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Climate change may induce connectivity loss and
mountaintop extinction in Central American forests
Lukas Baumbach 1✉, Dan L. Warren 2, Rasoul Yousefpour1 & Marc Hanewinkel 1

The tropical forests of Central America serve a pivotal role as biodiversity hotspots and

provide ecosystem services securing human livelihood. However, climate change is expected

to affect the species composition of forest ecosystems, lead to forest type transitions and

trigger irrecoverable losses of habitat and biodiversity. Here, we investigate potential impacts

of climate change on the environmental suitability of main plant functional types (PFTs)

across Central America. Using a large database of occurrence records and physiological data,

we classify tree species into trait-based groups and project their suitability under three

representative concentration pathways (RCPs 2.6, 4.5 and 8.5) with an ensemble of state-of-

the-art correlative modelling methods. Our results forecast transitions from wet towards

generalist or dry forest PFTs for large parts of the study region. Moreover, suitable area for

wet-adapted PFTs is projected to latitudinally diverge and lose connectivity, while expected

upslope shifts of montane species point to high risks of mountaintop extinction. These

findings underline the urgent need to safeguard the connectivity of habitats through biological

corridors and extend protected areas in the identified transition hotspots.
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Evidence of climate change impacts on vegetation growth and
distribution has been accumulating all around the globe. At
the current pace of environmental changes, many species

may be unable to adapt to the new conditions, eventually leading
to habitat range shifts or their extinction1–3. Beyond ecological
consequences, such shifts may significantly alter the provisioning
of ecosystem goods and services4–7.

According to Diffenbaugh and Giorgi8, Central America
counts among the global climate change hotspots in view of
projected increasing mean temperatures, more frequent extreme
temperature events and higher interannual precipitation varia-
bility. Concurrently, the region is listed as a global hotspot of
biodiversity and hosts more than 2900 endemic plant species9.
Central American forest ecosystems in particular serve a critical
role as habitat for rare species and also represent an increasingly
popular destination for ecotourism. Overall, these ecosystems are
expected to provide high levels of goods and services10–12. In
contrast, land scarcity limits the available space for natural for-
ests, which are in conflict with a high demand for tropical
plantation forests as timber source or green investment for car-
bon sequestration13. Additionally, Central America’s distinct
geography imposes physical limitations on species distributions:
the dry Mexican highlands constitute a natural barrier in the
north, the isthmus of Panama borders the south and scattered
volcanoes sit atop the higher mountain ranges14,15 (also see Fig.
S26). In conjunction with the high spatial heterogeneity of the
landscape, distinct forest types have evolved, which feature tree
species that are closely adapted to the local environmental con-
ditions and follow specific resource use strategies. Due to this
high specialization and the scarcity of alternative habitats, how-
ever, tropical biodiversity is expected to be particularly sensitive
to climate change16. Range shifts of suitable habitat could
therefore lead to high risks of habitat connectivity loss or—fol-
lowing upslope shifts towards elevation peaks—mountaintop
extinction17.

To investigate potential range shifts under different climatic
states, species distribution models (SDMs) represent a commonly
applied tool18,19. State-of-the-art SDM techniques commonly
build ensembles of multiple individual models to cover a broader
range of algorithms and improve overall robustness of model
predictions20. In the Central American region SDMs have been
occasionally used before21,22, yet their results are limited to single
species. For better conservation planning, however, an extension
of such focus studies beyond the species level is desirable. A
simple way forward lies in the aggregation of many single-species
models to stacked-SDMs (SSDMs) to summarize predictions
across species and gain insights about more general trends in
species communities23,24. Nevertheless, for investigating species
communities or ecosystems pure “mass stacking” SSDM
approaches are impractical, since they require large computa-
tional efforts and multiply uncertainties of individual SDMs.
Therefore, in contrast to such species-specific modelling, trait-
based approaches have been increasingly gaining attention in
ecological research. By focusing on the relationship between
physiological, morphological and life-history characteristics of
organisms and their environment, these approaches allow for the
identification of more fundamental patterns beyond the species
level25. Consequently, interlinking SDMs with trait-based
approaches may be particularly valuable for analyses in species-
rich regions such as Central America.

