
Die Publikationsreihe NIHIN – New Ideas in Human Interaction – entstand 2010
und ist ein Kooperationsprojekt zwischen der Hermann Paul School of
Linguistics (HPSL) und der Universitätsbibliothek Freiburg (UB).

NIHIN bietet eine moderne, frei zugängliche Plattform für wissenschaftliche
Essays erfahrener WissenschaftlerInnen sowie Prädikatsdissertationen,
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Until recently, disfluencies in human language were outside of the focus
of linguistic research. However, with the advent of technologies such as
digital personal assistants, this approach changed. In order to mimic
natural conversation, it is necessary to create a natural sounding output,
including phenomena deemed undesirable in an idealized view of the
language, such as disfluencies.

This thesis presents two novel approaches to disfluency prediction. It
extends the list of known predictors of disfluencies with surprisal, a
measure of processing complexity derived from psycholinguistic and
information-theoretic observations. Additionally, it presents a compu-
tational-linguistic approach in which a machine translation architecture
(encoder-decoder) is used for the prediction of disfluencies.
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Zusammenfassung in der deutschen Sprache 

Diese Arbeit beschäftigt sich mit Zögerungssignale im gesprochen 

Englischen. Mit einer Kombination von korpus- und 

computerlinguistischen Methoden wird versucht, drei Typen von 

Zögerungssignale (Wiederholungen, stille Pausen und uh/um) in einem 

Korpus des Englischen vorherzusagen. Dies könnte eine praktische 

Anwendung in der Sprachsynthese finden, da es eine konversationelle 

und natürlichere synthetisierte Sprache ermöglicht. 

Zusätzlich zu den qualitativen und quantitativen Prädiktoren aus 

der bisherigen Forschung – wie zum Beispiel Mutual-Information-

Score, Lexical-Gravity-Score oder Wortart – wird ein neuer Prädiktor 

vorgeschlagen: Surprisal, also die informationstheoretische 

Einschätzung der Vorhersagbarkeit eines Wortes. Es dient als eine 

numerische Einheit mit der die Vorhersagbarkeit des Wortes und vor 

allem die Last an die kognitive Systeme des/der Sprechers/in und 

des/der Hörers/in, die durch dieses Wort verursacht wird, gemessen 

werden kann. Es wird argumentiert, dass Wörter mit einem hohen 

Surprisalwert öfter nach einem Zögerungssignal erscheinen sollten: in 

diesem Fall würden die Zögerungssignale dafür dienen, einen rasanten 

Anstieg im Surprisal zu glätten. 

Da Surprisal bisher nie dafür angewandt wurde, 

Zögerungssignale vorherzusagen, stellt diese Arbeit zuerst die 

Pilotstudie I vor. In dieser Studie wird die Verbindung zwischen 

Surprisal und Zögerungssignalen an dem John Swales Conference 

Corpus getestet. Nach dem erfolgreichen Test wird dann Surprisal zu 

anderen Prädiktoren aus der bisherigen Forschung hinzugefügt um 



 

 

 

 

Zögerungssignale in dem Michigan Corpus of Academic Spoken 

English vorherzusagen.  

Die Ergebnisse werden in Studien IIa und IIb präsentiert. Sie 

zeigen, dass Zögerungssignale tatsächlich nicht zufällig verteilt 

werden, sondern dass sie zu einem bestimmten Grad durch die 

gewählten Prädiktoren erklärt werden können. Die wichtigste Rolle 

spielt dabei die Position im Satz oder im Turn: die ersten Wörter im 

Satz/Turn sind besonders oft die Auslöser von Zögerungssignalen. 

Auch hier wird das Surprisal als ein relevanter Prädiktor identifiziert; 

es wird gezeigt, dass sich das Surprisal-Profil von Zögerungssignalen 

vom restlichen Text unterscheidet. 

Studie III präsentiert dann eine rein computerlinguistische 

Perspektive. Zögerungssignale werden mithilfe einer Encoder-

Decoder-Architektur für maschinelle Übersetzung vorhergesagt. Die 

Ergebnisse sind denen von Studien IIa und IIb ähnlich. Für praktische 

Anwendungen scheint daher diese Methode besonders geeignet zu sein, 

da sie wesentlich weniger Datenvorverarbeitung benötigt. Außerdem 

kann sie auch für die Entfernung von Zögerungssignalen in einem 

automatisch transkribierten Text angepasst werden, indem die 

Übersetzungsrichtung geändert wird. 

Diese Arbeit bietet einen neuen Ansatz zu dem komplexen 

Thema der Vorhersage von Zögerungssignalen. Die neuentdeckte 

Verbindung zwischen Surprisal und Zögerungssignale bietet die 

Möglichkeit, einzelne Prädiktoren aus bisheriger Forschung durch ein 

unterliegendes Prinzip zu erklären: die Verarbeitungskomplexität. 

Außerdem wird gezeigt, dass die Position innerhalb syntaktischer 



 

Struktur von besonderer Wichtigkeit ist: Wörter mit dem gleichen 

Surprisalwert unterscheiden sich in der Wahrscheinlichkeit mit der sie 

ein Zögerungssignal auslösen, wenn sie sich in unterschiedlichen 

Positionen in der syntaktischen Struktur befinden. Letztlich wird 

gezeigt, dass das neuronale Übersetzungsmodell ähnlich wie das 

theoretisch motivierte psycholinguistische Modell abschneidet, obwohl 

es die Regeln der Sprache selbstständig anhand von nicht annotierten 

Daten erlernen muss. 
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Chapter 1  

Introduction 

Until recently, disfluencies in the human language were outside of the 

focus of linguistic research. Viewed as noise in the otherwise systematic 

production of language, they were neglected in theories of language 

production with the exception of narrowly defined research areas 

focusing on phenomena such as stuttering or aphasia. This was perhaps 

a consequence of the fact that linguistic research was dominated by the 

work on written language. Spoken communication was often viewed as 

parallel to writing, differing only in the mode of production (Chafe 

1992; Linell 1982). Even though some studies on disfluency 

phenomena did exist (Good & Butterworth 1980; Goldman-Eisler 

1968; Beattie & Butterworth 1979; Maclay & Osgood 1959), their 

distribution in natural speech of healthy speakers only came into 

prominence after Shriberg's (1994) seminal work. Since then, a number 

of empirical studies from both psycholinguistic and corpus-linguistic 

perspective have been published (among other Engelhardt et al. 2017; 

Eklund et al. 2015; Schneider 2014; Barr & Seyfeddinipur 2010; Arnold 

et al. 2007; Corley et al. 2007; Ferreira & Bailey 2004; Clark & Fox 

Tree 2002; Brennan & Schober 2001; Clark & Wasow 1998), striving 

to describe their distribution and explain the mechanism through which 

they are placed. Even though no definitive explanation has been found 

yet, these studies (and others reviewed in Chapters 3 and 4) have shed 

light on some of the intricate details of their use. 
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Similarly to more traditional approaches to language, 

computational linguistics has long viewed disfluencies simply as 

problems. When discussing disfluencies, much of the debate focused on 

detecting and removing them (Jamshid Lou & Johnson 2017; Honnibal 

& Johnson 2014; Johnson & Charniak 2004; Shriberg et al. 1997) in 

order to reconstruct an underlying written-like message from a spoken 

utterance. However, with recent advances in speech synthesis and the 

demand for inclusion of emotions and expressiveness in synthesized 

speech, the issue of predicting disfluencies became relevant, too. 

Synthesized speech with disfluencies is reported to be perceived as 

more natural and conversational (Dall et al. 2014a; Dall et al. 2014b; 

Adell et al. 2007) than synthesized speech produced in the style of a 

news anchor reading a scripted text. Disfluency prediction is thus one 

avenue of research through which speech synthesis may advance. 

This thesis combines a corpus linguistic approach with a 

computational linguistic one. On the one hand, it aims to explain the 

placement of disfluencies from the quantitative perspective, drawing 

inspiration from psycholinguistic and information-theoretic 

observations. On the other hand, it also attempts to predict disfluencies 

in a cleaned text stream. The disfluency prediction uses a set of 

previously suggested predictors, as well as a novel approach based on 

the results of the empirical study presented in Study I. This study 

employs a psycholinguistically inspired language model to assess the 

surprisal (Levy 2008, Hale 2001, Attneave 1959, Shannon 1948) of an 

item and test whether it can provide information about the occurrence 
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of disfluencies. It shows that disfluencies do not occur uniformly, but 

rather cluster in areas of high surprisal.  

To my knowledge, the link between disfluencies and surprisal 

has not been explored in previous work. Thus, in order to show that 

surprisal is a meaningful predictor of disfluency placement, I first 

present the pilot Study I, which explores the placement of disfluencies 

in a corpus of spoken language. This study tests the following 

hypothesis: 

Hypothesis 1: 

The occurrence of disfluencies may be predicted by the local 

surprisal. 

The confirmation of this hypothesis motivates the work presented in 

Studies IIa and IIb. These studies attempt to predict disfluencies in a 

text from which they were previously removed. For this purpose, the 

surprisal estimate is added to previously observed predictors of 

disfluencies. The set of predictors is then evaluated through standard 

frequentist statistical methods and employed in computational methods 

that aim to predict disfluencies in previously unseen data. The results 

show that frequency- and probability-based measures are capable of 

predicting disfluencies to some degree, though they cannot explain the 

full variation in their use.  

The hypothesis in Study IIa is motivated by the observation made 

in Study I, extending Hypothesis 1 and the observations of previous 

research. 
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Hypothesis 2.1: 

The surprisal estimate produced by the model defined in 

Chapter 2.3 is a predictor of disfluency occurrence in the 

MICASE corpus. 

Hypothesis 2.2: 

The occurrence of a disfluency depends not only on the overall 

predictability of the word it precedes, but also on the difference 

in the local information transmission rate – that is the difference 

in the predictability of the word preceding the position in which 

the disfluency was inserted and the word following it.  

After critically evaluating the performance of disfluency prediction on 

a corpus of spoken language that includes more data from a broader 

domain than the one used in Study I, Study IIb extends the set of 

predictors. It appends the numeric scores of Studies I and IIa with 

structural properties of individual items in the form of part of speech as 

well as the position within an intermediate syntactic unit, the chunk. 

Thus, the structural perspective is explored as well. 

Finally, Study III provides a computational outlook by framing 

the disfluency prediction task as a translation task from a fluent 

language to a disfluent one. It shows that modern machine translation 

models can perform similarly to theoretically-motivated disfluency 

prediction models in spite of not having access to the preprocessed 

language statistics or predefined structural information.  
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The disfluencies discussed in this thesis belong to the group of 

hesitations, i.e. “temporary suspension[s] of flowing speech” (Lickley 

2015: 456). These consist of filled pauses (uh, um), unfilled pauses and 

repetitions. Thus, this work may be viewed as a preliminary step to a 

more complex disfluency prediction model that would also include 

repairs and deletions. The purpose of such a model is twofold. On the 

one hand, naturalistic disfluency placement allows the creation of more 

natural text-to-speech synthesizers and conversation systems. On the 

other hand, a better understanding of the process that governs 

disfluency placement will also improve our understanding of the speech 

production process. 

Importantly, the term disfluency will be used throughout this 

thesis as referring to phenomena interrupting the flow of speech without 

adding any propositional content (Fox Tree 1995), even if these are 

deliberate hesitations used for rhetoric purposes (O'Connell & Kowal 

2004). Thus, it is not used as marking an error or incorrect use of 

language, but simply as a reference to the location in the speech stream 

where a temporary suspension of the production occurs (pauses), or 

where an element is repeated. For a more detailed discussion of the 

multiple definitions of the term and their connotations, the reader may 

refer to the article of Gilquin & Cock (2011) or Chapter 2.3.3 of 

Shriberg’s thesis (1994). 

Finally, before the individual studies are presented, an 

introductory chapter discussing the term surprisal/information as used 
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throughout this thesis is included. This chapter also describes the 

language model employed for the surprisal estimation. 



Chapter 2  

Preliminaries 

This chapter introduces concepts which are common to the studies 

presented in this thesis. It first introduces the terms 

surprisal/information and information density and discusses their use in 

this thesis as contrasted to the one found in general linguistics. Then, 

the individual elements of the language model employed in this thesis 

are defined and explained. Since the language model combines these 

individual elements into one joint model, the approach used for their 

integration is presented in Chapter 2.3. 

2.1 Surprisal 

In addition to other measures suggested by previous studies to explain 

disfluency placement, this thesis included the surprisal of individual 

items. This notion is derived from the Mathematical Theory of 

Communication by Shannon (1948), later extended to Information 

Theory. In his work, Shannon attempted to define the characteristics of 

an optimal communication system. While his work was primarily 

directed at electronically encoded human language, it was later 

successfully applied as a general theory in a range of scenarios, 

including human communication in its natural form. It views any 

communication as an attempt to transmit a message from its source to 

its destination over a noisy channel as sketched in Figure 1. At the 

beginning, a message is formulated at the source and translated into 
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some encoding capable of being sent over the chosen channel. Then the 

encoded signal is sent to the receiver, who decodes it in order to obtain 

the original message (or at least its close approximation, absolute 

fidelity is unattainable according to Shannon). Each element of this 

transmission (whether it is an electronic impulse or a 

phone/letter/word/etc.) carries with itself some information. This 

information is defined as the amount by which the uncertainty about the 

outcome (the message) is reduced. Informative elements reduce the 

uncertainty greatly, whereas elements that do not reduce the uncertainty 

at all are considered informationally empty. 

 

Figure 1: Visualization of a general communication system by 

Shannon (adapted from Shannon 1948: 380). 

Since Shannon was interested in comparing various encodings so 

as to find the ideal one, he needed to find a measure to quantify this 

notion. This measure had to adhere to the intuitive features of 

information, such as the fact that it can be encoded, transmitted and 
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stored. Similarly, it should be additive and non-negative since no 

transmission should leave the receiver with less information than they 

had at the beginning (Floridi 2009). Further, it should take into account 

that the amount of uncertainty about the outcome is dependent on the 

type of communication. In the simplest scenario, where the transmitter 

is only capable of sending one message, the receiver knows what the 

message is going to be even prior to decoding it. Thus, there is no 

uncertainty to start with and the successful reception cannot and does 

not reduce it. As a consequence, the amount of information transmitted 

by each element should equal to 0. On the other hand, the larger the 

range of possible messages, the larger the amount of information 

transmitted by each element. 

Shannon observed that information defined in such terms is 

inversely related to probability – the more outcomes exist, the lower the 

average probability that a particular one will occur. Thus, subtracting 

probability from 1 would yield a measure conforming to the 

requirements mentioned above. Additionally, in order to remove the 

bounding of the measure by the interval 〈0,1〉 and to express that 

extremely unlikely events carry a substantially larger amount of 

information than somewhat unlikely ones, the probability is 

additionally log-transformed. As a result, the informativeness of an item 

(also called its surprisal, cf. Levy, 2008; Hale, 2001; Attneave, 1959) is 

expressed as: 

 𝐼 =  − log(𝑃) ( 1 ) 



22  2. Preliminaries 

 To achieve optimal communication, the encoding of messages 

should be devised in such a way that the information carried by each 

element is as close to the channel capacity as possible. In such a way, 

the resources are used efficiently. Moreover, the transmission should be 

smooth, without peaks or troughs in the transmission rate (Jaeger 2006). 

This suggestion stems from Shannon’s acknowledgement of the 

inherent noisiness of transmission channels. Given that any message is 

likely to be distorted by noise to some degree (and cannot be 

reconstructed fully with absolute certainty by any function, hence the 

aforementioned unattainability of absolute fidelity), smoothing 

information transmission minimizes the risk that a sudden peak in the 

noisiness will cause a disproportionate information loss. 

In the context of natural language communication, evidence for 

the optimization of information transmission actually predates the 

Mathematical Theory of Communication. As observed by Zipf (1932), 

the frequency of a word is a good indicator of its length. Since relative 

frequency yields the simplest estimate of probability, this relationship 

corresponds to a simple transmission optimization strategy: in order to 

transmit messages efficiently, “messages of high probability are 

represented by short codes and those of low probability by long codes” 

(Shannon 1948: 395). This correlation of length and frequency is robust 

across languages and definitions of length and frequency (Grzybek 

2006; Strauss et al. 2006). Importantly, in a more recent study, 

Piantadosi et al. (2011) were able to verify and generalize the 

suggestion of Manin (2006) that better estimates of the average 
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surprisal of words will yield a better predictor of their length. By using 

n-gram based probabilities they were able to show that average 

predictability in context outperforms relative word frequency in 

predicting a word’s length. Such a relationship results in an encoding 

that is better optimized in terms of transmission smoothness and 

efficiency. 

The effect of surprisal was identified in other domains of 

language, too, both from diachronic (e.g. Degaetano-Ortlieb & Teich 

2019) and synchronic perspective, the latter prominently represented by 

the Smooth Signal Redundancy hypothesis (Aylett & Turk 2004) and 

the Uniform Information Density hypothesis (UID, Jaeger 2010; Jaeger 

& Levy 2006; Jaeger 2006). Both of these hypotheses suggest that 

speakers optimize their output constantly, so as to produce smoothened 

transmissions. In the Smooth Signal Redundancy hypothesis, based on 

studies of articulatory detail (Gahl 2008; Bell et al. 2009; Aylett & Turk 

2004, 2006; Bell et al. 2002), the element-wise surprisal is assessed on 

the phonetic level. The hypothesis suggests that predictable phones 

should be produced with less articulatory detail in comparison to those 

carrying a high information load. The UID, on the other hand, makes 

predictions about syntactic decisions. Its basic tenet is that “speakers 

optimize successful transfer and minimize effort if they aim at 

transmitting information at a uniform rate” (Jaeger 2006: 195). This is 

achieved by inserting/removing optional elements (e.g. the 

complementizer that) at appropriate choice points so as to produce 

smoothened output.  
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 An important feature of surprisal is that it can serve as a proxy 

to the cognitive load caused by the processing of an item (Levy 2008; 

Hale 2001). High-surprisal contexts should thus be more complex in 

terms of comprehension. This is supported by studies linking surprisal 

to other measures of cognitive load, such as reading times (Frank 2013, 

2017; Smith & Levy 2013; Mitchell et al. 2010) or event-related 

potential (ERP) responses (Frank et al. 2013, 2015). Thus, lowering the 

surprisal of an item by some smoothing method should facilitate its 

processing. Conversely, increasing the surprisal of an item may increase 

the efficiency of the transmission, but only at the cost of the processing 

load. Finally, the amount of information carried by a given element of 

the transmission, i.e. its surprisal, expresses the information density of 

the transmission around that element. From the information-theoretic 

perspective, informationally dense contexts contain elements which 

have low probability of occurrence. 

The crucial task of any study utilizing surprisal is finding a 

function that will assign the probability of each element as required by 

Equation 1. As mentioned above, the simplest approach would be 

taking the relative frequency of an element as its probability. This is 

clearly suboptimal for human languages, where the probability of each 

item is partially determined by the context: though infallibility is not a 

particularly frequent lexeme in English, it is more likely to occur after 
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papal than one of the most frequent items, the.1 Similarly, while the 

velar nasal /ŋ/ does not occur more often than the schwa /ə/ in English, 

their probability after the chain /sɪtɪ/ is not the same: the nasal is much 

more likely. Thus, the probability of an item in its context must be 

determined. In previous research, the methods adopted to achieve this 

goal often differed, depending on the particular focus of each study. In 

Aylett & Turk (2004), the definition included syllabic trigram 

probability, givenness and log-transformed word frequency. Frank & 

Jaeger (2008), on the other hand, employ simple 3-gram probabilities 

without back-off or smoothing. As a third example, Frank et al. (2015) 

use three various independent models: an n-gram (𝑛 ∈ 〈2,4〉), a 

recurrent neural network and a probabilistic phrase-structure grammar 

model. 

The reason for the variability of models used for the estimation 

of probability of a certain item is simple: as there is no universal 

language model available, probability (and ultimately information) has 

to be estimated by means of proxy measures. Aylett & Turk (2004: 39) 

summarize this point: 

Without understanding all the dependencies 

between semantics, syntax, pragmatics and the 

 

1 While papal infallibility occurs 51 times in the Corpus of Contemporary 

American English Davies (2008-), papal the is not attested. 
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structure of language any measure of redundancy is an 

approximation. 

Here, redundancy is understood as the opposite of information density 

– highly redundant encodings have low surprisal. The method chosen 

for redundancy approximation largely depends on the application: 

studies attempting to predict phonetic effects include a phonetic 

element, while studies in syntax utilize a syntax-based redundancy 

measure. Ultimately, however, all the approximations contain an 

inevitable amount of error. In order to counteract the inherent 

imprecision, multiple estimators are often used together, such as the 

aforementioned combination of phonetics, lexical effects and 

pragmatics (Aylett & Turk 2004; Aylett 2000), joint probability and 

conditional probability (Bell et al. 2002), or the grouping of n-gram, 

recurrent neural network and probabilistic phrase-structure grammar 

(Frank et al. 2015). 

However, these models are usually used separately, rather than 

combined into one joint model. On the one hand, this allows their 

effects and interactions to be evaluated independently. On the other 

hand, it limits their ability to balance out each other’s weaknesses. In 

order to respond to this issue, Mitchell (2011) suggested and tested 

(Mitchell et al. 2010) a compositional model which combines three 

different language models into one, yielding a robust measure that 

combines a semantic element with syntactic/lexical models. The 

following chapters explain each of the individual components in more 
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detail and are followed by an explanation of the procedure used to 

combine their output, as proposed by Mitchell (2011). 

Lastly, a brief comment on the difference between the 

information-theoretic and general linguistic definition of information is 

needed. Unlike the information-theoretic approaches to language, 

general linguistics does not define information as a measurable 

quantitative variable. Rather, it perceives it as the knowledge that is 

either stored in the brain of one of the interlocutors or transmitted via 

the message. This view allows the discussion of information as being 

old/new to the conversation (Chafe 1976) or the pragmatic implications 

of information packaging (Vallduví 1993; Chafe 1976), which would 

not be possible under the information-theoretic definition. From this 

perspective, informationally dense contexts are those in which many 

knowledge elements are transmitted through a limited number of 

surface forms, irrespective of their probability in context.

2.2 Language model elements 

2.2.1 Semantic model (LDA) 

When attempting to quantify the semantic relationship between a word 

and its textual history, computational models of language employ 

models of semantic similarity. The underlying mechanism relies on 

translating the meaning of a word into a vector in multidimensional 

space, allowing quantitative measurement of between-word similarity. 

The practical application of these models includes a range of tasks from 

modelling semantic priming (Landauer & Dumais 1997) to word sense 
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discrimination (Schütze 1998) and disambiguation in untagged text 

(McCarthy et al. 2004). 

The way in which the semantic vector is constructed may differ, 

however. Early studies (e.g. Osgood et al. 1957) elicited ratings from 

human subjects, asking them to rate each word on a number of scales, 

assuming that these ratings will allow researchers to uncover the latent 

semantic structure of these words. Such an approach was expected to 

yield results matching an average speaker’s understanding of the test 

words as well as offer an insight into interspeaker variation. However, 

it was also limited by its very nature – the number of words to evaluate 

as well as the size of the semantic space had to remain comparably small 

as both were constrained by the number of participants from whom the 

ratings could be elicited given the study budget. 

In an attempt to overcome the limitations imposed by the design, 

text-based distributional models of semantics were suggested, 

stemming from the slogan by Firth (1957: 11): “You shall know a word 

by the company it keeps!” These approaches assume that words that 

appear together should be semantically related (Erk 2012). For 

example, the relationship between the words tea and water should be 

much stronger than between tea and football given how often the words 

co-occur.  

In order to quantify this relationship, a definition of the context 

used as “the company” in the co-occurrence calculation is necessary. 

This may be a passage, sentence or a whole document, including even 
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words uttered/written after a given keyword (Dumais 2004). Once the 

context is defined, it remains to operationalize its translation into 

vectors. In the simplest form, each context could be taken as one 

dimension with the frequency of a given keyword in that context 

(potentially transformed by some function, such as logarithm) 

determining its value on that axis. However, given that such semantic 

spaces would be extremely multidimensional in most cases, some 

dimensionality reduction method is usually used in order to transform 

them. 

As an example of this technique, the implementation of Latent 

Sematic Analysis (LSA, Landauer & Dumais 1997; Deerwester et al. 

1990) used by Coccaro & Jurafsky (1998) may be taken. In their case, 

based on 80,000 articles from the Wall Street Journal, the context was 

defined as the full article in which a word occurred. Upon collecting the 

frequencies with which each of the 20,000 words of their vocabulary 

appeared in each of the articles, they transformed these frequencies to 

reflect the proportion of the total occurrences of this word that were 

found in a given article. Thus, the values of individual dimensions 

corresponded to the frequency in the article divided by the overall 

frequency. The semantic space with 80,000 dimensions (one per article) 

was then simplified through singular value decomposition to 300 

dimensions used to express the meaning of individual words. In order 

to determine the semantic relation between two words, the cosine of the 

angle between their vectors was taken – the smaller the value, the 

stronger the relationship. 
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Figure 2 gives an example visualization of a simple 2D space, 

created by Coccaro & Jurafsky (1998). It shows that smaller angles 

between two vectors – and by extension smaller cosine values – 

correspond to words which are semantically related, such as fishing and 

boat as compared to fishing and Hitler. This relationship may not 

necessarily be obvious. The model may capture latent semantic 

relationships such as those between fishing and Maine/Arizona. There, 

Maine is shown as standing in a closer relationship to fishing than 

Arizona. At first sight, it might seem that these words are completely 

unrelated to the word fishing and should be portrayed as equally 

different from its vector. However, Coccaro & Jurafsky point out that 

Maine is more important to the fishing industry than Arizona, a 

relationship which is reflected in the smaller angle separating their 

vectors. 

Importantly, distributional semantics can also provide insight 

into language processing by predicting the first pass durations (both 

word-level and sentence-level LSA) and first fixations in reading-time 

experiments (Mitchell et al. 2010; Pynte et al. 2008) and the N400 

effects as well as areas of neural activity in neuroimaging studies (Frank 

& Willems 2017). Thus, the similarity ratings may serve as a proxy of 

the relationship between individual words in the memory, with more 

similar items being more likely to be activated together. 
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Figure 2: Visualization of word similarity as expressed in 

distributional semantics by a simple 2D model (adapted from 

Coccaro & Jurafsky 1998). 

The approach for distributional semantics used in this thesis is 

the Latent Dirichlet Allocation (LDA, Blei et al. 2003). Unlike the LSA, 

this approach does not construct the semantic vectors on the base of 

word co-occurrence frequencies, but rather by extracting latent topics 

which are then used to describe individual words. Concretely, each 

document in a corpus is modeled as a distribution over K topics, each 

of which is defined as a distribution over words. Rather than 

representing the relationships between individual words, the meaning 

vectors represent the probability of a given word to occur given that a 
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certain topic is present in the document. Thus, each of the components 

of a vector 𝑣 representing a word 𝑤𝑖 equals to: 

 
𝑣𝑘 =

𝑝(𝑐𝑘|𝑤𝑖)

𝑝(𝑐𝑘)
 

( 2 ) 

where 𝑐𝑘 stands for a topic in the LDA model. 

As these are latent topics, they may not necessarily be easily 

interpreted or correspond to a set of predefined labels. However, as 

shown by the example sets of topics extracted from the English 

Wikipedia (Řehůřek 2018), often a general label is conceivable (e.g. 

“geography” for the topic in which high probability of occurrence is 

assigned to river, lake, island, mountain, area, or “sports” for the topic 

typically represented by the words relay, athletics, metres, freestyle, 

hurdles). This factor is stressed by Steyvers & Griffiths (2007), who 

note that this individual interpretability of topics is a distinct advantage 

of representing the content of words and documents with probabilistic 

topics rather than purely spatial representations. 

Following Mitchell (2011), the semantic coherence between a 

word and its lexical history was estimated for content words only. It 

was measured using cosine similarity (1 − 𝑐𝑜𝑠𝑖𝑛𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) of the 

vector representing a given word as compared to the vector of the text 

history before that word. To construct the history vector for word 𝑤𝑖 

the vectors of words 𝑤1…𝑤(𝑖−3) (to exclude the range covered by n-

grams, described in Chapter 2.2.3) were constructed, merged using 

vector addition and renormalized so as to yield valid probabilities, 
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summing to 1. As an alternative method of history formation, vector 

multiplication was tested by Mitchell (2011); in his study, it performed 

worse than addition. 

Thus, the semantic similarity of 𝑤𝑖 to the rest of the text is 

expressed by its cosine similarity to the history vector ℎ𝑖−3. This history 

vector uses the semantic vectors of words 𝑤1…𝑤𝑖−3. For 𝑖 < 4 the 

history vector is undefined as there is no text history outside the n-gram 

scope to build the semantic similarity. Finally, except for 𝑖 = 4 where 

 ℎ1 =  𝑤1 ( 3 ) 

ℎ𝑖−3 equals: 

 
ℎ𝑖−3 = 

1

2
ℎ𝑖−4 + 

1

2
𝑤𝑖−3 

( 4 ) 

This means that ℎ𝑖−3 is calculated by taking the history ℎ𝑖−4 and 

modifying it by the semantic vector of 𝑤𝑖−3. As a consequence, the 

history carries some elements even of words far before a given item, 

though recent words play a larger role. 

