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Abstract: For monitoring protected forest landscapes over time it is essential to follow changes in
tree species composition and forest dynamics. Data driven remote sensing methods provide valuable
options if terrestrial approaches for forest inventories and monitoring activities cannot be applied
efficiently due to restrictions or the size of the study area. We demonstrate how species can be
detected at a single tree level utilizing a Random Forest (RF) model using the Black Forest National
Park as an example of a Central European forest landscape with complex relief. The classes were
European silver fir (Abies alba, AA), Norway spruce (Picea abies, PA), Scots pine (Pinus sylvestris,
PS), European larch (Larix decidua including Larix kampferii, LD), Douglas fir (Pseudotsuga menziesii,
PM), deciduous broadleaved species (DB) and standing dead trees (snags, WD). Based on a multi-
temporal (leaf-on and leaf-off phenophase) and multi-spectral mosaic (R-G-B-NIR) with 10 cm spatial
resolution, digital elevation models (DTM, DSM, CHM) with 40 cm spatial resolution and a LiDAR
dataset with 25 pulses per m?, 126 variables were derived and used to train the RF algorithm with
1130 individual trees. The main objective was to determine a subset of meaningful variables for
the RF model classification on four heterogeneous test sites. Using feature selection techniques,
mainly passive optical variables from the leaf-off phenophase were considered due to their ability to
differentiate between conifers and the two broader classes. An examination of the two phenological
phases (using the difference of the respective NDVIs) is important to clearly distinguish deciduous
trees from other classes including snags (WD). We also found that the variables of the first derivation
of NIR and the tree metrics play a crucial role in discriminating PA und PS. With this unique set of
variables some classes can be differentiated more reliably, especially LD and DB but also AA, PA and
WD, whereas difficulties exist in identifying PM and PS. Overall, the non-parametric object-based
approach has proved to be highly suitable for accurately detecting (OA: 89.5%) of the analyzed
classes. Finally, the successful classification of complex 265 km? study area substantiates our findings.

Keywords: Random Forest; tree species identification; LIDAR; multispectral aerial mosaic; super-
vised learning; protected areas; national park; temperate mixed mountain forest; forest dynamics;
monitoring tree species composition

1. Introduction

Tree species composition, to a degree, shapes the habitat for forest dwelling species
within a forest landscape and is therefore an essential indicator for the assessment of forest
biodiversity conservation. Approaches to assess tree species composition using remote
sensing techniques in forest management are common due to their cost effectiveness and
efficiency [1-3].

There are three more reasons why using remote sensing is especially relevant for
protected areas. The first and main reason is that protected areas of the IUCN
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Category I and II prioritize the protection of and learning from natural dynamics and
processes [4]. Therefore, any disturbance by humans in these strictly protected areas, even
by field crews collecting data, should be strictly limited. For this reason, classical terrestrial
forest inventories, providing information about structure and tree species composition are
restricted. This is also the case in our study area, the Black Forest National Park (BFNP) in
southwest Germany.

Major natural processes that happen on larger scales over time, will often result in tree
species composition changes [5] and this is the second reason for applying landscape level
monitoring using remote sensing. For example, in Central Europe this change in forest
tree species is most likely driven by blowdown [6] followed by bark beetle outbreaks but
is also due to the effects of climate change, i.e., longer and more frequent droughts [7].
Therefore, the efficient and accurate detection of individual tree species on a landscape scale
is essential for monitoring the changes. In the Black Forest, as in other Central European
mountain landscapes, the human impact, especially forestry activities often resulted in
forest composition becoming increasingly conifer dominated [8]. Monitoring changes in
tree species composition in these previously managed forests will allows us to quantify the
effect of the strict protection measures initiated within the BENP over time.

To be able to quantify the impact of these landscape level changes on biodiversity in
the BFNP, because of the protection of natural processes, is the third reason why remote
sensing techniques are important. To capture individual tree information enables us
to link patterns and processes at a landscape level combined with plot-based collected
ecological data. Consequently, this allows for the identification of landscape level changes
on organism groups and their interactions on a much finer scale.

Although remote sensing techniques have long been used in forest inventories, there
are constantly new methods emerging due to the increasing availability of high-resolution
data [9]. This development is also reflected in the more elaborate and accurate processing
techniques available to detect specific objects of interest, such as identifying the species
of individual trees. According to the comprehensive review on tree species classification
studies from remotely sensed data of Fassnacht et al. [3], there are already a large and
growing number of competing approaches. They reveal that research is still required
to produce tree species inventories on a large geographic scale. In addition, the studies
emphasized the need for evidence-based results from real and non-idealized test sites and
for studies examining the causes of varying attributes.

Many relevant tree attributes vary seasonally in forests and, due to the important
role of foliage cover [10,11], studies that primarily focus on such seasonally changing
variables, can be considered particularly valuable to classify individual tree species. For
example, Gara et al. [12] showed that different leaf traits influence the results of tree species
classification when using satellite images.

Studies which address such seasonal tree characteristics often combine different
approaches [13] and apply them to as high-resolution data as possible or at multi-scales [1].
Especially the complementary use of multiple high-resolution data, in addition to satellite
images, seems promising for the classification of trees species, since the combined use
of multiple data resolution can prevent the negative effects of spectral overlaps [14]. In
summary, the literature reveals that in particular, a combination of various data sources,
the study of seasonal effects and an accentuation of canopy characteristics are important,
when the other characteristics hardly differ.

Recently, studies have systematically investigated the potential that combining var-
ious data sources has on the detection of tree species. Besides airborne hyperspectral
imagery [15-20], derivatives from LiDAR airborn laser scan were often recommended
for this purpose [10,21]. LiDAR return metrics are usually not analyzed individually to
assess tree species composition. Instead, they are often combined with data from common
passive remote sensing sources, generally R-G-B and IR bands of orthoimages. The benefit
of such complementary approaches is a significant increase in accuracy [22,23]. Given
the challenges posed by dense mixed temperate forests, it was shown that a multi-data
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approach is promising for achieving single tree delineation if an algorithm is implemented
which uses only the most relevant variables of high dimensional features [24].

Considering variable reduction based on multi-data approaches, supervised deep
learning methods offer effective solutions. Many studies [17,25-27] showed that non-
parametric algorithms learn how to recognize promising variables based on trained pat-
terns. This approach was supported in a review on deep leaning applications using remote
sensing by Ma et al. [28]. Using an unmanned aerial vehicle (UAV) for data collection is
another trend towards species classification of individual trees. Also, for the evaluation
of the data generated, deep learning techniques are now often used to identify mean-
ingful patterns [29]. Besides Support Vector Machines (SVM) [17,25-27], especially the
Random Forest algorithm (RF) [30,31] is receiving increasing attention because of its highly
effective decision trees for class prediction, with many possible applications in remote
sensing [32-35]; for example to classify tree species [20,21,36]. This technique is largely
independent of the datasets used.

Although tree species classification methods have been extensively studied, there is
still a need to identify the best data sources, variables and techniques to accurately identify
the species of an individual tree. Beyond the contribution made to the scientific discourse,
such findings are particularly useful for practical applications. For example, to monitor
changes in tree species composition due to natural forest dynamics in protected forest
landscapes. Additionally, further empirical evidence contributes to the body of experience
regarding cost-effectiveness and the most promising data sets.

