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ABSTRACT

ABSTRACT

This thesis develops a decision problem that integrates changing demand patterns

into the design of electricity distribution networks. Recent trends in the electricity sec-

tor change the demand patterns of residential loads. Examples include the coinciding

use of air conditioning (AC) during hot summer days, the simultaneous charging of

electric vehicles (EVs) over night, but also the coinciding electricity feed-in from pho-

tovoltaic (PV) systems. These demand patterns are in contrast to traditional demand

patterns that are more stochastic in nature. To model these new demand patterns,

a decision problem is developed, namely the capacitated arborescence with voltage

drops and load coincidence problem. The novelties of the proposed problem are that

it considers voltage drops in a more precise manner than any comparable model for

network design and that it considers the way that peak loads coincide. Having such

a decision problem brings two advantages. First, integrating voltage drops and load

coincidence allows for a better network design, i. e., it yields more cost efficient net-

works while maintaining or improving reliability. Second, it allows to analyze the effect

that changing demand patterns have on network design. Therefore, in a first step,

problem-specific heuristics are developed to solve the problem. This is needed be-

cause the inherent complexity of the problem prohibits exact solutions even for small

instances. The heuristics are tested using simulated problem instances and real-world

electricity networks. The results point towards considerable cost savings compared

to networks designed using conventional planning methods. In a second step, the

solution approaches are used to analyze the effect of load coincidence on network

cost and layouts. The results indicate that an increase in load coincidence can cause

a significant increase of future network cost. In some cases, network cost might even

double. The problem can thus provide valuable insights to decision makers such as

system operators or regulators.
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Zusammenfassung

Diese Arbeit entwickelt ein Entscheidungsproblem zum Design von elektrischen Ver-

teilnetzen, welches sich verändernde Verbrauchsmuster elektrischer Lasten berück-

sichtigt. Jüngste Trends im Energiesektor verändern die Verbrauchsmuster von elek-

trischen Lasten. Beispiele hierfür sind unter anderem die zeitgleiche Nutzung von

Klimaanlagen in mehreren Haushalten an heißen Sommertagen, das gleichzeitige

Laden von Elektroautos über Nacht, aber auch das gleichzeitige Einspeisen von

Strom ins Netz durch Photovoltaikanlagen. Diese Verbrauchsmuster stehen im Gegen-

satz zu den traditionell eher stochastisch verteilten Verbrauchsprofilen von Haushal-

ten. Um diese neuen Verbrauchsmuster besser zu modellieren, wird ein Entschei-

dungsproblem entwickelt, welches sich dadurch auszeichnet, dass es zum einen die

physikalische Eigenschaft des Spannungsabfalls exakter als vergleichbare Modelle

berücksichtigt und dass es zum anderen die Art und Weise, wie Lasten zusammen-

fallen, mit einbezieht. Ein solches Entscheidungsproblem bringt zwei Vorteile mit sich.

Erstens führt es zu besserem Netzdesign, d.h. die entstehenden Stromnetze sind

kosteneffizienter, bei gleichbleibender oder verbesserter Ausfallsicherheit. Zweitens

erlaubt es, zu analysieren, welchen Effekt sich ändernde Verbrauchsmuster auf das

Netzdesign haben. In einem ersten Schritt werden daher Heuristiken zur Lösung des

Entscheidungsproblems entwickelt. Dies ist notwendig, denn die Komplexität des Pro-

blems macht es unmöglich, exakte Lösungen selbst für kleinste Instanzen zu finden.

Die Heuristiken werden dann an simulierten Netzinstanzen, sowie echten Stromnet-

zen getestet. Die Ergebnisse zeigen klare Kosteneinsparungen im Vergleich zu Net-

zen, die mit konventionellen Methoden geplant wurden. In einem zweiten Schritt wer-

den die vorher entwickelten Lösungsmethoden verwendet, um den Effekt des Zusam-

menfallens elektrischer Lasten auf Netzkosten und -aufbau zu analysieren. Im Ergeb-

nis zeigt sich, dass eine stärkere Gleichzeitigkeit des Stromverbrauchs zu einem sig-

nifikanten Anstieg der Netzkosten führen kann. In einigen Fällen können sich die

Kosten sogar verdoppeln. Das Problem liefert daher wertvolle Einblicke für Entschei-

dungsträger, wie zum Beispiel Netzbetreiber oder den Regulator.
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CHAPTER I

MOTIVATION

During a heat wave in August 2020, the Independent System Operator of the U. S.

State of California ordered to shut off power to hundreds of thousands of customers

for several hours (Burroughs, 2020). These rolling power shutoffs were the first ones

in 19 years. The shutoffs were required to avoid an overload of the electricity sys-

tem, which could have resulted in severe damages or would have caused increased

wildfires. All of this was a result of an unexpected increase in electricity demand as

Californians tried to cool down their buildings during the heat wave. In an effort to

avoid further power shutoffs, the Office of the Governor of California publicly urged

people to set their air conditioning to 78◦F (25.6◦C), avoid major appliance use be-

tween 3–10pm, and turn off unnecessary lights (Newsom, 2020).

The U. S. Department of Energy points out that the strain on the electricity system

is higher than ever, with parts of the network being more than a century old (U.S. De-

partment of Energy, 2014) and life cycles of network infrastructure typically spanning

several decades (IEC, 2015b). Updating this aging infrastructure incurs enormous

cost. In the U. S. alone, annual capital investment into distribution networks in 2017

exceeded $25 billion (U.S. Department of Energy, 2018).

3



CHAPTER I. MOTIVATION 4

1 Trends in the Electricity Sector

Investment cost in electricity infrastructure are expected to further increase due to re-

cent trends in the electricity sector (U.S. Department of Energy, 2020). These trends

pose a challenge to decision makers around the globe, ranging from regulators all the

way to the private sector. Below, three of these trends are briefly discussed that will

largely influence investment decisions in the future. These are (A) direct adaptations

to climate change, (B) an increasing share of EVs, and (C) a further decentralized

energy generation. All of these trends, of course, are in some way linked to climate

change, whether this is in a direct way, as for (A), or in an indirect way, because cli-

mate change causes a switch towards a more carbon-neutral energy landscape, as

for (B) and (C).

Regarding (A) direct adaptations to climate change, the rolling power shutoffs

in California are one example of these adaptations. The shutoffs demonstrate how

climate change directly affects electricity systems already today. Deschênes and

Greenstone (2011) find that for the U. S., each day with a mean temperature between

80 and 90◦F (26.7–32.2◦C) increases the monthly energy consumption by 2.0 %, and

that each day above 90◦F increases energy consumption by 4.4 %. The relationship

between temperature and energy consumption is depicted in Figure I-1. The nonlin-

earity of this relationship implies that small temperature changes can already cause

relatively large changes in energy consumption. Davis and Gertler (2015) find a sim-

ilar dependency between temperature and energy consumption for Mexico. Interest-

ingly, the energy savings from warmer winter days due to less heating are almost

negligible compared to the increase in energy resulting from AC usage in the sum-

mer. Davis and Gertler (2015) combine their findings with end-of century temperature

forecasts and economic forecasts on income growth. In their case study for Mexico,

they find that residential electricity consumption might increase by up to 83.1 % by the

end of the century due to increasing AC usage. This increase, however, is attributed

to both temperature change and a higher disposable income.
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Figure I-1: Estimated relationship between monthly increase in energy consumption and daily mean
temperatures in the U. S. Source: Deschênes and Greenstone (2011)

The trends (B) increasing share of EVs and (C) further decentralized energy gen-

eration are oftentimes discussed under a common framework because they represent

ways of how we try to combat climate change. Following the United Nations Frame-

work Convention on Climate Change (UNFCCC), over recent years, many efforts have

been undertaken on a multi-national and national level to combat climate change. In

2015, parties to the UNFCCC signed the Paris agreement (UN, 2015). The agreement

aims to keep the increase in the global average temperature below 2◦C compared to

pre-industrial levels, and to persue efforts to limit the increase to 1.5◦C. It contains

specific targets for lowering carbon emissions broken down by country, the so-called

nationally determined contributions. These resulted in efforts such as the proposal of

a Green New Deal in the U. S. (U.S. House of Representatives, 2019) and the Euro-

pean Green Deal (European Commission, 2019), with the objective of fulfilling these

contributions. The European Green Deal states climate neutrality for the EU by 2050

as the target. This target is persued by cutting pollution, boosting green technologies,

creating sustainable industries and transport systems. These overarching themes

then translate into national policies, for instance to accelerate the expansion of EVs

and renewable energies.
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Figure I-2: Left: Projected number of chargers for EVs (in millions). Right: Projected energy demand
(in TWh).
Base scenario corresponds to the IEA’s “Stated Policies Scenario”, accelerated scenario corresponds
to the IEA’s “Sustainable Development Scenario” which assumes assumes policies in line with limiting
the global temperature rise to below 1.7–1.8◦C with a 66 % probability. Source: IEA (2020)

Regarding (B) increasing share of EVs, the International Energy Agency (IEA)

projects the global sales of EVs (including plug-in hybrid vehicles) to increase from

2.1 million vehicles in 2019 to 25–45 million vehicles in 2030 (IEA, 2020). More im-

portant for the electricity infrastructure, the number of charging points (both private

and public) worldwide is projected to increase from 7 million in 2019 to 140–260 mil-

lion in 2030. This corresponds to an increase in energy demand for EVs from 39 TWh

in 2019 to 470–890 TWh in 2030 (see Figure I-2). This increase in energy demand by

a factor of ∼10–20 over the relatively short time period of 11 years is a challenge for

distribution system operators (DSOs) because it can cause overloading of electricity

networks. The International Energy Agency states in their Global EV Outlook 2020

that “EV charging can significantly increase and change the timing and magnitude of

electricity loads on distribution networks and possibly impact cables, transformers and

other components, as well as power quality or reliability” (IEA, 2020). Understanding

the implications of EV charging on network infrastructure is therefore a focus topic of

Chapters IV and V in this thesis.
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Figure I-3: Renewable energy capacity additions per year by technology. Accelerated case requires
policy makers to address regulatory uncertainty, investment risks in developing countries, and system
integration of wind and PV in some countries. Source: IEA (2019)

Regarding (C) further decentralized energy generation, this trend is closely linked

to an expansion of renewable energy production because renewable energy produc-

tion is often decentralized. Overall, renewable energy production is projected to in-

crease by 50 % between 2019 and 2024, with photovoltaic (PV) accounting for almost

60 % of all renewable capacity expansion (IEA, 2019). China has been leading the

world in renewable energy investments in recent years and accounts by far for the

largest PV capacity that is added each year (Mathews and Tan, 2014; UN, 2018).

Residential PV systems are growing the fastest, with projections showing a 2.5-fold

increase in capacity by 2024 (IEA, 2019). This information is crucial, because resi-

dential PV systems are directly connected to the low voltage distribution network, and

thus add additional strain on this part of the electricity system. This is the focus of

this thesis. To emphasize this point, on the longer term, there is still significant growth

potential for residential PV systems. Estimations indicate that even if an aggressive

expansion model is applied, by 2024, only 6 % of the technical available rooftop area

will be used by distributed PV systems (IEA, 2019).

All of the above mentioned trends do not only change the amount of energy that

is produced or generated. They also significantly change demand patterns (i. e., the
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way energy is consumed over time). This brings us back to the initial example of AC

usage in California, where external factors (in this case: the weather) lead to a high

simultaneous electricity use by multiple households. This example shows that it is

important to not only look at the effect that these trends have on the average electricity

demand or the peak loads of individual households. The way that electricity use of

individual households coincides can be crucial because it can cause an overload of

the electricity system. As a matter of fact, most of the above mentioned trends have

the potential to result in a more coinciding energy use: For instance, charging of

EVs is likely to happen in the evening when residents arrive at their home. But not

only private charging of EVs is critical in this regard. Gaul et al. (2017) analyzed

450,000 charging sessions at public charging stations in 2014. They found that in

300 hours of the year, all connected cars were charging at full power, thus putting

additional strain on the network. Regarding the trend of PV systems, high volumes of

PV feed-in can be expected during sunny hours and will also coincide.

As a consequence, new models for electricity network design are needed because

existing models use different assumptions on how loads coincide. Often, these mod-

els also often involve manual decision-making processes which are inefficient (Gust

et al., 2017). Incorporating the way that loads coincide (i. e., load coincidence) into

the design of electricity networks brings two advantages. First, more precise design

methods yield more cost-efficient networks while maintaining or improving reliability.

Second, it allows to analyze the shift in demand patterns that is described above. This

means that decision makers (e. g., system operators or regulators) can quantify the

effect of increasing load coincidence.

2 Outline

The outline of this thesis is shown in Figure I-4, which briefly summarizes content and

key results of each chapter. In the next chapter, an introduction to the structure of

electricity systems and an overview on network design models is given. In addition
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Figure I-4: Outline of this thesis. Shown is the content and the key results of each chapter (excluding
the present chapter).

to that, that chapter provides an overview on methods to measure and quantify load

coincidence. In Chapter III, these methods are used to develop a decision problem

based on integer programming to support the design of electricity distribution net-

works. Heuristic solution approaches to solve this problem are developed and tested

using simulated network instances and 74 real-world electricity distribution networks

from a Swiss electricity company. The results show that using the solution approaches

can lead to significant cost savings of up to 0.26 million Swiss Francs (CHF) per net-

work. In Chapter IV, the best-performing heuristic from the experiments before is used

to determine the effect of different scenarios for load coincidence on network cost and

layout. In that chapter, scenarios resembling the trends (A)–(C) are developed. De-

pending on the scenario, changes in load coincidence can cause the network cost to

more than double. This has implications for stakeholders, such as system operators,

regulators and others. These are discussed in the final chapter of this thesis. In that

chapter, an outlook on future research topics is also provided.





CHAPTER II

BACKGROUND

1 Electricity Networks: Generation, Transmission and

Distribution

In the past, the electricity value chain was one-dimensional and allowed for a clear

distinction between (1) generation, (2) transmission, and (3) distribution, followed by

electricity consumption (cf. Schwab, 2017). (1) Generation was mostly done by large

conventional power plants (e. g., coal, nuclear). These power plants were connected

to the extra high voltage transmission network. (2) Transmission describes the pro-

cess of transporting electrical energy over long distances using relatively high voltage.

The energy is transported from the point of generation to close to the point of con-

sumption. (3) Distribution describes the process of delivering energy to the end-users

(e. g., households) with relatively low voltage. The distribution network is split into a

part with mid to high voltage (often referred to as primary distribution network) and

a part with low voltage (often referred to as secondary distribution network). Voltage

differences in the entire electricity system are bridged by transformers. A schematic

representation of this traditional electricity value chain is depicted in Figure II-1. This

figure is a simplification of the electricity value chain. For the purpose of this the-

ses, however, this is sufficient, because the present work only aims to understand the

effect of general trends on the low voltage distribution network. More precise informa-

11



CHAPTER II. BACKGROUND 12

tion on the electricity value chain can be found in standard text books such as Schwab

(2017). In Figure II-1, electricity generation can be found on the left hand side, while

energy consumption is found on the right. Even in this simplified picture, not all gen-

eration is connected to the extra high voltage transmission network because some

power plants (e. g., wind turbines) are connected to the distribution grid. Also, not all

consumers are connected to the low voltage distribution network. Some larger con-

sumers of electrical energy (e. g., factories, airports, large hospitals) are connected to

the distribution grid at a higher voltage (Schwab, 2017).

Nowadays, the electricity value chain has slightly changed. A simplified depiction

of today’s electricity value chain is shown in Figure II-2. There are three main differ-

ences when comparing it to the traditional value chain shown in Figure II-1. First, the

share of conventional power plants on the overall energy production is lower. Sec-

ond, the emergence of so-called prosumers leads to energy production at the low

Figure II-1: Traditional electricity value chain (simplified), with generation on the left, consumption on
the right. In the past, the electricity value chain was purely one-directional with a clear distinction be-
tween generation, transmission, and distribution.
Coloring: Transmission network (and connected components) in blue, distribution network (and con-
nected components) in black.
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voltage level. Prosumers are consumers of electrical energy that, at the same time,

also produce electrical energy. The most common example of these prosumers are

households that own a PV system. Prosumers break the one-directionality of the elec-

tricity value chain, because, from time to time, they also feed energy into the network.

Third, new technologies, such as EVs and battery storage systems, change demand

patterns of consumers. The focus of this thesis lies on the low voltage distribution

network, i. e., the network from the last transformer to the end-user (see shading in

Figure II-2).

Regarding the layout of the various networks, electricity transmission networks, on

the one hand, are typically operated in a meshed layout fulfilling the N − 1-fail save

criterion, i. e., the network must still be operational, even if one element breaks down.

Figure II-2: Today’s electricity value chain (simplified), with generation on the left, consumption on the
right. Today’s electricity value chain exhibits a lower share of conventional power plants (e. g., coal,
nuclear). The emergence of prosumers results in energy production at the low voltage level (e. g., by
PV systems) and results in a bi-directional power flow. New technologies on the consumer side arise
(e. g., EVs and battery storage solutions). The focus of this thesis lies on the low voltage distribution
network.
Coloring: Transmission network (and connected components) in blue, distribution network (and con-
nected components) in black.
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Thus, every point in the network is served from at least two sides (Schwab, 2017,

chap. 10). Distribution networks, on the other hand, are mostly radial networks. This

means that they have a tree-like structure. Radial networks are more cost efficient

and allow for easier operations and easier maintenance (Schwab, 2017, chap. 11). In

this thesis, a problem for distribution network design is presented. Therefore, a radial

network layout is one of the requirements for any solution to the proposed problem.

2 Network Design Problems

2.1 Distribution Network Design

Distribution networks deliver electricity to households by connecting them to the trans-

mission part of the electricity system. The design of distribution networks is a non-

trivial task. The networks need to satisfy the following three constraints (Weedy,

2012). (i) The capacity of each grid line must meet the variable electricity demand

and thus be sufficiently large. (ii) The layout of the network must be radial. (iii) Due to

the electric resistance of the grid lines, voltage drops (i. e., a reduction in the electric

voltage along the grid lines) occur, whose magnitude must remain below a certain

threshold (cf. CENELEC, 2010; IEC, 2015a). Solving the problem with constraints (i)–

(iii) has only been achieved by restricting the number of possible layouts (Georgilakis

and Hatziargyriou, 2015).

Modeling the constraints (i) and (ii) without voltage drops yields a capacitated

shortest spanning arborescence problem (Chandy and Lo, 1973) with multiple avail-

able line capacities. This problem was solved in prior research (e. g., Brimberg et al.,

2003; Singh et al., 2009). Accounting for voltage drops in distribution network design,

however, is of critical relevance. The reason is that voltage drops beyond a certain

threshold can damage the network and connected electrical devices. Modeling of

voltage drops is challenging as it involves multiple parameters (Weedy, 2012). More

precisely, voltage drops depend on the flow of electric current F , the line length l,
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and the cross section (i. e., capacity) a of the grid line. In practice, voltage drops be-

yond the critical threshold are commonly resolved manually during the design process

(Gust et al., 2017).

This work extends research on distribution network design by presenting a deci-

sion model that includes all aforementioned constraints, namely (i) line sizing, (ii) ra-

dial layout, and (iii) voltage drops, whilst putting no additional restrictions on the net-

work layout. A key novelty of this model is, that when considering constraint (i) line

sizing, the model takes into account load coincidence. The objective of this model is

to identify the cost-optimal network that connects pre-defined locations of electricity

demand to a source. The output determines how to connect these locations with grid

lines and which capacity to choose for these connections.

Several works have addressed the above mentioned constraints (i)–(iii) (de Boeck

and Fortz, 2018; Qi et al., 2015; Rossi et al., 2012; Singh and Mason, 2004; Singh

et al., 2009). However, none of these works model the combination of constraints (i)–

(iii) in an exact manner—whereas we rigorously model all constraints, particularly volt-

age drops and load coincidence. Below, the modeling of each constraint is reviewed

and the differences to this work are outlined.

(i) Line sizing guarantees that the capacity of each grid line is sufficient to sup-

ply the connected loads. In practice, electricity companies have several different line

types at their disposal and can choose among them. Each line type has a different

cross-sectional area. Some works, however, ignore the existence of a discrete set of

line types (e. g., Nahman and Peric, 2008; Rossi et al., 2012), while in other works

multiple line types with different capacities are included (e. g., Singh et al., 2009; Qi

et al., 2015). When choosing the line sizes, network designers often only consider

individual peak loads of households. Since these peak loads do not coincide (Dick-

ert and Schegner, 2010), this worst case scenario can result in an over-sizing of the

network. Taking into account this non-coincidence of peak loads when aggregating

loads can result in significant cost savings. This thesis considers the degree of load
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coincidence by using the coincidence factor (see, e. g., Beaty and Fink, 2013; Gonen,

2015). A detailed description of the coincidence factor, including an overview on net-

work problems that consider load coincidence is discussed later (Section 3). Unless

stated otherwise, conventional distribution network design models do not take load

coincidence into account.

(ii) A radial layout is required so that the flows of energy from the source to each

load follow a unique path (cf. Singh et al., 2009). Owing to this, the design of elec-

tricity distribution networks is related to mixed-integer arborescence problems, in par-

ticular, the capacitated shortest spanning arborescence rooted at r (CSSAr) problem

(Chandy and Lo, 1973; Papadimitriou, 1978; Toth and Vigo, 1995). The objective

of the CSSAr problem is to find a directed rooted tree (i. e., an arborescence) with

minimum cost, such that the demands in each branch do not exceed a certain value.

(iii) Voltage drops are a core element of the problem presented in this thesis.

Despite their importance for network design practice, voltage drops have not yet been

rigorously modeled in greenfield network design. Along the lines of any electricity

system, the voltage steadily drops due to the electrical resistance of the lines, leading

to a lower voltage at the end-point of the system. Voltage drops beyond a certain

threshold can damage the electric system and the connected electrical devices and,

hence, must be avoided when designing a network. This has a substantial effect

on determining which network layouts are physically feasible (Adams and Laughton,

1974). There are three approaches to including voltage drops in network design:

First, there is the widely used industry practice of manually considering voltage drops

during the design process (Gust et al., 2017). Second, there is the approach of using

alternative metrics as a proxy for voltage drops. De Boeck and Fortz (2018) and Rossi

et al. (2012) use a technique called “hop-constraining”, which prohibits any vertex of

the network from being any more than a given number of steps (“hops”) away from the

source. An overview of the hop-constrained minimum spanning tree problem can be

found in Dahl et al. (2006). This approach is also used by Requejo and Santos (2009)

and Gouveia and Magnanti (2003), who propose a heuristic approach to solving the
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hop-constrained minimum spanning tree problem. In hop-constraining, the voltage

drop is simplified, that is, both the actual length of the lines and the electric current

(i. e., the flow) are omitted. Furthermore, hop-constraining is also limited to problems

with a single line capacity. It is therefore not applicable for problems where more than

one line type is available, and where line lengths and flows vary substantially across

the network. Third, there is the approach of using an explicit model for voltage drops

and including a minimum allowable voltage as a direct constraint. As is shown in this

work, this approach implies significant computational complexity in the model. Here

this thesis contributes a tractable solution approach using heuristics.

There are some approaches that take into account constraints (i)–(iii) for network

design, but at the same time restrict the network layouts. These approaches are

predominantly covered in electricity systems engineering and are reviewed in Georgi-

lakis and Hatziargyriou (2015). All of these publications put restrictions on network

layouts, e. g., by restricting connections to vertices that are close in terms of Euclidean

distance (Boulaxis and Papadopoulos, 2002; Gan et al., 2011), close in terms of an

existing street layout (Kong et al., 2009; Navarro and Rudnick, 2009), or close in terms

of pre-existing network infrastructure (Cossi et al., 2005; Falaghi et al., 2011). There-

fore, the aforementioned approaches disregard many potentially cost-effective layouts

where line connections are long. Later, heuristics are presented that modify the net-

work layout by introducing longer connections and show that these connections can

reduce network cost.

2.2 Related Problems in the Electricity Domain

Distribution network design is closely related to distribution network reconfiguration,

power flow modeling, and transmission network design. Figure II-3 summarizes the

similarities and differences between the problems in these fields and the problem

developed in this thesis, namely the capacitated arborescence with voltage drops and

load coincidence problem (CAVLP). The relations are summarized below.
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Figure II-3: Relations between the CAVLP and related problems. Similarities are indicated by a tick
mark. Dashed tick marks indicate that the models sometimes or partly fulfill the respective property.
Similarities can be found in the objective (i. e., whether the problem optimizes for investment cost) or
the constraints.

Distribution network reconfiguration concerns the modification of existing networks

with the objective of improving operations (e. g., Avella et al., 2005; Glamocanin, 1990;

Jabr et al., 2012; Parada et al., 2010). This stream of research is closely related be-

cause the networks need to satisfy the same constraints (i)–(iii). There are, however,

significant differences. First, network reconfiguration problems optimize for minimum

operational cost by minimizing power losses. In contrast, this thesis focuses on mini-

mizing investment cost. Both objectives yield different solutions (e. g., a grid line with

a large cross section comes with high material cost but results in low operating cost

due to low power losses). Second, this stream of research also restricts the number

of potential layouts as only a limited amount of edges can be activated or deactivated.

For instance, the largest network instances considered by Avella et al. (2005) are

comparable to ours in the number of vertices. However, the authors consider only

around 150 alternative edges (i. e., switches). Other approaches (e. g., Freitas et al.,

2016) allow even fewer modifications to the layout. In the CAVLP, comparable in-

stances exhibit over 10,000 possible alternative edges. Third, the capacity (i. e., line

type) for any given connection is usually fixed in network reconfiguration problems.

The CAVLP considers multiple possible line types. Adapting the reconfiguration ap-

proaches for network design purposes is thus non-trivial. Nevertheless, it is possible
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to re-purpose models from the reconfiguration literature by introducing such a large

amount of switches. This approach is later used as a benchmark in evaluating the

performance of the developed solution methods.

The literature stream on power flow modeling considers the same physical prin-

ciples as the problem developed in this thesis. Yet, instead of designing a network,

it is concerned with finding solutions to the power flow equations for a given network

layout (Glover et al., 2012). In other words, the network is assumed a fixed parameter,

the power injections at the sources (i. e., the transformers) are given, and the prob-

lem is to find the voltages at each node. Most notably, the optimal power flow (OPF)

problem aims at finding the most efficient way to operate electricity networks (i. e.,

minimizing generation costs) under steady-state conditions (Zohrizadeh et al., 2020).

Owing to this, this stream of literature focuses on numerical algorithms and approxi-

mations, for instance, the LinDistFlow model and recent alterations thereof (Molzahn

et al., 2017; Schweitzer et al., 2020). The modeling of current flows and voltage drops

presented in this thesis closely follows the LinDistFlow model. This also means that a

DC approximation for the currents is used instead of using AC. This approximation is

widely used in the literature (see e. g., Avella et al., 2005).

The literature on transmission network design aims at optimizing the long-range

electricity delivery and the underlying high voltage networks (e. g., Fisher et al., 2008;

Kocuk et al., 2016; Khodaei et al., 2010; Villumsen and Philpott, 2012), often in com-

bination with power plant planning (e. g., Jenabi et al., 2015; Märkle-Huß et al., 2019;

Pineda and Morales, 2016). While the constraints (i) and (iii) in these problems are

similar to those in the CAVLP, these problems disregard the radiality constraint (ii), as

transmission networks usually operate in a meshed layout fulfilling an (N−1)-fail-safe

criterion. Additionally, layouts are fairly restricted as layout changes are achieved by

switching operations of a very limited number of grid lines. In sum, the transmission

network design problems are more distant to the CAVLP than the distribution net-

work reconfiguration problems, because of the absence of radiality constraints and

the smaller number of potential layouts. Therefore, a model from the distribution net-
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work reconfiguration literature is used as a benchmark in evaluating the performance

of our solution methods instead of a model from the transmission literature.

