSC in GTV-T and GTV-Ln, respectively.

Half of the test patients score lower than 30%/20% DSC respectively for
GTV-T/GTV-Ln. Figure 7.10 indicates a correlation between tumor size and
segmentation performance, with lower performances for smaller lesions. Hence,
the large number of low-scoring test patients is possibly linked to very small
lesions. This effect is more pronounced in the tumor, possibly because primary
tumors are typically singular lesions, whereas lymph node metastases can
include multiple smaller regions which together form a larger volume.
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Figure 7.10: Comparison of tumor size and segmentation performance. Very low
segmentation performances are restricted to small tumor sizes. Figure reproduced
from [Bie20b, fig. 3].
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Figure 7.11: Segmentation results from all 288 CNNs. The x-axis always shows the
results from the reference CNN, while the y-axis shows the LOO-CNN indicated below.
Paired Students t-tests were performed on the results. Significantly differing (p < 0.05)
distributions are marked by an asterisk. Figure reproduced from [Bie20b, fig. 4].

Next, the relative performance of the networks with single channels left out
is compared. Figure 7.11 shows the segmentation results of all 288 trained
networks as a scatter plot against the performance of the reference network. The
performance of the networks varies between 0% and 65% DSC for all cases. On
average, the reference CNN scored higher in each case, as shown in figure 7.12.
However, a paired Students-t-test yielded significant deviations (p < 0.05) only
for segmentation performance between reference CNN and T1-w CE in GTV-
T, ve in GTV-T and T*

2 in GTV-T and GTV-Ln (these cases are marked with
an asterisk). The overall largest influence on the segmentation performance
was found for the T*

2 contrast, with a mean difference in DSC of 0.06 in
both GTV-T and GTV-Ln segmentation. An example of the segmentations
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Figure 7.12: Mean segmentation differences between LOO-CNNs and reference CNN.
All LOO-CNNs show reduced performance as compared to the reference, but only
T1w CE, ve and T*

2 channels yield statistically significant results. Figure reproduced
from [Bie20b, fig. 5].

of the reference CNN and the T*
2-LOO-CNN is shown in figure 7.13. The

CNN segmentations are marked in blue and orange for GTV-T and GTV-Ln
respectively, while the ground truth is shown as a green line. Although in
both cases generally too much tissue is segmented, the T*

2-LOO-CNN shows far
greater oversegmentation even in implausible areas like the tip of the tongue.
This type of error is observed throughout the test patients, which leads to the
decrease in DSC, whereas undersegmentation is much less observed.



7.4 channel-wise importance analysis 103

All channels T2
*

Figure 7.13: Segmentation examples for the reference CNN (left) and the T*
2-LOO-CNN

(right). Figure reproduced from [Bie20b, fig. 6].
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S I M U LTA N E O U S A D C A N D T 2 M A P P I N G

8.1 simulation

The SATM sequence and the reconstruction algorithm described in chapter 6

were validated in Bloch simulations and were tested on analytical phantom data.
Here, the simulation results are presented and the reconstruction performance
is evaluated for two different phantoms.

8.1.1 bloch simulation

Initially, the SATM sequence utilized the maximum gradient strength (Gmax =

80mT/m) for diffusion sensitization to realize high b-values in minimal time.
By violating the second CMPG condition [BKZ04, p. 786], this can lead to
stimulated echoes after the second diffusion block which can refocus at times
different from the primary spin echoes during readout. Consequently, severe
image artifacts can arise, such as ghosting or poor SNR. Bipolar diffusion
gradients could circumvent this problem, as their net phase accumulation
within one TR vanishes. Unfortunately, at ∆TE< 15 ms, bipolar diffusion
gradients cannot reach sufficient b-values for diffusion imaging with Gmax.
Introducing the soft CMPG condition (equation (6.2)), all stimulated echoes
are refocused at the same time as the main echo pathway. A phase graph
simulation shows the echo formation for violated and soft CPMG condition
(figure 8.1).

Bloch simulations were conducted on the sequence, with and without the
soft CPMG condition. The simulation included 8 echoes with diffusion blocks
after excitation and after echoes 3 and 7. T1 and T2 assumed to be constant
700/90 ms for the whole phantom, and the ∆TE set to 12 ms. Figure 8.2 shows
the results of the simulations.

The Bloch simulation shows high frequency signal variation artifacts in phase
encoding direction (here: left-right direction). If the soft CMPG condition is

105
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Figure 8.1: Phase graph for the first 10 ∆TE of the SATM sequence. The red boxes
mark the diffusion sensitization. a) shows an example with arbitrarily set diffusion
gradient strengths: After the second diffusion block, different echo paths refocus at
different times during the readout blocks, leading to image corruption. b) shows an
example with a diffusion gradient which is a multiple integer of the dephasing due
to the crusher gradients: Here, all echoes always refocus exactly in the center of each
echo block.
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Figure 8.2: Results of the Bloch simulation. In a) the moment of the diffusion blocks
was five times the moment of the crusher gradients. In b), the moment was slightly
higher, with a factor of 5.2593 the crusher moment, simulating the maximal gradient
amplitude of the PRISMA MRI system. c) shows the difference between a) and b).

met, the artifact is faintly visible in echoes 7 and 8, the remaining echoes are
artifact free. When the CPMG condition is violated, pronounced artifacts can
be seen from echo 4 onward. The difference images show a systematic signal
variation of up to 5%.

8.1.2 analytical phantom reconstruction

Numerical phantom data were simulated as described in section 6.3.2. In a first
numerical experiment [BLB21], a phantom a) was reconstructed from k-space
data with varying numbers of spokes between 1 and 50. The reconstruction was
performed according to the interleaved model within 10 iterations. Figure 8.3
shows the ground truth (top left) and the corresponding reconstructions. With
11 or more spokes, no apparent artifact can be seen in the reconstruction
anymore. Reconstruction with less than 11 spokes could lead to excessive noise,
streaking artifacts, strong edge enhancement effects leading to a complete signal
loss at 2 or 1 spokes. The experiment was repeated with complex Gaussian
noise added to the k-space data. The noise amplitude was chosen such that a
fully sampled, Cartesian trajectory image with otherwise identical parameters
could be reconstructed to an image with an SNR of 50 in the top left large
ellipse. This noise amplitude was then used for all reconstructions on different
numbers of spokes. In this way, the results are comparable in terms of noise
robustness, since in an imaging experiment the noise on each spoke is also
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expected to be independent on the total number of acquired spokes. The right
side of figure 8.3 shows the reconstruction results for the SNR = 50 case, with a
similar general behavior as the noiseless case.

A region-based analysis of the mean and standard deviation of the signal
was performed in the top left large ellipse in figure 8.3. The analysis included
an additional reconstruction with a SNR of 25 (figure 8.4). In the noiseless
case (SNR= ∞, images with less than 0.85% deviation from the ADC and T2

ground truth can be achieved with 11 spokes or more. The ADC error increases
to 2.8%/12.6% for SNR 50/25, and 1.9%/2.2% for T2. From the standard
deviation in the region of interest, the lower limit for ADC is given at [0.10,
0.27, 0.40] 10

-3mm2/s for SNR of [∞, 50, 25]. For T2, the lower limit is [5.2, 18.9,
56.0] ms respectively.

To compare the performance of the two different reconstruction algorithms,
the numerical phantom b) presented in 6.4 was used. K-space data were sim-
ulated for a sequence with 30 spokes per unique b-TE-pair, resulting in 1350

spokes. The reconstruction results as well as the ground truth are shown in
figure 8.5. Generally, the T2 estimation yielded more accurate results than the
ADC estimation across all possible combinations of T2 and ADC, with mean
relative errors of 12% for T2 and 50% for ADC in the interleaved reconstruc-
tion model. Moreover, the interleaved reconstruction model resulted in more
accurate results for most combinations of ADC/T2 for both, T2 and ADC, com-
pared to the iterative model (figure 8.5), where the mean relative errors were
229%/60% for T2/ADC respectively. In the S0 images, the iterative model recon-
struction shows a distinct checkerboard like artifact. This artifact is not present
in the interleaved model, although some Gibbs ringing can be observed. Both
reconstruction models fail to correctly reconstruct parts with T2=25 ms (first
column). The precision of the reconstructed ADC values varies with the un-
derlying T2, reaching an average error of less than 1.20·10

−4 / 1.72·10
−4 mm2/s

for T2 values >100 ms for the interleaved and iterative reconstruction models
respectively.

