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Zusammenfassung

Während Häuser heutzutage immer besser isoliert werden um den Verlust von
Wärmeenergie gering zu halten, ist der Energiebedarf durch die Nutzung von
Elektrizität in den letzten Jahrzehnten trotz energieeffizienterer Technik gestiegen.
Dies ist mitunter auf das Nutzungsverhalten der Verbraucher zurückzuführen. Um
dieses Verhalten nachhaltig zu beeinflussen, können Eco Feedback oder Gamifi-
cation Ansätze - optimiert auf den Elektrizitätsverbrauch - eingesetzt werden.
Non-Intrusive Load Monitoring (NILM) liefert eine retrospektive und leicht zu in-
stallierende Möglichkeit, den Gesamtenergieverbrauch nach den einzelnen Geräten
aufzuschlüsseln. Dies hilft einen zu hohen Energieverbrauch einzelner Haushalts-
geräte zu identifizieren und verbessert Eco Feedback und Gamification Methoden.
Um NILM Systeme und Algorithmen weiterzuentwickeln und zu vergleichen, wer-
den spezielle Datensätze benötigt, bei denen neben dem Gesamtverbrauch auch der
tatsächliche Energiebedarf aller Verbraucher im Messsetup erfasst wurde. Außer-
dem können zusätzliche Informationen über die Zustände (vereinfacht zB. angeschal-
tet oder ausgeschaltet) der einzelnen Geräte von Vorteil sein. Da NILM Systeme
häufig ein aufwendiges, systemspezifisches Training erfordern, können sie bislang
lediglich als Nischenprodukt angesehen werden. In der vorliegenden Arbeit werden
verschieden Techniken vorgestellt, um detaillierte NILM Datensätze zu generieren.
Außerdem werden Methoden untersucht, um die aufwendigen Trainingsphasen,
welche nach der Installation solcher Systeme benötigt werden, zu vereinfachen.
Dazu werden zunächst die Anforderungen an ein Messsystem, welches einen solchen
Datensatz aufnehmen kann, herausgearbeitet. Des Weiteren wird ein Frame-
work vorgestellt, welches diese Anforderungen nachweislich erfüllt. Das System
kann zeitsynchonisierte, hochfrequente Elektrizitätsmesswerte über einen langen
Zeitraum aufnehmen, auch wenn die einzelnen Messpunkte über eine größere Flache
(zB. ein Haus oder eine Fabrik) verteilt sind und Daten größtenteils kabellos über-
tragen werden müssen. Das Framework umfasst zwei unterschiedliche Messsys-
teme, welche für die Messung einerseits einzelner Geräte und andererseits des
Gesamtverbrauchs optimiert wurden.
Um den Informationsreichtum der aufgenommenen Daten zu verbessern, wurde ein
Algorithmus entwickelt, der Veränderungen des Energiebedarfs automatisch grup-
piert und annotiert. Eine Evaluation des Algorithmus auf zwei Datensätzen hat
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gezeigt, dass je nach Verbrauchertyp ein Großteil dieser Veränderungen erfolgreich
als solche erkannt und gruppiert werden können, was zu einer erheblichen Zeit-
ersparnis von bis zu 74% bei der Annotation von Elektrizitätsdaten führen kann.
Um die Annotation weiter zu vereinfachen und eine geführte, halbautomatische
Annotation der Daten zu ermöglichen, wurde ein entsprechendes Tool entwickelt,
in dem der Algorithmus integriert ist.
Mit Hilfe des Frameworks und des Annotiationstools wurde schließlich der Fully-
labeled hIgh-fRequency Electricity Disaggregation (FIRED) Datensatz aufgezeich-
net. Dieser enthält über 100 Tage hochauflösende Strom- und Spannungsdaten des
Gesamtelektrizitätsverbrauchs eines Haushaltes. Neben dem Gesamtverbrauch
wurden ähnlich hochauflösende Strom- und Spannungsdaten von 21 Haushalts-
geräten gesammelt und zeitlich synchronisiert. Außerdem wurden weitere Umge-
bungsgrößen wie Raumtemperatur und Luftfeuchte gemessen. Zwei Wochen dieser
Daten wurden mit Hilfe des entwickelten Tools vollständig annotiert.
Es wurde weiter analysiert wie effektiv unterschiedliche domänenspezifische Fea-
tures und Klassifizierer verschiedene Haushaltsgeräte voneinander unterscheiden
können. Die Features und Klassifizierer wurden so gewählt, dass sie auf eingebet-
teten Systemen mit beschränkten Rechenkapazitäten, wie Smart Metern, einge-
setzt werden können. Des Weiteren wurden drei Methoden evaluiert, die in Gesamt-
verbrauchsdaten Geräte-Zustandsübergänge von den konstanten Beiträgen anderer
Geräte bereinigt. Da Gesamtverbrauchsdaten mehr Rauschen beinhalten können,
wurde untersucht, ob die Effektivität entsprechender Klassifikationsalgorithmen
steigt, wenn während des Trainings zusätzlich auf individuelle Messdaten zurück-
gegriffen wird. Schließlich wurde ein System vorgestellt, welches neben eines typ-
isches NILM Aufbaus noch weitere Messsysteme auf Steckerebene verwendet um
den Trainingsprozess zu vereinfachen und die Gesamtperformanz des Systems zu
verbessern.
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Abstract
The energy consumption of a home depends on the behavior of its inhabitants
offering a promising energy saving potential. However, this potential can only be
unfolded to full extent if the consumption of each individual appliance is know.
Non-Intrusive Load Monitoring (NILM) offers a retrospective way to get individ-
ual appliance consumption data. If such data are combined with eco-feedback
techniques it can help to better understand a user’s electricity usage to ultimately
save energy.
Researching NILM algorithms, and in particular, the development of the underly-
ing supervised machine learning techniques, requires adequate datasets with corre-
sponding ground truth data and methodologies to create more labeled data when
needed. Adding detailed labels to such datasets is a time-consuming and error-
prone process. Deploying a supervised NILM system typically requires a dedicated
system training procedure hampering their widespread adoption. The thesis at
hand presents several strategies to address these challenges in order to improve
the adoption of NILM.
In particular, a set of requirements is presented for acquiring and congregating
high-frequency electrical measurements in distributed environments. These are
handled by a novel recording framework comprised of a central recording director
and two prototype Data Acquisition Systems (DAQs), one for aggregated and one
for plug-level data. The developed methodologies allow the DAQs to deliver highly
accurate and time-synchronized data while using rather inexpensive components.
To add precise and descriptive labels to such data, a semi-automatic labeling
method is developed and evaluated on two publicly available datasets. The method
improves the labeling efficiency up to 74% and has been integrated into a novel
labeling tool implemented as a web-application.
The framework and labeling tool have been used to collect and label the Fully-
labeled hIgh-fRequency Electricity Disaggregation (FIRED) dataset. It contains
101 days of 8 kHz aggregated current and voltage measurements of the 3-phase
electricity supply of a typical residential apartment in Germany. The data also
includes synchronized 2 kHz plug-level readings of 21 individual appliances, other
environmental sensor measurements, and descriptive event labels of all appliances,
resulting in a complete and versatile residential electricity dataset.
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Furthermore, several domain specific features and classifiers are evaluated regard-
ing their suitability for (event-based) NILM targeted for resource constrained sys-
tems. Data cleaning methods are evaluated which remove the steady-state energy
consumption of other appliances from the aggregated data of a given appliance
event. As plug-level data delivers less noisy individual appliance data, it is shown
that the inclusion of such data during training results in a performance gain for
appliance classification algorithms. Finally, a novel supervised NILM system is
proposed and evaluated which uses a combination of aggregated and individual
appliance data to improve and aid the training process while only requiring mini-
mal user interaction.
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1 Introduction
The anthropogenic climate change has caused and will continue to cause a global
temperature change in the coming years. Electricity production, heating, and
transportation are the main contributors to greenhouse gas emissions (CO2) with
approximately 73.2% [1] (residential buildings account for 11%). Globally, ap-
proximately 27% of the produced electricity is used to power lighting, appliances,
and heating in the residential sector [2]. Still, only 25.6% of this electricity is
produced by carbon-neutral generation methods (nuclear power excluded) [2].
At the time of writing and also during the last decades, the price for a kilowatt-
hour of electricity is comparably low (around 0.30e in Germany [3]) resulting in
a relatively low incentive to save electricity. However, with rising energy costs
- indeed the price has increased constantly over the last decades - this attitude
can be assumed to change resulting in higher incentives to identify and replace
energy-hungry appliances.
As famously stated by Peter Drucker: “If you can’t measure it, you can’t improve
it”. Electrical energy is measured with electricity meters. If such electricity mea-
surements are available, they can be combined with eco-feedback techniques. These
techniques range from simple graphs showing current and historical consumption
data [4], ambient installations in electricity cords [5], or artistic environmental in-
stallations (7000 oaks and counting [6]). Eco-feedback has proven to achieve high
energy savings especially in the residential domain according to several studies. A
meta-study by Ehrhardt-Martinez et al. [7] found that real-time aggregated-level
electricity consumption feedback achieves energy savings of 8.6% on average. If
this feedback is delivered for individual appliances, the saving potential can even
be increased to 13.7% on average. This was confirmed by Kelly and Knottenbelt
[8], and Serrenho et al. [9]. The latter discovered a 5 to 10% relative increase if
eco-feedback is provided with individual appliance consumption data.
If these findings are representatively related to Germany with approximately 41 mil-
lion households that consume around 3113 kWh on average per household and year,
around 17.8GWh less electrical energy would be required per year [10]. This is the
equivalent production capacity of one to two medium-size nuclear power plants.
This calculation assumes standard eco-feedback which raises the awareness of the
electricity consumption by pinpointing the resident to an unnecessary consump-
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Chapter 1 Introduction

tion. If such feedback is combined with a smart home agent which can directly
control electrical appliances or recommend user-specific strategies, even higher
savings are conceivable.
In order to obtain appliance-specific consumption, it is possible to attach a dedi-
cated electricity meter to each consumer of interest or to replace an appliance by
a smart appliance which directly measures its consumption. This method is called
Intrusive Load Monitoring (ILM) due to its intrusive nature of having to re-wire
or exchange appliances.
A second method to obtain appliance-level data, which does not require to replace
existing appliance or infrastructure, is Non-Intrusive Load Monitoring (NILM).
NILM requires just a single electricity meter (such as a smart meter) to be installed
at a central position in a home (typically inside the fuse box). The measured
composite load is disaggregated into the load of each individual electrical consumer
in the home using advanced algorithms, utilizing machine learning and pattern
recognition methods. These algorithms are either executed on the meter itself, or
the data are sent to an external processing system.
Regardless of how appliance-level data are generated (ILM or NILM), privacy
concerns need to be considered if such data are processed by or transmitted to
external entities. The main drawbacks of NILM are that it only delivers estimated
consumption data of individual appliance and typically requires initial training,
since most of the underlying algorithms are of supervised nature (i.e., require a
training phase for which disaggregated data are already available).
Nevertheless, depending on the employed method, NILM can provide information
such as (1) the consumption amount, (2) the consumption pattern, and (3) the
current state of an appliance. All of this information can be used, besides eco-
feedback, to:
• identify connected appliances or appliance types in an electrical power grid
• identify the state of an appliance and the transition between states (e.g., when

a device is switched-on)
• optimize electricity in smart grids using additional demand response techniques
• identify malfunctioning appliances or appliances which require a service (aka

predictive maintenance)
• enable Ambient Assisted Living (AAL) if the technique is combined with a

smart home agent
• enhance the electricity bill by breaking it down into individual consumers
Due to its physical foundation based on the flow of electricity, the corresponding
NILM algorithms can also be applied to water and gas consumption covering all
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1.1 Problem Formulation

types of energy consumption in our homes. Nevertheless, this thesis representa-
tively covers the electrical domain.

In many countries, smart meters have been and will be gradually installed in
homes in the upcoming years. These meters allow to collect the electrical power
consumption at more fine-grained spatial and temporal resolution compared to
previous rotary-disc meters. In addition, network interfaces allow to transmit these
data directly to the electricity provider which simplifies the billing of electrical
energy and enables electricity data analytics at scale [J21b]. Despite that, the
shift towards smart meters allows NILM algorithms to utilize not only the smart
meters’ data but also their processing capabilities.

In fact, some companies and electricity providers already offer services based
on NILM (e.g., Discovergy [11] and sense [12]) due to the benefits obtained by
appliance-level data. Eco-feedback and energy saving recommendations have also
been tested by major players such as Google [13] or Microsoft [14] but were even-
tually discontinued due to only moderate interest amongst potential customers.
This again underscores the need to increase and maintain a constant incentive to
save electricity.

1.1 Problem Formulation

Despite the intended benefits, NILM methods still suffer from obtrusive training
and mediocre disaggregation performance [15] if electricity of more than a handful
of appliances is disaggregated. One reason for that is a lack of suitable data-
sets. This work mainly targets challenges during the following steps: data(set)
acquisition, dataset labeling, and supervised appliance classification.

Data(set) acquisition: To train, evaluate and compare NILM algorithms, pub-
licly available datasets are used. Even though a lot of datasets have been published,
they are often not suitable to compare different disaggregation techniques because
of a low sampling frequency (e.g., 1/60 Hz for AMPds [16]), large recording gaps
(e.g., 13 of 37 days for REDD [17]), or because of missing or incorrect ground
truth data. Recording new datasets is an expensive, obtrusive, and tedious en-
deavor requiring knowledge in electrical engineering as well as signal and data
processing.

Dataset labeling: Moreover, most datasets lack ground truth information (such
as appliance events) making them hardly applicable to algorithms without addi-
tional ground truth generation. Manually adding such ground truth data (i.e., ap-
pliance event labels) post recording is a time-consuming, tedious, and error-prone
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Chapter 1 Introduction

process. While many event detection algorithms are suitable to automate this pro-
cess, they are typically based on simple rules (e.g., predefined thresholds) which
might work well for classical electrical appliances. Nowadays, most consumer elec-
tronics devices are powered by Switched-Mode Power Supplys (SMPSs), such as
TVs, laptops, etc., resulting in heterogeneous power consumption with short pe-
riods of higher consumption (also called peaks). If an event detector based on
simple rules (as e.g. used in [18]) is applied to such data, these peaks lead to many
events which are not of interest to the user.
Appliance classification: The results of appliance classification algorithms highly
vary depending on the algorithm type, the environment the algorithm is applied in,
the data applied to it, and the appliance usage patterns. Many different approaches
exist either based on simple rules, feature-driven machine learning algorithms, or
deep neural networks. Compared to unsupervised or semi-supervised methods, su-
pervised methods typically show significantly better results after being trained on
the target home (F1 > 0.9 e.g., [19] and [20]). To obtain the required labeled data,
however, an intrusive (i.e., tedious and time-consuming) training is indispensable
before the system can be used in a non-intrusive fashion. While training, the home
owners has to switch appliances on and off multiple times with different, prefer-
ably all possible combinations of concurrently running appliances, taking the word
non-intrusive ad absurdum. To address this problem, new strategies need to be
explored e.g., by taking the human into the loop of the machine learning process.

1.2 Systematic Approach

At first, this work states a set of requirements for electricity metering systems
targeted to record advanced electricity datasets for NILM. Such a system is im-
plemented and the integrated hardware and software components are described in
detail. This system serves as a framework to obtain aggregated-level and individ-
ual appliance-level data in distributed environments. Second, semi-automatically
labeling methods are researched that allow to add fully-labeled state changes of all
appliances to electricity datasets in a post-processing fashion. Third, the frame-
work and labeling is applied and evaluated by recording a novel long-term electric-
ity dataset which features fully-labeled aggregated and individual appliance data
measured at high sampling rates. Lastly, strategies are explored and evaluated
to improve the lengthy training procedure and overall performance of supervised
event-based NILM methods by using additional measurement devices and includ-
ing humans in the loop.
Recording framework: A set of requirements for a recording framework is de-
fined and hardware and software components, which meet these requirements, are
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1.2 Systematic Approach

presented. The developed framework includes two newly engineered Data Acqui-
sition Systems (DAQs): the SmartMeter and the PowerMeter. The SmartMeter
is tailored to record the aggregated electricity consumption from inside a home’s
fuse box. The meter can monitor up to three supply legs (i.e., current-carrying
lines in the electricity grid) with up to 32 kHz. The overall system architecture
of the PowerMeter is comparable to the SmartMeter. However, the PowerMe-
ter is tailored to measure individual appliances directly at plug-level with up to
7.875 kHz in a distributed environment. By adding modular design concepts, both
meters remain expandable while keeping the costs of the setups comparably low
(around e35 for a PowerMeter and e100 for a SmartMeter). Both meters are
integrated into a software architecture that synchronizes all meters, processes raw
voltage and current measurements, converts them into physical quantities, and
stores them into files. Therewith, the framework can record long-term continuous
datasets dedicated to evaluate a large set of electricity-related algorithms such as
NILM.
Data labeling: Ways to automatically tag electricity data with fine-grained event
labels are explored by using an event detection algorithm, clustering, and human
supervision. As classical event detection algorithms do not perform well for ap-
pliances powered by SMPS, a novel probabilistic event detector with adaptive
thresholding is developed. To detect reoccurring events, an unsupervised cluster-
ing method clusters and pre-labels events which are afterwards filtered to remove
false events in noisy signal portions. The algorithm is integrated into a novel label-
ing tool named Annoticity. Annoticity is designed to provide a simple Graphical
User Interface (GUI) to enable human supervision for automatically generated la-
bels. It further offers convenient visual access to many publicly available datasets.
The FIRED dataset: A novel residential electricity dataset called FIRED is
presented. The specific environment of FIRED as well as the data collection pro-
cedure is outlined. The previously introduced recording framework has been used
to record long-term electricity data at aggregated level and of 21 individual ap-
pliances. The collected data includes 101 days of continuous voltage and current
waveforms sampled with 8 kHz and 2 kHz, respectively. Additional sensor mea-
surements such as room temperature and lighting states further augments these
recordings. The previously introduced Annoticity labeling tool has been used to
add two weeks of fine grained labels to the data.
Appliance classification: Different appliance event detection algorithms are
examined and evaluated. Afterwards, a benchmark set of events is extracted from
the public datasets FIRED, BLOND [21], WHITED [22], and PLAID [23]. The
set is used to evaluate 27 features on their ability to classify appliances. This
information is used to infer a suitable feature vector resulting in high classification
results while maintaining low dimensionality. The feature vector is used to evaluate
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Chapter 1 Introduction

four standard machine learning classifiers. The combined system (encompassing
the event detector, the feature extraction, and the classifier) acts as a benchmark
NILM system. In addition, the combined training on high-frequency electricity
data sampled at aggregated and appliance-level is investigated. The results show
slight but noticeable improvements over the previously determined benchmark
system.
Minimal-Intrusive Load Monitoring: It was also investigated how the training
process for supervised NILM systems can be supported and accelerated by the
use of (intrusive) plug meters. The approach is termed Minimal-Intrusive Load
Monitoring (MILM) to hint towards the fact that the training process is optimized
towards a minimal and practical effort. The plug meters are used in an adaptive
training approach, which determines a minimal set of meters required to boost
overall system performance to a desired level before prompting a home owner to
change the meter configuration.

1.3 Contribution

This work contributes to (1) the acquisition of electricity data for research purpose,
(2) semi-automatic appliance event labeling, (3) supervised appliance classifica-
tion, and (4) the evaluation of NILM systems by introducing the FIRED dataset
and the Annoticity labeling tool.
The main contribution regarding the acquisition of electricity data are:
(i) A new data acquisition system to measure the aggregated load of a home

is proposed. The system’s architecture allows flexible ways to incorporate
NILM algorithms either on the device itself or by passing the data via dif-
ferent interfaces to an external data-processing unit.

(ii) A new data acquisition system to measure the electrical energy consumption
of individual appliances is proposed. The system samples measurements at
rates of up to multiple kilosamples per second, which allows to analyze higher
frequency components in the data.

(iii) An overall framework for collecting high-frequency (electricity) data in dis-
tributed environments is presented, tailored for time-synchronized data, high
robustness, expandability, and simplified usability.

The main contribution regarding semi-automatic appliance event labeling are:
(i) A novel probabilistic event detection algorithm is proposed and evaluated.

The detector is combined with adaptive thresholding to suppress false posi-
tives for low power appliances.
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(ii) Additional clustering techniques are used to find reoccurring events in a
continuous data stream allowing to tag each event with a corresponding
label.

(iii) These techniques are encompassed into semi-automatic labeling. Techniques
are being developed to manually label high-frequency electricty data quickly
and easily.

The main contribution regarding (supervised) appliance classification are:
(i) 27 features are presented and evaluated in a standalone and combined fea-

ture analysis. The active power, phase-angle, Tristimulus, and WaveForm
Approximation have been identified to be of choice for resource-constrained
systems.

(ii) Furthermore, four standard machine learning classifiers are examined for
their suitability regarding appliance classification. k-Nearest Neighbour is
found to be the algorithm of choice if used on resource-constrained systems
while Support Vector Machines and Random Forest should be considered
otherwise.

(iii) The concept of hybrid training (i.e., using additional high-frequency data
obtained by plug-level sensors during training) is examined which can lead
to an F1-score gain of up to 4% compared to traditional training methods.

(iv) A concept is developed to enhance the tedious training process and over-
all performance of supervised NILM systems by using additional plug-level
meters.

The main contribution regarding the evaluation of NILM systems are:
(i) A novel fully-labeled electricity dataset is introduced which allows to evaluate

a wide variety of electricity-related algorithms (including appliance event
detection algorithms).

(ii) Dataset labeling is improved by reducing the overall labeling time up to 74%
and providing additional support if textual labels are required by incorpo-
rating clustering methods.

(iii) An appliance classifier is proposed that achieves an average F1-score of 98%
on four publicly available datasets. The classifier can be used as a benchmark
when comparing the performance of similar systems.
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1.4 Remainder

The remainder of this work is structured as follows. Theoretical background to
smart metering, Non-Intrusive Load Monitoring (NILM), and machine learning is
provided in Chapter 2. A more in-depth list of existing techniques for electricity
Data Acquisition Systems (DAQs) and NILM methods can be found in Chapter 3.
In Chapter 4, a framework is presented comprised of the hardware and software
components required to record advanced electricity datasets. In Chapter 5 a novel
semi-automatic labeling method for electricity data is introduced. The frame-
work and labeling method were utilized to collect a dataset which is presented in
Chapter 6. An extensive evaluation of features and classifiers used for appliance
classification is included in Chapter 7 resulting in a benchmark system. Chapter 8
evaluates different cleaning methods for aggregated data, evaluates hybrid train-
ing, and introduces a novel NILM system which simplifies supervised training and
improves the overall performance using plug-level meters. Finally, in Chapter 9
concluding remarks and directions for future research are highlighted.
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2 Background

This chapter introduces the electrical power grid, general electricity metering prin-
ciples, the NILM pipeline, and machine learning. It aims for a better understanding
and serves as a reference for the upcoming chapters.

2.1 (Smart) Electricity Metering

After the contemporaneous invention of the dynamo by Wheatstone, Siemens, and
Varley in 1866-67 [24], electricity could be generated and sold in large quantities.
With lighting as one of the first and major application for electricity, it became
clear that electricity has to be measured for billing purpose (much like the amount
of gas consumed by the previously used gas lamps).

While initial electricity meters were based on simple time measurements (Gardiner,
1872), the electrochemical effect (Edison, 1881), the use of pendulums (Ayrton and
Perry, 1881), or electrical motors (Thomson, 1889), Bláthy invented the rotary-disc
meter (also known as the Ferraris meter) in 1889 [25]. The meter utilizes elec-
tromechanical induction to rotate an aluminum disc with a velocity proportional
to the product of voltage (V ) and current (I). Its working principle is nearly iden-
tical to the meters used throughout the 20th century with billions of such devices
installed worldwide [26].

However, transferring the actual energy consumption data to e.g., utility companies
used to be a labor-intensive manual process. Therefore, digital metering devices
began to successively replace electromechanical meters in the late 2000s. These
so called smart meters allow for the collection of electrical power consumption
at much more fine-grained spatial and temporal resolutions and their included or
additionally added digital communication interfaces allow to report the collected
data directly to the utility company.

As shown in Figure 2.1, an electricity meter is located at the entry-point of a
building’s or apartment’s electrical grid connection. The aggregated consumption
of all electrical consumers in the home can be captured at this location. To be
able to efficiently transmit power through long power grid lines and to easily
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(Smart) 

electricity meter

(Smart) power grid (Smart) home
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Figure 2.1: Location of (smart) electrical meters within the electrical
power grid.

transform it to different voltage levels, electrical energy is distributed as sinusoidal
Alternating Current (AC) at high-voltage levels (up to 380 kV) in electrical power
grids throughout the world. The voltage level (VRMS) at building-level and the
net frequency (fl) at which the voltage alternates depends on the country. While
e.g., the grid in the United States has 110VRMS at 60Hz, a standard of 230VRMS
at 50Hz has been established in the European power grid.
The electrical energy (W ) consumed in the time interval [t1, t2] is calculated by
integrating the Power (P (t)) in this interval as

W [t1,t2] =
∫ t2

t1
P (t) dt =

∫ t2

t1
u(t) · i(t) dt. (2.1)

Electrical energy is typically billed in kilowatt hours (kW/h). While rotary-disc
meters are typically read out manually once a year, smart meters store and send
the electricity consumption data in the order of seconds to minutes. While their
primary use case is billing consumers for the amount of electrical energy consumed,
they can also serve as data sources for smart home installations or Building Man-
agement Systems (BMS). As smart meters can either directly connect to the In-
ternet or indirectly using smart meter gateways [27], access to metered data is
ubiquitously possible. The previously unimaginable temporal resolution of smart
meters and their large penetration level, due to the sheer amount of households
they are installed in, created the foundation for electricity data analytics and will
soon provide novel energy-based services such as NILM [28].

2.2 Non-Intrusive Load Monitoring

Non-Intrusive Load Monitoring (NILM) describes the process of disaggregating a
composite electrical load into the load of each individual consumer. Compared to
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Intrusive Load Monitoring (ILM), which requires to install a dedicated electricity
meter to each consumer, NILM requires just a single electricity meter to be in-
stalled in the home’s electrical grid (such as a smart meter). The disaggregation
process can be based on heuristics, which encode a domain expert’s knowledge
or machine learning techniques. The algorithms are executed either on the me-
ter itself, or the data are sent to external entities which offer more storage and
processing capabilities.
Requiring to install and maintain only a single electricity meter presents the main
advantage of NILM compared to ILM. Since a NILM algorithm can ideally be
directly applied to smart meter data, the approach is considered to be inexpensive
as it allows to retrospectively add individual appliance consumption monitoring
using existing infrastructure.
As appliances are connected in parallel to a home’s power grid, the current drawn
by each appliance (j) sums up at the point where all parallel lines join, according
to Kirchhoff’s first law [29]. In contrast, the voltage remains constant at each
network joint. Therefore, the aggregated momentary power (Psum(t)) and thus
also the electrical energy consumption (Wsum) can be formally written as the sum
of the individual appliance power consumption. The equations are given as

Psum(t) =
N−1∑
j=0

ij(t) · u(t) =
N−1∑
j=0

Pj(t), (2.2)

W [t1,t2]
sum =

∫ t2

t1
Psum(t) dt, (2.3)

with Pj(t) being the power consumption of appliance j and N being the total
number of appliances connected to the home’s electricity grid.
Therefore, according to Huber et al. [30] the NILM problem can be formally written
as

Psum(t) =
M−1∑
i=0

Pi(t) +
K−1∑
k=0

Pk(t) + ε(t), (2.4)

with Pi(t) being the active power consumption of M appliances known to the
NILM system (either explicitly modeled or learned during a supervised training
phase) and Pk(t) being the active power consumption of appliance k from a set ofK
unknown appliances. ε(t) models additional noise of the measurement system and
is assumed to follow a normal distribution and to be small compared to the terms∑
Pi and

∑
Pk. The term ∑

Pk typically does not follow a Gaussian distribution
and accounts for a major portion of Psum(t). [30]
The goal of a NILM system is to estimate Pi(t) for each appliance i over time
while only directly measuring Psum(t). The electrical energy consumed by known
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appliance i can be calculated for a given time period according to Equation 2.1.
Therefore, some NILM systems model regression problems to directly estimate
Pi(t) (Pi(t) = fi(Psum(t), βi) + εi with Pi(t) ∈ R). Another approach is to relax
the problem into binary classifications (si(t) = fi(Psum(t)) with si(t) ∈ {0, 1}) and
to determine if appliance i is currently switched on or off. After classification,
the runtime of appliance i can be extracted (t where si(t) = 1). While runtime
information is already vital for several use-cases (e.g., AAL and human activity
recognition (HAR) [31–34]), Pi(t) can still be estimated by multiplying the runtime
with the average power consumption (P on

i ) of appliance i.
Independent whether a NILM system uses regression or classification, its general
pipeline includes the two steps (1) Data acquisition and (2) Disaggregation as
shown in Figure 2.2. Data acquisition is comprised of measuring the required at-
tributes (such as active and reactive power) and performing general pre-processing
steps while the disaggregation step is a specially designed and often individually
trained algorithm. According to e.g., [35–42] most of the NILM systems that can
be found in literature can further be categorized into event-based and event-less
approaches.

(1) Data acquisition (2) Disaggregation

Load 
profile
A

Load 
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A

Load 
profile
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Figure 2.2: General pipeline of event-less and event-based NILM sys-
tems. While event-less methods include a data acquisition and a disag-
gregation step, event-based methods additionally include event detec-
tion and event classification.

Event-less non-intrusive load monitoring:
Event-less approaches optimize an overall system state using individually trained
appliance models. As the optimization step is recalculated for each new data input,
event-less approaches typically suffer from high computational complexity and are
often only applied to low sampling rates. Popular event-less approaches are based
on Hidden Markov Model (HMM) [43–46] or deep neural networks [47–51].
Event-based non-intrusive load monitoring:
According to Anderson et al. [52] the event-based NILM process introduces two ad-
ditional sub-steps to the pipeline as depicted in Figure 2.2: (a) Event detection and
(b) Event classification. After detecting an appliance event, i.e., a state change in
the measurements, the event is classified following the pattern matching paradigm.
Features are extracted from the measurements and are fed into a classifier, which
infers the event class (i.e., the type of the event such as a specific appliance turning
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on). As the inference step is only applied to events, and events are assumed to be
rare, event-based methods are generally more efficient if only lightweight event de-
tection algorithms are applied. In Section 7.1.2, various features, which have been
handcrafted by domain experts, are presented in more detail. These characterize
either the transient profile of the event (transient features), or the signal after the
event (steady-state features). In addition, several classifiers are presented in Sec-
tion 7.1.3. More details on machine learning, including the classification problem,
can be found later in this chapter (see Section 2.4).

High- vs. Low-frequency NILM:
NILM systems can be further divided based on the temporal resolution of their
input data. Approaches applied to data with a sampling frequency smaller 50Hz
are considered as low-frequency approaches, while systems applied to data which
has been sampled faster than 1 kHz are considered as high-frequency approaches.
Armel et al. [53] and others showed that high-frequency NILM allows to identify
roughly 30% more appliances with around 25% higher accuracy albeit requiring
more processing power. If the data cannot be processed locally (e.g., directly on
the smart meter) enough bandwidth is required to transmit the data to external
data centers.

2.3 Data Acquisition

Data acquisition describes the process of measuring continuous-time, analog sig-
nals as discrete-time, digital signals which are later to be analyzed. This includes
the conversion into a measurable unit (typically voltage levels), possible amplifi-
cation or attenuation, filtering, A/D conversion, and further signal pre-processing
according to Figure 2.3.

