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Zusammenfassung

Die dreidimensionale Struktur des Genoms findet zunehmend Beachtung in der Er-
forschung von regulatorischen Mechanismen in eukaryotischen Zellen. Methoden zur
Messung der Expression wie RNA-Seq können die Genaktivität anzeigen, aber sind nicht
dazu geeignet zu erklären, welche Faktoren die Genregulierung beeinflussen. Die Epi-
genetik, und im speziellen die Chromatinstruktur, bietet einen Erklärungsansatz für die
biomedizinische Forschung an, welche Faktoren die Regulation beeinflussen. Hierbei sind
die Interaktionen von Enhancer-Promotern ein Hauptkonzept zum Verständnis der Regu-
lation von Genen. Es bedarf einer Bestätigung mittels biomedizinischen Laborverfahren,
ob zwei DNA-Regionen wirklich miteinander interagieren. Ohne diese Bestätigung
ist die Interaktion von Enhancer-Promotorn nur eine Interpretation der vorliegenden
Daten. Die Feststellung der Chromosomen-Konformation (chromosome conformation
capture (3C)) ist ein Verfahren, mit welcher räumlich nahe DNA-Regionen gemessen
werden können. 3C-basierte Verfahren benötigen aufgrund der Zweidimensionalität
gerade im Vergleich zu eindimensionalen Verfahren wie RNA-Seq oder ChIP-Seq einen
quadratischen Faktor der zu erzeugenden DNA-Sequenzen, um eine gleiche Datenab-
deckung zu erreichen. Hi-C ist hierbei das Verfahren zur Analyse des gesamten Genoms;
es ist aber aufgrund der hohen Kosten nicht geeignet, die nötige Read-Coverage für
spezifische Regionen im Regelfall bereitzustellen. Von Hi-C abgeleitete Verfahren wie
capture Hi-C oder HiChIP sind aufgrund der Fokussierung auf vordefinierte Regionen
wesentlich günstiger und stellen diese Spezifität bereit, sie benötigen aber wiederum
eigene Analysemethoden. Hi-C erzeugt immer nur eine über mehrer Millionen Zellen ku-
mulierte Datenmenge, zur Untersuchung von individuelle Zellen wurde die Erweiterung
single-cell Hi-C entwickelt. Es erweitert die Analysemöglichkeiten hin zur Untersuchung
von Unterschieden in der Chromatinstruktur von verschieden Zelltypen bzw. Stadien
des Zellzykluses.

Die Analyse von Hochdurchsatz-Sequenzierungsdaten erfordert spezialisierte Methoden.
Im Rahmen dieser Dissertation wurden für 3C sowie daraus abgeleitete Techniken ver-
schiedene Analysemethoden und Vorgehen entwickelt. Ein Fokus lag hierbei auf Hi-C,
capture Hi-C und single-cell Hi-C für welche Methoden zur besseren Analyse beigetra-
gen wurden; unter anderem die Anpassung an molekularbiologische Neuerungen, dem
Verbessern von Datenaustauschmöglichkeiten und der gezielten Komplexitätsreduktion
in der Benutzung der Software. Die primäre Benutzergruppe der Analysesoftware -
biomedizinische Forscher - haben oftmals keine grundlegenden Informatikkenntnisse.
Die Bereitstellung der Software erfolgt über entwicklerseitige Verteilungskanäle wie den
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Paketmanager ’Conda’; des Weiteren wird die Analysesoftware ’HiCExplorer’, ’scHiC-
Explorer’ und ’pyGenomeTracks’ über einen Webserver im Rahmen von Software-as-a-
Service (SaaS) angeboten. Darüber hinausgehend wird die Software auch per Docker-
Container bereitgestellt. Dies löst das Problem der exakten Reproduzierbarkeit von
Analysen und der Softwarearchivierung. Auch ermöglichen Container einen schnellen
Einsatz von Software in Cloud-Umgebungen, wie es im Hintergrund für SaaS oftmals
notwendig ist.

In dieser Dissertation wurde ein Algorithmus zur DNA-Schleifenerkennung in Hi-C
Daten entwickelt, der auf kontinuierlichen negativen Binomialverteilungen basiert. Des
Weiteren wurde eine Methode zur Detektion von differenziellen topologischen assozi-
ierten Domänen (TADs), oder auch globale Vergleichsmethodiken wie der Vergleich des
Verhältnisses von Kontakten kurzer und weiter genomischer Distanz, erstellt. Außerdem
wurde eine Software zur Visualisierung von Hi-C, aber auch anderer genomischer Daten
programmiert. Tools zur Analyse der Qualität der vorliegenden Hi-C, capture Hi-C und
single-cell Hi-C Daten wurden erweitert, in bestehende Software integriert oder neu
entwickelt.

Eine Erkennung von signifikanten respektive differenziellen DNA-Interaktionen, wie
sie beispielsweise für Enhancer-Promoter DNA Interaktionen vorkommt, wurde aus-
gearbeitet. Der wesentliche Beitrag im Feld der single-cell Hi-C-Datenanalyse ist die
Entwicklung eines Dateiformates zur effizienten Speicherung von single-cell Hi-C Daten.
Es wurde eine Methode basierend auf approximativen k-nächste Nachbargraphen zur
Dimensionsreduktion und Clustering von hochdimensionalen single-cell Hi-C Daten
entworfen.
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Abstract

The three-dimensional structure of the genome has a rising impact in the research to
understand the regulatory mechanisms in eukaryotic cells. Expression-based methods
like RNA-Seq can show if a gene is active or inactive; however, they cannot explain
why the gene is regulated in this specific way. The chromatin structure, an epigenetic
property, is the focus of biomedical researchers to explain the factors involved in the
regulation. Enhancer and promoter interactions are one key concept to understand the
regulation of genes. However, without wet-lab techniques providing evidence of the
interaction of two specific DNA regions containing the enhancer and promoter regions,
it is only an interpretation of the data. Chromosome conformation capture (3C) is a
technique that can capture the spatial closeness of DNA regions; it is essential to mention
that the interaction of these regions is only an interpretation of the spatial closeness. 3C
and its derivatives like Hi-C are based on a two dimensional data structure and require,
compared to one-dimensional techniques like RNA-Seq or ChIP-Seq, a squared factor
of reads for a similar coverage. Hi-C is a genome-wide approach and is the method of
choice for coarser analysis; however, it lacks a high read coverage due to the protocol’s
economic costs. Specialized but cheaper approaches like capture Hi-C or HiChIP fill this
gap but require different analysis methods. Furthermore, Hi-C uses up to a million cells
for one sample generation, resulting in an accumulated data profile. To overcome this,
single-cell Hi-C exists and provides the foundation to analyze the differing chromatin
structure of cell types respectively cell cycles.

The analysis of high-throughput sequencing data requires specialized algorithms and
methods. In this dissertation, different analysis approaches to analyze chromosome
conformation data (3C) have been developed. A particular focus was the 3C derivatives
Hi-C, capture Hi-C, and single-cell Hi-C, where improved analysis methods, the adaption
of new developments in the wet-lab protocols, the improved data exchange options,
and a complexity reduction of the analysis pipeline were contributed. The target
users of a Hi-C data analysis software are biomedical researchers without knowledge
in computer science. The software has been distributed via package managers like
’Conda’, and a web server, the Galaxy HiCExplorer, was provided to make the software
HiCExplorer, scHiCExplorer, and pyGenomeTracks accessible via the software-as-a-
service approach. The developed software is also provided as a Docker container,
solving software reproducibility and archiving with all its dependencies, and enables
fast usage in a cloud environment.
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In this thesis, I developed a chromatin loop detection algorithm based on continuous
negative binomial distributions for Hi-C data. Furthermore, algorithms for a differential
analysis of TADs or global comparisons like short-to-long range contact ratios have
been created. Visualization options have been programmed for both the Hi-C data
itself, as well as to integrate Hi-C with other genomic data. Contributions have been
made to extend or integrate quality control tools; unique quality control methods for
capture Hi-C and single-cell Hi-C have been added. A method to detect and analyze the
large scale of point-to-point interactions, i.e., enhancer-promoter interactions, in the
context of capture Hi-C and HiChIP was designed, including features for significance and
differential detection. The major contribution to single-cell Hi-C data was by creating a
specialized file format to improve the interoperability of single-cell Hi-C experiments. A
method to cluster high-dimensional single-cell Hi-C data using approximate k-nearest
neighbor graphs was implemented.
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Introduction 1
Regulatory mechanisms of gene expression are essential in eukaryotic organisms and
are responsible for cell differentiation, the accurate response to external stimuli, or cell
processes like mitosis. Misregulation of genes is considered as a significant factor for
diseases like cancer or diabetes, involving a change or mutation in transcription factors,
non-coding RNA (ncRNA), or the chromatin regulation and therefore its accessibility
[1]. The most common approach to determine gene expression is by measuring the gene
expression’s product - the occurrence of messenger RNA (mRNA) with modern high-
throughput sequencing techniques, e.g., RNA-Seq. Based on this technique, differential
expression for a gene can be determined by comparing the expression level with wild-
type samples. RNA-Seq can be a method to investigate the impact of medication in
up- or down-regulating gene expression of a particular gene or a group of genes. The
expression of genes is regulated by the binding of transcription factors (TF) to specific
DNA sequences in the local environment of the gene. In general, this local environment
is defined by the single dimension of the DNA sequence. However, in reality DNA
exists in a three-dimensional space, and therefore not only genomic distance but also
spatial distance should be taken into account. To be more precise, the regulation of
the transcription process of DNA to RNA by the RNA polymerase is influenced by the
interaction of the enhancer and promoter region upstream of the transcription start site
(TSS). For the interaction of the enhancer and promoter region, several transcription
factors are involved, and, caused by the distance of the enhancer and promoter region,
the DNA must be bent in the three-dimensional space. The proximity enables the
RNA polymerase to bind to the DNA and to transcribe the genetic information. In this
context, the role of the chromatin structure in the transcription process and thereby
the three-dimensional structure of DNA in the cell nucleus attracted the attention of
researchers [2, 3, 4]. For example, the cause for a disease like the Cooks syndrome [5,
6] can be explained by a higher expression profile of KCNJ2; however, the cause for
the higher expression remains unclear. An investigation of the DNA sequence shows a
duplication of the KCNJ2 region close to the following gene, SOX9, which leads to a
different three-dimensional structure of the chromatin. The first, wild-type KCNJ2, is
controlled by its regulatory elements; however, the second, new, KCNJ2 is controlled by
the copied regulation sequences of the downstream SOX9 gene [7].

To measure the three-dimensional chromatin contacts, Dekker et al. introduced in 2002
the ’chromosome conformation capture’ (3C) technique [8]. 3C allowed for the first
time to crosslink two DNA fibers of distant loci if they are close in the spatial space;
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the technique’s limitation was a restriction for two preselected DNA sequences (’one
vs. one’). Simonis et al. [9], and Zhao et al. [10] developed independently from
each other the very similar techniques ’Chromosome conformation capture-on-chip’ and
’Circular chromosome conformation capture’, or 4C, allowing to measure the interactions
of one preselected region with the whole genome (’one vs. all’). It was followed by
’Chromosome conformation capture carbon copy’ (5C) in 2006 from Dostie et al. [11]
enabling the capture of multiple regions with each other (’many vs. many’) and finally, in
2009, Lieberman-Aiden et al. introduced the genome-wide high-throughput sequencing
derivative of 3C, Hi-C [12] (’all vs. all’). The advent of the 3C based sequencing methods
unveiled multiple organizational structures of the DNA in the three-dimensional space:
The euchromatin and heterochromatin associated open and closed compartments (A/B
compartments) [12], topological associated domains (TADs) [13] and DNA loops [14].
It confirmed the well-known separation of the genome in chromosomes [12]. Based
on Hi-C, different and specialized high-throughput approaches have been developed:
capture Hi-C [15] to detect enhancer-promoter interactions, single-cell Hi-C [16] to
examine the chromatin conformation during mitosis and the differences of cell types
or HiChIP [17] to detect chimeric protein binding sites. The Hi-C protocol has been
improved in an ongoing process, based on the initial work of Lieberman-Aiden [12]; Rao
et al. [14] introduced in situ Hi-C in 2014, and the Arima Hi-C kit1, using two restriction
enzymes, was available in 2018.

The data analysis of the Hi-C protocols introduced above requires multiple consecutive
stages. First, the raw sequencing data must be quality controlled for read errors, be
trimmed if applicable, or returned to the sequencing facility if the data is faulty. Next,
the raw reads must be mapped to a reference genome in a chimeric way caused by the
Hi-C protocol’s specificity. Given the raw data, a two-dimensional interaction matrix
with an additional quality control concerning the chimeric reads is created. Based
on this interaction matrix, which is the primary Hi-C data structure, data correction,
A/B compartments, TADs, DNA loops, or differential analyses of A/B compartments,
TADs, loops, or predefined matrix regions can be computed. The two-dimensional
representation as an interaction matrix increases the data volume by a quadratic value
compared to one-dimensional genomic data. To obtain the same read coverage per
position in a Hi-C data structure compared to one-dimensional data like RNA-Seq, a
higher read number is required: for example RNA-seq requires 20 - 40 million reads,
whereas for Hi-C 400 - 1600 million reads are usually recommended. The higher read
number leads to significantly higher costs to run the Hi-C experiments and makes the
computation with Hi-C data resource intensive.

The software for quality control, trimming, and mapping are generic for most high-
throughput sequencing data and can be used for Hi-C data with minor adjustments. The
specific software stack for Hi-C data analysis starts with the creation of the interaction

1https://arimagenomics.com/
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matrix. Much software in the Hi-C data analysis field is specialized to solve precisely
one computational problem, for example, Gothic [18] focuses on bias removal and
the identification of accurate contacts, cLoops [19] on loop calling, CHiCAGO [20]
on capture Hi-C analysis, or particular clustering of single-cell Hi-C data (scHiCluster)
[21]. Unexpectedly, much software does not provide the first steps of the analysis
pipelines: the creation of the interaction matrix from raw data, the quality control of the
chimeric reads, the correction with methods like KR [14, 22] or ICE [23] and lack of
essential matrix transformations. The data formats of the interaction matrix differ, are
not following any standard, are sometimes for "human recognition"2 implemented as a
dense matrix stored in a text file, lack proper documentation (e.g., HiCorrector [24]), or
is presented as a screenshot of an excel table3. Also, the visualization of Hi-C data and
its integration with other genomic data is often not available, making it unnecessarily
difficult to create plots to gain insights into the data.

Another aspect is the run time and memory performance, which affects whether the
software can be executed on the currently available computers. Many of the above-
listed programs are designed for low-resolution Hi-C data, e.g., a 1 megabase pair (Mb)
resolution matrix. 1 Mb means that 1 million base pairs are considered as a single data
point; for example, with the mouse genome and its 2.7 gigabase pairs, a 1 Mb matrix
would have (2700× 2700) dimensions. However, analysis software like Homer [25] or
HiCorrector expects a text file with a dense matrix; for 1 Mb, this might work, but a
10 kilobase pair (kb) resolution matrix would have (270000× 270000) dimensions and
limits the usability of the software.

The sustainability of research software is an important aspect. In general, software
sustainability, preservation, and archiving are key aspects for long-term software-driven
research as we have it today. It is highly problematic if the software is not maintained
anymore as soon as the related original paper is published, making the software in many
cases quickly unusable because of dependency updates, unfixed bugs, or hard-coded
paths. Approaches to solve this are complex, especially if the full stack of dependencies
is considered. Not only the obvious dependencies like other APIs in the direct application
environment but also dependencies like the operating system or the specific hardware
platform need to be considered. Trivial changes in the software development process
already make some progress to solving these problems, for example publishing the
source code and using an open-source license, listing the direct dependencies, and
writing software in a reusable way. More complex solutions are containers (e.g. Docker)
or virtual machines [26].

The sustainability of research software also contributes to the reproducibility of data
analysis. Modern data analysis requires continuous software development. Consequently,

2https://github.com/jasminezhoulab/Hi-Corrector/blob/master/Manual_HiCorrector_1.2.pdf page 4,
section 1

3Homer software: http://homer.ucsd.edu/homer/interactions/HiCmatrices.html
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researchers need to publish the used mathematical methods, algorithms and the particu-
lar implementation, its source, and the version of the software itself and its dependencies.
Data provenance is a key concept to achieve reproducibility of data analysis; otherwise,
a reproduction of a published data analysis might lead to different results. The version
numbers and specific implementation is essential to trace back an error in the analysis
which an implementation bug might cause. To publish the source code of the software is
not sufficient because software nowadays has always dependencies, and these are avail-
able for different CPU platforms or might use in the backend different implementations
depending on what hardware is available or which compile flags have been used. For
example, TensorFlow’s machine learning library comes with a regular, non-optimized
version, a version supporting SSE instruction set, and a version supporting GPUs with
Nvidia’s CUDA. All three implementations might have a different behavior on specific
details, for example when rounding floating numbers or have different bugs in their
different code paths. Unfortunately, this can all lead to differing computation results and
might influence downstream the decision if, e.g., an expression of a gene is considered
as differential or not. If the method of how the result is computed with all mentioned
configurations is unknown, this might lead to difficulties in the review process or, even
worse, to publishing wrong results. The analysis workflow is complicated, many tools
are involved in the process, and several parts of the analysis pipeline might need to be
run several times by the researchers to find the correct parameter setting for the specific
data. To keep track of all configurations and results is daunting and a potential source
for human-introduced errors. A solution for this is a software-driven approach which
can, first, protocol the used software, the dependencies, and their versions; second, store
every intermediate step and results with their settings in a digital ’lab-notebook’; third,
be able to publish the first two points in a clear organized and online accessible way;
and fourth, provide the option to re-run every step in the analysis with the software
versions available at the time of the analysis and compare it to newer versions.

1.1 Thesis outline

This dissertation focuses on the development of approaches to analyze high-throughput
sequencing chromosome conformation capture data. The Hi-C data analysis software,
HiCExplorer, was initially designed by Fidel Ramírez of the Max-Planck-Institute for
Epigenetics and Immunobiology Freiburg. It was maintained and further developed
during this thesis. Moreover, the infrastructure for a user-friendly and reproducible
usage of HiCExplorer was implemented by providing Conda packages and a Galaxy-
based web server, available under https://hicexplorer.usegalaxy.eu. Modules for
capture Hi-C data analysis have been added, and the single-cell Hi-C data analysis
software scHiCExplorer was written throughout this thesis. Besides providing the analysis
software suite, a method to cluster single-cell Hi-C data on high-resolution interaction
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matrices and a new single-cell Hi-C data format have been designed, implemented, and
published. Also, the software pyGenomeTracks to create software-driven, workflow-
enabled visualization of genomic data was designed and implemented.

1.2 Note on publications

The results shown in this dissertation have been published in various journals:

• Joachim Wolff, Vivek Bhardwaj, Stephan Nothjunge, Gautier Richard, Gina Ren-
schler, Ralf Gilsbach, Thomas Manke, Rolf Backofen, Fidel Ramírez, Björn Grüning
Galaxy HiCExplorer: a web server for reproducible Hi-C data analysis, quality
control and visualization
Nucleic Acids Research, Volume 46, Issue W1, 2 July 2018, Pages W11-W16 [27]

• Joachim Wolff, Leily Rabbani, Ralf Gilsbach, Gautier Richard, Thomas Manke,
Rolf Backofen, Björn Grüning
Galaxy HiCExplorer 3: a web server for reproducible Hi-C, capture Hi-C and single-
cell Hi-C data analysis, quality control and visualization
Nucleic Acids Research, Volume 48, Issue W1, 02 July 2020, Pages W177-W184
[28]

• Joachim Wolff, Rolf Backofen, Björn Grüning
Robust and efficient single-cell Hi-C clustering with approximate k-nearest neigh-
bor graphs
Bioinformatics. Accepted on 19 May 2021. DOI: 10.1093/bioinformatics/btab394
[29]

• Joachim Wolff, Nezar Abdennur, Rolf Backofen, Björn Grüning
scool: A new data storage format for single-cell Hi-C data.
Bioinformatics, Volume 37, Issue 14, 15 July 2021, Pages 2053–2054 [30]

• Lucille Lopez-Delisle, Leily Rabbani, Joachim Wolff, Vivek Bhardwaj, Rolf Back-
ofen, Björn Grüning, Fidel Ramírez, Thomas Manke
pyGenomeTracks: reproducible plots for multivariate genomic data sets
Bioinformatics. Volume 37, Issue 3, 1 February 2021, Pages 422–423 [31]

1.2 Note on publications 11



1.3 Note on software

The software written during this thesis is available via multiple channels. First, the
source code repositories are hosted on GitHub: HiCExplorer4, HiCMatrix5, pyGenome-
Tracks6, scHiCExplorer7 and sparse-neighbors-search8. Second, the software is present
with multiple versions on the Bioconda channel of Conda9; and as a container via
BioContainers10. Third, the webserver Galaxy HiCExplorer is available under https:
//hicexplorer.usegalaxy.eu, and the HiCExplorer, scHiCExplorer, and pyGenome-
Tracks Galaxy wrappers are available as source code11 and on the Galaxy ToolShed12.
All HiCExplorer and scHiCExplorer tools on https://hicexplorer.usegalaxy.eu have
been executed 14,412 times, and 1199 times for pyGenomeTracks (status of mid-April
2021); the Galaxy HiCExplorer tool suite was downloaded 332 times from the Galaxy
ToolShed, scHiCExplorer tool suit four times, and pyGenomeTracks 413 times (status
of early May 2021). HiCExplorer has been downloaded 59,526 times from Conda,
scHiCExplorer 490 times, pyGenomeTracks 24,157 times, and sparse-neighbors-search
8074 times (status of early May 2021).

1.4 Impact on publications

The Hi-C data analysis software HiCExplorer was used in multiple, high-ranked publica-
tions, sorted by the journals impact factor (IF) of 2018 according to bioxbio.com13. The
presented publications represent the status of April 2021:

• Chen et. al. Key role for CTCF in establishing chromatin structure in human
embryos. Nature. 2019. [32] (IF 43.070)

• Samata et. al. Intergenerationally Maintained Histone H4 Lysine 16 Acetylation Is
Instructive for Future Gene Activation. Cell. 2020. [33] (IF 36.216)

• Xie et. al. Biased gene retention during diploidization in Brassica linked to
three-dimensional genome organization. Nature plants. 2019. [34] (IF 12.109)

4https://github.com/deeptools/HiCExplorer
5https://github.com/deeptools/HiCMatrix
6https://github.com/deeptools/pyGenomeTracks
7https://github.com/joachimwolff/scHiCExplorer
8https://github.com/joachimwolff/sparse-neighbors-search
9https://anaconda.org/bioconda/hicexplorer

10https://quay.io/repository/biocontainers/hicexplorer?tab=tags
11https://github.com/galaxyproject/tools-iuc
12https://toolshed.g2.bx.psu.edu/
13https://www.bioxbio.com
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Background 2
2.1 Biological background

2.1.1 DNA, RNA, and proteins

Deoxyribonucleic acid (DNA) was first discovered by Friedrich Miescher in 1871 [43],
but the specific function of DNA was unknown. Nucleic acid was suspected to be the
hereditary material for all living organisms since the early 20th century. It took Oswald
Avery’s experiments in 1944 to explicitly identify the deoxyribonucleic acid [44]. The
DNA is located in the cells of eukaryotes, bacteria, and archaea; for eukaryotes, it is
mainly located in the cell nucleus. The DNA is a polymer molecule that consists of
four nucleotides, adenine (A), cytosine (C), guanine (G), and thymine (T) (Figure 2.1).
The nucleotides have a pentose ring with an attached base (Figure 2.2 bottom, blue
and green) and on 5’ a phosphate group is attached (Figure 2.2 bottom, purple). The
DNA is a polymer of the individual nucleotides, forming a nucleotide chain based on
the sugar-phosphate bonds (Figure 2.2 top right). In 1953, James Watson and Francis
Crick published, based on x-ray experiments of Maurice Wilkins and Rosalind Franklin
[45, 46, 47, 48, 49], the structure of the DNA: a two-stranded double helix (Figure 2.2
left). The sugar-phosphate bonds are the backbone of the structure, and the nucleotides
are oriented inwards, bonding to the other strand’s nucleotides by hydrogen bonds
(Figure 2.2 right). The hydrogen bonds form between adenine and thymine or cytosine
and guanine. The order of A-T and C-G combinations are encoding for genes, and
therefore DNA is also called the blueprint of life.

Ribonucleic acid (RNA) is, in contrast to DNA, single-stranded, has a ribose instead of a
2-desoxyribose as a pentose ring, and instead of thymine, it contains the nucleotide uracil
(Figure 2.1e). In eukaryotes, the RNA is created inside the cell nucleus by transcribing
the DNA with the RNA polymerase. It is an intermediate product of the gene expression
process and, in its form as messenger RNA (mRNA), the base for protein synthesis. The
role of RNA in the cell is more complex; non-coding RNAs (ncRNA) which do not encode
for protein genes play essential roles. Examples are ribosomal RNA (rRNA), transfer
RNA (tRNA), small nuclear RNA (snRNA), or long non-coding (lncRNA). The different
subtypes have a role in gene regulation, polypeptide creation, or chromatin folding.

Proteins are the essential functional element of organisms and are made of amino acid
chains based on the information given by a specific mRNA to the ribosome complex. The
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(a) Adenine (A) (b) Cytosine (C) (c) Guanine (G)

(d) Thymine (T) (e) Uracil (U)

Figure 2.1.: The nucleotides adenine (A), cytosine (C), guanine (G), thymine (T) and uracil (U)
are the basis of DNA (A,C,G,T) and RNA (A,C,G,U).
For source and license information, please refer to the List of Figures.

Figure 2.2.: The structure of DNA. Top left: the double helix structure forming the DNA molecule.
Top right: A-T and G-C binding via hydrogen bonds, the sugar-phosphates of the
nucleotides compose the backbone structure of the DNA. Bottom: A nucleotide has
a central sugar group, with at 5’ attached phosphate group. To the sugar on 2’, a
base binds, determining the individual nucleotide.
For source and license information, please refer to the List of Figures.

amino acid chain itself folds in the cellular solvent into a complex, three-dimensional
structure and is in many cases combined with other proteins to protein complexes. The
role of proteins in organisms is a vast collection of functions. Proteins bind to other
molecules. For example, they can identify specific DNA sites and act as DNA or RNA
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polymerase, transcription factors, are antibodies of the immune system and can identify
specific bacteria or viruses, form the structure of a cell, or are catalytic elements. Proteins
have specific functional binding sites; this allows them to bind to their functional targets
specifically. A good overview of the specifics and properties of proteins can be found in
"Molecular biology of the cell" from Albert et al., chapter 4 [50].

The central dogma of molecular biology describes the information flow in the cell. First,
the DNA is accessed and replicated by the DNA polymerase (Figure 2.3 top). Replicating
the DNA is the basis for cell replication, cell division, and differentiation. Second, the
genetic information is first transcribed to RNA from DNA; the DNA is accessed by the
RNA polymerase and transcribes the gene information to RNA (Figure 2.3 middle).
The mRNA is used to create with the help of ribosomes the proteins by translation
(Figure 2.3 bottom). Three consecutive nucleotides encode for one amino acid; a shift
of just one position of the reading frame will create a different protein that is potentially
non-functional with harmful consequences to the organism.

Figure 2.3.: The central dogma of molecular biology: DNA replicates itself with the DNA
polymerase. The genetic information stored in the DNA is transcribed with the RNA
polymerase to different types of RNA to express genes. The special type messenger
RNA (mRNA) is afterward translated to proteins.
For source and license information, please refer to the List of Figures.
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2.2 Organization of DNA within the cell nucleus

The DNA double helix is a fiber of, considering humans, approximately two meters of
length [51] and it fits into each cell nucleus of a diameter of ∼ 10 µm [52]. This is
possible by a compact packaging of the DNA achieved by four packaging levels, called
primary to the quaternary structure [53]. The raw DNA double helix has a diameter
of 2 nm (Figure 2.5 1) and is wrapped around chromosomal proteins or more specific
histones. The DNA is wrapped around eight histones, H2A, H2B, H3, H4 are present
each two times. Figure 2.4b shows an electron microscope capture of this structure
[54]. These histones are also termed core-histones and form together with the DNA
a 11 nm fibre structure which is named nucleosome (Figure 2.5 2 and 3). Figure 2.4a
shows a microscope capture of this structure [54]. The nucleosome and histone H1 form
the chromatosome (Figure 2.5 4) and folds to a 30 nm fibre, the secondary structure
(Figure 2.5 5). Figure 2.4c shows a microscope capture of this structure [54]. The 30
nm fibre is the base for chromatin loops, a 300 nm fibre (Figure 2.5 6) and each six
loops form a rosetta, the tertiary structure. These are compressed and folded and form
a 250 nm wide fibre named chromatid, the quaternary structure (Figure 2.5 7). Two
connected so-called sister-chromatids form one chromosome (Figure 2.5 8).

Figure 2.4.: Electron microscope capture of chromatin in the cell. (a) Chromatin strings ’beads
on a string’. The beads are histone-DNA complexes (chromatosome); size marker
of 30 nm. (b) The DNA wrapped around the histone complex; size marker of 10
nm. (c) The 30 nm compacted chromatin structure; size marker of 50 nm.
For source and license information, please refer to the List of Figures.
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Figure 2.5.: DNA organization and structure in the cell nucleus. The two meter long DNA
molecule is compactly packed in four different levels enabling it to fit in the cell
nucleus of ∼ 10 µm diameter.
For source and license information, please refer to the List of Figures.

2.2.1 Epigenetics

The term epigenetics was introduced by Conrad Waddington in 1942 [55], using the
ancient Greek επι(epi) for ’on top of / upon / over’1 and ’genetics’. Waddington states
to be inspired by the word ’epigenesis’ going back to the Greek philosopher Aristotle;
however, the origin and connection of Aristotle and ’epigenesis’ are challenged by
current research [56]. Nevertheless, Waddington named a branch of biology, but the
understanding of epigenetics is different today, and the definition of the term changed
over time [57, 58]. Waddington’s understanding was ’interactions between genes and
their products which bring the phenotype into being.’[57, 58, 59]. The National Human
Genome Research Institute (NIH) of the United States defines epigenetics as a ’field

1https://www.wordreference.com/gren/%ce%b5%cf%80%ce%af
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of science that studies heritable changes caused by the activation and deactivation of
genes without any change in the underlying DNA sequence of the organism.’2. This
definition includes modifications on the DNA by the methylation of cytosine (5mC);
the post-translational modification of the histones of the chromatin with methylation,
acetylation, phosphorylation, ubiquitylation, and sumoylation; or, as introduced in
section 2.2, interaction, packing, and accessibility of the chromatin structure [60, 61].
Epigenetic processes explain how a zygote and all its daughter cells are based on the
same DNA but develop into different cell types; the epigenetic modifications of a cell
are inherited during mitosis. For example, diseases like some cancer types are linked to
hypomethylation of CpG islands [60, 61, 62]; paternal inheritance of autism in three
generations shows methylation changes in the sperm of the fathers [63], or schizophrenia
in the offspring of women who were malnourished in the first trimester of the pregnancy
[61]. Especially the last two examples provide insights into an inheritance of epigenetic
patterns to the offspring and that not only the raw DNA is inherited.

DNA methylation

The methylation of DNA is a regulatory mechanism to silence genes that is inheritable
and reversible. The DNA methyltransferase enzymes (DNMTs) are responsible for adding
methylation to the 5th position of the cytosine pyridine, called 5-methylcytosine (5mC).
The methylation is mostly present in CpG islands; however, the methylation upstream
in the promoter’s CpG islands is essential for an active gene expression. Methylation
of this region leads to a repression of the specific downstream gene. It prevents the
detection of the promoter region by the RNA polymerase and specific transcription
factors. Low methylation correlates to open chromatin, see mCHH and PC1 (positive
values) tracks in Figure 2.8 (Nothjunge et al. 2017 [64]). However, the methylation
of the gene bodies has the opposite effect. It was shown that the methylation of gene
bodies is correlated with the expression, but a demethylation causes a downregulation
[65]. The methylation is a reversible process, and it was shown that first, the removal
of DNMTs in human embryonic stem cells leads to a rapid cell death [66] and second,
hypo- and hyper-methylation of the DNA is a characteristic of cancer cells [67].

2https://www.genome.gov/genetics-glossary/Epigenetics
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Figure 2.6.: Chemical reaction mechanism of the methylation of Cytosin with DNMTs to 5-
methylcytosin (5mC).
For source and license information, please refer to the List of Figures.

Histone methylation

Chromatin is present in the cell in two forms: the open and accessible euchromatin, and
the more closed and denser heterochromatin. The euchromatin is accessible to the RNA
polymerase and transcription factors, and consequently, the genes can be expressed.
The heterochromatin is, due to its denser and more packed nature, not accessible,
and the regions located in the hetrochromatin are inactive. The modifications can be
methylation, acetylation, phosphorylation, ubiquitylation, and sumoylation of a specific
amino acid residue on the N terminus of the histone protein, e.g., methylation on the
lysines or phosphorylation on serine or threonine3 [60]; the different modifications of
the histones are visualized in Figure 2.7. The modifications of the histones are correlated
to the chromatin features; for example, H3K9me, H3K9me, or H3K27ac are correlated
to accessible regions; H3K27me3, or H3K9me3 to denser chromatin [68, 69]; see
Figure 2.8. The categorization of open and closed chromatin is a dynamic process and
depends on the histones’ modification. The modification pattern is inheritable; histones’
modifications are first removed and later added again during cell division. The density
of the chromatin changes during the cell cycle and can be studied with single-cell Hi-C.
Moreover, the euchromatin/heterochromatin division can be calculated out of the Hi-C
interaction matrix.

Figure 2.7.: Different modifications of histones H2A, H2B, H3 and H4 on the N terminus.
For source and license information, please refer to the List of Figures.

3https://www.abcam.com/epigenetics/histone-modifications
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Figure 2.8.: Top: Hi-C interaction matrix showing chromatin structure features like topological
associated domains (see section 3.1.2). PC1 The computed principal component 1
of a Hi-C interaction matrix. Positive values correlate to open chromatin, negative
values to closed chromatin. This is supported by ChIP-Seq data of modified histones
i.e. open chromatin by H3K36me3, H3K27ac, H3K4me1, H3K4me3 also by the
expression of RNA; closed chromatin by H3K9me3. mCpG shows the ratio of
methylation of the bases in the region, high methylated regions correlated with
closed chromatin, the regions with low methylation with open chromatin; the non-
CpG methylated regions (mCHH) and 5-hydroxymethylcytosine (5hmC) correlate
with open chromatin too.
For source and license information, please refer to the List of Figures.

Embryogenesis

After a sperm fertilize the oocyte, the zygote is the first cell in the developing process of
a new organism. It is a central scientific question how out of this one cell, many cells
with very different characteristics develop. The term epigenetics has its origins in the
research of the development of a phenotype, as discussed in the introduction of this
chapter, subsection 2.2.1. Embryonic Stem cells (ESC or ES cells) have a reduced or
loose chromatin structure compared to differentiated cells, heterochromatin-associated
histones present in differentiated cells like H3K9me2 are less present; the euchromatin-
associated histone H3K9ac decreases after the differentiation [70]. Chromatin structures
like compartments or TADs are not present in the zygote and its totipotent state; it seems
to reform with the change from totipotency to pluripotency [71]. It remains unclear if
the loss of the structure is a feature necessary for totipotency or is a product of chromatin
rearrangements. Genes associated with pluripotency are located in euchromatin, while
differentiation-associated genes are in heterochromatic regions. In differentiated cells,
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this is inverted; the pluripotency genes are in heterochromatin, the differentiation is
associated in euchromatin [70]. A deep understanding of epigenetic reprogramming
processes during embryogenesis will help understand the factors involved in reprogram-
ming and cell differentiation. With the knowledge, somatic cells can be reprogrammed
to pluripotent cells, some factors involved in this process are already known. Especially
in the context of a therapeutic usage, e.g., to replace or heal organs or damaged neu-
ral pathways, a medical use case is given. A current review of the developments in
embryonic stem cells is Hutchins et al. [71].

2.3 Transcription regulation

The mechanisms of regulating the expression of genes are one of the major aspects
of biomedical research. While all body cells have the same DNA, different genes are
expressed in different types of cells. The regulation can be separated into two parts:
First, the accessibility of the DNA for the RNA polymerase is controlled by methylations,
as explained in subsection 2.2.1. Second, the initiation of the transcription process by
the RNA polymerase is controlled by various mechanisms. In this context, a special
focus is on the enhancer-promoter interactions. Promoters are short DNA segments
upstream of the transcription start site (TSS) of a gene, while enhancers can be upstream,
downstream, or in between introns [72]. It was observed that the chances of binding
of the RNA polymerase to the TSS region and, therefore, a transcription of the gene is
higher if the enhancer and promoter region interact with each other [73]. In this process,
several factors are involved. A transcription activating protein (Figure 2.9 element 5)
binds to the enhancer region (Figure 2.9 element 2). The binding causes a bending
of the DNA and attracts mediator proteins, which help to make the contacts to the
promoter region (Figure 2.9 element 6 and 3). The contact helps the RNA polymerase
(Figure 2.9 element 7) to bind upstream of the gene to the transcription start site and to
start the transcription process. Enhancers are not exclusively involved in transcription
regulation; repressors and insulators need to be considered too. A crucial part of
understanding the regulation process is to know which enhancers interact with which
promoter. Enhancers are known to interact with promoters at greater genomic distances
and to bypass promoters of closer loci [72]. Moreover, the influence of mutations in
enhancer and promoter coding DNA regions on diseases or the evolution of species and
their changed interaction pattern is of high interest [74]. Hi-C can be used to measure
the contact between the enhancer and promoter regions; however, due to genome-wide
interaction detection, specialized Hi-C derivatives such as capture Hi-C are preferred for
this task.
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Figure 2.9.: Promoter - enhancer interaction for gene regulation. First: 1: DNA, 2: enhancer, 3:
promoter, 4: gene, 5: transcription activator protein, 6: mediator protein, 7: RNA
polymerase. Second: Transcription factor protein binds to the enhancer and starts
to bend the DNA. Third: Enhancer region is in spatial space to the promoter region
and recruits mediator proteins. Fourth: Spatial proximity of the transcription
activator protein and the mediator protein to the promoter regions enables binding
of RNA polymerase to bind downstream of the promoter sequence and to start the
transcription process.
For source and license information, please refer to the List of Figures.

2.4 The cell cycle

A vital aspect of every organism is to grow and renew itself; thus, replication of cells
with correct DNA inheritance is crucial. The term cell cycle describes a cell’s process
to replicate its DNA and divide into two daughter cells containing identical genetic
information. The life cycle of a cell is separated roughly into two phases: The interphase
with the gap phases G1, G2 and between them the synthesis or S-phase, and secondly, the
stages of mitosis or M-phase including prophase, prometaphase, metaphase, anaphase
and telophase (see Figure 2.10)[75]. Besides the two major phases, the resting phase
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or G0 can describe cells that no longer divide like certain muscle or neuronal cells. The
regulation of the cell cycle and therefore the transition of one phase to the next one is
controlled by checkpoints; for example, the restriction (R) point of the G1 phase must
be passed to start the DNA replication of the S-phase; other checkpoints are in G2 and
within the M-phase. The cell cycle starts in G1 after the mitosis, needs to pass the R point,
and replicates the DNA followed by G2. To start mitosis, the checkpoint at the transition
from G2 to mitosis needs to pass. The checkpoints have the role in guaranteeing that a
cell cycle phase is successfully passed before the next phase starts. For example, the DNA
must be identically replicated during the S-phase; an incomplete or erroneous replication
can lead to life-threatening implications for the organism. The checkpoints are regulated
by two classes of proteins, cyclins, and cyclin-dependent kinases. The stages of mitosis
lead to cell division. In the interphase, the chromosomes have been duplicated, and after
entering the first phase of the mitosis, the prophase, the chromatin starts to condense,
and the well-known shape of the two chromatids (see Figure 2.12) is evolving. In the
prometaphase, the nuclear membrane breaks, and the chromosomes start to relocate
to the former center of the cell nucleus; in the metaphase, the chromosomes line up
on one imaginary plane. Next, the chromosomes separate at the centromeres, and the
chromatids move to the opposite ends of the cell; this phase is named anaphase. At this
stage, it is guaranteed that the daughter cells inherit a complete chromosome set. Last,
the telophase and cytokinesis: the nuclear membrane forms for each daughter cells, the
chromosomes recondense to chromatin and end the mitotic phase of the cell cycle; the
interphase starts again.
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Figure 2.10.: The cell cycle in animals. The cell cycle is the process to duplicate a cell with the
identical set of chromosomes. It can be divided into the interphase with an active
metabolism and DNA replication (middle left G1, S and G2) and the mitotic (M)
phase where the cell actively separates into two daughter cells (from bottom right
prophase counter-clockwise to telophase and cytokinesis).
For source and license information, please refer to the List of Figures.
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2.5 Chromosome conformation capture

Chromosome conformation capture (3C) [8] and its successors 4C [9, 10, 76, 77],
5C [11] and Hi-C [12] are standard technologies to study the 3D conformation of
chromatin. Moreover, specialized deviates like capture Hi-C [15], single-cell Hi-C [16]
or combinations with other sequencing technologies like ChIP-Seq named HiChIP [17]
exists. The common point of all these technologies is to provide insights into the
processes involved in chromatin folding, gene regulation and cell differentiation.

Chromosome conformation capture (3C) is a protocol developed by Job Dekker et al. in
2002 [8]. It can capture two specific genomic loci if they are in close spatial proximity.
The capture of two DNA regions is called an DNA interaction. The model works by
applying consecutive steps: crosslinking two close spatial regions with formaldehyde,
digestion with a restriction enzyme, and an intramolecular ligation of the sticky ends is
applied on the digested DNA fragments. In the next step, the crosslinking is reversed,
and the ligated, chimeric DNA fragment can be detected with methods based on the
polymerase chain reaction (PCR); see Figure 2.11 3C. Dekker et al. used the restriction
enzyme EcoRI; however, today other restriction enzymes like HindIII, DpnII, or MboI are
used. Use of the three restriction enzyme has given good results in Hi-C experiments;
and they are routinely used in the wet-labs. The read resulting from the sequencing
process is a chimeric one; the forward and reverse read must be mapped independently.
The combined two independent locations define the interaction between two regions.

The 4C method was developed based on 3C method to capture one genomic loci’s
interaction with all other possible genomic loci. Simonis et al. [9], Zhao et. al. [10],
Lomvardas et. al. [76] and Würtele et. al. [77] independently developed four similar
4C techniques; a detailed comparison is provided by Sati&Cavalli [78]. Simonis et al.
is the most widley used approach and extends the 3C protocol by applying a second
digestion step by a restriction enzyme, which has a higher cleavage efficiency and a
different recognition motif. Following this step, a DNA circle formation of the sticky
ends of the second restriction enzyme cut sites is enforced; see Figure 2.11 4C.

Chromosome conformation capture carbon copy (5C) was developed in 2007 by Dostie
et al. [11] and extends the 3C protocol from Dekker et al. [8] to be able to perform
a ’many-vs-many’-loci chromatin contacts detection. The extension adds ’[...] highly
multiplexed ligation-mediated amplification (LMA) to first copy and then amplify parts
of the 3C library[...]’ [11] to the regular 3C protocol before the PCR sequencing or
microarray detection is applied; see Figure 2.11 5C.

The high-throughput variant of the 3C technologies is the Hi-C protocol by Lieberman-
Aiden from 2009 [12]. It can capture in an unbiased approach all genome-wide interac-
tions of all genomic loci. The protocol extends 3C by adding biotin after the digestion to
mark the cut sites before they are ligated. After a sonication step to break the ligated
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DNA into smaller pieces, the sequences labeled with biotin are pulled by a streptavidin
bead. Streptavidin and biotin have a highly selective and strong bonding, and are often
used to mark and select DNA sequences [79, 80]. Only chimeric reads are amplified
with the PCR; see Figure 2.11 Hi-C. The Hi-C protocol was improved in 2014 by Rao et
al. [14] by applying crucial steps in situ; therefore, the method is called in situ Hi-C.
In 2018 the Arima Hi-C protocol (Arima Genomics) improved in situ Hi-C by adding a
second restriction enzyme to the digestion phase. The usage of two different restriction
enzymes creates a higher number of restriction site combinations and this is assumed to
lead a higher number of valid reads [81].