8.2 measurements

First, phantom measurements were performed in a diffusion phantom with
4 different compartments [BLB21]. The reconstruction was performed using
the interleaved model with TV regularization. Reference maps were acquired
and compared to the parameter maps obtained with the SATM sequence.
Figure 8.6 shows the resulting images and the difference maps. The last row
of figure 8.6 shows the 9

th echo of the reference FSE sequence, at TE= 142 ms.
The phantom image was acquired with the sequence using 30 spokes per TE,
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Figure 8.4: Region-based analysis of the reconstruction performance with varying
spokes and noise levels in the top left ellipse in figure 8.3. Figure reproduced from
[BLB21, fig. 4].
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Figure 8.6: Phantom experiment with the new sequence. The phantom consists of 3

vials which are placed in a gel pack. Reference images are taken with a multiecho spin
echo sequence and a DW-ssEPI sequence. Figure adapted from [BLB21, fig. 5].

and a ∆TE of [11, 11.5, 12] ms. Two reconstructions are shown, one with the
full data and another reconstructed on only 11 spokes per TE. Comparison of
the reconstruction with the reference FSE, no geometric distortion can be seen.
However, no T2 related blurring can be seen, as in the reference sequence in
phase encoding direction (top-bottom direction). Compared to the reference
ADC, an immediate improvement in geometric accuracy is observable. The
reconstruction on 11 spokes shows distinctively more noise in the ADC and T2

maps, but the reconstruction still yields acceptable results.
Figure 8.7 shows the results of the region-based analysis, with the location of

the ROIs marked in figure 8.6. Generally, the ADC values show a systematic
difference of up to -0.26·10

-3 mm2/s for ADC values < 1·10
-3 mm2/s (i. e., 25%).

The signal variation is largest for ROI 4, which is outside the tubes, with an
ADC of 2·10

-3 mm2/s, while it shows the best agreement with the reference
measurement. Similarly, ROI 4 agrees best in terms of T2 with the reference,
while ROIs 2 and 3 show a deviation of up to 0.34 s.

In association with [Rac21], a second phantom was designed with different
ADC and T2 combinations, comparable to those found in patients: T2 ranged
from 45-264 ms and ADC ranged from 0.6-2.1 mm2/s. Using the phantom, ∆TE,
the diffusion dead time and the frequency of diffusion sensitization blocks were
optimized. As a result, an optimized protocol for an in vivo experiment was
defined with the following parameters: TR= 5 s, ∆TE= 9, 9.5, 10, 12 ms, no
diffusion dead time (0 s), and diffusion blocks before the 1

st, 6
th, 11

th and 16
th
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Figure 8.7: Region analysis of the data presented in figure 8.6. The position of the ROIs
is indicated in figure 8.6. Systematic deviations from the reference measurements are
seen for ADCs< 2 · 10−3 mm2/s and T2s> 200ms. Figure taken from [BLB21, fig. 5].

echo, with 30 echoes and 30 spokes per echo. The full parameter setup is found
in listing 11.4 in the appendix.

Using the optimized protocol, a measurement of the brain of a healthy
volunteer was performed. Additionally, reference ADC (ssEPI) and T2 (mul-
tiecho FSE) maps were acquired, as well as a high resolution T2-weighted
FSE for anatomical reference. For image reconstruction, only spokes with a
b < 800 s/mm2 and TE < 300 ms were used, resulting in a total of 82 different
b-TE-pairs. Other echoes were excluded because they were too low in signal
magnitude and thus contributed noise only. The measurement was performed
with a 20 channel head coil, of which 4 channels were excluded due to their
minimal contribution of signal. The reconstruction used 10 iterations, and the
interleaved model with a wavelet regularization and a regularization factor
λ = 10−3. The results are shown in figure 8.8. The T2 map and the reference T2

map are in good agreement in gray and white matter, with errors not exceeding
35 ms. Figure 8.9 shows the results from a region based analysis in gray- and
white-matter. Therefore, portions of gray and white matter were manually
segmented on the anatomical T2-weighted high-resolution reference image,
and subsequently copied to the SATM and reference T2-maps. The histogram
validates the agreement between the two sequences: The mean gray matter
T2 values were 91.9± 12.9 ms and 95.0± 18.0 ms for the SATM and reference
sequence, respectively, and 88.8± 9.4 ms and 84.5± 12.0 ms for white matter.

In blood vessels, larger deviations can be seen in the difference image. There
are two possible reasons for these deviations: First, there is a geometric shift be-
tween the two images, the reference image being shifted a few pixels upwards.
Small blood vessels with a width of a few pixels cannot be represented correctly
in the difference image. Secondly, the new T2 map is blurred, rendering the
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Figure 8.8: In vivo images of a healthy volunteer. The figure compares the parameter
maps of the new sequence against conventional multiecho spin echo for T2 mapping
and DW-ssEPI for ADC mapping. Anatomical structure is compared against a T2-w.
reference image acquired with a high resolution FSE sequence. Four examples of the
reconstruction with TE = [27, 110, 189, 297] ms of the in total 82 echoes are shown on
the bottom right.
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Figure 8.9: Region-based analysis in gray and white matter. The region masks were
manually drawn on the high-resolution T2-weighted FSE (left). The SATM and ref-
erence sequences were registered to the high-resolution images and the mask was
subsequently used on the T2-maps (top right). Based on the region masks, a histogram
analysis was performed and mean and standard deviation values were extracted (bot-
tom right).
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Figure 8.10: Region based analysis in gray and white matter for ADC maps. The region
masks were taken from figure 8.9 and used on the ADC maps. The histogram analysis
shows large deviations between SATM and reference ADC maps.

hyperintense fine structure less intensive and less sharp. For diffusion, the
sequence generally overestimates the ADC values compared to the reference
sequence. The region based analysis for the ADC maps was performed as de-
scribed before for the T2 maps, and the results are shown in figure 8.10. Mean
values of 1.51± 0.42 · 10

-3 mm2/s in gray matter were calculated for the SATM se-
quence, while the reference sequence yields 0.82± 0.09 · 10

-3 mm2/s. For white
matter, the mean values are 1.40± 0.25 · 10

-3 mm2/s and 0.76± 0.06 · 10
-3 mm2/s,

respectively. Similar to the T2 map, the blurring of the image leads to greater
deviations in small blood vessels of up to 1.7·10

-3 mm2/s. Geometric distor-
tions can be seen in the reference ADC map, especially in the anterior part of
the brain, which are not present in the SATM sequence (figure 8.8). This is
confirmed by comparing the S0 map to the high resolution T2-weighted image,
since the new T2 map, ADC map and S0 map share the same geometry. In
regions with very long T2, such as the CSF, the reference and the new method
disagree both for T2 and for ADC values.

Figure 8.8 also shows 4 synthetic echo images E1–E4, with TE = [27, 110,
189, 297] ms and b = [66, 239, 197, 263]·10

-3 s/mm2, respectively. In total,
there are 82 synthetic echo images, corresponding to each unique b-TE-pair.
The contrast varies from predominantly proton density with weak T2 and
diffusion-weighting to a mixture of strong T2 and diffusion-weighting.
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D I S C U S S I O N

9.1 automated tumor segmentation

With the increasing usage of automated lesion detection and segmentation
algorithms in clinical practice, the optimization of CNN architectures and
training processes has been a focus topic in the last decade. However, there is
only limited research on the optimization of the MR acquisition parameters
with respect to automatic segmentation processes [Wah21; WW20].