Physical signal Transducer Signal 
conditioning

A/D 
conversion

Pre-
processing Analysis 
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x(t)

Figure 2.3: General pipeline of a data acquisition. A continuous-time
signal x(t) is converted to a discrete-time signal x[n] using a transducer,
signal conditioning, an ADC, and pre-processing.

As formally stated in Equation 2.4, the input data of a general NILM system is
the home’s aggregated power consumption over time. To measure active power,
the voltage level and current flow inside the home’s electricity grid needs to be
measured. The most common methods to measure grid line voltage levels are
voltage dividers or voltage transformers. Current flow is typically converted into a
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proportional voltage level using shunt resistors, current transformers, hall sensors,
or Rogowski coils.

Analog-to-Digital Converters (ADCs) convert these analog voltage levels into dig-
ital representations. With sequential A/D conversions, a continuous-time analog
voltage signal is, therewith, transformed into a discrete-time digital representation
of that signal. Since A/D conversion can lead to aliasing artifacts, analog anti-
aliasing filters are added to suppress frequencies above the Nyquist-Frequency
(Equation 2.5). If the sampling frequency fs is chosen twice as high as the maxi-
mum analyzed signal frequency, the Nyquist-Shannon sampling theorem holds as
shown in Equation 2.6.

fNyquist = fs

2 (2.5)

fs > 2 · fmax signal (2.6)

Important quantities of ADCs include their resolution (i.e., number of bits), Signal-
to-Noise Ratio (SNR), and maximum sampling rate. While the sampling rate
determines the maximum signal frequency that can be reconstructed from the
sampled signal according to Nyquist-Shannon, the resolution and SNR determine
the minimal and maximal detectable change in voltage.

2.3.1 Data Pre-Processing

The analog frontend can introduce an offset and a phase shift to the measured
signal which has to be removed as these may introduce errors in later stages of
the processing pipeline. Furthermore, the analog-to-digital conversion step, data
caching, or the transmission over certain communication channels raise the possi-
bility of errors and signal falsifications that need to be eliminated. Measurements
that do not represent valid number representations and infeasible values (e.g., cur-
rent flows exceeding the nominal circuit breaker limits by a large factor) are thus
removed. Unless a long sequence of wrong data are being reported, the imputa-
tion of values and the interpolation of gaps in the sampled data (e.g., by using the
impyute library [54]) are effective means to prepare the data for further analysis.

Figure 2.4 illustrates 100ms of voltage (v[n]) and current (i[n]) measurements
of three different electrical loads connected to mains voltage. The signals were
sampled at a rate of fs = 2000 Hz. A single mains cycle is highlighted in green
and refers to a full cycle of the voltage signal which sinusoidally oscillates between
325 V and −325 V (≡ 230 VRMS) with the line frequency fl = 50 Hz in European
electricity grids.
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Figure 2.4: Five main cycles of current and voltage measurements with a
sampling rate of 2000Hz. On top, a pure resistive load is shown, in the
middle, a pure reactive load is shown, while a typical load containing
resistive and reactive components is shown at the bottom. One main
cycle is exemplarily highlighted in green.

If a particular measurand is required for the analysis but not directly measured
during data acquisition, it needs to be calculated as part of the pre-processing
step. In the domain of NILM and energy data analytics, several other measurands
besides the sampled voltage and current are of interest. The corresponding for-
mulas to calculate some of these measurands are explained in the following. It is
noted that additional measurands and their corresponding formulas are introduced
in Section 7.1.2.

To simplify the calculations with AC signals, their corresponding Root Mean
Square (RMS) values are often provided. The RMS value of an AC signal is
equal to the Direct Current (DC) required to dissipate the same electrical power
in a resistive load. IRMS and VRMS can be calculated from the raw voltage and
current samples on the basis of a single main cycle (m) as

IRMS[m] =

√√√√ 1
N
·

N−1∑
n=0

i[n]2, (2.7)

VRMS[m] =

√√√√ 1
N
·

N−1∑
n=0

v[n]2. (2.8)

N is the window length calculated as N =fs/fl (with fs>fl). fs is the sampling
frequency and fl is the grid line frequency (50Hz for European countries).
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Active (P [m]), apparent (S[m]), and reactive (Q[m]) power can be calculated as

P [m] = 1
N
·

N−1∑
n=0

v[n] · i[n], (2.9)

S[m] =IRMS[m] · VRMS[m], (2.10)

Q[m] =
√
S[m]2 − P [m]2. (2.11)

A purely resistive load causes voltage and current to reverse their polarity at the
same time as shown in the top plot of Figure 2.4. At every given time instance, the
power (cf. Equation 2.1) is positive (or at least zero). For a purely reactive load,
voltage and current are phase shifted by 90 degrees and the product of voltage
and current is positive only for the first and third quarter of the a main cycle and
negative for the second and fourth quarter as shown in the second plot of Figure 2.4.
A negative value means that energy stored in capacitors and/or inductors is flowing
back from the load. The third plot in Figure 2.4 highlights a typical load with
resistive and reactive components. Using Equation 2.9 and Equation 2.11, the
active and reactive power can be calculated for a given load. These characterize
the loads active (resistive) and reactive (capacitive and inductive) components.
The apparent power is the product of the RMS values of the current and voltage
signal.
The phase shift between voltage and current (cos Φ) can be calculated as

cos Φ[m] =P [m]
S[m] . (2.12)

The consumed electrical energy can be calculated for each main cycle m or a time
period of M main cycles as

W [m] =P [m] · 1
fl · 3600 , (2.13)

Wtotal =
M∑

m=0
W [m]. (2.14)

The electrical resistance R and its reciprocal the admittance Y are defines as

R[m] =VRMS[m]
IRMS[m] , (2.15)

Y [m] = 1
R[m] . (2.16)
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If the temporal resolution (T =1/fs) at which these measures are sampled during
data acquisition does not suite the analysis, resampling can be applied. Reducing
the rate at which values are being made available, i.e., downsampling data, is
usually trivial and computationally lightweight as long as the original data has
undergone low-pass filtering to avoid aliasing artifacts. Commonly used methods
to downsample data include subsampling, averaging, and interpolation [55, 56].
Conversely, increasing the temporal resolution of data is not as trivial, but may
be required if the data are reported at very low sampling rates. Interpolation
techniques like Super-Resolution [57] have shown to achieve good performance on
electricity data.
Since the sampling rate mainly determines the amount of data and, therefore,
the required bandwidth of the communication channel (in case the data needs
to be transmitted) and also the system’s processing power, finding the optimal
sampling rates for various electricity load analysis algorithms has been investigated
in numerous works, including [58–61].

2.4 Machine Learning

Machine learning algorithms use observations from the outside world to generate
models that represent a generalized form of the underlying learning task. They
are able to find patterns in the data which are then utilized to infer informa-
tion for yet unseen data. Generally, it is distinguished between classification and
regression problems. A classification problem attempts to find a mapping from
the input data to a discrete set of values, typically a string representation aka
label. An example is predicting whether a picture shows a cat or a dog. A re-
gression problem attempts to find a mapping to a continuous value, e.g., the price
of a house. The corresponding machine learning models are called classifiers and
regressors. Popular application areas of and competitions in machine learning in-
clude the detection of objects or creatures in images [62] and the recognition of
hand-written numbers [63]. Classical machine learning algorithms require dedi-
cated data pre-processing and feature extraction steps that are typically designed
by human experts with specific domain knowledge. Deep learning refers to a kind
of a machine learning algorithms that do not require the manual design of a fea-
ture extraction step as important features are learned automatically from the raw
input data. Machine learning methods can be further categorized into supervised,
unsupervised, and semi-supervised methods based on the data they require dur-
ing model training. Supervised techniques require data with the corresponding
ground truth called labels (i.e., the data that should be inferred) to adjust the
model parameters during training. This requires that labeled data e.g., marked
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appliance on-phases are available. Generating these labels may require additional
sensors or extensive manual labeling by a human expert. Conversely, unsupervised
techniques do not require labels and capture all model parameters based on the
target data, which, however, usually results in a lower performance compared to
supervised methods. Semi-supervised methods combine a small portion of labeled
training data with a typically larger portion of unlabeled data. These methods are
mainly beneficial if generating labeled data is a tedious process, while generating
unlabeled data is easy. Often, methods are also referred to as semi-supervised if
they are trained to generalize their models on data from a certain distribution
while the target data are of a different distribution. Related to NILM, this refers
to a system being trained on one or multiple homes while being applied on data
of a different home which has not been included during system training.

2.5 Model Evaluation

The evaluation of a supervised estimator such as a regressor or classifier is typically
performed on data that includes the corresponding ground truth. To compare
algorithms against each other, publicly available datasets are used which consist
of a set of input data (X) and the corresponding ground truth (Y ). An entry
(x, y) in a dataset is called a sample. If an algorithm should be evaluated on the
same dataset it has been trained on, the performance has to be determined on a
portion of the dataset that has not been used for training. This is achieved by
initially performing a train-test split on the data as depicted in Figure 2.5.

train-test split
factor 80/20
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Xtest, Ytest

Figure 2.5: Exemplary train-test split of a dataset.

The training set (Xtrain, Ytrain) is used to select an appropriate machine learning
model and to optimize its parameters, while the test set (Xtest, Ytest) should only be
used once to determine the performance of the final model fitted on the complete
training set. A typical train-test split ratio is 80 to 20 % (often written as 80/20).
Using the test set multiple times can lead to overfitting. Overfitting denotes that
a model has been fitted too close to the input data. While this can lead to perfect
results on the test set, it will typical fail on yet unseen data as it prevents the
generalization performance of the model.
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2.5 Model Evaluation

To decide for an appropriate model (aka model selection), a technique called Cross
Validation (CV) can be applied which further splits the training set into comple-
mentary splits used for training and for model validation (Xval, Yval). The final
model is then decided upon the best performing model on the validation set as
depicted in Figure 2.6.
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Figure 2.6: Model selection using CV with a train-validation-test split.

Fixing the validation set prevents that the complete training set can be exploited
during training and may also lead to overfitting. This means that the selection
of the model is biased by the performance on the specific validation set. Hence,
a different model may have been selected for a different validation split. To com-
pensate this, CV can be applied in several rounds using a different validation split
each round. The validation results of all rounds are then combined to provide
a more reliable estimate of the model’s performance. Several CV methods exist
which mainly differ depending on how the splits are performed. Arguably the most
frequently used CV method is k-fold CV, which splits the data into k equally sized
disjoint splits. k − 1 splits are used to train the model and the remaining split
is used for validation. This is repeated k times, each time choosing a different
validation set from the k splits. The results of each round are finally averaged
to estimate the overall model performance. 5-fold CV is exemplarily shown in
Figure 2.7. The main benefit of this method is that all samples in the data are
used for training and validation.

The CV splits can also be performed specifically to test for a certain generalization
capability of the models. For instance, if a NILM dataset includes electricity data
of different homes, the splits can be performed so that each includes data of a
single home only. By averaging the performances over the different CV rounds,
the model’s ability to generalize across homes is tested.

In many classification problems, some classes naturally occur more often. An
example of such an imbalanced classification problem is the detection of cancer.
Naturally, there are significantly more people without cancer (majority class) than
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Figure 2.7: k-fold cross validation exemplarily illustrated for k = 5.

with cancer (minority class). Datasets for imbalanced classification typically re-
flect the specific imbalance (e.g., by including 95% cancer-free, and only 5% can-
cer samples). Typically, a correct classification of the majority class is more or
at least equally important than of the minority class (for a binary classification).
To compensate for this, various techniques can be applied to balance the class
distribution of the original dataset. Examples of these techniques include under-
sampling of the majority class, oversampling (i.e., repetition) of the minority class,
or more advanced methods which synthetically generate new samples for the mi-
nority class (e.g., ADASYN [64] or SMOTE [65]). However, this is typically not
required if the data only contains a slight imbalance which represents a ratio of up
to 1:4 [66]. Nevertheless, the corresponding CV splits should be performed strati-
fied to maintain the same class distribution for each split. Randomly splitting the
data can shift this ratio (or even cause splits without a certain class), especially if
the number of samples per class is small. This can result in a large bias towards
the majority class.
Depending on the used machine learning model, some parameters are not trained
during the learning process. These are called hyperparameter and can be fixed by
the user or tuned during Hyperparameter Optimization (HPO). Since hyperpa-
rameters are often of real-valued or unbound space and some algorithms require to
tune multiple of these (e.g., around 20 for XGBoost [67]), different techniques can
be applied to reduce the search space including random search or Bayesian opti-
mization [68]. It is also possible to define a set of values for each hyperparameter
and test all combinations of these values. This technique is called exhaustive grid
search.
Depending on the estimator type (regressor or classifier) different performance
metrics are used. Regressors can e.g., be evaluated using the Mean-Absolute Error
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(MAE) or Root-Mean-Square Error (RMSE) metric. These are defined as

MAE =
∑T

t=0 |ŷt − yt|
T

, (2.17)

RMSE =

√∑T
t=0 (ŷt − yt)2

T
. (2.18)

ŷt is the predicted value at time t, yt is the actual value, and T is the time period
over which the metrics are calculated.
In contrast, classifiers are typically evaluated based on several metrics that can be
calculated from a confusion matrix. The confusion matrix includes the inferred
numbers of True Positives (TP), True Negatives (TN), False Positives (FP), and
False Negatives (FN) for each class. Typical metrics that can be derived from
these numbers are Accuracy (Acc), Precision (Pre), Recall (Rec), and F1-score.
These are calculated as

Acc = TP + TN

TP + TN + FP + FN
, (2.19)

Pre = TP

TP + FP
, (2.20)

Rec = TP

TP + FN
, (2.21)

F1 = TP

TP + 0.5 · (FP + FN) . (2.22)

Since the F1-score balances precision and recall in a single score, it is often used
(1) to state the overall performance of the classifier or (2) to tune the model
during model selection (3) or during HPO. All classification metrics are calculated
on a per-class basis. Whenever a single score is required, the results of all classes
have to be combined. This can be achieved by e.g., calculating the corresponding
macro- or micro-average of the metric. For the micro-average the TP, TN, FP,
and FN results of the different classes are summed up before the corresponding
metric is calculated. For the macro-average, the metric is calculated for each
class and afterwards the overall metric is calculated as the unweighted average.
The micro-average should be preferred if the overall classification performance
should be reported, whereas the macro-average should be preferred if each class is
considered equally important. It is further noted that the macro-average does not
account for class imbalances. The performance of the minority and majority class
contribute equally important to the metric using macro-averaging.
Depending on the actual use case, further optimization to these metrics or com-
pletely different metrics are preferable. According to Figure 2.2, a traditional
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NILM-system represents a time-series regression problem (disaggregation step).
Metrics besides RMSE that have been used in related works include error in to-
tal energy assigned, fraction of total energy assigned correctly, normalized error in
assigned power, mean absolute error, or relative error in total energy [69, 70]. In
case of an event-based NILM-system two classification sub-problems are added:
event detection and event classification. While event classification seeks to find
the corresponding label for a given event and a known set of labels, event detection
is a binary classification problem, i.e., it is determined if an event has happened in
a certain time window or not. Both classification problems are typically evaluated
based on accuracy, precision, recall, and F1-score [69].
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3 Related Work

This chapter presents state-of-the-art work regarding Data Acquisition Systems
(DAQs) which can be used to collect and process long-term electricity datasets.
By introducing several existing datasets, their benefits and drawbacks, the re-
quirements and challenges for a DAQ, best suited for high-frequency long-term
recordings, are highlighted. Afterwards, related work in the areas of appliance
event detection and dataset labeling is presented. Several techniques to manu-
ally or automatically label electricity data are shown. Finally, works regarding
supervised appliance event classification are listed.

3.1 Data Acquisition Systems

Kolter and Johnson [17] introduced one of the first recording systems suited to
record high-frequency data of a home’s aggregated electricity consumption. Their
systems can further record low-frequency measurements of individual appliances
and was introduced in 2011. To record aggregated data, the system uses an os-
cilloscope probe (Pico TA041 [71]) to measure voltage of a single phase only and
Current Transformers (CTs) with a burden resistor to convert the mains current
flow into a measurable voltage level. Both current and voltage signals are fed into
NI-9239 ADCs from National Instruments [72]. The readings are collected by
a recording laptop at 15 kHz with a resolution of 24-bit. Off-the-shelf plug-level
meters developed by Enmetric [73] are used to record individual appliance data.
Several of these connect wirelessly to a bridge which is connected to the home’s
Internet network. Active power measurements of each outlet are sent to a central
server at a rate of 1Hz. Sub-circuit-level data of certain circuit breakers (e.g., of
a hardwired lighting) are acquired using CTs connected to an off-the-shelf elec-
tricity meter (eMonitor by Powerhouse Dynamics [74]) with a rate of around one
measurement every three seconds. Voltage data are not measured and assumed to
be at fixed grid level. Kolter and Johnson’s system has been used to record the
REDD [17] dataset.
As voltage and current waveforms share lots of similarities with audio data, Kelly
and Knottenbelt [75] proposed a system which uses off-the-shelf USB sound cards
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with stereo line input in 2015. AC-AC transformer are used to scale down the
voltage and split-core CT are used to measure current. The sound cards theoreti-
cally allow to sample data up to 44.1 kHz at 32-bit. However, data are downsam-
pled to 16 kHz and padded to 24-bit to significantly reduce the storage require-
ments. Appliance-level data are sampled using off-the-shelf 433MHz electricity
meter plugs (Eco Manager Transmitter Plugs developed by Current Cost [76])
paired with a self-developed base station. Appliances directly connected to the
mains are metered using current clamp meters (Current Cost transmitter [77])
which are read out via the same base station. Due to RF collisions when wire-
lessly polling for or receiving data, only a comparable low sampling rate of one
measurement each six seconds is achieved. Kelly and Knottenbelt’s system has
been used to record the UK-DALE [75] dataset.

Beckel et al. [47] proposed to use an off-the-shelf smart electricity meter and off-the-
shelf smart plugs in 2014. Aggregated data are sampled at 1Hz from the smart
meter (E750 from Landis+Gyr [78]) via its SyM2 interface and includes several
electricity-related metrics such as active power, RMS voltage and current, and the
phase shifts of all three supply legs. Active power measurements of individual
appliances are sampled using smart plugs (Plugwise [79]) at around 1Hz. The
actual sampling rate varies due to a sequential readout, but the data are resampled
to 1Hz. The system by Beckel et al. has been used to record the ECO [47] dataset.

Instead of using off-the-shelf solutions with their potential drawbacks such as low
sampling rates or proprietary protocols, in 2018, Kriechbaumer and Jacobsen [21]
proposed a recording setup comprised of a custom-built aggregated meter called
CLEAR [80] and multiple custom-built power strip meters called MEDAL [81].
CLEAR uses three hall effect CTs (HAL 50-S from LEM [82]) to sense current on
all three supply legs and three AC-AC transformers (VB 3,2/1/6 by BLOCK [83])
to scale down the mains voltage levels. A 16-bit bipolar ADC (Analog Devices
AD7656A [84]) is used to sense the six channels (three voltage and three current
channels) with up to 250 kHz and a SNR of 87.33 dB. To handle the massive
amount of data, a Field Programmable Gate Array (FPGA) (Lattice XO2 7000-
HC [85]) is used in addition to a single-board PC (LattePanda [86]). The latter
equips the data with a timestamp, compresses, stores, and sends them to a sink via
a network connection. MEDAL units share the same overall structure as CLEAR.
Each MEDAL unit uses a single AC-AC transformer to scale down the mains volt-
age level and six individual hall effect sensors to measure current flow through the
six outlets of the power strip. The input signals are converted using seven indepen-
dent unipolar 12-bit ADCs (MCP3201 by Microchip Technology [87]). Data are
gathered from the ADCs over a Serial Peripheral Interface (SPI) interface using
a microcontroller (ATmega324PA by Microchip Technology [88]). The data are
forwarded over a USB serial interface to a single-board PC (Raspberry Pi 3 [89]).
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On the PC data are again equipped with timestamps, compressed, stored, and sent
to a sink over network. Their setup can sample aggregated data up to 250 kHz,
individual appliance data up to 50 kHz, and is robust against network dropouts,
which has been proven by recording the BLOND [21] dataset.

3.2 Existing Datasets

Several publicly available datasets, some of which were recorded using the DAQs
presented in Section 3.1, are detailed and compared in Table 3.1.

Table 3.1: Comparison of different electricity datasets that already
have been used to evaluate NILM algorithms. The systems have been
recorded in a residential (res.), office, or laboratory (lab.) environment.

Dataset Domain Homes Aggregated Appliance Appli- Duration Total
resolution resolution ances (days) size

Dataporta [90] res. 669 1/60Hz 1/60Hz 0-118 30 1.1GB
AMPds2 [16] res. 1 1/60Hz 1/60Hz 21 730 2.3GB
iAWE [91] res. 1 1Hz 1–1/6Hz 19 73 29.2GB
RAE [92] res. 2 1Hz 1Hz 24 59+72 3.3GB
ECO [47] res. 6 1Hz ≈1Hz 7–12 138–245b 12.5GB
FIRED* [N20] res. 1 8 kHz 2 kHz 68 101 3.2TB
SustDataED [93] res. 1 12.8 kHz 1/2Hz 17 10 ≈30GB
BLUED [94] res. 1 12 kHz -c 43 8 53GB
REDD [17] res. 6 15 kHz ≈1/3Hz 26 5–19b 1.7GB
UK-DALE [75] res. 5 16 kHz 1/6Hz 52 38–1580b ≈10TB
BLOND-50 [21] office 1 50 kHz 6.4 kHz 53 213 15.3TB
BLOND-250 [21] office 1 250 kHz 50 kHz 53 50 23.4TB
WHITEDd [22] lab. - - 44.1 kHz 110 - 384MB
PLAID e[23] lab. - - 30 kHz 235 - 8.2GB

* The FIRED dataset is a contribution of this thesis and will be introduced in Chapter 6.
a small version used in NILMTK [69]
b missing data removed
c state transitions of each appliance are labeled
d includes ten recordings of 5 s length for each individual appliance
e includes 1094 recordings in total; length between 2–10 s

The Reference Energy Disaggregation Dataset (REDD) [17] was introduced by
Kolter and Johnson in 2011. The authors recorded the whole house electricity
consumption of six different homes in the US for 25 to 28 days. High-frequency
mains data (15 kHz voltage and current waveforms) of the complete recording
duration are, however, only available as compressed files generated with a custom
lossy compression. Socket and sub-circuit-level data are only available as unevenly
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sampled low-frequency data of approximately 1/3Hz. Furthermore, the data shows
gaps of several days.
The UK Domestic Appliance-Level Electricity (UK-DALE) dataset [75] introduced
by Kelly and Knottenbelt in 2015 includes the whole house electricity demand
of five homes in the UK. In particular, three of the houses (1, 2, and 5) have
been recorded at a sampling rate of 16 kHz. House 1 was recorded for 1629 days,
resulting in the longest whole house recording of any found dataset. Nevertheless,
individual appliance data was sampled with a comparably low sampling rate of
around 1/6Hz and also contains several gaps.
The Electricity Consumption and Occupancy (ECO) dataset [47] was introduced
by Beckel et al. in 2014 and consists of 1Hz aggregated and individual appliance
measurements of six homes in Switzerland. Data dropouts (over 900 days of data
are missing in total), a low individual appliance coverage, and especially the low
sampling rate makes it difficult to use the dataset for the evaluation of event-based
NILM and activity recognition approaches.
The Almanac of Minutely Power dataset (AMPds) [16] was introduced by Makonin
et al. in 2013. It features electricity, water, and gas readings at one minute resolu-
tion of a residential building in Canada. The authors used an off-the-shelf electric-
ity meter (Powerscout18 by DENT [95]) to record the whole house consumption
and the consumption at individual circuit breaker level over a time period of two
years. Data of the exact same and one additional home are further available at
1Hz resolution in the Rainforest Automation Energy (RAE) dataset [92] which
was introduced by the same authors in 2018. RAE covers 72 days of electricity
data and has been recorded using the same DAQ as AMPds. Still, the data have
been sampled at a comparably low sampling frequency (cf. Table 3.1).
In the non-residential domain, Kriechbaumer and Jacobsen proposed the Building-
Level Office eNvironment Dataset (BLOND) [21] in 2018. They recorded aggre-
gated and appliance-level data of an office building in Germany over a time period
of around 260 days with up to 250 kHz. Their dataset is split into two measure-
ment series. BLOND-50 features 50 kHz aggregated and 6.4 kHz appliance-level
data recorded over 213 days, and BLOND-250 features 250 kHz aggregated and
50 kHz appliance-level data recorded over 50 days. For both sets, additional 1Hz
power data has been derived from the voltage and current waveforms. However,
downloading the dataset requires to store approximately 40TB of data. Moreover,
the authors have not used their recording system to generate a residential dataset
yet.
The Building-Level fUlly-labeled dataset for Electricity Disaggregation
(BLUED) [94] introduced by Anderson et al. in 2012 was specifically recorded
with event-detection in mind. The authors recorded eight days of voltage and cur-
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rent measurements of a home at aggregated level with a resolution of 16-bit and a
sampling rate of 12 kHz. Significant power changes (> 30 W) were labeled either
manually, using additional sensors, or switchable sockets. While including valu-
able information about appliance events, the datasets lacks individual appliance
electricity recordings.

It is noted that the list of datasets (summarized in Table 3.1) is not trying to be
complete. It rather highlights their differences in terms of the number of included
homes, covered appliances, data resolution, and recording duration. As, moreover,
each dataset is typically stored in a different (file) format, working with them
requires to develop a lot of boilerplate-code in order to later use the datasets to
benchmark NILM systems.

Summarized, most existing electricity datasets provide comprehensive electricity
measurements which allow to identify user behavior over longer time periods. This
includes ground truth data, i.e., individual appliance consumption data or - in case
of BLUED - the timestamps of appliance events and additional information about
the events, allowing to train supervised machine learning algorithms. Further-
more, aggregated appliance recordings of higher frequencies are provided in many
datasets which allow to extract appliance features such as higher signal harmonics.
However, only the BLOND dataset, which has been recorded in an office environ-
ment, features simultaneous high-frequency aggregated and individual appliance
recordings. Such data can be used to extract appliance events (as available for
BLUED) which can then be utilized as ground truth data to train and evaluate
event-based NILM systems. The lack of such a datasets in the residential domain
was an additional motivation to record the FIRED dataset which will be presented
in Chapter 6.

3.3 Appliance Event Detection

Event-based NILM methods as well as many other use cases for electricity data
rely on the analysis of user-induced or self-induced events, i.e., when electrical
appliances are being switched on or off, or their mode of operation changes. Events
are a subset of all signal transients. Transients describe all rapid changes in the
power consumption while events only refer to user-relevant changes. User-relevance
has, however, not been defined consistently in related works.

In Table 3.2, the numbers of user-relevant events are summarized which have been
found in a selection of publicly available electricity datasets. The average of the
tabulated values ranges at approximately 275 events per day, i.e., approximately
one event every six minutes.
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Event detection relies on the concept of the Switch Continuity Principle (SCP)
introduced by Hart [96] in 1992 and confirmed to still be valid by Makonin [97]
in 2016. The SCP states that at a specific point in time only a single event,
i.e., appliance state change, occurs and that, overall, the number of events is small
compared to the number of recorded samples in the signal. In other words, events
can be assumed to be anomalies in the signal, allowing to utilize a range of known
methods for their detection [52].

Table 3.2: Summary of the number of events detected in publicly re-
leased electricity datasets.

Dataset # Events Timespan Source of event count
UK-DALE [75] 5440 7 days Pereira and Nunes [98]
REDD [17] 1944 8 days Völker et al. [W20]
REDD [17] 1258 7 days Pereira and Nunes [99]
BLUED [94] 2335 8 days Anderson et al. [94]
FIRED [N20] 4379 14 days Völker et al. [J21a]
BLOND-50 [21] 3310 30 days Kahl et al. [100]
AMPds [16] 651 7 days Pereira and Nunes [99]
SustDataED [93] 2196 11 days Pereira et al. [101]

In practice, event detection algorithms span the range from computationally light-
weight solutions (e.g., using thresholds between successive power samples [18, 96,
102]) to more complex approaches. Examples of the latter include the application
of probabilistic models [C19a, 39, 103] or advanced filters in order to suppress mi-
nor fluctuations while emphasizing actual events [104–106]. An overview of these
algorithms is provided in Section 3.3.2.

3.3.1 Event Definition

Before discussing related work on various event detection techniques, it should be
emphasized again that no uniform definition for an appliance event has yet been
agreed upon.
Anderson et al. [52] defined an event as a change in power of more than 30W for
a certain amount of time. In turn, Jin et al. [107] stated an event to be a tran-
sition between the on and off state of an appliances while Girmay and Camarda
[41] informally state an event as an active region of an appliance without explic-
itly stating what the authors mean by active. Kahl defined events from a more
consumer-centric perspective as “appliance ON / OFF events that have a causal
origin (i.e., from user interaction or physical appliance state changes) [...]. In
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practice, the consumer might be interested in the fridge or washing machine spin
cycles. The temporarily increased energy consumption from a laptop during an
irregular 5 minute lasting operating system update [...] is only of minor interest to
the consumer.” [108] As consumer preference is subjective to each individual per-
son, in this work, it is referred to events according to the following more general
definition of Wild et al.:

“An event is a transition from one steady state to another steady state
which definitely differs from the previous one [... or] a so-called active
section where the signal is somehow deviating from the previous steady
state.” [109]

The definition allows to include several different events of the same appliance such
as state changes of multi-state appliances (e.g., a desktop fan with multiple speed
settings). It is not limited to appliance’ on/active phases such as the definition
by e.g., Kahl but also specifically excludes simple signal fluctuations or regions of
variable load.

3.3.2 Event Detection Algorithms

According to Anderson et al. [52], event detectors can be split into three categories:
(1) Expert Heuristics, (2) Probabilistic Models, and (3) Matched-Filters.
Expert Heuristics:
An expert heuristics describes a detector for which a set of rule-based parameters
are fixed by domain experts using prior knowledge of the data.
Hart [96] used a simple predefined power threshold based on the absolute difference
of two adjacent samples to mark an event. This concept has been enhanced by
Weiss et al. [18], who used a threshold-based setup on the normalized apparent
power (S ′n = (230 V/VRMS)2 ·S) which is more resilient against voltage fluctuations
than the standard apparent power (cf. Equation 2.10). The signal was further
smoothed by the combination of a mean and median filter to remove unwanted
signal noise. While a Gaussian-weighted average filter was found to be superior in
suppressing noise, it adds quadratic complexity and was, therefore, rejected.
Meehan et al. [102] developed an event detector based on the 1Hz RMS current
signal. They defined two criteria that need to be fulfilled in order to mark an event
as such. First, the considered RMS value needs to be greater than the value four
seconds earlier plus a threshold value (IRMS(tnow) > IRMS(tnow − 4s) + I∆min).
Second, the last event must have occurred at least three seconds ago. The last
criterion adds the limitation that real events which happen within three seconds
will not be identified correctly.
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Probabilistic Models:
Probabilistic models use statistical metrics such as mean and variance to estimate
the probability that an event has occurred at a certain point in time.
Luo et al. [103] evolved the General Likelihood Ratio (GLR) test originally pro-
posed by Basseville and Nikiforov [110], which calculates a likelihood signal using
the logarithm of the ratio between the probability distributions before and after a
mean change. Their method is based on sliding windows and requires to optimize
four parameters depending on the underlying data, including the length of the
windows and a detection threshold. The algorithm has been slightly adapted by
other researchers. Berges et al. [111] added a voting scheme to identify the exact
point of an event from the likelihood signal. Anderson et al. [52] added a cleaning
element and used a slightly different voting method, while Pereira [39] added more
sophisticated voting methods.
Jin et al. [107] introduced the Goodness-of-Fit (GOF) measure for the problem of
event detection which uses a χ2 test to identify if data, i.e., a window of a potential
event, have originated from a given probability distribution.
Trung et al. [104] used a Cumulative SUM (CUSUM) filter to clean the power
signal. Thresholds are then used to detect the starting and end point of a transient.
Wild et al. [109] applied the Kernel Fisher Discriminant Analysis (KFDA) on
the first eleven odd current harmonics. Their method uses adaptive thresholds to
identify active and steady-state signal regions. These are afterwards post-processed
and checked for plausibility by requiring active regions to be at least of the same
length as the detection windows and above a certain adaptive threshold level. One
drawback of this approach is that it is computational expensive and requires access
to the high-frequency current signal.
Azzini et al. [112] proposed the window with margins method, which uses a sliding
window. Only the window’s first and last m samples are used and the difference
in mean of these two regions is calculated. If this difference exceeds a certain
threshold, a fine search is conducted to find the exact sample of the event. However,
the fine search is not detailed any further. A second, larger window with margin
is afterwards utilized to verify the event. To reduce the computational complexity
of their method, the authors proposed to replace the sliding window by a simple
threshold test on the signal’s derivative.
Further methods based on the change of mean scheme mainly differ by the used
data filtering strategy or the used features. Berriri et al. [113] employed the ef-
fective residuals, while Cox et al. [106] made use of the spectral envelope of the
first and third harmonic of the voltage signal. De Baets et al. [105] used spectral
components which have been smoothed by an inverse Hann window in the Cepstral
domain.
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Matched-Filters:
Matched-filter approaches correlate a mask, i.e., a known signal of the appliance
event, which has been recorded in advance, with the examined signal to detect a
correlation with the mask and, thus, the presence of an event.

