
Supporting Figures and Tables

Figure S1: Dominant plant functional types. Model projections for the HadGEM2-AO scenarios. For

detailed explanations of the panels see Figure 1.
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Figure S2: Dominant plant functional types. Model projections for the MPI-ESM-LR scenarios. For

detailed explanations of the panels see Figure 1.
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Figure  S3: Latitude-altitude  suitability  shifts.  Density  plot  of  projected  plant  functional type

presences (bS-SDM ≥2) across latitudinal and altitudinal gradients for the HadGEM2-AO scenarios.

For detailed explanations see Figure 2.
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Figure  S4: Latitude-altitude  suitability  shifts.  Density  plot  of  projected  plant  functional type

presences (bS-SDM ≥2) across latitudinal and altitudinal gradients for the HadGEM2-AO scenarios.

For detailed explanations see Figure 2.
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Figure S5: Dominant  plant functional type (PFT) fragmentation for the  HadGEM2-AO scenarios.

Area loss indicates areas which were lost in comparison to present-day projections. Absence indicates,

that the respective PFT was not dominant. For other class definitions see Methods.
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Figure S6:  Dominant  plant  functional  type (PFT) fragmentation for  the  MPI-ESM-LR  scenarios.

Area loss indicates areas which were lost in comparison to present-day projections. Absence indicates,

that the respective PFT was not dominant. For other class definitions see Methods.
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Table S1: Dominant PFT area statistics. Column 1 shows shares (%) of the study area covered by each respective plant functional type (PFT) for the 
present-day projections (in italics) and changes to this number for each climate change scenario (cc=CCSM4, ha=HadGEM2-AO, mp=MPI-ESM-LR). 
Columns 2-6 again show how much each fragmentation class contributed to the area shares of Column 1.

Study area share [%] Patch fraction [%] Transitional fraction [%] Perforated fraction [%] Edge fraction [%] Interior fraction [%]

PFT scenario cc ha mp cc ha mp cc ha mp cc ha mp cc ha mp cc ha mp

D
ry

 a
cq

.

present 8.48 5.80 11.08 27.38 5.27 50.47

RCP2.6 +0.35 -1.98 +1.03 6.22 7.68 6.32 11.40 13.77 11.35 28.71 31.01 29.30 4.84 5.02 4.48 48.83 42.52 48.56

RCP4.5 -0.29 -1.92 +0.10 6.73 6.91 6.23 12.38 13.08 11.61 31.36 31.36 30.79 4.64 4.52 4.28 44.90 44.14 47.10

RCP8.5 -0.73 -2.01 +0.29 7.73 8.35 6.88 14.26 14.70 12.53 32.33 31.15 29.86 4.53 4.67 4.25 41.16 41.14 46.49

D
ry

 c
on

.

present 19.32 2.10 4.70 11.76 3.61 77.83

RCP2.6 +0.36 -0.30 +0.95 2.15 2.05 1.92 4.69 4.33 4.52 11.86 10.83 11.39 3.56 3.60 3.76 77.73 79.19 78.42

RCP4.5 +0.58 -0.51 +1.55 2.06 2.06 2.01 4.48 4.31 4.36 11.13 10.44 10.62 3.49 3.48 3.59 78.83 79.71 79.41

RCP8.5 +1.48 +0.50 +1.73 2.28 2.22 2.05 4.79 4.66 4.44 11.92 11.42 10.85 3.58 3.49 3.58 77.43 78.22 79.09

G
en

er
al

is
t

present 5.19 14.60 19.36 32.35 7.66 26.03

RCP2.6 +4.12 +6.35 +5.34 10.73 8.31 10.54 16.30 14.06 15.89 28.99 27.83 28.81 8.49 8.09 8.88 35.49 41.72 35.89

RCP4.5 +10.12 +16.95 +13.96 7.31 4.87 7.12 11.87 8.80 11.61 22.20 17.93 22.30 9.05 8.15 8.42 49.57 60.26 50.55

RCP8.5 +20.01 +23.36 +28.98 5.02 3.74 3.09 8.73 7.13 6.16 17.00 15.12 14.83 7.40 6.74 6.34 61.85 67.26 69.58

W
et

 a
cq

.

