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Zusammenfassung

Wiéhrend Hauser heutzutage immer besser isoliert werden um den Verlust von
Warmeenergie gering zu halten, ist der Energiebedarf durch die Nutzung von
Elektrizitat in den letzten Jahrzehnten trotz energieeffizienterer Technik gestiegen.
Dies ist mitunter auf das Nutzungsverhalten der Verbraucher zuriickzufiithren. Um
dieses Verhalten nachhaltig zu beeinflussen, koénnen Fco Feedback oder Gamifi-
cation Ansitze - optimiert auf den Elektrizitatsverbrauch - eingesetzt werden.
Non-Intrusive Load Monitoring (NILM) liefert eine retrospektive und leicht zu in-
stallierende Moglichkeit, den Gesamtenergieverbrauch nach den einzelnen Geréten
aufzuschliisseln. Dies hilft einen zu hohen Energieverbrauch einzelner Haushalts-
gerate zu identifizieren und verbessert Eco Feedback und Gamification Methoden.

Um NILM Systeme und Algorithmen weiterzuentwickeln und zu vergleichen, wer-
den spezielle Datensétze benétigt, bei denen neben dem Gesamtverbrauch auch der
tatsichliche Energiebedarf aller Verbraucher im Messsetup erfasst wurde. Aufer-
dem konnen zusétzliche Informationen tiber die Zusténde (vereinfacht zB. angeschal-
tet oder ausgeschaltet) der einzelnen Geréte von Vorteil sein. Da NILM Systeme
haufig ein aufwendiges, systemspezifisches Training erfordern, koénnen sie bislang
lediglich als Nischenprodukt angesehen werden. In der vorliegenden Arbeit werden
verschieden Techniken vorgestellt, um detaillierte NILM Datenséatze zu generieren.
Auflerdem werden Methoden untersucht, um die aufwendigen Trainingsphasen,
welche nach der Installation solcher Systeme benotigt werden, zu vereinfachen.

Dazu werden zunéchst die Anforderungen an ein Messsystem, welches einen solchen
Datensatz aufnehmen kann, herausgearbeitet. Des Weiteren wird ein Frame-
work vorgestellt, welches diese Anforderungen nachweislich erfiillt. Das System
kann zeitsynchonisierte, hochfrequente Elektrizitdtsmesswerte tiber einen langen
Zeitraum aufnehmen, auch wenn die einzelnen Messpunkte tiber eine grofiere Flache
(zB. ein Haus oder eine Fabrik) verteilt sind und Daten gréfitenteils kabellos tiber-
tragen werden miissen. Das Framework umfasst zwei unterschiedliche Messsys-
teme, welche fiir die Messung einerseits einzelner Gerate und andererseits des
Gesamtverbrauchs optimiert wurden.

Um den Informationsreichtum der aufgenommenen Daten zu verbessern, wurde ein
Algorithmus entwickelt, der Veranderungen des Energiebedarfs automatisch grup-
piert und annotiert. Eine Evaluation des Algorithmus auf zwei Datensdtzen hat



gezeigt, dass je nach Verbrauchertyp ein Grofiteil dieser Verdnderungen erfolgreich
als solche erkannt und gruppiert werden konnen, was zu einer erheblichen Zeit-
ersparnis von bis zu 74 % bei der Annotation von Elektrizitatsdaten fithren kann.
Um die Annotation weiter zu vereinfachen und eine gefiihrte, halbautomatische
Annotation der Daten zu ermoglichen, wurde ein entsprechendes Tool entwickelt,
in dem der Algorithmus integriert ist.

Mit Hilfe des Frameworks und des Annotiationstools wurde schlie§lich der Fully-
labeled hlgh-fRequency Electricity Disaggregation (FIRED) Datensatz aufgezeich-
net. Dieser enthélt iiber 100 Tage hochauflésende Strom- und Spannungsdaten des
Gesamtelektrizitatsverbrauchs eines Haushaltes. Neben dem Gesamtverbrauch
wurden &hnlich hochauflosende Strom- und Spannungsdaten von 21 Haushalts-
geriten gesammelt und zeitlich synchronisiert. Auflerdem wurden weitere Umge-
bungsgrofien wie Raumtemperatur und Luftfeuchte gemessen. Zwei Wochen dieser
Daten wurden mit Hilfe des entwickelten Tools vollsténdig annotiert.

Es wurde weiter analysiert wie effektiv unterschiedliche doménenspezifische Fea-
tures und Klassifizierer verschiedene Haushaltsgerédte voneinander unterscheiden
konnen. Die Features und Klassifizierer wurden so gewahlt, dass sie auf eingebet-
teten Systemen mit beschréankten Rechenkapazitaten, wie Smart Metern, einge-
setzt werden konnen. Des Weiteren wurden drei Methoden evaluiert, die in Gesamt-
verbrauchsdaten Geréte-Zustandsiibergange von den konstanten Beitragen anderer
Geriéte bereinigt. Da Gesamtverbrauchsdaten mehr Rauschen beinhalten kénnen,
wurde untersucht, ob die Effektivitit entsprechender Klassifikationsalgorithmen
steigt, wenn wahrend des Trainings zusatzlich auf individuelle Messdaten zurtick-
gegriffen wird. Schliellich wurde ein System vorgestellt, welches neben eines typ-
isches NILM Aufbaus noch weitere Messsysteme auf Steckerebene verwendet um
den Trainingsprozess zu vereinfachen und die Gesamtperformanz des Systems zu
verbessern.



Abstract

The energy consumption of a home depends on the behavior of its inhabitants
offering a promising energy saving potential. However, this potential can only be
unfolded to full extent if the consumption of each individual appliance is know.
Non-Intrusive Load Monitoring (NILM) offers a retrospective way to get individ-
ual appliance consumption data. If such data are combined with eco-feedback
techniques it can help to better understand a user’s electricity usage to ultimately
save energy.

Researching NILM algorithms, and in particular, the development of the underly-
ing supervised machine learning techniques, requires adequate datasets with corre-
sponding ground truth data and methodologies to create more labeled data when
needed. Adding detailed labels to such datasets is a time-consuming and error-
prone process. Deploying a supervised NILM system typically requires a dedicated
system training procedure hampering their widespread adoption. The thesis at
hand presents several strategies to address these challenges in order to improve
the adoption of NILM.

In particular, a set of requirements is presented for acquiring and congregating
high-frequency electrical measurements in distributed environments. These are
handled by a novel recording framework comprised of a central recording director
and two prototype Data Acquisition Systems (DAQs), one for aggregated and one
for plug-level data. The developed methodologies allow the DAQs to deliver highly
accurate and time-synchronized data while using rather inexpensive components.

To add precise and descriptive labels to such data, a semi-automatic labeling
method is developed and evaluated on two publicly available datasets. The method
improves the labeling efficiency up to 74 % and has been integrated into a novel
labeling tool implemented as a web-application.

The framework and labeling tool have been used to collect and label the Fully-
labeled hlgh-fRequency Electricity Disaggregation (FIRED) dataset. It contains
101 days of 8kHz aggregated current and voltage measurements of the 3-phase
electricity supply of a typical residential apartment in Germany. The data also
includes synchronized 2kHz plug-level readings of 21 individual appliances, other
environmental sensor measurements, and descriptive event labels of all appliances,
resulting in a complete and versatile residential electricity dataset.



Furthermore, several domain specific features and classifiers are evaluated regard-
ing their suitability for (event-based) NILM targeted for resource constrained sys-
tems. Data cleaning methods are evaluated which remove the steady-state energy
consumption of other appliances from the aggregated data of a given appliance
event. As plug-level data delivers less noisy individual appliance data, it is shown
that the inclusion of such data during training results in a performance gain for
appliance classification algorithms. Finally, a novel supervised NILM system is
proposed and evaluated which uses a combination of aggregated and individual
appliance data to improve and aid the training process while only requiring mini-
mal user interaction.



1 Introduction

The anthropogenic climate change has caused and will continue to cause a global
temperature change in the coming years. Electricity production, heating, and
transportation are the main contributors to greenhouse gas emissions (CO;) with
approximately 73.2% [1] (residential buildings account for 11 %). Globally, ap-
proximately 27 % of the produced electricity is used to power lighting, appliances,
and heating in the residential sector [2]. Still, only 25.6 % of this electricity is
produced by carbon-neutral generation methods (nuclear power excluded) [2].

At the time of writing and also during the last decades, the price for a kilowatt-
hour of electricity is comparably low (around 0.30€ in Germany [3]) resulting in
a relatively low incentive to save electricity. However, with rising energy costs
- indeed the price has increased constantly over the last decades - this attitude
can be assumed to change resulting in higher incentives to identify and replace
energy-hungry appliances.

As famously stated by Peter Drucker: “If you can’t measure it, you can’t improve
it”. Electrical energy is measured with electricity meters. If such electricity mea-
surements are available, they can be combined with eco-feedback techniques. These
techniques range from simple graphs showing current and historical consumption
data [4], ambient installations in electricity cords [5], or artistic environmental in-
stallations (7000 oaks and counting [6]). Eco-feedback has proven to achieve high
energy savings especially in the residential domain according to several studies. A
meta-study by Ehrhardt-Martinez et al. [7] found that real-time aggregated-level
electricity consumption feedback achieves energy savings of 8.6 % on average. If
this feedback is delivered for individual appliances, the saving potential can even
be increased to 13.7% on average. This was confirmed by Kelly and Knottenbelt
[8], and Serrenho et al. [9]. The latter discovered a 5 to 10% relative increase if
eco-feedback is provided with individual appliance consumption data.

If these findings are representatively related to Germany with approximately 41 mil-
lion households that consume around 3113 kW h on average per household and year,
around 17.8 GW h less electrical energy would be required per year [10]. This is the
equivalent production capacity of one to two medium-size nuclear power plants.

This calculation assumes standard eco-feedback which raises the awareness of the
electricity consumption by pinpointing the resident to an unnecessary consump-
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tion. If such feedback is combined with a smart home agent which can directly
control electrical appliances or recommend user-specific strategies, even higher
savings are conceivable.

In order to obtain appliance-specific consumption, it is possible to attach a dedi-
cated electricity meter to each consumer of interest or to replace an appliance by
a smart appliance which directly measures its consumption. This method is called
Intrusive Load Monitoring (ILM) due to its intrusive nature of having to re-wire
or exchange appliances.

A second method to obtain appliance-level data, which does not require to replace
existing appliance or infrastructure, is Non-Intrusive Load Monitoring (NILM).
NILM requires just a single electricity meter (such as a smart meter) to be installed
at a central position in a home (typically inside the fuse box). The measured
composite load is disaggregated into the load of each individual electrical consumer
in the home using advanced algorithms, utilizing machine learning and pattern
recognition methods. These algorithms are either executed on the meter itself, or
the data are sent to an external processing system.

Regardless of how appliance-level data are generated (ILM or NILM), privacy
concerns need to be considered if such data are processed by or transmitted to
external entities. The main drawbacks of NILM are that it only delivers estimated
consumption data of individual appliance and typically requires initial training,
since most of the underlying algorithms are of supervised nature (i.e., require a
training phase for which disaggregated data are already available).

Nevertheless, depending on the employed method, NILM can provide information
such as (1) the consumption amount, (2) the consumption pattern, and (3) the
current state of an appliance. All of this information can be used, besides eco-
feedback, to:

« identify connected appliances or appliance types in an electrical power grid

o identify the state of an appliance and the transition between states (e.g., when
a device is switched-on)

o optimize electricity in smart grids using additional demand response techniques

o identify malfunctioning appliances or appliances which require a service (aka
predictive maintenance)

« enable Ambient Assisted Living (AAL) if the technique is combined with a
smart home agent

» enhance the electricity bill by breaking it down into individual consumers

Due to its physical foundation based on the flow of electricity, the corresponding
NILM algorithms can also be applied to water and gas consumption covering all
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types of energy consumption in our homes. Nevertheless, this thesis representa-
tively covers the electrical domain.

In many countries, smart meters have been and will be gradually installed in
homes in the upcoming years. These meters allow to collect the electrical power
consumption at more fine-grained spatial and temporal resolution compared to
previous rotary-disc meters. In addition, network interfaces allow to transmit these
data directly to the electricity provider which simplifies the billing of electrical
energy and enables electricity data analytics at scale [J21b]. Despite that, the
shift towards smart meters allows NILM algorithms to utilize not only the smart
meters’ data but also their processing capabilities.

In fact, some companies and electricity providers already offer services based
on NILM (e.g., Discovergy [11] and sense [12]) due to the benefits obtained by
appliance-level data. Eco-feedback and energy saving recommendations have also
been tested by major players such as Google [13] or Microsoft [14] but were even-
tually discontinued due to only moderate interest amongst potential customers.
This again underscores the need to increase and maintain a constant incentive to
save electricity.

1.1 Problem Formulation

Despite the intended benefits, NILM methods still suffer from obtrusive training
and mediocre disaggregation performance [15] if electricity of more than a handful
of appliances is disaggregated. One reason for that is a lack of suitable data-
sets. This work mainly targets challenges during the following steps: data(set)
acquisition, dataset labeling, and supervised appliance classification.

Data(set) acquisition: To train, evaluate and compare NILM algorithms, pub-
licly available datasets are used. Even though a lot of datasets have been published,
they are often not suitable to compare different disaggregation techniques because
of a low sampling frequency (e.g., 1/60 Hz for AMPds [16]), large recording gaps
(e.g., 13 of 37 days for REDD [17]), or because of missing or incorrect ground
truth data. Recording new datasets is an expensive, obtrusive, and tedious en-
deavor requiring knowledge in electrical engineering as well as signal and data
processing.

Dataset labeling: Moreover, most datasets lack ground truth information (such
as appliance events) making them hardly applicable to algorithms without addi-
tional ground truth generation. Manually adding such ground truth data (i.e., ap-
pliance event labels) post recording is a time-consuming, tedious, and error-prone
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process. While many event detection algorithms are suitable to automate this pro-
cess, they are typically based on simple rules (e.g., predefined thresholds) which
might work well for classical electrical appliances. Nowadays, most consumer elec-
tronics devices are powered by Switched-Mode Power Supplys (SMPSs), such as
TVs, laptops, etc., resulting in heterogeneous power consumption with short pe-
riods of higher consumption (also called peaks). If an event detector based on
simple rules (as e.g. used in [18]) is applied to such data, these peaks lead to many
events which are not of interest to the user.

Appliance classification: The results of appliance classification algorithms highly
vary depending on the algorithm type, the environment the algorithm is applied in,
the data applied to it, and the appliance usage patterns. Many different approaches
exist either based on simple rules, feature-driven machine learning algorithms, or
deep neural networks. Compared to unsupervised or semi-supervised methods, su-
pervised methods typically show significantly better results after being trained on
the target home (F; > 0.9 e.g., [19] and [20]). To obtain the required labeled data,
however, an intrusive (i.e., tedious and time-consuming) training is indispensable
before the system can be used in a non-intrusive fashion. While training, the home
owners has to switch appliances on and off multiple times with different, prefer-
ably all possible combinations of concurrently running appliances, taking the word
non-intrusive ad absurdum. To address this problem, new strategies need to be
explored e.g., by taking the human into the loop of the machine learning process.

1.2 Systematic Approach

At first, this work states a set of requirements for electricity metering systems
targeted to record advanced electricity datasets for NILM. Such a system is im-
plemented and the integrated hardware and software components are described in
detail. This system serves as a framework to obtain aggregated-level and individ-
ual appliance-level data in distributed environments. Second, semi-automatically
labeling methods are researched that allow to add fully-labeled state changes of all
appliances to electricity datasets in a post-processing fashion. Third, the frame-
work and labeling is applied and evaluated by recording a novel long-term electric-
ity dataset which features fully-labeled aggregated and individual appliance data
measured at high sampling rates. Lastly, strategies are explored and evaluated
to improve the lengthy training procedure and overall performance of supervised
event-based NILM methods by using additional measurement devices and includ-
ing humans in the loop.

Recording framework: A set of requirements for a recording framework is de-
fined and hardware and software components, which meet these requirements, are
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presented. The developed framework includes two newly engineered Data Acqui-
sition Systems (DAQs): the SmartMeter and the PowerMeter. The SmartMeter
is tailored to record the aggregated electricity consumption from inside a home’s
fuse box. The meter can monitor up to three supply legs (i.e., current-carrying
lines in the electricity grid) with up to 32kHz. The overall system architecture
of the PowerMeter is comparable to the SmartMeter. However, the PowerMe-
ter is tailored to measure individual appliances directly at plug-level with up to
7.875kHz in a distributed environment. By adding modular design concepts, both
meters remain expandable while keeping the costs of the setups comparably low
(around €35 for a PowerMeter and €100 for a SmartMeter). Both meters are
integrated into a software architecture that synchronizes all meters, processes raw
voltage and current measurements, converts them into physical quantities, and
stores them into files. Therewith, the framework can record long-term continuous
datasets dedicated to evaluate a large set of electricity-related algorithms such as
NILM.

Data labeling: Ways to automatically tag electricity data with fine-grained event
labels are explored by using an event detection algorithm, clustering, and human
supervision. As classical event detection algorithms do not perform well for ap-
pliances powered by SMPS, a novel probabilistic event detector with adaptive
thresholding is developed. To detect reoccurring events, an unsupervised cluster-
ing method clusters and pre-labels events which are afterwards filtered to remove
false events in noisy signal portions. The algorithm is integrated into a novel label-
ing tool named Annoticity. Annoticity is designed to provide a simple Graphical
User Interface (GUI) to enable human supervision for automatically generated la-
bels. It further offers convenient visual access to many publicly available datasets.

The FIRED dataset: A novel residential electricity dataset called FIRED is
presented. The specific environment of FIRED as well as the data collection pro-
cedure is outlined. The previously introduced recording framework has been used
to record long-term electricity data at aggregated level and of 21 individual ap-
pliances. The collected data includes 101 days of continuous voltage and current
waveforms sampled with 8 kHz and 2kHz, respectively. Additional sensor mea-
surements such as room temperature and lighting states further augments these
recordings. The previously introduced Annoticity labeling tool has been used to
add two weeks of fine grained labels to the data.

Appliance classification: Different appliance event detection algorithms are
examined and evaluated. Afterwards, a benchmark set of events is extracted from
the public datasets FIRED, BLOND [21], WHITED [22], and PLAID [23]. The
set is used to evaluate 27 features on their ability to classify appliances. This
information is used to infer a suitable feature vector resulting in high classification
results while maintaining low dimensionality. The feature vector is used to evaluate
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four standard machine learning classifiers. The combined system (encompassing
the event detector, the feature extraction, and the classifier) acts as a benchmark
NILM system. In addition, the combined training on high-frequency electricity
data sampled at aggregated and appliance-level is investigated. The results show
slight but noticeable improvements over the previously determined benchmark
system.

Minimal-Intrusive Load Monitoring: It was also investigated how the training
process for supervised NILM systems can be supported and accelerated by the
use of (intrusive) plug meters. The approach is termed Minimal-Intrusive Load
Monitoring (MILM) to hint towards the fact that the training process is optimized
towards a minimal and practical effort. The plug meters are used in an adaptive
training approach, which determines a minimal set of meters required to boost
overall system performance to a desired level before prompting a home owner to
change the meter configuration.

1.3 Contribution

This work contributes to (1) the acquisition of electricity data for research purpose,
(2) semi-automatic appliance event labeling, (3) supervised appliance classifica-
tion, and (4) the evaluation of NILM systems by introducing the FIRED dataset
and the Annoticity labeling tool.

The main contribution regarding the acquisition of electricity data are:

(i) A new data acquisition system to measure the aggregated load of a home
is proposed. The system’s architecture allows flexible ways to incorporate
NILM algorithms either on the device itself or by passing the data via dif-
ferent interfaces to an external data-processing unit.

(ii) A new data acquisition system to measure the electrical energy consumption
of individual appliances is proposed. The system samples measurements at
rates of up to multiple kilosamples per second, which allows to analyze higher
frequency components in the data.

(iii) An overall framework for collecting high-frequency (electricity) data in dis-
tributed environments is presented, tailored for time-synchronized data, high
robustness, expandability, and simplified usability.

The main contribution regarding semi-automatic appliance event labeling are:

(i) A novel probabilistic event detection algorithm is proposed and evaluated.
The detector is combined with adaptive thresholding to suppress false posi-
tives for low power appliances.

10
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(i)

(iii)

Additional clustering techniques are used to find reoccurring events in a
continuous data stream allowing to tag each event with a corresponding
label.

These techniques are encompassed into semi-automatic labeling. Techniques
are being developed to manually label high-frequency electricty data quickly
and easily.

The main contribution regarding (supervised) appliance classification are:

(i)

27 features are presented and evaluated in a standalone and combined fea-
ture analysis. The active power, phase-angle, Tristimulus, and WaveForm
Approximation have been identified to be of choice for resource-constrained
systems.

Furthermore, four standard machine learning classifiers are examined for
their suitability regarding appliance classification. k-Nearest Neighbour is
found to be the algorithm of choice if used on resource-constrained systems
while Support Vector Machines and Random Forest should be considered
otherwise.

The concept of hybrid training (i.e., using additional high-frequency data
obtained by plug-level sensors during training) is examined which can lead
to an Fj-score gain of up to 4 % compared to traditional training methods.

A concept is developed to enhance the tedious training process and over-
all performance of supervised NILM systems by using additional plug-level
meters.

The main contribution regarding the evaluation of NILM systems are:

(1)

(i)

(iii)

A novel fully-labeled electricity dataset is introduced which allows to evaluate
a wide variety of electricity-related algorithms (including appliance event
detection algorithms).

Dataset labeling is improved by reducing the overall labeling time up to 74 %
and providing additional support if textual labels are required by incorpo-
rating clustering methods.

An appliance classifier is proposed that achieves an average Fj-score of 98 %
on four publicly available datasets. The classifier can be used as a benchmark
when comparing the performance of similar systems.