In [114], Leeb et al. proposed an event detector which matches known start-up
current events to the aggregated signal. This is achieved by applying two hardware
transversal filters which identify shape and amplitude matches. A certain threshold
tolerance is set, since a perfect match is unlikely in noisy environments.

Zheng et al. [115] proposed an event detector based on Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN). The clustering algorithm is applied
to a moving window. If an event is present within the window, two found clusters
reveal two steady states. This indicates that a transition (aka event) between
these steady states must be present within the window. The values in the tran-
sient intervals are regarded as outliers by the algorithm and do not form separate
clusters. In addition to the timestamp of each event, their method, therewith, also
reveals the average steady-states values before and after the event. They further
state that their detector is invariant to a certain amount of noise, longer transient
intervals, and can detect small power changes as well.

Other Methods:
More recently, Jorde et al. [116] proposed an unsupervised event detector based
on the CUSUM which serves as the input of a bidirectional recurrent denoising
autoencoder. An autoencoder is an Artificial Neural Network (ANN) comprised of
a set of encoder and decoder layers. The goal of the autoencoder is to reproduce
the input data as close as possible while transferring the data through a layer with
significantly less neurons, preserving only the most relevant features of the data.
The approach by Jorde et al. outperformed other state-of-the-art event detectors
based on GOF and DBSCAN on the BLUED and BLOND datasets.

Kahl et al. [117] proposed a multivariate event detector, which uses explicitly
labeled events and non-events as well as implicit non-events. The latter are selected
randomly from data between known events. In multiple adaptive training runs,
false positive events are continuously added to the non-event class, making the
class more heterogeneous each iteration.

For a recent and comprehensive comparison of multiple event detectors, the reader
is referred to Houidi et al. [118]. The authors found that detectors which are based
on either the CUSUM or the GLR are amongst the best performing algorithms.

Since appliance event detection methods rely on the validity of the SCP, it seems
obvious that higher sampling rates are beneficial for the performance of most event
detectors. If the sampling rate is low (e.g., one sample every 6 s such as in the
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individual appliance data of the UK-DALE dataset [75]), it cannot be assumed
that the SCP holds as multiple appliances state changes may occur between two
adjacent samples. The higher the sampling rate of the ground truth and the data
itself, the more samples can be used to detect and classify events when they happen
in close temporal proximity.

The BLOND dataset with its very high sampling rate of 250 kHz allows to even
identify the individual spikes of different SMPS-powered appliances within a single
mains period [119]. This, however, comes with the drawback of a huge amount of
data which needs to be processed and stored (see Table 7.2).

3.4 Appliance Classification

Appliance classification, sometimes referred to as appliance identification or event
classification (cf. Figure 2.2), follows the pattern recognition paradigm and can
be approached using machine learning methods. Features, which are typically
handcrafted by domain experts, are extracted from each event and are fed into
a classifier which outputs more details about an event (e.g., a specific appliance
turning on). As the inference step is only applied to each new event and events
are typically rare (cf. SCP [96]), event-based NILM systems are typically com-
putationally less expensive compared to event-less approaches which perform the
inference step for each new sample.

3.4.1 Features

Over the years, several handcrafted features have been introduced by various re-
searchers for the task of appliance classification.

G. W. Hart’s first prototype [96] relied on low-frequency active (P ) and reactive
(Q) power measurements. If a change of active power is observed, the relative
changes for P and Q are mapped onto a PQ-plane and matched to previously
extracted tuples of known appliances. Even if this simple prototype already per-
formed quite well, Hart noted that further features such as harmonics need to be
considered for appliances that are mapped to the same cluster in the PQ-plane.
Furthermore, the approach requires an intrusive and preceding training phase in
which all appliances need to be switched on and off multiple times.

In 2000, Chan et al. [120] suggested to use a discrete wavelet transform to capture
harmonic signal components. They found that typical non-linear loads (they used
a PC, a fluorescent light, and a dimmer) can be distinguished quite well by using
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a five-level wavelet decomposition. Furthermore, their method is robust to noisy
environments as all level-1 wavelet coefficients (which represent higher frequencies)
are rejected.
To distinguish appliances which show similar characteristics for traditional power
metrics such as active power or frequency components, Lam et al. [121] introduced
a two-dimensional form of a load signature (i.e., a unique appliance fingerprint),
called the V-I Trajectory (VIT). The VIT incorporates the load signature of voltage
and current into a two-dimensional shape feature. This shape was observed to be
unique for different appliances even if they are of the same or similar type (e.g., two
televisions or a television and a monitor). This high discriminative power has
likewise been proven by other researchers such as [117, 122, 123].
Yang et al. [124] suggested the Total Harmonic Distortion (THD) which is the
ratio of the accumulated sum of all harmonic frequency components fi related to
the fundamental frequency f0. They further stated that a steady-state analysis
is not sufficient to detect concurrently running appliances and suggested to fur-
ther research the combination of steady-state and transient features (i.e., features
derived from the steady-state and the transient portion of the event) to improve
recognition accuracy.
Gupta et al. [125] followed a different approach by analyzing Electromagnetic
Interference (EMI) in the voltage signal up to 500 kHz. EMI are generated by
interfering external sources (the appliances in this context) caused by electromag-
netic induction. Especially appliances powered by SMPS can be distinguished well
using their approach. Since only the voltage signal is analyzed, linear loads which
do not induce EMI are hard or impossible to recognize solely using EMI analy-
sis. Furthermore, EMI induced by appliances which are not located in the home
(e.g., appliances of a neighbor) are also visible and might adulterate the system’s
performance.
Gao et al. [126] tested several classifiers with several features including the VIT
converted into a binary image. This laid the foundation for the successful applica-
tion of Convolutional Neural Network (CNN) based image classification algorithms
on such binary VIT images by e.g De Baets et al. [127]. The results by Gao et
al., however, also highlight, that a combination of several features from differ-
ent domains (such as statistics, electrical engineering, or speech recognition) will
potentially lead to significant performance gains.
Surveys by Liang et al. [128], Kahl et al. [117], or Sadeghianpourhamami et al.
[129] offer a comprehensive listing of features used for appliance classification.
Kahl et al. [117] evaluated 36 features in a standalone feature analysis as well
as their combination using a feature forward selection technique. This technique
constructs the best performing feature set iteratively by including the next feature
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into the existing set that shows the best performance amongst all possible com-
binations until the performance cannot be increased anymore. The authors found
that across all datasets used, the phase angle difference between voltage and cur-
rent (cos Φ) was the best scalar feature (F1 =0.49) and Current Over Time (COT)
achieved the best multi-dimensional feature performance (F1 =0.8). The best fea-
ture combination differed depending on the dataset and could not be generally
determined.

Summarized, standard electrical measurements such as active power, features
which stem from feature engineering such as VIT, and frequency domain features
such as signal harmonics are promising candidates for NILM systems. While EMI
has shown promising results, it requires expensive data acquisition hardware and
huge processing capabilities which cannot be provided by existing smart meter
infrastructure.

3.4.2 Algorithms

Different classification algorithms have been evaluated for the task of appliance
classification such as Random Forests (RFs) [129–131], Support Vector Machines
(SVMs) [19], k-Nearest Neighbour (kNN) [19, 131, 132], and more recently Arti-
ficial Neural Networks (ANNs) [127, 130, 133]. Several of them have been added
as benchmark algorithms to the NILMTK framework [69]. NILMTK is a test-bed
for NILM and allows to compare and evaluate low-frequency NILM methods on
different datasets. However, support for high-frequency methods has not been
established yet.

Hart’s initial prototype [134] uses clustering techniques to match pairs of on and
off events based on the measured active and reactive power. During supervised
training, a user has to provide the appliance names for the detected clusters.
Hart’s method has been included as a benchmark algorithm in the NILMTK frame-
work [69].

Kolter and Jaakkola [44] explored the use of Factorial Hidden Markov Models (FH-
MMs) for NILM. They adapted a standard additive FHMM by using a difference
signal, by including a mixture component to account for non-modeled observations,
and by allowing only a single hidden state to change at each time step. Their algo-
rithm showed promising results on the REDD dataset with precision/recall scores
of up to 87.2%/60.3%. Zhong et al. [135] adapted the approach and added explicit
domain knowledge into the FHMM.

Kramer et al. [136] compared plain kNN, SVM, and Decision Tree (DT) classifiers
to bagging ensembles, such as RF or the combination of kNN and SVM. Ensembles
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combine the inferences of multiple learners via averaging. The authors found that
such ensembles tend to perform slightly better, especially as the size of the training
set increases.
Kelly and Knottenbelt [70] introduced one of the first works in which neural net-
works are applied to NILM in 2015. They compared three architectures. One
based on Recurrent Neural Network (RNN), a denoising autoencoder, and a net-
work which lays rectangles over appliance usage periods. The height of the rect-
angle corresponds to the estimated average power consumption of the appliance.
They found that the denoising autoencoder and the rectangles architectures per-
form well, especially on unseen houses with up to 99% of correctly assigned energy
(cf. Section 2.5).
Jorde et al. [133] proposed the first approach that applied deep neural networks to
raw high-frequency measurements. In particular, the authors used data from the
WHITED [22] (44.1 kHz) and PLAID [23] (30 kHz) datasets (cf. Table 3.1). Their
method uses data augmentation techniques based on phase shift and half-phase
flip to increase the training set by a factor of ten. Several binary deep CNN are
trained for each appliance and are combined in a one-vs-rest strategy. A perfect
F1-score was achieved on WHITED and around 69% on PLAID.
Huber et al. [30] and Kahl et al. [117] surveyed several algorithms for appliance
classification. Huber et al. [30] focused on Deep Neural Networks (DNNs) and
identified higher sampling rates, the use of larger receptive fields, and an ensemble
of input features, amongst others, as promising techniques to improve the perfor-
mance of such networks. Kahl et al. [117] directed their focus on standard machine
learning algorithms and identified that kNN performs quite well for the task of ap-
pliance classification despite its comparable low computational complexity.
Summarized, FHMM and neural network based methods are better suited for
low-frequency and event-less NILM methods. While ANN-based methods also
find their applications for high-frequency methods in literature, classical machine
learning algorithms such as kNN or SVM are typically used for high-frequency and
event-based NILM methods. It is further noted that the training of ANNs con-
stitutes a large burden for resource constrained embedded systems such as smart
meters. Depending on the system’s restrictions, a computationally lightweight
algorithm such as kNN may be better suited.

3.5 Data Labeling

The development and evaluation of event-based NILM systems requires datasets
with precise ground truth data, i.e., event labels in the individual power consump-
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tion of each appliance. Some electricity datasets were specifically recorded with
event-detection in mind and deliver appliance events as part of their ground truth
data (e.g., switching events in the BLUED dataset [94]). Adding such ground
truth information after the recording remains challenging, as it requires human
inspection of the data and expert knowledge. For this purpose, researchers have
developed semi-automatic labeling approaches, such as [99] proposed by Pereira
and Nunes. Their system uses the Log-Likelihood Ratio (LLR) test to identify
events in the signal which are later refined by an expert rater. Furthermore,
crowd sourcing and gamification techniques were explored by Cao et al. [137] to
enable collaborative ground truth labeling and to apply the wisdom of the crowd.
Such systems have already shown their potential in similar domains such as image
classification (e.g., CAPTCHAs [138]).
Tools to label electricity data have been published e.g., by Pereira et al. [101] and
Huchtkoetter et al. [139]. Although these tools exist, the inspection and labeling
of public electricity datasets or newly recorded data still remains cumbersome.
Datasets have to be downloaded from the Internet and need to be stored locally
first. The sheer size of some datasets (cf. Table 7.2) requires careful preparation.
Since no file format has been established, each dataset requires specific code to
load data into memory before even an initial review of the data is possible.
Adding labels to those datasets is a challenging and time-consuming task as several
appliances change their state regularly resulting in hundreds of events per day.
Pereira et al. [101] evaluated their labeling tool and were able to find 94% of
all events automatically. The main shortcomings of their approach are that only
appliance events with a corresponding power change of at least 30W can be labeled
and that no textual descriptions can be added to events.
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This chapter lays the foundation for a hardware and software framework to acquire
versatile high-frequency electricity datasets. The employed techniques make use of
the contributions of [J21a], [C19a], [C19b],[PA18], and [BC19] and mainly include:

• Definition of a set of requirements for electricity datasets (see Section 4.1)
[J21a].

• Design and development of a modular Data Acquisition Systems (DAQs) to
collect the aggregated electricity consumption of a home (see Section 4.2)
[J21a, C19b].

• Design and development of a modular DAQ for high-frequency measurements
of the electricity consumption of individual appliances (see Section 4.3) [J21a,
PA18].

4.1 Requirements and Design Goals

Comparing different NILM algorithms on existing datasets remains a challenging
task, since not all algorithms can be applied to the same datasets due to specific
input data requirements of each algorithm. To test the performance of event-less
methods, and if these methods are supervised, also for their training, individual
appliance consumption data are needed. If event-based methods are trained and
evaluated, additional ground truth data of appliance events are required to evaluate
the event detection step (cf. Figure 2.2) separately. Moreover, event-based methods
typically require data acquired at higher sampling rates to reliably detect events
and still distinguish between two different events that are close in time. In addition,
high-frequency methods require data with a sampling rate greater than twice the
maximum frequency being analyzed (according to Equation 2.5). BLUED [94] was
specifically recorded with event-detection in mind as all significant appliance events
were labeled manually. However, no individual appliance electricity measurements
are available in this dataset, which in turn are needed whenever the disaggregation
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step (cf. Figure 2.2) is supposed to be evaluated. Further shortcomings of existing
datasets were identified and are summarized in the following.
(1) Larger time periods where no data or only parts of the data are available.

For instance, 13 days are missing across the complete recording duration in
house 1 of the REDD dataset. In the ECO dataset, over 900 days of data
are missing (summed over all homes and meters).

(2) Comparatively low sampling rate of the appliance-level data (e.g., 1Hz for
ECO, 1/3Hz for REDD, 1/6Hz for UK-DALE, and 1/60Hz for AMPds), or
no appliance-level data at all (BLUED).

(3) Appliance events have not been labeled, i.e., timestamps and textual descrip-
tion of events are missing (e.g., for REDD, ECO, UK-DALE, BLOND).

(4) Unknown number and type of appliances measured at the aggregated point
(e.g., ECO, UK-DALE, BLUED).

(5) No standard procedure to load the data or explore the dataset.
Therefore, a set of challenges have been defined that should be handled when
recording datasets used to evaluate a variety of load monitoring or other electricity-
related algorithms in the residential domain. The challenges are summarized be-
low.

C1 Simultaneous recordings of a home’s aggregated electricity consumption
and the consumption of the individual appliances are necessary. The indi-
vidual data can be used to validate the appliance estimates of NILM algo-
rithms. Furthermore, it can be explored how semi-supervised hybrid NILM
algorithms such as [PA18] can benefit from individual appliance data.

C2 High sampling rates of the aggregated and individual appliance data are
required. This allows to extract and utilize high-frequency features from
the individual waveforms which might further improve traditional NILM
algorithms (cf. Section 8.2). Kriechbaumer and Jacobsen [21] focused on
recording a dataset with a high sampling rate (of up to 250 kHz for BLOND-
250). However, using this dataset requires to download approximately 75GB
of data per day. To avoid sacrificing usability, a trade-off between high
sampling rates and data size needs to be examined.

C3 Continuous data recording over several days is crucial to understand
and study different consumption and, thus, user behavior depending on the
time-of-day or day-of-week.

C4 Dataset labels are needed to evaluate event-based NILM and event detec-
tion algorithms. These labels should consist of a timestamp describing when
the event occurred, the appliance responsible for the event, and a textual
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description of the event. BLUED also contains a timestamp and the corre-
sponding appliance for each event in the power signal (> 30 W) but lacks
additional information about the event (such as “fridge door opened”).

C5 High temporal accuracy of the data and its labels are required. Labels
should always reflect the associated change in the aggregated and individual
measurements. This requires that the measurement data and the labels are
time-synchronized and do not drift apart.

C6 Safe usage while using all components. Home appliances are typically pow-
ered by higher voltages (e.g., 230VRMS in Europe) which need to be measured
by the recording hardware. Thus, the recording system itself requires several
safety measures.

C7 Usability is one of the most underrated factors of a system. Researchers
should be able to use systems or publicly available dataset in a quick and
easy way.

Table 4.1 summarizes the above stated challenges that have been addressed by
existing NILM datasets. It is noted that although the challenges have been speci-
fied for a recording framework, they can be directly related to the corresponding
datasets with the exception of challenge C6. However, it is considered that each
recording hardware used to record a dataset has been designed with safety in mind.

Table 4.1: A comparison of which challenge is met by different
NILM datasets. recorded at higher frequencies (> 1000 Hz) are
considered. The recording hardware of each dataset is assumed to
meet challenge C6.

Dataset Domain C1 C2 C3 C4 C5 C7
WHITED [22] lab. - - - (X)a X -
PLAID [23] lab. - - - (X)a X X
BLUED [94] res. - - - (X)a X -
REDD [17] res. X - - - - -
UK-DALE [75] res. X - X - - -
BLOND-50 [21] office X X X - X -
BLOND-250 [21] office X X X - X -
a the datasets include only the name of the appliance causing the event; no
additional data are provided

WHITED, PLAID, and BLUED only partially satisfy challenge C4, since the cor-
responding event information only includes the appliance causing the event. How-
ever, the specific information about what happened during the event, such as a
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channel change of a television, might be of additional interest. Table 4.1 further
highlights that there is still no one-fits-all solution. The BLOND dataset has the
highest potential to satisfy all challenges. Additional event information might fur-
ther be extractable from the individual high-frequency recording. Furthermore,
usability can be improved by providing code that downloads the data on demand.
However, the dataset is recorded in the office domain and, therefore, may not be
directly transferable to the residential sector. Based on the stated challenges, a
framework to record and label NILM datasets is developed. The overall flow of
this framework is shown in Figure 4.1.

open fridge

Extract events Refinement

.mkv.mkv.mkv

Raw data

Extract power

.mkv.mkv.mkv
.srt.srt.srt

Resample

50 Hz power

.mkv

1 Hz power Labels

GUI

Smart meter

Distributed  
meters

…

Additional  
sensors

TCP

PC

Figure 4.1: Flow of the presented framework: A smart meter and mul-
tiple distributed meters sample electricity data gathered by a recording
PC. Additional data are recorded using environmental sensors. The raw
data are stored and additional measures are derived. Event labels are
automatically added, refined by a human, and stored into files.

It consists of an aggregated electricity meter (depicted as the smart meter in Fig-
ure 4.1) that records high-frequency voltage and current waveforms at aggregated
level. Furthermore, the framework includes multiple distributed meters which
record voltage and current waveforms of individual appliances. Additional sen-
sors can be added to measure other quantities (e.g., temperature or movement).
The current and voltage waveforms as well as the sensor data are collected by a
recording PC and are stored in multimedia containers. Other electricity-related
quantities such as active and reactive power are derived from the raw voltage
and current waveforms. These power data are stored with different (smart meter
like) sampling rates and can be used to semi-automatically generate data labels.
A post-processing step extracts events and assigns labels to these events. Both,
event positions and labels are refined by a human using a GUI, resulting in a final
set of label files. The hardware and software components to acquire and congre-
gate electricity data and other measurements are detailed in the remainder of this
chapter. Event extraction and labeling is explained separately in Chapter 5.
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4.2 Smart Meter

Aggregated-level data can be gathered using a custom-built measurement system
which in the following will be termed as the SmartMeter. The SmartMeter is
a cyber-physical system consisting of several hardware and software components
tightly integrated into a single enclosure, as shown in Figure 4.2.

Figure 4.2: Two versions of the SmartMeter hardware. Initial (left)
and the modular second iteration (right) with an expansion board for
ethernet and USB serial connection.

The system offers access to different communication channels either via a versatile
wireless channel or via different robust wired connections (USB and Ethernet). A
dedicated electricity monitoring chip is integrated to capture different electricity
data of multiple grid lines inside a home‘s power grid.

A high-level system overview is illustrated in Figure 4.3. A galvanic isolation
layer, according to DIN EN 60664 [140], divides the SmartMeter into two separate
assemblies, i.e., Printed Circuit Boards (PCBs). This separates higher voltage
levels present at the analog frontend from the microcontroller and communication
interfaces and, thus, also from external systems attached via a cable connection.
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Figure 4.3: System architecture and data flow of the SmartMeter. The
analog frontend converts the physical quantities into measurable volt-
age levels; the backend converts these into the digital domain. The
values are read out by the microcontroller via a galvanically isolated
SPI interface. The values are send via a communication interface to an
external data sink.

4.2.1 Analog Signal Processing

The central component of all digital measurement systems which sense analog sig-
nals, such as voltage levels and current flows, is an ADC. To measure voltage and
current of all supply legs of a home (typically three legs in Germany), six ADCs
are required if the signals ought to be sampled simultaneously. Several companies
such as Analog Devices or STMicroelectronics offer electricity monitoring ADCs
dedicated to analyze electrical power grids. These Integrated Circuits (ICs) further
offer an additional Digital Signal Processor (DSP) to calculate other electricity-
related metrics such as active power or electrical energy. By considering quantities
such as the number of analog channels, SNR, resolution, and maximum sampling
frequency, it was decided to use the ADE9000 from Analog Devices [141] for the
SmartMeter. The ADC can handle seven input signals at a resolution of 24-bit and
a SNR of 96 dB. It further features an internal DSP and can operate up to a max-
imum sampling frequency of 32 kHz (cf. C2). To avoid aliasing artifacts, all analog
signals are band-limited by a first order RC low-pass filter with a cutoff frequency
(attenuation of −3 dB and −20 dB/dec) of fc =7.5 kHz. Furthermore, analog sig-
nal lines are routed symmetrically to prevent that interference only effects a single
signal line.
Voltage Sensing:
The circuitry to sense a single grid line’s voltage is shown in Figure 4.4. The
SmartMeter utilizes three of these circuits, to measure the voltage of all three
grid lines. A voltage divider (consisting of RHSR, RP T C , R1−3, and Rsens1) with a
ratio of around 1:995 reduces the grid voltage level of approximately ±320 Vpeak
to approximately ±322 mVpeak. To protect the circuit from incorrect wiring or
transients up to 6 kV (according to category IV of norm DIN VDE 0100-443 [142]),
a varistor (RV ) and a PTC thermistor (RP T C) are added. Further diodes (D1, D2)
prevent that voltage levels of more than 1V can be applied to the ADC (cf. C6).
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Figure 4.4: Circuitry to sense the mains voltage using a voltage divider.

Current Sensing:
The circuitry to sense the current flowing through a single grid line is shown in
Figure 4.5. The current is scaled down using a non-intrusive burden-less current
transformer (SCT-013-000 from YHDC [143]). The CT has a transfer ratio of
1:2000 and can be easily attached to the existing electrical wiring infrastructure
due to its split core. Rsens1 and Rsens2 act as the CT’s burden resistor. A burden is
a measuring shunt over which a voltage can be measured which is proportionally to
the current flowing through it. A larger burden resistor allows for a larger current
resolution as the same current results in a larger voltage level (cf. Ohm’s law as
U = R · I). However, a CT should ideally be loaded with as little resistance as
possible, since otherwise the linearity of the CT suffers due to core saturation. As
a trade-off, 15.74W (Rsens1 +Rsens2) are used resulting in a maximum measurable
current of 127A using an ADC amplification of 1. Again, diodes (D1−4) are used
for over-voltage protection of the ADC (cf. C6).
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Figure 4.5: Circuitry to sense the mains current using a CT.
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4.2.2 Galvanic Isolation

The microcontroller and communication interface was further isolated from the
high-voltage analog parts, allowing to safely interface via the wired communication
channels of the SmartMeter (cf. C6). An SPI-isolator (ADUM3150ARSZ by Ana-
log Devices) and two IO-isolators (ADUM3401CRWZ by Analog Devices) are used
to separate the communication interface and all control lines between the ADC
and the microcontroller. The power supplies of the ADC and the microcontroller
are further isolated using an additional DC-DC-converter (MEF1S0303SP3C by
Murata Power Solutions).

4.2.3 Digital Sampling and Communication

The sampled data are retrieved by an ESP32 microcontroller (by Espressif Sys-
tems [144]). The ESP32 features two 32-bit cores running at 240MHz, 520 kB
SRAM, and 4MB flash memory. The chip further supports the WiFi standards
802.11 b/g/n and Bluetooth 4.2. The particular version used includes 8MB ex-
ternal flash memory which is used for data buffering in case of communication
dropouts (cf. C3). 8MB can buffer an equivalent of approximately 41 s of data
at a sampling rate of 8 kHz. Furthermore, the board contains a Real Time Clock
(RTC) (DS3231 by Maxim Integrated [145]) for time keeping and to sync the inter-
nal clock of the ADC. Since WiFi reception in smart meter environments (i.e., in a
fuse box that is often located in the basement of a building) is typically low, sup-
port for external antennas was added via the integration of an SMA connector. To
not solely rely on wireless connectivity, an Ethernet connection was added to the
board via an ordinary RJ-45 connector paired with the LAN8720 PHY (by Mi-
crochip Technology). In Germany, each newly constructed building has to include
Ethernet connectivity inside the fuse box according to VDE-AR-N 4100 [146].
This standard was developed specifically to provide future smart meter installa-
tions a connection to the Internet (either directly via the meter or via a gateway).
In addition to Ethernet, an FTDI232H [147] IC adds a USB serial interface that
supports up to 12 MBaud, allowing a direct connection of a dedicated processing
unit next to the smart meter.

4.2.4 Firmware

Upon request, the microcontroller reads the ADC values in a continuous loop.
These values are calibrated using corresponding calibration parameters for each
of the six channels which are stored in the microcontroller’s non-volatile memory.
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Furthermore, the raw 24-bit values are converted to 32-bit float values representing
the actual voltage and current measurements in Volt andMilliampere, respectively.
While this adds an overhead of 25% to the data, it allows to directly use the data
without the need for scaling, conversion, or calibration at the data sink, further
enhancing usability (cf. C7). Once in sampling mode, the ADE9000 releases a
new interrupt when new ADC samples are available. This in turn triggers the
ESP32 to retrieve these values over the galvanically isolated SPI interface. The
DS3231 RTC further triggers an interrupt each second. If the number of samples
gathered (ncurrent) does not match to the target sampling rate (ftarget) as ntarget =
(tnow− tstart) ·ftarget, samples are left out or are repeated such that the data are as
close to the user specified sampling rate as possible. This two-stage process adds
only a minor jitter to the data and allows to maintain the sampling rate over long
time periods (cf. C3 and C5). The ADC runs at a fixed sampling frequency of
either 8 or 32 kHz. Other sampling rates are not supported by default. However,
naive support for integer dividers of 32 kHz has been added via sample averaging
to provide more flexibility in terms of sampling frequency (cf. C7). If e.g., a sink
wants to receive data at a rate of 1 kHz, the ADC is configured to sample at a rate
of 8 kHz and a new measurement is created by averaging each eight consecutive
ADC samples.
A continuous data stream can be requested by a sink either over USB, TCP,
or UDP connection. Different flow control mechanisms allow to minimize the
possibility of data loss. Furthermore, data integrity is maintained by successive
packet numbers included in each sent data chunk.

4.2.5 Modular Expandability

The SmartMeter incorporates several Internet of Things (IoT) design methodolo-
gies to ensure later expandability without loosing functional features. The initial
SmartMeter version as well as the second iteration (see Figure 4.2) feature an
expansion header that provides direct access to the SPI pins of the incorporated
ADC while still maintaining galvanic isolation for safety (cf. C6). This allows not
only to test the correct functioning of the ADC after assembly but also to provide
direct access to the ADC without the need to relay the data over the integrated
microcontroller. An example expansion board was later developed (see top right
of Figure 4.2) to add certain of the aforementioned features, such as more storage
for buffering, Ethernet connectivity, faster USB serial connection, and time syn-
chronization via an RTC. If the intended use case does not require these features,
the modular PCB design, especially of the second design iteration, allows to build
a version of the SmartMeter which only includes a single PCB, just like the initial
prototype. This can further reduce the system’s complexity, cost, and size.
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4.2.6 Evaluation

The ADE9000 ADC is used because it is a versatile electricity monitoring IC that
can sample up to seven input channels at a maximum sampling rate of 32 kHz.
It, therewith, meets challenge C2. If the current amplification factor is set to the
maximum, the full-scale current represents approximately 31.77 Apeak. At a max-
imum voltage amplification factor, the full-scale voltage represents 497.35 Vpeak.
With the ADC’s vertical resolution of 24-bit, it can theoretically measure current
in steps of 3.79 µA and voltage in steps of 59.29 µV. This results in a minimal
detectable power change of 12.25× 10−10W. If the ADC’s SNR is taken into ac-
count, the maximum theoretical resolution N of the ADC can be calculated using
Equation 4.1 (cf. Kester [148]).

N = SNR− 1.76
6.02 (4.1)

A SNR of 96 dB allows a maximum resolution of N = 16-bit. Therewith, current
can be measured in steps of 1.94mA, voltage in steps of 30.36mV, and power in
steps of 58.9 µW.

To verify that the hardware works as intended and to show the high sensitivity,
test measurements were performed with different electrical loads. An excerpt of
such a test recording is shown in Figure 4.6. The SmartMeter is able to record
an appliance power consumption over time (first plot in Figure 4.6, cf. C3) as
well as to capture transients and certain appliance characteristics in the high-
frequency voltage and current waveforms (second and third plot in Figure 4.6,
cf. C2). Thereby, the system is capable of measuring comparably small electrical
consumers e.g., battery chargers, without loosing the ability to measure typical
high-power household appliances such as kettles. The SmartMeter was specifi-
cally designed for long-term continuous measurements (cf. C3). The system was
successfully used to collect over 100 days of data without major data loss (see
Chapter 6).