Here we investigate how changing climatic conditions will
influence the environmental suitability of main tree plant func-
tional types (PFTs) in Central America. Therefore, we grouped
widespread regional tree species into seven PFTs: wet acquisitive,
wet conservative, dry acquisitive, dry conservative, coniferous,
montane and generalist. For each type we trained stacked species

distribution models using multi-model ensembles and a collection
of more than 20,000 species occurrence records. We then pro-
jected the environmental suitability of each PFT at a high spatial
resolution (30-arc seconds, ~1 km2) under nine climate change
scenarios for 2061–2080, combining three representative con-
centration pathways (RCP; 2.6, 4.5 and 8.5) with three global
circulation models (GCM; CCSM4, HadGEM-AO and MPI-
ESM-LR). We particularly analysed our results for shifts of core
areas of suitability along latitude and altitude. Further, we iden-
tified potential transitional areas between PFTs and mapped
fragmentation to visualize threats of habitat connectivity loss or
isolation, which could promote species extinctions. Finally, we
discuss implications for conservation ecology and the provision-
ing of forest ecosystem services.

Results
Dominant PFTs. To highlight core areas of suitability and detect
potential transition areas between forest types under the influence
of climate change, we determined the PFT with the highest pre-
dicted occurrence probability for each 30-arc-second grid cell in
our study region (total area: 1,846,817 km2). For easier descrip-
tion, we termed this “dominance”. This only refers to the suit-
ability of environmental conditions and should not imply any
competitive advantage. Figure 1 illustrates these results spatially
(panel a), shows trends for each PFT across RCPs (panel b) and
also highlights flows between types (panel c) for the
CCSM4 scenarios (for other GCMs see Figs. S1, S2, Supplemen-
tary). Under current climate conditions, the dry forest PFTs
showed the highest occurrence probabilities in the north (espe-
cially Yucatan peninsula) and along the Pacific coast of Central
America, transitioning from conservative to acquisitive types
from north to south. In contrast, wet forest PFTs dominated the
lowlands facing the Caribbean, with a trend from conservative in
the coastal areas to acquisitive towards the inland and pre-
montane areas. Montane species prevailed in the high mountain
ranges of the American Cordillera between the wet-dry forest
frontier and coniferous species in the lower montane subtropical
areas (>12°N).

Throughout the mild (RCP2.6) climate change scenarios, these
patterns remained largely constant for all realized GCMs. More
pronounced dominance shifts between PFTs appeared under
moderate climate change scenarios (RCP4.5). Areas along the
Caribbean coast changed from predominantly wet conservative
species under present-day climate to be more suitable for the wet
acquisitive and generalist PFT. Dry forest dominated areas did
not shift remarkably. Under RCP 8.5, the previously described
trends were reinforced. Areas most suitable for generalists
extended into large portions of Nicaragua, Costa Rica and
Panama at the expense of the wet PFTs. The present-day
dominance of montane and coniferous species in medium to high
altitudes declined with increasing climate change intensity in an
almost exponential manner. Notably, some regions in the centre
of the study area did not show high occurrence probabilities for
any PFT. In Nicaragua and Belize these largely persisted
throughout all scenarios and could point to areas possibly more
suitable for PFTs not considered in this study, whereas in
Honduras and Guatemala these areas increased with increasing
RCP strength and may indicate new combinations of environ-
mental conditions under climate change.

Latitudinal and altitudinal shifts. An analysis of directional
shifts of predicted presences along latitudinal and altitudinal
gradients revealed additional patterns across PFTs. A type was
considered present when the sum of the binarized stacked model
predictions (bS-SDM) met the threshold ≥ 2. Figure 2 shows these
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Fig. 1 Dominant PFTs. Model projections for the CCSM4 scenarios. a Maps showing the dominant PFT (type with the highest occurrence probability) for
each grid cell. “None” refers to the case, where fewer than two species were predicted as present for every type (bS-SDM< 2). b Relative area covered by
each dominant type (area statistics of a). c Chord diagram illustrating flows between dominant types for RCP 8.5 compared to present. All (a), (b) and (c)
share the colour code of the PFT legend.
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Fig. 2 Latitude-altitude suitability shifts. Density plot of projected PFT presences (bS-SDM≥ 2) across latitudinal and altitudinal gradients (a: lowland
types, b: coniferous/montane types). Columns 2-4 show CCSM4 scenario projections with grey shading of the contour of column 1 (present). Accordingly,
fully visible grey contours highlight zones, which may be lost in the respective scenarios. Diverging arrows mark scenarios where connectivity losses
appeared (arrow length symbolizes strength), while right-facing arrows represent the strength of upslope shifts of the lower boundary of the density clouds
(trend towards mountaintop extinction).