In this thesis, CNNs were developed and trained to segment head and neck
tumors in multiparametric MRI data. Therefore, MRI data was used from
the prospective FMISO trial with up to 7 different image contrasts for CNN
training. To increase image quality, as well as data quantity for CNN training,
an improved patient setup was developed, which decreased Nyquist ghost
artifacts in DW-MRI.

Using the CNNs, the influence of variations of the input MRI data on the
segmentation performance was tested. To estimate the benefits of an additional
distortion correction pre-processing step, the same CNNs were trained without
and with distortion corrected ADC data (CNN-DistCorr). The second experi-
ment, CNN-Info, characterized the relative information content of each input
sequence in a 7-channel multiparametric MRI segmentation CNN.

The following sections are based on the works in [Bie19b] (section 9.1.2) and
[Bie20b] (section 9.1.3).

9.1.1 b0 field homogenization

B0 homogeneity in the head and neck region was improved by a modified
patient setup. First, the setup proposed by Oudeman et. al. [Oud16] was repro-
duced, and B0 field map measurements were performed on healthy volunteers.
The setup significantly increased B0 homogeneity in plane (axial direction) as
well as in head-foot direction.
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Due to the U-shaped pillow, which was placed on the anterior part of the
neck, this setup had to be modified to account for the increased pressure and
pain sensitivity of patients with head and neck cancer. The modified setup
included two separate water bags on each side of the neck, with no additional
load on the patients neck. It was evaluated using field map measurements in a
volunteer, resulting in the expected increased B0 homogeneity.

The new setup was integrated in the FMISO MRI protocol and a statistical
analysis on the image quality, as assessed by the amount of Nyquist ghost
artifacts, was performed. Images of ssEPI and rsEPI were graded according to
the severity of the artifact, and the patient cohort with the new setup (N = 22)
showed significantly better image quality than those without (N = 54). The
combination of rsEPI and the improved setup yielded the best results, with 95%
of the images graded as "good" as opposed to 74% before.

There is a wide range of other solutions to reduce B0 inhomogeneity-related
artifacts in the head and neck region. For example, the strong field variation
in head-foot direction can be reduced by an adaptive slice-by-slice shimming
[BRN96; MS97; Han17; Qiu21]. Slice-by-slice shimming can, however, lead
to inconsistent slice positioning which is hard to recover without knowledge
of the original field distribution and the shim. This inconsistency must be
avoided as the radiation therapy planning is performed on the inconsistent
images, which can potentially lead to excessive damage of nearby, healthy
tissue. Since the global shim coils of the MRI system usually do not allow
for more than second order corrections in transverse and fifth order in axial
direction, local shimming was suggested as a means to counter the strong local
field variations in the head and neck area [Pfa18; Gat16; Wal17]. The hardware
necessary for these corrections has become available recently and is integrated
into specialized head and neck coil arrays, which are incompatible with the
thermoplastic fixation mask needed for patient immobilization. On the other
hand, the setup using the water bags is easily implemented independent of
vendor-specific sequences or additional shimming hardware.

9.1.2 distortion correction

The CNN-DistCorr experiment compared tumor segmentations of a CNN
trained on ADC images which were subject to different pre-processing steps.
The network was trained on 5 MRI input channels and two different settings
were compared: In the first case, the ADC data were subject to geometric
distortion correction, and in the second case they were used without further
processing. The CNNs were trained on data from 18 patients, but no significant
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difference could be found between the networks trained on corrected and
uncorrected data.

The distortion correction algorithm in this work is based on local mutual
information registrations of the underlying DW-MRI and anatomically precise
T2-weighted images. The algorithm severely reduced image distortion, as
tested in simulations and experimental data that was validated by additional
field map measurements. Still, the registration algorithm failed at locations of
strong B0 gradients, where pixels from multiple locations in the ADC images
can be mapped to the same position. However, neither mutual information
based, nor the field map based distortion correction technique could recover the
undistorted image at such locations, which mostly appear at sharp air-tissue
boundaries.

ADC images are known to be valuable inputs for segmentation of other tumor
entities, like prostate or breast [ST16; Yab08; Bur09], and similar findings were
reported for head and neck cancer [Dri15; CS18]. Therefore, it is surprising that
the distortion correction pre-processing step did not show clear improvement
of the CNNs segmentation performance. However, there are several possible
reasons for this result:

First, although the experimental data did not show a statistically significant
difference in the two sets, the low number of available datasets (N = 18),
might not be sufficient to reveal more subtle differences at all. The average
segmentation performance, as measured by the DSC, was 0.40± 0.18 and
0.37± 0.21 for distortion corrected and uncorrected input data respectively. The
high variation in the segmentation performance is an indication that a generally
better performing network is necessary to thoroughly answer the question of
the influence of distortion correction. This increase in performance may be
achieved by increasing the amount of training data.

Secondly, the contribution of the other 4 input channels may mask the
influence of geometric distortions in the ADC channel: With high-resolution
anatomical data as seen in the T1 and T2-weighted FSE, the DWI information
might only add low-resolution features to the segmentation. A combination
of these low-resolution ADC features, and high-resolution features from other
input channels can lead to a good segmentation even though the ADC images
are distorted. However, with the introduction of multiple contrasts, additional
geometric inconsistencies arise. For example, when the patient swallows during
the examination, tumor borders can shift with respect to the reference image,
as shown in figure 9.1. Hence, even high-resolution image data may not be
geometrically precise with respect to the tumor borders.

Lastly, the effect of distortion within the tumors is much smaller than in
the rest of the image: Within the primary tumor, the distortion correction
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Figure 9.1: T2-weighted (left) and T1-weighted (right) image of a HNSCC patient. The
tumor contour was drawn on the T2-weighted image. Because the patient moved
during the examination (presumably swallowing), the tumor moved with respect to
the contour.

maps calculated with the proposed algorithm yielded a standard deviation of
2.29 pixels, while it was 4.28 pixels for the complete image on average. Hence,
strongly distorted areas tend to be outside the region of interest and might not
contribute significantly to the segmentation performance.

The primary limitation of this study is the small amount of image data.
Hence, to increase statistical significance, a 14-fold leave-one-out cross testing
scheme was employed after the CNN architecture and hyperparameters were
finalized. This testing scheme allowed a training set size of 13 patients and only
a single test patient per network, and, therefore statistically relevant results
could be drawn from the analysis. A major drawback of the cross testing
scheme is the additional time needed for training: here, a single network
trained for 50-75 h, and a total of 28 networks needed to be trained.

To further improve the networks performance, ADC maps should be ac-
quired distortion-free already during image acquisition. A method to achieve
geometrically more accurate results has been presented in the previous section.
Additionally, increased SNR is beneficial for the segmentation performance
[Bie20a], and can be achieved by additional signal averaging. However, this
leads to longer acquisition times and cannot compensate the ADC bias due
to magnitude signal averaging (see section 3.2.3). Alternatively, noise can in-
cluded in the model-fit routine, which can reduce the heterogeneity of the ADC
images [JRS16; Wal09]. Additional optimization of the b-values can then further
improve the SNR in the target regions [SLN11; BB17].
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9.1.3 channel-wise importance analysis

In the CNN-DistCorr experiment, the influence of the different input channels
on the segmentation performance was generally unclear, which introduced
some ambiguity to the interpretation of the distortion correction. Therefore,
in the CNN-Info experiment, the influence of different input channels with
respect to the segmentation performance was analyzed for primary tumor and
lymph node metastases.

To include as many MRI input channels as possible, ve perfusion maps and
T1-weighted post contrast DIXON water images from the FMISO trial were
added as input to the network. To compensate for the small size of the dataset,
additional patient data during radiation treatment was used as independent
datasets. Moreover, 6 additional patients were included in the trial that were
used for the analysis, resulting in a total of 36 datasets from 18 different patients.
13 of the datasets were acquired before treatment start (week 0), 9 were acquired
at week 2 and 14 at week 5 during treatment.