The hardware is encapsulated in a fireproof DIN housing. This allows the system
to be installed at a DIN rail inside the fuse box. Three SmartMeters have been
installed in three different locations (in an apartment, a house, and a university
building) for a time period of more then one year and are still installed at the time
of writing. So far, no issues such as hazards or power failures, associated with the
meter installations, could be identified. The meters continue to operate for their
intended applications. At the time of writing, the meter installed at the university
building continues to produce up to 12GB of electricity data per day.
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Figure 4.6: Excerpt from a recording of multiple electrical loads (smart-
phone charger with 5W, coffee machine with 2500W, kettle with
2200W) using the SmartMeter hardware.

4.3 Individual Appliance Meters

Current and voltage waveforms of individual appliances can be recorded using
custom-built smart plugs which will henceforth be referred to as PowerMeters.
A PowerMeter shares the same design principles and also parts of the overall
architecture as a SmartMeter (see Figure 4.7) with slightly more focus on wireless
connectivity.
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Remote
recording
system

Power supply
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Figure 4.7: System architecture and data flow of the PowerMeter. The
analog frontend converts the measurands into measurable voltage levels;
the backend converts these into the digital domain. The values are
sampled by a microcontroller via SPI and wirelessly sent to a data sink.
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To simultaneously record the individual consumption of several appliances, multi-
ple PowerMeters need to be distributed across a home. As individual recordings
from a PowerMeter may later be linked to aggregated recordings, precise time syn-
chronization is performed utilizing RTCs and the Network Time Protocol (NTP).
For persistent storage, the data needs to be sent to an external data sink. The
similarity of the PowerMeter and the SmartMeter can also be seen when com-
paring their overall system architecture (see Figure 4.7 for the architecture of the
PowerMeter and Figure 4.3 for the architecture of the SmartMeter). As the Pow-
erMeter is primed for wireless data transmission and encapsulated in a fireproof
housing, no galvanic isolation as for the SmartMeter is required. The PowerMeter
hardware is shown in Figure 4.8.

Figure 4.8: Two versions of the PowerMeter hardware. Initial plain
PCB (left) with a serial connector and second iteration (right) with
a modular expansion header and primed for continuous wireless data
streaming.

4.3.1 Analog Signal Processing

A PowerMeter samples voltage and current waveforms at a single grid line (i.e., of
a single appliance or a subset of appliances connected to the same outlet). For
this purpose the STPM32 power monitoring IC from STMicroelectronics [149] is

54



4.3 Individual Appliance Meters

incorporated. The chip can handle two analog input signals using two second-
order 24-bit sigma-delta ADCs with a maximum sampling frequency of 7.875 kHz
(cf. C2). It further includes a DSP to calculate electricity-related quantities such
as active power or electrical energy.
Voltage Sensing:
The voltage level of the socket to which the PowerMeter is connected to is scaled
down by a factor of approximately 1:1723 using a voltage divider. This results
in an ADC input voltage range from −189 mV to 189 mV for the corresponding
mains voltage from −325.27 Vpeak to −325.27 Vpeak (≡ 230 VRMS), respectively.
Current Sensing:
While non-intrusive split-core current transformers are used to measure current
with the SmartMeter, the PowerMeter uses a shunt resistor instead. This is a more
accurate but also more intrusive solution, as the current path has to be rerouted
over the shunt and the PCB has to be designed to withstand the amount of current.
While this would be inappropriate for the SmartMeter, it is not much of a problem
for the PowerMeter, as the amount of current is smaller and the plug has to be
connected between the outlet and the appliance anyway. The incorporated shunt
has a resistance of 3mW and is connected in series to the load (i.e., appliance). The
voltage drop across the shunt resistor has a current sensitivity of 3mV/A. Both,
the current and voltage paths are designed based on the STPM32 evaluation board
and use first order RC low-pass filters to suppress higher frequencies.

4.3.2 Controlling Connected Appliances

In order to switch connected appliance on and off, each PowerMeter includes a
16A bi-stable relay (RT314F03 by TE connectivity [150]). Bi-stable relays are
more expensive but require only power while changing their state. Requiring little
to no steady-state power allows to reduce the system’s overall power consumption.
In addition to the obvious benefit of saving electrical energy, the percentage of
energy consumed by the recording framework compared to the actually measured
appliances is reduced. Furthermore, it allows to use a more compact 2W power
supply inside the PowerMeter (IRM-02-3.3 from Mean Well [151]), decreasing its
overall dimensions. Due to the relay’s high switching current of around 200mA,
additional bipolar transistors prevent a damage to the microcontroller pins.

4.3.3 Digital Sampling and Communication

The sampled data are retrieved by the same ESP32 microcontroller also found
in the SmartMeter. Likewise, PowerMeters also include a DS3231 to synchronize
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the sampling process (cf. C5) and 4MB external flash memory for data buffering.
The latter allows to be resilient against approximately 250 s network dropouts
at a sampling rate of 2 kHz (cf. C3). While the initial PowerMeter prototype
includes a serial interface, it was removed in the second iteration to save costs
and physical space, since all interfaces would require additional galvanic isolation
(cf. C6). Instead, an extension header was added. This either allows to add
back such a serial interface using a separate PCB or to add additional sensors
e.g., to measure room temperature or humidity levels (see Section 4.3.5). Since
a PowerMeter, therefore, does not include a direct physical interface, data has
to be retrieved wirelessly. The intended use case of the PowerMeters in which
data are gathered in highly-distributed setups would further not allow to route
dedicated cable-connections to every location a PowerMeter is installed. Therefore,
wireless solutions are the preferred choice for such environments. The ESP32
supports the WiFi standards 802.11 b/g/n with a bandwidth under ideal conditions
of up to 130Mbit/s according to the official documentation [152]. However, it
was found that under real-world conditions (i.e., larger distance to the access
point and multiple devices in the same network), only up to 12Mbit/s could be
achieved and maintained with TCP connections. This bandwidth is still far more
than required to successfully send uncompressed voltage and current waveform
data at the maximal sampling rate. This requires a minimum of fs ·#measures ·
#bits_per_measure resulting in 7875 · 2 · 32 bit/s = 504 kbit/s.

4.3.4 Firmware

The PowerMeter’s firmware implements a lot of the functionality of the Smart-
Meter’s firmware. Upon request, the PowerMeter reads the ADC values in a
continuous loop and converts the raw 24-bit measurements to 32-bit float values
representing the actual voltage and current measurements. Calibration parameters
for voltage and current are stored in the non-volatile memory. Instead of ADC-
triggered interrupts, a hardware timer of the microcontroller is configured to trig-
ger an interrupt corresponding to the desired sampling rate (whenever the counter
reaches 240 MHz/fs ticks). For each interrupt a new measurement is latched from
the ADC via SPI. The sampling rate is again corrected using the RTC by adjust-
ing the number of samples each second (cf. C5). A continuous data stream can be
requested by a sink via TCP or UDP connection. Alike the SmartMeter, flow con-
trol mechanisms and packet numbers maintain data integrity and minimize data
loss. The implemented watchdog mechanism resets the PowerMeters whenever a
critical error occurs or the network connection drops. The firmware further allows
to switch the connected appliance on or off upon an external request. This allows
to integrate the PowerMeters into an existing smart home infrastructure. Further-
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more, it allows to record voltage and current waveforms of appliance switch-on
or switch-off events with precise control over exactly when these switching events
happen. The WHITED [22] and PLAID [23] datasets contain isolated appliance
switch-on events. The WHITED data was retrospectively shifted such that the
switch-on event occurs at exactly 100ms. Picon et al. [153] recorded the COOLL
dataset which includes appliance switch-on events for different switch-on phase
shifts, i.e., the time after a positive zero-crossing of the voltage signal. As Power-
Meters have direct control over when the connected appliance is switched on, the
recording of similar datasets would also be conceivable.

4.3.5 Modular Expandability

Similar to the SmartMeter, the PowerMeter includes an expansion header. This
header is connected to the microcontroller’s hardware serial interface allowing to
add further functionality to the system without the need of developing a complete
redesign of the hardware.
In a first attempt to exploit this interface, a sensor board was developed. Figure 4.9
shows the sensor PCB stacked on the PowerMeter PCB (left) and the complete
system integrated into the housing (right).

Figure 4.9: Sensor board stacked onto a PowerMeter (left) and the board
integrated in the housing (right).

It incorporates typical environmental sensors including a temperature, a humidity,
and a light sensor as well as a Passive Infrared Sensor (PIR) (to detect people’s

57



Chapter 4 Electricity Data Acquisition Framework

movements in a room). The board further includes a physical button to directly
switch the connected appliance on or off and LEDs for instant eco-feedback.

4.3.6 Evaluation

The PowerMeter is capable of measuring voltage and current waveforms with a
maximum sampling frequency of 7.875 kHz. Even at this data rate, the corre-
sponding measurements can still be sent to a sink via WiFi without continuous
data loss (cf. C2, C3, and C7). According to the datasheet [149], the current value
corresponding to the LSB is calculated as

LSBI = Vref

calI · AI · 223 · kS

. (4.2)

Given, the reference voltage Vref = 1.18 V, a calibration parameter calI = 0.875,
the resistance of the shunt kS =3 mΩ, and the maximum current amplification of
AI =16, the theoretical minimal detectable current is 3.35 µApeak with a full-scale
current of 28.1 Apeak. Similarly, the minimum detectable voltage (corresponding
to the value of the LSB) can be calculated alongside as

LSBV = Vref · (1 +R1/R2)
calV · AV · 223 . (4.3)

With the resistances of the voltage divider R1 = 810 kΩ, R2 = 470 Ω, a calibration
constant calV = 0.875, and an amplification factor of AV = 2, the theoretical
minimal detectable voltage is 138.6 µVpeak with a full-scale voltage of 1162.7 Vpeak.

Since the datasheet lacks information about the ADC’s SNR, a test recording was
conducted. A linear load with around 2000W was connected and mains voltage
with 230VRMS and a fundamental frequency of 50Hz was applied. The corre-
sponding voltage and current data measured by the PowerMeter was analyzed in
the spectral domain using Welch’s method [154]. This method uses overlapping
windows and computes sub-spectra for each window. Finally, all sub-spectra are
averaged, resulting in what is called a periodogram, which is a cleaner representa-
tion of the spectrum compared to using a single Fast Fourier Transform (FFT).
In particular, multiple 8192 point FFTs are used with 10% window overlap. To
prevent spectral leakage and compress side lobes, an energy normalized hamming
window was applied. The resulting periodogram of the current measurements is
shown in Figure 4.10. The analysis results in a comparably good SNR of around
75 dB.
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Figure 4.10: Periodogram of a test recording using a PowerMeter. The
harmonics of the fundamental frequency (f0 =50 Hz) are marked by ×.
The maximum signal amplitude (−7.9 dB) is highlighted by the dashed
green line, the average of the noise floor (−83.2 dB) by the dashed red
line, and the spurious free dynamic range (44.6 dB) is marked in yellow.

Similar test recordings as for the SmartMeter have been performed for the Pow-
erMeters using different electrical loads. Figure 4.11 shows an excerpt of a test
measurement including an espresso machine with around 1200W. The measure-
ments highlight that the PowerMeter is also capable of measuring comparably
small electrical consumers (see switch-on event in Figure 4.11), without loosing
the ability to measure typical high-power household appliances (see heating event
in Figure 4.11). Therewith, the PowerMeters also meets challenges C3 and C2.

The power consumption of each PowerMeter itself is around 0.56W. This is rel-
atively low compared to the consumption of most appliances present in typical
households. It is further comparable to the consumption of off-the-shelf smart
plugs which have already been used to record NILM datasets. For instance, the
Plugwise system, which has been used to collect the UK-DALE dataset [75], con-
sumes around 0.5W per plug.

Furthermore, the cost of a single PowerMeter is comparatively low with approx-
imately e35 per unit, especially considering the flexibility it provides compared
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Figure 4.11: Test recording of an espresso machine during start-up using
the PowerMeter hardware.

to off-the-shelf solutions. It is conceivable that the price could be reduced even
further if the meters would be produced in higher volumes.

4.4 Additional Sensors

The framework depicted in Figure 4.1 allows to record arbitrary sensor values
or other modalities simultaneously with the electricity measurements using an
MQTT-API. MQTT [155] provides a standardized publish-subscribe messaging
system and has emerged to one of the standard protocols in the world of IoT. If
an instance wants to share information, it can send a message for a given topic. If
other instances are interested in this information, they can subscribe to the specific
topic. Each new message published under a certain topic is relayed by a broker to all
instances which subscribed to this topic. MQTT builds on top of the TCP network
protocol which guarantees the successful transmission of data. The recording PC
(cf. Figure 4.1) hosts a central MQTT broker. A dedicated listener (software
running on the recording PC, see Section 4.6) waits for incoming messages under a
general topic recording and handles the conversion of incoming data into Comma-
Separated Values (CSV) and the storage into .csv files. If a sensor module is
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intended to be added to the recording, it simply needs to connect to the broker
and send its data on a unique sub-topic (e.g., recording/livingroom_temp). Data
must follow the JSON format. Each JSON key corresponds to a header entry in the
resulting CSV file. A timestamp is added by the listener for each entry if the key ts
is not present in the data. An example for a valid message of a temperature sensor
is recording/livingroom_temp {”value”: 20.5} representing a room temperature of
20.5 °C in the livingroom.
Three examples of additional modalities and sensors, which have already been
successfully integrated into the framework, are representatively explained in more
detail below.
Smart lighting:
Many light bulbs are nowadays substituted with smart light bulbs. Most of these
can be controlled via a ZigBee gateway. Such a gateway can be incorporated to
pass information when a light bulb changes its state, dimm setting, or light color.
A Python script was implemented which interfaces with such a gateway to log the
state changes of all light bulbs connected to the gateway using the MQTT-API.
This allows to derive power consumption estimates without intrusively metering
every light individually.
Sensors:
Figure 4.12 highlights how custom sensors can be embedded into the recording
framework using the provided MQTT-API. In this flow diagram, an ESP32 is
highlighted as an example data processor which can be directly connected to the
MQTT broker as it has WiFi built-in. The ESP32 further provides certain inter-
system interfaces such as SPI, I2C, or UART. This allows to rapidly prototype
different sensors like temperature or occupancy sensors.

MQTT-APIExample system architecture

ESP32 MQTT 
broker

Sensor interface 
e.g. SPI, I2C (data preprocessing)

sub-
topic 
.csv

Python 
mqttLogger.py

Parsed  
Data

Topic: 
recording/
subtopic 
Payload:

JSON

{;}

Figure 4.12: Example of extending the recording system by logging ad-
ditional sensor data using the MQTT-API.

Bridges:
A similar structure as shown in the system overview of the sensor (see Figure 4.12)
can be used to develop different gateways. As an example, a 433MHz gateway
was developed that logs state changes of switchable sockets, wall switches, or
remote button-presses of devices that are equipped with 433MHz. In addition,
an infrared sniffer was developed which can receive commands from off-the-shelf
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IR remotes. These commands can then be logged to MQTT and later encoded so
that the logs indicate a corresponding button press of the remote. This allows to
capture interactions with and state information of televisions, HiFi systems, or air
conditioners.

4.5 Clock Synchronization

In Section 4.1, challenge C5 has been defined as “simultaneous recordings with
high temporal accuracy”. As the framework is comprised of numerous meters and
sensors distributed across a home, a clock synchronization technique is required to
maintain precise timestamps for the measured data and all information inferred
from it. In initial experiments, non-negligible clock drifts of up to 300ms could
be observed after only 10 minutes. These are originating from clock inaccuracies
of the used ADCs and microcontrollers. These varied depending on the individual
meter device (SmartMeter and PowerMeter) and over time also for the same meter
due to temperature and aging effects [156]. To reduce these drifts, each metering
device was equipped with an RTC to synchronize the internal ADC clock. In
addition, the Network Time Protocol (NTP) is utilized to synchronize the internal
system time of a meter with an NTP server frequently. An NTP synchronization
interval of 120 s was empirically found to be sufficient. As NTP also takes the
Round-Trip Time (tRT T ) of the request itself into account, it can be accurate up
to ±tRT T/2 [157]. If the NTP server is located in the same local network, it
was found that tRT T is constantly below 10ms, resulting in a time synchronization
accuracy of around 10ms. Since tRT T can be measured directly, only NTP requests
that have response times better than ±10ms are used to synchronize the internal
system time. If a time drift is detected after a successful NTP synchronization,
it is slowly phased out by removing or adding samples using nearest neighbour
interpolation. As only a maximum of a single sample is removed or added per
second, only a minor jitter of 1/fs seconds is added to the data (e.g., 125 µs for
data which are sampled at 8 kHz).

4.6 Recording Manager

A Python script (recordingManager.py), which runs on a dedicated PC inside the
home network, orchestrates the recording of the SmartMeter, each PowerMeter,
and all additional sensor data. Since this PC does not require huge amount of
processing power, a low-power single-board solution such as a Raspberry Pi [89]
was found to be sufficient. The overall flow of the manager script is shown in
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Figure 4.13. It consists of multiple sub-processes which run concurrently as sep-
arate threads on the recording PC. Each sub-process is further explained in the
following.
Maintenance:
For reliability reasons, all meters (SmartMeter and all PowerMeters) are reset each
day at midnight.
Memory watchdog:
The amount of data which are produced by the electricity meter is quite huge. For
a setup with one SmartMeter and 20 PowerMeters sampling at a rate of 8 kHz and
2 kHz, respectively, approximately 35GB of data are produced per day. Therefore,
a watchdog checks the amount of available disk space each hour and notifies the
user if disk space is critical.
File watchdog:
For backup purposes, each newly generated file is synchronized with an external
data center. This is assumed to have infinite storage.
Statistics:
To stay updated on the recording status, the framework sends a small statistical
report every 24 hours containing information about the home’s energy consumption
as well as information about the data sampling process (e.g., the number of meter
dropouts, the successfully received data packets, and the estimated time drifts of
each meter).
Connection manager:
To congregate the measurements, a central TCP server is hosted to which all
electricity meters automatically connect upon start-up or restart. If a new meter
connects to the server, the type and device ID of the meter is passed. If a new
meter is identified, the script triggers an NTP synchronization with that meter.
After a successful synchronization, the sampling process is initiated, i.e., a new
thread of type meter listener is started. The NTP synchronization accuracy is
crucial and forced to be better than 20ms to continue. The start time has to be
as precise as possible, since all future timestamps of the data are derived relative
to the timestamp of the initial sample.
Meter listener:
The thread triggers the meter to start the sampling of measurements and creates
the necessary file structure. If new meter data fails to be received for a cer-
tain amount of time or if a received chunk of data does not conform the correct
format, an error is reported to the user. The received data are stored as Ma-
troska multimedia container into sub-folders named after the corresponding meter
(e.g., smartmeter001 ). The advantages of using multimedia containers to store cu-
rated time series data have been elaborated by Scholl and the author of this thesis
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Figure 4.13: Individual tasks of the recording manager including several
watchdogs for available memory, files not yet backed up, new statis-
tics, or maintenance. A connection manager handles connecting Smart-
Meters (SM) or PowerMeters (PM), whose data are handled and stored
by a separate listener thread for each meter. A sensor listener thread
logs all MQTT sensor messages to file.
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in [BC19]. While being optimized for audio or video streams, these containers
allow to store regularly sampled sensor data as time-synchronized audio streams.
Furthermore, multiple streams (video, audio, or subtitles) can be merged into a
single file. Time series sensor data can, therewith, be stored as audio streams
with text-based ground truth labels as subtitles. Additional metadata can also be
stored for each stream inside the container.

The voltage and current measurements obtained by a meter are stored as a single
WavPack [158] encoded audio stream inside a multimedia container. The stream
has multiple channels for the voltage and current signals. SmartMeter data has six
channels (vL1, iL1, vL2, iL2, vL3, iL3), while PowerMeter data has only two channels
(v, i). As stated in [BC19], WavPack allows a lossless reconstruction of the data
while maintaining high compression rates for time series data. In particular, a
compression ratio of 1.46 was achieved for the voltage and current measurements
using WavPack while a ratio of only 1.42 was achieved with hdf5 [159] which has
been used e.g., for UK-DALE [75] and BLOND [21].

Different metadata are also stored for each of the streams including the start
timestamp (with microseconds resolution), the id of the particular meter, the
sampling frequency, codec information, the name of the measured attributes, and
the stream’s duration. Thus, each file is self-descriptive and can be used without
prior knowledge. File size and, therewith, file loading times are kept reasonable by
splitting all files at regular time intervals. Furthermore, the local time of the first
sample is appended to each filename. Amongst other parameters, the sampling
rate, the measures taken, the storage location, the time interval at which the files
are stored, and the file name format can be configured to the needs of the user
prior to recording.

Sensor listener:
As already mentioned in Section 4.4, arbitrary sensor data or other modalities can
can be stored with the framework if these data are published to a corresponding
MQTT topic. The sensor listener, therefore, connects to the broker (also hosted
at the recording PC) as a separate MQTT client. This client subscribes to all sub-
topics under the topic recording and stores the incoming data into corresponding
files named according to the respective sub-topic. If the data, which must be in
JSON format, has no timestamp attached, the current system time of the recording
PC is added to the data. If unexpected data are received or a sensor has not sent
data for a certain amount of time, the user is notified.

User notification:
Kelly and Knottenbelt used a so called babysitter program to constantly monitor
the status during the recording of the UK-DALE [75] dataset. Upon any error,
their program sends an error report to a dedicated email address. Furthermore,
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a lifeness message is sent each day. The message contains information about the
home’s power consumption during the last day. Likewise, the recording manager
sends user notification(s) including errors or recording statistics to a configurable
email address.

4.7 Post-Processing

In order to use the voltage and current measurements, no data pre-processing
is required, as both the SmartMeter and all PowerMeters directly calculate the
physical quantities (Volt for voltage and Milliampere for current measurements)
from the raw ADC samples (cf. C7). In order to compress the information of the
high-frequency voltage and current measurements, active (P ), reactive (Q), and
apparent (S) power are calculated in a post-processing step after the recording.
The power is derived from the voltage (V ) and current (I) waveforms based on the
mains frequency fl (e.g., 50 Hz in Europe) according to Equation 2.9, 2.10, and
2.11. Since data of commercial smart meters can typically be retrieved at a rate
of 1Hz to 0.01Hz, an additional 1Hz version of the power data is provided. The
50Hz power is downsampled to 1Hz by calculating the average of each block of 50
samples. The derived 50Hz and 1Hz power are stored for each meter individually
and contain one day of data. Mains cycles for which the power could not be
calculated, as no voltage and current data are available, are marked with a power
of constant zero to maintain an equidistant time period between samples.

4.8 Discussion

The SmartMeter and PowerMeter hardware detailed in Section 4.2 and Section 4.3
allow to record electricity data of multiple appliances simultaneously (cf. C1) with
a high sampling rate (cf. C2) over a long time period (cf. C3). With NTP synchro-
nization and ADC sampling correction using RTCs, the data are of high temporal
accuracy (cf. C5). Both systems are encapsulated in fireproof housings and all
physical interfaces have been galvanically isolated from the mains voltage levels
(cf. C6). The recording manager detailed in Section 4.6 orchestrates the dataset
recording, stores all data into files, and notifies the user upon errors (cf. C7). An
additional post-processing step calculates typical electrical quantities in more con-
venient time resolutions for quick data inspection (cf. C7). The MQTT-API allows
to add other modalities such as sensor values or appliance state changes (cf. C4)
using additional sensors or bridging interfaces either implemented as additional
standalone sensors or as a software solution running on the recording PC (cf. C7).
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Event-based NILM systems, however, require detailed information about each elec-
trical event e.g., the light in the fridge switched on because the door was opened
(cf. C4). While it is technically possible to obtain such information using ded-
icated sensors attached to every appliance (e.g., using a light sensor inside the
refrigerator), this is highly impractical due to the versatility and sheer number of
appliances that are being used. As an alternative to a dedicated monitoring of all
states of each appliance, the electricity measurements can be manually inspected
and labeled after the recording. However, the labeling of numerous hours of data
by hand is tedious, time consuming, and prone to errors due to fatigue [99]. To
tackle this challenge (C4), the framework incorporates a semi-automatic labeling
technique as depicted in Figure 4.1 which is conducted after the recording of the
dataset. This is explained in more detail in Chapter 5.
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This chapter addresses the challenge of dataset labeling. The employed techniques
are enclosed in the contributions of [J21a], [C19a], and [W20]:

• Development of a semi-automatic labeling algorithm to be applied post-
recording (see Section 5.1) [J21a, C19a].

• Design of a custom labeling tool for electricity data (see Section 5.2) [W20].

• Experimental evaluation of the semi-automatic labeling pipeline for two elec-
tricity datasets (see Section 5.3) [J21a, W20].

5.1 Automatic Event Extraction

Evaluating event detection algorithms or event-based NILM algorithms requires
ground truth data for the recorded events contained in the dataset. The authors
of the UK-DALE [75] dataset, therefore, recorded appliance turn on/off events
for house 1 using switchable sockets. If a resident pressed the button on such a
switchable socket, the current timestamp, appliance, and state of the socket (on
or off ) are logged. In particular, three disadvantages of such an approach are:

(1) Appliances that are hardwired to the mains like the stove or lighting cannot
be equipped with such a socket.

(2) Only on/off events can be logged. Most household appliances are multi-state
appliances that have more than just a binary state on or off.

(3) Appliances that change their state without user interactions cannot be la-
beled (e.g., a kettle turns off automatically if the water is boiling).

The authors of the BLUED [94] dataset added additional sensors to appliances
(e.g., light sensors to the lighting) to log appliance events. The drawbacks of this
approach are that obtrusive and potentially battery powered sensors are added and
have to be maintained. Furthermore, these sensors have to send data wirelessly
to a sink, requiring additional clock synchronization so that the appliance event
timestamps can be mapped to the electricity data.
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Instead of relying on additional sensors, the approach detailed in this chapter is
based on the subsequent labelling the data after the recording. A similar ap-
proach has already been successfully applied to the domain of electricity data by
Pereira [39]. Since Pereira’s method does not support textual labels and gener-
ates a comparably large number of false positives if low detection thresholds are
used, several strategies were incorporated to improve his algorithm. Overall, the
proposed labeling algorithm consists of three steps: (1) event detection, (2) high
variance filtering, and (3) unique event identification.

5.1.1 Event Detection

Event detection describes the process of identifying relevant changes in the elec-
tricity data which correspond to certain appliance state changes (cf. definition of
the term event in Section 3.3.1). A probabilistic event detector based on the LLR
test introduced by Pereira [39] is used. The detector is further enhanced by an
adaptive threshold technique. This detector first calculates the likelihood (L[i])
that an event has occurred at sample i using a detection window over the appar-
ent power signal (S[i]). The detection window splits into two sub-windows, the
pre-event window [i−a, i[ and the post-event window [i, i+b]. The window widths
are determined by the parameters a and b, respectively. L[i] is then calculated as

L[i] = ln
(
σ[i−a,i[

σ[i,i+b]

)
+

(
S[i]− µ[i−a,i[

)2

2 · σ2
[i−a,i[

−

(
S[i]− µ[i,i+b]

)2

2 · σ2
[i,i+b]

, (5.1)

where σ[a,i[, σ[i,b], µ[a,i[, and µ[i,b] are the standard deviations and means of the
pre-event and post-event windows, respectively. Figure 5.1 shows the apparent
power of a desktop fan recorded using a PowerMeter and the corresponding cal-
culated likelihood L[i] using Equation 5.1. An exemplary sliding window and the
corresponding means (green) and variances (blue) are highlighted.
This signal L is further cleaned using an adaptive threshold (thresi). If the change
of the mean value from pre- to post-event drops below this threshold, L[i] is forced
to zero using

L[i] =

L[i], if
∣∣∣µ[i−a,i[ − µ[i,i+b]

∣∣∣ > thresi

0, otherwise
. (5.2)

The adaptive threshold thresi is defined as

thresi = thresmin +m · µ[i−a,i[ , (5.3)

with the minimum power change of interest thresmin and a linear coefficient m.
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Figure 5.1: PowerMeter recording of a desktop fan. The LLR (see Equa-
tion 5.1) is shown in the bottom plot. An exemplary sliding window
with the corresponding means and variances is shown in the top plot.

This coefficient causes a linear increase of thresi with the average power of the pre-
event window. Typically, the variance in the power measurements is proportional
to the magnitude of the power. This effect is caused by increasing noise in the
appliance or the analog frontend of the electricity meter. If a fixed small threshold
is set (e.g., thresi = 3 W), a large number of false events may occur at regions
where more power is drawn. If a fixed high threshold is set, low power events
may be missed. Pereira and Nunes used a comparatively large threshold of 30W
in [99] to reduce the amount of false events. However, such a threshold does not
allow to detect state changes of low-power appliances such as battery chargers or
LED lighting. The linearly increasing threshold according to Equation 5.3 adapts
to larger fluctuations and, therewith, helps to reduce the number of false events
significantly. By allowing to set smaller minimal threshold values, the number of
missed events can also be reduced. The resulting L[i] after applying the adaptive
cleaning procedure (Section 5.1.1) is shown for the same desktop fan recording in
the lower plot of Figure 5.2 (see below for the parameters used).

If an event is detected at sample i, the likelihood will also be non-zero around that
sample due to the sheer size of the pre-event and post-event windows, respectively.
This can also be seen in Figure 5.1 and Figure 5.2. To identify the exact sample
at which the event occurred, a voting window is layed around adjacent samples for
which L[i] is non-zero. For each of these voting windows, the sample correspond-
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ing to the maximum absolute value of L[i] is identified. The minimum distance
between two events is further restricted by an additional parameter (l). If an event
has been identified at a sample corresponding to time te, all other events within
[te, te + l] are removed.
Therewith, the proposed algorithm has five adjustable parameters. The duration of
the pre-event and post-event window, the minimum detection threshold thresmin,
the linear coefficientm, and the minimum distance between events l. A user should
specifically adjust the parameters thresmin and l according to prior knowledge of
the data: a low threshold thresmin is required if events with small mean changes are
expected, and a short l should be chosen if events can happen close in time. Values
that seem to work quite well across different appliances are: pre-event window=1 s,
post-event window=1.5 s, thresmin =3 W, m=0.005, and l=1 s.

5.1.2 High Variance Filtering

Appliances such as PCs or televisions draw variable power depending on the cur-
rent context (e.g., the current computational load of the PC or the content on
the TV screen [160]). This can causes a large number of false events using the
LLR test. To filter out these false events, signal regions are identified that have
a high variance. All events found in such regions are removed. This is achieved
by calculating the mean (µ[i]) and variance (σ[i]) over a sliding window. If σ[i] is
larger than n ·µ[i]+ thresmin, the window is marked. If the length of consecutively
marked windows exceeds a certain length (w), all events in these windows are re-
moved. Specific values for w and n which tend to remove false events while still
keeping relevant events across different appliance types were found empirically as
w=4 s and n=0.01.

5.1.3 Unique Event Identification

Similar events of an appliance are identified using unsupervised clustering. The
fact is utilized that most appliances draw different but constant power before and
after an event (e.g., the kettle before and after it is switched on). The different
power levels represent internal states of the appliance (e.g., off and on for the
kettle). Depending on the internal electrical components, appliances can easily
have way more than two unique states (see e.g., the derived states of the desktop
fan shown in Figure 5.3). To identify different power levels, the data are split
at each event and the mean power demand between these splits is calculated.
Unique power levels (representing unique appliance states) are then identified using
hierarchical clustering with a distance threshold determined by thresmin. Each
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cluster is given a textual ID which is used to assign a label to each event (S0, S1,
. . . as shown in Figure 5.2). Since some appliances show a higher rush-in power
followed by a power settling (see e.g., the power during the transition from S2
to S3 in Figure 5.2), 10% of the highest and lowest power samples are removed
between each event before a corresponding mean value is calculated.
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Figure 5.2: Recording of a desktop fan (top); calculated Log-Likelihood
Ratio (bottom); recognized events are shown using vertical black lines
and the clustered states are highlighted between consecutive events.