2.3 Related Problems in Other Domains

Similar physical properties to voltage drops also occur in network problems from other

domains. For instance, in pipeline systems, drops in pressure depend on pipe diam-

eter, flow, and pipe length and, as such, must be constrained in distribution networks

for oil (Brimberg et al., 2003) or gas (André et al., 2013). In transportation networks,

traversal time or reliability constraints can have similar mathematical forms to voltage

drops (Balakrishnan et al., 2017). Also, the principle of coinciding demand/supply

exists as well, for instance in studies on water supply or flood analysis (Chen et al.,

2012; Yan and Chen, 2013).

Despite these similarities, the above problems have inherent differences to the

CAVLP. For instance, transportation networks are usually not subject to radial lay-

outs. More importantly, the constraints related to the drop (e. g., pressure drops) are

oftentimes simply omitted due to the computational complexity (e. g., Brimberg et al.,

2003). Only very few prior works explicitly model voltage drops: André et al. (2013),

for instance, incorporate pressure drops in a gas distribution network. Their problem

also involves radial layouts, yet their line sizing is based on continuous capacities and

does not take into account the non-coincidence of peak demands. The problem pre-

sented in this thesis involves a discrete set of capacities and does take into account

varying degrees of demand coincidence. Both characteristics introduce additional

complexity and alter efficient network layouts, as shown later.

In summary, prior work has not combined all constraints (i)-(iii) without imposing

additional constraints that can lead to sub-optimal network designs. However, the

above examples demonstrate the widespread applicability of the CAVLP and the pro-

posed solution methods for network design.
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Despite the above mentioned shortcomings, the work by (Brimberg et al., 2003) is

highly relevant for this thesis. Their problem concerns the design of a radial distribu-

tion network for oil pipelines that connect oil wells to one singe harbor. In a case study,

the authors design a distribution network for a real-world oil field in South Gabon. In

terms of size (i. e., the number of vertices), this network is comparable to our problem

instances. The problem is solved heuristically by two metaheuristics, namely Tabu

Search and Variable Neighborhood Search (VNS). This approach is adapted here, as

this thesis also uses these two metaheuristics alongside other solution approaches

for solving the CAVLP (see Section 2).

Finally, while all of the problems above ignore the existence of load coincidence,

there are situations, where the non-coinciding nature of demand is core to the prob-

lem. This becomes most evident when looking at problems on precipitation and

drainage. For instance, Chen et al. (2012) estimate the flood risk from precipitation

in the Yangtze River and the Colorado River. Rainfalls that are subject to a certain

stochasticity at various branches of the river can lead to flooding in the main river.

Therefore, the problem exhibits an arborescence structure and also includes a form

of load coincidence. Yan and Chen (2013) investigate irrigation and analyze if there

is enough precipitation to guarantee reliable water supply in a large water transfer

project in China. This literature stream can benefit from both the model presented

here and the corresponding solution approaches.

3 Coincidence Factors

3.1 Idea and Background

Electricity networks do not have to be built to withstand the theoretically highest-

possible peak load. This is because the electricity demands of multiple loads do not

all peak at the same time. Thus the expected peak demand of a group of loads does
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not equal the sum of the individual peak demands (Dickert and Schegner, 2010). This

phenomenon is called load coincidence (or load diversity).

Therefore, when building a network, instead of considering the theoretically highest-

possible peak load, the goal is to meet a scenario, where the grid lines have to with-

stand the expected peak flows. In a radial distribution network, this expected peak

flow equals the coincident peak demand of all connected loads. This aggregation of

loads is typically done by considering a discount factor, namely the coincidence factor.

This discount factor describes how the peak demand per load decreases as the num-

ber of loads increases. It is defined as the peak demand of a group of loads divided

by the sum of the peaks of the individual loads. The reciprocal of the coincidence

factor is called diversity factor. The terminology, however, is not always consistent

and the two terms are often used interchangeably. A review of various mathematical

functions for the coincidence factor can be found in Dickert and Schegner (2010). In

Figure II-4, we show three different functions for illustration. The first two functions

follow a formula derived in Dickert and Schegner (2010) and are given by

γ(N) = γlim + (1− γlim)N
−1/2 . (II-1)

The two functions shown in Figure II-4 have different values for γlim and thus converge

towards γlim = 0.1 and γlim = 0.3, respectively. The other function shown in the figure

is empirically determined in Nickel and Braunstein (1981) in an effort to match several

curves published in the U. S. This function is given by

γ(N) = 0.5 ·
(
1 +

5

2N + 3

)
. (II-2)

Load coincidence and the corresponding coincidence factors have been subject

to intensive empirical research because they depend on various factors, such as ge-

ographics, degree of electrification, etc. (Boait et al., 2015; Herman and Kritzinger,

1993; Konstantelos et al., 2014; Richardson et al., 2010; Widén and Wäckelgård,
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Figure II-4: Comparison of various functions for the coincidence factor γ(N) as a function of the loads
N . Shown are two functions as derived in Dickert and Schegner (2010) (one converging towards γlim =
0.1, another converging towards γlim = 0.3) and one function as derived in Nickel and Braunstein
(1981).

2010). For instance, Herman and Kritzinger (1993) analyze load data from South

Africa to model the coincidence of residential demands in a descriptive manner. Their

approach has widely been picked up by researchers. More recent publications use

prescriptive bottom-up models of simulated appliance usage to derive demand pat-

terns of individual households and groups of households (Richardson et al., 2010;

Widén and Wäckelgård, 2010). The spread of smart meters in recent years has made

it possible to gather real-time data from thousands of households within the same

network (Konstantelos et al., 2014). This allows for a more precise determination of

coincidence factors.

All functions of the coincidence factor (whether derived mathematically or de-

termined empirically) have the following properties in common. For one household

(N = 1), the value for the coincidence factor is always 1, i. e., no discount is applied.

Further, the functions are monotonically decreasing in N , convex, and approach a

threshold γlim as networks become larger.
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A key complication when considering coincidence factors in the context of net-

work design is that flow conservation does no longer apply. Specifically, because

the discount is higher, the more loads are located downstream, the peak flow into a

vertex will be less than the outgoing flows and the demand of this vertex combined.

Therefore, equations concerning the power flow must be adjusted.

3.2 Coincidence Factors in Network Design

Some researchers utilize coincidence factors to improve the operation of distribution

networks (e. g., Resch et al., 2017; Boait et al., 2015). However, there is a dearth of

publications incorporating load coincidence into the design of distribution networks.

Below, related publications are discussed. It is also pointed out, where the main

differences to the work presented in this thesis lie.

Domingo et al. (2011) use coincidence factors in the design of distribution net-

works. They consider a large network with three layers, namely a high voltage layer, a

medium voltage layer and a low voltage layer. Coincidence factors, however, are only

applied at connections between these layers, i. e., for the transformers. This means

that, for instance, each household in the low voltage network gets discounted by the

same amount. Within the low voltage network, coincidence factors are simply ignored.

Similarly, Parshall et al. (2009) use coincidence factors to estimate the demands of

entire LV distribution networks as a whole to help design the upstream parts of the

electricity system. Kaur and Sharma (2008) and Sauhats et al. (2016) present mod-

els that take into account load coincidence for network design. However, they only

choose conductors (i. e., line cross sections, conductor types, etc.) for a fixed network

layout.

So far, there is no publication on designing a electricity distribution network that

takes into account coincidence factors on the grid line level. The model presented in

this thesis bridges this gap. For every vertex in the network, the model considers the

load coincidence of the demands downstream and applies the correct discount.
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3.3 The Effect of Load Coincidence on Network Cost and Layout

In this thesis it is also analyzed, how various functions of the coincidence factor affect

network cost and network layout. There is only limited research on this topic. This is,

in part, because of the lack of suitable models, as pointed out above. Gwisdorf et al.

(2010) investigate the effect of coinciding demand side management (DSM). They

show how an uncoordinated DSM can lead to higher investment cost as it requires

network reinforcement measures. Contrasting to this, Vallés et al. (2016) argue that a

coordinated DSM can also help to reduce peak loads and defer investments. Another

technology, namely EVs, is investigated by Richardson et al. (2010). They show that

a higher EV penetration increases peak loads in a distribution network. Similar obser-

vations have been made by Wieland et al. (2015). In an empirical study, Gaul et al.

(2017) analyzed 450,000 charging sessions at public EV charging stations in 2014.

From their observations, the authors conclude that a coincidence factor of 1.0 must be

assumed when describing the underlying distribution network. Later, this observation

is used in the development of various scenarios for load coincidence.





CHAPTER III

INCLUDING LOAD COINCIDENCE INTO A

NETWORK OPTIMIZATION PROBLEM

In this chapter, a decision problem based on integer programming is presented. The

problem supports the design of electricity distribution networks. To this end, the ca-

pacitated arborescence with voltage drops and load coincidence problem (CAVLP)

is proposed. The problem models voltage drops as a key physical constraint of the

problem while keeping the network layouts unrestricted. At the same time, it consid-

ers load coincidence, i. e., non-coinciding peak loads. The model further considers

other constraints, including line capacities and radiality of the layout. The inherent

complexity of the CAVLP prohibits exact solutions even for small problem instances.

Therefore, a set of problem-specific heuristics is created and evaluated based on

simulated network instances. Additionally, the approach is tested on 74 electricity dis-

tribution networks from a Swiss electricity company. The experiments demonstrate

that the proposed solution approach is computationally tractable. Furthermore, when

compared to conventional design practice, they point towards considerable cost sav-

ings over the actual network layouts of more than 39 %. This corresponds to cost

savings of up to CHF 0.26 million per network.

In summary, the contributions of the work presented in this chapter are five-fold:

1. An approach to distribution network design is presented which accounts for voltage

drops at the design stage. This model also considers load coincidence. The corre-

27
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sponding decision problem is the CAVLP. Voltage drops and load coincidence are

included in the model in a way that does not restrict network layouts beyond radial-

ity. Thus, the CAVLP overcomes shortcomings of existing problems for distribution

network design.

2. It is proven that the CAVLP is NP-hard. Furthermore, it is shown that the problem

contains complex nonlinearities. Linearizations for the problem are provided. It is

shown that the complexity of the problem makes it intractable to use exact solvers

(e. g., through branch-and-bound), even for smallest instances with 10 vertices or

fewer. In addition to that, an alternative problem formulation based on arbores-

cences is presented. This alternative formulation also yields an NP-hard problem.

Although this formulation avoids complex nonlinearities, it is inferior from a com-

putational standpoint because the number of constraints grow exponentially in the

number of loads.

3. Given the aforementioned complexity, the CAVLP is solved by developing heuris-

tics. The heuristics are designed in such a way that they leverage the unique

physical properties of the problem.

4. The heuristics are evaluated across different simulated problem instances to an-

alyze their solution quality. Also, upper and lower bounds for the exact solution

are provided using simplified problem instances for comparison. This confirms the

effectiveness of the heuristics across various problems instances.

5. The effectiveness of the solution approach is shown based on 74 real-world distri-

bution networks from a Swiss electricity company. Thereby, the existing networks

that followed a conventional design from practitioners are compared against the

ones from the proposed solution approach. The experiments result in improve-

ments of more than 39 %. This corresponds to cost savings in the order of up

to CHF 0.26 million per network. Altogether, these findings highlight the practical

value-add of the work presented.
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1 The Model

1.1 Problem Statement

Electricity distribution network design corresponds to the decision problem of connect-

ing a given set of demand locations (e. g., households) with a single source location

(i. e., the transformer to the superordinate network). Between the locations, grid lines

of different types can be built. Each line type has a specified capacity (i. e., its cross

section). The objective for the decision maker is to minimize investment costs con-

sisting of construction and material costs. The problem is subject to the following

constraints.

(i) Line sizing. The capacity of a grid line must be large enough to support the

electric current (i. e., the flow). When choosing the capacity, we take into account

that the peak demands of individual loads are not coinciding. For every line in

the network, we discount the flow by the line-specific coincidence factor.

(ii) Radial layout. Networks layouts must be radial, so that all energy flows from the

source to each load follow a unique path.

(iii) Voltage drops. The flow of electric current through a line causes a voltage drop.

The voltage drop accumulates over consecutive lines. At any point in the net-

work, it must remain below a threshold prescribed by industry norms.
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1.2 Mathematical Formalization

The previous decision problem is formulated as the capacitated arborescence with

voltage drops and load coincidence problem. An overview of the notation is provided

in Table III-1. The appropriate unit conversions and material constants for real-world

settings can be found in Section 4.2.

Symbol Description Unit/range
G Directed multigraph G = (V,E)
V Set of all vertices
N Number of vertices N = |V |
i, j Indices of vertices i, j = 0, . . . , N − 1
Di Demand of vertex i D0 = 0, Di ̸=0 = D > 0.
E Set of all directed edges
k Index of line type k = 1, . . . , |A|
(i, j)k Directed edge from i to j; k denoting its type (i, j)k ∈ E
A Set of edge capacities depending on line type k (in ascending order)
akij Edge capacity akij > 0, akij ∈ A
Nj Set of all vertices that can be reached from j
Γ Graph representing one solution of the problem Γ = (V,E ′), with E ′ =

{
(i, j)k ∈ E | xk

ij = 1
}

Γi Subgraph of Γ including j and all edges and vertices reachable from j
|Γj| Number of vertices in Γj

γ(|Γj|) Coincidence factor (discount factor depending on number of vertices) 0 < γ(|Γj|) ≤ 1
Di (Un-discounted) sum of all demands in Γj

d(i) Depth of vertex i, i. e., number of hops to reach i from the source in Γ
Fij Flow through edge (i, j)k Fij > 0
lij Length of edge (i, j)k lij ∈ R+

P Set of all paths from source vertex 0 to any leaf vertex Set of edge sequences
p Specific path from source vertex 0 to a leaf vertex Edge sequence, p ∈ P
cc Construction costs Monetary unit per distance
cm Material costs Monetary unit per distance per capacity unit
Ui Voltage at vertex i Ui > 0
U Voltage at transformer U > 0, U0 = U
Ucrit Critical voltage level Ucrit > 0
Q Threshold value for voltage drop Q = U − Ucrit

xk
ij Decision variable for edge from vertex i to j with capacity akij xk

ij ∈ {0, 1}

Table III-1: Notation for the CAVLP.

Let G = (V,E) denote a complete directed multigraph without loops. The set of

vertices V = {0, . . . , |N − 1|} represents locations. Each vertex i ∈ V has a given

demand Di. The source location (i. e., the transformer) is defined as vertex 0 and

we further set D0
def
= 0. The set of edges E contains all potential grid lines. Each

edge (i, j)k ∈ E from vertex i to vertex j has a discrete capacity akij ∈ A. The

index k indicates the line type. Furthermore, each edge (i, j)k has a given length

lij that is independent of its type (i. e., the same for all k). The decision variable

xk
ij ∈ {0, 1} indicates whether an edge of type k from vertex i to vertex j should

be built. The subgraph representing one solution of the problem is denoted Γ (x) =

(V,E ′)withE ′ =
{
(i, j)k ∈ E | xk

ij = 1
}

. Furthermore, let Γj denote the subgraph of
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Γ , encompassing a certain vertex j and all vertices and edges that can be reached

from j in the direction of the flow. The number of vertices in Γj is denoted |Γj|. The

CAVLP is then given by

min
∑

(i,j)k∈E

xk
ij [lijcc + lijcm akij] (III-1)

s. t.
∑

k∈{1,...,|A|}

xk
ija

k
ij ≥ Fij , ∀i, j ∈ V , (III-2)

∑
j

Fji −
∑
j

Fij = γ (|Γi|) Di−

∑
j

∑
k

xk
ij

(
[γ (|Γj|)− γ (|Γi|)]Dj

)
, ∀i ∈ V \ {0} , (III-3a)

|Γi| = 1 +
∑
j

∑
k

xk
ij |Γj| , ∀i ∈ V , (III-3b)

Di = Di +
∑
j

∑
k

xk
ij Dj , ∀i ∈ V , (III-3c)

|Γ0| = N − 1 , (III-3d)

D0 =
∑
j

Dj , (III-3e)

∑
i

∑
k

xk
ij = 1 , ∀j ∈ V \ {0} , (III-3f)

∑
k

xk
ij

akij
lij

(Ui − Uj) = Fij , ∀i, j ∈ V , (III-4a)

Ui ≥ Ucrit , ∀i ∈ V , (III-4b)

U0 = U . (III-4c)

The objective in Equation (III-1) is to minimize investment costs. If an edge with

capacity akij from vertex i to vertex j is built, construction costs of lijcc are incurred

(depending only on the length of the edge) and material costs of lijcm akij are incurred

(depending on the length and the capacity).

The line sizing constraint in Equation (III-2) requires the capacity akij of an edge

(i, j)k to be sufficiently large to support the peak flow Fij .
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Equations (III-3a) to (III-3f) define the flows and ensure the radial layout (including

connectivity) of the network. The peak flows Fij are defined recursively in Equa-

tion (III-3a). In the special case of a uniform coincidence factor of γ ≡ 1, Equa-

tion (III-3a) simplifies to
∑
j

Fji−
∑
j

Fij = Di and Equations (III-3b) and (III-3c) are not

required. In this special case, all flows into a vertex minus all flows out of this vertex

equal the demand of the vertex. Except for this special case, the peak flows in the

CAVLP are not conserved because of the non-coincidence of peak loads. To take this

non-coincidence into account, the correction term in the second line of Equation (III-

3a) is needed, which is explained as follows. The correction term considers the direct

neighbors of vertex i, i. e., all vertices j with
∑
k

xk
ij = 1. Each neighbor j connects

a subgraph Γj to vertex i. The number of vertices in a subgraph |Γj| determines the

magnitude of the coincidence factor γ(|Γj|) and thus the flows going out of vertex i.

The correction term determines the discount of outgoing flows relative to incoming

flows, which is given by the difference in the coincidence factors γ(|Γj|) and γ(|Γi|).

Equations (III-3b) and (III-3c) define |Γi| and Di recursively: The number of vertices

inside a subgraph |Γi| always equals one plus the sum of all subgraphs downstream.

Di denotes the (un-discounted) sum of demands downstream a certain vertex i. This

is equal to Di plus the sum of all demands downstream. Equations (III-3d) and (III-3e)

define vertex 0 as the source by setting the values for |Γ0| and D0 to the overall num-

ber of loads and the total demand of all loads, respectively. Equation (III-3f) ensures

that every vertex (except the source) is entered by exactly one edge.

Equations (III-4a) to (III-4c) limit the magnitude of voltage drops. Specifically,

Equation (III-4a) follows Ohm’s law and describes the voltage drop between two con-

nected vertices i and j. According to Ohm’s law, the voltage drop is proportional to

the peak flow (i. e., the discounted sum of the peak demands). It is also proportional

to the edge length lij and inversely proportional to the line’s cross section (i. e., the

edge capacity) akij . Equation (III-4b) demands that the voltage Ui of any vertex i can-

not drop below a critical voltage level Ucrit. Equation (III-4c) sets the voltage at the

source to the nominal level U .
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1.3 Complexity of the CAVLP

The following proposition prohibits straightforward solutions to the CAVLP due to its

NP-hardness.

Proposition 1 (NP-hardness) The CAVLP is NP-hard.

Proposition 1 is proven by reduction. It is shown that the CAVLP is a generalized

form of the problem in Brimberg et al. (2003), which is known to be NP-hard. More

precisely, it is shown that the problem in Brimberg et al. (2003) is a special case of

the CAVLP with Ucrit = 0 and a uniform coincidence factor γ ≡ 1.

By setting Ucrit = 0, we can ignore the constraint for the voltage drops in Equa-

tions (III-4a) to (III-4c). We further set γ ≡ 1, which yields

min
∑

(i,j)k∈E

xk
ij [lijcc + lijcm akij] (III-5)

s. t.
∑

k∈{1,...,|A|}

xk
ija

k
ij ≥ Fij , ∀i, j ∈ {0, . . . , N − 1} , (III-6)

∑
j

Fji −
∑
j

Fij = Di (III-7a)

∑
i

∑
k

xk
ij = 1 , ∀j ∈ {1, . . . , N − 1} . (III-7b)

This problem is equivalent to the problem in Brimberg et al. (2003) with edge cost set

to lijcc + lijcm akij . As this reduction is clearly of polynomial time, this proves that the

CAVLP is NP-hard. □

Solving the CAVLP via complete enumeration is not feasible, even for smallest

problem instances. This is expressed by the following remark.

Remark 1 The time for solving the CAVLP via complete enumeration is in O(NN−2).

Proof. For his proof, Cayley’s theorem is used (Cayley, 1889). According to this theo-

rem, there are NN−2 different trees for N vertices. To solve the CAVLP via complete
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enumeration, one has to try all these combinations, and, in addition to that, enumer-

ate through all possible combinations for the capacities. For a network with (N − 1)

edges, there are |N |N−1 possible capacity permutations. □

Note that Equations (III-1) to (III-4c) give a mixed-integer nonlinear program. More

precisely, nonlinearities are found in Equations (III-3a) to (III-3c), and Equation (III-4a).

The quadratic nonlinearities in Equation (III-3b), (III-3c) and (III-4a) can be resolved

by using the Big M method. The nonlinearities in Equation (III-3a) are more complex.

The equation contains a product of the decision variable xk
ij with the auxiliary decision

variable Dj and with the nonlinear function γ(|Γj|), which depends on the auxiliary

decision variable |Γj|.

As is shown later, the complexity of the CAVLP makes it intractable to use com-

mon commercial mixed-integer programming (MIP) solvers even for relatively small

networks. For this reason, heuristics are developed later. A special case occurs in

case of uniform coincidence factors γ ≡ 1 throughout the network. Then, approxi-

mate solutions can be found using MIP solvers in a reasonable amount of time. This

approach is later utilized to derive upper and lower bounds for the network cost. The

upper bound is determined by choosing γ ≡ 1, while the lower bound is obtained by

underestimating the coincidence factor, i. e., γ ≡ γ(N − 1), which corresponds to the

maximum discount factor for a network of size N (i. e., a network with N − 1 non-zero

loads).

In this thesis, two ways of getting rid of these nonlinearities in Equation (III-3a) are

presented. First, there exists an alternative problem formulation using arborescences.

This formulation is given in Section 1.4. As we see below, in this formulation, the con-

straints grow exponentially in the number of vertices N . Therefore, this approach is

not feasible. Second, in Section 1.5 (more precisely, in Section 1.5.1), a linearization

of Equation (III-3a) is given. This linearization requires first a piecewise linearization

of the coincidence factor γ(|Γj|), after which the equation still contains a cubic non-
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linearity. All linearizations of the equations mentioned above are provided below in

Section 1.5.

1.4 Alternative Problem Formulation

1.4.1 Alternative Model

There is an alternative way of formulating the CAVLP. This alternative formulation

is based on arborescence problems such as the CSSAr problem (see Chandy and

Lo, 1973; Papadimitriou, 1978; Toth and Vigo, 1995) and avoids these nonlinearities.

This formulation is given by

min
∑

(i,j)k∈E

xk
ij [lijcc + lijcm akij] (III-8)

subject to
∑
i∈V \S

∑
j∈S

∑
k∈{1,...,|A|}

xk
ija

k
ij ≥ γ(|S|)

∑
j∈S

Dj , ∀S ∈ P(V \ {0}) ,

(III-9)

xk
i0 = 0 , ∀i ∈ {0, . . . , N − 1} , ∀k ∈ {1, . . . , |A|} , (III-10a)∑
i

∑
k

xk
ij = 1 , ∀j ∈ V \ {0} , (III-10b)

∑
i∈V \S

∑
j∈S

∑
k

xk
ij

akij
lij

(Ui − Uj) = γ(|S|)
∑
n∈S

Dn , (III-11a)

∀S ∈ P(V \ {0}) , with
∑
m∈S

∑
n∈V

∑
k

xk
mn = |S| − 1 ,

Ui ≥ Ucrit = U −Q , ∀i ∈ {0, . . . , N − 1} , (III-11b)

U0 = U . (III-11c)

The objective in Equation (III-8) is identical to Equation (III-1). Equation (III-9) follows

the notation used in Toth and Vigo (1995) and ensures both connectivity of the graph

and the line sizing constraint. Here, S is a subset of vertices and P(V ) is the powerset

of V , that is, the set of all subsets of vertices. The line sizing constraint requires that

the capacity akij of an edge (i, j)k must be sufficiently large to support the peak flow,
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i. e., the sum of all demands downstream of this edge, discounted by the coincidence

factor γ(|S|). The coincidence factor depends on the number of vertices in the vertex

subset S.

Equation (III-10a) defines vertex 0 as the source, i. e., no edge is entering it. Equa-

tion (III-10b) ensures that every vertex (except the source) is entered by exactly one

edge. Together with Equation (III-9), this ensures radiality.

Equations (III-11a) to (III-11c), again are identical to Equations (III-4a) to (III-4c)

in the main problem formulation. Note that Equation (III-11a) is a quadratic inequality.

However, this can be easily linearized using the Big M method.

1.4.2 Complexity of the Alternative Problem Formulation

It can be shown that in the alternative problem formulation, the CAVLP is also

NP-hard.

Proposition 2 (NP-hardness) Using the alternative problem formulation in Equations (III-

8) to (III-11c), the CAVLP is also NP-hard.

The proof of this proposition can be found in Section 6.1.

The alternative problem formulation comes at the cost of the number of constraints

scaling exponentially in the number of vertices N . This is because of the powersets

in Equations (III-9) and (III-11a). Therefore, the alternative formulation is inferior from

a computational standpoint.

1.5 Linearization of the CAVLP

Below, a linearization of the CAVLP is presented. The linearization of the flow con-

straint in Equation (III-3a) is most complex, as it requires first a piecewise lineariza-

tion of the coincidence factor γ(|Γj|), which then yields a cubic nonlinearity. This

linearization is discussed in Section 1.5.1. Linearization of the quadratic nonlinear-

ity in the voltage drop constraint in Equation (III-4a) is required to derive upper and
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lower bounds for the problem. This linearization is discussed in Section 1.5.2. The

remaining linearizations are discussed in Section 1.5.3.

1.5.1 Linearization of Flow Constraint

The first step in linearizing Equation (III-3a) is a piecewise linearization of the

coincidence factor γ(|Γj|). This is achieved by introducing a binary variable wjn,

together with the constraints

wjn =


1, if |Γj| = n ,

0, otherwise ,

∀j, n ∈ V , (III-12)

∑
n

wjn = 1 , ∀j ∈ V . (III-13)

Next, we introduce a variable γj , with

γj =
∑
n

γ(n)wjn , ∀j ∈ V . (III-14)

After this linearization of γ(|Γj|), there is a cubic nonlinearity in Equation (III-3a),

because of the product of three variables, namely xk
ij , wjn, and Dj .