Hi-C can show the contacts of all genomic loci; however, the interaction values are often
too small to detect specific interactions. Due to the interaction matrix’s squared nature,
the growth factor in increasing the read coverage is quadratic. Moreover, if only specific
interactions should be investigated in detail, it is a considerable overhead to sequence
the entire genome. With capture Hi-C, it is possible to capture predefined genomic
loci interactions with all other possible reference genome locations. In contrast to 4C,
multiple locations with high-throughput sequencing can be analyzed at the same time.

Hi-C uses up to millions of cells (e.g. Rao et al. [14] with two to five million cells)
to create the chimeric reads for one interaction matrix. This accumulation has the
disadvantage of getting only a cumulative insight of the Hi-C contacts and does not
differentiate chromatin dynamics and, therefore, interactions during a cell cycle. Also,
differentiation between cell types and their specific interaction patterns is less mean-
ingful if a accumulation over many cells is investigated. It was shown by microscope
technologies like FISH that chromatin is highly dynamic (for example, [83, 84]); the
cumulative measured data present in Hi-C and derived structures might be statistical
artifacts. Nagano [16] introduced in 2013 the first single-cell Hi-C protocol by extending
the Hi-C protocol as follows: After the ligation step, the individual cell nuclei are selected
under the microscope and placed in individual tubes. On each cell, the regular Hi-C
protocol with reversing the crosslinking and pulldown step is performed. After this
procedure, the pulled fragments are digested a second time with a different restriction
enzyme, and per cell, unique three basepairs long Illumina adapters are added (so-called
barcodes). Based on the unique barcodes per cell, the reads per cell can be selected in
silico. Single-cell Hi-C protocols are regularly improved and extended to increase the
number of cells or the number of reads [85, 86, 87, 88, 89].
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Figure 2.11.: Overview of 3C methods and derivatives. Upper left: Crosslinking of spatial close
proximities and digestion with a restriction enzyme. The restriction enzymes cut
sites (’sticky ends’) are ligated and the crosslinks are removed. Depending on
the 3C derivative, additional steps are performed: ChIA-PET preselects protein
of interest directly after the crosslinking (see [82] for details); Hi-C adds biotin
before the ligation to mark the restriction cut sites to be able to select them for
PCR sequencing; 4C adds a second digestion step; 5C copies and amplifies the
crosslink removed chimeric sequence; and Capture-C sonics the chimeric DNA
sequences and captures regions of interest by special designed oligonucleotide
sequences.
For source and license information, please refer to the List of Figures.
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2.6 Structural DNA elements

Chromosomes are the highest structural organization form of the compacted DNA within
the cell nuclei. It is composed of the consistent DNA thread wrapped around histones and
compacted (compare to Figure 2.5). The well-known image of clear dense chromosomes
in the nuclei is only present at mitosis [90] (Figure 2.12), but the majority of the time,
the cell cycle is in another phase. For a long time it remained unresolved if chromosomes
have a territory (as suggested by Carl Rabl in 1885 [91]) or are wildly mixed within the
nucleus. Cremer et al. [92] showed in 1982 that chromosomes have territories, this result
was confirmed by FISH experiments from Parada et al. in 2002 [93] (Figure 2.13 from
Bolzer et al. [94]). It was shown that the location of a chromosome remains at a similar
locus following cell division [95]. Hi-C contacts, represented in a Hi-C interaction matrix,
Figure 2.14d, show that each chromosome has a high intra-chromosomal interaction
frequency, but that the number of interactions drops significantly for inter-chromosomal
interactions. This supports the observations by Cremer and Parada that chromosomes
have a territory.

Figure 2.12.: Chromosomes in the cell nuclei in a compact form during mitosis.
For source and license information, please refer to the List of Figures.

The chromatin is categorized in euchromatin (open) and heterochromatin (closed) [96],
these two categories are also called A (open) and B (closed) compartments or A/B
compartments [12], because A/B compartments are correlated with known features
of euchromatin and heterochromatin. The differentiation is based on the biological
properties of these chromatin regions. The heterochromatin is dense-packed chromatin
mostly located at the centromere and telomere, repressing DNA transcription, while
euchromatin is more open, active for gene transcription, and contains gene-rich regions.
Both regions are defined by specific histone modifications and enrichments of proteins:
euchromatin has enriched H3K4me, while heterochromatin is enriched for H3K9me
and HP1α [96, 97]. Heterochromatic regions can influence neighboring euchromatic
regions and repress gene transcription [98]. Lieberman-Aiden et al. [12] showed that
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Figure 2.13.: Chromosomes in the cell nuclei. A: Wide-field microscopy using eight channels:
1. DNA counterstain, and the seven following use different fluorescent markers.
RGB image is a compilation of the seven fluorescent images. B: False color image
with the chromosome labels.
For source and license information, please refer to the List of Figures.

A/B compartments can be computed using the Hi-C interaction matrix, see section 3.1.2
and Figure 2.14c.

Topological associated domains (TADs) are regions at the main diagonal of the Hi-C
matrix with a triangular shape, covering high interacting regions of the chromatin
within regions with a median size of 880 kb [13], see Figure 2.14b. TADs are intra-
chromosomal regions where the boundaries have an enrichment of the 11-zinc finger
protein CTCF and cohesin. Their functional role in the gene regulation process is not
fully understood; studies like [7] showed the impact of TAD boundaries and its changes
to gene expression and therefore the influence of TAD structures to cause diseases;
however, other results challenge these findings [99]. Moreover, it is unclear if a gene
and regulating factors are within one TAD if the spatial proximity implied by the high
contact number results in physical proximity; and if this physical proximity is the cause
for activation of the transcription [100].

DNA loops are single point enriched regions in respective to their background and
represent enhancer-promoter interactions, gene loops, architectural loops or polycomb-
mediated loops [101] (Figure 2.14a). DNA loops are bound by CTCF and cohesin-
associated proteins [102], and their size is usually limited by a CTCF binding motif on
the DNA (CCGCGNGGNGGCA) [103] and its next inverted CTCF binding motif [14].
The role of DNA loops for the DNA structure and its functionality within the nucleus
is an open question. The singular point interactions are associated with enhancer-
promoter interactions. However, the strong correlation with CTCF and cohesin, which
are correlated to DNA repair responses, raises the question if observed loops are also
dynamic appearing locations indicating a DNA repair process. Both enhancer-promoter
and DNA repair responses need to be investigated with single-cell Hi-C data because
Hi-C is an accumulation over millions of cells. However, the resolution of single-cell
Hi-C needs to be improved first.
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Figure 2.14.: Structural DNA elements. a) A loop is a single enriched region in relation to its
local neighborhood. DNA loops are associated with enhancer-promoter interac-
tions, gene loops, architectural loops or polycomb-mediated loops. b) Topological
associated domains (TADs) are triangular shaped regions with a high interaction
frequency. c) A/B compartments are correlated with euchromatin and hetero-
chomatin. d) Chromosomes have their own territories within the cell nucleus
and correspond to the enriched intra-chromosomal contacts and very few inter-
chromosomal contacts.
For source and license information, please refer to the List of Figures.

32 Chapter 2 Background



2.7 Related software

Scientific research is based on the ability to recreate and reproduce experiments to prove
the researchers’ claims’ correctness or falsify them. In today’s data and software-driven
research, a problematic aspect is that in many cases, the used data analysis software
is not easily reusable because it may contain hard-coded paths, imports of undefined
dependencies, or uses outdated and possibly unavailable dependencies. Moreover, even
if a software is reusable, the identical versions of the software and its dependencies
must be used for an exact reproduction of published research results, but these are
often unknown. A newer version usually contains bug fixes, corrected methods, or
an API change and is no longer compatible. Another aspect is the desired user group
of bioinformatics software: biomedical and pharmaceutical researchers who are not
familiar with installation routines, the bash, solving dependencies, or even any kind of
programming. Biomedical researchers should focus on the data analysis itself and not
on how to get the software running.

2.7.1 Conda

The Conda package manager is a package manager to distribute and install software
of any programming language. Compared to classical package managers from the
Linux eco-system like apt, yum, or Pacman, Conda runs with user rights, supports
environments to separate installations, and enables the usage of multiple versions of the
same software. The ability to install software from all programming languages without
the need to compile on the end-users system, to install the software in any version that
was ever available and to install the software within the home directory, and therefore
not influencing the system-wide software, makes Conda a very useful package manager
for research applications. Conda enables researchers to publish software with well-
defined versions of the dependencies, which provides two benefits. First, the software
runs on a user system as the software developers intended it. Second, even years
later, a specific version of a software package, together with the required dependencies,
can be installed within minutes. With these properties, Conda contributes to a higher
reproducibility of data-based scientific research. In this thesis, the presented software is
available in the bioconda channel [104] of Conda, a widely used repository of Conda
packages, focusing on tools with an application in bioinformatics.
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2.7.2 Docker

Docker4 is a container technology and has its origins in cloud computing [105]. The idea
is to have a pre-configured software and data environment available with one command
and no further configuration, except the one-time installation of the Docker software on
the host system, is necessary. In contrast to virtual machines, it shares the host operating
system, making it lightweight and faster available. The benefits of using containers in
the distribution of scientific software are the possibility of pre-configuring the software
in the container, adding the data used for analysis, preserving and archiving the software,
and all its dependencies [106]. While the deployment via a package manager is suitable
for many users, it cannot guarantee identical versions of all dependencies or only with
quite some labor. However, once the software is installed in a container, it stays as it is,
even if it is reused multiple years later, and provides, therefore, an important platform
for sustainable and reproducible software-driven research.

2.7.3 Galaxy

The Galaxy project [107] is an open-source project focusing on making scientific software
accessible through a web browser-based interface. The goal hereby is to avoid user-sided
software installation, provide a trackable history of software runs, enable automated
workflow processing, and give the administrator of the Galaxy instance the power to
decide how many resources one tool can access. Galaxy is scalable; it can run self-
administered on a notebook, on a single small server in a lab, or run on a compute
cluster in combination with cluster schedulers like HTCondor. The trackable run histories
become beneficial for researchers in multiple manners: First, it serves as a work-notebook
protocolling each step of analysis, saves the used parameters and tool versions. The
protocolling is extremely helpful if many tools and parameters are used, as it can become
quite overwhelming and daunting to kept track of these by hand. Second, these histories
can be made public and shared, which helps reviewers of manuscripts or, in general,
researchers who want to know all the details of the analysis. Many of today’s published
articles lack precisely this; it is often the case that only the results are shown, but not
mentioned which software or in which versions and parameter settings they have been
used. Moreover, intermediate files are seldomly published. With publishing each step of
the data analysis, from the import of the raw data, all the used intermediate analysis
software, its parameters, and intermediate results, to the final results, scientific findings
become more trustworthy and less vulnerable to manipulations.

4https://www.docker.com/
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Chromosome conformation
capture analysis

3

3.1 Hi-C data analysis

Data processing and analysis of high-throughput sequencing data require complex
and highly individualized software-based approaches. Standardized tools can be used
only to a certain amount; usually, the investigation of the base pair calling probability,
the trimming of adapter sequences, or the mapping to a reference genome can be
accomplished. The specialized software HiCExplorer was developed in this thesis to
analyze Hi-C data. The following section summarizes the workflow for Hi-C data analysis
and the tools provided by HiCExplorer. It is based on a large extent on the publications:
Wolff et al. ’Galaxy HiCExplorer: a web server for reproducible Hi-C data analysis, quality
control and visualization’, 2018 [27]; Wolff et al. ’Galaxy HiCExplorer 3: a web server
for reproducible Hi-C, capture Hi-C and single-cell Hi-C data analysis, quality control
and visualization’, 2020 [28]; and Lopez-Delisle et al. ’pyGenomeTracks: reproducible
plots for multivariate genomic datasets’, 2021 [31].

3.1.1 Pre-processing

High-throughput sequencing data is generated by sequencing DNA or RNA with sequenc-
ing machines, which can sequence up to 1.8 tera base pairs in three days providing an
error rate of < 1% [108]. The sequenced reads are stored with a unique id, quality
information, and other metadata in text files; the most common file format is the FASTQ
format [109]. The first quality control step of the reads is to investigate the base-calling
quality with a tool like FastQC1. The quality score for each base pair is created by the
sequencing machine and uses the logarithmically transformed probability error named
Phred-Score [110, 111]:

Q = −10 ∗ log10P

The quality of the individual bases should be higher than a Phred-Score of 30, indicating
a correct detection of the base with 99.9%. The occurrence of a lower read quality
usually occurs at the start or end of a sequence. The lower quality might indicate
the non-removal of adapter sequences; the end sequences have a higher noise ratio

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Figure 3.1.: Hi-C data analysis workflow with HiCExplorer. Pre-processing: Required input
is in FASTQ file format, undergo a quality control with FastQC. Mapping of the
raw files with a mapping software of free choice, the tool hicBuildMatrix creates
the interaction matrix, the central data structure. The data can be normalized
and ligation effects be corrected. Analysis: HiCExplorer supports various analysis
methods e.g. to detect A/B compartments, TADs or loops. Moreover, methods to
compare matrices or to validate detected regions with orthogonal data is supported.
Visualization: The interaction matrix can be plotted with hicPlotMatrix, prede-
fined viewpoints (hicPlotViewpoint), correlations (hicCorrelate) or interaction ratios
(hicPlotSVL). Hi-C can be visualized integrated with other types of data stored in
bigwig or bedgraph file. Matrix manipulations: To remove problematic regions of
a matrix the tool hicAdjustMatrix can be used; or if the file format of the matrix
needs to be converted to a format of an alternative tool for Hi-C data analysis, the
tool hicConvertFormat provides this functionality.
For source and license information, please refer to the List of Figures.

depending on the sequencing machine. In both cases, it is recommended to remove
these base pairs from the sequences.

The sequenced reads for Hi-C are chimeric; therefore, the sequencing uses the pair-end
mode, sequencing the start (forward) and end (reverse) of a read. The forward reads
represent the genomic location A of a chimeric read and the reverse the genomic location
B. The order of the reads in the forward and reverse read file is the crucial relation of
the reads, associating each other. The reads’ chimeric nature is the fundamental concept
of Hi-C and must be kept in mind in all following pre-processing steps.
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After the first quality control of the reads, they need to be mapped to a reference genome.
Mapping is the computation of a read’s genomic location in a given reference genome,
and Hi-C data have to be mapped as single-end due to its chimeric nature. Mapping
software maps the forward strand and the reverse strand independently to the reference
genome, and if the two genomic loci are close to each other, the location is accepted for
the read. This principle helps to increase the accuracy of the mapping, but due to the
chimeric nature of the Hi-C reads, the forward and reverse read are of a large distance
and would be interpreted as faulty reads in pair-end mode. Software to map sequences
is for example HISAT2 [112], Bowtie2 [113] or BWA [114].

The mapped forward and reverse reads are used to create a Hi-C data analysis’s central
data structure: the contact matrix M . This matrix, also called interaction matrix, has
on the x- and y-axis the genomic locations, i.e., the value at position (i, j) counts the
occurrence of chimeric reads where the forward read was mapped to position i in the
reference genome, and the reverse read to position j.

The central data structure is a contact matrix M where the entries mi,j are the observed
contacts between the two loci i and j. The contact matrix is a squared and symmetric
matrix, |i| == |j|.

M =


m0,0 . . . m0,j

... . . .
...

mi,0 . . . mi,j

 (3.1)

The interactions of genomic loci are represented in the interaction matrix per genomic
region. A so-called binning is applied. The more subsequent genomic regions are
accumulated in one pixel of the matrix, the lower the so-called matrix resolution is. A
matrix with a resolution of 1 megabase pairs (Mb) covers a genomic range of one million
base pairs per bin, while a matrix with a resolution of 10 kilobase pairs (kb) covers only
10,000 base pairs per bin. In order to store the genomic position and range information
of a particular pixel a list of length i is used:

intervals = [(chr, start, end)0, ..., (chr, start, end)i] (3.2)

Therefore, each data point mi,j of the interaction matrix contains the interaction infor-
mation of the regions intervalsi and intervalsj . Certain factors restrict the resolution
of an interaction matrix. The first factor which heavily effects the resolution is the read
coverage. The fewer reads are available, the lower the interaction values per bin will be.
The matrix will be sparser and the explanatory power is less convincing. Second, the
Hi-C protocol also has a major influence on the resolution of the matrix. A per base-pair
level resolution is technically impossible because the reads are digested by restriction
enzymes that cut DNA at specific patterns. These so-called restriction enzyme cut sites
represent the highest possible resolution, the restriction cut site resolution. Compared
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to the fixed binned variant, the restriction cut site resolution does have a variable bin
size. The regions pooled into one bin are determined by the cut pattern of the restriction
enzyme. The occasion of the cut size varies per restriction enzyme but is usually in the
range of a few hundred kilobases. The third and last factor influencing the interaction
matrix resolution are the available compute resources. The human reference genome
has around 3 billion base pairs, assuming a base-pair level resolution, the matrix would
have a dimension of (3 billion × 3 billion), using a 10 kb resolution, reduces this to
(300, 000 × 300, 000). Some operations have high memory requirements, resulting in
consumption of several hundred gigabytes of memory for a typical input dataset. While
this is today theoretically available, it is still expensive and difficult to access for many
researchers.

Interaction matrices are computed with HiCExplorer’s hicBuildMatrix and the restriction
cut sites with the tool hicFindRestSites. The computed interaction matrices are stored
in either HiCExplorers native file format h5 from Ramírez [115] or in the cooler file
format [116]. The cooler file format support was added to increase interaction matrices’
exchangeability and interoperability between different Hi-C data analysis software.
However, many software supports only their self-developed formats, which is in many
cases a simple text-based file format. In the better cases, this represents the data’s
sparsity, but dense text matrix formats like Homer are also available. While binary
formats with the ability to compress data and enable random access to regions are highly
beneficial, HiCExplorer supports the import and export to several file formats to increase
the exchangeable and, therefore, the reusability and sustainability of research data. It
supports importing Juicer’s .hic format [117], homer, hic-pro [118], cool, and h5; and
exports cool, h5, ginteractions [119], hic-pro and Homer file formats.

Forward read Reverse read

A read mapped to reference genome on

Forward strand

Reverse strand

inwards

Same-strand right

Same-strand left

outwards

Orientation

Figure 3.2.: Mapped reads orientation. Hi-C are paired-end reads and contain therefore a
forward and reverse read. A forward read mapped to the forward strand and the
reverse read to the reverse strand, the orientation of the pair-end read is inward.
A forward and reverse read mapped to the forward strand, the orientation of the
pair-end read is same-strand right, if both reads are mapped to the reverse strand
the orientation is same-strand left. The outward orientation is given if the forward
read is mapped to the reverse strand and the reverse read to the forward strand.
For source and license information, please refer to the List of Figures.
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HiCExplorer’s hicBuildMatrix creates the interaction matrix based on the mapped reads
and serves as a second quality control. A correct Hi-C read is chimeric, and the two
interacting DNA regions’ genomic loci are from different fragments, the read orientation
is inward oriented, a restriction cut site is in between and the two mapped locations have
to have a minimum distance. The Hi-C protocol may create certain errors: A fragment
from one location can be ligated not with another fragment, but with its own other end.
In this case, three categories are differentiated: circularised DNA, dangling ends and
internal fragments. All three have inward orientation (see Figure 3.2 for orientation
information), the circularised DNA contains a restriction cut site within the read (self-
ligation, reads mapped within 800 base pairs), the dangling end has one restriction cut
site at the end, and the internal fragment contains no restriction cut site (Figure 3.3c, d,
e). Another error are reads containing multiple fragments and/or continuous fragments
(Figure 3.3b), or are simple PCR duplicates (Figure 3.3f) [120]. Additional to this, self-
circles are reads mapped within 25 kb, and have an outward orientation. HiCExplorer
provides a quality report stating the findings of the raw Hi-C data containing information
about the amount of reads in total, valid Hi-C reads, how many and why reads have
been filtered out, information about the distribution of the orientation and the amount
of intra-chromosomal short (< 20 kb) and long range (>= 20 kb) contacts (Figure 3.4);
multiple HiCExplorer quality reports can be investigated and pooled together in one
report with MultiQC [121]2, see Figure 3.31.

Figure 3.3.: Potential read errors to filter out at the creation time of the interaction matrix.
For source and license information, please refer to the List of Figures.

2https://github.com/ewels/MultiQC/blob/master/multiqc/modules/hicexplorer/hicexplorer.py
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Figure 3.4.: Quality control report of HiCExplorer on mouse mm9 data from [122].
For source and license information, please refer to the List of Figures.

The raw Hi-C matrix can be subsequently normalized, especially if data from two
replicates or conditions have to be compared downstream in the analysis process.
HiCExplorer offers normalization to an equal read coverage, to the norm range of 0 to 1,
or by a user-given multiplicative value. Imakaev [23] introduced ’iterative correction
and eigenvector decomposition’ (ICE) and Rao et al. [14] used the matrix balancing
algorithm from Knight and Ruiz [22] to correct Hi-C data. One key assumption is made
to correct Hi-C interaction matrices: The number of ligation products is proportional to
the contact probabilities of genomic loci; all genomic loci should have in sum the same
amount of interactions with all other loci. Recent publications challenge this assumption
[100], questioning the interpretation of the contacts generated by crosslinking and
ligation as it is applied in Hi-C.

3.1.2 Analysis

The analysis of Hi-C data is multi-variant and provides deep insights into the chromatin
structure. The introduced chromatin structures of section 2.6 can be computed out
of a Hi-C interaction matrix. The principal component analysis detects euchromatin
and heterochromatin; topologically associated domain boundaries are computed by
detecting the lower amount of interactions between TADs; the loops are recognized as
single point enriched interactions. Moreover, various other methods exist: The average
contact structure of specified regions to analyze the global TAD structure, an aggregation
of user-predefined regions to detect enrichment of contacts at multiple locations, or a
correlation of Hi-C interaction matrices. In the following section, the analysis methods
are discussed in detail.
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A/B compartments

A/B compartments or the euchromatin/heterochromatin regions of the chromatin can be
computed based on Hi-C data. Lieberman-Aiden [12] described the following algorithm
to compute it, the computation is calculated on intra-chromosomal data and independent
per chromosome.

First, the Hi-C interaction matrix is converted to an observed/expected matrix. The
observed values are given by the contact matrix M with its entries mi,j . How the
expected value is computed can differ, depending on the genome, the read coverage
or if proximity ligation effects should be corrected. Lieberman-Aiden [12] computes
the expected value using the maximal possible amount of contacts of a distance per
chromosome

Nd = {mi,j | |i− j| = d} (3.3)

expi,j =
∑
mi,j

|Nd|
∀i, j : |i− j| = d (3.4)

This means that we have the same expected value for each genomic distance d: expi,j =
expd | ∀i, j : |i− j| = d.

Alternatively, Nd can be computed considering only the non-zero contacts:

Nd = {mi,j | |i− j| = d ∧mi,j 6= 0} (3.5)

Homer software computes the expected value ’assuming each region has an equal chance
of interacting with every other region in the genome and that regions are expected to
interact depending on their linear distance along the chromosome.’3:

exp′i,j = expi,j ∗
∑n

k=0mi,k ∗
∑n

k=0mk,j∑n
k=0

∑n
l=0mk,l

(3.6)

The observed/expected matrix is named M∗. Each entry is defined as:

m∗i,j = mi,j

expi,j
(3.7)

Second, a principal component analysis is applied on the observed/expected matrix M∗

by computing the covariance matrix Cov and eigenvector decomposition:

m̄∗i =
∑n

k=0m
∗
i,k

n
(3.8)

3http://homer.ucsd.edu/homer/interactions/HiCmatrices.html
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covi,j =
∑n

k=1(m∗i,k − m̄∗i )(m∗k,j − m̄∗j )
n− 1 (3.9)

Cov ∗ v = λ ∗ v (3.10)

where v is a n ∗ 1 eigenvector and λ its associated eigenvalue. The eigenvectors of
the largest and second-largest eigenvalues, v1 and v2 respectively, are used as principal
component 1 (PC1) and principal component 2 (PC2). Lieberman-Aiden defined in [12]
the positive values of a principal component associated with open or A compartment, and
negative values of a principal component as associated with closed or B compartment.
Eigenvectors are unique up to the sign for the same eigenvalue λ:

Cov ∗ (−v) = −(Cov ∗ v) = −(λ ∗ v) = λ ∗ (−v) (3.11)

The algorithm used to solve the eigenvector decomposition determines, therefore,
whether the sign needs to be flipped to fulfill Lieberman-Aidens definition. Moreover,
the implementation of computing A/B compartments deals with several software-based
issues. The computation is based on the libraries NumPy4 and SciPy5. These libraries
can use differing Linear Algebra libraries6 in the back-end for the computation, like
OpenBLAS7 or Intel’s MKL8. To the user of HiCExplorer, it is relatively intransparent
which implementation is used. Furthermore, it should be mentioned that the algorithms
to compute the eigenvector decomposition are approximative algorithms. In Figure 3.5
it can be seen that the sign of the eigenvectors varies depending on the software
version of HiCExplorer and the NumPy and SciPy dependencies. To hold the definition
of Lieberman-Aiden, a method to flip the sign of the eigenvector is provided. The
following consideration is taken into account. Open (A) chromatin is associated with
gene expression, and therefore the occurrence of known genes in the open compartment
is higher, see the PC1 and Refseq Genes track in Figure 2.8. For this reason, the gene
occurrences per bin of the Hi-C matrix are counted, and the result is correlated using the
Pearson correlation to the eigenvector. Depending on a positive or negative correlation,
the eigenvector values can change their sign.

4https://numpy.org/
5https://www.scipy.org/
6https://numpy.org/doc/stable/user/building.html
7https://www.openblas.net/
8https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.htmlgs.94c9j2
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Figure 3.5.: Different PCA tracks resulting from different software versions.
For source and license information, please refer to the List of Figures.
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Figure 3.6.: (a) A/B compartments on GM12878 chromosome 1, 100 kb from Rao et al. [14].
Positive values are associated to open, negative values to closed chromatin. The void
region is the centromeric region of the chromosome and contains no data. Regular
Hi-C matrix and the first principal component 1. (b) Hi-C matrix transformed to
Pearson correlation matrix and principal component 1. The checkerboard pattern
of the Pearson correlation matrix strongly correlate with the positive / negative
values of the first principal component.
For source and license information, please refer to the List of Figures.

Topological associated domains

The topological associated domains have a very clear identification pattern, they form
regions of high interactions with a clear drop of interactions to genomic loci outside of a
TAD (Figure 2.14). The approach used by HiCExplorer is introduced by Ramírez et al.
[115] and identifies the amount of reads per position via a z-score based approach. First,
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the mean and standard deviation for each distribution given by the genomic distance
d = |i− j| is computed:

µd = 1
n

(
n∑
1
mi,j), if |i− j| = d (3.12)

σd =

√√√√ 1
n

(
n∑
1
mi,j − µd), if |i− j| = d (3.13)

Second, the z-score matrix Z with the same dimensions as the interaction matrix M is
calculated:

zi,j = mi,j − µd

σd
(3.14)

For each bin l where l = zi,j | |i− j| = 0 (i.e. bins on the main diagonal), the window
size w is used to extract a submatrix Zl from the z-score matrix Z:

Zl =


zi−w,j . . . zi−w,j+w

... . . .
...

zi,j . . . zi,j+w

 (3.15)

The TAD separation score for a bin l is computed by the mean of the submatrix Zl.
TAD boundaries are given by local minima of the TAD separation score. To improve the
statistical power, Ramírez et al. selected multiple window sizes to compute multiple TAD
separation scores and used the mean value of the multiple separation scores to detect
the minima, see Figure 3.7.

Figure 3.7.: The TAD separation score is computed by transforming the Hi-C contact matrix
per genomic distance to a z-score matrix. For each bin l on the main diagonal,
a submatrix Zl is extracted from the z-score matrix (red diamond). The TAD
separation score for this bin is computed by the mean value of the extracted z-
score submatrix. Multiple window sizes for the submatrices are used to increase
the statistical power; therefore, multiple lines are plotted in the TAD separation
score track. The blue line is the mean value of all scores. At TAD boundaries, the
TAD separation score reaches a minimum because the number of interactions is
lower than expected (blue colors) according to the z-score. For source and license
information, please refer to the List of Figures.
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The approach is from a mathematical perspective problematic, as the z-scores are com-
puted per genomic distance, and for each genomic locus on the main diagonal, the
z-scores from the different distances are averaged. First, the assumption of a z-score
distribution per genomic distance implies a normal distribution, which is incorrect. The
density plots of the interaction value occurrence per genomic distance from multiple res-
olution matrices indicate a non-normal distribution, compare to Figure 3.8. Second, by
averaging z-score values from multiple distributions, data points from a different origin
are implicitly compared. However, other approaches work similarly; for comparison and
benchmarking methods, refer to [123].
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Figure 3.8.: Distribution of interaction values for different genomic distances on differing Hi-C
interaction matrix resolutions. Data: Rao et al. [14], GM12878, chromosome 1.
For source and license information, please refer to the List of Figures.

To overcome the TAD algorithm’s mathematical issues, machine learning based ap-
proaches were implemented with the assistance of a student (Albert Lidel9) as part
of a master’s project. TAD boundary detection is basically a classification problem, in
which the presence or absence of a boundary in an interaction submatrix is determined.
Boundaries are easy to detect at first sight: triangular regions with high interaction
counts are located on either side of a boundary. Between the TADs, a significantly
lower number of interactions is present. However, as can be seen in Figure 3.10, the
decision is not always that simple. Larger structures and less clearly defined structures
exist, and TAD substructures given by nested TADs or a hierarchical order of TADs are

9http://www.bioinf.uni-freiburg.de/Lehre/Theses/P_Albert_Lidel_Report_Project.pdf
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Figure 3.9.: Detected TADs by hicFindTADs on GM12878 chromosome 1 25 - 40 Mb, 100 kb
resolution from Rao et al. [14].
For source and license information, please refer to the List of Figures.

also present. For this reason, the class of ensemble learning [124] algorithms seems
the best choice. Ensemble learning works by using multiple classifiers and a majority
vote for the final classification decision. The ensemble learning techniques Random
Forest, boosting with AdaBoost [125, 126], bagging with Decision Trees, or Support
Vector Classifiers have been tested for their ability to reproduce the detected TAD bound-
aries of hicFindTADs as a proof-of-concept. However, none of them showed a good
performance. Promising results have been achieved with an Easy Ensemble Classifier
[127], a combination of bagging and boosting in the form of a Bagging Classifier [128],
using an internal AdaBoost Classifier. This method also corrects the imbalanced data
by random undersampling. The correction is necessary because the proportion of the
extracted submatrices containing TAD boundaries is low. To train the classifiers, detected

Distinct boundary
Hierarchical / nested structure

Figure 3.10.: TAD boundaries can be very clear in their shape (right structure) but also be
nested and or embedded in a hierarchy.
For source and license information, please refer to the List of Figures.

TAD boundaries by existing TAD classification algorithms had been used. As input, the
interaction matrix was split around the main diagonal into areas of 2 megabase pairs,
and each submatrix was classified to contain a TAD boundary or not. Each boundary
was correlated with CTCF, such that only boundaries with a CTCF peak are accepted to
correct for false detection. The classifier which was trained on the Rao et al. GM12878
Hi-C matrix [14] achieved a lower correlation of the TAD boundaries with CTCF, 52%
vs 62%, compared to Ramírez. However, the machine learning-based approach detects
more TAD boundaries, 1199 compared to 659, and has, therefore, a higher absolute
number of CTCF correlated boundaries. The replication value of the results of other TAD
callers hicFindTADs (91.7%), ClusterTAD [129] (86.7%), and rGMAP [130] (95.8%) is
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high. This shows the power of the machine learning-based approach. The properties
of an algorithm can be replicated only by their results. The major issue in validating
TAD boundaries is that no ground truth for TAD boundaries is available. The locations
of CTCF are correlated to TAD boundaries [131]; however, CTCF is present at more
locations than TAD boundaries. For example, it is also associated with loop anchor points
[14] or is involved in DNA repair processes [132]. The presence of CTCF therefore
does not necessarily indicate a TAD boundary, nor must a boundary have CTCF present.
Additional to this issue are the structures of TADs. While the triangular shape is relatively
simple to detect, super- and substructures are also present, making a precise border
detection difficult. In this context, results from population Hi-C are in contradiction
to single-cell Hi-C results. Population-based Hi-C shows static structures between cell
types and even between different species, while single-cell Hi-C shows a highly dynamic
behavior of TADs between cells of the same cell type [133]. Taking these arguments into
consideration, it is not very easy to validate the results of a TAD calling algorithm. The
detected structures must be carefully interpreted to discern their biological meaning.
Nevertheless, the detection of TADs is an essential task in a Hi-C analysis, especially
because not all their functions and origins have been understood [100].

Another issue in detecting TADs is the sensitivity to the read coverage and resolution
of the matrix. Detecting TADs on multiple resolutions detects different boundaries
and, by this, possible nested TAD structures. The supervised bachelor thesis by Sarah
Domogella10 considers TADs of different resolutions to identify a hierarchy of the TADs.
TADs of multiple resolutions are clustered based on their location, and a parent-child
relationship is given if the TAD of the higher resolution is embedded to the area of the
TAD of the lower resolution.

TADs are part of the euchromatin and are genomic loci with a high correlation of active
gene expressions. This is caused by the close spatial proximity of the DNA, and therefore,
regulatory elements like enhancers and promoters can be in contact. In this context, it is
of scientific interest if the pattern of TADs changes between two samples, e.g., between
a wildtype and a knock-out sample. The read coverage of the two samples must be
normalized to an equal amount; it might be the case that inter-chromosomal contacts
must be removed if they are present on an unusual amount. They might be biasing
the normalization and, therefore, the differential testing. To differentially test the TAD
regions, the TADs must be first computed on one sample, the target matrix (Figure 3.11
top). Based on it, the left inter-TAD region (Figure 3.11 bottom beige area), the TAD
region itself (or intra-TAD) (Figure 3.11 bottom red area) and the right inter-TAD region
(Figure 3.11 bottom blue area) is cut out on both samples and each is tested individually
with the Wilcoxon-rank sum test [134] under the null hypothesis that they are equal.
The user is able to specify if only the intra-TAD or a combination of left inter- and

10http://www.bioinf.uni-freiburg.de/Lehre/Theses/BA_Sarah_Domogalla.pdf
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intra-TAD, right inter- and intra-TAD, or all three must be rejected to consider the TAD
as differentially expressed.

Figure 3.11.: Differential TAD test scheme. Top: A segment of a Hi-C interaction matrix rotated
by 45 degrees. The black line indicates the detected TADs by hicFindTADs. Bottom:
The same Hi-C interaction matrix segment. The red triangle is the detected TAD,
named the intra-TAD region. Left of it, the left inter-TAD region. Visualized by a
beige rectangle. Right of the TAD, the right inter-TAD region, visualized by the
blue rectangle. Per TAD, all three regions can be used to test a wildtype sample
for a differential interaction expression in comparison to a treatment sample.
For source and license information, please refer to the List of Figures.

Loops

The detection of chromatin loops is a feature to detect possible enhancer-promoter
interactions, gene loops, architectural modeling loops, and polycomb-mediated loops
[14, 101], see also Figure 2.14a. The loop detection algorithm developed in this thesis is
based on the algorithm HiCCUPS by Rao et al. [14]. Chromatin loop detection algorithms
usually work in two phases. First, chromatin loops are regions in the interaction matrix
with significantly higher interactions than the surrounding regions. These areas need to
be detected. Second, several of these identified regions need to be pooled to define one
enriched interaction. This general approach is for example used by HiCCUPS, Fit-Hi-C
[135] or Peakachu [136]. For the first step, HiCCUPS uses the Poisson distribution.
Althought this fits the data, see Figure 3.12, the approach by HiCCUPS is problematic.
The standard in Hi-C is a KR or ICE corrected matrix, in which the discrete values of
the raw Hi-C data are converted to continuous values. As the Poisson distribution is
a discrete probability distribution, HiCCUPS reverts the correction factors to retrieve
the original raw, and therefore discrete, values. Transforming the data to match the
assumptions of a particular distribution is a poor approach; instead, a more appropriate
distribution should be selected. Moreover, the Poisson distribution defines the mean to
be the same as the variance, which can lead to overdispersion. An overdispersion test
[137] on the raw Hi-C data shows overdispersion for 80% of the genomic distances, see
Figure 3.13.
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Figure 3.12.: Various genomic distance distributions for loop detection on Rao et al. [14]
GM12878 10 kb Hi-C interaction matrix, chromosome 1. Top left: 10 - 100 kb,
interval size 10 kb. Top right: 100 - 1000 kb, interval size 100 kb. Bottom left:
1 - 10 Mb, interval size 1 Mb. Bottom right: 10 - 100 Mb, interval size 10 Mb.
For source and license information, please refer to the List of Figures.
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Figure 3.13.: Overdispersion test from Cameron & Trivedi 1990 [137]. Tested on the raw data of
chromosome 1 of GM12878 cells, 10 kb resolution. The majority of the distances
(80.1%) has an overdispersion. For source and license information, please refer to
the List of Figures.

The overdispersion of the Poisson distribution is solved by the negative binomial dis-
tribution, which defines the mean and variance using two separate parameters. While
a negative binomial distribution is also discrete, gamma functions can exchange the
factorial operations in the binomial part of the negative binomial distribution to make
the distribution continuous. The use of a continuous negative binomial distribution
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is adapted from edgeR, a software package for differential expression analysis [138,
139].

The probability mass function of the negative binomial distribution ∀k ∈ N and ∀r ∈ N:

f(k, r, p) =
(
k + r − 1

k

)
pk(1− p)r (3.16)

The restriction to natural numbers comes from the binomial coefficient:

(
k + r − 1

k

)
= (k + r − 1)!

(k!) ∗ (k + r − 1− k)! = (k + r − 1)!
(k!) ∗ (r − 1)! (3.17)

However, the gamma function is defined for any n ∈ N:

Γ(n) = (n− 1)! (3.18)

Moreover, the gamma function is defined for any n ∈ R>0

Γ(n) =
∫ ∞

0
xn−1 ∗ e−xdx (3.19)

With Equation 3.19 the binomial coefficient can be reformulated as:

(
k + r − 1

k

)
= Γ(k + r − 1 + 1)

Γ(k + 1) ∗ Γ(k + r − 1− k + 1) = Γ(k + r)
Γ(k + 1) ∗ Γ(r) (3.20)

Which leads to the probability mass function for a continuous negative binomial distribu-
tion with ∀k ∈ R>0 and ∀r ∈ R>0:

f(k, r, p) = Γ(k + r)
Γ(k + 1) ∗ Γ(r)p

k(1− p)r (3.21)

A continuous negative binomial distribution is fitted to detect higher than expected
interactions per genomic distance d.

The p-value of an interaction i at the genomic distance d is given by the cumulative
density function (CDF):

pvalue of i =

1− CDFd(i) if i > 0.

1 if i = 0.
(3.22)
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Each pixel gets a p-value assigned and independently per distribution, a p-value thresh-
old is used to detect the outliers. These outliers are interpreted as loop candidates.
However, a loop is not a single enrichment point but is usually represented in the
two-dimensional Hi-C matrix by accumulating outliers. The selected candidate needs
to be considered relative to its local background, and also in one loop neighborhood,
only one interaction can be the loop candidate. The interaction in a neighborhood with
the highest observed/expected score is the loop candidate; the candidates’ p-values are
not considered. As a final step to identify a loop, the loop region is tested against the
neighborhood with the doughnut approach similar to the HiCCUPS algorithm [14], see
Figure 3.14.

Figure 3.14.: Doughnut approach similar to Rao et al. [14] to test the peak region (red area)
individually against the horizontal (green area), the vertical (brown area), and
lower left corner neigborhood (orange area) with the Wilcoxon rank-sum test
under H0 the distributions are equal. A loop is only accepted if all tests are
rejected.
For source and license information, please refer to the List of Figures.

A comparison of different loop detection algorithms shows a great variation in the
detected locations. The first approach to measure a loop detection algorithms’ quality is
to compute the overlap with existing algorithms. The algorithm presented here has been
compared with HiCCUPS, cooltools11, chromosight [140], Homer [25], Fit-Hi-C 2 [135],
and Peakachu [136]. The comparison is computed on the GM12878 cell line Hi-C data
from Rao et al. [14]. HiCExplorer and HiCCUPS share around 40% of the detected loops.
Cooltools reimplementation of the HiCCUPS’ algorithm also shares a similar level with
HiCExplorer, see Figure 3.15a. The overlap of detected loops between HiCExplorer and
HiCCUPS and the other algorithms is similar, but at a low level. The only exception is
chromosight, Figure 3.15b, but this high overlap is caused purely by the large number of
loop locations (six times higher) found by chromosight. A second approach to measure
the quality of an algorithm is comparing the ratio of detected elements to a ground truth.
Nevertheless, ground truth for loops is impossible to create because they are dynamic
structures representing, e.g., enhancer-promoter contacts that vanish as soon as a gene is

11https://github.com/open2c/cooltools
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no longer expressed. For this reason, a different method is used. Rao et. al. [14] showed
a high agreement of loop anchor points locations with the position of CTCF. Moreover,
CTCF and cohesin are the protein complexes involved in loop extrusion [14, 101, 141].
It should be noted that not every loop is bound by CTCF and cohesin, and not every
location of CTCF or cohesin is related to the formation of a loop. Nonetheless, lacking
a better method, the quality of a loop detection algorithm is measured by the ratio of
CTCF or cohesin present at detected loop locations and all detected loop locations. Using
this measurement, the detected loop locations of HiCExplorer occur at 64% of CTCF
locations and for 25% at locations of the cohesin subcomplex RAD21. HiCCUPS has a
slightly lower (61% and 22%) occurrence, but a marginally better overlap to locations
of active enhancers-promoter marks by H3K27ac [142] (86% vs. 92%), and the cohesin
subcomplex SMC1 (91% vs. 96%), see Table 3.2. The other algorithms, except the
reimplementation of HiCCUPS by cooltools, have significantly less overlap with their
detected loop locations for all investigated proteins.

Algorithm Detected loops
HiCExplorer 10225

HiCCUPS 10603
cooltools 9987

chromosight 60789
Homer 7182

Fit-Hi-C 2 7784
Peakachu 12279

Table 3.1.: The number of detected loops on GM12878 cell line on 10 kb resolution and 8 Mb
genomic distance restriction.

Data CTCF ChIA-PET H3K27ac HiChIP RAD21 ChIA-PET SMC1 HiChIP
HiCExplorer 6540 (0.64) 8835 (0.86) 2577 (0.25) 9346 (0.91)

HiCCUPS 6564 (0.61) 9831 (0.92) 2385 (0.22) 10179 (0.96)
cooltools 5467 (0.54) 8857 (0.88) 1781 (0.17) 9396 (0.94)

chromosight 7205 (0.11) 41599 (0.68) 1785 (0.02) 47056 (0.77)
Homer 1349 (0.18) 5368 (0.74) 286 (0.03) 6470 (0.90)

FitHi-C 2 163 (0.02) 2279 (0.29) 109 (0.01) 2656 (0.34)
Peakachu 686 (0.05) 4873 (0.39) 78 (0.006) 6150 (0.50)

Table 3.2.: Intersection of detected loops of the GM12878 cell line on 10 kb resolution and
8 Mb genomic distance restriction with various HiChIP and ChiA-PET locations:
CTCF ChIA-PET (GSM1872886); H3K27ac HiChIP (GSE101498), SMC1 HiChIP
(GSE80820), and RAD21 ChIA-PET (GSM1436265) data.