By using the event extraction algorithm, an appliance power signal can be pre-
labeled. Each detected event that remains after filtering is marked and a label
corresponding to the mapped event cluster is assigned. The overall process is shown
in Figure 5.2 for power measurements of a desktop fan. Besides adding labels, the
algorithm can also be used to automatically generate Finite State Machine (FSM)
models of the recorded appliance. Figure 5.3 shows the automatically generated
FSM model of the desktop fan. These models are constructed by storing the unique
clustered events as states and analyzing the event sequence for state changes, which
are then regarded as edges between these states.

Fan_kaz_35W
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36.44W
-34.67W
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(40.04W)

4.24W
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(47.37W)
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-7.95W

Figure 5.3: Appliance model automatically generated from the apparent
power signal shown in the top plot of Figure 5.2.
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5.2 Annoticity Tool

To combine the automatic event labeling presented in Section 5.1 with a graphical
human supervision, the Annoticity inspection and labeling tool was created. The
tool was specially designed for the task of generating precise text-based ground
truth labels for events in electricity data but can also be adapted to annotate
other time series data of any modality. As will become apparent, the tool can
significantly reduce the labeling effort if paired with the automatic labeling algo-
rithm. Annoticity is realized as a web application and provides direct access to
various publicly available electricity datasets without the need to first download
the dataset onto disk. Users can add labels manually, review automatically gener-
ated labels, or modify existing label sets. The labels can be downloaded in various
file formats including an option to store the labels in the same file as the data.
Manual labeling and inspection is performed on the client side while data fetching
and automatic labeling is performed on the server side. The overall workflow is
depicted in Figure 5.4.

Server sideClient side

open fridge

User annotation and inspection
Parameter

Datasets

D
ata

Labels + Format
Data download

Storage request

Automatic labeling
Labels

File creator

Label upload
Labels

Label pre-processing

Data (+ Labels)
Data fetching

Data selection/

upload

REDD

BLOND

FIRED

ECO

UK-DALE

Figure 5.4: Flow of the Annoticity labeling tool. Data fetching, auto-
matic labeling and file creation is performed on the server side, while
manual labeling and user interaction is handled on the client side.

Annoticity has been made available to the public for everyone to discover electricity
data or label datasets1.

1https://earth.informatik.uni-freiburg.de/annoticity
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5.2 Annoticity Tool

5.2.1 Backend

The server backend is written in Python using the Django framework [161]. The
backend’s main purpose is to load the data and prepare it for visualisation, perform
the task of automatic labeling, and provide file downloads. Data can be uploaded
through the web application. Currently, Matroska [162] multimedia containers
(.mkv) and .csv files are supported. Some publicly available datasets are directly
accessible via selection: REDD [17], UK-DALE [75], BLOND [21], ECO [47], and
FIRED [N20]. Depending on the dataset, either a copy of the data is stored on
the server or the data are acquired via direct cloud access from the original source
of the dataset. The backend resamples the data to a reasonable sampling rate
according to the current time-span selected by the user. If the dataset already
contains labels, those are by default displayed to the user. Additionally, a file
containing labels can be uploaded and modified. The supported formats are .csv,
.srt, and .ass.

5.2.2 Frontend

The client side is implemented in HTML and JavaScript and provides the frontend
to the user. Annoticity’s graphical user interface is shown in Figure 5.5. After
either uploading a file or selecting a time-span and meter of an available dataset,
the user can visually inspect the data. Different measures (e.g. active and reactive
power) can be selected and data can be zoomed-in which leads to a data download
at a higher sampling rate. The user can manually add a label by clicking at the
signal’s slope to mark an event, remove the label by double-clicking on the event
marker, or modify the label by selecting its text. Each label consists of a timestamp
and a (possibly empty) textual description. Labels are stored either as plain .csv,
.ass, or .srt files, or embedded into a .mkv file together with the original data.
As Annoticity is designed as a web application, access to the data is provided from
anywhere. The only requirements are a modern browser and a connection to the
Internet. With the user management directly built into the Django framework,
the Annoticity tool is already primed for collaborative labeling and gamification
mechanisms in a future version (e.g., as realized by Cao et al. [137]).

5.2.3 Automatic Labeling

The automatic labeling, described in Section 5.1, can be applied to obtain event
positions inside the selected data. The required calculations are performed on the
backend as depicted in Figure 5.4.
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use dataset or upload data

select available data 
(house, meter, day)

available measures

add, remove or change labels

zoom day

change parameter of automatic labelling 

download labels and data

Figure 5.5: The graphical user interface of the Annoticity labeling tool.
The user can select data and times of different electricity datasets at the
top. Labels can then be added and adjusted either manually by inter-
acting with the displayed electricity data, or by invoking the automatic
labeling algorithm whose parameters can be adjusted at the bottom.

The frontend allows to set the parameters of the automatic labeling algorithm,
namely the pre-event and post-event window length, thresmin, m, l, w, and n. Fur-
thermore, the sampling rate to which the data are resampled before the algorithm
is applied can be adjusted. As explained in Section 5.1, the algorithm is designed
to be applied to the apparent power signal. It shows, however, similar results if it
is applied to the active power signal (P ). If neither apparent nor active power are
available in the uploaded or selected data, but raw voltage and current waveforms
are, apparent power (S) is calculated on demand. After the events have been
identified, they are clustered, pre-labeled as shown in Section 5.1.3, and sent to
the client side for inspection and validation. A special inspection mode further
allows to quickly iterate through the labels at a proper zoom-level of 10 s.
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5.3 Evaluation and Results

The proposed event detection algorithm (see Section 5.1.1) has been evaluated us-
ing the publicly available datasets REDD [17] and FIRED [N20]. In total, 14 days
of FIRED and 8 days of REDD have been used, and 6323 labels have been added
to the data. Annoticity was used to automatically generate an initial set of labels.
To compare this set to an actual ground truth, the initial set was revised by an
expert rater who visually inspected the data. False events were removed, missing
events were added, and a distinct and descriptive label was assigned to each ap-
pliance state. Figure 5.6 shows both, the initial set of labels and the final labeled
data of the espresso machine from the FIRED data. In particular, 4379 events
for FIRED and 1944 events for REDD were generated by the expert rater to serve
as the ground truth for the following evaluation. It is noted that the focus of
this evaluation lies on event detection, hence, high variance filtering has not been
applied and the unique state labeling was not examined in this evaluation.
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Figure 5.6: The fully labeled data of the espresso machine. The bottom
plot shows the initial labeling of the automatic labeling algorithm, while
the top plot shows the final labeling after human supervision. (The
rightmost event has been missed by the algorithm.)

The results are presented in terms of the confusion matrix as values for TP, FP,
and FN (see Section 2.5). A TP is defined as a detected event that is reflected
within two seconds in the set of ground truth events. Accordingly, a FP is defined
as a detected event without a corresponding event in the ground truth, and a FN is
an event in the ground truth data which has not been found by the algorithm. The
corresponding F1-score was calculated to summarize these numbers into a single
metric according to Equation 2.22.
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5.3.1 REDD dataset

For REDD [17], apparent power measurements are available at mains, socket, and
sub-circuit level at a sampling frequency of approximately 1/3Hz. The evaluation
uses eight days of socket- and sub-circuit-level data (from April 19 to 26, 2011)
from house 2. The data has been resampled at a regular base of 1Hz. Due to the
low sampling rate of the REDD dataset, the following parameters were used for
the evaluation: pre-event window and post-event window = 3 s, thresmin =4.5 W,
m=0.009, and l=2 s.
The results are shown in Table 5.1. Overall, an F1-score of 86.73% was achieved.
1627 out of 1944 events (83.69%) were identified correctly. The refrigerator, which
exhibits the most events, shows the highest number of FP. These stem from short
defrosting cycles which have not been treated as relevant events during the manual
ground truth labeling process. The lighting and the kitchen outlets #2 show high
numbers of FNs due to events close or below the used minimum mean change
threshold of 4.5W.
Table 5.1: Event detector performance on REDD. The washer dryer
has never been used during the evaluation time period.

Appliance Events TP FP FN F1

Dishwasher 59 51 34 8 70.83
Disposal 19 11 0 8 73.33

Kitchen Outlets #1 72 49 3 23 79.03
Lighting 156 85 7 71 68.55

Stove 47 40 6 7 86.02
Microwave 158 130 20 28 84.42

Washer Dryer 0 0 2 0 0.00
Kitchen Outlets #2 525 464 5 61 93.36

Refrigerator 908 797 104 111 88.11
sum 1944 1627 181 317 86.73

5.3.2 FIRED dataset

For FIRED [N20], power measurements are available for 21 meters at a sampling
rate of 50Hz. Data of 15 appliances were selected and the event detection algo-
rithm was evaluated on 14 days of data (from July 22 to August 4, 2020). Six
appliances for which no distinct events were labeled manually (network equip-
ment etc.) were omitted. The following parameters are used for the evaluation:
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pre-event window length = 1 s, post-event window length = 1.5 s, thresmin = 3 W,
m=0.005 and l=2 s.
It was observed that the labeling algorithm performs quite well (F1 > 92 %) for
appliances which show distinct states in the power signal (such as the oven, kettle,
or the espresso machine shown in Figure 5.6). For devices which draw variable
power in between states (such as the two PCs or the coffee grinder) a large number
of false events was triggered. It can be assumed that using a higher thresmin or
linear factor m as well as additional cleaning steps such as the high variance
filtering step, explained in Section 5.1.2, would have reduced the number of false
events significantly. To put the results into a different perspective, Table 5.2 shows
the evaluation split into two groups representing appliances that show distinct
states and appliances which draw variable power.

Table 5.2: Results of the event detection algorithm applied to the
FIRED data; the results are evaluated for two appliance groups. In #1
appliances are grouped which have distinct steady states. #2 groups ap-
pliances that draw variable power. Events marks the number of ground
truth events labeled manually.

Group Appliance Events TP FP FN F1
#1 Baby Heat Lamp 6 6 0 0 100.00

Fridge 1006 863 2 143 92.25
Coffee Grinder 348 250 114 98 70.22
Espresso Machine 1880 1760 0 120 96.70
Kettle 30 30 0 0 100.00
Hairdryer 18 17 0 1 97.14
Hifi System, Subwoofer 45 44 37 1 69.84
Television 79 65 4 14 87.84
Kitchen Spot Light 12 12 0 0 100.00
Oven 138 138 1 0 99.64
Fume Extractor 47 47 1 0 98.95
Sum 3609 3232 159 377 92.34

#2 Smartphone Charger #1 96 83 1491 13 9.94
Smartphone Charger #2 63 45 7999 18 1.11
Office Pc 583 410 85367 173 0.95
Media Pc 28 10 26632 18 0.07
Sum 770 548 121489 222 0.89

The overall F1-score of group #1 is 92.34%. 3232 out of 3609 events are recog-
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nized correctly. The coffee grinder and the HiFi system show a comparatively low
performance with a high number of FP. This is due to higher variance when the
grinder’s motor is active or music is playing, and could have been avoided by using
a higher linear factor m or a higher threshold thresmin. The espresso machine
has very short heating cycles and a pump which together can cause events close
in time. These could not be detected due to the chosen parameter l= 2 s for the
filtering step and account to the comparably large amount of FN. Still, the algo-
rithm shows quite promising overall results for nearly all appliances of group #1.
The results for appliances of group #2, however, show a very large number of false
positives. These stem from shorter periods in which more power is consumed by
the appliance. For instance, depending on the current calculations of a PC, more
power can be required for a short period of time. As smartphones and PCs have
comparable characteristics, equivalent (but smaller) power peaks are present in
the data of the smartphone charger. This is especially apparent when the battery
of the connected smartphone has been fully charged, since the power management
circuit inside the smartphone then draws power directly from the charger instead
of the internal battery. Nevertheless, way better results were obtained by including
high variance filtering and by individually adjusting the algorithm’s parameters
for these appliances. While the latter requires additional manual effort, it is still
faster and more convenient compared to a fully manual labeling. The better re-
sults for the FIRED dataset compared to REDD (if considering appliances of group
#1) indicate that higher data resolution and sampling rate are beneficial for event
detection methods.

5.3.3 Comparing the Labeling Effort

To get an overall estimate of how much labeling effort can be reduced by using
the automatic labeling, the raw number of clicks required to mark all events from
scratch was compared to the number of clicks required to supervise and modify
the pre-labeled event set generated by the event detection algorithm. In total
6323 events were labeled. If the task of applying textual labels is omitted, mark-
ing the events would still have required at least 6323 clicks. If the appliances
in group #2 of FIRED are skipped, the event detection algorithm automatically
placed 4859 events at the correct position for REDD and FIRED. With 340 falsely
classified events, 694 missing events, and the 770 missing labels of group #2 in
FIRED (which would require manual labeling), 1804 clicks would have been re-
quired to remove false events and add missing events. Therewith, the sheer amount
of clicks could already be reduced by 71.47% not accounting for the support which
is provided by the Annoticity tool if additional textual labels should be added to
the events. If the fact that removing a misplaced label (tdel) usually takes less
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time than manually adding a label from scratch (tadd) is taken into account, Equa-
tion 5.4 can be applied.

reduction = 1− tadd ·#(missed events) + tdel ·#(false events)
tAdd ·#(all events) (5.4)

Using tadd = 10 s and tdel = 5 s as a reasonable guess for the corresponding times
and time difference, the reduction in labeling effort is actually 74.16% compared
to a fully manual approach.
To further model the help provided by the Annoticity GUI, it is possible to look
at appropriate metrics from user interface research. Fitts’s law predicts that the
time required to move to a target area is a function of the ratio of the distance to
the target (D) to the target’s width (W ). An illustrative example is the selection
of a checkbox with a mouse. The distance to the checkbox is D, while the width
of the checkbox is W . Fitts, therefore, proposed the index of difficulty in [163] as

ID = log2

(2 ·D
W

)
. (5.5)

This model has further been embedded into the Keystroke-Level Model (KLM)
introduced by Card et al. [164]. KLM consists of the six operators: (K) the time
to press a keystroke or mouse button, (P ) the time to point to a target with the
mouse (cf. Fitts’s law [163]), (H) the time to home the hand on the mouse or
the hands on the keyboard, (D) the time to draw a straight line with the mouse,
(M) the time for decision making, and (R) the system’s response time. Several
extensions have been proposed including the separation of keyboard presses and
mouse clicks using the operator B for the latter [165]. Reasonable times for some
of the different operators are proposed in [164] and [165] as: K= 0.12 for a good
typist, P =1.1, H=0.4, M=1.35, and B=0.1.
According to KLM, manual event-labeling using Annoticity can be encoded as:

1. find an event in the measurements (M)
2. point to the event (P )
3. press and release the mouse button (2B)
4. move hand to keyboard (H)
5. type in the label text of the event (n ·K with varying n depending on the

specific text; e.g., n = 11 for “Turned On” including the shift key). This,
however, might be reduced to n=1, with one specific character for a unique
event. The character can be later substituted by the corresponding label
text in a single operation for all events with the same label text.

6. press enter (K)
7. move hand back to mouse (H)
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It is noted that this simplified encoding does not account that it may be required to
zoom into the data (and afterwards revert the zooming), which has been identified
to take between 4 to 8 s. This will be denoted using Z = 6.0. According to this
encodings, a complete manual labeling of all 6323 events using Annoticity would
require around 17 hours:

Tmanual = #events · (M + P + 2B +H + n ·K +K +H + Z)
= 6323 · (1.35 + 1.1 + 2 · 0.1 + 0.4 + n · 0.12 + 0.12 + 0.4 + 6.0)
= 60511.11 + 758.76 · n
= 61269.87seconds for n = 1 (5.6)

In contrast, the removal of an event using Annoticity’s review mode is encoded as:
1. decide if the event is a false event (M)
2. point to the false event (P )
3. press and release the mouse button twice (4B)
4. point to the next event button (P )
5. press and release the mouse button (2B)

If the event is a true event, steps 2, 3, and 4 are not required. In the review
mode, no additional time for zooming is required, as the measurements are already
presented at a proper zoom level. The time required by Annoticity to automatically
label the data depends on the selected resolution and the specific data. But it is
usually less than R1 = 8.0 s for one day of data sampled at 50Hz and less than
R2 =0.5 s for 1Hz. According to this encoding, the semi-automatic labeling of the
events, including the review of 4859 true events, the deletion of 340 false events,
and the manual addition of 1464 missing events, would require around 7 hours:

Tsemi = 11 · 14 ·R1 + 9 · 8 ·R2 + 4859 · (M + 2B)
+ 340 · (M + P + 4B + P + 2B)
+ 1464 · (M + P + 2B +H + n ·K +K +H + Z)
= 25480.61seconds for n = 1 (5.7)

This results in a time reduction of 58.41% when using Annoticity with semi-
automatic labeling compared to using it without.
Considering that no filtering was applied for the labeling algorithm and a fixed
parameter set was used per dataset to simplify evaluation, it can be assumed that
the number of FPs and FNs can further be reduced if filtering is applied and
the parameters are adjusted individually for a particular appliance. Moreover, as
the labeling tool also identifies identical events, the additional workload of adding
textual labels is reduced to specifying the name of the corresponding event clusters
(e.g., compressor on, door open, off for the fridge as shown in Figure 5.5).
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This chapter presents the Fully-labeled hIgh-fRequency Electricity Disaggrega-
tion (FIRED) dataset. FIRED is the first residential electricity dataset which fea-
tures high-frequency aggregated- and appliance-level recordings with additional
ground truth event labels. The dataset was highlighted in the contributions of
[J21a] and [N20]. This chapter includes:

• An in-depth explanation of the data included in the dataset (see Section 6.2).
• A statistical analysis of the recorded data (see Section 6.3).
• A technical validation of the data in terms of time synchronization, data

coverage, and validity of the measurements (see Section 6.4).
• Information about how to access and how to use the data (see Section 6.5).

Existing electricity datasets have been introduced in Section 3.2. Their shortcom-
ings have already been discussed in Section 4.1 and need to be avoided for novel
electricity datasets: (1) large gaps in the data, (2) low sampling rates for individ-
ual appliance data, (3) missing event information, (4) not all electrical consumers
are known during recording, and (5) a complicated data loading process. In or-
der to tackle these shortcomings, a set of design goals (or challenges) has been
defined in Section 4.1 for the recording system of a dataset. These design goals
go hand in hand with the desired characteristics of a versatile electricity dataset.
Such a versatile dataset should include: Simultaneous aggregated and individual
appliance data (C1) of high sampling rates (C2) over a long time period without
larger gaps (C3). The data should include event labels (C4) with a high temporal
accuracy (C5) and should be usable out-of-the-box (C7).
To meet these design goals, the framework introduced in Chapter 4 was utilized to
record the Fully-labeled hIgh-fRequency Electricity Disaggregation (FIRED) data-
set. FIRED includes 101 days days of aggregated three-phase current and voltage
measurements sampled at 8 kHz as well as 21 time-synchronized individual appli-
ance measurements sampled at 2 kHz from a residential apartment in Germany.
Furthermore, it includes sensor readings such as room temperatures and additional
state information of certain appliances and each light bulb in the apartment. The
Annoticity labeling tool, introduced in Section 5.2, was used to fully label all state
changes of the individually-metered appliances for a time period of two weeks.
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6.1 Recording Setup

FIRED was acquired in a single three-room apartment with 79m2 of space (open
combined kitchen and living room, bedroom, child’s room partly used as office,
hallway, bathroom, and storage room). The apartment is inhabited by two adults
and one infant, and it is located in an apartment building consisting of seven
apartments on four floors. The building was constructed in 2017, is heated via
a district heating, and most rooms are equipped with air filters with built-in re-
cuperators. According to the building’s energy certificate, it requires a primary
energy consumption of 12 kW h/m2 per year. The apartment’s power grid is a
three-phase 50Hz system consisting of L1, L2, L3, and neutral (N) wires. L1−3
have a phase shift of 120°. Access to the apartment’s electrical system is given
through a fuse box located in the hallway. All lights installed in the apartment are
off-the-shelf smart light bulbs with a built-in ZigBee module. This allows that the
lights are turned on or off via a smartphone application, voice assistant, or regular
wall-light-switch. It further allowed to log all state changes during the recording
of the dataset using a ZigBee bridge as explained in Section 4.4. The washing
machine, dryer, and freezer are located in the basement of the building, and are
not part of the recording.

A SmartMeter (see Section 4.2) was installed in the apartment’s fuse box. Split-
core current transformers were attached to the three incoming supply legs. For
voltage measurements L1, L2, L3, and N were connected in parallel. The meter is
supplied with power by an additional L1 leg which is secured by a separate 16A
fuse. The final installation is shown in Figure 6.1 (left).

21 PowerMeters (see Section 4.3) have been deployed in the apartment. These
have properly been connected to WiFi and it has been checked that the WiFi
signal quality (RSSI ) of each PowerMeter exceeds −60 dBm to be certain that
data can be sent flawlessly. Some appliances like the oven and the fume extractor
are directly connected to the mains. To measure those appliances, a special version
of the PowerMeters with screw terminals has been used. Figure 6.1 (right) shows
two PowerMeters connected to the espresso machine and coffee grinder.

Modern households can easily include more than 40 appliances (cf. Table 3.1). The
apartment of FIRED includes 68 appliances in total. Many of these appliances are
typically only used occasionally, connected to power on demand, and sometimes
to a different socket than before. Therefore, connecting a continuously sensing
meter to each appliance is unreasonable. Instead, appliances of the same category
(e.g., routers) or devices which are only used simultaneously (e.g., monitor and
PC) were connected to the same PowerMeter. Appliances which are only plugged
in occasionally and typically not at the same time (e.g., mixer and vacuum cleaner)
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◼︎SmartMeter

◼︎Current Transformer

◼︎L1,L2,L3 Voltage

◼︎Power Supply

◼︎Network Cable

◼︎PowerMeter13

◼︎PowerMeter15

Figure 6.1: (Left) SmartMeter installed in the apartment’s fuse box.
(Right) PowerMeters with ID 13 and 15 connected to the coffee grinder
and the espresso machine.

were connected to a dedicated PowerMeter (powermeter11 ). When an appliance
was connected to or disconnected from this PowerMeter, a corresponding entry
was manually added to a digital calendar which has been exported to a log file and
is included in the dataset. This means that the connected appliance has changed
over time, but the meter has continuously taken measurements.

Moreover, temperature, and humidity sensors were installed in the living room,
bedroom, and child’s room. As already mentioned, a ZigBee logger was set up
to capture state changes of the apartment’s lighting. Furthermore, a 433MHz
bridge was installed to capture state changes of the overhead kitchen light and
an infrared bridge was installed to record key presses of the television’s and HiFi
system’s remotes. The corresponding components have already been described in
Section 4.4.

To properly connect all individual data acquisition devices to a central recording
PC, the apartment was equipped with three additional WiFi access points. The
power consumption of the recording PC and all access points have been recorded
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individually. These also contribute to the apartment’s aggregated consumption.
The recording PC gathered the measurements of all electricity meters (SmartMeter
and PowerMeters), all sensors, and all bridges. The PC stored the measurements
into files frequently and pushed the files to a cloud server for persistent storage.
For backup purposes, the local files on the recording PC were not deleted. The
recording manager (cf. Section 4.6) running on the PC was set up to notify the
home owners on any error or warning via email.

6.2 Data Records

The provided data include voltage and current measurements at high sampling
rates taken from the aggregated mains signal and 21 individual outlets. To get
a quick insight into the data, FIRED contains per-day and per-appliance sum-
mary files with derived active, reactive, and apparent power measurements. The
root directory of the dataset contains folders with the raw and summary data.
The data are stored as multiple Matroska container into sub-folders named pow-
ermeter<ID> and smartmeter001, respectively. File size and, therewith, file
loading times are kept reasonable by splitting all files at regular time intervals.
The local time of the first sample is appended to each filename in the format
<year>_<month>_<day>__ <hour>_<min>_<sec>.

Table 6.1 shows the mapping of each recorded appliance to the used PowerMe-
ter (ID). For more information about each appliance, its brand and model are
shown. The power rating (P ) according to the manufacturer of the appliance as
well as the average (P ), and maximum (Pmax) power observed during recording
is further provided. Φ corresponds to the live wire (L1, L2, or L3) to which the
specific PowerMeter was connected to. A complete list of all appliances in the
apartment, including the individually monitored appliances, is part of the dataset.

Furthermore, temperature and humidity sensor values of multiple rooms as well as
state changes of many (smart) appliances are included. In addition, two weeks of
data have been annotated with event labels. Sensor values and labels are stored
as .csv files in annotation and labels folders, respectively.

Additional information about each electrical appliance installed in the apartment
and not limited to those that have been individually monitored is included in the
info folder of the dataset. This information includes the appliance brand, model
number, and website links with further information.
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Table 6.1: Appliances recorded via PowerMeters. ID represents the
specific PowerMeter used for recording. For PowerMeter11 the con-
nected appliance changed during recording. P is the power according
to the appliance manufacturer, Φ is the gird line the appliance is con-
nected to (L1, L2, or L3), Pmax is the maximum average power drawn
for the duration of one second, and P is the average power during the
recording. The unit of all power measurements is Watt.

ID Connected Appliance Brand Model P Φ Pmax P

08 Baby Heat Lamp Reer FeelWell 600 2 611.9 0.3
09 Fridge IKEA HUTTRA 1000 3 1138.8 18.0
10 Smartphone Charger #1 - 2 Port USB 10 3 12.7 1.7
11 Different Devices 3 1898.7 3.1
12 Smartphone Charger #2 - 4 Port USB 25 1 27.9 2.8
13 Coffee Grinder Graef Cm800 128 3 206.9 0.1
14 Smart Speaker Apple HomePod 15 3 3.6 0.2
15 Espresso Machine Rocket Appartamento 1200 3 1230.6 29.8
16 Kettle Aigostar Adam 30GOM 2200 3 1958.8 2.9
17 Hairdryer Remington D3190 2200 1 1934.9 1.0
18 Router #1 Apple Airport Extreme A1521 10.3 1 27.9 19.3

Router #2 Telekom Speedport Smart 1 10
Telephone Gigaset A400 1

19 Printer EPSON Stylus SX435W 15 1 21.5 0.2
20 Office PC Apple Mac Mini A1993 85 2 236.1 59.5

27” Display Apple Thunderbolt display 200
Speaker Logitech Z2300 240
Smartphone Charger #3 Apple MD813ZM/A 5
Access Point #2 Apple Airport Express A1264 8

21 Media PC Apple Mac Mini A1347 85 3 45.4 13.0
22 HiFi System Onkyo TX-SR507 160 3 85.9 15.3

Subwoofer Onkyo SKW-501E 105
23 Television Samsung UE48JU6450 64 3 151.0 12.3
24 Light+Driver IKEA - 40 3 36.6 1.8
25 Oven IKEA MIRAKULÖS 3480 3 2491.0 9.7
26 Access Point #3 Apple Airport Express A1392 2.2 3 2.7 2.2
27 Router #3 Netgear R6250 30 1 56.9 15.7

Recording PC Intel NUC8v5PNK 60
28 Fume Extractor IKEA WINDIG 250 3 249.3 1.1

6.2.1 Voltage and Current Data

All PowerMeters sampled the current and voltage waveforms at a rate of 2 kHz. In
theory data can be sampled and sent at up to 7.875 kHz using a single PowerMeter.
If 21 PowerMeters are used simultaneously, however, the available WiFi bandwidth

87



Chapter 6 FIRED Dataset

limits the amount of data that can be sent simultaneously by all meters in the
same WiFi range. Therefore, a sampling rate of 2 kHz has been chosen as a trade-
off between reliability and temporal data resolution (see Section 6.4.3 for more
information).

The SmartMeter recorded voltage and current waveforms of L1, L2, and L3 at a
sampling rate of 8 kHz. The ADC installed in the SmartMeter allows to sample
these waveforms with a maximum sampling frequency of 32 kHz, but, again, higher
reliability was preferred over better time resolution. The lower sampling rate is,
however, still in line with the findings of Armel et al. that “there may be little
additional benefit between 15 kHz to 40 kHz because of the noise in that range in
real buildings” [53]. Furthermore, a reduced sampling rate leads to smaller files
and simplifies data handling for the user.

Each file contains 600 seconds of data stored into a single audio stream inside a
multimedia container. For the aggregated data, each audio stream has six channels
(v_l1, i_l1, v_l2, i_l2, v_l3, i_l3 ) representing the current and voltage waveforms
for the three supply legs. The audio streams for the individual appliance data
contain two channels (v, i). The number of samples in each file should match the
time distance to the next file. If this is not the case, no data are available for that
meter during the particular time period. This occurred during a reliability reset
each day at midnight and rarely for single meters due to occasional data loss as
depicted in Section 6.4.3.

Data conversion and calibration are not required, as both the SmartMeter and all
PowerMeters have been calibrated in advance and calculate the physical quantities
from the raw ADC samples (Volt for voltage and Milliampere for current measure-
ments). No additional data pre-processing is applied. The provided voltage and
current data can be seen in Figure 6.2. Plot 1-3 show data of the SmartMeter while
plot 4 and 5 show the simultaneous measurements of two additional PowerMeters.
The plots do not only highlight the high temporal resolution of the data but also
the achieved clock synchronization. The rush-in current shown in the PowerMeter
data (Figure 6.2 plot 4) matches the rush-in current seen in L3 of the SmartMeter
(Figure 6.2 plot 3). A time shift between the measurement devices of around 10ms
can be observed. Even after 16 hours of continuous recording, the offset between
the SmartMeter and PowerMeters was still below one mains cycle, highlighting
the effectiveness of the realized clock synchronization (see Section 6.4.4).

The current and voltage waveforms of the recording of powermeter15 are mirrored
around the x-axis. This can be seen, as the rush-in current is in the positive di-
rection for the PowerMeter while it is negative for the SmartMeter. The mirroring
is originated in the fact that this specific PowerMeter measured the neutral wire
instead of L3. At an ordinary outlet, one port is connected to the neutral wire
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while the other is connected to an active wire. The connection orientation does
not influence the appliance operation, however, it influences the relative ground
to which current is measured. Hence, depending on the wiring of the outlets and
the orientation of the PowerMeter, it either measures the voltage of and the cur-
rent flowing in the outlets’ neutral or live wire. Information about the specific
connection of each PowerMeter is included in the dataset.
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Figure 6.2: Voltage (red) and current (blue) waveforms of smart-
meter001, powermeter15, and powermeter27. The recording was taken
on June 9, 2020 at around 4 pm. The same appliance switch-on event of
the espresso machine is visible in the recording of L3 of smartmeter001
and of powermeter15.

6.2.2 Derived Power Data

The derived 50Hz and 1Hz active, reactive, and apparent power are stored for
each meter in individual multimedia containers, and contain one day of data.
Times for which the power could not be calculated since no voltage and current
data were available, were marked with a power of constant zero to maintain an
equidistant time period between samples. Constant zero plateaus can be identified
easily as they do not represent valid measurements which are always non-zero due
to omnipresent measurement noise. Figure 6.3 shows the single-day active power
consumption of the apartment. The contributions of the six appliances which con-
sumed the most power on this day are shown as individually colored blocks. The
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power consumption of the remaining individually metered appliances are aggre-
gated and plotted as the block Others. The aggregated power consumption of the
SmartMeter (i.e., the sum of L1, L2, and L3) is shown as the black line mains.
Ideally, the superposition of the power of all individual meters should match the
aggregated power. Nevertheless, a small margin can be observed in Figure 6.3.
This gap is caused by hard-wired appliances such as the lighting and the venti-
lation system which are not monitored individually (see Section 6.4.2 for more
information).
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Figure 6.3: The power consumption of the apartment over one active
day (July 2, 2020). The power signal is downsampled to one sample
every 3 s. The black line indicates the power consumption recorded by
the SmartMeter. The contribution of the six top-most consumers is
shown as stacked colored blocks. The consumption of the remaining
individually metered appliances are aggregated and shown as the blue
block Others. A slight offset between the SmartMeter and the accumu-
lated power of all PowerMeters can be seen.