We introduce a new variable zkijn, representing the product zkijn
def
= xk

ijwjn. This is

done by using the inequalities

zkijn ≤ xk
ij , ∀i, j, n ∈ V , ∀k ∈ {1, . . . , |A|} , (III-15a)

zkijn ≤ wjn , ∀i, j, n ∈ V , ∀k ∈ {1, . . . , |A|} , (III-15b)

zkijn ≥ xk
ij + wjn − 1 , ∀i, j, n ∈ V , ∀k ∈ {1, . . . , |A|} . (III-15c)
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Analogously, we introduce a second variable z
′k
ijn for the product z

′k
ijn

def
= xk

ijwin (the

index i is used instead of j in the multiplication). This yields

z
′k
ijn ≤ xk

ij , ∀i, j, n ∈ V, ∀k ∈ {1, . . . , |A|} , (III-16a)

z
′k
ijn ≤ win , ∀i, j, n ∈ V, ∀k ∈ {1, . . . , |A|} , (III-16b)

z
′k
ijn ≥ xk

ij + win − 1 , ∀i, j, n ∈ V, ∀k ∈ {1, . . . , |A|} . (III-16c)

In the last step, we are left with the quadratic nonlinearity resulting from the prod-

ucts zkijnDj and z
′k
ijnDj . This can be resolved via the Big M method. We introduce two

new variables ∆k
ijn

def
= zkijnDj and ∆

′k
ijn

def
= z

′k
ijnDj , together with

∆k
ijn ≤ zkijnM , ∀i, j, n ∈ V , ∀k ∈ {1, . . . , |A|} , (III-17a)

∆k
ijn ≥ 0 , ∀i, j, n ∈ V , ∀k ∈ {1, . . . , |A|} , (III-17b)

∆k
ijn ≤ Dj , ∀i, j, n ∈ V , ∀k ∈ {1, . . . , |A|} , (III-17c)

∆k
ijn ≥ Dj − (1− zkijn)M , ∀i, j, n ∈ V , ∀k ∈ {1, . . . , |A|} , (III-17d)

as well as

∆
′k
ijn ≤ z

′k
ijnM , ∀i, j, n ∈ V, ∀k ∈ {1, . . . , |A|} , (III-18a)

∆
′k
ijn ≥ 0 , ∀i, j, n ∈ V, ∀k ∈ {1, . . . , |A|} , (III-18b)

∆
′k
ijn ≤ Dj , ∀i, j, n ∈ V, ∀k ∈ {1, . . . , |A|} , (III-18c)

∆
′k
ijn ≥ Dj − (1− z

′k
ijn)M , ∀i, j, n ∈ V, ∀k ∈ {1, . . . , |A|} . (III-18d)

As a result, we arrive at the linearized version of Equation (III-3a), which reads

∑
j

Fji −
∑
j

Fij = γiDi −
∑
j

∑
k

(∑
n

γ(n)∆k
ijn −

∑
n

γ(n)∆
′k
ijn

)
, ∀i ∈ V \ {0} .

(III-19)
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1.5.2 Linearization of Voltage Drop Constraint

In the following, the quadratic constraint representing Ohm’s law in Equation (III-

4a) are linearized using the Big M notation. In doing so, the approach of Avella et al.

(2005) is followed. Thus, Equation (III-4a) is replaced with two linear inequalities. This

yields

akij
lij

(Ui − Uj) ≤ Fij + (1− xk
ij)M, ∀i, j ∈ V , ∀k ∈ {1, . . . , |A|}, (III-20)

akij
lij

(Ui − Uj) ≥ Fij − (1− xk
ij)M, ∀i, j ∈ V , ∀k ∈ {1, . . . , |A|}, (III-21)

where M is a suitable large number. If an edge is selected (i. e., if xk
ij = 1), the

combination of Equations (III-20) to (III-21) is equivalent to Equation (III-4a). If xk
ij = 0,

the equations become redundant.

1.5.3 Linearization of Remaining Nonlinearities

Equations (III-3b) and (III-3c) is linearized by introducing two new variables gkij and

dkij , representing the products gkij
def
= xk

ij|Γj| and dkij
def
= xk

ijDj . These products can be

written down in a linear way by using the Big M method. This yields

gkij ≤ xk
ijM , ∀i, j ∈ V \ {0} , ∀k ∈ {1, . . . , |A|} , (III-22a)

gkij ≥ 0 , ∀i, j ∈ V \ {0} , ∀k ∈ {1, . . . , |A|} , (III-22b)

gkij ≤ |Γj| , ∀i, j ∈ V \ {0} , ∀k ∈ {1, . . . , |A|} , (III-22c)

gkij ≥ |Γj| − (1− xk
ij)M , ∀i, j ∈ V \ {0} , ∀k ∈ {1, . . . , |A|} , (III-22d)
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as well as

dkij ≤ xk
ijM , ∀i, j ∈ V , ∀k ∈ {1, . . . , |A|} , (III-23a)

dkij ≥ 0 , ∀i, j ∈ V , ∀k ∈ {1, . . . , |A|} , (III-23b)

dkij ≤ Dj , ∀i, j ∈ V , ∀k ∈ {1, . . . , |A|} , (III-23c)

dkij ≥ Dj − (1− xk
ij)M , ∀i, j ∈ V , ∀k ∈ {1, . . . , |A|} . (III-23d)

M is a suitable large number. With these equations, the linearized forms of Equa-

tions (III-3b) and (III-3c) read

|Γi| = 1 +
∑
j

∑
k

gkij , ∀i ∈ V , (III-24a)

Di = Di +
∑
j

∑
k

dkij , ∀i ∈ V . (III-24b)

1.6 Solution Properties

In the following section, four properties of the optimal solution of the CAVLP are pre-

sented. The first two properties describe the network layout of the optimal solution,

while properties three and four characterize the capacities. These properties are used

later to develop the solution methods.

1.6.1 Optimal Network Layout for Low Demand Situations

The minimum spanning tree (MST) is the cycle-free network connecting all ver-

tices with the shortest total edge length (Prim, 1957). Let ΓMST denote a solution of

the CAVLP with an MST layout.

Remark 2 For Di → 0 or akij → ∞, the MST layout is the optimal solution to the

CAVLP.

Proof. When Di → 0, we find that Fij → 0. Consequently, the constraints for both

line sizing (Equation (III-2)) and voltage drops (Equation (III-4b)) are fulfilled for any
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choice of xk
ij . The same holds true for akij → ∞. All capacities can be set to the

lowest possible value amin = min
k

akij . Then, the objective function in Equation (III-

1) simplifies to min
∑
i,j

xijlij[cc + cm + amin]. The term [cc + cm + amin] is constant

and, therefore, the objective function is identical to the objective function of the MST

problem. □

1.6.2 Optimal Network Layout for High Demand Situations

In situations with relatively high demand, many network layouts will not yield fea-

sible solutions, even when all capacities are set to the maximum possible value. Let

Γ Star (“starred network”) denote a solution of the CAVLP in which every vertex is con-

nected directly to the source 0, i. e., xij = 1 for i = 0 and, otherwise, xij = 0.

Remark 3 If feasible solutions to the CAVLP exist, the starred network is one of these

solutions.

Proof. This remark is proven by contradiction. Consider a starred network Γ 1 and

assume that this solution violates one of the constraints in Equation (III-2) or Equa-

tion (III-4b) for the sub-tree consisting of only the edge connecting the vertex v to the

source 0. We further assume that there exists an alternative solution Γ 2 not violating

the constraints, and that in this solution vertex v is connected to a vertex w other than

0. Without loss of generality, we assume that all capacities in both the starred layout

and the alternative layout are set to the maximum value amax = max
k

akij .

We distinguish two cases. First, we consider the line sizing constraint in Equa-

tion (III-2). It is obvious that the line sizing constraint cannot be the reason why Γ 2

is feasible and Γ 1 is not, since F 2
uw > F 1

0v = Dv and Di ∈ R+, i. e., the flows on the

edges in the starred network are minimal. It should be noted, that we require the coin-

cidence factor to have a form such that adding demands to an edge always increases

the flows, i. e., γ(|Γj |+1)

γ(|Γj |) >
|Γj |

|Γj |+1
. This is the case for all forms that can be found in

the literature (Dickert and Schegner, 2010). Second, we focus on the constraint for

the voltage drops in Equation (III-4b). By use of the triangle inequality, we show that
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the total length of all edges from the source to the vertex in Γ 2 is L2 ≥ l0v = L1.

Therefore, Equation (III-4b) must have been fulfilled in the starred network Γ 1 also.

This contradicts the initial assumption and concludes the proof. □

1.6.3 Line Capacity Ratios

When allowing the choice of continuous capacities (i. e., A = R+), further prop-

erties with respect to the voltage drop can be derived. As we see later, the following

proposition proves to be very powerful for developing efficient heuristics. In particu-

lar, it is beneficial if the constraint for the voltage drops is binding, which is typically

the case in real-world applications. For better readability, the superscript k for the

capacities is dropped. The capacity of the edge (i, j)k are simply referred to by aij .

Proposition 3 (Line capacity ratios) For any given network layout and for continu-

ous capacities (i. e., A = R+), the capacities that minimize the cost fulfill

a2ij
a2mn

=
Fij

Fmn

or
aij
amn

=

√
Fij

Fmn

(III-25)

for any two edges (i, j) and (m,n) in the same sub-tree and if Equation (III-4b) is

binding.

Proof. We assume that the set of possible capacities is continuous and all capacities

can take up any real value. As a first step, consider a very simple network consisting

of 3 vertices (with i = 0, 1, 2) and 2 edges. Later, we expand this to networks of

arbitrary length and branching. In the first step, one edge connects vertex 1 to the

source. Vertex 2 is connected to Vertex 1 by a second edge. Using the objective

function in Equation (III-1), we can set up the cost function for this network as

C = l01 cc + l01 cm a01 + l12 cc + l12 cm a12 . (III-26)
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For a given solution to the CAVLP, we derive the accumulated voltage drop from

Equation (III-40), which yields

Q = l01
F01

a01
+ l12

F12

a12
. (III-27)

To minimize the cost function in Equation (III-26), we derive the Lagrangian for this

problem, which yields

L = cc(l01 + l12) + cm(l01 a01 + l12 a12) + λ

(
l01

F01

a01
+ l12

F12

a12
−Q

)
, (III-28)

where λ is the Lagrange multiplier to include the voltage drop from Equation (III-27).

We then take the partial derivatives with respect to a01, a12 and λ. By setting them to

zero, we arrive at the following system of equations:

∂L

∂a01
= l01 cm − λ l01

F01

(a01)2
= 0 , (III-29)

∂L

∂a12
= l12 cm − λ l12

F12

(a12)2
= 0 , and (III-30)

∂L

∂λ
=

l01F01

a01
+

l12 F12

a12
−Q = 0 . (III-31)

In Equations (III-29) and (III-30), the lengths cancel out and the two formulas can be

rewritten to

cm − λ
F01

a201
= 0 , and (III-32)

cm − λ
F12

a212
= 0 . (III-33)

From Equations (III-32) and (III-33), a generalized formula for sub-trees of arbitrary

length can be derived. The generalized formula is

cm − λ
Fij

a2ij
= 0 , (III-34)
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which can be rewritten to

a2ij =
λ

cm
Fij . (III-35)

The square of the capacity of an edge a2ij is proportional to the flow Fij . For any two

edges (i, j)k and (m,n)k of the same sub-tree, we find

a2ij
a2mn

=
Fij

Fmn

. (III-36)

This concludes the proof. □

1.6.4 Decreasing line capacities

The following corollary states that, starting from the source to the leaves within

the network, line capacities are monotonically decreasing. This follows directly from

Proposition 3. Formally, the flow Fij through an edge (i, j)k is the sum of all demands

downstream to this edge. All demands are positive real numbers, i. e., Di ∈ R+, for

all i. Therefore, the flows are decreasing when moving downstream.

Corollary 1 Under the above assumptions, the cost-minimizing line capacities for any

given network layout are decreasing when moving downstream.

2 Optimization Methods

The CAVLP problem is solved by dividing it into two sub-problems: (A) generating the

network layout and (B) capacity optimization. Generating the network layout (A) is

addressed by two sets of heuristics. These first create an initial solution (Section 2.1)

and, given an initial solution as input, then make local improvements to the network

layout (Section 2.2). For improvements to the network layout, we also present two

metaheuristics, namely variable neighborhood search and Tabu Search. Capacity op-

timization (B) is addressed via heuristics and exact solvers in order to determine line
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type of each edge for a given layout (Section 2.3). The choice of capacity optimization

method is independent from the layout generation and improvement methods.

2.1 Generating the Initial Network Layout

The objective of generating an initial network is to create a network layout (without

considering different line types). To this end, multigraph G is reduced to a graph

G̃ = (V, Ẽ) whereby multiple edges between the same vertices are replaced by a sin-

gle edge, that is, by setting A = {a}. This affects the optimization problem in Equa-

tions (III-1) to (III-4c) analogously. Here the index k can be dropped and, thus, the

decision variable becomes xij ∈ {0, 1}. The decision variable xij indicates whether

an edge (i, j) ∈ Ẽ from vertex i to vertex j should be built. The resulting network

layout is represented by {xij}. Below, three methods for generating an initial network

layout are presented. These layouts vary in their branching. The minimum span-

ning tree algorithm creates layouts with low branching. The layouts generated by the

greedy network construction are slightly more branched as they are more centered

around the source. The networks resulting from the starred network algorithm exhibit

a high degree of branching because all edges are directly connected to the source.

2.1.1 Minimum Spanning Tree Algorithm

The MST connects all vertices, so that total length of all edges is minimized. In

Remark 2, it has been shown that the MST is the optimal solution to the CAVLP for

situations in which voltage drops can be neglected. This makes the MST favorable

for instances with low demands Di. In the implementation of the MST used in this

thesis, Prim’s algorithm is used (Prim, 1957). A detailed description of the algorithm

is provided in Algorithm 1.

The algorithm subsequently adds vertices to an existing graph. Thereby, in each

iteration, the edge adding the least cost (i. e., the shortest length) is chosen to connect

new vertices. The vertices yet to be added to the graph are stored in a list Q (line 2).
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The algorithm uses so-called key values kj that represent the smallest cost for adding

a vertex j to the existing graph. For each vertex j, the list ej stores the best option

for j to be connected to. The two lists are initialized in line 3. In line 4, the algorithm

sets the key value for vertex 0, so that it is added first to the graph. Note that this

choice is arbitrary. In lines 5 to 5, the algorithm adds vertices, until every vertex is

connected. This works as follows. The algorithm picks the vertex that adds the least

cost in line 6. This vertex is removed from the list of disconnected vertices (line 7).

The edge connecting this vertex is added in line 8. This step is skipped in the first

iteration. Next, the algorithm updates the key values in lines 10 to 12 by checking, if

the newly added vertex opened up less expensive ways of adding further vertices.

Algorithm 1 Prim’s Algorithm
1: Initialize xij ← 0 , for all i, j
2: Q← V
3: Initialize kj ←∞ , ej ← {}, for all j
4: k0 ← 0
5: while Q ̸= {} do
6: Pick vertex j with kj = min{ki}

i

7: Q← Q \ j
8: if v ̸= 0 then
9: i← ej , xij ← 1

10: for each vertex m do
11: km ← min{ljm, km}
12: Set em getsj, if km was updated
13: return {xij}

Prim’s algorithm has a runtime of O((N − 1) log N ).

2.1.2 Starred Network Algorithm

In a starred network, every vertex is connected directly to the source 0. Thus,

the starred network algorithm sets x0j ← 1 for all j and xij ← 0 otherwise. The

starred network layout minimizes the flow through the edges and is thus favorable for

instances with high demands Di (see also Remark 3).

2.1.3 Greedy Network Construction

A greedy heuristic for network construction is developed in the following. It adds

vertices to the network in the increasing order of their distance to the source. Thereby,
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this heuristic creates layouts that have a longer total edge length but are more cen-

tered around the source than the MST (where the order in which vertices are added

depends on their distance to each other). The pseudocode is provided in Algorithm 2.

The greedy network construction uses two data structures with vertices, which are

initialized in line 2: a set C contains vertices that are already connected to the net-

work (at the beginning, this list contains only the source), while D contains vertices

that have not yet been added to the network. In line 3, the heuristic sorts all vertices

j ∈ D by their distance to the source l0j . In lines 4 to 6, it iteratively adds these

vertices to the existing network by the shortest connection possible. Owed to line 5,

the heuristic has a runtime of O(N2).

Algorithm 2 Greedy network construction
1: Initialize xij ← 0 for all i, j
2: Set C ← {0} and D ← [1, . . . , N − 1]
3: Sort vertices j in D by l0j (ascending)
4: for each vertex v ∈ D do
5: xz∗,v ← 1 where z∗ = argmin

z∈C
lzv

6: C ← C ∪ v
7: return {xij}

2.2 Improving an Existing Network Layout

Departing from these initial layouts, several heuristics to improve the layout are de-

veloped, namely the increased network branching heuristics, the decreased network

branching heuristic, and the randomized network reconfiguration. These heuristics

take a given layout {xij} as input and then subsequently modify it. The objective is

to improve the overall network cost, i. e., the objective function in Equation (III-1). To

calculate the overall network cost, the algorithms rely upon additional input in form of

the line capacities {aij}. These are determined in the second sub-problem, capacity

optimization, which is presented later in Section 2.3. In the following heuristics, a rou-

tine for capacity optimization (i. e., CAPACITYOPTIMIZATIONMETHOD) is called, where

the capacities {aij} should enter the algorithm. The CAPACITYOPTIMIZATIONMETHOD

returns a suggested set of capacities {aij} for a given layout {xij}.
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2.2.1 Randomized Network Reconfiguration

The randomized network reconfiguration works by randomly adding an edge (i, j)

to a given network layout. This forms a cycle C. The algorithm then attempts to

remove each edge inside the cycle as means to restore the radial layout. In doing so,

it checks if a radial network is found that improves cost compared to the original one.

The pseudocode is provided in Algorithm 3. In line 1, the capacities are determined.

These capacities are used in line 2 to calculate the cost c∗ of the initial layout. The

initial layout {xij} is stored as X∗ in line 3. In line 4, the heuristic alters the network

layout. This process is repeated for a pre-defined number of smax iterations. In lines 5

to 6, the heuristic adds a new edge (i, j) selected at random by setting xij ← 1. The

resulting cycle C is determined in line 7. In line 8, the algorithm iterates over each

each (p, q) ∈ C that is not the newly added edge. The edge (p, q) is deleted in line 9

to obtain a radial layout. This may require the direction of some edges to be reversed

in line 10. The capacities {aij} and cost cs for the new network layout are determined

in lines 11 to 12. If the cost has improved than the current best solution, the algorithm

saves the current network as the new best solution in line 13. In lines 14 to 15, the

changes are reversed before proceeding with the next iterations. After smax iterations,

the heuristic returns the network with the lowest cost (line 16).

Algorithm 3 Randomized network reconfiguration
Input: Network layout {xij}
1: {aij} ← CAPACITYOPTIMIZATIONMETHOD({xij})
2: c∗ ← COST ({xij}, {aij}) ▷ Determine initial cost and save it as current best cost
3: X∗ ← {xij}
4: for s ∈ {1, . . . , smax} do
5: Randomly select disabled edge (i, j), with xij = xji = 0
6: xij ← 1 ▷ Add edge (i, j)
7: Compute list C containing all edges comprising the cycle
8: for each edge (p, q) ̸= (i, j) ∈ C do
9: xpq ← 0 ▷ Delete edge inside the cycle to create radial layout

10: Check direction of all edges (m,n) ∈ C and reverse if necessary
11: {aij} ← CAPACITYOPTIMIZATIONMETHOD({xij})
12: c← COST ({xij}, {aij}) ▷ Determine new cost
13: if c < c∗ then c∗ ← c and X∗ ← {xij} ▷ Update network if cost is cheaper

14: xpq ← 1 ▷ Close cycle to reset old configuration

15: {xij} ← X∗

16: return X∗
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2.2.2 Increased Network Branching Heuristic

The principle of the increased network branching (INB) heuristic is to reconnect a

subgraph Γ̃j to a vertex of lower depth such as the source or a vertex in the vicinity

of the source. This reduces the depth of the network and increases the branching.

By disconnecting Γ̃j from a subgraph, material cost in this subgraph can be saved

because the flows and voltage drops are getting smaller. These cost savings need

to be compared to the additional cost for reconnecting Γ̃j to a different vertex of the

network. The pseudocode is provided in Algorithm 4. In lines 1 and 2, the capacities

are determined and the cost of the initial layout is calculated. In line 3, the currently

cheapest network layout is stored in X∗. The heuristic now loops over all vertices j of

a certain depth d(j) up to a pre-defined maximum depth dmax. In line 5, the heuristic

disconnects the vertex j, resulting in two subgraphs: Γ̃0 and Γ̃j . In lines 7 to 15,

the heuristic loops over all vertices i ∈ Γ̃0 with depth d(i) < d and all vertices in

Γ̃j in order to evaluate potential cost reductions. In line 16, the heuristic returns the

cheapest layout.

Algorithm 4 Increased network branching heuristic
Input: Network layout {xij}
1: {aij} ← CAPACITYOPTIMIZATIONMETHOD({xij})
2: c∗ ← COST ({xij}, {aij}) ▷ Determine initial cost
3: X∗ ← {xij}
4: for each vertex j with d(j) ∈ {2, . . . , dmax} do
5: xij ← 0 ▷ Delete edge
6: Compute subgraph Γ̃j without source
7: for each vertex p ̸∈ Γ̃j with d(p) < d do
8: for vertex q ∈ Γ̃j do
9: xpq ← 1 ▷ Reconnect Γ̃j

10: for each edge (m,n) ∈ Γ̃j in path from j to q do
11: xmn ← 0, xnm ← 1 ▷ Check direction of reconnected edges
12: {aij} ← CAPACITYOPTIMIZATIONMETHOD({xij})
13: c← COST ({xij}, {aij}) ▷ Determine new cost
14: if c ≤ c∗ then X∗ ← {xij} and c∗ ← c ▷ Restore old layout if too expensive
15: else {xij} ← X∗

16: return X∗

The runtime of this heuristic depends on the network layout, in particular on the

branching in the vicinity of the source. It further scales linearly with the runtime of the

capacity optimization method in line 12.
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2.2.3 Decreased Network Branching Heuristic

The decreased network branching (DNB) heuristic works in the opposite direction

to the INB heuristic. It reconnects subgraph Γ̃j with j of low depth to existing vertices q

with a higher depth. The DNB heuristic works as follows. Up to a predefined threshold

of maximum depth dmax, the DNB heuristic deletes edges (i, j) with d(j) ≤ dmax (i. e.,

vertices relatively close to the source are disconnected). Again, this results in the

subgraphs Γ̃0 and Γ̃j . The subgraph Γ̃j is then reconnected to a vertex q ∈ Γ̃0 with

d(j) ≤ d(q) ≤ dmax. If the resulting network is cheaper than the previous one, the

new layout is kept; otherwise, the old layout is restored.

2.2.4 Variable Neighborhood Search Metaheuristic

The idea behind VNS is to change neighborhoods in order to find a better solution,

as opposed to local search methods that do not use several neighborhoods within

one method (cf. Hansen and Mladenović, 2014; Hansen et al., 2019; Mladenović and

Hansen, 1997). For the change in neighborhoods, a metric for the distance between

solutions needs to be introduced. In our case, the distance between two layouts is

defined by their difference in edges. For example, a certain layout A has distance 1

to another layout B if it can be reached by adding just one edge to B and deleting

another. We then say that that A is part of the “1-neighborhood” of B.

VNS has two main components, which are (a) shaking (i. e., the change of neigh-

borhoods) and (b) local search. The pseudocode is provided in Algorithm 5. In lines 1

to 3, the heuristic determines capacities and initial cost and saves the initial layout.

The VNS procedure starts in line 4 and runs for sVNS iterations. In line 5, the distance d

is set to 1. In the first iteration, the algorithm thus starts exploring the 1-neighborhood

of the initial solution. The algorithm explores neighborhoods in a distance of up to

dmax (line 6). Lines 7 and 8 state the shaking procedure. Here a method called inten-

sified shaking is used, where, instead of conventional shaking by drawing an arbitrary

neighboring layout, a more strategic procedure is applied (see, e. g., Brimberg et al.,

2003; Hansen and Mladenović, 2014). For this purpose, the randomized network re-
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configuration method is used with just one iteration (i. e., smax = 1) to choose one

edge that is to be added at random and then find the best edge to be removed. In

line 9, the local search is performed. The cost for the best layout found is determined

in lines 10 to 11. If the cost is smaller than the current best solution, the algorithm

saves the new best solution in lines 12 to 14 and proceeds with the next iteration.

Otherwise, the algorithm increases d to explore the next neighborhood in line 15. At

the end, the heuristic returns the cheapest network in line 16.

Algorithm 5 Variable Neighborhood Search
Input: Network layout {xij}
1: {aij} ← CAPACITYOPTIMIZATIONMETHOD({xij})
2: c∗ ← COST ({xij}, {aij}) ▷ Determine initial cost
3: X,X∗ ← {xij}
4: for s ∈ {1, . . . , sVNS} do
5: d← 1 ▷ Set distance to 1
6: while d ≤ dmax do
7: for d times do ▷ Intensified shaking
8: X ← RANDOMIZEDNETWORKRECONFIGURATION({xij}, smax = 1) ▷ Draw neighboring

layout
9: Perform Local Search

10: {aij} ← CAPACITYOPTIMIZATIONMETHOD({xij})
11: c← COST ({xij}, {aij}) ▷ Determine new cost
12: if c ≤ c∗ then
13: X,X∗ ← {xij} and c∗ ← c ▷ Update best solution if cost has improved
14: break ▷ Return to line 5
15: else d← d+ 1 and {xij} ← X ▷ Increase distance to explore next neighborhood

16: return X∗

The CAVLP allows edges between any two vertices. This makes the objective

function very sensitive to the shaking procedure, i. e., a wrong choice of an edge

to be added might strongly deteriorate the objective value regardless of which edge

is subsequently removed. Therefore, in the experiments presented here, the VNS

algorithm is modified to achieve better results. This is done by further intensifying the

neighborhood change via shaking in lines 7 and 8. This yields better computational

results if one further adaptation is made to the shaking procedure described in lines 7

and 8. Instead of shaking only once (as described in Algorithm 5), line 8 is repeated

five times and then select the best solution for the neighborhood change.
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2.2.5 Tabu Search Metaheuristic

Tabu Search is a metaheuristic that uses short-term memory in the form of a tabu

list to find solutions more efficiently (Gendreau and Potvin, 2014; Glover, 1989). The

implementation of Tabu Search shown in this thesis uses a tabu list T of fixed length

lT. The list contains both recently deleted edges to avoid cycling back to previous so-

lutions and unfavorable edges, i. e., edges that were recently explored without leading

to improvements (note that experiments with two separate tabu lists have also been

conducted but this did not yield better results).

Algorithm 6 Tabu Search
Input: Network layout {xij}
1: {aij} ← CAPACITYOPTIMIZATIONMETHOD({xij})
2: c∗ ← COST ({xij}, {aij}) ▷ Determine initial cost
3: X∗ ← {xij}
4: T ← ∅ ▷ Initialize tabu list
5: for s ∈ {1, . . . , sTabu} do
6: Select random disabled edge (i, j) ̸∈ T , such that xij = xji = 0
7: xij ← 1 ▷ Add edge (i, j)
8: t← (i, j) ▷ (i, j) is the candidate for the tabu list
9: Compute list C containing all edges comprising the cycle

10: for each edge (p, q) ̸= (i, j) ∈ C do
11: xpq ← 0 ▷ Delete edge inside the cycle to create radial layout
12: Check direction of all edges (m,n) ∈ C and reverse if necessary
13: {aij} ← CAPACITYOPTIMIZATIONMETHOD({xij})
14: c← COST ({xij}, {aij}) ▷ Determine new cost
15: if c < c∗ then
16: c∗ ← c and X∗ ← {xij} ▷ Update network if cost is cheaper
17: t← (p, q) ▷ (p, q) is the new candidate for the tabu list
18: xpq ← 1 ▷ Close cycle to reset old configuration

19: {xij} ← X∗

20: T ← T ∪ t ▷ Update tabu list
21: if |T | > lT then remove first element in T

22: return X∗

The pseudocode of the Tabu Search algorithm is provided in Algorithm 6. In lines 1

to 3, the heuristic determines capacities and initial cost. In line 4, the tabu list T is

initialized to an empty list. The main part of the algorithm starts in line 5 and is exe-

cuted for a pre-defined number of sTabu iterations. The algorithm adds a random edge

(i, j) in lines 6 to 7. This edge must not be in the tabu list T . It is then saved as a

potential candidate for the tabu list in line 8. This means that if no better solution is

found during the following process, (i, j) should not be added for the next iterations
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because it is unfavorable. Lines 9 to 19 resemble the optimization procedure of the

randomized network reconfiguration from Section 2.2.1 with one exception: if the al-

gorithm finds a cheaper layout by deleting an edge (p, q), this edge is then saved as

the new candidate for the tabu list in line 17 to avoid cycling back to the previous so-

lution. After each iteration, the tabu list is then updated in lines 20 to 21. Finally, the

heuristic returns the cheapest network in line 22.