present 11.52 5.55 11.94 32.16 4.78 45.57

RCP2.6 +1.21 +3.39 +0.45 5.25 4.78 5.35 11.36 10.83 11.76 31.16 30.94 32.04 4.66 4.49 4.72 47.56 48.95 46.14

RCP4.5 +2.22 +4.50 +1.91 4.40 4.88 4.70 10.21 10.67 10.65 28.94 29.53 29.21 4.37 4.19 4.40 52.07 50.74 51.04

RCP8.5 -0.02 +1.62 -0.78 5.21 4.65 4.41 10.41 10.76 10.48 27.86 28.28 28.53 4.39 4.49 4.57 52.14 51.82 52.00

W
et

 c
on

.

present 10.04 5.79 9.34 22.15 5.70 57.02

RCP2.6 -1.11 +0.24 -2.07 6.84 6.40 8.41 10.53 9.61 11.41 23.58 21.51 24.42 5.48 5.35 5.46 53.57 57.12 50.29

RCP4.5 -5.13 -4.54 -4.56 11.00 10.80 11.37 14.76 14.96 15.54 27.85 26.66 28.87 5.77 5.37 5.68 40.62 42.22 38.54

RCP8.5 -7.88 -7.31 -6.27 12.50 8.00 9.16 16.78 13.31 12.90 27.38 25.76 24.64 7.02 6.57 6.01 36.31 46.37 47.29
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Table S1 continued.

Study area share [%] Patch fraction [%] Transitional fraction [%] Perforated fraction [%] Edge fraction [%] Interior fraction [%]

PFT scenario cc ha mp cc ha mp cc ha mp cc ha mp cc ha mp cc ha mp

M
on

ta
ne

present 11.28 1.91 6.44 16.56 3.40 71.69

RCP2.6 -1.39 -1.64 -1.53 2.07 2.05 2.03 6.55 6.62 6.75 16.39 16.71 17.15 3.31 3.41 3.56 71.69 71.20 70.50

RCP4.5 -2.66 -3.42 -2.85 2.09 2.05 2.06 6.62 6.66 6.81 16.81 16.86 17.75 3.48 3.59 3.63 70.99 70.83 69.75

RCP8.5 -4.49 -4.93 -4.75 2.06 2.10 2.14 7.16 7.02 7.18 18.11 18.17 18.41 3.76 3.77 3.89 68.91 68.95 68.37

C
on

if
er

ou
s present 2.89 11.78 21.18 34.65 6.79 25.59

RCP2.6 -0.25 -0.25 -0.04 11.59 11.73 11.63 21.81 21.46 21.06 34.56 34.06 34.21 6.58 6.63 6.51 25.47 26.13 26.59

RCP4.5 -0.43 -0.56 -0.47 10.97 10.12 12.56 20.75 20.70 22.42 34.86 35.12 33.35 6.80 6.93 6.45 26.60 27.14 25.22

RCP8.5 -0.71 -0.89 -0.70 10.83 10.79 12.24 21.03 20.38 22.02 34.50 34.52 33.65 6.70 6.68 6.61 26.94 27.63 25.48
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Figure S7: Maps of environmental predictors used for model training.
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Figure S8: Difference of precipitation seasonality between present-day and climate projections.

Figure S9: Difference of maximum temperatures between present-day and climate projections.
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Figure S10: Difference of minimum temperatures between present-day and climate projections.

Figure  S11: Non-analog  conditions  for  annual  precipitation  (prsum),  precipitation  seasonality

(prseas),  maximum  temperature  (maxtemp)  and  minimum  temperature  (mintemp)  compared  to

present-day climate data.
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Figure S12: Sum of occurrence probabilities for dry acquisitive species.
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Figure S13: Sum of binarized projections for dry acquisitive species.