The objective of this study was to evaluate the efficiency of the non-parametric Ran-
dom Forest algorithm to detect the species of individual trees in a Central European
forest landscape based on multi-source data sets and their derivatives. Specifically, 10 cm
resolution multispectral 16-bit-mosaics (R-G-B-NIR) and LiDAR datasets attributed by
25 pulses per m? were used. This approach, that we used, was meant to detect Norway
spruce (Picea abies, PA), European silver fir (Abies alba, AA), Scots pine (Pinus sylvestris, PS),
the introduced species European larch (Larix decidua including Larix kampferii, LD), and
Douglas fir (Pseudotsuga menziesii, PM), deciduous broadleaved species (DB is not further
differentiated), as well as standing dead trees from here on referred to as snags (WD).

Using the BFNP as an example, the following research questions were addressed:

1. Which variables are particularly meaningful for the differentiation and detection of
the conifer species and the two broader structural classes?
2. Which species can be differentiated from each other with high rates of accuracy?

With this study, we provide a rare example of a practical application to an existing
landscape with all of the methodological challenges that come with it.

2. Materials and Methods
2.1. Study Area: The Black Forest National Park and Surroundings

The study area with a size of 265 km? is located in Baden-Wiirttemberg, a federal
state in the southwest of Germany includes the BENP and adjacent areas (Figure 1). The
temperate mixed mountain forests occur over a wide elevation range (from 400 to 1150 m,
but mainly grow in a montane belt from 600 to 1000 m) and that is characterized by acidic
and nutrient poor soils developed on sandstone and metamorphic bedrock [37,38].

The area is located in the humid mid-latitudes, influenced by a changeable oceanic
climate with mild summers and cool winters [39]. Due to the west wind, at the eastern
shoulder of the Upper Rhine Rift Valley, prevalent in the study area, there are higher
precipitation rates (above 2000 mm/a) and lower mean temperature fluctuations (5 °C
and 8 °C) during the year than in other areas of the Black Forest [40]. Nevertheless, there
are distinct seasons and deciduous trees are seasonally in leaf-on or leaf-off condition.
The current forest tree species are dominantly conifer species, the result of centuries of
forestry practices. Approximately half of the study area is covered by the BENP (Figure 1)
where the protection of natural forest dynamics has recently been instituted. It is therefore



Remote Sens. 2021, 13, 4657

40f21

expected that the tree species composition will change depending on natural disturbances
like blowdown and the impacts of climate change like extended droughts.
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Figure 1. Map of the study area and location of test sites.

2.2. Raw Data Sets

The original data sets include passive-optically obtained multispectral 16-bit-mosaics
(R-G-B-NIR bands), actively obtained laser scan return data sets (LiDAR) and their deriva-
tives (Figure 2). The multispectral mosaics are available for the entire study area and
for two phenological phases (leaf-on in summer 2014 and leaf-off in spring 2015), in or-
der to identify deciduous broadleaved species and larch. The four wavelength ranges
(full width at half maximum) represent both phenophases: blue (450-520 nm), green
(510-570 nm), red (580-680 nm) and near infrared (710-830 nm). They were taken by two
airborne cameras, an UltraCam Xp (leaf-on) on on 17 July 2014 and an UltraCam Eagle
(leaf-off) on 16 April 2015 flying at an average altitude of 4300 feet. LIDAR was acquired on
on 29 April 2015 onboard aircraft at an average altitude of 2800 feet using a Riegl VQ-780i
scanner at a density of 25 pulses per m? in the near infrared wavelength.

True Digital Orthophotos (TDOP) with absolute height and position data could be
derived due to a high overlap (80% forward overlap. i.e., between photos along the same
flight line, 60% lateral overlap, i.e., between photos on adjacent flight lines) based on the
overlapping parameters. In addition, the use of TDOP enabled the co-registration of a
tree’s highest point.

The multispectral sensors were calibrated before the flight, however as the processing
of stereo images into TDOP included radiometric adjustment, a conversion into reflectance
was not considered useful. LiDAR data acquired during the leaf-off phase in spring
2015 had been pre-processed into datasets of (1) 3D point clouds of returns, (2) surfaces
of 40 cm spatial resolution including Digital Terrain Model (DTM) and Digital Surface
Model (DSM) as well as (3) individual tree crown delineation polygons using the software
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TreesVIS [41]. The raw data set contains only trees with a minimum height of 15 m and a
canopy area of 10 m?. Forest structure classification was adapted from O’Hara et al. [42] and
Falkowski et al. [43]. In total more than 3 million trees within the BFNP were included.

Data Preparation

Digital Elevation Models R-G-B-NIR bands Return Dataset
(LiDAR) (16-bit mosaics) (LiDAR)
- : . - .
S
k Derivation / Extraction }

|

Training Phase

Geometric Parameters Spectral Signatures
Tree Metrics

Topography Vegetation Indices

k Ensemble Learning }
|

Feature Selection
Recursive Feature Elimination (RFE)
Variable Importance Plot (VIP)

k Evaluation }

|

Classification Phase

Prediction

E 4 Test Sites ]
Validation

Classification

Figure 2. Overview of data processing: First, the raw data were prepared in order to derive a number
of categories consisting of attributes and potential variables. Second, during the training phase, the
model parameters were tuned and the most significant variables were identified through feature
selection methods. Last, the best-fitting model was applied to detect individual conifer species, the
broad-leaved classes and snags in the test sites and after a comprehensive validation to the entire
study area.

2.3. Data Preparation

First, individual trees that represent the species and the species composition of the
entire area had to be identified. The individual trees are used as a basis to train the RF
algorithm and to determine relevant variables necessary to classify the trees in the study
area. To make sure that the sampled trees (height >15m and canopy area >10 m?) represent
the full range of variation, the area was divided up into strips and visually interpreted
using stereoscopic aerial photos.
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As result, a training set of 1130 trees regularly distributed over the whole area were
selected and identified to represent the previously defined classes. The frequency within
the selected classes was similar to the species distribution in the forest inventory done
prior to the national park designation. In order to have sufficient training data available for
rare tree classes (e.g., Douglas fir), they had to be overrepresented in the training data set
compared to frequently occurring tree classes (e.g., Norway spruce, silver fir). The training
data set consisted of 273 Norway spruce (PA), 249 European silver fir (AA), 132 Scots pine
(PS), 128 European larch (LD), 41 Douglas fir (PM), 163 deciduous broadleaved trees (DB),
146 individual standing snags (WD, (Figure 3)).

The descriptive attribute values of the canopies were aggregated within a 1.7 m radial
buffer from each treetop. Limiting the radius to 1.7 m, avoided both overlapping the
buffer zones of neighboring trees and the inclusion of shaded areas between trees as far as
possible. The spectral signatures and the vegetation indices derived from the multispectral
mosaic, at a pixel size of 0.2 m, corresponds to about 225 pixels per buffer zone. The canopy
height model (CHM) and the geometric parameters at a pixel size of 0.4 m corresponds to
about 52 pixels per buffer zone.

For the attributes of the multispectral TDOP mosaic and the DSM, the statistical
parameters mean value (mean), standard deviation (sd), minimum (min.) and maximum
(max.) were determined. For the return data set statistics and metrics were obtained
and calculated from the tree-specific cylindrical point clouds that also resulted from a
radial buffer of 1.7 m radius around the highest point of each tree. This buffer size was
obtained by testing the minimum overlap between neighboring tree crowns. All statistical
parameters, in sum 126 decision variables, were the input variables used to train a reference
model and to perform the classification later.