Next, 8 different CNNs were trained: one CNN included all 7 input channels,
and the other CNNs were trained each with one of the channels left out. Then,
the segmentation performance of the LOO-CNNs was compared to the reference
CNN to estimate the influence on segmentation performance for each of the
channels left out.

The overall segmentation performance was similar to CNN-DistCorr, with
best scores of 65% for primary tumor, and 58% for lymph node metastases.
On average, the networks showed segmentation performances of 30% and
24%, respectively. The reduced average performance as compared to the
first experiment can be explained by the changes made in the input dataset:
in CNN-Info, tumors were included which can express systematic changes
of their contrast parameters as an effect of the radiochemotherapy [Wie19;
Wie20]. Additionally, the segmentation performance correlates with tumor
size, and, thus, the inclusion of tumors that have shrunk during treatment is
expected to decrease the average segmentation performance. This effect may
be compensated by using a mean border distance metric in addition to the
DSC, e. g., the Average Hausdorff Distance or the Probabilistic Distance [GJC01;
TH15].

Furthermore, the inclusion of additional data increases the statistical valid-
ity of the study, as deviations from a common mean value are investigated,
and not the absolute segmentation performance itself. Thus, the difference
in segmentation performance was computed for pairs of LOO-CNNs and
reference CNNs with identical input patient sets. The highest statistically
significant influence was found in the T*

2-channel, with an average decrease
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of ∆DSCGTV-T = 5.7% and ∆DSCGTV-Ln = 5.8% for primary tumor and lymph
node metastases respectively. This was followed by the T1-weighted contrast
enhanced (∆DSCGTV-T = 5.0%) and ve (∆DSCGTV-T = 4.9%) channels for tumor
segmentation. Although the other results did not reach statistical significance
(p < 0.05 in the paired Students t-test), the T1-weighted pre-contrast channel
showed a ∆DSCGTV-Ln = 4.9% for the segmentation of lymph node metas-
tases, scoring second after T*

2. Surprisingly, the ADC channel showed the
least overall influence on the segmentation performance (∆DSCGTV-T = 2.4%,
∆DSCGTV-Ln = 2.2%), however without statistical significance. This may be
explained by the higher number of small tumors included in the study in
combination with the geometric distortion artifacts in ADC maps: The relative
effect of the distortion is larger in smaller structures, which can lead to a de-
creased significance in the CNNs decision-making process. On the other hand,
this result validates the observations made in the CNN-DistCorr experiments,
where changes in the ADC dataset did not lead to a significant change in the
segmentation performance.

This experiment for the first time compared the influence of 7 different MRI
channels to the segmentation performance of a CNN. The results allow an
optimization of the measurement protocol for head and neck cancer patients
for automated tumor segmentation of the images.

The results shown in this work are promising, yet other groups reach seg-
mentation performances of beyond 90% [Lit17b; Akk17; Sha20] in other body
regions, or focus on the segmentation of organs at risk in CT images [MDL17;
van19]. In the head and neck area, only few studies performed automatic tu-
mor segmentation, with a DSC scores of up to 0.73 based on only T1-weighted
and T2-weighted images [Wah22], or 0.75 based on PET/CT images [Moe19].
However, Wahid et. al. [Wah22] selected from a dataset of 124 HNSCC patients
a subgroup of 30 oropharyngeal cancer patients, a distinction which was not
made in the present dataset.

There are several reasons for the discrepancy in performance to the results
published in the literature: Often, good segmentation results are achieved in
tumor entities with clearly differentiated contrast to the surrounding tissue,
such as brain tumor [Kam17]. Many of those groups use large public databases
to train high-performing segmentation networks. Here, no such database exists,
because MRI with more than T1-weighted, T2-weighted and DWI are seldomly
performed in clinical practice. Thus, data needs to be taken from smaller patient
trials with highly customized imaging protocols, which can be inefficient with
respect to imaging time for the patient treatment. In contrast to head and neck
cancer, brain tumors can be considered a true rigid body problem, which makes
co-registration of different input channels accurate and easy to implement. The
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head and neck area, on the other hand, is subject to local deformations, e. g.
by tongue movement or swallowing motion, which results in inaccuracies in
image registration. In this study, additional patient motion must be expected
due to the long acquisition times of about 40 minutes, adding to the limitation
of co-registration.

Although the limitations in co-registration appear very severe, the same
motion and co-registration challenges have to be expected between MRI and
radiation therapy, which sets an upper limit to the necessary accuracy of dose
application [Yan98]. Hence, a segmentation performance that surpasses this
intrinsic limitation is not expected to increase treatment outcome.

9.1.4 conclusion

In summary, it was shown that within the anatomically highly challenging head
and neck region, multiparametric MRI can be used to achieve good automatic
tumor segmentations with CNNs. The influence of different variations in
the input data was analyzed, and a non-significant decrease in segmentation
performance was observed for geometrically uncorrected input diffusion data.
Moreover, if any of the 7 possible input channels were left out, the segmentation
performance decreased as well.

Tools for the fast and accurate automatic contouring of tumors in the head
and neck area will become indispensable in future application: MR-guided ra-
diotherapy based on MR-LINAC systems promises better tumor control by real
time replanning of dose delivery [Chu18]. Such concepts automatically take into
account the strong changes in the patients anatomy during radiocheomtherapy,
thereby minimizing the risk for nearby organs [Sur17; Kat].

Daily or real-time imaging-adapted treatment plans can not be provided by
the tedious manual segmentation processes, which is the current state of the
art. Hence, this thesis helps in the successful combination and implementation
of MRI protocols optimized for CNN based, automatic tumor segmentation.

9.2 simultaneous adc and t2 mapping

A sequence for simultaneous acquisition of T2 and ADC parameter maps
(SATM) was developed and tested. The sequence was designed to acquire T2 as
another potentially highly sensitive parameter for automatic tumor segmenta-
tion in head and neck cancer, while removing some of the inherent artifacts in
DW-EPI imaging for ADC quantification. Primary design goals were acquisition
speed and geometric accuracy, next to precise T2 and ADC quantification.
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The simulations of the sequence show that images can be reconstructed based
on only 11 spokes per b-TE-pair and 45 b-TE-pairs, such that a volume of 16

slices could be acquired in less than 3 minutes, using a TR of 5 s.
A major problem in multiecho SE sequences is the interference of different

echo pathways. Using a phase graph analysis, a soft CPMG-condition was
derived to ensure coinciding echoes despite the violation of the second CPMG
condition. Bloch simulations showed that the artifact caused by the CPMG
violation could be avoided, recovering up to 5 % of signal variation. However,
random patient motion remains a challenge for both, conventional multiecho
SE and the SATM sequence, as moving spins violate the CPMG conditions
either way.

For reconstruction, two different methods were developed and compared.
Both methods are based on an iterative minimization of a loss function. The
first method directly models the measurement as a function of the target
parameters ADC, T2 and S0. The second method interleaves a model-free
image intensity based reconstruction, with an image update by fitting the
bi-exponential ADC-T2 model to the current data. The second reconstruction
method (interleaved model) proved to be faster and more robust in simulations
as well as on experimental data. The first reconstruction method (iterative
model) has a poorer performance because it models each image phase as a
free model parameter. This limitation is necessary due to the random phase
artifact, which can appear in DWI. Thus, the number of free model parameters
is largely increased as compared to the interleaved model. Still, for both models
k-space spokes from different excitations could be combined because the phase
artifacts were less severe than in conventional DWI. This might be due to the
small increase in b-value of 80-150 s/mm2 per diffusion block in the SATM
sequence, as opposed to a single block with a b-value of up to 800 s/mm2 in
conventional DWI.