13



Figure S14: Sum of occurrence probabilities for dry conservative species.
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Figure S15: Sum of binarized occurrence probabilities for dry conservative species.
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Figure S16: Sum of occurrence probabilities for wet acquisitive species.
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Figure S17: Sum of binarized occurrence probabilities for wet acquisitive species.
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Figure S18: Sum of occurrence probabilities for wet conservative species.
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Figure S19: Sum of binarized occurrence probabilities for wet conservative species.
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Figure S20: Sum of occurrence probabilities for generalist species.
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Figure S21: Sum of binarized occurrence ceprobabilities for generalist species.
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Figure S22: Sum of occurrence probabilities for montane species.
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Figure S23: Sum of binarized occurrence probabilities for montane species.
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Figure S24: Sum of occurrence probabilities for coniferous species.
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Figure S25: Sum of binarized occurrence probabilities for coniferous species.
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Supplementary methods

PFT composition

For a general biogeographic division we largely followed the classification of terrestrial 

ecoregions by Olson et al. 1, which for Central America is based on the Holdrige Life Zone 

system 2. Grounded in empirical studies, this system uses temperature, precipitation and 

altitudinal gradients to delineate biogeographical units. From these classifications, we 

adopted the main differentiation between tropical wet and dry forests. In Central America, 

this divide is marked by patterns of precipitation seasonality and roughly follows the Central 

American mountain ranges of the American Cordillera. Since the higher parts of these 

mountain ranges can experience freezing temperatures and thus accommodate distinctly 

adapted species, we additionally distinguish between lowland/premontane and montane 

forests (for a topographic overview see Figure S26). 

Beyond these large-scale divisions, regional and local ecosystem patterns depend on a large 

number of factors including hydrological properties (e.g. runoff, water-logging), soil 

properties (e.g. pH, texture, nutrient availability) and light availability. As a result, tree 

species pursue specialized resource acquisition strategies to maximize their fitness 3. For 

simplicity, here we cover this functional component by making a general differentiation 

between acquisitive and conservative species 4,5. Acquisitive species, as their name suggests, 

tend towards fast resource acquisition by primarily investing energy in rapid growth at the 

cost of low structural quality (low wood density, cheap leaves). They maximize assimilation 

with high specific leaf area, high leaf nitrogen and phosphorus contents, shed their leaves 

during droughts and follow r-selection strategies with many rather small seeds 6. 

Conservative species on the other hand invest more energy into robust tissue (dense wood, 

tough leaves) at the expense of lower growth rates. They are commonly (semi-) evergreen, 

have lower specific leaf area and follow a k-selection strategy with fewer but large seeds. In 

tropical wet forests conservative species are typically shade-tolerant and late-successional, 

while in dry forests they are shade intolerant and may rather be found in early-successional 

stages under harsh environmental conditions 7. Despite our broad categorisation, some 

species still escape clear assignment, occurring widespread throughout Central America in 
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both wet and dry biomes and showing intermediate traits between acquisitive and 

conservative. To account for these non-specialist species, we included an additional type 

termed ”generalists”. Finally, while most Central American tree species are broadleaved, 

pine-dominated coniferous forests extend across coastal and montane areas in Honduras and 

the highlands of Guatemala. Since they are unique in their history of fire-driven succession 8 

and are of special economic importance 9, we added them as a separate type.

A preliminary list of eligible species was created mainly based upon the compendium of 

Central American tree species by Cordero & Boshier 10, which already featured a grouping of 

species into Holdridge Life Zones. We thinned this list of species “candidates” by referring to

information on these species in other guides (as cited in the main text), checking for 

occurrence data availability (>200) in the cited data bases and retrieving and checking trait 

data (for wet and dry acquisitive/conservative). To avoid including highly specialized or 

region-specific species, we further filtered the list by widespread abundance and large 

overlap of species presence records with the forest types they were suppposed to represent. 

To validate the latter two points we compared the distribution of occurrence data for each 

PFT with ecoregions 1, which is shown in Figure S27. Final selections were discussed and 

refined with the help of regional plant experts (Dr. J. Franciso Morales, Dr. Lenin Corrales 

and Dr. Bryan Finegan), which for example led to the decision of grouping Weinmannia 

species together due to close co-occurrence and easy confusion in the field.

Model setup

The amount of pseudo-absences and the method used for their selection are known to be a 

major factor of uncertainty in SDMs and influence their performance. What is more, 

depending on the model structure, different modelling methods show different sensitivity 

towards prevalence and spatial or environmental biases in the data. Barbet-Massin et al. 11 

thus recommend to adapt the strategy used for pseudo-absence-sampling to the modelling 

algorithm used. Therefore, the model setup differed slightly between the algorithms used (see

Table S2). In addition to the findings of Barbet-Massin et al. 11, during a test run we noted 

that for the classification and machine learning methods calibration increased with the 

number of pseudo-absences sampled - however at the cost of discrimination capacity. To 
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balance this trade-off, we moderately increased the number of pseudo-absences from their 

suggestion. For all presence-absence models we randomly sampled pseudo-absences with 

spatial exclusion of a 3km buffer around the presence locations (spatially stratified sampling),

selecting twice as many pseudo-absences as presences but at least 1000. 