6.2.3 Logs

The dataset’s annotation folder contains 33 tab-separated .csv files. The first
column of each file includes the timestamps associated with the events or sensor
readings. These files can be divided into three categories:
Smart lights:
The state changes of each light bulb in the apartment is logged. The filenames of
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these logs have the format:
light__<room>__<deviceName>__<deviceModel>.csv

room represents the name of the room the light is installed in, deviceName rep-
resents how this light is used (e.g., ceiling light), and deviceModel matches the
specific model name of the light. The file’s second column contains the states of
the light (on or off ), the third column contains the light’s intensity levels (0 to
100%), and the last column contains the light’s RGB colors in hexadecimal. If
setting different colors is not supported by the light, the column only shows None
values. As individual measurements of the apartment’s lighting have shown, the
installed smart lights consume almost constant power linearly increasing with the
light’s intensity level. Since information of the lights’ state and intensity setting
is available for the complete recording duration, this information can be used to
estimate the power consumption of each light individually. The smart light logs of
two days are shown in Figure 6.4. The hallway ceiling light consists of three light
bulbs and is triggered by a passive infrared sensor. Hence, all three light bulbs are
turned on if a resident walks through the hallway which can be seen in the figure
throughout the days.
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Figure 6.4: Two days of light usage information (starting at June 16,
2020). The time of day is shown on the x-axis while the particular light
is listed on the y-axis. The black-framed boxes represent times when
lights are active. Each box is filled according to the light’s color and
intensity.

Sensor readings:
The readings of temperature and humidity sensors are stored in files following the
naming scheme:

sensor__<room>__<sensorType>.csv
sensorType is either hum or temp for humidity or temperature readings, respec-
tively. Each file’s second column contains the sensor readings. Temperature read-
ings are stored in degrees Celsius and humidity readings in percent, respectively.
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All values have floating point precision (32-bit). Samples are not acquired equidis-
tant, as the sensors only send new values on a transition.

Device info:
Certain installed smart appliances or bridges allow to capture events of appliances
in the apartment. Thereby, it is e.g., possible to recognize when a resident pressed
a certain key of the television remote. Such events are logged in files with the
following name format:

device__<room>__<deviceName>__<deviceModel>.csv
Each file’s second column gives information about the current appliance state or
the particular event. The file of the HiFi system, for instance, includes key-presses
such as power or vol_up while the files of the espresso machine include the overall
number of espressos made by the machine. When this number increased, the Pow-
erMeter connected to the espresso machine recorded the electricity consumption
required to make an espresso. Figure 6.5 shows the logs for the television, the HiFi
system, and the espresso machine.
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Figure 6.5: Three days of appliance logs (June 19 to 22, 2020). The data
of the espresso machine show the numbers of espressos made, while the
data of the HiFi system and television show key-presses on the remote.

6.2.4 Labels

The Annoticity labeling tool (see Section 5.2) was used to fully label all events
that occurred within two weeks of the FIRED data (from July 22 to August 4,
2020). The tool generated an initial set of labels which was afterwards modified
by visually inspecting the data. False events were removed, missing events were
added, and a distinct and descriptive textual label was assigned to each event
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representing the new state of the appliance. The labels were stored as CSV and
are part of the dataset. Figure 6.6 shows the richness of these event labels for
a time period of only two minutes. The figure illustrates the active and reactive
power consumption of the refrigerator and the espresso machine. The aggregated
consumption of supply leg L3 is shown on top. The labels represent the state of
the appliance and the black lines mark the timestamp of an event. The event
timestamps are further highlighted in the aggregated consumption to demonstrate
the synchronicity of the data streams.
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Figure 6.6: Event labels for two minutes of electricity data of the refrig-
erator and espresso machine. The aggregated consumption recorded
with the SmartMeter is shown at the top with the position of all event
labels marked.

6.3 Data Statistics

Overall, 53328 hours of raw current and voltage waveforms have been collected
for the FIRED dataset. Figure 6.2 highlights the richness of the captured data
for the SmartMeter and the PowerMeter units. Figure 6.3 shows the active power
extracted for each individual appliance. It further emphasizes the contribution of
each appliance to the total power consumption on this day. According to [166],
the average consumption of a comparable three person household in Germany is
7.12 kWh per day. The analysis of the SmartMeter data of the FIRED dataset
reveals an average electricity consumption of 6.06 kWh per day, which is slightly
lower than the typical average consumption. This is, however, expected as the
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data do not contain the electrical energy consumption of the washing machine,
dryer, and freezer.

Figure 6.7 a shows the consumption of six appliances at the time of day averaged
over the entire recording duration. This provides a good indication of usage be-
havior. For example the espresso machine shows two distinct peaks, one in the
morning at around 9 am (morning coffee), and one in the afternoon at 3 pm (coffee
break). Similarly, the television is mainly used after 8 pm. In comparison, the
router does not show any significant peak. It can also be seen, that the office PC
has a high standby consumption of around 35W and is used mainly between 9 am
and 6 pm. Figure 6.7 b shows the distribution of power demand for the same
appliances. Some state information can already be derived from these plots. The
hairdryer shows two distinct states corresponding to two different temperature
settings. The office PC shows three peaks. The peak around 35W represents the
already mentioned standby consumption, the peak around 50W represents the PC
in its on state, and the 140W peak includes the on state of the 27 inch monitor
which is connected to the same PowerMeter. The espresso machine consumes a
huge amount of power (1200W) during its heating cycles but is mostly idle (5W)
in between. The consumption of the router and kettle resemble a Gaussian dis-
tribution centered around 19W and 1890W, respectively. It is assumed that the
Gaussian of the kettle would be smoother and better visible if more samples would
be available for its on state (as for the router).
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Figure 6.7: Appliance usage over the complete recording duration. (a)
shows the daily usage patterns of the appliances with the consumed
average power for the hour of the day. (b) shows the histogram of the
power demands; a 2W threshold was set to omit data in which no power
is drawn.
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6.4 Technical Validation

Measurements of the FIRED dataset are provided without applying any pre-
processing or filtering except for the calibration and on-meter conversion to physi-
cal quantities. The recording framework is equipped with different mechanisms to
cope with real-world effects such as network dropouts or clock drifts. The integrity
of the acquired measurements is analyzed in the following.

6.4.1 Calibration

As already mentioned, each meter has been calibrated in advance using a dedicated
electricity meter (ENERGY-LOGGER 4000 by VOLTCRAFT [167]). According
to its datasheet, the meter has a stated accuracy of 1%. It was, therefore, used
to determine the calibration parameters of each deployed SmartMeter and Pow-
erMeter. Ten electrical loads with different power consumption ranging from 5
to 2000W were used and a linear calibration was applied to each measured value
xraw (voltage and current) according to

xcal = xoffset +m · xraw . (6.1)

The calibration parameters m and xoffset for voltage and current measurements
of each meter were stored permanently in its non-volatile memory. After about
four months, the calibration has been repeated to see if aging affects have already
invalidated the calibration. Such effects could not be observed.

6.4.2 Residual Power

Ideally, the sum of the electricity consumption of all individually metered appli-
ances should be equal to the consumption recorded at the aggregated level ac-
cording to Equation 2.2. However, a slight offset will be perceivable in any real
dataset. This offset is referred to as the residual power. The residual power is the
portion of the total consumed power which is not metered by an individual meter,
i.e., the portion for which no ground truth data are available. One goal for the
FIRED dataset was to minimize this portion in order to provide reliable ground
truth data for supervised machine learning algorithms.
The residual power observed in the FIRED dataset (see Figure 6.3) is mainly due
to non-monitored hard-wired appliances in the apartment such as the lighting and
the ventilation system, but also due to the power consumption of the distributed
PowerMeters. The individual consumption of each light bulb and, therewith, the
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lighting can be estimated using the log files provided with the dataset. To demon-
strate that this is feasible, power estimates have been generated using these log
files and additional individual light recordings. The consumption of the remain-
ing unmonitored appliances (including the consumption of 21 PowerMeters) is the
base power consumption of the apartment. It can be estimated at times when
lights are turned-off and the majority of appliances do not consume any power
which is typically during the night or in case of absence of all residents. The base
power PbaseLx of each individual supply leg x ∈ {1, 2, 3} was calculated as

PMLx := { pm ∈ PM | phase of pm is x } , (6.2)
LLx := { l ∈ Lights | phase of l is x } , (6.3)

PbaseLx = P(SMLx)− ∑
pm∈P MLx

P(pm)− ∑
l∈LLx

P(l) . (6.4)

SMLx represents the SmartMeter data of the grid line Lx, PM is the set of all
PowerMeters, PMLx is the set of PowerMeters that are connected to live wire Lx,
Lights is the set of all lights, LLx is the set of lights connected to Lx, and P(y) is
the extracted power trace of a meter or light y. It is assumed that the base power
is normally distributed. Thus, all points in PbaseLx that are farther than σ from
the mean value have been removed. Finally, the average PbaseLx is calculated from
the cleaned signal.
Figure 6.8 shows the active power consumption including the lighting and the
estimated base power with a remaining RMSE (see Equation 2.18) of 17W. The
residual power could not be completely eliminated. The reason has been identified
to most likely be the apartment’s ventilation system which reverses the direction
of the air flow frequently.

6.4.3 Availability

Data are available for 99.96% of the complete recording duration. 1405 minutes
of data are missing, mainly due to a reliability reset which is performed at 12 am
midnight. Occasionally, due to WiFi connection outages and an erroneous imple-
mentation of the TCP/IP stack on the ESP32 microcontroller, some data packets
were lost. However, a packet only accounts for less than 20ms of data. Once
detected, the missing samples are replaced by zeros to maintain the correct times-
tamps for all remaining samples. It is still possible to identify these time periods
as voltage and current zero plateaus cannot occur in natural situations.
The length and amount of the dropouts are illustrated for each meter in the boxplot
shown in Figure 6.9. The figure shows that powermeter14 and powermeter22 had
more dropouts compared to all other meter. This was identified to be originated
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Figure 6.8: The power consumption of the apartment over one active
day (July 2, 2020). The power is downsampled to one sample every
3 s. The black line indicates the power consumption recorded by the
SmartMeter. The contribution of the six top-most consumers is shown
as stacked colored blocks. The consumption of all remaining appliances
and the reconstructed consumption of the apartment’s lighting is ag-
gregated and shown as the blue block Others. The black base block
represents the apartment’s base power which has been estimated as
26.66W on average for this day.

from an unstable WiFi condition as the RSSI values reported by both meters were
the lowest of all. In contrast, the SmartMeter which is connected over a reliable
cable connection shows the least number of dropouts and the smallest durations
for the dropouts.

Overall, the duration of dropouts is comparatively small compared to dropouts of
multiple days such as present in the REDD dataset. While the average dropout du-
ration fluctuates around the time it takes for a meter to reset at midnight (around
eight to 30 seconds), longer dropouts occurred only rarely. Overall, over 3198275
minutes of high-frequency time-synchronized voltage and current waveforms are
still available and the main time period in which data are missing is located each
day at around 12 am. This represents a time period in which typically significantly
less appliances are turned on.
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Figure 6.9: Semi-logarithmic boxplot showing the duration of the
dropouts occurring on all meters during data acquisition. The mean
value of each meter corresponds to the time of the reliability reset. Oc-
casionally, shorter dropouts occurred. Longer dropouts are rare. The
total dropout duration of each meter is displayed on top.

6.4.4 Clock Synchronization

The used clock synchronization technique has previously been detailed in Sec-
tion 4.5. Figure 6.2 highlights the achieved clock synchronization in the FIRED
dataset due to the methodologies explained in Section 4.5. The figure shows the
voltage and current measurements of two PowerMeters and the SmartMeter. The
current data of powermeter15 shows a rapid rise in the current consumption due to
a heating element in the connected espresso machine. The corresponding increase
can be also observed in the measurements of L3 of smartmeter001. Both signals
are shifted by around 10 ms. This highlights the achieved clock synchronization,
as all timestamps are derived relative from the first sample obtained. This ini-
tial sample was obtained around 16 hours earlier (due to the reliability reset at
12 am). Even after 16 hours of continuous recording, the time shift was still below
one mains cycle, allowing to synchronize the voltage and current waveforms with
sub-cycle precision.

6.5 Discussion

In the beginning of this chapter, desired characteristics (design goals) of electric-
ity datasets, which can be used to evaluate a wide variety of electricity-related
algorithms (especially event-based NILM), have been stated. These characteris-
tics are closely related to the challenges which have been defined for the proposed
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recording framework in Section 4.1. Based on this framework, the FIRED dataset
has been recorded and labeled. It features 101 days of electricity measurements
(C3) of a residential apartment in Germany. This is significantly longer than most
existing high-frequency datasets such as REDD [17] or BLUED [94]. Aggregated-
level data are available as 8 kHz voltage and current waveforms while individual
appliance data are available at 2 kHz for 21 appliances (C1, C2). While the ag-
gregated sampling rate is matched or even exceeded by other datasets, to the best
of the authors knowledge, no other residential dataset features high-frequency in-
dividual appliance recordings. The data are further time-synchronized with an
accuracy of around 10ms (C5) and have a coverage of 99.96% over the complete
recording time period (C3). Other datasets such as REDD [17] or UK-DALE [75]
show a significant amount of missing samples due to bad wireless communication.
The framework additionally provides a 1Hz and 50Hz summary with derived ac-
tive, reactive, and apparent power measurements. All data are stored in Matroska
multimedia containers (C7) with included metadata information such as times-
tamps and measured quantities. Additional files are included in the dataset which
provide information about the apartments lighting states, room temperature, and
appliance operation states (C4). Event positions and state labels have been added
for two weeks of the data in a semi-automatic way using the Annoticity labeling
tool (C4). Except BLUED [94], no other dataset was found which includes such
information. Thus, the dataset fully meets all of the above challenges compared
to the existing datasets which have been found to only meet some of these (cf. Ta-
ble 4.1). The dataset itself and the tools to process it are provided as open source
(C7) to support the research of NILM algorithms.

Data and Code Availability

The FIRED dataset is available under the creative common licence. Further infor-
mation on how to use and download the data can be found at https://github.
com/voelkerb/FIRED_dataset_helper.
Personally, I think it is more important to focus on the development of electricity-
related algorithms which either help to save energy or provide convenience to home
owners, rather than on recording novel datasets or writing code to use existing
datasets. Therefore, a helper module is provided to simplify interfacing with the
dataset. The module is written in Python - the programming language most
often used by the machine learning community. It allows to quickly load data of
interest into memory without the need to explicitly extract and convert these data
from individual files. An example showing how to plot two hours of 50Hz power
measurements of the fridge is shown in Listing 1.
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1 import helper as hp
2 import matplotlib.pyplot as plt
3 from datetime.datetime import fromtimestamp
4 # Set FIRED base folder to the location where you downloaded the dataset
5 hp.FIRED_BASE_FOLDER = "~/FIRED"
6
7 # load 2h of 50Hz power data of powermeter09 (Fridge)
8 startTs, stopTs = hp.getRecordingRange("2020.08.03 17:25:00", "2020.08.03 19:25:00")
9 fridge = hp.getMeterPower("powermeter09", 50, startTs, stopTs)

10
11 # Construct timestamps
12 dates = [fromtimestamp(fridge["timestamp"] + i/fridge["samplingrate"])
13 for i in range(len(fridge["data"]))]
14 # Plot data
15 plt.plot(dates, fridge["data"]["p"], label="Active power")
16 plt.plot(dates, fridge["data"]["q"], label="Reactive power")
17 # Format plot
18 plt.gca().set(xlabel='Time of day', ylabel='Power [W/var]', title='Fridge')
19 plt.gcf().autofmt_xdate()
20 plt.show()

Listing 1: Example of loading and plotting two hours of power data of
the fridge.
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In this chapter, several features and classifier found in literature are evaluated
for their suitability to classify appliances. While works by Kahl et al. [117] and
Sadeghianpourhamami et al. [129] already contain similar feature analysis, this
evaluation results in a proposed feature set which has a small overall dimension
and is feasible to be extracted and processed on resource constrained embedded
systems. The set has further been evaluated on several classification algorithms,
leading to F1-scores of up to 98% on average across four publicly available datasets.
The chapter includes the following contributions of [N21]:

• An introduction of a naive event detector, of 27 handcrafted features for
appliance classification, and of four classifiers (see Section 7.1).

• A standalone analysis of all features and classifiers (see Section 7.2).
• A method to determine the best combination of features for given data while

keeping the feature dimensionality low (see Section 7.3).
• Using this method, several combination of features are evaluated and the

feature set [P, cosΦ, TRI,WFA] is proposed (see Section 7.3).

7.1 Preliminaries

This section details the event detection algorithm as well as the features and basic
classifiers used throughout this chapter. It further states the used method and
parameter sets for Hyperparameter Optimization (HPO), and details the Cross
Validation (CV) procedure as well as the employed metrics.

7.1.1 Event Detection

While the event detector introduced in Section 5.1.1 performs quite well, it is
computationally expensive due to windowing and the use of non-linear functions
such as the logarithm. For the following evaluation a computationally fairly simple
expert heuristic event detector was used to generate the ground truth and training
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data. The detector is based on work by Weiss et al. [18]. For a comparison of
different event detection methods, the reader is referred to Section 3.3.
The used expert heuristic utilizes a threshold-based algorithm applied on the ap-
parent power signal (S). At first, the signal is filtered using the combination of a
median and a mean filter to remove outliers and further smooth the signal. Both
filters have a window size of 3 s. Afterwards, the differences between adjacent
samples of the apparent power signal are calculated (∆S). Next, a 3VA filter is
applied to the signal which sets all values below 3VA to zero as

∆Sfiltered[i] =

0 if ∆S[i] < 3 VA,
∆S[i] else .

(7.1)

Each non-zero region in the filtered signal (∆Sfiltered) is regarded as an event
(either up or down). If multiple events happen within a time window of 3 s, only
the first event is kept. This ensures that fluctuations after an event are not regarded
as a new event. Figure 7.1 shows the different stages of the event detection process
for the apparent power signal of an espresso machine. All significant events are
clearly visible as peaks after the filtering process (green signal). The red and blue
triangles mark the timestamps and the corresponding apparent power samples of
the finally extracted events.
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Figure 7.1: Event detection applied to an excerpt of the 1Hz apparent
power signal of the espresso machine (FIRED). The green signal re-
mains after filtering and allows to extract up and down events.
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To be able to calculate high-frequency features for a detected event, voltage and
current waveforms 500ms prior till 1 s after the timestamp of the event are ex-
tracted. This 1.5 s time interval is referred to as the Region of Interest (ROI) in
the following. Furthermore, each ROI is forced to begin with the preceding posi-
tive zero-crossing of the voltage measurements, slightly shifting the event position.
All 27 features explained in the following can be extracted from the ROI data
corresponding to an event. For the feature and classifier analysis in Section 7.2
and Section 7.3, only start-up events taken from individual appliance recordings
are used. This means that the current in the first 500ms is close to zero and
only contains measurement noise. If individual appliance data apart from start-up
events, or aggregated-level data are used (as in Section 8.2 and 8.3 of Chapter 8),
the current in the first 500ms does not have to be zero and the overall signal
contains contributions of other active appliances (cf. Kirchhoff’s first law [29]).
However, several of the extracted features meet the feature additive criterion [115,
128] which is based on Kirchhoff’s first law. Therefore, the features can be cleaned
using data of the first 500ms (see Section 8.2 for more information). Figure 7.2
shows the current signal of the ROI for a start-up event of the fridge (cooling cycle)
included in the FIRED dataset.
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Figure 7.2: Example of the ROI current data of a fridge event in the
FIRED dataset. The exact event position is marked in red.

7.1.2 Feature Selection

The following evaluation analyzes a set of 27 features which have been introduced
by various domain experts in related works [117, 128, 129] for the task of appliance
classification. All used features are summarized in Table 7.3 and can be extracted
from the time or frequency domain of the ROI of an event. According to the
Nyquist-Shannon theorem (see Equation 2.6), current and voltage waveforms with
a sampling rate (fs) of more than 2 · (18 + 1) · f0 are required because frequency
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components up to the 18th harmonic (f18) of the grid line frequency (f0) are ana-
lyzed. Therewith, the sampling rate has to be higher than 1900 Hz for a European
grid line frequency of 50 Hz. To avoid aliasing artifacts, a Butterworth low-pass
filter (order=6, fcutoff=1 kHz) is applied to the current and voltage waveforms in
order to suppress higher frequencies before any feature is extracted.
The feature set includes both transient and steady-state features. Steady state
features include several electrical measurands such as the phase angle between
voltage and current (cos Φ), resistance (R), admittance (Y ) as well as active (P),
reactive (Q), and apparent power (S) which can be calculated on the basis of a
single mains cycle. The corresponding formulas have already been introduced in
Section 2.3.1. Transient features such as Current Over Time (COT) or Temporal
Centroid (TC) describe the change of certain electrical characteristics (such as
the current) over a specified time window. The set further includes steady-state
and transient features proposed by several researchers which stem from extensive
feature engineering such as the steady-state feature V-I Trajectory (VIT).
Before each individual feature is explained, the short hands for the current wave-
form IW F [j] and the RMS current IRMS[j] of main cycle j are defined as

IW F [j] = [current samples of period j] , (7.2)
IRMS[j] = rms (IW F [j]) . (7.3)

As mentioned earlier, the ROI for a given event is extracted from 500ms before
to 1 s after the event. To simplify the following formulas, IW F is referred to as
the current waveform from the event to the end of the ROI (0.5 s ≤ t < 1.5 s).
Similarly, IW F [j] and IRMS[j] with j ∈ [0, . . . , N ] refers to the jth period after
the event. For example, at f0 = 50 Hz, IW F [0] is the current waveform i[t] with
500 ms ≤ t < 520 ms from the ROI. The voltage waveform UW F [j] and the RMS
voltage URMS[j] of main cycle j are calculated alongside.
The Crest Factor (CF) shows the ratio of the peak value to the effective RMS
value of the current and is an indicator for the sharpness of a transient or peak in
the signal.

CF = max (|IW F |)
rms(IW F ) (7.4)

The Form Factor (FF) is the ratio of the effective RMS current value to the mean
of the absolute current values. As the RMS current is calculated from the squared
current values, spikes have more influence on RMS than on the corresponding
mean value. Hence, the FF can be used to distinguish linear loads from appliances
that show larger spikes in the current signal such as SMPS-powered appliances.

FF = rms(IW F )
mean (|IW F |)

(7.5)
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The Log Attack Time (LAT) measures the logarithmic time until the current
reaches its maximum value. Compared to other works (e.g., [117]), the maximum
value refers to the maximum RMS current value over one main period. The LAT
results in larger values for appliances for which the current rises slowly.

LAT = 20 · log10 (tmaxCurrent) ,
tmaxCurrent = j · fs

f0
. (7.6)

j is the main cycle at which IRMS[j] reached the maximum value.
Similarly, the Temporal Centroid (TC) measures the temporal balancing point
of a signal’s energy over a certain time period. If an appliance has a strong start-up
current followed by a settlement of the current (e.g., a refrigerator due to start-up
current of the built-in compressor) the corresponding TC value is lower compared
to the value of an appliance for which the current starts to rise slowly.

TC = 1
f0
·
∑N

j=0 ((j + 1) · IRMS[j])∑N
j=0 IRMS[j]

(7.7)

The Positive-Negative half cycle Ratio (PNR) describes the ratio between
the equivalent DC power of the positive part of a current mains period compared
to its negative part. As the ratio depends on the direction the appliance is plugged
in (i.e., which of the plug’s connections is coupled with the active and which to the
neutral wire), the value is inverted if the ratio is smaller than 1. Appliances which
include e.g., dimmers or speed controllers show different behavior in the positive
compared to the negative half-cycle.

PNR =


IRMS(pos)
IRMS(neg) if IRMS(pos) ≥ IRMS(neg)
IRMS(neg)
IRMS(pos) else

(7.8)

Similar symmetry properties can be compared by theMax-Min Ratio (MAMI),
which relates the maximum current to the minimum current. For the same reason
as stated for the PNR, the value is inverted if the ratio is larger than 1.

MAMI =


|min(IWF )|
|max(IWF )| if |max (IW F )| ≥ |min (IW F )|
|max(IWF )|
|min(IWF )| else

(7.9)

The Peak-Mean Ratio (PMR) relates the maximum peak current to the mean
of the absolute current value. Therefore, the feature can be used to differentiate
loads with high current peaks (e.g., refrigerators) from linear loads (e.g., kettles).

PMR = max (|IW F |)
mean (|IW F |)

(7.10)
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Likewise, the Max-Inrush Ratio (MIR) relates the RMS current of the first
mains period including the event to the maximum absolute current in this mains
period. This helps to recognize SMPS-powered appliances such as notebook power
supplies where a high current peak can be observed when they are plugged-in and
the embedded capacitors are energized.

MIR = IRMS[0]
max (|IW F [0]|) (7.11)

The Mean-Variance Ratio (MVR) relates the mean of the absolute current to
its variance, delivering an indication of the signal’s steadiness which varies across
appliances. Appliances with current spikes have a comparatively low MVR while
linear loads tend to have a higher MVR due to a smaller variance.

MVR = mean (|IW F |)
var (|IW F |)

(7.12)

The Waveform Distortion (WFD) is the summed sample-wise difference be-
tween the current signal and a perfect sine wave with the same energy (Y ). A pure
resistive load will have a theoretical value of 0 as the sines will perfectly match.

WFD = sum (|Y | − |mean (IW F [0], . . . , IW F [9])|) (7.13)

The output of mean (IW F [0], . . . , IW F [9]) is the average current waveform of the
ten given mains cycles.
The feature Current Over Time (COT) describes the amount of RMS current
in the first 25 consecutive mains cycles after an event. The mains cycle in which
the event happens is not included, as its corresponding RMS current depends on
the specific time the event occurred within the cycle.

COT = [IRMS[1], IRMS[2], . . . , IRMS[25]] (7.14)

Figure 7.3 shows the current signal (ROI) of two appliances from the PLAID [23]
dataset and the extracted COT.
To compress the COT into a scalar feature, the Periods to Steady State (PSS)
indicates the first mains cycle after which a steady state is achieved. Most appli-
ances such as the fridge shown in Figure 7.3 have a higher inrush current before
a steady state is achieved. The time it takes for a steady state to settle can be
exploited as a unique fingerprint of the appliance. The steady state is defined as a
threshold (L) computed from the COT. PSS marks the first period after the event
for which the current falls below this threshold as

L = 1
8 · (max (COT )−median (COT )) +median (COT ) ,

PSS = first period j for which IRMS[j] < L . (7.15)
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Figure 7.3: Start-up transients showing the ROI of a fridge and an air
conditioner. Both signals are extracted from the PLAID [23] dataset.
The red circles show the COT feature.

The Inrush Current Ratio (ICR) relates the current of the first mains cycle
to the current of the last mains cycle. This allows to recognize appliances with a
high inrush current e.g., appliances powered by SMPSs.

ICR = IRMS[0]
IRMS[N ] (7.16)

The WaveForm Approximation (WFA) indicates the overall waveform shape
of the averaged mains periods of the current signal as

WFA = downsample (mean (IW F [0], . . . , IW F [9]) , 20) . (7.17)

Similar to the WFD feature, an average current waveform of the first ten mains
cycles IW F [i] is calculated. Afterwards, the average waveform is downsampled to
20 samples using subsampling (i.e., use each n = bfs/(fl · 20)e sample). Figure 7.4
shows the WFA of six different appliances from the WHITED [22] dataset. The
waveform characteristics of the different appliances (blue) can be clearly seen.
While the hairdryer and lightbulb show an almost pure resistive load behavior
(cf. Figure 2.4), the microwave and shredder show a more distorted waveform
with an imbalance of the positive and negative half cycle as well as a phase shift.
The red dots indicate the downsampled WFA feature vector.
The V-I Trajectory (VIT) was first introduced by Lam et al. [121] in 2007. The
authors state that it has a high discriminative power which has been proven by
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Figure 7.4: WFA of six different appliances from the WHITED [22]
dataset. The red dots show the subsampled values of the feature vector.

other researchers such as [117, 122, 123]. To calculate the VIT the first ten mains
periods of the current and voltage waveforms are averaged, similar as for the WFA
feature. To create a deformation path, both signals are normalized, subsampled
to 20 samples, and plotted against each other. This results in a feature vector of
size 40. The average current X̃avg = Ĩavg and voltage X̃avg = Ũavg waveforms are
calculated as

Xavg = mean (XW F [0], . . . , XW F [9]) , (7.18)

X̃avg = downsample

(
Xavg

max (|Xavg|)
, 20

)
, (7.19)

V IT =
[
Ĩavg, Ũavg

]
. (7.20)

Figure 7.5 shows the VIT of six different appliances from the FIRED dataset.
While it can be assumed that most appliances can be distinguished quite well
(e.g., television, fridge, vacuum cleaner, and smartphone charger), some appliances
such as the espresso machine and the kettle may be difficult to keep apart using
VIT as the exclusive feature.
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Figure 7.5: Averaged and normalized VIT of six different appliances
from the FIRED dataset. The red dots show the subsampled values of
the feature vector.

In addition to the already presented time domain features, several frequency do-
main features can be used for appliance classification. To transform a discrete
time signal x[n] of length N into the frequency domain, a discrete-time Fourier
Transformation (DTFT) is used as

X[k] =
N−1∑
n=0

x[n] · e−j( 2πn
N )k (k = 0, . . . , N − 1) . (7.21)

The frequency corresponding to bin k depends on the sampling frequency of signal
x and the number of sampling points N as

f(k) = k · fs

N
. (7.22)

For a simplified notation, Xf denotes the magnitude of the spectrum at frequency
f . Furthermore, f0 denotes the fundamental frequency of a signal and fi the ith
harmonic of f0.
The Total Harmonic Distortion (THD) measures the logarithmic weighted
relation of the sum of the first five harmonic components of the current signal
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relative to the component of the fundamental frequency Xf0 . Strong harmonics in
the current signal indicate a distorted waveform. Appliances which exhibit such
characteristics are typically powered by SMPSs.

THD = 10 · log10

(
1
Xf0

·
5∑

i=1
Xfi

)
(7.23)

The Spectral Flatness (SPF) (also known as theWiener Entropy) is the ratio of
the geometric mean to the arithmetic mean of the energy spectrum of the current
signal. It is calculated as

SPF =
N

√∏N−1
k=0 X[k]

1
N

∑N−1
k=0 X[k]

. (7.24)

As the geometric mean is always smaller or equal to the arithmetic mean, the
value is ∈ [0, 1]. Pure resistive loads (e.g., kettles) induce little to no harmonics in
the frequency spectrum. Hence, their corresponding geometric mean and, there-
fore, also the SPF will be close to 0. Appliances which induce larger harmonics
(e.g., appliances powered by SMPSs) result in a larger value of SPF.
The Odd-Even Harmonics Ratio (OER) represents the ratio of the even har-
monics of a signal to its odd harmonics. Depending on the type of SMPS or
rectifier (half-wave or full-wave) used in an appliance, the current signal can have
a characteristic imbalance of odd and even harmonics. The OER is calculated for
the first 18 harmonics as

OER = mean (Xf1 , Xf3 , . . . , Xf17)
mean (Xf2 , Xf4 , . . . , Xf18) . (7.25)

Similar to the TC in the time domain, the Spectral Centroid (SC) defines the
balancing point of the spectrum. Appliances which use an SMPS typically have a
higher balancing point because they induce higher order harmonics.