In simulations, both reconstruction methods failed to reconstruct correct ADC
values in short T2 regimes (T2 < 100 ms), which could be caused by the strong
signal attenuation due to T2-relaxation. In this sequence, ADC is inherently
more difficult to estimate than T2 due to the lower amount of unique b-values
compared to unique TEs. Thus, the errors on the ADC estimation are expected
to be higher than those for T2 estimation.

Phantom measurements showed that the T2 fit additionally shows a strong
systematic error of up to 35% for reference values T2 > 800 ms. However, such
long relaxation times are generally not encountered in head and neck tumor
imaging. Consequently, the SATM sequence was not optimized for these values,
reaching maximum TEs of 300 ms.
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The sequence was then optimized for in vivo imaging, with 82 unique b-
TE-pairs with TEs between 27-300 ms and b-values between 68-800 mm2/s. In
gray and white matter, a good agreement with the reference measurements
was observed, while for long T2 systematic differences were found. However,
this error in T2 quantification was expected from the previous simulations and
phantom measurements.

Similarly, the proposed ADC measurements show a systematic overestimation
compared to the reference. This deviation may be caused by simultaneously
occurring (stimulated) echoes, which experienced different signal attenuation,
but are not modeled in the reconstruction. A good slice profile reduces this
deviation, but assuming a certain residual B1 inhomogeneity and an imperfect
slice profile, signal contributions from non-180° RF-pulses cannot be avoided.

The parameter maps show excellent anatomical agreement to the reference
T2-weighted FSE sequence, validating the geometrical accuracy of the new ADC
map.

Simultaneous T2 and ADC imaging has been investigated in other studies be-
fore: [Sta12] and [Gra17] used a DESS-based sequence with additional diffusion
weighting. However, the DESS sequences showed a relatively long acquisition
time of more than 10 minutes. [Ali18] proposed to simultaneously measure T2

and ADC using a diffusion weighted spin-echo EPI based sequence. Similarly,
[SBE17] proposed a EPI-readout based sequence for simultaneous T2 and ADC
estimation. Their methods, however, suffer from the same geometric distortion
artifacts as conventional DWI, and therefore no advantages for head and neck
cancer imaging are expected. The SATM sequence, on the other hand, solved
the geometrical inaccuracies and can acquire T2 and ADC maps in a shorter
amount of time.
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O U T L O O K

In this thesis, the influence of MRI input channels on the segmentation perfor-
mance of a CNN was analyzed: First, with regard to the geometric accuracy
of the input ADC-maps, and, second, with regard to the relative information
content of 7 different channels.

In future studies, this relative importance analysis can be extended: The
overall segmentation performance has to be increased by increasing the size of
the dataset on the one hand, and by comparing different network architectures
(e. g., DeepMedic and U-Net) on the other hand. With ongoing patient recruit-
ment in the FMISO trial, the existing database can be increased up to 70 patients
in total. Then, the gradient-weighted class activation mapping (Grad-CAM)
algorithm [Sel17] should be adapted for channel-wise activation maps, which
could additionally quantify the relative importance of each MR contrast in a
single CNN simultaneously. Next, the effects of different input combinations
should be tested on CNNs with reduced numbers of channels, e. g., a CNN
configuration without any anatomical or without any functional input data.
Finally, the resulting protocol optimization has to be tested in a realistic setting:
Therefore, patient data should be acquired with an improved protocol, and the
segmentation performance has to be tested against the previous configuration.

Additionally, the SATM sequence can be used to acquire additional T2 and
ADC parameter maps. Therefore, the sequence has to be optimized to remove
any systematic bias in ADC and T2 quantification. Hence, a thorough theoretical
description of the signal attenuation due to diffusion and T2-decay has to be
formulated, similar to [WB90]. Furthermore, the single radial readout spokes
could be replaced by a spiral trajectory, transforming the sequence into a
single shot sequence. With these improvements, the SATM sequence may
potentially replace the conventional DW-MRI as well as the T2-weighted MRI
in the FMISO protocol with reliable, fast and distortion-free T2 and ADC maps,
or, if advantageous for the CNN segmentation, synthetic T2 and ADC weighted
images. With reliable parameter mapping, the sequence may also prove to be
beneficial in other tumor entities.
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S U P P L E M E N TA RY M AT E R I A L

11.1 automated tumor segmentation

Figure 11.1: Fieldmap measurements in a second volunteer, using a U-shaped neck
pillow to increase the B0 homogeneity. a) shows the field map with the neck pillow,
while b) shows the same data with the pillow removed for visibility. c) shows the
measurement without the neck pillow, with significantly increase B0 inhomogeneity.
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Listing 11.1: CNN model configuration file used for the CNN-DistCorr experiment.

#Default values are set internally, if the corresponding parameter is not

found in the configuration file.

#[Optional but highly suggested] The name will be used in the filenames

when saving the model.

#Default: "cnnModel"

modelName = "deepMedicTumorMasked_08"

#[Required] The main folder that the output will be placed.

folderForOutput = "/bielak/fmiso/deepMedicTumorMasked_08_output"

#================ MODEL PARAMETERS =================

#[Required] The number of classes in the task. Including background!

numberOfOutputClasses = 2

#[Required] The number of input channels, eg number of MRI modalities.

numberOfInputChannels = 5

#+++++++++++Normal pathway+++++++++++

#[Required] This list should have as many entries as the number of layers

I want the normal-pathway to have.

#Each entry is an integer that specifies the number of Feature Maps to

use in each of the layers.

numberFMsPerLayerNormal = [30, 30, 40, 40, 50, 50, 70, 70]

#[Required] This list should have as many entries as the number of layers

in the normal pathway.

#Each entry should be a sublist with 3 entries. These should specify the

dimensions of the kernel at the corresponding layer.

kernelDimPerLayerNormal = [[3,3,3], [3,3,3], [3,3,3], [3,3,3], [3,3,3],

[3,3,3], [3,3,3], [3,3,3]]

#[Optional] List with number of layers, at the output of which to make a

residual connection with the input of the previous layer. Ala Kaiming

He et al, "Deep Residual Learning for Image Recognition".

#Note: Numbering starts from 1 for the first layer, which is not an

acceptable value (no previous layer).

#Example: [4,6,8] will connect (add) to the output of Layer 4 the input

of Layer 3. Also, input to 5th will be added to output of 6th, and

input of 7th to output of 8th.

#Default: [], no residual connections

layersWithResidualConnNormal = []
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#[Optional] Layers to make of lower rank. Ala Yani Ioannou et al,

"Training CNNs with Low-Rank Filters For Efficient Image

Classification".

#Example: [3,5] will make the 3rd and 5th layers of lower rank.

#Default: []

lowerRankLayersNormal = []

#+++++++++++Subsampled pathway+++++++++++

#[Optional] Specify whether to use a subsampled pathway. If False, all

subsampled-related parameters will be read but disregarded in the

model-construction.

#Default: False

useSubsampledPathway = True

#[Optionals] The below parameters specify the subsampled-pathway

architecture in a similar way as the normal.

#If they are ommitted and useSubsampledPathway is set to True, the

subsampled pathway will be made similar to the normal pathway

(suggested for easy use).

#[WARN] Subsampled pathway MUST have the same size of receptive field as

the normal. Limitation in the code. User could easily specify

different number of FMs. But care must be given if number of layers

is changed. In this case, kernel sizes should also be adjusted to

achieve same size of Rec.Field.

numberFMsPerLayerSubsampled = [30, 30, 40, 40, 50, 50, 70, 70]

kernelDimPerLayerSubsampled = [[3,3,3], [3,3,3], [3,3,3], [3,3,3],

[3,3,3], [3,3,3], [3,3,3], [3,3,3]]

#[Optional] How much to downsample the image that the subsampled-pathway

processes.

#Default: [3,3,3]

subsampleFactor = [3,3,3]

#[Optional] Residual Connections for subsampled pathway. See

corresponding parameter for normal pathway.

#Default: mirrors the normal pathway, no residual connections

#layersWithResidualConnSubsampled = []

#[Optional] Layers to make of lower rank. See corresponding parameter for

normal pathway.