The detection can be computed on multiple resolutions of the same data and be merged
with HiCExplorer’s hicMergeLoops to increase the number of detected loops. The tool
hicValidateLocations is provided to validate the detected loop locations with protein peak
data.
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Figure 3.15.: Intersection of detected loops of HiCExplorer, HiCCUPS and either cooltools,
chromosight, HOMER, Fit-Hi-C or Peakachu. HiCExplorer, HiCCUPS and cooltools
have the highest relative intersection, while chromosight has the highest absolute
number of shared loops with HiCExplorer, due to the fact it detects six times more
interactions than the other methods. Homer, Fit-Hi-C and Peakachu have only a
minor intersection.
For source and license information, please refer to the List of Figures.
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Figure 3.16.: Detected loops on chr1 18-22 Mb on Rao et al. [14] GM12878 data. The loops are
highlighted by the red squares. Plotted with hicPlotMatrix and –loop parameter.
For source and license information, please refer to the List of Figures.
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Other analysis methods

Besides the analysis methods to detect chromatin’s three major structures in Hi-C data,
HiCExplorer supports various additional methods. hicAverageRegions and hicPlotAver-
ageRegions visualize the averaged contacts of a list of reference points in a given range.
This gives insights into the global TAD structure of a Hi-C sample and can indicate dif-
ferences between wildtype and treatment samples (Figure 3.17a). hicAggregateContacts
aggregates contacts of regions of interest, for example, of protein binding sites and
enables a global view of overall regions if a higher number of contacts in these regions is
observed (Figure 3.17b). However, hicAverageRegions and hicAggregateContacts operate
on a global view, and individual changes or differential behaviors of single regions might
vanish in the global perspective. hicCorrelate correlates two or more Hi-C interaction
matrices of the same genomes and sizes with the Pearson or Spearman correlation. This
allows the computation of matrices’ global relations, which provides a useful quality
control method; biological and technical replicas have high correlations. Moreover, the
correlation results of hicCorrelate are used as input for a hierarchical clustering method
to reveal the relationship of different samples. This gives insights on how similar or
distant cell types are (Figure 3.17c). The tool hicPlotDistVsCounts displays the relation of
interaction numbers per genomic distance. Similar samples like replicates should behave
the same, and structural changes are visible by differing interaction counts. The tool
can operate globally or on a local one if a specific region is investigated (Figure 3.17d).
The relationship of the number of short-range contacts to longe range contacts can be
visualized with hicPlotSVL. Per chromosome, the ratio is computed, and for one sample,
a boxplot is used to visualize the ratios (Figure 3.17e). hicCompareMatrices analyzes
two interaction matrix per pixel, and provides a global and local comparison simultane-
ously. Either the difference, the ratio, or log2ratio per pixel can be used as an analysis
method (Figure 3.17f). hicViewpoint extracts the reads at a given reference point within
a user-defined range and creates virtual 4C data. This option can replace 4C or cHi-C
experiments if the read coverage and Hi-C resolution are sufficient (Figure 3.17g). Last,
hicInterIntraTAD creates a scatter plot between the ratio of left inter-TADs vs. intra-TAD
contacts and the right inter-TAD vs. intra-TAD contacts. This plot helps to investigate the
global contact pattern of a matrix (Figure 3.17h).
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(a) hicAverageRegions (b) hicAggregateContacts

(c) hicCorrelate (d) hicPlotDistVsCounts

(e) hicPlotSVL (f) hicCompareMatrices

(g) hicPlotViewpoint
(h) hicInterIntraTAD

Figure 3.17.: Different Hi-C data analysis methods supported by HiCExplorer. (a) hicAverageRegions: Mean value computation for reference points

to detect global changes in the chromatin structure close to the main diagonal. For each reference point a submatrix is extracted, and

all submatrices are used to compute a mean signal of the regions. The reference points have one dimensional coordinates. (b) hicAggre-

gateContacts: Aggregation of reference points to detect global events of e.g. enhancer-promoter interactions. The reference points

have two dimensional coordinates. (c) hicCorrelate: Pearson or Spearman correlation of multiple Hi-C matrices with an additional

hierarchical clustering based on the correlation values. (d) hicPlotDistVsCounts: Global genomic distances vs. the number of interac-

tions at these distances. This is used to compare multiple Hi-C matrices by their global interaction pattern. (e) hicPlotSVL: Box plots

of the ratio of short/long distance contacts per chromosomes for multiple Hi-C matrices. (f) hicCompareMatrices: Direct comparison

of the values of two Hi-C matrices with difference or log2 ratio. (g) hicPlotViewpoint: Extraction of a virtual 4C with a given reference

point and a certain up- and downstream region. This shows all interactions of the reference points with the chromatin regions up- and

downstream of it. (h) hicInterIntraTAD: A scatter plot between the ratio of left inter-TAD contacts vs. intra-TAD contacts on the x-axis

and the ration of right inter-TAD contacts vs. intra-TAD contacts on the y-axis.

For source and license information, please refer to the List of Figures.
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3.1.3 Visualization

The visualization of research results is critical in understanding the data better and
presenting results. HiCExplorer provides several visualization tools that are partially
already covered in the ’Analysis’ section. The two main visualization tools of HiCExplorer
are the integrated hicPlotMatrix to plot a Hi-C interaction matrix or only subareas. It
can highlight detected loops and TADs, and adds additional data tracks in the bigwig
or bedgraph format. These are usually A/B compartment tracks, RNA-seq or ChIP-Seq
data files. The second tool ’hicPlotTADs’ which has been outsourced from HiCExplorer,
and is independently developed from HiCExplorer as ’pyGenomeTracks’ [31]. With
pyGenomeTracks, several data sources like Hi-C, ChIP-Seq, RNA-Seq, or gene annotations
can be visualized for a specific region to present the results in a compact and correlating
way. See Figure 3.18 as an example plot of pyGenomeTracks. The benefit in a combined
plot of different data types is to get an intuitive understanding of the data. For example,
in Figure 3.18 the CP190 data (pink) is overlayed to the Hi-C track and shows the
peaks are present mainly at the boundaries of the TADs. Also the chromatin states
show a correlation to the TADs. Closed chromatin is present for regions without a clear
TAD pattern (8,250 - 8,300 kb) and open chromatin where TADs are present. With a
visualization approach as it is provided by pyGenomeTracks, researchers can get a fast
insight, apply afterwards more complex analysis methods and use the visualizations for
a good presentation of their data.
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Figure 3.18.: An example plot created by pyGenomeTracks. It shows the genomic locus of chromosome 2L of Kc167

cell line, 8.05 - 8.31 Mb. It contains the Hi-C data with detected TADs (black lines) and the coverage

of profile of CP190 (pink). The peaks of CP190 at the TAD boundaries indicate a connection of CP190

with the formation of TADs in drosophila. This is followed by a chromatin state track and the TAD

separation scores. The TAD separation score is computed for different window sizes, resulting in

multiple scores (grey lines). The blue line is the mean value of the TAD separation scores, and at its

local minimum, a TAD boundary is detected. For details on the TAD separation score, see section 3.1.2.

The green data track shows an example of H3K36me3 histone marks, and its correlating to the TADs

in the open chromatin states. The blue arcs are artificial example arcs of potential CP190 peak

interactions. The last track is a gene track showing two rows of genes from drosophila melanogaster

reference genome dm3. For source and license information, please refer to the List of Figures.
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3.2 Capture Hi-C data analysis

The following chapter describes the analysis workflow for capture Hi-C data analysis. It
is implemented in the capture Hi-C modules of HiCExplorer and described in Wolff et al.
’Galaxy HiCExplorer 3: a web server for reproducible Hi-C, capture Hi-C and single-cell
Hi-C data analysis, quality control and visualization’, 2020 [28].

Capture Hi-C (cHi-C) and HiChIP provide location-specific interactions. They are limited
to predefined target regions or target proteins and avoid the genome-wide (’all vs. all’)
interactions of Hi-C. Current Hi-C approaches reflect all genome-wide interactions, and
therefore, the economic costs are high. For example, a read coverage of 20 - 40 million
reads, common in one-dimensional approaches like RNA-Seq or ChIP-Seq, requires
400 - 1600 million reads for the two-dimensional Hi-C interaction matrix. However,
the investigation of specific regions requires only the genome-wide interactions of
these specific regions, not the genome-wide interactions of all locations. The reduced
number of reads by a restriction to a minor number of sites of interest allows, especially
considering the economical cost, a deeper sequencing and a higher read coverage for
these selected regions.
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Figure 3.19.: Capture Hi-C workflow. Pre-processing: Required input are the raw FASTQ files, which
undergo a quality control with FastQC. Mapping of the raw files with a mapping software of
free choice, the tool hicBuildMatrix creates the interaction matrix, the central data structure.
Afterwards the data can be normalized, and the first capture Hi-C specific quality control
to detect too sparse viewpoints is recommended, as additional input a list of predefined
reference points is required. Analysis: The analysis of capture Hi-C data requires the
computation of a background model to decide if a given interaction is significant for
its relative genomic distance, afterwards the viewpoints need to be extracted from the
interaction matrix. chicSignificantInteractions computes significant interactions per matrix
and can prepare these in combination with the succeeding chicAggregateStatistics for the
differential analysis. Alternatively chicAggregateStatistics accepts a predefined list with
regions of interest for the differential analysis with chicDifferentialTest. Visualization: The
visualization plots one viewpoint of one or many samples in one plot, see Figure 3.23. The
computed p-values of the significance detection or the detected differential areas can be
highlighted.
For source and license information, please refer to the List of Figures.
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3.2.1 Pre-processing

Preselected regions are usually promoter regions of the genes which are to be investi-
gated. With capture Hi-C, the genome-wide interactions with these preselected regions
can be retrieved. While the interactions can be stored in a regular Hi-C matrix, the
pre-processing, analysis, and visualization differ for capture Hi-C. The preselected re-
gions are called the reference points (the peak in the middle labeled as RP, Figure 3.20),
the up- and downstream region including the specific reference point is the viewpoint.
A viewpoint provides all genome-wide interactions of a reference point with all other
locations. However, the number of interactions is very low for longer distances. For
this reason, a viewpoint is usually restricted up- and downstream to a certain distance.
For example the distances in Figure 3.20 is restricted to +/- 200 kb from the reference
point. The up- and downstream regions are defined in relative distances to their specific
reference point and not in absolute genomic positions. This approach is used to create
background distributions for each relative distance using all viewpoints of a capture
Hi-C dataset. The significance of an interaction at its relative distance to the reference
point can be computed using the background distributions.

Figure 3.20.: A capture Hi-C viewpoint. This example shows the promoter region of the mouse
gene Mstn, located at chromosome 1 at position 53.1 Mb (mm9 reference genome).
The up- and downstream interactions of the reference point (RP) are recorded.
The up- and downstream regions are defined in relative distances to the reference
point. The units of the interactions in the plot are the relative interactions
computed by interactioni/

∑n
j=0 interactionj . Data from Andrey et al. [143].

For source and license information, please refer to the List of Figures.

The pre-processing workflow of capture Hi-C and HiChIP data is similar to Hi-C. First,
the raw FASTQ reads have to be quality controlled by FastQC, and if necessary, existing
adapters need to be removed. Second, the chimeric reads are mapped to a reference
genome, and the mapped data is used to create an interaction matrix. The quality of
the chimeric reads can be controlled with the quality report created by hicBuildMatrix,
or multiple reports be summarized with MultiQC. To quality control the pre-defined
reference points’ interactions, the tool chicQualityControl is used, see Figure 3.21. Each
viewpoint is considered independently; viewpoints that contain no or too few interactions
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are removed. However, the threshold is user-defined with a sparsity level. These removed
viewpoints can be caused by no interactions of the reference point with the DNA in the
viewpoint, that this region contains no restriction cut site or that the digestion and the
ligation failed in this region, see Figure 3.22

Figure 3.21.: Capture Hi-C quality control. The quality control measures the sparsity i.e. the
number of detected positions with at least one interaction vs. all possible positions.
If a region has no interactions, the sparsity will be 0. In the above sample more
than 35 viewpoints have around 0 interactions and are therefore removed from
the data. The user can define a sparsity threshold.
For source and license information, please refer to the List of Figures.

3.2.2 Analysis

The analysis of capture Hi-C is implemented in HiCExplorer by creating a viewpoint
for all regions of interest. While a Hi-C interaction matrix is two-dimensional, the
interactions of one specific location with all other locations are equal to a row in the
interaction matrix and, therefore, a one-dimensional vector. The specific location, or
reference point (RP), defines the neutral point in such a one-dimensional data structure.
All interactions are indexed according to this position in relative distances. Upstream
locations have a negative relative distance; downstream locations have a positive relative
distance. For the analysis of the data, a background distribution is required. However,
not just a single background distribution is used, but one distribution for each relative
distance. This is implemented by extracting the data for each relative distance of all
viewpoints, and an empirical continuous negative binomial distribution, as defined in
section 3.1.2, is fitted. This approach is chosen to identify interactions of a reference
point with a region that has more interactions than expected, considering all other
interactions of all other reference points at this relative distance. The underlying idea is
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Figure 3.22.: A viewpoint with almost no interactions of the reference point (RP) with other
genomic regions. Reasons for an occurrence of these viewpoints are a mistake
in the data creation, e.g. a failed capture step or a failure in the ligation. It is
also possible that the given reference point simply does not have any interactions
within its viewpoint.
For source and license information, please refer to the List of Figures.

that the relative distance of interacting enhancers and promoters varies, and therefore an
enriched interaction value at a specific distance can be interpreted as enhancer-promoter
interactions. Moreover, if an high interaction count at a specific relative distance occurs
regularly, it is unlikely to be an enhancer-promoter interaction. In addition to the
empirical continuous negative binomial backgrounds, a simplistic approach using the
average interaction value per relative distance is also offered.

Using chicViewpoint the viewpoint interaction data is extracted from the interaction
matrix and a p-value is computed per interaction. The p-value of an interaction i at the
relative distance rd is given by the cumulative density function of the empirical fitted
continuous negative binomial distribution for the relative distance rd:

pvalue of i =

1− CDFrd(i) if i > 0.

1 if i = 0.
(3.23)

The extracted data is stored in a HDF5 container for fast access and user-friendly
handling. In a third step, significant interactions using the p-values or the average
background value combined with x-fold thresholds to detect significant interactions
are computed; per relative distance, an individual threshold needs to be set. For the
differential analysis, significant interactions can be used; however, a user can define a
file with predefined locations. For example, these can be selected enhancer locations.
The differential analysis uses a chi-squared test to test for differential interactions: the
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sum of interactions in a viewpoint and the interactions at the selected relative distance
for two samples to be tested against each other.

3.2.3 Visualization

The viewpoints can be plotted with chicPlotViewpoint, for better visual comparability, the
relative interactions are plotted. The significant interactions and differentially detected
interactions can be highlighted; the p-values per interaction are visualized as a heatmap
bar.

Figure 3.23.: An example of a differential interaction between two samples of the gene Mstn
under two conditions, FL (Forelimb) and MB (Midbrain), and development stages
(E13-5 and E10-5) in one location, highlighted in red. The heatmap under the plot
are the computed p-values given the background per relative genomic distance.
Data from Andrey et al. [143].
For source and license information, please refer to the List of Figures.
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3.3 Single-cell Hi-C data analysis

Single-cell Hi-C data extends the Hi-C approach by providing the interaction data
per individual cell and is, therefore, able to gain insight into the different chromatin
structures of different cell types or the structure of different cell cycle phases. In contrast
to Hi-C, the interaction matrix is generated individually per cell, while Hi-C provides a
cumulative interaction matrix over potentially a million cells. The workflow to analyze
single-cell Hi-C data is similar to Hi-C, but the need to deal with many different cells
results in an increased complexity and requires the development of additional methods
e.g. for cell clustering. The data analysis workflow, methods, algorithms, and file
formats described here are presented in detail in the publications Wolff et al. ’Galaxy
HiCExplorer 3: a web server for reproducible Hi-C, capture Hi-C and single-cell Hi-C
data analysis, quality control and visualization’, 2020 [28]; Wolff et al. ’Scool: a new
data storage format for single-cell Hi-C data’ [30], 2021; and Wolff et al. ’Robust and
efficient single-cell Hi-C clustering with approximate k-nearest neighbor graphs’, 2021
[29].

3.3.1 Pre-processing

The pre-processing of single-cell Hi-C data differs in comparison to Hi-C or capture Hi-C.
The raw FASTQ data contains the reads of multiple cells and demultiplexing to retrieve
the reads per cell needs to be applied. The encoding to associate a read with a cell
differs from method to method [16, 85, 86, 87, 88, 89, 144]. A common approach is to
use barcodes for this encoding. Barcodes are artificial nucleotides, these are attached to
the start of a read, and the combination of these nucleotides is unique per cell. However,
the way of encoding and storing the required information is performed differently.
Demultiplexing needs to be applied for the majority of the single-cell Hi-C protocols
independent of scHiCExplorer. The reason lies in the variety of possible encoding for
barcodes and how the barcode information is stored. It is not possible to implement a
general solution; scHiCExplorer provides only the demultiplexing of data from Nagano
2017 [85] because this study provided only raw data, while others provided interaction
matrices. Depending on how the data is provided, it might be necessary to remove
the barcodes and/or adapters from the reads after demultiplexing, and general quality
control is required. Following the demultiplexing, each cell’s FASTQ data needs to
be mapped to the correct reference genome, and for each cell, the interaction matrix
using HiCExplorer’s hicBuildMatrix in the cooler file format is created. The amount
of cells which can be processed is in the range from currently a few hundred (e.g.,
Flyamer et al. [86]) to multiple thousand to ten-thousands (e.g., Nagano et al. [85],
or Ramani et al. [144]) cells, demanding high automatization and high computational
resources. Both are offered via the Galaxy HiCExplorer. As an additional step to Hi-C, it
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Figure 3.24.: Pre-processing: The pre-processing of single-cell Hi-C data requires demultiplex-
ing of the reads. All reads are in one FASTQ file and are associated to one cell
with a specific barcode. Next, for each cell the reads need to be mapped and
an individual interaction matrix is created with hicBuildMatrix. With the tool
scHicMergeToScool the n individual matrices are merged to one scool file [30], fol-
lowed by quality control, normalization and ligation bias correction. QC: FastQC
to control the quality of the raw reads, MultiQC to control in one overview the
QC reports of hicBuildMatrix for all cells, hicQuickQC to get a first impression
of the Hi-C read quality; scHicInfo to gain insights in the data stored in scool
file. Analysis: To analyse single-cell Hi-C data, multiple cluster approaches with
different dimensions techniques are provided: scHicCluster, scHicClusterSVL, scHic-
ClusterCompartments and scHicClusterMinHash. scHicCorrelate computes a Pearson
correlation per matrix; scHicConsensusMatrix computes the consensus matrix of
given clusters and scHicCreateBulkMatrix to create a single matrix out of all matri-
ces. Visualization: The single-cell data can be visualized as consensus matrices
(scHicPlotConsensusMatrices), as a cluster profile plot (scHicPlotClusterProfiles).
Individual interaction matrices of cells can be additionally visualized with hicPlot-
Matrix or pyGenomeTracks. Matrix manipulations: Methods to change the bin
size or to remove certain areas of the matrices are given, also tools to import and
export competing file formats.
For source and license information, please refer to the List of Figures.

is recommended to store the individual interaction matrices in a specialized file format.
This has two advantages: firstly, improved structure and organization, and avoidance of
human-introduced errors due to handling several thousand files; and secondly, reduction
of storage space. The scool file format [30] is an extension of the cooler file format by
Abdennur [116] and enables sharing of overlapping data structures of the individual
cool files to save storage space. The file format structure is described in Figure 3.25.
Moreover, the handling of the matrices can be taken over by software. This is less
error-prone and computations are faster. Major data structures like the bins storing the
genomic positions need to be loaded only once, and a native, analysis software supported
parallelization is more optimal than user-created multiple calls via the command-line
interface. Publications working with single-cell Hi-C data like Nagano et al. [16], Stevens
et al. [87] or Ramani et al. [144] published their interaction matrices as text-based files,
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Gassler et al. [145] used individual cool file; competitive software like Zhou et al. [21]
used text-based files too.









































































        

      
  
 
  
  



















         

  

         

  
         

  

Figure 3.25.: Layout of the single-cell Hi-C data format scool. All cells share the chromosomes
and their specific information (chroms with name and length); also the binning
information is equal in all cells (bins with the chromosome name chrom and the
start and end position). The group cells contains the interaction information per
cell which cannot be shared. To achieve the compatibility of an internal cell to
the cooler format, they follow the same structure (chroms, bins, pixels and indices),
but shared data (chroms, bins) is linked to the mutual information in the root of
the file format. The group bins contain the additional column weight to store the
matrix correction information individually per file.
For source and license information, please refer to the List of Figures.

Apart from the reads’ quality control and their chimeric properties, the single-cell Hi-
C files need a third quality control step. The read coverage is narrow, especially in
comparison to regular Hi-C. While Hi-C has a read coverage of a few hundred million
or even more, single-cell Hi-C interaction matrices have significant less reads. Lando et
al. [146] list in their review the following read coverages: Flyamer et al. [86] with an
average of 480,000 contacts per cell, Nagano et al. [85] and Stevens et al. [87] have on
average 70,000 and 80,000 contacts per cell, however, Ramani et al. [144] only a bit
more than 700 contacts per cell. While this might change in the future, it is currently
the case that some matrices have either a too low read coverage or are, in the important
area around the main diagonal, too sparse. The sparsity and the low read coverage are
problematic for the data analysis of the individual interaction matrices. The data might
be so sparse that for several cells, the similarity for the chromatin structure between
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different cells is meaningless. For these reasons matrices which are too sparse are not
considered for the analysis and are removed from the data.

3.3.2 Analysis

The study of single-cell Hi-C data focuses on structural differences and similarities be-
tween different cell cycle phases or cell types. scHiCExplorer offers multiple approaches
to explore and analyze the single-cell data. First, the interaction matrices of m cells
with (n × n) dimensions are compiled to one (m × (n × n)) or (m × n2) matrix. On
raw data, commonly used clustering algorithms like k-means or spectral clustering can
be applied with scHicCluster. Moreover, the dimensions can be reduced, for example,
with a principal component analysis or a k-nearest neighbor graph using the euclidean
distance. The number of dimensions is a general issue in single-cell Hi-C. Using, for ex-
ample, data mapped to the mouse reference genome mm9 creates with a one megabase
pair resolution matrix (2700× 2700) dimensions, i.e., the compiled interaction matrix
has (m × 7.2 million) dimensions; using a 10 kb resolution, the compiled interaction
matrix has (m× 72.9 billion) dimensions. The explanatory power of distances in high
dimensional space is minor (the so-called ’curse of dimensionality’ [147, 148, 149]),
and the usage of euclidean distance or similar measures, and therefore the usage of
clustering directly on the raw data, is limited.

A major focus in this dissertation concerning the clustering of single-cell Hi-C data was
the development of an approach that can correctly distinguish between the subsets in
the data. Moreover, the algorithm needs to be able to run on high-resolution single-cell
Hi-C data. The clustering of high-resolution single-cell Hi-C data with dimensions in the
billions, makes a dimension reduction necessary. To achieve this, an approach based
on MinHash [150] was developed [29]. The tested approaches based on principal
component analysis or k-nearest neighbor graphs with the euclidean distance did not
provide good results. As shown in Wolff et al. [29], the principal component analysis on
the raw 10-kb data required memory in the petabyte range, and the Euclidean distance
is not an optimal distance measure for Hi-C data. The Euclidean distance considers
all interactions equally; however, two equidistant measures, e.g., between 0 and 100
contacts, and, between 100 and 200 contacts, should be interpreted differently. Two
matrices share similar properties if they have contacts in the same regions, in contrast to
a matrix without any contacts in this region. For this reason, a binary measure like the
Jaccard index is more appropriate. The Jaccard index is defined as:

J(A,B) = |A ∩B|
|A ∪B|

(3.24)

where A, B are the non-zero feature ids of two Hi-C interaction matrices. The first step
of a dimension reduction can be computed by a k-nearest neighbors graph. However,
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creating a k-nearest neighbors graph has a quadratic runtime. This runtime can be
reduced to a linear runtime if the Jaccard index is replaced with an approximation:
MinHash in combination with an inverse index. MinHash is defined by computing the
argmin value over all non-zero feature ids a ∈ A of a hash function f :

h(A) = argmina∈Af(a) (3.25)

Hash values for i different MinHash functions are computed for each interaction matrix.
The computed values are stored in two ways. First, each interaction matrix is represented
by a vector of i hash values, called a signature:

signature = < h0(A), ..., hi(A) > (3.26)

Second, the computed hash values and the associated interaction matrix ids are stored
in an inverse index per MinHash function. All MinHash values are first computed in
O(m × i) ∈ O(m) and the hash values are stored in the signatures and the inverse
index. To compute the similarity of the matrices and to create the approximate k-nearest
neighbor graph, each signature of an interaction matrix is checked for collisions with the
inverse index in O(m× i×1) ∈ O(m). A collision occurs if at least two different matrices
have the same hash value for the same MinHash function. In this case, all matrix ids
with this hash value are returned by the inverse index. All returned interaction matrix
ids are collected, counted and sorted by occurrence. The interaction matrix with the
highest occurrence is therefore the most similar one. The precomputing of the hash
values and the collision check results in a linear runtime of O(2×m× i× 1) ∈ O(m).

To validate the clustering algorithm and to optimize the parameters, pre-labeled single-
cell Hi-C interaction matrices with the resolution of 1 Mb and 10 kb from Nagano et al.
[85] have been used. The results on the 1 Mb interaction matrices show that clustering
on the MinHash based approximate k-nearest neighbor graph with its m×m dimensions
does not create a good clustering result [29]. Out of five different cell phases (G1,
early-S, late-S/G2, post-M, and pre-M), post-M and pre-M are not identified, and the
three others are heavily mixed (Appendix of [29], Table 6). An additional principal
component analysis on the approximate k-nearest neighbor’s graph followed by a UMAP
embedding is necessary. The usage of only one method, PCA or UMAP, also results in
a non-distinguishable clustering (Appendix of [29] Table 1, 4 and 5). The comparison
of the clustering results of the MinHash based approach and the competitive algorithm
scHiCluster from Zhou et al. [21], demonstrated a high quality clustering results on
low-resolution 1 Mb data (Appendix of [29] Table 1 and 18). In particular the two
tiny clusters of post-M and pre-M cells could be detected, while Zhou’s scHiCluster
missed them. Furthermore, the MinHash-based approach could compute a clustering
on the same single-cell Hi-C data from Nagano using a 10 kb resolution. Around 40 GB
of memory and a compute time of just over 6 minutes have been used; while Zhou’s
scHiCluster required over four days to load the data from one chromosome and required
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almost one terabyte of memory without creating any result. However, the results using
the proposed algorithm to cluster the same data on a 10 kb resolution are not good. This
can be explained by the lack of an appropriate read coverage for this high resolution
and, therefore, the presence of highly sparse structures. The high sparsity leads to less
collisions and the implicated similarity is less meaningful.

Several methods are additionally offered to reduce the number of dimensions: scHicClus-
terSVL computes per cell per chromosome the ratio of short to long-range interactions
and returns per cell a vector with one ratio per chromosome. scHicClusterCompartments
computes the A/B compartments for each cell and returns for a cell a vector of size n.
The results in [28] show that their ability to create distinguishable clusters is limited
in comparison to the MinHash based approach. A major challenge is the availability of
compute resources, especially on 10 kb data. Except for the scHicClusterMinHash and
scHicClusterSVL, no approach can compute a result without exceeding a memory usage
of one terabyte. Last, the tool scHicCorrelateMatrices uses the Pearson or Spearman
correlation per interaction matrix to investigate the similarities. However, it is a one
value per comparison computation and might be a bit too coarse. Furthermore, the visu-
alization is of limited value when comparing a large amount of cells. The tool is useful
to gain insights if the clustering-based, e.g., the MinHash approach, has worked well or
a parameter adjustment is necessary (Figure 3.26). The tool scHicCreateBulkMatrix can
be used to create a single interaction matrix from all the interaction matrices.

3.3.3 Visualization

The need to visualize several thousand interaction matrices, without losing too much
information, but retaining important details, requires different visualization methods
to Hi-C. The first approach is a cluster profile plot, similar to [85]. The individual
matrices are plotted by their associated cluster and then sort internally by their short
to long-distance ratio. Per matrix, the ratio of all interactions per genomic distance
vs. all interactions is displayed as a heatmap. A good cluster result as shown in
Figure 3.27 has a similar profile for the whole cluster. The second visualization method
provided in scHiCExplorer is to compute for each cluster a consensus matrix, similar
to [85]. It can be computed for the whole interaction matrix or only for a subset like
a chromosome, see Figure 3.28. A consensus matrix per cluster is computed by the
sum of all contact matrices of the cells associated to a cluster. All consensus matrices
are additional normalized to the same value range. A good visualization shows a clear
pattern around the main diagonal; however, single cells that are wrongly classified
vanish in the consensus data. The third option, Figure 3.29, visualizes the embedded
single-cell Hi-C matrices as a scatter plot. The embedded interaction matrices are labeled
by their associated cell cycle phase as classified by Nagano 2017 [85]. The scatter plots
highlight a difficult subject of this visualization method: Figure 3.29 (a) shows the first
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Figure 3.26.: Pearson correlation of pre-classified cell phases pre-M and post-M by Nagano 2017
[85]. Cells labeled by their barcodes.
For source and license information, please refer to the List of Figures.

two dimensions of a UMAP embedding to five dimensions. This embedding creates the
best cluster results but contains many overlaps of the clusters in the visualization. On the
other hand, Figure 3.29 (b) shows the result of a UMAP embedding to two dimensions.
The clusters are distinguished, but the clustering algorithms’ differentiation power is
worse than with five dimensions (see Appendix of [29], Table 1 and 2). Last, every
individual single-cell matrix can be visualized with HiCExplorer’s hicPlotMatrix or be
used as an input for pyGenomeTracks.
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Figure 3.27.: Cluster profile plot for single-cell Hi-C data on Nagano 2017 [85], cell cycle phase
data. Cell cycle labels given by Nagano 2017. On the x-axis, the clusters are
arranged by their cluster id, and each cell of a cluster is displayed with the ratio
of the contacts per genomic distance vs. all contacts of a matrix. The genomic
distance is the unit for the y-axis. A good clustering is given if the pattern of the
cells of a cluster is very similar. (a) Clustering based on scHicClusterMinHash.
The small clusters of the pre-M and post-M cells (cluster 0 and 9) are clearly
distinguished from others. (b) The results have been computed by the competitive
algorithm scHiCluster by Zhou et al. [21]. The cells of pre-M and post-M cell cycle
phase cannot be distinguished are mixed in cluster 0, additional pre-M cells are
part of cluster 4. (See Appendix of [29] Table 1 and Table 18).
For source and license information, please refer to the List of Figures.
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Figure 3.28.: Cluster consensus plot for single-cell Hi-C data on Nagano 2017 [85], cell cycle
phase data. The cluster labels are provided by Nagano 2017. A consensus matrix
is created by summing all contact matrices of the cells of one cluster to one matrix.
All consensus matrices are normalized to the same value range. (a) Computed with
scHicClusterMinHash. A clear distinction of different chromatin folding properties
per cluster can be observed. The dynamic change in the structure from very dense
post-M phase (cluster 9) to slowly opening in the G1 phase (clusters 4, 7, 2), to an
intermediate cluster of G1 and early-S cells (cluster 6 and 10) to open chromatin
in the early-S-phase (clusters 8 and 1). During the late-S/G2 phase (clusters 11,
3 and 5) the structure becomes denser again to a very dense structure in pre-M
phase (cluster 0). (b) The result of the competitive algorithm scHiCluster from
Zhou et al. [21]. The chromatin properties are similar to scHicClusterMinHash
results. However, the pre-M and post-M phases are mixed in cluster 0.
For source and license information, please refer to the List of Figures.
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Figure 3.29.: Scatter plot of different single-cell Hi-C interaction matrix embeddings. Cell labels
provided by Nagano et al. [85]. (a) The embedding to five UMAP dimensions
creates better cluster results, but is not optimal for a two dimensional visualization.
(b) The two dimensional embedding visualizes the data better, but has a worse
differentiation power for the clusters. (c) Scatter plot of the embedding of the
single-cell Hi-C interaction matrices by the algorithm scHiCluster from Zhou et al.
[21]. A very good embedding is provided for G1, early-S and late-S/G2. Also the
dynamic of the cell cycle with an arc of G1, post-M and pre-M cells is indicated.
However, this embedding makes it difficult for cluster algorithms to distinguish
between post-M and pre-M cells.
For source and license information, please refer to the List of Figures.
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3.3.4 Matrix manipulations

scHiCExplorer offers multiple functions to operate on the matrices. scHicAdjustMatrices
can export a subset of the first n matrices or remove individual chromosomes from
the data; scHicMergeMatrixBins can decrease the resolution of the matrices. scHicMan-
ageScool can update a single-cell cooler format matrix as used in the previous version of
scHiCExplorer (< 4) to the current version, export matrices by their name given in a list
either as individual cool files or as a new scool matrix. scHicConvertFormat exports scool
matrices to the text-based matrix formats as required by Zhou’s scHiCluster [21] or as
sparse matrix text files. scHicTxtToScool can import the text files-based matrices as used
by Ramani 2017 [144] and writes them to a scool file.

3.4 Webserver

The following section is based on two publications: Wolff et al. ’Galaxy HiCExplorer: a
web server for reproducible Hi-C data analysis, quality control and visualization’, 2018
[27]; and Wolff et al. ’Galaxy HiCExplorer 3: a web server for reproducible Hi-C, capture
Hi-C and single-cell Hi-C data analysis, quality control and visualization’, 2020 [28].

The analysis methods, visualizations, and workflows provided by HiCExplorer, scHiCEx-
plorer, and pyGenomeTracks are based on command-line interface tools available for
Linux and macOS-based systems. For computer scientists and users with a bioinformatics
background, a standard command-line interface (CLI) is offered. However, many users
who want to analyze chromatin conformation capture data have a broad background
in microbiology but do not have the necessary skills to use CLI tools. At the same time,
these users are the target users for any high-throughput analysis software. To solve this
issue, the Galaxy HiCExplorer webserver was developed during this thesis.

Galaxy, introduced in subsection 2.7.3, is a software to provide command-line inter-
face tools in a web-based environment. The Galaxy HiCExplorer integrates HiCExplorer,
scHiCExplorer, pyGenomeTracks and additional tools required in data analysis. For exam-
ple, the software FastQC for quality control of the raw reads, MultiQC, analyzes multiple
quality reports of hicBuildMatrix in one document, the interactive Hi-C interaction matrix
visualization tool HiGlass [151] or additional high-throughput analysis software like
deepTools [152] to integrate Hi-C data with ChIP-Seq or RNA-Seq data. The Galaxy
HiCExplorer has the advantage that it provides on https://hicexplorer.usegalaxy.eu all
tools, documentation and extensive compute resources for a Hi-C data analysis. With
this, the HiCExplorer is offered as a SaaS for biomedical researchers. Moreover, Galaxy
allows storing data analyses in histories to have a permanent lab-notebook, and all
intermediate steps are transparent and replicable. These histories can furthermore be
published to provide a better insight into how analyses and publications are computed.
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The Galaxy HiCExplorer provides preconfigured workflows to automate intermediate
analysis steps; for example, to detect TADs from raw data, the data needs to be mapped,
an interaction matrix is created, the data be corrected, and the TADs to be called. These
manual steps can be compiled into one manual step with one of the workflows provided.
The workflows are based on a graphical user interface similar to bash-based approaches
like Snakemake [153] or CWL [154]. As part of the Galaxy HiCExplorer, the Hi-C data
analysis tutorial ’Hi-C analysis of Drosophila melanogaster cells using HiCExplorer’12 is
provided via the Galaxy training network [155].

Figure 3.30.: Galaxy HiCExplorer on https://hicexplorer.usegalaxy.eu. On the left the tool panel
with HiCExplorer, scHiCExplorer, pyGenomeTracks and other necessary tools like
FastQC, Trimgalore! or deepTools. In the center documentation and help, if a tool
is selected it shows the tool parameters. On the right side the history of executed
jobs with input and output data.
For source and license information, please refer to the List of Figures.

12https://training.galaxyproject.org/training-material/topics/epigenetics/tutorials/hicexplorer/tutorial.html
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(a) Training material at the Galaxy Training Network.

(b) MultiQC for HiCExplorer QC reports.

Figure 3.31.: Training and MultiQC for HiCExplorer. The training material covers the basic
analysis steps for a Hi-C data analysis. MultiQC provides an overview of multiple
QC reports from FastQC or HiCExplorer’s hicBuildMatrix.
For source and license information, please refer to the List of Figures.
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Discussion 4
The primary aim at the beginning of this thesis, to unify many pre-processing, analysis,
and visualization steps of a Hi-C data analysis in one software, was achieved. The
integration of the cooler file format as proposed by Abdennur et al. [116] provides
improved interoperability and reproducibility in the Hi-C field. More and more Hi-C
data analysis projects adopt the cooler file format, for example cooltools1 or chromosight
[140]. However, for modern data analysis it is crucial that the same software setting can
be used to reproduce the analysis results of a study. While many other Hi-C data analysis
software need to be installed manually, and the dependencies have to be resolved by
the user, HiCExplorer is available as a Conda package in all its versions. It takes one
command to install an older HiCExplorer version with all of the old dependencies. A
Docker container is also provided achieving the goal of software preservation. The more
reliable installation routines improve the reproducibility of analysis results. Moreover,
by providing the web server https://hicexplorer.usegalaxy.eu, the presented environment
is the only one providing Hi-C data analysis as SaaS. SaaS opens the computationally
resource-demanding analysis of Hi-C data to a broader range of researchers by provid-
ing large high-performance computing (HPC) and cloud computing resources in the
background. The integration to the Galaxy environment brings additional benefits:
First, all processing steps, the input data, the parameters, and the exact version of
the used software are logged. This makes a data analysis less daunting and reduces
human-introduced errors. The history can be shared with users using the same Galaxy
platform or publicly to transparently publish the research results and the path from
the raw data to the results. Second, Galaxy provides workflows to process tools and
their output in a consecutive way, reducing the number of manual analysis steps. The
requirement to use multiple analysis software was reduced; however, if it is required,
import and export to external formats are supported.

During this thesis, a comprehensive single-cell Hi-C data analysis software, scHiCExplorer,
has also been developed. scHiCExplorer is the only software available that covers all
aspects of pre-processing, analysis, and visualization. Most competitors focus on solving
only one problem; however, creating the data from scratch is the user’s task. Many
publications published their single-cell Hi-C data either in a raw FASTQ format that
required long pre-processing times or text file-based matrices. The manual handling
of potentially a few thousand to ten-thousand files makes human errors inevitable.
The availability only as raw data and the need to create the interaction matrices from

1https://github.com/open2c/cooltools
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scratch can cause differences in a third-party replication of the published results. The
developed single-cell cooler format scool solves this issue. The presented approach to
cluster single-cell Hi-C data based on a dimension reduction with MinHash can create
better cluster results than the competitors and detect small clusters. The MinHash based
solution can cluster high-resolution single-cell Hi-C data with a relatively low memory
footprint, while the competitors cannot compute results with less than one terabyte of
memory. Considering that read coverage and cell number will only continue to rise, the
improved methods to store and process single-cell Hi-C data will become even more
critical in the future.

The data generated by high-throughput sequencing approaches is never error-free and
therefore a good quality control of the data is crucial. The software created and discussed
in this thesis provides this. The raw reads can be checked by FastQC, which is integrated
into the Galaxy HiCExplorer webserver, also tools for trimming the reads are integrated.
A second quality control for specific Hi-C properties is achieved at the build time of the
interaction matrix. The created quality reports can be pooled with MultiQC to one report.
The capture Hi-C modules provide a check for too sparse viewpoints, and the single-cell
Hi-C analysis software scHiCExplorer provides a check for too sparse matrices.

A reliable and reproducible visualization is the key to understanding research results
better. Many biomedical research publications create figures in a non-reproducible
and problematic manner by combining plots from different analysis types via image
manipulation software like Inkscape or Adobe Illustrator; others use simply screenshots
of genome browsers. These widespread methods counteract the scientific community’s
efforts to publish transparent results that anyone can reproduce. pyGenomeTracks offers
a unique approach by providing an initialization file where the reference to the specific
raw data is stored, together with the parameters used to create the diagram. It allows to
combine data stored in the most common file formats like bigwig, bed, bedgraph or cool
independent of the high-throughput approach that generated the data.

The chromatin structure is receiving increased attention in high-throughput data-based
experiments. The chromatin structure’s explanatory power for processes like transcrip-
tion regulation is high; only with it, the contact between DNA sequences and, therefore,
with transcriptional regulating elements can be shown. With decreasing costs and time
efforts caused by improved wet-lab protocols, more and more labs consider adding a
Hi-C technique based analysis to their experiments. However, Hi-C has a few limitations.
Hi-C assumes that a contact between DNA sites implies proximity within the nuclei, but
this needs further verification with orthogonal methods like 3D DNA FISH. Contact of
two regions could also be the fixation step’s accidental product, and any contact can be
biased by the fixation, digestion, or ligation step of Hi-C.

In this context the verification of the detect results of Hi-C experiments is important.
Rao et al. [14] used 3D FISH to validate four detected loops of Hi-C data; Sanborn et al.
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[156] used CRISPR mediated genome editing to change the CTCF binding motif at 13
loop locations and these loops disappeared. Additional to the motif editing, Sanborn
et al. modified the CTCF binding domains, resulting in a disruption of many loops,
which proves the observations made with Hi-C and the correlations to CTCF. Foissac et
al. [157] confirmed the Hi-C findings of A/B compartments and TADs with ATAC-Seq
[158].

Moreover, Hi-C can only detect the contact between two DNA sites; however, it seems
unlikely that this contact can occur exclusively between two sites without involvement
of additional sites in the nucleus. These concerns are solved by a variety of alternative
techniques to determine the chromatin structure. First, 3D DNA FISH provides insights
into the actual distance between DNA contacts based on optical fluorescence methods.
However, it cannot be used in a high-throughput approach; only a limited number of
interactions can be verified. GAM [159] uses cryosectioning and laser microdissection to
create nuclear slices and provides a ligation free approach. Contacts are determined by
counting the co-segregation frequency of two regions in a slice. An additional model,
however, is used to correct for random and accurate contacts of close distances (100nm).
GAM allows the recording of chromatin contacts of three or more regions. SPRITE [160]
crosslinks the DNA like 3C based methods but has no ligation step. The crosslinked DNA
fragments are split across well plates; each adds a different barcode to the fragments. In a
five-fold iteration, the fragments are re-pooled, split again to the wells and get additional
barcodes attached. The reads with the same barcode combination are assumed to be the
ones initially crosslinked. Like Hi-C, SPRITE can be used to detect loops and TADs and
can, due to the ligation-free approach, detect multiple contacts. For example, long-range
contacts are better detectable as well as super-enhancer regions. The integration of
ligation free approaches to the chromatin conformation capture analysis software stack
needs to be implemented in the future. Techniques like SPRITE promise to clarify Hi-C’s
particular concerns and extend the biological insights by providing multi-contact sides.