Once the history is established, the aforementioned cosine 

similarity may be used in order to measure semantic coherence between 

𝑤𝑖 and its history. However, the coherence score cannot be directly used 

for expressing probability or surprisal as pointed out by Mitchell (2011: 

109), who criticized Coccaro & Jurafsky (1998) for “[resorting] to a 

number of ad-hoc mechanisms to turn the cosine similarities into useful 

probabilities.” Additionally, even if a proper probability was calculated 

by normalizing the semantic coherence values over the full vocabulary 
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so as to add up to 1, the language model would not take into account 

the frequency of 𝑤𝑖. Thus, though brogues and shoes are certainly not 

as likely to appear after I walked in my new brown, a purely semantic 

model would assign them an almost identical probability, based on their 

semantic similarity to each other. 

In order to remedy this issue, Mitchell (2011: 109) suggested 

modifying the dot product used in the cosine similarity measure. Thus, 

rather than calculating: 

 
𝑤𝑖  ∙ ℎ𝑖−3 =∑

𝑝(𝑐𝑘|𝑤𝑖)

𝑝(𝑐𝑘)

𝑝(𝑐𝑘|ℎ𝑖−3)

𝑝(𝑐𝑘)
𝑘

 
( 5 ) 

where the individual vector elements from Equation 2 are multiplied 

with the corresponding history elements, he suggested to include the 

underlying probability of the word as expressed by a different model. 

This can be done in the following manner (to validate that this indeed 

yields a valid conditional probability, cf. Mitchell 2011): 

 𝑝(𝑤𝑖|ℎ𝑖−3)

= 𝑝(𝑤𝑖)∑
𝑝(𝑐𝑘|𝑤𝑖)

𝑝(𝑐𝑘)

𝑝(𝑐𝑘|ℎ𝑖−3)

𝑝(𝑐𝑘)
𝑘

𝑝(𝑐𝑘)

= 𝑝(𝑤𝑖)∑
𝑝(𝑐𝑘|𝑤𝑖)𝑝(𝑐𝑘|ℎ𝑖−3)

𝑝(𝑐𝑘)
𝑘

 

( 6 ) 

In this way, the semantic model is used to scale up the probabilities of 

words that are coherent to their history and scale down those whose 

semantic profile does not match it. The exact way this rescaling was 

done will be discussed in further detail in Chapter 2.3. 
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For the purposes of this thesis, the semantic model was trained 

using the 400,000,000-word Corpus of Contemporary American 

English (COCA, Davies 2008-), containing speech transcripts and texts 

composed in American English between the years 1990-20122 with 

varying degree of formality. Though this is not the largest dataset of 

English texts available, it provides a good balanced between data size 

and quality: larger corpora inevitably suffer from increased noise levels 

which may influence the representativeness as pointed out e.g. by Mair 

(2015). 

The LDA model implementation used was provided by the 

Gensim package (Řehůřek & Sojka 2010). The training employed a 

pseudo-online learning approach as suggested by Hoffmann et al. 

(2010), training on chunks of data, rather than the whole dataset at once. 

In order to avoid potential detrimental influence of topic shift in the 

corpus, the file order was randomized prior to training. The model 

training setup is printed in Table 1. 

The model fit of the semantic model was verified against the 

WordSim 353 dataset (Agirre et al. 2009; Finkelstein et al. 2002) where 

it correlated with the averaged human similarity ratings at r = 0.475. 

Such a correlation is far from perfect (current state-of-the-art results 

 

2 This information is related to the version used; COCA is being extended 

regularly. 
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achieve a Spearman correlation of 0.828, cf. Speer et al. 2017). Still, it 

should be sufficient for the integration in the combined surprisal 

measure as it is only used in the rescaling of the lexical probability 

which is afterwards interpolated with the syntactic probability. In the 

interpolation, the semantically modified lexical probability is given a 

lower weight than the syntactic probability (cf. Chapter 2.3). Moreover, 

the mean difference between the highest and lowest similarity rating 

(which could range from 0 to 10) assigned to one word pair of the 

WordSim 353 dataset by the human raters is 6.29 (SD = 1.749, median 

= 6.5). Thus, even the scores assigned by two speakers will never be 

perfectly correlated, suggesting that even a model that provides ratings 

perfectly correlated with the averages in the WordSim dataset may 

actually not be modelling the semantic representations of any concrete 

speaker. 
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2.2.2 Syntactic model (parser) 

In addition to the semantic model, this work used a syntactic model to 

provide a deeper insight into the processing complexity of the natural 

language data. The application of syntactic models used in parsing as 

psycholinguistic models was suggested by Hale (2001) and further 

developed by Levy (2008). In this approach, the surprisal of an item is 

used as a proxy for the processing cost associated with a given linguistic 

Parameter Value 

Latent topics 100 

Minimal values of 𝑝(𝑐𝑘|𝑤𝑖) that are retained 0.001 

Training chunk size (number of documents) 15.000 

Passes through the corpus 1 

Alpha (a priori belief for 𝑝(𝑐𝑘)) Auto 

Eta (a priori belief for 𝑝(𝑐𝑘|𝑤𝑖)) 0.1 

Maximum iterations of a chunk 150 

Table 1: Non-default training settings used in Gensim. 

While the whole corpus was only passed through once, the 

weights were updated on chunks of 15000 documents, 

resulting in a total of 25 chunks. The algorithm repeatedly 

adjusted the parameters to each chunk until convergence, 

but not more than 150 times. The eta prior was selected to 

overcome the issues of topic sparsity observed during 

training with different settings. The selection of 100 topics 

is based on Mitchell’s (2011: 117) observation that the 

perplexity reduction slows down once the number of topics 

surpasses 50 and virtually disappears with more than 100 

topics. 
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input. It assumes that the processing costs incurred to the listener/reader 

by the predictability of the input can be approximated by the 

probabilities assigned to the input by a language model. By employing 

a parser, the structural predictability can be taken into account as well. 

This correlation has been successfully tested against the surface 

realization of processing complexity, reading times (Mitchell et al. 

2010; Demberg & Keller 2008), and to a degree the magnitude of the 

N400 effect (Frank et al. 2013). The processing complexity is believed 

to be caused by the necessity to update prior expectations about the 

input every time a new input segment arrives and is incorporated 

(Kuperberg & Jaeger 2015).  

The observed relationship between predictability and processing 

costs allows us to express the expectations that the human parser has in 

the form of a distribution over all possible continuations of the input up 

to a given point. This in turn allows us to measure the magnitude of the 

change after the update in terms of Kullback-Leibler divergence of the 

old distribution to the new one (Mitchell et al. 2010). Since the 

processing cost of a word (surprisal) is defined as the negative 

logarithm of its probability, it increases as its probability decreases. The 

highest processing cost would be incurred by items which are not 

allowed to appear in a given context by the syntactic rules of a language; 

their probability of occurrence would be arbitrarily small, making their 

surprisal exceedingly large. 

In their survey, Roark et al. (2009) mention a number of methods 

used to derive the probabilities that serve as a base for the calculation 
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of surprisal. They all share their incremental approach to parsing, 

mimicking the way humans perceive language. The methods listed 

include an Earley parser (Earley 1970), Roark incremental top-down 

parser (Roark 2001) and an n-best version of Nivre et al.'s (2007) 

incremental dependency parser. Individual studies using surprisal also 

differ in the level of lexicalization with which the parser operates, 

occasionally using lexicalized and de-lexicalized parsers alongside 

(Demberg & Keller 2008; Ferrara Boston et al. 2008), or bleaching the 

lexical information in the corpus altogether by replacing it by part-of-

speech tags (Demberg & Keller 2008). A more recent methodological 

addition is using recurrent neural networks to estimate the probability 

of the observed input and approximate the surprisal without actually 

overtly identifying the underlying syntactic structure (Frank & Willems 

2017; Frank et al. 2013, 2015).  

The addition of a parser to the semantic model allows to take into 

account text factors which are not related to semantics and text 

coherence. While the semantic model can tell that the word ocean is 

more coherent with the string There is water in the than with There is 

cocoa in the, it is incapable of distinguishing syntactically well-formed 

sentences like There is water in the ocean from random sequences like 

There water is the in ocean. This information, on the other hand, 

together with the probability associated with each syntactic element, 

may be captured by the parser. It takes into account even those effects 

on the processing which are not related to the meaning but rather to the 

structure of the input. 
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The surprisal estimation in this thesis uses the Roark parser 

(Roark et al. 2009; Roark 2001), a broad-coverage incremental top-

down probabilistic parser. This parser operates on the basis of a 

probabilistic context-free grammar (PCFG), analyzing a text string 

incrementally in a left-to right manner (for left-to-right writing 

systems). The tree construction employs a context-free grammar 𝐺, a 

representation of the syntactic rules of a language in the form 𝐺 =

(𝑉, 𝑇, 𝑃, 𝑆†). There, 𝑉 is a set of nonterminal symbols, 𝑇 a set of 

terminal symbols, 𝑆† is the start symbol (a member of the set 𝑉) and 𝑃 

is a set of rule productions in the form 𝐴 → 𝛼 where 𝛼 ∈ (𝑉 ∪ 𝑇)∗ 

(Roark et al. 2009). This is a rule which expands a nonterminal symbol 

𝐴 ∈ 𝑉 into one or more terminal or nonterminal symbols. The syntactic 

tree is a representation of a sequence of such rule expansions, with each 

individual expansion from a parent to a child being a rule in the 

grammar. If all leaves (that is nodes without children) of a tree consist 

of terminal symbols, this tree is considered complete (Roark 2001). For 

example, an artificial context-free grammar with the rules: 

( 1 ) 𝑆 → 𝑁𝑃 𝑉𝑃 | 𝑉𝑃 

𝑁𝑃 → 𝐷𝑒𝑡 𝑁 

𝑉𝑃 → 𝑉 

𝐷𝑒𝑡 → 𝑡ℎ𝑒 

𝑁 → 𝑤𝑜𝑚𝑒𝑛 | 𝑚𝑒𝑛 

𝑉 → 𝑤𝑎𝑙𝑘 | 𝑠𝑝𝑒𝑎𝑘 

 

would be capable of generating sentences such as: 
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( 2 ) Women walk. 

Men speak. 

Walk! 

 

but sentences such as Do women walk? or Women walk quickly. would 

violate the grammar rules. 

Probabilistic context-free grammars are distinguished from 

standard context-free grammars by the fact that each rule is additionally 

assigned a probability. Usually, these are derived from a training 

corpus. Thus, a PCFG 𝐺 can be defined as G = (V, T, P, S†, 𝜌) where 𝜌 

is the function linking each rule to its probability. Concretely, the 

probability expresses the likelihood of the right-hand side of the rule 

given the left-hand side. If no probability mass is reserved for infinite 

trees, the PCFG is considered consistent (“tight”) and the probabilities 

it yields belong to a proper probability distribution over completed trees 

(Roark 2001). 

The probabilities associated with the individual rules can be used 

in order to calculate the prefix probability of each word sequence 

𝑤1…𝑤𝑖. This prefix probability equals the sum of probabilities of all 

partial leftmost derivations3 that have word 𝑤𝑖 as the right-hand side 

 

3 A leftmost derivation “begins with 𝑆† and each derivation step replaces the 

leftmost non-terminal A in the yield with some α such that A → α ∈ P”, cf. 

Roark et al. (2009: 326)  
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product of the last rule. Subsuming all leftmost derivations 𝐷 that are 

compatible with PCFG G and string 𝑤1…𝑤𝑖 under the set 

𝒟(𝐺,𝑤1…𝑤𝑖), the prefix probability can be expressed as (Roark et al. 

2009: 326, Equation 2): 

 𝑃𝑟𝑒𝑓𝑖𝑥𝑃𝑟𝑜𝑏𝐺(𝑤1…𝑤𝑖) = ∑ 𝜌(𝐷)

𝐷 ∈ 𝒟(𝐺,𝑤1…𝑤𝑖)

 ( 7 ) 

where the probability of a given derivation 𝜌(𝐷) is defined as the 

product of the probabilities of the individual rules applied at each step 

of the derivation. Thus, for a tree derived in 𝑚 steps, we calculate its 

probability as: 

 
𝜌(𝐷) =∏𝜌(𝐷𝑖)

𝑚

𝑖=1

 
( 8 ) 

where 𝐷𝑖 is a derivation step, i.e. an application of one of the rules from 

the set 𝑉 of the PCFG. 

This allows us to calculate the conditional probability of any 

𝑤𝑖 ∈ 𝑇 based on the previous sequence of words 𝑤1…𝑤𝑖−1 as (Roark 

et al. 2009: 326, Equation 3): 

 𝑝𝐺(𝑤𝑖|𝑤1…𝑤𝑖−1)

=
𝑃𝑟𝑒𝑓𝑖𝑥𝑃𝑟𝑜𝑏𝐺(𝑤1…𝑤𝑖)

∑ 𝑃𝑟𝑒𝑓𝑖𝑥𝑃𝑟𝑜𝑏𝐺(𝑤1…𝑤𝑖−1𝑤𝑖
′)𝑤𝑖

′∈𝑇
 

( 9 ) 
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In tight grammars, the sum of probabilities for all possible rules that 

contain a non-terminal 𝑋 ∈ 𝑉 as their left-hand side equals ∑ 𝜌(𝑋 →𝛼

𝛼) = 1. Adjusting Equation 9 accordingly, the conditional probability 

could also be expressed as the ratio of the prefix probability of string 

𝑤1…𝑤𝑖 to the prefix probability of the preceding string 𝑤1…𝑤𝑖−1, i.e. 

(Jelinek & Lafferty 1991): 

 
𝑝𝐺(𝑤𝑖|𝑤1…𝑤𝑖−1) =

𝑃𝑟𝑒𝑓𝑖𝑥𝑃𝑟𝑜𝑏𝐺(𝑤1…𝑤𝑖)

𝑃𝑟𝑒𝑓𝑖𝑥𝑃𝑟𝑜𝑏𝐺(𝑤1…𝑤𝑖−1)
 

( 10 ) 

Finally, knowing the conditional probability, we can calculate the 

surprisal as: 

 𝑆𝐺(𝑤𝑖|𝑤1…𝑤𝑖−1)

=  − log
𝑃𝑟𝑒𝑓𝑖𝑥𝑃𝑟𝑜𝑏𝐺(𝑤1…𝑤𝑖)

𝑃𝑟𝑒𝑓𝑖𝑥𝑃𝑟𝑜𝑏𝐺(𝑤1…𝑤𝑖−1)
 

( 11 ) 

In their 2009 update of the original parser, Roark et al. also 

introduced the option to tease apart the syntactic segment of the 

surprisal from the lexical one. To do this, they exploit the fact that the 

last derivation move for every derivation is from the POS-tag to the 

lexical item itself. Thus, calculating the conditional probability of the 

penultimate derivation (identifying the POS-tag) offers insight into the 

surprisal of the structure before word 𝑤𝑖 is integrated, which will be 

referred to as “syntactic surprisal” from here onwards. Importantly, the 

mechanism here is different from the one used by Demberg & Keller 

(2008) when calculating their “unlexicalized surprisal.” While 

Demberg & Keller replaced the individual strings in the text with their 

POS-tags, completely excluding the lexical expansions, the syntactic 
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surprisal only excludes the last lexical derivation. Thus, it expresses the 

processing load associated with the structural properties of 𝑤𝑖 once all 

preceding items have been integrated. While the unlexicalized surprisal 

yielded mixed results when empirically tested (especially once 

syntactic surprisal was included as well, cf. Demberg & Keller 2008 vs. 

Roark et al. 2009), the syntactic surprisal was confirmed to predict the 

reading times (Demberg et al. 2012; Roark et al. 2009) and 

outperformed the unlexicalized surprisal in direct comparison (Fossum 

& Levy 2012).  

One of the main advantages of the Roark parser for the 

application in this thesis is the fact that it processes the data 

incrementally, from left to right, producing surprisal values after each 

word in the sentence. Thus, it mimics the predictive cognitive 

mechanisms in that it does not take into account what comes after a 

word in determining its probability. As a result, it can simulate garden 

path effects in humans, assigning low probability to items which were 

unexpected at the moment of their occurrence.4 

 

4 The Roark parser uses beam parsing, discarding extremely unlikely parses 

from its list of options as it progresses through the string. Thus, the relevant 

parse may no longer be kept at the moment the garden path effect is revealed. 

In order to avoid failure, the parser uses smoothed probabilities, reserving 

some probability mass to assign in such a case (Roark 2001). 
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In this thesis, the default syntactic model distributed with the 

Roark parser (Roark et al. 2009; Roark 2001) was replaced by a custom 

one. The default model was trained on the Penn Parsed Wall Street 

Journal (Marcus et al. 1993). However, this corpus is not a good 

representation of the range of texts to which speakers are exposed in 

their everyday experience. Thus, another model was built with different 

training data. It was trained on the Penn Parsed Manually Annotated 

Subcorpus of the Open American National Corpus (MASC, Ide et al. 

2010). MASC covers American English from 1990 to the present day 

and was built as a mixture of 19 genres across the formality range, 

containing approximately 25% of spoken data. Thus, it is closer to the 

input most speakers receive than the written-only, genre-restricted Penn 

Parsed Wall Street Journal. 

From the trained models, only the syntactic surprisal element was 

taken into consideration: the lexical effects were captured by an n-gram 

model with a much better accuracy given its substantially larger training 

corpus as discussed in the next chapter. 

2.2.3 N-gram model 

The third element of the compositional language model used in this 

thesis is an n-gram model. N-gram models are comparably simple, yet 

surprisingly powerful. They are argued to be Markov models, i.e. 

models capable of employing a limited history of a process to give 

predictions about its future. In true Markov models, the quality of 

predictions made from a limited history should match those made with 
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the knowledge of the full history. In this case, it means that by knowing 

words 𝑤𝑖−(𝑛−1)…𝑤𝑖−1, Markov models can predict word 𝑤𝑖 with the 

same success rate as if they had access to the whole history 𝑤1…𝑤𝑖−1. 

This claim is somewhat exaggerated for models with low 𝑛; n-gram 

models with high 𝑛, on the other hand, suffer from data sparsity 

problems, as vast training datasets are needed for a good estimation 

of the probabilities of rare items.  

The simplest n-gram model calculates the probability through the 

maximum likelihood estimate: 

 
𝑝𝑀𝐿(𝑤𝑖|𝑤𝑖−(𝑛−1)…𝑤𝑖−1) =  

𝑐(𝑤𝑖−(𝑛−1)…𝑤𝑖)

𝑐(𝑤𝑖−(𝑛−1)…𝑤𝑖−1)
 

( 12 ) 

where 𝑐(𝑤𝑖−(𝑛−1)…𝑤𝑖) and 𝑐(𝑤𝑖−(𝑛−1)…𝑤𝑖−1) are the counts of the 

n-gram 𝑤𝑖−(𝑛−1)…𝑤𝑖 and its context 𝑤𝑖−(𝑛−1)…𝑤𝑖−1 in a training 

corpus. This approach has one important weakness: its value is 0 for n-

grams which have not been observed yet, without taking into account 

the underlying frequency of the individual items. Thus, if a trigram such 

as Ernest Hemingway is does not appear in the data, the probability of 

the word is to occur will be zero irrespective of its overall frequency in 

the corpus. 

In order to alleviate this issue, a number of smoothing approaches 

have been proposed. They adjust the maximum likelihood estimate by 

reducing very high probabilities and distributing the reserved 

probability mass over unseen n-grams. As a result, the overall 

distribution becomes more uniform. The practical implementations of 
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this approach do not only seek to resolve the issue with zero 

probabilities, but usually attempt to improve the overall accuracy of the 

language model as well (Chen & Goodman 1999).  

Possibly the simplest smoothing approach is the additive 

smoothing (Laplace 1814), in which a fixed amount is added to the 

frequency of each n-gram. This fixed amount 𝛿 is usually 0 < 𝛿 ≤ 1; 

Laplace suggests 𝛿 = 1 (Laplace 1814). Thus, the n-gram probability 

is calculated as (Chen & Goodman 1999: 363): 

 𝑝𝐴𝐷𝐷(𝑤𝑖|𝑤𝑖−(𝑛−1)…𝑤𝑖−1)

=  
𝛿 + c(𝑤𝑖−(𝑛−1)…𝑤𝑖)

∑ (𝛿 + 𝑐(𝑤𝑖−(𝑛−1)…𝑤𝑖))𝑤𝑖

=
𝛿 + c(𝑤𝑖−(𝑛−1)…𝑤𝑖)

𝛿|𝑉| + ∑ (𝑐(𝑤𝑖−(𝑛−1)…𝑤𝑖))𝑤𝑖

 

( 13 ) 

where 𝑉 is the bigram vocabulary. In the example case of the non-

attested trigram Ernest Hemingway is the numerator will no longer be 

0, but rather equal to 𝛿. The simplicity of this smoothing approach is, 

however, reflected in its performance. Gale & Church (1994: 189) 

report that it provides correct probabilities “only by happenstance, if at 

all.” Most current applications thus use more complex smoothing 

approaches which usually consist of a combination of discounting – a 

method to reserve some probability mass to distribute over unseen 

events – and back-off or interpolation – a method used to estimate the 

probability of unseen events by lower-order n-grams (Ney et al. 1997). 
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In the case of interpolation, the probability of both seen and 

unseen events is calculated by linear interpolation of probabilities 

assigned by lower-order n-gram models. It is expressed as: 

 𝑝𝑆𝑀𝑂𝑂𝑇𝐻(𝑤𝑖|𝑤𝑖−(𝑛−1)…𝑤𝑖−1)

= 𝜏(𝑤𝑖|𝑤𝑖−(𝑛−1)…𝑤𝑖−1)

+ 𝛾(𝑤𝑖−(𝑛−1)…𝑤𝑖−1)𝑝𝑆𝑀𝑂𝑂𝑇𝐻(𝑤𝑖|𝑤𝑖−(𝑛−2)…𝑤𝑖−1) 

( 14 ) 

where 𝜏(𝑤𝑖|𝑤𝑖−(𝑛−1)…𝑤𝑖−1) is the distribution of probabilities 

assigned by the higher-order n-gram, 𝛾(𝑤𝑖−(𝑛−1)…𝑤𝑖−1) a scaling 

factor chosen so that the conditional probabilities sum to one and 

𝑝𝑆𝑀𝑂𝑂𝑇𝐻(𝑤𝑖|𝑤𝑖−(𝑛−2)…𝑤𝑖−1) is the probability assigned by a lower-

order n-gram model (Chen & Goodman 1999). The definition may 

contain recursion, smoothing 𝑝𝑆𝑀𝑂𝑂𝑇𝐻(𝑤𝑖|𝑤𝑖−(𝑛−2)…𝑤𝑖−1) by 

𝑝𝑆𝑀𝑂𝑂𝑇𝐻(𝑤𝑖|𝑤𝑖−(𝑛−3)…𝑤𝑖−1) etc. until the unigram is reached. Given 

how the smoothed probability is defined, unseen n-grams have their 

probability assigned by the lower-order n-gram model only, since their 

probability in 𝜏(𝑤𝑖|𝑤𝑖−(𝑛−1)…𝑤𝑖−1) equals zero. Items with non-zero 

frequency have their probability smoothed by the lower-order model. 

This is a crucial difference to back-off-based smoothing 

algorithms, which employ information from lower-order models only 

in cases where the higher-order model does not contain the n-gram in 

question and returns a probability of zero. Thus, back-off models could 

be described as (𝑤𝑖−(𝑛−1)
𝑖−1  is equivalent to 𝑤𝑖−(𝑛−1)…𝑤𝑖−1 and used 

here for compactness): 
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  ( 15 ) 

 𝑝𝑆𝑀𝑂𝑂𝑇𝐻(𝑤𝑖|𝑤𝑖−(𝑛−1)
𝑖−1 )

=  {
𝜏(𝑤𝑖|𝑤𝑖−(𝑛−1)

𝑖−1 )

𝛾(𝑤𝑖−(𝑛−1)
𝑖−1 )𝑝𝑆𝑀𝑂𝑂𝑇𝐻(𝑤𝑖|𝑤𝑖−(𝑛−2)

𝑖−1 )
 
if 𝑐(𝑤𝑖−(𝑛−1)

𝑖−1 ) > 0

if 𝑐(𝑤𝑖−(𝑛−1)
𝑖−1 ) = 0

 

 

In the last decades, multiple smoothing approaches have been 

developed, including those suggested by Ney et al. (1994), Witten & 

Bell (1991), Katz (1987) or Jelinek & Mercer (1980). The present thesis 

uses the smoothing approach developed by Kneser & Ney (1995) and 

modified by Chen & Goodman (1999). This model, unlike the original 

Kneser-Ney smoothing (which was a back-off algorithm), uses an 

interpolated smoothing approach, in which the probability of word 𝑤𝑖 

given 𝑛 − 1 of its predecessors is: 

 𝑝𝑆𝑀𝑂𝑂𝑇𝐻(𝑤𝑖|𝑤𝑖−(𝑛−1)
𝑖−1 )

=
𝑐(𝑤𝑖−(𝑛−1)

𝑖−1 ) − 𝐷(𝑐(𝑤𝑖−(𝑛−1)
𝑖−1 ))

∑ 𝑐(𝑤𝑖−(𝑛−1)
𝑖−1 )𝑤𝑖

+ 𝛾(𝑤𝑖−(𝑛−1)
𝑖−1 )𝑝𝑆𝑀𝑂𝑂𝑇𝐻(𝑤𝑖|𝑤𝑖−(𝑛−2)

𝑖−1 ) 

( 16 ) 

where 𝐷 is the discounting modifier that shifts some of the probability 

mass to be assigned by the lower-order models. The Chen-Goodman 

modification of Kneser-Ney smoothing uses several discounting 

modifiers 𝐷, depending on the frequency with which the context used 

for prediction occurs in the data. These are defined as 
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𝐷(𝑐) =

{
  
 

  
 

0 if 𝑐 = 0

𝐷1 = 1 − 2𝑌
𝑛2
𝑛1

if 𝑐 = 1

𝐷2 = 2 − 3𝑌
𝑛3
𝑛2

if 𝑐 = 2

𝐷3+ = 3 − 4𝑌
𝑛4
𝑛3

if 𝑐 ≥ 3

 

( 17 ) 

where 𝑌 =
𝑛1

𝑛1+2𝑛2
 and 𝑛𝑥 is the number of distinct n-grams with count 

𝑥, i.e. 𝑛1 is the number of n-grams occurring once (Chen & Goodman 

1999). Thus, for example, the discounting modifier used for unigrams 

would be: 

 
𝐷1 = 1 − 2

𝑛1
𝑛1 + 2𝑛2

𝑛2
𝑛1
= 1 −

2𝑛1𝑛2

𝑛1
2 + 2𝑛1𝑛2

 
( 18 ) 

Given that the influence of 𝑛1 grows exponentially, the larger the 

number of unique n-grams, the larger the discounting modifier. 

Chen & Goodman (1999) showed that such a discounting 

procedure performs better than additive smoothing, back-off models or 

interpolation models with one discounting parameter only. Even though 

their model has been since superseded in terms of perplexity over test 

set and accuracy of word prediction by more recent developments in 

language modelling (Tang & Lin 2018; Mikolov et al. 2010), it was 

selected for this thesis as there is clear evidence that its probability 

estimates are representative of processing complexity (Balling & 

Kizach 2017; Frank 2013, 2017). There are even suggestions (Frank et 

al. 2015) that the modified Kneser-Ney smoothed n-gram model is a 
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better predictor of predictability effects on human brain activity and 

outperforms newer models in this domain; the evidence is not 

conclusive, though (cf. the opposite result in Frank et al. 2013). 

For this thesis, a 3-gram model with Chen-Goodman modified 

Kneser-Ney smoothing and back-off (Chen & Goodman 1999) was 

trained using the SRILM modelling toolkit (Stoelcke 2002). The 

training employed the data from COCA. Given its 400 million words, 

data sparsity should not be a large issue; still, smoothing and back-off 

were used in order to improve the performance.

2.3 Language model 

Ultimately, the individual elements need to be combined in some way 

in order to yield a single numeric expression of surprisal. The simplest 

way of combining individual probabilities would be through linear 

interpolation, that is: 

 𝑝(𝑤𝑖|ℎ𝑖−1) = 𝜆𝑝1(𝑤𝑖|ℎ𝑖−1) + (1 − 𝜆)𝑝2(𝑤𝑖|ℎ𝑖−1) ( 19 ) 

where ℎ𝑖−1 is the text history from which the probability of word 𝑤𝑖 is 

estimated, e.g. 𝑤𝑖−(𝑛−1)…𝑤𝑖−1 for the n-gram model. This approach 

has the advantage of providing valid probabilities without any further 

transformation. However, it is only suitable for combining models that 

are equally strong and have complementing strengths and weaknesses. 