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02359-9

4 COMMUNICATIONS BIOLOGY |           (2021) 4:869 | https://doi.org/10.1038/s42003-021-02359-9 | www.nature.com/commsbio

www.nature.com/commsbio


outcomes in the form of density clouds of the predicted presences
for the CCSM4 scenarios (for other GCMs see Figs. S3, S4,
Supplementary). For better readability, the results are displayed
separately for the lowland types (panel a: dry, wet, generalist) and
montane/coniferous types (panel b) and highlights potential
habitat connectivity losses and upslope shifts (as an indicator for
the threat of mountaintop extinction). Most notably, the lower
boundary of montane and coniferous species suitability centres
shifted upwards by approximately 100 m for RCP2.6, 200 m for
RCP4.5 and 500m for RCP8.5. On the other hand, the highest
densities of dry acquisitive and generalist species presences gra-
dually shifted from north to south, whereas dry conservative
species showed slightly increased densities between 8–12°N. The
wet forest PFTs also trended towards the south, but diverged into
two or more separate density centres under RCPs 4.5 and 8.5.
Additionally, small upwards shifts could be noted for the wet
conservative type.

PFT fragmentation. To investigate potential connectivity issues
in geographic space, we mapped the fragmentation class for each
grid cell and PFT as calculated from a 3 × 3 moving window
analysis. The results for the CCSM4 scenarios are shown in Fig. 3
(for other GCMs see Fig. S5 & S6, Supplementary). In addition to
predicted losses of up to 78% for the wet conservative PFT
(compare Fig. 1), its remaining areas showed increasing propor-
tions of fragmented landscapes (patches and transitional areas).
These moderately increased for the mild scenarios but almost
doubled for RCP8.5 in comparison to present (for details see
Table S1). While the geographic distance between suitable areas
along the Caribbean coast was already large under present-day
projections, it increased exponentially with RCP strength, leaving
the remaining forest patches largely isolated. The total area
dominated by the wet acquisitive PFT moderately increased for
all but one scenario. Despite overall small increases of the interior
area fractions, several connectivity bottlenecks appeared along the
Caribbean coast of Honduras, Nicaragua and at the isthmus of
Panama. These gaps were mainly filled by the generalist PFT,
which multiplied its total area by 2 (RCP2.6) to 5 (RCP8.5) and
also doubled its interior portion. Both dry forest PFTs on the
other hand only showed slight total area increases. Fragmentation
did not change for the dry conservative PFT, but for the acqui-
sitive type a moderate trend towards less interior portions and
higher fractions of patches, transitional and perforated areas was
found. Coniferous areas decreased slightly, but did not influence
the partitioning of fragmentation classes. Finally, albeit areas
covered by the montane PFT shrunk by up to 44%, this only led
to very weak decreases of the interior and increases of the per-
forated fraction.

Discussion
Our model projections for 2061-2080 support existing studies on
Central American forests with regards to a general trend towards
dry vegetation types4,6,26. Beyond these generalities, however, this
study also found regional disparities and PFT-specific responses,
which may be attributed to small-scale heterogeneity of climate,
topography and soils27. Most PFTs showed gradual shifts of
suitable area towards the south, which could lead to a con-
centration of competing species and - due to the low geographic
connectivity between Central and South America - a rigid dis-
tribution limit. At the same time diverging latitudinal and alti-
tudinal trends of suitable area for wet forest species may impair
habitat connectivity and reinforce fragmentation effects caused by
human land use. Particularly, connectivity bottlenecks appeared
in the Mesoamerican biological corridor along the Caribbean

coast, which is an essential North-South migration and dispersal
route28,29. Increasing proportions of highly fragmented forest
patches may further reduce the available forest interior area
which many species depend on30,31. For coniferous and montane
species, suitable areas showed upwards trends, but only at the
lower distribution boundary. Since these types in most cases have
already reached the highest areas they may be facing mountaintop
extinction in the long term32.