SC =
∑N−1

k=0 X[k] · f(k)∑N−1
k=0 X[k]

(7.26)

The Tristimulus (TRI) compresses the lower, medium, and higher harmonics
into a three dimensional feature vector. It, therewith, represents a compressed
form of the HED feature explained in the following.

T1 = Xf1∑N−1
k=0 X[k]

, T2 = Xf2 +Xf3 +Xf4∑N−1
k=0 X[k]

,

T3 = Xf5 +Xf6 + . . .+Xf10∑N−1
k=0 X[k]

,

TRI = [T1, T2, T3] .

(7.27)
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The Harmonic Energy Distribution (HED) is a vector containing the first
18 harmonic current components normalized by the magnitude of the fundamental
frequency as

HED = 1
Xf0

· [Xf1 , Xf2 , . . . , Xf18 ] . (7.28)

Figure 7.6 shows the normalized spectrum of two appliances with a strong odd-
even harmonic imbalance from the BLOND [21] dataset. The extracted HED is
marked with red circles.
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Figure 7.6: The spectra of a notebook and a rotary multi-tool
(BLOND [21]), normalized by the magnitude of the fundamental fre-
quency f0. The extracted HED is highlighted with red circles.

Aliasing effects caused by sampling rates lower than 2 · f18 would distort the spec-
trum and, thus, the extracted HED feature. Even if the sampling rate is chosen
high enough, harmonics with a frequency larger than fs are mirrored at the Nyquist
frequency (cf. Equation 2.5) and may, therefore, still be visible. As shown in the
top plot of Figure 7.6, the higher order harmonics (>800 Hz) are exaggerated due
to such interference. This behavior depends on the signal’s sampling frequency
and fundamental frequency. Proper low-pass filtering (with fcutoff ≈ f18) and
downsampling are applied to avoid such phenomena.
The evaluation carried out in Section 7.3 uses a combination of the presented
features. As the features map different physical quantities and are of different
ranges, feature scaling is applied to prevent undesired feature weighting. Each
dimension x in the feature space is scaled using z-score normalization by xscaled =
(x− µ)/σ with the mean of all training samples µ and the standard deviation σ.
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7.1.3 Classifiers

In the evaluations the following four classifiers are examined regarding their suit-
ability for appliance classification: (1) SVM, (2) kNN, (3) RF, and (4) XGBoost.
These classifiers have been pre-selected based on the following reasons: As the
number of training samples, i.e., appliance events, is comparably low (cf. Ta-
ble 3.2), classifiers are selected which generally work well on smaller training sets
(<50k samples) compared to e.g., ANN which unfold their advantages especially
if the training sets contain millions of samples. Furthermore, the number of events
varies depending on the appliance type (e.g., more fridge events than iron events)
resulting in an imbalanced training set. kNN is generally invariant to imbalanced
data and RF, SVM, and XGBoost can be adapted to such training sets using
class weighting or resampling strategies (over- or undersampling). Moreover, all
selected classifiers can be easily adapted to multi-class classification tasks and, due
to their low hyperparameter space, allow a comparably fast retraining including
HPO. These are important properties for adaptive training which is required for
any supervised NILM system to actually be deployed in a home (see Section 8.3).

To tune the parameters of each selected classifier (HPO), grid search is applied
with a macro F1-loss (see Section 7.1.4) based on the parameter sets listed in
Table 7.1.

Table 7.1: Hyper-parameter grid used while tuning each classifier.
Comb. shows the number of possible different combinations which need
to be analyzed during grid search.

Classifier Parameters Comb.
kNN k ∈ [1, 2, . . . , 20] 20
SVM C ∈ [0.01, 0.1, 1, 10, 100, 1000] 84

γ ∈ [10000, 1000, 100, 10, 1, 0.1, 0.01]
kernel ∈ [RBF, linear]

RF maxdepth ∈ [10, 20, . . . , 100] 40
nestimators ∈ [10, 50, 100, 1000]

XGBoost γ ∈ [0.5, 1, 1.5] 9
nestimators ∈ [100, 200, 1000]

For all remaining hyperparameters, the standard values of the scikit-learn [168]
library are used.
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7.1.4 Evaluation Setup and Metrics

For the following evaluations all features and classifiers introduced in Section 7.1.2
and Section 7.1.3 are used. As training and test data, start-up events from
the publicly available datasets WHITED [22], PLAID [23], BLOND-50 [21], and
FIRED (see Chapter 6) are extracted. It is noted that only appliance-level data are
used, as the main focus of this evaluation is to find appropriate features and classi-
fiers for appliance recognition. Information about the number of extracted events,
the number of appliances, and the sampling rate of each dataset are summarized
in Table 7.2.

Table 7.2: Information about the data extracted for the evaluation from
the four used datasets. WHITED and PLAID include isolated measure-
ments from a laboratory environment. BLOND-50 and FIRED include
real-world individual appliance measurements taken at an office building
and an apartment, respectively.

Appliance Sampling Start-up
Dataset Appliances types Rate events
WHITED 119 54 44 kHz 1185
PLAID 202 11 30 kHz 1314
BLOND-50 26 8 6.4 kHz 8202
FIRED 20 20 2 kHz 5956

The WHITED dataset includes 119 different appliances from 54 appliance types,
resulting in a comparably large number of classes to discriminate. The PLAID
dataset includes 202 appliances from eleven appliance types and is, therefore, the
dataset with the highest inner-class diversity. From the BLOND dataset, events
are extracted from data between October 1, 2016 and January 20, 2017. In this
time period, 26 different appliances from eight different appliance types were found
to show distinct events. From the FIRED dataset, events from 20 individual ap-
pliances (only appliances which trigger events and not the recording hardware)
are extracted from June 20 to September 22, 2020. While WHITED and PLAID
already contain appliance start-up events, these must be extracted from the con-
tinuous appliance measurements of BLOND and FIRED in advance. This was
achieved using the event detector introduced in Section 7.1.1. It is further noted
that solely appliance switch-on events are used in this evaluation. These were
obtained from the set of all events by selecting only events for which the average
power within 3 s before the event is below an idle power. The idle power was cal-
culated as 3VA plus the smallest power spotted before any event of the particular
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appliance. To further increase the comparability between all datasets, WHITED
and PLAID events were also extracted using the same event detector, although
these datasets already provide isolated appliance switch-on events. However, this
ensured that the same event detection threshold of 3VA was applied to all events
of the evaluation set.
For each dataset, all events are shuffled and split into 80% training and 20% test
samples (stratified). Using grid search, the model parameters of each classifier
(see Table 7.1) are optimized on each training set (i.e., dataset) individually. In
addition, a random stratified 5-fold CV is applied during grid search and the results
are averaged across all folds to optimize for better generalization performance. The
splits are performed stratified so that the class distributions remain constant across
all CV splits. The model is then selected for each dataset and classifier based on
the average CV results. The final model performance is ultimately reported for
the test set after being trained on the complete training set.
Model selection with grid search and the final evaluation uses the confusion matrix
notation in terms of TP, TN, FP, and FN to calculate accuracy (Equation 2.19),
precision (Equation 2.20), recall (Equation 2.21), and F1-score (Equation 2.22).
Macro-averaging is used and the unweighted means of each metric is calculated.
This means that all classes contribute equally to the mean of each metric ensur-
ing that a class with more support in terms of the available number of samples
(i.e., events) does not bias the results. To simplify the evaluation, two different ap-
pliances of the same type are treated as the same target class (e.g., the appliances
Monitor Dell U2713H and Monitor Fujitsu P171 of the WHITED dataset are re-
garded as the same class monitor). Classes with a support of less than five samples
are removed from the evaluation to ensure that training will include at least four
samples (for a 80/20 train-test split).

7.2 Standalone Feature Evaluation

In a first step, each feature is evaluated individually by training each classifier
solely on a single feature. As HPO is performed for each classifier, each dataset,
and each feature individually, a total of 4 · 4 · 27 = 432 different grid search
instances are evaluated. The final results are reported in Table 7.3 and represent
the F1-scores of the selected models applied to the test set.
The results show that some features alone (e.g., VIT, WFA, COT, or HED) al-
ready show decent classification capabilities (F1-score> 0.8) while other features
like PNR or PSS stand out with exceptionally poor F1-scores. In the time domain,
e.g., the VIT already reached an F1-score of 0.99 and 0.95 on the laboratory data-
sets WHITED and PLAID, respectively. Those high scores could not be matched
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for the FIRED and BLOND datasets which represent data closer to a real-world
scenario. In the frequency domain, the HED achieves comparatively high scores
of 0.97 on WHITED and PLAID while again not matching this performance on
FIRED and BLOND (0.89/0.8). LAT, PNR, MAMI, MIR, PSS, and SPF show a
very low average F1-score (�<0.2). As found by Kahl et al. [117] among others,
these features may be bad at distinguishing a larger set of different appliances
but can be used to recognize specific appliances which exhibit certain electrical
characteristics. Interestingly, those features (except MAMI) show consistent bet-
ter results on BLOND and PLAID compared to FIRED and WHITED. Both
BLOND and PLAID have a larger inner-class variability compared to FIRED and
WHITED indicating that these features might still improve classification perfor-
mance if more data are available for training. Unsurprisingly, features which show
better performance have the drawback of a high dimensionality (e.g., 40 for VIT
and 20 for WFA). If the focus is shifted towards the best performing scalar features
(F1-score> 0.4), classical electrical features such as P, S , R, Y , cosΦ, and THD
can be identified. It is argued that these features may be of choice for lightweight
NILM algorithms deployed on resource constrained systems such as smart meters.

115



Table 7.3: Classification results of a single feature applied to each dataset (WHITED, PLAID, FIRED, and BLOND) using four classifiers (kNN, SVM, RF,
and XGBoost (xgb)). HPO using grid search and 5-fold CV has been applied. The features with the highest F1-scores for each dataset are highlighted bold
in the time and spectral domain, respectively.

WHITED PLAID FIRED BLOND

Feature Dim. knn svm rf xgb knn svm rf xgb knn svm rf xgb knn svm rf xgb �

time domain

Active Power (P) 1 0.49 0.45 0.48 0.51 0.58 0.53 0.56 0.57 0.65 0.62 0.63 0.66 0.5 0.49 0.49 0.49 0.54
Reactive Power (Q) 1 0.29 0.3 0.31 0.32 0.37 0.41 0.43 0.34 0.47 0.53 0.54 0.52 0.36 0.32 0.36 0.34 0.39
Apparent Power (S) 1 0.53 0.49 0.48 0.5 0.45 0.46 0.43 0.43 0.59 0.62 0.62 0.6 0.41 0.42 0.41 0.43 0.49
Resistance (R) 1 0.52 0.5 0.49 0.55 0.43 0.4 0.44 0.46 0.68 0.55 0.66 0.65 0.41 0.42 0.4 0.42 0.5
Admittance (Y) 1 0.51 0.5 0.49 0.55 0.43 0.43 0.44 0.46 0.68 0.63 0.66 0.65 0.41 0.41 0.39 0.42 0.5
Crest Factor (CF) 1 0.15 0.17 0.17 0.18 0.38 0.36 0.32 0.39 0.33 0.33 0.32 0.31 0.42 0.31 0.41 0.42 0.31
Form Factor (FF) 1 0.27 0.22 0.26 0.26 0.44 0.44 0.43 0.46 0.36 0.3 0.37 0.37 0.34 0.34 0.35 0.33 0.35
Log Attack Time (LAT) 1 0.05 0.05 0.05 0.05 0.12 0.16 0.15 0.15 0.1 0.09 0.09 0.09 0.19 0.22 0.23 0.19 0.12
Temporal Centroid (TC) 1 0.15 0.17 0.15 0.15 0.38 0.42 0.37 0.42 0.3 0.22 0.23 0.22 0.25 0.23 0.27 0.25 0.26
Positive-Negative Half Cycle Ratio (PNR) 1 0.04 0.03 0.09 0.05 0.19 0.18 0.16 0.19 0.19 0.19 0.2 0.19 0.18 0.15 0.18 0.12 0.14
Max-Min Ratio (MAMI) 1 0.06 0.06 0.06 0.07 0.28 0.26 0.18 0.25 0.28 0.3 0.29 0.32 0.13 0.11 0.12 0.11 0.18
Peak-Mean Ratio (PMR) 1 0.2 0.19 0.16 0.19 0.4 0.3 0.43 0.37 0.38 0.37 0.37 0.39 0.4 0.38 0.42 0.38 0.33
Max-Inrush Ratio (MIR) 1 0.07 0.04 0.07 0.06 0.16 0.17 0.16 0.14 0.12 0.12 0.11 0.1 0.13 0.13 0.14 0.12 0.12
Mean-Variance Ratio (MVR) 1 0.21 0.24 0.3 0.28 0.41 0.34 0.36 0.38 0.42 0.41 0.4 0.4 0.33 0.34 0.35 0.32 0.34
Waveform Distortion (WFD) 1 0.27 0.24 0.24 0.23 0.35 0.36 0.38 0.39 0.44 0.44 0.43 0.45 0.3 0.31 0.28 0.3 0.34
Period to Steady State (PSS) 1 0.01 0.03 0.03 0.03 0.11 0.12 0.12 0.12 0.09 0.12 0.12 0.12 0.11 0.12 0.12 0.12 0.09
Phase Angle (cosΦ) 1 0.26 0.24 0.26 0.27 0.48 0.46 0.42 0.49 0.45 0.45 0.43 0.44 0.43 0.44 0.38 0.44 0.4
Inrush Current Ratio (ICR) 1 0.17 0.07 0.15 0.16 0.27 0.23 0.27 0.36 0.41 0.22 0.44 0.37 0.27 0.25 0.26 0.25 0.26
Waveform Approximation (WFA) 20 0.92 0.91 0.93 0.83 0.93 0.92 0.9 0.9 0.91 0.93 0.88 0.84 0.84 0.82 0.75 0.8 0.88
Current Over Time (COT) 25 0.8 0.84 0.93 0.86 0.81 0.72 0.86 0.87 0.88 0.93 0.95 0.94 0.8 0.81 0.83 0.83 0.85
V-I Trajectory (VIT) 40 0.93 0.99 0.95 0.89 0.91 0.93 0.95 0.88 0.7 0.82 0.77 0.72 0.82 0.85 0.71 0.78 0.85

spectral domain

Total Harmonic Distortion (THD) 1 0.37 0.39 0.34 0.37 0.49 0.5 0.48 0.51 0.42 0.4 0.43 0.41 0.38 0.34 0.39 0.38 0.41
Spectral Flatness (SPF) 1 0.06 0.07 0.09 0.1 0.2 0.19 0.21 0.22 0.17 0.17 0.15 0.18 0.23 0.21 0.19 0.21 0.17
Odd-Even Harmonics Ratio (OER) 1 0.09 0.09 0.12 0.09 0.26 0.28 0.26 0.3 0.28 0.25 0.26 0.25 0.29 0.25 0.3 0.21 0.22
Spectral Centroid (SC) 1 0.12 0.12 0.13 0.14 0.31 0.3 0.25 0.26 0.22 0.2 0.22 0.23 0.33 0.31 0.29 0.3 0.23
Tristimulus (TRI) 3 0.89 0.86 0.86 0.79 0.87 0.82 0.82 0.79 0.77 0.81 0.84 0.77 0.61 0.64 0.63 0.59 0.77
Harmonic Energy Distribution (HED) 18 0.97 0.93 0.97 0.83 0.97 0.88 0.94 0.93 0.85 0.85 0.89 0.88 0.7 0.8 0.77 0.77 0.87
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7.3 Feature Selection

Some of the features already performed quite well in the standalone analysis. How-
ever, it can be assumed that the combination of multiple features leads to even
better classification scores. While combining all 27 features may result in bet-
ter classification performance, the number of dimensions should be held small to
save computational resources and to prevent performance degradations which stem
from larger feature spaces also known as the curse of dimensionality. Therefore,
in a second analysis several feature combinations are evaluated based not only on
their final classification score but also on their overall dimensionality. While the
standalone feature VIT already reaches an F1-score of up to 0.99 in the experi-
ments, its large dimensionality may hamper a possible application. Furthermore,
it might be possible that a combination of multiple features of smaller dimen-
sionality even outperforms VIT. Consequently, a second analysis is conducted for
which the combination of several features up to a maximum dimensionality N is
examined.

Since an evaluation that considers all possible feature combinations is not feasible
(∑27

k=0

(
27
k

)
), a simple sequential selection algorithm is used. The algorithm starts

by adding the best performing scalar feature (featx) to a feature set (F0 = {featx}
with dimensionality N0 = 1). It then evaluates all combinations of Fi with another
scalar feature featj. The best performing combined set (Fi+1 = Fi ∪ {featj}) is
stored which results in a dimensionality of Ni+1 = Ni + 1. It is then checked if
any of the possible combinations of non-scalar features (FNS

i+1 ) which result in the
same dimensionality Ni+1 outperforms Fi+1. If this is not the case, the algorithm
continues with Fi+1, otherwise FNS

i+1 is used. This process is repeated until a
maximum dimensionality Nmax is reached. The performance of each tested feature
set is stored.

The selection scheme is executed for all 27 features on all datasets with a kNN,
SVM, and RF classifier. XGBoost was left out due to its extensive computa-
tional requirements and comparable low performance on the standalone feature
evaluation (see Table 7.3). The results of this experiment, which are visualized
in Figure 7.7, highlight that feature combinations with rather low dimensional-
ity (N < 10) already lead to classification scores of over 98% on WHITED and
PLAID. The evaluation further highlights that the performance on recordings in
laboratory setups (PLAID and WHITED) is generally better and more consistent
compared to more representative real-world data (FIRED and BLOND). This is,
however, expected due to the lower noise-level in such environments.
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Figure 7.7: Results of the proposed feature selection strategy for all
classifiers (line styles) and all datasets (line colors).

In this evaluation, all classifiers performed equally well. Only for the BLOND
dataset, SVM classifiers outperform the others by quite a margin. Table 7.4 shows
the specific feature sets that have been chosen by the selection scheme for different
dimensionalities N .
As a tradeoff between dimensionality, performance, and computational effort, it is
proposed to use features up to a dimensionality of 25. The feature set which has
been proposed by the algorithm for N = 25 (see Table 7.4) depends on the used
classifier. However, it always includes the features WFA and TRI. It is decided
to supplement these features with P and cos Φ resulting in the proposed feature
set [P, cosΦ, TRI,WFA]. P has already been evaluated in Table 7.3 as being the
best scalar feature with an average F1-score of 0.54. cos Φ reoccurs in nearly all
feature sets (see Table 7.4) and is added to accommodate the reactive component
which may be introduced by an appliance. TRI further showed high classification
results in Table 7.3 and represents the only frequency domain feature in the set.
TRI is preferred over the actually better performing HED (see Table 7.3), as it
requires only three dimensions instead of 18. From the corresponding formulas,
it can be seen that TRI also represents a compressed form of the HED feature.
While WFA (with a dimensionality of 20) did not outperform 20 scalar features, its
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7.3 Feature Selection

simple calculation (cf. Equation 7.17) and the overall best results obtained in the
standalone feature analysis (see Table 7.3) justifies its inclusion in the set which
is finally proposed.

Table 7.4: Used features for selected dimensionalities N of the proposed
feature selection strategy. The F1-scores for each dataset and classifier (Clf.)
are shown in addition to the F1-scores averaged over all datasets.

N Clf. Featureset WHITED PLAID FIRED BLOND �F1

2 knn P, Y 0.87 0.89 0.89 0.75 0.85
2 svm P, Y 0.89 0.79 0.9 0.74 0.83
2 rf P, Y 0.86 0.83 0.85 0.71 0.81

5 knn P, Y, THD, cos Φ, OER 0.98 0.97 0.94 0.82 0.93
5 rf P, Y, THD, cos Φ, MV R 0.96 0.96 0.93 0.77 0.91
5 svm P, Y, THD, cos Φ, MV R 0.96 0.98 1.0 0.81 0.93

22 knn P, Y, THD, cos Φ, OER, FF, R, S, 0.87 0.96 0.91 0.89 0.91
PMR, WFD, TC, ICR, MV R, SC, Q, CF,
PNR, MAMI, SPF, LAT, PSS, MIR

22 rf P, Y, THD, cos Φ, MV R, WFD, SC, 0.98 0.97 0.92 0.87 0.93
LAT, OER, SPF, ICR, CF, S, PSS,
MIR, PNR, R, MAMI, Q, TC, PMR, FF

22 svm P, Y, THD, cos Φ, MV R, CF, R, 0.95 0.96 0.97 0.88 0.94
OER, FF, SC, Q, PMR, S, WFD, SPF,
ICR, TC, PNR, MAMI, LAT, PSS, MIR

25 knn WFA, TRI, cos Φ, Y 0.99 1.0 0.92 0.9 0.95
25 rf WFA, TRI, LAT, S 0.98 0.98 0.91 0.88 0.94
25 svm WFA, TRI, S, THD 0.98 0.95 0.93 0.95 0.95

32 knn WFA, TRI, cos Φ, Y, R, OER, 0.99 1.0 0.93 0.89 0.95
MV R, THD, P, S, SC

32 svm WFA, TRI, S, THD, R, CF, Y, 0.98 0.97 0.93 0.96 0.96
cos Φ, MV R, FF, OER

32 rf WFA, TRI, LAT, S, CF, Y, MAMI, 0.98 0.97 0.91 0.89 0.94
SC, SPF, MIR, OER

With these four features, the proposed set is of comparatively small dimensionality,
computationally lightweight enough for resource constrained systems, and still
delivers decent classification results. To emphasize this, the proposed set and the
combination of all 27 features was evaluated on all classifiers and datasets. The
results are shown in Table 7.5. A slight performance increase across all classifiers
can even be identified if the proposed feature set is used instead of all features.
This is due to the curse of dimensionality. With a dimension reduction from 128 to
25, the proposed set still outperforms the combination of all features, highlighting
the effectiveness of the proposed feature set.
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Table 7.5: Classification results for all 27 features and for the proposed feature
combination [P, cosΦ, T RI, W F A]. The best results are highlighted in bold.

WHITED PLAID FIRED BLOND

Clf Pr Re Ac F1 Pr Re Ac F1 Pr Re Ac F1 Pr Re Ac F1 �F1

using all 27 feature; overall vector dimension: 128

knn 0.97 0.97 0.96 0.97 0.98 0.97 0.97 0.97 0.89 0.87 0.99 0.86 0.94 0.94 0.99 0.94 0.93
svm 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.91 0.94 1.0 0.92 0.96 0.88 0.99 0.91 0.95
rf 1.0 1.0 0.99 1.0 0.99 0.98 0.98 0.98 1.0 0.98 1.0 0.98 0.97 0.88 0.99 0.91 0.97
xgb 0.97 0.96 0.97 0.96 0.97 0.96 0.97 0.97 0.9 0.87 0.99 0.87 0.95 0.86 0.99 0.89 0.92

using the feature set [P, cos Φ, TRI, WFA]; overall vector dimension: 25

knn 0.97 0.97 0.96 0.97 0.98 0.98 0.98 0.98 0.91 0.92 0.99 0.91 0.95 0.89 0.99 0.91 0.94
svm 0.98 0.97 0.97 0.97 0.96 0.96 0.95 0.96 0.92 0.95 1.0 0.93 0.94 0.96 0.99 0.95 0.95
rf 0.99 0.99 0.98 0.99 1.0 0.99 0.99 0.99 1.0 0.98 1.0 0.98 0.96 0.95 0.99 0.95 0.98
xgb 0.94 0.91 0.93 0.91 0.97 0.96 0.97 0.97 1.0 0.97 1.0 0.98 0.95 0.86 0.98 0.89 0.94

The average F1-scores of the proposed set over all datasets exceed 0.94 independent
of the used classifier. The RF classifier performs best with an average F1-score
of 0.98. It is, however, noted that a computationally fairly simple kNN classifier
with k= 1 already achieves a rather high F1-score of 0.97 on WHITED and 0.98
on PLAID. kNN is a so called lazy learning algorithm that requires no internal
parameter tuning except for the choice of the number of neighbors (k) to consider.
During training, the complete training set is stored. During inference, a new sam-
ple is assigned to the most common class within its k-nearest neighbors. To reduce
the required memory of a kNN classifier, which linearly increases with the number
of training samples, the Condensed Nearest Neighbor Rule [169] can be applied.
Because of its simple training and the ability to reduce the required memory, it is
argued that kNN should be the classifier of choice if deployed (including training)
on systems with small computational resources such as typical smart meters. It
might also be possible to integrate a kNN classifier into the SmartMeter which has
been proposed in Section 4.2. However, for systems with sufficient computational
power, SVM and RF should be the classifiers of choice.

XGBoost has shown enormous potential by leading many machine learning com-
petitions during the recent years [170]. Even though it exhibits the worst per-
formance across all classifiers in the analysis at hand, it is argued that XGBoost
might still outperform RF and SVM for other hyperparameter choices as the ones
tested during these evaluations (see the used grid search parameters in Table 7.1).
However, due to its large hyperparameter space and, therefore, extensive training
time, RF and SVM were selected in favor, representing a tradeoff between the
required training time and possible gain in classification performance.
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7.3 Feature Selection

Figure 7.8 shows the confusion matrix of the RF classifier using the proposed
feature set on the PLAID dataset (the corresponding performance metrics are
shown in Table 7.5. Despite the overall F1-score of 0.98, only some appliances with
rotary motors (fan, heater, and air conditioner) are confused with one another.
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Figure 7.8: Confusion matrix of a RF classifier with the feature set [P,
cosΦ, T RI, W F A] applied to the PLAID dataset.

Due to the outstanding performance of the RF classifier with the feature set [P,
cosΦ, TRI,WFA], it is proposed to use their combination as a benchmarking al-
gorithm when comparing novel appliance classification algorithms, similar to the
low-frequency disaggregation algorithms that have been implemented as bench-
marks in NILMTK [69].
The experiments presented in this chapter solely used start-up events extracted
from individual appliance data (such as recorded by a PowerMeter). However,
to apply the basic concepts of the event-based NILM pipeline (cf. Figure 2.2) to
aggregate data, i.e., the data recorded by smart meters, additional adjustments
to the data and the training procedure are required. These are described in more
detail at the beginning of Chapter 8.
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8 Improving Supervised
Non-Intrusive Load Monitoring

The general pipeline of event-based NILM systems is shown in Figure 2.2. Data ac-
quisition has been approached in Chapter 4, event detection has been improved in
Chapter 5, and well-established features and classifiers for event classification have
been evaluated in Chapter 7. This chapter introduces several cleaning methods
that can be used to exempt an appliance event from the aggregated consumption
data. Afterwards the concept of hybrid training, in the context of NILM systems,
is explained and evaluated. Finally, a novel supervised NILM method is intro-
duced which is based on the combination of aggregated and individual appliance
data. The techniques explained in this chapter have been published in [PA21].

• A comparison of different cleaning methods tailored for the task of extract-
ing individual appliance events from the aggregated consumption data (see
Section 8.1).

• A comparison of naive, classic, and hybrid supervised training (see Sec-
tion 8.2).

• The introduction of a novel approach for supervised NILM using additional
plug-level meters (see Section 8.3).

8.1 Event Cleaning

In contrast to Chapter 7 where isolated high-frequency measurements of appli-
ance events were used to calculate characteristic features, classical high-frequency
event-based NILM systems only have access to aggregated (voltage and current)
measurements. Appliance events can still be detected and compressed into an
ROI using aggregated measurements. These measurements will, however, contain
contributions of all currently active appliances, not just the contribution of the ap-
pliance causing the event. While it can be assumed that the voltage level at each
appliance is virtually identical to the level measured at the aggregated point, the
current measured at this point is the sum of the currents drawn by each appliance
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Chapter 8 Improving Supervised Non-Intrusive Load Monitoring

(cf. Equation 2.2). If the features explained in Section 7.1.2 are extracted from
aggregated appliance events, the contributions of other appliances may distort the
characteristics of the appliance causing the event. A simplified example: If the
active power consumption was 1000W before and is 1100W after the event, the
contribution of the appliance causing the event is just +100 W. Therefore, special
cleaning techniques are required so that the features (active power in the example)
only characterize the appliance causing the event (+100 W in the example) and not
all currently active appliances (1100 W in the example). Cleaning can either be
applied to the aggregated current and voltage measurements or to the calculated
features, resulting in several possibilities which are evaluated in the following.
Subtracting the characteristic waveform:
For this technique a prototype mains cycle Iproto

W F is calculated by averaging all
mains cycles from the pre-event data. This prototype waveform is subtracted from
all mains cycles following the event after cross correlating the individual mains
cycles. The cleaned mains cycles are calculated as Icleaned

W F [j] = IW F [j]− Iproto
W F .

Subtraction in the frequency domain:
The pre- and post-event data are first transformed to the frequency domain using
a Fourier transformation (cf. Equation 7.21). Afterwards the magnitudes of the
frequency bins are subtracted as X[k] = Xpost[k] −Xpre[k]. Finally, the signal is
transformed back to the time domain using an inverse Fourier transformation.

An example of both cleaning methods is shown in Figure 8.1. The top plot shows
the ROI of a fridge event of the FIRED dataset taken from the aggregated data.
The corresponding isolated recording is shown in the bottom plot. The orange
signals represent the two cleaning methods and have been generated solely using
the (blue) aggregated signal. As the goal of the cleaning method is to emphasize
the contribution of the individual appliance causing the event, a result closer to
the isolated recording (green) indicates a better cleaning. Both methods effectively
remove the steady-state current prior to the event from the signal. To rate the
similarity to the isolated measurement, the RMSE (see Equation 2.18), MAE (see
Equation 2.17), and the Pearson correlation coefficient (Cpearson) is used. Cpearson

rates the similarity of two sampled signals x and y w.r.t. to their correlation, and
is defined as

Cpearson =
∑N

i=1(x[i]− µx)(y[i]− µy)√∑N
i=1(x[i]− µx)2

√∑N
i=1(y[i]− µy)2

, (8.1)

where µx and µy are the means of the signals x and y which are of length N .
Cpearson is independent of an applied linear mapping to the signal. Hence, if x
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8.1 Event Cleaning

and y are perfectly mapped as y = n · x + m (with scaling factor n and offset
m), the corresponding correlation coefficient is 1. In the context of this evaluation
this might look counterintuitive at first, as the contributions of other appliances
are of additive nature. However, waveform distortions, such as those caused by
phase shifts and non-resistive behaviors of other appliances, are still considered
by the correlation coefficient. When comparing the similarity to the individual
measurement, a cleaned signal x is compared to the individual measurement y.
Cpearson has been calculated for each signal in Figure 8.1 (see the legend of the
plots). In case of identity (x = y), Cpearson evaluates to 1 representing optimal
correlation (see Cpearson for green signal). The better the similarity of the signals,
the closer Cpearson is to 1. Hence, the cleaning methods perform equally well (see
Cpearson for both orange signals in Figure 8.1), with a slightly better correlation
coefficient for the frequency domain method.
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Figure 8.1: (Blue) fridge event found in the aggregated current signal
of FIRED. (Orange) cleaned events using the current signal of the first
0.5 s. (Green) recording of the same event at appliance-level.

To further test the cleaning methods, they were applied on several other appliance
events from the FIRED dataset. The correlation coefficient, the RMSE, and the
MAE have been calculated alongside. The averaged results are shown in Table 8.1.
In total, 192 events from 23 different appliances have been used.
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Table 8.1: Comparison of the two proposed cleaning methods for aggre-
gated data. None refers to no cleaning and acts as a baseline.