In cases where one of the models is much stronger than the other, 

however, the result will be a model of intermediate strength as the weak 

model will deteriorate the predictions of the strong one (Mitchell 2011). 
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Thus, linear interpolation is possible in the case of the syntactic 

model and the n-gram model, but might deteriorate the performance in 

the case of the semantic model (Mitchell 2011). Coccaro & Jurafsky 

(1998: 2405) seem to be aware of the issue, noting: 

We found simple linear combination to be 

inadequate […], partly because the LSA estimator 

often predicts words that are syntactically disallowed. 

We need a non-linear combination function that gives 

a much higher probability when the two models agree 

— that is, when the predicted word is both syntactically 

and semantically likely — and gives a low probability 

if either estimator believes a word unlikely.  

In their work they decided to resolve this problem by using the 

geometric mean as the combining function. Such a method ensures that 

the final probability is high only in cases where both models agree that 

the word is likely to occur. If only one of them assigns a high 

probability, the final probability remains low. However, because of the 

non-linear transformation, this approach fails to generate valid 

probabilities: the probability distribution over the full vocabulary will 

no longer sum to 1. 

The method used in this thesis and based on Mitchell (2011) is 

slightly different. It uses a rescaling approach (Gildea & Hofmann 

1999; Kneser et al. 1997) based on the cosine similarity measure. It 

draws on the expression of semantic probability as the product of 
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unigram probability 𝑝(𝑤𝑖) and a semantic modifier ∆ expressing the 

similarity of the item to the context in which it appears. Starting from 

the equation: 

 𝑝(𝑤𝑖|ℎ𝑖−1) = 𝑝(𝑤𝑖) ∙ ∆(𝑤𝑖, ℎ𝑖−1) ( 20 ) 

where 

 
∆(𝑤𝑖, ℎ𝑖−1) =∑

𝑝(𝑐𝑘|𝑤𝑖)

𝑝(𝑐𝑘)

𝑝(𝑐𝑘|ℎ𝑖−1)

𝑝(𝑐𝑘)
𝑝(𝑐𝑘)

𝑘

=∑
𝑝(𝑐𝑘|𝑤𝑖) 𝑝(𝑐𝑘|ℎ𝑖−1)

𝑝(𝑐𝑘)
𝑘

 

( 21 ) 

derived from the LDA-based language model, Mitchell assumes that 

the unigram probability may be replaced by an n-gram version in order 

to combine the n-gram model with its semantic counterpart. Thus, 

 𝑝̂(𝑤𝑖) = 𝑝(𝑤𝑖|𝑤𝑖−(n−1)
𝑖−1 ) ∙ ∆(𝑤𝑖, ℎ𝑖−𝑛) ( 22 ) 

Two notes must be made on Equation 22. First, it assumes that 

the history is conditionally independent of 𝑤𝑖−(𝑛−1)
𝑖−1  (Mitchell 2011: 

111). In order to ensure that as far as possible, the semantic modifier is 

only constructed from elements outside of the n-gram scope. To achieve 

this, history ℎ𝑖−𝑛 is taken to evaluate 𝑤𝑖.
5 Secondly, 𝑝̂(𝑤𝑖) needs to be 

 

5 A complete independence of ℎ on the direct context of 𝑤𝑖  is unattainable, 

however excluding the overlap should at least minimize the relationship. 
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normalized over the content words in order to yield valid probabilities 

(Mitchell 2011). This is done in the following manner: 

 
𝑝(𝑤𝑖|𝑤𝑖−(n−1)

𝑖−1 , ℎ𝑖−𝑛) = 𝑝̂(𝑤𝑖)
∑ 𝑝(𝑤𝑐|𝑤𝑖−(𝑛−1)

𝑖−1 )𝑤𝑐

∑ 𝑝̂(𝑤𝑐)𝑤𝑐

 
( 23 ) 

where the sum over 𝑤𝑐 is the sum over content words only, as function 

words are not affected by the rescaling. The rescaling allows the n-gram 

model to express short-range dependencies while the long-range 

dependencies are encoded in the semantic modifier. Thus, 

𝑝3−𝐺𝑅𝐴𝑀(𝑤𝑖|ℎi−1)

= {
𝑝3−𝐺𝑅𝐴𝑀(𝑤𝑖|𝑤𝑖−2

𝑖−1) ∙ ∆(𝑤𝑖, ℎ𝑖−3), if 𝑤𝑖 ∈ 𝑊𝑐

𝑝3−𝐺𝑅𝐴𝑀(𝑤𝑖|𝑤𝑖−2
𝑖−1), if 𝑤𝑖 ∈ 𝑊𝑓

 

( 24 ) 

where 𝑊𝑐 and 𝑊𝑓 are the sets of content and function words 

respectively. 

As the last step in creating the combined model, this 

semantically-rescaled n-gram probability is combined with the 

syntactic probability estimated by the Roark parser. This is done 

through simple linear interpolation, as used both by Roark and Mitchell. 

The linear interpolation is made possible and necessary in this case by 

two properties of the models, noted by Mitchell. First, the predictive 

strengths of n-grams and the parser do not differ substantially. Second, 

renormalizing across the whole vocabulary would be necessary in the 

case of other combining functions, which would render the approach 

impractical (Mitchell 2011: 112). 
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The mixing of probabilities was done using the linear 

interpolation (based on Equation 19): 

 𝑝(𝑤𝑖|ℎ) = 𝜆 × 𝑝(𝑤𝑖|ℎ)𝑙 + (1 − 𝜆) × 𝑝(𝑤𝑖|ℎ)𝑠 ( 25 ) 

where 𝑝(𝑤)𝑙 is the probability assigned by the n-gram model and 𝑝(𝑤)𝑠 

is the probability extracted from the parser. The weighting factor λ was 

set at 0.36 (following Roark 2001), assigning stronger influence to the 

syntactic model. Afterwards, following Equation 1, the calculated 

probability was log-transformed (base e) and multiplied by -1 to yield 

the per-word surprisal in nats.6 

 This combined model has been suggested to perform well in 

predicting reading times (Mitchell 2011; Mitchell et al. 2010) and was 

successfully used in the prediction of pronunciation durations (Sayeed 

et al. 2015). Nevertheless, in spite of the intuitive appeal of having one 

measure which includes and combines the individual models, the scores 

combined in the model were kept and evaluated separately as well. This 

was done with the motivation of gaining additional knowledge about 

their importance to the task at hand.

 

6 Nats are units of information yielded by transforming the probability of an 

event by the natural logarithm. Other common bases for the log-transform are 

2 (producing bits) and 10 (producing hartleys). 



 

Chapter 3  

Disfluencies 

Over the past few decades, the status of speech disfluencies changed 

from non-linguistic phenomena that were usually omitted in the 

analysis to a phenomenon tightly connected to the way we produce and 

perceive speech. If previously any disfluency in speech was argued to 

be filtered out before the input reached the human parser, this view 

became unfeasible in the light of evidence. An example by Ferreira & 

Bailey (2004: 232) illustrates this fact: 

[C]onsider again the […] example: “That 

Vermeer – uh where is ‘The Love Letter’ um what 

museum is it is it in”. Notice that the pronoun it in the 

repair must find its antecedent The Love Letter in the 

reparandum, the part of the utterance that was spoken 

in error. If filtering were the correct solution, the 

pronoun would not have an antecedent, but clearly 

people interpret the utterance as if it does. 

Similar argumentation is presented by Core & Schubert (1999: 413) 

drawing on the example “have the engine take the oranges to Elmira, 

um, I mean, take them to Corning” where the referent of them would be 

removed by filtering, too. Such examples demonstrate that even 

disfluent passages are perceived as parts of the input by the listeners. 
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Moreover, since language comprehension operates 

incrementally, it does not wait for an utterance to be finished. Due to 

this, there is no chance that the input is cleaned of all disfluencies before 

being presented to the parser in an ideal print-like form. Not every 

disfluency can be recognized as such at the moment of its utterance. 

This includes most repairs where the reparandum fits into the preceding 

input both by its form and meaning. Consider again the example (Core 

& Schubert 1999: 413): 

( 3 ) …have the engine take the oranges to Elmira, um, I 

mean, take them to Corning… 

 

At the moment of its utterance – as long as both Elmira and 

Corning are existing train stations and neither of them is disqualified by 

the previous context – there is no way of recognizing that the word 

Elmira is not the intended item. This only becomes obvious after it has 

been naïvely incorporated into the representation of the input. 

In contrast to the examples above, hesitations are substantially 

easier to recognize as disfluencies rather than fluent input. Silent 

pauses, um and uh are not produced as a mistake that is afterwards 

corrected. Even repetitions can be identified fairly easily and rapidly 

(50 ms after the utterance, MacGregor et al. 2009). Thus, they are 

substantially easier for the cognitive system to identify and could be 

completely filtered out before the input is passed to the parser. This led 

researchers to propose several hypotheses about their origin and 

purpose. The following paragraphs will summarize the prominent ones. 
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3.1 Placement and purpose 

In his model of speech production, Levelt (1983, 1989) argues that 

hesitations are a symptom of production difficulties. From this 

perspective, they appear due to some error in the process of translating 

the message to be sent into a set of commands to the articulatory organs. 

Because speakers constantly monitor their planned production prior to 

its realization by the articulators, they are capable of catching some of 

these errors before they are uttered. In Levelt’s terms, the error occurs 

in the macroplanning stage in which the information is retrieved and the 

contents of the utterance-to-come are created and ordered before the 

microplanning stage converts them into the phones to be pronounced. 

As a consequence, there is no surface realization of the original error. 

However, since the correction of unspoken (or covert) errors is similar 

to the correction of overt errors in that it requires additional processing 

time, a hesitation is produced because the speakers are incapable of 

proceeding. 

This hypothesis had some support from previous work by Dell 

(1980), showing that speakers are capable of monitoring their inner 

speech for errors. Similar suggestions, viewing disfluencies as a 

consequence of the unavailability of fluent output were made by 

researchers suggesting that disfluencies occur when speakers are still 

searching their memory for a word (Goodwin 1987; Harness Goodwin 

& Goodwin 1986) perhaps due to its low frequency or contextual 

probability (Beattie & Butterworth 1979). Alternatively, they could 

reflect speaker’s uncertainty about the truthfulness of the message 



3.2 Disfluencies from the computational perspective 59 

 

 

(Smith & Clark 1993). Overall, these perspectives view disfluencies as 

a “symptom” (Clark & Fox Tree 2002) of speaker’s inability to proceed 

due to still being engaged in the “speech-productive labor” (Goffman 

1981).  

These observations suggest that hesitations may be a 

consequence of speaker’s need for more time before proceeding with 

the utterance. This is corroborated by studies observing a positive 

correlation between the effort needed for the macroplanning of the 

upcoming utterance and the relative frequency of disfluencies (Oviatt 

1995). Evidence for such claims is found in empirical research showing 

that tasks which are more cognitively demanding elicit more 

disfluencies. Thus, for example, the description of a cartoon – a task 

comparably simpler than its interpretation – contains fewer silent 

pauses (Goldman-Eisler 1968). Similarly, description of a familiar 

route requires less planning than description of an unfamiliar one and 

results in fewer unfilled pauses (Good & Butterworth 1980). 

The view of disfluencies as symptoms was criticized as 

oversimplifying by researchers who argued that disfluencies have a 

purpose and thus function as signals rather than symptoms. The 

proposed functions of disfluencies included holding the floor 

(Rochester 1973; Maclay & Osgood 1959), expressing the speaker’s 

mental state (Brennan & Williams 1995), or forewarning the listeners 

that they should expect an unfamiliar referent (Arnold et al. 2007), 

prepare their own utterance (Jefferson 1974) or aid the speaker in 

finishing the current utterance (Harness Goodwin & Goodwin 1986). 
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Furthermore, it was previously argued that the use of hesitations 

provides various hints as to what is coming in the conversation: an 

unpredictable/uncommon word (Schnadt & Corley 2006; Beattie & 

Butterworth 1979), a long/short delay (Clark & Wasow 1998), 

something complex (Watanabe et al. 2008; Arnold et al. 2007) or 

something new to the conversation (Barr & Seyfeddinipur 2010). More 

generally, disfluencies have been claimed to announce “the immediate 

initiation of what is expected to be a minor, or major, delay in speaking” 

(Clark & Fox Tree 2002: 92). 

The arguments for the communicative motivation of disfluencies 

have found support in studies showing their beneficial impact on 

processing. This has been demonstrated through faster response times 

and gaze/mouse movement towards the unusual/new/unpredictable 

(Owens et al. 2018; Bosker et al. 2014; Barr & Seyfeddinipur 2010). 

Similar suggestions were made by neuroimaging studies. Corley et al. 

(2007) observed an attenuation of the N400 effect that is usually 

associated with the processing of unpredictable items, if these items 

were preceded by a disfluency. The influence went even beyond the 

immediate processing: words preceded by a filled pause (in the case of 

Corley et al. the transcription er is used) performed better in a 

subsequent memory test (similar results were obtained by Fraundorf & 

Watson 2011). This not only suggests that words after filled pauses are 

processed differently from other words, but provides evidence that the 

“ERP differences are not due to contamination of the N400 waveform 
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by spillover effects from the processing of the er [itself]” (Corley et al. 

2007: 666). 

Importantly, although disfluencies may perform a 

communicative function, this is not fully dependent on their surface 

form. Rather, at least a part of the effect is likely to be related to the 

temporal disruption of the production. Such an argument would follow 

from the observation of Bailey & Ferreira's (2003), who were able to 

replicate some of the effects even with pauses consisting of non-speech 

sounds. Similarly, Eklund et al. (2015) demonstrated potential partial 

equivalence of filled and unfilled pauses by observing the brain during 

these phenomena. They conclude that filled and unfilled pauses are 

similar in that they equally affect listener’s attention. However, this 

result should not be taken as a proof for their complete identity. Rather, 

it was observed (ibid.) that while filled pauses modulated motor areas 

of the brain, unfilled pauses did not produce a matching effect. They 

modulated the syntax processing areas and when compared to filled 

pauses and fluent speech, they were much closer to the latter. To 

summarize, while some distinction between hesitations with and 

without articulatory realization seems to exist, there are effects which 

are shared by both types. Intuitively, these effects should be related to 

the fact that disfluencies provide additional processing time without 

busying the listener with resolving whether a valid lexical input has 

been received, i.e. whether this input is not disqualified by the context. 

In this respect, one of the examined classes of disfluencies, 

disfluent repetitions, is somewhat different from the rest. First, they are 
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not as easily discernible from the genuine input by their phonology. 

Thus, even if filled pauses were removed by a simple phonetic filter, 

repetitions would still affect the parsing procedure. Secondly, there is a 

growing body of evidence suggesting that they are speaker-related and 

symptomatic of production problems rather than providing cues to the 

listener. This argument requires discussion; after all, repetitions do 

introduce additional time into the processing of input in a way similar 

to pauses. During this time no new input is incoming and the listeners 

only need to incorporate what was said before. Thus, the processing of 

repetitions could be similar to that of filled/unfilled pauses and yield 

positive effects on comprehension. Such a view is even more appealing 

given that repetitions are recognized much faster than other lexically 

legal, but contextually problematic material. While other non-fitting 

lexemes trigger the P600 effect with an onset at 200 ms (Kutas et al. 

2006), repetitions elicit a relative positivity starting as early as 50 ms 

after the utterance (MacGregor et al. 2009: 42, 44). With such a quick 

recognition, one might expect the processing to be improved by a 

temporary workload decrease: for a short span of time, the cognitive 

system should only be “catching up” on the previous input, not having 

to process and incorporate new items. Such a scenario should render 

repetitions beneficial to the listener just like filled/unfilled pauses. 

This is likely not the case. In an experiment measuring event-

related potentials, MacGregor et al. (2009) assessed the effect of 

repetitions on the human brain. They report an early positivity (between 

100 and 400 ms after the stimulus) indicating that repetitions are not 
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filtered out and that their presence introduces additional complexity for 

the listeners. While this shows that repetitions are perceived as more 

complex than fluent items, it would not necessarily disqualify them 

from helping the subsequent processing. However, a subsequent N400 

effect, caused by an unpredictable word uttered after the repetition, is 

not mitigated by the additional time given to the listener for processing 

the input up to that point. Thus, there is likely no benefit for the listener. 

Rather, the subsequent positivity (600-900ms) points in the opposite 

direction: the listeners might be resolving additional difficulties in 

parsing continuation when faced with a disfluency (MacGregor et al. 

2009). 

Such an observation supports the analysis of Lake et al. (2011) 

suggesting that repetitions are not used in order to create an anchoring 

point to the point before the disfluency occurred. Rather, they may be 

an automatic outcome of correcting problems in own speech as argued 

by Clark & Wasow (1998) in their continuity hypothesis: it is easier for 

a speaker to return to a continuous output by producing a full 

constituent rather than only its fragment. 

The speaker-orientation of repetitions is further supported by 

studies on individuals with autism-spectrum disorders (ASD) 

summarized in Table 2. The studies reviewed by Engelhardt and 

colleagues (2017) as well as their own paper show that participants with 

ASD are uniformly distinguished from their typically-developing 

counterparts by a substantial overuse of repetitions. Since “individuals 

with high-functioning forms of autism spectrum disorders (HFA) tend 
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to have a self-centric approach to dialogue and poor pragmatic skills” 

(Engelhardt et al. 2017: 2885) and “often do not have language 

impairments per se but do have impairments in pragmatic aspects of 

language use, as well as atypical prosody” (ibid.), it is assumed that 

their overuse of certain language features is a sign that these features 

are not helpful (or are disturbing) to the listeners. This is clearly 

suggested for repetitions. On the contrary, the overuse of pauses either 

lacks conclusive evidence (unfilled pauses), or is completely unattested 

(filled pauses). 
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To conclude, there is both evidence suggesting that disfluencies 

may help listeners with processing linguistic input and that they are 

disruptive. They may originate on the side of the speaker, as a symptom 

of retrieval problems with infrequent words or planning a complex 

syntactic structure to be produced shortly. Alternatively, they may be 

directed as helpful cues for the listener, preparing them for an 

unpredictable continuation (on the basis of the context or of its general 

rarity). Unanimous consensus has so far not been reached. Importantly, 

many of the suggested triggers should be reflected in the local surprisal 

value to some degree. On the one hand, it is an expression of the 

difficulty with which an item is processed and incorporated into the 

mental representation. On the other hand, it may also offer insights into 

potential retrieval and planning issues, as suggested by Cole & Reitter 

(2017), especially if production and comprehension are tightly 

interwoven, as advanced by Pickering & Garrod (2013). Furthermore, 

it reflects the predictability of an item in context, its overall frequency 

and – to the degree the semantic model can capture it – its newness. 

Thus, if all these features are claimed to predict disfluencies, the 

combined estimate of surprisal should predict them, too. 

Additionally, by extension of the UID hypothesis, the magnitude 

of the local change in information density should aid the prediction as 

well. Such an expectation is motivated by the following logic: an 

information-theoretically optimal communication transmits a 

constantly dense stream of information from the speaker to the listener, 

arbitrarily close to the channel capacity. A sudden positive spike in the 
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information transmission rate might cross the boundary of what the 

speaker can plan/retrieve/encode online prior to articulation, or the 

listener’s capacity to process such an input. If this spike goes beyond 

the level that can be corrected by modulations of articulatory 

redundancy, it may require the insertion of additional time into the 

transmission. This additional time may be provided by optional 

syntactic elements, as argued in the original UID (Jaeger 2006, 2010), 

or by inserting hesitations, if such an optional element is not 

available/sufficient, as argued in this thesis. 

3.2 Disfluencies from the computational perspective 

In the last few decades, computational linguists developed algorithms 

for the production of synthesized speech that do not simply concatenate 

the pronunciations of individual words in the text. Suprasegmental 

phenomena, such as intonation, pitch or assimilation across lexeme 

boundary have found their way into the individual speech models, 

creating a more natural output. Nevertheless, up until recently, the main 

focus of this research area was on the production of fluent, read-aloud-

like speech, not too different from the speech of news anchors reading 

from a teleprompter. The creation of conversationalist synthesized 

speech was outside the mainstream, largely due to the fact that most 

applications of speech synthesis did indeed consist of reading aloud 

written texts – articles, messages, bus stop names. For such purposes 

any noise in the signal was not desirable. This obviously included 

disfluencies. 
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With the advent of technologies such as digital personal 

assistants, this approach changed. These assistants are not supposed to 

simply read prefabricated phrases. Rather, they are trained to mimic 

natural conversation, receiving commands in natural human language 

and responding in a way that simulates a human counterpart. For such 

applications, it is necessary to create a natural sounding output, 

including phenomena deemed undesirable in an idealized view of the 

language, such as disfluencies. Moreover, disfluency processing must 

be included both in the signal receiver as well as in the signal 

transmitter. Despite the fact that the disfluency handling logic would 

treat the same phenomenon on both ends, research in this area has 

mostly focused on identifying – and filtering out – disfluencies in the 

input, rather than predicting them in the output. The motivation of this 

priority is clear – humans are still superior to machines in handling 

imperfect natural language data and have more robust repair 

mechanisms available. The following chapters will discuss the 

approaches suggested both for disfluency detection and prediction in 

order to show their conceptual similarities as well as the different 

challenges faced in each of these tasks. 

3.2.1 Disfluency detection 

A broad variety of approaches was adopted for the detection and 

removal of identified disfluencies. These include, but are not limited to: 

- Conditional random field (Cho et al. 2013; Fitzgerald et al. 

2009b) 
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- Modified statistical machine translation techniques (Cho et al. 

2014a; Honal 2003) 

- Neural networks (Cho et al. 2015) 

The underlying mechanism in disfluency detection and correction often 

leans on the Noisy Channel Approach, stemming from Shannon’s 

Mathematical Theory of Communication. This approach, visualized in 

Figure 3, assumes that each unit in speech is created as a fluent one and 

then transmitted through a noisy channel which adds the disfluencies 

before passing the unit to the output. Such an assumption may not be a 

psycholinguistically realistic representation of the speech producing 

processes: it would disqualify disfluencies caused by retrieval errors or 

delays. Similarly, on utterance level, the aforementioned research 

(Good & Butterworth 1980; Goldman-Eisler 1968) shows that not 

every utterance is fully planned before the onset of speaking. Instead, 

the planning may be incremental, too. However, the Noisy Channel 

approach allows a simple and efficient description of the process of 

disfluency removal. 
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Figure 3: Visualization of the Noisy Channel Approach. The 

fluent string I is transmitted through a noisy channel yielding the 

disfluent string O.  

If namely the speaker chooses to utter a fluent string 𝐼 which is 

transformed by a noisy channel into a disfluent string 𝑂 via a pass-

through filter, then the noisy channel can be described as mapping the 

inputs to the outputs via a matrix of 𝑃(𝑂|𝐼). In such a case, in order to 

reconstruct the original fluent string, we only need to find and train a 

probability measure to score candidate strings 𝐼1…𝑘 selecting the most 

likely fluent counterpart 𝐼 of the disfluent string 𝑂 in following manner: 

 𝐼 =  argmax
𝐼

 𝑃(𝐼|𝑂) ( 26 ) 

The additional advantage of such a view is that it is consistent 

with Ferreira & Bailey's (2004) critique of simple filtering approaches 

claiming that 𝐼 can be produced via a function which will simply strip 

anything deemed disfluent. If that was indeed the case, disfluency 
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removal would not need to deal with missing references or left out 

information. However, as the human parser does operate with the 

contents of disfluencies, an efficient disfluency removal setup must be 

capable to extract the information contained in them, too. Thus, rather 

than performing a simple clean-up, speech reconstruction is usually 

more desirable as “more complex and less deterministic changes are 

often required for generating fluent and grammatical speech text” 

(Fitzgerald et al. 2009a: 256). One of the main challenges for speech 

reconstruction is the efficient training of the estimator. Unlike simple 

clean-up, it cannot be trained on a corpus of well-formed texts and then 

consider anything that violates the rules extracted from this corpus a 

disfluency to be removed. In addition to a disfluency detector, a 

disfluency repair mechanism needs to be implemented and taught how 

to remove a given disfluency. This requires either a database of rules 

for various types of disfluencies or training on a parallel corpus 

containing a fluent track aligned with the disfluent one. 

The availability and limited size of such aligned corpora is one 

of the limiting variables in the research of disfluency reconstruction. 

While disfluency detection has reached high efficiency, even on the 

harder-to-detect disfluencies, such as repairs, discourse markers and 

interruptions (summarized in Table 3), reconstruction is still in an 

earlier stage of development.  

One of the added problems that disfluency reconstruction needs 

to face is the low interrater agreement between human subjects cleaning 

transcripts of disfluencies. In this respect, Fitzgerald & Jelinek (2008) 
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showed that two annotators produce exactly the same reconstructed 

fluent strings only in 57% of the compared cases. Thus, it is hard to find 

a gold standard according to which a disfluency should be repaired. 

Despite this challenge, mechanisms for speech reconstruction are one 

the key elements for the future development of various other systems 

which currently depend on receiving well-formed input: parsers, 

taggers, machine translation systems. 

Model 𝑭𝟏-score 

Yoshikawa et al. (2016) 62.5 

Johnson & Charniak (2004) 79.7 

Johnson et al. (2004) 81.0 

Rasooli & Tetreault (2013) 81.4 

Qian & Liu (2013) 82.1 

Honnibal & Johnson (2014) 84.1 

Ferguson et al. (2015) 85.4 

Zwarts & Johnson (2011) 85.7 

Zayats et al. (2016) 85.9 

Jamshid Lou & Johnson (2017) 86.8 

Table 3: F-scores for disfluency detection on the Switchboard 

corpus. Adapted from Jamshid Lou & Johnson (2017: 551). 

3.2.2 Disfluency prediction 

The importance of disfluency detection and correction in computational 

linguistics pushed the attempts of disfluency prediction somewhat out 

of the spotlight. After all, perfectly fluent synthesized speech can be 
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understood by human listeners without major issues. Thus, the need to 

predict the occurrence of disfluencies only came with the need to 

increase the naturalness of the produced speech while simultaneously 

attempting to minimize the demands that listening to synthesized 

speech poses on the comprehenders. 

Additionally, by creating disfluent synthesis, researchers attempt 

to exploit the psycholinguistic benefits of hesitations, described in the 

previous chapter. The improvement of reaction times after hesitations 

described by Fox Tree (2001, 1995) is commonly cited as the inspiring 

stimulus. Moreover, the last years have also seen an increase in attempts 

to create synthesis systems capable of manipulating the expressivity and 

emotions of the synthesized speech (Andersson et al. 2012; Andersson 

et al. 2010). These efforts ultimately aim to create speech synthesis 

systems capable of simulating various personality types by conveying 

emotional and psychological states. For such efforts, disfluency 

prediction is also required. 

The current attempts at disfluency synthesis can be divided into 

two branches according to their methodology. One branch inserts the 

disfluencies in concatenative speech synthesis on the basis of the 

underlying fluent sentence (Adell et al. 2007). The other approach 

(Andersson et al. 2012) uses Hidden Markov Model synthesis and treats 

disfluencies as regular words in the speech stream (Dall et al. 2014a) 

which are only synthesized if they are included in the original sequence. 

As a consequence, it does not predict the occurrence of disfluencies, it 

only synthesizes their phonetic representation. Both of these 
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approaches match state-of-the art synthesis systems without disfluency 

insertion in their naturalness rating. In addition, they are shown to 

outperform these systems in terms of perceived conversationality (Dall 

et al. 2014b) and are claimed to be preferred by the comprehenders over 

fluent-only systems (Adell et al. 2007). On the other hand, in a 

psycholinguistically motivated study, Dall et al. (2014b) were not able 

to replicate the effects that natural disfluencies have on language 

processing with the help of synthetic disfluencies. Though the 

explanation for this discrepancy is not clear, it illustrates that the ability 

with which we are able to synthesize disfluencies is far from perfect. 

Being among the pioneers of disfluency prediction, the work of 

Adell et al. (2007) achieved substantial success early. In their 

combination of probabilistic language modelling with a decision tree 

algorithm, they used the following set of items to train a decision tree 

classifier to identify words after which a hesitation should occur: 

- Word 𝑤𝑖 

- POS-tag of 𝑤𝑖, as well as its close context (𝑤𝑖−1, 𝑤𝑖+1) 

- Probability of 𝑤𝑖 given the preceding context ℎ𝑖 

- Probability of the word 𝑤𝑖+1 given the context ℎ𝑖+1 

- Probability of a filled pause to occur after 𝑤𝑖 

- Candidate (explained below) 

The fourth variable can be viewed as a way of capturing 

Schneider’s (2014) observation that filled pauses tend to appear outside 
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of chunks7 – items which are likely to occur due to their preceding 

context are also more likely to be parts of a chunk. As a consequence, 

they should be less likely to be preceded by a disfluency. On the other 

hand, if there is a chunk boundary between words 𝑤𝑖 and 𝑤𝑖+1, the 

likelihood of disfluency occurrence in that location should increase as 

its retrieval should require more effort. 