A different area of epigenetics are regulating RNAs [161]. RNA types like dsRNA,
siRNA, or miRNA have an essential role in regulating mRNA translation to proteins by
interacting with and binding to mRNAs, respectively deacetylation of the poly-A tail.
However, the role of siRNA is of interest in the context of the chromatin structure. The
role of active siRNA molecules, the RNA-induced silencing complex (RISC) is important to
inhibit the translation of RNA by the active formation of heterochromatin. The argonaute
protein locates specific chromosomal regions with the help of the siRNA, and growing
transcripts are recognized. This leads to the increased likeliness of methylation of H3K9,
and the condensation of the chromatin area. The role of these RNA interferences and
their implication for the regulation of chromatin structure is a growing research area
to understand the regulating mechanisms in a cell. Hi-C can help solve this, but it is
required to combine it with methods that can detect the interferences of the RNA. A
technique is for example the high-throughput screening of RNAi [162].
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Last, the chromatin structure simulation might help to investigate the folding principles
and the involved elements better. Considering Hi-C, it is obvious to try to predict Hi-C
interaction matrices as a first step into the area of artificially created chromosome folding
data. Zhang et al. [163] used a random forest approach using structure-associated
proteins as features and the Hi-C interaction matrix as a target. Schwessinger et al.
[164] use the DNA base pairs to predict the 3D structure using a deep neural network.
During this theses, two master projects were supervised to replicate and improve the
ideas from Zhang et al. (Bajorat2, Krauth3); and one master thesis investigating an
approach based on neural networks was completed (Krauth)4. The approach based
on conditional generative adversarial networks creates simulated high-resolution Hi-C
data (see Figure 4.1) and is worth investigating as the foundation for a simulation of
chromosome conformation capture under differing conditions. The in silico procedure
has the potential to help to understand the biological processes faster and better, but all
in silico findings need to be validated in vitro.

Figure 4.1.: Hi-C prediction with a cGAN approach. Top: The prediction of Gm12878 cell
line based on the learned K562 cell line. Chromosome 21 30 - 40 Mb. Bottom:
Gm12878 Hi-C matrix from Rao et al. [14].
For source and license information, please refer to the List of Figures.

2http://www.bioinf.uni-freiburg.de/Lehre/Theses/TP_Andre_Bajorat.pdf
3http://www.bioinf.uni-freiburg.de/Lehre/Theses/P_Ralf_Krauth_Report_Project.pdf
4https://github.com/MasterprojectRK/reportMasterthesisRK/blob/master/thesis_main.pdf
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ABSTRACT

Galaxy HiCExplorer is a web server that facilitates
the study of the 3D conformation of chromatin by al-
lowing Hi-C data processing, analysis and visualiza-
tion. With the Galaxy HiCExplorer web server, users
with little bioinformatic background can perform ev-
ery step of the analysis in one workflow: mapping
of the raw sequence data, creation of Hi-C contact
matrices, quality assessment, correction of contact
matrices and identification of topological associated
domains (TADs) and A/B compartments. Users can
create publication ready plots of the contact ma-
trix, A/B compartments, and TADs on a selected ge-
nomic locus, along with additional information like
gene tracks or ChIP-seq signals. Galaxy HiCExplorer
is freely usable at: https://hicexplorer.usegalaxy.eu
and is available as a Docker container: https://github.
com/deeptools/docker-galaxy-hicexplorer.

INTRODUCTION

Chromosome conformation capture techniques are now
widely used to analyse the 3D conformation of chromatin
inside the nucleus across a rising number of species, tissues
and experimental conditions. In particular, the Hi-C pro-
tocol (1) has helped to uncover folding principles of chro-
matin, demonstrating that the genome is partitioned into
active and inactive compartments (called A and B) (1) and
that these compartments are further subdivided into topo-
logical associated domains (TADs) (2,3). Furthermore, Hi-

C has allowed identification of chromatin loops (4,5), as
well as enhancer–promoter interactions (6,7) and their in-
fluence on gene expression (8,9).

However, Hi-C data processing requires tabulating hun-
dreds of millions to billions of paired-end reads into large
matrices. This poses bioinformatic challenges for efficient
processing of the data and subsequent analyses. Here, we in-
troduce Galaxy HiCExplorer, a package that aims to make
Hi-C data processing, analysis and visualization available
to non-bioinformaticians. Our goal is to provide a software
environment able to automate the whole workflow of Hi-
C data analyses from raw read mapping, filtering and cor-
rection, to the computation of topological associated do-
mains and A/B compartments, and finally to the visual-
ization of contact matrices, along with various other ge-
nomic features and omics data. Moreover, Galaxy HiC-
Explorer is easy to install, maintainable, stable and well
documented. The availability of a docker container in con-
junction with Bioconda (http://dx.doi.org/10.1101/207092),
eliminates the need for complex software and dependency
installations. Finally, HiCExplorer is transparently devel-
oped by a community of collaborators based on best prac-
tices (10) for version control, code revisions, manual and
automated testing and comprehensive documentation.

COMPREHENSIVE SERVER FOR HI-C ANALYSES

Galaxy HiCExplorer is freely available at
https://hicexplorer.usegalaxy.eu as well as a Docker
container: https://github.com/deeptools/docker-galaxy-
hicexplorer. Galaxy HiCExplorer was designed to provide
an easily accessible data-analysis environment such that
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biomedical researchers can focus on critical research
aspects instead of dealing with terminal-based applica-
tions that are not user-friendly. It smoothly integrates the
HiCExplorer analysis toolset (8) into the Galaxy scientific
analysis platform to provide web-based, easy-to-use and
thoroughly tested workflows that provide pipelines for the
most common Hi-C data processing steps.

In contrast to other available Hi-C analysis software like
HiCUP (14), HOMER (15) and TADbit (16) among others
(see (17,18) for a comprehensive list of tools), Galaxy HiC-
Explorer provides a fully comprehensive analysis pipeline
available to much broader community of researchers and
is not restricted to a subset of important features. HiC-
Pro (19) is one of the few packages that offers a complete
pipeline; however, its visualization tools are limited and it
is only available as a command line tool. Similarly, Juicer
(20) offers a command line tool processing pipeline while
Juicebox (21) only provides visualizations. Moreover, the in-
tegration of HiCExplorer into Galaxy offers the possibility
to process and integrate other data types like ChIP-Seq or
RNA-Seq into the analysis using the same interface. None
of the aforementioned tools offer web server access except
HiFive (22).

A strong advantage of HiCExplorer is that it can take
multiple matrix data formats developed by different re-
search groups as input. Thus, it is well integrated in the land-
scape of Hi-C data analysis algorithms, as Hi-C matrices
can be produced by other tools and visualized with HiC-
Explorer. Conversely, matrices can be created with HiC-
Explorer and then exported to be used by other software.
Currently, the Galaxy HiCExplorer supports two major for-
mats: The HiCExplorer specific h5 format and to promote
standardization of Hi-C contact matrices the cooler format
(23) developed within the 4D nucleome project (24).

GALAXY HiCExplorer TOOLS AND WORKFLOWS

Galaxy HiCExplorer provides a plethora of tools for pro-
cessing, normalization, analysis, and visualization of Hi-
C data (Figure 1A). Apart from HiCExplorer, the https://
hicexplorer.usegalaxy.eu website and the Docker container
also include the genome alignment tools BWA-MEM (25)
and Bowtie2 (26), as well as additional tools for text manip-
ulation, data import and quality control. The inclusion of
deepTools (27) further facilitates the integration of ChIP-
seq, RNA-seq, MNase-seq as well as other kind of datasets
with Hi-C data.

The analysis of Hi-C data can be divided into three steps:
pre-processing (including quality control), analysis and vi-
sualization.

Pre-processing and quality control

hicBuildMatrix. A contact matrix is the main data struc-
ture of Hi-C data analysis which is generated from the indi-
vidual alignment of valid Hi-C paired-end reads. This tool
filters out potentially erroneous reads, such as unmappable
reads, self-ligated reads, dangling-ends, PCR duplicates or
incomplete digestions (4,14) and tabulates the results based
on user defined bins (either based on restriction sites or on
fixed size bins). Because building the Hi-C matrix is one of

the most time consuming steps in the Hi-C workflow, we
developed hicBuildMatrix to be multi-processing to signifi-
cantly reduce running time. A comprehensive quality report
is generated as an HTML file. This report includes a num-
ber of useful quality measures including: number of valid
Hi-C read pairs and the number of filtered reads per cate-
gory (unmappable and non-unique pairs, duplicates, dan-
gling ends, self-circles, etc.), number of intra-chromosomal,
short-range (<20 kb) and long-range contacts, and read
pair orientation. Reports from multiple samples can be in-
tegrated using MultiQC (28) or using the HiCExplorer tool
hicQC. Inspection of the hicBuildMatrix quality reports
helps to identify potential biases or errors in the Hi-C li-
brary preparation. For example, a high number of dangling
ends is indicative of a problem with the re-ligation step
or inefficient removal of dangling ends. The quality report
can also be useful to identify differences (long-range ver-
sus short-range contacts enrichment for instance) between
samples obtained in different conditions.

hicMergeMatrixBins. After a Hi-C contact matrix has
been created, lower resolution matrices can be obtained by
merging neighboring bins. This is mostly useful for visual-
ization at different zoom levels or to create matrices of lower
resolution (larger bin size) in the event of a Hi-C matrix be-
ing too poor due to low sequencing depth.

hicCorrelate. This tool computes the correlation between
several Hi-C matrices (Figure 1B). hicCorrelate can produce
a scatter plot or a heatmap using either Pearson or Spear-
man correlations. The computation of the correlation can
be restricted to a range of genomic distances to avoid bias-
ing the correlation results with background contacts. These
correlations are useful as a quality control step to compare
replicates and to test for differences between various treat-
ments.

hicPlotDistVsCounts. This tool plots the average number
of Hi-C contacts at different genomic distances (Figure 1C).
It allows the estimation of long-range and short-range con-
tacts from multiple samples at once, and is a useful tool
for both quality control and comparison of, for example,
treated versus untreated samples that alter chromosome
conformation.

hicSumMatrices. After different replicates or similarly ob-
tained Hi-C matrices have been compared using hicCorre-
late, they can be added up into one single contact matrix
with this tool.

hicCorrectMatrix. Allows the removal of biases from the
Hi-C matrix using a very fast version of the iterative cor-
rection algorithm from Imakaev et al. (29). Before the con-
tact matrix is corrected, the right thresholds to prune values
need to be selected. The diagnostic plot helps users in deter-
mining these thresholds.

Analysis

hicFindTADs. This utility can identify TADs from a
given corrected contact matrix by first computing a TAD-

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/46/W

1/W
11/5036837 by guest on 18 Septem

ber 2020



Nucleic Acids Research, 2018, Vol. 46, Web Server issue W13

Figure 1. (A) Galaxy HiCExplorer workflows and tools. Entry points for external data are highlighted in purple. Quality control tools: (B) Output of
hicCorrelate comparing two wild types and one knockdown samples. (C) Output of hicPlotDistVsCounts that shows changes of the number of contacts
for different conditions. Analysis tools: (D) hicPlotMatrix of the Pearson correlation matrix derived from a contact matrix for chromosome 6 in mouse
computed with hicTransform. The optional data track at the bottom shows the first eigenvector for A/B compartment obtained using hicPCA. (E) The
pixel difference between a Hi-C corrected matrix for wild type condition and a knock down was computed using hicCompareMatrices and a 7Mb region
is visualized using hicPlotMatrix. Visualization tools: (F) Contact matrix plot of a 80 to 105 Mb region of chromosome 2 in log scale. (G) Example output
of hicPlotViewpoint showing the corrected number of Hi-C contacts for a single bin in chromosome 5 (output similar to 4C-seq) (11). (H) A Hi-C matrix
was converted into an observed vs. expected matrix using hicTransform and this matrix, together with the location of high-affinity sites from (12) were
used to run hicAggregateContacts. (I) 85 Mb to 110 Mb region from human chromosome 2 visualized using hicPlotTADs. TADs were computed by
hicFindTADs. The additional tracks added correspond to: TAD- separation score (as reported by hicFindTADs), chromatin state , principal component 1
(A/B compartment) computed using hicPCA, ChIP-seq coverage for the H3K27ac mark, DNA methylation, and a gene track. Hi-C data for B, C, E and
H from Drosophila melanogaster S2 cells from (8). Hi-C data for D, F and I from mouse cardiac myocytes (13). Additional tracks in I from (13).

separation score and then identifying local minima indica-
tive of TAD boundaries (8). In contrast to other TAD
identification methods, this tool also returns the TAD-
separation score, which can be visualized in a genome
browser or using hicPlotTADs. The TAD-separation score
contains useful information to identify strong and weak
boundaries and the density of contacts within TAD and can

be visualized along with the Hi-C matrix (see hicPlotTADs
tool).

hicPCA. A/B compartments (1) refer to open and closed
chromatin that is spatially separated in the cell nucleus
(30,31). We compute this using eigenvector decomposition
as described by Lieberman-Aiden (1) and using the first
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and second eigenvector. The positive/negative values cor-
respond to open/closed chromatin. A visualization of A/B
compartments is shown in Figure 1D.

hicTransform. The three matrices used to compute the
A/B compartments (observed/expected, Pearson correla-
tion and covariance matrices) are useful during visualiza-
tion to achieve a better understanding of the Hi-C data.
To enable this, hicTransform can compute these three ma-
trices independently of hicPCA, and the matrices can then
be plotted using the visualization tools.

hicCompareMatrices. hicCompareMatrices allows the
computation of difference, ratio or log2ratio between two
matrices. This is useful to compare replicates or samples
from different conditions. It can, for example, help to
characterize TAD structure modifications when followed
by hicPlotMatrix (Figure 1E).

Visualization

hicPlotMatrix. This tool is used to plot contact matrices
for a collection of individual chromosomes. It has multiple
options to select the matrix colors and the values range. Ad-
ditionally, bigwig tracks can be attached to plot additional
features such as A/B compartments or ChIP-seq data. It
is possible to plot a multitude of domains; the entire inter-
action matrix, individual chromosomes, multiple chromo-
somes, and various regions of interest (see Figure 1D–F).

hicPlotViewpoint. The viewpoint plot supports a visual-
ization of the number of interactions around a specific ref-
erence point or region in the genome, and makes the long-
range interactions visible as shown in Figure 1G. The out-
put is comparable to what is obtained using the 4C-seq pro-
tocol.

hicAggreateContacts. Facilitates the analysis of long
range-contacts by visualizing the average contacts over mul-
tiple smaller matrices around a given set of regions (Fig-
ure 1H).

hicPlotTADs. To visualize the computed TADs this tool
flips the main diagonal of the Hi-C contact matrix by
45◦ and marks the TADs with triangles. It is possible to
plot multiple matrices and add additional data like genes,
chromatin states, long-range interactions and any other fea-
ture that can be represented as a bigwig or bedgraph file like
methylation data, ChIP-seq, or RNA-seq to visually corre-
late them with TADs and their boundaries. There are multi-
ple options to select the Hi-C matrix layout and colormap,
different ways to visualize genes and regions files and also
multiple configurations to plot coverage tracks like color,
line width, line type, as dots, filled etc. (Figure 1I).

Workflows

Galaxy HiCExplorer provides pre-defined workflows to re-
duce intermediate steps and to guide a researcher through
the different stages. The Galaxy framework offers the possi-
bility to connect tools into workflows called Galaxy work-
flows. The provided workflows are subdivided into cate-
gories depending on the start of the analysis: First, raw

FASTQ files are mapped to generate a contact matrix and
its corrected equivalent. Different workflows are provided
to cover the case of running many analyses in parallel or
whether replicates should be merged to one contact matrix.
Second, said contact matrix (or other) is used to compute
TADs, A/B compartments and/or to plot them using the
provided workflows. All workflows are linked on the home-
page of the Galaxy HiCExplorer.

All Galaxy Workflows share a common notion that they
should guide the researcher through the analysis, i.e. most
parameters in the workflows do not need to be changed. The
reference genome needs to be set for the mappers, and a de-
sired bin size as well as the used restriction sites needs to be
selected in order to build the contact matrix. Every work-
flow containing a plotting step needs the region to plot as
input.

IMPLEMENTATION

Galaxy HiCExplorer is implemented as a Docker container
based on the web-based Galaxy scientific workflow plat-
form (32). HiCExplorer itself is implemented in Python,
supporting version 2.7, 3.5 and 3.6, and available as a Bio-
conda package (http://dx.doi.org/10.1101/207092) and as
BioContainer (33). This guarantees a fixation of versions
and therefore reproducibility of analysis. Galaxy wrappers
for HiCExplorer are available at the Galaxy tool shed.

USING HiCExplorer

Installation and usage

The Galaxy HiCExplorer web server can be used by visit-
ing http://hicexplorer.usegalaxy.eu, or by installing it on a
personal computer or locally (e.g. an institute intranet). For
this, pre-configured Docker containers and conda packages
are available.

Galaxy HiCExplorer:
Docker :
docker run -p 8080:80 quay.io/bgruening/galaxy-

hicexplorer
hicexplorer.usegalaxy.eu : On https://hicexplorer.usegala

xy.eu all HiCExplorer tools and workflows are installed.
Use this option if you require high computational resources
(e.g. large memory requirements).

HiCExplorer:
The HiCExplorer as a command line tool is available via

conda or BioContainers.
Conda : conda install hicexplorer -c bioconda
BioContainer :
docker run quay.io/biocontainers/hicexplorer:latest

Training

Training and a documentation are crucial to enable as many
scientists as possible to use and understand the Galaxy HiC-
Explorer. To introduce scientists who are new to Galaxy
a guided tour through the Galaxy interface is provided as
well as a tour to learn Hi-C data analysis. The tour con-
tent is available on the Galaxy Training Network (http:
//dx.doi.org/10.1101/225680) as well and includes example

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/46/W

1/W
11/5036837 by guest on 18 Septem

ber 2020



Nucleic Acids Research, 2018, Vol. 46, Web Server issue W15

data hosted on Zenodo. All intermediate files are available
in the shared data library of the Galaxy HiCExplorer.

For advanced users a detailed step-by-step tutorial for the
analysis of Hi-C data from mouse embryonic stem-cells, as
well as a comprehensive API documentation, is hosted at
https://hicexplorer.readthedocs.org. The how-to describes
how to set up the mapping of the reads. It suggests param-
eter settings for the creation of Hi-C contact matrices and
describes the process of merging and threshold determina-
tion to remove poor bins prior to correction. The determi-
nation of TADs using the separation score is described in
detail, including examples on visualization.

DISCUSSION

Galaxy HiCExplorer gives researchers the opportunity to
run their Hi-C data analysis in a user-friendly, web browser
based environment. The highly configurable framework
provided by Galaxy makes this web server extendable to
the various needs of researchers. Especially in conjunction
with software for other high-throughput analysis proto-
cols like RNA-seq or ChIP-seq, Galaxy HiCExplorer serves
as a powerful basis for flexible explorative biomedical re-
search in a high-throughput sequencing data analysis envi-
ronment.

By combining all the necessary stages of pre-processing
and visualization into a single tool, analysis not only be-
comes easier, but faster, highly reproducible, and more read-
ily exchangeable. Biomedical researchers can focus their
efforts on their data analysis without having to concern
themselves with the particulars of managing various differ-
ent software setups and configurations or learning to use
command-line tools in an UNIX environment.
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ABSTRACT

The Galaxy HiCExplorer provides a web service at
https://hicexplorer.usegalaxy.eu. It enables the in-
tegrative analysis of chromosome conformation by
providing tools and computational resources to pre-
process, analyse and visualize Hi-C, Capture Hi-C
(cHi-C) and single-cell Hi-C (scHi-C) data. Since the
last publication, Galaxy HiCExplorer has been ex-
panded considerably with new tools to facilitate the
analysis of cHi-C and to provide an in-depth analy-
sis of Hi-C data. Moreover, it supports the analysis of
scHi-C data by offering a broad range of tools. With
the help of the standard graphical user interface of
Galaxy, presented workflows, extensive documenta-
tion and tutorials, novices as well as Hi-C experts
are supported in their Hi-C data analysis with Galaxy
HiCExplorer.

INTRODUCTION

Chromosome conformation capture (3C) (1) and its suc-
cessors 4C (2,3), 5C (4) and Hi-C (5) have developed into
the standard technologies used in studying the 3D con-
formation of chromatin. They can provide insights into
the processes involved in chromatin folding and gene reg-
ulation. Hi-C technology is a well established method to
study genome wide interaction of data and can detect large-
scale chromosome structures, such as active and inactive
(A/B) compartments (5,6), topological associated domains
(TADs) (7,8), chromatin loop structures (9) or ratios of
short to long range interaction counts. Although Hi-C is

a powerful approach for studying the 3D structure of chro-
matin globally, it is limited in its ability to investigate loca-
tion specific interactions, such as promoter-enhancer inter-
actions, due to the need for high coverage and sequencing
costs. Moreover, Hi-C is unable to capture protein-DNA
interactions in the chromatin conformation context. To
overcome these shortcomings, capture Hi-C (cHi-C) tech-
niques have been developed. These assays are generating
data, which are enriched for the predefined targets, such as
promoter regions (Promoter cHi-C) (10), proteins or pro-
tein modifications (HiChIP) (11); HiChIP is able to capture
chimeric protein-DNA interactions, including transcription
factors or histone modifications. The location specific en-
richment provides a significantly better signal-to-noise ra-
tio and can therefore be used for a more location sensitive
analysis. Capture Hi-C data cannot be analysed with es-
tablished Hi-C algorithms and need their own tools. With
the rise of single-cell sequencing technologies, the single-cell
Hi-C (scHi-C) approach has been developed to allow for a
deeper insight into the chromatin conformation dynamics
between cell types, for instance during the cell cycle (12).
For a review on the abilities and current developments of
Hi-C and related techniques, the reviews of McCord et al.
(13), Kempfer and Pombo (14) or Bonev and Cavalli (15)
are recommended. The scHi-C analyses are much more re-
source intensive than Hi-C analyses and need specialized
algorithms for dimension reduction. Galaxy HiCExplorer
meets these requirements by providing efficient and easy
to use tools for the analysis of Hi-C, cHi-C and scHi-C
through a comprehensive and unified web server accessi-
ble at https://hicexplorer.usegalaxy.eu. It provides compu-
tational capabilities for even the most demanding analyses.
Additionally, Galaxy HiCExplorer is easy to deploy locally

*To whom correspondence should be addressed. Tel: +49 761 2037460; Email: wolffj@informatik.uni-freiburg.de
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thanks to the installer for a local Galaxy instance. More-
over, a command line version is provided by conda and is
available via the bioconda channel (16).

RELATED WORKS

Galaxy HiCExplorer is designed as an easy-to-use online
service which is accessible through a web browser. Thus,
no installation is required. By embedding it into Galaxy
(17) and the https://usegalaxy.eu environment, it facilitates
reproducible, shareable research as well as easily accessi-
ble data analysis. With Galaxy HiCExplorer, researchers
can focus on their data analysis without facing any com-
putational limitation or software dependency issue. To of-
fer more flexibility, it is also possible to install Galaxy HiC-
Explorer on a local Galaxy instance. Hi-C data processing
and downstream analysis are supported by many tool suites,
such as Juicer (18), HiCUP (19), HOMER (20), HiC-Pro
(21), HiFive (22) and the recently published HiCeekR (23).
Juicer, HiC-Pro and HiCeekR offer several tools but are
limited to a local installation. HiFive offers a Galaxy inte-
gration, but lacks the support of external data formats like
cool file format (24). HiCUP and HOMER support only
certain parts of Hi-C data analysis. Among the above tools,
HiC-Pro is the only one with the ability to analyse cHi-
C and HiChIP data. scHiCNorm (25) and scHiCluster(26)
provide support for single-cell Hi-C data normalization and
clustering, but suffer from the lack of a tool suite to guide re-
searchers through the workflow of processing single-cell Hi-
C data from the raw FASTQ files to the clustering of cells,
including methods for building interaction matrices, qual-
ity control, dimension reduction and visualization. scHiC-
Norm and scHiCluster use text files to store the scHi-C
interaction matrices, which are particularly space consum-
ing, not easily shareable and prone to error accumulation.
Galaxy HiCExplorer addresses all these shortcomings by
providing a tool suite to support the analysis of Hi-C, cap-
tured Hi-C (e.g. Promoter cHi-C, HiChIP) and single-cell
Hi-C data from the raw input data to publication ready re-
sults, as shown in Figure 2. Most importantly, none of the
mentioned tools provide large computational resources to
support Hi-C, cHi-C and single-cell Hi-C data analysis.

GALAXY HICEXPLORER

Galaxy HiCExplorer offers a large collection of tools to
pre-process, analyse and visualize Hi-C, cHi-C and scHi-
C data. In addition to its assay-specific modules, users can
benefit from the external pre-processing software for qual-
ity control of raw data and mappers such as BWA-MEM
or Bowtie2 which are provided on the https://hicexplorer.
usegalaxy.eu web server as well as the computational re-
sources available. Moreover, for interactive Hi-C matrix
exploration we have recently integrated HiGlass (27) into
Galaxy. In the following, we briefly describe the new mod-
ules which have been added since our original publications
on HiCExplorer 1 (28) and 2 (29).

HiCExplorer

HiCExplorer provides a variety of tools for a complete Hi-
C data analysis, starting with tools to control the quality of

data to create, adjust, normalize and correct interaction ma-
trices. Furthermore, it provides tools for downstream anal-
ysis of Hi-C data such as identification of A/B compart-
ments, TADs, loops or the computation of short versus long
range contact ratios per chromosome. Finally, HiCExplorer
has many options available for data visualisation such as
plotting the interaction matrices, visualization of the de-
tected TADs with pyGenomeTracks or creating aggregated
contacts images. The workflow of Hi-C data analysis with
Galaxy HiCExplorer is shown in Figure 1A. MultiQC, as
shown in Figure 1A, supports HiCExplorer. If the structure
of the quality report is changed, an update for MultiQC is
necessary and the non-updated MultiQC might not work
with the most recent quality report version.

Pre-processing.

hicQuickQC. The creation of Hi-C interaction matrices,
as well as the investigation of the quality of the data after-
wards, may require a long processing time and is also re-
source intensive. To get a swift insight into the quality of
Hi-C data, hicQuickQC has been introduced. It computes
a quick summary of the Hi-C data quality using only a small
subset of reads. The computation time to create the quality
report with hicQuickQC for the first 1 million reads takes
<3 min. The quality report is equal to the quality report
of hicBuildMatrix and the only difference is that it is based
only on the first 1 million reads instead of the full dataset.

hicFindRestSites. Hi-C interaction matrices with fixed size
bins are not always the best representation of the data.
In fact, with a sufficient sequencing depth, bins of a re-
striction fragment size are a better alternative. To generate
such matrices, this tool generates a list of restriction sites
for user-defined enzymes. This list can be used as an input
to hicBuildMatrix to create restriction site resolution Hi-C
matrices.

hicConvertFormat. Support for external interaction ma-
trix data formats is missing in most Hi-C data analysis soft-
ware. This makes it difficult to compare matrices which have
been built with different software and to directly use them
for further analysis. Instead, the matrices need to be built
from scratch, which is time consuming and potentially error
prone. This tool supports loading matrices of cool, HiCEx-
plorers h5, Juicers hic, Homer and HiCPro format and can
convert them to cool, h5, Homer and ginteractions (30) for-
mat.

hicNormalize. Normalization is a crucial step to be able to
compare the interaction matrices obtained with a different
sequencing depth. For this purpose, hicNormalize supports
three normalization methods: (a) to the depth of the matrix
with the least read coverage, (b) to the value range of 0 to
1 and (c) to a user defined scaling factor. For details on the
normalization methods consult our Supplementary materi-
als.

hicCorrectMatrix. Correcting the Hi-C interaction ma-
trices is a necessary step to remove technical biases. In
addition to the iterative correction (ICE) algorithm from
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Figure 1. Analysis workflow for Hi-C (A), cHi-C (B) and scHi-C (C). All the workflows use the hicBuildMatrix to create the individual contact matrices.
Hi-C and cHi-C supports HiCExplorer’s h5 and cool interaction matrix file format; however, scHi-C pipeline creates one cool file per cell. These files can
then be merged into a single multi-cool (scool) matrix with scHicMergeToSCool.

Imakaev (31), HiCExplorer also offers the Knight-Ruiz cor-
rection (32), first used for Hi-C matrices by (9). The method
is more memory efficient, is faster than the ICE algorithm
and better suited for the analysis of high-resolution and
deep read coverage interaction matrices.

Analysis.

hicDetectLoops. Chromatin loops are long range chro-
matin interactions and present in Hi-C matrices as enriched
regions in comparison to their local neighborhood. De-
pending on the read coverage and the resolution of the Hi-
C interaction matrix, it is for instance possible to detect
enhancer–promoter interactions. Due to its sensitivity to
the read coverage it is recommended to run the loop detec-
tion on different resolutions and to merge them afterwards,
using hicMergeLoops, into one loop file. By merging, over-
lapping loops are pooled into one loop. In addition, the
tool hicValidateLocations can be used to confirm that the
detected loops are correlated with detected locations of a
protein of interest. For example, CTCF is known as a loop
binding factor in mammals (7,9) and should therefore be
present at many loop locations. Finally, the detected loops
can be visualised with hicPlotMatrix, see Figure 2A. For
details regarding the algorithm and benchmarks, consider
(33).

hicCompartmentalization. This tool supports the analysis
of interactions at the level of (active and inactive) compart-
ments. These two large chromosomal domains can be de-
fined through a principal component analysis (5) and are
provided in Galaxy HiCExplorer by the existing hicPCA
module. To visualize the difference in the interaction fre-
quencies within and between the different compartments, a
polarization plot can be generated using a method which
was first introduced by (6). See Figure 2D.

hicAverageRegions. The comparison of specific regions
between different samples can pose a challenge. One typical

use case could be the comparison between multiple detected
TADs on a wild type and a treatment sample. This tool
extracts Hi-C submatrices corresponding to the upstream
and downstream regions of reference anchors (e.g. a sub-
set of TAD boundaries, promoter regions or any predefined
positions of interest). It computes the average contacts of
these submatrices and uses them to detect the potential dif-
ferences of contact patterns located around these anchors,
see Supplementary materials. The average of collected sub-
matrices can be visualized with hicPlotAverageRegions, as
shown in Figure 2C.

hicPlotSVL. Comparing the ratio of short range interac-
tion to long range interaction between Hi-C matrices ob-
tained in various experimental conditions can guide the un-
derstanding of chromatin topology and its folding princi-
ples. To this end, this tool computes the ratio per chromo-
some and plots it per sample as a boxplot, as shown in
Figure 2B. For the mathematical details, please consult our
Supplementary material.

pyGenomeTracks. The visualization tool hicPlotTADs
which, was mentioned in the previous publication (29),
came to the attention of many of our users. However, there
was always some confusion as to whether or not it is for
Hi-C data only which was never the case. To solve this, hic-
PlotTADs was renamed to pyGenomeTracks and is inde-
pendently developed.

Capture Hi-C

The cHi-C modules of HiCExplorer are designed for
analysing Promoter cHi-C and HiChIP. HiCExplorer will
also accept data from other Capture Hi-C methods, includ-
ing ChiA-PET (34). if dedicated preprocessing steps were
performed to obtain compatible mapping data. Further-
more, it can be used to generate virtual 4C plots from Hi-
C data. As for Hi-C data, cHi-C interaction matrices are
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Figure 2. (A) Detected loops on GM12878 primary data from (9), computed by hicDetectLoops and visualised by hicPlotMatrix. (B) Short to long range
contact interaction ratios created by hicPlotSVL on GM12878 primary, IMR90 and HMEC data from (9). (C) Average regions of detected TADs from
hicFindTADs on GM12878 primary, chromosome 1; data from (9). (D) The level of compartments separation on GM12878 primary data from (9), computed
by hicCompartmentalization. (E) Quality control plot for FL-E13-5 and MB-E10-5 showing the sparsity distribution, data from (42). (F) Quality control
plot for single-cell Hi-C data by (36). It shows the read coverage per cell, cells with <100 000 reads are discarded. (G) Consensus matrix plot for single-cell
Hi-C data on 1 Mb resolution. Cells are dimension reduced by computing A/B compartments per cell and clustered with k-means. The consensus matrix
of a cluster is the average of all interaction matrices of the cluster members. Data from (36). (H) Single-cell Hi-C cluster profile, created after dimension
reduction by scHicClusterMinHash and spectral clustering on 1 Mb single-cell Hi-C data from (36). (I) Viewpoint of the gene MSTN on FL-E13-5 and
MB-E10-5 with mean background and p-values per relative distance via continuous negative binomial distributions, data from (42).

built with hicBuildMatrix. The regions of interest in these
protocols, such as the location of the promoters in cHi-C
or the binding sites of the target protein for HiChIP, are
referred to as reference points. In the case of HiChIP, ref-
erence points are either annotated with peak calling tools,
such as MACS2 (35) using either the HiChIP mapping file
or ChIP-seq data, or regions (e.g. promoters) are manually
selected. The region defined up- and downstream of a refer-
ence point is referred to as a viewpoint. Figure 2I illustrates
all the up- and downstream distances within a viewpoint by
their relative distance to a specific reference point. A back-
ground model is created which takes interactions per rela-
tive distance from all viewpoints into account. It is in the
downstream analysis used to detect higher interactions as
expected for a relative distance. These interactions are po-
tentially different between a treatment and a control sample
and therefore can be used for a differential test. The cHi-C
workflow of Galaxy HiCExplorer is shown in Figure 1B.
Please consult our Supplementary material concerning de-
tails of the presented cHi-C methods.

Pre-processing.

chicQualityControl. This module is designed to investi-
gate the quality of every single viewpoint, taking the spar-
sity of the interaction counts into account. A viewpoint will
be removed if the sparsity of the data at this viewpoint is
lower than a given threshold. To help users in setting an ap-
propriate threshold, the tool generates several quality plots
from which one is presented in Figure 2E.

chicViewpointBackground. The background model per
relative distance is computed by taking all interaction

counts of a relative distance over all viewpoints and samples
into account. Based on this model, interactions with higher
counts than an expected count will be identified during the
downstream analysis.

Analysis.

chicViewpoint. This tool extracts the interaction counts of
each viewpoint from the interaction matrix, associates ad-
ditional information and writes the viewpoint data to a file.
Based on the background model, a P-value for each inter-
action count is computed. The P-value is an indicator if a
specific count at a relative distance is in an expected range
or higher.

chicSignificantInteractions. Using the P-values of a view-
point, this tool decides via a threshold if an interaction at a
relative distance is significant.

chicAggregateStatistic. The differential testing investi-
gates if solitary interactions of two viewpoints have a dif-
ferent interaction frequency. These solitary interactions are
either provided by a predefined target file or detected with
chicSignificantInteractions. This tool aggregates the pro-
vided interactions from two viewpoints and prepares them
as input for chicDifferentialTest.

chicDifferentialTest. The differential testing examines one
solitary interaction between two viewpoints, under consid-
eration of the interaction frequency at the reference points.
As a differential test either chi2-test or Fisher’s test can
be used under the null hypothesis that the interaction fre-
quency is equal.
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Visualization.

chicPlotViewpoint. To visualize one or several viewpoints,
chicPlotViewpoint has been introduced with the possibility
of adding a mean background signal and highlighting the
significant or differential interactions. Moreover, the com-
puted p-values can be added as an additional heatmap as
seen as in Figure 2I.

Single-cell Hi-C

Single-cell Hi-C explores how chromatin is being folded and
which elements contribute to its regulation on a single-cell
scale. While analyzing Hi-C data is computationally expen-
sive, this can increase drastically for scHi-C data. The rea-
son for this is the increase in the number of Hi-C inter-
action matrices that need to be analysed from one to sev-
eral thousand, with a corresponding increase in runtime
and memory. The read coverage of scHi-C data is currently
not high (36) and 1 megabase (Mb) resolution matrices are
used to avoid generating highly sparse matrices. However,
as sequencing costs decline, resolutions of 10 kb may be
achievable and the demand for dimension reduction tech-
niques, such as those presented here, will be indispensable.
With scHiCExplorer, a software suite is provided to process
single-cell Hi-C data offering tools for demultiplexing, ma-
trix handling, correction, dimension reduction, clustering
and visualisation. Figure 1C shows the workflow of single-
cell Hi-C data analysis with Galaxy HiCExplorer. scHiCEx-
plorer can be used for general processing of single-cell Hi-C
data as long as the forward and reverse strand for each cell
are provided as a BAM/SAM file. All pre-processing steps
like adapter and/or barcode trimming, demultiplexing and
mapping needs to be applied by third-party tools.

Pre-processing.

scHicDemultiplex. Raw FASTQ data from a single-cell ex-
periment usually contains reads from multiple cells which
are encoded with different barcodes. This tool supports de-
multiplexing of an interleaved FASTQ file into one FASTQ
file per cell. The demultiplexing is implemented to support
the method which has been introduced in Nagano (36) for
barcoding. Due to the lack of a standard method on how
to encode barcodes, presently, demultiplexing is limited to
FASTQ files with the same barcoding method as in (36).
Other demultiplexing tools are part of the general Galaxy
tool suite.

scHicMergeToSCool. Every single-cell interaction matrix
can be created with hicBuildMatrix. scHicMergeToSCool
can merge individual matrices into a joint matrix in multi-
cool format (24), which will be used in all subsequent down-
stream analysis and visualization tools. While using the API
of cooler, the data is not stored with multiple resolutions as
it is defined by (24). The cool file is used as a container for-
mat for the individual cool files of the Hi-C matrices. For
this reason, the format is referred to as scool.

scHicQualityControl. Since scHi-C data is a very sparse,
not all matrices have sufficient read coverage to be consid-
ered for the downstream analysis. Thus, the quality control

module removes interaction matrices of cells with total read
counts below a user-specified threshold (see Figure 2E) or
very sparse interaction matrices.

scHicCreateBulkMatrix. This tool supports to pool all
matrices stored in the scool file to one single Hi-C interac-
tion matrix and enables the analysis like in regular Hi-C.

Several modules of HiCExplorer are also required in
single-cell Hi-C data analysis. To provide an equal func-
tionality at the single cell level and to support the scool file
format, scHiCExplorer reuses these modules from HiCEx-
plorer. These are scHicNormalize, scHicCorrectMatrices,
scHicAdjustMatrix, scHicMergeMatrixBins and scHicInfo.
scHiCExplorer adds the functionality of handling the mul-
tiple matrices stored in the scool file and distributes the
computations over several threads.

Dimension and clustering reduction. Clustering cells is a
common approach to study the difference between them
and to learn about their relations from single cell data.
scHiCExplorer provides the k-means and spectral clustering
methods. K-means was used on scHi-C data by (36) or (26),
but the choice of a clustering algorithm is always dependent
on the data. For this reason, scHiCExplorer provides addi-
tional the spectral clustering and will continue adding stan-
dard clustering algorithms in the future. However, reducing
the dimensions of the underlying matrices is necessary to
be able to cluster cells in a reasonable amount of time and
to decrease the memory footprint; as shown in Supplemen-
tary Table S1. The usage of dimension reduction is also of-
ten necessary to achieve good results (37–39). The results
in the Supplementary Figures S1–S4 confirm this. The need
to reduce the dimensions becomes obvious when matrices of
higher resolutions are used. The combined raw data matrix
for a scHi-C dataset has a dimensionality of cells*features,
where features = bins*bins for one matrix. As an example,
mapping of the Nagano 2017 (36) data on the mouse mm9
genome and using it to make a 1 Mb resolution matrix, will
already return a matrix of 2500*7.3 million dimensions; this
number will increase to 2500*7.3 billion dimensions if the
resolution of the matrix increases to 10 kb.

scHicCluster. A principal component analysis (reducing
to samples*bins) or a k-nearest neighbors matrix (reducing
to samples*samples) can be chosen as the desired method to
reduce the dimensions of data. However, a clustering of the
raw data without applying any dimension reduction is also
supported.

scHicClusterMinHash. Clustering and dimension reduc-
tion techniques of scHicCluster usually work with low res-
olutions like 1 Mb but require a large amount of memory
(>1 TB) on matrices of higher resolutions such as 10 kb.
MinHash (40) is an approximate nearest neighbors method
which computes the k-nearest neighbors matrix via local
sensitive hash functions and reduces the number of dimen-
sions to samples*samples. MinHash’s approximate compu-
tation of the k-nearest neighbors makes it possible to pro-
cess 10 kb resolution scHi-C data. Our implementation runs
for just over one hour and needs 53GB of memory, for more
details consider (41).
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scHicClusterSVL. This dimension reduction method
computes the ratio of short range and long range contacts
per chromosome and reduces the dimensions of the matrix
to samples*chromosomes.

scHicClusterCompartments. This method computes the
A/B compartments of each cell and clusters cells based on
their compartments. It reduces the matrix dimensions to
samples*bins.

Visualization. Due to the high dimensionality of matrices
per cell ( bins*bins ), a satisfactory visual representation of
single-cell Hi-C data clustering is difficult to achieve. Tra-
ditional methods represent the data in a two dimensional
space; however, decreasing dimensionality from a few mil-
lion (e.g. a 1 Mb resolution matrix) or billion (e.g. a 10 kb
resolution matrix) to two dimensions will create a non-
meaningful representation. scHiCExplorer offers two alter-
native representations of cells’ clusters: Per cluster (a) a con-
sensus matrix of all cells is plotted or (b) each cell of a clus-
ter is visualized with its decreasing contact frequency by in-
creasing the distance from the main diagonal.

scHicConsensusMatrices. Using the results of the cluster-
ing, this tool merges all matrices of one cluster into a single
interaction matrix and normalizes the resulting consensus
matrices to the same read coverage. This matrix can be vi-
sualized as the consensus matrix of a cluster by scHicPlot-
ConsensusMatrices and reveals the clustering power in sep-
aration of the cells based on their chromatin density. See
Figure 2G.

scHicPlotClusterProfiles. A cluster profile shows the de-
crease of contact frequencies per cell from the main diago-
nal to 50 Mb distance from it. A good clustering is achieved
if the decreasing of contact frequency is similar for all cells
of a cluster and if the profiles of various clusters differ. Fig-
ure 2H shows the different cells grouped by clusters on the
x-axis and the decreasing contact frequency by an increas-
ing distance from the main diagonal on the y-axis.

IMPLEMENTATION

Galaxy HiCExplorer is implemented as a collection of
Galaxy tool wrappers and is available on the Galaxy Tool-
Shed. The Galaxy integration is provided for HiCExplorer
as well as scHiCExplorer. HiCExplorer and scHiCExplorer
are both implemented in Python 3.6 and are available on
Bioconda (16). The Knight-Ruiz correction and the Min-
Hash approximate k-nearest neighbors for the dimension
reduction are implemented in C++ and are also available
on Bioconda.

USING HICEXPLORER

Installation and usage

Galaxy HiCExplorer can be used as a web server and is ac-
cessible via https://hicexplorer.usegalaxy.eu. All presented
tools are publicly available and may be used without any
required registration. Unregistered users are provided with
11 GB storage space, while registered users are granted

250GB. Registered users have the opportunity to apply for
more storage. Users are strongly encouraged to use https:
//hicexplorer.usegalaxy.eu web server if high compute re-
sources are required. Galaxy HiCExplorer is GDPR com-
pliant; deleted datasets will be permanently removed within
14 days and the data of unregistered users is deleted after an
inactivity of 90 days.

TRAINING

To support researchers in their analysis of Hi-C, cHi-
C or scHi-C data, tutorials and a detailed documenta-
tion are available on https://hicexplorer.readthedocs.io and
https://schicexplorer.readthedocs.io. As presented in (29),
the guided tours for novice users of Galaxy as well as the
Galaxy HiCExplorer specific tutorial are available on the
Galaxy Training Network (43). The cHi-C tutorial uses Pro-
moter cHi-C example data to guide users through the com-
plete analysis workflow starting from building a cHi-C con-
tact matrix, creating a background model, detecting signif-
icant and differential interactions to a plotting of the view-
points. The tutorial of the single-cell data explains the bar-
coding, the mapping, creation and merging of scHi-C ma-
trices. Moreover it shows different clustering techniques in-
cluding the dimension reduction and the visual representa-
tion of the clustering.