These developments could have dramatic implications for
Central America’s biodiversity. Compared to the other types, wet
and montane forests host the largest number of amphibians,
birds, mammals and reptiles by far, many of them already under
threat of extinction or suffering from habitat fragmentation10. To
protect wildlife and maintain the integrity of these ecosystems, it
is thus becoming increasingly important to delineate biological
corridors and include them into land development plans (also
compare Fung et al.33). Equally, for species facing mountaintop
extinction due to the lack of alternative habitats, there is an
urgent need to create or extend protected areas to act as refugia.
Besides this conservation ecology perspective, transitions from
wet to dry forests would also affect ecotourism, which is mainly
centred around rain forests and constitutes an important source
of income, particularly in Costa Rica and Panama34. Additionally,
the lower assimilation and growth rates and consequently
reduced carbon sequestration of dry forests could entail economic
impacts35,36. Particularly pine species, which are widely used for
timber production, could be in strong competition with species
better adapted to drought. Recurring pest outbreaks and El Niño
induced dry spells may further exacerbate this development and
have already caused substantial economic damages37. Lastly,
beyond the here modelled vegetation types, other plant groups
such as lianas, palms or grasses could also alter forest structure
and growth due to their role in gap dynamics after forest
disturbances38–40. For instance, recent trends of increasing liana
biomass across tropical forests could be reinforced under stronger
global warming, resulting in reduced tree growth and overall
reduced forest carbon uptake41,42. Exploring the competitive
relationship between these plant groups from a vegetation growth
perspective under the influence of climate change and different
disturbance regimes thus represents an important avenue for
future research.

In contrast to the aforementioned bleak prospects, recently
increasing net reforestation in Central and South America at least
points to increasing efforts to restore forest ecosystems43. In
combination with the conservation of climatically stable areas and
key areas for landscape connectivity as highlighted in this study,
climate change impacts on remaining natural habitats may be
bolstered and biological corridors maintained.

Overall, our study revealed both general trends and hotspots of
forest type transitions in Central America with regards to their
climatic suitability under different climate scenarios. In parti-
cular, decreasing climatically suitable area for wet forest species,
impaired habitat connectivity and mountaintop extinctions
emerged as possible threats and highlight the need for urgent
policy interventions. To extend these findings, further research on
growth responses to climate change throughout different biomes
and vegetation types is needed to better inform management
decisions (similar to Stan et al.44). For biodiverse regions such as
Central America, trait-based approaches as used in this study may
represent a valuable perspective to combine ecological under-
standing with practical application (e.g. trait-based species
selection). Finally, the application of similar modelling approa-
ches to other biodiversity hotspots could assist in identifying the
evolving threats of connectivity loss and mountaintop extinctions
globally and safeguarding endangered habitats.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02359-9 ARTICLE

COMMUNICATIONS BIOLOGY |           (2021) 4:869 | https://doi.org/10.1038/s42003-021-02359-9 | www.nature.com/commsbio 5

www.nature.com/commsbio
www.nature.com/commsbio


Fig. 3 PFT fragmentation. Maps showing fragmentation classes for each PFT in the areas where they were predicted as dominant (CCSM4 scenarios).
Dark grey marks areas, which were covered by the PFT in present-day projections, but disappeared in the scenarios (“Area loss”). For definitions of the
other fragmentation classes see Methods section.
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Methods
Study area. The study region covered the Central American subcontinent between
the longitudes 68°–100°W and the latitudes 4°–24°N (excluding the Caribbean
islands). This extent included parts of the neighbouring biogeographic regions of
Mexico and Northern South America, which extended the calibration range of our
models to be better suited for projections to different climates.