#Default: Mirrors the normal pathway

#lowerRankLayersSubsampled = []

#+++++++++++FC Layers+++++++++++
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#[Optional] After the last layers of the normal and subsampled pathways

are concatenated, additional Fully Connected hidden layers can be

added before the final classification layer.

#Specify a list, with as many entries as the number of ADDITIONAL FC

layers (other than the classification layer) to add. The entries

specify the number of Feature Maps to use.

#Default: []

numberFMsPerLayerFC = [100, 100]

#[Optional] Specify dimensions of the kernel in the first FC layer. This

kernel combines the features from multiple scales. Applies to the

final Classification layer if no hidden FC layers in network.

#Note: convolution with this kernel retains the size of the FMs (input is

padded).

#Default: [1,1,1]

kernelDimFor1stFcLayer = [1,1,1]

#[Optional] Residual Connections for the FC hidden layers. See

corresponding parameter for normal pathway.

#Default: [], no connections.

#layersWithResidualConnFC = []

#+++++++++++Size of Image Segments+++++++++++

#DeepMedic does not process patches of the image, but larger

image-segments. Specify their size here.

#[Required] Size of training segments influence the captured distribution

of samples from the different classes (see DeepMedic paper)

segmentsDimTrain = [20,20,20]

#[Optional] The size of segments to use during the validation-on-samples

process that is performed throughout training if requested.

#Default: equal to receptive field, to validate on patches.

segmentsDimVal = [17,17,17]

#[Optional] Bigger image segments for Inference are safe to use and only

speed up the process. Only limitation is the GPU memory.

#Default: equal to the training segment.

segmentsDimInference = [45,45,45]

#+++++++++++Batch Sizes+++++++++++

#[Required] The number of segments to create a batch.

#The samples in a training-batch are all processed and one optimization

step is performed.

#Larger batches approximate the total data better and should positively

impact optimization but are computationally more expensive (time and

memory).

batchSizeTrain = 10



11.1 automated tumor segmentation 137

#[Optionals] Batch sizes for validation and inference only influence the

speed. The bigger the better. Depends on the segment size and the

model size how big batches can be fit in memory.

#Default: Equal to train-batch size.

batchSizeVal = 48

batchSizeInfer = 10

#[Optionals] Dropout Rates on the input connections of the various

layers. Each list should have as many entries as the number of layers

in the corresponding pathway.

# 0 = no dropout. 1= 100% drop of the neurons. Empty list for no dropout.

#Default: []

dropoutRatesNormal = []

dropoutRatesSubsampled = []

#Default: 50% dropout on every Fully Connected layer except for the first

one after the concatenation

#Note: The list for FC rates should have one additional entry in

comparison to "numberFMsPerLayerFC", for the classification layer.

dropoutRatesFc = [0.0, 0.5, 0.5] # +1 for the classification layer!

#[Optional] Initialization method of the kernel weights. Specify 0 for

classic, from the normal distribution N(0, 0.01). Otherwise specify 1

for the method of He et al from "Delving Deep into Rectifiers".

#Default: 1

initializeClassic0orDelving1 = 1

#[Optional] Activation Function for all convolutional layers. Specify 0

for ReLU, 1 for PreLU.

#Default: 1

relu0orPrelu1 = 1

#[Optional] Batch Normalization uses a rolling average of the mus and std

for inference. Specify over how many batches (optimization steps)

this rolling average should be taken.

#Default : 60 (in our usual settings, with batchsize=10, segments per

training subepoch=1000, and subepochs per epoch=20, this averages

over 5 epochs).

rollAverageForBNOverThatManyBatches = 60
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Listing 11.2: CNN training configuration file as used for the CNN-DistCorr experiment.

#Default values are set internally, if the corresponding parameter is not

found in the configuration file.

#[Optional but highly suggested] The name will be used for saving the

models,logs and results.

#Default: "trainSession"

sessionName = " trainSessionDeepMedic_01_Statistic_Corr"

#[Required] The main folder that the output will be placed.

folderForOutput = "/bielak/fmiso/DeepMedic_01_Statistic_Corr"

#[Optional] The path to the saved CNN-model to use for training. Optional

in the case the the model is specified from command line with the

-model option. In this case, this entry file of the config file will

be disregarded, and the one from the command line will be used.

cnnModelFilePath =

"/deepMedicTumorMasked_08 . in i t i a l .2017−10−13.10.37.37.935859.save"

#=======================Training=====================================

#+++++++++++Input+++++++++++

#[Required] A list that should contain as many entries as the channels of

the input image (eg multi-modal MRI). The entries should be paths to

files. Those files should be listing the paths to the corresponding

channels for each training-case. (see example files).

channelsTraining = [" ./01_trainADCMapReg. cfg", " ./01_trainKtransReg . cfg",
" ./01_traint1TseReg . cfg", " ./01_trainT2starReg . cfg",
" ./01_traint2TseReg . cfg"]

#[Required] The path to a file which should list paths to the Ground

Truth labels of each training case.

gtLabelsTraining = " ./01_trainGtLabels . cfg"

#+++++++++++Sampling+++++++++++

#[Optional] The path to a file, which should list paths to the

Region-Of-Interest masks for each training case.

#If ROI masks are provided, under default-sampling settings, the training

samples will be extracted only within it. Otherwise from whole volume.

#This mask is also used for calculating mu and std intensities for

intensity-augmentation, if performed.

#roiMasksTraining = "./trainRoiMasks.cfg"
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#+++++++++++Advanced Sampling+++++++++++

#Note: Given variables in this "Advanced Sampling" section are

disregarded if default settings are used, unless one sets:

useDefaultTrainingSamplingFromGtAndRoi = False.

#[Optional] True in order to use default sampling for training. In this

case, foreground samples are extracted from within the GT mask.

#Background samples are then extracted from the ROI (or full volume),

excluding the GT. By default, equal number of samples are extracted

from foreground and background.

#Note: Advanced options are disabled if default settings are used.

#Default: True

useDefaultTrainingSamplingFromGtAndRoi = True

#[Optional] Type-of-Sampling to use for training.

#[Possible Values] 0 = Foreground / Background, 1 = Uniform, 2 = Full

Image , 3 = Separately-Per-Class.

#Note: In case of (2) Full Image, ensure you provide segmentsDimTrain in

modelConfig.cfg at least as big as image dimensions (+CNN’s receptive

field if padding is used).

#Default: 0

typeOfSamplingForTraining = 0

#[Optional] List the proportion (0.0 to 1.0) of samples to extract from

each category of samples.

#Note: Depending on the Type-of-Sampling chosen, list must be of the form:

# >> Fore/Background: [proportion-of-FOREground-samples,

proportion-of-BACKground-samples], eg [0.3, 0.7]. IMPORTANT:

FOREground first, background second!

# >> Uniform or Full-Image: Not Applicable and disregarded if given.

# >> Separate sampling of each class:

[proportion-of-class-0(background), ..., proportion-of-class-N]

#Note: Values will be internally normalized (to add up to 1.0).

#Default: Foreground/Background or Separately-Each-Class : equal number

of segments extracted for each of the categories. Uniform or

Full-Image: N/A

proportionOfSamplesToExtractPerCategoryTraining = [0.5, 0.5]

#[Optional] This variable allows providing weighted-maps to indicate

where to extract more segments for each category of samples. Higher

weight means more samples from that area.

#The value provided should be a List with paths to files. As many files

as the categories of samples for the chosen Sampling-Type.

#Similarly to the files listing the Ground Truth, Channels, etc per

subject, these files should list the paths to the weight-maps of each

subject for the corresponding category.
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#Note: Number of files required: Fore/Backgr:2, Uniform:1,

Full-Image:N/A, Separate each class:NumOfOutputClasses (Incl Backgr).

#IMPORTANT: Sequence of weight-maps is important!