DISCUSSION

The presented web server on https://hicexplorer.usegalaxy.
eu gives researchers the opportunity to focus on their
data analysis in a user friendly, reproducible and compu-
tationally powerful environment. With the deep integra-
tion of HiCExplorer into the Galaxy environment, users
are now able to combine their Hi-C, cHi-C (Promoter cHi-
C, HiChIP) or scHi-C data with their data from other
high-throughput assays like ChIP-Seq or RNA-Seq and run
multi-omics analyses, all within their web browser. Galaxy
HiCExplorer is suited for both experts and newcomers to
the Hi-C field, thanks to the provided tutorials that give
all users a clear introduction on how to use HiCExplorer
for their data analyses. Moreover, the tools recently added
to HiCExplorer offer the possibility to resolve the dynamic
chromatin topology inherent to different cell types provided
by scHi-C. The automated management of a large number
of cells in the scHi-C pipeline will help researchers to de-
cipher the principles of chromatin folding in the context of
cell cycle and cell type specificity. Moreover, the new tools
of Galaxy HiCExplorer are able to analyse precise interac-
tions between regulatory regions and their target genes as-
sisted by cHi-C techniques. This expansion of Galaxy HiC-
Explorer allows for a better understanding of how 3D struc-
ture of a genome may affect an organism’s phenotype.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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16. Grüning,B., Dale,R., Sjödin,A., Chapman,B.A., Rowe,J.,
Tomkins-Tinch,C.H., Valieris,R. and Köster,J. (2018) Bioconda:
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Abstract

Motivation: Hi-C technology provides insights into the 3D organization of the chromatin, and the single-cell Hi-C
method enables researchers to gain knowledge about the chromatin state in individual cell levels. Single-cell Hi-C
interaction matrices are high dimensional and very sparse. To cluster thousands of single-cell Hi-C interaction matri-
ces, they are flattened and compiled into one matrix. Depending on the resolution, this matrix can have a few million
or even billions of features; therefore, computations can be memory intensive. We present a single-cell Hi-C cluster-
ing approach using an approximate nearest neighbors method based on locality-sensitive hashing to reduce the
dimensions and the computational resources.

Results: The presented method can process a 10 kb single-cell Hi-C dataset with 2600 cells and needs 40 GB of mem-
ory, while competitive approaches are not computable even with 1 TB of memory. It can be shown that the differenti-
ation of the cells by their chromatin folding properties and, therefore, the quality of the clustering of single-cell Hi-C
data is advantageous compared to competitive algorithms.

Availability and implementation: The presented clustering algorithm is part of the scHiCExplorer, is available on
Github https://github.com/joachimwolff/scHiCExplorer, and as a conda package via the bioconda channel. The ap-
proximate nearest neighbors implementation is available via https://github.com/joachimwolff/sparse-neighbors-
search and as a conda package via the bioconda channel.

Contact: wolffj@informatik.uni-freiburg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The chromosome conformation capture technique 3C (Dekker
et al., 2002) and its successors 4C (Simonis et al., 2006; Zhao et al.,
2006), 5C (Dostie et al., 2006) and Hi-C (Lieberman-Aiden et al.,
2009) have given insights into the organization of the 3D structure
of the DNA and its impact on gene regulation over the last few
years. Direct chromatin interactions can provide evidence, for ex-
ample, for enhancer-promoter interactions and their contribution to
the regulation process. Several reviews have been published in recent
years, giving a broad overview of different Hi-C techniques and their
abilities: Kempfer and Pombo (2020), McCord et al. (2020) and
Bonev and Cavalli (2016). Single-cell Hi-C (Flyamer et al., 2017;
Gassler et al., 2017; Nagano et al., 2013; 2017; Ramani et al., 2017;
Stevens et al., 2017) extends Hi-C to individual cells and provides
insights into the processes of cell differentiation and division with re-
spect to the dynamics of chromosome conformation. While Hi-C
data analysis demands high computational resources, single-cell Hi-
C increases this demand further due to the need to not only process

one interaction matrix but potentially several thousands of them.
Cell clustering, based on the interaction matrices to differentiate by
the chromatin folding properties, is one of the most important parts
of single-cell Hi-C data analysis to gain information about similarity
and, therefore, the linkage between different cells. Hi-C interaction
matrices are two-dimensional, representing the contacts between
each pair of genomic positions. The interaction matrices do not rep-
resent a per base-pair interaction between loci but a binned one; i.e.
multiple continuous base-pairs are counted as one interaction. This
is referred to as a resolution, the fewer base-pairs per bin, the higher
the resolution. The presented approach flattens the interaction
matrices of a cell to a single dimension. It creates a new matrix
where each row represents one cell to use classical clustering algo-
rithms, such as k-means or spectral clustering. The downside of this
approach is a high feature number; for example, with 1 megabase
(Mb) resolution matrices and the mice mm9 reference genome
(https://www.ncbi.nlm.nih.gov/assembly/GCF_000001635.26), 7.6 mil-
lion features are present while using 10 kilobases (kb) matrices the ma-
trix has 76 billion features.

VC The Author(s) 2021. Published by Oxford University Press. 1
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Dimension reduction is a well-known approach to improve the
clustering quality (Deegalla and Boström, 2007; DeTomaso et al.,
2019; Lee et al., 2007). Computing a k-nearest neighbors graph,
represented as a matrix, is one of them. A k-nearest neighbors graph
connects nodes with k other nodes, and the edge weights represent
the similarity between two nodes. In this work, each cell is consid-
ered a node, and the edge weight is the similarity between the two
cells. With a k-nearest neighbors graph, the number of features is
reduced to the number of cells. The exact k-nearest neighbor’s graph
algorithm has a run time of Oððn� f Þ2Þ, with n the number of cells
and f the number of features. As long as f is reasonably small, the
computation time will mainly depend on the number of cells n, but
as the number of features rises to the millions, the compute time
becomes more dependent on the features rather than the number of
cells. Moreover, the higher the features, the less meaningful similar-
ity between two cells is. Both phenomenons are known in the con-
text of the curse of dimensionality (Aggarwal et al., 2001; Bellman,
2015; Beyer et al., 1999; Chen, 2009; Hammer, 1962; Hinneburg
et al., 2000; Houle et al., 2010). For many k-nearest neighbor
graphs, distance metrics such as the Euclidean distance or similar
metrics are used to compute the relation of two instances. In Hi-C,
using the Euclidean distance or similar metrics is, in our opinion,
problematic. Consider the following: one cell has 0 interactions at a
specific location, a second cell has 100 and a third cell 200. Using
the Euclidean distance, the first and third cells are equidistant from
the second cell. However, in our opinion, the results must be inter-
preted so that the second and third cells have recorded interactions
and are therefore closer to each other than a cell without any inter-
actions. To generalize this argument, Hi-C matrices with similar
structures like A/B compartments, TADs or loops should, in our
opinion, considered as more similar to each other, independent of
the interaction intensity. Metrics like the Euclidean distance cannot
guarantee this property; however, due to Hi-C matrices’ very sparse
nature, the Jaccard index can provide this. Similar observations con-
cerning the sparsity of the data and the problematical usage of the
Euclidean distance have been made in single-cell RNA-seq.

In this article, we propose, therefore, an algorithm to overcome
these limitations. A k-nearest neighbor graph is computed to reduce
the high number of features with respect to the number of cells.
Instead of the problematic Euclidean distance, a measurement with
a binary interpretation of the contacts, the Jaccard index, is used.
Concerning the expected increasing read coverage and cell number,
the quadratic run time to construct the k-nearest neighbor graph is
replaced by a linear run time solution. The linearity is achieved by
exchanging the Jaccard index by its approximation, MinHash
(Broder, 1997), a locality-sensitive hash function technique.

2 Materials and methods

The interaction matrices of cells need to be compiled into one inter-
action matrix to cluster single-cell Hi-C data. Each individual single-
cell matrix’s dimensions depend on the used reference genome and
the resolution of the Hi-C data. To compile the individual single-cell
matrices with ðn� nÞ dimensions to one matrix without losing any
information, each interaction matrix is flattened to 1� ðn� nÞ
dimensions:

1 2 3
4 5 6
7 8 9

2
4

3
5! ½ 1 2 3 4 5 6 7 8 9 � (1)

Subsequently all m flattened interaction matrices are compiled to
one interaction matrix with ðm� ðn� nÞÞ or ðm� n2Þ:
½1 2 3 4 5 6 7 8 9 �

..

.

½1 2 3 4 5 6 7 8 9 �
)

1 2 3 4 5 6 7 8 9
..
.

1 2 3 4 5 6 7 8 9

2
4

3
5

(2)

Figure 1(A) provides an abstract graphical description.
This new compiled single-cell Hi-C matrix can be used to apply

well-known clustering algorithms like k-means or spectral clustering

directly. However, research on the curse of dimensionality shows
that the more features are available, the less meaningful a similarity
is (Aggarwal et al., 2001; Beyer et al., 1999; Hinneburg et al.,
2000). Our approach reduces the number of features before a clus-
tering algorithm is applied. For this, we compute a k-nearest neigh-

bors graph using the approximation of the Jaccard index, MinHash,
as a similarity measure. Subsequently, a principal component ana-
lysis (PCA) and a UMAP embedding (McInnes et al., 2020) are used

to reduce the dimensions of the k-nearest neighbor’s graph to low di-
mensional space.

2.1 Jaccard index
The Jaccard index of two cells is given by their sets A, B of non-zero
feature ids. A non-zero feature id is the feature index position of a
feature which cell has at its index at least one recorded Hi-C

interaction.

JðA;BÞ ¼ jA \ Bj
jA [ Bj (3)

Based on the Jaccard index, the similarity between two cells in
terms of how many features they share can be used to compute a k-

nearest neighbors graph where the edge weight is the similarity.
However, the computation of a k-nearest neighbors graph is in
Oðn2Þ. Its approximation replaces the Jaccard index with MinHash

(Broder, 1997) to compute in linear time.

2.2 MinHash
Cells which share features are more likely to be similar to each other
compared to cells with less common features. MinHash uses this

fact; for each cell, only a set of features’ id A of non-zero features
(non-zero Hi-C interactions) are considered (similar to Heyne et al.,
2012), and the hash value per MinHash function h is computed as
the argmin over all non-zero features a 2 A of a hash function f. A
set of MinHash functions H and hash functions F are used; h 2 H
and f 2 F. The similarity between two cells is computed by counting
the number of collisions overall MinHash functions.

hðAÞ ¼ argmina2Af ðaÞ (4)

Broder shows that MinHash is an unbiased estimator of the
Jaccard index:

PðhðAÞ ¼ hðBÞÞ ¼ ðjA \ BjÞ=ðjA [ BjÞ ¼ JðA;BÞ (5)

2.3 Clustering
Multiple options are available to process the Hi-C contacts to com-
pute the k-nearest neighbor’s graph with MinHash. The first option

uses inter- and intra-chromosomal contacts; the second option only
intra-chromosomal contacts. The first option has the benefit of con-

sidering potential important long-range contacts; however, distin-
guishing them from noise is only possible with a high read coverage.
It might be, therefore, beneficial for the cluster results to consider

only intra-chromosomal contacts. The parameters used to compute
the k-nearest neighbor’s graph are the number of employed hash

functions and, therefore, how many collisions occur. The number k
of neighbors to be computed and if the additional Euclidean distance
based on the pre-selection of candidates should be considered. The

number of features of the k-nearest neighbor graph is still considered
as high dimensional. A principal component analysis followed by a

UMAP embedding is applied before the clustering to reduce the
number of dimensions further. For the clustering algorithms, we use
the algorithms offered by scikit-learn (Pedregosa et al., 2011) and

limit ourselves to the clustering algorithms that support a user-speci-
fied fixed number of clusters. These are K-means, spectral clustering,
birch and agglomerative clustering.

2 J.Wolff et al.
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2.4 Implementation
2.4.1 Inverse index

Fast computation of a k-nearest neighbors graph requires a linear
query time and a significant reduction of the number of features to
overcome the curse of dimensionality. A regular index stores the
computed hash values of a hash function per cell, leading to Oðn�
n� hÞ 2 Oðn2Þ to create the k-nearest neighbor graph. In order to
reduce the construction to linear time, an inverse index is used. Per
hash function, the hash values with the corresponding cell id are
stored. To construct a k-nearest neighbors graph, for each cell, the
hash functions have to be checked for collisions which is per hash
function in O(1) and for all cells Oðn� hÞ 2 OðnÞ.

2.4.2 Fitting

The MinHash values of all hash functions together are called the signature
of the cell; these signatures are inserted into the inverse index to achieve a
fast query time. The run time of the fitting depends on the number of cells
n, the number of hash functions h and the number of non-zero features
per cell f and is given as Oðn� h� f Þ 2 OðnÞ. For an example of the fit-
ting and the inverse index structure, refer to Figure 2.

2.4.3 Collision based approximate nearest neighbors graph

The number of hash collisions between two cells gives an estimate of
their similarity. The signature of a cell is used to search for hash col-
lisions in the inverse index to compute the estimate. A hash collision

between two cells is defined as the same hash value for the same
hash function. The more collisions two cells have, the more similar
they are. The query time of this approach depends only on the num-
ber of used hash functions and, if not stored in memory from the fit-
ting phase, the computation of signatures. The effect of sorting all
occurrences of collisions and the query time of the used data struc-
tures of the inverse index on the run time should also be considered,
although it is negligible from the user’s point of view.

2.4.4 Technical implementation

For this implementation, we use the hash function ‘32 bit mix func-
tion’ designed by Thomas Wang (https://gist.github.com/badboy/
6267743#32-bit-mix-functions) published in 1997/2007. The hash
function is always the same; however, for each hash function f 2 F
the seed differs. The index values for a 10 kb resolution matrix ex-
ceed the data range of 32-bit by 5 bit. The index values are modified
via modulo operation to fit the 32-bit range to avoid a 64-bit hash-
ing. The sparsity of the data is advantageous and results in more
than 98% unique indices after the modulo operation. To compute
the approximate nearest neighbors with MinHash, a highly opti-
mized library, ‘sparse-neighbors-search’, was implemented in Cþþ
with SSE and OpenMP support. To ensure user accessibility, the
Cþþ library is embedded in a Python 3.6, 3.7 and 3.8 interface. The
MinHash approximation of a k-nearest neighbors graph is part of
the scHiCExplorer (Wolff et al., 2020a); a software to process, ana-
lyze and visualize single-cell Hi-C data.

3 Results

The algorithm is tested with differing properties and settings to
evaluate the clustering abilities of the proposed algorithm. The clus-
tering is tested on the matrices at different levels of processing.
Compared here is the ability to detect the different cell cycle phases
(Nagano et al., 2017) respectively the cell types (Ramani et al.,
2017) based on the low dimensional embedding of the Hi-C cells.
First, the MinHash approach and its differentiation ability is dis-
cussed. Second, the best settings for the algorithm are investigated,
and third, the proposed solution is compared to the competing algo-
rithm scHiCluster from Zhou et al. (2019); also a clustering based
on a principal component analysis on the raw matrices, and a k-
nearest neighbor graph computed with scikit-learns implementation
are considered.

Fig. 1. (A) Pre-processing and fitting: All n� n Hi-C matrices of the m cells are flattened to one single-cell Hi-C (scHi-C) matrix with m� ðn� nÞ dimensions. For each row a

signature is computed and inserted into the inverse index. (B) K-nearest neighbors computation: Per signature, the hash function hi is checked if the hash value at signature

index i is present in the inverse index. If such a collision is detected, the associated cell ids are stored. After all hash functions are checked, the number of occurrences for the

cell_ids is counted and sorted. This order gives the nearest neighbor’s relationship

Fig. 2. An example signature and inverse index: The signature is created for four

cells and three hash functions. The inverse index stores the computed hash value

and the id of the cell for each hash function. For example, for the second cell <

4; 7; 2 > the first hash function Hash function 1 stores the computed hash value 4

and associates the id of the cell: Hash function 1 :< 2 : ð1Þ; 4 : ð2; 3Þ; 5 : ð4Þ >. The

same hash function and hash value occur for cell number three again; this is a colli-

sion of hash function 1 for cell 2 and cell 3
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3.1 Embedding and differentiability of MinHash
The Jaccard index-based approach with its approximation via
MinHash, combined with a consecutively PCA and UMAP embed-
ding for a further dimension reduction, provides good differentiabil-
ity of the test data. The 1 MB cell cycle data from Nagano et al.
(2017) shown in Figure 3a is reduced to five UMAP components
and visualized are the first two dimensions. The visualization with
the first two UMAP dimensions is not indicating a good clustering
result (Fig. 3a), but an embedding with the same parameters, but
reducing to two UMAP dimensions instead of five, improves this
(Fig. 3b). However, the clustering results of this approach are not as
good as for the five UMAP dimensions (Supplementary Tables S1
versus S2). Early-S (purple), late-S/G2 (green) and G1 (red) cell
cycles are differentiated, and post-M (cyan) and pre-M (yellow) are
projected to a similar location; an overlap of the different cell cycle
phases is given. Good clustering results are confirmed by validating
the detect clusters by Nagano et al. (2017) provided cell cycle labels
(Supplementary Table S1). A batch effect is slightly visible
(Supplementary Fig. S1a) but is not dominating. The 1 MB cell type
data from Ramani et al. (2017) are displayed in Figure 4a and b.
The four cell lines are provided from two batches, and a strong
batch effect is visible (Supplementary Fig. S2a). The embedding of
the ML1 batch with HeLa and HAP1 cells show a clear differenti-
ation of the two cells (Fig. 4a), and the ML3 batch with K562 and
GM12878 provides a good differentiation too (Fig. 4b). However,
the ML3 embedding has some minor issues: K562 cells are projected
to the top to the area of GM12878 cells. It requires further investi-
gation if this is an error by the embedding approach or if, as the spa-

tial separation indicates, further subtypes are present within the
dataset. Ramani et al. (2017) provides only the cell type labels, but
it is not unlikely that the cell type data itself contains cells with a dif-
ferent cell cycle phase.

3.2 Jaccard versus Euclidean distance
The proposed algorithm’s primary aim is to reduce the high dimensional
space of the single-cell Hi-C data from millions and billions of dimensions
to a lower-dimensional space to improve the clustering abilities. This
involves several dimension reduction steps: The reduction of the single-
cell Hi-C interaction data via a k-nearest neighbors graph to (cell � cell)
dimensions. The two measures to compute the k-nearest neighbor graph,
namely the approximate Jaccard index and Euclidean distance, have a dif-
ferent impact on the embedding results. On the 1275 cells from Nagano
et al. (2017) with a 1Mb resolution and the five pre-classified cell cycle
phases (G1, early-S, late-S/G2, post-M and pre-M), the approximate
Jaccard index can create a distinguishable clustering, while the Euclidean
based approach falls behind in terms of accuracy. For example, for an ac-
curacy level of at least 70% of uniquely classified cells of a cell phase per
cluster: the Jaccard index-based approach detects 73% of G1, 61% of
early-S, 87% of late-S/G2, 94% of post-M and 91% of pre-M; while for
the Euclidean distance only 37% of G1, 35% of early-S and 32% of late-
S/G2 and both post-M and pre-M are not detected (Supplementary
Tables S1 and S3). The Euclidean distance’s performance can be
explained by its behavior in high dimensions (Aggarwal et al., 2001;
Beyer et al., 1999; Hinneburg et al., 2000). Moreover, the Euclidean dis-
tance does not differ between no-contacts and contacts, whereas the
Jaccard index, on the other hand, exactly makes this distinction and is,
therefore, more suitable.

3.3 Embedding via UMAP with and without prior PCA
The principal component analysis reduces the matrix dimensions
from (cells � cells) to a user-defined number of components (PC)
(cells� jPCj). The problem of not using a principal component ana-
lysis is present for the pre-M and post-M cells: The post-M cells are
mixed with pre-M cells (cluster 10), and the pre-M cells vanish in clus-
ter 4, which is dominated by late-S/G2 cells (Supplementary Table
S4). Third, using UMAP in combination with the metric ’Canberra’
(Lance and Williams, 1966) reduces the number of dimensions to a
user-defined number of UMAP components (UMAP_COMP) with
jPCj > jUMAPCOMPj: (cells� jUMAPCOMPj). This creates better clus-
tering results in comparison to the dataset that was only using princi-
pal component analysis (Supplementary Tables S1 versus S4).
Performing no principal component analysis followed by UMAP has a
worse detection rate and does not recognize any pre-M and post-M
cells (Supplementary Table S5). The situation is identical if the cluster-
ing is directly applied to the approximate k-nearest neighbor’s graph
without an additional PCA and UMAP embedding (Supplementary
Table S6).

3.4 Other parameters properties
The ideal parameter setting to compute the approximate k-nearest
neighbor graph is investigated; it is beneficial to initially use only
intra-chromosomal contacts (Supplementary Table S7), as well as
more hash functions to contribute to a better differentiation
(Supplementary Tables S8 and S9). In this context, the density of a
matrix is also essential. For example, the density distribution of the
cells in a 30 Mb context around the main diagonal of a 1 kb matrix
(from Gassler et al., 2017) with a density of 0.000002 is too sparse
to create a substantial amount of hash collisions, independent of the
number of hash functions used (Supplementary Figs S5–S13). It is
beneficial to compute a full k-nearest neighbor graph and not, e.g. a
100-nearest neighbor or a 1000-nearest neighbors graph
(Supplementary Tables S10 and S11). Last, the method to cluster the
data is investigated; spectral clustering is compared to the other
tested approaches, the algorithm with the best precision
(Supplementary Tables S1 and 12–S17).

Fig. 3. Embedding into a two dimensional space based on cell cycle data from

Nagano et al. (2017). Computed on 1275 cell cycle phase cells with their cell cycle

phase label. (a and b) are computed with the proposed algorithm. (a) is with 5

UMAP dimensions and plotted with the first two, (b) uses the same parameters but

with two UMAP dimensions. The second approach is better for a visualization,

however, Supplementary Tables S1 and S2 clearly indicate the clustering result with

the first approach is better. (c) shows the first two principal components of Zhou’s

scHiCluster
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3.5 Comparison with competing approaches
The differentiation ability of the proposed algorithm is, compared to
Zhou’s scHiCluster, on a more advanced level. Considering a unique
level of 70% of a cell phase per cluster, Zhou’s scHiCluster detects
53% of G1 (versus 73%), 50% of early-S (versus 61%), 54% late-S/
G2 (versus 87%) and is not able to detect any of the pre-M and
post-M cells. Considering a uniqueness level of 80%, Zhou’s
scHiCluster detects more G1 cells (53% versus 51%) but less early-S
(50% versus 60%), late-S/G2 (54% versus 87%), post-M (0% ver-
sus 94%) and pre-M (0% versus 91%); consider Supplementary
Tables S1 and S18. For both embedding approaches, a distorted re-
lation of the number of cells from each cell phase could be problem-
atic. Three phases are present 1235 out of 1275 times (G1 300,
early-S 573, late-S/G2 362), while post-M is present 17 and pre-M
23 times.

Besides the clusters with a high amount of a unique cell phase,
the clustering result shows that mixed clusters do not have a random
structure but represent the cell cycle’s dynamic process. Cluster 5 of
the proposed algorithm contains 11% of early-S and 88% late-S
cells; Cluster 2, 6, 8 and 10 a mix of G1 and early-S cells. The two
major phases in each cluster are consecutive in the cell cycle, and a
strict separation with no overlaps of phases would be an unexpected
result.

A batch effect is slightly visible (Supplementary Fig. S1a–c) but
does not dominate the differentiation of the embedding.
Furthermore, the detection rates of the clustering directly applied on
a k-nearest neighbor graph computed by scikit-learn’s implementa-
tion (Supplementary Table S19), on a principal component analysis
reduced dataset (Supplementary Table S20) or on the raw data
(Supplementary Table S21) are significantly worse and cannot com-
pete with the proposed algorithm. The embedding on 10 kb reso-
lution is different. While Zhou’s scHiCluster cannot perform the
computation within a reasonable time nor operate within generous
memory requirements (Supplementary Tables S22 and S23), the pro-
posed algorithm has significant issues distinguishing the cell phases.
Two cell cycle phases (early-S and late-S/G2) are partially differenti-
ated; however, they have significant overlaps with each other, espe-
cially for the G1 phase, and not all are embedded in a particular
region. Post-M cells are embedded into one region, but the pre-M
cells are distributed over the embedding, with no exact region, and
therefore, no clustering can be achieved for this cell cycle phase
(Supplementary Tables S24–S26). Investigating the batch relation
shows no correlation between the batch and the embedded region
(Supplementary Fig. S3). The bad detection rate can be explained by
a too sparse dataset with a density of 0–0.0006 (Supplementary Fig.

S6 (right)). Even a high number of hash functions does not help to
create a meaningful similarity between the cells (Supplementary
Tables S24–S26 with 20 000; 40 000 and 50 000 hash functions).

Considering the different cell type data from Ramani et al.
(2017), both the proposed algorithm and Zhou’s scHiCluster show
a separation by the two batches, ML1 and ML3 (Supplementary
Fig. S2a and b). For this reason, the cells of the two batches are sep-
arately computed. While per batch, only two cell types are present
(ML1: HeLa and HAP1; ML3: K562 and GM12878), the results in-
dicate subtypes in the data. Both Zhou’s scHiCluster and the pro-
posed algorithm benefit from using more clusters. For ML1, the
proposed algorithm outperforms Zhou’s scHiCluster if two clusters
are used: Considering a uniqueness of at least 70%, the proposed al-
gorithm detects 91% of HeLa cells and 94% of HAP1, while Zhou’s
scHiCluster detects 72% for both cell types. A uniqueness level of
80% or 90% keeps the results at an equivalent level for the pro-
posed algorithm but let it drop to 0% for Zhou’s approach.
However, the situation is different if three clusters are used: at a
level of 90%, the proposed algorithm detects 95% of HeLa and
92% of HAP1 while Zhou’s approach detects 96% and 100%
(Supplementary Tables S27 and S28). The situation is similar for
ML3: Using two clusters, the proposed algorithm detects slightly
more cells for GM12878 (73% versus 72%), but both detect 0% of
the K562 at a uniqueness level of 70%. Using five clusters shows an
advantage of Zhou’s scHiCluster, where it detects 94% for K562
and 98%for GM12878 at a uniqueness level of 80%; the proposed
algorithm detects 78% for K562 and 94% for GM12878
(Supplementary Tables S29 and S30). Working on 10 kb data from
Ramani et al. (2017), Zhou’s scHiCluster cannot compute it within
a reasonable time and memory constraints; however, the results of
the proposed algorithm are mixed. A batch effect of ML1 and ML3
is visible (Supplementary Fig. S4), but a clear differentiation of the
cell types not (Supplementary Tables S31 and S32). A differentiation
of more extensive parts of the GM12878 cells for a uniqueness level
of 70% is possible with 74%, but upon a closer investigation of the
clusters, it is evident that a high mixture of the cells is given. This is
especially true for ML1, and the cell types HeLa and HAP1, where
no clear differentiation is possible. We assume the density of 0–
0.00004 for most of the cells (Supplementary Fig. S6 (right)) is too
sparse to create a good nearest neighbors computation.

3.6 Contact decay profiles
Contact decay profiles show for each cell in a given cluster the
summed number of contacts per genomic distance. Each row is the
genomic distance between the Hi-C contacts’ two locations, and the

Fig. 4. Embedding into a two dimensional space for cell type data from Ramani et al. (2017). Separated by the two batches ML1 (a and c) and ML3 (b and d) and labeled by

their cell types
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columns are the cells. It is the nature of Hi-C contacts to decay with
increasing distances between the two locations. Moreover, the decay
of contacts should have a similar pattern for each detected cluster
since the clusters’ cells are sorted by the short to long-distance con-
tact ratio. The plot gives a global indication of the detected clusters’
correctness but incorrectly detected individual cells vanish. Figure 5
shows a contact decay plot based on the cluster results as shown in
Supplementary Tables S1 (the proposed algorithm) and S18 (Zhou’s
scHiCluster approach) on the cell cycle data from Nagano. Both
results are very similar from a global perspective. Clear contact
decay patterns within the clusters and differences to the other clus-
ters are visible, indicating the dimension reduction, embedding and
clustering are general functional. It should be noted that the pro-
posed algorithm can detect the post-M (cluster 9) and pre-M (cluster
0), while Zhou’s scHiCluster mixes both (cluster 0) or mixes it with
late-S/G2 cells (cluster 4). In contrast to these results are the contact
decay profiles, where clustering was performed on: the raw inter-
action matrices (Supplementary Fig. S14a), a Euclidean distance-
based k-nn (Supplementary Fig. S14g, h), the proposed algorithm
using the Euclidean distance (Supplementary Fig. S14b), without an
intermediate principal component analysis (Supplementary Fig.
S14d) or without UMAP (Supplementary Fig. S14e). All the results
in Supplementary Figure S14 have significant differences in the con-
tact decay within the clusters, clearly indicating an overlap of cells
that are not consecutive in the cell cycle.

3.7 Consensus matrices
A consensus matrix is a bulk mean Hi-C matrix of all cells of a clus-
ter. In the best case, all cells of a cluster have a similar chromatin
pattern and provide an insight into the chromatin folding properties.
The more noisy a consensus matrix is, the more likely the cells from
different cell cycle phases or cell types are merged into the same clus-
ter. Figure 6 shows the consensus matrices for chromosome 6 based
on the clusters presented in Supplementary Tables S1 and S18. For
both the proposed algorithm and Zhou’s scHiCluster, different Hi-C
contact matrix patterns and, therefore, different chromatin folding
properties are well developed. Given a uniqueness of > 80% as
shown in Supplementary Tables S1 and S18, the cell cycle stage G1
is represented by clusters 2, 4 and 7 for the proposed algorithm and
clusters 6 and 8 for Zhou’s scHiCluster. The patterns for the clusters
are similar, and the same is true for the early-S clusters from us (1
and 8) and Zhou (7 and 9), late-S/G2 (3, 5 and 11 respectively 4 and
5); however, post-M and pre-M are identified by the proposed algo-
rithm (cluster 0 and 9), where Zhou’s scHiCluster instead mixes
post-M and pre-M cells in cluster 0. A closer look at the consensus
matrices for the other investigated approaches confirms the findings
of the previous sections that the usage of raw data, the euclidean dis-
tance, a 100-nearest neighbors graph, no PCA, no UMAP, inter- and
intra-chromosomal contacts, or the usage of the scikit-learn k-nn do
not lead to a good differentiation of the cell cycles (Supplementary
Figs S15 and S16).

Fig. 5. Contact decay profile of the clusters; computed by scHicClusterMinHash with spectral clustering (a), Zhou’s scHiCluster (b). Computation on 1 Mb resolution, with

1275 cell cycle phase cells from Nagano et al. (2017). Numbers indicate the cluster id and how many cells they contain; clusters are to be read from left to right. The number

of clusters is 12 to have comparability to the cluster results of Nagano et al. (2017)

Fig. 6. Consensus clusters computed by scHicClusterMinHash with spectral clustering (a) and Zhou’s scHiCluster (b). Computation on 1 Mb resolution, with 1275 cell cycle

phase cells from Nagano et al. (2017), with 12 clusters. Numbers under the matrices indicate the cluster id. The number of clusters is 12 to have comparability to the cluster

results of Nagano et al. (2017)
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3.8 Runtime and memory
The approximate Jaccard index computation achieves faster or simi-
lar run times compared to the sklearn implementation of a k-nearest
neighbors search, which is based on ball-trees, under consideration
of the one megabase resolution single-cell Hi-C dataset as shown in
Supplementary Tables S33 and S34. The runtimes can be influenced
by the clustering algorithm used. This is especially the case for the
clustering on raw data where k-means runs for around 40 min; for
all others, a difference is present but is minor. However, we cannot
explain the outstanding runtime of k-means on the XEON machine;
a run on the AMD Ryzen based computer shows a runtime of
12 min, but a similar runtime for all other algorithms. The classical
and naive way to reduce dimensions is a principal component ana-
lysis (PCA), but the method uses a high amount of memory (170
GB) even on the low-resolution matrix. For the 10 kb resolution ma-
trix, the PCA method throws an error that it is ’unable to allocate
1.28 PiB for an array with shape (2633, 69647960281) and data
type float64’. All approximate k-nearest neighbor graph approaches
use a similar amount of memory caused by the memory consump-
tion at the read-in stage of the individual single-cell Hi-C matrices.
The provided Euclidean mode of the proposed algorithm has a little
increased run time compared to sklearns implementation. The run-
times of the proposed algorithm computed on a state-of-the-art
computer with an SSD compute the clustering on the low-resolution
matrix in around a minute and uses less than 8 GB of memory. The
clustering on the high-resolution matrix is computed in 3:30 min
and uses 40 GB of memory (compare Supplementary Tables S22
and S23). To have reduced memory usage, the mode –saveMemory
is offered. The proposed algorithm uses one core to load in a batch
processing way data; the user can define the share of the to be proc-
essed matrices. The 10 kb resolution matrices’ processing with a
share of 1% of the data took 13 min, but the memory usage is
reduced to 12.5 GB (Supplementary Table S23). The more hash
functions are used, the longer the run times are. The runtimes on a
1 Mb resolution using only cells with available labels is faster com-
pared to Zhou’s scHiCluster even for 20 000 hash functions
(Supplementary Table S35).

Zhou’s scHiCluster has a runtime of 14 min with the CPU imple-
mentation and 7 min on the GPU on a low resolution (1 Mb) matrix
(Supplementary Table S34). The benefits of the proposed algorithm
in terms of runtime and memory usage are significant under the con-
sideration of a high-resolution single-cell Hi-C dataset. As shown in
Supplementary Table S22, all methods besides the proposed algo-
rithm cannot be computed due to their high memory usage of more
than one terabyte. Considering Zhou’s scHiCluster, we canceled the
computation after 97 h runtime; the computation of the first loaded
chromosome (chromosome 10) was not finished but had a peak
memory usage of 970 GB. The data for Zhou’s scHiCluster was
stored in a RAM disk to exclude potential network file system
issues. Only the proposed algorithm can compute a result while
using a moderate 40 GB of memory; these resources are available
for most researchers.

4 Discussion

It was shown that an approximate k-nearest neighbors graph can be
used to reduce the number of dimensions required to cluster single-
cell Hi-C data, with higher accuracy, faster run times and enabling
users to analyze high-resolution data with a vastly reduced memory
burden. The approximation of the Jaccard index proves to be a suit-
able similarity measure to create a base for clustering, while the
Euclidean distance, considering the curse of dimensionality and the
unique properties of Hi-C data, is shown to be not such an appropri-
ate measure. The cluster results based on the approximate k-nearest
neighbors with MinHash, the additional PCA on the computed k-
nearest neighbor’s graph, the UMAP embedding and a spectral clus-
tering show a better differentiation of the chromatin folding proper-
ties compared to competitive methods. The presented approach to
reduce the number of features, especially when dealing with millions
to billions of dimensions, is crucial to achieving adequate run time

and memory usages. Access to computers with more than 1 TB of
memory is currently difficult, but access to computers or cluster
nodes with 40 GB of memory is available to most researchers. The
presented approximate nearest neighbors graph enables a broader
range of researchers to work with single-cell Hi-C data and adds
with the approximate Jaccard index a method to create a k-nearest
neighbors graph. Moreover, the proposed algorithm is embedded
into the scHiCExplorer, a software suite for single-cell Hi-C data
analyses, and supports the native single-cell Hi-C format scool
(Wolff et al., 2020b). Thanks to the availability of the approximate
k-nearest neighbor search as an independent software package, it
can be easily integrated into other research issues dealing with simi-
lar matrix properties, as is the case in single-cell RNA-seq.
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Abstract

Motivation: Single-cell Hi-C research currently lacks an efficient, easy to use and shareable data storage format.
Recent studies have used a variety of sub-optimal solutions: publishing raw data only, text-based interaction matri-
ces, or reusing established Hi-C storage formats for single interaction matrices. These approaches are storage and
pre-processing intensive, require long labour time and are often error-prone.

Results: The single-cell cooler file format (scool) provides an efficient, user-friendly and storage-saving approach for
single-cell Hi-C data. It is a flavour of the established cooler format and guarantees stable API support.

Availability and implementation: The single-cell cooler format is part of the cooler file format as of API version 0.8.9.
It is available via pip, conda and github: https://github.com/mirnylab/cooler.

Contact: wolffj@informatik.uni-freiburg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The storage, processing and analysis of single-cell Hi-C data face sev-
eral challenges. First, the pre-processing overhead for single-cell Hi-C
is both storage-intensive and time-consuming. For example, reproduc-
ing the results of the Nagano et al. (2017) single-cell Hi-C study
requires downloading, demultiplexing and mapping more than 1.1 TB
of compressed raw FASTQ data and creating thousands of interaction
matrices. Second, manually handling so many files is unwieldy and
prone to error. For example, some studies (Nagano et al., 2013;
Ramani et al., 2017; Steven et al., 2017) have published their pre-
processed data as text-based files. Depending on the resolution, these
files potentially store millions to billions of features in an uncom-
pressed text file without fast random or partial access. By contrast,
studies like Gassler et al. (2017) published pre-processed cool files
(Abdennur and Mirny, 2019) for each cell and at multiple resolutions.
However, due to redundancy in data storage and the complexitiy of
handling a proliferation of files, this one-matrix-per-file approach has
limited scalability and makes reproducible analysis challenging.

Here, we present the single-cell cooler format, a ‘flavour’ of the
cooler file format (Abdennur and Mirny, 2019), that stores multiple
single-cell sparse Hi-C interaction matrices at a common resolution
in a single HDF5 (Koziol and Robinson, 2018) file, allowing port-
able, space-efficient and fast access to single-cell interaction data. It
uses the recommended extension.scool.

2 Materials and methods

We adopt the basic structure of the cooler format to create a col-
lection of single-cell interaction matrices having common dimen-
sions (see Fig. 1 A and B). Internally, all single-cell interaction
matrices are stored under a group/cells and each matrix is identi-
fied by a unique cell ID and has the structure of a standard cool-
er data collection (Fig. 1A), allowing it to be read independently
and transparently with the regular cooler API (see Listing 2).
However, to eliminate redundancy, data structures that are
shared between all cells are implemented as HDF5 hard-links
pointing to the data that is shared between the cells, which is
stored in the root group (Fig. 1B). These include the index-
associated genomic coordinates of the Hi-C contacts:/bins/chrom,/
bins/start,/bins/end, and the general information about the stored
chromosomes:/chroms. These shared data structures provide sig-
nificant space reduction when consolidating contact maps from a
multitude of cells into a single file as opposed to use a large col-
lection of separate cooler files. As a matrix format, a scool file
stores binned contact data conforming to a specific genomic seg-
mentation. While binning naturally leads to a loss of information
and comparing datasets can be difficult when bin sizes are not
compatible, single-cell cooler files can be binned at any resolution
and even lossless contact maps can be produced using 1-bp reso-
lution, if desired.
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2.1 Metadata
The single-cell cooler format stores specific metadata HDF5 attrib-

utes at the root level of the file: the format string HDF5::SCOOL,
the format-version, whether the bin-type is fixed or variable, the
bin-size, the genome assembly, the number of stored cells ncells and

the optional field metadata for quality information or other user
metadata.

2.2 Creation
To create a single-cell cooler file, the API can be used by calling the

function cooler.create_scool and providing a file name, a dictionary
of bins with the unique cell name as key (or a global common bin

table, see Supplementary Material) and a dictionary mapping unique
cell names to pixel information (Listing 1).

2.3 Access
The interaction matrices in a single-cell cooler file can be listed with
cooler.fileops.list_coolers. The interaction matrix of one cell can be
retrieved using the resource syntax:

3 Results

The single-cell Hi-C data provided by Nagano et al. (2017) as raw
FASTQ files has a compressed size of more than 1 TB. After demul-
tiplexing, mapping and matrix creation several terabytes are con-
sumed. At 10 kb resolution, 3882 individual cool files have a size of
3 GB, which is reduced to 1.9 GB using scool. At 1 MB, the cool files
require 350 MB and the scool 267 MB. Gassler et al. (2017) provide
144 individual cool files at different resolutions. The storage reduc-
tion provided by scool is 2300–116 MB at 1 kb; 348–65 MB at
10 kb; 120–28 MB at 40 kb; and 63–26 MB at 100 kb.
Compression ratios (see Supplementary Table S2) depend on the
density and the resolution of the data. Generally, there is a greater
overhead of storing a full bin table for each cell the fewer reads rela-
tive to the number of possible interactions and the higher the reso-
lution. For example, the density for the 10 kb single-cell Hi-C data
from Gassler et al. (2017) is up to 0.0004, while for Nagano et al.
(2017), it is up to 0.0012. Accordingly, the scool/cool compression
ratio for Gassler et al. (2017) (0.193) is better than that for Nagano
et al. (2017) (0.633). See the Supplementary Material for more read
coverages, densities and compression rates with respect to text and
cooler files.

4 Conclusion

The single-cell cooler format makes it possible to store thousands of
state-of-the-art single-cell Hi-C matrices in a single file with minimal
redundancy. By storing all matrices in a space-efficient way, the re-
producibility of single-cell Hi-C analyses is better achievable and the
data are more accessible to a broader range of researchers. A portable
container format prevents the complexity of managing thousands of
files or needing to download and process large amounts of raw data
from scratch. The embedding into the cooler API guarantees a fast
and reliable access to the individual single-cell matrices and facilitates
the use of parallel computing to improve analysis performance. The
scool format is ideal for single-cell Hi-C data analysis software and is
supported by scHiCExplorer (Wolff et al., 2020).
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Fig. 1. (A) The structure of the cooler file format from Abdennur and Mirny (2019).

(B) The structure of the single-cell cooler file format as a flavour of the cooler for-

mat. Hard linked groups and arrays are denoted with the curved arrow icon

import cooler

bins_dict ¼ f’cell1’: bins1, ’cell2’: bins2g
pixel_dict ¼ f’cell1’: pixels1, ’cell2’: pixels2g
cooler.create_scool(cool_uri¼file_name, bins¼bins_dict,

cell_name_pixels_dict¼pixel_dict)

Listing 1 Python API example to create a scool file

if cooler.fileops.is_scool_file(file_path):

matrices_list ¼ cooler.fileops.list_scool_cells(

file_path)

for cell in matrices_list:

clr ¼ cooler. Cooler(file_path þ ‘::’ þ cell)

Listing 2 Python API example to read cells of a scool file

2 J.Wolff et al.
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Abstract

Motivation: Generating publication ready plots to display multiple genomic tracks can pose a serious challenge.
Making desirable and accurate figures requires considerable effort. This is usually done by hand or using a vector
graphic software.

Results: pyGenomeTracks (PGT) is a modular plotting tool that easily combines multiple tracks. It enables a reprodu-
cible and standardized generation of highly customizable and publication ready images.

Availability and implementation: PGT is available through a graphical interface on https://usegalaxy.eu and through
the command line. It is provided on conda via the bioconda channel, on pip and it is openly developed on github:
https://github.com/deeptools/pyGenomeTracks.

Contact: fidel.ramirez@boehringer-ingelheim.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The analysis and visualization of multivariate genomic data faces
several challenges. On one hand, there is a wide range of processing
steps needed to analyze and to summarize large-scale data at a
genome-wide level. Considerable effort has led to efficient tools as
well as the adoption of scalable pipelines and frameworks, which
provide a high degree of standardization and reproducibility
(Bhardwaj et al., 2019; Grüning et al., 2018). On the other hand,
advanced tools have been developed to support the visualization of
genome-wide information and global patterns (Gehlenborg et al.,
2010). However, to turn genome-wide insights into testable inter-
ventions and validation experiments, researchers will usually return
to locus-specific exploration. This is possible with a wide range of
interactive genome browsers (Robinson et al., 2011), and advanced
browsers for three-dimensional data (Kerpedjiev et al., 2018).
Unfortunately, this exploration process is hard to standardize and
yields heavily post-processed ‘snapshots’ to communicate the results.
With pyGenomeTracks (PGT), we present a new and open software,
which helps to standardize the generation of high-quality images in
a programmatic approach. PGT supports the integrated visualiza-
tion for a large variety of data sources, such as gene annotations,
gene expression, chromatin signals and chromatin interactions.

2 Materials and methods

PGT provides an opportunity to map several genomic data tracks
from a variety of resources onto one or a given list of genomic
coordinates and generates an image per given coordinate including
all of the input tracks. It offers support for a wide range of stand-
ard data formats in bioinformatics such as bigwig, bedgraph, epi-
logos, bed, gtf, narrow peaks, cool and HiCExplorer’s native h5
format.