The multispectral TDOP mosaics were used to collect spectral signatures and to calcu-
late the different vegetation indices. To minimize the effects of illumination differences, in
addition to the attributes of reflectance values (R-G-B-NIR) and band ratios were calculated.
Using R, a principal component analysis (PCA) was computed in order to extract the first
three principal components and to eliminate redundant or correlated information. The
1st derivation of the NIR band was an attribute used as equivalent to the mean slope
between neighboring pixels to derive a corresponding reflectance gradient according to
Fassnacht et al. [3]. Regarding live green vegetation and the differences between decidu-
ous and coniferous trees, two different attributes were derived from multispectral TDOP
mosaics: the normalized different vegetation indices (NDVI) and the enhanced vegetation
index (EVI). Additionally, based on the NDVI another attribute was generated to improve
the differentiation between deciduous and evergreen trees by acknowledging the pheno-
logical phases: the calculated difference of the NDVI in leaf-on and the NDVI in leaf-off
condition. The benefits of the other vegetation indices were tested by mean values of the
simple and the and normalized NDVI difference and the mean values of the EVI (Table 1).

Within the category geometric parameters, the attributes of height, slope, curvature
and roughness were calculated. They were all derived from both the Digital Surface
Model (DSM) and the Canopy Height Model (CHM) using the respective algorithms of
the Geospatial Data Abstraction Library (GDAL) [44]. For each attribute and surface
model, four associated variables were incorporated (standard deviation, mean, minimum
and maximum). This resulted in 8 variables for each of the morphometric attributes.
Furthermore, to explore the most meaningful slope derivate, additional DSM slope values
were integrated from QGIS’ Raster Terrain Analysis Plugin, which provided the 12 variables
(Table 2). Additionally, the elevation was integrated in the set of variables based on the
DTM in the topography category.
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Figure 3. The location of the trees used as training dataset within the study area.
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Table 1. Within the two optical categories of spectral signatures and vegetation indices, for each of
the attributes, the four statistical measures mean, SD, min and max were calculated. Exceptions are
the NDVI differences and EVI, where only the mean values were considered.

Category Attribute No. Variables
R-G-B-NIR 16
Spectral Signatures Ratios of R-G-B-NIR 16
Top 3PCAs 12
1st Derivation of NIR 4
NDVI 8
Vegetation Indices NDVI Difference 2
EVI 1
Total 59

Table 2. For each attribute in the category geometric parameters, the four statistical measures mean,
SD, min. and max. were calculated for the Digital Surface Models (DSM) and Canopy Height Model
(CHM). An additional slope attribute for the DSM was considered. The topography category solely
consists of the Digital Terrain Model (DTM) based elevation.

Category Attribute No. Variables
Height 8
Geometric Parameters Slope 12
Curvature 8
Roughness 8
Topography Elevation 1
Total 37

The return data set (LiDAR) describes tree metrics, incorporating precise information
about the canopy shape and structure, the crown area and the tree height. In particular,
the modelled mean statistics on intensity and signal counts, the detected returns and their
proportions from specific tree heights (e.g., all returns from the upper 150 cm) to the total
return number of a tree’s point cloud could be taken directly from the recorded LiDAR
dataset. The crown area values were generated during the tree segmentation process using
the software TreesVis (Table 3).

Table 3. Within the category of tree metrics, various attributes of different complexity were created
based on the LiDAR return dataset, namely Returns (simple signal counts for different height
sections), Statistics (mean of intensity, signal count and signal number for different height sections),
Return Proportion (proportions of returns from specific tree heights of a tree’s point cloud) as well as
several metrics on crown area and shape.

Category Attribute No. Variables
Statistics 12
. Returns 6
Tree Metrics Returns Proportion 5
Crown area 7
Total 30

During the subsequent training phase representing the five categories and all their vari-
ables (see Tables 1-3) were tested for possible further inclusion using the non-parametric
RF algorithm. We provide the R source code for training phase and classification as
supplementary html-markdown file (s. supplementary material).
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2.4. Training Phase

The Random Forest (RF) algorithm was applied to train the reference model. To tune
the RF model, a randomly set number of decision trees (ntree) was kept at 500 because other
specifications (ntree = 250, 750, 1000 or 1500) did not significantly improve the estimated
out of the box (OOB) error. For the number of randomly selected features used in each
decision tree (mtry) the value 31 led to the best prediction (0.94).

To avoid a time-consuming classification all 126 variables were used and to reduce the
complexity of the model, two feature selection techniques were applied: Recursive Feature
Elimination (RFE) using the R package caret [45] and Variable Importance Plot (VIP). While
RFE propose appropriate features, VIP ranks features using the mean decrease in accuracy
(MDA) and for mean decrease in Gini (MDG) indicating suitable cut-off thresholds to
further visual validation.

2.5. Classification and Evaluation

During the classification phase, the previously trained model was applied a different
dataset of to trees that had not been used to fit the model. Therefore, the time-consuming
feature extraction and classification was performed in single stacks of about 15,000 trees (in
use was a 10-core processor with 128 GB RAM).

Afterwards, the identified tree classes were evaluated in order to determine the extent
to which the RF model was useful to predict unknown data for the whole area. Within each
of the classified areas 80 to 100 randomly selected trees were visually checked. Regarding
representation, the diverse topographical conditions were specifically considered, i.e., in
particular the expositions. Finally, 505 trees in six scattered validation sites were controlled
in the area of the test sites (Figure 3).

The validation sites selected were a mixture of slopes and ridges, because the pre-
dictions were most likely to differ in accuracy in topographically diverse areas. Thereby,
validation site 1 represents the transition from a more open plateau to a northeastern
descending slope. Site 2 represents a steep northern slope, whereas site 3 is a very flat
plateau. Site 4 and 5 describe more gently southeastern descending slopes with some flat
areas, while site 6 is mostly located at a lower elevation.

3. Results
3.1. Variables for Differentiation and Recognition of Trees” Class

As a result of the training phase, 11 variables with an accuracy of 93% remained.
Further variables did not provide a decisive benefit (Figure 4). In addition, the Kappa's
difference of the RF reference model to the RF model using the RFE was significantly
smaller (1.7) as compared to the RF model using the VIP (3.6). Accordingly, the 11 variables
were applied for the final classification.

94 -
:.. WL,
92 * .
= Sl
Ei
? 90
2 .
2
< .
88 —*
86

0 25 50 75 100 125

No. of variables

Figure 4. The Recursive Feature Elimination (RFE) identifies a set of 11 variables (red dot) that met
the suitable accuracy of 93%.
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Also, the user (UA) and producer (PA) accuracies computed with the R package
caret [45] confirmed that the performance of these variables resulted in very few misclassi-
fications. The confusion matrix, of all PA and UA proportions, illustrates that only Douglas
fir (PM) has low accuracy values due some misidentifications with Norway spruce (PA).
All other classes indicate high levels of accuracy (Table 4).

Table 4. Confusion matrix for all tree classes of the classification key based on reference data;
OA: 92.8%.

Classified True Class Total UA (%)
AA DB LD PA PM PS WD

AA

textbf243 0 0 3 8 2 0 256 94.9

DB 0 154 4 0 0 0 1 159 96.8

LD 0 5 122 0 0 0 1 128 95.3

PA 3 0 0 259 12 13 3 290 89.3

PM 1 0 0 3 16 1 0 21 76.1

PS 2 2 0 7 5 116 0 132 87.8

WD 0 2 0 1 0 0 141 144 96.5

Total 249 163 126 273 41 132 146 1130

PA (%) 97.5 94.4 95.3 94.8 39.0 87.8 96.5

Concerning the first key question asking which variables were particularly meaningful
for differentiation and recognition of a trees’ class, the list of variables selected for the
final model provided information on the significance of the individual variables and thus
their underlying data sources in accordance with the MDG values (Table 5). Most of the
11 variables were derived from the leaf-off aerial photos, only two came from the leaf-on
aerial photos and here the only information derived came from the NDVI. The LiDAR data
set contributed one variable to the selection.