Two elements of the approach used by Adell et al. are worth 

further discussion. First, while most of the psycholinguistic evidence 

hints on the connection between a disfluency and the output following 

it, their predicting mechanism focuses on the words before the location 

where the disfluency may be inserted. Second, they operate with the 

concept of a candidate: a word which allows a filled pause to follow it. 

In Adell et al.’s approach, only those tokens (between 30 and 40, 

depending on the setup) which are most frequently followed by 

disfluencies are considered candidates and further processed by the 

algorithm. If a word is not a candidate, it will not be processed any 

further. On the one hand, this step decreases the computational 

complexity by removing most words from the processing. On the other 

hand, it means that evaluation is done only for those items for which 

 

7 Schneider’s definition of chunks is based on a usage-based approach to 

language. Thus, for her, a chunk is “a mentally represented multi-word unit” 

Schneider (2014: 2). 
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the system is fairly certain that they can be followed by a filled pause. 

This might have helped the precision of the prediction (96.7% in the 

best model). The trade-off however, is the recall (57.7%), as many 

words followed by a disfluency were not considered at all. Additionally, 

the use of such an item increases the demands on the training data, since 

a large corpus of transcribed speech data needs to be used to calculate 

the probabilities of individual types to be followed by a disfluency.  

Finally, the classification attempted by Adell et al. is a two-way 

distinction: filled pause/no filled pause. As a consequence, their results 

might be outperforming other models because this approach is less 

sensitive to the ability to predict individual realizations. Such an attempt 

was made e.g. by Ohta et al. (2008). In their work on filler prediction, 

they presented a pipeline system consisting of a filler inserting model 

and a filler selector, predicting 51 different filler types. Similarly to 

Adell et al. they worked with fluent input strings into which the fillers 

were inserted. The filler inserting model was based on a language model 

built using a conditional random-field model trained on a corpus of 

transcribed speeches. From this corpus, the model calculated the 

probability of a filler to occur after a certain context (in Ohta et al’s case 

2-word context). It substantially outperformed their own 

implementation of uni- and trigram-based hidden Markov models in 

predicting locations of fillers (𝐹1 of 0.26 compared to 0.05 and 0.14). 

Items selected by the filler inserting model were passed further 

in the pipeline to the filler selecting model (a unigram or a trigram 

model) which selected the most likely type of filler to follow. This part 
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showed a considerably worse performance with the highest 𝐹1 achieved 

being 0.06. One of the possible reasons for such a result may be the fact 

that Ohta et al. trained their model on a different language domain than 

the one from which the test data came. 

Similarly to Adell et al. (2007), a more recent study by Dall et al. 

(2014a) attempts to predict the occurrence of disfluencies per se, 

specifically filled pauses. Training multiple models (4-gram, recurrent 

neural network, support vector machine, decision trees) on a range of 

corpora, they were able to correctly identify the position of a filled 

pause in more than 50% of the test sentences which were specifically 

selected to contain exactly 3 filled pauses. Unlike Adell et al. they did 

not employ a limited range of insertion points (the aforementioned 

candidates), but rather attempted a general prediction.  

A recent addition was made by Qader (2017) who attempted to 

predict pauses and repetitions in the Buckeye Corpus (Pitt et al. 2005) 

by a model using conditional random field. There, the prediction of each 

disfluency type was done by a separate function. The fluent utterance 

was first processed by the repetition-predicting function and then by the 

pause-predicting one. The performance of the functions was not 

identical: while the 𝐹1-score of repetition prediction over the test set 

was 9.2%, pause generation was much more successful, with an 𝐹1-

score of 25.1%. 

To conclude, a substantial improvement in disfluency prediction 

is still required. So far, the best results were obtained by studies that 
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sought to predict a limited number of disfluency types at a limited 

number of insertion points. A complete model of disfluency insertion 

thus remains as a challenge for future development, to which this thesis 

aims to contribute. To do so, it first presents a pilot study (Study I), 

motivating the selection of surprisal as a predictor for the task at hand. 

Afterwards, three studies are presented, attempting disfluency 

prediction in a text which was previously cleaned of disfluencies.



 

Chapter 4  

Study I: Linking surprisal and disfluencies 

The pilot study presented in this chapter provides the foundation for the 

use of the local surprisal estimate in disfluency prediction. Moreover, it 

suggests that the individual disfluency subtypes also have different 

profile in terms of surprisal at the location where they are inserted.  

Even though some of the studies discussed in the previous 

chapter suggested that disfluencies may be related to phenomena that 

are captured by surprisal, such as the rarity of words or their 

unpredictability in a given context (which may or may not be caused by 

their low frequency), so far there has been no study verifying the exact 

relationship between surprisal and disfluency occurrence. Thus, in 

order to validate the empirical grounding for the disfluency prediction 

approach used in Studies IIa and IIb, the study described in this chapter 

was carried out.  

This study used a corpus of transcribed speech and evaluated it 

using the language model described in 2.2 and 2.3. Afterwards, the 

profile of disfluencies was assessed in order to verify the following 

hypothesis: 

Hypothesis 1: 

The occurrence of disfluencies may be predicted by the local 

surprisal. 
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Concretely, it was predicted that disfluencies should occur in locations 

of high surprisal. In such a case, depending on their cause, they could 

either be symptoms of the increased cognitive load associated with the 

production of high-surprisal items, or they could be listener-directed 

items, inserted into the speech stream in order to provide the listener 

with additional time to resolve high-surprisal input or warn them about 

an upcoming unpredictable item. Thus, in a way, disfluencies could 

serve as smoothing agents following the predictions of the Uniform 

Information Density hypothesis (Jaeger 2006) for locations where no 

optional syntactic element is available, or where the production of a 

properly smoothed utterance is not possible due to time pressures. By 

lowering the average information transmission rate, they could increase 

the likelihood of a successful transmission. 

The presence of time pressure is one of the prominent features of 

spoken language production. It is also one of the factors linking the 

speaker and listener-oriented views of disfluencies. Next pages will 

briefly discuss this link. Additionally, other specifics of the spoken 

language production will be mentioned in order to show their 

connection to disfluency use, both from the speaker- and listener-

related perspective. 

4.1 Speaker-related constraints of spoken language 

production 

Even though both the planning of speech and text use identical 

resources on multiple levels, sharing e.g. their representations of syntax 
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and lexicon (Cleland & Pickering 2006; Allen & Badecker 2002; 

Swinney 1979), the two modes still differ substantially, even beyond 

the ultimate motor execution commands being sent to the hand or the 

articulating organs. One of the main differences is the time pressure 

under which speakers work. Where the writers use virtually as much 

time as desired to draft, re-draft, encode and re-encode a sentence, 

speaking requires practically online processing, as prolonged pauses 

may be understood as signals of ceding the floor. Even in scenarios like 

lectures or public speeches, where the speaker’s right to the floor is 

almost undisputed, it is impossible to take as much time to formulate a 

sentence as is available in writing. Thus, speakers constantly find 

themselves under time pressure and have little opportunity to draft a 

written-like utterance before producing it. 

Stress factors, among which time pressure no doubt belongs, 

have been shown to project themselves into the output produced. 

Saslow et al. (2014) observed that subjects under stress lower the 

linguistic complexity of their speech. This may be a consequence of the 

fact that working memory is impaired under stress conditions (Luethi 

et al. 2008; Robinson et al. 2008; Schoofs et al. 2008; Oei et al. 2006). 

Thus, when speakers are pressured to produce an output, their 

processing resources are limited, urging them to construct phrases and 

sentences along the well-known paths, resource-efficiently, rather than 

risk major disfluencies and eventual floor loss. 

This may be one of the reasons behind the increased use of 

prefabricated chunks (or multi-word sequences) in speech. These are 
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units consisting of several items capable of standing on their own, yet 

bound together by frequent co-occurrence. Even if their definition is 

still far from being unanimously agreed upon, as is the way in which 

they are stored, prefabs are more common in the spoken language than 

in the written one. Depending on the definition, we find 28 

(spoken)/20% (written) (Biber et al. 1999) or even 58.6/52.3% (Erman 

& Warren 2000) of the language output to consist of prefabs/multi-word 

sequences. 

The mechanism is a straightforward one: when the mind fights a 

battle against the clock, it should reach for a prebuilt item, represented 

in memory and ready to be used, rather than compose a new one. 

Experimental research has yielded evidence for such a view, even 

though the mechanism seems to be more complex than posited in 

Sinclair’s Idiom Principle (Sinclair 1991: 110). Even though there is 

ample evidence that frequently co-occurring units are processed 

differently from novel phrases (e.g. Grimm et al. 2017; Janssen & 

Barber 2012; Arnon & Snider 2010; Bybee & Scheibman 1999), there 

is no consensus that they constitute a single choice (Siyanova-Chanturia 

& Martinez 2014). Still, the presence of an entrenched sequence of 

words which co-occur above chance level has been shown to result in a 

processing advantage for both the speaker and the listener (Siyanova-

Chanturia & Martinez 2014; Siyanova-Chanturia et al. 2011).  

And yet, the increased use of prefabricated chunks is not 

sufficient to warrant production that would be free of disfluencies. 

However, the speaker’s choice to employ pre-built multi-word items 
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should be reflected in the disfluency placement. Given that highly 

entrenched items should be retrieved and planed much more efficiently 

than novel formations, they should also lead to fewer disfluencies 

occurring inside them. As a consequence, speaker-related disfluencies 

should be pushed into chunk boundaries, where the cognitive load is 

comparably higher, as hypothesized by Schneider (2014). In terms of 

the surprisal measure, this would mean that locations with higher 

surprisal are more likely to contain disfluencies, as items inside of 

mental chunks should be predictable by the preceding history.

4.2 Comprehender-related constraints 

Similarly to the production of speech, its comprehension is also not 

identical to that of written communication. In the case of reading, 

comprehenders can vary the input arrival rate dynamically and 

individually as a function of its complexity and the cognitive load 

incurred. This is manifested by observations of a correlation between 

complexity of a text and the probability of regressions, fixation length 

and second-pass reading time (Shaoul & Westbury 2011). Such 

variables do not exist in speech processing. Even though partial 

repetitions of utterances are common, it cannot be claimed that they are 

solely motivated by collateral signals from the listeners. Similarly, the 

amount of time the listener is perceiving the input is often beyond their 

control. Even though they can ask for the input to be presented 

more/less rapidly, the degree to which such an instruction can be 

followed is inversely related to the number of listeners participating at 

the conversation. The speaker is obviously not able to match the ideal 
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input rate of multiple listeners simultaneously. Similarly, the equivalent 

of second-pass reading time, the speed at which repetitions are uttered, 

is outside the domain controlled by the listeners. 

Given the lack of control that listeners have over the speech 

input, they cannot flexibly adjust the input rate to the ease with which 

they process the speech, especially in strongly monologic scenarios like 

lectures or public speeches. Even the number of “second passes” 

(repetitions) is usually limited in the course of a conversation: asking 

for repetition of every utterance is clearly a dispreferred option. Thus, 

listeners are most of the time limited to processing the information 

stored in their memory. This poses them with a problem – if the input 

stream has a higher transmission rate than what they can process online, 

they are more likely to experience a processing lag since predictability 

is closely related to processing difficulty (see Kuperberg & Jaeger 2015 

for an overview). This lag might lead to parts of the input not being 

processed at all since new words arrive before the old ones have been 

encoded into sparse categories and cleared from the working memory 

to make space for incoming input.  

An ideal communication should prevent such cases. This could 

be achieved either through macromanagement, i.e. by encoding 

messages specifically in such a way that surprisal is kept low. The use 

of frequent multi-word units/chunks is one of the methods of such 

macromanagement: comprehension is faster for prefabs/chunks/multi-

word sequences as their frequency of occurrence increases (Tremblay 

et al. 2011; Arnon & Snider 2010). However, beyond using 
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prefabricated chunks, speakers rarely have the time to plan an ideal 

utterance to be produced, taking into account the exact probabilities of 

possible encoding options. Still, given that they are aware of the 

probabilities of the upcoming production prior to its phonetic encoding 

(Gomez Gallo et al. 2008), they have the option of micromanaging the 

surprisal in their output. One option to do this is by smoothing the 

surprisal on the phonetic level. Studies such as those by Aylett & Turk 

(2004, 2006) have shown that speakers modify the level of acoustic 

detail according to the surprisal value, with more informationally dense 

structures being encoded more redundantly, i.e with more articulatory 

detail.  

Finally, smoothing by disfluency seems to offer itself in cases 

where the speaker identifies the planned production as potentially 

problematic for the listener, yet phonetic smoothing is not sufficient to 

resolve this problem. If there is no optional syntactic element to be 

inserted (the claim of the UID hypothesis), they must search for another 

smoothing option. By inserting a disfluency into a high-surprisal 

location, additional time is provided to the listeners. In this time they 

do not need to resolve new input. This in turn may help them catch up 

on the input that remains unprocessed. 

The assumption that speakers employ (some) disfluencies as a 

mechanism that aims to prevent the listeners from experiencing 

processing lag is based on the view of working memory as a finite 

resource or a system with limited capacity to be assigned to currently 

processed tasks (Baddeley 1986; Daneman & Carpenter 1980). Despite 
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some critique expressed on the notion of limited-capacity (Allport 

1989; Navon 1984) and the lack of a universally accepted measure of 

the capacity itself, this construct serves well in explaining the observed 

phenomena of human cognition (Schneider et al. 2007). In the case of 

comprehension, working memory and processing system of a listener 

present a bottleneck. Should they be occupied at the moment new input 

is received, they may not be able to process it at all: the message is 

ephemeral, any unprocessed traces of it disappear from our memory in 

50 ms (Remez et al. 2010) to 100 ms (Elliott 1962). The listeners are 

thus faced with a “Now-or-Never bottleneck” (Christiansen & Chater 

2016). Whatever they don’t process immediately, may be lost forever. 

This is especially likely if asking the speaker for a repetition is not an 

option. In order to avoid such cases, speakers should strive to 

communicate in a way that is robust against such disruptions – 

potentially by providing the listeners with additional time to resolve the 

previous input. 

This need is even more pronounced in dialogic scenarios. 

Considering that the average separation of two turns is approximately 

500 ms (Dąbrowska 2014) and that turn overlapping is an exceedingly 

common phenomenon, we might assume that the processing of the input 

as well as planning and encoding of the response occur during the 

comprehension. In such a case, fewer resources are available for the 

processing of the received input. In order to communicate efficiently, 

the average information density should be lowered. In this manner, the 

likelihood of a processing lag is minimized. In particular, it should be 
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ascertained that there are no sudden peaks in the information 

transmission rate which would exceed the capacity of the listener. 

Disfluencies are one approach to do so in cases where other approaches 

do not suffice.

4.3 Testing methodology 

In order to verify the hypothesis stated in the introduction and explore 

the characteristics of disfluencies in terms of surprisal, a corpus of 

speech transcripts was evaluated. Concretely, the John Swales 

Conference Corpus (JSCC, Swales et al. 2009) was used. The JSCC is 

a corpus of speech transcripts from a conference in the honor of John 

Swales, held at the University of Michigan in June 2006. Each text 

contains one presentation delivered during the conference; in total, 

there are 23 texts, amassing to approximately 80,000 words of fairly 

formal, monologic spoken English. Even though the speech transcripts 

contained in this corpus do not necessarily represent the prototypical 

scenario of spoken dialogic communication, they should offer an 

insight into disfluency placement without the influence of the 

interlocutor affecting the results. Since all of the speeches were 

delivered to a larger audience, the disfluency placement there should 

not be tailored to the needs of one specific listener but rather represent 

an averaged use. An additional advantage from the perspective of 

listener-oriented disfluency placement is the low availability of 

repetition requests – speakers should be aware of the fact that audience 

is unlikely to ask for repetition of a sentence they did not understand. 
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Moreover, external noise which could also induce repetition should be 

kept to a minimum. 

 On the other hand, the distance over which the communication 

is executed is longer than in the case of most dialogues. Speakers are 

aware of this issue as shown in the example below: 

( 4 ) Can everybody hear me. 

Because I'm not gonna speak in here I'll use 

my wire the microphone.  

Can everybody hear me at the back.  

     JSCC: 20 

 

Here the speaker repeatedly reassures at the beginning of their speech 

that all of the intended recipients of the message are within the reach of 

their voice. The verification occurs not only at the beginning of the talk, 

but also in the process as seen in Example 5: 

( 5 ) […] a bit of work has been done on the uh, 

pictures, you can't hear me.   

      

  JSCC: 11 

 

A final caveat with respect to the data should be mentioned. The JSCC 

markup does not contain any encoding of pauses. Thus, the purpose of 

this study was mainly to observe whether disfluencies in general differ 

from the fluent material in terms of surprisal. The actual attempt to 

predict them was made in the subsequent studies. 
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Each of the texts in the corpus was tokenized (matching the 

tokenization used by the parser and 3-gram model). The surprisal at 

each word was measured with the compositional model as described in 

Chapter 2.3. An example output of the model is shown below in Table 

4. Afterwards, the profile of disfluencies was evaluated and a simple 

logistic regression model was fitted in order to assess whether the 

surprisal measure may provide any insight into disfluency use.

4.4 Results 

This chapter will briefly report the results obtained by the methodology 

discussed in the previous chapter. Prior to discussing the results as 

related to the current hypothesis, a brief overview of the surprisal scores 

found within the data will be presented. 

Lexeme Issues already arise from this 

Δ 1.127 NA 1.56 NA NA 

𝑝3−𝐺𝑅𝐴𝑀 0.001 0.0001 0.000008 0.20 0.02 

𝑝𝑃𝐴𝑅𝑆𝐸𝑅 0.043 0.018 0.13 0.16 0.39 

𝐿𝑒𝑥𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙 6.71 8.84 11.28 1.61 4.02 

𝑆𝑦𝑛𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙 3.13 4.02 2.01 1.81 0.95 

𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙 3.57 4.46 2.46 1.73 1.37 

Table 4: Sample output of the language model trained on 

COCA+MASC, defined in Chapter 2.3. The fact that issue 

and arise have associated ∆-values is due to the fact that this 

sample is not the first sentence of the text. Thus, the 

semantic history can be constructed. Values displayed are 

rounded to two digits after decimal point or first non-null 

digit. 



90 4. Study I: Linking surprisal and disfluencies 

4.4.1 Overall distribution of surprisal 

In the JSCC, the median surprisal was 2.08 nats, with substantial 

variation around the mean of 2.37 nats, as implied by the standard 

deviation of 1.44. Partially due to the presence of a logarithmic 

transform in the course of surprisal calculation, the surprisal values 

were not normally distributed in the data but rather had a long-tailed 

distribution, as visualized in Figure 4.  

The individual surprisal values were completely uncorrelated 

with their neighbors – suggesting that high surprisal locations are not 

immediately followed/preceded by low surprisal items 

counterbalancing the temporary trough/peak in information 

transmission rate (Spearman correlation coefficients of surprisal at 𝑤𝑖 

with the surprisal at 𝑤𝑖−1 and 𝑤𝑖+1 were both ρ = 0.02). 

The n-gram-based surprisal and the syntactic surprisal were 

distributed similarly, with most items being fairly predictable given the 

preceding history (cf. the density plots in Appendix A.1). Here, too, the 

surprisal of the previous/following word was unrelated to the surprisal 

of a given word 𝑤𝑖. 
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Figure 4: The distribution of the individual values of surprisal in 

the data. The density plot can be read in a way similar to a 

histogram, i.e. peaks represent values which are frequent and 

areas approaching 0 on the y-axis represent non-attested values. 

4.4.2 Surprisal profile of disfluencies 

If disfluencies should serve as surprisal smoothing agents, they should 

occur more often in contexts with high surprisal values. In order to 

explore this assumption, the locations of high surprisal were further 

analyzed. The results are shown in Table 5, visualizing that 

approximately a third of the words with high surprisal (defined here as 

a value above 7.5 nats, i.e. probability below 0.0005, which roughly 

covers the most extreme 1% of cases) were cases of speech-specific 
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phenomena which belong to broadly defined disfluencies: repetitions, 

restarts and filled pauses. 

Phenomenon Share Example 

Repetition 6.5% So what what does it 

mean? 

Restart/self-correction 11.1% What do I we do? 

Filler/hesitation 15.1% Look at the example on 

page um seven. 

Parse failure 9.1% …long stretches of road…  

(stretches identified as a 

verb) 

Other 58.3%  

Table 5: High surprisal elements (based on a sample of 199 

occurrences) 

The fact that disfluencies often have a high surprisal value 

themselves is somewhat unexpected from the information-theoretic 

point of view.8 In such a case, they should substantially reduce the 

listeners uncertainty about the received message. This seems hard to 

achieve e.g. by repetitions, which are prime examples of redundant 

encoding. An alternative explanation is that the presence of high 

 

8 It is, however, less surprising from the computational-linguistic point of view 

from which high surprisal corresponds only to low probability of occurrence. 
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surprisal estimates at disfluency location could be an artefact of the 

surprisal estimation procedure; this will be addressed later on. 

Nevertheless, should disfluencies act as information smoothing 

agents, then it is in particular the surprisal of the surrounding items that 

is of interest. Disfluencies should be inserted near peaks in surprisal in 

order to stretch the information transmitted at those peaks over a longer 

period of time. In order to test whether such a hypothesis might have 

some grounding in the data, further analysis was performed. 

First, the surprisal at the following word was compared 

individually for the following two phenomena: 

- Filled pause (the two most common fillers in the data were 

taken into account: uh, um) 

- Repetition 

The occurrences were extracted automatically by a regular 

expression search looking for all 1-word repetitions and filled pauses. 

Then, the surprisal at the word following the disfluency location (for 

repetitions, this meant the last occurrence of the repeated word/words) 

was extracted. Finally, the surprisal values were compared with respect 

to the status of the word 𝑤𝑖. 

The comparison showed that there is a substantial difference 

between the surprisal of word 𝑤𝑖+1 depending on whether 𝑤𝑖 was a case 

of disfluency or not. This difference, based on 640 individual 

observations of filled pauses and 441 repetitions, translates into a 

difference of means of 1.56 (um, n = 207, ∆𝑚𝑒𝑑𝑖𝑎𝑛 = 1.92, Cohen’s 
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d = 1.15), 1.39 (uh, n=433, ∆𝑚𝑒𝑑𝑖𝑎𝑛 = 1.62, Cohen’s d = 1.02) and 

1.55 nats (repetitions, ∆𝑚𝑒𝑑𝑖𝑎𝑛 = 1.26, Cohen’s d = 1.14). This is also 

visible in the violin plot in Figure 5: there is a substantial difference in 

the distributions, which translates into a pronounced difference in the 

medians, too. 

 From this analysis, the first element 𝑤𝑖 of repetitions thus seems 

to be stretching the information which would otherwise be conveyed by 

the second element 𝑤𝑖+1 only. Such an explanation is not contested by 

the alternate analysis (proposed by Adell et al. 2007): there is no 

 

Figure 5: Surprisal of 𝒘𝒊+𝟏 as related to the status of 𝒘𝒊. The 

horizontal line in the violin shows the median, while the width of 

the violin corresponds to a density plot rotated 90° anticlockwise 

and mirrored along the y axis. 
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substantial difference between the information value of the first element 

𝑤𝑖 and the general distribution in the fluent data. 

Such a simplified analysis, however, cannot be presented as a 

proof that repetitions and filled pauses are tools for transforming the 

information transmission rate into a more uniform one in constructions 

where no optional choice point (in the sense of the UID hypothesis) is 

available. Nor should it be seen as strong evidence for the identifiability 

of disfluencies by the surrounding surprisal values. First and foremost, 

it must be excluded that the heightened surprisal of 𝑤𝑖+1 is caused by 

the presence of 𝑤𝑖. For this purpose, the files were cleaned of these 

phenomena (i.e. the filled pauses and one of the repeated elements were 

removed) and reprocessed through the surprisal estimating script. 

Afterwards, they were semi-automatically aligned with the original 

files to identify the cleaned locations. Though five types of filled pauses 

were observed (eh, ehm, uh, uhm and some occurrences of yeah), only 

two of them were frequent enough to justify an analysis (uh with 424 

observations and um with 200 cases).  
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Figure 6: Surprisal of 𝒘𝒊+𝟏 as related to the status of 𝒘𝒊. 
Surprisal values were obtained after cleaning the disfluencies 

mentioned from the data. 

The effect, though attenuated, persisted (Figure 6). More 

prominently for filled pauses (um: difference of means of 0.73 nats, 

∆𝑚𝑒𝑑𝑖𝑎𝑛 = 0.64, Cohen’s d = 0.52, uh: difference of means of 0.66 

nats, ∆𝑚𝑒𝑑𝑖𝑎𝑛 = 0.61, Cohen’s d = 0.46) than for repetitions 

(difference of means 0.17 nats, ∆𝑚𝑒𝑑𝑖𝑎𝑛 = 0.43, Cohen’s d = 0.12), 

the median surprisal was higher for items after the position where the 

disfluency was inserted.  
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Figure 7: Syntactic/N-gram surprisal of word 𝒘𝒊+𝟏 as related to 

the type of disfluency inserted at 𝒘𝒊. Surprisal measured after 

disfluencies had been removed. 

For repetitions, a large portion of this trend can be tracked to the 

syntactic surprisal (which is by definition responsible for 64% of the 
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overall surprisal). As shown in Figure 7, the n-gram surprisal of words 

following a location of repetition (i.e. the first item of the repeated 

element itself) is actually lower than in the case of the fluent text. On 

the other hand, the trend direction is maintained for both syntactic and 

n-gram surprisal for the filled pauses. Finally, the values of the semantic 

cohesion coefficient Δ did not differ between the individual disfluency 

groups. 

The observations are congruent with the view of disfluencies as 

symptoms of processing effort (Clark & Fox Tree 2002): if the 

upcoming output is highly unlikely, it might be impossible to plan 

online. Then, the insertion of a disfluency (Clark & Fox Tree discuss 

filled pauses) can be a mere symptom of the inability to proceed. 

Similarly, the data supports the alternative explanation from the 

information-theoretic perspective, in which disfluencies could serve the 

purpose of a “smoothing particle” and which follows the claims of those 

researchers, who suggest that hesitations do not impact comprehension 

above and beyond the extra processing time they offer to the listener 

(Bailey & Ferreira 2003; Brennan & Schober 2001). This extra 

processing time can also be viewed as an additional amount of time over 

which information is spread. The tendency to insert this additional time 

prior (rather than after) the locations of high information density 

becomes visible when visualizing the medians of surprisal around the 

position in which the filler/repetition occurs (Figure 8). This shows a 

clear peak in the per-word information following the position of the 

disfluency, contrasting to the baseline value. 
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Figure 8: Surprisal of 𝒘𝒊+𝒅 as related to the status of 𝒘𝒊 for 𝒅 ∈
[−𝟓, 𝟓]. Surprisal values were obtained after cleaning the 

disfluencies mentioned from the data. 𝒘𝒊 is the location at which 

the disfluency occurred in the uncleaned data and thus has no 

value in the cleaned data. 

Such an observation is suggestive of the information smoothing 

hypothesis. Interestingly, the median surprisal drops below that of 

fluent text after the disfluency location. This pattern could be 

interpreted in several ways: it could suggest that the first 

uncommon/unpredictable item specifies the continuation to such a 

degree that all subsequent items become easier to predict. For example, 

though Albert will be comparably hard to predict, it will simplify the 

prediction of Einstein substantially. Alternatively, from the UID 
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perspective, this could mean that the peak in surprisal is smoothed both 

by disfluency insertion and by the lowering of the surprisal of the 

following items. In such a way, the average surprisal of the extended 

context would still be within the bounds of what comprehender can 

manage. Finally, focusing on the speaker, the rise-fall pattern could 

suggest that the preparation of this unlikely item is so difficult that the 

following context must be constructed along the well-known path in 

order to maintain fluency. Obviously, the simple plot does not allow the 

decision which of these explanations – if any – reflects the reality. 

Further research in this area is required. 

In spite of the observed peak in surprisal after the disfluency 

location, it is likely not the case that the difference in the surprisal 

estimate of two neighboring words alone predicts the occurrence of a 

filled pause/repetition. Even though the proportion of disfluencies 

correlates with the increase in this difference (see Figure 9): the 

relationship is not monotonic. While the ratio of disfluencies increases 

with small discrepancies in the information transmission rate, it 

decreases again once the difference between two neighboring items is 

larger than 3 nats (cf. Appendix A.2 to see the proportion to which the 

different disfluency types are represented in individual bands of 

surprisal difference). 
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Figure 9: Surprisal difference of 𝒘𝒊−𝟏 (the item preceding the 

disfluency) and 𝒘𝒊+𝟏 as related to the proportion of individual 

disfluency phenomena being inserted. For the fluent realizations 

in plot a), the surprisal of two neighboring items is compared. 

Vertical bars visualize the surprisal difference of 0. 

It might be intuitive to expect a surprisal smoothing technique 

such as a disfluency to be used after the high surprisal location, 

allowing the receiver longer time to process the information given. 