11
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1.4 Remainder

1.4 Remainder

The remainder of this work is structured as follows. Theoretical background to
smart metering, Non-Intrusive Load Monitoring (NILM), and machine learning is
provided in Chapter 2. A more in-depth list of existing techniques for electricity
Data Acquisition Systems (DAQs) and NILM methods can be found in Chapter 3.
In Chapter 4, a framework is presented comprised of the hardware and software
components required to record advanced electricity datasets. In Chapter 5 a novel
semi-automatic labeling method for electricity data is introduced. The frame-
work and labeling method were utilized to collect a dataset which is presented in
Chapter 6. An extensive evaluation of features and classifiers used for appliance
classification is included in Chapter 7 resulting in a benchmark system. Chapter 8
evaluates different cleaning methods for aggregated data, evaluates hybrid train-
ing, and introduces a novel NILM system which simplifies supervised training and
improves the overall performance using plug-level meters. Finally, in Chapter 9
concluding remarks and directions for future research are highlighted.
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2 Background

This chapter introduces the electrical power grid, general electricity metering prin-
ciples, the NILM pipeline, and machine learning. It aims for a better understanding
and serves as a reference for the upcoming chapters.

2.1 (Smart) Electricity Metering

After the contemporaneous invention of the dynamo by Wheatstone, Siemens, and
Varley in 1866-67 [24], electricity could be generated and sold in large quantities.
With lighting as one of the first and major application for electricity, it became
clear that electricity has to be measured for billing purpose (much like the amount
of gas consumed by the previously used gas lamps).

While initial electricity meters were based on simple time measurements (Gardiner,
1872), the electrochemical effect (Edison, 1881), the use of pendulums (Ayrton and
Perry, 1881), or electrical motors (Thomson, 1889), Blathy invented the rotary-disc
meter (also known as the Ferraris meter) in 1889 [25]. The meter utilizes elec-
tromechanical induction to rotate an aluminum disc with a velocity proportional
to the product of voltage (V') and current (/). Its working principle is nearly iden-
tical to the meters used throughout the 20th century with billions of such devices
installed worldwide [26].

However, transferring the actual energy consumption data to e.g., utility companies
used to be a labor-intensive manual process. Therefore, digital metering devices
began to successively replace electromechanical meters in the late 2000s. These
so called smart meters allow for the collection of electrical power consumption
at much more fine-grained spatial and temporal resolutions and their included or
additionally added digital communication interfaces allow to report the collected
data directly to the utility company.

As shown in Figure 2.1, an electricity meter is located at the entry-point of a
building’s or apartment’s electrical grid connection. The aggregated consumption
of all electrical consumers in the home can be captured at this location. To be
able to efficiently transmit power through long power grid lines and to easily
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e (Smart) power grid ---=------------ » m e (Smart) home «==-=-«-=---1 »
(Smart)
electricity meter
- s 5
L
Trans-
formation

Generation Transmission Distribution Building-Level Appliance-Level

Grid level: @ @ @ @ @ @

Figure 2.1: Location of (smart) electrical meters within the electrical
power grid.

transform it to different voltage levels, electrical energy is distributed as sinusoidal
Alternating Current (AC) at high-voltage levels (up to 380kV) in electrical power
grids throughout the world. The voltage level (Vgys) at building-level and the
net frequency (f;) at which the voltage alternates depends on the country. While
e.g., the grid in the United States has 110 Vrygs at 60 Hz, a standard of 230 Vgyys
at 50 Hz has been established in the European power grid.

The electrical energy (W) consumed in the time interval [t1, 5] is calculated by
integrating the Power (P(t)) in this interval as

wined = [ " pltydt = / P u(t) i) dt. (2.1)
1 1

Electrical energy is typically billed in kilowatt hours (kW /h). While rotary-disc
meters are typically read out manually once a year, smart meters store and send
the electricity consumption data in the order of seconds to minutes. While their
primary use case is billing consumers for the amount of electrical energy consumed,
they can also serve as data sources for smart home installations or Building Man-
agement Systems (BMS). As smart meters can either directly connect to the In-
ternet or indirectly using smart meter gateways [27|, access to metered data is
ubiquitously possible. The previously unimaginable temporal resolution of smart
meters and their large penetration level, due to the sheer amount of households
they are installed in, created the foundation for electricity data analytics and will
soon provide novel energy-based services such as NILM [28].

2.2 Non-Intrusive Load Monitoring

Non-Intrusive Load Monitoring (NILM) describes the process of disaggregating a
composite electrical load into the load of each individual consumer. Compared to
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2.2 Non-Intrusive Load Monitoring

Intrusive Load Monitoring (ILM), which requires to install a dedicated electricity
meter to each consumer, NILM requires just a single electricity meter to be in-
stalled in the home’s electrical grid (such as a smart meter). The disaggregation
process can be based on heuristics, which encode a domain expert’s knowledge
or machine learning techniques. The algorithms are executed either on the me-
ter itself, or the data are sent to external entities which offer more storage and
processing capabilities.

Requiring to install and maintain only a single electricity meter presents the main
advantage of NILM compared to ILM. Since a NILM algorithm can ideally be
directly applied to smart meter data, the approach is considered to be inexpensive
as it allows to retrospectively add individual appliance consumption monitoring
using existing infrastructure.

As appliances are connected in parallel to a home’s power grid, the current drawn
by each appliance (j) sums up at the point where all parallel lines join, according
to Kirchhoff’s first law [29]. In contrast, the voltage remains constant at each
network joint. Therefore, the aggregated momentary power (Ps,,(t)) and thus
also the electrical energy consumption (Ws,,,) can be formally written as the sum
of the individual appliance power consumption. The equations are given as

N— 1

Wil = / Paun( (23

with P;(t) being the power consumption of appliance j and N being the total
number of appliances connected to the home’s electricity grid.

Therefore, according to Huber et al. [30] the NILM problem can be formally written
as

Pamlt) = 3 PAt)+ 3 Pult) + €ft), (2.4

with P;(t) being the active power consumption of M appliances known to the
NILM system (either explicitly modeled or learned during a supervised training
phase) and Py(t) being the active power consumption of appliance k from a set of K
unknown appliances. €(t) models additional noise of the measurement system and
is assumed to follow a normal distribution and to be small compared to the terms
> P; and Y P. The term }_ P, typically does not follow a Gaussian distribution
and accounts for a major portion of Py, (). [30]

The goal of a NILM system is to estimate P;(¢) for each appliance ¢ over time
while only directly measuring Py, (t). The electrical energy consumed by known
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appliance i can be calculated for a given time period according to Equation 2.1.
Therefore, some NILM systems model regression problems to directly estimate
Pi(t) (P(t) = fi(Psum(t), Bi) + € with Pi(t) € R). Another approach is to relax
the problem into binary classifications (s;(t) = fi(Psum(t)) with s;(¢) € {0,1}) and
to determine if appliance i is currently switched on or off. After classification,
the runtime of appliance ¢ can be extracted (¢ where s;(t) =1). While runtime
information is already vital for several use-cases (e.g., AAL and human activity
recognition (HAR) [31-34)), Pi(t) can still be estimated by multiplying the runtime
with the average power consumption (?;m) of appliance .

Independent whether a NILM system uses regression or classification, its general
pipeline includes the two steps (1) Data acquisition and (2) Disaggregation as
shown in Figure 2.2. Data acquisition is comprised of measuring the required at-
tributes (such as active and reactive power) and performing general pre-processing
steps while the disaggregation step is a specially designed and often individually
trained algorithm. According to e.g., [35-42] most of the NILM systems that can
be found in literature can further be categorized into event-based and event-less
approaches.

Smart meter
data —| (1) Data acquisition | (a) Event detection | (b) Event classification || (2) Disaggregation | Load
Poum(t) profile

‘ ‘ 10

Specific for event-based NILM

Figure 2.2: General pipeline of event-less and event-based NILM sys-
tems. While event-less methods include a data acquisition and a disag-
gregation step, event-based methods additionally include event detec-
tion and event classification.

Event-less non-intrusive load monitoring:

FEvent-less approaches optimize an overall system state using individually trained
appliance models. As the optimization step is recalculated for each new data input,
event-less approaches typically suffer from high computational complexity and are
often only applied to low sampling rates. Popular event-less approaches are based
on Hidden Markov Model (HMM) [43-46] or deep neural networks [47-51].

Event-based non-intrusive load monitoring:

According to Anderson et al. [52] the event-based NILM process introduces two ad-
ditional sub-steps to the pipeline as depicted in Figure 2.2: (a) Event detection and
(b) Event classification. After detecting an appliance event, i.e., a state change in
the measurements, the event is classified following the pattern matching paradigm.
Features are extracted from the measurements and are fed into a classifier, which
infers the event class (i.e., the type of the event such as a specific appliance turning
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on). As the inference step is only applied to events, and events are assumed to be
rare, event-based methods are generally more efficient if only lightweight event de-
tection algorithms are applied. In Section 7.1.2, various features, which have been
handcrafted by domain experts, are presented in more detail. These characterize
either the transient profile of the event (transient features), or the signal after the
event (steady-state features). In addition, several classifiers are presented in Sec-
tion 7.1.3. More details on machine learning, including the classification problem,
can be found later in this chapter (see Section 2.4).

High- vs. Low-frequency NILM:

NILM systems can be further divided based on the temporal resolution of their
input data. Approaches applied to data with a sampling frequency smaller 50 Hz
are considered as low-frequency approaches, while systems applied to data which
has been sampled faster than 1kHz are considered as high-frequency approaches.
Armel et al. [53] and others showed that high-frequency NILM allows to identify
roughly 30 % more appliances with around 25 % higher accuracy albeit requiring
more processing power. If the data cannot be processed locally (e.g., directly on
the smart meter) enough bandwidth is required to transmit the data to external
data centers.

2.3 Data Acquisition

Data acquisition describes the process of measuring continuous-time, analog sig-
nals as discrete-time, digital signals which are later to be analyzed. This includes
the conversion into a measurable unit (typically voltage levels), possible amplifi-
cation or attenuation, filtering, A/D conversion, and further signal pre-processing
according to Figure 2.3.

Signal _ A/D _ Pre-
conditioning conversion processing

z(t) x[n]
Physical signal — Transducer — Analysis

Figure 2.3: General pipeline of a data acquisition. A continuous-time
signal (t) is converted to a discrete-time signal x[n] using a transducer,
signal conditioning, an ADC, and pre-processing.

As formally stated in Equation 2.4, the input data of a general NILM system is
the home’s aggregated power consumption over time. To measure active power,
the voltage level and current flow inside the home’s electricity grid needs to be
measured. The most common methods to measure grid line voltage levels are
voltage dividers or voltage transformers. Current flow is typically converted into a
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proportional voltage level using shunt resistors, current transformers, hall sensors,
or Rogowski coils.

Analog-to-Digital Converters (ADCs) convert these analog voltage levels into dig-
ital representations. With sequential A/D conversions, a continuous-time analog
voltage signal is, therewith, transformed into a discrete-time digital representation
of that signal. Since A/D conversion can lead to aliasing artifacts, analog anti-
aliasing filters are added to suppress frequencies above the Nyquist-Frequency
(Equation 2.5). If the sampling frequency fs is chosen twice as high as the maxi-
mum analyzed signal frequency, the Nyquist-Shannon sampling theorem holds as
shown in Equation 2.6.

fs
fNyquist = 5 (25)
fs >2- fmaw signal (26)

Important quantities of ADCs include their resolution (i.e., number of bits), Signal-
to-Noise Ratio (SNR), and maximum sampling rate. While the sampling rate
determines the maximum signal frequency that can be reconstructed from the
sampled signal according to Nyquist-Shannon, the resolution and SNR, determine
the minimal and maximal detectable change in voltage.

2.3.1 Data Pre-Processing

The analog frontend can introduce an offset and a phase shift to the measured
signal which has to be removed as these may introduce errors in later stages of
the processing pipeline. Furthermore, the analog-to-digital conversion step, data
caching, or the transmission over certain communication channels raise the possi-
bility of errors and signal falsifications that need to be eliminated. Measurements
that do not represent valid number representations and infeasible values (e.g., cur-
rent flows exceeding the nominal circuit breaker limits by a large factor) are thus
removed. Unless a long sequence of wrong data are being reported, the imputa-
tion of values and the interpolation of gaps in the sampled data (e.g., by using the
impyute library [54]) are effective means to prepare the data for further analysis.

Figure 2.4 illustrates 100ms of voltage (v[n]) and current (i[n]) measurements
of three different electrical loads connected to mains voltage. The signals were
sampled at a rate of f; =2000Hz. A single mains cycle is highlighted in green
and refers to a full cycle of the voltage signal which sinusoidally oscillates between
325V and —325V (=230 Vgrus) with the line frequency f; =50 Hz in European
electricity grids.
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Figure 2.4: Five main cycles of current and voltage measurements with a
sampling rate of 2000 Hz. On top, a pure resistive load is shown, in the
middle, a pure reactive load is shown, while a typical load containing
resistive and reactive components is shown at the bottom. One main
cycle is exemplarily highlighted in green.

If a particular measurand is required for the analysis but not directly measured
during data acquisition, it needs to be calculated as part of the pre-processing
step. In the domain of NILM and energy data analytics, several other measurands
besides the sampled voltage and current are of interest. The corresponding for-
mulas to calculate some of these measurands are explained in the following. It is
noted that additional measurands and their corresponding formulas are introduced
in Section 7.1.2.

To simplify the calculations with AC signals, their corresponding Root Mean
Square (RMS) values are often provided. The RMS value of an AC signal is
equal to the Direct Current (DC) required to dissipate the same electrical power
in a resistive load. Igys and Vgas can be calculated from the raw voltage and
current samples on the basis of a single main cycle (m) as

Tnars|m] = ;f X il 2.7)
1 N—-1
Vrus[m] = N - v[n]?. (2.8)

N is the window length calculated as N = fs/f; (with fs> f;). fs is the sampling
frequency and f; is the grid line frequency (50 Hz for European countries).
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Active (P[m]), apparent (S[m]), and reactive (Q[m]) power can be calculated as

1 N—-1

=N nzov (2.9)
S[m] :]RMs[m] : VRMs[m], (210)
Q[m] =y/S[m]? — P[m]2. (2.11)

A purely resistive load causes voltage and current to reverse their polarity at the
same time as shown in the top plot of Figure 2.4. At every given time instance, the
power (cf. Equation 2.1) is positive (or at least zero). For a purely reactive load,
voltage and current are phase shifted by 90 degrees and the product of voltage
and current is positive only for the first and third quarter of the a main cycle and
negative for the second and fourth quarter as shown in the second plot of Figure 2.4.
A negative value means that energy stored in capacitors and/or inductors is flowing
back from the load. The third plot in Figure 2.4 highlights a typical load with
resistive and reactive components. Using Equation 2.9 and Equation 2.11, the
active and reactive power can be calculated for a given load. These characterize
the loads active (resistive) and reactive (capacitive and inductive) components.
The apparent power is the product of the RMS values of the current and voltage
signal.

The phase shift between voltage and current (cos ®) can be calculated as

cos ®[m] =——. (2.12)

The consumed electrical energy can be calculated for each main cycle m or a time
period of M main cycles as

W{m] =Plm] - fl?lﬁoo (2.13)
Wiotat = f_j Wim]. (2.14)

The electrical resistance R and its reciprocal the admittance Y are defines as

_Vrus [m)]

Iras[m)

Yim] = —— (2.16)

, (2.15)
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If the temporal resolution (T'=1/f,) at which these measures are sampled during
data acquisition does not suite the analysis, resampling can be applied. Reducing
the rate at which values are being made available, i.e., downsampling data, is
usually trivial and computationally lightweight as long as the original data has
undergone low-pass filtering to avoid aliasing artifacts. Commonly used methods
to downsample data include subsampling, averaging, and interpolation [55, 56].
Conversely, increasing the temporal resolution of data is not as trivial, but may
be required if the data are reported at very low sampling rates. Interpolation
techniques like Super-Resolution [57] have shown to achieve good performance on
electricity data.

Since the sampling rate mainly determines the amount of data and, therefore,
the required bandwidth of the communication channel (in case the data needs
to be transmitted) and also the system’s processing power, finding the optimal
sampling rates for various electricity load analysis algorithms has been investigated
in numerous works, including [58-61].

2.4 Machine Learning

Machine learning algorithms use observations from the outside world to generate
models that represent a generalized form of the underlying learning task. They
are able to find patterns in the data which are then utilized to infer informa-
tion for yet unseen data. Generally, it is distinguished between classification and
regression problems. A classification problem attempts to find a mapping from
the input data to a discrete set of values, typically a string representation aka
label. An example is predicting whether a picture shows a cat or a dog. A re-
gression problem attempts to find a mapping to a continuous value, e.g., the price
of a house. The corresponding machine learning models are called classifiers and
regressors. Popular application areas of and competitions in machine learning in-
clude the detection of objects or creatures in images [62] and the recognition of
hand-written numbers [63]. Classical machine learning algorithms require dedi-
cated data pre-processing and feature extraction steps that are typically designed
by human experts with specific domain knowledge. Deep learning refers to a kind
of a machine learning algorithms that do not require the manual design of a fea-
ture extraction step as important features are learned automatically from the raw
input data. Machine learning methods can be further categorized into supervised,
unsupervised, and semi-supervised methods based on the data they require dur-
ing model training. Supervised techniques require data with the corresponding
ground truth called labels (i.e., the data that should be inferred) to adjust the
model parameters during training. This requires that labeled data e.g., marked
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appliance on-phases are available. Generating these labels may require additional
sensors or extensive manual labeling by a human expert. Conversely, unsupervised
techniques do not require labels and capture all model parameters based on the
target data, which, however, usually results in a lower performance compared to
supervised methods. Semi-supervised methods combine a small portion of labeled
training data with a typically larger portion of unlabeled data. These methods are
mainly beneficial if generating labeled data is a tedious process, while generating
unlabeled data is easy. Often, methods are also referred to as semi-supervised if
they are trained to generalize their models on data from a certain distribution
while the target data are of a different distribution. Related to NILM, this refers
to a system being trained on one or multiple homes while being applied on data
of a different home which has not been included during system training.

2.5 Model Evaluation

The evaluation of a supervised estimator such as a regressor or classifier is typically
performed on data that includes the corresponding ground truth. To compare
algorithms against each other, publicly available datasets are used which consist
of a set of input data (X) and the corresponding ground truth (Y). An entry
(z,y) in a dataset is called a sample. If an algorithm should be evaluated on the
same dataset it has been trained on, the performance has to be determined on a
portion of the dataset that has not been used for training. This is achieved by
initially performing a train-test split on the data as depicted in Figure 2.5.

Dataset
| |
train-test split
Train-set Test-set factor 80/20
| Xirain, Yerain || Xtests Yiest |

Figure 2.5: Exemplary train-test split of a dataset.

The training set (Xyrqin, Yirain) is used to select an appropriate machine learning
model and to optimize its parameters, while the test set (Xiest, Yiest) should only be
used once to determine the performance of the final model fitted on the complete
training set. A typical train-test split ratio is 80 to 20 % (often written as 80,/20).

Using the test set multiple times can lead to overfitting. Overfitting denotes that
a model has been fitted too close to the input data. While this can lead to perfect
results on the test set, it will typical fail on yet unseen data as it prevents the
generalization performance of the model.
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To decide for an appropriate model (aka model selection), a technique called Cross
Validation (CV) can be applied which further splits the training set into comple-
mentary splits used for training and for model validation (X, Yoa). The final
model is then decided upon the best performing model on the validation set as
depicted in Figure 2.6.

Train-set Validation-set Test-set
| Xtrm'n: Ytra'in || Xvala }/val |
A ;\_,_
\ \
Model A train ———— > evaluate —» score s,
Selected . final
— train — evaluate —
model score s

Model X train ——— > evaluate —» score s,

Figure 2.6: Model selection using CV with a train-validation-test split.

Fixing the validation set prevents that the complete training set can be exploited
during training and may also lead to overfitting. This means that the selection
of the model is biased by the performance on the specific validation set. Hence,
a different model may have been selected for a different validation split. To com-
pensate this, CV can be applied in several rounds using a different validation split
each round. The validation results of all rounds are then combined to provide
a more reliable estimate of the model’s performance. Several CV methods exist
which mainly differ depending on how the splits are performed. Arguably the most
frequently used CV method is k-fold CV, which splits the data into & equally sized
disjoint splits. k — 1 splits are used to train the model and the remaining split
is used for validation. This is repeated k times, each time choosing a different
validation set from the k splits. The results of each round are finally averaged
to estimate the overall model performance. 5-fold CV is exemplarily shown in
Figure 2.7. The main benefit of this method is that all samples in the data are
used for training and validation.

The CV splits can also be performed specifically to test for a certain generalization
capability of the models. For instance, if a NILM dataset includes electricity data
of different homes, the splits can be performed so that each includes data of a
single home only. By averaging the performances over the different CV rounds,
the model’s ability to generalize across homes is tested.

In many classification problems, some classes naturally occur more often. An
example of such an imbalanced classification problem is the detection of cancer.
Naturally, there are significantly more people without cancer (majority class) than
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Figure 2.7: k-fold cross validation exemplarily illustrated for k = 5.

with cancer (minority class). Datasets for imbalanced classification typically re-
flect the specific imbalance (e.g., by including 95 % cancer-free, and only 5% can-
cer samples). Typically, a correct classification of the majority class is more or
at least equally important than of the minority class (for a binary classification).
To compensate for this, various techniques can be applied to balance the class
distribution of the original dataset. Examples of these techniques include under-
sampling of the majority class, oversampling (i.e., repetition) of the minority class,
or more advanced methods which synthetically generate new samples for the mi-
nority class (e.g., ADASYN [64] or SMOTE [65]). However, this is typically not
required if the data only contains a slight imbalance which represents a ratio of up
to 1:4 [66]. Nevertheless, the corresponding CV splits should be performed strati-
fied to maintain the same class distribution for each split. Randomly splitting the
data can shift this ratio (or even cause splits without a certain class), especially if
the number of samples per class is small. This can result in a large bias towards
the majority class.

Depending on the used machine learning model, some parameters are not trained
during the learning process. These are called hyperparameter and can be fixed by
the user or tuned during Hyperparameter Optimization (HPO). Since hyperpa-
rameters are often of real-valued or unbound space and some algorithms require to
tune multiple of these (e.g., around 20 for XGBoost [67]), different techniques can
be applied to reduce the search space including random search or Bayesian opti-
mization [68]. It is also possible to define a set of values for each hyperparameter
and test all combinations of these values. This technique is called exhaustive grid
search.