2.3 Optimizing the Capacities

The CAVLP is divided into two sub-problems: (A) generating the network layout and

(B) capacity optimization. Capacity optimization (B) takes a network layout {xij} as

input and determines the corresponding line types k. The main difference to the the

full CAVLP (i. e., the combination of the two sub-problems) is the fact that capacity

optimization only considers a subset of edges E ′ ⊂ E, namely these edges where

xij = 1 has been determined in the first sub-problem. As a consequence, the flows

are now given and Fij is no longer an auxiliary decision variable. This reduces the

complexity of the problem. Capacity optimization is formulated as a binary integer

problem:

min
∑

(i,j)k∈E′

xk
ijlij a

k
ij (III-37)

subject to
∑

k∈{1,...,|A|}

xk
ija

k
ij ≥ Fij , ∀i, j ∈ {0, . . . , N − 1} , (III-38)

∑
k

xk
ij = 1 , ∀(i, j)k ∈ E ′ , (III-39)

∑
(i,j)k∈p

xk
ijlij

Fij

akij
≤ U − Ucrit = Q , ∀p ∈ P . (III-40)

Since the layout is given, the objective function in Equation (III-37) only takes into

account the material cost. For the same reason, the line sizing constraint can be

simplified to Equation (III-38). Equation (III-39) ensures that exactly one line type is

chosen for each connection. The constraint for the voltage drop is reformulated in
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Equation (III-40). The equation demands that the sum of all voltage drops in any path

p ∈ P from the source to a leaf must stays below the threshold Q = U − Ucrit. P is

the set of all paths from the source to a leaf in Γ . Because all paths P are given (due

to the given layout), this is a very efficient formulation. The aforementioned problem

for capacity optimization is approached below by a MIP solver for obtaining exact

solutions and a heuristic.

2.3.1 Exact Solution with MIP Solver

The problem stated in Equations (III-37) to (III-40) is implemented as a binary

integer problem and solved using a commercially available MIP solver, namely Gurobi

Optimizer 7.5.2 with all parameters set to the default values (Gurobi Optimization,

2017).

2.3.2 Pairwise Edge Capacity Adjustment

The pairwise edge capacity adjustment (PECA) heuristic is based on two previ-

ously derived properties: first, Corollary 1 states that the farther away from the source,

the smaller the capacities become. Second, the heuristic utilizes Proposition 3, which

defines the optimal ratio between two line capacities in the same path p based on the

flows, i. e., aij
amn

=
√

Fij

Fmn
. The PECA heuristic adjusts the capacities of two edges

simultaneously in order to bring the ratio of these capacities as closely as possible to√
Fij

Fmn
. Thereby, the heuristic increases capacities of edges closer to the source and

decreases capacities of edges closer to the leaves.

The pseudocode is provided in Algorithm 7. The heuristic iterates separately over

each path p ∈ P in line 1 and then determines the capacities for that path as follows.

In lines 2 and 3, the heuristic sets the capacities of all edges in p to an initial value.

This initial value is the minimum capacity such that the constraints for both line sizing

and voltage drops are fulfilled. In line 4, the heuristic loops over the depths d of the

edges in p. In line 5, it selects an edge (i, j) in the first half of p, that is, d(j) ≤ d(w)
2

where d(j) is the depth of vertex j. The corresponding edge (m,n) further down-
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stream in p is determined in line 6. This edge (m,n) is as far away from the leaf

w as (i, j) is from the source 0, i. e., d(m) = d(w) − d(j). In line 7, the heuristic

determines the values for the capacities of the two edges ar
∗

ij and as
∗
mn that minimize∣∣∣∣ arij

asmn
−
√

Fij

Fmn

∣∣∣∣. While doing so, the capacity arij of the edge closer to the source is

larger than or equal to its initial value aij , while the capacity asmn of the edge closer to

the leaf is smaller than or equal to its initial value amn. Also, the constraints for both

line sizing and voltage drops are fulfilled. This optimization problem can be solved

via a strategic search by increasing arij and/or decreasing asmn until
∣∣∣∣ arij
asmn
−
√

Fij

Fmn

∣∣∣∣
does not get any smaller. In line 8, the optimized capacities are stored as candidate

solutions. These values are compared with values from earlier iterations because an

edge can be part of more than one path. In order to fulfill all constraints for all paths,

the maximum value is chosen for edges that have been optimized earlier in line 10.

After that, the capacities of all edges have been optimized.

Algorithm 7 Pairwise edge capacity adjustment
Input: Network layout {xij}
1: for each path p connecting a leaf w to the source 0 do
2: for each edge (i, j) ∈ p do

3: aij ← min
k

{
akij

∣∣∣ akij ≥ max
{
Fij ,

1
Q

∑
(i,j)∈p lijFij

}}
▷ Set initial value for capacities

4: for d ∈ {1, . . . , ⌊d(w)/2⌋} do
5: Select edge (i, j) ∈ p with depth d(j) = d ▷ Select edge in first half of p
6: Select edge (m,n) ∈ p with d(w)− d(m) = d(j) ▷ Select corresponding edge in second

half of p

7: Compute r, s← argmin
r,s∈{1,...,|A|}

∣∣∣∣ ar
ij

as
mn
−
√

Fij

Fmn

∣∣∣∣ ▷ Optimize capacities

s. t. arij ≥ aij , asmn ≤ amn, ▷ aij can only be increased, amn can only be decreased
asmn ≥ Fmn,

∑
(v,w)∈p

lvw
Fvw

avw
≤ Q ▷ Line sizing and voltage drops must be fulfilled

8: aij ← ar
∗

ij , amn ← as
∗

mn ▷ Set both capacities to optimized values

9: for each edge (i, j) ∈ p do
10: ãij ← max{aij , ãij} ▷ Overwrite previous values, if necessary

11: while true do ▷ Post-hoc capacity adjustment
12: for each edge (i, j) ∈ {Ẽ | xij = 1} do
13: k ← {κ | ãij = aκij} ▷ Index lookup
14: if k ̸= 1 then
15: ãij ← ak−1

ij ▷ Decrease capacity

16: if ak−1
ij ≥ Fij and

∑
(v,w)∈p

lvw
Fvw

ãvw
≤ Q for all {p | (i, j) ∈ p} then ▷ Check

constraints
17: continue
18: else ãij ← akij ▷ Reset capacity, if constraints are violated

19: break
20: return {ãij}
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The heuristic now conducts a post-hoc capacity adjustment in lines 11 to 19 for the

following reason: some capacities might be larger than needed (i. e., the previous

minimization problem has introduced slack capacities), which can be reduced further

in lines 3 and 10.

The runtime of this heuristic depends on the network layout. In a starred network,

every leaf is directly connected to the source 0. Here the heuristic has a runtime

of Θ(N) and returns the optimal solution to the capacity optimization problem. For

other layouts, runtimes are higher as the number of leaves and the depth of the paths

increase with a growing N (cf. Steele et al., 1987). Then the heuristic has a runtime

of at least O(N).

The PECA heuristic provides an approximate solution to the capacity optimization

problem with theoretical guarantees. To this end, upper bounds for the error can be

provided. The formulas provided in Propositions 4 and 5 refer to the maximum error

made when optimizing an edge pair in line 7 of the heuristic. The error for the entire

network can be calculated by summing over all edge pairs. For this reason, the fol-

lowing notation is introduced. Let ∆c be the cost difference between the optimal cost

c∗ for an edge pair and the cost for the same edge pair as determined by the PECA

heuristic cPECA, i. e., ∆c = cPECA − c∗. Let further be ∆a the maximum difference

between any two consecutive capacities akij, a
k+1
ij ∈ A, and ∆l the difference in the

length of the two edges.

Proposition 4 For the network determined by the PECA heuristic, the error in cost

for each edge pair is bounded by ∆c ≤ cm ∆a ∆l.

Proof. Without loss of generality, we assume that the capacities akij ∈ A are ordered,

with the first element a1ij being the smallest. For now, we assume that the capacities

in A are equally spaced, i. e., that ak+1
ij − akij = ∆a, for all k. In case of non-equally

spaced values, we define ∆a = max
k
{ak+1

ij −akij} as the maximum difference between

any two subsequent values in A. Let us consider a pair of edges x and y for which
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the capacity is subject to optimization using the PECA heuristic. Let lx and ly be the

lengths of these edges.

We assume that the the optimal solution to the capacity optimization problem dif-

fers from the one found by the PECA heuristic. Let ax and ay be the capacities of

the optimal solution. Without loss of generality, we assume that ax > ay, and hence,

x > y. Both ax and ay cannot be identical, since, otherwise the PECA heuristic would

have identified them as the optimal solution. Using the cost function in Equation (III-

37), the optimal combined cost c∗ for the two edges can be written down. This gives

c∗ = cm lx a
x + cm ly a

y . (III-41)

Owing to the discrete nature of the CAVLP, the PECA heuristic might determine

capacities different from the optimal values ax and ay due to rounding. One of the

edges must then have a capacity larger than in the optimal case, whereas the other

must be smaller. Without loss of generality, we can assume that the heuristic has

chosen the pair ax+1 and ay−1 as we obtain the same result if the pair ax−1 and ay+1

is chosen. Furthermore, we arrive at the same result if the capacities determined by

the PECA heuristic differ from the optimal solution by more than one index.

The cost determined by the PECA heuristic then is

c = cmlxa
x+1 + cmlya

y−1 . (III-42)

The difference between this cost and the optimal cost is obtained by subtracting Equa-

tion (III-41) from Equation (III-42). This gives

∆c = c− c∗ = cm[lx a
x+1 + ly a

y−1 − lx a
x − ly a

y] (III-43)

= cm[(a
x+1 − ax)lx − (ay − ay−1)ly] (III-44)

= cm∆a∆l .□ (III-45)
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As a side observation, Proposition 4 implies that, for networks with approximately

equal edge lengths, the error approaches zero (Corollary 2).

Corollary 2 If the length difference of an edge pair approaches zero, the cost error

approaches zero, i. e., ∆c
∆l→0−−−→ 0. Therefore, if all edges in the network are of equal

length, the error for the entire network approaches zero.

Below, an upper bound for the error is provided. The formula for this error is indepen-

dent of the edge lengths. Let aij be the selected capacity of the edge closer to the

source.

Proposition 5 For any edge pair optimized, the relative cost error is ∆c

c∗
≤ 1/

(
aij
∆a
− 1
)

.

Proof. The same notation as in the proof of Proposition 4 is used. The length and

capacity of the edge closer to the source are referred to by the index x and of the

other edge in the edge pair by y. Let ax and ay denote the capacities of the optimal

solution to the capacity optimization problem. Without loss of generality, it can be

assumed that lx = ly +∆l. We obtain

∆c

c∗
≤ cm∆a∆l

cm lx ax + cm ly ay
=

∆a∆l

(ly +∆l)ax + ly ay
. (III-46)

We substitute the optimal capacity ax in the denominator by the one determined by

the PECA heuristic using ax = ax−1 and obtain

∆c

c∗
≤ ∆a ∆l

(ly +∆l)ax−1 + ly ay
. (III-47)

We now analyze the border cases of this expression. In the best case, we obtain

lim
∆l→0

∆c

c∗
= 0 . (III-48)
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In the worst case, the upper bound for the relative cost difference is

lim
∆l→∞

∆c

c∗
≤ ∆a

ax−1
=

∆a

ax −∆a

=
1

aij
∆a
− 1

.□ (III-49)

From Proposition 5, it follows that the error decreases the smaller the difference

between ak−1
ij and akij is.

3 Computational Experiments

The developed heuristics are evaluated on a set of simulated network instances with

regard to runtime and solution quality. In Section 3.1, the experimental setup is pre-

sented. The experiments are conducted for two cases: low and high demand. The

results for the low demand case are reported in Section 3.2 and the high demand

case are reported in Section 3.3.

3.1 Experimental Setup

The parameter configuration for the numerical experiments is presented in Table III-

2. For simplicity, the units for demand, flow and voltage have been dropped. To

resemble real-world conditions, the experiments are conducted on network instances

of various sizes N ∈ {5, 10, . . . , 50}. For each N , 50 instances are generated as

follows. Later, the averaged solution quality (as well as the coefficient of variation) is

reported. The x- and y-locations of the vertices (sx, sy) are sampled from a discrete

uniform distribution without replacement. This ensures a realistic setting analogous

to electricity distribution networks, where households have different, non-overlapping

locations and a certain minimum distance among them. We set Ucrit to an amount

in a similar order of magnitude as in reality (e. g., by the partnering electricity power

company in the real-world case study). The peak demand per household is set to

Dpeak = 0.01. For the coincidence factor, a common function from the literature is
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assumed. This function is given by γ(|Γj|) = γlim + (1− γlim) |Γj|−1/2 with γlim = 0.1

(cf. Dickert and Schegner, 2010). This function is monotonically decreasing, convex,

and approaches a threshold γlim as networks become larger, i. e., (|Γj| → ∞).

Network
size

x-, y-values
of vertices

Edge
capacities

Voltage drop
threshold

Peak
demands

Coincidence
factor

Costs

N ∈ {5, 10, . . . , 50} sx, sy ∼ unif(0, 50)/10;
discrete uniform distribution;

sampling without replacement

akij ∼ {0.1, 0.2, . . . , 1.0} Ucrit = U − 1.0 Dpeak = 0.01 γ(|Γj|) = 0.1 + (1− 0.1) |Γj|1/2 cc = cm = 1

Table III-2: Parameters for computational experiments.

The evaluation scheme for the heuristics works as follows. The three layout gen-

eration heuristics are combined with the five layout improvement heuristics (which

includes the two metaheuristics). This results in 15 different combinations. One com-

bination (i. e., starred network + INB heuristic) is excluded from the evaluation, since

it is infeasible for the improvement heuristic to change the initial network (a starred

network exhibits the highest possible branching). The solution quality of the initial

network layout without any improvement heuristic is also reported.

Additionally, to approaches to find the exact solution to the CAVLP are tried. The

first is by implementing the linearized version of the CAVLP and solving it using the

Gurobi Optimizer 7.5.2 MIP solver (as described in Section 1.5). The second is by

complete enumeration of all possible layouts and capacities. For both approaches,

the optimal solution is reported, or, in case an optimal solution could not be found

within the given time limit, the best solution obtained is reported.

An upper and lower bound for the exact solution is reported. The bounds are

determined by constantly over- or underestimating the demand using a uniform co-

incidence factor for all edges in the network. This enables an implementation of a

simplified version of the CAVLP with the Gurobi Optimizer 7.5.2 MIP solver. For the

upper bound, a coincidence factor of γ ≡ 1 is chosen. This corresponds to a sce-

nario of fully coinciding peak loads. For the lower bound, a coincidence factor of

γ ≡ γ(N − 1) is applied as an overall discount factor to all loads. This corresponds

to the maximum achievable discount for a network of size N . It is still not possible

to solve the simplified problem specification in an exact manner for larger instances
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(N > 20). In this case, the best solution from Gurobi is reported that was reached

within the time limit.

For all heuristic solutions, the capacity optimization is carried out using the PECA

heuristic. In Section 6.2, a sensitivity analysis is presented where the PECA heuristic

is compared against alternative approaches for capacity optimization. Here the re-

sults show that the solution quality is on par with that from an exact solver, yet has a

substantially lower runtime.

The following parameters are used for the improvement heuristics: The random

improvement heuristic uses smax = 3N . The increased and decreased branching

heuristics use the parameter dmax = 4. The VNS algorithm uses dmax = 3, sVNS = 5,

and smax = N for the local search. The Tabu Search algorithm uses stabu = 10N . For

instances with N ≤ 20, the length of the tabu list is set to 5; for all other instances, it

is set to 10.

The heuristics are implemented in Python 3.5. All computational experiments are

conducted in parallel on 4 multi-core Intel Xeon E5-2630 v4 CPUs at 2.2 GHz and

8 GB of RAM. 16 computations are running in parallel at any given time. This process

does not impair the individual runtimes. The runtime limit for each instance of size N is

set to 24 hours for 50 instances. Note that experiments with larger runtime limits were

also conducted; yet, due to the problem complexity, exact solutions are prevented.

3.2 Results for High Demand Case

3.2.1 Solution Quality

Table III-3 displays the performance of the heuristics in terms of cost. First, the

performance of the heuristics for the generation of the initial layout is evaluated. For

this purpose, the cost for the initial layouts without a subsequent improvement heuris-

tic are compared (given in the first row for each layout generating heuristic). For small

networks of up to fifteen loads, the MST performs best, followed closely by the greedy
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network construction heuristic. For networks with 20 or more loads, the greedy net-

work construction heuristic slightly outperforms the MST. This is explained by the fact

that, as the networks grow larger, the electricity flows close to the source increase.

This observation is utilized by the greedy network construction (as opposed to the

MST), as it creates layouts that are more centered around the source. The MST still

appears to provide a better basis when being combined with an improvement heuris-

tic. The reason is that the MST algorithm provides an initial network layout that has

a relatively low branching. The branching can subsequently be increased, which is

beneficial for the improvement heuristics. The starred network algorithm performs

considerably worse. This rather poor performance of the starred network algorithm is

to be expected, since the algorithm is designed for high demand scenarios.

Initial Layout Layout Improvement N 5 10 15 20 25 30 35 40 45 50

MST

No heuristic 7.37 (0.23) 12.28 (0.14) 15.66 (0.12) 18.92 (0.10) 21.26 (0.10) 24.03 (0.11) 25.92 (0.11) 28.68 (0.11) 30.64 (0.10) 32.02 (0.09)

Randomized Reconfiguration 7.35 (0.23) 12.16 (0.14) 15.49 (0.11) 18.54 (0.10) 20.65 (0.08) 23.13 (0.08) 24.84 (0.08) 27.19 (0.07) 28.89 (0.07) 30.72 (0.06)

INB 7.35 (0.23) 12.17 (0.14) 15.48 (0.11) 18.56 (0.10) 20.65 (0.09) 23.02 (0.08) 24.92 (0.09) 27.39 (0.07) 28.95 (0.07) 30.70 (0.07)

DNB 7.36 (0.23) 12.21 (0.14) 15.59 (0.12) 18.71 (0.10) 20.87 (0.09) 23.48 (0.10) 25.33 (0.09) 27.81 (0.09) 29.72 (0.08) 31.04 (0.07)

VNS 7.35 (0.23) 12.14 (0.14) 15.43 (0.11) 18.42 (0.09) 20.53 (0.08) 22.87 (0.07) 24.75 (0.08) 27.06 (0.07) 28.66 (0.07) 30.48 (0.06)

Tabu Search 7.35 (0.23) 12.14 (0.14) 15.41 (0.11) 18.39 (0.09) 20.45 (0.08) 22.72 (0.07) 24.55 (0.08) 26.77 (0.06) 28.42 (0.07) 30.13 (0.06)

Starred Network Algorithm

No heuristic 11.23 (0.31) 26.40 (0.21) 40.39 (0.19) 56.25 (0.18) 68.67 (0.18) 82.27 (0.16) 99.99 (0.19) 117.64 (0.20) 122.26 (0.16) 140.97 (0.19)

Randomized Reconfiguration 7.44 (0.23) 14.75 (0.19) 21.41 (0.12) 29.82 (0.12) 35.71 (0.14) 43.13 (0.10) 51.14 (0.10) 59.84 (0.11) 66.16 (0.09) 73.78 (0.09)

DNB 7.62 (0.24) 12.55 (0.16) 15.95 (0.12) 19.17 (0.10) 21.30 (0.10) 23.56 (0.08) 25.51 (0.08) 27.86 (0.07) 29.72 (0.07) 32.05 (0.07)

VNS 7.35 (0.23) 13.15 (0.14) 18.46 (0.11) 24.39 (0.11) 28.82 (0.12) 35.15 (0.10) 41.15 (0.11) 47.92 (0.10) 52.52 (0.09) 59.33 (0.07)

Tabu Search 7.35 (0.23) 12.30 (0.14) 16.61 (0.11) 20.99 (0.12) 25.08 (0.11) 28.92 (0.10) 33.35 (0.10) 38.16 (0.08) 41.41 (0.09) 45.77 (0.08)

Greedy Network Construction

No heuristic 7.42 (0.23) 12.43 (0.15) 15.93 (0.11) 18.86 (0.09) 21.20 (0.08) 23.63 (0.08) 25.66 (0.08) 28.12 (0.08) 29.64 (0.07) 31.44 (0.06)

Randomized Reconfiguration 7.35 (0.23) 12.23 (0.14) 15.69 (0.11) 18.58 (0.09) 20.87 (0.07) 23.30 (0.07) 25.34 (0.08) 27.62 (0.08) 29.30 (0.07) 30.95 (0.06)

INB 7.40 (0.23) 12.35 (0.14) 15.81 (0.11) 18.79 (0.09) 21.08 (0.08) 23.44 (0.07) 25.42 (0.08) 27.71 (0.07) 29.38 (0.06) 31.11 (0.06)

DNB 7.36 (0.23) 12.19 (0.14) 15.66 (0.11) 18.58 (0.09) 20.82 (0.08) 23.15 (0.08) 25.16 (0.08) 27.53 (0.07) 29.14 (0.07) 30.99 (0.06)

VNS 7.35 (0.23) 12.15 (0.14) 15.51 (0.11) 18.50 (0.09) 20.77 (0.08) 23.14 (0.07) 25.12 (0.08) 27.58 (0.07) 29.19 (0.07) 30.95 (0.06)

Tabu Search 7.35 (0.23) 12.14 (0.14) 15.48 (0.11) 18.42 (0.09) 20.47 (0.08) 22.78 (0.07) 24.89 (0.08) 27.12 (0.07) 28.81 (0.06) 30.46 (0.06)

Exact solution
Gurobi MIP solver 7.34 (0.23) 12.26 (0.14)† 22.89 (0.30)† —‡ —‡ —‡ —‡ —‡ —‡ —‡

Complete enumeration 7.34 (0.23) 15.66 (0.13)† 27.72 (0.10)† 42.91 (0.08)† 58.54 (0.09)† 77.10 (0.08)† 96.09 (0.06)† 119.22 (0.08)† 142.89 (0.08)† 170.9 (0.06)†

Bounds
Lower bound 7.34 (0.22) 11.96 (0.13) 15.12 (0.10) 17.89 (0.09)† 19.69 (0.07)† 21.77 (0.07)† 23.56 (0.07)† 25.82 (0.07)† 27.21 (0.06)† 28.92 (0.07)†

Upper bound 7.49 (0.24) 12.66 (0.15) 16.40 (0.12)† 20.16 (0.11)† 23.27 (0.12)† 26.18 (0.09)† 29.57 (0.15)† 33.07 (0.15)† 35.01 (0.14)† 39.26 (0.20)†

† Runtime exceeded time limit, reported is the best solution within the time limit; ‡ No viable solution found within time limit

Table III-3: Comparison of network cost for various number of loads N . Reported is the cost averaged
across 50 instances with the coefficient of variation in parenthesis. The cells are shaded based on
average cost. Threshold for timeout: 24 hours per all 50 instances.

Second, let’s look at the results of combining the heuristics for generating the

network layout and the layout improvement heuristics. Overall, the best results are

achieved using a combination of MST algorithm and Tabu Search, followed closely

by a combination of MST and VNS, as well as greedy network construction and Tabu

Search. These three combinations of heuristics yield very similar results which only

differ in between 0.0% and 1.4% across network sizes. Moreover, there are several

other combinations of heuristics that perform only slightly worse, such as greedy con-
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struction and VNS, MST and INB, MST and DNB, MST and random reconfiguration,

as well as greedy network construction and random reconfiguration. In general, the

ranking and the performance differences across all combinations of heuristics remain

consistent, which is an indication of the effectiveness of the solution approach.

Third, the heuristics for layout improvements are evaluated. Overall, the meta-

heuristics (VNS and Tabu Search) yield very similar results but outperform the other

local improvement heuristics for most instance sizes and layout generation heuristics.

The Tabu Search algorithm achieves slightly better results than VNS, particularly for

larger instances. Among the other improvement heuristics, the INB heuristic is pri-

marily effective for initial layouts that have a low branching (such as those generated

by MST). DNB heuristic is effective when operating on initial network layouts with a

higher branching factor. It is the only improvement heuristic that performs consistently

well in combination with the starred network. The randomized network reconfigura-

tion performs reasonably well for most initial layouts (with the exception of the starred

network layout).

Fourth, regarding the exact results and bounds, the following three observations

can be made. (1) Exact solutions can only be obtained for small networks with N = 5

due to NP-hardness. For N = 5, the majority of heuristics find the optimal solution for

most network instances. The slightly higher average cost reported in comparison to

the exact solution approaches results from 4–5 network instances where the heuristic

solutions are marginally inferior. For N = 10, the MIP solver reaches the timeout for

about half the instances. For N = 15, the timeout is reached for every instance and

the average network cost determined by Gurobi is 49 % more expensive than the the

best solution found by the heuristics (while runtimes are more than 500-times higher).

For N > 15, the solver is unable to determine viable solutions. For N ≥ 10, the

networks obtained by complete enumeration within the time limit exhibit much higher

costs than the ones obtained by any of the presented solution methods (except the

starred network without layout improvement). Note that experiments with much higher

runtimes (several days) were conducted for the solver, yet still no viable solutions
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were obtained for larger instances. (2) The heuristics remain considerably close to

the lower bound. For small instances (N ≤ 20), the best performing heuristics remain

within 2.8 % of the lower bound. For large instances (N > 20), the distance increases

only moderately to 4.7 % . This underlines the effectiveness of the heuristics. (3) The

majority of the heuristics reach considerably lower cost than the upper bound. The

advantage is consistent and increases with network sizes in both absolute and relative

terms. This shows the advantage of taking into account varying coincidence factors.

In summary, several combinations of heuristics perform well. The analysis of the

optimal solution and the bounds furthermore points towards the overall effectiveness

of the solution heuristics. Finally, a low coefficient of variation is attained by all heuris-

tics, thereby indicating that, independent of the individual problem setting, the different

methods are stable in their performance.

3.2.2 Runtime

Table III-5 lists the runtimes of the different methods. As expected, the average

runtime increases with the instance size. For instances larger than N = 10, an exact

solution becomes intractable. For 15 vertices, not even one single optimal solution

could be found. It is reiterated that larger runtime limits of several days have been

tested, yet this did not help in finding solutions for larger instances due to the complex-

ity of the problem. Hence, exact solutions for real-world-sized problems are precluded

and, instead, heuristics must be used.