Table 5. List of variables implemented in the final model in descending order of Mean Decrease Gini
(MDG) value, Mean Decrease Accuracy (MDA) values are indicated for comparison.

Variables MDG MDA
Ratio NIR aerial photo leaf-off, mean 98 23
Vegetation index (NDVI) aerial photo leaf-off, mean 97 23
Ratio Green aerial photo leaf-off, mean 60 19
Ratio Red aerial photo leaf-off, mean 50 17
First derivation of NIR aerial photo leaf-off, mean 45 44
Vegetation index (NDVI) aerial photo leaf-on, min. 45 21
Vegetation index (NDVI) aerial photo leaf-on, mean 44 22
First Principle Component aerial photo leaf-off, mean 42 18
Ratio Blue aerial photo leaf-off, mean 40 15
Difference of vegetation index leaf-on minus leaf-off, mean 35 14
Proportion of LiDAR targets of upper 150 cm to all targets 18 16

3.2. Recognition of Tree Classes

To answer the second question, which trees classes could be distinguished from each
other with high rates of accuracy, the results of the six validation sites were used (Table 6).
Based on these independent control sites, it can be stated that deciduous trees such as
LD (Larix kaempferii) and DB (deciduous broadleaved species) were well predicted by the
model. Picea abies (PA) and snags (WD) were also reliably classified. The classification of
Abies alba (AA) was moderately well. Less well identified were Pseudotsuga menziesii (PM)
and Pinus sylvestris (PS).
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Table 6. Recognition of tree classes according to Producer’s Accuracy (PA) and User’s Accuracy (UA).

Tree Class PA UA

LD (Larix kaempferii) 93.7% 100%
DB (deciduous broadleaved species) 100% 97.5%
PA (Picea abies) 87.1% 94.3%
WD (snags) 100% 94.4%
AA (Abies alba) 88.1% 85.8%
PM (Pseudotsuga menziesii) 78.5% 68.7%
PS (Pinus sylvestris) 93.2% 76.4%

Even though all classes of trees were analyzed, the final classification was deemed
best suited for a forest landscape dominated by Norway spruce (Picea abies). This was
followed by the next most common species European silver fir (Abies alba) and Scots pine
(Pinus sylvestris), i.e., conifers strongly dominate the study area. The remaining classes,
Douglas fir (Pseudotsuga menziesii), European larch (Larix decidua including Larix kampferii)
and snags occurred in only very small proportions.

According to the accuracy assessment of the final classification, it can be assumed
that 89.5% of all tree classes have been recognized correctly. This was estimated using the
results of the six validation sites with a total of 505 trees validated by visual interpretation.
(Figure 5). Of those 505 trees 53 trees were found misclassified (Table 8). The few misclassi-
fications of Norway spruce could be attributed to their existence on very steep slopes with
an eastern exposure and the density of the stands. In these instances, some Norway spruce
were classified as European silver fir therefore slightly overrepresenting European silver fir
in these locations. In other areas, a surprisingly large number of fir and pine have been
classified, although they were not known to occur there in these densities, hence the results
of this classification could be subject to a further examination.

Regarding the high overall accuracies (OA: 89.5%), over all studied validation sites
with 79 to 90 trees each, confirm the model’s high prediction rate. Three out of the six sites
have overall accuracy values >80%, the remaining three have an overall accuracy value
>90% (Table 7).

At the same time, the balanced accuracy for all samples was more than 90%. In
addition, the Cohen’s kappa coefficient (x) supports the high accuracy of the classification.
Whereby, all samples, except sample 2, indicate a near perfect agreement between predicted
and verified classes.

Table 7. Quality metrics of the accuracy assessment in the six validation sites taking into account the
different relief and the occurrence of the tree classes.

Metric Site 1 Site 2 Site 3 Site 4 Site 5 Site 6
Producer’s Accuracy 93.3% 88.8% 94.4% 88.8% 95.8% 93.1%
User’s Accuracy 89.9% 81.6% 99.0% 89.7% 95.5% 82.6%
Balanced Accuracy 95.3% 90.1% 97.1% 92.5% 96.8% 95.6%
Overall Accuracy 91.6% 80.7% 98.7% 87.8% 93.9% 88.8%
Kappa coefficient () 0.864 0.499 0.979 0.809 0.910 0.848

No. of trees 83 83 79 90 83 87
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Figure 5. Result maps of classified tree classes in the four test sites and location of the six valida-
tion sites.

The practical suitability of the approach, which was proven by the test sites, was
extended to the entire study area. The resulting tree classes were identified according
to the following proportions: 2% Douglas fir (Pseudotsuga menziesii, PM), 59% Norway
spruce (Picea abies, PA), 7% Scots pine (Pinus sylvestris, PS), 1% European larch (Larix decidua
including Larix kampferii, LD), 8% deciduous broadleaved species (DB were not further
differentiated), 22% European silver fir (Abies alba, AA) and 1% snags (WD). The results
represent the early years of the BENP (2014/15) and are a base for long-term monitoring of
tree species composition in the area (Figure 6).
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Figure 6. The classified tree classes as result of the applied classification model for the entire
study area.

3.3. Accuracy of Classification

The impact of relief was the most significant impediment to reliable classification.
While a good recognition of tree species was produced on level high elevations, on steep
and shady slopes the tree classes were often confused (Table 7: site 2). The misclassification
of Picea abies (PA), as Abies alba (AA) was mainly due to the impact of relief (Table 8: PA
versus AA). However, misclassifications between these species could not be detected on
level terrain (Table 7: site 3).
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Table 8. Confusion matrix of the qualitatively validated 505 trees in the six validation sites; OA:
89.5% and Kappa coefficient (x): 0.85.

Classified True Class Total UA (%)
AA DB LD PA PM PS WD
AA 97 0 0 16 0 0 0 113 85.8
DB 0 40 1 0 0 0 0 41 97.5
LD 0 0 15 0 0 0 0 15 100
PA 7 0 0 217 3 3 0 230 94.3
PM 0 0 0 4 11 1 0 16 68.7
PS 6 0 0 11 0 55 0 72 76.3
WD 0 0 0 1 0 0 17 18 94.4
Total 110 40 16 249 14 59 17 505
PA (%) 88.1 100 93.7 87.1 78.5 93.2 100

3.4. Importance of Variables

When looking at the variables used to classify the trees a trend can be noted. Variables
with spectral information mostly influenced the final classification using the RF algorithm.
Apart from these decision variables, the proportion of the LiDAR signal reflected in the
upper 150 cm of the cylindrical point cloud to all returns of the cylindrical point cloud
played an important role as geometric information, because conical crowns (e.g., Picea abies)
could be distinguished from cloud-shaped tree crowns (e.g., deciduous broadleaved species
and Pinus sylvestris). Especially because of this variable, the Picea abies (PA) and snags (WD)
could be easily separated, but also Pinus sylvestris (PS) and Abies alba (AA) could be well
separated from the other classes. The class DB could also be separated although the tree
crown shapes varied considerably because in this class several broadleaved species were
combined (Figure 7).

In the final classification model, except of the proportion of the LiDAR signal reflected
in the upper 150 cm of the cylindrical point cloud, no other information was included
due to low explanatory values. Furthermore, an imbalance was noticed between variables
representing spectral properties and those determined from geometric raster data and used
in the final model. To sum up, the spectral data derived from the multispectral mosaics
were the most important variables in terms of their number and in combination with one
important variable derived from the LiDAR data set led to very good classification results.