Depending on the estimator type (regressor or classifier) different performance
metrics are used. Regressors can e.g., be evaluated using the Mean-Absolute Error
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(MAE) or Root-Mean-Square Error (RMSE) metric. These are defined as

TA_

_MAE:zkﬂngM, (2.17)
T (s .32

RMSE:¢Eh“? b (2.18)

7; is the predicted value at time t, g, is the actual value, and 7' is the time period
over which the metrics are calculated.

In contrast, classifiers are typically evaluated based on several metrics that can be
calculated from a confusion matrix. The confusion matrix includes the inferred
numbers of True Positives (TP), True Negatives (TN), False Positives (FP), and
False Negatives (FN) for each class. Typical metrics that can be derived from
these numbers are Accuracy (Acc), Precision (Pre), Recall (Rec), and Fj-score.
These are calculated as

TP+ TN

Acc — 2.1

“CTTPITN+FP+FN’ (2.19)
TP

Pre — 2.2

TP+ FP’ (2.20)
TP

- 2.21

fec = T FN (2:21)

TP
F (2.22)

"TP+05-(FP+FN)’

Since the Fi-score balances precision and recall in a single score, it is often used
(1) to state the overall performance of the classifier or (2) to tune the model
during model selection (3) or during HPO. All classification metrics are calculated
on a per-class basis. Whenever a single score is required, the results of all classes
have to be combined. This can be achieved by e.g., calculating the corresponding
macro- or micro-average of the metric. For the micro-average the TP, TN, FP,
and FN results of the different classes are summed up before the corresponding
metric is calculated. For the macro-average, the metric is calculated for each
class and afterwards the overall metric is calculated as the unweighted average.
The micro-average should be preferred if the overall classification performance
should be reported, whereas the macro-average should be preferred if each class is
considered equally important. It is further noted that the macro-average does not
account for class imbalances. The performance of the minority and majority class
contribute equally important to the metric using macro-averaging.

Depending on the actual use case, further optimization to these metrics or com-
pletely different metrics are preferable. According to Figure 2.2, a traditional
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NILM-system represents a time-series regression problem (disaggregation step).
Metrics besides RMSE that have been used in related works include error in to-
tal energy assigned, fraction of total energy assigned correctly, normalized error in
assigned power, mean absolute error, or relative error in total energy [69, 70]. In
case of an event-based NILM-system two classification sub-problems are added:
event detection and event classification. While event classification seeks to find
the corresponding label for a given event and a known set of labels, event detection
is a binary classification problem, i.e., it is determined if an event has happened in
a certain time window or not. Both classification problems are typically evaluated
based on accuracy, precision, recall, and F-score [69)].
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3 Related Work

This chapter presents state-of-the-art work regarding Data Acquisition Systems
(DAQs) which can be used to collect and process long-term electricity datasets.
By introducing several existing datasets, their benefits and drawbacks, the re-
quirements and challenges for a DAQ, best suited for high-frequency long-term
recordings, are highlighted. Afterwards, related work in the areas of appliance
event detection and dataset labeling is presented. Several techniques to manu-
ally or automatically label electricity data are shown. Finally, works regarding
supervised appliance event classification are listed.

3.1 Data Acquisition Systems

Kolter and Johnson [17] introduced one of the first recording systems suited to
record high-frequency data of a home’s aggregated electricity consumption. Their
systems can further record low-frequency measurements of individual appliances
and was introduced in 2011. To record aggregated data, the system uses an os-
cilloscope probe (Pico TA041 [71]) to measure voltage of a single phase only and
Current Transformers (CTs) with a burden resistor to convert the mains current
flow into a measurable voltage level. Both current and voltage signals are fed into
NI-9239 ADCs from National Instruments [72]. The readings are collected by
a recording laptop at 15kHz with a resolution of 24-bit. Off-the-shelf plug-level
meters developed by Enmetric [73] are used to record individual appliance data.
Several of these connect wirelessly to a bridge which is connected to the home’s
Internet network. Active power measurements of each outlet are sent to a central
server at a rate of 1 Hz. Sub-circuit-level data of certain circuit breakers (e.g., of
a hardwired lighting) are acquired using CTs connected to an off-the-shelf elec-
tricity meter (eMonitor by Powerhouse Dynamics [74]) with a rate of around one
measurement every three seconds. Voltage data are not measured and assumed to
be at fixed grid level. Kolter and Johnson’s system has been used to record the
REDD [17] dataset.

As voltage and current waveforms share lots of similarities with audio data, Kelly
and Knottenbelt [75] proposed a system which uses off-the-shelf USB sound cards
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with stereo line input in 2015. AC-AC transformer are used to scale down the
voltage and split-core CT are used to measure current. The sound cards theoreti-
cally allow to sample data up to 44.1 kHz at 32-bit. However, data are downsam-
pled to 16 kHz and padded to 24-bit to significantly reduce the storage require-
ments. Appliance-level data are sampled using off-the-shelf 433 MHz electricity
meter plugs (Eco Manager Transmitter Plugs developed by Current Cost [76])
paired with a self-developed base station. Appliances directly connected to the
mains are metered using current clamp meters (Current Cost transmitter [77])
which are read out via the same base station. Due to RF collisions when wire-
lessly polling for or receiving data, only a comparable low sampling rate of one
measurement each six seconds is achieved. Kelly and Knottenbelt’s system has
been used to record the UK-DALE [75] dataset.

Beckel et al. [47] proposed to use an off-the-shelf smart electricity meter and off-the-
shelf smart plugs in 2014. Aggregated data are sampled at 1Hz from the smart
meter (E750 from Landis+Gyr [78]) via its SyM? interface and includes several
electricity-related metrics such as active power, RMS voltage and current, and the
phase shifts of all three supply legs. Active power measurements of individual
appliances are sampled using smart plugs (Plugwise [79]) at around 1Hz. The
actual sampling rate varies due to a sequential readout, but the data are resampled
to 1 Hz. The system by Beckel et al. has been used to record the ECO [47] dataset.

Instead of using off-the-shelf solutions with their potential drawbacks such as low
sampling rates or proprietary protocols, in 2018, Kriechbaumer and Jacobsen [21]
proposed a recording setup comprised of a custom-built aggregated meter called
CLEAR [80] and multiple custom-built power strip meters called MEDAL [81].
CLEAR uses three hall effect CTs (HAL 50-S from LEM [82]) to sense current on
all three supply legs and three AC-AC transformers (VB 3,2/1/6 by BLOCK [83])
to scale down the mains voltage levels. A 16-bit bipolar ADC (Analog Devices
AD7656A [84]) is used to sense the six channels (three voltage and three current
channels) with up to 250kHz and a SNR of 87.33dB. To handle the massive
amount of data, a Field Programmable Gate Array (FPGA) (Lattice XO2 7000-
HC [85]) is used in addition to a single-board PC (LattePanda [86]). The latter
equips the data with a timestamp, compresses, stores, and sends them to a sink via
a network connection. MEDAL units share the same overall structure as CLEAR.
Each MEDAL unit uses a single AC-AC transformer to scale down the mains volt-
age level and six individual hall effect sensors to measure current flow through the
six outlets of the power strip. The input signals are converted using seven indepen-
dent unipolar 12-bit ADCs (MCP3201 by Microchip Technology [87]). Data are
gathered from the ADCs over a Serial Peripheral Interface (SPI) interface using
a microcontroller (ATmega324PA by Microchip Technology [88]). The data are
forwarded over a USB serial interface to a single-board PC (Raspberry Pi 3 [89]).
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On the PC data are again equipped with timestamps, compressed, stored, and sent
to a sink over network. Their setup can sample aggregated data up to 250 kHz,
individual appliance data up to 50 kHz, and is robust against network dropouts,
which has been proven by recording the BLOND [21] dataset.

3.2 Existing Datasets

Several publicly available datasets, some of which were recorded using the DAQs
presented in Section 3.1, are detailed and compared in Table 3.1.

Table 3.1: Comparison of different electricity datasets that already
have been used to evaluate NILM algorithms. The systems have been
recorded in a residential (res.), office, or laboratory (lab.) environment.

Dataset Domain Homes Aggregated Appliance Appli- Duration Total
resolution resolution ances (days) size
Dataport® [90] res. 669 1/60 Hz 1/60 Hz 0-118 30 1.1GB
AMPds2 [16] res. 1 1/60 Hz 1/60 Hz 21 730 2.3GB
iAWE [91] res. 1 1Hz 1-1/6 Hz 19 73 29.2GB
RAE [92] res. 2 1Hz 1Hz 24 59472 3.3GB
ECO [47] res. 6 1Hz ~1 Hz 7-12  138-245" 12.5GB
FIRED" [N20] res. 1 8 kHz 2kHz 68 101 3.2TB
SustDataED [93] res. 1 12.8 kHz 1/2Hz 17 10 ~30GB
BLUED [94] res. 1 12kHz € 43 8 53GB
REDD [17] res. 6 15kHz ~1/3Hz 26 5-19P 1.7GB
UK-DALE [75] res. 5 16 kHz 1/6 Hz 52 38-1580° ~10TB
BLOND-50 [21] office 1 50kHz 6.4kHz 53 213 15.3TB
BLOND-250 [21]  office 1 250 kHz 50 kHz 53 50 23.4TB
WHITED? [22] lab. - - 44.1kHz 110 - 384 MB
PLAID ©[23] lab. - - 30kHz 235 - 8.2GB

* The FIRED dataset is a contribution of this thesis and will be introduced in Chapter 6.
@ small version used in NILMTK [69]

> missing data removed

¢ state transitions of each appliance are labeled

dincludes ten recordings of 5s length for each individual appliance

¢ includes 1094 recordings in total; length between 2-10s

The Reference Energy Disaggregation Dataset (REDD) [17] was introduced by
Kolter and Johnson in 2011. The authors recorded the whole house electricity
consumption of six different homes in the US for 25 to 28 days. High-frequency
mains data (15kHz voltage and current waveforms) of the complete recording
duration are, however, only available as compressed files generated with a custom
lossy compression. Socket and sub-circuit-level data are only available as unevenly
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sampled low-frequency data of approximately 1/3 Hz. Furthermore, the data shows
gaps of several days.

The UK Domestic Appliance-Level Electricity (UK-DALE) dataset [75] introduced
by Kelly and Knottenbelt in 2015 includes the whole house electricity demand
of five homes in the UK. In particular, three of the houses (1, 2, and 5) have
been recorded at a sampling rate of 16 kHz. House 1 was recorded for 1629 days,
resulting in the longest whole house recording of any found dataset. Nevertheless,
individual appliance data was sampled with a comparably low sampling rate of
around 1/6 Hz and also contains several gaps.

The Electricity Consumption and Occupancy (ECO) dataset [47] was introduced
by Beckel et al. in 2014 and consists of 1 Hz aggregated and individual appliance
measurements of six homes in Switzerland. Data dropouts (over 900 days of data
are missing in total), a low individual appliance coverage, and especially the low
sampling rate makes it difficult to use the dataset for the evaluation of event-based
NILM and activity recognition approaches.

The Almanac of Minutely Power dataset (AMPds) [16] was introduced by Makonin
et al. in 2013. It features electricity, water, and gas readings at one minute resolu-
tion of a residential building in Canada. The authors used an off-the-shelf electric-
ity meter (Powerscout18 by DENT [95]) to record the whole house consumption
and the consumption at individual circuit breaker level over a time period of two
years. Data of the exact same and one additional home are further available at
1 Hz resolution in the Rainforest Automation Energy (RAE) dataset [92] which
was introduced by the same authors in 2018. RAE covers 72 days of electricity
data and has been recorded using the same DAQ as AMPds. Still, the data have
been sampled at a comparably low sampling frequency (cf. Table 3.1).

In the non-residential domain, Kriechbaumer and Jacobsen proposed the Building-
Level Office eNvironment Dataset (BLOND) [21] in 2018. They recorded aggre-
gated and appliance-level data of an office building in Germany over a time period
of around 260 days with up to 250 kHz. Their dataset is split into two measure-
ment series. BLOND-50 features 50 kHz aggregated and 6.4 kHz appliance-level
data recorded over 213 days, and BLOND-250 features 250 kHz aggregated and
50 kHz appliance-level data recorded over 50 days. For both sets, additional 1 Hz
power data has been derived from the voltage and current waveforms. However,
downloading the dataset requires to store approximately 40 TB of data. Moreover,
the authors have not used their recording system to generate a residential dataset
yet.

The Building-Level f{Ully-labeled dataset for Electricity Disaggregation
(BLUED) [94] introduced by Anderson et al. in 2012 was specifically recorded
with event-detection in mind. The authors recorded eight days of voltage and cur-

32



3.3 Appliance Event Detection

rent measurements of a home at aggregated level with a resolution of 16-bit and a
sampling rate of 12kHz. Significant power changes (> 30 W) were labeled either
manually, using additional sensors, or switchable sockets. While including valu-
able information about appliance events, the datasets lacks individual appliance
electricity recordings.

It is noted that the list of datasets (summarized in Table 3.1) is not trying to be
complete. It rather highlights their differences in terms of the number of included
homes, covered appliances, data resolution, and recording duration. As, moreover,
each dataset is typically stored in a different (file) format, working with them
requires to develop a lot of boilerplate-code in order to later use the datasets to
benchmark NILM systems.

Summarized, most existing electricity datasets provide comprehensive electricity
measurements which allow to identify user behavior over longer time periods. This
includes ground truth data, i.e., individual appliance consumption data or - in case
of BLUED - the timestamps of appliance events and additional information about
the events, allowing to train supervised machine learning algorithms. Further-
more, aggregated appliance recordings of higher frequencies are provided in many
datasets which allow to extract appliance features such as higher signal harmonics.
However, only the BLOND dataset, which has been recorded in an office environ-
ment, features simultaneous high-frequency aggregated and individual appliance
recordings. Such data can be used to extract appliance events (as available for
BLUED) which can then be utilized as ground truth data to train and evaluate
event-based NILM systems. The lack of such a datasets in the residential domain
was an additional motivation to record the FIRED dataset which will be presented
in Chapter 6.

3.3 Appliance Event Detection

Event-based NILM methods as well as many other use cases for electricity data
rely on the analysis of user-induced or self-induced events, i.e., when electrical
appliances are being switched on or off, or their mode of operation changes. Events
are a subset of all signal transients. Transients describe all rapid changes in the
power consumption while events only refer to user-relevant changes. User-relevance
has, however, not been defined consistently in related works.

In Table 3.2, the numbers of user-relevant events are summarized which have been
found in a selection of publicly available electricity datasets. The average of the
tabulated values ranges at approximately 275 events per day, i.e., approximately
one event every six minutes.
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Event detection relies on the concept of the Switch Continuity Principle (SCP)
introduced by Hart [96] in 1992 and confirmed to still be valid by Makonin [97]
in 2016. The SCP states that at a specific point in time only a single event,
i.e., appliance state change, occurs and that, overall, the number of events is small
compared to the number of recorded samples in the signal. In other words, events
can be assumed to be anomalies in the signal, allowing to utilize a range of known
methods for their detection [52].

Table 3.2: Summary of the number of events detected in publicly re-
leased electricity datasets.

Dataset # Events Timespan  Source of event count
UK-DALE [75] 5440 7 days Pereira and Nunes [98]
REDD [17] 1944 8 days Volker et al. [W20]
REDD [17] 1258 7 days Pereira and Nunes [99]
BLUED [94] 2335 8 days Anderson et al. [94]
FIRED [N20] 4379 14 days Volker et al. [J21a]
BLOND-50 [21] 3310 30 days Kahl et al. [100]
AMPds [16] 651 7 days Pereira and Nunes [99]
SustDataED [93] 2196 11 days Pereira et al. [101]

In practice, event detection algorithms span the range from computationally light-
weight solutions (e.g., using thresholds between successive power samples [18, 96,
102]) to more complex approaches. Examples of the latter include the application
of probabilistic models [C19a, 39, 103] or advanced filters in order to suppress mi-
nor fluctuations while emphasizing actual events [104-106]. An overview of these
algorithms is provided in Section 3.3.2.

3.3.1 Event Definition

Before discussing related work on various event detection techniques, it should be
emphasized again that no uniform definition for an appliance event has yet been
agreed upon.

Anderson et al. [52] defined an event as a change in power of more than 30 W for
a certain amount of time. In turn, Jin et al. [107] stated an event to be a tran-
sition between the on and off state of an appliances while Girmay and Camarda
[41] informally state an event as an active region of an appliance without explic-
itly stating what the authors mean by active. Kahl defined events from a more
consumer-centric perspective as “appliance ON / OFF events that have a causal
origin (i.e., from wuser interaction or physical appliance state changes) [...]. In
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practice, the consumer might be interested in the fridge or washing machine spin
cycles. The temporarily increased energy consumption from a laptop during an
irregular 5 minute lasting operating system update [...] is only of minor interest to
the consumer.” [108] As consumer preference is subjective to each individual per-
son, in this work, it is referred to events according to the following more general
definition of Wild et al.:

“An event is a transition from one steady state to another steady state
which definitely differs from the previous one [... or] a so-called active
section where the signal is somehow deviating from the previous steady
state.” [109]

The definition allows to include several different events of the same appliance such
as state changes of multi-state appliances (e.g., a desktop fan with multiple speed
settings). It is not limited to appliance’ on/active phases such as the definition
by e.g., Kahl but also specifically excludes simple signal fluctuations or regions of
variable load.

3.3.2 Event Detection Algorithms

According to Anderson et al. [52], event detectors can be split into three categories:
(1) Expert Heuristics, (2) Probabilistic Models, and (3) Matched-Filters.

Expert Heuristics:
An expert heuristics describes a detector for which a set of rule-based parameters
are fixed by domain experts using prior knowledge of the data.

Hart [96] used a simple predefined power threshold based on the absolute difference
of two adjacent samples to mark an event. This concept has been enhanced by
Weiss et al. [18], who used a threshold-based setup on the normalized apparent
power (S! = (230 V/Vgzars)?-S) which is more resilient against voltage fluctuations
than the standard apparent power (cf. Equation 2.10). The signal was further
smoothed by the combination of a mean and median filter to remove unwanted
signal noise. While a Gaussian-weighted average filter was found to be superior in
suppressing noise, it adds quadratic complexity and was, therefore, rejected.

Meehan et al. [102] developed an event detector based on the 1Hz RMS current
signal. They defined two criteria that need to be fulfilled in order to mark an event
as such. First, the considered RMS value needs to be greater than the value four
seconds earlier plus a threshold value (Ignrs(thow) > Tras(tnow — 48) + Iamin)-
Second, the last event must have occurred at least three seconds ago. The last
criterion adds the limitation that real events which happen within three seconds
will not be identified correctly.
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Probabilistic Models:
Probabilistic models use statistical metrics such as mean and variance to estimate
the probability that an event has occurred at a certain point in time.

Luo et al. [103] evolved the General Likelihood Ratio (GLR) test originally pro-
posed by Basseville and Nikiforov [110], which calculates a likelihood signal using
the logarithm of the ratio between the probability distributions before and after a
mean change. Their method is based on sliding windows and requires to optimize
four parameters depending on the underlying data, including the length of the
windows and a detection threshold. The algorithm has been slightly adapted by
other researchers. Berges et al. [111] added a voting scheme to identify the exact
point of an event from the likelihood signal. Anderson et al. [52] added a cleaning
element and used a slightly different voting method, while Pereira [39] added more
sophisticated voting methods.

Jin et al. [107] introduced the Goodness-of-Fit (GOF) measure for the problem of
event detection which uses a y? test to identify if data, i.e., a window of a potential
event, have originated from a given probability distribution.

Trung et al. [104] used a Cumulative SUM (CUSUM) filter to clean the power
signal. Thresholds are then used to detect the starting and end point of a transient.

Wild et al. [109] applied the Kernel Fisher Discriminant Analysis (KFDA) on
the first eleven odd current harmonics. Their method uses adaptive thresholds to
identify active and steady-state signal regions. These are afterwards post-processed
and checked for plausibility by requiring active regions to be at least of the same
length as the detection windows and above a certain adaptive threshold level. One
drawback of this approach is that it is computational expensive and requires access
to the high-frequency current signal.

Azzini et al. [112] proposed the window with margins method, which uses a sliding
window. Only the window’s first and last m samples are used and the difference
in mean of these two regions is calculated. If this difference exceeds a certain
threshold, a fine search is conducted to find the exact sample of the event. However,
the fine search is not detailed any further. A second, larger window with margin
is afterwards utilized to verify the event. To reduce the computational complexity
of their method, the authors proposed to replace the sliding window by a simple
threshold test on the signal’s derivative.

Further methods based on the change of mean scheme mainly differ by the used
data filtering strategy or the used features. Berriri et al. [113] employed the ef-
fective residuals, while Cox et al. [106] made use of the spectral envelope of the
first and third harmonic of the voltage signal. De Baets et al. [105] used spectral
components which have been smoothed by an inverse Hann window in the Cepstral
domain.
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Matched-Filters:

Matched-filter approaches correlate a mask, i.e., a known signal of the appliance
event, which has been recorded in advance, with the examined signal to detect a
correlation with the mask and, thus, the presence of an event.

In [114], Leeb et al. proposed an event detector which matches known start-up
current events to the aggregated signal. This is achieved by applying two hardware
transversal filters which identify shape and amplitude matches. A certain threshold
tolerance is set, since a perfect match is unlikely in noisy environments.

Zheng et al. [115] proposed an event detector based on Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN). The clustering algorithm is applied
to a moving window. If an event is present within the window, two found clusters
reveal two steady states. This indicates that a transition (aka event) between
these steady states must be present within the window. The values in the tran-
sient intervals are regarded as outliers by the algorithm and do not form separate
clusters. In addition to the timestamp of each event, their method, therewith, also
reveals the average steady-states values before and after the event. They further
state that their detector is invariant to a certain amount of noise, longer transient
intervals, and can detect small power changes as well.

Other Methods:

More recently, Jorde et al. [116] proposed an unsupervised event detector based
on the CUSUM which serves as the input of a bidirectional recurrent denoising
autoencoder. An autoencoder is an Artificial Neural Network (ANN) comprised of
a set of encoder and decoder layers. The goal of the autoencoder is to reproduce
the input data as close as possible while transferring the data through a layer with
significantly less neurons, preserving only the most relevant features of the data.
The approach by Jorde et al. outperformed other state-of-the-art event detectors
based on GOF and DBSCAN on the BLUED and BLOND datasets.