Species selection and grouping. For the definition of PFTs we considered both
abiotic tolerances and structural/physiological plant attributes. As a main biogeo-
graphic division we followed Olson et al.45 and Corrales et al.10 and distinguished
between wet and dry forest in the lowlands (<1000 m) and coniferous and
(broadleaved) montane forests in higher altitudes (for a topographic overview of
the study region see Fig. S26). In addition, we considered different resource
acquisition strategies, reflected in specific functional traits, to further group wet and
dry forest species into acquisitive and conservative types46. While acquisitive traits
comprise attributes necessary for high assimilation rates and fast growth, con-
servative traits aim at resource preservation and increased stress tolerance (for
details see Supplementary methods). Since some Central American tree species
show trade-offs between acquisitive and conservative traits and occur widespread
across dry and wet biomes, we grouped them into a separate”generalist” type. The
final set of PFTs included: dry acquisitive/conservative, wet acquisitive/con-
servative, coniferous, montane and generalist species. For the representation of
each PFT we selected four tree species based on extensive literature review22,47–50,
trait data analysis48,49,51–62, broad occurrence within respective ecoregions (i.e. not
region-specific, see Fig. S27) and a minimum availability of at least 200 species
records (compare Soultan & Safi63). A summary of the selected species for each
PFT, mean trait values and sample sizes is shown in Table 1.

Data. Species presence records were obtained from a large number of datasets
within the collections of the Global Biodiversity Information Facility64, the Bota-
nical Information and Ecology Network (BIEN65–69), and de Sousa et al.70. GBIF
and BIEN data were retrieved via the R packages rgbif71 and BIEN72. Where
synonymous taxa occurred, these were assigned to the respective accepted names of
the GBIF backbone taxonomy. Due to common confusion and close co-
occurrences of Weinmannia species73, we aggregated all Central American
occurrences into a species group (Weinmannia spp.). For all species, only records
falling onto land within the study area were kept. To reduce sampling biases, we
additionally thinned the presence data down to one record per cell on the grid of
the environmental predictor data.

We preselected a set of predictor variables based on known species
characteristics and environmental limits48,49,52,61,62. The data were obtained at
30-arc-second resolution from different sources: bioclimatic variables from the
CHELSA dataset74 (version 1.2), topographic data from GMTED201075 and
edaphic variables from SoilGrids1km76. Prior to modelling, we tested all
obtained variables for multi-collinearity following a supervised step-wise
procedure, where the variable with the highest variance inflation factor was
excluded in each step until all variables ranked <10. The final set of predictors
comprised: maximum temperature of the warmest month, minimum
temperature of the coldest month, precipitation seasonality, annual
precipitation, soil sand fraction (30 cm depth), soil clay fraction (30 cm depth),
soil pH in water (30 cm depth), depth to bedrock and hillslope. For the climatic
variables, we obtained present-day data (1979-2013) and scenario projections
from three global circulation models (GCMs; CCSM4, HadGEM2-AO and MPI-
ESM-LR) and for three representative concentration pathways (RCPs; 2.6, 4.5
and 8.5). A comparison between projected and present-day annual precipitation
is shown in Fig. 4 (for other variables see Fig. S7–S10).

Modelling approach. Models were built using the R package SSDM77. To account
for algorithm biases78, we tested a broad spectrum of commonly used SDM
algorithms to be used as model ensemble79–81. This included artificial neural
networks (ANN), classification tree analysis (CTA), generalized additive models
(GAM), generalized linear models (GLM), multivariate adaptive regression splines
(MARS), Maximum Entropy (MAXENT), support vector machines (SVM) and
random forest (RF). Modelling settings and strategies for pseudo-absence selection
were customized for each algorithm based on suggestions by Barbet-Massin et al.82

(for details see Supplementary methods). Per algorithm and species 100 model
replicates were trained and evaluated through cross-validation by splitting the
occurrence data into 70% training and 30% holdout test data. For a full description
of our settings also see the ODMAP protocol provided in the Supplementary
methods.