Additionally, Figure 7 highlights the overriding importance of spectral information
when used as decision variables for the classification model. According to the spectral
range, the blue wavelength indicates a high importance for the detection of conifers.
Particularly the mean NIR ratio, the mean NDVI, the mean green ratio and the mean
red ratio, all derived from aerial photos taken during the leaf-off phenophase, provided
distinct decision variables. In all cases, the classes AA and WD could be separated from
the others particularly well. In addition, species that shed their leaves could be easily
distinguished from evergreen species. The leaf-on aerial photos, especially in the form
of a vegetation index, are important to classify deciduous species including larch and
broad-leaved species, as well as snags. Additionally, the NDVI difference leaf-on minus
leaf-off separates deciduous species particularly well from the other classes.



Remote Sens. 2021, 13, 4657

15 of 21

Ratia NIR aerial photo leaf-off, mean

Ratio Green aerial photo leaf-off, mean
250 200
200 ! ) ‘ <> * <> ; ?
! T O T
50 '
40

AA DB LD PA P PSs WD 28 DB LD Pa Pl PS WD AR DB Lo PA PM PS. WD
Class Class Class

Vegetation index (NDVI) aerial photo leaf-off, mean

140

3
g
2

NDVI_2015.Mean
Ratio_2015_Green.Mean

Ratio_2015_NIR Mean
g 2
@
2

3

Ratio Red aerial photo leaf-off, mean First derivation of NIR aerial photo leaf-off, mean Vegetation index (NDVI) aerial photo leaf-on, min

180 90.00
' 150

189.08
90 50
AR DB

8
o
8

NIR_2015 Mean

NDVI_2014.Min

Ratio_2015_Red.Mean
2

Deri_1

89.97 i

LD PA PM PS wD A DB LD PA PM PS wD AR DB LD PA PM PS. WD
Class Class Class

Vegetation index (NDVI) aerial photo leaf-on, mean Ratio Blue aerial photo leaf-off, mean

200
150 A
100 /\

First Principle Component aerial photo leaf-off, mean
A

4

Ratio_2015_Blue.Mean

PCA_1_2015Mean

NDVI_2014.Mean

3

|

AR DB LD PA PM PS wD AA DB LD PA PM Ps wD AA DB Lo PA PM Ps WD
Class Class Class
Difference of vegetation index leaf-on minus leaf-off, mean Ratio of LIDAR targets of top 150cm to all targets

04
c k]
g =)
2 100 =

= 103
I §
2 2
! 5
T 50 2

= =02
] a8
K 3
S e 5

<! =01
z g
z 5
&

E i 1 00

A DB LD PA  PM PSS WD AA DB i) FA PM  PS WD

Class Class

Figure 7. Violin plots showing the distribution frequencies of classified trees for the 11 variables
implemented in the final classification model using the RF algorithm. Metrics of the multispectral
data have been calculated from digital numbers and were rescaled to 8-bit range, hence the difference
to reflectance-derived NDVI values.

Besides those variables, which resulted in particularly clear classes, the first derivation
of the NIR aerial photos from the leaf-off phenophase also contributed remarkably as well
as the first derivation of the NIR aerial photos from the leaf-off phenophase. Mathematically,
this first derivation is the equivalent to the mean slope to the horizontal and represents
the range of reflectance values of biomass. Thus, the lower variability of the PA canopy in
general and also compared to other classes in the NIR band derivation resulted in a good
differentiation of this species in the corresponding reflectance range. In contrast, the values
of the tree classes DB, LD, PM, PS were comparatively far apart in this band. The tree class
AA shows an ambiguous trend in the first derivation of the NIR aerial photos in the leaf-off
phenophase; as there are both individuals with high and low variance (Figure 7).

4. Discussion

Compared to wall-to-wall mappings that are based on relevant and predefined vari-
ables, our study focused on tree species classification without an a priori specified variables.
The goal was to find the most helpful variables that could be used for the classification
of trees within a large study area, approximately 265 km?. However, a Random Forest
approach is usually very data-intensive in the initial training phase and requires as many
variables as possible to be tested for their redundancy and potential. Through optimized
tuning parameters overfitting is prevented while testing all possible combinations of input
data [30]. The ensemble learning approach as part of the applied Random Forest algorithm
is the reason why we accepted that some content-relevant variables were rejected as a result
of the conducted feature selection techniques. For example a canopy height model was one
of many potential variables, but was not selected for the final classification model. There-
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fore, the applied classification model differs from remotely sensed based forest inventories,
where the canopy height model typically plays a major role regardless of the underlying
data sources [10,11].

During the training phase, it became clear that the geometric parameters (tree height,
slope, curvature and roughness) and topography did not play a major role in the classi-
fication. The subordinate role of these variables compared to the spectral data sets was
surprising. The imbalance between variables representing spectral properties and those
modeling morphometric attributes might be the result of a difference in the pixel resolution,
because the pixel resolution was much lower in the relief data. This was detected during
ensemble learning. Accordingly, the question remains, what result would even higher
resolution data have produced in the classification model? One further explanation for
the non-relevance of some geometric variables, could also be that there is no clear, uni-
form pattern linking relief and tree species in the study area. This could be the subject
of a subsequent study in which the tree species will be characterized according to their
morphometric properties.

It is also noteworthy that only one of the metrics generated using the airborne laser
scanner (LiDAR) was used in the final model (proportion of LiDAR targets of top 150 cm
to all targets). No other tree metrics were used for the classification due to their low
explanatory power. The selected tree metric importantly helps to describe the shape of
the canopy, thus helping to distinguish the rather flat-topped crowns of the Scots pine
from the cone-shaped crowns of the fir and spruce [46]. A future study should test
whether a selected set of features describing individual tree crowns reach leads to a sig-
nificantly better classification result as suggested by Torabzadeh et al. [23]. Another
reason why no other metric from the LiDAR data was useful in the final classification
model could be attributed to geometric structures. They varied as much within the investi-
gated species (intraspecific) as between species (interspecific). Additionally, according to
Shi et al. [47] there is a high degree of correlated or redundant information between the
metrics of the LiDAR data.

As might be assumed, and as the work of Davison et al. [10] indicates, the leaf-off
phase represents the most favorable time for species distinction and it is not likely that
further LiDAR surveys during the leaf-on phase would lead to an improvement in data
quality [48,49]. But, further improvement of the results would be expected if LIDAR data
from the leaf-on and leaf-off phases had been considered in combination [10,47]. The fact
that the generated MDG and MDA values of this variable are relatively low compared
to the data from the multispectral mosaic (MDG = 18, MDA = 16) can possibly also be
attributed to the underlying data preparation or crown segmentation, as is also the case in
the studies of Marconi et al. [50].

Generally, the consideration of the phenology and especially the combination of both
phenological phases played a major role in the R-G-B-NIR data. This finding also confirms
previous evidence in the literature regarding the importance of variables representing
phenological phases for airborne data [51] as well as satellite images [52]. Especially, the
NDVI differences represent seasonal variations and illustrate the high benefit of multi-
temporal data in species discrimination. Among others, it is noticeable that the highly
correlated variables, e.g., the mean NIR ratio and the mean NVDI based on aerial photos
from the leaf-off phenophase were chosen during feature selection. Overall, the reason for
the dominance of the leaf-off aerial photos is clearly the strong dynamic within the tree
crowns and the better separability of characteristics. However, the available image quality
has to be considered as well. As mentioned in the literature [53,54], for the interpretation of
our results a more in-depth analysis of the relief is needed in order to clarify the influence
of exposition, viewing angle, illumination etc.