Kahl et al. [117] proposed a multivariate event detector, which uses explicitly
labeled events and non-events as well as implicit non-events. The latter are selected
randomly from data between known events. In multiple adaptive training runs,
false positive events are continuously added to the non-event class, making the
class more heterogeneous each iteration.

For a recent and comprehensive comparison of multiple event detectors, the reader
is referred to Houidi et al. [118]. The authors found that detectors which are based
on either the CUSUM or the GLR are amongst the best performing algorithms.

Since appliance event detection methods rely on the validity of the SCP, it seems
obvious that higher sampling rates are beneficial for the performance of most event
detectors. If the sampling rate is low (e.g., one sample every 6s such as in the
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individual appliance data of the UK-DALE dataset [75]), it cannot be assumed
that the SCP holds as multiple appliances state changes may occur between two
adjacent samples. The higher the sampling rate of the ground truth and the data
itself, the more samples can be used to detect and classify events when they happen
in close temporal proximity.

The BLOND dataset with its very high sampling rate of 250 kHz allows to even
identify the individual spikes of different SMPS-powered appliances within a single
mains period [119]. This, however, comes with the drawback of a huge amount of
data which needs to be processed and stored (see Table 7.2).

3.4 Appliance Classification

Appliance classification, sometimes referred to as appliance identification or event
classification (cf. Figure 2.2), follows the pattern recognition paradigm and can
be approached using machine learning methods. Features, which are typically
handcrafted by domain experts, are extracted from each event and are fed into
a classifier which outputs more details about an event (e.g., a specific appliance
turning on). As the inference step is only applied to each new event and events
are typically rare (cf. SCP [96]), event-based NILM systems are typically com-
putationally less expensive compared to event-less approaches which perform the
inference step for each new sample.

3.4.1 Features

Over the years, several handcrafted features have been introduced by various re-
searchers for the task of appliance classification.

G. W. Hart’s first prototype [96] relied on low-frequency active (P) and reactive
(Q) power measurements. If a change of active power is observed, the relative
changes for P and () are mapped onto a PQ-plane and matched to previously
extracted tuples of known appliances. Even if this simple prototype already per-
formed quite well, Hart noted that further features such as harmonics need to be
considered for appliances that are mapped to the same cluster in the PQ-plane.
Furthermore, the approach requires an intrusive and preceding training phase in
which all appliances need to be switched on and off multiple times.

In 2000, Chan et al. [120] suggested to use a discrete wavelet transform to capture
harmonic signal components. They found that typical non-linear loads (they used
a PC, a fluorescent light, and a dimmer) can be distinguished quite well by using
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a five-level wavelet decomposition. Furthermore, their method is robust to noisy
environments as all level-1 wavelet coefficients (which represent higher frequencies)
are rejected.

To distinguish appliances which show similar characteristics for traditional power
metrics such as active power or frequency components, Lam et al. [121] introduced
a two-dimensional form of a load signature (i.e., a unique appliance fingerprint),
called the V-I Trajectory (VIT). The VIT incorporates the load signature of voltage
and current into a two-dimensional shape feature. This shape was observed to be
unique for different appliances even if they are of the same or similar type (e.g., two
televisions or a television and a monitor). This high discriminative power has
likewise been proven by other researchers such as [117, 122, 123].

Yang et al. [124] suggested the Total Harmonic Distortion (THD) which is the
ratio of the accumulated sum of all harmonic frequency components f; related to
the fundamental frequency fy. They further stated that a steady-state analysis
is not sufficient to detect concurrently running appliances and suggested to fur-
ther research the combination of steady-state and transient features (i.e., features
derived from the steady-state and the transient portion of the event) to improve
recognition accuracy.

Gupta et al. [125] followed a different approach by analyzing Electromagnetic
Interference (EMI) in the voltage signal up to 500 kHz. EMI are generated by
interfering external sources (the appliances in this context) caused by electromag-
netic induction. Especially appliances powered by SMPS can be distinguished well
using their approach. Since only the voltage signal is analyzed, linear loads which
do not induce EMI are hard or impossible to recognize solely using EMI analy-
sis. Furthermore, EMI induced by appliances which are not located in the home
(e.g., appliances of a neighbor) are also visible and might adulterate the system’s
performance.

Gao et al. [126] tested several classifiers with several features including the VIT
converted into a binary image. This laid the foundation for the successful applica-
tion of Convolutional Neural Network (CNN) based image classification algorithms
on such binary VIT images by e.g De Baets et al. [127]. The results by Gao et
al., however, also highlight, that a combination of several features from differ-
ent domains (such as statistics, electrical engineering, or speech recognition) will
potentially lead to significant performance gains.

Surveys by Liang et al. [128], Kahl et al. [117], or Sadeghianpourhamami et al.
[129] offer a comprehensive listing of features used for appliance classification.
Kahl et al. [117] evaluated 36 features in a standalone feature analysis as well
as their combination using a feature forward selection technique. This technique
constructs the best performing feature set iteratively by including the next feature
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into the existing set that shows the best performance amongst all possible com-
binations until the performance cannot be increased anymore. The authors found
that across all datasets used, the phase angle difference between voltage and cur-
rent (cos ®) was the best scalar feature (F; =0.49) and Current Over Time (COT)
achieved the best multi-dimensional feature performance (F;=0.8). The best fea-
ture combination differed depending on the dataset and could not be generally
determined.

Summarized, standard electrical measurements such as active power, features
which stem from feature engineering such as VIT, and frequency domain features
such as signal harmonics are promising candidates for NILM systems. While EMI
has shown promising results, it requires expensive data acquisition hardware and
huge processing capabilities which cannot be provided by existing smart meter
infrastructure.

3.4.2 Algorithms

Different classification algorithms have been evaluated for the task of appliance
classification such as Random Forests (RFs) [129-131], Support Vector Machines
(SVMs) [19], k-Nearest Neighbour (kKNN) [19, 131, 132], and more recently Arti-
ficial Neural Networks (ANNs) [127, 130, 133]. Several of them have been added
as benchmark algorithms to the NILMTK framework [69]. NILMTK is a test-bed
for NILM and allows to compare and evaluate low-frequency NILM methods on
different datasets. However, support for high-frequency methods has not been
established yet.

Hart’s initial prototype [134] uses clustering techniques to match pairs of on and
off events based on the measured active and reactive power. During supervised
training, a user has to provide the appliance names for the detected clusters.
Hart’s method has been included as a benchmark algorithm in the NILMTK frame-
work [69].

Kolter and Jaakkola [44] explored the use of Factorial Hidden Markov Models (FH-
MMs) for NILM. They adapted a standard additive FHMM by using a difference
signal, by including a mixture component to account for non-modeled observations,
and by allowing only a single hidden state to change at each time step. Their algo-
rithm showed promising results on the REDD dataset with precision/recall scores
of up to 87.2%/60.3 %. Zhong et al. [135] adapted the approach and added explicit
domain knowledge into the FHMM.

Kramer et al. [136] compared plain ANN, SVM, and Decision Tree (DT) classifiers
to bagging ensembles; such as RF or the combination of kNN and SVM. Ensembles
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combine the inferences of multiple learners via averaging. The authors found that
such ensembles tend to perform slightly better, especially as the size of the training
set increases.

Kelly and Knottenbelt [70] introduced one of the first works in which neural net-
works are applied to NILM in 2015. They compared three architectures. One
based on Recurrent Neural Network (RNN), a denoising autoencoder, and a net-
work which lays rectangles over appliance usage periods. The height of the rect-
angle corresponds to the estimated average power consumption of the appliance.
They found that the denoising autoencoder and the rectangles architectures per-
form well, especially on unseen houses with up to 99 % of correctly assigned energy
(cf. Section 2.5).

Jorde et al. [133] proposed the first approach that applied deep neural networks to
raw high-frequency measurements. In particular, the authors used data from the
WHITED [22] (44.1kHz) and PLAID [23] (30kHz) datasets (cf. Table 3.1). Their
method uses data augmentation techniques based on phase shift and half-phase
flip to increase the training set by a factor of ten. Several binary deep CNN are

trained for each appliance and are combined in a one-vs-rest strategy. A perfect
F-score was achieved on WHITED and around 69 % on PLAID.

Huber et al. [30] and Kahl et al. [117] surveyed several algorithms for appliance
classification. Huber et al. [30] focused on Deep Neural Networks (DNNs) and
identified higher sampling rates, the use of larger receptive fields, and an ensemble
of input features, amongst others, as promising techniques to improve the perfor-
mance of such networks. Kahl et al. [117] directed their focus on standard machine
learning algorithms and identified that kNN performs quite well for the task of ap-
pliance classification despite its comparable low computational complexity.

Summarized, FHMM and neural network based methods are better suited for
low-frequency and event-less NILM methods. While ANN-based methods also
find their applications for high-frequency methods in literature, classical machine
learning algorithms such as kNN or SVM are typically used for high-frequency and
event-based NILM methods. It is further noted that the training of ANNs con-
stitutes a large burden for resource constrained embedded systems such as smart
meters. Depending on the system’s restrictions, a computationally lightweight
algorithm such as kNN may be better suited.

3.5 Data Labeling

The development and evaluation of event-based NILM systems requires datasets
with precise ground truth data, i.e., event labels in the individual power consump-
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tion of each appliance. Some electricity datasets were specifically recorded with
event-detection in mind and deliver appliance events as part of their ground truth
data (e.g., switching events in the BLUED dataset [94]). Adding such ground
truth information after the recording remains challenging, as it requires human
inspection of the data and expert knowledge. For this purpose, researchers have
developed semi-automatic labeling approaches, such as [99] proposed by Pereira
and Nunes. Their system uses the Log-Likelihood Ratio (LLR) test to identify
events in the signal which are later refined by an expert rater. Furthermore,
crowd sourcing and gamification techniques were explored by Cao et al. [137] to
enable collaborative ground truth labeling and to apply the wisdom of the crowd.

Such systems have already shown their potential in similar domains such as image
classification (e.g., CAPTCHAs [138]).

Tools to label electricity data have been published e.g., by Pereira et al. [101] and
Huchtkoetter et al. [139]. Although these tools exist, the inspection and labeling
of public electricity datasets or newly recorded data still remains cumbersome.
Datasets have to be downloaded from the Internet and need to be stored locally
first. The sheer size of some datasets (cf. Table 7.2) requires careful preparation.
Since no file format has been established, each dataset requires specific code to
load data into memory before even an initial review of the data is possible.

Adding labels to those datasets is a challenging and time-consuming task as several
appliances change their state regularly resulting in hundreds of events per day.
Pereira et al. [101] evaluated their labeling tool and were able to find 94 % of
all events automatically. The main shortcomings of their approach are that only
appliance events with a corresponding power change of at least 30 W can be labeled
and that no textual descriptions can be added to events.
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This chapter lays the foundation for a hardware and software framework to acquire
versatile high-frequency electricity datasets. The employed techniques make use of
the contributions of [J21a], [C19a], [C19b],[PA18], and [BC19] and mainly include:

 Definition of a set of requirements for electricity datasets (see Section 4.1)
[J21a).

o Design and development of a modular Data Acquisition Systems (DAQs) to
collect the aggregated electricity consumption of a home (see Section 4.2)
[J21a, C19b].

e Design and development of a modular DAQ for high-frequency measurements
of the electricity consumption of individual appliances (see Section 4.3) [J21a,

PA18].

4.1 Requirements and Design Goals

Comparing different NILM algorithms on existing datasets remains a challenging
task, since not all algorithms can be applied to the same datasets due to specific
input data requirements of each algorithm. To test the performance of event-less
methods, and if these methods are supervised, also for their training, individual
appliance consumption data are needed. If event-based methods are trained and
evaluated, additional ground truth data of appliance events are required to evaluate
the event detection step (cf. Figure 2.2) separately. Moreover, event-based methods
typically require data acquired at higher sampling rates to reliably detect events
and still distinguish between two different events that are close in time. In addition,
high-frequency methods require data with a sampling rate greater than twice the
maximum frequency being analyzed (according to Equation 2.5). BLUED [94] was
specifically recorded with event-detection in mind as all significant appliance events
were labeled manually. However, no individual appliance electricity measurements
are available in this dataset, which in turn are needed whenever the disaggregation
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step (cf. Figure 2.2) is supposed to be evaluated. Further shortcomings of existing
datasets were identified and are summarized in the following.

(1)

(2)

(3)
(4)
(5)

Larger time periods where no data or only parts of the data are available.
For instance, 13 days are missing across the complete recording duration in
house 1 of the REDD dataset. In the ECO dataset, over 900 days of data

are missing (summed over all homes and meters).

Comparatively low sampling rate of the appliance-level data (e.g., 1Hz for
ECO, 1/3Hz for REDD, 1/6 Hz for UK-DALE, and 1/60 Hz for AMPds), or
no appliance-level data at all (BLUED).

Appliance events have not been labeled, i.e., timestamps and textual descrip-
tion of events are missing (e.g., for REDD, ECO, UK-DALE, BLOND).

Unknown number and type of appliances measured at the aggregated point
(e.g., ECO, UK-DALE, BLUED).

No standard procedure to load the data or explore the dataset.

Therefore, a set of challenges have been defined that should be handled when
recording datasets used to evaluate a variety of load monitoring or other electricity-
related algorithms in the residential domain. The challenges are summarized be-

low.
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C1

C2

C3

C4

Simultaneous recordings of a home’s aggregated electricity consumption
and the consumption of the individual appliances are necessary. The indi-
vidual data can be used to validate the appliance estimates of NILM algo-
rithms. Furthermore, it can be explored how semi-supervised hybrid NILM
algorithms such as [PA18] can benefit from individual appliance data.

High sampling rates of the aggregated and individual appliance data are
required. This allows to extract and utilize high-frequency features from
the individual waveforms which might further improve traditional NILM
algorithms (cf. Section 8.2). Kriechbaumer and Jacobsen [21] focused on
recording a dataset with a high sampling rate (of up to 250 kHz for BLOND-
250). However, using this dataset requires to download approximately 75 GB
of data per day. To avoid sacrificing usability, a trade-off between high
sampling rates and data size needs to be examined.

Continuous data recording over several days is crucial to understand
and study different consumption and, thus, user behavior depending on the
time-of-day or day-of-week.

Dataset labels are needed to evaluate event-based NILM and event detec-
tion algorithms. These labels should consist of a timestamp describing when
the event occurred, the appliance responsible for the event, and a textual
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description of the event. BLUED also contains a timestamp and the corre-
sponding appliance for each event in the power signal (> 30 W) but lacks
additional information about the event (such as “fridge door opened”).

C5 High temporal accuracy of the data and its labels are required. Labels
should always reflect the associated change in the aggregated and individual
measurements. This requires that the measurement data and the labels are
time-synchronized and do not drift apart.

C6 Safe usage while using all components. Home appliances are typically pow-
ered by higher voltages (e.g., 230 Vrus in Europe) which need to be measured
by the recording hardware. Thus, the recording system itself requires several
safety measures.

C7 Usability is one of the most underrated factors of a system. Researchers
should be able to use systems or publicly available dataset in a quick and
easy way.

Table 4.1 summarizes the above stated challenges that have been addressed by
existing NILM datasets. It is noted that although the challenges have been speci-
fied for a recording framework, they can be directly related to the corresponding
datasets with the exception of challenge C6. However, it is considered that each
recording hardware used to record a dataset has been designed with safety in mind.

Table 4.1: A comparison of which challenge is met by different
NILM datasets. recorded at higher frequencies (> 1000 Hz) are
considered. The recording hardware of each dataset is assumed to
meet challenge C6.

Dataset Domain C1 C2 C3 C4 Cs Crv
WHITED [22] lab. - - - V) v -
PLAID [23] lab. - - - V) v v
BLUED [94] res. - - - vy v -
REDD [17] res. v - - - - -
UK-DALE [75] res. v - v - - -
BLOND-50 [21] office v v v - v -
BLOND-250 [21] office v v v - v -

* the datasets include only the name of the appliance causing the event; no
additional data are provided

WHITED, PLAID, and BLUED only partially satisfy challenge C4, since the cor-
responding event information only includes the appliance causing the event. How-
ever, the specific information about what happened during the event, such as a
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channel change of a television, might be of additional interest. Table 4.1 further
highlights that there is still no one-fits-all solution. The BLOND dataset has the
highest potential to satisfy all challenges. Additional event information might fur-
ther be extractable from the individual high-frequency recording. Furthermore,
usability can be improved by providing code that downloads the data on demand.
However, the dataset is recorded in the office domain and, therefore, may not be
directly transferable to the residential sector. Based on the stated challenges, a
framework to record and label NILM datasets is developed. The overall flow of
this framework is shown in Figure 4.1.

Distributed Additional Raw data 50 Hz power 1 Hz power Labels

meters sensors
@ ......... g _:(:3\_ - - mk
| © .mk .mkv ) GUI .srt
- y A ) - open fridge o {
|

g B .
Smart meter PC }7{ Extract power}{ Extract eventsH Refinement

Figure 4.1: Flow of the presented framework: A smart meter and mul-
tiple distributed meters sample electricity data gathered by a recording
PC. Additional data are recorded using environmental sensors. The raw
data are stored and additional measures are derived. Event labels are
automatically added, refined by a human, and stored into files.

It consists of an aggregated electricity meter (depicted as the smart meter in Fig-
ure 4.1) that records high-frequency voltage and current waveforms at aggregated
level. Furthermore, the framework includes multiple distributed meters which
record voltage and current waveforms of individual appliances. Additional sen-
sors can be added to measure other quantities (e.g., temperature or movement).
The current and voltage waveforms as well as the sensor data are collected by a
recording PC and are stored in multimedia containers. Other electricity-related
quantities such as active and reactive power are derived from the raw voltage
and current waveforms. These power data are stored with different (smart meter
like) sampling rates and can be used to semi-automatically generate data labels.
A post-processing step extracts events and assigns labels to these events. Both,
event positions and labels are refined by a human using a GUI, resulting in a final
set of label files. The hardware and software components to acquire and congre-
gate electricity data and other measurements are detailed in the remainder of this
chapter. Event extraction and labeling is explained separately in Chapter 5.
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4.2 Smart Meter

Aggregated-level data can be gathered using a custom-built measurement system
which in the following will be termed as the SmartMeter. The SmartMeter is
a cyber-physical system consisting of several hardware and software components
tightly integrated into a single enclosure, as shown in Figure 4.2.

Figure 4.2: Two versions of the SmartMeter hardware. Initial (left)
and the modular second iteration (right) with an expansion board for
ethernet and USB serial connection.

The system offers access to different communication channels either via a versatile
wireless channel or via different robust wired connections (USB and Ethernet). A
dedicated electricity monitoring chip is integrated to capture different electricity
data of multiple grid lines inside a home's power grid.

A high-level system overview is illustrated in Figure 4.3. A galvanic isolation
layer, according to DIN EN 60664 [140], divides the SmartMeter into two separate
assemblies, i.e., Printed Circuit Boards (PCBs). This separates higher voltage
levels present at the analog frontend from the microcontroller and communication
interfaces and, thus, also from external systems attached via a cable connection.
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SmartMeter
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power grid > Analog frontend = Analog backend = Microcontroller [ interfac —— Ethernet — recording
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Figure 4.3: System architecture and data flow of the SmartMeter. The
analog frontend converts the physical quantities into measurable volt-
age levels; the backend converts these into the digital domain. The
values are read out by the microcontroller via a galvanically isolated
SPI interface. The values are send via a communication interface to an
external data sink.

4.2.1 Analog Signal Processing

The central component of all digital measurement systems which sense analog sig-
nals, such as voltage levels and current flows, is an ADC. To measure voltage and
current of all supply legs of a home (typically three legs in Germany), six ADCs
are required if the signals ought to be sampled simultaneously. Several companies
such as Analog Devices or STMicroelectronics offer electricity monitoring ADCs
dedicated to analyze electrical power grids. These Integrated Circuits (ICs) further
offer an additional Digital Signal Processor (DSP) to calculate other electricity-
related metrics such as active power or electrical energy. By considering quantities
such as the number of analog channels, SNR, resolution, and maximum sampling
frequency, it was decided to use the ADE9000 from Analog Devices [141] for the
SmartMeter. The ADC can handle seven input signals at a resolution of 24-bit and
a SNR of 96 dB. It further features an internal DSP and can operate up to a max-
imum sampling frequency of 32kHz (cf. C2). To avoid aliasing artifacts, all analog
signals are band-limited by a first order RC' low-pass filter with a cutoff frequency
(attenuation of —3dB and —20dB/dec) of f.=7.5kHz. Furthermore, analog sig-
nal lines are routed symmetrically to prevent that interference only effects a single
signal line.

Voltage Sensing:

The circuitry to sense a single grid line’s voltage is shown in Figure 4.4. The
SmartMeter utilizes three of these circuits, to measure the voltage of all three
grid lines. A voltage divider (consisting of Rysr, Rprc, Ri—3, and Rgens1) with a
ratio of around 1:995 reduces the grid voltage level of approximately £320 Vcax
to approximately £322mV k. To protect the circuit from incorrect wiring or
transients up to 6 kV (according to category IV of norm DIN VDE 0100-443 [142]),
a varistor (RV') and a PTC thermistor (Rpr¢) are added. Further diodes (Dy, D3)
prevent that voltage levels of more than 1V can be applied to the ADC (cf. C6).
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Figure 4.4: Circuitry to sense the mains voltage using a voltage divider.