The raw output of the resulting SDMs is the probability for a given species to
occur under the given environmental conditions. Following the model training, the
SDMs were first evaluated for their discrimination capacity using the Area under
the curve (AUC). Since we aimed for projecting suitability over space and time, we
also evaluated model calibration by using the Continuous Boyce Index (CBI83) and
- except for MAXENT (as a presence-only method) - a novel calibration statistic
that summarizes the calibration plot (sdm package84). We required all models to
meet a minimum threshold of 0.7 for these evaluation metrics. For most species
ANN, CTA, GLM and SVM models fell below the threshold, so that we excluded

these methods from our analysis. The remaining GAM, MARS, MAXENT and RF
models were projected to new environments by updating the climatic variables with
scenario data. Since future climatic conditions may not find an analogue in the
climatic conditions of the training data, model extrapolation can become a
problem. Within our focus region only small areas showed non-analogue values
and no interaction of novel conditions occured between variables (see Fig. S11). We
thus decided to clamp values exceeding the training range to the minimum/
maximum values present in the study region to avoid extrapolation altogether.
Predictions in the clamped areas still need to be treated with caution, since they
may underestimate climate change effects. To investigate main sources of
uncertainty between model projections, we ran an analysis of variance (ANOVA)
for each grid cell and species with respect to the factors algorithm, training dataset
(model replicates), RCP and GCM (Fig. S24). Among these, algorithm choice by far
explained most variance, followed by RCPs and GCMs, while model replicates had
the lowest impact. This is in agreement with Diniz-Filho et al.85. For the
subsequent steps, we thus selected only 10 replicates per algorithm and species to
improve computational efficiency.

While model ensembling provides the opportunity to decrease the impacts of
algorithm biases and emphasize commonalities, it requires well-calibrated model
projections to be interpreted on a common scale as absolute occurrence
probabilities86. To this end, we tested whether recalibration of our model
projections could improve calibration (as suggested by Phillips and Elith87). All
recalibration methods included in the calibratR package88 were applied for this
purpose. However, calibration errors did not improve notably and CBI even
decreased for most methods (Table S3). We thus ensembled the original model
projections as unweighted arithmetic means for each species across algorithms and
replicates. For each PFT we then summed probabilities of the corresponding four
species. The resulting “richness maps” were used as indicators to compare relative
suitability across climate scenarios and PFTs. For additional explorative analyses,
we also computed sums of the binarized model predictions (bS-SDM) using the
maximum sum of sensitivity+specificity as binarization threshold (compare89).
Only grid cells where at least three of the algorithms agreed were considered
presences in each species ensemble. Further, to reduce the sensitivity towards single
species outliers, we only counted cells with bS-SDM ≥ 2 as PFT presences (for
detailed results see Supplementary, Fig. S12–S25). With these results, we finally
investigated potential geographic range shift trends as projected by the models by
plotting the density of presences over latitude and altitude.

Model evaluation. The individual SDMs showed overall good performance for all
species (see Fig. 5). On average, random forest models achieved the highest values
for discrimination and calibration criteria and had the lowest variance across
models. Unsurprisingly, models for narrow-niched species such as the montane
type achieved the highest AUC values (compare90). The broad-niched generalist
type models showed a trade-off between comparably lowest AUC values but
highest calibration performance. Remarkably, rankings of discrimination and
calibration performance by PFT were very similar between the algorithms. We
assume this could be a possible effect of the niche complexity or the level of
appropriateness of the predictor variables for the different PFTs.

Model limitations. The use of SDMs for climate change studies is often contested
due to the cascade of uncertainties that comes in their wake, e.g. disequilibrium of
occurrences and predictors, sampling bias, spatial autocorrelation or algorithm bias
(for a detailed discussion see Supplementary methods). While we generally agree
with these concerns, we would like to stress, that the largest weakness of SDMs
does not originate from wrong conceptualization, but from wrong application.
Here, we limit our interpretation to exploring general patterns and put special
emphasis on assessing and communicating uncertainties. In this form, we still see
substantial value of SDMs to contribute to our understanding of the environment,
particularly when time and resources are limited.