We could confirm that Pinus sylvestris (PS) and Picea abies (PA) share similar value
ranges regarding relevant variables. The reason for the misclassification of these two most
frequently occurring species (PS, PA) is assumed to be the similarity of their range values.
Only the ranges of the NIR derivative and the LiDAR proportions differ between them.
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Thus, the implementation of the NIR derivative can be beneficial for the delineation of
PS and PA, because of their different reflectance gradient from the center to the edges of
the trees. While PA represents a high gradient in terms of reflectance, PS represents a low
gradient due to its mixed reflectance values throughout the canopy. However, further
research is needed to confirm the full relevance of both variables. Although an overriding
importance of the NIR derivative and the LiDAR proportion could be shown in our study,
for a more in depth analysis of the different deciduous species additional texture features
should be calculated as recommended by Kuzmin et al. [55].

Additionally, the results highlighted the outstanding importance of spectral informa-
tion when used as decision variables for the classification model. Also, in the case of the
spectral range of the blue wavelength we could confirm a high importance for the detection
of conifers, but its role was not as important as was mentioned in the literature [36,56].
Another important variable derived from the spectral signatures marks the first derivation
(i.e., the slope) of the NIR band. Following the respective discussion of Fassnacht et al. [3],
our study confirms the potential and benefit of specific spectral derivatives.

Nevertheless, an overrepresentation of specific information, due to the inclusion of
correlating variables, does not compromise our results since the random combination
and arrangement of the training data and features prevented an overfitting of the RF
algorithm, as mentioned above [3,30]. Complementary studies, which used more cost-
intensive hyperspectral signatures as a data source [15-20,57], show that the results of our
approach reveal that R-G-B-NIR signatures combined with meaningful LiDAR signals from
trees (>15 m height) are promising data sources for achieving highly accurate classification
of tree species in a temperate mixed mountain forest landscape.

5. Conclusions

As a training data set, only 11 out of 126 variables were identified as being the
most meaningful combination of variables for the studied conifer dominated mountain
landscape. These combinations resulted in an accuracy level of 93% whereas other variables
did not lead to any significant improvement.

Most of the 11 variables were derived from the leaf-off aerial photos, only two came
from the leaf-on aerial photos and here the attributes were linked to NDVI; the LiDAR data
set contributed only one variable. We attributed the great importance of the R-G-B-NIR
signatures and vegetation indices opposite the geometric parameters to the comparatively
high spatial resolution of the spectral datasets. In particular, it has been shown that the
blue wavelength is of overriding importance in delineating conifers. We can explain
the dominance of the leaf-off aerial photos with the dynamic reflectance values within
the tree crowns. As was to be expected, the NDVI difference of leaf-on and leaf-off
separates deciduous species and the other species very well. The only LiDAR variable we
implemented was important to describe the shape of the canopy, which distinguished the
rather flat-topped Scots pine from the cone-shaped canopies of fir and spruce.

With respect to the classification quality, we elaborated that the implemented approach
predicted deciduous trees (LD and DB) very well, also species of the class Picea abies (PA)
and snags (WD) were reliably classified by the model, Abies alba (AA) was moderately well
recognized, whereas Pseudotsuga menziesii (PM) and Pinus sylvestris were the least well
identified. Finally, the high overall accuracies (OA: 89.5%), achieved on all validation sites
studied, with 79 to 90 trees each, confirm the model’s high prediction rate.

Using this approach, the Random Forest algorithm applied with the small set of
11 variables was shown to be able to classify individual tree species in a temperate mixed
mountain forest landscape with a high degree of accuracy. Consequently, this underlines
the practical suitability of our approach for monitoring protected areas as proven by the
classification of the complete study area of 256km?. Thus, the approach we presented
can substantially increase the efficiency of traditional tree species monitoring methods in
temperate mixed forests. Especially, in comparison to commonly used methods of forest
inventory, our approach provides not only a static picture of the tree species composition
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distribution, but also provides an exact recognition of tree classes on an individual tree
level, so that ecological process monitoring can be conducted. Also, in contrast to studies
that concentrate on more cost-intensive hyperspectral aerial images, this work shows that
the complementary application of multispectral aerial photos and LiDAR data can deliver
high quality classifications. However, in order to generate even higher accuracies on very
steep terrain, more research with higher spatial resolution of morphometric parameters is
needed. It seems also to be meaningful to test the methodology presented on an unknown
Central European forest landscape with equivalent tree classes in a wall-to-wall approach
to better understand its transferability.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
1513224657 /s1. We provide the R source code for training phase and classification as supplementary
html-markdown file.
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Abbreviations

The following abbreviations are used in this manuscript:

AA Abies alba (European silver fir)

ASCII  American Standard Code for Information Interchange
B Blue

BFNP Black Forest National Park

BW Baden-Wiirttemberg

C Celsius

CHM Canopy Height Model

DB deciduous broadleaved species

DSM Digital Surface Model
DTM Digital Terrain Model

etal. et alia (and others)

EVI Enhanced Vegetation Index

G Green

GDAL  Geospatial Data Abstraction Library
ie. id est (that is)

IR Infrared

IUCN  International Union for Conservation of Nature
km kilometer

LD Larix kampferii (European Larch)
LiDAR Light Detection and Ranging

m meter

max maximum
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MDA Mean decrease in accuracy

MDG Mean decrease in Gini

min minimum

Mio. million

mm/a millimeter per year

mtry number of selected features used for each decision tree
NDVI Normalized Difference Vegetation Index
NIR Near Infrared

ntree number of trees

OA Overall Accuracy

OOB (error) out of the box (error)

PA Picea abies (Norway spruce)

PA Producer’s accuracy

PCA Principal Component Analysis

PM Pseudotsuga menziesii (Douglas fir)

PS Pinus sylvestris (Scots pine)

R Red

RAM Random Access Memory

RF Random Forest

RFE Recursive Feature Elimination

s. see

sd standard deviation

TDOP True Digital Orthophoto

UA User’s accuracy

UAV Unmanned Aerial Vehicle

VIP Variable Importance Plot

WD standing coarse woody debris (used standing dead or snag)

References

1. Latifi, H.; Heurich, M. Multi-scale remote sensing-assisted forest inventory: A glimpse of the state-of-the-art and future prospects.
Remote Sens. 2019, 11, 1260. [CrossRef]

2. Waser, L.T,; Straub, C. Baumartenerkennung mit optischen Fernerkundungsdaten-Stand und Perspektiven. Forstl. Forschungs-
berichte MiiNchen 2015, 214, 65-75.

3.  Fassnacht, EE,; Latifi, H.; Stereficzak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of studies on
tree species classification from remotely sensed data. Remote Sens. Environ. 2016, 186, 64-87. [CrossRef]

4.  Stolton, S.; Shadie, P.; Dudley, N. IUCN WCPA Best Practice Guidance on Recognising Protected Areas and Assigning Manage-
ment Categories and Governance Types. In Guidelines for Applying Protected Area Management Categories; Dudley, N., Ed.; TUCN:
Gland, Switzerland, 2008; p. 86.

5. Pickett, S.T.; White, P.S. The Ecology of Natural Disturbance and Patch Dynamics, 1st ed.; Academic Press: San Diego, CA, USA, 1985.