Current Sensing:

The circuitry to sense the current flowing through a single grid line is shown in
Figure 4.5. The current is scaled down using a non-intrusive burden-less current
transformer (SCT-013-000 from YHDC [143]). The CT has a transfer ratio of
1:2000 and can be easily attached to the existing electrical wiring infrastructure
due to its split core. Rgens1 and Rgenso act as the CT’s burden resistor. A burden is
a measuring shunt over which a voltage can be measured which is proportionally to
the current flowing through it. A larger burden resistor allows for a larger current
resolution as the same current results in a larger voltage level (cf. Ohm’s law as
U = R-1I). However, a CT should ideally be loaded with as little resistance as
possible, since otherwise the linearity of the CT suffers due to core saturation. As
a trade-off, 15.74 Q (Rsens1 + Rsens2) are used resulting in a maximum measurable
current of 127 A using an ADC amplification of 1. Again, diodes (D;_4) are used
for over-voltage protection of the ADC (cf. C6).
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Figure 4.5: Circuitry to sense the mains current using a CT.
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4.2.2 Galvanic Isolation

The microcontroller and communication interface was further isolated from the
high-voltage analog parts, allowing to safely interface via the wired communication
channels of the SmartMeter (cf. C6). An SPI-isolator (ADUMS3150ARSZ by Ana-
log Devices) and two 10-isolators (ADUM3401CRWZ by Analog Devices) are used
to separate the communication interface and all control lines between the ADC
and the microcontroller. The power supplies of the ADC and the microcontroller
are further isolated using an additional DC-DC-converter (MEF150303SP3C by
Murata Power Solutions).

4.2.3 Digital Sampling and Communication

The sampled data are retrieved by an ESP32 microcontroller (by Espressif Sys-
tems [144]). The ESP32 features two 32-bit cores running at 240 MHz, 520kB
SRAM, and 4 MB flash memory. The chip further supports the WiFi standards
802.11 b/g/n and Bluetooth 4.2. The particular version used includes 8 MB ex-
ternal flash memory which is used for data buffering in case of communication
dropouts (cf. C3). 8 MB can buffer an equivalent of approximately 41s of data
at a sampling rate of 8 kHz. Furthermore, the board contains a Real Time Clock
(RTC) (DS3231 by Maxim Integrated [145]) for time keeping and to sync the inter-
nal clock of the ADC. Since WiFi reception in smart meter environments (i.e., in a
fuse box that is often located in the basement of a building) is typically low, sup-
port for external antennas was added via the integration of an SMA connector. To
not solely rely on wireless connectivity, an Ethernet connection was added to the
board via an ordinary RJ-45 connector paired with the LANS720 PHY (by Mi-
crochip Technology). In Germany, each newly constructed building has to include
Ethernet connectivity inside the fuse box according to VDE-AR-N 4100 [146].
This standard was developed specifically to provide future smart meter installa-
tions a connection to the Internet (either directly via the meter or via a gateway).
In addition to Ethernet, an FTDI232H [147] IC adds a USB serial interface that
supports up to 12 MBaud, allowing a direct connection of a dedicated processing
unit next to the smart meter.

4.2.4 Firmware
Upon request, the microcontroller reads the ADC values in a continuous loop.

These values are calibrated using corresponding calibration parameters for each
of the six channels which are stored in the microcontroller’s non-volatile memory.
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Furthermore, the raw 24-bit values are converted to 32-bit float values representing
the actual voltage and current measurements in Volt and Milliampere, respectively.
While this adds an overhead of 25 % to the data, it allows to directly use the data
without the need for scaling, conversion, or calibration at the data sink, further
enhancing usability (cf. C7). Once in sampling mode, the ADE9000 releases a
new interrupt when new ADC samples are available. This in turn triggers the
ESP32 to retrieve these values over the galvanically isolated SPI interface. The
DS3231 RTC further triggers an interrupt each second. If the number of samples
gathered (ncyrrent) does not match to the target sampling rate (fiarget) as Niarger =
(tnow — tstart) * ftarget, sSamples are left out or are repeated such that the data are as
close to the user specified sampling rate as possible. This two-stage process adds
only a minor jitter to the data and allows to maintain the sampling rate over long
time periods (cf. C3 and C5). The ADC runs at a fixed sampling frequency of
either 8 or 32kHz. Other sampling rates are not supported by default. However,
naive support for integer dividers of 32kHz has been added via sample averaging
to provide more flexibility in terms of sampling frequency (cf. C7). If e.g., a sink
wants to receive data at a rate of 1kHz, the ADC is configured to sample at a rate
of 8kHz and a new measurement is created by averaging each eight consecutive
ADC samples.

A continuous data stream can be requested by a sink either over USB, TCP,
or UDP connection. Different flow control mechanisms allow to minimize the
possibility of data loss. Furthermore, data integrity is maintained by successive
packet numbers included in each sent data chunk.

4.2.5 Modular Expandability

The SmartMeter incorporates several Internet of Things (IoT) design methodolo-
gies to ensure later expandability without loosing functional features. The initial
SmartMeter version as well as the second iteration (see Figure 4.2) feature an
expansion header that provides direct access to the SPI pins of the incorporated
ADC while still maintaining galvanic isolation for safety (cf. C6). This allows not
only to test the correct functioning of the ADC after assembly but also to provide
direct access to the ADC without the need to relay the data over the integrated
microcontroller. An example expansion board was later developed (see top right
of Figure 4.2) to add certain of the aforementioned features, such as more storage
for buffering, Ethernet connectivity, faster USB serial connection, and time syn-
chronization via an RTC. If the intended use case does not require these features,
the modular PCB design, especially of the second design iteration, allows to build
a version of the SmartMeter which only includes a single PCB, just like the initial
prototype. This can further reduce the system’s complexity, cost, and size.
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4.2.6 Evaluation

The ADE9000 ADC is used because it is a versatile electricity monitoring IC that
can sample up to seven input channels at a maximum sampling rate of 32 kHz.
It, therewith, meets challenge C2. If the current amplification factor is set to the
maximum, the full-scale current represents approximately 31.77 Apcar. At a max-
imum voltage amplification factor, the full-scale voltage represents 497.35 Veak.
With the ADC’s vertical resolution of 24-bit, it can theoretically measure current
in steps of 3.791nA and voltage in steps of 59.2911V. This results in a minimal
detectable power change of 12.25 x 107! W. If the ADC’s SNR is taken into ac-
count, the maximum theoretical resolution N of the ADC can be calculated using
Equation 4.1 (cf. Kester [148]).

NR —1.
N = u (4.1)
6.02
A SNR of 96 dB allows a maximum resolution of N = 16-bit. Therewith, current

can be measured in steps of 1.94mA, voltage in steps of 30.36 mV, and power in
steps of 58.9 uW.

To verify that the hardware works as intended and to show the high sensitivity,
test measurements were performed with different electrical loads. An excerpt of
such a test recording is shown in Figure 4.6. The SmartMeter is able to record
an appliance power consumption over time (first plot in Figure 4.6, cf. C3) as
well as to capture transients and certain appliance characteristics in the high-
frequency voltage and current waveforms (second and third plot in Figure 4.6,
cf. C2). Thereby, the system is capable of measuring comparably small electrical
consumers e.g., battery chargers, without loosing the ability to measure typical
high-power household appliances such as kettles. The SmartMeter was specifi-
cally designed for long-term continuous measurements (cf. C3). The system was
successfully used to collect over 100 days of data without major data loss (see
Chapter 6).

The hardware is encapsulated in a fireproof DIN housing. This allows the system
to be installed at a DIN rail inside the fuse box. Three SmartMeters have been
installed in three different locations (in an apartment, a house, and a university
building) for a time period of more then one year and are still installed at the time
of writing. So far, no issues such as hazards or power failures, associated with the
meter installations, could be identified. The meters continue to operate for their
intended applications. At the time of writing, the meter installed at the university
building continues to produce up to 12 GB of electricity data per day.
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Figure 4.6: Excerpt from a recording of multiple electrical loads (smart-
phone charger with 5W, coffee machine with 2500 W, kettle with
2200 W) using the SmartMeter hardware.

4.3 Individual Appliance Meters

Current and voltage waveforms of individual appliances can be recorded using
custom-built smart plugs which will henceforth be referred to as PowerMeters.
A PowerMeter shares the same design principles and also parts of the overall
architecture as a SmartMeter (see Figure 4.7) with slightly more focus on wireless

connectivity.
PowerMeter
Physical . Remote
outlet > Analog frontend » Analog backend SPL > Microcontroller WiFi » recording
connection t f T T system

Power supply

Figure 4.7: System architecture and data flow of the PowerMeter. The
analog frontend converts the measurands into measurable voltage levels;

the backend converts these into the digital domain.

The values are

sampled by a microcontroller via SPI and wirelessly sent to a data sink.
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To simultaneously record the individual consumption of several appliances, multi-
ple PowerMeters need to be distributed across a home. As individual recordings
from a PowerMeter may later be linked to aggregated recordings, precise time syn-
chronization is performed utilizing RTCs and the Network Time Protocol (NTP).
For persistent storage, the data needs to be sent to an external data sink. The
similarity of the PowerMeter and the SmartMeter can also be seen when com-
paring their overall system architecture (see Figure 4.7 for the architecture of the
PowerMeter and Figure 4.3 for the architecture of the SmartMeter). As the Pow-
erMeter is primed for wireless data transmission and encapsulated in a fireproof
housing, no galvanic isolation as for the SmartMeter is required. The PowerMeter
hardware is shown in Figure 4.8.

Figure 4.8: Two versions of the PowerMeter hardware. Initial plain
PCB (left) with a serial connector and second iteration (right) with
a modular expansion header and primed for continuous wireless data
streaming.

4.3.1 Analog Signal Processing

A PowerMeter samples voltage and current waveforms at a single grid line (i.e., of
a single appliance or a subset of appliances connected to the same outlet). For
this purpose the STPM32 power monitoring IC from STMicroelectronics [149] is
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incorporated. The chip can handle two analog input signals using two second-
order 24-bit sigma-delta ADCs with a maximum sampling frequency of 7.875kHz
(cf. C2). It further includes a DSP to calculate electricity-related quantities such
as active power or electrical energy.

Voltage Sensing:

The voltage level of the socket to which the PowerMeter is connected to is scaled
down by a factor of approximately 1:1723 using a voltage divider. This results
in an ADC input voltage range from —189mV to 189 mV for the corresponding
mains voltage from —325.27 Ve to —325.27 Viear (= 230 Vyuis ), respectively.

Current Sensing:

While non-intrusive split-core current transformers are used to measure current
with the SmartMeter, the PowerMeter uses a shunt resistor instead. This is a more
accurate but also more intrusive solution, as the current path has to be rerouted
over the shunt and the PCB has to be designed to withstand the amount of current.
While this would be inappropriate for the SmartMeter, it is not much of a problem
for the PowerMeter, as the amount of current is smaller and the plug has to be
connected between the outlet and the appliance anyway. The incorporated shunt
has a resistance of 3m2 and is connected in series to the load (i.e., appliance). The
voltage drop across the shunt resistor has a current sensitivity of 3mV/A. Both,
the current and voltage paths are designed based on the STPM32 evaluation board
and use first order RC low-pass filters to suppress higher frequencies.

4.3.2 Controlling Connected Appliances

In order to switch connected appliance on and off, each PowerMeter includes a
16 A bi-stable relay (RT314F03 by TE connectivity [150]). Bi-stable relays are
more expensive but require only power while changing their state. Requiring little
to no steady-state power allows to reduce the system’s overall power consumption.
In addition to the obvious benefit of saving electrical energy, the percentage of
energy consumed by the recording framework compared to the actually measured
appliances is reduced. Furthermore, it allows to use a more compact 2 W power
supply inside the PowerMeter (IRM-02-3.3 from Mean Well [151]), decreasing its
overall dimensions. Due to the relay’s high switching current of around 200 mA,
additional bipolar transistors prevent a damage to the microcontroller pins.

4.3.3 Digital Sampling and Communication

The sampled data are retrieved by the same ESPS32 microcontroller also found
in the SmartMeter. Likewise, PowerMeters also include a DS3231 to synchronize
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the sampling process (cf. C5) and 4 MB external flash memory for data buffering.
The latter allows to be resilient against approximately 250s network dropouts
at a sampling rate of 2kHz (cf. C3). While the initial PowerMeter prototype
includes a serial interface, it was removed in the second iteration to save costs
and physical space, since all interfaces would require additional galvanic isolation
(cf. C6). Instead, an extension header was added. This either allows to add
back such a serial interface using a separate PCB or to add additional sensors
e.g., to measure room temperature or humidity levels (see Section 4.3.5). Since
a PowerMeter, therefore, does not include a direct physical interface, data has
to be retrieved wirelessly. The intended use case of the PowerMeters in which
data are gathered in highly-distributed setups would further not allow to route
dedicated cable-connections to every location a PowerMeter is installed. Therefore,
wireless solutions are the preferred choice for such environments. The ESP32
supports the WiFi standards 802.11 b/g/n with a bandwidth under ideal conditions
of up to 130 Mbit/s according to the official documentation [152]. However, it
was found that under real-world conditions (i.e., larger distance to the access
point and multiple devices in the same network), only up to 12 Mbit/s could be
achieved and maintained with TCP connections. This bandwidth is still far more
than required to successfully send uncompressed voltage and current waveform
data at the maximal sampling rate. This requires a minimum of f - #measures -
#bits_per_measure resulting in 7875 - 2 - 32 bit /s = 504 kbit/s.

4.3.4 Firmware

The PowerMeter’s firmware implements a lot of the functionality of the Smart-
Meter’s firmware. Upon request, the PowerMeter reads the ADC values in a
continuous loop and converts the raw 24-bit measurements to 32-bit float values
representing the actual voltage and current measurements. Calibration parameters
for voltage and current are stored in the non-volatile memory. Instead of ADC-
triggered interrupts, a hardware timer of the microcontroller is configured to trig-
ger an interrupt corresponding to the desired sampling rate (whenever the counter
reaches 240 MHz/ f; ticks). For each interrupt a new measurement is latched from
the ADC via SPI. The sampling rate is again corrected using the RTC by adjust-
ing the number of samples each second (cf. C5). A continuous data stream can be
requested by a sink via TCP or UDP connection. Alike the SmartMeter, flow con-
trol mechanisms and packet numbers maintain data integrity and minimize data
loss. The implemented watchdog mechanism resets the PowerMeters whenever a
critical error occurs or the network connection drops. The firmware further allows
to switch the connected appliance on or off upon an external request. This allows
to integrate the PowerMeters into an existing smart home infrastructure. Further-
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more, it allows to record voltage and current waveforms of appliance switch-on
or switch-off events with precise control over exactly when these switching events
happen. The WHITED [22] and PLAID [23] datasets contain isolated appliance
switch-on events. The WHITED data was retrospectively shifted such that the
switch-on event occurs at exactly 100 ms. Picon et al. [153] recorded the COOLL
dataset which includes appliance switch-on events for different switch-on phase
shifts, i.e., the time after a positive zero-crossing of the voltage signal. As Power-
Meters have direct control over when the connected appliance is switched on, the
recording of similar datasets would also be conceivable.

4.3.5 Modular Expandability

Similar to the SmartMeter, the PowerMeter includes an expansion header. This
header is connected to the microcontroller’s hardware serial interface allowing to
add further functionality to the system without the need of developing a complete
redesign of the hardware.

In a first attempt to exploit this interface, a sensor board was developed. Figure 4.9
shows the sensor PCB stacked on the PowerMeter PCB (left) and the complete
system integrated into the housing (right).

Figure 4.9: Sensor board stacked onto a PowerMeter (left) and the board
integrated in the housing (right).

It incorporates typical environmental sensors including a temperature, a humidity,
and a light sensor as well as a Passive Infrared Sensor (PIR) (to detect people’s
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movements in a room). The board further includes a physical button to directly
switch the connected appliance on or off and LEDs for instant eco-feedback.

4.3.6 Evaluation

The PowerMeter is capable of measuring voltage and current waveforms with a
maximum sampling frequency of 7.875kHz. Even at this data rate, the corre-
sponding measurements can still be sent to a sink via WiFi without continuous
data loss (cf. C2, C3, and CT7). According to the datasheet [149], the current value
corresponding to the LSB is calculated as

‘/7"ef
cal; 'A[ - 223 ks .

LSB; = (4.2)

Given, the reference voltage V,.; = 1.18 V, a calibration parameter cal; = 0.875,
the resistance of the shunt kg =3 m(2, and the maximum current amplification of
Ar=16, the theoretical minimal detectable current is 3.35 pA e with a full-scale
current of 28.1 Ape,k. Similarly, the minimum detectable voltage (corresponding
to the value of the LSB) can be calculated alongside as

Vie - (1+ Ri/Ry)

LSBy =
5 v calV-AV-223

(4.3)

With the resistances of the voltage divider R; =810k(2, Ry =470¢2, a calibration
constant caly = 0.875, and an amplification factor of Ay = 2, the theoretical
minimal detectable voltage is 138.6 1V eax With a full-scale voltage of 1162.7 Veak.

Since the datasheet lacks information about the ADC’s SNR, a test recording was
conducted. A linear load with around 2000 W was connected and mains voltage
with 230 VgRms and a fundamental frequency of 50 Hz was applied. The corre-
sponding voltage and current data measured by the PowerMeter was analyzed in
the spectral domain using Welch’s method [154]. This method uses overlapping
windows and computes sub-spectra for each window. Finally, all sub-spectra are
averaged, resulting in what is called a periodogram, which is a cleaner representa-
tion of the spectrum compared to using a single Fast Fourier Transform (FFT).
In particular, multiple 8192 point FFTs are used with 10 % window overlap. To
prevent spectral leakage and compress side lobes, an energy normalized hamming
window was applied. The resulting periodogram of the current measurements is
shown in Figure 4.10. The analysis results in a comparably good SNR of around
75dB.

o8



4.3 Individual Appliance Meters
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Figure 4.10: Periodogram of a test recording using a PowerMeter. The
harmonics of the fundamental frequency (fo=50Hz) are marked by X.
The maximum signal amplitude (—7.9dB) is highlighted by the dashed
green line, the average of the noise floor (—83.2dB) by the dashed red
line, and the spurious free dynamic range (44.6 dB) is marked in yellow.

Similar test recordings as for the SmartMeter have been performed for the Pow-
erMeters using different electrical loads. Figure 4.11 shows an excerpt of a test
measurement including an espresso machine with around 1200 W. The measure-
ments highlight that the PowerMeter is also capable of measuring comparably
small electrical consumers (see switch-on event in Figure 4.11), without loosing
the ability to measure typical high-power household appliances (see heating event
in Figure 4.11). Therewith, the PowerMeters also meets challenges C3 and C2.

The power consumption of each PowerMeter itself is around 0.56 W. This is rel-
atively low compared to the consumption of most appliances present in typical
households. It is further comparable to the consumption of off-the-shelf smart
plugs which have already been used to record NILM datasets. For instance, the
Plugwise system, which has been used to collect the UK-DALE dataset [75], con-
sumes around 0.5 W per plug.

Furthermore, the cost of a single PowerMeter is comparatively low with approx-
imately €35 per unit, especially considering the flexibility it provides compared
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Figure 4.11: Test recording of an espresso machine during start-up using
the PowerMeter hardware.

to off-the-shelf solutions. It is conceivable that the price could be reduced even
further if the meters would be produced in higher volumes.

4.4 Additional Sensors

The framework depicted in Figure 4.1 allows to record arbitrary sensor values
or other modalities simultaneously with the electricity measurements using an
MQTT-API. MQTT [155] provides a standardized publish-subscribe messaging
system and has emerged to one of the standard protocols in the world of IoT. If
an instance wants to share information, it can send a message for a given topic. If
other instances are interested in this information, they can subscribe to the specific
topic. Each new message published under a certain topic is relayed by a broker to all
instances which subscribed to this topic. MQTT builds on top of the TCP network
protocol which guarantees the successful transmission of data. The recording PC
(cf. Figure 4.1) hosts a central MQTT broker. A dedicated listener (software
running on the recording PC, see Section 4.6) waits for incoming messages under a
general topic recording and handles the conversion of incoming data into Comma-
Separated Values (CSV) and the storage into .csv files. If a sensor module is
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intended to be added to the recording, it simply needs to connect to the broker
and send its data on a unique sub-topic (e.g., recording/livingroom__temp). Data
must follow the JSON format. Each JSON key corresponds to a header entry in the
resulting CSV file. A timestamp is added by the listener for each entry if the key ts
is not present in the data. An example for a valid message of a temperature sensor
is recording/livingroom__temp {"value”: 20.5} representing a room temperature of
20.5°C in the livingroom.

Three examples of additional modalities and sensors, which have already been
successfully integrated into the framework, are representatively explained in more
detail below.

Smart lighting:

Many light bulbs are nowadays substituted with smart light bulbs. Most of these
can be controlled via a ZigBee gateway. Such a gateway can be incorporated to
pass information when a light bulb changes its state, dimm setting, or light color.
A Python script was implemented which interfaces with such a gateway to log the
state changes of all light bulbs connected to the gateway using the MQTT-APIL.
This allows to derive power consumption estimates without intrusively metering
every light individually.

Sensors:

Figure 4.12 highlights how custom sensors can be embedded into the recording
framework using the provided MQTT-API. In this flow diagram, an ESP32 is
highlighted as an example data processor which can be directly connected to the
MQTT broker as it has WiFi built-in. The ESP32 further provides certain inter-
system interfaces such as SPI, I2C, or UART. This allows to rapidly prototype
different sensors like temperature or occupancy sensors.

o 172 S S [ s
H -O)- H ding/ H -
: E ’Q\ Sensor interface | ESP32 rif,f,iolf,-ﬂ MQTT Python Parsed tsouec i
i ©9-SPLIZC | (gta proprocessing) |1 | PaYIoad: broker mgattLogger.py | Paa G
) © i osv ||
{ Example system architecture : JSON : MQTT-API

Figure 4.12: Example of extending the recording system by logging ad-
ditional sensor data using the MQTT-API.

Bridges:

A similar structure as shown in the system overview of the sensor (see Figure 4.12)
can be used to develop different gateways. As an example, a 433 MHz gateway
was developed that logs state changes of switchable sockets, wall switches, or
remote button-presses of devices that are equipped with 433 MHz. In addition,
an infrared sniffer was developed which can receive commands from off-the-shelf
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IR remotes. These commands can then be logged to MQTT and later encoded so
that the logs indicate a corresponding button press of the remote. This allows to
capture interactions with and state information of televisions, HiFi systems, or air
conditioners.