However, this seems not to be the case, as the surprisal before the filled 
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pause/repetition tends to be the same as in the rest of the data. This 

preference to place disfluencies prior to high-surprisal locations may be 

related to the other factors, suggested to explain disfluency occurrence 

as some of them are captured by the surprisal measure as well. As 

summarized in Chapter 3, most previous research on disfluencies 

argues that they are either the result of a speaker’s inability to proceed 

with the production, or a signal to the listener about the status of the 

upcoming input. In the first case, the increased surprisal may reflect the 

complexity of the produced item. In such a case, the disfluency should 

indeed occur before the high-surprisal item. Similar observation is 

expected from the disfluency-as-a-signal perspective: if disfluencies 

signal that the upcoming input is unexpected/rare/unpredictable, they 

must precede it. The unexpected/rareness/unpredictability should then 

be reflected in the surprisal of the item after the disfluency.  

The data used in this study does not permit an exploration of the 

concrete mechanism through which disfluencies interact with surprisal 

– most importantly, how do they influence the processing of the high-

surprisal locations. It thus remains a task for further studies to 

disentangle whether disfluencies indeed serve as surprisal smoothing 

agents and how exactly do they operate: whether they work as signals 

of upcoming complexity, or whether their purpose is providing time for 

the comprehender to free their working memory before a complex item. 

The present study, however, has shown that disfluencies do differ in 

their profile from the fluent text. The next chapter will explore whether 

this difference is useful in disfluency prediction.
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4.5 Disfluency prediction by surprisal 

This chapter shows that the difference between disfluencies and fluent 

text in terms of surprisal of the item following the location of a 

disfluency may be used as a predictor of disfluency occurrence. It 

achieves this by verifying the trends reported in the previous chapter 

through a logistic regression model.  

The surprisal smoothing hypothesis explains likely only a 

proportion of the data. Other than taking into account the inevitable 

presence of noise (such as the fact that some repetitions may be caused 

by background noise overpowering the speech and motivating re-

utterance), previous research suggested factors that are not captured by 

the language model used in this thesis. Such factors include e.g. the 

failure in retrieval that is caught by the speaker prior to production. In 

order to explore the influence of the measurements collected in the 

present study on the use of disfluencies, a simple logistic regression 

model was built, using the following predictors: 

- Sentence initial (true/false) 

- Surprisal of the next word 

- N-gram based probability of the next word 

- Probability of the next word as assigned by the parser 

- The difference in surprisal between words 𝑤𝑖−1 and 𝑤𝑖 

(here, the word indexes are based on the data from which 

disfluencies were cleaned) 
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The outcome variable was a binary decision task: will 𝑤𝑖 be 

disfluent (preceded by filled pause/repetition)? The individual surprisal 

elements (i.e. the syntactic surprisal and the n-gram surprisal) were not 

included in the model due to their collinearity with the overall surprisal 

score. The n-gram/syntactic probability was kept as a predictor as it has 

comparable performance in comparison to the surprisal elements in 

terms of explanatory power, but lower correlation coefficient with the 

other predictors. The data also contained information about the position 

of the word within the sentence (sentence-initial or not) as this was 

shown to form a clear pattern in the data: almost all sentence beginnings 

(defined by a full stop in the transcribed text) were disfluent; strikingly, 

 Coefficient Std. 

error 

Wald’s 

z 

p-

value 

Intercept -3.78892 0.20286 -18.678 *** 

Sentence initial  8.36555 0.24341 34.369 *** 

N-gram 

probability 

-4.03457 0.78059 -5.169 *** 

Syntactic 

probability 

-0.41557 0.34618 -1.200  

Surprisal -0.09750 0.05707 -1.708 . 

Difference in 

surprisal 𝑤𝑖 −
𝑤𝑖−1  

0.22246 0.03623 6.139 *** 

Table 6: Resulting model of disfluency prediction, p-values 

key: . significant at 0.1, * significant at 0.05, ** significant 

at 0.01, *** significant at 0.001 
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approximately 74% of disfluencies occurred sentence-initially. The 

model was trained using 80% of the data for training, its performance 

was evaluated on the remaining 20%. Table 6 summarizes the fitted 

model parameters. 

The deviance of the null model (i.e. one that would assign all 

cases to the majority class) was 15182, the model presented above had 

a deviance of 5408, a statistically significant improvement according to 

the chi-squared test (p < 0.001). Tjur’s pseudo-𝑅2of the model was 0.72 

suggesting that the model was reasonably capable of explaining the 

variation in the training data. Leaving out any of the individual 

predictors led to deterioration of the model fit as assessed by the AIC. 

The relative importance of the individual predictors was evaluated 

using the caret package (Kuhn 2017) for R and assigned the highest 

relative importance to the fact whether an item was sentence initial or 

not. Indeed, as suggested by the related coefficient; disfluencies are 

more than 4000 times more likely (∆𝑜𝑑𝑑𝑠) to occur in a sentence-initial 

position than elsewhere. The surprisal itself has a small non-significant 

negative coefficient assigned, suggesting that it is of little importance 

to disfluency prediction, unlike the difference in surprisal between two 

neighboring items. Here, the coefficient is larger (coeff. 0.22, 

p < 0.001) and positive, suggesting that disfluencies are more likely to 

occur between two items which have a large positive difference in the 

amount of information they transmit. N-gram probability is also a 

significant predictor, with a negative coefficient, suggesting that items 

which have a high probability of co-occurrence (expressed by 
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probabilities assigned by the n-gram model) are unlikely to be divided 

by a disfluency. 

The training data was used to optimize the cutoff threshold to 

decide whether a case should be assigned as disfluent or not as later 

used for the calculation of performance measures. The performance 

over the test data was additionally visualized using an ROC curve 

(Figure 10).  

 

Figure 10: ROC curve of the disfluency prediction model over 

the test data. The shape of the curve suggests a non-random 

performance: the rate of true positives grows faster than that of 

false positives. 
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This shows that the model is not assigning randomly, but rather 

its true positive rate is higher than the false positive rate. The area under 

the curve is 0.93, showing a high probability that a randomly selected 

positive example will be rated higher than a randomly selected negative 

example. Using the optimized cutoff threshold, the model predicted 

correctly 367 out of 477 disfluencies (recall of 76.9%) in the test set. 

Given that it wrongly expected 37 cases to be disfluent, the precision 

was 90.8%. The overall accuracy was 98.4%. 

The strong influence of the position of a word in sentence on the 

prediction is reflected in the performance if this parameter is removed. 

In such a case, the deviance of the model rises to 14303, Tjur’s 𝑅2 

decreases to 0.03 and the area under the ROC curve becomes 0.75. Still, 

this model is significantly better than the null model. 

To conclude, while some of the surprisal-based and probability-

based measures were identified as significant predictors of disfluencies, 

the difference between the location of a word at the beginning of a 

sentence and elsewhere is a much stronger determiner of disfluency in 

the data analyzed. Besides being a real pattern in the data, this could 

also be an artefact of the JSCC compilation method. If the transcribers 

tended to include a particular sort of disfluencies – e.g. only those 

occurring sentence initially – this would inevitably be reflected in the 

performance. Next chapters will thus seek to address this issue by using 

a different dataset. Additionally, they will employ models capable of 

fitting more complex functions and thus accounting for e.g. interactions 

between the individual predictors.
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4.6 Conclusion 

The previous chapter has shown that surprisal may serve as a predictor 

of disfluency occurrence in spoken language. When analyzing the 

relationship between the surprisal of an item and its fluency status, a 

clear trend was observed: disfluencies tend to occur before items with 

higher surprisal values. However, further analysis has suggested that 

the surprisal value itself may not be as strong a predictor of disfluency 

as the magnitude of the local change in surprisal. Thus, items which are 

much less predictable than their immediate context are more likely to 

be disfluent than items which have the same high surprisal value, yet 

do not differ from their context in this respect. 

The pronounced influence of sentence-initial position on the 

disfluency placement is somewhat surprising. Still, it is not contrary to 

the observations made in previous work: Shriberg (1994) reports that 

sentence-initial locations are substantially more likely to be disfluent in 

comparison to sentence-medial positions in all three corpora that she 

analyzed. Additionally, it is intuitive to expect disfluencies caused by 

processing effort linked to language production to occur sentence-

initially, as the planning at sentence/utterance beginnings is not 

restricted to the next element only; rather, the message to be expressed 

by that sentence needs to be formulated as well. 

The issue of time was not taken up in this study. However, 

speakers are known to manipulate the speed and phonetic detail with 

which they pronounce words in order to keep the information 
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transmission rate smooth (Aylett & Turk 2006, 2004). It is thus possible 

that some of the locations in which disfluencies should be inserted on 

the basis of the local change in surprisal employed an alternative 

approach – that of smoothing by articulatory detail and/or speech rate. 

Still, the present data suggests that such a smoothing approach is not 

always available or feasible. This could happen in cases where the 

upcoming output is not ready for production yet, urging the speaker to 

issue a floor-holding signal.  

Given the range of functions assigned to disfluencies by previous 

research, it is unlikely that every occurrence of a filled pause or 

repetition can be explained through the surprisal estimate, even though 

many of the causes should be reflected by the scores assigned by the 

language model, e.g. the rareness of the upcoming input or its 

unexpectedness. This was confirmed by the observations made in this 

study: some disfluencies remained unexplained. Similarly, given the 

range of information flow smoothing techniques, not every change that 

is too abrupt to be smoothed by phonetic detail will be smoothed using 

a disfluency. However, the results obtained here suggest that the 

surprisal estimate could be used to further improve the results of studies 

aiming to predict disfluencies, such as those mentioned in Chapter 3.2. 

The attempt to do so will be presented on the following pages.
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Chapter 5  

Study IIa: Predicting disfluencies by context 

The results obtained in Study I suggested that the use (or lack of) a 

disfluency is connected to the local surprisal, and its local change in 

particular. In order to validate the results, a subsequent study was 

carried out, described in this chapter.  

5.1 Introduction 

As mentioned in Chapter 3.2, most previous work in the computational 

linguistic area has been directed at recognizing (and removing) 

disfluencies in human-generated texts in order to yield cleaned 

transcripts similar to written texts. However, the prediction of 

disfluencies has so far remained somewhat aside from the mainstream. 

Despite this fact, some good results have been obtained. Most 

notable being the work of Adell et al. (2007), summarized above. They 

report achieving precision of 96% and recall of 58% in predicting filled 

pauses in a Spanish corpus with their combination of a probabilistic 

language model and a decision tree algorithm.9 Ohta et al. (2008), who 

also included discourse markers in their prediction of Japanese fillers, 

 

9 However, they did not develop this approach further and their latest 

publication in this area does not incorporate the disfluency predicting module 

at all (Adell et al. (2012), which is somewhat unexpected considering the early 

success. 
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state that the performance of their conditional random field model 

ranged from 𝐹1 = 0.23 (precision: 0.26, recall: 0.21) when merging all 

fillers under one label to 𝐹1 = 0.06 (precision: 0.08, recall: 0.05) when 

combining the filler insertion model with a trigram-based filler 

selection model choosing the correct filler type. 

In a more recent study on disfluencies in English, Schneider 

(2014) explored the impact of chunking on hesitation placement. In a 

set of specific environments (such as sentence initial subject-verb 

cluster), her model achieves misclassification rates varying between 

51.8% and 1.6% (i.e. accuracy between 48.2% and 98.4%) using 

random forests and single decision trees as estimators and a set of co-

occurrence-based predictors. Unfortunately, the cases in which the 

model has the lowest misclassification rate are the cases where the 

classifier does not perform significantly better than a baseline model, 

predicting all cases to belong to the most common class. The low 

misclassification rate thus mirrors the overwhelming dominance of one 

class in the data and does not correspond to a high macro-averaged F1 

score. 

The independent variables used for training and prediction in 

these studies describe both the context before and after the position in 

which the disfluency was inserted and can be roughly divided into two 

major classes – quantitative and qualitative. The quantitative predictors 

include various probability and co-occurrence measures, such as: 

- Direct transitional probability 
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- Backward transitional probability 

- Mutual Information Score  

- Lexical Gravity Score 

- Bi-/trigram probability 

- Probability of a disfluency to occur after word wi-1 

The qualitative predictors include the part-of-speech tags assigned to 

the items around the position in which a disfluency occurred in the 

training data (used as an approximation of the syntactic pattern 

surrounding the disfluency), individual lexemes and sentence boundary 

tags. In this way, the authors hope to give the classifier sufficient 

information to learn the distribution of disfluencies in order to apply it 

later to unseen data. The main limitation of such approaches is their 

reliance on word-based statistics, using only approximations of the 

underlying syntactic structure, or operating within precisely specified 

syntactic environments. 

Additionally, none of the studies explored the issue from the 

perspective that this thesis is employing: as interacting with the local 

surprisal. This chapter seeks to explore and describe how well can the 

combined measure of surprisal (described in Chapter 2.3) predict the 

use of disfluencies. In the course of this chapter, the following 

hypotheses will be explored: 
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Hypothesis 2.1: 

The surprisal estimate produced by the model defined in 

Chapter 2.3 is a predictor of disfluency occurrence in the 

MICASE corpus. 

Hypothesis 2.2: 

The occurrence of a disfluency depends not only on the overall 

predictability of the word it precedes, but also on the difference 

in the local information transmission rate – that is the difference 

in the predictability of the word preceding the position in which 

the disfluency was inserted and the word following it.  

Both of these hypotheses are based on the observations made in the 

previous Study I. This chapter also seeks to validate the observations 

on a different dataset in order to verify that they are not artefacts of the 

data collection procedure. Concretely, the hypotheses are tested on the 

MICASE corpus, described in more detail in 5.2.7. 

This explanatory analysis was combined with an active attempt 

to predict the disfluencies. Thus, rather than only observing the 

proportion of disfluency occurrence that can be explained post-hoc, a 

model was fitted on a part of the data, attempting to predict the 

disfluencies in a held-out test set. The prediction used a combination of 

quantitative and qualitative predictors, described below.
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5.2 Present study 

This study attempted to verify the strength of relationship between 

surprisal and the disfluency occurrence, as observed in Chapter 4.5. The 

hypotheses listed in Chapter 5.1 were explored on transcribed speech 

data from the MICASE as the JSCC contains only a limited number of 

disfluencies. 

In development, the disfluency prediction was tested on the basis 

of two different algorithms: the classification tree algorithm and the 

multi-layer perceptron. The predictors used are largely based on the 

previously listed research with the combined measure of surprisal and 

the local difference in the surprisal of two neighboring words added. 

The full list of predictors used thus includes: 

- Sentence position (initial vs. medial/final) 

- Bigram frequency 

- Direct transitional probability 

- Backward transitional probability 

- Mutual Information Score 

- Lexical Gravity Score 

- Lexical surprisal 

- Syntactic surprisal 

- Surprisal 

- Surprisal compared to the previous word 
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The last four measures were taken from the output of the 

combined measure or its components and will not be described here 

further. For detailed description, please refer to Chapter 2. The 

sentence-initial position was a simple binary variable, indicating 

whether a given word is the first one in a sentence or turn. Thus, 

sentence starts were not inserted as special pseudo-words or meta-tags, 

but were expressed by one of the values associated with a word.  

The remaining scores: direct transitional probability, backward 

transitional probability, mutual information score and lexical gravity 

are all different measures aimed at expressing the connection between 

two words. Their implementation was done mostly in agreement with 

Schneider (2014) and will be briefly described in the following 

chapters. The fact that multiple scores for the same underlying notion 

were used is due to the lack of a universally acknowledged measure of 

collocation strength: all measures devised so far suffer from some bias 

or sensitivity to data imperfections (Gries 2013), in spite of the 

considerable progress in this area. Using multiple measures together 

may alleviate some of their weaknesses. Furthermore, the decision to 

implement several collocation scores was motivated by the effort to 

establish continuity with previous research. 

Some of these scores are raw probabilities, rather than 

log-transformed surprisal estimates. These measures are included in 

order to establish continuity with previous research, without being 

strongly tied to any underlying theoretical assumptions. Naturally, the 

probabilities could be simply transformed into surprisal estimates. As a 
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matter of fact, there are good reasons to use surprisal only: first, it would 

be more in line with the information-theoretical view of disfluencies as 

information smoothing agents. Secondly, raw probabilities tend to be 

poor numeric variables. Yet, given the choice of algorithms used for the 

prediction, the influence of such a transformation would be negligible 

– if not non-existent. Thus, to maintain connection to previous research, 

probabilities were used. 

On the next pages, the non-trivial scores used for disfluency 

prediction will be described in more detail. Similarly, the two 

algorithms employed will be briefly presented. 

5.2.1 Direct transitional probability 

The direct transitional probability (TP-D) is the first measure of 

association strength used. It expresses the probability 𝑝(𝑤𝑖|𝑤𝑖−1) of 

word wi to follow a given history, in this case represented by word 𝑤𝑖−1. 

The probability is calculated by dividing the count 𝑐(𝑤𝑖−1𝑤𝑖) of a given 

bigram 𝑤𝑖−1𝑤𝑖 by the overall frequency 𝑐(𝑤𝑖−1) of its first word wi-1 

(Kapatsinski 2004). Thus, 

 
𝑝(𝑤𝑖|𝑤𝑖−1) =  

𝑐(𝑤𝑖−1𝑤𝑖)

𝑐(𝑤𝑖−1)
 

( 27 ) 

For words which are closely associated such as peanut butter, its 

value should be approaching 1, as most occurrences of peanut will be 



5.2 Present study 117 

 

 

followed by butter.10 By definition, direct transitional probability can 

only express the likelihood of 𝑤𝑖 to occur after 𝑤𝑖−1, but it does not 

contain any information about the likelihood of 𝑤𝑖−1 to occur given 𝑤𝑖. 

This leads to the loss of the information that while Hansel will be 

followed very commonly by and, and itself is rarely preceded by 

Hansel. It is thus a directional measure. 

Importantly, the direct transitional probability as defined here is 

not equivalent to the reciprocal of the lexical surprisal score raised to 

the power of e. The direct transitional probability is equivalent to the n-

gram calculation by maximum likelihood estimation as defined by 

Equation 12. It uses 𝑛 = 2. The n-gram probability used for the lexical 

surprisal is calculated with 𝑛 = 3 by Equations 16 and 17 and includes 

smoothing and interpolation. 

5.2.2 Backward transitional probability 

Backward transitional probability (TP-B) expresses association of 

words in the opposite direction when compared to the TP-D. It captures 

the probability that word 𝑤𝑖−1 will precede 𝑤𝑖. The formula used to 

calculate it differs only minimally from the one used to calculate TP-D 

(Kapatsinski 2004): 

 

10 In COCA, the actual frequency of peanut butter is 2893 out of 5064 

occurrences of peanut, thus the conditional probability is approx. 0.57  
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𝑝(𝑤𝑖−1|𝑤𝑖) =  

𝑐(𝑤𝑖−1𝑤𝑖)

𝑐(𝑤𝑖)
 

( 28 ) 

Given the close similarity of the definitions between TP-D and 

TP-B, they share their weakness in expressing the word association 

unidirectionally. As a consequence, while TP-B can express well that 

York is often preceded by New, it says nothing about the likelihood of 

York to appear after New. To mitigate this issue, both of these two 

measures tend to be used, unless there is a theoretical motivation to 

focus on one direction only. 

5.2.3 Mutual information score 

The mutual information score (or MI score) is an attempt to rectify the 

unidirectional limitations of TP-B and TP-D statistically. It assesses the 

association strength of the two words by comparing the observed 

frequency of the bigram with its expected frequency. The resulting 

score is then an expression of how much more likely are the words to 

occur together in comparison to what would be expected if the words 

in the corpus were distributed randomly, maintaining the token 

frequencies observed in the corpus. 

Several distinct equations are used to calculate the MI score. 

Some of them are capable of calculating the MI score for words 

(possibly) separated by intervening material (e.g. Davies 2018). The 

current application uses the formula adapted by Schneider (2014) from 

the one proposed by Wiechmann (2008) and based on Church & Hanks 

(1990). It does not contain any window size parameter as it is used 
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exclusively to measure the association strength between two direct 

neighbors. It calculates the MI score as the log-transformed ratio of the 

observed and expected frequencies: 

 
𝑀𝐼 = log

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑
 

( 29 ) 

To calculate the expected bigram frequency, the product of the 

observed word frequencies of the individual elements is divided by the 

overall word count (N) of the corpus. The formula used for calculation 

is thus the following one: 

 

𝑀𝐼 =  log(
𝑐(𝑤𝑖−1; 𝑤𝑖) 

𝑐(𝑤𝑖−1) × 𝑐(𝑤𝑖)
𝑁

) 

( 30 ) 

after simplifying the fraction:  

 
𝑀𝐼 = log (

𝑐(𝑤𝑖−1; 𝑤𝑖)

𝑐(𝑤𝑖−1) × 𝑐(𝑤𝑖)
𝑁) 

 

( 31 ) 

Given how the MI score is calculated it should favor co-occurring 

words and penalize words that co-occur less than expected. The highest 

score of log
𝑁

𝑐(𝑤𝑖−1;𝑤𝑖)
 will be reached by items which co-occur every 

time they appear in the corpus. This also points to the pitfall of the 

measurement: two co-occurring hapax legomena will have 

unrealistically inflated scores. The developers of the measure were 

aware of the fact that “the association ratio becomes unstable when the 
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counts are very small” (Church & Hanks 1990: 24) and did not use it 

for bigrams of frequency lower or equal to 5. This practice was not 

followed in the present study as the CART algorithm should be capable 

of finding the optimal threshold of bigram frequency at which the MI 

score becomes an unreliable predictor – if it is used as a predictor at all. 

5.2.4 Lexical gravity score 

One of the main omissions in the make-up of TP-D, TP-B or MI score 

is the fact that it does not recognize the dependence between the co-

occurrence of forms and the syntax of a language. In other words, all 

the previously presented measures assume that a given word (string) 

can occur after/before any other word or even itself. This is, however, 

not the case in human languages. There are strong preferences for the 

order in which words appear and strong limitations as to which words 

can appear together. Thus, for example, even though the word of is one 

of the most frequent words in the English language, it virtually never 

appears after another of the most frequent words, the. In order to capture 

this information in the measure in some way, the lexical gravity score 

(G) was suggested (Daudaravičius & Petrauskaitė 2004), taking into 

account the count 𝑐𝑡𝑦𝑝𝑒(𝑤𝑖−1) of possible continuations after a given 

word and the count 𝑐′𝑡𝑦𝑝𝑒(𝑤𝑖) of types observed to precede 𝑤𝑖. Due to 

this fact, G may and usually will not correlate with the MI score of a 

bigram, even though Schneider (2014) suggests that it correlates 

strongly with log-transformed bigram frequency. It is calculated as 

follows: 
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𝐺 = log (

𝑐(𝑤𝑖−1𝑤𝑖) × 𝑐𝑡𝑦𝑝𝑒(𝑤𝑖−1)

𝑐(𝑤𝑖−1)
)

+ log(
𝑐(𝑤𝑖−1𝑤𝑖) × 𝑐′𝑡𝑦𝑝𝑒(𝑤𝑖)

𝑐(𝑤𝑖)
) 

( 32 ) 

Given the formula, G tends to be high for bigrams which consist 

of words that have many possible continuations, yet co-occur more than 

would be expected by their sheer numbers. 

5.2.5 Classification and regression trees 

For the prediction of disfluency occurrence, the classification and 

regression tree (CART, commonly referred to as decision trees) 

algorithm was used (Breiman et al. 1984). This algorithm’s main 

strength lies in its ability to divide the data into multiple decision paths, 

where every path may employ different predictors or different 

thresholds. This allows for example the non-discriminative inclusion of 

the MI score: in most other algorithms, a top-down decision is needed 

to select the conditions under which a predictor becomes unreliable. 

Given the mode of operation of CART, the algorithm is able to discover 

these conditions on its own and only apply the predictor if it actually 

explains the trends in the data. The following paragraphs will sketch the 

CART algorithm as used in the present thesis. 

It is a recursive algorithm operating by repeatedly splitting the 

data into two groups (branches) at a time. For this purpose, the data 

consisting of training vectors 𝑥𝑖 ∈ ℝ
𝑛, where 𝑖 = 1… 𝑙, and a label 
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vector 𝑦 ∈ ℝ𝑙 is split at each node 𝑚 according to the splitting criterion 

𝜃𝑚 = (𝑗, 𝑡𝑚). This splitting criterion consists of the feature 𝑗 and a 

threshold 𝑡𝑚 and is determined through the following procedure: for the 

data 𝑄 at a given node 𝑚, split the data into two groups 𝑄𝑙𝑒𝑓𝑡 and 𝑄𝑟𝑖𝑔ℎ𝑡 

according to each candidate parameter 𝜃. Thus, 

 𝑄𝑙𝑒𝑓𝑡(𝜃) = (𝑥, 𝑦)|𝑥𝑗 ≤ 𝑡𝑚 

𝑄𝑟𝑖𝑔ℎ𝑡(𝜃) = 𝑄 ∖ 𝑄𝑙𝑒𝑓𝑡(𝜃) 

( 33 ) 

Afterwards, the impurity 𝐺(𝑄, 𝜃) is calculated. This is the weighted 

average of the impurities of 𝑄𝑙𝑒𝑓𝑡(𝜃) and 𝑄𝑟𝑖𝑔ℎ𝑡(𝜃) as determined by a 

function 𝐻() and weighted by the proportion of 𝑄 contained in the 

given group: 

 𝐺(𝑄, 𝜃) =
𝑛𝑙𝑒𝑓𝑡

𝑁𝑚
𝐻 (𝑄𝑙𝑒𝑓𝑡(𝜃))

+
𝑛𝑟𝑖𝑔ℎ𝑡

𝑁𝑚
𝐻(𝑄𝑟𝑖𝑔ℎ𝑡(𝜃)) 

( 34 ) 

Finally, 𝜃𝑚 is chosen such that 

 𝜃𝑚 = argmin
𝜃

𝐺(𝑄, 𝜃) ( 35 ) 

Afterwards, the algorithm proceeds recursively through 𝑄𝑙𝑒𝑓𝑡(𝜃𝑚) and 

𝑄𝑟𝑖𝑔ℎ𝑡(𝜃𝑚), until a stopping criterion is met (Pedregosa et al. 2019). 
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The impurity score of a group expresses how varied are the 

values of the dependent variable in that group. A group containing only 

examples of one of the categories would be considered absolutely pure. 

Otherwise, the impurity is calculated through a function determined by 

the objective (classification or regression). In the current study, the 

objective is classification and the concrete measure of impurity was the 

Gini measure. 

This is defined as follows: for each outcome 𝑘 from a range of 

values 0,1…𝐾 − 1, calculate the ratio of cases with label 𝑘 at node 𝑚, 

representing a region 𝑅𝑚 (subset of the original data) with 

𝑁𝑚observations, according to this equation: 

 
𝑝𝑚𝑘 =

1

𝑁𝑚
∑ 𝐼(𝑦𝑖 = 𝑘)

𝑥𝑖𝜖𝑅𝑚

 
( 36 ) 

Then, the Gini impurity equals: 

 

𝐻(𝑄𝑚) = ∑ 𝑝𝑚𝑘(1 − 𝑝𝑚𝑘)

𝐾−1

𝑘=0

 

( 37 ) 

Thus, it is minimal in those cases, where one of the proportions equals 

to 1 (the others then inevitably equal 0), i.e. where all cases in the region 

𝑅𝑚 have the same label 𝑘. 

Given that the splitting criterion is newly calculated at each node, 

both the feature and the threshold will differ, allowing the algorithm to 

exploit those predictors which are most powerful in a given scenario. 
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As a recursive algorithm, it requires some mechanism to decide when 

the splitting should be stopped, otherwise it will proceed until all of the 

groups contain only one example. To prevent overfitting, the algorithm 

may be forced to stop after a certain number of splits, or when the 

branches only contain a given number of examples or when no split 

would improve the purity of the individual branches substantially. 

In addition to its ability to discriminate between helpful 

predictors in varied decision paths, the CART algorithm is also 

particularly suited to the problem explored here since it can handle 

unbalanced predictors and complex interactions as noted by 

Tagliamonte & Baayen (2012) for random forests, an extension of the 

algorithm. Additionally, it can be used even when more than one output 

is to be predicted. Such an ability was a prerequisite of the current study: 

unlike in Adell et al. (2007), the classifier was not asked to answer a 

yes-no question (“Is there a disfluency?”) but a wh-question (“Which 

type of disfluency, if any, should occur before this word?”). 

5.2.6 Multi-layer perceptron 

The second algorithm employed for disfluency prediction was the 

multi-layer perceptron (MLP). It is a machine learning approach that is 

inspired by the makeup of neural networks found in the nature. It 

consists of units – artificial neurons – that process the input signal and 

pass it forward towards the output. Unlike in logistic regression, it does 

not only combine the individual inputs after multiplying them by their 

weights, but allows for interactions as well. This is achieved by adding 
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one or more hidden layers of neurons. These intermediate layers 

between the model input and output receive their input from multiple 

neurons, transform it through some activation function and pass it 

further towards the output. The transformation depends on the 

activation function chosen and a weight matrix, giving weight to each 

connection in the model. The training of the perceptron thus consists of 

searching for a matrix of optimal weights by minimizing the result of a 

loss function comparing the predicted output to the real one. This is 

achieved by the backpropagation of error (Rumelhart et al. 1986) – the 

errors are calculated at the output and then propagate backwards 

through the model. At each step an update of the weights is performed, 

modified by the learning rate of the model in order to avoid large 

changes in the parameters. The learning rate could be fixed as is the 

case in the traditional stochastic gradient descent: in such a case, its 

choice can determine both the quality of the model and the speed with 

which it is fitted (LeCun et al. 1998). In order to improve the speed with 

which the model converges to the optimal weights, multiple methods 

have been devised over the past years (Kingma & Ba 2015; Schaul et 

al. 2013; Sutskever et al. 2013), expanding the original approach.  