Figure  S26:  Elevation  map  of  the  study  region  (data:  GMTED2010).  Margin  plots  show mean

elevation as a histogram along latitudes and longitudes, respectively.
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Figure S27: Distribution of occurrence data within ecoregions.

For MAXENT we randomly sampled 10’000 points throughout the study region to be used as

background data. Since the step of pseudo-absence generation introduces additional 

uncertainties, we followed a Monte-Carlo approach by running 100 model replicates per 
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algorithm and species. Finally, because non-standardized predictors may skew responses of 

ANN and SVM (giving unequal weight to the variables), we applied min-max normalization 

to the environmental data in these runs (for the climatic variables throughout historic and 

scenario data). For a full summary of our settings and study design, see the protocol of the 

newly developed standard ODMAP 12 (section ODMAP protocol).

Table S2: Model setup.

algorithm(s) sampling strategy number of absences data normalization

GAM, GLM, MARS spatially stratified presences × 2, min. 1000 no

CTA, RF spatially stratified presences × 2, min. 1000 no

ANN, SVM spatially stratified presences × 2, min. 1000 yes

MAXENT random 10’000 background points no

Cascade of uncertainties

Occurrence data uncertainty.  Despite putting great care in the selection of occurrence 

points for model training, errors in the collection of species records can not be precluded. 

Due to common physiological features and high species diversity in tropical forests, 

taxonomic misidentifications in the field can still be a relevant issue 13. Yet, since in this 

study we mostly work at the level of trait-based species groups we do not expect these errors 

to be critical. Other data issues may stem from sampling bias and precision of coordinates. 

The spatial thinning of occurrences is expected to reduce these impacts, yet edge effects 

between grid cells likely persist. The lack of true absence data represents another common 

problem for SDMs. Here, we followed a Monte-Carlo approach to account for the effect of 

pseudo-absence sampling. The ANOVA results showed, however, that this is a minor source 

of variance. Finally, we also consciously chose a low number of species per type to avoid an 

inflation of model uncertainties in the process of SDM stacking.

Predictor variable uncertainty.  The choice of predictor variables is known to constitute a 

critical factor in the model building process 14. Over the years, different strategies for the 

selection of environmental predictors for SDMs have evolved, which may mainly be divided 

in a-priori and a-posteriori methods. The former embrace fully exploratory approaches which 
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include a large set of potentially important variables, variable aggregation using principal 

component analysis or restricted selection based on ecological understanding 14,15. A-

posteriori methods on the other hand may consist in a backwards selection of environmental 

predictors based on their relative contribution to explained variance 16. To reduce model 

complexity and avoid overfitting, in this study we decided to include only a few but 

biologically meaningful predictors 17,18. Since the importance of predictor variables may vary 

between species, a unique predictor set for each group could probably improve accuracy, but 

would also impede comparison across models. Furthermore, inaccuracies in the predictor 

variables add to the list of uncertainties. Since most environmental data themselves are 

products of models (often run at a global scale), uncertainties inevitably propagate throughout

the modelling process of SDMs. An evaluation of climate projections for Central America 

showed that these generally performed well for mean temperature but could not precisely 

reproduce precipitation and monthly temperature patterns and showed low skill for estimating

the El Nino Southern Oscillation effect 19. By using a range of less closely related well-

ranking GCMs 20 we aimed to provide a spectrum of projections and analysed their standard 

deviation to highlight centres of uncertainty. More recently, the effect of spatial 

autocorrelation (particularly of residuals) in SDMs has been brought to new attention 21. 

While there is broad agreement that the dependence of closeby predictor data violates a 

fundamental principle of classical statistics, the effects on model results are not clearly 

understood yet. One of the common tenors is to use a Bayesian modelling framework instead 

of frequentist methods, however, this was beyond the scope of our study. 