4.5 Clock Synchronization

In Section 4.1, challenge C5 has been defined as “simultaneous recordings with
high temporal accuracy”. As the framework is comprised of numerous meters and
sensors distributed across a home, a clock synchronization technique is required to
maintain precise timestamps for the measured data and all information inferred
from it. In initial experiments, non-negligible clock drifts of up to 300 ms could
be observed after only 10 minutes. These are originating from clock inaccuracies
of the used ADCs and microcontrollers. These varied depending on the individual
meter device (SmartMeter and PowerMeter) and over time also for the same meter
due to temperature and aging effects [156]. To reduce these drifts, each metering
device was equipped with an RTC to synchronize the internal ADC clock. In
addition, the Network Time Protocol (NTP) is utilized to synchronize the internal
system time of a meter with an NTP server frequently. An NTP synchronization
interval of 120s was empirically found to be sufficient. As NTP also takes the
Round-Trip Time (tgrr) of the request itself into account, it can be accurate up
to £trrr/2 [157]. If the NTP server is located in the same local network, it
was found that tgpr is constantly below 10 ms, resulting in a time synchronization
accuracy of around 10 ms. Since tgpr can be measured directly, only NTP requests
that have response times better than £10ms are used to synchronize the internal
system time. If a time drift is detected after a successful NTP synchronization,
it is slowly phased out by removing or adding samples using nearest neighbour
interpolation. As only a maximum of a single sample is removed or added per
second, only a minor jitter of 1/fs seconds is added to the data (e.g., 125us for
data which are sampled at 8 kHz).

4.6 Recording Manager

A Python script (recordingManager.py), which runs on a dedicated PC inside the
home network, orchestrates the recording of the SmartMeter, each PowerMeter,
and all additional sensor data. Since this PC does not require huge amount of
processing power, a low-power single-board solution such as a Raspberry Pi [89]
was found to be sufficient. The overall flow of the manager script is shown in
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Figure 4.13. It consists of multiple sub-processes which run concurrently as sep-
arate threads on the recording PC. Each sub-process is further explained in the
following.

Maintenance:
For reliability reasons, all meters (SmartMeter and all PowerMeters) are reset each
day at midnight.

Memory watchdog:

The amount of data which are produced by the electricity meter is quite huge. For
a setup with one SmartMeter and 20 PowerMeters sampling at a rate of 8 kHz and
2 kHz, respectively, approximately 35 GB of data are produced per day. Therefore,
a watchdog checks the amount of available disk space each hour and notifies the
user if disk space is critical.

File watchdog:
For backup purposes, each newly generated file is synchronized with an external
data center. This is assumed to have infinite storage.

Statistics:

To stay updated on the recording status, the framework sends a small statistical
report every 24 hours containing information about the home’s energy consumption
as well as information about the data sampling process (e.g., the number of meter
dropouts, the successfully received data packets, and the estimated time drifts of
each meter).

Connection manager:

To congregate the measurements, a central TCP server is hosted to which all
electricity meters automatically connect upon start-up or restart. If a new meter
connects to the server, the type and device ID of the meter is passed. If a new
meter is identified, the script triggers an NTP synchronization with that meter.
After a successful synchronization, the sampling process is initiated, i.e., a new
thread of type meter listener is started. The NTP synchronization accuracy is
crucial and forced to be better than 20 ms to continue. The start time has to be
as precise as possible, since all future timestamps of the data are derived relative
to the timestamp of the initial sample.

Meter listener:

The thread triggers the meter to start the sampling of measurements and creates
the necessary file structure. If new meter data fails to be received for a cer-
tain amount of time or if a received chunk of data does not conform the correct
format, an error is reported to the user. The received data are stored as Ma-
troska multimedia container into sub-folders named after the corresponding meter
(e.g., smartmeter001). The advantages of using multimedia containers to store cu-
rated time series data have been elaborated by Scholl and the author of this thesis
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Figure 4.13: Individual tasks of the recording manager including several
watchdogs for available memory, files not yet backed up, new statis-
tics, or maintenance. A connection manager handles connecting Smart-
Meters (SM) or PowerMeters (PM), whose data are handled and stored
by a separate listener thread for each meter. A sensor listener thread
logs all MQTT sensor messages to file.
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in [BC19]. While being optimized for audio or video streams, these containers
allow to store regularly sampled sensor data as time-synchronized audio streams.
Furthermore, multiple streams (video, audio, or subtitles) can be merged into a
single file. Time series sensor data can, therewith, be stored as audio streams
with text-based ground truth labels as subtitles. Additional metadata can also be
stored for each stream inside the container.

The voltage and current measurements obtained by a meter are stored as a single
WavPack [158] encoded audio stream inside a multimedia container. The stream
has multiple channels for the voltage and current signals. SmartMeter data has six
channels (vr1, ir1, Vr2, ir2, VL3, ir3), while PowerMeter data has only two channels
(v, 7). As stated in [BC19], WavPack allows a lossless reconstruction of the data
while maintaining high compression rates for time series data. In particular, a
compression ratio of 1.46 was achieved for the voltage and current measurements
using WavPack while a ratio of only 1.42 was achieved with hdf5 [159] which has
been used e.g., for UK-DALE [75] and BLOND [21].

Different metadata are also stored for each of the streams including the start
timestamp (with microseconds resolution), the id of the particular meter, the
sampling frequency, codec information, the name of the measured attributes, and
the stream’s duration. Thus, each file is self-descriptive and can be used without
prior knowledge. File size and, therewith, file loading times are kept reasonable by
splitting all files at regular time intervals. Furthermore, the local time of the first
sample is appended to each filename. Amongst other parameters, the sampling
rate, the measures taken, the storage location, the time interval at which the files
are stored, and the file name format can be configured to the needs of the user
prior to recording.

Sensor listener:

As already mentioned in Section 4.4, arbitrary sensor data or other modalities can
can be stored with the framework if these data are published to a corresponding
MQTT topic. The sensor listener, therefore, connects to the broker (also hosted
at the recording PC) as a separate MQTT client. This client subscribes to all sub-
topics under the topic recording and stores the incoming data into corresponding
files named according to the respective sub-topic. If the data, which must be in
JSON format, has no timestamp attached, the current system time of the recording
PC is added to the data. If unexpected data are received or a sensor has not sent
data for a certain amount of time, the user is notified.

User notification:

Kelly and Knottenbelt used a so called babysitter program to constantly monitor
the status during the recording of the UK-DALE [75] dataset. Upon any error,
their program sends an error report to a dedicated email address. Furthermore,
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a lifeness message is sent each day. The message contains information about the
home’s power consumption during the last day. Likewise, the recording manager
sends user notification(s) including errors or recording statistics to a configurable
email address.

4.7 Post-Processing

In order to use the voltage and current measurements, no data pre-processing
is required, as both the SmartMeter and all PowerMeters directly calculate the
physical quantities (Volt for voltage and Milliampere for current measurements)
from the raw ADC samples (cf. C7). In order to compress the information of the
high-frequency voltage and current measurements, active (P), reactive (@), and
apparent (S) power are calculated in a post-processing step after the recording.
The power is derived from the voltage (V') and current (/) waveforms based on the
mains frequency f; (e.g., 50 Hz in Europe) according to Equation 2.9, 2.10, and
2.11. Since data of commercial smart meters can typically be retrieved at a rate
of 1 Hz to 0.01 Hz, an additional 1 Hz version of the power data is provided. The
50 Hz power is downsampled to 1 Hz by calculating the average of each block of 50
samples. The derived 50 Hz and 1 Hz power are stored for each meter individually
and contain one day of data. Mains cycles for which the power could not be
calculated, as no voltage and current data are available, are marked with a power
of constant zero to maintain an equidistant time period between samples.

4.8 Discussion

The SmartMeter and PowerMeter hardware detailed in Section 4.2 and Section 4.3
allow to record electricity data of multiple appliances simultaneously (cf. C1) with
a high sampling rate (cf. C2) over a long time period (cf. C3). With NTP synchro-
nization and ADC sampling correction using RTCs, the data are of high temporal
accuracy (cf. C5). Both systems are encapsulated in fireproof housings and all
physical interfaces have been galvanically isolated from the mains voltage levels
(cf. C6). The recording manager detailed in Section 4.6 orchestrates the dataset
recording, stores all data into files, and notifies the user upon errors (cf. C7). An
additional post-processing step calculates typical electrical quantities in more con-
venient time resolutions for quick data inspection (cf. C7). The MQTT-API allows
to add other modalities such as sensor values or appliance state changes (cf. C4)
using additional sensors or bridging interfaces either implemented as additional
standalone sensors or as a software solution running on the recording PC (cf. C7).
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Event-based NILM systems, however, require detailed information about each elec-
trical event e.g., the light in the fridge switched on because the door was opened
(cf. C4). While it is technically possible to obtain such information using ded-
icated sensors attached to every appliance (e.g., using a light sensor inside the
refrigerator), this is highly impractical due to the versatility and sheer number of
appliances that are being used. As an alternative to a dedicated monitoring of all
states of each appliance, the electricity measurements can be manually inspected
and labeled after the recording. However, the labeling of numerous hours of data
by hand is tedious, time consuming, and prone to errors due to fatigue [99]. To
tackle this challenge (C4), the framework incorporates a semi-automatic labeling
technique as depicted in Figure 4.1 which is conducted after the recording of the
dataset. This is explained in more detail in Chapter 5.
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This chapter addresses the challenge of dataset labeling. The employed techniques
are enclosed in the contributions of [J21a], [C19a], and [W20]:

e Development of a semi-automatic labeling algorithm to be applied post-
recording (see Section 5.1) [J21a, C19a].

» Design of a custom labeling tool for electricity data (see Section 5.2) [W20].

o Experimental evaluation of the semi-automatic labeling pipeline for two elec-
tricity datasets (see Section 5.3) [J21a, W20].

5.1 Automatic Event Extraction

Evaluating event detection algorithms or event-based NILM algorithms requires
ground truth data for the recorded events contained in the dataset. The authors
of the UK-DALE [75] dataset, therefore, recorded appliance turn on/off events
for house 1 using switchable sockets. If a resident pressed the button on such a
switchable socket, the current timestamp, appliance, and state of the socket (on
or off) are logged. In particular, three disadvantages of such an approach are:

(1) Appliances that are hardwired to the mains like the stove or lighting cannot
be equipped with such a socket.

(2) Only on/off events can be logged. Most household appliances are multi-state
appliances that have more than just a binary state on or off.

(3) Appliances that change their state without user interactions cannot be la-
beled (e.g., a kettle turns off automatically if the water is boiling).

The authors of the BLUED [94] dataset added additional sensors to appliances
(e.g., light sensors to the lighting) to log appliance events. The drawbacks of this
approach are that obtrusive and potentially battery powered sensors are added and
have to be maintained. Furthermore, these sensors have to send data wirelessly
to a sink, requiring additional clock synchronization so that the appliance event
timestamps can be mapped to the electricity data.
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Instead of relying on additional sensors, the approach detailed in this chapter is
based on the subsequent labelling the data after the recording. A similar ap-
proach has already been successfully applied to the domain of electricity data by
Pereira [39]. Since Pereira’s method does not support textual labels and gener-
ates a comparably large number of false positives if low detection thresholds are
used, several strategies were incorporated to improve his algorithm. Overall, the
proposed labeling algorithm consists of three steps: (1) event detection, (2) high
variance filtering, and (3) unique event identification.

5.1.1 Event Detection

Event detection describes the process of identifying relevant changes in the elec-
tricity data which correspond to certain appliance state changes (cf. definition of
the term event in Section 3.3.1). A probabilistic event detector based on the LLR
test introduced by Pereira [39] is used. The detector is further enhanced by an
adaptive threshold technique. This detector first calculates the likelihood (L[i])
that an event has occurred at sample ¢ using a detection window over the appar-
ent power signal (S[i]). The detection window splits into two sub-windows, the
pre-event window [i—a, i[ and the post-event window [i,i+b]. The window widths
are determined by the parameters a and b, respectively. L[i] is then calculated as

L) =t ( 22 ) (500 = o). (1= ) (5.1

Oli,i+b] 2- J[2i—a,i[ 2- U[Zi,i+b] ’

where o, [, O[], M, and ppy are the standard deviations and means of the
pre-event and post-event windows, respectively. Figure 5.1 shows the apparent
power of a desktop fan recorded using a PowerMeter and the corresponding cal-
culated likelihood L[i] using Equation 5.1. An exemplary sliding window and the
corresponding means (green) and variances (blue) are highlighted.

This signal L is further cleaned using an adaptive threshold (thres;). If the change
of the mean value from pre- to post-event drops below this threshold, L[i] is forced
to zero using

Lii|, if |pji—ai — M| > thres;

L] = [i], if ‘M[ . [ — M, +b]‘ res _ (5.2)
0, otherwise

The adaptive threshold thres; is defined as
thres; = thresmin +m - [i—q (5.3)

with the minimum power change of interest thres,,;, and a linear coefficient m.
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Figure 5.1: PowerMeter recording of a desktop fan. The LLR (see Equa-
tion 5.1) is shown in the bottom plot. An exemplary sliding window
with the corresponding means and variances is shown in the top plot.

This coefficient causes a linear increase of thres; with the average power of the pre-
event window. Typically, the variance in the power measurements is proportional
to the magnitude of the power. This effect is caused by increasing noise in the
appliance or the analog frontend of the electricity meter. If a fixed small threshold
is set (e.g., thres; = 3W), a large number of false events may occur at regions
where more power is drawn. If a fixed high threshold is set, low power events
may be missed. Pereira and Nunes used a comparatively large threshold of 30 W
in [99] to reduce the amount of false events. However, such a threshold does not
allow to detect state changes of low-power appliances such as battery chargers or
LED lighting. The linearly increasing threshold according to Equation 5.3 adapts
to larger fluctuations and, therewith, helps to reduce the number of false events
significantly. By allowing to set smaller minimal threshold values, the number of
missed events can also be reduced. The resulting L[i] after applying the adaptive
cleaning procedure (Section 5.1.1) is shown for the same desktop fan recording in
the lower plot of Figure 5.2 (see below for the parameters used).

If an event is detected at sample 7, the likelihood will also be non-zero around that
sample due to the sheer size of the pre-event and post-event windows, respectively.
This can also be seen in Figure 5.1 and Figure 5.2. To identify the exact sample
at which the event occurred, a voting window is layed around adjacent samples for
which L[i] is non-zero. For each of these voting windows, the sample correspond-
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ing to the maximum absolute value of L[i] is identified. The minimum distance
between two events is further restricted by an additional parameter (7). If an event
has been identified at a sample corresponding to time t., all other events within
[te, te + 1] are removed.

Therewith, the proposed algorithm has five adjustable parameters. The duration of
the pre-event and post-event window, the minimum detection threshold thres,,;,,
the linear coefficient m, and the minimum distance between events [. A user should
specifically adjust the parameters thres,,;, and [ according to prior knowledge of
the data: a low threshold thres,,;, is required if events with small mean changes are
expected, and a short [ should be chosen if events can happen close in time. Values
that seem to work quite well across different appliances are: pre-event window=1s,
post-event window=1.5s, thres,,, =3 W, m=0.005, and [=1s.

5.1.2 High Variance Filtering

Appliances such as PCs or televisions draw variable power depending on the cur-
rent context (e.g., the current computational load of the PC or the content on
the TV screen [160]). This can causes a large number of false events using the
LLR test. To filter out these false events, signal regions are identified that have
a high variance. All events found in such regions are removed. This is achieved
by calculating the mean (u[i]) and variance (o[i]) over a sliding window. If o[i] is
larger than n - pu[i] + thresmy,, the window is marked. If the length of consecutively
marked windows exceeds a certain length (w), all events in these windows are re-
moved. Specific values for w and n which tend to remove false events while still
keeping relevant events across different appliance types were found empirically as
w=4s and n=0.01.

5.1.3 Unique Event ldentification

Similar events of an appliance are identified using unsupervised clustering. The
fact is utilized that most appliances draw different but constant power before and
after an event (e.g., the kettle before and after it is switched on). The different
power levels represent internal states of the appliance (e.g., off and on for the
kettle). Depending on the internal electrical components, appliances can easily
have way more than two unique states (see e.g., the derived states of the desktop
fan shown in Figure 5.3). To identify different power levels, the data are split
at each event and the mean power demand between these splits is calculated.
Unique power levels (representing unique appliance states) are then identified using
hierarchical clustering with a distance threshold determined by thres,,. Each
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cluster is given a textual ID which is used to assign a label to each event (50, S1,

. as shown in Figure 5.2). Since some appliances show a higher rush-in power
followed by a power settling (see e.g., the power during the transition from S2
to S3 in Figure 5.2), 10 % of the highest and lowest power samples are removed
between each event before a corresponding mean value is calculated.
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Figure 5.2: Recording of a desktop fan (top); calculated Log-Likelihood
Ratio (bottom); recognized events are shown using vertical black lines
and the clustered states are highlighted between consecutive events.

By using the event extraction algorithm, an appliance power signal can be pre-
labeled. Each detected event that remains after filtering is marked and a label
corresponding to the mapped event cluster is assigned. The overall process is shown
in Figure 5.2 for power measurements of a desktop fan. Besides adding labels, the
algorithm can also be used to automatically generate Finite State Machine (FSM)
models of the recorded appliance. Figure 5.3 shows the automatically generated
FSM model of the desktop fan. These models are constructed by storing the unique
clustered events as states and analyzing the event sequence for state changes, which
are then regarded as edges between these states.

Figure 5.3: Appliance model automatically generated from the apparent
power signal shown in the top plot of Figure 5.2.
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5.2 Annoticity Tool

To combine the automatic event labeling presented in Section 5.1 with a graphical
human supervision, the Annoticity inspection and labeling tool was created. The
tool was specially designed for the task of generating precise text-based ground
truth labels for events in electricity data but can also be adapted to annotate
other time series data of any modality. As will become apparent, the tool can
significantly reduce the labeling effort if paired with the automatic labeling algo-
rithm. Annoticity is realized as a web application and provides direct access to
various publicly available electricity datasets without the need to first download
the dataset onto disk. Users can add labels manually, review automatically gener-
ated labels, or modify existing label sets. The labels can be downloaded in various
file formats including an option to store the labels in the same file as the data.
Manual labeling and inspection is performed on the client side while data fetching
and automatic labeling is performed on the server side. The overall workflow is
depicted in Figure 5.4.
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¢— Data (+ Labels) == —
jt REDD
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Label upload : 9 =
Label pre-processing 9
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(€& Data download == -
&=
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FIRED

Figure 5.4: Flow of the Annoticity labeling tool. Data fetching, auto-
matic labeling and file creation is performed on the server side, while
manual labeling and user interaction is handled on the client side.

Annoticity has been made available to the public for everyone to discover electricity
data or label datasets!.

'https://earth.informatik.uni-freiburg.de/annoticity
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5.2 Annoticity Tool

5.2.1 Backend

The server backend is written in Python using the Django framework [161]. The
backend’s main purpose is to load the data and prepare it for visualisation, perform
the task of automatic labeling, and provide file downloads. Data can be uploaded
through the web application. Currently, Matroska [162] multimedia containers
(.mkv) and .csv files are supported. Some publicly available datasets are directly
accessible via selection: REDD [17], UK-DALE [75], BLOND [21], ECO [47], and
FIRED [N20]. Depending on the dataset, either a copy of the data is stored on
the server or the data are acquired via direct cloud access from the original source
of the dataset. The backend resamples the data to a reasonable sampling rate
according to the current time-span selected by the user. If the dataset already
contains labels, those are by default displayed to the user. Additionally, a file
containing labels can be uploaded and modified. The supported formats are .csv,
.srt, and .ass.

5.2.2 Frontend

The client side is implemented in HTML and JavaScript and provides the frontend
to the user. Annoticity’s graphical user interface is shown in Figure 5.5. After
either uploading a file or selecting a time-span and meter of an available dataset,
the user can visually inspect the data. Different measures (e.g. active and reactive
power) can be selected and data can be zoomed-in which leads to a data download
at a higher sampling rate. The user can manually add a label by clicking at the
signal’s slope to mark an event, remove the label by double-clicking on the event
marker, or modify the label by selecting its text. Each label consists of a timestamp
and a (possibly empty) textual description. Labels are stored either as plain .csv,
.ass, or .srt files, or embedded into a .mkv file together with the original data.

As Annoticity is designed as a web application, access to the data is provided from
anywhere. The only requirements are a modern browser and a connection to the
Internet. With the user management directly built into the Django framework,
the Annoticity tool is already primed for collaborative labeling and gamification
mechanisms in a future version (e.g., as realized by Cao et al. [137]).

5.2.3 Automatic Labeling
The automatic labeling, described in Section 5.1, can be applied to obtain event

positions inside the selected data. The required calculations are performed on the
backend as depicted in Figure 5.4.
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Figure 5.5: The graphical user interface of the Annoticity labeling tool.
The user can select data and times of different electricity datasets at the
top. Labels can then be added and adjusted either manually by inter-
acting with the displayed electricity data, or by invoking the automatic
labeling algorithm whose parameters can be adjusted at the bottom.

The frontend allows to set the parameters of the automatic labeling algorithm,
namely the pre-event and post-event window length, thres,i,, m, [, w, and n. Fur-
thermore, the sampling rate to which the data are resampled before the algorithm
is applied can be adjusted. As explained in Section 5.1, the algorithm is designed
to be applied to the apparent power signal. It shows, however, similar results if it
is applied to the active power signal (P). If neither apparent nor active power are
available in the uploaded or selected data, but raw voltage and current waveforms
are, apparent power (S) is calculated on demand. After the events have been
identified, they are clustered, pre-labeled as shown in Section 5.1.3, and sent to
the client side for inspection and validation. A special inspection mode further
allows to quickly iterate through the labels at a proper zoom-level of 10s.
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5.3 Evaluation and Results

The proposed event detection algorithm (see Section 5.1.1) has been evaluated us-
ing the publicly available datasets REDD [17] and FIRED [N20]. In total, 14 days
of FIRED and 8 days of REDD have been used, and 6323 labels have been added
to the data. Annoticity was used to automatically generate an initial set of labels.
To compare this set to an actual ground truth, the initial set was revised by an
expert rater who visually inspected the data. False events were removed, missing
events were added, and a distinct and descriptive label was assigned to each ap-
pliance state. Figure 5.6 shows both, the initial set of labels and the final labeled
data of the espresso machine from the FIRED data. In particular, 4379 events
for FIRED and 1944 events for REDD were generated by the expert rater to serve
as the ground truth for the following evaluation. It is noted that the focus of
this evaluation lies on event detection, hence, high variance filtering has not been
applied and the unique state labeling was not examined in this evaluation.

powermeterl5

(=5 =5 TTT
1000 ? 5 b Rea'ctivePower
pt ps —— ActivePower
2|2 2 2 2
Ju— i £ |E = Q = =
55007 B1% %R B el % 5 E
= 2l |2 £ S 2l 2 S z S =
= 0 !
E i ' ' ! powermeterl5 !
8 1000 T
g
A, 500
Nl © [Ny n o o~ ©o o n o N
wnlun nn (2] (2] (2] (2] (2] (2} (2] |
01 i  —
Q Q Q Q Q Q Q Q
.erb .6)’7;'0 ,cﬂ;"b 5’5‘0 ‘6;5"5 ‘c)big 'C)D{j5 56-9
o o o [\:X o o o o
Time of day

Figure 5.6: The fully labeled data of the espresso machine. The bottom
plot shows the initial labeling of the automatic labeling algorithm, while
the top plot shows the final labeling after human supervision. (The
rightmost event has been missed by the algorithm.)