#>> If Fore/Background type of sampling, provide for the FOREground first!

#>> If Separately sampling each class, provide weightmap-files in the

same sequence as the class-labels in your Ground Truth! Eg

background-0 first, class-1 second, etc.

#Default : If this variable is not provided, samples are extracted based

on the Ground-Truth labels and the ROI.

weightedMapsForSamplingEachCategoryTrain =

[" ./01_weightMapsForeground. cfg", " ./01_weightMapsBackground. cfg"]

#+++++++++++Training Cycle (see documentation)+++++++++++

#[Optionals but highly suggested as they are model dependent.]

#How many epochs to train for. Default: 35

numberOfEpochs = 30

#How many subepochs comprise an epoch. Every subepoch I get Accuracy

reported. Default: 20

numberOfSubepochs = 20

#Every subepoch, load the images from that many cases and extract new

training samples. Default: 50

numOfCasesLoadedPerSubepoch = 13#Every subepoch, extract in total this

many segments and load them on the GPU. Memory Limitated. Default:

1000

#Note: This number in combination with the batchSizeTraining, define the

number of optimization steps per subepoch (=NumOfSegmentsOnGpu /

BatchSize).

numberTrainingSegmentsLoadedOnGpuPerSubep = 1700

#+++++++++++Learning Rate Schedule+++++++++++

#[Optional] The type of schedule to use for Learning Rate annealing.

#0=Stable Decrease. 1=Auto (Lower LR when validation accuracy plateaus.

Requires validation-on-samples). 2=Lower at predefined epochs.

3=Exponentially decrease LR, linearly increase Mom.

#Note: Training Schedule is very important. We suggest running stable and

observing training error, then lower LR when it plateaus. Otherwise,

use exponential but make sure to train for enough epochs.

stable0orAuto1orPredefined2orExponential3LrSchedule = 2

#[For Stable + Auto + Predefined] By how much to divide LR when lowering.

Default: 2

whenDecreasingDivideLrBy = 2.0
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#[For Stable + Auto] How many epochs to wait before decreasing again. Set

Zero to never lower LR. Default: 3

#numEpochsToWaitBeforeLoweringLr = 3

#[For Auto] If validation accuracy increases more than this much, reset

the waiting counter. Default: 0.0005

#minIncreaseInValidationAccuracyThatResetsWaiting = 0.0005

#[Required for Predefined] At which epochs to lower LR.

predefinedSchedule = [10, 14, 17, 20, 23, 25, 29, 31.34, 37, 40, 43, 46]

#[Required for Exponential] [First epoch to start lowering from, value

for LR to reach at last epoch, value for Mom to reach at last epoch]

exponentialSchedForLrAndMom = [12, 1.0/(2**(7)), 0.9]

#+++++++++++Data Augmentation+++++++++++

#[Optional] Specify whether to reflect the images by 50% probability in

respect to the X/Y/Z axis. Default: [False, False, False]

reflectImagesPerAxis = [True,True,True]

#[Optional] Augmentation by changing the mean and std of training

samples. Default: False

performIntAugm = False

#I’ = (I + shift) * multi

#[Optionals] We sample the "shift" and "multi" variable for each sample

from a Gaussian distribution. Specify the mu and std.

#Defaults : [0, 0.1] and [1.,0.]

sampleIntAugmShiftWithMuAndStd = [0, 0.1]

sampleIntAugmMultiWithMuAndStd = [1., 0.0]

#+++++++++++Optimization+++++++++++

#[Optionals]

#Initial Learning Rate. Default: 0.001.

learningRate = 0.001

#Optimizer to use. 0 for classic SGD, 1 for Adam, 2 for RmsProp. Default:

2

sgd0orAdam1orRms2 = 2

#Type of momentum to use. 0 for standard momentum, 1 for Nesterov.

Default: 1

classicMom0OrNesterov1 = 1

#Momentum Value to use. Default: 0.6

momentumValue = 0.6

#Non-Normalized (0) or Normalized momentum (1). Bear in mind that

Normalized mom may result in smaller gradients and might need

relatively higher Learning Rate. Default: 1

momNonNorm0orNormalized1 = 1
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#Parameters for RmsProp. Default: rho=0.9, e=10**(-4) (1e-6 blew up the

gradients. Haven’t tried 1e-5 yet).

rhoRms = 0.9

epsilonRms = 10**(-4)

#[Optionals] Regularization L1 and L2.

#Defaults: L1_reg = 0.000001, L2_reg = 0.0001

L1_reg = 0.0000005

L2_reg = 0.00005

#+++++++Freeze Layers++++++

#[Optional] Specify layers the weights of which you wish to be kept fixed

during training (eg to use weights from pre-training). First layer is

1.

# One list for each of the normal, subsampled, and fully-connected (as

1x1 convs) pathways. For instance, provide [1,2,3] to keep first 3

layers fixed. [] or comment entry out to train all layers.

# Defaults: [] for the Normal and FC pathway. For the Subsampled pathway,

if entry is not specified, we mirror the option used for the Normal

pathway.

layersToFreezeNormal = []

layersToFreezeSubsampled = []

layersToFreezeFC = []

#==================Validation=====================

#[Optionals] Specify whether to perform validation on samples and

full-inference every few epochs. Default: False for both.

performValidationOnSamplesThroughoutTraining = True

performFullInferenceOnValidationImagesEveryFewEpochs = True

#[Required] Similar to corresponding parameter for training, but points

to cases for validation.

channelsValidation = [" ./validation/01_validationADCMapReg. cfg",
" ./validation/01_validationKtransReg . cfg",
" ./validation/01_validationt1TseReg . cfg",
" ./validation/01_validationT2starReg . cfg",
" ./validation/01_validationt2TseReg . cfg"]

#[Required for validation on samples, optional for full-inference]

Similar to corresponding parameter for training, but points to cases

for validation.

gtLabelsValidation = " ./validation/01_validationGtLabels . cfg"
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#[Required] Similar to corresponding parameter for training. Only

influences how accurately the validation samples will represent whole

data. Memory bounded.

#Default: 3000

numberValidationSegmentsLoadedOnGpuPerSubep = 5000

#[Optional] Similar to corresponding parameter for training

#roiMasksValidation = "./validation/validationRoiMasks.cfg"

#+++++Advanced Validation Sampling+++++:

#Note: Given variables in this "Advanced Validation Sampling" section are

disregarded if default settings are used, unless one sets:

useDefaultUniformValidationSampling = False.

#[Optional] True in order to use default sampling for validation. Default

is uniform sampling within the ROI (or whole volume if not provided).

#Note: Advanced options are disabled if default settings are used.

#Default: True

useDefaultUniformValidationSampling = True

#[Optional] Type-of-Sampling to use for Validation. See description of

corresponding variable for training.

#Default: 1 (uniform sampling)

typeOfSamplingForVal = 1

#[Optional] List the proportion (0.0 to 1.0) of samples to extract from

each category of samples. See description of corresponding variable

for training.

#Default: Foreground/Background or Separately-Each-Class : equal number

of segments extracted for each of the categories. Uniform or

Full-Image: N/A

#proportionOfSamplesToExtractPerCategoryVal = [0.3, 0.7]

#[Optional]

#The following variable allows providing weighted-maps that indicate

where to acquire more samples for each category/class. See

description of corresponding variable for training.

#Default : If this variable is not provided, samples are extracted based

on the Ground-Truth labels and the ROI.

weightedMapsForSamplingEachCategoryVal =

[" ./validation/01_weightMapsForeground. cfg",
" ./validation/01_weightMapsBackground. cfg"]

#+++++Full-Inference on validation cases+++++
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#[Optional] How often (epochs) to perform full inference. It is time

consuming... Default: 1

numberOfEpochsBetweenFullInferenceOnValImages = 5

#[Optionals] Specify whether to save the segmentation and probability

maps for each class. Default: True to all

saveSegmentationVal = True

saveProbMapsForEachClassVal = [True, True, True, True, True]

#[Required if requested to save results] The path to a file, which should

list names for each validation case, to name the results after.

namesForPredictionsPerCaseVal =

" ./validation/01_validationNamesOfPredictions . cfg"

#--Feature Maps--

#Feature maps can also be saved, but section is omitted here. See testing

configuration.