Figure 11 represents a simple example of an MLP neural network 

illustrating its operation. Each of the neurons in the input layer is 

connected to the neurons in the hidden layer and each of those is 

connected to both of the output neurons. Thus, interactions in the form 

any-to-any can be taken into account. This architecture allows the MLP 

model to approximate any smooth measurable function between the 
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input and output vectors, provided there is a sufficient number of hidden 

layers and neurons (Hornik et al. 1989). 

 

Figure 11: A simple multilayer-perceptron with three input 

neurons, one hidden layer of four neurons and two output 

neurons. The input is passed from the input neurons to each of 

the hidden neurons which transform it and pass it further to the 

output. 

The operation of the neural network is as follows: in the input 

layer 𝑗 = 1, the number of cells corresponds to the number of features 

in the training vector 𝑥 (with one additional feature equal to 1 if the bias 

unit is used). Each of the cells takes the value of feature 𝑥𝑖 as its 

activation. Then, for all layers of the network, each of the units 𝑖 =

1,2,… |𝑗| at layer 𝑗 is connected to each unit 𝑖 =  1,2, … |𝑗 + 1| in the 

following layer 𝑗 + 1. The activation of each unit 𝑎𝑖
(𝑗+1)

 is then 

calculated according to Θ(𝑗), a matrix of parameters defining the 

Output layer 

Hidden layer 

Input layer 
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activation function 𝑔(z) mapping the inputs from layer 𝑗 to layer 𝑗 + 1. 

This procedure is repeated until the output layer is reached. At the 

output layer, the activation of the output neuron corresponds to the 

prediction made by the multilayer perceptron. If multiple outputs are 

needed (i.e. for multiclass classification), the output layer will contain 

a corresponding number of neurons. Importantly, while the activation 

spreads forward through the network, the network’s parameters are 

updated backwards, through the backpropagation of error. This means, 

that once the prediction on the basis of the training vector 𝑥𝑖 is made, it 

is compared to the real value 𝑦𝑖 in order to calculate the cost 𝐶(Θ) given 

the parameters Θ and a cost function 𝐶. Then, this cost is minimized by 

calculating the necessary changes in Θ. To do that, first the error of the 

output layer is calculated: 

 
𝛿𝑖
𝐽
=
∂𝐶

∂𝑎𝑖
𝐽 𝑔′(𝑧𝑖

𝐽
) 

( 38 ) 

expressing how fast the cost changes as a function of the output 

neuron’s activation (the partial derivative of the cost function) and how 

fast the activation function 𝑔 changes given the input from the previous 

layer and its parameters. This is used to calculate the “error” 𝛿𝑗 for each 

layer 𝑗 = 𝐽 − 1, 𝐽 − 2…2 on the basis of 𝛿𝑗+1 as: 

 𝛿𝑗 = ((Θ𝑗)𝑇𝛿𝑗+1) ⊙ 𝑔′(𝑧𝑗) ( 39 ) 
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Finally, the 𝛿𝑗is used to calculate the partial derivative of the cost 

function. This is done for each weight 𝑤𝑖𝑘
𝑗

 connecting unit k in layer j 

with unit i in layer j+1: 

 ∂𝐶

∂𝑤𝑖𝑘
𝑗
= 𝑎𝑘

𝑗−1
𝛿𝑖
𝑗
 

( 40 ) 

The obtained partial derivatives are then used to update the 

weights (usually, the updates are averaged over a set of training 

examples in order to reduce the influence of noise). Importantly, the 

algorithm uses a parameter 𝛼 (the learning rate) to decrease the size of 

the change in weights. This ascertains that the model will converge to a 

minimum of the cost function (though not necessarily a global one, the 

algorithm may converge to a local minimum as the cost function may 

not be convex). Should the learning rate be too high, the model may 

diverge; thus, its value is usually 𝛼 < 0.1. 

 Importantly, in the process of fitting a neural network model, 

weights are initialized randomly from a distribution. This procedure is 

required in order to break the symmetry of the network – if all weights 

were initialized e.g. as 0, the neurons in individual layers would be 

identical. By breaking the symmetry, each neuron fits a slightly 

different function.  

Similarly to the trees produced by the CART algorithm, multi-

layer perceptrons are prone to overfit, i.e. to yield weights that can 

recreate the training data well, but generalize poorly to unseen data. In 
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order to avoid such scenarios, several approaches may be used – 

regularization approaches (preventing any of the weights to be too 

high), limiting the number of iterations of the backpropagation 

algorithm or early stopping. Early stopping approaches are usually 

implemented by reserving a portion of the data as a validation set and 

verifying the model’s performance on this set regularly without using it 

for the model’s training. Once the model’s performance on the held-out 

portion of the data stops improving, the training is interrupted, even if 

the performance on the training dataset continues improving. 

Finally, in comparison to the classification and regression trees, 

neural networks do not lend themselves equally well to decision path 

analysis, as their decision logic is not equally transparent. 

5.2.7 Data (MICASE) 

In order to verify the results obtained in the JSCC dataset (presented in 

Chapter 4), it was replaced by a different data source: the Michigan 

Corpus of Academic Spoken English (MICASE, Simpson-Vlach et al. 

2002). which was also used to collect the probabilistic/frequency-based 

measures defined in 5.1 and 5.2.1-5.2.4 apart from those contained in 

the combined measure of surprisal.  

The MICASE is a corpus collected at the University of Michigan 

at Ann Arbor between 1997 and 2001. It contains 1.8 million words of 

transcribed speech, corresponding to more than 190 hours of recorded 

speech in 152 files. The texts cover a range of situations, from lectures, 

over classroom discussions to one-on-one advising sessions. The 
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recordings were made in a university environment. Thus, they represent 

a rather specific register; still, the range of situations covered is broader 

than in other comparably-sized spoken corpora. 

Importantly, not every speaker in the corpus is a native speaker. 

However, since the speaker ID was not included in the predictors, the 

current study bases on the assumption that non-native’s placement of 

disfluencies is largely identical to the native use. This assumption may 

not reflect the reality, as not even all native speakers behave identically 

with respect to disfluency placement: Shriberg (1994) distinguishes two 

main types: deleters and repeaters; Fruehwald (2016) argues that 

different types of filled pauses operate as a sociolinguistic variable. 

However, two reasons drove the decision not to include the speaker 

variable. First, there are only approximately 7.5% of non-native 

speakers in the corpus. Thus, they should not skew the distribution 

substantially. More importantly, though, there are 1571 speakers in the 

MICASE overall. As a consequence, each speaker would on average be 

represented by approx. 1200 words, containing roughly 30 disfluencies 

(based on the frequency of disfluencies, see Chapter 5.3.1). Thus, 

should the model fit individual intercepts for each speaker, it would 

often base the estimate on extremely sparse data, leading to poor model. 

On the other hand, a model averaging the trend over 1500 speakers is 

less likely to be influenced by individual idiosyncrasies and should 

generalize better. 
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5.2.8 Method 

To collect the individual statistics and train the model, a five-step 

procedure was adopted: 

1. Data preprocessing 

2. Measure collection 

3. Alignment and dataset splitting 

4. Classifier training 

5. Classifier validation 

The following pages will describe each step in detail. 

5.2.8.1 Data preprocessing 

Before any statistics could be collected, the data had to be preprocessed. 

The preprocessing removed the metadata contained in the files, 

reformatted the text (e.g. by splitting that’s into that ‘s to match the 

tokenization used by the parser and n-gram model) and identified and 

removed the disfluencies. In such a way, the scores were calculated 

from a less disfluent input, bringing the procedure conceptually closer 

to the Noisy Channel approach to disfluency prediction. Additionally, 

assigning the scores to a fluent input guaranteed that there would be no 

information leak about the location of disfluencies through the scores 

themselves, e.g. through a specific value of one of the scores after a 

disfluency. 

The disfluency removal was a fairly simple script consisting of 

three separate functions, one to identify/remove pauses, one removing 
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uhs and ums, and one for repetitions. Pauses were identified on the basis 

of the transcripts; the various pause lengths were conflated. Ums and 

uhs were searched for by a regular expression that collected their 

occurrences as individual strings, distinguishing between uh uh (which 

was considered a case of two uhs, separated by a short break) and uhuh 

(which was not considered a case of disfluency at all). The rare cases of 

uhm were treated as cases of um. 

Repetitions were identified by a function searching for literal 

repetitions of one-word or two-word strings. If a repetition was found, 

it was repaired by deleting all but the last item. Thus, single, double and 

multiple repetitions (single and double repetition are shown in Example 

6 were all handled as examples the category “repetition.” 

( 6 ) …the the man… 

…the the the house… 

 

Partial string repetitions were not collected, as there would need 

to be a mechanism deciding whether the unfinished string is a case of a 

repetition, repair or another word which only happens to start similarly 

to the preceding/following one. Such a decision is not always clear even 

with manual processing and automated decision making would likely 

introduce a substantial number of errors. Consider Example 7: even for 

a human scorer, it is impossible to tell with certainty, whether p- is the 

beginning of a repetition or an unfinished realization of e.g. particle that 

was repaired. 
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( 7 ) …high energy, p- physics prize for nineteen 

ninety-three by the European Physical 

Society… 

 

  MICASE: 

col485mx069 

Lastly, most files also contained several cases of mixed 

disfluencies, e.g. repetitions separated by uh or with a pause inserted 

between them. As such cases were rare in the MICASE, they were 

handled separately in the data preprocessing, but omitted from further 

analysis, as there would not be enough data for training and testing. In 

other corpora, however, their counts may be higher, allowing their 

inclusion in the training: Osborne (2011) reports that they constitute a 

large portion of longer disfluencies. 

5.2.8.2 Statistic measures 

The statistic measures described before were all collected from the 

preprocessed data, i.e. the model did not know whether a repetition of 

a certain word occurred at all, or how often it was preceded by uh. This 

is a substantially different approach from Adell et al. (2007) who used 

their concept of candidates, leveraging the fact that most disfluencies 

occur after a limited set of words in their corpus. The present classifier 

did not have this information and had to rely on frequential/probabilistic 

information only. This, on the one hand, is closer to the Noisy Channel 

view of disfluency placement, where disfluencies are added into an 

originally fluent output. On the other hand, it is also more 

psycholinguistically realistic, as it is unlikely that humans learn to place 
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disfluencies after/before certain words. Rather, they may place them on 

the basis of contextual probability, as suggested in this work, smoothing 

the transmission and providing the listeners with an input that is easier 

to process. Furthermore, this view is compatible with the view of 

disfluencies as symptoms of errors in retrieval: speakers should be more 

likely to retrieve an incorrect item if they are attempting to retrieve a 

word that is unlikely or uncommon. On the other hand, enforcing the 

deterministic concept of candidates would mean that most words should 

be always retrieved correctly; errors would be limited to a small set of 

items only. This assumption is far from the psycholinguistic reality. 

Most of the individual measures (bigram frequency, TP-D, TP-

B, MI, G) were – following Schneider's (2014) methodology – 

extracted directly from the MICASE. Thus, they were more 

representative of the in-domain probabilities than the combined 

measure of surprisal which was based on overall probabilities. On the 

negative side, this meant that data sparsity was more of an issue given 

the smaller size of the training corpus. Because they were calculated 

from a pre-processed version, these measures did not require the 

splitting of the corpus into a training/validation/testing dataset: no 

information about the placement of disfluencies or their probability of 

occurrence could be leaked into the finished model. 

The combined measure of surprisal was calculated in accordance 

with Chapter 2.3, i.e. trained using data from COCA and MASC and 

also applied to the pre-processed data (i.e. with disfluencies removed). 

The data associated with each word contained not only the final score, 
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but also all the individual components (trigram probability, syntactic 

surprisal, semantic modifier). In addition, following the observation 

made in Chapter 4, the difference in the surprisal value of two 

neighboring words was calculated as: 

 𝐷 = 𝐼𝑤 − 𝐼𝑤+1 ( 41 ) 

Items at the beginning of a turn were marked as sentence-initial. 

Additionally, the items following a dot in the transcript were labeled 

sentence-initial, too. This decision requires brief explanation since dots 

in MICASE denote short breaks (Simpson-Vlach et al. 2003). However, 

they are often placed at locations that would be sentence boundaries if 

the transcript was transformed into a written text, as shown in Example 

8. For disfluency prediction, these items were viewed as fluent unless 

preceded by another disfluency. 

( 8 ) no i didn't. i've had one year of Honors 

Chemistry 

and then i i would, then i would talk about the 

two-eight_ two-ninety-five. if you want more 

discussion about two-ninety-five, then tomorrow 

morning between nine and eleven 

so that, works you know really pretty well for 

some people. and then you said you took the uh 

English too?   

  MICASE: adv700ju023 

5.2.8.3 Alignment 

After the files were processed, a semi-automated alignment was 

performed, aligning the pre-processed files with the raw ones, noting 
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whether a disfluency preceded a given word or not. In the case of 

repetitions, the disfluency was marked on the first word that was not 

repeated, i.e. in the case shown in Example 9 the word would was 

marked as preceded by a disfluency. 

( 9 ) and then i i would 

  MICASE: adv700ju023 

If a given word was preceded by a chain of several disfluencies, the 

automatic alignment was suspended to allow for manual coding, unless 

the chain consisted simply of several repetitions of the disfluent word. 

After the alignment, the disfluency mark-up was conflated 

(i.e. one-word repetitions and two-word repetitions were moved to a 

single category “repetition”), the data was cleaned (removing the 

complex disfluency interactions) and separated into three datasets: 70% 

training data, 15% validation, 15% test data. The larger proportion of 

validation/test data in comparison to the more conventional 80:10:10 

was chosen so that these datasets contain a sufficient number of 

disfluencies to be predicted thus increasing the representativeness of the 

results. 

5.2.8.4 Classifier training and validation 

The classification and regression tree algorithm was trained using 

its scikit-learn implementation (Pedregosa et al. 2011) with the Gini 

measure of impurity. The hyperparameters were optimized using the 
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GridSearch() function according to their performance over the 

development set as measured by a macro-averaged 𝐹1 score.11 The 

GridSearch() function implements exhaustive hyperparameter 

optimization, trying out all possible combinations of the optimized 

hyperparameters to find the best performing one. Such an approach is 

comparably computationally expensive, allowing only a limited range 

of parameters to be optimized. In this thesis, two parameters were 

optimized using GridSearch(): the minimum leaf size (following values 

were tested: 2,4,6,8,10,12,14) and maximum depth (the values tested 

were 3,6,9,12).  

After the classifier was fitted using its performance on the 

validation set as an estimate of its generalizability, its actual predictive 

power was tested on the test set. As it did not have access to this data 

before in the training/validation phase, the performance measured there 

could be considered a good reflection of its performance over unseen 

data. 

 

11 Throughout this thesis, the micro-averaged 𝐹1 is calculated by counting the 

totals of true positives, false negatives and false positives and using those to 

calculate the overall precision and recall. Macro-averaged 𝐹1, on the other 

hand, is obtained by calculating the 𝐹1 score from the average by-class 

precision and average by-class recall. 
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The multi-layer perceptron was also implemented using the 

scikit-learn package, with categorical cross-entropy as its cost function. 

A number of parameters was optimized and the best model was selected 

by the macro-averaged 𝐹1 score. Table 7 presents the most important 

parameters of the setup. 

Parameter Values 

Hidden layer 

configurations 

(10,6,3), (10,8,6,4), (10,4), (10,2) 

Alpha (𝛼) 0.01, 0.001, 0.0001, 0.00001, 0.000001 

Maximum iterations 5000 

Early stopping 

tolerance 

0.001, 0.0001, 0.00001, 0.000001 

Table 7: Non-default parameters used in the training of the 

MLP classifier. These parameters include the number of 

neurons in each hidden layer of the model (parentheses 

surround individual models tested), the learning rate 𝜶 

defining the step size of each weight update, the maximum 

number of iterations of the backpropagation algorithm and 

the minimum improvement in the loss over the validation 

set needed to continue the training. 

5.2.8.5 Baseline estimation 

To assess whether the used predictors give the model an advantage in 

predicting disfluency occurrence and disfluency type, a baseline was 

estimated. This baseline corresponded to a model that would not gain 

any advantage from the predictors, though it would observe the 

frequency distribution of the individual disfluency types as well as the 
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frequency of disfluency occurrence in the fluent text. Thus, if the model 

trained on the predictors would not outperform this baseline, it would 

suggest that disfluencies are independent of the predictors used.

5.3 Results 

5.3.1 Data statistics 

In the whole MICASE, approximately 2.8% of words were preceded by 

the disfluency types that were to be predicted. Among the disfluency 

types, repetitions, ums and uhs are represented more or less evenly, 

pauses are substantially less common. After cleaning the data of rows 

with missing values, the number of disfluencies shown in Table 8 

remained for the classifier training, validation and testing. 

Disfluency type Frequency 

Repetition (1 or more words fully repeated) 13481 

Uh 11797 

Um 13815 

Pause 1899 

Table 8: Disfluency counts in MICASE by type. 

Because of the low frequency of the phenomenon to predict, 

oversampling of the disfluencies was performed in order to prevent the 

algorithms from defaulting to classifying everything as belonging to the 

dominant class. Such a behavior may occur in spite of a model’s 

robustness to unbalanced samples. If the proportion of individual 

categories is too skewed towards one class, the classifier may overuse 
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the dominant category as this will result in a better performance overall 

as measured e.g. by the misclassification error or the micro-averaged 

𝐹1. 

As the current study also used a macro-averaged 𝐹1 as its 

performance measure, it was observed that the models indeed tended to 

revert to classifying all cases as fluent. As a corrective measure, the 

minority categories were oversampled by repetition – i.e. their 

examples were included repeatedly in the dataset. Since the 

probabilistic statistics describing each item were noted independently 

of the other items and the actual order of the items was not used for the 

model training at this stage, the oversampling function also involved 

shuffling of the training examples in order to prevent the MLP from 

being influenced by the occurrence of an oversampled case in a batch. 

The most frequent bigrams in the MICASE corpus are 

summarized in Table 9. They can be divided into three groups: 

contractions (it’s, that’s, do n’t), syntactically bound units (of the) and 

potentially lexified multiword expressions (you know). Neither of these 

can be viewed as belonging exclusively to the genre represented in the 

corpus and only one is an example of a speech-specific expression. 

Contractions may appear in writing, too – even in formal styles, though 

they are often avoided there (Hyland & Swales 1999). On the other 

hand, the expression you know in the sense of a semantically largely 

bleached particle is limited to spoken communication. All in all, the five 

most common bigrams largely fulfil the expectations for any corpus of 

speech. 



5.3 Results 141 

 

 

Bigram Frequency 

It 's 12898 

That 's 8273 

Of the 7559 

You know 6854 

Do n't 6602 

Table 9: Most frequent bigrams in MICASE. 

At the same time however, large majority (254553 out of 

371311) of the bigrams in the MICASE only appear a single time in the 

corpus, which contains 10717 hapax legomena (out of 30337 word 

types observed). Given that, it does not come as a surprise that many 

bigrams (11620) have a forward probability score of 1, usually due to 

the fact that their first element is a hapax. The examples include 

expected pairs such as Woody Allen or umbilical cord, but also clear 

examples of items bound together only due to the limited size of the 

corpus, such as loudness sharpness or multidimensional answer. 

Similarly, there are 12051 bigrams that have the backward 

transitional probability of 1. These, too, include logical pairs, such as 

necrotizing myotis or in memoriam, and random combinations brought 

by the structure of the corpus, e.g. have benches or general riskiness. 

The MI score seems to be more robust to the influence of the 

corpus composition. Nevertheless, the five highest-ranking pairs (Table 

10) do not necessarily seem like logical collocations. Moreover, the 

bigram with the highest score was likely a partial repetition and not a 
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true bigram. Nevertheless, the mean MI score is 3.001 (n = 371311, SD 

= 2.792) with majority (89.35%) of the scores being larger than zero. 

This confirms that in spite of the noise in the highest-ranking bigrams, 

the data is not randomly distributed. 

Bigram MI Score 

Lau Laurel 14.43 

Ethan Ebner 13.74 

Greedily expecting 13.33 

Parodied juxtaposed 13.04 

Plea bargaining 12.92 

Table 10: Bigrams with the highest MI score in MICASE. 

 Despite being designed in order to eliminate the influence of 

syntax on the association metric, the G-score (mean = -1.488, SD = 

1.539) did not seem to be capable of this in the given dataset. All five 

of the top scoring items, listed in Table 11, are clearly syntactically 

bound to each other. On the other hand, the G-score seems to perform 

better than the other measures in terms of assigning the highest scores 

to actually commonly co-occurring items rather than being confused by 

the hapaxes. 
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 In terms of surprisal measured by the methodology used 

throughout this thesis, the average value of information transmitted by 

a word was 2.732 (SD = 1.382, median = 2.477, not normally 

distributed). 

The baseline was established at 𝐹1 = 2.8% for disfluency 

occurrence prediction, macro-averaged 𝐹1 = 20%, (micro-averaged 

𝐹1 = 94.7%) for combined disfluency occurrence and type prediction 

and macro-averaged 𝐹1 = 25%, (micro-averaged 𝐹1 = 30.7%) for the 

disfluency type selection only. In the disfluency selection task, the 

baseline 𝐹1 scores for the individual disfluency types are: 

- Pauses: 4.6% 

- Repetition: 32.9% 

- Uh: 28.8% 

- Um: 33.7% 

Bigram G-Score 

Of the 13.15 

This is 12.63 

It ‘s 12.46 

In the 12.44 

That ‘s 12.1 

Table 11: Bigrams with the highest G score in MICASE. 
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5.3.2 Disfluency statistics 

The statistics observed in Chapter 5.3.1 were evaluated in order to 

explore the patterning of the individual predictors in the vicinity of the 

disfluencies and to verify whether the patterns observed in Chapter 4 

hold true for the larger and more varied dataset as well.  

Figure 12 shows that words which were preceded by a disfluency 

tended to have higher surprisal estimates than words which were not. 

Thus, as observed by the previous studies reviewed in Chapter 3.1, 

disfluencies tend to occur before less predictable items. Fluent text, on 

the other hand, is made of more predictable units. The observed 

difference in the average predictability of the fluent items as compared 

to those preceded by disfluencies is unlikely to be caused by chance 

(Wilcoxon-Mann-Whitney test of fluent vs. disfluent items with a one-

sided hypothesis returned W = 6.68×1010, p < 0.001). 
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Figure 12: Surprisal of word 𝒘𝒊 as related to the type of 

disfluency inserted before it. Surprisal measured after 

disfluencies had been removed. 

Similarly, the difference in the local information transmission 

rate as linked to both various disfluency types and the contrast of fluent 

and disfluent speech persisted, as visualized by Figure 13. The mean 

change in the information transmission rate of two neighboring words 

is close to zero (-0.001). Considering only the fluent items, their 

average change in the amount of information transmitted by word 𝑤𝑖 as 

compared to 𝑤𝑖−1 is fairly similar to the overall average (0.015); 

disfluent items, on the other hand, differ substantially.  
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Figure 13: Difference in the surprisal of words 𝒘𝒊−𝟏 and 𝒘𝒊 
(𝒘𝒊−𝟏 −𝒘𝒊) as related to the type of disfluency inserted between 

them. Surprisal measured after disfluencies had been removed. 

Items which were preceded by a disfluency were on average less 

predictable then the items before them, with a mean difference in the 

surprisal estimate of 𝑤𝑖 and 𝑤𝑖−1 being -0.548 nats. Thus, items which 

carry more information (in the information-theoretic sense) in 

comparison to their preceding context are more likely to trigger a 

disfluency. The observed difference is again unlikely to be due to 

sampling noise (Wilcoxon-Mann-Whitney test of fluent vs. disfluent 

with a one-sided hypothesis returned W = 6.3×1010, p < 0.001).  
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This patterning continues across the scores, with the potential 

triggers of disfluency occurrence being less likely in the given 

context.12 When comparing the observations reported here to those 

made within the JSCC corpus, a shared pattern can be identified: in both 

cases, repetitions are less distinct from the fluent speech than filled and 

unfilled pauses. In contrast to this, the magnitude of the difference 

between fluent and disfluent speech is smaller in the MICASE corpus 

when compared to the JSCC.  

Lastly, it should be mentioned that in spite of the fact that fluent 

speech differs from the disfluent one with respect to the various scores 

assessed, there is still a substantial overlap between them. This is in 

agreement with the expectation that probabilistic measures are not 

capable of predicting disfluencies perfectly. However, the small 

difference between the individual disfluency types also raises the 

question whether they are distinct in terms of the measures used. 

5.3.3 Disfluency prediction 

After the statistics were collected and the individual files evaluated, a 

logistic regression model was first fitted in order to estimate the ability 

 

12 This is expectable given the inevitable collinearity of some of the individual 

measures. The correlation coefficients range from -0.02 (closest to zero: 

difference in surprisal 𝐷𝐼𝑤−𝐼𝑤+1 as correlated to TP-D) to 0.66 (strongest 

correlation, surprisal of 𝑤𝑖  as correlating with 𝐷𝐼𝑤−𝐼𝑤+1). 
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of the predictors to predict disfluencies as such and distinguish them 

from fluent speech. To fit the model, the numeric predictors were 

centered and the model was fitted and evaluated on the whole dataset, 

rather than on the training-validation-test triplet, as the purpose of this 

model was only a preliminary evaluation. The fitted model (an 

overview of the full list of coefficients and associated statistics is in the 

Appendix A.3) performed better than null model (assigning all cases to 

the majority class) in disfluency prediction (deviance decrease of 23184 

with a decrease in degrees of freedom of 50, the associated p-value 

being below 0.001). Still, its Nagelkerke’s R2 was 0.09, indicating that 

the relationship is only limited and that the predictors used should not 

be expected to provide a complete explanation of the use of 

disfluencies, certainly not under the assumption of linearity. 

Additionally, given that some of the predictors were identified as 

collinear, the individual coefficients may not always be reliable. 

Especially problematic is the collinearity of syntactic surprisal and the 

overall surprisal, which is inevitable given that these two measures are 

correlated by definition; second potentially problematic correlation 

may be that of the g-score and n-gram surprisal (r = 0.55). However, in 

spite of these issues, it is obvious that the position of an item is very 

likely to play a role in disfluency prediction: sentence-initial items were 

more often disfluent, with a coefficient of 1.786 (std. error 0.04, 

p < 0.001). This corresponds to 𝛥𝑜𝑑𝑑𝑠 = 5.96, i.e. sentence-initial 

items are 6 times more likely to be disfluent than sentence-medial or 

final elements. 
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Assessing the importance of the individual variables using the 

caret package for R (Kuhn 2017) additionally identified the MI-score 

(coeff. -.37, std. error 0.006, p < 0.001) as an important predictor. The 

negative coefficient for the MI-score indicates that tightly bound words 

are less likely to be separated by a disfluency. However, the coefficient 

of the G-score points in the opposite direction. This suggests that at least 

a part of the effect may be traced to the syntactic rules increasing the 

rate of co-occurrence of these words (though this coefficient might be 

influenced by the identified collinearity). The MI-score additionally 

interacts with forward transitional probability: items with high MI-

score and high forward probability are substantially less likely to be 

disfluent (coeff. -5.45, std. error 0.32, p < 0.001) than their highly 

unrelated and unlikely counterparts. The coefficient of surprisal is 

significantly different from zero, too (coeff. 0.41, std. error 0.04, 

p < 0.001), suggesting that highly unlikely items should be disfluent. 

However, due to the collinearity mentioned before, this coefficient is 

not entirely reliable. Finally, the magnitude of the difference in the 

surprisal between two neighboring items has small influence on the 

disfluency use if other factors are controlled for, thus leaving hypothesis 

2.2 unconfirmed. 

The aforementioned Nagelkerke R2 of the model (0.09) suggests 

that a large portion of the variation between fluent and disfluent 

realizations is not to be explained by the predictors used or their first-

order interactions. The following chapters will thus report the 

performance of models which are capable of handling more complex 
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higher-order interactions at the cost of being less readily interpretable 

in comparison to the logistic regression. 