The results are presented in terms of the confusion matrix as values for TP, FP,
and FN (see Section 2.5). A TP is defined as a detected event that is reflected
within two seconds in the set of ground truth events. Accordingly, a FP is defined
as a detected event without a corresponding event in the ground truth, and a FN is
an event in the ground truth data which has not been found by the algorithm. The
corresponding Fj-score was calculated to summarize these numbers into a single
metric according to Equation 2.22.
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5.3.1 REDD dataset

For REDD [17], apparent power measurements are available at mains, socket, and
sub-circuit level at a sampling frequency of approximately 1/3 Hz. The evaluation
uses eight days of socket- and sub-circuit-level data (from April 19 to 26, 2011)
from house 2. The data has been resampled at a regular base of 1 Hz. Due to the
low sampling rate of the REDD dataset, the following parameters were used for
the evaluation: pre-event window and post-event window = 3s, thres,,,,=4.5 W,
m=0.009, and [=2s.

The results are shown in Table 5.1. Overall, an Fj-score of 86.73 % was achieved.
1627 out of 1944 events (83.69 %) were identified correctly. The refrigerator, which
exhibits the most events, shows the highest number of FP. These stem from short
defrosting cycles which have not been treated as relevant events during the manual
ground truth labeling process. The [ighting and the kitchen outlets #2 show high
numbers of FNs due to events close or below the used minimum mean change
threshold of 4.5 W.

Table 5.1: Event detector performance on REDD. The washer dryer
has never been used during the evaluation time period.

Appliance Events TP FP FN Fi

Dishwasher 59 51 34 8 70.83
Disposal 19 11 0 8 73.33

Kitchen Outlets #1 72 49 3 23 79.03
Lighting 156 85 7 71 68.55

Stove 47 40 6 7 86.02

Microwave 158 130 20 28 84.42

Washer Dryer 0 0 2 0 0.00

Kitchen Outlets #2 525 464 5 61 93.36
Refrigerator 908 797 104 111 88.11

sum 1944 1627 181 317 86.73

5.3.2 FIRED dataset

For FIRED [N20], power measurements are available for 21 meters at a sampling
rate of 50 Hz. Data of 15 appliances were selected and the event detection algo-
rithm was evaluated on 14 days of data (from July 22 to August 4, 2020). Six
appliances for which no distinct events were labeled manually (network equip-
ment etc.) were omitted. The following parameters are used for the evaluation:
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pre-event window length = 1s, post-event window length =1.5s, thres,,, =3 W,
m=0.005 and [=2s.

It was observed that the labeling algorithm performs quite well (F; > 92 %) for
appliances which show distinct states in the power signal (such as the oven, kettle,
or the espresso machine shown in Figure 5.6). For devices which draw variable
power in between states (such as the two PCs or the coffee grinder) a large number
of false events was triggered. It can be assumed that using a higher thres,,;, or
linear factor m as well as additional cleaning steps such as the high variance
filtering step, explained in Section 5.1.2, would have reduced the number of false
events significantly. To put the results into a different perspective, Table 5.2 shows
the evaluation split into two groups representing appliances that show distinct
states and appliances which draw variable power.

Table 5.2: Results of the event detection algorithm applied to the
FIRED data; the results are evaluated for two appliance groups. In #1
appliances are grouped which have distinct steady states. #2 groups ap-
pliances that draw variable power. Events marks the number of ground
truth events labeled manually.

Group Appliance Events TP FP FN F1
#1 Baby Heat Lamp 6 6 0 0 100.00
Fridge 1006 863 2 143  92.25
Coffee Grinder 348 250 114 98  70.22
Espresso Machine 1880 1760 0 120 96.70
Kettle 30 30 0 0 100.00
Hairdryer 18 17 0 1 97.14
Hifi System, Subwoofer 45 44 37 1 69.84
Television 79 65 4 14 87.84
Kitchen Spot Light 12 12 0 0 100.00
Oven 138 138 1 0 99.64
Fume Extractor 47 47 1 0 98.95
Sum 3609 3232 159 377 92.34
#2 Smartphone Charger #1 96 83 1491 13 9.94
Smartphone Charger #2 63 45 7999 18 1.11
Office Pc 583 410 8367 173 0.95
Media Pc 28 10 26632 18 0.07
Sum 770 548 121489 222 0.89

The overall Fi-score of group #1 is 92.34%. 3232 out of 3609 events are recog-
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nized correctly. The coffee grinder and the HiF% system show a comparatively low
performance with a high number of FP. This is due to higher variance when the
grinder’s motor is active or music is playing, and could have been avoided by using
a higher linear factor m or a higher threshold thres,,;,. The espresso machine
has very short heating cycles and a pump which together can cause events close
in time. These could not be detected due to the chosen parameter [ =2s for the
filtering step and account to the comparably large amount of FN. Still, the algo-
rithm shows quite promising overall results for nearly all appliances of group #1.
The results for appliances of group #2, however, show a very large number of false
positives. These stem from shorter periods in which more power is consumed by
the appliance. For instance, depending on the current calculations of a PC, more
power can be required for a short period of time. As smartphones and PCs have
comparable characteristics, equivalent (but smaller) power peaks are present in
the data of the smartphone charger. This is especially apparent when the battery
of the connected smartphone has been fully charged, since the power management
circuit inside the smartphone then draws power directly from the charger instead
of the internal battery. Nevertheless, way better results were obtained by including
high variance filtering and by individually adjusting the algorithm’s parameters
for these appliances. While the latter requires additional manual effort, it is still
faster and more convenient compared to a fully manual labeling. The better re-
sults for the FIRED dataset compared to REDD (if considering appliances of group
#1) indicate that higher data resolution and sampling rate are beneficial for event
detection methods.

5.3.3 Comparing the Labeling Effort

To get an overall estimate of how much labeling effort can be reduced by using
the automatic labeling, the raw number of clicks required to mark all events from
scratch was compared to the number of clicks required to supervise and modify
the pre-labeled event set generated by the event detection algorithm. In total
6323 events were labeled. If the task of applying textual labels is omitted, mark-
ing the events would still have required at least 6323 clicks. If the appliances
in group #2 of FIRED are skipped, the event detection algorithm automatically
placed 4859 events at the correct position for REDD and FIRED. With 340 falsely
classified events, 694 missing events, and the 770 missing labels of group #2 in
FIRED (which would require manual labeling), 1804 clicks would have been re-
quired to remove false events and add missing events. Therewith, the sheer amount
of clicks could already be reduced by 71.47 % not accounting for the support which
is provided by the Annoticity tool if additional textual labels should be added to
the events. If the fact that removing a misplaced label (t4;) usually takes less
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time than manually adding a label from scratch (¢,44) is taken into account, Equa-
tion 5.4 can be applied.

tada - #(missed events) + tqe - #(false events)
taaa - #(all events)

reduction =1 — (5.4)

Using t,qq = 10s and 4 =5s as a reasonable guess for the corresponding times
and time difference, the reduction in labeling effort is actually 74.16 % compared
to a fully manual approach.

To further model the help provided by the Annoticity GUI, it is possible to look
at appropriate metrics from user interface research. Fitts’s law predicts that the
time required to move to a target area is a function of the ratio of the distance to
the target (D) to the target’s width (7). An illustrative example is the selection
of a checkbox with a mouse. The distance to the checkbox is D, while the width
of the checkbox is W. Fitts, therefore, proposed the index of difficulty in [163] as

2-D
ID = log, (W) : (5.5)
This model has further been embedded into the Keystroke-Level Model (KLM)
introduced by Card et al. [164]. KLM consists of the six operators: (K') the time
to press a keystroke or mouse button, (P) the time to point to a target with the
mouse (cf. Fitts’s law [163]), (H) the time to home the hand on the mouse or
the hands on the keyboard, (D) the time to draw a straight line with the mouse,
(M) the time for decision making, and (R) the system’s response time. Several
extensions have been proposed including the separation of keyboard presses and
mouse clicks using the operator B for the latter [165]. Reasonable times for some
of the different operators are proposed in [164] and [165] as: K =0.12 for a good
typist, P=1.1, H=0.4, M =1.35, and B=0.1.

According to KLM, manual event-labeling using Annoticity can be encoded as:

1. find an event in the measurements (M)

point to the event (P)

press and release the mouse button (2B)

move hand to keyboard (H)

type in the label text of the event (n - K with varying n depending on the
specific text; e.g., n =11 for “Turned On” including the shift key). This,
however, might be reduced to n=1, with one specific character for a unique
event. The character can be later substituted by the corresponding label
text in a single operation for all events with the same label text.

6. press enter (K)

7. move hand back to mouse (H)

ANl A
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It is noted that this simplified encoding does not account that it may be required to
zoom into the data (and afterwards revert the zooming), which has been identified
to take between 4 to 8s. This will be denoted using Z =6.0. According to this
encodings, a complete manual labeling of all 6323 events using Annoticity would
require around 17 hours:

Tonanual = Fevents- (M +P+2B+H+n-K+ K+ H+ 7)
=6323-(1.354+1.142-0.14+04+n-0.1240.12+4 0.4 + 6.0)
= 60511.11 4 758.76 - n
= 61269.87seconds for n =1 (5.6)

In contrast, the removal of an event using Annoticity’s review mode is encoded as:

1. decide if the event is a false event (M)

2. point to the false event (P)

3. press and release the mouse button twice (4B)
4. point to the next event button (P)

5. press and release the mouse button (25)

If the event is a true event, steps 2, 3, and 4 are not required. In the review
mode, no additional time for zooming is required, as the measurements are already
presented at a proper zoom level. The time required by Annoticity to automatically
label the data depends on the selected resolution and the specific data. But it is
usually less than Ry = 8.0s for one day of data sampled at 50 Hz and less than
R>=0.5s for 1 Hz. According to this encoding, the semi-automatic labeling of the
events, including the review of 4859 true events, the deletion of 340 false events,
and the manual addition of 1464 missing events, would require around 7 hours:

Tyemi = 11-14- Ry +9-8- Ry + 4859 - (M + 2B)
+340- (M + P+4B+ P +2B)
+1464- M +P+2B+H+n- K+ K+H+ Z)
= 25480.61seconds forn =1 (5.7)

This results in a time reduction of 58.41 % when using Annoticity with semi-
automatic labeling compared to using it without.

Considering that no filtering was applied for the labeling algorithm and a fixed
parameter set was used per dataset to simplify evaluation, it can be assumed that
the number of FPs and FNs can further be reduced if filtering is applied and
the parameters are adjusted individually for a particular appliance. Moreover, as
the labeling tool also identifies identical events, the additional workload of adding
textual labels is reduced to specifying the name of the corresponding event clusters
(e.g., compressor on, door open, off for the fridge as shown in Figure 5.5).

82



6 FIRED Dataset

This chapter presents the Fully-labeled hlgh-fRequency Electricity Disaggrega-
tion (FIRED) dataset. FIRED is the first residential electricity dataset which fea-
tures high-frequency aggregated- and appliance-level recordings with additional
ground truth event labels. The dataset was highlighted in the contributions of
[J21a] and [N20]. This chapter includes:

« An in-depth explanation of the data included in the dataset (see Section 6.2).
« A statistical analysis of the recorded data (see Section 6.3).

e A technical validation of the data in terms of time synchronization, data
coverage, and validity of the measurements (see Section 6.4).

« Information about how to access and how to use the data (see Section 6.5).

Existing electricity datasets have been introduced in Section 3.2. Their shortcom-
ings have already been discussed in Section 4.1 and need to be avoided for novel
electricity datasets: (1) large gaps in the data, (2) low sampling rates for individ-
ual appliance data, (3) missing event information, (4) not all electrical consumers
are known during recording, and (5) a complicated data loading process. In or-
der to tackle these shortcomings, a set of design goals (or challenges) has been
defined in Section 4.1 for the recording system of a dataset. These design goals
go hand in hand with the desired characteristics of a versatile electricity dataset.
Such a versatile dataset should include: Simultaneous aggregated and individual
appliance data (C1) of high sampling rates (C2) over a long time period without
larger gaps (C3). The data should include event labels (C4) with a high temporal
accuracy (C5) and should be usable out-of-the-box (C7).

To meet these design goals, the framework introduced in Chapter 4 was utilized to
record the Fully-labeled hlgh-fRequency Electricity Disaggregation (FIRED) data-
set. FIRED includes 101 days days of aggregated three-phase current and voltage
measurements sampled at 8 kHz as well as 21 time-synchronized individual appli-
ance measurements sampled at 2kHz from a residential apartment in Germany.
Furthermore, it includes sensor readings such as room temperatures and additional
state information of certain appliances and each light bulb in the apartment. The
Annoticity labeling tool, introduced in Section 5.2, was used to fully label all state
changes of the individually-metered appliances for a time period of two weeks.
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6.1 Recording Setup

FIRED was acquired in a single three-room apartment with 79 m? of space (open
combined kitchen and living room, bedroom, child’s room partly used as office,
hallway, bathroom, and storage room). The apartment is inhabited by two adults
and one infant, and it is located in an apartment building consisting of seven
apartments on four floors. The building was constructed in 2017, is heated via
a district heating, and most rooms are equipped with air filters with built-in re-
cuperators. According to the building’s energy certificate, it requires a primary
energy consumption of 12kW h/m? per year. The apartment’s power grid is a
three-phase 50 Hz system consisting of L, L, L3, and neutral (N) wires. L;_3
have a phase shift of 120°. Access to the apartment’s electrical system is given
through a fuse box located in the hallway. All lights installed in the apartment are
off-the-shelf smart light bulbs with a built-in ZigBee module. This allows that the
lights are turned on or off via a smartphone application, voice assistant, or regular
wall-light-switch. It further allowed to log all state changes during the recording
of the dataset using a ZigBee bridge as explained in Section 4.4. The washing
machine, dryer, and freezer are located in the basement of the building, and are
not part of the recording.

A SmartMeter (see Section 4.2) was installed in the apartment’s fuse box. Split-
core current transformers were attached to the three incoming supply legs. For
voltage measurements Ly, Lo, L3, and N were connected in parallel. The meter is
supplied with power by an additional L; leg which is secured by a separate 16 A
fuse. The final installation is shown in Figure 6.1 (left).

21 PowerMeters (see Section 4.3) have been deployed in the apartment. These
have properly been connected to WiFi and it has been checked that the WiFi
signal quality (RSSI) of each PowerMeter exceeds —60dBm to be certain that
data can be sent flawlessly. Some appliances like the oven and the fume extractor
are directly connected to the mains. To measure those appliances, a special version
of the PowerMeters with screw terminals has been used. Figure 6.1 (right) shows
two PowerMeters connected to the espresso machine and coffee grinder.

Modern households can easily include more than 40 appliances (cf. Table 3.1). The
apartment of FIRED includes 68 appliances in total. Many of these appliances are
typically only used occasionally, connected to power on demand, and sometimes
to a different socket than before. Therefore, connecting a continuously sensing
meter to each appliance is unreasonable. Instead, appliances of the same category
(e.g., routers) or devices which are only used simultaneously (e.g., monitor and
PC) were connected to the same PowerMeter. Appliances which are only plugged
in occasionally and typically not at the same time (e.g., mixer and vacuum cleaner)
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Figure 6.1: (Left) SmartMeter installed in the apartment’s fuse box.
(Right) PowerMeters with ID 13 and 15 connected to the coffee grinder
and the espresso machine.

were connected to a dedicated PowerMeter (powermeter?1). When an appliance
was connected to or disconnected from this PowerMeter, a corresponding entry
was manually added to a digital calendar which has been exported to a log file and
is included in the dataset. This means that the connected appliance has changed
over time, but the meter has continuously taken measurements.

Moreover, temperature, and humidity sensors were installed in the living room,
bedroom, and child’s room. As already mentioned, a ZigBee logger was set up
to capture state changes of the apartment’s lighting. Furthermore, a 433 MHz
bridge was installed to capture state changes of the overhead kitchen light and
an infrared bridge was installed to record key presses of the television’s and HiFi
system’s remotes. The corresponding components have already been described in
Section 4.4.

To properly connect all individual data acquisition devices to a central recording
PC, the apartment was equipped with three additional WiFi access points. The
power consumption of the recording PC and all access points have been recorded
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individually. These also contribute to the apartment’s aggregated consumption.
The recording PC gathered the measurements of all electricity meters (SmartMeter
and PowerMeters), all sensors, and all bridges. The PC stored the measurements
into files frequently and pushed the files to a cloud server for persistent storage.
For backup purposes, the local files on the recording PC were not deleted. The
recording manager (cf. Section 4.6) running on the PC was set up to notify the
home owners on any error or warning via email.

6.2 Data Records

The provided data include voltage and current measurements at high sampling
rates taken from the aggregated mains signal and 21 individual outlets. To get
a quick insight into the data, FIRED contains per-day and per-appliance sum-
mary files with derived active, reactive, and apparent power measurements. The
root directory of the dataset contains folders with the raw and summary data.
The data are stored as multiple Matroska container into sub-folders named pow-
ermeter<ID> and smartmeter001, respectively. File size and, therewith, file
loading times are kept reasonable by splitting all files at regular time intervals.
The local time of the first sample is appended to each filename in the format
<year>_<month>_<day>__ <hour>_<min>_<sec>.

Table 6.1 shows the mapping of each recorded appliance to the used PowerMe-
ter (ID). For more information about each appliance, its brand and model are
shown. The power rating (P) according to the manufacturer of the appliance as
well as the average (P), and maximum (P,,,,) power observed during recording
is further provided. ® corresponds to the live wire (Ly, Lo, or L3) to which the
specific PowerMeter was connected to. A complete list of all appliances in the
apartment, including the individually monitored appliances, is part of the dataset.

Furthermore, temperature and humidity sensor values of multiple rooms as well as
state changes of many (smart) appliances are included. In addition, two weeks of
data have been annotated with event labels. Sensor values and labels are stored
as .csv files in annotation and labels folders, respectively.

Additional information about each electrical appliance installed in the apartment
and not limited to those that have been individually monitored is included in the
info folder of the dataset. This information includes the appliance brand, model
number, and website links with further information.
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Table 6.1: Appliances recorded via PowerMeters.

ID represents the

specific PowerMeter used for recording. For PowerMeteri1 the con-
nected appliance changed during recording. P is the power according
to the appliance manufacturer, ® is the gird line the appliance is con-
nected to (Ly, Ly, or L3), P,,,, is the maximum average power drawn
for the duration of one second, and P is the average power during the
recording. The unit of all power measurements is Watt.

ID Connected Appliance Brand Model P ® P P
08 Baby Heat Lamp Reer FeelWell 600 2 6119 0.3
09 Fridge IKEA HUTTRA 1000 3 1138.8 18.0
10 Smartphone Charger #1 - 2 Port USB 10 3 12.7 1.7
11 Different Devices 3 1898.7 3.1
12 Smartphone Charger #2 - 4 Port USB 25 1 279 2.8
13  Coffee Grinder Graef Cm800 128 3 206.9 0.1
14 Smart Speaker Apple HomePod 15 3 3.6 0.2
15 Espresso Machine Rocket Appartamento 1200 3 1230.6 29.8
16 Kettle Aigostar Adam 30GOM 2200 3 1958.8 2.9
17 Hairdryer Remington D3190 2200 1 19349 1.0
18 Router #1 Apple Airport Extreme A1521 10.3 1 27.9 19.3
Router #2 Telekom Speedport Smart 1 10
Telephone Gigaset A400 1
19 Printer EPSON Stylus SX435W 15 1 21.5 0.2
20 Office PC Apple Mac Mini A1993 85 2 236.1 59.5
27”7 Display Apple Thunderbolt display 200
Speaker Logitech 72300 240
Smartphone Charger #3 Apple MDS813ZM/A 5
Access Point #2 Apple Airport Express A1264 8
21 Media PC Apple Mac Mini A1347 8 3 454 13.0
22 HiFi System Onkyo TX-SR507 160 3 859 15.3
Subwoofer Onkyo SKW-501E 105
23 Television Samsung  UE48JU6450 64 3 151.0 123
24 Light+Driver IKEA - 40 3  36.6 1.8
25 Oven IKEA MIRAKULOS 3480 3 2491.0 9.7
26 Access Point #3 Apple Airport Express A1392 2.2 3 2.7 2.2
27 Router #3 Netgear R6250 30 1 56.9 15.7
Recording PC Intel NUC8v5PNK 60
28 Fume Extractor IKEA WINDIG 250 3 2493 1.1

6.2.1 Voltage and Current Data

All PowerMeters sampled the current and voltage waveforms at a rate of 2kHz. In
theory data can be sampled and sent at up to 7.875 kHz using a single PowerMeter.
If 21 PowerMeters are used simultaneously, however, the available WiFi bandwidth
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limits the amount of data that can be sent simultaneously by all meters in the
same WiFi range. Therefore, a sampling rate of 2kHz has been chosen as a trade-
off between reliability and temporal data resolution (see Section 6.4.3 for more
information).

The SmartMeter recorded voltage and current waveforms of Ly, Lo, and L3 at a
sampling rate of 8 kHz. The ADC installed in the SmartMeter allows to sample
these waveforms with a maximum sampling frequency of 32 kHz, but, again, higher
reliability was preferred over better time resolution. The lower sampling rate is,
however, still in line with the findings of Armel et al. that “there may be little
additional benefit between 15kHz to 40kHz because of the noise in that range in
real buildings” [53]. Furthermore, a reduced sampling rate leads to smaller files
and simplifies data handling for the user.