The only preprocessing step to generate a multitracks plot is to
prepare a configuration file which contains all necessary parameters
to plot the desired tracks of multiple input files. PGT provides a sim-
ple script (make_tracks_file) to generate a configuration file from a
collection of input files. A usage example of it is shown in
Supplementary Section S1.

This configuration file defines best practice, but it can also be
fully customized by the user. In a configuration file, each track is
defined as a block of parameters starting with its name [track name]
and continues with the parameters for that track such as the file lo-
cation, its title, height, color and so on, as has been shown in the
Supplementary Section S1.

For the plot generation, users need to define the precise genomic
coordinates either by providing a single coordinate or by providing

VC The Author(s) 2020. Published by Oxford University Press. 422
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a bed file with multiple genomic regions. PGT supports several out-
put formats such as eps, pdf, pgf, png, ps, raw, rgba, svg and svgz,
which offers a broad degree of flexibility. The tool can easily gener-

ate the requested figure by running a single command line as has
been presented below.

$ pyGenomeTracks ––tracks tracks.ini ––region \
chr2L:8050000-8300000 ––outFileName image.pdf
Moreover, for users who prefer a graphical interface, PGT is

available as a tool on the European Galaxy server https://usegalaxy.

eu, and can be installed on any local Galaxy instance (Afgan et al.,
2016) via ToolShed (see Supplementary Fig. S1).

To illustrate the functionality of PGT, Figure 1 provides an ex-
ample of a multitrack visualization from an integrated multiomics
screen (Ramı́rez et al., 2018) generated with PGT version 3.5. Please

refer to the Supplementary Data for additional examples and a
detailed documentation is available on https://pygenometracks.read
thedocs.io.

3 Conclusion

With PGT, it is possible to integrate multiple data sources from a
wide variety of genomics assays and to generate publication ready
plots. The presence of a configuration file (.ini file) provides flexibil-

ity to easily change or reorder the data tracks. To ensure maximal
reproducibility, PGT also uses conda, which allows specific versions
of all dependent tools to be flexibly chosen. This approach enables

other researchers to readily reproduce the images and validate them
swiftly. The supported output file formats, such as eps, svg or png,

offer a high degree of freedom to generate plots in standardized for-
mats which are required by a variety of major journals. PGT can be
used as a command line or Galaxy-based tool. The latter is available

on https://usegalaxy.eu with all configuration options, or it can be
installed on any local Galaxy instance. It provides an easy way for

users to run their analysis on Galaxy in a transparent and reprodu-
cible way. PGT presents a well-structured approach for generating

genomics data plots and can also be used in automated workflow
processing.
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Fig. 1. An example plot generated by PGT on Drosophila melanogaster (dm3) data, Kc167 cell line. The first track from the top shows the genomic locus (chromosome 2L

8.05–8.31 Mb). The second track illustrates a Hi-C matrix track (Li et al., 2015) overlaid by its detected TADs, via HiCExplorer and a coverage profile of CP190 ChIP. The

matrix was in HiCExplorer h5 format, TADs are given as a bed file which is a direct output of HiCExplorer’s hicFindTADs and the ChIP-Seq profile is provided as a bigwig

file. The succeeding track shows the chromatin states, provided as a bed file, where the colors used are as defined in the ninth field of the bed file. The next track visualizes the

TAD separation scores, the data are presented in a bedgraph matrix file format from HiCExplorer hicFindTADs. The green track shows a filled-out curve representation of the

data from H3K36me3 histone mark, provided as a bigwig file along with an additional horizontal threshold line as well as a scale bar indicating the distance between two dif-

ferent peaks of interest. The blue arcs show artificially created links that could be contacts between different CP190 peaks. Finally, the last track is a gene track of dm3, avail-

able in bed format. The configuration file is available in Supplementary Section S3
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Appendix A
A.1 Galaxy HiCExplorer 3: a web server for reproducible

Hi-C, capture Hi-C and single-cell Hi-C data analysis,
quality control and visualization
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Supplementary material: Galaxy HiCExplorer 3: a web server for

reproducible Hi-C, capture Hi-C and single-cell Hi-C data analysis,

quality control and visualisation

1 HiCExplorer methods

1.1 hicNormalize

In the HiCExplorer software the term normalize is used in the context of adjusting the interaction values to
the same value range. To achieve this, three methods are offered.
In the following the interaction matrix is defined as:

ICM =



ic00 · · · ic0n

... · · ·
...

icn0 · · · icnn


 (1)

1.1.1 Smallest

This mode normalizes the read coverage of all given matrices ICMl to the sum of the lowest read coverage
present:

read coveragel =
∑

ICMl (2)

min index = argmin(read coverage) (3)

adjust factor =

∑
ICMl∑

ICMmin index
(4)

ic lj,k =
ic lj,k

adjust factor
(5)

1.1.2 Norm range

The norm range mode normalizes each interaction matrix ICM independently to a 0 to 1 value range.

max value = max (ICM) (6)

min value = min (ICM) (7)

min max difference = max value−min value (8)

ici,j =
ici,j −min value

min max difference
(9)

1.1.3 Multiplicative mode

The multiplicative mode gives the option to multiply each interaction with a user defined value.

ici,j = ici,j ∗ value (10)

1



1.2 hicAverageRegions

hicAverageRegions takes as input a bed file with regions of interest. The user can define if the start, end or the
center (end - start) should be considered as the reference point. Based on a reference point icmi,j and the user
given range r, a sub-matrix per reference point is extracted:

ICM sub =



ici−r,j−r · · · ici−r,j+r

... icmi,j

...
ici+r,j−r · · · ici+r,j+r


 (11)

All sub-matrices ICM sub are added to one matrix and is divided by the number of sub-matrices. This resulting
matrix is called the average region matrix.

1.3 hicPlotSVL

For each chromosome of each interaction matrix the short vs. long range distance ratio is computed as:

short range =

i<minRange∑

i=0

j<minRange∑

j=0

ici,j (12)

long range =

i<maxRange∑

i=minRange

j<maxRange∑

j=minRange

ici,j (13)

svl =
short range

long range
(14)

All short vs long range values are ordered by the chromosomes and between different samples a Wilcoxon
rank-sum is computed. The rank-sum test determines if two samples have a different ratio (small p-value) or
not.

1.4 hicCompartmentalization

This tool helps in studying the polarization of the compartments by ordering the values of PC1 in an ascending
manner and re-ordering their corresponding bins on the observed/expected matrix, we call it the ’polarization
matrix’. With this method, all the bins with negative PC1 values (representative of inactive compartment (B))
should be shifted to the top/left corner of polarization matrix and all those with positive values (representative
of active compartment (A)) should be moved at bottom/right cornet of the matrix. If there will be a clear
compartmentalization on the given genome, it is expected that the sum of the contacts in these two corners
be larger than the sum of the contacts on the two other corners of the matrix which contain the in-between
compartments contacts.
The ascending ordering happens after dividing the values into a given number of quantiles, therefore the
polarization matrix dimension is quantiles ∗ quantiles. To make the polarization plot by counting the contacts
of the polarization matrix, we apply the following method on each bin of the polarization matrix:

within comps =
∑

matrix[0 : b, 0 : b] +
∑

matrix[q − b : q, q − b : q];

between comps =
∑

matrix[0 : b, q − b : q] +
∑

matrix[q − b : q, 0 : b];

within to between = within comps
between comps

(15)

Where b is the bin + 1 and q is the given number of quantiles.

2 Capture Hi-C

2.1 Background model

The user given reference point with the up- and downstream given distance is defined as the viewpoint. A
relative distance is defined as the distance up- or downstream to a reference point.
To build the background model, all viewpoints from all samples are considered. Per relative distance rd over
all viewpoints v one continuous negative binomial distribution is fitted:

Xrd ∼ cNBrd(rrd, prd) (16)

2



The continuous negative binomial distribution is created by exchanging the binomial coefficient of the prob-
ability mass function by gamma functions. Continuous negative binomial functions are used by edgeR [1, 2];
moreover, it was discussed on the website stackexchange1 how to generalize negative binomial functions. This
continuous negative binomial function is also used in the loop detection2.

f(k, r, p) =
Γ(k + r)

Γ(k + 1) ∗ Γ(r)
pk(1− p)

r
(17)

The p-value of an interaction i at the relative distance rd is given as:

pvalue of i = P (x ≥ i) = 1−
i−1∑

k=0

frd(k, rrd, prd) (18)

Additionally, the mean background per relative distance rd over all viewpoints v is computed.

2.2 Significant interaction detection

The detection of significant interactions is accomplished in three steps:

1. Loose p-value: all interactions which have this p-value or less are accepted as a candidate

2. x-Fold: all interactions with a interaction value value ∗ x − fold > mean backgroundrd are accepted as
a candidate

3. For all interactions: if their neighbor interaction is a candidate too, consider their interaction as one and
add them together. Add neighboring elements together as long they fulfil condition 1 or 3. Recompute
all p-values for the new interaction and accept as significant if their p-value from cNBrd is p − value ≤
threshold.

2.3 Differential test

All interactions of interest are tested with Fisher’s exact test or the chi2 contingency test. Values for the test
are always the interaction value of the reference point and the interaction value of the interaction of interest.
These values are used to test against a second sample (e.g. wild type).

3 scHiCExplorer methods

scHiCExplorer uses traditional clustering algorithms which require a two dimensional matrix as an input but
the nature of a Hi-C matrix is that it is already present in two dimensions; leading to three dimensions.
Let all single-cell Hi-C matrices ICM be given as n×n and each pixel as icmk,l. Each Hi-C interaction matrix is
flattened to one dimension and is stacked together with all the other flattened matrices to one two dimensional
matrix scICM where each row i resents therefore a cell, each feature j an interaction. An interaction at
scICMi,j is equal to the single-cell Hi-C matrix of cell i and the interaction at position j is j = (k ∗ n) + l.
This results in the matrix scICM with i× (n ∗ n).

3.1 Dimension reduction

The raw clustering approaches of scHicCluster do not use any dimension reduction technique and operate
directly on the matrix scICM . This can be problematic because the number of dimensions can go to the
millions or even billions, depending on the resolution on the Hi-C matrices. Moreover, the clustering results
are bad. Please consider Supplement Figure 1a, 1b and the cluster profile Supplement Figure 4a, 4b.

3.1.1 PCA

To compute the principle components, first the covariance matrix on scICM is generated and then the eigen-
vectors are calculated on this matrix. Only the first i componets are considered, resulting in a dimension
reduced matrix scPCA of i× i.

1https://stats.stackexchange.com/questions/310676/continuous-generalization-of-the-negative-binomial-distribution/311927
2https://www.biorxiv.org/content/early/2020/03/06/2020.03.05.979096
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3.1.2 K-nearest neighbors

The k-nearest neighbors graph approach computes on scICM for each cell i the i-nearest neighbors based on
the euclidean distance. With this approach the dimensions can be reduced to i× i and each pixel i, j represents
the euclidean distance between the two cells. However, the user can define a different value for the k-nn and is
therefore able to reduce the compute time.

3.1.3 Approximate nearest neighbors: MinHash

The MinHash approach computes approximate nearest neighbors via an approximation of the Jaccard simi-
larity. Moreover, it offers the option to precompute the Jaccard similarity and based on the subset of nearest
neighbors the exact nearest neighbors via the euclidean distance can be computed. Please consider Wolff 2020:
Approximate k-nearest neighbors graph for single-cell Hi-C dimensional reduction with MinHash3 for more
details.

3.1.4 Short vs long range ratio

For each single-cell Hi-C matrix ICM with n× n the short vs long range ration per chromosome is computed
as described in Section 1.3. Let the number of all present single-cell matrices be i. All ratios per chromosome
of all single-cell Hi-C matrices are stacked together resulting in a dimension reduced matrix scSV L with
i× |chromosomes| dimensions.

3.1.5 A/B compartments

For each single-cell Hi-C matrix ICM with n×n the A/B compartments are computed per chromosome and the
first principal component is taken as the vector describing the matrix. Let the number of all present single-cell
matrices be i. All first principal components of all single-cell Hi-C matrices are stacked together resulting in a
dimension reduced matrix scABC with i× n dimensions.

3.2 Clustering

As clustering methods k-means and spectral clustering are offered. Please consider the following Figures 1, 2,
3 and 4 for a comparison of the dimension reduction techniques and the quality of the clustering.

3http://dx.doi.org/10.1101/2020.03.05.978569
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Figure 1: Consensus matrices of the different clusters on 2460 cells from [3] Diploid cells, chromosome 1. K-
Means and spectral clustering was used on the different dimension reduced scHi-C matrices. Results from
scHicCluster on raw data (1a, 1b) and on dimension reduced data with k-nearest neighbors (1c, 1d, 1e, 1f) and
PCA (1g, 1h).

6



0 1 2 3

4 5 6 7

8 9 10 11

101

(a) MinHash k-nn k = 100 K-means

0 1 2 3

4 5 6 7

8 9 10 11

101

102

(b) MinHash k-nn k = 100 Spectral

0 1 2 3

4 5 6 7

8 9 10 11

101

102

(c) MinHash k-nn k = 2460 K-means

0 1 2 3

4 5 6 7

8 9 10 11

101

102

(d) MinHash k-nn k = 2460 Spectral

0 1 2 3

4 5 6 7

8 9 10 11

101

102

(e) MinHash exact mode k-nn k = 100 K-means

0 1 2 3

4 5 6 7

8 9 10 11

101

102

103

(f) MinHash exact mode k-nn k = 100 Spectral

0 1 2 3

4 5 6 7

8 9 10 11

101

(g) MinHash exact mode k-nn k = 2460 K-means

0 1 2 3

4 5 6 7

8 9 10 11

101

102

103

(h) MinHash exact mode k-nn k = 100 Spectral

Figure 2: Consensus matrices of the different clusters on 2460 cells from [3] Diploid cells, chromosome 1.
K-Means and spectral clustering were applied on results from scHicClusterMinHash.
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Figure 3: Consensus matrices of the different clusters on 2460 cells from [3] Diploid cells, chromosome 1.
K-Means and spectral clustering were applied on results from scHicClusterCompartments (3a, 3b) and scHic-
ClusterSVL (3c, 3d).
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Figure 4: Cluster profile of the different clusters on 2460 cells from [3] Diploid cells. K-Means and spectral
clustering were applied on the different dimension reduced scHi-C matrices. Results from scHicCluster on raw
(4a, 4b) with knn (4c, 4d, 4e, 4f) mode, PCA (4g, 4h); scHicClusterMinHash (4i, 4j, 4k, 4l, 4m, 4n, 4o, 4p);
scHicClusterCompartments (4q, 4r) and scHicClusterSVL (4s, 4t).
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Method Runtime Memory
Raw and K-Means 1:52 h 33 GB
Raw and Spectral 3:02 min 6.7 GB
PCA and K-Means 7:27 min 220 GB
PCA and Spectral 7:39 min 220 GB
sklearn k-nn k = 100 and K-means 2:11 min 6.7 GB
sklearn k-nn k = 100 and Spectral 3:40 min 6.7 GB
sklearn k-nn k = 2460 and K-means 18:41 min 6.7 GB
sklearn k-nn k = 2460 and Spectral 3:44 min 6.7 GB
MinHash k = 100 and K-means 2:18 min 6.7 GB
MinHash k = 100 and Spectral 3:27 min 6.7 GB
MinHash k = 2460 and K-means 6:59 min 6.7 GB
MinHash k = 2460 and Spectral 3:20 min 6.7 GB
MinHash exact mode k = 100 and K-means 4:25 min 6.7 GB
MinHash exact mode k = 100 and Spectral 2:56 min 6.7 GB
MinHash exact mode k = 2460 and K-means 1:12 h 6.7 GB
MinHash exact mode k = 2460 and Spectral 1:03 h 6.7 GB
A/B compartments K-means 40:52 min 6.7 GB
A/B compartments Spectral 1:10 h h 6.7 GB
SVL K-means 1:51 min h 6.7 GB
SVL compartments Spectral 1:52 min h 6.7 GB

(a) Data: 1 MB resolution, with 2460 cells.

Method Runtime Memory
Raw and K-Means - > 1 TB
Raw and Spectral - > 1 TB
PCA and K-Means - > 1 TB
PCA and Spectral - > 1 TB
sklearn k-NN and K-Means - > 1 TB
sklearn k-NN and Spectral - > 1 TB
MinHash k = 2508 and K-Means 1:13 h 53 GB
MinHash k = 2508 and Spectral 1:04 h 53 GB
MinHash exact mode k = 2508 and K-Means 3:19 h 53 GB
MinHash exact mode k = 2508 and Spectral 3:11 h 53 GB
MinHash exact mode k = 50 and K-Mans 1:08 h 53 GB
MinHash exact mode k = 50 and Spectral 1:03 h 53 GB
MinHash exact mode k = 200 and K-Mans 1:17 h 53 GB
MinHash exact mode k = 200 and Spectral 1:09 h 53 GB
A/B compartments K-means > 14 days - GB
A/B compartments Spectral > 14 days - GB
SVL K-means 1:11 h 6.7 GB
SVL compartments Spectral 1:14 h 6.7 GB

(b) Data: 10 kb resolution, with 2460 cells. The raw matrix, PCA and sklearn k-nn methods requested more than
the available 1 TB of memory and could not be computed; A/B compartments were computing for 14 days and the
computation has been canceled by us.

Table 1: Data from [3] Diploid cells, with 12 clusters. For clustering K-means and spectral clustering were
used, MinHash with 800 hash functions. All results computed on 2x XEON E5-2630 v4 @ 2.20GHz 2x 10 cores
/ 2x 20 threads, 1 TB memory.
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2 Density distributions for single-cell interaction matrices

The density of a cell is measured by the number of binary contacts a cell has vs. the number of contacts it
could have, i.e., the number of non-zero values of a matrix vs. all values. Single-cell Hi-C matrices have the
disadvantage, especially in comparison to regular Hi-C, that their read coverage with around 100,000 reads per
cell is low. The majority of the contacts are recorded in close proximity, i.e., around the main diagonal. For
these reasons, the density measure is restricted to (possible) interaction pairs within a distance of 30 Mb.
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Figure S 5: Density distributions for 100kb, 10kb and 1kb for 144 cells from Gassler et al. (2017)
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Figure S 6: Density distributions for 1Mb and 10kb for 2472 cells from Nagano et al. (2017).
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Figure S 7: Density distributions for 1Mb and 10kb for 1329 cells from Ramani et al. (2017).
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3 MinHash collision statistics

3.1 Collisions per cell

The here shown collision statistics are for different interaction matrix resolutions from Nagano et al. (2017)
and Gassler et al. (2017).
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Figure S 8: Number of hash collisions per cell for 100kb (top), 10kb (middle) and 1kb (bottom) for 144 cells
from Gassler et al. (2017). The number of hash collisions is shown for 100, 200, 400, 800, 1200 and 2000 hash
functions. One collision occurs if two cells have the same hash value for a hash function.
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Figure S 9: Number of hash collisions per cell for 1Mb (top) and 10kb (bottom) cells from Nagano et al. (2017).
The number of hash collisions is shown for 100, 200, 400, 800, 1200 and 2000 hash functions. One collision
occurs if two cells have for one hash function the same hash value.
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3.2 Collision occurrences

The collision occurrences statistics maps the number of collisions for a hash value of a hash function (x-axis)
with the occurrences of the number of collisions’ overall hash functions and hash values.
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Figure S 10: Size of hash collisions (x-axis) and their collision occurrences (y-axis) for 100kb (top), 10kb
(middle) and 1kb (bottom) for 144 cells from Gassler et al. (2017). The number of hash collisions is shown for
100, 200, 400, 800, 1200 and 2000 hash functions.
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Figure S 11: Size of hash collisions (x-axis) and their collision occurrences (y-axis)for 1Mb (top) and 10kb
(bottom) for 2472 cells from Nagano et al. (2017). The number of hash collisions is shown for 100, 200, 400,
800, 1200 and 2000 hash functions.
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3.3 Number of hash values per hash function

The here shown collision statistics are for different interaction matrix resolutions from Nagano et al. (2017)
and Gassler et al. (2017).
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Figure S 12: Number of hash values per hash function for 100kb (top), 10kb (middle) and 1kb (bottom) for
144 cells from Gassler et al. (2017). The number of hash values per hash function is shown for 100, 200, 400,
800, 1200 and 2000 hash functions.
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Figure S 13: Number of hash values per hash function for 1Mb (top) and 10kb (bottom) for 2472 cells from
Nagano et al. (2017). The number of hash collisions is shown for 100, 200, 400, 800, 1200 and 2000 hash
functions. One collision occurs if two cells have for one hash function the same hash value.
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4 Cluster results

4.1 Cluster overlaps

Percentage values define the number of cells of a cluster which are associated with a specific cell cycle phase,
i.e., in Table 1 cluster 1 has 166 cells, and 2 are associated with cell cycle stage G1; therefore, 2 / 166 or 1.2%
of cluster 1 is from cell cycle stage G1. Correct identified: This measures how many percent of a cluster are
unique identified with a cell phase or cell type. For example, 155 cells out of 300 G1 cells are unique, with a
level of at least 80 % in their clusters. These are Cluster 2 with 84.1%, Cluster 4 with 95.8%, and 7 with each
97.9%.

4.1.1 Nagano 1MB

Cluster G1 (300 cells) early-S (573 cells) late-S/G2 (362 cells) post-M (17 cells) pre-M (23 cells)
Cluster 0 (25 cells) 0 cells / 0.00 % 0 cells / 0.00 % 4 cells / 16.00 % 0 cells / 0.00 % 21 cells / 84.00 %
Cluster 1 (166 cells) 2 cells / 1.20 % 147 cells / 88.55 % 17 cells / 10.24 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 2 (101 cells) 85 cells / 84.16 % 16 cells / 15.84 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 3 (111 cells) 0 cells / 0.00 % 10 cells / 9.01 % 100 cells / 90.09 % 0 cells / 0.00 % 1 cell / 0.90 %
Cluster 4 (24 cells) 23 cells / 95.83 % 0 cells / 0.00 % 0 cells / 0.00 % 1 cell / 4.17 % 0 cells / 0.00 %
Cluster 5 (103 cells) 0 cells / 0.00 % 12 cells / 11.65 % 91 cells / 88.35 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 6 (85 cells) 66 cells / 77.65 % 19 cells / 22.35 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 7 (48 cells) 47 cells / 97.92 % 1 cell / 2.08 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 8 (239 cells) 15 cells / 6.28 % 202 cells / 84.52 % 22 cells / 9.21 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 9 (19 cells) 2 cells / 10.53 % 0 cells / 0.00 % 0 cells / 0.00 % 16 cells / 84.21 % 1 cell / 5.26 %
Cluster 10 (203 cells) 60 cells / 29.56 % 141 cells / 69.46 % 2 cells / 0.99 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 11 (151 cells) 0 cells / 0.00 % 25 cells / 16.56 % 126 cells / 83.44 % 0 cells / 0.00 % 0 cells / 0.00 %

Correct identified > 70% 221 / 300 (73.67 %) 349 / 573 (60.91 %) 317 / 362 (87.57 %) 16 / 17 (94.12 %) 21 / 23 (91.30 %)
Correct identified > 80% 155 / 300 (51.67 %) 349 / 573 (60.91 %) 317 / 362 (87.57 %) 16 / 17 (94.12 %) 21 / 23 (91.30 %)
Correct identified > 90% 70 / 300 (23.33 %) 0 / 573 (0.00 %) 100 / 362 (27.62 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)

Table 1: Overlaps of detect clusters with known cell cycle stages from Nagano et al. (2017). Clustering with
approximate k-nearest neighbors, 28000 hash functions, 55 principal components and UMAP k-neighbors 58,
UMAP components 5 and UMAP min distance 0.2886.

Cluster G1 (300 cells) early-S (573 cells) late-S/G2 (362 cells) post-M (17 cells) pre-M (23 cells)
Cluster 0 (95 cells) 0 cells / 0.00 % 1 cell / 1.05 % 94 cells / 98.95 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 1 (158 cells) 33 cells / 20.89 % 124 cells / 78.48 % 1 cell / 0.63 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 2 (88 cells) 72 cells / 81.82 % 16 cells / 18.18 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 3 (125 cells) 5 cells / 4.00 % 31 cells / 24.80 % 82 cells / 65.60 % 0 cells / 0.00 % 7 cells / 5.60 %
Cluster 4 (104 cells) 13 cells / 12.50 % 89 cells / 85.58 % 2 cells / 1.92 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 5 (117 cells) 70 cells / 59.83 % 47 cells / 40.17 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 6 (94 cells) 0 cells / 0.00 % 39 cells / 41.49 % 55 cells / 58.51 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 7 (91 cells) 84 cells / 92.31 % 7 cells / 7.69 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 8 (53 cells) 21 cells / 39.62 % 0 cells / 0.00 % 0 cells / 0.00 % 17 cells / 32.08 % 15 cells / 28.30 %
Cluster 9 (99 cells) 1 cell / 1.01 % 94 cells / 94.95 % 4 cells / 4.04 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 10 (158 cells) 1 cell / 0.63 % 110 cells / 69.62 % 46 cells / 29.11 % 0 cells / 0.00 % 1 cell / 0.63 %
Cluster 11 (93 cells) 0 cells / 0.00 % 15 cells / 16.13 % 78 cells / 83.87 % 0 cells / 0.00 % 0 cells / 0.00 %

Correct identified > 70% 156 / 300 (52.00 %) 307 / 573 (53.58 %) 172 / 362 (47.51 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 80% 156 / 300 (52.00 %) 183 / 573 (31.94 %) 172 / 362 (47.51 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 90% 84 / 300 (28.00 %) 94 / 573 (16.40 %) 94 / 362 (25.97 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)

Table 2: Overlaps of detect clusters with known cell cycle stages from Nagano et al. (2017). Clustering with
approximate k-nearest neighbors, 28000 hash functions, 55 principal components and UMAP k-neighbors 58,
UMAP components 2 and UMAP min distance 0.2886.

13



Cluster G1 (300 cells) early-S (573 cells) late-S/G2 (362 cells) post-M (17 cells) pre-M (23 cells)
Cluster 0 (153 cells) 113 cells / 73.86 % 27 cells / 17.65 % 13 cells / 8.50 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 1 (151 cells) 39 cells / 25.83 % 100 cells / 66.23 % 12 cells / 7.95 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 2 (70 cells) 0 cells / 0.00 % 67 cells / 95.71 % 3 cells / 4.29 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 3 (114 cells) 4 cells / 3.51 % 17 cells / 14.91 % 84 cells / 73.68 % 3 cells / 2.63 % 6 cells / 5.26 %
Cluster 4 (96 cells) 4 cells / 4.17 % 24 cells / 25.00 % 66 cells / 68.75 % 1 cell / 1.04 % 1 cell / 1.04 %
Cluster 5 (93 cells) 2 cells / 2.15 % 23 cells / 24.73 % 57 cells / 61.29 % 3 cells / 3.23 % 8 cells / 8.60 %
Cluster 6 (76 cells) 24 cells / 31.58 % 49 cells / 64.47 % 3 cells / 3.95 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 7 (131 cells) 85 cells / 64.89 % 43 cells / 32.82 % 3 cells / 2.29 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 8 (152 cells) 8 cells / 5.26 % 138 cells / 90.79 % 6 cells / 3.95 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 9 (72 cells) 21 cells / 29.17 % 44 cells / 61.11 % 7 cells / 9.72 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 10 (42 cells) 0 cells / 0.00 % 5 cells / 11.90 % 33 cells / 78.57 % 1 cell / 2.38 % 3 cells / 7.14 %
Cluster 11 (125 cells) 0 cells / 0.00 % 36 cells / 28.80 % 75 cells / 60.00 % 9 cells / 7.20 % 5 cells / 4.00 %

Correct identified > 70% 113 / 300 (37.67 %) 205 / 573 (35.78 %) 117 / 362 (32.32 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 80% 0 / 300 (0.00 %) 205 / 573 (35.78 %) 0 / 362 (0.00 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 90% 0 / 300 (0.00 %) 205 / 573 (35.78 %) 0 / 362 (0.00 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)

Table 3: Approximate nearest neighbors with MinHash to preselect a candidate set. On the candidate set the
nearest neighbors for a cell are computed with the Euclidean distance.

Cluster G1 (300 cells) early-S (573 cells) late-S/G2 (362 cells) post-M (17 cells) pre-M (23 cells)
Cluster 0 (36 cells) 0 cells / 0.00 % 12 cells / 33.33 % 24 cells / 66.67 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 1 (199 cells) 0 cells / 0.00 % 164 cells / 82.41 % 35 cells / 17.59 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 2 (130 cells) 0 cells / 0.00 % 117 cells / 90.00 % 13 cells / 10.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 3 (44 cells) 23 cells / 52.27 % 21 cells / 47.73 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 4 (62 cells) 0 cells / 0.00 % 3 cells / 4.84 % 41 cells / 66.13 % 0 cells / 0.00 % 18 cells / 29.03 %
Cluster 5 (258 cells) 0 cells / 0.00 % 75 cells / 29.07 % 183 cells / 70.93 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 6 (129 cells) 99 cells / 76.74 % 30 cells / 23.26 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 7 (48 cells) 46 cells / 95.83 % 1 cell / 2.08 % 0 cells / 0.00 % 1 cell / 2.08 % 0 cells / 0.00 %
Cluster 8 (193 cells) 55 cells / 28.50 % 137 cells / 70.98 % 1 cell / 0.52 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 9 (70 cells) 0 cells / 0.00 % 5 cells / 7.14 % 65 cells / 92.86 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 10 (21 cells) 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 % 16 cells / 76.19 % 5 cells / 23.81 %
Cluster 11 (85 cells) 77 cells / 90.59 % 8 cells / 9.41 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %

Correct identified > 70% 222 / 300 (74.00 %) 418 / 573 (72.95 %) 248 / 362 (68.51 %) 16 / 17 (94.12 %) 0 / 23 (0.00 %)
Correct identified > 80% 123 / 300 (41.00 %) 281 / 573 (49.04 %) 65 / 362 (17.96 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 90% 123 / 300 (41.00 %) 117 / 573 (20.42 %) 65 / 362 (17.96 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)

Table 4: After the approximate nearest neighbors graph a principal component analysis but no UMAP embed-
ding is computed before the data is clustered.

Cluster G1 (300 cells) early-S (573 cells) late-S/G2 (362 cells) post-M (17 cells) pre-M (23 cells)
Cluster 0 (30 cells) 14 cells / 46.67 % 16 cells / 53.33 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 1 (177 cells) 0 cells / 0.00 % 75 cells / 42.37 % 102 cells / 57.63 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 2 (105 cells) 0 cells / 0.00 % 19 cells / 18.10 % 86 cells / 81.90 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 3 (191 cells) 47 cells / 24.61 % 143 cells / 74.87 % 1 cell / 0.52 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 4 (162 cells) 0 cells / 0.00 % 24 cells / 14.81 % 120 cells / 74.07 % 0 cells / 0.00 % 18 cells / 11.11 %
Cluster 5 (94 cells) 85 cells / 90.43 % 9 cells / 9.57 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 6 (68 cells) 51 cells / 75.00 % 17 cells / 25.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 7 (81 cells) 0 cells / 0.00 % 61 cells / 75.31 % 20 cells / 24.69 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 8 (112 cells) 92 cells / 82.14 % 20 cells / 17.86 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 9 (92 cells) 1 cell / 1.09 % 85 cells / 92.39 % 6 cells / 6.52 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 10 (24 cells) 10 cells / 41.67 % 0 cells / 0.00 % 0 cells / 0.00 % 14 cells / 58.33 % 0 cells / 0.00 %
Cluster 11 (139 cells) 0 cells / 0.00 % 104 cells / 74.82 % 27 cells / 19.42 % 3 cells / 2.16 % 5 cells / 3.60 %

Correct identified > 70% 228 / 300 (76.00 %) 393 / 573 (68.59 %) 206 / 362 (56.91 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 80% 177 / 300 (59.00 %) 85 / 573 (14.83 %) 86 / 362 (23.76 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 90% 85 / 300 (28.33 %) 85 / 573 (14.83 %) 0 / 362 (0.00 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)

Table 5: After the approximate nearest neighbors graph no principal component analysis but an UMAP em-
bedding is computed before the data is clustered.
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Cluster G1 (300 cells) early-S (573 cells) late-S/G2 (362 cells) post-M (17 cells) pre-M (23 cells)
Cluster 0 (104 cells) 86 cells / 82.69 % 18 cells / 17.31 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 1 (187 cells) 1 cell / 0.53 % 155 cells / 82.89 % 31 cells / 16.58 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 2 (67 cells) 0 cells / 0.00 % 4 cells / 5.97 % 46 cells / 68.66 % 0 cells / 0.00 % 17 cells / 25.37 %
Cluster 3 (143 cells) 1 cell / 0.70 % 124 cells / 86.71 % 18 cells / 12.59 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 4 (248 cells) 0 cells / 0.00 % 75 cells / 30.24 % 173 cells / 69.76 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 5 (85 cells) 60 cells / 70.59 % 25 cells / 29.41 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 6 (48 cells) 46 cells / 95.83 % 1 cell / 2.08 % 0 cells / 0.00 % 1 cell / 2.08 % 0 cells / 0.00 %
Cluster 7 (41 cells) 23 cells / 56.10 % 18 cells / 43.90 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 8 (42 cells) 37 cells / 88.10 % 5 cells / 11.90 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 9 (24 cells) 2 cells / 8.33 % 0 cells / 0.00 % 0 cells / 0.00 % 16 cells / 66.67 % 6 cells / 25.00 %
Cluster 10 (120 cells) 0 cells / 0.00 % 27 cells / 22.50 % 93 cells / 77.50 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 11 (166 cells) 44 cells / 26.51 % 121 cells / 72.89 % 1 cell / 0.60 % 0 cells / 0.00 % 0 cells / 0.00 %

Correct identified > 70% 229 / 300 (76.33 %) 400 / 573 (69.81 %) 93 / 362 (25.69 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 80% 169 / 300 (56.33 %) 279 / 573 (48.69 %) 0 / 362 (0.00 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 90% 46 / 300 (15.33 %) 0 / 573 (0.00 %) 0 / 362 (0.00 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)

Table 6: After the approximate nearest neighbors graph no principal component analysis and no UMAP
embedding is computed before the data is clustered.
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4.2 Intra- and inter-chromosomal contacts

Cluster G1 (300 cells) early-S (573 cells) late-S/G2 (362 cells) post-M (17 cells) pre-M (23 cells)
Cluster 0 (177 cells) 22 cells / 12.43 % 100 cells / 56.50 % 55 cells / 31.07 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 1 (205 cells) 14 cells / 6.83 % 127 cells / 61.95 % 64 cells / 31.22 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 2 (169 cells) 109 cells / 64.50 % 60 cells / 35.50 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 3 (83 cells) 0 cells / 0.00 % 17 cells / 20.48 % 64 cells / 77.11 % 0 cells / 0.00 % 2 cells / 2.41 %
Cluster 4 (141 cells) 0 cells / 0.00 % 9 cells / 6.38 % 132 cells / 93.62 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 5 (16 cells) 1 cell / 6.25 % 0 cells / 0.00 % 0 cells / 0.00 % 15 cells / 93.75 % 0 cells / 0.00 %
Cluster 6 (220 cells) 4 cells / 1.82 % 174 cells / 79.09 % 42 cells / 19.09 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 7 (30 cells) 29 cells / 96.67 % 0 cells / 0.00 % 0 cells / 0.00 % 1 cell / 3.33 % 0 cells / 0.00 %
Cluster 8 (55 cells) 51 cells / 92.73 % 1 cell / 1.82 % 1 cell / 1.82 % 0 cells / 0.00 % 2 cells / 3.64 %
Cluster 9 (102 cells) 42 cells / 41.18 % 60 cells / 58.82 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 10 (22 cells) 0 cells / 0.00 % 0 cells / 0.00 % 2 cells / 9.09 % 1 cell / 4.55 % 19 cells / 86.36 %
Cluster 11 (55 cells) 28 cells / 50.91 % 25 cells / 45.45 % 2 cells / 3.64 % 0 cells / 0.00 % 0 cells / 0.00 %

Correct identified > 70% 80 / 300 (26.67 %) 174 / 573 (30.37 %) 196 / 362 (54.14 %) 15 / 17 (88.24 %) 19 / 23 (82.61 %)
Correct identified > 80% 80 / 300 (26.67 %) 0 / 573 (0.00 %) 132 / 362 (36.46 %) 15 / 17 (88.24 %) 19 / 23 (82.61 %)
Correct identified > 90% 80 / 300 (26.67 %) 0 / 573 (0.00 %) 132 / 362 (36.46 %) 15 / 17 (88.24 %) 0 / 23 (0.00 %)

Table 7: Computing the approximate nearest neighbors graph with all Hi-C contacts: intra- and inter-
chromosomal contacts.

4.3 Number of hash functions

Cluster G1 (300 cells) early-S (573 cells) late-S/G2 (362 cells) post-M (17 cells) pre-M (23 cells)
Cluster 0 (144 cells) 4 cells / 2.78 % 70 cells / 48.61 % 69 cells / 47.92 % 1 cell / 0.69 % 0 cells / 0.00 %
Cluster 1 (89 cells) 48 cells / 53.93 % 39 cells / 43.82 % 1 cell / 1.12 % 1 cell / 1.12 % 0 cells / 0.00 %
Cluster 2 (164 cells) 7 cells / 4.27 % 119 cells / 72.56 % 37 cells / 22.56 % 0 cells / 0.00 % 1 cell / 0.61 %
Cluster 3 (183 cells) 44 cells / 24.04 % 99 cells / 54.10 % 39 cells / 21.31 % 0 cells / 0.00 % 1 cell / 0.55 %
Cluster 4 (10 cells) 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 % 7 cells / 70.00 % 3 cells / 30.00 %
Cluster 5 (67 cells) 56 cells / 83.58 % 5 cells / 7.46 % 3 cells / 4.48 % 0 cells / 0.00 % 3 cells / 4.48 %
Cluster 6 (96 cells) 71 cells / 73.96 % 22 cells / 22.92 % 2 cells / 2.08 % 0 cells / 0.00 % 1 cell / 1.04 %
Cluster 7 (10 cells) 2 cells / 20.00 % 0 cells / 0.00 % 0 cells / 0.00 % 8 cells / 80.00 % 0 cells / 0.00 %
Cluster 8 (151 cells) 43 cells / 28.48 % 100 cells / 66.23 % 8 cells / 5.30 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 9 (13 cells) 1 cell / 7.69 % 0 cells / 0.00 % 2 cells / 15.38 % 0 cells / 0.00 % 10 cells / 76.92 %
Cluster 10 (182 cells) 15 cells / 8.24 % 77 cells / 42.31 % 88 cells / 48.35 % 0 cells / 0.00 % 2 cells / 1.10 %
Cluster 11 (166 cells) 9 cells / 5.42 % 42 cells / 25.30 % 113 cells / 68.07 % 0 cells / 0.00 % 2 cells / 1.20 %

Correct identified > 70% 127 / 300 (42.33 %) 119 / 573 (20.77 %) 0 / 362 (0.00 %) 15 / 17 (88.24 %) 10 / 23 (43.48 %)
Correct identified > 80% 56 / 300 (18.67 %) 0 / 573 (0.00 %) 0 / 362 (0.00 %) 8 / 17 (47.06 %) 0 / 23 (0.00 %)
Correct identified > 90% 0 / 300 (0.00 %) 0 / 573 (0.00 %) 0 / 362 (0.00 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)

Table 8: 2000 hash functions.

Cluster G1 (300 cells) early-S (573 cells) late-S/G2 (362 cells) post-M (17 cells) pre-M (23 cells)
Cluster 0 (125 cells) 3 cells / 2.40 % 101 cells / 80.80 % 21 cells / 16.80 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 1 (153 cells) 58 cells / 37.91 % 93 cells / 60.78 % 2 cells / 1.31 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 2 (163 cells) 1 cell / 0.61 % 14 cells / 8.59 % 147 cells / 90.18 % 0 cells / 0.00 % 1 cell / 0.61 %
Cluster 3 (189 cells) 3 cells / 1.59 % 98 cells / 51.85 % 88 cells / 46.56 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 4 (66 cells) 65 cells / 98.48 % 0 cells / 0.00 % 1 cell / 1.52 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 5 (76 cells) 0 cells / 0.00 % 6 cells / 7.89 % 69 cells / 90.79 % 0 cells / 0.00 % 1 cell / 1.32 %
Cluster 6 (22 cells) 3 cells / 13.64 % 0 cells / 0.00 % 0 cells / 0.00 % 16 cells / 72.73 % 3 cells / 13.64 %
Cluster 7 (17 cells) 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 % 17 cells / 100.00 %
Cluster 8 (106 cells) 61 cells / 57.55 % 44 cells / 41.51 % 1 cell / 0.94 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 9 (23 cells) 22 cells / 95.65 % 0 cells / 0.00 % 0 cells / 0.00 % 1 cell / 4.35 % 0 cells / 0.00 %
Cluster 10 (147 cells) 78 cells / 53.06 % 68 cells / 46.26 % 1 cell / 0.68 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 11 (188 cells) 6 cells / 3.19 % 149 cells / 79.26 % 32 cells / 17.02 % 0 cells / 0.00 % 1 cell / 0.53 %

Correct identified > 70% 87 / 300 (29.00 %) 250 / 573 (43.63 %) 216 / 362 (59.67 %) 16 / 17 (94.12 %) 17 / 23 (73.91 %)
Correct identified > 80% 87 / 300 (29.00 %) 101 / 573 (17.63 %) 216 / 362 (59.67 %) 0 / 17 (0.00 %) 17 / 23 (73.91 %)
Correct identified > 90% 87 / 300 (29.00 %) 0 / 573 (0.00 %) 216 / 362 (59.67 %) 0 / 17 (0.00 %) 17 / 23 (73.91 %)

Table 9: 10,000 hash functions.
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4.4 K-neighbors

Cluster G1 (300 cells) early-S (573 cells) late-S/G2 (362 cells) post-M (17 cells) pre-M (23 cells)
Cluster 0 (103 cells) 10 cells / 9.71 % 82 cells / 79.61 % 11 cells / 10.68 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 1 (177 cells) 16 cells / 9.04 % 115 cells / 64.97 % 46 cells / 25.99 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 2 (183 cells) 17 cells / 9.29 % 97 cells / 53.01 % 69 cells / 37.70 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 3 (193 cells) 40 cells / 20.73 % 126 cells / 65.28 % 27 cells / 13.99 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 4 (83 cells) 0 cells / 0.00 % 5 cells / 6.02 % 72 cells / 86.75 % 0 cells / 0.00 % 6 cells / 7.23 %
Cluster 5 (113 cells) 98 cells / 86.73 % 10 cells / 8.85 % 3 cells / 2.65 % 0 cells / 0.00 % 2 cells / 1.77 %
Cluster 6 (116 cells) 0 cells / 0.00 % 18 cells / 15.52 % 96 cells / 82.76 % 0 cells / 0.00 % 2 cells / 1.72 %
Cluster 7 (46 cells) 10 cells / 21.74 % 3 cells / 6.52 % 3 cells / 6.52 % 17 cells / 36.96 % 13 cells / 28.26 %
Cluster 8 (83 cells) 50 cells / 60.24 % 33 cells / 39.76 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 9 (18 cells) 0 cells / 0.00 % 8 cells / 44.44 % 10 cells / 55.56 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 10 (109 cells) 12 cells / 11.01 % 72 cells / 66.06 % 25 cells / 22.94 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 11 (51 cells) 47 cells / 92.16 % 4 cells / 7.84 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %

Correct identified > 70% 145 / 300 (48.33 %) 82 / 573 (14.31 %) 168 / 362 (46.41 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 80% 145 / 300 (48.33 %) 0 / 573 (0.00 %) 168 / 362 (46.41 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 90% 47 / 300 (15.67 %) 0 / 573 (0.00 %) 0 / 362 (0.00 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)

Table 10: Computations with a 100-nearest neighbors graph.