The performance of the CART classifier was better than the 

baseline. The best iteration of the CART algorithm (which consisted of 

7 levels and 127 binary decision nodes) achieved a macro-averaged 𝐹1 

= 26.13%, at the cost of the micro-averaged 𝐹1 = 91.60%). Still, it did 

not match the results of Adell et al. (2007) when jointly predicting the 

disfluency occurrence and disfluency type. Concretely, the CART 

algorithm was able to predict 23.3% of the locations where disfluencies 

occurred. However, only 9.7% of the predicted disfluencies were actual 

cases of a disfluent speech, the rest being false positives. The classifier 

was capable of learning that disfluencies constitute only a relatively 

small proportion of the input (6.5% of the items were predicted to be 

preceded by a disfluency) and identifying some contexts where 

disfluencies are more likely to occur. However, it was not able to 

recognize these contexts of occurrence reliably. It was observed that the 

classifier performed the worst in predicting repetitions, which may be 

caused by their similarity to fluent speech in comparison to other 

disfluency types, as observed in Chapters 4.4.2 and 5.3.2. Even at such 

a small tree depth, some signs of overfitting were found, with some 

nodes containing few examples (though still sufficient to produce the 

minimum leaf size of 4). Concretely, 43 (34%) of the nodes/leaves of 

the tree contained less than 1% of the data each. These would be 

potential candidates for pruning, which, however, was not supported by 

the scikit-learn implementation at the time of writing. 
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The MLP classifier did not perform substantially better. Rather, 

its performance was similar to that of the CART classifier: it understood 

the rarity of disfluencies in the data, yet did not find an efficient way of 

predicting them on the base of the predictors used. In terms of the 

performance measures used, the best model had a macro-averaged 𝐹1 

of 25.44% and micro-averaged 𝐹1 of 91.1%. Thus, it was slightly better 

than the baseline model, yet it did not outperform the CART classifier. 

Similarly to CART, MLP was capable of recognizing approximately a 

quarter of the locations where a disfluency should occur (25.11% 

exactly). At the same time, it matched the CART’s precision, with 9.6% 

of the predicted disfluency locations matching the actual ones. Table 12 

shows the results. 

To conclude, the two classifiers clearly could recognize some of 

the locations of the individual disfluency types. This is reflected by the 

Model Macro-averaged 𝑭𝟏 Micro-averaged 𝑭𝟏 

CART 26.1% 91.6% 

MLP 25.4% 91.1% 

Performance on individual disfluency types (𝐹1) 

Model Pause Repetition Um Uh 

CART 2.9% 0.2% 9.2% 0.6% 

MLP 2.7% 0.1% 9.3% 0% 

Table 12: Performance of the classifiers in  predicting and 

selecting disfluency types. 
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macro-averaged 𝐹1. Still, repetitions were particularly difficult to 

predict for both of the set-ups: their F1 score remained below 1%. 

The observed performance shows that the occurrence of 

disfluencies can be predicted by purely probabilistic measures only to 

a limited degree. In order to gain a deeper insight into this claim – and 

to explore the assertion that the disfluency type may be predicted by 

these measures, too, the disfluency prediction was split into two tasks, 

as done by Ohta et al. (2008): the prediction per se and the selection of 

the correct disfluency type. In occurrence prediction, the macro-

averaged 𝐹1 score of the best model (CART, see Table 13) was 56.4% 

(F1 of disfluencies 14.6%, overall misclassification rate 7.2%), 

outperforming the baseline, yet still suggesting that disfluencies are 

largely independent of the predictors used. 

Decision trees were also more efficient in disfluency type 

selection (Table 14) and reached a micro-averaged 𝐹1 of 38% (macro-

averaged 𝐹1 = 43%). Thus, the algorithm was capable of predicting the 

type of two out of five disfluencies. The classifier was efficient in 

identifying repetitions (𝐹1 = 56.9%); on the other hand, it was overly 

Model 
Macro-

averaged 𝑭𝟏 

Micro-

averaged 𝑭𝟏 

Disfluency 

𝑭𝟏 

CART 56.4% 92.9% 14.6% 

MLP 55.7% 93% 13.6% 

Table 13: Performance of the classifiers in predicting 

disfluencies. 
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conservative in predicting um. There, it did not outperform the baseline, 

as it only predicted 59 occurrences of um in the sample of 6328 disfluent 

locations instead of the actual 2144 present. 

Unlike Adell et al. (2007), I did not find predicting disfluencies 

by the characteristics of the word preceding the location of a potential 

disfluency more efficient. On the contrary, when tested with the CART 

classifier, the performance of the disfluency occurrence prediction 

decreased from 𝐹1 = 14.6% to 𝐹1 = 4%, the performance of 

disfluency type selection fell below the baseline.

5.4 Post-hoc models 

Evaluating the classifiers brought the representativeness of the statistics 

used for their training into question. Given the structure of the corpus 

they were collected from (MICASE) and considering the large 

proportion of unique bigrams and hapax legomena, it is likely that the 

Model Macro-averaged 𝑭𝟏 Micro-averaged 𝑭𝟏 

CART 43% 38% 

MLP 39.8% 36.1% 

Performance on individual disfluency types (𝐹1) 

Model Pause Repetition Uh Uh 

CART 22.5% 56.9% 42.2% 3.2% 

MLP 20.9% 55.6% 39.5% 14.5% 

Table 14: Performance of the classifiers in selecting 

disfluency types. 



154 5. Study IIa: Predicting disfluencies by context 

statistics collected may contain a large proportion of noise. The limited 

size also defines the resolution to which two items may be distinguished 

– if two items share their frequency in a corpus of 1.5 million words, 

this will not necessarily be so in a larger corpus of e.g. 400 million 

words. 

In order to obtain more representative scores (bigram frequency, 

TP-D, TP-B, MI-score, G-score), their collection was repeated on the 

COCA corpus (Davies 2008-) used for the training of the language 

model from which the surprisal estimates were derived. These newly 

collected statistics were then used within the aforementioned 

framework. 

Additionally, as it has been observed in the disfluency type 

prediction task that the classification trees and multi-layer perceptron 

perform differently with respect to various disfluency types, a 

compositional model was created, mixing the predictions made by each 

of the classifier. This compositional model operated by extracting the 

probabilities assigned by the classifier to each of the predicted 

disfluency types 𝑑 given the characteristics of each word 𝑤𝑖. These 

probabilities were then combined through elementwise multiplication: 

 𝑝̂𝐶𝐴𝑅𝑇(𝑑|𝑤𝑖)  × 𝑝̂𝑀𝐿𝑃(𝑑|𝑤𝑖) ( 42 ) 

Such a mixing favored those cases where both of the classifiers assigned 

high probability, rather than being overly influenced by a high score 

given only by one of the models. The values yielded by such a function 
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are obviously not proper probabilities (and would not be even after 

taking the square root, thus calculating the geometric mean), as they 

may not sum to 1. After the probabilities were mixed, the disfluency 

type with the highest score was selected as the one that should precede 

𝑤𝑖. 

Moreover, the concept of a candidate as used by Adell et al. 

(2007), was implemented. Concretely, the statistics about which forms 

tend to be preceded by disfluencies were collected and 50 items that 

were the most frequent triggers of disfluency use were classified as 

candidates. The classification was done in two distinct ways: first, the 

candidate category was only binary, distinguishing only between items 

that are (or are not) candidates. Second, the candidates were lexified, 

i.e. in addition to the binary definition, the exact lexical item was stored 

for the candidates. All lexical items that did not belong to the candidate 

group were grouped under one label. 

As a last change, the extended context was included into the 

classification task by using a recurrent neural network as a classifier. 

5.4.1 Recurrent neural networks 

Recurrent neural networks (RNNs) are conceptually similar to multi-

layer perceptrons in that they, too, employ a network of cells (artificial 

neurons) to which the input is fed and which process it and pass it 

further toward the output. The crucial advantage of RNNs over MLP is 

that they recognize the fact that the input (in this case linguistic) is not 

a series of independent data points, but rather an event unwrapping in 
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time where an input may depend on the one preceding it. Thus, the 

states of the neurons in the hidden layers are not reset for each input. 

Rather they are used to add some elements from the old input to the new 

one.  

A simple RNN architecture, also called Elman network (Elman 1990), 

is visualized in Figure 14. In such a network, the input at time 𝑡 is 

created by concatenating the actual input vector (e.g. the semantic space 

representation of a word) with the output of the hidden layer at time 𝑡 −

1. Thus, each new input also carries some elements of the previous one. 

The hidden state at time 𝑡 equals: 

 ℎ𝑡 = 𝑔(𝑊ℎ𝑥𝑡 + 𝑈ℎℎ𝑡−1 + 𝑏ℎ) ( 43 ) 

 

Figure 14: Simple RNN architecture.                          

Input Context (𝒕) Output 

Context (𝒕 − 𝟏) 
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where 𝑔 is the activation function, 𝑊ℎ, 𝑏ℎ the bias unit and 𝑈ℎ the 

weight matrices applied to the input 𝑥𝑡 and history ℎ𝑡−1. 

 

Importantly, the Elman network truncates its history to 𝑡 − 1 

only, assuming that full history can be approximated in this way. In this 

respect, it stands in contrast to the fully connected recurrent neural 

network, presented in Figure 15. In the case of the fully connected 

network, the whole previous history is included both in the calculation 

of the output and in the subsequent learning via the backpropagation 

through time algorithm. This algorithm is conceptually similar to the 

 

Figure 15: Fully connected recurrent neural network. 

Output 

Hidden 

Input 



158 5. Study IIa: Predicting disfluencies by context 

standard backpropagation, except the error is propagated backwards not 

only through the layers, but through time as well. Practically, in order 

to limit the computational complexity and speed up the training, the 

context that is provided and backpropagated through is often limited 

even in fully recurrent models.  

The consequences of this are obvious – the influence of items 

outside the limited context is completely removed. Moreover, there is 

an additional less obvious though no less inherent danger in the 

architecture of the recurrent neural networks, the issue of vanishing 

gradients (Pascanu et al. 2013; Bengio et al. 1994). Considering how 

the previous input is included in the model, words further in the history 

are inevitably overpowered by more recent ones. Thus, the RNN is 

often not capable of capturing long-range dependencies, even if these 

are included in the available history. Further advances in the area were 

made in order to remedy this issue, such as the long short-term memory 

(LSTM, Hochreiter & Schmidhuber 1997) network or networks built 

from the gated recurrent units (GRU, Cho et al. 2014b). Still, the default 

RNN has been shown to yield very good results on tasks related to 

computational linguistics (Mikolov et al. 2010), psycholinguistics 

(Frank et al. 2015) or outside the linguistic domain altogether (Pascanu 

et al. 2013).  

The RNN classifier was implemented through the API Keras 

(Chollet et al. 2015) with TensorFlow backend (Abadi et al. 2015). 

Table 15 summarizes the optimized parameters as well as the crucial 

elements of the setup, different from the default Keras setup. 
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5.5 Results of post-hoc tests and discussion

Using the COCA as the corpus from which the individual statistics were 

collected proved beneficial for the performance of the classifier in 

predicting the disfluency type. The CART classifier was more powerful 

in selecting the correct disfluency than the remaining classifiers, though 

the difference is marginal only, as shown by Table 16. The combined 

CART×MLP classifier did not perform better than the CART algorithm 

on its own. 

The prediction of disfluency occurrence per se remained largely 

unchanged with the best performing model reaching a macro-averaged 

𝐹1 of 56.8% (𝐹1 in disfluency prediction equaling to 15%) and an 

Parameter Value(s) 

Optimizer Adam (Kingma & Ba 2015) 

Loss Binary/Categorical cross-entropy 

Layers RNN: 32, 64 

Dense (2/4) 

Max. epochs 5, 10, 15 

Batch size 16, 32, 64, 128, 1024 

Table 15: Parameters used in the set-up of the RNN 

classifier. Where values are separated by slash, the left 

value applies to disfluency occurrence prediction, the right 

one refers to disfluency type selection. Values separated by 

commas are listed options that were tried out. The RNN and 

dense layer were combined, i.e. the output from the RNN 

layer was propagated to the dense layer which determined 

the output. 
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overall accuracy of 93.2%. These scores were achieved by the MLP 

classifier trained using oversampling to prevent it from minimizing the 

cost by classifying all occurrences as fluent, without employing the 

lexical information or information about membership in the candidate 

group. 

Model Macro-averaged 𝑭𝟏 Micro-averaged 𝑭𝟏 

CART 43.1% 48.9% 

MLP 39% 43.5% 

RNN 39.4% 48.5% 

CART×MLP 42.7% 48.8% 

Performance on individual disfluency types (𝑭𝟏) 

Model Pause Repetition Uh Um 

CART 6.6% 61.1% 33% 47% 

MLP 22.5% 61.4% 35% 33.6% 

RNN 2.4% 59.9% 40% 43.8% 

CART×MLP 24.6% 61.6% 33.9% 46.6% 

Disfluency type selection  

Table 16: Performance with COCA-based statistics. 

This classifier had a recall similar to the one reported by Ohta et 

al. (2008), that is 23.6%. However, its precision was somewhat lower, 

11%. Post-processing the predictions of this classifier by a simple 

procedure that converted all words which were not candidates to the 

category of fluent ones (imitating the results which would be obtained 
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by a classifier that would not process the non-candidates at all, as 

suggested by Adell et al. 2007) did not change the performance: both 

correctly and incorrectly predicted disfluencies were affected to 

approximately the same degree. 

The partial independence of disfluency placement on 

probabilistic measures could be due to the fact that disfluencies are 

governed by a mechanism that employs other features, too: the position 

of a word in the sentence is a likely candidate. Even though some of the 

previous research has suggested that disfluencies occur as signals 

pointing towards phenomena that should be mirrored by probabilistic 

measures – unpredictable/uncommon words (Schnadt & Corley 2006; 

Levelt 1983; Beattie & Butterworth 1979) or something complex 

(Watanabe et al. 2008; Arnold et al. 2007) – it seems that only one part 

of the story is told by the numeric expressions of that information as 

used in this thesis. The other part, centered around factors that cannot 

be measured by the scores used here (or perhaps any numeric scores at 

all) seems to be more dominant in this case. 

On the other hand, the disfluency type indeed is likely to be 

partially guided by the predictability of the upcoming input. However, 

the prediction process cannot be summarized into a simple rule 

assigning a disfluency type to a particular predictability score, allowing 

choice even in precisely defined contexts. Here, too, a non-numeric 

factor may play a role which is more important than the scores 

calculated here. 
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Though the measures used do not contain enough information to 

reliably predict the type of every disfluency in the dataset, the classifier 

was clearly not assigning the disfluency type randomly. Additionally, 

its performance revealed a particular pattern – the more frequent 

disfluency types were selected substantially more reliably than the 

rarest one in the MICASE corpus – silent pauses. This raises the 

question of whether the results were not influenced by the training data 

quantity. The MICASE is not a particularly large corpus and only a 

limited number of disfluencies were identified and available for 

training. However, even though the present dataset was substantially 

larger than the one used by Qader (2017), the results did not differ 

substantially, suggesting that an even larger dataset may be necessary. 

Since including the concept of a candidate into the model – that 

is retaining the lexical information about the 50 types most frequently 

preceded by a disfluency – did not substantially improve its 

performance, it seems likely that the model would not benefit 

substantially from the full lexical information being included either. 

This is especially likely given to the large proportion of hapaxes in the 

MICASE corpus. 

The difference between the classifier performance with statistics 

collected in the domain used for testing (in the MICASE corpus itself) 

and in a general corpus representing a broad range of genres and 

registers (COCA) is somewhat striking. It has previously been 

suggested that general corpora are better capable of predicting language 

effects connected to the probabilistic information stored in human brain 
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(Sayeed et al. 2015). Thus, statistics collected in the COCA corpus 

should be a better source of data for predicting probabilistic 

phenomena. Additionally, as COCA is 200 times larger than MICASE, 

each of the statistics should also be more representative. The small 

difference between the models is thus unexpected. A possible 

explanation could be that a large part of the vocabulary used in 

MICASE is so specialized (as suggested by the high number of 

hapaxes) that it appears only in the academic section of COCA. In such 

a case, little advantage would be gained by including domain-general 

rather than domain-specific data.

5.6 Conclusion 

In this chapter, I have shown that the differences between the surprisal 

profile of fluent and disfluent speech, observed in Chapter 4, can be 

observed in a larger dataset, too. The approach used to explain the 

occurrence of disfluencies had two main outcomes. First, it has been 

shown that probabilistic (and probability-related, i.e. the information-

theoretic) measures are significant though weak predictors of the 

occurrence of disfluencies in speech. Among other, the influence of 

surprisal, suggested in Study I, was observed. Importantly, support for 

the importance of surprisal and its local change is found if considering 

them in isolation (Chapter 5.3.2). However, when controlling for other 

factors, the picture is not as clear (5.3.3). The coefficient of surprisal is 

affected by collinearity, the difference in the surprisal of two 

neighboring words has only small impact on disfluency placement. 

Thus, though disfluencies do tend to occur before less predictable items, 
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their function as surprisal smoothers is limited and may only be a side-

effect of the true cause of their occurrence. In such a case, the 

contribution of surprisal to disfluency prediction may be that of a proxy 

for another predictor, such as the complexity or novelty of the 

upcoming output. On the other hand, the type of the disfluency used 

does seem to reflect the probability of the upcoming text to a larger 

degree. 

 The degree to which the disfluency prediction succeeded, while 

being comparable to other attempts made in previous research, raises 

the question of the importance of other aspects that were not included 

in the prediction at this point. One likely candidate are the structural 

properties of the text, as suggested by previous research (Schneider 

2014; Bortfeld et al. 2001; Maclay & Osgood 1959). By excluding this 

information, the classifiers used for disfluency prediction may have 

lacked important input. 

 In addition to showing that surprisal may indeed play a role in 

disfluency placement, this study provided some support to previous 

observations that mental chunks are less likely to be separated by a 

disfluency. This was reflected in the negative coefficients of the MI-

score and bigram frequency, though other predictors suggested quite the 

opposite. Most notably, the forward transitional probability suggested 

that items which are highly probable given their immediate predecessor 

are more likely to be preceded by a disfluency than unlikely ones. This 

clash of trends may be related to the directionality of the individual 

scores – the MI score captures not only the relationship of word 𝑤𝑖 to 
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𝑤𝑖−1, but also the relationship between 𝑤𝑖−1 and 𝑤𝑖. Thus, it may be a 

better expression of the degree of relationship between the items than 

the strictly unidirectional forward transitional probability. 

 Given the performance of the RNN model – most notably its 

similarity to simple MLP/CART models, the present data suggested that 

there is little influence of the extended context on the probability of 

disfluency use. Importantly, this claim is restricted to the way the 

context was presented, i.e. in the form of scores expressing the 

collocation strength, predictability and rareness of the individual items. 

 To conclude, some of the disfluencies could be predicted by the 

scores used and the previously reported relationships found some 

support. However, the performance was substantially different from 

what was suggested by a model trained on a different dataset 

(Chapter 4). Further improvement is unlikely to occur as a consequence 

of increasing model complexity (since even comparably complex 

models offered only limited gain in terms of the 𝐹1 score). Rather, it 

seems likely that efficient disfluency prediction requires additional 

input beyond what was used here. Considering the importance of the 

only predictor tied to the structural properties of the text – the position 

of an item at a beginning of a sentence, I expect that models which can 

employ such structural information will perform better on the task at 

hand.



 

Chapter 6  

Study IIb: Structural factors in disfluency prediction 

The previous chapter built on the observations made in Chapter 4. 

Viewing disfluencies as potential surprisal smoothing agents, it 

attempted to predict them in a natural text from which they were first 

removed. The prediction was based on the properties of an upcoming 

item, estimated by the model adapted from Mitchell (2011) and 

described in Chapters 2.2 and 2.3, as well as through a number of 

measures devised to express the strength of the relationship between 

two neighboring items. These were inspired by the approach employed 

by Schneider (2014) in order to explore her usage-based hypothesis of 

hesitation placement.  

The limited extent to which the disfluency prediction succeeded 

on the basis of these exclusively numeric predictors suggests that 

disfluencies are governed by rules more complex than the predictability 

of a string given its context. As a consequence, the information-

theoretic hypotheses (notably the UID hypothesis) may be unable to 

explain a substantial proportion of the disfluencies observed in natural 

linguistic data and the surprisal estimate may be only a correlate of the 

underlying function. 

The previous chapter simplified the language data to a fairly 

abstract array of numeric values expressing the surprisal of each item 

or the association strength between the two elements of a bigram as 

measured by the formulae presented in 5.2. Thus, some less abstract 
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categories which bear influence on language production were left out 

or translated into the numeric expressions used. However, given that 

these numeric expressions necessarily conflated multiple individual 

factors into one number, it is possible that this simplification was 

already too radical. A suggestive example is the position within 

sentence, which was identified as an important factor in disfluency 

prediction. If the sentence-initial locations were not explicitly labelled, 

but solely encoded in the surprisal values, this trend would be much 

more difficult to isolate and employ in prediction. 

This chapter will explore the importance of structured higher-

level information for disfluency prediction. So far, the predictors 

contained syntactic surprisal as an expression of the cognitive load 

caused by the probability of the observed linguistic data from the 

syntactic point of view. This purely numeric expression conflates the 

syntactic structure of the input: any given value of the syntactic 

surprisal may potentially appear both at the boundary of constituents 

and within them. However, speakers are aware of these boundaries in 

their language production, as shown e.g. by Clark & Wasow (1998) in 

the context of disfluencies. Clearly not all disfluencies are positioned at 

phrase boundaries (Bortfeld et al. 2001: 137): some phrase boundaries 

are even very unlikely to contain a disfluency. For example, only 1.8% 

of the 6317 disfluencies observed by Schneider were located at the 

boundary of a verb phrase (Schneider 2014). Other phrasal boundaries, 

on the other hand, are particular attractors (Schneider 2014; Bortfeld et 

al. 2001; Goldman-Eisler 1961; Maclay & Osgood 1959). 
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It is precisely this kind of information that this chapter attempts 

to introduce into disfluency prediction. It presents a way of including 

syntactic information in the form of chunking. Additionally, it 

introduces an intermediate level of abstraction between the syntactic 

constituents and lexical information: the part-of-speech categories. 

These have been identified as predictors of disfluency placement by 

previous research (Gráf & Huang 2019; Pfeiffer 2014). Before the 

results are reported, a brief summary explaining the motivation to 

employ coarser measures of processing complexity (such as those based 

on POS-bigram frequency) is presented, together with a discussion of 

the cognitive reality of part-of-speech categories, which is a necessary 

prerequisite of the proposed approach. 

6.1 Structural influences on disfluency placement 

Previous chapters observed that disfluencies tend to appear in 

informationally denser contexts. From the information-theoretic 

perspective, especially within the UID framework, this could be 

understood as an information transmission smoothing approach: 

introducing additional time in order to counterbalance an upcoming 

spike in surprisal. So far, the surprisal was estimated using the measure 

combining syntactic, semantic and n-gram language models. However, 

prior research has shown that the influence of the UID hypothesis can 

also be observed when less fine-grained estimates of processing 

complexity are used, such as the proportion of complement clauses after 

a specific verb (Jaeger 2010). These coarser measures have the 
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advantage of being calculated from larger – and thus more 

representative – samples.  

In addition to employing the POS-tags as categorical predictors, 

this chapter uses them to draw one such coarser estimate of processing 

complexity, by tracking POS-tag and POS-tag-bigram frequencies. 

When observing the relationship between the POS-tag/POS-tag-bigram 

frequency (as a variant of the association scores defined in Chapter 5.2) 

and disfluencies, it is expected that the more frequent POS tags and 

POS-tag bigrams are less likely to be preceded by a disfluency. They 

should be easier to both retrieve and comprehend and thus less likely to 

require informational smoothing. The expectation is thus the same as in 

the case of bigram frequency in Chapter 5, only the observation is 

carried out on a higher level of abstraction. 

Importantly, if speakers should distribute disfluencies on the 

basis of the parts of speech, they must be sensitive to (though not 

necessarily aware of) their distribution. Thus, if they should not store 

the information about the word class category of an item, they would 

not be able to use disfluencies as smoothing agents governed by the 

probability/frequency of that word class. This makes the 

psycholinguistic reality of parts of speech a necessary prerequisite. 

Even though some approaches, such as the Radical Construction 

Grammar (Croft 2001) would not consider parts of speech an inherent 

category of language, they would still view them as emergent categories 

of linguistic structure acquired by the analysis of constructions (Diessel 
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2015).13 The structured representation of lexemes is supported by the 

evidence from the research on the slip-of-the-tongue phenomena. It has 

been shown that in cases where one word is replaced by another, the 

word class is almost unanimously retained (Harley 2006; Bock & 

Levelt 1994; Fromkin 1971). Although there does not seem to be a 

single neural marker of word class (Federmeier et al. 2000), some 

distinction seems to be present: different cortical regions are activated 

in response to the concepts of objects and actions which would usually 

be expressed through nouns and verbs, respectively (Błaszczak & 

Klimek-Jankowska 2016). 

Whether an item is assigned to a pre-existing part of speech in 

the language acquisition process, or whether these categories emerge 

on the basis of language experience, speakers should store information 

about the frequency/probability of each of these categories, for example 

about the likelihood that a verb will occur after another verb. This could 

be viewed as a manifestation of awareness about the distribution of 

syntactic units at a low level of abstraction. This awareness may be used 

in the placement of disfluencies – and by extension in their prediction. 

Additionally, the higher level of abstraction, accessible through the 

 

13 These emergent categories may not be identical to those defined by 

non-constructionist linguistics for English. 
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sequence of part-of-speech labels allows for a more representative 

quantification of rare lexemes. 

Assuming the existence of traditional parts of speech, it is still 

necessary to select the set to be used. It “has been recognized for 

centuries that word classes […] are fundamental to the grammatical 

systems of human languages” (Kemmerer 2014: 28) and as a 

consequence, they are featured in some way in most linguistic theories 

and occupy a prominent position in other branches of research. Still, the 

number of labels and the rules for their assignment differ substantially 

even within the individual disciplines. The differences are especially 

pronounced in terms of the non-basic categories, that is those beyond 

the noun-verb-adjective triad. There, a major divergence exists between 

approaches arguing for language-specific categories and typologically 

based approaches searching for the universally present parts of speech. 

The present study uses language-specific categories as devised 

for English. Two of the most popular tagsets used include the more 

concise list of part-of-speech categories defined and used by the Penn 

Treebank Project and a substantially more detailed CLAWS7 tagset. 

Although these two tagsets overlap partially in their definition of the 

main categories, a one-to-one or many-to-one mapping between them 

is not possible as the additional labels of the CLAWS7 tagset are not 

sublabels of the Penn Treebank tagset. In order to provide more fine-

grained information about the data, the CLAWS7 tagset was used in 

this study. Naturally, as the number of categories increases, the number 

of examples belonging to each category decreases. With a large number 
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of categories, it is highly likely that some of them will be represented 

by only a limited number of cases, or not at all. If the dataset cannot be 

further extended, it may be necessary to collapse some categories to 

minimize the influence of random noise on the performance. 

There are several levels of abstraction between the parts of 

speech and the complete syntactic tree. While a full representation of 

the syntactic structure may be useful for an analysis of individual 

dependencies, it is also comparably more complex. Additionally, given 

the corpus size, the number of representations of the individual subtrees 

is likely to be limited. In order to avoid this issue, an intermediate 

approach was adopted, the so-called IOB-chunking. For each word, it 

determines whether it occurs i(nside), o(utside) or at the b(eginning) of 

a larger chunk. Here, chunks are not defined as mentally represented 

collocations (as in the usage-based approaches, e.g. Bybee 2010), but 

rather as larger – though not recursive – syntactic units at the phrase 

level. Thus, in addition to the part-of-speech label of each item, the 

classifier also received information about the position of that item with 

respect to the predefined syntactic chunks. An example of an 

IOB-tagged text is given below in Example 10.  

The influence of structural factors was suggested already by 

Maclay & Osgood (1959): they reported that repetitions were more 

likely to occur with function words while unfilled pauses tend to cluster 

before lexical words. Filled pauses, finally, occur with function words 

and lexical words at approximately the same rate. Similarly, some 

syntactic boundaries are more likely to attract disfluencies than others: 
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noun phrase boundaries attract disfluencies (Schneider 2014; Bortfeld 

et al. 2001; Goldman-Eisler 1968; Maclay & Osgood 1959) while verb 

phrase boundaries are argued to repel them (Schneider 2014; Maclay & 

Osgood 1959). These boundaries are identified by the POS-chunking; 

its inclusion should thus improve the performance of disfluency 

prediction by providing the classifier with awareness of the position of 

an item in the syntactic structure.

6.2 Method 

The data used for disfluency prediction was the same as in Study IIa. It 

consisted of the MICASE corpus data processed by the script estimating 

the surprisal of each word. This was combined with the additional 

predictors derived from the previous research and presented in Chapter 

5.2, based on the COCA. Additionally, the part-of-speech tag for each 

of the items was assigned by the CLAWS tagger (Garside & Smith 

1997). 

The chunking was done by a maximum entropy tagger, based on 

the implementation in the NLTK package (Bird et al. 2009). The default 

tagger was further trained using the CoNLL-2000 dataset (Tjong Kim 

Sang & Buchholz 2000) and achieved an accuracy of 95.5% over the 

test set. The distinguished tags are listed in Table 17. 
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Each word in the MICASE corpus was thus labelled with its 

POS- and IOB-tags in addition to the scores collected in Study IIa. 