6.  Fischer, A.; Marshall, P.; Camp, A. Disturbances in deciduous temperate forest ecosystems of the northern hemisphere: Their
effects on both recent and future forest development. Biodivers. Conserv. 2013, 22, 1863-1893. [CrossRef]

7. Schelhaas, M.J.; Nabuurs, G.J.; Schuck, A. Natural disturbances in the European forests in the 19th and 20th centuries. Glob.
Chang. Biol. 2003, 9, 1620-1633. [CrossRef]

8. Hasel, K. Forstgeschichte: Ein Grundriss fiir Studium und Praxis; Parey: Hamburg, Germany, 1985; Volume 48.

9.  White, J.C.; Coops, N.C.; Wulder, M.A; Vastaranta, M.; Hilker, T.; Tompalski, P. Remote Sensing Technologies for Enhancing
Forest Inventories: A Review. Can. |. Remote Sens. 2016, 42, 619-641. [CrossRef]

10. Davison, S.; Donoghue, D.N.; Galiatsatos, N. The effect of leaf-on and leaf-off forest canopy conditions on LiDAR derived
estimations of forest structural diversity. Int. |. Appl. Earth Obs. Geoinf. 2020, 92, 102160. [CrossRef]

11. Michez, A.; Huylenbroeck, L.; Bolyn, C.; Latte, N.; Bauwens, S.; Lejeune, P. Can regional aerial images from orthophoto surveys
produce high quality photogrammetric Canopy Height Model? A single tree approach in Western Europe. Int. |. Appl. Earth Obs.
Geoinf. 2020, 92, 102190. [CrossRef]

12.  Gara, T.W,; Darvishzadeh, R.; Skidmore, A.K.; Wang, T.; Heurich, M. Accurate modelling of canopy traits from seasonal Sentinel-2
imagery based on the vertical distribution of leaf traits. ISPRS J. Photogramm. Remote Sens. 2019, 157, 108-123. [CrossRef]

13. Engler, R.; Waser, L.T.; Zimmermann, N.E.; Schaub, M.; Berdos, S.; Ginzler, C.; Psomas, A. Combining ensemble modeling and
remote sensing for mapping individual tree species at high spatial resolution. For. Ecol. Manag. 2013, 310, 64-73. [CrossRef]

14. He, Y, Yang, J.; Caspersen, J.; Jones, T. An operational workflow of deciduous-dominated forest species classification: Crown
delineation, gap elimination, and object-based classification. Remote Sens. 2019, 11, 2078. [CrossRef]

15. Modzelewska, A.; Fassnacht, FE.; Sterericzak, K. Tree species identification within an extensive forest area with diverse

management regimes using airborne hyperspectral data. Int. |. Appl. Earth Obs. Geoinf. 2020, 84, 101960. [CrossRef]


http://doi.org/10.3390/rs11111260
http://dx.doi.org/10.1016/j.rse.2016.08.013
http://dx.doi.org/10.1007/s10531-013-0525-1
http://dx.doi.org/10.1046/j.1365-2486.2003.00684.x
http://dx.doi.org/10.1080/07038992.2016.1207484
http://dx.doi.org/10.1016/j.jag.2020.102160
http://dx.doi.org/10.1016/j.jag.2020.102190
http://dx.doi.org/10.1016/j.isprsjprs.2019.09.005
http://dx.doi.org/10.1016/j.foreco.2013.07.059
http://dx.doi.org/10.3390/rs11182078
http://dx.doi.org/10.1016/j.jag.2019.101960

Remote Sens. 2021, 13, 4657 20 of 21

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
40.

41.

42.

43.

44.

45.
46.

Ballanti, L.; Blesius, L.; Hines, E.; Kruse, B. Tree species classification using hyperspectral imagery: A comparison of two
classifiers. Remote Sens. 2016, 8, 445. [CrossRef]

Fricker, G.A.; Ventura, ].D.; Wolf, J.A.; North, M.P,; Davis, EW.; Franklin, J. A convolutional neural network classifier identifies
tree species in mixed-conifer forest from hyperspectral imagery. Remote Sens. 2019, 11, 2326. [CrossRef]

Trier, @.D.; Salberg, A.B.; Kermit, M.; Rudjord, @.; Gobakken, T.; Neesset, E.; Aarsten, D. Tree species classification in Norway
from airborne hyperspectral and airborne laser scanning data. Eur. J. Remote Sens. 2018, 51, 336-351. [CrossRef]

Dalponte, M.; Frizzera, L.; Gianelle, D. Individual tree crown delineation and tree species classification with hyperspectral and
LiDAR data. Peer] 2019, 6, e6227. [CrossRef] [PubMed]

Maschler, J.; Atzberger, C.; Immitzer, M. Individual tree crown segmentation and classification of 13 tree species using Airborne
hyperspectral data. Remote Sens. 2018, 10, 1218. [CrossRef]

Hartling, S.; Sagan, V.; Sidike, P.; Maimaitijiang, M.; Carron, J. Urban tree species classification using a worldview-2/3 and liDAR
data fusion approach and deep learning. Sensors 2019, 19, 1284. [CrossRef] [PubMed]

Shi, Y.; Wang, T.; Skidmore, A.K.; Heurich, M. Improving LiDAR-based tree species mapping in Central European mixed forests
using multi-temporal digital aerial colour-infrared photographs. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 101970. [CrossRef]
Torabzadeh, H.; Leiterer, R.; Hueni, A.; Schaepman, M.E.; Morsdorf, E. Tree species classification in a temperate mixed forest
using a combination of imaging spectroscopy and airborne laser scanning. Agric. For. Meteorol. 2019, 279, 107744. [CrossRef]
Heinzel, ].; Koch, B. Exploring full-waveform LiDAR parameters for tree species classification. Int. |. Appl. Earth Obs. Geoinf.
2011, 13, 152-160. [CrossRef]

Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS ]. Photogramm. Remote Sens. 2011,
66, 247-259. [CrossRef]

Tuia, D.; Volpi, M.; Copa, L.; Kanevski, M.; Mufioz-Mari, ]. A survey of active learning algorithms for supervised remote sensing
image classification. IEEE ]. Sel. Top. Signal Process. 2011, 5, 606—617. [CrossRef]

Cutler, A.; Cutler, D.R,; Stevens, J.R. Ensemble Machine Learning. Ensemble Machine Learning; Springer Nature: Cham,
Switzerland, 2012. [CrossRef]

Ma, L.; Liu, Y,; Zhang, X; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review.
ISPRS |. Photogramm. Remote Sens. 2019, 152, 166-177. [CrossRef]

Natesan, S.; Armenakis, C.; Vepakomma, U. Resnet-based tree species classification using uav images. ISPRS Arch. 2019,
42,475-481. [CrossRef]

Breiman, L. Random forests. Mach. Learn. 2001, 45, 5-32. [CrossRef]

Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18-22.

Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217-222. [CrossRef]

Lawrence, R.L.; Wood, S.D.; Sheley, R L. Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications
(randomForest). Remote Sens. Environ. 2006, 100, 356-362. [CrossRef]

Belgiu, M.; Dragu, L. Random forest in remote sensing: A review of applications and future directions. ISPRS ]. Photogramm.
Remote Sens. 2016, 114, 24-31. [CrossRef]

Georganos, S.; Grippa, T.; Niang Gadiaga, A.; Linard, C.; Lennert, M.; Vanhuysse, S.; Mboga, N.; Wolff, E.; Kalogirou, S.
Geographical random forests: A spatial extension of the random forest algorithm to address spatial heterogeneity in remote
sensing and population modelling. Geocarto Int. 2019, 36, 121-136. [CrossRef]

Immitzer, M.; Atzberger, C.; Koukal, T. Tree species classification with Random forest using very high spatial resolution 8-band
worldView-2 satellite data. Remote Sens. 2012, 4, 2661-2693. [CrossRef]

LGRB. Geologische Karte von Baden-Wiirttemberg 1:50.000 (GeoLa); Landesamt fiir Geologie, Rohstoffe und Bergbau: Freiburg,
Germany, 2021.