Overall, the heuristics achieve runtimes that, for real-world applications, are suffi-

cient. In general, the metaheuristics have longer runtimes than the local improvement

heuristics (but achieve lower costs). All methods reveal a low coefficient of variation,

which highlights that there is fairly little variance in the runtime.
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Initial Layout Layout Improvement N 5 10 15 20 25 30 35 40 45 50

MST

No heuristic 0.00 (0.38) 0.00 (0.41) 0.01 (0.53) 0.01 (0.55) 0.03 (0.69) 0.07 (0.66) 0.11 (0.86) 0.18 (0.84) 0.26 (0.56) 0.36 (0.57)

Randomized Reconfiguration 0.01 (0.24) 0.19 (0.32) 0.98 (0.37) 4.21 (0.35) 11.28 (0.39) 31.24 (0.44) 64.58 (0.37) 108.87 (0.46) 194.63 (0.35) 315.37 (0.41)

INB 0.00 (0.65) 0.07 (0.61) 0.71 (0.57) 3.24 (0.56) 10.24 (0.49) 29.58 (0.57) 68.01 (0.75) 124.18 (0.55) 266.97 (0.52) 533.01 (1.04)

DNB 0.00 (0.23) 0.15 (0.27) 1.01 (0.24) 4.34 (0.37) 12.09 (0.29) 29.44 (0.38) 55.01 (0.45) 102.77 (0.42) 186.64 (0.47) 273.21 (0.47)

VNS 0.19 (0.18) 1.64 (0.28) 7.13 (0.32) 25.10 (0.32) 63.65 (0.34) 152.17 (0.30) 306.83 (0.35) 536.97 (0.40) 893.21 (0.35) 1504.26 (0.44)

Tabu Search 0.05 (0.20) 0.60 (0.28) 2.98 (0.32) 12.76 (0.37) 34.10 (0.36) 82.22 (0.37) 195.59 (0.42) 343.44 (0.43) 536.97 (0.40) 899.84 (0.40)

Starred Network Algorithm

No heuristic 0.00 (0.11) 0.00 (0.07) 0.00 (0.06) 0.00 (0.06) 0.00 (0.04) 0.00 (0.04) 0.00 (0.04) 0.00 (0.03) 0.00 (0.13) 0.00 (0.05)

Randomized Reconfiguration 0.01 (0.21) 0.11 (0.34) 0.38 (0.44) 1.14 (0.58) 1.96 (0.53) 3.66 (0.64) 8.08 (0.78) 12.55 (0.69) 13.35 (0.64) 22.13 (0.72)

DNB 0.01 (0.31) 0.23 (0.31) 1.49 (0.28) 6.33 (0.28) 17.54 (0.25) 38.24 (0.25) 89.05 (0.34) 156.60 (0.36) 275.76 (0.34) 373.82 (0.34)

VNS 0.12 (0.19) 0.39 (0.30) 1.29 (0.36) 3.48 (0.44) 7.00 (0.48) 13.11 (0.47) 26.63 (0.58) 44.31 (0.58) 52.07 (0.53) 81.76 (0.55)

Tabu Search 0.04 (0.20) 0.51 (0.27) 2.35 (0.33) 7.74 (0.46) 17.97 (0.40) 34.58 (0.44) 76.57 (0.52) 117.05 (0.45) 162.48 (0.57) 263.42 (0.46)

Greedy Network Construction

No heuristic 0.00 (0.30) 0.00 (0.43) 0.00 (0.46) 0.01 (0.44) 0.02 (0.40) 0.03 (0.50) 0.05 (0.45) 0.08 (0.63) 0.09 (0.45) 0.13 (0.40)

Randomized Reconfiguration 0.01 (0.25) 0.18 (0.30) 0.86 (0.37) 3.60 (0.40) 10.13 (0.44) 22.1 (0.42) 47.7 (0.42) 85.8 (0.46) 151.34 (0.39) 221.86 (0.39)

INB 0.00 (0.65) 0.06 (0.71) 0.63 (0.68) 2.94 (0.54) 9.76 (0.49) 26.41 (0.62) 58.20 (0.50) 101.83 (0.45) 209.95 (0.62) 361.34 (0.66)

DNB 0.00 (0.24) 0.16 (0.25) 1.08 (0.27) 4.82 (0.31) 13.79 (0.23) 31.96 (0.33) 59.24 (0.37) 106.47 (0.33) 179.81 (0.34) 251.36 (0.34)

VNS 0.18 (0.17) 1.45 (0.27) 5.98 (0.29) 21.92 (0.41) 55.83 (0.40) 111.55 (0.39) 253.55 (0.37) 437.15 (0.41) 688.96 (0.38) 1160.11 (0.40)

Tabu Search 0.05 (0.19) 0.59 (0.27) 2.80 (0.32) 11.77 (0.41) 31.64 (0.45) 71.98 (0.42) 155.42 (0.43) 268.49 (0.42) 460.96 (0.36) 729.92 (0.43)

Exact solution
Gurobi MIP solver 2.74 (1.06) 988.23 (0.73)† 1728.00 (0.00)† 1728.00 (0.00)† 1728.00 (0.00)† 1728.00 (0.00)† 1728.00 (0.00)† 1728.00 (0.00)† 1728.00 (0.00)† 1728.00 (0.00)†

Complete enumeration 75.60 (0.05) 1728.00 (0.00)† 1728.00 (0.00)† 1728.00 (0.00)† 1728.00 (0.00)† 1728.00 (0.00)† 1728.00 (0.00)† 1728.00 (0.00)† 1728.00 (0.00)† 1728.00 (0.00)†

† Calculation timed-out

Table III-4: Comparison of runtimes for various number of loads N . Reported is the runtime in seconds
averaged across 50 instances with the coefficient of variation in parenthesis. The cells are shaded
based on average runtime. Threshold for timeout: 24 hours per all 50 instances.

3.3 Results for High Demand Case

The evaluation of the solution methods using a high demand case is done below. The

same experimental setup and parameters as before are used. The only difference is

that the peak demand is now set to Dpeak = 0.02, i. e., twice as large as in the low

demand case.

3.3.1 Solution Quality

The high demand case is characterized by considerably larger electricity flows and

thus larger voltage drops. This has a direct implication: the heuristics cannot always

find a feasible solution. That is, the heuristics for generating the network layout pro-

vide a layout for which the constraint for the voltage drops cannot be fulfilled even

when all capacities are set to the maximum possible value. Section 3.3.1 reports

the number of infeasible networks that were created by the different heuristics. Note

that such infeasible solutions can evidently be prevented when using any combina-

tion of the starred network algorithm. This is ensured by the theoretical properties

of the heuristic (cf. Remark 3). The greedy network construction returns a few so-

lutions that are infeasible but only for larger networks and when not paired with an

improvement heuristic. In contrast, the MST produces infeasible solutions even for

instances as small as 25 vertices. For networks larger than 35 vertices, about half
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of the MST layouts are infeasible, suggesting that alternative optimization methods

should be preferred in a high demand case.

Initial Layout Layout Improvement N 5 10 15 20 25 30 35 40 45 50

MST

No heuristic 0 0 0 0 3 12 13 22 27 24

Randomized Reconfiguration 0 0 0 0 0 0 6 11 13 16

INB 0 0 0 0 0 0 0 3 4 3

DNB 0 0 0 0 0 1 1 8 9 9

VNS 0 0 0 0 0 0 1 4 4 11

Tabu Search 0 0 0 0 0 0 5 13 12 17

Starred Network Algorithm

No heuristic 0 0 0 0 0 0 0 0 0 0

Randomized Reconfiguration 0 0 0 0 0 0 0 0 0 0

DNB 0 0 0 0 0 0 0 0 0 0

VNS 0 0 0 0 0 0 0 0 0 0

Tabu Search 0 0 0 0 0 0 0 0 0 0

Greedy Network Construction

No heuristic 0 0 0 0 0 0 0 4 0 0

Randomized Reconfiguration 0 0 0 0 0 0 0 0 0 0

INB 0 0 0 0 0 0 0 0 0 0

DNB 0 0 0 0 0 0 0 0 0 0

VNS 0 0 0 0 0 0 0 0 0 0

Tabu Search 0 0 0 0 0 0 0 0 0 0

Exact solution
Gurobi MIP solver 0 0 —† —† —† —† —† —† —† —†

Complete Enumeration 0 0 0 0 0 0 0 0 0 0

† Calculation timed-out

Table III-5: Comparison of infeasible networks produced in high demand case for various number of
loads N . In total, 50 randomly generated instances were produced for each N . Threshold for timeout:
24 hours per all 50 instances.

The cost performance of the heuristics is shown in Table III-6. For comparability,

only those instances are included whereby a feasible solution was found by all heuris-

tics. Overall, costs are higher than in the low demand case because the networks

need to have larger capacities and higher branching. For N = 5, most heuristics

yield solutions that register costs similar to those from the exact solution. This points

towards the effectiveness of the proposed heuristics. For N > 5, the best solution

obtained by complete enumeration within the time limit is reported. Similar to the

low demand case, these networks exhibit much higher costs than the ones obtained

by any of the proposed solution methods (except the starred network without layout

improvement).

The metaheuristics (VNS and Tabu Search) outperform the local improvement

heuristics, with Tabu Search performing best, particularly for larger instances. The

INB heuristics registers a superior performance among the local improvement heuris-
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tics. The lowest cost is still obtained with combinations starting with the MST. How-

ever, keep in mind the large number of infeasible networks that are excluded from

this analysis. For all heuristics, the performance is fairly stable as demonstrated by

a low coefficient of variation. Furthermore, it can be observed that the greedy net-

work construction is providing the best initial layout (without applying an improvement

heuristic).

Regarding the the exact results and bounds, similar observations than in the low

demand case can be made. (1) Exact solutions can only be obtained for the smallest

instances with N = 5 due to NP-hardness. For N = 5, the majority of heuristics

find network layouts with similar costs to the optimal solution. In the high demand

case, Gurobi is only able to determine viable solutions for networks with N ≤ 10 (as

opposed to N ≤ 15 in the low demand case). For N > 5, the networks determined by

complete enumeration or Gurobi within the time limit exhibit much higher costs than

the ones obtained by any of the solution methods (except the starred network without

layout improvement). (2) The heuristics remain considerably close to the lower bound.

The best performing heuristics remain within 6.6 % of the lower bound. This gap is

slightly larger than in the low demand case. This is to be expected, because, for the

lower bound, all demands are consistently underestimated. This has a larger effect

in the high demand case. (3) The majority of the heuristics reach considerably lower

costs than the upper bound. The advantage is consistent and increases with network

sizes in both absolute and relative terms.

3.3.2 Runtime

Table III-7 reports the runtimes in the high demand case. Analogous to the above

cost analysis, the figures shown are only averages over those instances for which all

heuristics can find a feasible network. First of all, for the INB and DNB heuristics,

the computation takes—on average—longer than in the low demand case presented

before. This is explained by the fact that networks in the high demand case tend to

be characterized by a higher branching. Second, for the randomized network recon-
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Initial Layout Layout Improvement N 5 10 15 20 25 30 35 40 45 50

MST

No heuristic 7.74 (0.25) 13.44 (0.17) 17.36 (0.15) 21.55 (0.13) 23.90 (0.11) 26.43 (0.11) 28.58 (0.10) 31.06 (0.10) 33.09 (0.08) 35.02 (0.08)

Randomized Reconfiguration 7.69 (0.25) 13.09 (0.15) 16.80 (0.12) 20.39 (0.10) 22.64 (0.09) 25.18 (0.08) 27.50 (0.09) 29.27 (0.08) 31.49 (0.07) 33.75 (0.07)

INB 7.70 (0.25) 13.04 (0.15) 16.79 (0.12) 20.36 (0.11) 22.58 (0.09) 25.05 (0.08) 27.12 (0.09) 29.22 (0.08) 30.96 (0.08) 33.13 (0.06)

DNB 7.72 (0.25) 13.15 (0.15) 17.12 (0.15) 20.89 (0.11) 23.04 (0.09) 25.72 (0.10) 27.74 (0.10) 29.71 (0.08) 31.69 (0.09) 33.87 (0.07)

VNS 7.69 (0.25) 12.99 (0.15) 16.71 (0.12) 20.13 (0.10) 22.46 (0.09) 24.81 (0.08) 27.23 (0.09) 29.36 (0.07) 31.21 (0.07) 33.47 (0.07)

Tabu Search 7.69 (0.25) 12.96 (0.15) 16.70 (0.12) 20.02 (0.10) 22.28 (0.09) 24.65 (0.08) 26.80 (0.08) 28.89 (0.08) 30.64 (0.08) 32.98 (0.06)

Starred Network Algorithm

No heuristic 11.27 (0.31) 26.57 (0.22) 40.55 (0.19) 56.61 (0.18) 67.75 (0.18) 79.90 (0.17) 96.08 (0.19) 106.87 (0.18) 112.98 (0.15) 129.58 (0.17)

Randomized Reconfiguration 7.82 (0.26) 15.46 (0.20) 23.52 (0.15) 31.83 (0.12) 38.04 (0.14) 45.91 (0.12) 54.18 (0.13) 62.13 (0.11) 68.45 (0.08) 76.55 (0.09)

DNB 7.93 (0.24) 13.30 (0.16) 17.09 (0.12) 20.68 (0.10) 23.10 (0.09) 25.48 (0.09) 28.00 (0.09) 29.65 (0.07) 31.97 (0.08) 34.07 (0.07)

VNS 7.69 (0.25) 13.77 (0.15) 19.82 (0.15) 26.33 (0.15) 30.65 (0.11) 38.19 (0.11) 45.33 (0.14) 51.65 (0.13) 56.96 (0.10) 62.55 (0.09)

Tabu Search 7.69 (0.25) 13.10 (0.15) 17.89 (0.12) 22.64 (0.11) 26.61 (0.12) 31.84 (0.12) 36.63 (0.09) 41.79 (0.12) 45.23 (0.12) 50.35 (0.11)

Greedy Network Construction

No heuristic 7.78 (0.25) 13.38 (0.16) 17.38 (0.13) 20.77 (0.10) 23.13 (0.09) 25.67 (0.08) 28.14 (0.09) 30.12 (0.09) 32.27 (0.09) 34.44 (0.08)

Randomized Reconfiguration 7.69 (0.25) 13.05 (0.15) 16.98 (0.12) 20.37 (0.10) 22.63 (0.08) 25.19 (0.08) 27.54 (0.09) 29.52 (0.07) 31.64 (0.08) 33.77 (0.07)

INB 7.74 (0.25) 13.17 (0.15) 17.01 (0.12) 20.44 (0.10) 22.77 (0.09) 25.20 (0.08) 27.48 (0.09) 29.59 (0.08) 31.37 (0.08) 33.44 (0.06)

DNB 7.72 (0.25) 13.07 (0.15) 16.98 (0.13) 20.29 (0.10) 22.66 (0.09) 24.95 (0.08) 27.50 (0.09) 29.48 (0.09) 31.50 (0.09) 33.60 (0.07)

VNS 7.69 (0.25) 13.00 (0.15) 16.75 (0.12) 20.15 (0.10) 22.50 (0.09) 25.02 (0.07) 27.38 (0.09) 29.50 (0.08) 31.48 (0.09) 33.49 (0.06)

Tabu Search 7.69 (0.25) 12.97 (0.15) 16.67 (0.12) 20.04 (0.10) 22.26 (0.08) 24.72 (0.07) 27.05 (0.09) 28.92 (0.07) 30.97 (0.08) 32.94 (0.06)

Exact solution
Gurobi MIP solver 7.67 (0.25) 15.00 (0.31)† —‡ —‡ —‡ —‡ —‡ —‡ —‡ —‡

Complete enumeration 7.67 (0.25) 16.46 (0.15)† 29.76 (0.11)† 48.52 (0.10)† 67.14 (0.11)† 91.62 (0.10)† 123.00 (0.15)† 186.80 (0.20)† 202.26 (0.16)† 234.93 (0.16)†

Bounds
Lower bound 7.55 (0.24) 12.47 (0.14) 15.76 (0.11)† 18.78 (0.10)† 21.01 (0.09)† 23.40 (0.08)† 25.49 (0.09)† 28.16 (0.10)† 29.82 (0.09)† 31.77 (0.10)†

Upper bound 7.94 (0.25) 13.96 (0.16) 18.77 (0.14)† 24.06 (0.14)† 28.08 (0.17)† 31.65 (0.14)† 38.86 (0.28)† 44.60 (0.25)† 48.41 (0.26)† 58.87 (0.41)†

† Runtime exceeded time limit, reported is the best solution within the time limit; ‡ No viable solution found within time limit

Table III-6: Comparison of network cost for various number of loads N in high demand case. Figures
shown are only averages over those instances whereby a feasible network could be found by every
combination. Reported is the average cost with the coefficient of variation in parenthesis. The cells are
shaded based on average cost. Threshold for timeout: 24 hours per all 50 instances.

figuration, VNS and Tabu Search the computation is—on average—faster than in the

other case. This can be explained easily. All of these methods at some point form a

cycle within the network. They delete the most cost-efficient edge within that cycle by

looping through all edges of the cycle. As the high demand networks exhibit higher

branching, the branches themselves are shorter. This translates into shorter cycles

and therefore shorter calculation time. Third, the coefficient of variation is consistently

low, thus pointing towards little variability in the runtime.

Initial Layout Layout Improvement N 5 10 15 20 25 30 35 40 45 50

MST

No heuristic 0.00 (0.35) 0.00 (0.40) 0.01 (0.64) 0.02 (0.60) 0.04 (0.43) 0.07 (0.49) 0.10 (0.34) 0.16 (0.55) 0.23 (0.37) 0.36 (0.31)

Randomized Reconfiguration 0.02 (0.21) 0.32 (0.23) 1.60 (0.32) 6.26 (0.37) 14.57 (0.29) 31.79 (0.29) 55.42 (0.28) 79.48 (0.24) 146.31 (0.27) 229.77 (0.23)

INB 0.00 (0.75) 0.10 (0.67) 1.10 (0.51) 5.26 (0.62) 17.39 (0.52) 45.24 (0.54) 94.52 (0.48) 193.94 (0.40) 333.40 (0.40) 626.62 (0.60)

DNB 0.01 (0.23) 0.22 (0.27) 1.48 (0.24) 5.46 (0.40) 14.12 (0.33) 25.82 (0.44) 44.34 (0.53) 86.37 (0.45) 135.60 (0.43) 186.34 (0.45)

VNS 0.25 (0.19) 2.08 (0.28) 9.08 (0.30) 28.29 (0.43) 66.62 (0.31) 114.81 (0.26) 206.67 (0.31) 330.75 (0.35) 641.51 (0.32) 885.61 (0.25)

Tabu Search 0.06 (0.22) 0.83 (0.27) 4.20 (0.31) 15.9 (0.39) 36.69 (0.35) 76.81 (0.29) 145.17 (0.26) 232.98 (0.29) 414.65 (0.42) 653.47 (0.24)

Starred Network Algorithm

No heuristic 0.00 (0.18) 0.00 (0.13) 0.00 (0.10) 0.00 (0.20) 0.00 (0.13) 0.00 (0.14) 0.00 (0.22) 0.00 (0.23) 0.00 (0.22) 0.00 (0.17)

Randomized Reconfiguration 0.02 (0.23) 0.17 (0.39) 0.60 (0.39) 1.51 (0.46) 2.98 (0.53) 5.06 (0.42) 8.98 (0.56) 11.68 (0.62) 15.06 (0.66) 23.19 (0.55)

DNB 0.01 (0.29) 0.34 (0.34) 2.24 (0.34) 9.31 (0.22) 24.80 (0.26) 52.9 (0.24) 100.16 (0.23) 178.02 (0.21) 314.63 (0.19) 517.51 (0.24)

VNS 0.15 (0.20) 0.50 (0.29) 1.73 (0.40) 4.07 (0.37) 8.38 (0.38) 12.81 (0.38) 22.09 (0.39) 33.50 (0.50) 44.57 (0.39) 69.09 (0.41)

Tabu Search 0.06 (0.20) 0.68 (0.27) 3.00 (0.37) 9.74 (0.40) 19.23 (0.38) 35.85 (0.35) 60.76 (0.35) 92.88 (0.33) 128.68 (0.33) 198.55 (0.34)

Greedy Network Construction

No heuristic 0.00 (1.75) 0.00 (0.41) 0.01 (0.52) 0.01 (0.52) 0.02 (0.41) 0.04 (0.48) 0.06 (0.46) 0.08 (0.64) 0.15 (0.55) 0.20 (0.42)

Randomized Reconfiguration 0.02 (0.22) 0.30 (0.27) 1.59 (0.34) 5.59 (0.41) 14.36 (0.34) 26.75 (0.30) 49.77 (0.27) 67.36 (0.24) 124.06 (0.29) 193.33 (0.26)

INB 0.00 (0.64) 0.09 (0.64) 0.98 (0.60) 4.84 (0.52) 17.47 (0.51) 46.24 (0.57) 101.68 (0.42) 193.21 (0.42) 358.64 (0.45) 631.04 (0.56)

DNB 0.01 (0.25) 0.23 (0.21) 1.62 (0.32) 6.61 (0.35) 17.65 (0.29) 34.12 (0.28) 55.75 (0.39) 93.86 (0.34) 185.67 (0.41) 253.02 (0.36)

VNS 0.24 (0.19) 1.98 (0.25) 8.27 (0.29) 27.80 (0.39) 62.77 (0.35) 115.64 (0.31) 204.51 (0.34) 302.39 (0.26) 547.09 (0.24) 788.34 (0.27)

Tabu Search 0.06 (0.19) 0.82 (0.24) 4.06 (0.34) 14.79 (0.41) 35.64 (0.34) 70.26 (0.33) 128.41 (0.25) 207.72 (0.25) 352.57 (0.23) 557.50 (0.27)

Exact solution
Gurobi MIP solver 6.24 (1.41) 1548.93 (0.28)† 1728.00 (0.00)† 1728.00 (0.00)† 1728.00 (0.00)† 1728.00 (0.00)† 1728.00 (0.00)† 1728.00 (0.00)† 1728.00 (0.00)† 1728.00 (0.00)†

Complete enumeration 69.91 (0.07) 1728.00 (0.00)† 1728.00 (0.00)† 1728.00 (0.00)† 1728.00 (0.00)† 1728.00 (0.00)† 1728.00 (0.00)† 1728.00 (0.00)† 1728.00 (0.00)† 1728.00 (0.00)†

† Calculation timed-out

Table III-7: Comparison of runtimes for various number of loads N in high demand case. Figures
shown are only averages over those instances whereby a feasible network could be found by every
combination. Reported is the average cost with the coefficient of variation in parenthesis. The cells are
shaded based on average runtime. Threshold for timeout: 24 hours per all 50 instances.
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4 Real-World Experiments

The applicability of the proposed solution methods are demonstrated based on a set

of low voltage distribution networks from a Swiss distribution network operator. These

network instances are used to compare the costs from conventional network design

in practice to the costs determined by the proposed solution methods. This quantifies

the potential monetary benefit of the proposed methods under real-world conditions.

4.1 Experimental Setup

The real-world experiments are based on a sample of 74 low voltage distribution net-

works in Switzerland. Each network entails one transformer. The number of loads

per network in the sample ranges from 12 to 68, with an average of 36.7 loads and a

median of 32 loads. These loads correspond to the vertices of the network. The costs

for the networks range from CHF 33,500 for the cheapest network to CHF 1.7 million

for the most expensive. The average network cost is CHF 251,400. The networks

sum up to a combined value of CHF 18.6 million. This cost only includes material and

construction and excludes planning and overhead costs. On average, each network

covers an area of 35.1 ha, i. e., 0.351 km2, with a median size of 20.6 ha per network.

The networks are grouped by the number of loads N contained in each network.

The reason for this grouping is that the performance of the solution methods varies

according to network size, and, this way, the results can be compared to the compu-

tational experiments from above. The groups of networks range from N ∈ [10, 19] to

N ∈ [60, 69]. The number of networks in each group is reported alongside the results.

The largest group contains 19 networks and is given by N ∈ [20, 29].

The network data (i. e., longitude and latitude of loads, network layout, and ca-

pacities) have been extracted from a geographic information system. All distances

between locations are computed using the Euclidean distance (L2 norm). Some of

the locations in the original data set belong to components with zero energy demand
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(e. g., fuse boxes), which are included with Di = 0. An example network layout as

retrieved from the geographic information system is illustrated in Figure III-1.

Figure III-1: Data extraction from the geographic information system: (left) real-world network (with
buildings, roads and landscape), and (right) extracted layout and capacities (small dots: loads, large
dot: transformer, capacity indicated by line thickness).

4.2 Parameters and Unit Conversions

Below, all parameters and units are shown that have been used for the real-world case

study. All parameters for the experiment are set to conventional values from practice

in agreement with practitioners from the partnering company. For the edge capac-

ities,the values correspond to commercially available copper cables, identical to the

ones used in the original networks. The capacity of these cables is given as cross sec-

tion in mm2. Capacities are chosen from the set A = {50mm2, 70mm2, 95mm2, 120mm2,

150mm2, 185mm2, 240mm2, 400mm2, 800mm2}. The industry standard of Dpeak =

21 kW is used for the peak demand per load. Based on the peak load, the demand

Di is determined using the coincidence factor γ (Dickert and Schegner, 2010). Here

the formula γ(|Γj|) = γlim + (1− γlim)|Γj|−1/2 is used, with γlim = 0.1, which provides

a conservative estimate. All flows Fij are given in the unit of kW.

Now, the appropriate unit conversions are added to the objective function and

the constraints. For the objective function, the cost constants follow the original cost

composition and are based on discussions with network design experts from the part-
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nering company. cc = 34.62 CHF
m

and cm = 0.1882 CHF
m mm2 is used. For the objective

function, this yields

∑
(i,j)k∈E

xk
ij [34.62

CHF
m

lij + 0.1882 CHF
m mm2 lij a

k
ij] . (III-50)

The line sizing constraint for the real-world case study reads

1.08 kW
mm2

∑
k∈{1,...,|A|}

xk
ija

k
ij ≥ Fij , ∀i, j ∈ {0, . . . , n− 1} , (III-51)

The conversion factor 1.08 kW
mm2 has been extracted by a linear fit from the data sheets

of the electrical cables used. All voltage drops along the grid lines must stay below

3% of the network voltage of 0.4 kV. This is a conservative value in line with industry

norms (cf. CENELEC, 2010). For a three-phase 0.4 kV electricity distribution network,

the constraint for the voltage drops reads

∑
k

xk
ij

akij
lij

(Ui − Uj) =
√
3

0.4 kV
0.0181Ωmm2

m
Fij , ∀i, j ∈ {0, . . . , N − 1} ,

(III-52a)

Ui ≥ 0.4 kV − 3% 0.4 kV , ∀i ∈ {0, . . . , N − 1} , (III-52b)

U0 = 0.4 kV . (III-52c)

All distances are given in m. Reactive power of the loads is assumed to be zero. The

value ρ = 0.0181Ωmm2

m
specifies the resistivity of the grid lines and has been extracted

from the data sheet of the electrical cables used.

Furthermore, all parameters used as part of the heuristics are identical to the

previous computational experiments, i. e., the random improvement heuristic uses

smax = 3N ; the increased and decreased branching heuristics use the parameter

dmax = 4; the VNS algorithm uses dmax = 3, sVNS = 5, and smax = N for the local

search; the Tabu Search algorithm uses stabu = 10N ; for instances with N ≤ 20, the

length of the tabu list is set to 5; for all other instances, it is set to 10.
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4.3 Results

4.3.1 Solution Quality

In two out of the 74 cases, some heuristics were not able to find a feasible solution.

That is, the heuristics for generating the network layout provide a layout for which the

constraint for the voltage drops cannot be fulfilled even when all capacities are set

to the maximum possible value. Note that such infeasible solutions can evidently

be prevented when using any combination of the starred network algorithm. This is

ensured by the theoretical properties of the heuristic (cf. Remark 3). The starred

network algorithm produces no infeasible network layouts, while the MST creates

three infeasible network layouts.

Table III-8 compares the cost of the solutions generated by the heuristics to the

real-world costs from conventional network design. All costs are given in Swiss

Francs (CHF). The cost have been averaged over those instances where a feasi-

ble solution was found by every heuristic. The proposed solution methods are able to

solve the real-world instances effectively for all instance sizes. Overall, the two meta-

heuristics (VNS and Tabu Search) perform best, with Tabu Search yielding the lowest

cost for every group (i. e., for every instance size). Among the local improvement

heuristics, three combinations result in a similar cost (MST combined with the INB

heuristic, MST combined with the randomized network reconfiguration, and greedy

network construction combined with the INB heuristic). Out of these three combina-

tions, each one is cheaper than the others at least once.