Each file contains 600 seconds of data stored into a single audio stream inside a
multimedia container. For the aggregated data, each audio stream has six channels
(v_ 1,4 l1,v 12,4 12, v_[3, i _l3) representing the current and voltage waveforms
for the three supply legs. The audio streams for the individual appliance data
contain two channels (v, 7). The number of samples in each file should match the
time distance to the next file. If this is not the case, no data are available for that
meter during the particular time period. This occurred during a reliability reset
each day at midnight and rarely for single meters due to occasional data loss as
depicted in Section 6.4.3.

Data conversion and calibration are not required, as both the SmartMeter and all
PowerMeters have been calibrated in advance and calculate the physical quantities
from the raw ADC samples ( Volt for voltage and Milliampere for current measure-
ments). No additional data pre-processing is applied. The provided voltage and
current data can be seen in Figure 6.2. Plot 1-3 show data of the SmartMeter while
plot 4 and 5 show the simultaneous measurements of two additional PowerMeters.
The plots do not only highlight the high temporal resolution of the data but also
the achieved clock synchronization. The rush-in current shown in the PowerMeter
data (Figure 6.2 plot 4) matches the rush-in current seen in L3 of the SmartMeter
(Figure 6.2 plot 3). A time shift between the measurement devices of around 10 ms
can be observed. Even after 16 hours of continuous recording, the offset between
the SmartMeter and PowerMeters was still below one mains cycle, highlighting
the effectiveness of the realized clock synchronization (see Section 6.4.4).

The current and voltage waveforms of the recording of powermeter15 are mirrored
around the z-axis. This can be seen, as the rush-in current is in the positive di-
rection for the PowerMeter while it is negative for the SmartMeter. The mirroring
is originated in the fact that this specific PowerMeter measured the neutral wire
instead of L3. At an ordinary outlet, one port is connected to the neutral wire
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while the other is connected to an active wire. The connection orientation does
not influence the appliance operation, however, it influences the relative ground
to which current is measured. Hence, depending on the wiring of the outlets and
the orientation of the PowerMeter, it either measures the voltage of and the cur-
rent flowing in the outlets’ neutral or live wire. Information about the specific
connection of each PowerMeter is included in the dataset.
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Figure 6.2: Voltage (red) and current (blue) waveforms of smart-
meter001, powermeterls, and powermeter27. The recording was taken
on June 9, 2020 at around 4 pm. The same appliance switch-on event of
the espresso machine is visible in the recording of L3 of smartmeter001

and of powermeterl1?5.

6.2.2 Derived Power Data

The derived 50 Hz and 1Hz active, reactive, and apparent power are stored for
each meter in individual multimedia containers, and contain one day of data.
Times for which the power could not be calculated since no voltage and current
data were available, were marked with a power of constant zero to maintain an
equidistant time period between samples. Constant zero plateaus can be identified
easily as they do not represent valid measurements which are always non-zero due
to omnipresent measurement noise. Figure 6.3 shows the single-day active power
consumption of the apartment. The contributions of the six appliances which con-
sumed the most power on this day are shown as individually colored blocks. The
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power consumption of the remaining individually metered appliances are aggre-
gated and plotted as the block Others. The aggregated power consumption of the
SmartMeter (i.e., the sum of Ly, Ly, and L3) is shown as the black line mains.
Ideally, the superposition of the power of all individual meters should match the
aggregated power. Nevertheless, a small margin can be observed in Figure 6.3.
This gap is caused by hard-wired appliances such as the lighting and the venti-
lation system which are not monitored individually (see Section 6.4.2 for more
information).

mains

2500 | mmm Others
[ Fridge
B Network Equipment
2000 - I Television
E Il Oven
=, I Espresso Machine
) Office PC
= 1500 A
e}
ol
)
2
+ 1000 1
3]
<

500 A

0
06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00
Time of day

Figure 6.3: The power consumption of the apartment over one active
day (July 2, 2020). The power signal is downsampled to one sample
every 3s. The black line indicates the power consumption recorded by
the SmartMeter. The contribution of the six top-most consumers is
shown as stacked colored blocks. The consumption of the remaining
individually metered appliances are aggregated and shown as the blue
block Others. A slight offset between the SmartMeter and the accumu-
lated power of all PowerMeters can be seen.

6.2.3 Logs

The dataset’s annotation folder contains 33 tab-separated .csv files. The first
column of each file includes the timestamps associated with the events or sensor
readings. These files can be divided into three categories:

Smart lights:
The state changes of each light bulb in the apartment is logged. The filenames of
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these logs have the format:
light — <room>__ <deviceName>__ <deviceModel>.csv

room represents the name of the room the light is installed in, deviceName rep-
resents how this light is used (e.g., ceiling light), and deviceModel matches the
specific model name of the light. The file’s second column contains the states of
the light (on or off), the third column contains the light’s intensity levels (0 to
100 %), and the last column contains the light’s RGB colors in hexadecimal. If
setting different colors is not supported by the light, the column only shows None
values. As individual measurements of the apartment’s lighting have shown, the
installed smart lights consume almost constant power linearly increasing with the
light’s intensity level. Since information of the lights’ state and intensity setting
is available for the complete recording duration, this information can be used to
estimate the power consumption of each light individually. The smart light logs of
two days are shown in Figure 6.4. The hallway ceiling light consists of three light
bulbs and is triggered by a passive infrared sensor. Hence, all three light bulbs are
turned on if a resident walks through the hallway which can be seen in the figure
throughout the days.
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Figure 6.4: Two days of light usage information (starting at June 16,
2020). The time of day is shown on the x-axis while the particular light
is listed on the y-axis. The black-framed boxes represent times when
lights are active. Each box is filled according to the light’s color and
intensity:.

Sensor readings:
The readings of temperature and humidity sensors are stored in files following the
naming scheme:

sensor___<room>___ <sensorType>.csv
sensorType is either hum or temp for humidity or temperature readings, respec-
tively. Each file’s second column contains the sensor readings. Temperature read-
ings are stored in degrees Celsius and humidity readings in percent, respectively.
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All values have floating point precision (32-bit). Samples are not acquired equidis-
tant, as the sensors only send new values on a transition.

Device info:
Certain installed smart appliances or bridges allow to capture events of appliances
in the apartment. Thereby, it is e.g., possible to recognize when a resident pressed
a certain key of the television remote. Such events are logged in files with the
following name format:

device _<room> _ <deviceName>  <deviceModel>.csv
Each file’s second column gives information about the current appliance state or
the particular event. The file of the HiF% system, for instance, includes key-presses
such as power or vol _up while the files of the espresso machine include the overall
number of espressos made by the machine. When this number increased, the Pow-
erMeter connected to the espresso machine recorded the electricity consumption
required to make an espresso. Figure 6.5 shows the logs for the television, the HiFi
system, and the espresso machine.
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Figure 6.5: Three days of appliance logs (June 19 to 22, 2020). The data
of the espresso machine show the numbers of espressos made, while the
data of the HiF'i system and television show key-presses on the remote.

6.2.4 Labels

The Annoticity labeling tool (see Section 5.2) was used to fully label all events
that occurred within two weeks of the FIRED data (from July 22 to August 4,
2020). The tool generated an initial set of labels which was afterwards modified
by visually inspecting the data. False events were removed, missing events were
added, and a distinct and descriptive textual label was assigned to each event
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representing the new state of the appliance. The labels were stored as CSV and
are part of the dataset. Figure 6.6 shows the richness of these event labels for
a time period of only two minutes. The figure illustrates the active and reactive
power consumption of the refrigerator and the espresso machine. The aggregated
consumption of supply leg Ls is shown on top. The labels represent the state of
the appliance and the black lines mark the timestamp of an event. The event
timestamps are further highlighted in the aggregated consumption to demonstrate
the synchronicity of the data streams.
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Figure 6.6: Event labels for two minutes of electricity data of the refrig-
erator and espresso machine. The aggregated consumption recorded
with the SmartMeter is shown at the top with the position of all event
labels marked.

6.3 Data Statistics

Overall, 53328 hours of raw current and voltage waveforms have been collected
for the FIRED dataset. Figure 6.2 highlights the richness of the captured data
for the SmartMeter and the PowerMeter units. Figure 6.3 shows the active power
extracted for each individual appliance. It further emphasizes the contribution of
each appliance to the total power consumption on this day. According to [166],
the average consumption of a comparable three person household in Germany is
7.12kW h per day. The analysis of the SmartMeter data of the FIRED dataset
reveals an average electricity consumption of 6.06 kW h per day, which is slightly
lower than the typical average consumption. This is, however, expected as the
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data do not contain the electrical energy consumption of the washing machine,
dryer, and freezer.

Figure 6.7 a shows the consumption of six appliances at the time of day averaged
over the entire recording duration. This provides a good indication of usage be-
havior. For example the espresso machine shows two distinct peaks, one in the
morning at around 9 am (morning coffee), and one in the afternoon at 3 pm (coffee
break). Similarly, the television is mainly used after 8 pm. In comparison, the
router does not show any significant peak. It can also be seen, that the office PC
has a high standby consumption of around 35 W and is used mainly between 9 am
and 6 pm. Figure 6.7 b shows the distribution of power demand for the same
appliances. Some state information can already be derived from these plots. The
hairdryer shows two distinct states corresponding to two different temperature
settings. The office PC shows three peaks. The peak around 35 W represents the
already mentioned standby consumption, the peak around 50 W represents the PC
in its on state, and the 140 W peak includes the on state of the 27 inch monitor
which is connected to the same PowerMeter. The espresso machine consumes a
huge amount of power (1200 W) during its heating cycles but is mostly idle (5 W)
in between. The consumption of the router and kettle resemble a Gaussian dis-
tribution centered around 19 W and 1890 W, respectively. It is assumed that the
Gaussian of the kettle would be smoother and better visible if more samples would
be available for its on state (as for the router).
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Figure 6.7: Appliance usage over the complete recording duration. (a)
shows the daily usage patterns of the appliances with the consumed
average power for the hour of the day. (b) shows the histogram of the
power demands; a 2 W threshold was set to omit data in which no power
is drawn.
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6.4 Technical Validation

Measurements of the FIRED dataset are provided without applying any pre-
processing or filtering except for the calibration and on-meter conversion to physi-
cal quantities. The recording framework is equipped with different mechanisms to
cope with real-world effects such as network dropouts or clock drifts. The integrity
of the acquired measurements is analyzed in the following.

6.4.1 Calibration

As already mentioned, each meter has been calibrated in advance using a dedicated
electricity meter (ENERGY-LOGGER 4000 by VOLTCRAFT [167]). According
to its datasheet, the meter has a stated accuracy of 1%. It was, therefore, used
to determine the calibration parameters of each deployed SmartMeter and Pow-
erMeter. Ten electrical loads with different power consumption ranging from 5
to 2000 W were used and a linear calibration was applied to each measured value
Traw (voltage and current) according to

Leal = Lof fset + M- Traw - (61)

The calibration parameters m and z,sfse¢ for voltage and current measurements
of each meter were stored permanently in its non-volatile memory. After about
four months, the calibration has been repeated to see if aging affects have already
invalidated the calibration. Such effects could not be observed.

6.4.2 Residual Power

Ideally, the sum of the electricity consumption of all individually metered appli-
ances should be equal to the consumption recorded at the aggregated level ac-
cording to Equation 2.2. However, a slight offset will be perceivable in any real
dataset. This offset is referred to as the residual power. The residual power is the
portion of the total consumed power which is not metered by an individual meter,
i.e., the portion for which no ground truth data are available. One goal for the
FIRED dataset was to minimize this portion in order to provide reliable ground
truth data for supervised machine learning algorithms.

The residual power observed in the FIRED dataset (see Figure 6.3) is mainly due
to non-monitored hard-wired appliances in the apartment such as the lighting and
the ventilation system, but also due to the power consumption of the distributed
PowerMeters. The individual consumption of each light bulb and, therewith, the
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lighting can be estimated using the log files provided with the dataset. To demon-
strate that this is feasible, power estimates have been generated using these log
files and additional individual light recordings. The consumption of the remain-
ing unmonitored appliances (including the consumption of 21 PowerMeters) is the
base power consumption of the apartment. It can be estimated at times when
lights are turned-off and the majority of appliances do not consume any power
which is typically during the night or in case of absence of all residents. The base
power Pyusers. of each individual supply leg x € {1,2,3} was calculated as

PMp, = {pm € PM | phase of pm is z }, (6.2)
L, = {1 € Lights | phase of [ is = }, (6.3)
Prasers = P(SML.Z‘) - > P(]?m) - > P(l) .
pm€ePMy,, €Ly,

SM;p, represents the SmartMeter data of the grid line Lz, PM is the set of all
PowerMeters, PM, is the set of PowerMeters that are connected to live wire Lz,
Lights is the set of all lights, Ly, is the set of lights connected to Lz, and P(y) is
the extracted power trace of a meter or light y. It is assumed that the base power
is normally distributed. Thus, all points in Py, that are farther than o from
the mean value have been removed. Finally, the average Pyyser. is calculated from
the cleaned signal.

Figure 6.8 shows the active power consumption including the lighting and the
estimated base power with a remaining RMSE (see Equation 2.18) of 17W. The
residual power could not be completely eliminated. The reason has been identified
to most likely be the apartment’s ventilation system which reverses the direction
of the air flow frequently.

6.4.3 Availability

Data are available for 99.96 % of the complete recording duration. 1405 minutes
of data are missing, mainly due to a reliability reset which is performed at 12 am
midnight. Occasionally, due to WiFi connection outages and an erroneous imple-
mentation of the TCP/IP stack on the ESP32 microcontroller, some data packets
were lost. However, a packet only accounts for less than 20ms of data. Once
detected, the missing samples are replaced by zeros to maintain the correct times-
tamps for all remaining samples. It is still possible to identify these time periods
as voltage and current zero plateaus cannot occur in natural situations.

The length and amount of the dropouts are illustrated for each meter in the boxplot
shown in Figure 6.9. The figure shows that powermeteri/ and powermeter22 had
more dropouts compared to all other meter. This was identified to be originated
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Figure 6.8: The power consumption of the apartment over one active
day (July 2, 2020). The power is downsampled to one sample every
3s. The black line indicates the power consumption recorded by the
SmartMeter. The contribution of the six top-most consumers is shown
as stacked colored blocks. The consumption of all remaining appliances
and the reconstructed consumption of the apartment’s lighting is ag-
gregated and shown as the blue block Others. The black base block
represents the apartment’s base power which has been estimated as
26.66 W on average for this day.

from an unstable WiFi condition as the RSSI values reported by both meters were
the lowest of all. In contrast, the SmartMeter which is connected over a reliable
cable connection shows the least number of dropouts and the smallest durations
for the dropouts.

Overall, the duration of dropouts is comparatively small compared to dropouts of
multiple days such as present in the REDD dataset. While the average dropout du-
ration fluctuates around the time it takes for a meter to reset at midnight (around
eight to 30 seconds), longer dropouts occurred only rarely. Overall, over 3198275
minutes of high-frequency time-synchronized voltage and current waveforms are
still available and the main time period in which data are missing is located each
day at around 12 am. This represents a time period in which typically significantly
less appliances are turned on.
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Figure 6.9: Semi-logarithmic boxplot showing the duration of the
dropouts occurring on all meters during data acquisition. The mean
value of each meter corresponds to the time of the reliability reset. Oc-
casionally, shorter dropouts occurred. Longer dropouts are rare. The
total dropout duration of each meter is displayed on top.

6.4.4 Clock Synchronization

The used clock synchronization technique has previously been detailed in Sec-
tion 4.5. Figure 6.2 highlights the achieved clock synchronization in the FIRED
dataset due to the methodologies explained in Section 4.5. The figure shows the
voltage and current measurements of two PowerMeters and the SmartMeter. The
current data of powermeter15 shows a rapid rise in the current consumption due to
a heating element in the connected espresso machine. The corresponding increase
can be also observed in the measurements of L3 of smartmeter001. Both signals
are shifted by around 10ms. This highlights the achieved clock synchronization,
as all timestamps are derived relative from the first sample obtained. This ini-
tial sample was obtained around 16 hours earlier (due to the reliability reset at
12 am). Even after 16 hours of continuous recording, the time shift was still below
one mains cycle, allowing to synchronize the voltage and current waveforms with
sub-cycle precision.

6.5 Discussion

In the beginning of this chapter, desired characteristics (design goals) of electric-
ity datasets, which can be used to evaluate a wide variety of electricity-related
algorithms (especially event-based NILM), have been stated. These characteris-
tics are closely related to the challenges which have been defined for the proposed
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recording framework in Section 4.1. Based on this framework, the FIRED dataset
has been recorded and labeled. It features 101 days of electricity measurements
(C3) of a residential apartment in Germany. This is significantly longer than most
existing high-frequency datasets such as REDD [17] or BLUED [94]. Aggregated-
level data are available as 8 kHz voltage and current waveforms while individual
appliance data are available at 2kHz for 21 appliances (C1, C2). While the ag-
gregated sampling rate is matched or even exceeded by other datasets, to the best
of the authors knowledge, no other residential dataset features high-frequency in-
dividual appliance recordings. The data are further time-synchronized with an
accuracy of around 10ms (C5) and have a coverage of 99.96 % over the complete
recording time period (C3). Other datasets such as REDD [17] or UK-DALE [75]
show a significant amount of missing samples due to bad wireless communication.
The framework additionally provides a 1 Hz and 50 Hz summary with derived ac-
tive, reactive, and apparent power measurements. All data are stored in Matroska
multimedia containers (C7) with included metadata information such as times-
tamps and measured quantities. Additional files are included in the dataset which
provide information about the apartments lighting states, room temperature, and
appliance operation states (C4). Event positions and state labels have been added
for two weeks of the data in a semi-automatic way using the Annoticity labeling
tool (C4). Except BLUED [94], no other dataset was found which includes such
information. Thus, the dataset fully meets all of the above challenges compared
to the existing datasets which have been found to only meet some of these (cf. Ta-
ble 4.1). The dataset itself and the tools to process it are provided as open source
(C7) to support the research of NILM algorithms.

Data and Code Availability

The FIRED dataset is available under the creative common licence. Further infor-
mation on how to use and download the data can be found at https://github.
com/voelkerb/FIRED_dataset_helper.

Personally, I think it is more important to focus on the development of electricity-
related algorithms which either help to save energy or provide convenience to home
owners, rather than on recording novel datasets or writing code to use existing
datasets. Therefore, a helper module is provided to simplify interfacing with the
dataset. The module is written in Python - the programming language most
often used by the machine learning community. It allows to quickly load data of
interest into memory without the need to explicitly extract and convert these data
from individual files. An example showing how to plot two hours of 50 Hz power
measurements of the fridge is shown in Listing 1.
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helper as hp
matplotlib.pyplot as plt
datetime.datetime fromtimestamp

hp FIRED_BASE_FOLDER - "~/FIRED"

startTs, stopTs hp . getRecordingRange ("2020.08.03 17:25:00", "2020.08.03 19:25:00")
fridge hp . getMeterPower ("powermeter09", , startTs, stopTs)

dates - [fromtimestamp(fridge["timestamp"] + i/fridge["samplingrate"])
for i range (len(fridge["data"]))]

plt plot(dates, fridge["data"]["p"], label-"Active power")
plt plot(dates, fridge["data"]["q"], label-"Reactive power")

plt.gca() .set(xlabel-'Time of day', ylabel-'Power [W/var]', title-'Fridge')
plt gcf () autofmt_xdate ()
plt.show()

Listing 1: Example of loading and plotting two hours of power data of
the fridge.
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7 Feature and Classifier Study

In this chapter, several features and classifier found in literature are evaluated
for their suitability to classify appliances. While works by Kahl et al. [117] and
Sadeghianpourhamami et al. [129] already contain similar feature analysis, this
evaluation results in a proposed feature set which has a small overall dimension
and is feasible to be extracted and processed on resource constrained embedded
systems. The set has further been evaluated on several classification algorithms,
leading to Fj-scores of up to 98 % on average across four publicly available datasets.
The chapter includes the following contributions of [N21]:

e An introduction of a naive event detector, of 27 handcrafted features for
appliance classification, and of four classifiers (see Section 7.1).

« A standalone analysis of all features and classifiers (see Section 7.2).

e A method to determine the best combination of features for given data while
keeping the feature dimensionality low (see Section 7.3).

o Using this method, several combination of features are evaluated and the
feature set [P, cos®, TRI, W F A] is proposed (see Section 7.3).

7.1 Preliminaries

This section details the event detection algorithm as well as the features and basic
classifiers used throughout this chapter. It further states the used method and
parameter sets for Hyperparameter Optimization (HPO), and details the Cross
Validation (CV) procedure as well as the employed metrics.

7.1.1 Event Detection

While the event detector introduced in Section 5.1.1 performs quite well, it is
computationally expensive due to windowing and the use of non-linear functions
such as the logarithm. For the following evaluation a computationally fairly simple
expert heuristic event detector was used to generate the ground truth and training
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data. The detector is based on work by Weiss et al. [18]. For a comparison of
different event detection methods, the reader is referred to Section 3.3.

The used expert heuristic utilizes a threshold-based algorithm applied on the ap-
parent power signal (S). At first, the signal is filtered using the combination of a
median and a mean filter to remove outliers and further smooth the signal. Both
filters have a window size of 3s. Afterwards, the differences between adjacent
samples of the apparent power signal are calculated (AS). Next, a 3 VA filter is
applied to the signal which sets all values below 3 VA to zero as

0 if AS[i] < 3VA,

AS[i] else. (7-1)

Asfiltered[i] - {

Each non-zero region in the filtered signal (ASpiered) is regarded as an event
(either up or down). If multiple events happen within a time window of 3, only
the first event is kept. This ensures that fluctuations after an event are not regarded
as a new event. Figure 7.1 shows the different stages of the event detection process
for the apparent power signal of an espresso machine. All significant events are
clearly visible as peaks after the filtering process (green signal). The red and blue
triangles mark the timestamps and the corresponding apparent power samples of
the finally extracted events.

1200 ?W v W . — Apparent Power S
{ - | —— Mean + Median Filtered
1000 A 