Algorithm uncertainty.  One of the major sources of uncertainty lies in the choice of 

modelling algorithm used to build SDMs 22,23. Due to fundamental differences in the model 

fitting process, species responses in environmental space may vary greatly between the 

methods 24. Here we used model ensembling to counteract these differences. While there is 

general agreement in the literature for using ensembles opposed to one single method, still it 

should be noted that a “best model” may be overruled by this strategy.

Analysis of Variance.  To uncover main uncertainty sources, we conducted an analysis of

variance in dependance of model replicates, modelling algorithms, RCPs and GCMs for each

species (Fig. S28). The resulting total sum of squares was highest for modelling algorithms,
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highlighting a high impact of algorithm choice on predictions. Model replicates (i.e. varying

subsets  of  occurrence  data  used  for  model  training)  had  the  lowest  impact  on  variance.

Nevertheless, additional important sources of uncertainty might have been missed, since the

unexplained variance (residuals) remained high for many species.

Figure S28: Average proportion of the ANOVA sum of squares of different sources of uncertainty

(choice  of  algorithm,  model  replicate  (training  data  sample),  global  circulation  model  (GCM),

representative concentration pathway (RCP) and residual error).

Uncertainty maps.  To investigate spatial patterns of uncertainty, we computed the variance 

(V ar) and standard deviation of the stacked projections (S) from the sum of predicted 

occurence probabilities (p) of each model ensemble within a PFT multiplied by the inverse 

probability (1 − p) 25:

Var(S) = Σ(1 − p) p

The standard deviation was then calculated as square root of the variance (Fig. S29-S31).
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For most PFTs and scenarios, the highest uncertainties occurred in the areas with the highest

suitabilities for these types. Particularly the generalist type showed high deviations across

most of the study region. This result is mainly related to the parabolic relationship between

occurrence  probabilities  and  variance  as  seen  in  the  above  equation.  Consequently,

occurrence probabilities close to the range ends result in very low variance, while variance

increases strongly towards the centre of the distribution. Since our models were not optimized

for high discrimination (i.e. strong separation between presences (1) and absences (0)), many

predictions were in the range of 0.2-0.8 and thus lead to higher variances. Since all types

were affected similarly by this  effect,  the impact  on our study results  are expected to be

minor.

Recalibration

The recalibration of original suitability scores predicted by SDMs offers an opportunity to 

improve model calibration and allow for probabilistic interpretation of the output. Since the 

implementation can be a computationally expensive process, we tested a subset of five 

species ensemble models (GAM, MARS, MAXENT and RF for A. amorphoides, B. 

alicastrum, B. crassifolia, C. brasiliense, C. calycophyllum). We applied three state-of-the-art 

calibration methods and subvariants using the CalibratR package 26 and evaluated their 

success with expected calibration error (ECE), mean calibration error (MCE) and Continuous

Boyce Index (CBI). The evaluation showed that all calibration methods (except raw 

transformed) reduced calibration error, however only to a small degree (Table S3). CBI only 

improved for the histogram transformed method, but reduced for all other methods, 

particularly GUESS. The resulting recalibrated maps presented suitability patterns that 

strongly differed from the original predictions and were ecologically questionable: ranging 

from predicting only a few pixels as presences to drawing complete negative images 

compared to the original predictions. Based on these experiences, we found the original 

predictions to be sufficiently well calibrated and continued with these.

33



Figure S29: Standard deviations of the stacked projections for the CCSM4 scenarios.
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Figure S30: Standard deviations of the stacked projections for the HadGEM-AO scenarios.
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Figure S31: Standard deviations of the stacked projections for the MPI-ESM-LR scenarios.