For smaller instances with fewer than 30 loads, the best heuristic returns networks

that reduce the cost from conventional network design by 39 % to 41 %. This corre-

sponds to absolute savings of more than CHF 61,000 per network for these networks.

For larger instances, the observed saving increases, both in relative and absolute

terms. For example, for networks with N ∈ [30, 49], the benefit compared to the

real-world networks is 63 % to 69 %. For instances with 50 or more loads, the cost
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Initial Layout Layout Improvement N [10, 19] [20, 29] [30, 39] [40, 49] [50, 59] [60, 69]

MST

No heuristic 61,811 112,437 73,068 98,776 96,224 133,422

Randomized Reconfiguration 60,089 105,422 70,531 89,195 85,408 125,081

INB 59,538 108,178 71,626 91,030 85,046 123,605

DNB 60,017 110,118 72,007 94,779 88,933 125,173

VNS 59,409 104,444 70,232 89,391 84,044 124,137

Tabu Search 59,392 103,923 68,922 87,153 82,839 122,489

Starred Network Algorithm

No heuristic 223,199 403,038 437,828 519,045 541,489 788,838

Randomized Reconfiguration 144,761 274,906 257,302 307,324 327,064 514,532

DNB 62,130 109,115 75,917 90,106 86,814 126,804

VNS 113,721 223,879 195,636 231,363 259,405 415,220

Tabu Search 95,334 172,342 141,496 187,267 194,277 305,096

Greedy Network Construction

No heuristic 61,109 112,625 75,760 91,849 90,006 127,400

Randomized Reconfiguration 60,305 105,669 72,021 88,582 84,943 122,744

INB 59,923 108,025 72,404 87,634 84,457 120,688

DNB 59,701 109,355 74,504 89,729 85,172 121,105

VNS 59,715 104,842 71,067 87,642 84,910 121,368

Tabu Search 59,329 104,009 70,672 87,592 82,872 120,771

Real-world network 103,562 181,483 223,028 236,488 300,642 386,180

Number of networks in sample group 14 19 9 8 14 7

Table III-8: Comparison of network cost for networks with various number of loads N . Figures shown
are only averages over those instances whereby a feasible network could be found by every combina-
tion. After a maximum calculation time of 24 hours per network, the cheapest network is returned.

benefit increases even further, with absolute cost savings of up to CHF 0.26 million

per network.

4.3.2 Runtime

The runtimes for the real-world experiments are shown in Table III-9. Overall,

similar observations than in the computational experiments can be made. Even for

the largest network instances, runtimes are still below 24 hours. This demonstrates

that the proposed solution approaches are computationally tractable.

4.3.3 Summary

In summary, the real-world experiments prove the applicability of the heuristics to

real-world problem instances and point toward significant cost savings. In the exper-

iments, the proposed solution methods yield relative cost savings of over 39 %. The

cost savings for larger networks can be as high as CHF 0.26 million. This shows how
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Initial layout Layout improvement N [10, 19] [20, 29] [30, 39] [40, 49] [50, 59] [60, 69]

MST

No heuristic 0.14 0.57 1.95 6.73 9.06 17.21
Randomized Reconfiguration 45.54 270.90 1512.41 4736.11 9366.02 23341.30
INB 200.43 1420.85 3292.12 15612.27 47439.29 80704.57
DNB 64.94 421.93 1020.67 3202.57 10024.94 22746.30
VNS 298.55 1434.05 7998.43 19409.59 40760.33 60429.04
Tabu Search 155.61 900.46 4502.16 16400.05 29648.26 69967.41

Starred Network Algorithm

No heuristic 0.00 0.01 0.01 0.01 0.01 0.04
Randomized Reconfiguration 1.92 7.86 45.64 63.96 124.35 262.58
DNB 147.90 837.79 2752.44 9343.13 23503.21 57484.61
VNS 10.88 38.86 168.69 457.48 553.46 1031.22
Tabu Search 33.96 120.58 705.98 1640.82 2787.01 5760.48

Greedy Network Construction

No heuristic 0.07 0.36 1.06 2.62 4.17 8.68
Randomized Reconfiguration 26.44 187.53 832.33 2858.80 8512.50 14791.68
INB 342.30 4038.22 11742.90 43463.82 71366.42 86413.25
DNB 98.60 561.90 1930.40 7553.07 19357.20 44611.04
VNS 198.39 898.71 2907.58 13096.60 35008.78 59516.61
Tabu Search 109.79 708.08 2793.07 8521.77 26686.28 45355.99

Number of networks in sample group 14 19 9 8 14 7

Table III-9: Comparison of the average runtime per network using different capacity optimization meth-
ods for real-world experiment. Maximum calculation time has been set to 24 hours per network.

the proposed solution methods to the CAVLP can provide effective decision support

to network planners at utility companies.

5 Summary

In this chapter, a decision problem for optimizing electricity distribution networks has

been introduced. This problem uses voltage drops and load coincidence, while, at

the same time, adhering to other physical constraints (e. g., radiality). This yields the

NP-hard capacitated arborescence with voltage drops and load coincidence problem.

Based on the theoretical properties of the problem, heuristics for solving the CAVLP

have been derived. This includes theoretical bounds for some. The effectiveness of

the heuristics is demonstrated based on computational experiments and real-world

electricity networks.

The presented work has several implications for both management and research.

For management, the proposed solution approaches are able to provide more cost-

effective network layouts with cost savings over the actual network layouts of more

than 39 %. This corresponds to cost savings of up to CHF 0.26 million per network.

Furthermore, it is shown that cost savings increase with network sizes. Evidently,
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conventional network design is especially suboptimal for larger networks. This points

towards large opportunities for decision support.

In the next chapter, the effect of various functions of the coincidence factor on the

network cost and layout is investigated. The decision problem from this chapter is

used to study the effect of (A) direct adaptations to climate change, (B) an increasing

share of EVs, and (C) a further decentralized energy generation. Please note, that

because the CAVLP can also be adapted to solve scenarios with excess feed-in by

reverting the flows, it can be used to evaluate the monetary impact of increased PV

diffusion in (C).

6 Additional Information

6.1 Proof of NP-Hardness for Alternative Problem Formulation

There are two ways of proving NP-hardness using the alternative problem formula-

tion. The first one uses the line sizing constraint in Equation (III-2). Proposition 1 is

proven by reduction. It is shown that the CAVLP is a generalized form of the NP-hard

capacitated shortest spanning arborescence rooted at r (CSSAr) problem (Papadim-

itriou, 1978; Toth and Vigo, 1995). More precisely, it is shown that the CSSAr problem

is a special case of the CAVLP with Q = ∞ and akij = a and a uniform coincidence

factor γ(|S|) ≡ 1.

By setting Q = ∞, we can ignore the voltage drops in Equations (III-4a) to (III-

4c). By setting akij = a, the line sizing constraint in Equation (III-2) reduces to Fij ≤

a for all i, j ∈ {0, . . . , n − 1}. The flow Fij corresponds to the sum of all demands

downstream to an edge, i. e., demands of all vertices in Γj . Because of the radial

layout, the flow Fij decreases for edges (i, j)k that are located further downstream.

Thus, if Fij ≤ a holds true for an edge connected to the source, it is automatically

fulfilled for all subsequent edges. Therefore, the line sizing constraint only needs to be
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checked for edges connected to the source, i. e., for edges (i, j)k with the depth d(j) =

1. The line sizing constraint simplifies to F0j({xk
ij}) ≤ a for allj ∈ {0, . . . , n− 1}. With

the definitions of Fij and the subgraph Γj , this becomes

∑
i∈Γj

Di ≤ a , ∀j with d(j) = 1 . (III-53)

Equation (III-53) states that the sum of demands Di in all subgraphs Γj directly con-

nected to the source must not exceed a. Equation (III-53) is identical to the constraint

of the CSSAr problem which aims to find the shortest spanning arborescence under

this condition (cf. Toth and Vigo, 1995).

As this reduction is clearly of polynomial time, this proves that the CAVLP is NP-

hard. □

The second way of proving NP-hardness involves the constraint for the voltage

drop. We prove this even for the special case of a uniform coincidence factor γ(|S|) ≡

1, which reduces the complexity of the problem. For this proof, we use the new no-

tation for the neighborhood Nj({xk
ij}, d), which is the set of all vertices that can be

reached from a vertex j within d hops (in direction of the flow). The definition of the

flow Fij becomes

Fij
def
=

∑
i∈Nj({xk

ij},Nmax)

Di, (III-54)

where we define Nmax = N − 1 as the maximum number of hops it can possibly take

to reach any vertex downstream of another vertex.

An approach similar to that one found in the proof of Proposition 1 is used. It is

shown that the CAVLP is a generalized form of the CSSAr problem (see Toth and

Vigo, 1995). First of all, we bring the constraint for the voltage drops in a different
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form. According to Equation (III-4a), the voltage drop along any edge (i, j)k is given

by

(Ui − Uj) =
∑
k

xk
ijlij

Fij

akij
. (III-55)

Because the voltage drops are accumulating along any path p ∈ P (Γ ) from source to

any leaf, the constraint for the voltage drop can be rewritten as

∑
k

xk
ijlij

Fij

akij
≤ Q , ∀p ∈ P (Γ ) . (III-56)

Again, we prove NP-hardness even when there is only one unitary line type, i. e.,

akij = a. Then, the only difference between the CASSAr problem and the CAVLP lies

in the constraint for the voltage drops, i. e., Equation (III-56). In the CSSAr problem,

the demand of all vertices in each sub-tree leaving the source must not exceed a

given maximum capacity Q. In our notation, this reads

∑
i,j s. t. (i,j)k∈p

Dj ≤ Q , ∀p ∈ P (Γ ) . (III-57)

As we want to show a reduction of the CSSAr problem to the CAVLP, we rewrite the

voltage drop from Equation (III-56) by using the definition for Fij in Equation (III-54),

yielding

∑
i,j s. t. (i,j)k∈p

∑
k∈Nj(Nmax)

lijDk ≤ Q . (III-58)

From Equation (III-58), we obtain the constraint of the CSSAr problem by making

two simplifications. First, we set Nmax = 0, which means that, for calculating Fij ,

we ignore all subsequent vertices and Fij = Dj . In other words, the second sum
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in Equation (III-58) reduces to
∑

k∈Nj(0)

Dklij = lijDj . Second, we assume unified

distances by setting lij = 1 and, as a result, Equation (III-58) becomes

∑
i,j s. t. (i,j)k∈p

Dj ≤ Q . (III-59)

This is identical to the constraint of the CSSAr problem. Consequently, the CSSAr

problem is a special case of the CAVLP with unified distances lij = 1 and Nmax = 0.

This shows that the CAVLP is a generalized form of the CSSAr problem, which

is known to be NP-hard. All reductions are of polynomial time, which concludes this

proof. □

6.2 Sensitivity Analysis of Capacity Optimization Methods

In this section, a sensitivity analysis of the capacity optimization methods for cost and

runtime is conducted. These results confirm that the PECA heuristic yields consistent

results, independent from the network layout and demand. We remember that the

improvement heuristics trigger a capacity optimization for each candidate layout and,

owing to this, the capacity optimization is responsible for a considerable part of the

runtime of an improvement heuristic.

The PECA heuristic is tested against an exact solution using the Gurobi Opti-

mizer 7.5.2 and two greedy heuristics. For this testing, three different methods to

generate network layouts are used: (1) the MST, (2) the greedy network construction,

and (3) a method, whereby all edges are generated completely at random (random

layout generation). The latter method generates a random Prüfer sequence of length

N − 2, from which the network layout is created. For all these methods, the capacity

optimization methods are tested in a low demand case and a high demand case. In

total, this leads to six different test settings. In sum, these support the choice of the

PECA heuristic, since, independent of how the network layout is constructed, it finds

capacities that are close to the optimal solution yet in considerably less time.
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Below, the two greedy heuristics are first presented in more detail. Second and

third, the results for the low and high demand experiments are presented.

6.2.1 Greedy Capacity Reinforcement

The greedy capacity reinforcement heuristic optimizes the capacities by steadily

increasing them until the constraint for the voltage drops is fulfilled. It starts with min-

imal edge capacities, successively identifies the edge (i, j) with the highest voltage

drop (this corresponds to the weak spot of the network), and then increases the ca-

pacity of this edge. This heuristic resembles common industry practices in electricity

network expansion. For instance, it is used by the Swiss electricity power company

that provided us with real-world data.

The heuristic works in five steps. In step 1, all capacities aij are initialized to the

minimum values that fulfill the line sizing constraint. At this point, it is not guaranteed

that the constraint for the voltage drops in Equation (III-40) is fulfilled. In step 2, the

heuristic calculates the voltage drops ∆Uij
for each edge of the network. In step 3,

the heuristic determines the set of paths P ′ ⊆ P where the constraint for the voltage

drops is violated. If all paths fulfill the constraints, the heuristic terminates and returns

{aij}. In step 4, the heuristic considers all paths p ∈ P ′ and reinforces the edge

(i, j) ∈ p with the highest voltage drop ∆Uij
by increasing its capacity aij to the next

larger capacity, i. e., from akij to ak+1
ij . In step 5, the voltage drop ∆Uij

for this edge

is recalculated, since increasing the capacity reduces the voltage drop. With these

updated capacities, the heuristic returns to step 3. The runtime of this algorithm

depends on the network layout. For example, in case of a starred network, the runtime

is O(N). For other layouts, runtimes are higher because both the number of paths

and the depth of the paths increase with the network size N (cf. Steele et al., 1987).

6.2.2 Greedy Capacity Reduction

The greedy capacity reduction heuristic is the counterpart to the greedy capacity

reinforcement heuristic and proceeds in the opposite direction. It identifies the edge
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(i, j) with the lowest voltage drop and reduces its capacity in order to save material

cost. It works in five steps. In step 1, all capacities aij are initialized to the maximum

value possible and the heuristic creates a list L containing all edges. In step 2, the

heuristic calculates the voltage drops ∆Uij
for each edge. In step 3, the heuristic

identifies the edge (i, j) ∈ L with the lowest voltage drop. If L is empty, the heuristic

terminates and returns {aij}. In step 4, the heuristic decreases aij by one decrement

from the value akij to ak−1
ij . In step 5, the heuristic evaluates whether this reduction

violates the constraints related to line sizing and voltage drops. If they are violated,

the capacity of the edge (i, j) is reset to akij and the edge is removed from L. If the

constraints are still fulfilled, ∆Uij
for this edge is recalculated and the heuristic returns

to step 3.

The runtime of this heuristic scales similarly to the greedy capacity reinforcement

heuristic. In practical applications, however, it entails a disadvantage with regard

to runtime: close to the leaves, networks typically consist of many edges with low

capacity. Thus, its runtime can be expected to be slower than the runtime of the

greedy capacity reinforcement heuristic as more iterations are required.
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6.2.3 Sensitivity Analysis – Low Demand (Solution Quality)

Below, the average cost per network and the coefficient of variation is shown

for various instance sizes N below. The PECA heuristic is largely on par with the

exact solver (i. e., Gurobi MIP solver), even for large networks. As expected, the

PECA heuristics outperforms the other heuristics—greedy capacity reinforcement and

greedy capacity reduction—due to its theoretical properties.

Capacity Optimization N 5 10 15 20 25 30 35 40 45 50
Greedy capacity reinforcement 7.43 (0.23) 12.51 (0.16) 16.46 (0.14) 19.55 (0.11) 22.25 (0.12) 24.59 (0.11) 27.77 (0.13) 30.16 (0.11) 31.62 (0.12) 33.72 (0.11)
Greedy capacity reduction 7.43 (0.23) 13.04 (0.19) 17.65 (0.17) 20.89 (0.13) 23.66 (0.13) 25.86 (0.12) 28.81 (0.13) 31.07 (0.10) 32.46 (0.10) 34.30 (0.09)
PECA 7.41 (0.23) 12.39 (0.15) 16.12 (0.13) 18.94 (0.10) 21.44 (0.11) 23.61 (0.10) 26.45 (0.12) 28.60 (0.11) 30.04 (0.11) 31.90 (0.10)
Exact solver (Gurobi MIP) 7.40 (0.22) 12.37 (0.15) 16.05 (0.13) 18.85 (0.10) 21.34 (0.11) 23.48 (0.10) 26.30 (0.12) 28.41 (0.11) 29.84 (0.11) 31.63 (0.10)

Table III-10: Comparison of network cost using different capacity optimization methods for networks
with various number of vertices N . Network layouts have been generated using the MST algorithm
on randomly generated locations for each N . Figures shown are averages over 100 networks. The
calculations were performed on an Intel Core i7-7600 CPU at 2.8 GHz and 16GB of RAM.

Capacity Optimization N 5 10 15 20 25 30 35 40 45 50
Greedy Capacity Reinforcement 7.53 (0.24) 12.57 (0.16) 16.47 (0.13) 19.28 (0.10) 21.99 (0.09) 24.55 (0.09) 26.60 (0.09) 29.01 (0.07) 30.74 (0.07) 32.79 (0.07)
Greedy Capacity Reduction 7.53 (0.24) 12.77 (0.17) 16.95 (0.15) 19.89 (0.11) 22.74 (0.09) 25.37 (0.10) 27.35 (0.09) 29.87 (0.08) 31.67 (0.08) 33.61 (0.07)
PECA 7.51 (0.24) 12.48 (0.16) 16.21 (0.12) 18.83 (0.09) 21.41 (0.08) 23.70 (0.09) 25.60 (0.08) 27.83 (0.07) 29.50 (0.06) 31.31 (0.06)
Gurobi MIP solver (exact solution) 7.51 (0.24) 12.46 (0.15) 16.17 (0.12) 18.75 (0.09) 21.32 (0.08) 23.58 (0.08) 25.46 (0.07) 27.65 (0.06) 29.31 (0.06) 31.08 (0.06)

Table III-11: Comparison of network cost using different capacity optimization methods for networks
with various number of vertices N . Network layouts have been generated using the greedy network
construction. Figures shown are averages over 100 networks.

Capacity Optimization N 5 10 15 20 25 30 35 40 45 50
Greedy capacity reinforcement 12.00 (0.29) 28.04 (0.21) 44.92 (0.20) 64.29 (0.16) 84.80 (0.15) 103.83 (0.15) 122.39 (0.16) 146.31 (0.15) 170.41 (0.16) 184.69 (0.15)
Greedy capacity reduction 12.05 (0.30) 28.40 (0.21) 45.48 (0.20) 63.68 (0.15) 83.08 (0.14) 100.10 (0.13) 117.28 (0.14) 137.67 (0.12) 156.74 (0.11) 172.49 (0.11)
PECA 11.99 (0.29) 27.60 (0.21) 43.44 (0.20) 61.56 (0.15) 79.93 (0.13) 96.97 (0.13) 113.72 (0.14) 133.51 (0.12) 151.31 (0.11) 166.24 (0.11)
Exact solver (Gurobi MIP) 11.97 (0.29) 27.51 (0.21) 43.20 (0.19) 61.13 (0.14) 79.00 (0.13) 95.62 (0.13) 111.84 (0.13) 131.06 (0.12) 148.93 (0.11) 163.62 (0.11)

Table III-12: Comparison of network cost using different capacity optimization methods for networks
with various number of vertices N . Network layouts have been generated using a randomly generated
layout with randomly generated locations for each N . Figures shown are averages over 100 networks.
The calculations were performed on an Intel Core i7-7600 CPU at 2.8 GHz and 16GB of RAM.
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6.2.4 Sensitivity Analysis – Low Demand (Runtime)

In terms of runtime, the PECA heuristic outperforms the exact solver considerably.

Furthermore, the PECA heuristic has a slightly slower runtime than the greedy capac-

ity reinforcement heuristic (but better cost performance as shown above). The greedy

capacity reinforcement heuristic is computationally more efficient than the greedy ca-

pacity reduction heuristic. This matches the earlier expectations as solutions are likely

to entail many edges with low capacity edges close to the leaves, which are more eas-

ily identified by the greedy capacity reinforcement heuristic compared to the greedy

capacity reduction heuristic.

Capacity Optimization N 5 10 15 20 25 30 35 40 45 50
Greedy capacity reinforcement 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.04
Greedy capacity reduction 0.00 0.01 0.02 0.05 0.08 0.12 0.18 0.28 0.37 0.47
PECA 0.00 0.00 0.00 0.01 0.02 0.04 0.07 0.13 0.18 0.22
Exact solver (Gurobi MIP) 0.01 0.02 0.03 0.06 0.09 0.12 0.16 0.23 0.27 0.33

Table III-13: Comparison of the average runtime using different capacity optimization methods for
networks with various number of vertices N . Network layouts have been generated using the MST al-
gorithm on randomly generated locations for each N . Figures shown are averages over 100 networks.
The calculations were performed on an Intel Core i7-7600 CPU at 2.8 GHz and 16GB of RAM.

Capacity Optimization N 5 10 15 20 25 30 35 40 45 50
Greedy Capacity Reinforcement 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02
Greedy Capacity Reduction 0.00 0.01 0.02 0.05 0.08 0.13 0.18 0.26 0.34 0.46
PECA 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.05 0.06 0.11
Gurobi MIP solver (exact solution) 0.01 0.02 0.03 0.05 0.08 0.12 0.15 0.20 0.25 0.32

Table III-14: Comparison of average runtimes using different capacity optimization methods for net-
works with various number of vertices N . Network layouts have been generated using the greedy
network construction. Figures shown are averages over 100 networks. Most runtimes are fairly small
(below 1 second), hence, the coefficient of variation is omitted. The calculations were performed on an
Intel Core i7-7600 CPU at 2.8 GHz and 16 GB of RAM.

Capacity Optimization N 5 10 15 20 25 30 35 40 45 50
Greedy capacity reinforcement 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.04 0.05
Greedy capacity reduction 0.00 0.01 0.02 0.05 0.08 0.12 0.18 0.24 0.33 0.48
PECA 0.00 0.00 0.00 0.01 0.02 0.03 0.05 0.07 0.11 0.17
Exact solver (Gurobi MIP) 0.01 0.02 0.03 0.06 0.09 0.12 0.17 0.21 0.26 0.37

Table III-15: Comparison of the average runtime using different capacity optimization methods for
networks with various number of vertices N . Network layouts have been generated using a randomly
generated layout with randomly generated locations for each N . Figures shown are averages over 100
networks. The calculations were performed on an Intel Core i7-7600 CPU at 2.8 GHz and 16GB of
RAM.
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6.2.5 Sensitivity Analysis – High Demand (Solution Quality)

Below average cost for the high demand case is shown. For each N , average over

100 networks is reported. If infeasible network layouts were generated, these layouts

were discarded because it is impossible for any of the capacity optimization methods

to find capacities for such layouts.

Capacity Optimization N 5 10 15 20 25 30 35 40 45 50
Greedy capacity reinforcement 8.24 (0.24) 13.77 (0.18) 18.61 (0.15) 22.52 (0.15) 25.83 (0.13) 29.45 (0.12) 31.73 (0.12) 34.25 (0.11) 37.04 (0.11) 38.90 (0.12)
Greedy capacity reduction 8.52 (0.27) 14.65 (0.19) 19.54 (0.15) 23.01 (0.13) 26.02 (0.11) 28.94 (0.09) 30.93 (0.09) 33.28 (0.08) 35.53 (0.08) 37.13 (0.08)
PECA 8.14 (0.24) 13.25 (0.17) 17.61 (0.15) 21.13 (0.15) 23.97 (0.12) 26.87 (0.10) 28.80 (0.10) 30.93 (0.08) 32.96 (0.08) 34.40 (0.09)
Exact solver (Gurobi MIP) 8.10 (0.24) 13.18 (0.17) 17.51 (0.15) 20.99 (0.15) 23.78 (0.12) 26.67 (0.10) 28.53 (0.10) 30.61 (0.09) 32.63 (0.08) 34.15 (0.09)

Table III-16: Comparison of network cost using different capacity optimization methods for networks
with various number of vertices N . Network layouts have been generated using the MST algorithm
on randomly generated locations for each N . Figures shown are averages over 100 networks. The
calculations were performed on an Intel Core i7-7600 CPU at 2.8 GHz and 16GB of RAM.

Capacity Optimization N 5 10 15 20 25 30 35 40 45 50
Greedy capacity reinforcement 8.29 (0.25) 14.17 (0.17) 18.18 (0.13) 22.16 (0.13) 25.22 (0.12) 28.83 (0.12) 31.31 (0.10) 34.00 (0.10) 37.11 (0.11) 39.78 (0.10)
Greedy capacity reduction 8.45 (0.26) 14.85 (0.18) 18.85 (0.14) 22.48 (0.12) 25.65 (0.11) 28.82 (0.11) 31.34 (0.09) 33.59 (0.08) 36.42 (0.08) 38.70 (0.08)
PECA 8.19 (0.25) 13.67 (0.17) 17.25 (0.12) 20.70 (0.11) 23.50 (0.10) 26.54 (0.11) 28.84 (0.09) 30.99 (0.08) 33.59 (0.09) 35.78 (0.08)
Exact solver (Gurobi MIP) 8.16 (0.25) 13.62 (0.17) 17.13 (0.12) 20.54 (0.11) 23.31 (0.10) 26.30 (0.11) 28.55 (0.09) 30.65 (0.08) 33.27 (0.09) 35.34 (0.08)

Table III-17: Comparison of network cost using different capacity optimization methods for networks
with various number of vertices N . Network layouts have been generated using the greedy network
construction. Figures shown are averages over 100 networks.

Capacity Optimization N 5 10 15 20 25 30 35 40 45 50
Greedy capacity reinforcement 13.63 (0.33) 32.14 (0.22) 53.20 (0.20) 75.18 (0.19) 95.91 (0.17) 120.03 (0.15) 143.08 (0.14) 168.74 (0.15) 190.08 (0.12) 212.02 (0.13)
Greedy capacity reduction 13.92 (0.35) 32.41 (0.22) 51.54 (0.18) 71.12 (0.16) 89.15 (0.14) 109.21 (0.12) 128.65 (0.11) 147.85 (0.12) 168.24 (0.10) 185.06 (0.11)
PECA 13.42 (0.33) 30.80 (0.21) 49.39 (0.18) 68.12 (0.16) 85.36 (0.15) 105.08 (0.13) 123.79 (0.12) 141.65 (0.12) 162.13 (0.10) 178.30 (0.11)
Exact solver (Gurobi MIP) 13.40 (0.33) 30.60 (0.21) 49.00 (0.18) 67.32 (0.16) 84.28 (0.15) 103.62 (0.13) 121.94 (0.12) 140.05 (0.12) 159.30 (0.10) 175.37 (0.11)

Table III-18: Comparison of network cost using different capacity optimization methods for networks
with various number of vertices N . Network layouts have been generated using a randomly generated
layout with randomly generated locations for each N . Figures shown are averages over 100 networks.
The calculations were performed on an Intel Core i7-7600 CPU at 2.8 GHz and 16GB of RAM.
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6.2.6 Sensitivity Analysis – High Demand (Runtime)

Below the corresponding runtimes for the high demand case are shown. For each

N , the average over 100 networks is reported.

Capacity Optimization N 5 10 15 20 25 30 35 40 45 50
Greedy capacity reinforcement 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.05 0.06
Greedy capacity reduction 0.00 0.01 0.02 0.04 0.07 0.09 0.15 0.20 0.26 0.34
PECA 0.00 0.00 0.01 0.02 0.04 0.05 0.08 0.10 0.15 0.19
Exact solver (Gurobi MIP) 0.01 0.02 0.04 0.06 0.10 0.13 0.17 0.22 0.27 0.33

Table III-19: Comparison of the average runtime using different capacity optimization methods for
networks with various number of vertices N . Network layouts have been generated using the MST al-
gorithm on randomly generated locations for each N . Figures shown are averages over 100 networks.
The calculations were performed on an Intel Core i7-7600 CPU at 2.8 GHz and 16GB of RAM.