#==========Generic=============

#[Optional] Pad images to fully convolve. Default: True

padInputImagesBool = True
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11.2 simultaneous adc and t2 mapping

Listing 11.3: MATLAB Code for the Bloch simulation. Credits: Dr. Jochen Leupold
(original function for a RARE sequence), Lars Bielak (adaptation for SATM sequence).

function [Echoes]=BlochSim(nX,nEcho,nDiff,alpha,T1,T2,ES,diffgrad_factor)

%parameters:

% no_pulses - echo train length, corresponds to number of samples in both

RO and PE direction

% alpha - refocusing flip angle (in deg)

% T1

% T2

% ES - echo spacing

% diffgrad_factor - zeroth moment of one diffusion gradient relative to

crusher gradient

linekspace=zeros(nX,nX,nEcho,nX);

phant=phantom(nX,nX); %make phantom

start=180; %introduces symmetry to dephasing (see dephase_function)

offres=0; %makes an off-resonance angle - recommendation leave it at zero

readgrad = 0.5; %moment of the readout prephaser after exitation pulse

crushergrad = 4*readgrad; %moment of the crusher gradients before and

after each pulse

diffgrad = diffgrad_factor * crushergrad; %factor compared to readoutgrad

phasecyc = 180*ones(1,nEcho+1);phasecyc(1)=90; %cpmg phase cycle

no_isos=360*nX; %total number of magnetization vectors (360 per voxel)

echosamples=nX; % number of sampling points in RO direction

for rep=1:nX % repititions loop. The experiment is repeated for each

phase encoding step

for li=1:nX %line loop %loops over the lines in image space. idea: a

kspace is constructed for any line, all these k-spaces ar added

afterwards, finally building the acquired k-space of the phantom

M_mat=zeros(no_isos,2); % Matrix containing magnetisation.

(develops through the whole pulse train)

M_echomat=zeros(nEcho,echosamples); %matrix storing the acquired

data (practically this is finally the k-space)

%select phantom line

tmp=squeeze(phant(li,:));

M_0=squeeze(kron(tmp’,ones(360,1))); %repeats every point of the

line 360 times to make a quasi-continuous object

M_mat(:,1)=M_0’; %line is imposed on equilibrium magnetization
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% Excitation

M_mat(:,:)=pulse_function( M_mat(:,:),90,phasecyc(1) );

M_mat(:,:)=relax_function( M_0,M_mat(:,:),ES/2,T1,T2 );

M_mat(:,:)=dephase_function( M_mat(:,:),crushergrad,start,offres

); %dephasing from crusher

%Refocusing pulse train

for pulse=1:nEcho

if any(pulse==nDiff) % apply diffusion weighting

(stejskal-tanner)

M_mat(:,:)=pulse_function( M_mat(:,:),alpha,phasecyc(2) );

M_mat(:,:)=dephase_function(

M_mat(:,:),diffgrad,start,offres ); %dephasing from

diffusion gradient

M_mat(:,:)=relax_function( M_0,M_mat(:,:),ES,T1,T2 );

M_mat(:,:)=pulse_function( M_mat(:,:),alpha,phasecyc(2) );

M_mat(:,:)=dephase_function(

M_mat(:,:),diffgrad,start,offres );

M_mat(:,:)=relax_function( M_0,M_mat(:,:),ES,T1,T2 );

end

% Read module

M_mat(:,:)=pulse_function( M_mat(:,:),alpha,phasecyc(pulse+1)

);

M_mat(:,:)=dephase_function(

M_mat(:,:),crushergrad,start,offres ); %rephasing from

crusher

M_mat(:,:)=dephase_function(

M_mat(:,:),-readgrad,start,offres ); %read prephaser

for k=1:echosamples % ADC block

M_mat(:,:)=dephase_function(

M_mat(:,:),2*readgrad/echosamples,start,offres );

M_mat(:,:)=relax_function(

M_0,M_mat(:,:),ES/echosamples,T1,T2 );

M_echomat(pulse,k)=squeeze( sum(M_mat(:,2)) );

end

M_mat(:,:)=dephase_function(

M_mat(:,:),-readgrad,start,offres ); %read rephaser

M_mat(:,:)=dephase_function(

M_mat(:,:),crushergrad,start,offres ); %dephasing from

crusher

end

%make phase encoding (direct center-out order)

for s=1:nEcho

linekspace(li,rep,s,:)=squeeze(M_echomat(s,:)

.*exp(2*pi*1j*(li-1)*(rep-1)/(nX)));

end
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end %eof line loop

end %eof repitition loop

Echoes=linekspace; %return this matrix

%functions

function M_back=relax_function(M_0,M,t,T1,T2); %function for T1 and T2

relaxation

bloch=[exp(-t/T1) 0; 0 exp(-t/T2)];

z_mat=zeros(size(M));

z_mat(:,1)=M_0*(1-exp(-t/T1));

M_back=M*bloch+z_mat;

function M_back=dephase_function(M,deph_fraction,start,offres); %function

of dephasing per TR, assuming 360 isochromats per voxel

M_back=zeros(size(M));

dephmat=[ones(size(M,1),1) exp( -j*offres*pi/180)

*exp(-j*[1-start:size(M,1)-start]’ *deph_fraction*2*pi/(360)

)];%size(M,1)) ];

M_back=M.*dephmat;

function M_back=pulse_function(M,angle,phase); %function for RF-pulse

% see Liang/Lauterbur page 82

M_temp=[real(M(:,2)) imag(M(:,2)) M(:,1)];

phase=phase*pi/180;

angle=angle*pi/180;

puls_temp=[(cos(angle)*sin(phase)*sin(phase)+cos(phase)*cos(phase))

(sin(angle/2)*sin(angle/2)*sin(2*phase)) -(sin(angle)*sin(phase));

(sin(angle/2)*sin(angle/2)*sin(2*phase))

(sin(phase)*sin(phase)+cos(angle)*cos(phase)*cos(phase))

(sin(angle)*cos(phase));

(sin(angle)*sin(phase)) -(cos(phase)*sin(angle)) (cos(angle));];

M_back_temp=M_temp*puls_temp’;

M_back=[M_back_temp(:,3) M_back_temp(:,1)+j*M_back_temp(:,2)];
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Listing 11.4: Parameter setup for the in Vivo measurement with the SATM Sequence.

param_seq.TR = 5000e-3; % s

param_seq.nX = 128; %matrix size

param_seq.nEcho = 30;

param_seq.nSlices = 1;

param_seq.nSpokes = param_seq.nEcho*30;

param_seq.nDiffusionEcho = [1 6 11 16];

param_seq.fov = 250e-3; % m

param_seq.sliceThickness = 5e-3; % m

param_seq.sliceDist = 1*param_seq.sliceThickness; % m

param_seq.dG = 150e-6; % s

param_seq.dGdiff = 1500e-6; % s

param_seq.tdiffDead = 0e-3; % s

param_seq.tEx = 3e-3; % s

param_seq.TE = [9, 9.5, 10, 12]*1e-3; % s

param_seq.readoutTime = 4.8e-3; % s

%%

param_seq.invert_enc = false;

param_seq.disable_radial = false;

param_seq.disable_diff = false;

param_seq.cartesian_enc = false;

param_seq.scanner = ’prisma ’;
param_seq.diff = ’z ’;
%%

param_seq.verbose = 1;

param_seq.display = 0;

param_seq.write = 1;

%%

param_seq.filen = [ ’Experiments ’, filesep, ’20210629_rachel ’, filesep,

’setup ’, filesep, ’InVivo30 ’];
[seq,param_sim] = main_seq(param_seq);
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