36



Table S3: Recalibration statistics. Expected calibration error (ECE), mean calibration error (MCE), 
ECE/MCE with equal width bins (eq) and Continuous Boyce Index (CBI) statistics for calibration 
models of five species (all algorithms). Recalibration methods refer to those implemented in the 
CalibratR package 26.

method ECE MCE ECEeq MCEeq CBI

original 0.217 0.047 0.204 0.054 0.971

scaled 0.217 0.047 0.204 0.054 0.858

transformed 0.304 0.043 0.297 0.081 0.969

Histogram scaled 0.036 0.009 0.015 0.005 0.783

Histogram transformed 0.026 0.007 0.004 0.003 1.000

BBQ scaled selected 0.033 0.008 0.018 0.006 0.871

BBQ scaled average 0.028 0.007 0.018 0.006 0.782

BBQ transformed selected 0.033 0.008 0.018 0.006 0.890

BBQ transformed average 0.028 0.007 0.018 0.006 0.803

GUESS 1 0.081 0.020 0.084 0.023 0.695

GUESS 2 0.040 0.012 0.039 0.013 0.635
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ODMAP Protocol

This  protocol  was  created  online  with  the  web  application  ODMAP  v.1.0
(https://odmap.wsl.ch/). For the original description of the protocol see Zurell et al. 12.

Climate  change  may  induce  connectivity  loss  and
mountaintop extinction in Central American forests

– ODMAP Protocol –

Lukas Baumbach, Dan L. Warren, Rasoul Yousefpour, Marc Hanewinkel

2020-06-24

Overview

Authorship

Contact : lukas.baumbach@ife.uni-freiburg.de

<Study link> 

Model objective

Model objective: Forecast and transfer

Target output: suitable vs. unsuitable habitat, comparison across species

Focal Taxon

Focal Taxon: Groups of tree species with common resource acquisition traits from typical
Central American forest biomes

Location

Location: Central America

38

mailto:lukas.baumbach@ife.uni-freiburg.de


Scale of Analysis

Spatial extent: -100, -68, 4, 24 (xmin, xmax, ymin, ymax)

Spatial resolution: 30 arc-second (~1 km)

Temporal extent: 1979-2013 (present climate) to 2061-2080

Temporal resolution: 70 years

Boundary: rectangle

Biodiversity data

Observation type: citizen science, field survey

Response data type: point occurrence, presence-only

Predictors

Predictor types: climatic, edaphic, topographic

Hypotheses

Hypotheses: Increasing temperatures  and precipitation  seasonality  could favour dry forest
species and lead to loss of suitable habitat for montane species

Assumptions

Model assumptions: Species occurrence is at equilibrium with environment

Algorithms

Modelling techniques: maxent, glm, mars, ann, randomForest, gam, cta, svm

Model complexity: no limitation

Model averaging: model ensembling by unweighted mean

Workflow

Model  workflow:  for  each  species  and  algorithm  10  model  replicates  were  fitted  using
random training data subsets (70% training, 30% test), cross-validation with holdout data,
model  evaluation  with  AUC,  calibration  statistic  and  Continuous  Boyce  Index,  model
selection based on evaluation threshold ( AUC/calibration/CBI >0.7), recalibration,  model
ensembling across algorithms and species (SSDM)
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Software

Software: R 3.6.3, packages: SSDM, ENMTools, CalibratR

<Code availability> 

<Data availability> 

Data

Biodiversity data

Taxon names: Alnus acuminata, Alvaradoa amorphoides, Brosimum alicastrum, Byrsonima
crassifolia,  Calophyllum  brasiliense,  Calycophyllum  candidissimum,  Ceiba  pentandra,
Cornus  disciflora,  Dialium  guianense,  Drimys  granadensis,  Enterolobium  cyclocarpum,
Guazuma ulmifolia,  Leucaena  leucocephala,  Ochroma pyramidale,  Pachira  quinata,  Pinus
ayacahuite,  Pinus  caribaea,  Pinus  oocarpa,  Pinus  tecunumanii,  Schizolobium  parahyba,
Simarouba amara, Spondias mombin, Symphonia globulifera, Vachellia farnesiana, Vochysia
ferruginea,  Weinmannia  spp.  (anisophylla,  balbisana,  burseraefolia,  burserifolia,  elliptica,
fagaroides,  horrida,  karsteniana,  multijuga,  pinnata,  pubescens,  rollottii,  vulcanicola,
wercklei)

Taxonomic reference system: GBIF Backbone Taxonomy

Ecological level: species, communities

Data sources: GBIF, BIEN, de Sousa et al. (2017) (see main article)

Sampling design: random

Sample  size:  species  dependent  ~200  to  ~5600  (number  of  pseudo-absences  was  scaled
accordingly)

Clipping: study extent (68-100W, 4-24N), masking by land area

Scaling: spatial thinning to one record per grid cell of environmental rasters

Cleaning: removal of duplicates, union of synonym taxa to GBIF accepted name

Absence data: not available

Background  data:  random generation  of  pseudo-absence  data  with  3km spatial  exclusion
around presences. MaxEnt: 10’000 randomly sampled background points.