For the interpretation of our results, it should be noted that environmental
suitability maps as projected by SDMs can only point to the favourability of
environmental conditions and are based upon an assumed equilibrium state of
species occurrences with training environmental conditions. They may especially
not give a time line or “expiration date” for species range shifts or extinction.
Accordingly, even if no suitable habitat would be projected for a given species under
future climatic conditions, an “actual extinction” could be delayed or sped up by a
large number of additional factors91. On a physiological level, survival and growth
of plants are strongly influenced by disturbances (droughts, fire, pests, temperature
extremes), light and nutrient availability, CO2 concentration, dormancy or dispersal
strategies, which may inhibit the actual occurrence of a species at a given site36,92,93.
In addition to this, migration limits may apply, either due to biogeographic barriers
such as islands, mountains (e.g. American Cordillera) and topographic bottlenecks
(e.g. Isthmus of Panama) or anthropogenic structures and land use. Particularly in
view of Central America’s increasing urbanization, cropland expansion and
biogeographic limits the actually available area for range shifts is drastically reduced.

Fragmentation analysis. For the analysis of PFT fragmentation patterns and
potential connectivity bottlenecks across the landscape, we used a classification
approach by Riitters et al94. Due to its categorical output, the results are easily
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interpretable within a conservation context, as has for example been successfully
shown by Morelli et al.95. In the first step we created binary maps for the presence
(value= 1) of each PFT from the “dominant PFT” maps (Fig. 1). Subsequently,
within a 3 × 3 moving window we calculated 1) the proportion of cells covered by
the respective PFT (“Pf”) and 2) the conditional probability that a cell with a value
of 1 has a neighbour cell with a value of 1 (connectivity, “Pff”). All calculations
were realized with the fasterRaster R package95. Both Pf and Pff were compared to
derive fragmentation classes: (1) interior, if Pf = 1.0; (2) patch, if Pf < 0.4; (3)
transitional, if 0.4 < Pf < 0.6; (4) perforated, if Pf > 0.6 and Pf - Pff > 0; (5) edge, if
Pf > 0.6 and Pf – Pff < 0 or if Pf > 0.6 and Pf = Pff.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
CHELSA v1.2 bioclimatic gridded data can be downloaded from https://chelsa-climate.
org/downloads/, GMTED2010 elevation data from https://edcintl.cr.usgs.gov/downloads/
sciweb1/shared/topo/downloads/GMTED/Global_tiles_GMTED/300darcsec/mea/ and
soil data from https://soilgrids.org/. Tree physiological data can be largely obtained from
literature48,49,52,55–62. Additionally, access to restricted trait datasets51,53,54 may be

Fig. 4 Precipitation change. Difference of annual precipitation sum between present-day and climate projections (2061–2080).

Fig. 5 Model evaluation. Summary of the evaluation metrics Area under the curve (AUC), calibration statistic (cal) and Continuous Boyce Index (CBI) for
each algorithm (GAM=Generalized Additive Model, MARS=Multivariate Adaptive Regression Splines, MAXENT=Maximum Entropy, RF= Random
Forest) and by species group. The dashed line represents the applied model selection threshold (0.7).
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requested from Diego Delgado (CATIE) and Robin Chazdon (University of
Connecticut). The collection of species occurrence data was assembled from the
databases of the Global Biodiversity Information Facility64, the Botanical Information
and Ecology Network65–69, and de Sousa et al.70. The compilation is available from
https://doi.org/10.5281/zenodo.4835834 96. All data generated in this study are available
from the corresponding author on reasonable request. Source data underlying graphs in
the main figures is available from the Supplementary Data (https://doi.org/10.5281/
zenodo.4836270)97.

Code availability
The R packages ‘SSDM’ (version 0.2.8), ‘ENMTools’ (version 0.2) and fasterRaster
(version 0.6.0) are available on GitHub (https://github.com/sylvainschmitt/SSDM,
https://github.com/danlwarren/ENMTools, https://github.com/adamlilith/fasterRaster),
‘calibratR’ (version 0.1.2) is available on CRAN (https://cran.r-project.org/web/packages/
CalibratR/index.html). The ‘circlize’ R package (version 0.4.1)98 used to prepare circular
subplots can be obtained from GitHub (https://github.com/jokergoo/circlize). The R code
underlying our simulations is available from https://doi.org/10.5281/zenodo.4835834 96.
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