LGRB. Bodenkarte von Baden-Wiirttemberg 1:50,000 (GeoLa); Landesamt fiir Geologie, Rohstoffe und Bergbau: Freiburg,
Germany, 2021.

Schultz, J. Die Okozonen der Erde; Ulmer: Stuttgart, Germany, 2016.

WaBoA. Wasser-und Bodenatlas Baden-Wiirttemberg; Landesanstalt fiir Umwelt, Messungen und Naturschutz Baden-Wiirttemberg:
Karlsruhe, Germany, 2007.

Weinacker, H.; Koch, B.; Weinacker, R. TreesVis—A software system for simultaneous 3D-real-time visualisation of DTM, DSM,
laser raw data, multispectral data, simple tree and building models. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004,
36, 90-95.

O’'Hara, K,; Latham, P.A.; Hessburg, P; Bradley, S.G. A Structural Classification for Inland Northwest Forest Vegetation. West. J.
Appl. For. 1996, 11, 97-102. [CrossRef]

Falkowski, M.].; Evans, J.S.; Martinuzzi, S.; Gessler, PE.; Hudak, A.T. Characterizing forest succession with lidar data: An
evaluation for the Inland Northwest, USA. Remote Sens. Environ. 2009, 113, 946-956. [CrossRef]

GDAL/OGR Contributors. GDAL/OGR Geospatial Data Abstraction software Library; Open Source Geospatial Foundation:
Beaverton, OR, USA, 2021.

Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1-26. [CrossRef]

Holmgren, J.; Persson, A.; Sdderman, U. Species identification of individual trees by combining high resolution LiDAR data with
multi-spectral images. Int. J. Remote Sens. 2008, 29, 1537-1552. [CrossRef]


http://dx.doi.org/10.3390/rs8060445
http://dx.doi.org/10.3390/rs11192326
http://dx.doi.org/10.1080/22797254.2018.1434424
http://dx.doi.org/10.7717/peerj.6227
http://www.ncbi.nlm.nih.gov/pubmed/30648002
http://dx.doi.org/10.3390/rs10081218
http://dx.doi.org/10.3390/s19061284
http://www.ncbi.nlm.nih.gov/pubmed/30875732
http://dx.doi.org/10.1016/j.jag.2019.101970
http://dx.doi.org/10.1016/j.agrformet.2019.107744
http://dx.doi.org/10.1016/j.jag.2010.09.010
http://dx.doi.org/10.1016/j.isprsjprs.2010.11.001
http://dx.doi.org/10.1109/JSTSP.2011.2139193
http://dx.doi.org/10.1007/978-1-4419-9326-7
http://dx.doi.org/10.1016/j.isprsjprs.2019.04.015
http://dx.doi.org/10.5194/isprs-archives-XLII-2-W13-475-2019
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1080/01431160412331269698
http://dx.doi.org/10.1016/j.rse.2005.10.014
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.011
http://dx.doi.org/10.1080/10106049.2019.1595177
http://dx.doi.org/10.3390/rs4092661
http://dx.doi.org/10.1093/wjaf/11.3.97
http://dx.doi.org/10.1016/j.rse.2009.01.003
http://dx.doi.org/10.18637/jss.v028.i05
http://dx.doi.org/10.1080/01431160701736471

Remote Sens. 2021, 13, 4657 21 of 21

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Shi, Y.; Wang, T.; Skidmore, A.K.; Heurich, M. Important LIDAR metrics for discriminating forest tree species in Central Europe.
ISPRS ]. Photogramm. Remote Sens. 2018, 137, 163-174. [CrossRef]

Kim, S.; McGaughey, R.]J.; Andersen, H.E.; Schreuder, G. Tree species differentiation using intensity data derived from leaf-on
and leaf-off airborne laser scanner data. Remote Sens. Environ. 2009, 113, 1575-1586. [CrossRef]

Reitberger, J.; Krzystek, P; Stilla, U. Analysis of full waveform LIDAR data for the classification of deciduous and coniferous
trees. Int. |. Remote Sens. 2008, 29, 1407-1431. [CrossRef]

Marconi, S.; Graves, S.J.; Gong, D.; Nia, M.S.; Le Bras, M.; Dorr, BJ.; Fontana, P; Gearhart, ]J.; Greenberg, C.; Harris,
D.J.; et al. A data science challenge for converting airborne remote sensing data into ecological information. Peer] 2019,
6, e5843. [CrossRef]

Hill, R.A.; Wilson, A.K.; George, M.; Hinsley, S.A. Mapping tree species in temperate deciduous woodland using time-series
multi-spectral data. Appl. Veg. Sci. 2010, 13, 86-99. [CrossRef]

Persson, M.; Lindberg, E.; Reese, H. Tree species classification with multi-temporal Sentinel-2 data. Remote Sens. 2018, 10, 1794.
[CrossRef]

Rautiainen, M.; Lukes, P.; Homolova, L.; Hovi, A.; Pisek, J.; Mottus, M. Spectral properties of coniferous forests: A review of in
situ and laboratory measurements. Remote Sens. 2018, 10, 207. [CrossRef]

Lukes, P; Stenberg, P.; Rautiainen, M.; Méttus, M.; Vanhatalo, K.M. Optical properties of leaves and needles for boreal tree
species in Europe. Remote Sens. Lett. 2013, 4, 667-676. [CrossRef]

Kuzmin, A.; Korhonen, L.; Manninen, T.; Maltamo, M. Automatic segment-level tree species recognition using high resolution
aerial winter imagery. Eur. ]. Remote Sens. 2016, 49, 239-259. [CrossRef]

Waser, L.T.; Ginzler, C.; Kuechler, M.; Baltsavias, E.; Hurni, L. Semi-automatic classification of tree species in different forest
ecosystems by spectral and geometric variables derived from Airborne Digital Sensor (ADS40) and RC30 data. Remote Sens.
Environ. 2011, 115, 76-85. [CrossRef]

Marrs, J.; Ni-Meister, W. Machine learning techniques for tree species classification using co-registered LiDAR and hyperspectral
data. Remote Sens. 2019, 11, 819. [CrossRef]


http://dx.doi.org/10.1016/j.isprsjprs.2018.02.002
http://dx.doi.org/10.1016/j.rse.2009.03.017
http://dx.doi.org/10.1080/01431160701736448
http://dx.doi.org/10.7717/peerj.5843
http://dx.doi.org/10.1111/j.1654-109X.2009.01053.x
http://dx.doi.org/10.3390/rs10111794
http://dx.doi.org/10.3390/rs10020207
http://dx.doi.org/10.1080/2150704X.2013.782112
http://dx.doi.org/10.5721/EuJRS20164914
http://dx.doi.org/10.1016/j.rse.2010.08.006
http://dx.doi.org/10.3390/rs11070819

	Introduction
	Materials and Methods
	Study Area: The Black Forest National Park and Surroundings
	Raw Data Sets
	Data Preparation
	Training Phase
	Classification and Evaluation

	Results
	Variables for Differentiation and Recognition of Trees' Class
	Recognition of Tree Classes
	Accuracy of Classification
	Importance of Variables

	Discussion
	Conclusions
	References