Errors and biases: taxonomic misidentification possible

Data partitioning

Training data: random, 70%
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Validation data: none

Test data: 30% withheld from model fitting

Predictor variables

Predictor variables: maximum temperature of the warmest month, minimum temperature of
the coldest month, precipitation seasonality, annual precipitation,  soil sand fraction (30cm
depth), soil clay fraction (30cm depth), soil pH in water, depth to bedrock and hillslope

Data  sources:  climate/topography:  http://chelsa-climate.org/downloads soil  data:
https://soilgrids.org/ slope: derived

Spatial extent: -100, -68, 4, 24 (xmin, xmax, ymin, ymax)

Spatial resolution: 30 arc-second

Coordinate reference system: EPSG:4326 (WGS84)

Temporal extent: climate: 1979-2013, topography: 2010, soil: 2013

Temporal resolution: not applicable

Data processing: grid alignment

Errors and biases: soil data sampling bias (mostly Pacific coast)

Dimension  reduction:  multi-collinearity  check  via  variance  inflation  factor  calculation,
stepwise supervised exclusion of critical variables until VIF<10

Transfer data

Data sources: climate scenarios (CMIP5): http://chelsa-climate.org/downloads

Spatial extent: -100, -68, 4, 24 (xmin, xmax, ymin, ymax)

Spatial resolution: 30 arc-second

Temporal extent: 2061-2080

Temporal resolution: not applicable

Models and scenarios: CCSM4, HadGEM2-AO, MPI-ESM-LR, RCPs 2.6, 4.5 and 8.5

Quantification of Novelty:  clamping to value range of original  predictors  used for model
training
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Model

Variable pre-selection

Variable pre-selection: environmental limits of ecological importance drawn from literature
and regional experts

Multicollinearity

Multicollinearity: variance inflation factor (VIF)

Model settings

maxent: featureSet (Auto features), regularizationMultiplierSet (1), convergenceThresholdSet
(0.00001)

glm: family (gaussian),  formula (presence ~ x1 + … + xn), weights (NULL), test (AIC),
epsilon (1e-08), maxit (500)

mars: formula (presence ~ .), degree (2), penalty (3), nk (automatically set), thresh (0.001),
pmethod (backward)

ann: formula (presence ~ .), size (6), decay (0), maxit (500), trace (FALSE)

randomForest:  ntree  (2500),  mtry  (sqrt(nvars)  ),  maxnodes  (NULL),  try  (N/A),  do.classif
(TRUE), nodesize (1)

gam: family (gaussian), formula (presence ~ x1 + … + xn ), smoothTerms (+ s(x1) + … +
s(xn)),  weights  (NULL),  offset  (NULL),  method  (GCV.Cp),  select  (FALSE),  test  (AIC),
epsilon (1e-08), maxit (500)

cta: formula (presence ~ .), minbucket (1), xval (3)

svm: formula (presence ~ .), type (eps-regression), gamma (1/length(data) -1), kernel (radial),
epsilon (1e-08), cross (3)

Model settings (extrapolation): clamping

Model estimates

<Coefficients> 

Analysis and Correction of non-independence

<Spatial autocorrelation> 
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Threshold selection

Threshold selection: maximum sum of sensitivity+specificity

Assessment

Performance statistics

Performance on training data: AUC, calibration plot statistic (Naimi et al. 2016), Continous
Boyce Index

<Performance on validation data> 

Performance  on  test  data:  AUC,  calibration  plot  statistic  (Naimi  et  al.  2016),  Continous
Boyce Index

Plausibility check

<Response shapes> 

Expert judgement: map display

Prediction

Prediction output

Prediction unit: probability

Post-processing: none

Uncertainty quantification

Algorithmic uncertainty: ANOVA, standard deviation

Input data uncertainty: ANOVA, standard deviation

Scenario uncertainty: ANOVA, standard deviation

Novel environments: novel climate maps
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