Cleaning method Pearson MAE RMSE
None 0.84 666.01 2360516.75
Time domain 0.86 291.39 458307.01
Frequency domain 0.81 334.97 458036.25

While no cleaning seems to have an even better Pearson coefficient than frequency
domain cleaning (potentially due to its invariance against scaling), the correspond-
ing average MAE and RMSE values are noticeable smaller if cleaning is applied
(smaller is better for both metrics). Time domain cleaning performs best accord-
ing to the Pearson and MAE metric. Still, the results highly depend on the signal
prior to the event. If the signal is disturbed by other events or contains other
non-stationary noise due to the contributions of other appliances, the cleaning
efficiency will decrease. As the electricity consumption of an appliance is generally
time-variant and non-stationary (as it is user and time dependent), no cleaning
method will be able to fully reconstruct the isolated measurements.

Instead of cleaning the original measurements to subsequently calculate the fea-
tures from the cleaned measurements, the corresponding delta representations can
be calculated directly in the feature domain.
Delta Form:
As most steady-state features meet the feature additive criterion, the delta form of
each feature can be used as feat∆ = featpost − featpre to isolate the contribution
of the appliance causing the event. Other features require corresponding adaption
(such as a subtraction in the frequency domain for the THD feature) before a
delta representation can be calculated. Similarly, most transient features require
adjustments, such as the COT, where the corresponding steady-state current from
before the event needs to be subtracted.

To finally decide on the best event cleaning strategy, a small evaluation compares
the time domain, frequency domain, and delta form cleaning methods. Labeled
aggregated events from the FIRED dataset are first cleaned with a particular
method and are then used to calculate all 27 features presented in Section 7.1.2.
While the proposed feature subset in Section 7.3 achieved very good results, this
evaluation aims to analyze the effect of the cleaning methods on the performance
of all features. Hence, all features are used to train and test the four classifiers
introduced in Section 7.1.3. This results in an overall feature vector of size 128.
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The used training and evaluation procedure is similar to the one described in
Section 7.1.4 utilizing grid search with 5-fold CV to optimize the hyperparameters
listed in Table 7.1 as well as the macro averaged precision, recall, accuracy, and
F1-score metrics. The results are presented in Table 8.2 and indicate that all
cleaning methods yield a noticeable gain in classification performance compared
to no cleaning. Time domain cleaning shows the best results. The delta form
also performs quite well and frequency domain cleaning performs slightly worse
but still almost 5% better than no cleaning. Hence, whenever aggregated data
are used in the following, the time domain cleaning method will be applied to the
data before any feature is extracted from it.

Table 8.2: Comparison of the classification results for a kNN, an SVM,
and a RF classifier after applying one of the proposed cleaning methods.
None refers to no cleaning.

Cleaning
method

knn svm rf
Pr Re Ac F1 Pr Re Ac F1 Pr Re Ac F1

None 0.71 0.7 0.95 0.71 0.81 0.79 0.97 0.79 0.87 0.83 0.97 0.84
Time domain 0.84 0.82 0.97 0.82 0.97 0.93 0.99 0.94 0.99 0.98 0.99 0.98
Freq. domain 0.83 0.82 0.96 0.82 0.95 0.9 0.98 0.91 0.9 0.89 0.98 0.89
Delta form 0.77 0.79 0.97 0.77 0.92 0.88 0.98 0.88 0.96 0.94 0.99 0.94

Table 8.2 further shows that RF achieved the best classification score in this eval-
uation, outperforming SVMs by around 4%. This confirms the results shown in
Table 7.5 where the performance of all features is compared to the proposed fea-
ture set (see Section 7.3). RF can inherently handle multiple feature dimensions,
as a dedicated hyperparameter (maxfeatures) reduces the number of features per
split [171]. The standard value for maxfeatures = √nfeatures already reduces the
feature dimensionality of each split from 128 to 11.

8.2 Hybrid Training

This section aims to answer whether additional training on high-frequency indi-
vidual appliance data improves the classification performance compared to train-
ing solely on labeled aggregated data. This method is referred to henceforth as
hybrid training. Both, the FIRED and the BLOND dataset offer simultaneous
high-frequency recordings of the aggregated mains signal and of many individual
appliances. This allows to extract appliance events (i.e., the ROIs of the events)
from individual appliance data and aggregated data. As the corresponding ROIs
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include the same appliance specific characteristics, a combined use is evaluated for
the task of model training.
The following evaluation is performed for three scenarios. The classifiers are
trained (S1 ) solely on individual appliance recordings, (S2 ) solely on aggregated
recordings, and (S3 ) on aggregated and individual appliance data. While training
may include individual appliance recordings (for scenario S1 and S3 ), testing is
performed on cleaned aggregated data only as this represents a NILM system’s
target input data after training. Whenever aggregated data are used, these data
are cleaned using the time domain cleaning method proposed in Section 8.1.
Scenario S1 is motivated by the fact that clean and appliance-specific recordings
are used for training which are not disturbed by noise from other appliances as
it might be the case for aggregated recordings. Scenario S2 trains the system on
target data only and might learn the specific noise distribution of the data and
measurement system. This scenario, therewith, represents standard supervised
NILM setups. Scenario S3 is motivated by the combination of S1 and S2. If
the training uses both clean and target data, a classifier may better generalize
for non-stationary noise in the data. Furthermore, twice the amount of samples
are available for training as each event is recorded at individual and aggregated
level. Therewith, this scenario can also be seen as a kind of data augmentation
technique. To see the impact of doubling the number of training samples in S3,
an additional evaluation (S3.5 ) was performed using only a subset of the training
data which has the same size as the training sets of S1 and S2.

8.2.1 Data Preparation and Evaluation Setup

To extract events from the aggregated data from both, the FIRED and the BLOND
dataset, the timestamps of the individual appliance events (which have already
been used in Section 7.2 and Section 7.3) are employed. The exact event position
in the aggregated recordings is determined by a fine search of a corresponding
power change in a 3.5 seconds window applied to the event timestamps taken from
the individual recordings. This allows for slight time shifts between the different
DAQs (i.e., aggregated meter and plug meters) which have been observed to be less
than 1 s in both datasets. As the aggregated signal measures the composite load of
all appliances (on the same grid line), the aggregated signal of an appliance event
can potentially be disturbed by additional events of other appliances. However,
according to the SCP, the probability that more than one event happens simulta-
neously is very low. In order to confirm this, it was checked for simultaneous events
within 3 s, as the ROI for an event is of length 1.5 s. It was observed, that 11%
of the start-up events in the considered time period of the FIRED dataset hap-
pened simultaneously, i.e., within 3 s of at least one other start-up event. Many of
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these events were generated by a PC which frequently transitioned between an idle
and active state. For the BLOND dataset, an even higher number of the start-up
events (47%) happened simultaneously with other events. This is mainly due to
the comparably small event threshold of 3VA (compared to larger thresholds used
in other works, e.g., 25W in [108]) and the specific environment of the BLOND
dataset, where numerous variable power consumers and multi-monitor setups are
used. For the following evaluation, all simultaneous events were removed from
both datasets. This ensured that the extracted events are as clean as possible
ensuring that the results mainly highlight the effect of the hybrid setup.

The same classifiers (kNN, SVM, RF, and XGBoost) as used in the standalone
and combined feature analysis (see Section 7.2 and Section 7.3) are also utilized
for this evaluation. Each classifier is trained for each scenario on each dataset.
The proposed feature set from Section 7.3 is employed for all experiments. Since
these features proved to work well with individual appliance data, they should
also perform quite well with aggregated data, as ideally, aggregated data shows
the same characteristics especially after cleaning (see Section 8.1).

8.2.2 Results

The results are summarized in Table 8.3. Overall, and independent of the specific
scenario, the results highlight that a lower inner class diversity is beneficial for
appliance classification, as the results for FIRED are significantly better than for
BLOND. Scenario S1, in which only individual appliance data are used for training,
shows quite poor results. While the kNN classifier still achieved an F1-score of 0.58
for the FIRED dataset, no classifier was able to match such a score for the BLOND
dataset. If the classifiers are trained on target data (S2 ), the results increase
to e.g., 0.93 for FIRED and 0.82 for BLOND using a RF classifier. Finally, if
individual and aggregated data are used for training, all classifiers tend to perform
slightly better on average. With an average 7% better F1-score (compared to the
next best classifier in S3 ), the SVM classifier outperforms all other classifiers and
achieves the overall best average F1-score of 0.82. It is noted that the training set
for S3 is doubled (compared to S1 and S2 ), as all events are taken from individual
and aggregated data. Therefore, in scenario S3.5, the training set was reduced to
the same size as for S1 and S2 while still containing individual and aggregated
data. The results show that the high scores of S3 cannot be matched in this case,
which indicates that the increase in training samples is the main benefit of the
hybrid approach.

Summarized, training solely on individual recording (S1 ) delivers comparatively
poor results (F1-score < 0.6), training on aggregated data (S2 ) delivers decent
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results (0.7 < F1-score < 0.8), while training on both, individual and aggregated
data, shows slightly better results (0.73<F1-score< 0.82). The better results of
the latter have, however, been identified to be related to larger training sets.

Table 8.3: Average classification results for three different training sets
using time domain cleaning, the proposed combination [P, cosΦ, T RI,
W F A], and four classifiers (kNN, SVM, RF, and XGBoost). S1 : Train-
ing using appliance-level data only, S2 : Training using aggregated-level
data only. S3 : Training on appliance-level and aggregated-level data.
S3.5 : Training on a subset of S3 with the same size as S2.

FIRED BLOND
Sc. Clf. F1 Pr Re Ac F1 Pr Re Ac �

S1 knn 0.58 0.66 0.62 0.94 0.37 0.46 0.49 0.49 0.47
svm 0.53 0.56 0.59 0.93 0.22 0.42 0.23 0.26 0.38
rf 0.57 0.64 0.59 0.91 0.25 0.29 0.29 0.36 0.41
xgb 0.47 0.57 0.48 0.91 0.32 0.53 0.41 0.52 0.4

S2 knn 0.86 0.88 0.87 0.98 0.59 0.58 0.61 0.9 0.73
svm 0.89 0.91 0.9 0.99 0.67 0.77 0.65 0.91 0.78
rf 0.93 0.94 0.93 0.99 0.61 0.82 0.58 0.91 0.77
xgb 0.79 0.8 0.8 0.99 0.56 0.64 0.55 0.91 0.67

S3 knn 0.87 0.89 0.88 0.99 0.63 0.65 0.62 0.91 0.75
svm 0.95 0.96 0.96 0.99 0.68 0.79 0.64 0.92 0.82
rf 0.94 0.94 0.93 1.0 0.53 0.54 0.52 0.91 0.73
xgb 0.88 0.89 0.89 0.99 0.58 0.67 0.56 0.91 0.73

S3.5 knn 0.78 0.79 0.81 0.98 0.61 0.62 0.62 0.9 0.7
svm 0.82 0.82 0.86 0.98 0.63 0.66 0.61 0.89 0.73
rf 0.84 0.83 0.87 0.99 0.54 0.57 0.52 0.89 0.69
xgb 0.84 0.84 0.86 0.99 0.55 0.61 0.53 0.91 0.69

8.3 Minimal-Intrusive Load Monitoring

Many supervised NILM systems require a preceding and intrusive training phase,
during which all appliances must have been traversed through all of their possible
states several times. For instance, one can think of a washing machine that has
to be started several times for all of its possible washing programs. At best, this
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should also be repeated for all other possible combinations with the states of all
other appliances. This takes the term non-intrusive in NILM ad absurdum.

By combining the previously discussed improvements (cleaning and hybrid train-
ing) with a user-centric training phase supported by plug-level meters, a concept
called Minimal-Intrusive Load Monitoring (MILM) is introduced. Based on the
results from Section 8.2 it can be justified that training on individual and aggre-
gated data maximizes the performance of supervised event-based NILM systems.
Furthermore, no dedicated data labeling (i.e., ground truth generation process)
is required if appliances are monitored individually. When an appliance event is
recognized in the plug-level data, the corresponding event in the aggregated data
can be automatically labeled without the need for any user interaction. There-
fore, additional intrusive plug meters are used for (1) the collection of training
samples not disturbed by noise, (2) the collection of ground truth labels for the
aggregated data, and as (3) a straightforward way to guide the training process
for the resident. This concept is called Minimal-Intrusive Load Monitoring as it
combines the advantages of NILM and ILM while simultaneously resolving many
disadvantages of conventional supervised NILM methods. It is considered to be
minimal intrusive as it still requires some intrusive sensors during training and
a minimal number of intrusive sensors after training. An overview of the MILM
concept is shown in Figure 8.2 and the approach is explained in the following.

Event detector

Trainings pipeline of meter mN

Trainings pipeline of meter m0

Standard event-based NILM pipeline

Training control logic

List of 
appliance 

events

Train classifier clf( aj )

Classify using set of readily 
trained classifiers CF

Check for 
feasibilityEvent detector

Event detector Extracted event

…

m0

Smart Meter

update set

Plug Meters

mN

Retrain clf( ax ), if wrongly classified an event of an 
appliance connected to [m0 , …, mN ]

…

…

Figure 8.2: Concept of Minimal-Intrusive Load Monitoring with a set of
N plug-level meters mi which are connected to an appliances of interest
aj in a pipelining strategy, guided by a user-centric training phase.

Deploying the system in a new home requires the installation of a smart meter
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capable of recording aggregated data at high sampling rates (≥ 2 kHz) into the
home’s fuse box. Furthermore, several plug-level meters (m0, . . . ,mN) are handed
to the resident, which can also record at a high sampling rate (≥ 2 kHz). The
control flow for each of these plug meters mi is shown in Figure 8.3. To simplify
the explanation of the concept, it is exemplarily considered that only a single plug
meter is used in the following. The resident decides which appliance (aj with j∈
[0, . . . ,M ]) is of most interest and installs the plug meter to it. The system then

File watchdogControl flow of meter mi

j++; attach
 mi  to new 
appliance aj

Start

     Wait for retraining
request or 5 new

events of mi

Train classifier
clf(aj )

3⨉F1 > F1 max3⨉ΔF1 > 0.01

Get name 
of aj

Disaggregate 
aj using clf(aj )

no

All 
appliances

done?

no

Stop

yes

Get name 
of aj

yes

no yesDisaggregate 
aj using mi

Figure 8.3: Flow of the training control logic of a single plug meter mi.
Green and red boxes indicate success and failure, respectively, and blue
boxes require user attention.

collects an event set (ESj) for appliance aj using an event detection algorithm
(see e.g., the detector introduced in Section 7.1.1). This set consists of the events
of aj taken from the plug-level and aggregated-level data. These are labeled as
POS (=positive). Furthermore, all other events found in the aggregated-level data
are added to ESj and are labeled as NEG (=negative). If sufficient POS and
NEG events are sampled (i.e., at least five samples of the positive and 20 samples
of the negative class), ESj is converted into an evaluation set (EV ALj) for a
binary classifier (clf(aj)). ESj is randomly subsampled into EV ALj to enforce
a fixed class distribution of 80% negative and 20% positive events. There are
naturally (but not necessarily) more negative than positive class instances with a
beforehand unknown ratio, leading to an imbalanced classification problem. By
restricting the class imbalance ratio to 1:4, resulting in a slight imbalance [66],
it can still be handled by standard classification techniques and further includes
sufficient variety of the negative class. EV ALj is further split into 20% test
samples (TESTj) and 80% training samples (TRAINj). All plug-level data are
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removed from TESTj to ensure that the classifier is tested on unseen appliance
events solely from the aggregated-level data. An SVM classifier (which showed
the best results for S3 in Section 8.2) is trained on TRAINj using 5–fold CV.
For every five new positive samples added to ESj, or if a retraining is specifically
scheduled (see below), training is repeated. Training stops if the classifier has
reached an F1-score of a certain threshold F1 max for the last three retraining runs
(success) or if the last three retraining runs have not improved the performance
by at least 1% (failure), as shown in the flow diagram depicted in Figure 8.3.
On success, the user is notified that training for appliance aj has finished. To obtain
a unique name for the appliance, the system might ask the user. As user interaction
should be held minimal, this step might be further enhanced by e.g., providing a list
of suggested appliance types. Those suggestions could be generated by applying
the individual appliance data on general appliance models pre-trained on different
homes. After a name is specified, plug meter mi is connected to the next appliance
of interest (aj+1) for which the process is repeated.
On failure, events of appliance aj cannot be adequately recognized by the system
using aggregated-level data alone. The user is notified and prompted to leave the
plug meter mi installed to continue to meter the events of appliance aj in an intru-
sive fashion. All events in the aggregated signal triggered by an appliance which
is marked with failure are not included in the training set for other appliances and
solely the plug-level meter is used to determine events of the connected appliance.
Each successfully trained classifier clf(aj) is added to a gradually increasing set
of classifiers (CF ) and the final training set TRAINj is stored. CF is used in a
one-vs-rest strategy to achieve multi-class classification for all appliances with a
corresponding classifier in CF . For a given event, the classifier with the highest
probability of the positive class determines the finally assigned class. If no classifier
estimates a probability of at least 50% for the positive class, the event is regarded
as unknown. The events labeled by each individual meters mi are further utilized
to test all classifiers (depicted in Figure 8.2 as check for feasibility):
• If a currently trained classifier clf(aj) mistakenly classifies an aggregated event

as an event of aj (false positive), the aggregated event is added to an explicit
negative-class and a retraining of clf(aj) is enforced. Explicit negative events
are added to EV ALj independent of the positive-negative class distribution.

• If a currently trained classifier clf(aj) misses an aggregated event of aj (false
negative), it is retrained immediately.

• If a classifier clf(ax) in CF mistakenly classifies an aggregated event known to
be an event of a currently metered appliance aj 6=ax (false positive), it is added
as an explicit negative-class to TRAINx (the stored training set of clf(ax)) and
a retraining of clf(ax) is scheduled.
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All classified or labeled events are added to a final event list which encompasses
the timestamp and appliance corresponding to the events. As this also includes
the events of all individually metered appliance, it allows for monitoring appliance
events in case of failure and even during the training phase. Therewith, the pro-
posed MILM system can determine information (i.e., timestamp and corresponding
appliance) of the events generated by all appliances of interest. This is achieved
by using the combination of a NILM system with a small number of (intrusive)
plug-level meters to determine a final, minimal required number of plug meters for
a given detection performance F1 max.

8.3.1 Simulation on FIRED

The proposed system was simulated on the third supply leg (L3) on 71 days of
data from the FIRED dataset (June 20 to August 30, 2020). The simulation solely
used L3 as the most individually metered appliances which actively trigger events
are connected to it. In total, 25 of 31 appliances exhibit events in the FIRED data
from which 19 appliances are connected to L3. The implemented test-bed allows
to simulate different F1 max, different numbers of plug meters (N), and different
connection sequences (CS). A simulation of all possible combinations of CS and
F1 max is infeasible, since this would requireR = n·∑N

i=0

(
M
i

)
simulation runs for the

total number of appliancesM and the n different F1 max (e.g., R=2097152 for n=4
and M = 19). Instead, the order in which plug meters are attached to appliances
is selected based on (1) the average appliance’s power consumption during the
simulation time period (CSpower) or (2) the number of events exhibited by each
appliance (CSevents). The simulations are evaluated for a fixed count of five plug
meter in terms of the overall performance (TP, FP, FN, TN) and the total number
of appliances learned during the simulation time period. An appliance contributes
to the overall performance as soon as its training has finished (success). Table 8.4
shows the simulation results for four different F1 max thresholds, N = 5 and an
SVM classifier.
It can be seen that a maximum of ten appliances can be learned within the given
time period. This seems to be a comparably small portion of all 19 appliances
but most of the remaining appliances simply do not trigger enough events during
the simulation time period and could, therefore, not be learned successfully (see
support column in Figure 8.5). The number of events of a particular appliance
is larger if the appliance is either used more often (e.g., coffee machine compared
to waffle maker), it triggers multiple events when turned on (e.g., the heating
cycles of a dishwasher), or it triggers events without explicitly being turned on
(e.g., the cooling cycles of a fridge). For this reason, it is generally more bene-
ficial in terms of the system’s learning rate to attach the appliances in an order
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Table 8.4: Simulation of the proposed Minimal-Intrusive Load Moni-
toring system using an SVM classifier on the FIRED dataset. f and s
represent the number of appliances for which learning failed and suc-
ceeded, respectively.

CSevents CSpower

F1 max f s Pr Re Ac F1 f s Pr Re Ac F1

0.80 0 9 0.89 0.93 0.97 0.91 0 5 0.87 0.93 0.97 0.91
0.85 0 9 0.89 0.93 0.97 0.91 0 4 0.89 0.89 0.97 0.9
0.90 0 10 0.92 0.92 0.97 0.92 1 3 0.94 0.97 0.97 0.97
0.95 4 2 0.99 0.99 0.99 0.99 2 2 0.99 1.0 0.98 0.99

determined by their exhibited number of events (CSevents) rather then their power
consumption (CSpower). This is confirmed by the results in Table 8.4 which show
that more appliances can be successfully learned over time (s=success) if the order
is determined by the number of appliance events. Figure 8.4 also highlights this
by showing the number of appliances learned over time for CSpower (dashed) and
CSevents (non-dashed).
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Figure 8.4: Number of learned appliances over time for different F1 max

and different connection sequences. Dashed lines represent CSpower,
filled lines represent CSevents.

The dashed and non-dashed curves show similar behaviors in the first ten days
of the simulation, as the same three appliances (fridge, esspresso machine, and
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oven) are initially connected to the meters for CSevents and CSpower. After that,
the number of appliances stays almost constant for CSpower, because the newly
connected appliance (such as the kitchen spot light) do not trigger enough events
to be learned, at least for the next 30 days. During this time period significantly
more appliances are learned for CSevents, as the connected appliances trigger more
events. It can be further seen that lowering F1 max does not necessarily lead to an
increase in the total number of appliances learned. It is noted that neither the
number of events nor the power consumption of the appliances are known for real
deployments in advance. Therewith, the order should ultimately be determined by
the interest of the user. Lowering F1 max generally leads to a faster learning rate
and to an overall worse F1-score. Therefore, a trade-off has to be made, which
may also depend on user preference. If F1 max is increased to 0.95, the highest
overall score is achieved but only two appliances could be learned successfully. A
reasonable tradeoff to balance classification performance and number of appliances
learned is achieved for CSevents and F1 max =0.9. While the overall F1-score is lower
compared to the simulation with F1 max = 0.95, the number of learned appliances
is the highest of all.
Figure 8.5 shows the confusion matrix for the simulation run with CSevents and
F1 max = 0.9. A classified event is regarded as a TP if the device was either
(1) correctly classified (highlighted in green), (2) not learned at and was correctly
classified as unknown (highlighted in light blue), or (3) classified as unknown prior
to the time it was learned (column unknown later learned, highlighted in dark
blue). Similarly, a FP of a certain appliance is an event classified as an event of
the appliance which is actually originated from another appliance (represented by
a column in the confusion matrix). Finally, a FN of an appliance is an event of
the appliance which is recognized as the event of another appliance (represented
by a row in the confusion matrix). It can be seen that appliances which have not
been learned by the system (greyed out on the y-axis) are sometimes incorrectly
classified as an already learned appliance (FP). Nevertheless, from a total number
of 5713 events and ten appliances learned, the overall number of true positives adds
up to 5586 (FP = 170 and FN = 127) indicating the potential of the concept.
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Figure 8.5: Confusion matrix of the MILM simulation with an SVM for
F1 max = 0.9 and CSevents. Each matrix entry represents the number
of particular predictions. FPs (orange) and FNs (red) are exemplar-
ily shown for the kettle. All predictions regarded as TPs are: events
of an appliance correctly assigned to it (green), appliances not learned
(greyed out) predicted as unknown (dark blue), and at that time un-
known appliances correctly predicted as unknown (light blue).
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8.3.2 Discussion

The results of the MILM evaluation summarized in Table 8.4 are promising. An
overall F1-score of 92% was reached (for F1 max = 0.9). While other supervised
methods, such as the ones proposed by Kahl et al. [117] and Jorde et al. [133],
reached perfect classification results on the laboratory WHITED dataset, typi-
cally, real system deployments, such as simulated by the conducted experiments,
typically produce significantly worse results.
Remaining challenges of the proposed MILM approach still need to be addressed.
The system was simulated only for events caused by a power increase (up-events).
However, for down-events, the same cleaning process as applied to up-events can
be applied. It is further argued that separate classifiers should be trained for up
and down events if transient features are used, since the consumption over time
is typically quite different for up and down. Furthermore, the concept does not
yet include a load disaggregation into individual appliance load profiles. It rather
delivers a set of classified appliance events with their corresponding timestamps
from which appliance on-phases can be identified, assuming that down events are
also recognized. Moreover, event-based NILM systems depend on the validity of
the SCP. If events happen simultaneously (i.e., within a few milliseconds) like
many events in the BLOND dataset, they might not be distinguishable. Still,
in the residential domain, the SCP can assumed to be valid up to some extend
(cf. [97]). Lastly, using plug meters to add appliances to the system assumes that
each appliance of interest has a plug. While it can be argued that this holds for
a lot of appliances, devices like a stove or most of the lighting are typically hard-
wired. Those appliances could, however, still be learned by the system using the
proposed cleaning method and a classic supervised NILM approach, in which the
appliance is turned on and off multiple times during an explicit training phase. In
the performed simulation, an average of 47 instances of the POS class (referring
to appliance up-events) were included in the final training set (for CSevents and
F1 max = 0.9). This reemphasizes that automating the ground truth generation
process is required to minimize the time of training which requires explicit user
interaction. The proposed MILM approach shows one way to achieve such an
automation.
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The energy consumption of a home depends not only on the infrastructure, such
as the insulation of the building and the energy efficiency of the appliance, but
also on the behavior of the inhabitants. There is promising potential for energy
savings by pinpointing users to unnecessary consumption or slightly adjusting
their usage patterns without compromising comfort. NILM offers a retrospective
way to provide individual appliance consumption data that helps to understand
electricity usage and, therewith, to ultimately save energy. The research of NILM
algorithms - especially for data-driven approaches - requires adequate datasets
with corresponding ground truth data as well as methodologies to create more of
such datasets when needed. Furthermore, most supervised NILM systems require
a tedious training process that typically render their application impractical. The
thesis at hand presented several strategies to solve existing challenges.

A set of design goals was defined for a system dedicated to generate universal elec-
tricity datasets that can be used to evaluate a wide variety of electricity-related
algorithms. These goals have been implemented and evaluated for two different
measurement systems that leverage hardware and software design methodologies
to simultaneously measure time-synchronized, high-frequency voltage and current
waveforms at aggregated-level and for multiple distributed appliances also at plug-
level. The developed systems were integrated into a full stack recording framework.
A central recording management system orchestrates the congregation and con-
sistent storage of the data acquired by the individual measurement systems. The
overall framework has proven itself and allowed a long-term data recording of over
100 days using 22 meters. While the employed techniques are tailored for elec-
tricity data, their incorporation to acquire other modalities such as water or gas
consumption would require only minor adjustments.

To augment electricity data with ground truth labels, several post-conducted meth-
ods were investigated and a semi-automatic labeling algorithm was introduced. It
is based on a probabilistic approach to identify appliance events and a clustering
technique to add preliminary labels to each detected event. Further cleaning re-
moves false positive events as well as multiple events which have been triggered
by the same actual appliance event. The algorithm has been incorporated into
an annotation tool which allows to conveniently supervise the automatic labeling.
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The tool can increase the labeling efficiency up to 74%.
The presented framework and labeling algorithm were used to collect and label the
FIRED dataset. FIRED contains 101 days of electricity recordings of an apart-
ment. The recordings include high-frequency aggregated (8 kHz) and individual
(2 kHz) measurements of 21 different appliances as well as other modalities such
as room temperature and appliance state changes. The data was further aug-
mented with accurate and descriptive event labels of all appliances. The dataset
and tools to interact with the data were made available to the research community
to accelerate research of a wide variety of electricity-related algorithms.
To enhance the implementation of appliance recognition algorithms on resource
constrained systems, such as smart meters, 27 features suggested by domain ex-
perts and four classifiers have been evaluated on four datasets. In the conducted
experiments, active power achieved the best appliance recognition performance
(F1-score of 0.54) of any scalar feature, and WaveForm Approximation achieved
the best performance (F1-score of 0.88) of any multidimensional feature. Unsur-
prisingly, combining several of these features significantly improves performance.
However, performance may also eventually degrade if too many features are added
(aka curse of dimensionality). Therefore, the feature set [P, cosΦ, TRI,WFA] was
proposed encompassing the time domain features WFA, P, and cos Φ as well as the
frequency domain feature TRI in an overall feature vector of size 25. This vector
is small enough not to suffer from the curse of dimensionality, comparatively easy
to compute, and yet captures appliance specific characteristics to still achieve an
F1-score of 0.98 across all datasets. It has further been shown that a computa-
tionally fairly simple k-Nearest Neighbour classifier already achieves F1-scores of
up to 0.94.
The aggregated electrical energy consumption, as provided by smart meters, in-
cludes the consumption of all connected and active appliances. To recognize state
changes of appliances (e.g., an appliance switch-on event) using aggregated-level
data, several methods were investigated to clean the aggregated-level data from
the contribution of other appliances. If cleaning is applied, the classification per-
formance increases by up to 15%. The best performances (F1-scores of up to 0.98)
were achieved by generating prototype waveforms which are subtracted from the
post-event data in the time domain. Furthermore, the use of high-frequency plug-
level recordings as additional training instances was investigated. This concept,
denoted as hybrid training, has been proven to increase a system’s classification
performance by an additional 4%, mainly due to data augmentation. Since super-
vised NILM methods still suffer from an intrusive training phase, the concept of
Minimal-Intrusive Load Monitoring was proposed, which incorporates plug-level
meters into a user-centric adaptive training phase. The plugs are used to collect
training samples not disturbed by the energy consumption of other appliances, to
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collect ground truth labels for the aggregated-level data, and to aid the overall
training procedure in a straightforward way.
The NILM pipeline contains several stages that are typically evaluated individu-
ally by researchers. While a single step of this pipeline may perform well in an
individual evaluation, it might perform worse in an evaluation encompassing all
steps. It is conceivable that NILM research could benefit from a test-bed (similar
to NILMTK [69]) which also supports high-frequency methods. As shown in this
thesis, the combined use of plug-level data and aggregated-level data can improve
NILM methods. Therefore, research may focus on the fusion of intrusive and non-
intrusive load monitoring, especially given that smart home systems, which may
already incorporate intrusive monitoring for some appliances, will become more
prevalent in the near future.
Smart meters will employ techniques along NILM to enable consumer-centric ser-
vices. Examples for these services are predictive maintenance, where the con-
sumer is notified of the imminent failure of an appliance, or Ambient Assisted
Living (AAL), where e.g., a stove, left on by mistake, is automatically switched
off. Furthermore, user information inferred from appliance-level data can be used
to optimally schedule the charging and usage of Energy Storage System (ESS) and
Electric Vehicles (EVs) in combination with Renewable Energy Source (RES). This
will help to reduce the electricity bill as well as the total energy consumption of
a home. The key challenges to enable these services are: (1) Elimination of the
vendor lock-in by providing standardized hardware interfaces, (real-time) trans-
port protocols, and data formats; (2) Providing a dedicated ecosystem, like an
app store for energy-based services [J21b, 172], since not all services apply to all
users in the same way; (3) Protecting user privacy if data are not processed locally.
In order for these services to gain widespread adoption, consumer interest must
be aroused and kept constant. Since gamification has proven to facilitate that,
research in specific gamification methods tailored to the energy sector should be
further explored.
The contributions encompassed in this work will accelerate research in supervised
NILM methods. Improving the performance and minimizing the intrusive training
phase of NILM will ultimately help it to gain traction, especially as smart meters
will be progressively installed in more homes in the upcoming years. As NILM
provides electrical energy consumption at appliance-level, it benefits consumer
services such as eco-feedback, predictive maintenance, or AAL as well as grid-
operators alike. In addition to more convenience, this further helps us to save
energy to minimize our environmental footprint.
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