Cluster G1 (300 cells) early-S (573 cells) late-S/G2 (362 cells) post-M (17 cells) pre-M (23 cells)
Cluster 0 (119 cells) 0 cells / 0.00 % 80 cells / 67.23 % 38 cells / 31.93 % 0 cells / 0.00 % 1 cell / 0.84 %
Cluster 1 (227 cells) 111 cells / 48.90 % 116 cells / 51.10 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 2 (210 cells) 0 cells / 0.00 % 146 cells / 69.52 % 61 cells / 29.05 % 0 cells / 0.00 % 3 cells / 1.43 %
Cluster 3 (148 cells) 137 cells / 92.57 % 11 cells / 7.43 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 4 (75 cells) 0 cells / 0.00 % 13 cells / 17.33 % 62 cells / 82.67 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 5 (100 cells) 0 cells / 0.00 % 27 cells / 27.00 % 73 cells / 73.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 6 (53 cells) 0 cells / 0.00 % 8 cells / 15.09 % 34 cells / 64.15 % 0 cells / 0.00 % 11 cells / 20.75 %
Cluster 7 (81 cells) 0 cells / 0.00 % 12 cells / 14.81 % 67 cells / 82.72 % 0 cells / 0.00 % 2 cells / 2.47 %
Cluster 8 (48 cells) 0 cells / 0.00 % 23 cells / 47.92 % 21 cells / 43.75 % 0 cells / 0.00 % 4 cells / 8.33 %
Cluster 9 (139 cells) 35 cells / 25.18 % 98 cells / 70.50 % 6 cells / 4.32 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 10 (50 cells) 11 cells / 22.00 % 39 cells / 78.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 11 (25 cells) 6 cells / 24.00 % 0 cells / 0.00 % 0 cells / 0.00 % 17 cells / 68.00 % 2 cells / 8.00 %

Correct identified > 70% 137 / 300 (45.67 %) 137 / 573 (23.91 %) 202 / 362 (55.80 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 80% 137 / 300 (45.67 %) 0 / 573 (0.00 %) 129 / 362 (35.64 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 90% 137 / 300 (45.67 %) 0 / 573 (0.00 %) 0 / 362 (0.00 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)

Table 11: Computations with a 500-nearest neighbors graph.

4.5 Cluster algorithms

Cluster G1 (300 cells) early-S (573 cells) late-S/G2 (362 cells) post-M (17 cells) pre-M (23 cells)
Cluster 0 (126 cells) 1 cell / 0.79 % 112 cells / 88.89 % 13 cells / 10.32 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 1 (114 cells) 97 cells / 85.09 % 17 cells / 14.91 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 2 (131 cells) 0 cells / 0.00 % 9 cells / 6.87 % 122 cells / 93.13 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 3 (104 cells) 0 cells / 0.00 % 70 cells / 67.31 % 34 cells / 32.69 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 4 (107 cells) 23 cells / 21.50 % 83 cells / 77.57 % 1 cell / 0.93 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 5 (59 cells) 59 cells / 100.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 6 (51 cells) 13 cells / 25.49 % 0 cells / 0.00 % 0 cells / 0.00 % 17 cells / 33.33 % 21 cells / 41.18 %
Cluster 7 (118 cells) 44 cells / 37.29 % 73 cells / 61.86 % 1 cell / 0.85 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 8 (142 cells) 1 cell / 0.70 % 123 cells / 86.62 % 18 cells / 12.68 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 9 (101 cells) 0 cells / 0.00 % 16 cells / 15.84 % 83 cells / 82.18 % 0 cells / 0.00 % 2 cells / 1.98 %
Cluster 10 (112 cells) 62 cells / 55.36 % 50 cells / 44.64 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 11 (110 cells) 0 cells / 0.00 % 20 cells / 18.18 % 90 cells / 81.82 % 0 cells / 0.00 % 0 cells / 0.00 %

Correct identified > 70% 156 / 300 (52.00 %) 318 / 573 (55.50 %) 295 / 362 (81.49 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 80% 156 / 300 (52.00 %) 235 / 573 (41.01 %) 295 / 362 (81.49 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 90% 59 / 300 (19.67 %) 0 / 573 (0.00 %) 122 / 362 (33.70 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)

Table 12: k-means

17



Cluster G1 (300 cells) early-S (573 cells) late-S/G2 (362 cells) post-M (17 cells) pre-M (23 cells)
Cluster 0 (113 cells) 110 cells / 97.35 % 3 cells / 2.65 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 1 (208 cells) 67 cells / 32.21 % 139 cells / 66.83 % 2 cells / 0.96 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 2 (198 cells) 0 cells / 0.00 % 21 cells / 10.61 % 176 cells / 88.89 % 0 cells / 0.00 % 1 cell / 0.51 %
Cluster 3 (136 cells) 1 cell / 0.74 % 93 cells / 68.38 % 42 cells / 30.88 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 4 (47 cells) 22 cells / 46.81 % 0 cells / 0.00 % 0 cells / 0.00 % 17 cells / 36.17 % 8 cells / 17.02 %
Cluster 5 (126 cells) 0 cells / 0.00 % 110 cells / 87.30 % 16 cells / 12.70 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 6 (118 cells) 0 cells / 0.00 % 17 cells / 14.41 % 101 cells / 85.59 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 7 (72 cells) 61 cells / 84.72 % 11 cells / 15.28 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 8 (66 cells) 5 cells / 7.58 % 61 cells / 92.42 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 9 (71 cells) 28 cells / 39.44 % 43 cells / 60.56 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 10 (91 cells) 6 cells / 6.59 % 69 cells / 75.82 % 16 cells / 17.58 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 11 (29 cells) 0 cells / 0.00 % 6 cells / 20.69 % 9 cells / 31.03 % 0 cells / 0.00 % 14 cells / 48.28 %

Correct identified > 70% 171 / 300 (57.00 %) 240 / 573 (41.88 %) 277 / 362 (76.52 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 80% 171 / 300 (57.00 %) 171 / 573 (29.84 %) 277 / 362 (76.52 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 90% 110 / 300 (36.67 %) 61 / 573 (10.65 %) 0 / 362 (0.00 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)

Table 13: agglomerative ward

Cluster G1 (300 cells) early-S (573 cells) late-S/G2 (362 cells) post-M (17 cells) pre-M (23 cells)
Cluster 0 (102 cells) 0 cells / 0.00 % 72 cells / 70.59 % 30 cells / 29.41 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 1 (90 cells) 0 cells / 0.00 % 12 cells / 13.33 % 78 cells / 86.67 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 2 (221 cells) 0 cells / 0.00 % 25 cells / 11.31 % 193 cells / 87.33 % 0 cells / 0.00 % 3 cells / 1.36 %
Cluster 3 (59 cells) 22 cells / 37.29 % 0 cells / 0.00 % 0 cells / 0.00 % 17 cells / 28.81 % 20 cells / 33.90 %
Cluster 4 (160 cells) 0 cells / 0.00 % 137 cells / 85.62 % 23 cells / 14.37 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 5 (158 cells) 49 cells / 31.01 % 108 cells / 68.35 % 1 cell / 0.63 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 6 (159 cells) 121 cells / 76.10 % 38 cells / 23.90 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 7 (120 cells) 69 cells / 57.50 % 51 cells / 42.50 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 8 (36 cells) 36 cells / 100.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 9 (37 cells) 0 cells / 0.00 % 23 cells / 62.16 % 14 cells / 37.84 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 10 (85 cells) 1 cell / 1.18 % 61 cells / 71.76 % 23 cells / 27.06 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 11 (48 cells) 2 cells / 4.17 % 46 cells / 95.83 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %

Correct identified > 70% 157 / 300 (52.33 %) 316 / 573 (55.15 %) 271 / 362 (74.86 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 80% 36 / 300 (12.00 %) 183 / 573 (31.94 %) 271 / 362 (74.86 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 90% 36 / 300 (12.00 %) 46 / 573 (8.03 %) 0 / 362 (0.00 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)

Table 14: agglomerative complete

Cluster G1 (300 cells) early-S (573 cells) late-S/G2 (362 cells) post-M (17 cells) pre-M (23 cells)
Cluster 0 (95 cells) 0 cells / 0.00 % 62 cells / 65.26 % 33 cells / 34.74 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 1 (163 cells) 0 cells / 0.00 % 143 cells / 87.73 % 20 cells / 12.27 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 2 (98 cells) 3 cells / 3.06 % 36 cells / 36.73 % 58 cells / 59.18 % 0 cells / 0.00 % 1 cell / 1.02 %
Cluster 3 (63 cells) 63 cells / 100.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 4 (163 cells) 51 cells / 31.29 % 111 cells / 68.10 % 1 cell / 0.61 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 5 (52 cells) 15 cells / 28.85 % 37 cells / 71.15 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 6 (120 cells) 101 cells / 84.17 % 19 cells / 15.83 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 7 (87 cells) 0 cells / 0.00 % 9 cells / 10.34 % 78 cells / 89.66 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 8 (114 cells) 63 cells / 55.26 % 51 cells / 44.74 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 9 (98 cells) 1 cell / 1.02 % 91 cells / 92.86 % 6 cells / 6.12 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 10 (180 cells) 0 cells / 0.00 % 14 cells / 7.78 % 166 cells / 92.22 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 11 (42 cells) 3 cells / 7.14 % 0 cells / 0.00 % 0 cells / 0.00 % 17 cells / 40.48 % 22 cells / 52.38 %

Correct identified > 70% 164 / 300 (54.67 %) 271 / 573 (47.29 %) 244 / 362 (67.40 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 80% 164 / 300 (54.67 %) 234 / 573 (40.84 %) 244 / 362 (67.40 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 90% 63 / 300 (21.00 %) 91 / 573 (15.88 %) 166 / 362 (45.86 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)

Table 15: agglomerative average
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Cluster G1 (300 cells) early-S (573 cells) late-S/G2 (362 cells) post-M (17 cells) pre-M (23 cells)
Cluster 0 (1263 cells) 297 cells / 23.52 % 567 cells / 44.89 % 359 cells / 28.42 % 17 cells / 1.35 % 23 cells / 1.82 %
Cluster 1 (2 cells) 0 cells / 0.00 % 1 cell / 50.00 % 1 cell / 50.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 2 (1 cells) 0 cells / 0.00 % 0 cells / 0.00 % 1 cell / 100.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 3 (1 cells) 0 cells / 0.00 % 1 cell / 100.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 4 (1 cells) 1 cell / 100.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 5 (1 cells) 1 cell / 100.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 6 (1 cells) 0 cells / 0.00 % 0 cells / 0.00 % 1 cell / 100.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 7 (1 cells) 0 cells / 0.00 % 1 cell / 100.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 8 (1 cells) 0 cells / 0.00 % 1 cell / 100.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 9 (1 cells) 1 cell / 100.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 10 (1 cells) 0 cells / 0.00 % 1 cell / 100.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 11 (1 cells) 0 cells / 0.00 % 1 cell / 100.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %

Correct identified > 70% 3 / 300 (1.00 %) 5 / 573 (0.87 %) 2 / 362 (0.55 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 80% 3 / 300 (1.00 %) 5 / 573 (0.87 %) 2 / 362 (0.55 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 90% 3 / 300 (1.00 %) 5 / 573 (0.87 %) 2 / 362 (0.55 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)

Table 16: agglomerative single

Cluster G1 (300 cells) early-S (573 cells) late-S/G2 (362 cells) post-M (17 cells) pre-M (23 cells)
Cluster 0 (195 cells) 3 cells / 1.54 % 35 cells / 17.95 % 119 cells / 61.03 % 17 cells / 8.72 % 21 cells / 10.77 %
Cluster 1 (93 cells) 0 cells / 0.00 % 70 cells / 75.27 % 23 cells / 24.73 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 2 (206 cells) 0 cells / 0.00 % 19 cells / 9.22 % 185 cells / 89.81 % 0 cells / 0.00 % 2 cells / 0.97 %
Cluster 3 (76 cells) 5 cells / 6.58 % 66 cells / 86.84 % 5 cells / 6.58 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 4 (87 cells) 18 cells / 20.69 % 68 cells / 78.16 % 1 cell / 1.15 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 5 (52 cells) 15 cells / 28.85 % 37 cells / 71.15 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 6 (114 cells) 1 cell / 0.88 % 100 cells / 87.72 % 13 cells / 11.40 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 7 (100 cells) 74 cells / 74.00 % 26 cells / 26.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 8 (121 cells) 2 cells / 1.65 % 103 cells / 85.12 % 16 cells / 13.22 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 9 (77 cells) 74 cells / 96.10 % 3 cells / 3.90 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 10 (99 cells) 53 cells / 53.54 % 46 cells / 46.46 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 11 (55 cells) 55 cells / 100.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %

Correct identified > 70% 203 / 300 (67.67 %) 444 / 573 (77.49 %) 185 / 362 (51.10 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 80% 129 / 300 (43.00 %) 269 / 573 (46.95 %) 185 / 362 (51.10 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 90% 129 / 300 (43.00 %) 0 / 573 (0.00 %) 0 / 362 (0.00 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)

Table 17: birch
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4.6 Competing approaches

Cluster G1 (300 cells) early-S (573 cells) late-S/G2 (362 cells) post-M (17 cells) pre-M (23 cells)
Cluster 0 (28 cells) 1 cell / 3.57 % 0 cells / 0.00 % 0 cells / 0.00 % 17 cells / 60.71 % 10 cells / 35.71 %
Cluster 1 (123 cells) 85 cells / 69.11 % 38 cells / 30.89 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 2 (119 cells) 30 cells / 25.21 % 86 cells / 72.27 % 3 cells / 2.52 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 3 (66 cells) 0 cells / 0.00 % 32 cells / 48.48 % 34 cells / 51.52 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 4 (100 cells) 0 cells / 0.00 % 4 cells / 4.00 % 83 cells / 83.00 % 0 cells / 0.00 % 13 cells / 13.00 %
Cluster 5 (121 cells) 0 cells / 0.00 % 6 cells / 4.96 % 115 cells / 95.04 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 6 (58 cells) 58 cells / 100.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 7 (172 cells) 16 cells / 9.30 % 151 cells / 87.79 % 5 cells / 2.91 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 8 (105 cells) 101 cells / 96.19 % 4 cells / 3.81 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 9 (165 cells) 9 cells / 5.45 % 137 cells / 83.03 % 19 cells / 11.52 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 10 (167 cells) 0 cells / 0.00 % 80 cells / 47.90 % 87 cells / 52.10 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 11 (51 cells) 0 cells / 0.00 % 35 cells / 68.63 % 16 cells / 31.37 % 0 cells / 0.00 % 0 cells / 0.00 %

Correct identified > 70% 159 / 300 (53.00 %) 374 / 573 (65.27 %) 198 / 362 (54.70 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 80% 159 / 300 (53.00 %) 288 / 573 (50.26 %) 198 / 362 (54.70 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 90% 159 / 300 (53.00 %) 0 / 573 (0.00 %) 115 / 362 (31.77 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)

Table 18: Overlaps of detect clusters with known cell cycle stages from Nagano et al. (2017). Clustering with
Zhou’s scHiCluster.

Cluster G1 (300 cells) early-S (573 cells) late-S/G2 (362 cells) post-M (17 cells) pre-M (23 cells)
Cluster 0 (769 cells) 177 cells / 23.02 % 352 cells / 45.77 % 216 cells / 28.09 % 10 cells / 1.30 % 14 cells / 1.82 %
Cluster 1 (1 cells) 0 cells / 0.00 % 1 cell / 100.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 2 (1 cells) 0 cells / 0.00 % 0 cells / 0.00 % 1 cell / 100.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 3 (1 cells) 0 cells / 0.00 % 0 cells / 0.00 % 1 cell / 100.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 4 (1 cells) 0 cells / 0.00 % 0 cells / 0.00 % 1 cell / 100.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 5 (1 cells) 0 cells / 0.00 % 0 cells / 0.00 % 1 cell / 100.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 6 (477 cells) 112 cells / 23.48 % 210 cells / 44.03 % 139 cells / 29.14 % 7 cells / 1.47 % 9 cells / 1.89 %
Cluster 7 (13 cells) 4 cells / 30.77 % 7 cells / 53.85 % 2 cells / 15.38 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 8 (1 cells) 1 cell / 100.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 9 (4 cells) 2 cells / 50.00 % 1 cell / 25.00 % 1 cell / 25.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 10 (4 cells) 4 cells / 100.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 11 (2 cells) 0 cells / 0.00 % 2 cells / 100.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %

Correct identified > 70% 5 / 300 (1.67 %) 3 / 573 (0.52 %) 4 / 362 (1.10 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 80% 5 / 300 (1.67 %) 3 / 573 (0.52 %) 4 / 362 (1.10 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 90% 5 / 300 (1.67 %) 3 / 573 (0.52 %) 4 / 362 (1.10 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)

Table 19: Scikit-learn k-nearest neighbor with k=1275, with spectral clustering.

Cluster G1 (300 cells) early-S (573 cells) late-S/G2 (362 cells) post-M (17 cells) pre-M (23 cells)
Cluster 0 (25 cells) 5 cells / 20.00 % 20 cells / 80.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 1 (21 cells) 1 cell / 4.76 % 18 cells / 85.71 % 2 cells / 9.52 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 2 (1 cells) 0 cells / 0.00 % 0 cells / 0.00 % 1 cell / 100.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 3 (1 cells) 0 cells / 0.00 % 1 cell / 100.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 4 (9 cells) 3 cells / 33.33 % 6 cells / 66.67 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 5 (1 cells) 0 cells / 0.00 % 1 cell / 100.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 6 (1 cells) 0 cells / 0.00 % 1 cell / 100.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 7 (1202 cells) 287 cells / 23.88 % 518 cells / 43.09 % 357 cells / 29.70 % 17 cells / 1.41 % 23 cells / 1.91 %
Cluster 8 (1 cells) 0 cells / 0.00 % 1 cell / 100.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 9 (8 cells) 3 cells / 37.50 % 4 cells / 50.00 % 1 cell / 12.50 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 10 (4 cells) 1 cell / 25.00 % 3 cells / 75.00 % 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 11 (1 cells) 0 cells / 0.00 % 0 cells / 0.00 % 1 cell / 100.00 % 0 cells / 0.00 % 0 cells / 0.00 %

Correct identified > 70% 0 / 300 (0.00 %) 45 / 573 (7.85 %) 2 / 362 (0.55 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 80% 0 / 300 (0.00 %) 42 / 573 (7.33 %) 2 / 362 (0.55 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 90% 0 / 300 (0.00 %) 4 / 573 (0.70 %) 2 / 362 (0.55 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)

Table 20: PCA on raw data with spectral clustering.
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Cluster G1 (300 cells) early-S (573 cells) late-S/G2 (362 cells) post-M (17 cells) pre-M (23 cells)
Cluster 0 (216 cells) 79 cells / 36.57 % 101 cells / 46.76 % 31 cells / 14.35 % 1 cell / 0.46 % 4 cells / 1.85 %
Cluster 1 (58 cells) 0 cells / 0.00 % 33 cells / 56.90 % 25 cells / 43.10 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 2 (108 cells) 24 cells / 22.22 % 58 cells / 53.70 % 26 cells / 24.07 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 3 (106 cells) 0 cells / 0.00 % 82 cells / 77.36 % 24 cells / 22.64 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 4 (226 cells) 82 cells / 36.28 % 110 cells / 48.67 % 30 cells / 13.27 % 2 cells / 0.88 % 2 cells / 0.88 %
Cluster 5 (99 cells) 2 cells / 2.02 % 13 cells / 13.13 % 77 cells / 77.78 % 0 cells / 0.00 % 7 cells / 7.07 %
Cluster 6 (197 cells) 112 cells / 56.85 % 64 cells / 32.49 % 16 cells / 8.12 % 0 cells / 0.00 % 5 cells / 2.54 %
Cluster 7 (80 cells) 0 cells / 0.00 % 6 cells / 7.50 % 70 cells / 87.50 % 0 cells / 0.00 % 4 cells / 5.00 %
Cluster 8 (92 cells) 1 cell / 1.09 % 84 cells / 91.30 % 7 cells / 7.61 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 9 (15 cells) 0 cells / 0.00 % 0 cells / 0.00 % 0 cells / 0.00 % 14 cells / 93.33 % 1 cell / 6.67 %
Cluster 10 (3 cells) 0 cells / 0.00 % 0 cells / 0.00 % 3 cells / 100.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 11 (75 cells) 0 cells / 0.00 % 22 cells / 29.33 % 53 cells / 70.67 % 0 cells / 0.00 % 0 cells / 0.00 %

Correct identified > 70% 0 / 300 (0.00 %) 166 / 573 (28.97 %) 203 / 362 (56.08 %) 14 / 17 (82.35 %) 0 / 23 (0.00 %)
Correct identified > 80% 0 / 300 (0.00 %) 84 / 573 (14.66 %) 73 / 362 (20.17 %) 14 / 17 (82.35 %) 0 / 23 (0.00 %)
Correct identified > 90% 0 / 300 (0.00 %) 84 / 573 (14.66 %) 3 / 362 (0.83 %) 14 / 17 (82.35 %) 0 / 23 (0.00 %)

Table 21: Clustering on raw interaction matrices with k-means clustering.

5 Runtimes on 10 kb resolution

Method Runtime Memory
Raw and K-Means - > 1 TB
Raw and Spectral - > 1 TB
PCA and K-Means - > 1 TB
PCA and Spectral - > 1 TB
scikit-learn k-nn k = 2633 and k-means - > 1 TB
scikit-learn k-nn k = 2633 and Spectral - > 1 TB
scHicClusterMinHash k = 2633 and k-means 06:17 min 40.1 GB
scHicClusterMinHash k = 2633 and Spectral 06:26 min 40.1 GB
scHicClusterMinHash eucl. k = 2633 and k-means 08:10 min 40.1 GB
scHicClusterMinHash eucl. k = 2633 and Spectral 08:08 min 40.1 GB
Zhou’s scHiCluster CPU - (*) > 970 GB

Table 22: Runtimes and memory usage on 10 kb resolution, 2633 cells on a single-cell Hi-C matrix. Data
from Nagano et al. (2017) Diploid cells, with 12 clusters. For clustering k-means and spectral clustering are
used, scHicClusterMinHash with 800 hash functions, k=2472, applied PCA and 100 principal components for
clustering. (*) Zhou’s scHiCluster computed 97 hours the data for chromosome 10 and requested 970 GB of
memory, the computation was canceled after this time. All results computed on 2x Intel XEON E5-2630 v4 @
2.20GHz 2x 10 cores / 2x 20 threads, 1 TB memory.
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Method Runtime Memory
Raw and K-Means - > 128 GB
Raw and Spectral - > 128 GB
PCA and K-Means - > 128 GB
PCA and Spectral - > 128 GB
scikit-learn k-nn k = 2632 and K-means - > 128 GB
scikit-learn k-nn k = 2632 and Spectral - > 128 GB
MinHash k = 2633 and K-means 03:39 min 40.1 GB
MinHash k = 2633 and Spectral 03:41 min 40.1 GB
MinHash k = 2633 and K-means (–saveMemory 1%) 12:53 min 12.5 GB
MinHash k = 2633 and K-means intra-chromosomal 08:26 min 35.8 GB
MinHash k = 2633 and Spectral intra-chromosomal 08:55 min 35.8 GB
MinHash euclidean k = 2633 and K-means 06:39 min 40.1 GB
MinHash euclidean k = 2633 and Spectral 06:39 min 40.1 GB
MinHash euclidean k = 2633 and K-means intra-chromosomal 11:47 min 35.8 GB
MinHash euclidean k = 2633 and Spectral intra-chromosomal 11:49 min 35.8 GB
Zhou’s scHiCluster CPU - > 128 GB
Zhou’s scHiCluster GPU - > 128 GB

Table 23: Runtimes and memory usage with 10 kb resolution on a single-cell Hi-C matrix with 2633 cells.
Normalized to a read coverage of 100,000 reads and interaction values smaller 1 are kept. Data from Nagano
et al. (2017) Diploid cells, with 12 clusters. For clustering K-means and spectral clustering are used, MinHash
with 800 hash functions. All results computed on AMD Ryzen 3700X 8 cores / 16 threads, 128 GB memory;
Nvidia GTX 1070 8 GB memory.

6 Nagano 2017 10 kb data

MinHash on 10 kb data from Nagano with 1088 cells. Parameters: differing number of hash functions, 44
principal components, spectral clustering. UMAP parameters: k-neighbors 36, components 9, min distance
0.05.

Cluster G1 (249 cells) early-S (448 cells) late-S/G2 (341 cells) post-M (17 cells) pre-M (23 cells)
Cluster 0 (71 cells) 17 cells / 23.94 % 12 cells / 16.90 % 39 cells / 54.93 % 0 cells / 0.00 % 3 cells / 4.23 %
Cluster 1 (67 cells) 2 cells / 2.99 % 60 cells / 89.55 % 5 cells / 7.46 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 2 (75 cells) 1 cell / 1.33 % 44 cells / 58.67 % 28 cells / 37.33 % 1 cell / 1.33 % 1 cell / 1.33 %
Cluster 3 (127 cells) 8 cells / 6.30 % 88 cells / 69.29 % 24 cells / 18.90 % 5 cells / 3.94 % 2 cells / 1.57 %
Cluster 4 (55 cells) 31 cells / 56.36 % 16 cells / 29.09 % 7 cells / 12.73 % 0 cells / 0.00 % 1 cell / 1.82 %
Cluster 5 (64 cells) 1 cell / 1.56 % 19 cells / 29.69 % 44 cells / 68.75 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 6 (111 cells) 22 cells / 19.82 % 53 cells / 47.75 % 27 cells / 24.32 % 6 cells / 5.41 % 3 cells / 2.70 %
Cluster 7 (117 cells) 68 cells / 58.12 % 24 cells / 20.51 % 19 cells / 16.24 % 4 cells / 3.42 % 2 cells / 1.71 %
Cluster 8 (54 cells) 17 cells / 31.48 % 21 cells / 38.89 % 13 cells / 24.07 % 0 cells / 0.00 % 3 cells / 5.56 %
Cluster 9 (50 cells) 29 cells / 58.00 % 17 cells / 34.00 % 2 cells / 4.00 % 0 cells / 0.00 % 2 cells / 4.00 %
Cluster 10 (74 cells) 11 cells / 14.86 % 51 cells / 68.92 % 12 cells / 16.22 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 11 (53 cells) 29 cells / 54.72 % 15 cells / 28.30 % 9 cells / 16.98 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 12 (65 cells) 5 cells / 7.69 % 8 cells / 12.31 % 49 cells / 75.38 % 0 cells / 0.00 % 3 cells / 4.62 %
Cluster 13 (95 cells) 8 cells / 8.42 % 20 cells / 21.05 % 63 cells / 66.32 % 1 cell / 1.05 % 3 cells / 3.16 %

Correct identified > 70% 0 / 249 (0.00 %) 60 / 448 (13.39 %) 49 / 341 (14.37 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 80% 0 / 249 (0.00 %) 60 / 448 (13.39 %) 0 / 341 (0.00 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 90% 0 / 249 (0.00 %) 0 / 448 (0.00 %) 0 / 341 (0.00 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)

Table 24: 20000 hash functions.
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Cluster G1 (249 cells) early-S (448 cells) late-S/G2 (341 cells) post-M (17 cells) pre-M (23 cells)
Cluster 0 (71 cells) 0 cells / 0.00 % 24 cells / 33.80 % 47 cells / 66.20 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 1 (80 cells) 6 cells / 7.50 % 57 cells / 71.25 % 15 cells / 18.75 % 1 cell / 1.25 % 1 cell / 1.25 %
Cluster 2 (114 cells) 45 cells / 39.47 % 50 cells / 43.86 % 14 cells / 12.28 % 0 cells / 0.00 % 5 cells / 4.39 %
Cluster 3 (93 cells) 11 cells / 11.83 % 20 cells / 21.51 % 56 cells / 60.22 % 0 cells / 0.00 % 6 cells / 6.45 %
Cluster 4 (104 cells) 77 cells / 74.04 % 16 cells / 15.38 % 9 cells / 8.65 % 0 cells / 0.00 % 2 cells / 1.92 %
Cluster 5 (32 cells) 8 cells / 25.00 % 4 cells / 12.50 % 4 cells / 12.50 % 16 cells / 50.00 % 0 cells / 0.00 %
Cluster 6 (82 cells) 0 cells / 0.00 % 34 cells / 41.46 % 48 cells / 58.54 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 7 (66 cells) 31 cells / 46.97 % 23 cells / 34.85 % 12 cells / 18.18 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 8 (63 cells) 8 cells / 12.70 % 37 cells / 58.73 % 17 cells / 26.98 % 0 cells / 0.00 % 1 cell / 1.59 %
Cluster 9 (58 cells) 12 cells / 20.69 % 26 cells / 44.83 % 16 cells / 27.59 % 0 cells / 0.00 % 4 cells / 6.90 %
Cluster 10 (69 cells) 9 cells / 13.04 % 5 cells / 7.25 % 52 cells / 75.36 % 0 cells / 0.00 % 3 cells / 4.35 %
Cluster 11 (100 cells) 4 cells / 4.00 % 80 cells / 80.00 % 16 cells / 16.00 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 12 (75 cells) 1 cell / 1.33 % 52 cells / 69.33 % 22 cells / 29.33 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 13 (71 cells) 37 cells / 52.11 % 20 cells / 28.17 % 13 cells / 18.31 % 0 cells / 0.00 % 1 cell / 1.41 %

Correct identified > 70% 77 / 249 (30.92 %) 137 / 448 (30.58 %) 52 / 341 (15.25 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 80% 0 / 249 (0.00 %) 80 / 448 (17.86 %) 0 / 341 (0.00 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 90% 0 / 249 (0.00 %) 0 / 448 (0.00 %) 0 / 341 (0.00 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)

Table 25: 40000 hash functions.

Cluster G1 (249 cells) early-S (448 cells) late-S/G2 (341 cells) post-M (17 cells) pre-M (23 cells)
Cluster 0 (102 cells) 55 cells / 53.92 % 25 cells / 24.51 % 12 cells / 11.76 % 6 cells / 5.88 % 4 cells / 3.92 %
Cluster 1 (151 cells) 84 cells / 55.63 % 42 cells / 27.81 % 20 cells / 13.25 % 0 cells / 0.00 % 5 cells / 3.31 %
Cluster 2 (143 cells) 17 cells / 11.89 % 27 cells / 18.88 % 93 cells / 65.03 % 0 cells / 0.00 % 6 cells / 4.20 %
Cluster 3 (95 cells) 4 cells / 4.21 % 87 cells / 91.58 % 4 cells / 4.21 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 4 (79 cells) 21 cells / 26.58 % 37 cells / 46.84 % 21 cells / 26.58 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 5 (33 cells) 6 cells / 18.18 % 8 cells / 24.24 % 6 cells / 18.18 % 11 cells / 33.33 % 2 cells / 6.06 %
Cluster 6 (111 cells) 2 cells / 1.80 % 50 cells / 45.05 % 59 cells / 53.15 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 7 (32 cells) 14 cells / 43.75 % 11 cells / 34.38 % 7 cells / 21.88 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 8 (77 cells) 9 cells / 11.69 % 49 cells / 63.64 % 17 cells / 22.08 % 0 cells / 0.00 % 2 cells / 2.60 %
Cluster 9 (45 cells) 25 cells / 55.56 % 14 cells / 31.11 % 6 cells / 13.33 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 10 (23 cells) 3 cells / 13.04 % 14 cells / 60.87 % 6 cells / 26.09 % 0 cells / 0.00 % 0 cells / 0.00 %
Cluster 11 (34 cells) 2 cells / 5.88 % 11 cells / 32.35 % 20 cells / 58.82 % 0 cells / 0.00 % 1 cell / 2.94 %
Cluster 12 (76 cells) 3 cells / 3.95 % 52 cells / 68.42 % 18 cells / 23.68 % 0 cells / 0.00 % 3 cells / 3.95 %
Cluster 13 (77 cells) 4 cells / 5.19 % 21 cells / 27.27 % 52 cells / 67.53 % 0 cells / 0.00 % 0 cells / 0.00 %

Correct identified > 70% 0 / 249 (0.00 %) 87 / 448 (19.42 %) 0 / 341 (0.00 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 80% 0 / 249 (0.00 %) 87 / 448 (19.42 %) 0 / 341 (0.00 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)
Correct identified > 90% 0 / 249 (0.00 %) 87 / 448 (19.42 %) 0 / 341 (0.00 %) 0 / 17 (0.00 %) 0 / 23 (0.00 %)

Table 26: 50000 hash functions.
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7 Cluster results on Ramani 1MB

Cluster HeLa (269 cells) HAP1 (254 cells)
Cluster 0 (264 cells) 24 cells / 9.09 % 240 cells / 90.91 %
Cluster 1 (259 cells) 245 cells / 94.59 % 14 cells / 5.41 %

Correct identified > 70% 245 / 269 (91.08 %) 240 / 254 (94.49 %)
Correct identified > 80% 245 / 269 (91.08 %) 240 / 254 (94.49 %)
Correct identified > 90% 245 / 269 (91.08 %) 240 / 254 (94.49 %)

(a) ML1 with two clusters

Cluster HeLa (269 cells) HAP1 (254 cells)
Cluster 0 (244 cells) 8 cells / 3.28 % 236 cells / 96.72 %
Cluster 1 (265 cells) 258 cells / 97.36 % 7 cells / 2.64 %
Cluster 2 (14 cells) 3 cells / 21.43 % 11 cells / 78.57 %

Correct identified > 70% 258 / 269 (95.91 %) 247 / 254 (97.24 %)
Correct identified > 80% 258 / 269 (95.91 %) 236 / 254 (92.91 %)
Correct identified > 90% 258 / 269 (95.91 %) 236 / 254 (92.91 %)

(b) ML1 with three clusters

Table 27: Overlaps of detected clusters with known cell types from Ramani et al. (2017), ML1 batch. Approx-
imate k-nn with MinHash, spectral clustering, 2000 hash functions, full-nearest neighbors graph, 7 principal
components, intra-chromosomal contacts only, umap: n neighbors 40, min dist 0.25, n components 2 for two
clusters, n components 6 for three clusters.

Cluster HeLa (267 cells) HAP1 (251 cells)
Cluster 0 (256 cells) 71 cells / 27.7% 185 cells / 72.3%
Cluster 1 (262 cells) 196 cells / 74.8% 66 cells / 25.2%

Correct identified > 70% 196 / 269 (72.86 %) 185 / 254 (72.83 %)
Correct identified > 80% 0 / 269 (0 %) 0 / 254 (0 %)
Correct identified > 90% 0 / 269 (0 %) 0 / 254 (0 %)

(a) ML1 with two clusters

Cluster HeLa (267 cells) HAP1 (251 cells)
Cluster 0 (231 cells) 8 cells / 3.4% 223 cells / 96.6%
Cluster 1 (258 cells) 258 cells / 100% 0 cells / 0%
Cluster 2 (29 cells) 1 cell / 3.4% 28 cells / 96.6%

Correct identified > 70% 258 / 267 (96.62 %) 251 / 251 (100 %)
Correct identified > 80% 258 / 267 (96.62 % 251 / 251 (100 %)
Correct identified > 90% 258 / 267 (96.62 % 251 / 251 (100 %)

(b) ML1 with three clusters

Table 28: Overlaps of detected clusters with known cell types from Ramani et al. (2017), ML1 batch. Results
computed with Zhou’s scHiCluster. Five cells had to be removed because they contained chromosomes with no
interactions. Zhou’s scHiCluster cannot handle this and crashes.

24



Cluster K562 (304 cells) GM12878 (502 cells)
Cluster 0 (372 cells) 241 cells / 64.78 % 131 cells / 35.22 %
Cluster 1 (434 cells) 63 cells / 14.52 % 371 cells / 85.48 %

Correct identified > 70% 0 / 304 (0.00 %) 371 / 502 (73.90 %)
Correct identified > 80% 0 / 304 (0.00 %) 371 / 502 (73.90 %)
Correct identified > 90% 0 / 304 (0.00 %) 0 / 502 (0.00 %)

(a) ML3 with two clusters

Cluster K562 (304 cells) GM12878 (502 cells)
Cluster 0 (177 cells) 23 cells / 12.99 % 154 cells / 87.01 %
Cluster 1 (223 cells) 23 cells / 10.31 % 200 cells / 89.69 %
Cluster 2 (208 cells) 184 cells / 88.46 % 24 cells / 11.54 %
Cluster 3 (58 cells) 54 cells / 93.10 % 4 cells / 6.90 %
Cluster 4 (140 cells) 20 cells / 14.29 % 120 cells / 85.71 %

Correct identified > 70% 238 / 304 (78.29 %) 474 / 502 (94.42 %)
Correct identified > 80% 238 / 304 (78.29 %) 474 / 502 (94.42 %)
Correct identified > 90% 54 / 304 (17.76 %) 0 / 502 (0.00 %)

(b) ML3 with five clusters

Table 29: Overlaps of detected clusters with known cell types from Ramani et al. (2017), ML3 batch. Approxi-
mate k-nn with MinHash, spectral clustering. More clusters can increase the accuracy of the detected cell types.
Parameters: Spectral clustering. MinHash with 5000 hash functions, full-nearest neighbors graph, 13 principal
components, inter and intra-chromosomal contacts, umap: n neighbors 47, min dist 0.33, n components 2 for
two clusters, n components 9 for five clusters.

Cluster K562 (301 cells) GM12878 (501 cells)
Cluster 0 (384 cells) 248 cells / 64.6% 136 cells / 35.4%
Cluster 1 (418 cells) 53 cells / 12.6% 365 cells / 87.4%

Correct identified > 70% 0 / 301 (0 %) 365 / 501 (72.85 %)
Correct identified > 80% 0 / 301 (0 %) 365 / 501 (72.85 %)
Correct identified > 90% 0 / 301 (0 %) 0 / 501 (0.00 %)

(a) ML3 with two clusters

Cluster K562 (301 cells) GM12878 (501 cells)
Cluster 0 (168 cells) 0 cells / 0% 168 cells / 100%
Cluster 1 (134 cells) 16 cells / 11.9% 118 cells / 88.1%
Cluster 2 (201) 195 cells / 97% 6 cells / 3%
Cluster 3 (205) 0 cells / 0% 205 cells / 100%
Cluster 4 (94) 90 cells / 95.7% 4 cells / 4.3%

Correct identified > 70% 285 / 301 (94.68 %) 491 / 501 (98.00 %)
Correct identified > 80% 285 / 301 (94.68 %) 491 / 501 (98.00 %)
Correct identified > 90% 285 / 301 (94.68 %) 373 / 501 (74.45 %)

(b) ML3 with four clusters

Table 30: Overlaps of detected clusters with known cell types from Ramani et al. (2017), ML3 batch. Results
computed with Zhou’s scHiCluster. More clusters can increase the accuracy of the detected cell types. Four
cells had to be removed because they contained chromosomes with no interactions. Zhou’s scHiCluster cannot
handle this and crashes.
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8 Cluster results on Ramani 10 kb

Cluster HeLa (269 cells) HAP1 (254 cells)
Cluster 0 (278 cells) 121 cells / 43.53 % 157 cells / 56.47 %
Cluster 1 (245 cells) 148 cells / 60.41 % 97 cells / 39.59 %

Correct identified > 70% 0 / 269 (0.00 %) 0 / 254 (0.00 %)
Correct identified > 80% 0 / 269 (0.00 %) 0 / 254 (0.00 %)
Correct identified > 90% 0 / 269 (0.00 %) 0 / 254 (0.00 %)

Table 31: Ramani ML1 data with two clusters. 10 kb resolution.

Cluster K562 (304 cells) GM12878 (502 cells)
Cluster 0 (478 cells) 106 cells / 22.18 % 372 cells / 77.82 %
Cluster 1 (328 cells) 198 cells / 60.37 % 130 cells / 39.63 %

Correct identified > 70% 0 / 304 (0.00 %) 372 / 502 (74.10 %)
Correct identified > 80% 0 / 304 (0.00 %) 0 / 502 (0.00 %)
Correct identified > 90% 0 / 304 (0.00 %) 0 / 502 (0.00 %)

Table 32: Ramani ML3 data with two clusters, 10 kb resoltion.

9 Runtime and memory usage

The measurement of runtimes of algorithms with a high I/O and the requirement for a fast parallelization
are very environment dependent. To give a broader overview, the here presented numbers are from a virtual
machine with NFS storage and a state-of-the-art computer with a modern SSD. To show the impact of the
number of hash functions, run times and memory usage are shown with a low number and a high number of
hash function.

Method Runtime Memory
Raw and K-Means 39:15 min 7.2 GB
Raw and Spectral 01:29 min 4.5 GB
PCA and K-Means 05:37 min 170 GB
PCA and Spectral 05:35 min 170 GB
scikit-learn k-nn k = 2472 and k-means 01:19 min 4.5 GB
scikit-learn k-nn k = 2472 and Spectral 01:25 min 4.5 GB
scHicClusterMinHash k = 2472 and k-means 01:30 min 7.6 GB
scHicClusterMinHash k = 2472 and Spectral 01:35 min 7.6 GB
scHicClusterMinHash eucl. k = 2472 and k-means 02:04 min 7.6 GB
scHicClusterMinHash eucl. k = 2472 and Spectral 02:04 min 7.6 GB
Zhou’s scHiCluster CPU 13:55 min 4.0 GB

Table 33: Runtimes and memory usage with 1 Mb 2472 cells on a single-cell Hi-C matrix. Data from Nagano
et al. (2017) Diploid cells, with 12 clusters. For clustering k-means and spectral clustering are used, scHicClus-
terMinHash with 800 hash functions, k=2472, applied PCA and 100 principal components for clustering. All
results computed on 2x Intel XEON E5-2630 v4 @ 2.20GHz 2x 10 cores / 2x 20 threads, 1 TB memory.
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Method Runtime Memory
Raw and K-Means 12:22 min 7.2 GB
Raw and Spectral 1:37 min 4.0 GB
PCA and K-Means - > 128 GB
PCA and Spectral - > 128 GB
scikit-learn k-nn k = 2472 and K-means 1:24 min 4.0 GB
scikit-learn k-nn k = 2472 and Spectral 1:26 min 4.0 GB
MinHash k = 2472 and K-means 0:57 min 7.6 GB
MinHash k = 2472 and Spectral 0:59 min 7.6 GB
MinHash euclidean k = 2472 and K-means 1:55 min 7.6 GB
MinHash euclidean k = 2472 and Spectral 1:56 min 7.6 GB
Zhou’s scHiCluster CPU 14:02 min 4.0 GB
Zhou’s scHiCluster GPU 07:17 min 3.7 GB

Table 34: Runtimes and memory usage with 1 Mb on a single-cell Hi-C matrix with 2472 cells. Data from
Nagano et al. (2017) Diploid cells, with 12 clusters. For clustering K-means and spectral clustering are used,
MinHash with 800 hash functions and activated PCA. All results computed on AMD Ryzen 3700X 8 cores /
16 threads, 128 GB memory; Nvidia GTX 1070 8 GB memory.

9.1 High number of hash functions

Method Runtime Memory
MinHash h = 800 0:42 min 1.6 GB
MinHash h = 2000 0:47 min 1.6 GB
MinHash h = 8000 1:10 min 1.7 GB
MinHash h = 15000 1:36 min 1.9 GB
MinHash h = 20000 2:00 min 2 GB
Zhou’s scHiCluster CPU 6:50 min 2.4 GB
Zhou’s scHiCluster GPU 3:40 min 2.7 GB

Table 35: Runtimes and memory usage with 1 Mb resolution on a single-cell Hi-C matrix with 1275 cells.
Normalized to a read coverage of 100,000 reads and interaction values smaller 1 are kept. Data from Nagano
et al. (2017) Diploid cells, with 12 clusters. For clustering spectral clustering is used, MinHash with a different
number of hash functions h. All results computed on AMD Ryzen 3700X 8 cores / 16 threads, 128 GB memory;
Nvidia GTX 1070 8 GB memory.