Capacity Optimization N 5 10 15 20 25 30 35 40 45 50
Greedy capacity reinforcement 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.03 0.04
Greedy capacity reduction 0.00 0.01 0.02 0.04 0.07 0.10 0.15 0.26 0.28 0.36
PECA 0.00 0.00 0.00 0.01 0.02 0.04 0.06 0.11 0.12 0.18
Exact solver (Gurobi MIP) 0.01 0.02 0.03 0.06 0.09 0.13 0.17 0.28 0.28 0.34

Table III-20: Comparison of average runtimes using different capacity optimization methods for net-
works with various number of vertices N . Network layouts have been generated using the greedy
network construction. Figures shown are averages over 100 networks. Most runtimes are fairly small
(below 1 second), hence, the coefficient of variation is omitted. The calculations were performed on an
Intel Core i7-7600 CPU at 2.8 GHz and 16 GB of RAM.

Capacity Optimization N 5 10 15 20 25 30 35 40 45 50
Greedy capacity reinforcement 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.04 0.05 0.06
Greedy capacity reduction 0.00 0.01 0.02 0.04 0.07 0.10 0.14 0.19 0.25 0.31
PECA 0.00 0.00 0.01 0.01 0.02 0.04 0.06 0.08 0.10 0.13
Exact solver (Gurobi MIP) 0.01 0.02 0.04 0.06 0.09 0.12 0.17 0.20 0.26 0.31

Table III-21: Comparison of the average runtime using different capacity optimization methods for
networks with various number of vertices N . Network layouts have been generated using a randomly
generated layout with randomly generated locations for each N . Figures shown are averages over 100
networks. The calculations were performed on an Intel Core i7-7600 CPU at 2.8 GHz and 16GB of
RAM.



CHAPTER IV

QUANTIFYING THE EFFECT OF LOAD

COINCIDENCE ON NETWORK DESIGN

In the previous chapter, the monetary benefit of including load coincidence in distribu-

tion network design have been demonstrated. Load coincidence has been included

by using a standard function for the coincidence factor from Dickert and Schegner

(2010). Now, the objective is to better understand how changes in this function affect

network cost and layouts.

In Chapter I, three trends have been presented that can result in a more coincid-

ing energy usage, namely (A) direct adaptations to climate change, (B) an increasing

share of EVs, and (C) a further decentralized energy generation. In the present chap-

ter, these trends are translated into scenarios by assigning different functions for the

coincidence factor to each of the scenarios. The Tabu Search metaheuristic is used

to generate networks for each of these scenarios. Both the model and the solution

approach are slightly modified to give a more generalizable problem and to allow for

the trouble-free creation of simulated network instances with N = 100, even for high

demand situations. The set of 74 real-world network instances is used again as a

case study. The results indicate that changes in the coincidence factor can have sig-

nificant effect on network costs and layouts. Depending on the scenario and network

size, network cost can more than double.

85



CHAPTER IV. QUANTIFYING THE EFFECT OF LOAD COINCIDENCE ON
NETWORK DESIGN 86

In summary, this chapter has the following contributions:

1. A more generalized version of the CAVLP is presented. It is proven that this new

problem is also NP-hard.

2. The solution methods are refined to be able to solve the generalized problem and

to allow for trouble-free creation of large network instances.

3. For the first time, it is investigated how differences in the coincidence factor affect

network cost and layouts. A better understanding of the interplay between coin-

cidence factors and network cost and layouts provides a practical value-add as it

guides network planners in solving real-world problems in a more cost-effective

manner. It also provides valuable insights to other stakeholders (e. g., policy mak-

ers).

4. The results of the experiments show that particularly the simultaneous charging

of EVs can cause a significant increase in network cost (up to 84 % in the com-

putational experiments and up to 159 % in the case study). However, the effects

from simultaneously running AC units or PV feed-in cannot be neglected either

(up to 27 % cost increase in the computational experiments and up to 108 % cost

increase in the case study).
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1 The Model

A generalized version of the CAVLP is used in this chapter. We call this problem

the generalized capacitated arborescence with voltage drops and load coincidence

problem (gCAVLP). The notation is provided in Table IV-1. This notation is almost

identical to the the notation of the CAVLP.

Symbol Description Unit/range
G Directed multigraph G = (V,E)
V Set of all vertices
N Number of vertices N = |V |
i, j Indices of vertices i, j = 0, . . . , N − 1
Di Demand of vertex i D0 = 0, Di ̸=0 = D > 0.
E Set of all directed edges
k Index of line type k = 1, . . . , |A|
(i, j)k Directed edge from i to j; k denoting its type (i, j)k ∈ E
A Set of edge capacities depending on line type k (in ascending order)
akij Edge capacity akij > 0, akij ∈ A
C Set of current carrying capacities depending on line type k (in ascending order)
ckij Current carrying capacity of an edge ckij > 0, ckij ∈ C
Nj Set of all vertices that can be reached from j
Γ Graph representing one solution of the problem Γ = (V,E ′), with E ′ =

{
(i, j)k ∈ E | xk

ij = 1
}

Γi Subgraph of Γ including j and all edges and vertices reachable from j
|Γj| Number of vertices in Γj

γ(|Γj|) Coincidence factor (discount factor depending on number of vertices) 0 < γ(|Γj|) ≤ 1
Di (Un-discounted) sum of all demands in Γj

d(i) Depth of vertex i, i. e., number of hops to reach i from the source in Γ
Fij Flow through edge (i, j)k Fij > 0
lij Length of edge (i, j)k lij ∈ R+

P Set of all paths from source vertex 0 to any leaf vertex Set of edge sequences
p Specific path from source vertex 0 to a leaf vertex Edge sequence, p ∈ P
cc Construction costs Monetary unit per distance
cm Material costs Monetary unit per distance per capacity unit
Ui Voltage at vertex i Ui > 0
U Voltage at transformer U > 0, U0 = U
Ucrit Critical voltage level Ucrit > 0
Q Threshold value for voltage drop Q = U − Ucrit

xk
ij Decision variable for edge from vertex i to j with capacity akij xk

ij ∈ {0, 1}

Table IV-1: Notation for the gCAVLP.

In the original CAVLP, one capacity akij was introduced. This capacity corre-

sponded to the cross section of the grid line. Three assumptions were implied here,

namely that (a) material cost is proportional to akij , (b) the maximum allowed elec-

tric current is proportional to akij , and that (c) voltage drops are inversely proportional

to akij . For the gCAVLP, assumptions (a) and (c) are kept. Assumption (a) is sup-

ported by the cost data used for the case studies. Assumption (c) is supported by the

physical nature of voltage drops. Assumption (b) is an approximation of reality that

arises when the relationship between cross section and maximum allowed current is

linearized. In reality, however, the maximum allowed current is limited by the heat

dissipation of the electrical cable used. Heat dissipation is proportional to the cable’s
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outer surface area and thus is proportional to
√

akik. For this reason, a new capacity

ckij is introduced. This property is often referred to as current carrying capacity, rep-

resenting the maximum allowed flow for each line type k. The gCAVLP is then given

by

min
∑

(i,j)k∈E

xk
ij [lijcc + lijcm akij] (IV-1)

s. t.
∑

k∈{1,...,|A|}

xk
ijc

k
ij ≥ Fij , ∀i, j ∈ V , (IV-2)

∑
j

Fji −
∑
j

Fij = γ (|Γi|) Di−

∑
j

∑
k

xk
ij

(
[γ (|Γj|)− γ (|Γi|)]Dj

)
, ∀i ∈ V \ {0} , (IV-3a)

|Γi| = 1 +
∑
j

∑
k

xk
ij |Γj| , ∀i ∈ V , (IV-3b)

Di = Di +
∑
j

∑
k

xk
ij Dj , ∀i ∈ V , (IV-3c)

|Γ0| = N − 1 , (IV-3d)

D0 =
∑
j

Dj , (IV-3e)

∑
i

∑
k

xk
ij = 1 , ∀j ∈ V \ {0} , (IV-3f)

∑
k

xk
ij

akij
lij

(Ui − Uj) = Fij , ∀i, j ∈ V , (IV-4a)

Ui ≥ Ucrit , ∀i ∈ V , (IV-4b)

U0 = U . (IV-4c)

This problem formulation is identical to the problem in Equations (III-1) to (III-4c), with

the exception of Equation (IV-2). In this equation, the current carrying capacity ckij is

used instead of akij .
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1.1 Solution Properties

Because the gCAVLP is a generalized version of the original CAVLP, the gCAVLP is

NP-hard. This is stated by the following proposition.

Proposition 6 The gCAVLP is NP-hard.

Proof. This is proven by reduction. By setting ckij = akij for all i, j, k, the gCAVLP

reduces to the original CAVLP. This problem is NP-hard (see Proposition 1). □

In a similar way, it can be shown that the solution properties derived in Section 1.6

and Section 2.3 are still valid for the gCAVLP.

Proposition 7 The solution properties in Proposition 3, 4 and 5, Remarks 2 and 3,

as well as Corollaries 1 and 2 hold true for the gCAVLP.

Proof. The proof starts by proving this for Remarks 2 and 3. These remarks regard

the MST and the starred network. Regarding the MST, we follow the proof of Re-

mark 2: In low demand situations, the constraints for both line sizing in Equation (IV-2)

and voltage drops in Equation (IV-4b) are automatically fulfilled and can be ignored.

Therefore, Remark 2 also holds true for the gCAVLP because the two problems are

identical. Regarding the starred network, we need to make the reasonable assump-

tion that the higher the cross section, the higher the current carrying capacity. This is

always the case in reality, as grid lines with larger cross sections can also carry larger

currents. Therefore, by choosing the maximum value for akij , we automatically chose

the maximum value for ckij . We can then follow the proof for Remark 3.

Proposition 3 assumes that the constraint for the voltage drop is binding. Therefore,

we can ignore the current carrying capacity ckij in the generalized problem. If this is

the case, the gCAVLP is identical to the original CAVLP and Proposition 3 holds true.

Propositions 4 and 5 directly result from Proposition 3 and are therefore automatically

fulfilled.
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Corollaries 1 and 2 directly follow from Propositions 3 and 4 and are thus also fulfilled,

which concludes this proof □

2 Optimization Methods

2.1 General Optimization Approach

Similar to before, the gCAVLP is split into the two sub-problems, namely (A) gener-

ating the network layout and (B) capacity optimization. (A) generating the network

layout determines which connections {xij} to choose. (B) capacity optimization then

determines the capacities {aij} (and thus also {cij}) for this particular layout. The

computational experiments in Section 3 and the real-world case study in Section 4

have shown that the optimization method with the best cost performance is the com-

bination MST + Tabu Search. However, this combination has one shortcoming: As

demands get higher and networks get larger, the MST produces too many infeasible

networks (see Section 3.3).

As a remedy, the following approach is developed. The optimization approach

uses the MST as a starting network layout whenever possible (i. e., if the MST is a

feasible layout), and reverts to other layouts with an increased branching in the rest of

cases. To generate these networks with increased branching, the Esau-Williams (EW)

algorithm (Esau and Williams, 1966) is utilized. This algorithm is described in detail in

Section 2.2.2. In short, it is a greedy algorithm that provides near-optimal solutions to

the capacitated minumum spanning tree (CMST) problem (Bruno and Laporte, 2002).

The CMST problem is identical to the CSSAr problem but with undirected edges (Voß,

2001). It aims to find the cycle-free network connecting all N vertices with the shortest

total edge length. Thereby, each of the subtrees directly connected the source must

contain at most K vertices. As shown below, for K = 1, the Esau-Williams algorithm

always returns the starred network (Remark 5). For K = N − 1, the solution is close

to the MST.
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In the proposed optimization approach, the EW algorithm is used if the MST al-

gorithm produces an infeasible layout. Then, the EW algorithm is used to find the

network layout for K = N
2

. If this is still infeasible, the EW algorithm is used with

K = N
4

, K = N
8

, etc., until a feasible layout is found. Essentially, this allows us to

tune the branching of the starting layout depending on the demand situation. This

approach to determine the initial layout is exemplified in Figure IV-1, where the MST

and various layouts are displayed. These other layouts have been found using the

EW algorithm.

After the initial layout is found, this layout is used as input for the Tabu Search

algorithm to find a solution for the overall problem. This general optimization approach

is detailed in Algorithm 8.

Algorithm 8 General Optimization Approach
1: Create MST by using MINIMUMSPANNINGTREEALGORITHM

2: {aij} ← CAPACITYOPTIMIZATIONMETHOD({xij})
3: n = 1
4: while network is infeasible do
5: Perform ESAUWILLIAMSALGORITHM(K ← ⌈ N2n ⌉) ▷ N

2n is rounded up, such that K ≥ 1 and
integer

6: {aij} ← CAPACITYOPTIMIZATIONMETHOD({xij})
7: n← n+ 1

8: PerformTABUSEARCH({xij})
9: return X∗

The optimization approach as described in Algorithm 8 produces infeasible solutions

only if there is no solution at all. This is described by the following remark.

Remark 4 If feasible solutions to the gCAVLP exist, the solution approach in Algo-

rithm 8 will return a feasible solution.

Proof. In the worst case, i. e., if no feasible solution is found for several iterations, the

optimization approach eventually sets K ← 1 in line 5. As shown later (Remark 5),

the EW algorithm returns the starred network layout, if K is set to 1. Therefore, the

starting layout is the starred network. For the original CAVLP, we already saw that

if feasible solutions exist, the starred network is one of them (Remark 3). Because
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MST EW (K = 10)

EW (K = 5) EW (K = 3)

EW (K = 2) EW (K = 1)

Figure IV-1: Approach to determine initial layout. Network layouts with N = 20, generated using the
MST algorithm (top left) and the EW algorithm with decreasing values for K. The branching (i. e., the
number of vertices connected to the source) increases, the smaller K gets. The MST exhibits the
lowest branching.
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this remark also holds true for the gCAVLP (Proposition 7), we know that the solution

approach will return a feasible solution, if it exists. □

2.2 Generating an Initial Layout

Below, the two algorithms used to create an initial network layout are described.

These are the minimum spanning tree algorithm and the Esau-Williams algorithm.

2.2.1 Minimum Spanning Tree Algorithm

Prim’s algorithm (Prim, 1957) is used to determine the MST. The algorithm and its

properties are described in Section 2.1.1.

2.2.2 Esau-Williams Algorithm

The Esau-Williams algorithm is a greedy algorithm for solving the CMST problem

(Jothi and Raghavachari, 2004). This problem is identical to the CSSAr problem, with

the exception of having undirected edges (while the edges of the CSSAr problem are

directed (Voß, 2001). Therefore, the directions of all edges must be fixed in the last

step of the optimization process below. The objective of the CMST problem is to find

an MST with the additional constraint that each of the subtrees directly connected the

source vertex must contain at most K vertices.

The general principle of the EW algorithm is to subsequently merge subtrees. This

is done until no benefit can be reached by merging two subtrees without violating the

capacity constraint. The capacity constraint for merging two subtrees Γi and Γj is

given by |Γj| + |Γi| ≤ K. The algorithm uses two lists, which are initialized in line 2.

The first list bi tracks the benefit of reconnecting the subtree Γi. The second list ni

tracks the best option for Γi to be connected to. For each vertex i, ni corresponds to

the nearest neighbor to i not contained in Γi not violating the capacity constraint. The

algorithm is presented in Algorithm 9.
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Algorithm 9 Esau-Williams Algorithm
1: Initialize xij ← 0 for all i, j
2: Initialize bi, ni ← 0 for all i
3: x0j ← 1 for all j and xij ← 0 otherwise ▷ Create starred layout
4: while 1 do
5: bmax ← 0 ▷ Set maximum benefit bmax to 0
6: for each vertex i ∈ V directly connected to the source do
7: Find nearest neighboring vertex j ̸∈ Γi, with |Γj |+ |Γi| ≤ K
8: ni ← j ▷ Store nearest neighbor for later
9: bi ← l0i − lij ▷ Calculate benefit value for connecting i and j

10: bmax ← max
i

(bi) ▷ Determine maximum benefit

11: if bmax ≤ 0 then break ▷ Break if no further improvement can be made
12: m← i, such that bi = bmax

13: n← nm

14: xmn ← 1, x0m ← 0 ▷ Connect m to n and delete old edge
15: for each leaf vertex j do
16: for each edge (m,n) in path from 0 to j do
17: xmn ← 1, xnm ← 0 ▷ Check direction of all edges
18: return {xij}

The EW algorithm starts by creating a starred network layout in line 3. The main

part of the algorithm (lines 4 to 14) is performed until no further improvement can

be made. The possibility of improvement is tracked by the maximum benefit bmax,

which is set to 0 in line 5. In lines 6 to 8, the algorithm loops through each vertex i

directly connected to the source and finds the nearest neighbor ni. By doing so, the

algorithm takes into account the capacity constraint in line 7. The potential benefit for

connecting i and ni (i. e., the reduction in length) is calculated in line 9. The maximum

possible benefit for reconnecting any vertex is determined in line 10. If no positive

benefit can be made (line 11), the algorithm jumps directly to line 15. If this is not the

case, it makes the reconnection resulting the highest benefit in lines 12 to 14. The

EW algorithm is designed to solve the CMST problem with undirected edges. Thus,

at the end of the algorithm, the directions of all edges need to be checked. It needs to

be ensured that they point away from the source. This is done in lines 15 to 17. The

algorithm returns the (directed) network layout {xij} in line 18.

The runtime of the EW algorithm is in O(N2 logN) and is known to be among the

most efficient algorithms to solve the CMST problem (Jothi and Raghavachari, 2004).
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The following remark concerns an important property of the EW algorithm, namely

that it returns the starred network layout for K = 1. This is crucial for proving Re-

mark 4.

Remark 5 For K = 1, the Esau-Williams algorithm always returns the starred net-

work layout.

Proof. The EW algorithm starts with a starred network layout in line 3. If K is set to

1, no nearest neighbor fulfilling the capacity constraint can be found in line 7. This is

because Γi ≥ 1, for all i. Therefore, no two subgraphs |Γi| and |Γj| can be merged

without violating the capacity constraint |Γj| + |Γi| ≤ 1. As a consequence, bmax has

the value 0 and the algorithm breaks in line 11. □

2.3 Improving an Existing Network Layout

The computational experiments in Section 3 and the case study in Section 4 show

that the Tabu Search metaheuristic outperforms other solution methods. This is inde-

pendent of the network size and the demand situation (low demand vs. high demand).

Therefore, the Tabu Search algorithm presented in Section 2.2.5 is used to improve

the network layout.

2.4 Optimizing the Capacities

The gCAVLP is split into the two sub-problems: (A) generating the network layout and

(B) capacity optimization. Below, the problem formulation for (B) capacity optimization

is given. It determines the capacities {aij} (and thus also {cij}) for a given layout. The

main difference between sub-problem (B) and the full gCAVLP (i. e., the combination

of the two sub-problems) is the fact that capacity optimization only considers a subset

of edges E ′ ⊂ E, namely these edges where xij = 1 has been determined in the

first sub-problem. As a consequence, the flows are now given and Fij is no longer
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an auxiliary decision variable. Capacity optimization is formulated as a binary integer

problem:

min
∑

(i,j)k∈E′

xk
ijlij a

k
ij (IV-5)

subject to
∑

k∈{1,...,|A|}

xk
ijc

k
ij ≥ Fij , ∀i, j ∈ {0, . . . , N − 1} , (IV-6)

∑
k

xk
ij = 1 , ∀(i, j)k ∈ E ′ , (IV-7)

∑
(i,j)k∈p

xk
ijlij

Fij

akij
≤ U − Ucrit = Q , ∀p ∈ P . (IV-8)

The problem above is identical to the one in Equations (III-38) to (III-40), with one

exception: In Equation (IV-6), the capacity akij is substituted with the current carrying

capacity ckij .

To solve the capacity optimization problem, the PECA algorithm from Section 2.3.2

is used. This algorithm has shown to be very efficient (see Section 6.2). The algo-

rithm needs to be adjusted slightly because of the introduction of the current carrying

capacity ckij in the gCAVLP. In line 3 in Algorithm 7, the capacities aij need to be set

to

aij ← min
k

akij

∣∣∣∣∣∣ ckij ≥ Fij and akij ≥
1

Q

∑
(i,j)∈p

lijFij

 .

Similar changes need to be applied in line 16. Here the line sizing constraint changes

from ak−1
ij ≥ Fij to

ck−1
ij ≥ Fij .

The remaining algorithm stays untouched.
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3 Scenarios for Coincidence Factors

3.1 Background and Assumptions

The objective of this chapter is to investigate the effect of various coincidence fac-

tors on network design. The functions for the coincidence factors are motivated by

new technologies that shift demand patterns (e. g., PV systems and EVs). Four dif-

ferent scenarios are developed, which are detailed below, namely a base scenario

(Section 3.2.1), a scenario with increased coincidence (Section 3.2.2), a worst case

scenario for simultaneous charging of EVs (Section 3.2.3), and a worst case scenario

for PV feed-in (Section 3.2.4).

Because it is the objective to investigate changes in load coincidence isolated from

changes in peak loads themselves, in all scenarios, the individual peak loads are kept

at an identical level. This choice is made on purpose to demonstrate how large the

influence of load coincidence on its own can be.

3.2 Building the Scenarios

The formulas used for the coincidence factor γ(|Γj|) in all scenarios are based on

Dickert and Schegner (2010) and originates from Rusck (1956). For better readability,

in this section, |Γj| is replaced by N . γ(N) is thus the discount factor that can be

applied to a group of N loads. The formula for γ(N) reads

γ(N) = γlim + (1− γlim)N
−1/2 . (IV-9)

Below, this formula is quickly motivated. The derivation follows the one from Chap-

ter IV (A) in Dickert and Schegner (2010).
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We start with the assumption that the individual loads during the peak demand are

normal distributed. With this assumption, we can calculate the standard deviation σi

of an individual load curve Di(t), which yields

σi =

√
∫(Di(t)−D)2 dt . (IV-10)

Summing up multiple normally distributed loads results in a new load curve, which,

again, is normally distributed. The standard deviation of the resulting load curve is

σ =

√∑
i

σ2
i . (IV-11)

If the loads are similar, we can follow the argumentation of Rusck (1956), namely

that the difference between the maximum value of each load and its mean value is

proportional to the standard deviation. This yields

Dmax(N)−
∑
i

Di =

√∑
i

(Dmax,i −Di)2 , (IV-12)

with Dmax(N) being the coincident peak demand of N loads.

If we assume N loads that are all normally distributed with mean load D and peak

load D, this can be rewritten to give

Dmax(N) = N ·D + (D −D) ·
√
N . (IV-13)

Dividing Equation (IV-13) by N results in Equation (IV-9), with γlim = Dmax(N)/N .

Finally, it should be noted that a variety of different formulas for the coincidence

factor exist. For a specific region, they are often determined in empirical studies

(e. g., Nickel and Braunstein, 1981). In this thesis, the choice Equation (IV-9) is made

because it is a very general formula and because there are existing parametrizations

for various customer types that can be utilized to develop the scenarios.
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3.2.1 Base Scenario

For the base scenario, the identical formula formula for the coincidence factor as

in Section 3 and Section 4 is used. The parameter γlim is set to 0.1, which yields

γ(N) = 0.1 + (1− 0.1)N−1/2 . (IV-14)

According to Dickert and Schegner (2010), this parametrization describes customer

types, where all domestic appliances are electric. Customers might have an elec-

tric stove and/or water boilers. However, customers should not have flow-type water

heaters or electric space heating (and/or cooling). This scenario corresponds to a

situation that is typical for countries like Germany or Switzerland, which is why it has

been chosen for the real-world case study in Section 4.

3.2.2 Increased Coincidence

For the scenario of increased coincidence, γlim = 0.7 is chosen. For the coinci-

dence factor, this yields

γ(N) = 0.7 + (1− 0.7)N−1/2 . (IV-15)

The value of γlim = 0.7 corresponds to customers that exhibit electric space heating

(Dickert and Schegner, 2010). It is therefore used as a proxy for situations, in which

large loads are being used by multiple households in a relatively coinciding manner.

Examples other than space heating might be space cooling (using AC units) or charg-

ing of EVs. This scenario thus corresponds to geographic regions where electric

space heating or cooling is typical, or a scenario of increased EV penetration. For an

EV penetration rate of close to 100 %, a separate worst case scenario is developed

below.
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3.2.3 Worst Case Scenario: Simultaneous Charging of EVs

The uncontrolled simultaneous charging of EVs poses enormous challenges to

distribution networks (Richardson et al., 2012; Wieland et al., 2015). Gaul et al. (2017)

analyzed 450,000 charging sessions at public charging stations in 2014. They found

out that in 300 hours of the year, all connected cars were charging at full power.

The authors thus conclude that a coincidence factor of 1.0 must be assumed when

describing the underlying distribution network. For the worst case scenario of simul-

tansous charging of EVs, it is thus assumed that

γ(N) ≡ 1.0 . (IV-16)

Transferring this to a residential setting, one could argue that this corresponds to a

hypothetical scenario, where all households in a neighborhood are in possession of

at least one EV, and, where the charging occurs sometimes simultaneously (e. g.,

overnight). At first, this seems like an extreme scenario. However, one could also

argue that the scenario underestimates the stress put on the network, because it as-

sumes that the peak demands of the individual households remain unchanged. In

practice, EV charging is added on top of the existing power demand of a household.

If, for instance, the residents arrive from work in the evening and charge their EV

simultaneously to cooking dinner, this would certainly increase the peak demand of

the household. Note that in this thesis the objective is to investigate the influence

of changes in the coincidence factor independently from changes in peak demand.

Therefore, the individual peak demands are identical in all scenarios for better com-

patibility.

3.2.4 Worst Case Scenario: PV Feed-In

Developing the appropriate formula for integrating the uncontrolled feed-in of PV

energy into the distribution network works slightly different than the integration of

charging EVs. The reason is that (at least in residential settings) the peak power of
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a PV system of a single household does not exceed the peak demand of this house-

hold. Therefore, naively viewed, adding a PV system should not add additional strain

on the network. However, if multiple households feed-into the network, these feed-ins

are very likely to coincide (because of the underlying weather conditions). This co-

inciding nature of energy feed-in contrasts the stochastic nature of energy demand.

When building the coincidence factor for this scenario, these two factors need to be

combined.

Figure IV-2: Comparison of peak demand per household (solid line) and peak feed-in per household
(dashed line) for households with Dpeak = 21 kW and DPV

peak = 10 kW. At N ≈ 5, the curves cross.
Therefore, for N ≤ 5, the peak demand is dominant, for N > 5, the peak feed-in is dominant.

To illustrate this, consider several households with a peak demand of Dpeak =

21 kW, each with a PV system with a peak power of DPV
peak = 10 kW. The curves for

coinciding peak demand per household N and coinciding feed-in power per house-

hold N are shown in Figure IV-2. The former follows the base scenario from Sec-

tion 3.2.1, the latter assumes γ(N) ≡ 1.0, but at a lower power of 10 kW. If the two

curves are combined, we need to take into account the maximum of both curves. The
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coinciding demand is thus dominant for small N , while the PV feed-in is dominant for

large N . For the scenario, the formula for the coincidence factor becomes

γ(N) = max

{
0.1 + (1− 0.1)N−1/2,

DPV
peak

Dpeak

}
. (IV-17)

3.2.5 Summary of Scenarios

The four scenarios are depicted in Figure IV-3. The coincidence factor γ(N) is

shown as a function of N . Clearly, the base case exhibits the smallest value for γ,

for all N . The worst case scenario for simultaneous charging of EVs has the highest

value for γ, for all N . The scenario for increased coincidence converges towards a

coincidence factor of γlim = 0.7. Therefore, its value is above the worst case scenario

for PV feed-in, which remains constant at γ(N) = 0.476, for N > 5.