Method Runtime Memory
MinHash h = 800 04:04 min 13.9 GB
MinHash h = 4000 05:42 min 14.0 GB
MinHash h = 8000 07:33 min 14.1 GB
MinHash h = 15000 11:05 min 14.3 GB
MinHash h = 20000 13:30 min 14.5 GB
MinHash h = 40000 23:27 min 15.2 GB

Table 36: Runtimes and memory usage with 10 kb resolution on a single-cell Hi-C matrix with 1088 cells.
Normalized to a read coverage of 100,000 reads and interaction values smaller 1 are kept. Data from Nagano
et al. (2017) Diploid cells, with 14 clusters. For clustering spectral clustering is used, MinHash with a different
number of hash functions h. All results computed on AMD Ryzen 3700X 8 cores / 16 threads, 128 GB memory;
Nvidia GTX 1070 8 GB memory.
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10 Cluster profiles Nagano data
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(c) MinHash k = 100
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(e) MinHash k = 1275, no UMAP
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(f) MinHash k = 1275, no PCA, no UMAP
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(g) Scikit-learn k-nn
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(h) Scikit-learn k-nn k = 1275 k-means, 100 PC

Figure S 14: Cluster profile of the different clusters on 1275 cells from Nagano et al. (2017) Diploid cells.
K-Means clustering was applied on all datasets, MinHash with intra-chromosomal data, PCA, UMAP and a
full k-nn if not defined otherwise. Clustering on raw single-cell Hi-C interaction matrix (S 14a, S 14b k-nn with
MinHash and the additional euclidean distance computation; S 14c MinHash with 100 nearest neighbors; S 14d
MinHash without an intermediate PCA on the k-nn, S 14e MinHash with a PCA but no UMAP, S 14f MinHash
only, without PCA and UMAP. S 14g shows the results if inter- and intrachromosomal data are used to create
the k-nn with MinHash; S 14h shows the result of k-means applied on a k-nn with k=1275 using Scikit-learns’
k-nn implementation.
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11 Consensus matrices Nagano data
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Figure S 15: Consensus matrices of the different clusters on 1275 cells from Nagano et al. (2017) Diploid cells,
chromosome 6. K-Means clustering was applied on all datasets, MinHash with intra-chromosomal data, PCA,
UMAP and a full k-nn if not defined otherwise. Clustering on raw single-cell Hi-C interaction matrix (S 15a,
S 15b k-nn with MinHash and the additional euclidean distance computation; S 15c MinHash with 100 nearest
neighbors; S 15d MinHash without an intermediate PCA on the k-nn
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(a) MinHash, no UMAP
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Figure S 16: Consensus matrices of the different clusters on 1275 cells from Nagano et al. (2017) Diploid cells,
chromosome 6. K-Means clustering was applied on all datasets, MinHash with intra-chromosomal data, PCA,
UMAP and a full k-nn if not defined otherwise. S 16a MinHash with a PCA but no UMAP, S 16b MinHash
only, without PCA and UMAP. S 16c shows the results if inter- and intrachromosomal data are used to create
the k-nn with MinHash; S 16d shows the result of k-means applied on a k-nn with k=1275 using scikit-learns
k-nn implementation.
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12 Scatter plots cell labels
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(b) k-nn MinHash on Nagano 1MB cell coloring UMAP dimensions 2

Figure S 17
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(c) k-nn MinHash on Nagano 1MB cell cluster result UMAP dimensions 5
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(d) k-nn MinHash on Nagano 1MB cell cluster result UMAP dimensions 2

Figure S 17
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(b) Zhou’s scHiCluster Nagano 1MB cell cluster result

Figure S 18
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12.2 Ramani 1 Mb

12.2.1 approximate k-nn with MinHash
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Figure S 19: Embedding of Ramani cell type data. 1 MB resolution, ML1 with approximate k-nn based on
MinHash, 8 principal components, UMAP embedding and spectral clustering.
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Figure S 20: Embedding of Ramani cell type data. 1 MB resolution, ML3, with approximate k-nn based on
MinHash, 8 principal components, UMAP embedding and spectral clustering. To detect more clusters than
cell types can be beneficial.
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12.2.2 Zhou’s scHiCluster
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(c) ML1 detected cluster c = 3

Figure S 21: Embedding of Ramani cell type data. 1 MB resolution, ML1 with Zhou’s scHiCluster. To detect
more clusters than cell types can be beneficial.
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Figure S 22: Embedding of Ramani cell type data. 1 MB resolution, ML3, with Zhou’s scHiCluster. To detect
more clusters than cell types can be beneficial.

37



13 Data collection and pre-processing

All used data is from Nagano et al. (2017): GEO94489; Gassler et al. (2017): GSE100569 and Ramani et al.
(2017): GSE84920; and was pre-processed with scHiCExplorer (Wolff et al. (2020a)) version 7∗. The raw data
was quality controlled and read coverage normalized, it is available on Zenodo†. The single-cell Hi-C interaction
matrices are stored in the scool‡ file format (Wolff et al. (2020b)), available in the cooler (Abdennur and Mirny
(2019)) package since version 0.8.9.

∗https://github.com/joachimwolff/scHiCExplorer/tree/7
†https://doi.org/10.5281/zenodo.4308298
‡https://cooler.readthedocs.io/en/latest/schema.html#single-cell-single-resolution

38



References

Abdennur, N. and Mirny, L. A. (2019). Cooler: scalable storage for Hi-C data and other genomically labeled
arrays. Bioinformatics, 36(1), 311–316.

Gassler, J. et al. (2017). A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architec-
ture. The EMBO journal , 36(24), 3600–3618.

Nagano, T. et al. (2017). Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature,
547(7661), 61.

Ramani, V. et al. (2017). Massively multiplex single-cell hi-c. Nature methods, 14(3), 263–266.

Wolff, J. et al. (2020a). Galaxy HiCExplorer 3: a web server for reproducible Hi-C, capture Hi-C and single-cell
Hi-C data analysis, quality control and visualization. Nucleic Acids Research. gkaa220.

Wolff, J. et al. (2020b). Scool: a new data storage format for single-cell Hi-C data. Bioinformatics. btaa924.

39



A.3 Appendix for A new data storage format for single-cell
Hi-C data

166 Appendix A Appendix



Supplementary material
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1 Create scool alternative with pandas dataframe

import cooler

pixel dict = {’cell1 ’ : pixels1 , ’ cell2 ’ : pixels2}

cooler . create scool ( cool uri=pFileName, bins=bins1, cell name pixels dict=pixel dict)

Listing 1: Python API example to create a scool file, bins1 is a pandas dataframe

2 File sizes and compression rates

Files txt zip txt cool zip cool scool zip scool

Nagano 1 Mb 958.1 MB 273.3 MB 349.8 MB 193 MB 266.9 MB 181.5 MB

Nagano 10 kb 8.0 GB 2.2 GB 3.0 GB 2.5 GB 1.9 GB 1.8 GB

Gassler 100 kb 111.9 MB 31.2 MB 63.5 MB 56.8 MB 26.3 MB 23.0 MB

Gassler 40 kb 170.7 MB 46.6 MB 120.7 MB 111.9 MB 39.3 MB 35.9 MB

Gassler 10 kb 277.1 MB 72.3 MB 348.9 MB 341.1 MB 67.5 MB 62.8 MB

Gassler 1 kb 438.6 MB 115.8 MB 2.3 GB 1.8 GB 120.8 MB 112.5 MB

Table 1: File sizes of aggregate file sizes of all cells respectively of one file in case of scool or the compressed
versions. As compression Ubuntu 20.04 GUI ’Compress...’ with zip is used. The txt files contain only the
sparse matrix information but no genomic position relation or metadata. Data from Nagano et al. (2017) and
Gassler et al. (2017).

Files zip txt / txt scool / cool zip scool / zip cool scool / zip txt

Nagano 1 Mb 0.285 0.763 0.940 0.976

Nagano 10 kb 0.275 0.633 0.720 0.818

Gassler 100 kb 0.278 0.414 0.404 0.737

Gassler 40 kb 0.277 0.325 0.320 0.770

Gassler 10 kb 0.260 0.193 0.184 0.868

Gassler 1 kb 0.264 0.052 0.062 0.971

Table 2: File sizes from Table 1, the smaller the number, the higher the compression. The txt files contain only
the sparse matrix information but no genomic position relation or metadata. Data from Nagano et al. (2017)
and Gassler et al. (2017).
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3 Read coverage distribution

3.1 Nagano 2017

(a) 1 Mb resolution (b) 10 kb resolution

Figure 1: Read coverage distribution over all 3882 cells from Nagano et al. (2017).

3.2 Gassler 2017

(a) 100 kb resolution (b) 40 kb resolution

(c) 10 kb resolution (d) 1 kb resolution

Figure 2: Read coverage distribution over all 144 cells from Gassler et al. (2017).
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4 Read density distribution

All read densities are computed for contacts within a 30 Mb genomic distance. The very few long range contacts
are excluded in this computation.

4.1 Nagano 2017

(a) 1 Mb resolution (b) 10 kb resolution

Figure 3: Read density distribution over all 3882 cells from Nagano et al. (2017).

4.2 Gassler 2017

(a) 100 kb resolution (b) 40 kb resolution

(c) 10 kb resolution (d) 1 kb resolution

Figure 4: Read density distribution over all 144 cells from Gassler et al. (2017).
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1 make tracks file or how to generate a configuration file

The script make tracks file can generate a configuration file from input file(s).
The full documentation is available on https://pygenometracks.readthedocs.io.

$ make_tracks_file --trackFiles file1.bed file2.bw -o tracks.ini

Will output with version 3.5

[x-axis]

#optional

#fontsize = 20

# default is bottom meaning below the axis line

# where = top

[spacer]

# height of space in cm (optional)

height = 0.5

[file1]

file = file1.bed

# title of track (plotted on the right side)

title = file1

# height of track in cm (ignored if the track is overlay on top the previous track)

height = 2

# if you want to plot the track upside-down:

# orientation = inverted

# if you want to plot the track on top of the previous track. Options are 'yes' or 'share-y'.

# For the 'share-y' option the y axis values is shared between this plot and the overlay plot.

# Otherwise, each plot use its own scale

#overlay_previous = yes

# If the bed file contains the exon

# structure (bed 12) then this is plotted. Otherwise

# a region **with direction** is plotted.

# If the bed file contains a column for color (column 9), then this color can be used by

# setting:

#color = bed_rgb
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# if color is a valid colormap name (like RbBlGn), then the score (column 5) is mapped

# to the colormap.

# In this case, the the min_value and max_value for the score can be provided, otherwise

# the maximum score and minimum score found are used.

#color = RdYlBu

#min_value=0

#max_value=100

# If the color is simply a color name, then this color is used and the score is not considered.

color = darkblue

# whether printing the labels

labels = false

# optional:

# by default the labels are not printed if you have more than 60 features.

# to change it, just increase the value:

#max_labels = 60

# optional: font size can be given to override the default size

fontsize = 10

# optional: line_width

#line_width = 0.5

# the display parameter defines how the bed file is plotted.

# Default is 'stacked' where regions are plotted on different lines so

# we can see all regions and all labels.

# The other options are ['collapsed', 'interleaved', 'triangles']

# These options assume that the regions do not overlap.

# `collapsed`: The bed regions are plotted one after the other in one line.

# `interleaved`: The bed regions are plotted in two lines, first up, then down, then up etc.

# optional, default is black. To remove the border, simply set 'border_color' to none

# Not used in tssarrow style

#border_color = black

# style to plot the genes when the display is not triangles

#style = UCSC

#style = flybase

#style = tssarrow

# maximum number of gene rows to be plotted. This

# field is useful to limit large number of close genes

# to be printed over many rows. When several images want

# to be combined this must be set to get equal size

# otherwise, on each image the height of each gene changes

#gene_rows = 10

# by default the ymax is the number of

# rows occupied by the genes in the region plotted. However,

# by setting this option, the global maximum is used instead.

# This is useful to combine images that are all consistent and

# have the same number of rows.

#global_max_row = true

# If you want to plot all labels inside the plotting region:

#all_labels_inside = true

# If you want to display the name of the gene which goes over the plotted

# region in the right margin put:

#labels_in_margin = true

# if you use UCSC style, you can set the relative distance between 2 arrows on introns

# default is 2

#arrow_interval = 2

# if you use tssarrow style, you can choose the length of the arrow in bp

# (default is 4% of the plotted region)

#arrow_length = 5000

# if you use flybase or tssarrow style, you can choose the color of non-coding intervals:

#color_utr = grey

# as well as the proportion between their height and the one of coding

# (by default they are the same height):

#height_utr = 1

# By default, for oriented intervals in flybase style,

# or bed files with less than 12 columns, the arrowhead is added

2



# outside of the interval.

# If you want that the tip of the arrow correspond to

# the extremity of the interval use:

# arrowhead_included = true

# optional. If not given is guessed from the file ending.

file_type = bed

[file2]

file = file2.bw

# title of track (plotted on the right side)

title = file2

# height of track in cm (ignored if the track is overlay on top the previous track)

height = 2

# if you want to plot the track upside-down:

# orientation = inverted

# if you want to plot the track on top of the previous track. Options are 'yes' or 'share-y'.

# For the 'share-y' option the y axis values is shared between this plot and the overlay plot.

# Otherwise, each plot use its own scale

#overlay_previous = yes

color = #666666

# To use a different color for negative values

#negative_color = red

# To use transparency, you can use alpha

# default is 1

# alpha = 0.5

# the default for min_value and max_value is 'auto' which means that the scale will go

# roughly from the minimum value found in the region plotted to the maximum value found.

min_value = 0

#max_value = auto

# The number of bins takes the region to be plotted and divides it

# into the number of bins specified

# Then, at each bin the bigwig mean value is computed and plotted.

# A lower number of bins produces a coarser tracks

number_of_bins = 700

# to convert missing data (NaNs) into zeros. Otherwise, missing data is not plotted.

nans_to_zeros = true

# The possible summary methods are given by pyBigWig:

# mean/average/stdev/dev/max/min/cov/coverage/sum

# default is mean

summary_method = mean

# for type, the options are: line, points, fill. Default is fill

# to add the preferred line width or point size use:

# type = line:lw where lw (linewidth) is float

# similarly points:ms sets the point size (markersize (ms) to the given float

# type = line:0.5

# type = points:0.5

# set show_data_range to false to hide the text on the left showing the data range

show_data_range = true

# to compute operations on the fly on the file

# or between 2 bigwig files

# operation will be evaluated, it should contains file or

# file and second_file,

# we advice to use nans_to_zeros = true to avoid unexpected nan values

#operation = 0.89 * file

#operation = - file

#operation = file - second_file

#operation = log2((1 + file) / (1 + second_file))

#operation = max(file, second_file)

#second_file = path for the second file

# To log transform your data you can also use transform and log_pseudocount:

# For the transform values:
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# 'log1p': transformed_values = log(1 + initial_values)

# 'log': transformed_values = log(log_pseudocount + initial_values)

# 'log2': transformed_values = log2(log_pseudocount + initial_values)

# 'log10': transformed_values = log10(log_pseudocount + initial_values)

# '-log': transformed_values = - log(log_pseudocount + initial_values)

# For example:

#tranform = log

#log_pseudocount = 2

# When a transformation is applied, by default the y axis

# gives the transformed values, if you prefer to see

# the original values:

#y_axis_values = original

# If you want to have a grid on the y-axis

#grid = true

file_type = bigwig
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2 Galaxy wrapper

A history where you can see an example of pyGenomeTracks inputs and outputs is available at https://

usegalaxy.eu/u/ldelisle/h/last-example-of-pgt.

Figure 1: pyGenomeTracks wrapper for Galaxy.

3 Track file for the main figure

All used data is provided on zenodo: https://doi.org/10.5281/zenodo.3775381.

[x-axis]

fontsize = 20

title = dm3
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[spacer]

height = 0.3

[HiC_Li_cubenas_et_al]

file = HiC_Cubenas.h5

height = 3

title = Hi-C matrix with TAD domains as bed file and bigwig

depth = 50000

transform = log1p

show_masked_bins = false

file_type = hic_matrix

[tad_classification]

file = tad__domains.bed

overlay_previous = share-y

color = none

height = 4

labels = false

fontsize = 10

file_type = domains

[CP190]

file = CP190.bw

overlay_previous = yes

show_data_range = false

height = 2

color = #FF007F

min_value = 0

number_of_bins = 700

nans_to_zeros = true

summary_method = mean

show_data_range = false

file_type = bigwig

[CP190_2]

file = CP190.bw

overlay_previous = yes

show_data_range = false

height = 2

color = #000000

min_value = 0

number_of_bins = 700

nans_to_zeros = true

summary_method = mean

type = line:0.75

show_data_range = false

file_type = bigwig

[chromatinStates_kc]

file = chromatinStates_kc.bed

title = chromatin states

height = 1

color = bed_rgb

display = collapsed

height = 0.5

labels = false

fontsize = 10

file_type = bed

show_data_range = false
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[spacer]

height = 0.5

[tad_score]

file = tad__tad_score.bm

title = bedgraph matrix

color = none

height = 2

labels = false

fontsize = 10

type = lines

file_type = bedgraph_matrix

[spacer]

height = 0.5

[H3K36me3]

file = H3K36me3.bw

title = bigwig with threshold line

height = 2

color = #18B463

min_value = 0

number_of_bins = 700

nans_to_zeros = true

summary_method = mean

show_data_range = true

file_type = bigwig

[hlines]

file_type = hlines

y_values = 1.5

line_style = dashed

line_width = 1

overlay_previous = share-y

show_data_range = False

[scalebar]

file_type = scalebar

x_center = 8120730

size = 36000

where = bottom

[spacer]

height = 0.5

[vlines]

file = tad__domains.bed

type = vlines

[test arcs]

file = test.arcs

title = arcs

orientation = inverted

line_style = solid

height = 2

[genes]

file = dm3_genes_compact_no_cg.bed

height = 1

title = bed file

fontsize = 10
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file_type = bed

gene_rows = 2

line_width = 0.5

color = red

4 Figure of the graphical abstract

The figure in the graphical abstract is more exhaustive than in the manuscript.
The first track from the top shows the genomic locus (chromosome 2L 8.05 Mb to 8.31 Mb). The second

track illustrates a Hi-C matrix track (Li et al. (2015)) overlaid by its detected TADs, via HiCExplorer, and a
coverage profile of CP190 ChIP. Although Hi-C tracks can be provided as cool Abdennur and Mirny (2019) or
HiCExplorer’s native h5 format (Ramı́rez et al. (2018)), here a matrix of h5 format has been used. TADs are
given as a bed file which is a direct output of HiCExplorer’s hicFindTADs, the ChIP-Seq profile is provided
as a bigwig file (both Kent et al. (2010)). This track is followed by an inverted Hi-C matrix in h5 format
(Cubeñas-Potts et al. (2017)). The interaction patterns in different conditions can be compared using this
method. The succeeding track shows the chromatin states, provided as a bed file where the colors used are as
defined in the 9th field of the bed file. The next track visualizes the TAD separation scores, the data is presented
in a bedgraph matrix file format from HiCExplorer hicFindTADs. The green track shows a filled-out curve
representation of the data from H3K36me3 histone mark, a mark which is correlated with the active chromatin
state in Drosophila melanogaster, provided as a bigwig file. The following track shows another bigwig file as an
orange line. The file contains the RNA polymerase II profile and the track has been plotted with an additional
horizontal threshold line as well as a scale bar indicating the distance between two different peaks of interest.
The blue arcs show artificially created links that could be contacts between different CP190 peaks. Finally the
last track is a gene track of dm3. Although both gtf and bed formats (Karolchik et al. (2004)) are accepted by
PGT, here a bed was used.

All used data is provided on zenodo: https://doi.org/10.5281/zenodo.3775381.

[x-axis]

fontsize = 20

title = dm3

[spacer]

height = 0.3

[HiC_Li_cubenas_et_al]

file = HiC_Cubenas.h5

height = 3

title = Hi-C matrix with TAD domains as bed file and bigwig

depth = 50000

transform = log1p

show_masked_bins = false

file_type = hic_matrix

[tad_classification]

file = tad__domains.bed

overlay_previous = yes

color = none

height = 4

labels = false

fontsize = 10

file_type = domains

[CP190]

file = CP190.bw

overlay_previous = yes

show_data_range = false

height = 2

color = #FF007F

min_value = 0
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number_of_bins = 700

nans_to_zeros = true

summary_method = mean

show_data_range = false

file_type = bigwig

[CP190_2]

file = CP190.bw

overlay_previous = yes

show_data_range = false

height = 2

color = #000000

min_value = 0

number_of_bins = 700

nans_to_zeros = true

summary_method = mean

type = line:0.75

show_data_range = false

file_type = bigwig

[spacer]

height = 0.1

[HiC_cubenas_et_al]

file = HiC_Li_et_al.h5

title = inverted Hi-C matrix

depth = 50000

transform = log1p

show_masked_bins = false

file_type = hic_matrix

orientation = inverted

height = 3

[chromatinStates_kc]

file = chromatinStates_kc.bed

title = chromatin states

height = 1

color = bed_rgb

display = collapsed

height = 0.5

labels = false

fontsize = 10

file_type = bed

show_data_range = false

[spacer]

height = 0.5

[tad_score]

file = tad__tad_score.bm

title = bedgraph matrix

color = none

height = 2

labels = false

fontsize = 10

type = lines

file_type = bedgraph_matrix

[spacer]

height = 0.5
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[H3K36me3]

file = H3K36me3.bw

title = bigwig

height = 2

color = #18B463

min_value = 0

number_of_bins = 700

nans_to_zeros = true

summary_method = mean

show_data_range = true

file_type = bigwig

[bigwig]

file = RNAPII.bw

title = bigwig with threshold and scalebar

type = line

color = orange

height = 3

[hlines]

file_type = hlines

y_values = 20

line_style = dashed

line_width = 1

overlay_previous = share-y

[scalebar]

file_type = scalebar

x_center = 8125730

size = 74770

where = bottom

[spacer]

height = 0.5

[vlines]

file = tad__domains.bed

type = vlines

[test arcs]

file = test.arcs

title = arcs

orientation = inverted

line_style = solid

height = 2

[genes]

file = dm3_genes_compact_no_cg.bed

height = 1

title = bed file

fontsize = 10

file_type = bed

gene_rows = 2

line_width = 0.5

color = red
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5 Parameter supported for each track

Here is a table summarizing all the parameters supported for each track in version 3.5.
parameter x axis epilogos links domains bed gtf narrow peak bigwig bedgraph bedgraph matrix hlines hic matrix scalebar

overlay previous X X X X X X X X X X X X X
where X X
fontsize X X X X
categories file X
orientation X X X X X X X X X X X
links type X
line width X X X X X X X
line style X X
color X X X X X X X X X
alpha X X X X X
max value X X X X X X X X X
min value X X X X X X X X
ylim X
compact arcs level X
use middle X X
border color X X X
prefered name X X X
merge transcripts X X X
labels X X
style X X
display X X
max labels X X
global max row X X
gene rows X X
arrow interval X X
arrowhead included X X
color utr X X
height utr X X
arrow length X X
all labels inside X X
labels in margin X X
show data range X X X X X
show labels X
use summit X
width adjust X
type X X X X
negative color X X
nans to zeros X X
summary method X X
number of bins X X
transform X X X
log pseudocount X X
y axis values X X
second file X X
operation X X
grid X X
rasterize X X X
pos score in bin X
plot horizontal lines X
colormap X X
depth X
show masked bins X
scale factor X
x center X
size X
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6 pyGenomeTracks examples

All used data is provided in our github repository:
https://github.com/deeptools/pyGenomeTracks/tree/master/examples and
https://github.com/deeptools/pyGenomeTracks/tree/master/pygenometracks/tests/test_data.

6.1 Basic examples

6.1.1 A bigwig track

[bigwig file test]

file = bigwig.bw

# height of the track in cm (optional value)

height = 4

title = bigwig

min_value = 0

max_value = 30

$ pyGenomeTracks --tracks bigwig_track.ini --region X:2,500,000-3,000,000 -o bigwig.png

0

30

bigwig

Figure 2: Bigwig track

6.1.2 Bigwig and genes

[bigwig file test]

file = bigwig.bw

# height of the track in cm (optional value)

height = 4

title = bigwig

min_value = 0

max_value = 30

[spacer]

# this simply adds an small space between the two tracks.

[genes]

file = genes.bed.gz

height = 7

title = genes

fontsize = 10

file_type = bed

gene_rows = 10

[x-axis]

fontsize=10

$ pyGenomeTracks --tracks bigwig_with_genes.ini --region X:2,800,000-3,100,000 -o bigwig_with_genes.eps
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Figure 3: Bigwig and gene track

6.1.3 Bigwig, genes and vlines track

[bigwig file test]

file = bigwig.bw

# height of the track in cm (optional value)

height = 4

title = bigwig

min_value = 0

max_value = 30

[spacer]

# this simply adds an small space between the two tracks.

[genes]

file = genes.bed.gz

height = 7

title = genes

fontsize = 10

file_type = bed

gene_rows = 10

[x-axis]

fontsize=10

[vlines]

file = domains.bed

type = vlines

$ pyGenomeTracks --tracks bigwig_with_genes_and_vlines.ini --region X:2,800,000-3,100,000 -o

bigwig_with_genes_and_vlines.eps↪→
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Figure 4: Bigwig, genes and vlines track

6.1.4 Bigwig overlay with transparency

[test bigwig]

file = bigwig2_X_2.5e6_3.5e6.bw

color = blue

height = 7

title = No alpha:

(bigwig color=blue 2000 bins) overlaid with (bigwig color = (0.6, 0, 0) max over 300 bins) overlaid

with (bigwig mean color = green 200 bins)↪→

number_of_bins = 2000

min_value = 0

max_value = 30

[test bigwig max]

file = bigwig2_X_2.5e6_3.5e6.bw

color = (0.6, 0, 0)

summary_method = max

number_of_bins = 300

overlay_previous = share-y

[test bigwig mean]

file = bigwig2_X_2.5e6_3.5e6.bw

color = green

type = fill

number_of_bins = 200

overlay_previous = share-y

[spacer]

[test bigwig]

file = bigwig2_X_2.5e6_3.5e6.bw

color = blue

height = 7

title = alpha

(bigwig color = blue 2000 bins) overlaid with (bigwig color = (0.6, 0, 0) alpha = 0.5 max over 300

bins) overlaid with (bigwig mean color = green alpha = 0.5 200 bins)↪→

number_of_bins = 2000

min_value = 0

max_value = 30

[test bigwig max]

file = bigwig2_X_2.5e6_3.5e6.bw

color = (0.6, 0, 0)

alpha = 0.5

summary_method = max
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number_of_bins = 300

overlay_previous = share-y

[test bigwig mean]

file = bigwig2_X_2.5e6_3.5e6.bw

color = green

alpha = 0.5

type = fill

number_of_bins = 200

overlay_previous = share-y

[spacer]

[test bigwig]

file = bigwig2_X_2.5e6_3.5e6.bw

height = 7

title = alpha for lines/points:

(bigwig color=(0.6, 0, 0) alpha = 0.5 max) overlaid with (bigwig mean color = green alpha = 0.5 line:2)

overlaid with (bigwig min color = blue alpha = 0.5 points:2)↪→

color = (0.6, 0, 0)

alpha = 0.5

summary_method = max

number_of_bins = 300

min_value = 0

max_value = 30

[test bigwig mean]

file = bigwig2_X_2.5e6_3.5e6.bw

color = green

type = line:2

alpha = 0.5

summary_method = mean

number_of_bins = 300

overlay_previous = share-y

[test bigwig min]

file = bigwig2_X_2.5e6_3.5e6.bw

color = blue

summary_method = min

number_of_bins = 1000

type = points:3

alpha = 0.5

overlay_previous = share-y

[x-axis]

$ pyGenomeTracks --tracks alpha.ini --region X:2700000-3100000 --trackLabelFraction 0.2 --dpi 130 -o

master_alpha.png↪→
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Figure 5: Bigwig overlay with transparency

6.2 Examples with bed and gtf

6.2.1 Bed and gtf format tracks

[x-axis]

where = top

title = where =top

[spacer]

height = 0.05

[genes 2]

file = dm3_genes.bed.gz

height = 7

title = genes (bed12) style = UCSC; fontsize = 10

style = UCSC

fontsize = 10

[genes 2bis]

file = dm3_genes.bed.gz

height = 7

title = genes (bed12) style = UCSC; arrow_interval=10; fontsize = 10

style = UCSC

arrow_interval = 10

fontsize = 10

[spacer]

height = 1

[test bed6]

file = dm3_genes.bed6.gz

height = 7

title = bed6 border_color = black; gene_rows=10; fontsize=7; color=Reds
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(when a color map is used for the color (e.g. coolwarm, Reds) the bed

score column mapped to a color)

fontsize = 7

file_type = bed

color = Reds

border_color = black

gene_rows = 10

[spacer]

height = 1

[test bed4]

file = dm3_genes.bed4.gz

height = 10

title = bed4 fontsize = 10; line_width = 1.5; global_max_row = true

(global_max_row sets the number of genes per row as the maximum found

anywhere in the genome, hence the white space at the bottom)

fontsize = 10

file_type = bed

global_max_row = true

line_width = 1.5

[spacer]

height = 1

[test gtf]

file = dm3_subset_BDGP5.78.gtf.gz

height = 10

title = gtf from ensembl

fontsize = 12

file_type = bed

[spacer]

height = 1

[test bed]

file = dm3_subset_BDGP5.78_asbed_sorted.bed.gz

height = 10

title = gtf from ensembl in bed12

fontsize = 12

file_type = bed

[spacer]

height = 1

[test gtf collapsed]

file = dm3_subset_BDGP5.78.gtf.gz

height = 10

title = gtf from ensembl one entry per gene

merge_transcripts = true

prefered_name = gene_name

fontsize = 12

file_type = bed

[spacer]

height = 1

[x-axis]

fontsize = 30

title = fontsize = 30
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$ pyGenomeTracks --tracks bed_and_gtf_tracks.ini --region X:3000000-3300000 --trackLabelFraction 0.2 --width 38

--dpi 130 -o master_bed_and_gtf.eps↪→
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Figure 6: Bed and gtf format tracks
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6.2.2 UTR settings

[x-axis]

where = top

[spacer]

height = 0.05

[genes 0]

file = dm3_genes.bed.gz

height = 7

title = genes (bed12) style = flybase; fontsize = 10

style = flybase

fontsize = 10

[spacer]

height = 1

[genes 1]

file = dm3_genes.bed.gz

height = 7

title = genes (bed12) style = flybase; fontsize = 10; color_utr = red

style = flybase

fontsize = 10

color_utr = red

[spacer]

height = 1

[genes 2]

file = dm3_genes.bed.gz

height = 7

title = genes (bed12) style = flybase; fontsize = 10; height_utr = 0.7

style = flybase

fontsize = 10

height_utr = 0.7

$ pyGenomeTracks --tracks bed_flybase_tracks.ini --region X:3000000-3300000 --trackLabelFraction 0.2 --width 38

--dpi 130 -o master_bed_flybase.png↪→
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Figure 7: UTR

6.3 4C tracks

[x-axis]

where = top

[spacer]

height = 0.05

[test bedgraph]

file = GSM3182416_E12DHL_WT_Hoxd11vp.bedgraph.gz

color = blue

height = 5

title = bedgraph rasterize = true

rasterize = true

max_value = 10

[test bedgraph]

file = GSM3182416_E12DHL_WT_Hoxd11vp.bedgraph.gz

color = blue

height = 5

title = bedgraph

max_value = 10

[test bedgraph use middle]

file = GSM3182416_E12DHL_WT_Hoxd11vp.bedgraph.gz

color = blue

height = 5

title = bedgraph with use_middle = true

max_value = 10

use_middle = true

[genes]

file = HoxD_cluster_regulatory_regions_mm10.bed

height = 3

title = HoxD genes and regulatory regions
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$ pyGenomeTracks --tracks bedgraph_useMid.ini --region chr2:74,000,000-74,800,000 --trackLabelFraction 0.2

--width 38 --dpi 130 -o master_bedgraph_useMid_zoom.png↪→
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Figure 8: 4C track

6.4 Peaks

[narrow]

file = test2.narrowPeak

height = 4

max_value = 40

line_width = 0.1

title = max_value = 40;line_width = 0.1

[narrow 2]

file = test2.narrowPeak

height = 2

show_labels = false

show_data_range = false

color = #00FF0080

use_summit = false

title = show_labels = false; show_data_range = false; use_summit = false; color = #00FF0080

[spacer]

[narrow 3]

file = test2.narrowPeak

height = 2

show_labels = false

color = #0000FF80

use_summit = false

width_adjust = 4

title = show_labels = false; use_summit = false; width_adjust = 4

[spacer]

[narrow 4]

file = test2.narrowPeak

height = 3

type = box
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color = blue

line_width = 2

title = type = box; color = blue; line_width = 2

[spacer]

[narrow 5]

file = test2.narrowPeak

height = 3

type = box

color = blue

use_summit = false

title = type = box; color = blue; use_summit = false

[x-axis]

$ pyGenomeTracks --tracks narrow_peak2.ini --region X:2760000-2802000 --trackLabelFraction 0.2 --dpi 130 -o

master_narrowPeak2.png↪→

Figure 9: Peak track

6.5 Horizontal lines

[test hlines]

color = red

line_width = 2

line_style = dashed

y_values = 10, 200

min_value = 0

show_data_range = true

height = 5

title = hlines: color = red; line_width = 2; line_style = dashed; y_values = 10, 200

file_type = hlines

[spacer]

[test bigwig fill]

file = bigwig2_X_2.5e6_3.5e6.bw
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color = gray

height = 2

type = fill

title = bigwig: gray fill overlayed with hlines at 10 and 200 blue dotted

max_value = 50

[test hlines ovelayed]

color = blue

line_style = dotted

y_values = 10, 200

overlay_previous = share-y

file_type = hlines

[spacer]

[x-axis]

$ pyGenomeTracks --tracks hlines.ini --region X:2700000-3100000 --trackLabelFraction 0.2 --dpi 130 -o

master_hlines.png↪→
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Figure 10: Horizontal lines track

6.6 Epilogos

[epilogos]

file = epilog.qcat.bgz

height = 5

title = height=5; categories_file=epilog_cats.json

[x-axis]

$ pyGenomeTracks --tracks epilogos_track.ini --region X:3100000-3150000 -o epilogos_track.png

-0.4

6.5

height=5;
categories_file=epilog_cats.json

3,110 3,120 3,130 3,140 Kb 3,150
X

Figure 11: Epilogos track
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6.6.1 Color setting

The color of the bars can be set by using a json file.

{

"categories":{

"1":["Active TSS","#ff0000"],

"2":["Flanking Active TSS","#ff4500"],

"3":["Transcr at gene 5\" and 3\"","#32cd32"],

"4":["Strong transcription","#008000"],

"5":["Weak transcription","#006400"],

"6":["Genic enhancers","#c2e105"],

"7":["Enhancers","#ffff00"],

"8":["ZNF genes & repeats","#66cdaa"],

"9":["Heterochromatin","#8a91d0"],

"10":["Bivalent/Poised TSS","#cd5c5c"],

"11":["Flanking Bivalent TSS/Enh","#e9967a"],

"12":["Bivalent Enhancer","#bdb76b"],

"13":["Repressed PolyComb","#808080"],

"14":["Weak Repressed PolyComb","#c0c0c0"],

"15":["Quiescent/Low","#ffffff"]

}

}

[epilogos]

file = epilog.qcat.bgz

height = 5

title = epilogos with custom colors

categories_file = epilog_cats.json

[epilogos inverted]

file = epilog.qcat.bgz

height = 5

title = epilogos inverted

orientation = inverted

[x-axis]

$ pyGenomeTracks --tracks epilogos_track2.ini --region X:3100000-3150000 -o epilogos_track2.png
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Figure 12: Epilogos track with color setting
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6.7 Multiple combined tracks

[x-axis]

where = top

title = where=top

[spacer]

height = 0.05

[tads]

file = tad_classification.bed

title = TADs color = bed_rgb; border_color = black

file_type = domains

border_color = black

color = bed_rgb

height = 5

[tads 2]

file = tad_classification.bed

title = TADs orientation = inverted; color = #cccccc; border_color = red

file_type = domains

border_color = red

color = #cccccc

orientation = inverted

height = 3

[spacer]

height = 0.5

[tad state]

file = chromatinStates_kc.bed.gz

height = 1.2

title = bed display = interleaved; labels = false

display = interleaved

labels = false

[spacer]

height = 0.5

[tad state]

file = chromatinStates_kc.bed.gz

height = 0.5

title = bed display = collapsed; color = bed_rgb

labels = false

color = bed_rgb

display = collapsed

[spacer]

height = 0.5

[test bedgraph]

file = bedgraph_chrx_2e6_5e6.bg

color = blue

height = 1.5

title = bedgraph color = blue

max_value = 100

[test arcs]

file = test.arcs

title = links orientation = inverted

orientation = inverted

line_style = dashed

height = 2
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[test bigwig]

file = bigwig2_X_2.5e6_3.5e6.bw

color = blue

height = 1.5

title = bigwig number_of_bins = 2000

number_of_bins = 2000

[spacer]

[test bigwig overlay]

file = bigwig2_X_2.5e6_3.5e6.bw

color = red

title = color:red; max_value = 50; number_of_bins = 100 (next track: overlay_previous = yes;

max_value = 50; show_data_range = false; color = #0000FF80 (blue, with alpha 0.5))

min_value = 0

max_value = 50

height = 2

number_of_bins = 100

[test bigwig overlay]

file = bigwig_chrx_2e6_5e6.bw

color = #0000FF80

title =

min_value = 0

max_value = 50

show_data_range = false

overlay_previous = yes

number_of_bins = 100

[spacer]

height = 1

[tads 3]

file = tad_classification.bed

title = TADs color = #cccccc; border_color = red (next track:

overlay_previous = share-y links_type = loops)

file_type = domains

border_color = red

color = #cccccc

height = 3

[test arcs overlay]

file = test.arcs

color = red

line_width = 10

links_type = loops

overlay_previous = share-y

[test arcs]

file = test.arcs

line_width = 3

color = RdYlGn

title = links line_width = 3 color RdYlGn

height = 3

[spacer]

height = 0.5

title = height = 0.5

[genes 2]

file = dm3_genes.bed.gz

height = 7
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title = genes (bed12) style = flybase;fontsize = 10

style = flybase

fontsize = 10

[spacer]

height = 1

[test gene rows]

file = dm3_genes.bed.gz

height = 3

title = gene_rows = 3 (maximum 3 rows); style = UCSC

fontsize = 8

style = UCSC

gene_rows = 3

[spacer]

height = 1

[test bed6]

file = dm3_genes.bed6.gz

height = 7

title = bed6 border_color = black; gene_rows = 10; fontsize = 7; color = Reds

(when a color map is used for the color (e.g. coolwarm, Reds) the bed

score column mapped to a color)

fontsize = 7

file_type = bed

color = Reds

border_color = black

gene_rows = 10

[test bed6]

file = dm3_genes.bed6.gz

height = 10

title = bed6 fontsize = 10; line_width = 1.5; global_max_row = true

(global_max_row sets the number of genes per row as the maximum found

anywhere in the genome, hence the white space at the bottom)

fontsize = 10

file_type = bed

global_max_row = true

line_width = 1.5

[x-axis]

fontsize = 30

title = fontsize = 30

[vlines]

file = tad_classification.bed

type = vlines

$ pyGenomeTracks --tracks browser_tracks.ini --region X:3000000-3500000 --trackLabelFraction 0.2 --width 38

--dpi 130 -o master_plot.png↪→
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Figure 13: Multiple combined tracks
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6.7.1 Multiple tracks with bigwigs

[test bigwig lines]

file = bigwig2_X_2.5e6_3.5e6.bw

color = gray

height = 2

type = line

title = orientation = inverted; show_data_range = false

orientation = inverted

show_data_range = false

max_value = 50

[test bigwig lines:0.2]

file = bigwig_chrx_2e6_5e6.bw

color = red

height = 2

type = line:0.2

title = type = line:0.2

[spacer]

[test bigwig points]

file = bigwig_chrx_2e6_5e6.bw

color = black

height = 2

min_value = 0

max_value = 100

type = points:0.5

title = type = point:0.5; min_value = 0; max_value = 100

[spacer]

[test bigwig nans to zeros]

file = bigwig_chrx_2e6_5e6.bw

color = red

height = 2

nans_to_zeros = true

title = nans_to_zeros = true

[spacer]

[test bigwig mean]

file = bigwig2_X_2.5e6_3.5e6.bw

color = gray

height = 5

title = gray:summary_method = mean; blue:summary_method = max;

red:summary_method = min

type = line

summary_method = mean

max_value = 150

min_value = -5

show_data_range = false

number_of_bins = 300

[test bigwig max]

file = bigwig2_X_2.5e6_3.5e6.bw

#title = test

color = blue

type = line

summary_method = max

max_value = 150

min_value = -15

show_data_range = false
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overlay_previous = share-y

number_of_bins = 300

[test bigwig min]

file = bigwig2_X_2.5e6_3.5e6.bw

color = red

type = line

summary_method = min

max_value = 150

min_value = -25

overlay_previous = share-y

number_of_bins = 300

[spacer]

[x-axis]

$ pyGenomeTracks --tracks bigwig.ini --region X:2700000-3100000 --trackLabelFraction 0.2 --dpi 130 -o

master_bigwig.png↪→

orientation = inverted;
show_data_range = false
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Figure 14: Multiple tracks with bigwigs

6.8 Hi-C tracks

[hic matrix]

file = Li_et_al_2015.h5

title = depth = 200000; transform = log1p; min_value = 5

depth = 200000

min_value = 5

transform = log1p

file_type = hic_matrix

show_masked_bins = false

[hic matrix]

file = Li_et_al_2015.h5

title = depth = 250000; orientation = inverted; colormap = PuRd; min_value = 5;

max_value = 70

min_value = 5
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max_value = 70

depth = 250000

colormap = PuRd

file_type = hic_matrix

show_masked_bins = false

orientation = inverted

[spacer]

height = 0.5

[hic matrix]

file = Li_et_al_2015.h5

title = depth = 300000; transform = log1p; colormap Blues (TADs:

overlay_previous = share-y; line_width = 1.5)

colormap = Blues

min_value = 10

max_value = 150

depth = 300000

transform = log1p

file_type = hic_matrix

[tads]

file = tad_classification.bed

#title = TADs color = none; border_color = black

file_type = domains

border_color = black

color = none

height = 5

line_width = 1.5

overlay_previous = share-y

show_data_range = false

[spacer]

height = 0.5

[hic matrix]

file = Li_et_al_2015.h5

title = depth = 250000; transform = log1p; colormap = bone_r (links: overlay_previous = share-y;

links_type = triangles; color = darkred; line_style = dashed, bigwig: color = red)

colormap = bone_r

min_value = 15

max_value = 200

depth = 250000

transform = log1p

file_type = hic_matrix

show_masked_bins = false

[test arcs]

file = links2.links

title =

links_type = triangles

line_style = dashed

overlay_previous = share-y

line_width = 0.8

color = darkred

show_data_range = false

[test bigwig]

file = bigwig2_X_2.5e6_3.5e6.bw

color = red

height = 4

title =
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overlay_previous = yes

min_value = 0

max_value = 50

show_data_range = false

[spacer]

height = 0.5

[hic matrix]

file = Li_et_al_2015.h5

title = depth = 200000; show_masked_bins = true; colormap =

['blue', 'yellow', 'red']; max_value = 150

depth = 200000

colormap = ['blue', 'yellow', 'red']

max_value = 150

file_type = hic_matrix

show_masked_bins = true

[spacer]

height = 0.1

[x-axis]

$ pyGenomeTracks --tracks browser_tracks_hic.ini --region X:2500000-3500000 --trackLabelFraction 0.23 --width

38 --dpi 130 -o master_plot_hic.png↪→
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Figure 15: Hi-C tracks
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