Figure IV-3: Comparison of the coincidence factors γ(N) assumed for various scenarios: Base sce-
nario (solid line), increased coincidence (dotted line), worst case scenario: simultaneous charging of
EVs (dashed line), worst case scenario: PV feed-in (dash-dotted line).
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4 Computational Experiments

The effect of changes in the coincidence factor is evaluated using randomly gen-

erated problem instances of various sizes. The experimental setup is presented in

Section 4.1. The results are reported in Section 4.2. Three cases are considered

in the experiments: The main case (medium density) exhibits a household density

(i. e., loads per ha) that is comparable to the density found in the real-world networks

of the case study. Further, a case with low household density and a case with high

household density are added.

4.1 Experimental Setup

The parameters for the computational experiments is presented in Table IV-2. As

opposed to the previous computational experiments in Section 3, the identical units,

cost functions, capacities, and parameters as in the real-world case study are used.

This is for the following reason. Previously, the computational experiments served

to prove the effectiveness of the proposed solution methods. Now, only one solution

method is used and the objective is to approximate the (real-world) effect of load

coincidence.

Network
size

Network
area

Voltage drop
threshold

Peak
demands

N ∈ {20, 40, . . . , 100} 10.0 households per ha (high density)
1.0 households per ha (medium density)
0.1 households per ha (low density)

Ucrit = 0.97U Dpeak = 21 kW

Table IV-2: Parameters for computational experiments.

The experiments are conducted on networks ranging from N = 20 to N = 100.

This is made possible by the improved solution methods (see Section 2). The lo-

cations are randomly placed on a square grid. Depending on the case, the area of

the square is chosen, such that 10 households (high density), 1 household (medium

density), or 0.1 households (low density) are placed on it. The density in the main

case (medium density) corresponds to the density found in the real-world sample.
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The threshold for the voltage drop is set to Ucrit = 0.97U . The industry standard of

Dpeak = 21 kW is used for the peak demand per load as before. For the edge capac-

ities, values corresponding to commercially available copper cables are used. These

are identical to the ones used in the original networks. The capacity of these cables

is given as cross section in mm2. Capacities akij ∈ A are chosen from the set A =

{50mm2, 70mm2, 95mm2, 120mm2, 150mm2, 185mm2, 240mm2, 400mm2, 800mm2}.

The current carrying capacity per line type is given in A. The current carrying capac-

ities ckij ∈ C can be chosen from C = {185A, 228A, 274A, 313A, 352A, 398A, 464A,

510A, 671A}.

The unit conversions of the objective function and the constraints are similar than

in Section 4.2. The objective function reads

∑
(i,j)k∈E

xk
ij [34.62

CHF
m

lij + 0.1882 CHF
m mm2 lij a

k
ij] . (IV-18)

The line sizing constraint reads

0.4 kV
∑

k∈{1,...,|A|}

xk
ijc

k
ij ≥ Fij , ∀i, j ∈ {0, . . . , n− 1} . (IV-19)

Note that the flows are given in kW, while ckij is given in A. The constraint for the

voltage drops reads

∑
k

xk
ij

akij
lij

(Ui − Uj) =
√
3

0.4 kV
0.0181Ωmm2

m
Fij , ∀i, j ∈ {0, . . . , N − 1} ,

(IV-20a)

Ui ≥ 0.4 kV − 3% 0.4 kV , ∀i ∈ {0, . . . , N − 1} , (IV-20b)

U0 = 0.4 kV . (IV-20c)

The Tabu Search algorithm uses stabu = 10N . The length of the tabu list has been

set to 10 for networks of size N ≤ 60. For the larger networks (N > 60), a tabu list of

length 20 is chosen.
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4.2 Results

4.2.1 Main Case: Medium Household Density

Table IV-3 displays the results for the main case, i. e., the case with medium house-

hold density of 1.0 households per ha. The table shows the network cost in CHF on

the left and the corresponding network lengths in km on the tight. Additionally, the

number of branches is shown in brackets on the right hand side.

Cost in CHF Length in km (no. of branches)

Scenario N 20 40 60 80 100 20 40 60 80 100

Base Scenario 62,693 154,960 262,903 388,040 552,708 1.419 (2.5) 3.058 (2.9) 4.764 (3.5) 6.640 (4.8) 8.901 (6.0)

Increased Coincidence 67,464 178,680 314,139 487,631 704,483 1.450 (2.6) 3.217 (3.4) 5.226 (5.1) 7.459 (6.9) 10.225 (8.7)

Worst Case: Charging of EVs 75,400 220,424 409,903 667,388 1,015,165 1.535 (3.3) 3.716 (5.5) 6.405 (8.6) 9.799 (11.9) 14.434 (15.5)

Worst Case: PV Feed-In 68,290 178,133 314,797 486,914 705,379 1.459 (2.7) 3.254 (3.7) 5.214 (5.3) 7.501 (6.9) 10.225 (8.6)

Table IV-3: Left: Comparison of network cost in CHF for various number of loads N . Reported is the
cost averaged across 50 instances. The cells are shaded based on average cost. Right: Comparison of
network length in km with number of branches in parenthesis. The cells are shaded based on average
length.

Regarding network cost, it can be observed that, as expected, for all scenarios,

the network cost grows as the networks get larger. Further, the base scenario exhibits

the lowest cost for all network sizes, while the worst case scenario for simultaneous

charging of EVs has the highest cost. The other two scenarios (increased coincidence

and worst case: PV feed-in) are fairly comparable in cost. This means that changes

in the function for the coincidence factor do not have a significant cost effect, as long

as those changes are in between γlim ≈ 0.5 and γlim ≈ 0.7 (which is approximately

the magnitude of change between the two scenarios at hand). The cost difference

between these two scenarios in Table IV-3 can be ascribed to the stochastic nature of

the Tabu Search algorithm. Further, the relative cost gap between the base scenario

and the other three scenarios increases with N : For N = 20, the gap is between

8 and 20 %, for N = 100, the gap is between 27 and 84 %.

Regarding network length and branching, both figures increase with N . Similar

to before, the gap between the base scenario and the other three scenarios also

increases the larger the networks get. For the network length, this gap increases

from 2–8 % for the smallest networks (N = 20) to 15–65 % for the largest networks
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(N = 100). The branching grows even more: The smallest networks (N = 20) are 4–

28 % more branched-out compared to the base scenario, while the largest networks

(N = 100) exhibit branching that is 43–159 % higher than the base scenario. This

means that, for N = 100, the networks in the worst case scenario for simultaneous

charging of EVs have more than 2.5-times as many branches as networks in the base

scenario.

For the sake of completeness, the runtimes are addressed below. Table IV-4

shows the average runtimes for the main case. First, note that in general, runtimes

increase as the networks get larger. For the smallest instance (N = 20), runtimes for

all scenarios stay below one minute per network instance. For the largest instances

(N = 100), runtimes are less than one hour per instance. These runtimes are more

than sufficient for real-world applications. Second, the runtimes for the base scenario

are longest, followed by the worst case scenario for PV feed-in and the scenario with

increased coincidence. The worst case scenario for simultaneous charging of EVs

exhibits the smallest runtimes. This is in line with observations made in Sections 3.2

and 3.3, namely that the smaller the branching, the higher the runtimes. This can be

explained by the nature of the Tabu Search heuristic. In each iteration, this heuristic

forms a cycle within the network. It then deletes the most cost-efficient edge within

that cycle by looping through all edges of the cycle. As the branching gets smaller, the

branches themselves become longer. This translates into longer cycles and therefore

longer runtimes.

Time in seconds
Scenario N 20 40 60 80 100
Base Scenario 31.19 421.02 1,442.44 3,170.52 5,688.35
Increased Coincidence 29.91 295.63 964.38 2,392.83 4,034.09
Worst Case: Charging of EVs 19.51 181.66 656.40 1,283.75 2,441.95
Worst Case: PV Feed-In 30.70 310.91 990.22 2,387.38 4,286.23

Table IV-4: Comparison of runtimes in seconds for various number of loads N . Reported is the aver-
aged runtime across 50 instances.

In summary, the experiments show that changes in load coincidence have a sig-

nificant effect on network cost, length and branching. Network cost can be up to 85 %
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higher compared to the base scenario, which is accompanied by a 62 % increase in

network length and a 2.5-fold higher branching. Simultaneous charging of EVs has

the most severe effect on network cost. The cost effect of the scenario of increased

coincidence is comparable to the effect that is expected from an uncontrolled PV feed-

in.

4.2.2 Low and High Household Density

Table IV-5 displays both the results for the case with a low household density of

0.1 households per ha (top) and the results for the case with a high household density

of 10.0 households per ha (bottom). The table shows the network cost in CHF on the

left and the corresponding network lengths and number of branches on the right.

Low Household Density

Cost in CHF Length in km (no. of branches)

Scenario N 20 40 60 80 100 20 40 60 80 100

Base Scenario 296,861 921,418 2,109,621 4,079,893 6,570,501 4.869 (2.9) 12.849 (6.1) 27.059 (10.9) 49.845 (17.8) 82.445 (26.6)

Increased Coincidence 308,439 960,924 2,161,832 4,084,742 6,573,492 5.093 (3.5) 13.467 (6.9) 27.901 (11.9) 50.297 (18.8) 82.183 (27.2)

Worst Case: Charging of EVs 420,528 1,524,283 3,510,802 6,069,448 8,852,005 6.284 (5.3) 20.210 (12.5) 48.188 (23.9) 76.980 (34.0) 116.451 (49.4)

Worst Case: PV Feed-In 313,392 950,867 2,157,650 4,151,948 6,580,144 5.071 (3.4) 13.278 (6.7) 27.95 (11.9) 50.943 (19.1) 82.452 (27.7)

High Household Density

Cost in CHF Length in km (no. of branches)

Scenario N 20 40 60 80 100 20 40 60 80 100

Base Scenario 17,158 37,044 60,879 84,778 111,701 0.439 (2.2) 0.900 (2.4) 1.404 (2.7) 1.879 (3.1) 2.392 (3.4)

Increased Coincidence 17,395 39,192 66,380 94,680 127,253 0.440 (2.3) 0.938 (3.2) 1.517 (4.5) 2.064 (5.2) 2.587 (5.6)

Worst Case: Charging of EVs 20,088 51,536 89,180 138,822 180,610 0.483 (3.4) 1.120 (5.7) 1.963 (8.9) 2.514 (9.5) 3.184 (10.5)

Worst Case: PV Feed-In 17,452 39,086 66,622 94,685 127,250 0.440 (2.2) 0.936 (3.2) 1.516 (4.4) 2.061 (5.2) 2.597 (5.6)

Table IV-5: Top: Low household density. Bottom: High household density.
Left: Comparison of network cost in CHF for various number of loads N . Reported is the cost averaged
across 50 instances. The cells are shaded based on average cost. Right: Comparison of network
length in km with number of branches in parenthesis. The cells are shaded based on average length.

First, an overall observation can be made when comparing the main case from

Section 4.2.1 (medium household density) to the two other cases (low and high house-

hold density). While overall patterns are similar, the magnitude of the effect caused

by changes in the coincidence factor are higher in the main case than in both other

cases. Thus, when starting at the main case, both increasing and decreasing the

household density mitigates the effect of load coincidence. Possible reasons for this

are discussed below.
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Let’s start by comparing the network cost. Overall, the costs for the case with

low household density are much higher compared to the other cases. This is to be

expected because this case has 10- or 100-times fewer loads per ha. This causes

the grid lines to be much longer and, because of the higher voltage drops along the

longer lines, this causes the capacities to be higher as well. Both factors contribute

to higher network cost. Further, similar patterns as in the main case are observed:

The network cost grows as the networks get larger, the base scenario has the lowest

cost and the worst case scenario for simultaneous charging of EVs has the highest

cost. The other two scenarios (increased coincidence and worst case: PV feed-in) are

fairly comparable in cost. For the case with high household density, the relative cost

gap between the base scenario and the other three scenarios increases with N : The

gap increases from 1–17 % (N = 20) to 14–62 % (N = 100). For the case with low

household density, the gap decreases from 4–42 % (N = 20) to 0–35 % (N = 100).

The reason for this is related to the changes in network length and branching and is

detailed below.

Regarding network length and branching, both figures increase with N as before.

However, in stark contrast to before, all networks except the ones from the worst

case scenario for charging of EVs are fairly similar in length and branching. This can

be explained as follows. In the high density case, distances and therefore voltage

drops are relatively short. Therefore, for almost all cases, a network layout close to

the MST can be achieved without violating line sizing and voltage drop constraints.

The MST is the optimal layout for situations where voltage drops can be neglected

(Remark 2). For the low density case, we have the opposite situation: Distances

are relatively long, and therefore, the optimal layout is close to the starred network

(Remark 3). This is seen in the data by the fact that each branch contains on average

only 2–6 loads. The cost function has been chosen to resemble real-world costs for

the construction of electricity distribution networks. The construction cost component

is much higher than the material cost component. Therefore, even if a higher capacity
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must be chosen for one of the scenarios when compared to the base scenario, the

cost difference will not be as high.

Regarding runtimes, Table IV-6 shows the runtimes for both cases. The highest

runtimes observed are 6.0 hours (21,613 seconds) per network instance. This is

sufficient for real-world applications. Similar observations than in Section 4.2.1 can

be made, in particular, that the smaller the branching, the higher the runtimes. This

holds true when comparing both between the cases (the case with high household

density has higher runtimes than the other cases) and within the cases (the base

case consistently exhibits the highest runtimes compared to all other scenarios).

Low Household Density
Time in seconds

Scenario N 20 40 60 80 100
Base Scenario 13.83 77.81 193.65 312.85 799.85
Increased Coincidence 11.05 60.47 170.57 346.78 754.07
Worst Case: Charging of EVs 5.48 30.35 89.79 160.20 589.78
Worst Case: PV Feed-In 10.46 58.93 159.90 300.60 761.43

High Household Density
Time in seconds

Scenario N 20 40 60 80 100
Base Scenario 15.97 658.06 4,181.01 10,578.89 21,613.37
Increased Coincidence 24.70 368.71 1,398.35 3,759.04 6,823.30
Worst Case: Charging of EVs 16.75 171.30 641.68 1,480.75 1,906.14
Worst Case: PV Feed-In 24.14 357.31 1,389.21 3,569.09 6,802.02

Table IV-6: Comparison of runtimes in seconds for various number of loads N . Reported is the aver-
aged runtime across 50 instances.

In summary, in the cases with low or high household density, changes in load coin-

cidence have a smaller effect on network cost, length and branching, when compared

to the main case. Nevertheless, network cost can be up to 62 % higher compared

to the base scenario. Simultaneous charging of EVs has the most severe effect on

network cost. The cost effect of the scenario of increased coincidence is comparable

to the effect that is expected from an uncontrolled PV feed-in.
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5 Real-World Experiments

In this section, the effects of load coincidence on network cost and layouts are evalu-

ated on the same set of low voltage distribution networks as in Section 4.

5.1 Experimental Setup

The locations for the real-world experiments are based on the identical sample of 74

low voltage distribution networks than the one in Section 4. Each set of locations

entails one transformer. The number of loads per network in the sample ranges from

12 to 68, with an average of 36.7 loads and a median of 32 loads. These loads

correspond to the vertices of the network. The costs for the networks range from

CHF 33,500 for the cheapest network to CHF 1.7 million for the most expensive.

The average network cost is CHF 251,400. The networks sum up to a combined

value of CHF 18.6 million. This cost only includes material and construction and

excludes planning and overhead costs. On average, each network covers an area of

35.1 ha, with a median size of 20.6 ha per network. Therefore, the average household

density is 1.05 households per ha. Data preparation and pre-processing is detailed in

Section 4.1.

Similar to Section 4, the networks are grouped by the number of loads N contained

in each network. The groups of networks range from N ∈ [10, 19] to N ∈ [60, 69]. The

number of networks in each group is reported alongside the results.

5.2 Results

Table IV-7 displays the results for real-world experiments. The table shows the net-

work cost in CHF on the left and the corresponding network lengths and number of

branches on the right. Below, the findings on cost, network length and branching are

discussed.
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Cost in CHF Length in km (no. of branches)

Scenario N [10, 19] [20, 29] [30, 39] [40, 49] [50, 59] [60, 69] [10, 19] [20, 29] [30, 39] [40, 49] [50, 59] [60, 69]

Base Scenario 58,659 102,732 68,831 140,317 82,988 313,230 1.290 (2.1) 2.017 (1.9) 1.409 (1.3) 2.806 (2.3) 1.750 (1.9) 6.373 (8.2)

Increased Coincidence 73,431 170,058 144,000 258,160 200,052 440,991 1.541 (3.1) 3.467 (6.0) 3.020 (6.9) 5.335 (9.3) 4.484 (10.6) 8.490 (13.9)

Worst Case: Charging of EVs 82,350 177,729 164,927 265,218 215,318 493,987 1.713 (3.6) 3.57 (6.6) 3.388 (7.7) 5.441 (9.7) 4.776 (12.4) 9.150 (15.4)

Worst Case: PV Feed-In 60,051 113,821 110,710 196,201 172,563 375,849 1.299 (1.9) 2.272 (3.1) 2.401 (5.3) 4.172 (8.1) 4.032 (9.4) 7.622 (12.1)

Number of networks in sample group 14 19 9 9 14 9 14 19 9 9 14 9

Table IV-7: Left: Comparison of network cost for networks with various number of loads N . Reported is
the average cost. The cells are shaded based on average cost. Right: Comparison of network length
in km with number of branches in parenthesis. The cells are shaded based on average length. After a
maximum calculation time of 24 hours per network, the cheapest network is returned.

Regarding network cost, the observed costs are comparable in order of magnitude

to those in the main scenario in Section 4.2.1. It can be observed that, in general,

network costs grow as the networks get larger. However, because of the smaller

sample size and higher homogeneities among the networks when compared to the

computational experiments in Section 4, there are situations, where networks with

fewer households exhibit larger costs than those with more households. Similar to

the computational experiments, the base scenario has lowest cost for all network

sizes, while the worst case scenario for simultaneous charging of EVs has the highest

cost. However, other than in the computational experiments, in the real-world case

study, the two remaining scenarios (increased coincidence and worst case: PV feed-

in) are further apart from each other in terms of cost: The networks in the worst

case scenario for PV feed-in have significantly lower cost than the networks in the

increased coincidence scenario, as is expected. When looking at the relative cost

gap between the base scenario and the other three scenarios increases, we observe

a gap of 25–109 % for the increased coincidence scenario, a gap of 40–159 % for the

worst case scenario for simultaneous charging of EVs, and a gap of 2–108 % for the

worst case scenario for PV feed-in.

Regarding network length and branching, in general, both figures increase with

N . Similar to the network cost, the four scenarios are much more distinct from each

other than in the computational experiments: Lowest lengths and branching are ob-

served for the base scenario, followed by the worst case scenario for PV feed-in, the

increased coincidence scenario, and the worst case scenario for simultaneous charg-

ing of EVs. The networks from the increased coincidence scenario are 19–156 %
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longer compared to the base scenario, the networks from the worst case scenario for

simultaneous charging of EVs are 33–173 % longer, the networks from the worst case

scenario for PV feed-in are 1–130 % longer.

In short, the real-world case study confirms the findings from the computational

experiments. In all three scenarios, network costs can more than double. Simultane-

ous charging of EVs potentially has the most severe effect on network cost, followed

by the scenario of increased coincidence, followed by the scenario for an uncontrolled

PV feed-in.

6 Summary

The computational experiments clearly show that the change in load coincidence on

its own has a significant effect on network cost and layout. This is confirmed in the

real-world case study, where results show that increasing load coincidence can lead

to a doubling of network cost. Particularly, the uncontrolled simultaneous charging

of EVs poses stress on the networks, yielding much higher cost. This has severe

implications for both distribution network operators and regulators, as is discussed in

the last chapter of this thesis. Another interesting observation is that, in the computa-

tional experiments, three cases were compared: one with low, one with medium and

one with high household density. The largest effects of load coincidence on network

cost could be observed in the case with medium household density. This implies that

future changes in load coincidence could cause the highest complications for network

operators in suburban setting, rather than very sparsely populated rural settings, or

highly dense urban settings.



CHAPTER V

CONCLUDING REMARKS

1 Summary of Findings

At the beginning of this thesis, we saw how changes in the demand patterns of elec-

tricity use is causing problems in today’s electricity networks. The rolling power shut-

offs in California exemplified the importance of load coincidence in the context of

designing and operating distribution networks. We also saw that in the future, load

coincidence is expected to increase due to trends in the electricity sector, namely (A)

direct adaptations to climate change, (B) an increasing share of EVs, and (C) a further

decentralized energy generation.

This motivated creating the capacitated arborescence with voltage drops and load

coincidence problem, a decision problem for the design of distribution networks. The

novelties of this problem are that it treats voltage drops in a more realistic way than

any other related network design problem and that it accounts for the way that loads

coincide. This brings two advantages. First, it allows for more cost-efficient network

design (Chapter III). Second, it allows to analyze the effect of load coincidence on

future network cost and layouts (Chapter IV).

In Chapter III, it has been shown that the CAVLP is NP-hard and contains complex

nonlinearities. This inherent complexity of the problem prohibits exact solutions even

for smallest instances. This lead to the development of heuristical solution methods,

113
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which make it possible to solve the problem in a reasonable amount of time even

for larger instances. These solution approaches have been tested using simulated

problem instances and real-world networks from a Swiss electricity company. The

computational experiments and the real-world case study demonstrated that the solu-

tion approaches are computationally tractable. Further, they point towards significant

cost savings when using the CAVLP (and the corresponding solution methods) com-

pared to traditional design approaches: In the case study, the networks created using

the proposed solution methods showed relative cost savings of over 39% compared

to the real-world networks designed using conventional techniques. The absolute

cost savings for larger networks were as high as CHF 0.26 million per network. This

demonstrated the practical value-add that this thesis can provide to practitioners.

In Chapter IV, the effect of load coincidence on network cost and layouts was

investigated. The question at hand was, how future demand scenarios influence

network design. Specifically, three scenarios were tested against a base scenario

representing the status quo: (A) increased coincidence, (B) worst case scenario for

simultaneous charging of EVs, and (C) worst case scenario for PV feed-in. These

three scenarios correspond to the trends (A)–(C) identified above. The results show

a significant effect of all three scenarios on both network cost and layout, with (B) the

worst case scenario for simultaneous charging of EVs having the largest effect: In the

computational experiments, networks for this scenario were up to 84 % more expen-

sive compared to the base scenario. In the real-world case study, the difference was

even higher (173 % higher cost compared to base scenario for the largest problem

instances). The experiments also show that the largest effects from load coincidence

can be expected in regions with medium household density, meaning that the issue

might not be as severe in highly-populated urban areas or sparsely-populated rural

areas when compared to suburban regions.

The above observations have several implications for decision makers, especially

for distribution system operators and regulators. These implications are discussed

below.
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2 Implications

The experiments clearly showcase that the effects of load coincidence can be severe

and cannot be neglected by any stakeholder, particularly by DSOs (who are ultimately

responsible for a reliable and efficient energy supply to the consumers) and regulators

(who are responsible for providing a framework for a reliable and efficient operation

of electricity infrastructure). An overview of implications for DSOs and regulators is

shown in Figure V-1. This list is non-exhaustive.

The scenario with the largest effect on network cost and layout was (B) worst case

scenario for simultaneous charging of EVs. The figures shown in this thesis corre-

spond to a worst case scenario. Because of the relatively small number of EVs on the

streets right now, this is not much affecting network operations today. However, the

number of EVs is projected to grow rapidly in the future (see Chapter I). This implies

that DSOs need to carefully monitor network stability as the number of EVs increases.

Potential reinforcements to the network infrastructure might be inevitable. Electricity

companies, however, might also think about methods to gain more control over the

charging behavior of their customers. This could be done by actively controlling the

Figure V-1: Implications for DSOs and regulators. The implications for DSOs and regulators can be
broken down by the three trends (A)–(C). The list is non-exhaustive.



CHAPTER V. CONCLUDING REMARKS 116

charging process or by offering flexible tariffs that incentivize off-peak charging. Reg-

ulators might encourage such initiatives (e. g., by creating the regulatory frameworks

that enable specific tariffs). Regulators might also think about promoting or subsidiz-

ing alternative technologies to battery EVs, e. g., hydrogen EVs.

Regarding the implications of scenario (A), we already saw reactions from DSOs

and regulators in the introduction of this thesis. In the short term, rolling shutoffs and

reinforcements to the distribution network will most likely be necessary. Mid- to long-

term, regulators should promote more energy-efficient cooling systems and insulation

in order to mitigate the direct effects of climate change. This should happen in addition

to creating awareness for the problem and influencing people’s behavior (as we have

seen from the Governor of California urging his people to save energy during peak

hours). Of course, moving towards a greener, carbon-neutral society as a whole can

be seen as a response to scenario (A). The sooner this goal can be achieved, the less

severe the direct effects of climate change will be. Therefore, increasing all efforts to

combat climate change are a direct implication of scenario (A).

Regarding the implications of scenario (C), ways to prevent an overload of the

distribution network through electricity feed-in have to be found. Batteries and other

energy storage technologies seem very promising. They provide benefits both to

consumers (by making them more energy-independent and allowing them to have ac-

cess to cheaper electricity) and system operators (by mitigating excess feed-in and

thus provide relief to he network infrastructure). Regulators can also adjust the laws

regarding feed-in (e. g., by reducing feed-in tariffs) and promote battery storage tech-

nologies (e. g., by investing in research and development).
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3 Outlook

Finally, there are potential research topics which could be pursued in the future. There

are several additional applications where the approach presented in this thesis can

provide value. Below, four potential research topics are briefly explored. These topics

are depicted in Figure V-2.

First, regarding the model, one avenue for further research is to integrate addi-

tional network technologies other than grid lines into the decision problem. For in-

stance, the integration of storage technologies could mitigate the effect of coinciding

demands. The same holds true for the integration of decentralized generation. Note

that the integration of PV feed-in as it is done in Chapter IV represents a worst case

scenario. As it is done currently, the model only supports worst case feed-in or worst

case consumption, not a combination of both. Eventually, integration of distributed

Figure V-2: Four future research topics can be explored: 1) integrate additional technologies other
than grid lines (e.g., on-load tap changers, storage, decentralized generation), 2) develop a dynamic,
multi-period network design problem (or modify the problem to allow expansion planning), 3) apply
the problem to other sectors with similar physical constraints (e.g., to oil, gas, or water networks), 4)
refine research and scenarios on the effect of coincidence factors on network cost and layout (e.g., by
combining a change in coincidence factor with an actual change in the peak loads).
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generation (e. g., PV systems) with storage can help reducing network investment

cost because it mitigates the effect of coinciding peak loads. Second, future research

could also integrate the CAVLP into a dynamic, multi-period distribution network de-

sign problem. Slight modifications to the model could also be made to allow for net-

work expansion planning instead of greenfield network design. This would expand

the application of the model to existing networks rather than ones that are about to be

built. Third, the proposed methods can also facilitate the solution of related optimiza-

tion problems with similar physical constraints in other sectors. Examples are net-

work design problems with pressure drops, such as in oil, gas, or water networks, as

well as reliability constraints in transportation networks. Studies on precipitation and

flooding could also benefit from a model that accounts for coinciding demand. The

(non-)coinciding demand in the model presented then translates into (non-)coinciding

water supply. Fourth and finally, the research on the effect of coincidence factors on

network cost and layouts can be expanded to include more or refined scenarios. This

effort could be supported by the increasing availability of load data due to smart meter

technologies (see Chapter II). Another possibility to create additional scenarios could

be to combine changes in the coincidence factor with changes in the peak loads.

In conclusion, there are several open research questions which could be answered

in the future. The optimization problem presented in this thesis and the corresponding

solution methods can provide valuable tools to many stakeholders in the electricity

sector and beyond.
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