Example 10 below visualizes the outcome of this procedure. The labels 

and scores were then used as an input to both the disfluency prediction 

and disfluency type selection tasks. Similarly to Study IIa, a 

(comparably) simple explanatory model was initially created. Then a 

more complex classifier (in this case the RNN-based model) was 

trained to be used in prediction.

( 9 ) Word you ‘re from Hartland Michigan 

POS-tag PPY VBR II NP1 NP1 

IOB-tag B-NP B-VP B-PP B-NP I-NP 

MICASE: adv700ju023 

Tag Meaning 

B-NP Beginning of a noun phrase 

B-VP  verb phrase 

B-PP  
prepositional 

phrase 

I-NP Inside a noun phrase 

I-VP  verb phrase 

I-PP  
prepositional 

phrase 

O Outside the distinguished chunks  

Table 17: The distinguished IOB-chunk tags. 
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6.3 Results 

6.3.1 POS-tags 

The CLAWS tagger assigned 237 different tags to the individual items 

in the data, including the “ditto tags” which mark highly co-occurring 

multi-word sequences as one unit. Out of these, 67 tags occurred fewer 

than 35 times which would be the expected number of occurrences 

needed to observe one disfluency if these were randomly distributed. 

Collapsing the ditto tags reduced the number of tags observed in the 

data to 112. Given that the frequency distribution of individual tags is 

clearly long-tailed (cf. the density plot in Figure 16), the frequencies 

were log-transformed before further processing.  

Still, a simple plot of the frequencies of individual tags against 

the ratio with which they were preceded by a disfluency shows that 

there is likely little relationship between the frequency of a word’s part 

of speech and the likelihood that it will be fluent/disfluent. Figure 17 

shows the ratio with which individual POS-tags were preceded by 

disfluency. Neither the distribution of the individual points nor the 

LOESS curve suggest a strong relationship. Pearson’s r does not 

suggest any relationship at all, either. It points to a clear lack of a linear 

trend with its coefficient of r = 0.03 (t = 0.58, df = 229, p = 0.56). On 

the other hand, the Spearman correlation (which is more sensitive to 

non-linear trends and tolerant to the heteroscedasticity observed in the 

data) would suggest that there is in fact a negative relationship between 

the two variables: (rho = -0.48, S = 3054000, p < 0.0001). This would  
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mean that more frequent tags are actually more prone to be preceded by 

a disfluency. Closer inspection revealed that this is linked to the absence 

of categorically fluent tags with frequency above 1300 (roughly 7 on 

the logarithmic scale, with the notable exception of the tag GE14) and 

 

14 This tag is used for the Germanic genitive marker ‘s. It obviously does not 

allow a disfluency to precede it. 

 

Figure 16: The distribution of the POS-tag frequencies in the 

MICASE corpus. Similarly to word frequency distributions, 

most tags are rare, few are highly frequent. 
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the slight decrease in the ratio of fluent realizations in this area of the 

chart. 

On the other hand, the less frequent items (with frequency below 

12, corresponding to 2.5 after the log transform) are the only ones with 

a fluency rate below 0.9, though this is partially related to their 

frequency itself as a single disfluent occurrence causes a large change 

in the fluency ratio. 

Similar trend is observed when shifting the perspective to the 

preceding POS-tag. The Spearman correlation is even more pronounced 

 

Figure 17: Log-transformed frequency of POS-tags as related to 

the ratio of fluent realizations of words labeled with that tag. 



178 6. Study IIb: Structural factors in disfluency prediction 

at rho = -0.53 (S = 3193400, p < 0.0001), though a linear trend is still 

not present (Pearson’s r = -0.05, t = -0.81, df = 230, p-value = 0.42). 

The trend identified by the LOESS curve (Appendix A.4) is very 

similar, though it does not exhibit the same rise in fluency rates in the 

low frequency area (log-transformed frequencies between 0 and 5). 

In order to decrease the amount of noise in the data caused by the 

presence of rare tags, the tagset was simplified. To achieve this, the ditto 

tags were collapsed by removing the numbers showing the position of 

an item in the identified multiword sequence (thus, a ditto tag II31 

would become simply II. In such a way, the number of tags was reduced 

to 112. 

The impact of this step is visible in the plot in Appendix A.5. As 

ditto tags were rare compared to the general tags, the most affected part 

of the chart was the one with log frequency below 2.5 (frequency below 

12). There were three exceptions to the otherwise exclusively fluent 

realizations of the rare items. Two of them overlapped with log 

frequency 0.69 (actual frequency 2) and fluency ratio 0.5, third has a 

frequency of 12 and fluency ratio of 0.67. The rarity of these items 

prevents any strong conclusions, however.  

Excluding the rare items and keeping only items with frequency 

above 35 (which should have at least one of their occurrences preceded 

by a disfluency if disfluency placement was a random process) yielded 

the plot in Figure 18.  
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 This figure shows that even among the more frequent items, 

there seems to be little relationship between their frequency and their 

fluency rate. The Pearson and Spearman correlations support this view, 

both of them suggesting a weak relationship (r = -0.08, ρ = -0.12, p-

values of both are above 0.05). Additionally, it shows that the 

disfluency rate of all the tags which are represented sufficiently in the 

data lies between 0% and 7% percent. With such a small difference, it 

is unlikely that the part of speech on its own will be a strong predictor 

of the disfluency occurrence, though it may still prove to play a role if 

 

Figure 18: Log-transformed frequency of POS-tags as related to 

their fluency ratio. Only tags with n>35 which should be disfluent 

at least once if disfluencies were randomly distributed. 
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all else is equal. The narrow range of fluency ratios also suggests that 

though individual parts of speech may differ with respect to the 

frequency with which they precede disfluencies (Pfeiffer 2014), this 

information alone may not be sufficient to predict them efficiently. 

 

Figure 19: Frequency of a POS tag as related to the ratio with 

which it is preceded by individual disfluency types. 
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 Visualizing the individual disfluency types as in Figure 19 

shows that some types behave contrary to the original expectation and 

are more common with POS-tags that are more frequent in the data. 

Only the two filled pauses – uh and um – suggest at least an initial 

decrease in the frequency of occurrence with more frequent tags. 

However, even here, the data is not clustered, but varies substantially 

instead.  

When grouping function words and content words and 

comparing one group to another, the disfluencies relevant to this work 

tend to appear before content words (which also tend to be associated 

with higher surprisal, cf. Kermes & Teich 2017). Thus, the relationship 

proposed by Maclay & Osgood (1959) did not appear in the present 

data. The difference was most pronounced in terms of repetitions, but 

other disfluency types followed the pattern as well (see Figure 20 for a 

detailed plot). 

Finally, in order to explore whether more generally defined parts 

of speech differ with respect to their likelihood to be preceded/followed 

by a disfluency, the tagset was further simplified. The simplification 

consisted of removing all but the first letter of the tag (with the 

exception of the tags AT/APPGE which would become ambiguous), 

leaving 19 very general distinctions, e.g. noun/verb. Afterwards, the 

ratio of occurrences of this tag that were preceded by a disfluency was 

calculated, shown in Table 18. The proportion of disfluencies following 

the individual tags was assessed in a similar manner and is shown in 

Table 19. 
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These two tables show that even though there is some variation 

between the individual tags, their disfluency rates all lie between 0% 

and 6.5%. They are thus virtually identical to the disfluency rates 

observed with the extended tagset earlier in this chapter. It would thus 

 

Figure 20: Distribution of individual disfluency types with 

respect to the function/content word parts of speech. The plots 

were constructed by calculating the disfluency rate for individual 

POS-tags (after simplifying the ditto tags) and then visualizing 

the distribution of the per-tag disfluency rates. The horizontal 

bar represents the median. 
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seem that the general distinction of parts-of-speech provides only 

limited information about disfluency placement in the MICASE corpus, 

differing from Pfeiffer’s (2014) observations. Similarly, there is little 

relationship between the frequency of disfluencies before and after the 

individual tags (Spearman’s rho = 0.04, S = 1094, p-value = 0.87).  

  



184 6. Study IIb: Structural factors in disfluency prediction 

 

Tag Group 
Disfluency rate 

Pause Repetition Uh Um Overall 

APPGE 
Possessive 

pronoun 
0.05 1.55 0.71 1.04 3.35 

AT Article 0.06 1.87 0.89 0.92 3.75 

B 
Before-clause 

marker 
0 0.25 0.74 0.98 1.96 

C Conjunction 0.25 1.66 1.17 1.88 4.97 

D Determiner 0.18 1.48 0.9 1.11 3.67 

E 
Existential 

there 
0.22 1.19 1.78 3.36 6.55 

F Foreign 0 1.38 0.92 1.11 3.41 

G ‘s 0 0 0 0 0 

I Preposition 0.04 1.06 0.72 0.64 2.47 

J Adjective 0.05 0.32 0.95 0.73 2.05 

M Number 0.18 0.81 0.96 0.88 2.83 

N Noun 0.05 0.22 0.83 0.61 1.7 

P Pronoun 0.17 1.52 1.04 1.59 4.32 

R Adverb 0.42 0.82 0.78 1.24 3.26 

T 
Infinitive 

marker to 
0.01 1.35 0.45 0.26 2.07 

U Interjection 0.53 3.3 1.05 1.47 6.34 

V Verb 0.06 0.29 0.48 0.45 1.27 

X not 0.04 0.18 0.22 0.19 0.62 

Z Letter 0.1 2.26 1.45 1.03 4.85 

Table 18: Ratios of disfluencies preceding individual tags in the 

MICASE corpus. 
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Tag Group 
Disfluency rate 

Pause Repetition Uh Um Overall 

APPGE 
Possessive 

pronoun 

0.02 0.20 0.62 0.46 1.29 

AT Article 0.01 0.35 0.54 0.29 1.19 

B 
Before-clause 

marker 

0.00 0.74 0.00 0.00 0.74 

C Conjunction 0.03 1.14 1.14 1.16 3.47 

D Determiner 0.11 0.52 0.64 0.66 1.93 

E 
Existential 

there 

0.00 0.11 0.02 0.02 0.14 

F Foreign 0.07 1.18 1.18 0.26 2.69 

G ‘s 0.04 0.18 1.29 1.07 2.58 

I Preposition 0.02 0.80 0.73 0.66 2.22 

J Adjective 0.14 0.68 0.97 1.10 2.90 

M Number 0.29 0.69 0.71 0.75 2.45 

N Noun 0.33 1.22 1.26 1.60 4.41 

P Pronoun 0.05 0.39 0.30 0.39 1.12 

R Adverb 0.26 1.24 0.95 1.51 3.96 

T 
Infinitive 

marker to 

0.00 0.12 0.59 0.54 1.26 

U Interjection 0.32 2.92 0.96 2.13 6.33 

V Verb 0.07 0.97 0.66 0.63 2.32 

X not 0.06 0.48 0.35 0.30 1.18 

Z Letter 0.23 1.46 1.29 0.58 3.56 

Table 19: Ratios of disfluencies following individual tags in the 

MICASE corpus. 
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6.3.2 IOB-tags 

The individual IOB-tags could be divided into three groups according 

to their frequency:  

- B-NP (about 
1

3
 of the data) 

- O, B-VP and I-NP (each constituting about 
1

6
 of the data) 

-  B-PP and I-VP (each approximately 
1

12
 of the data). 

The tag I-PP was rare (400 occurrences overall, less than 1% of the 

data). Figure 21 visualizes the relationship between the individual IOB-

tags and the distribution of disfluencies. It shows that first words of 

noun phrases and words categorized as outside of the recognized 

phrases were the most likely to be preceded by a disfluency. In contrast 

to this, items inside the phrase were comparably less likely to be 

disfluent, similar to the beginnings of verb phrases. The beginnings of 

prepositional phrases lie between these two groups. 

This plot also shows that the distribution of individual disfluency 

types is not uniform when comparing the IOB-chunks. Locations 

preceding the chunks I-VP and I-NP are dominated by filled pauses 

containing uh, while silent pauses are almost exclusive to phrase 

beginnings and items outside of IOB-chunks (only 5% of them 

appearing inside of phrases). 
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Figure 21: Disfluency rates for the individual IOB-labels. 

Additionally, the interplay between the proportion with which 

the IOB-labels are preceded by a disfluency and the frequency of them 

introducing sentences should be mentioned (Figure 22). It seems that a 

part of the variation in the fluency rate of the individual IOB-tags can 

be explained by their tendency (or in the case of the I-tags, the lack of 

possibility) to occur sentence-initially. This is further suggested by the 

strength of the correlation between these two measures (r = 0.96, 

t = -8.13, df = 5, p-value < 0.001). 
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6.3.3 POS & IOB-tags for disfluency prediction 

In order to assess the degree to which the newly added information 

about the POS and IOB-tag of each item may improve the prediction of 

disfluencies, two models were built. First, a simple logistic regression 

model, used to evaluate the prediction of disfluencies as such. Second, 

a classification tree, assessing the quality of disfluency selection on the 

basis of the information. In order to allow interpretation of the results, 

the POS-tags were simplified substantially for the logistic regression 

model: only a binary distinction between content words and function 

words was kept. Additionally, the frequency of each tag was included 

in the model. Finally, an RNN-based classifier was trained with access 

to the fine-grained POS-tags and IOB-tags. 

 
Figure 22: The relationship between the disfluency rate of 

individual IOB-chunks and their percentage of occurrence as 

sentence-initial. 
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The logistic regression model (full model summary including all 

non-significant predictors and their interactions is in Appendix A.6) 

exhibited some expected properties. The base odds ratio expressed by 

the intercept (odds ratio 0.02, coeff.-3.86, std.error 0.05, p-value < 

0.0001) increased 4 times (coeff. 1.45, std.error 0.04, p-value < 0.0001) 

if an item appeared sentence-initially. This increase was even more 

pronounced if the sentence-initial item was a content word (interaction 

of sentence-initial position with content-word status has coeff. 0.4, 

std. error 0.05, p-value < 0.0001). The surprisal score played an 

important role, too – items with the highest surprisal of 14.75 were 

4.8 times more likely to be disfluent than items which had to occur in a 

given context (and had a theoretical surprisal value of 0). Concretely, 

per 1 nat increase in surprisal, the odds ratio increased 1.12 times (coeff. 

0.11, std. error 0.02, p-value < 0.0001). This contradicts the effect 

assigned to the forward probability; here, items that were very likely to 

appear were also more likely to be preceded by a disfluency (coeff. 6, 

std. error 4.3, p-value 0.16). However, since the coefficient was not 

significant, no strong conclusions should be based on it. 

In contrast to the variables listed in the previous paragraph which 

promote disfluencies, some of the variables were shown to repel them. 

Content words were less likely to be preceded by disfluencies than 

function words (coeff.-0.64, std. error 0.05, p-value < 0.0001); thus, the 

relationship observed in Figure 20 was reversed. Words with a high 

MI-score tended to be realized fluently, too (coeff. -0.25, std. error 0.01, 

p-value < 0.0001). In comparison to the intercept, which was estimated 
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for items outside of the defined chunk categories, all other chunk labels 

were less likely to be disfluent, except for the B-NP label (coeff. 0.26, 

std. error 0.05, p-value < 0.0001). 

To provide more detail, Table 20 displays the coefficients of a 

simple logistic regression model predicting disfluencies by individual 

IOB-labels. It shows that while items at the beginning of chunks (or 

outside of them) tend to be disfluent more often than items inside 

chunks, the difference is fairly small. The size of the difference between 

the beginnings of noun phrases and the remaining categories is rather 

striking, the trend is, however, fully in accordance with previous 

research claiming that noun phrase boundaries attract disfluencies (cf. 

Chapter 6.1). 

IOB-

label 
Coeff. Std.error p-value pdisfluency Rank 

O 

(intercept) 
-3.86 0.05 2×10-16 0.021 2 

B-NP 2.53 0.05 2×10-16 0.209 1 

B-VP -0.09 0.07 0.25 0.019 3 

B-PP -0.49 0.08 1×10-10 0.013 5 

I-NP -0.4 0.07 8×10-08 0.014 4 

I-VP -0.54 0.1 3×10-08 0.012 6 

I-PP -107.8 522 0.84 <1×10-48 7 

Table 20: IOB-labels by their likelihood of representing disfluent 

items. 
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Some interactions between the individual predictors are worth 

reporting here as well. Sentence-initial items were less likely to be 

disfluent if they had a high surprisal value (coeff. -0.19, std. error 0.02, 

p-value<0.0001). Importantly, the forward and backward probability 

interacted (coeff. -33.7, std. error 17.3, p = 0.05). This would suggests 

that words which are tightly linked to both their preceding and 

following context are extremely unlikely (probability of disfluency 

being pdisf = 1×10-15) to be disfluent. Thus, items in the middle of set 

expressions or commonly co-occurring items (e.g. respect in with 

respect to, Fitzgerald in John Fitzgerald Kennedy) should be very likely 

to be fluent. 

Lastly, the effect of POS-tag frequency lies beyond the 

conventional threshold of statistical significance and is very weak 

(coeff. 1×10-06, std. error 6×10-07, p-value 0.05), suggesting that if all 

the remaining parameters are held constant, the sole frequency of the 

POS in the corpus has little influence on the occurrence of disfluencies. 

Overall, the model does not seem to promise a large 

improvement in disfluency prediction over a model that did not have 

the IOB-chunk labels, the POS frequency information or the 

information about the content/function word status of the individual 

items. The model’s deviance decreases by approximately 10% in 

comparison to the base model, with Nagelkerke’s R2 being 0.1.  

To assess the performance in disfluency type selection, a 

classification tree model was fitted using the rpart package (Therneau 
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et al. 2018) with the same predictors as the binary logistic regression: 

sentence-initial position, IOB-label, MI-score, G-score, 

forward/backward probability, bigram frequency, POS-tag frequency, 

surprisal, surprisal change in comparison to previous word and the 

content/function word status; in this case, the simplified POS-tag itself 

was included as well. Additionally, the following parameters were used 

in order to prevent overfitting:  

- Smallest leaf size = 20 (do not split if this creates groups with 

fewer than 20 cases) 

- Smallest non-terminal node size = 100 (do not split groups with 

fewer than 100 cases) 

- Minimal reduction in complexity parameter cp = 0.002 

(optimized through pruning) 

The resulting tree with 19 nodes including the root yielded the results 

below, which will be discussed by disfluency type. 

For um, the decisive factor was the sentence position. In the data, 

49% of sentence-initial items were ums, the remaining categories being 

substantially less represented. In sentence-internal and sentence-final 

positions, um tended to occur in specific contexts only: before chunk-

initial adverbs, verbs and existential there if they were weakly related 

to the previous word (MI-score < 0.5) but not completely improbable 

(TP-F > 27×10-06). 

With respect to uh, the situation is more complex. Outside of 

sentence-initial contexts, its likelihood of occurrence increased in front 
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of content words (adjectives and nouns specifically) and inside VPs. 

Chunk-initial, chunk-external and NP-internal observations were more 

likely to yield uh if they were unrelated to the previous word and very 

unlikely to occur (MI-score < 0.5 and TP-F < 27×10-06). This 

observation may suggest a trend opposite to Clark & Fox Tree (2002), 

who observed uh to occur before minor and um before major delays: 

major delays would be expected before words with lower probability, 

as they should require more time to be prepared for production. 
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Figure 23: Classification tree deciding the disfluency type 

after pruning (at cp = 0.002). Percentages at the bottom of 

each node represent the share of data that a given node 

describes. The ratios of the individual disfluency types are 

shown in the second row of each box in the following order: 

pause, repetition, uh, um. 
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All the remaining contexts were most likely to choose repetition 

as the appropriate disfluency type. Pauses were never identified to be 

the most common type of disfluency in a given context. This is likely 

due to the fact that their overall frequency is substantially lower. The 

highest proportion of pauses in a given context was observed sentence-

initially (12%) and in the very specific case of chunk-initial/chunk-

external function words (and adverbs) with low MI-score, high forward 

probability and a low G-score (4%). 

With respect to the disfluency prediction by an RNN model, 

including the information about the part of speech and IOB-chunk 

status improved the prediction of disfluency occurrence. The 

improvement (in comparison to the best model presented in 5.5) was 

achieved in all three performance measures, though it was not large. 

The disfluency type selection, on the other hand, was not improved at 

all. Thus, the additional information does not seem to give any 

substantial advantage to the classifier in disfluency selection, as also 

suggested in Chapters 6.3.1 and 6.3.2. The performance of the best 

Task 𝑭𝟏– macro 𝑭𝟏– micro 𝑭𝟏- disfluencies 

Disfluency 

prediction 

57% 93.5% 16.2% 

Type 

selection 

38.5% 47.2% - 

Table 21: Performance of POS/chunk-aware RNN 

classifier at disfluency prediction/selection. 
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RNN model in disfluency prediction and disfluency type selection is 

noted in Table 21. 

6.4 Discussion 

In order to interpret the results yielded by the logistic regression and the 

CART algorithm, an information-theoretic perspective alone is not 

sufficient. This is shown by assessing the importance of the individual 

variables in the logistic regression model using the caret package for R 

(Kuhn 2017). There, the importance of surprisal is lower than that of 

sentence initial position, MI-score or content/function-word status (yet 

still higher than of the other individual predictors). It would thus seem 

that the first criterion deciding about the placement of disfluency is the 

fact whether an item is sentence-initial or medial/final. 

A readily available interpretation of this observation is the 

disfluency as a symptom hypothesis mentioned earlier in Chapter 3: if 

a large proportion of the planning has to be done before the sentence is 

started, the speaker may have issues producing the sentence 

immediately due to still being busy drafting the concept to be expressed, 

extracting the necessary items, assigning them to correct positions and 

translating at least the first items into phonemes. This may lead to the 

insertion of a hesitation. The extent to which this effect is pronounced 

depends on the scope of processes that are to be carried out before the 

utterance may start: the larger the scope, the more likely is it that the 

amount of work to be done will be too large for an immediate onset of 

speech.  
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Experimental evidence suggests that the planning at the 

beginning of a sentence does not extend over the whole sentence. It may 

incorporate the first verb phrase and the subject phrase; in the case of 

lexical planning even less may be prepared prior to production (Zhao & 

Yang 2016; Zhao et al. 2015; Allum & Wheeldon 2007; Smith & 

Wheeldon 1999, 2001). In languages which are not head-initial (such 

as Japanese) Allum & Wheeldon (2007) additionally observe that the 

syntactic planning which precedes the onset of an utterance is likely to 

include the initial phrase as well. Thus, in total, up to three phrases may 

be planned before anything has been uttered.  

In this case, the term phrase does not necessarily correspond to 

syntactically defined phrases. Rather than referring to subject noun 

phrases or initial noun phrases, Allum & Wheeldon (2007) and Zhao et 

al. (2015) advocate the concept of functionally defined phrases. Such 

phrases represent units in the thematic representation of an utterance 

but may not necessarily correspond to syntactic phrases. Rather, they 

represent functions such as modifier or agent. The flower above the dog 

in the flower above the dog is red is not a single planning unit in spite 

of being the subject noun phrase and the theme of the sentence. It 

consists of two functionally defined units: the theme and the modifier. 

In Allum & Wheeldon’s view, such smallest functional roles constitute 

units of the planning scope as each of them corresponds to a function in 

the process of functional assignment (Allum & Wheeldon 2007). 

In terms of lexical retrieval, utterance planning may be even 

simpler, as suggested by studies inspired by the radically incremental 
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approaches to lexical planning (represented by Zhao & Yang 2016). 

Since the adherents of these approaches claim that lexical retrieval 

operates on a strict word-by-word basis, the effect of utterance planning 

before the onset of pronunciation should be only due to the complexity 

associated with the retrieval of the next lemma. In such scenarios, the 

sentence-initial positions would not differ from sentence-medial or 

sentence-final with respect to the lexical retrieval. They might, 

however, still differ in the remaining elements, notably in terms of the 

processing of the syntactic structure. 

If, however, the planning is as radically incremental as suggested 

by Zhao & Yang (2016) and the proponents of lexically-based theories 

of sentence-production (Griffin 2003), the amount of processing 

necessary before the beginning of the utterance is reduced. In such a 

case, the strong effect that the position of an item in the sentence has on 

its fluency would be less likely under the disfluency as a symptom view. 

On the other hand, it would be more compatible with the other views 

including that of disfluencies as surprisal smoothing agents: the 

beginnings of sentences have on average a greater surprisal value, the 

mean surprisal of sentence-initial items being 0.28 nats higher 

(𝛥𝑚𝑒𝑑𝑖𝑎𝑛 = 0.51) in comparison to the overall average/median. This 

is intuitive as there are more options in which a sentence could begin 

than continuations/endings compatible with a given beginning. 

The coefficients of IOB-chunks provide support to the 

observation of Boomer (1965) and more recently Schneider (2014) that 

disfluencies should predominantly occur on the boundaries of phrases 
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rather than inside them. In the individual chunk pairs, the coefficients 

associated with chunk-initial positions were higher than those 

associated with chunk-internal ones. The fact that disfluencies still do 

occur inside the phrases distinguished here is the easiest to explain by 

the lexical theories of sentence-production: if language production is 

radically incremental, each word may present a potential issue. 

However, chunk-internal disfluencies are permitted even by theories 

arguing for the existence of multi-word units, such as Schneider’s 

chunking hypothesis. Even these theories permit disfluencies to occur 

chunk-internally – provided that the disfluent location lies within a 

grammatical chunk, not a deeply entrenched mental one. 

The placement of disfluencies at the beginning of chunks is 

further predicted by syntax-based accounts of language production 

combined with the disfluency as a symptom hypothesis. The fact that 

beginnings of phrases are more likely to be disfluent follows from the 

principle that each phrase needs to be planned prior to the onset of its 

production. If the planning cannot be done online in the course of 

articulating the previous phrase, it is inevitable that the speech stream 

is interrupted until the planning is finished and the phrase to be uttered 

is translated into commands for the articulators. Only then can the 

speaker begin with the actual articulation. 

The range of contexts in which they appear makes repetitions 

seem like the default option unless a different choice is specified by the 

context. An example of such a context is the sentence-initial position 

where um was substantially more likely to appear in the data. The use 
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of um rather than uh sentence-initially agrees with Clark & Fox Tree's 

(2002) observation that it signals a major delay, since silent pauses are 

longer between sentences than within them (Krivokapić 2007; 

Sanderman & Collier 1995). Thus, if inter-sentence pauses should be 

longer, they should be more prone to contain um (in contrast to uh). On 

the other hand, the preference of um to appear in contexts with higher 

direct transitional probability in sentence-medial/final positions would 

seem to contradict this view. Yet, as this preference only appears in very 

specific contexts (described in Chapter 6.3.3), representing only 1% of 

the overall data, it certainly should not be viewed as a strong argument.

6.5 Conclusion 

The present study presented an attempt to account for the variation in 

disfluency occurrence which was not explained by Study IIa. In order 

to do so, it drew upon additional structural factors: the POS-tags and  

IOB-chunk labels. However, though some trends with respect to these 

factors were identified (the tendency of disfluencies to appear at the 

beginning of noun-phrases, identified by previous research as well), this 

did not lead to a major improvement in the prediction of disfluencies, 

or the selection of the disfluency type to be inserted. 

 Though the approach to disfluency prediction assumed here 

was diametrically different from that suggested by Qader (2017) and 

similar to that proposed by Adell et al. (2007), it yielded results closer 

to the first study rather than the latter and disagreeing with the results 

obtained in Chapter 4. Unfortunately, Adell et al. do not provide 
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information about the sentence-initial/medial/final distribution of the 

disfluencies in their data, which largely influenced the discrepancy in 

performance between Chapter 4 and Chapters 5 and 6. The results 

obtained highlight the fact that disfluency prediction (and selection) is 

still in its early phases and vitally linked to data quality. Further 

development requires additional qualitative/quantitative empirical 

research into the origin of disfluencies as well. This is a complex task, 

as repairs in the speech production such as: 

( 10 ) when you do sear- uh when you're searching  

 
MICASE: svc999mx104 

are likely hard to predict: little seems to suggest that the speaker will 

decide to rephrase when you do sear[ches] to when you’re searching. 

Though deciding whether a disfluency should be inserted in the 

interregnum may be comparably easier, true disfluency prediction 

under the Noisy Channel hypothesis should be capable of transforming 

fluent input into a disfluent output in a natural way. Thus, an ideal 

system should be also able to predict repairs, especially considering that 

they are the second most common type of disfluencies after filled 

pauses (Shriberg 1994: 137). 

 The next chapter presents a different approach to disfluency 

prediction. Rather than employing a set of theoretically motivated 

predictors extracted by models trained on large corpora, it proposes a 

purely computational linguistic model, inspired by machine translation. 



 

Chapter 7  

Study III: Encoder-decoder architecture for disfluency 

prediction 

For the major part of this thesis, the disfluency prediction/disfluency 

type selection were attempted with a cognitively-motivated approach. 

The achieved performance suggested that this approach still leaves a 

substantial proportion of the variation unexplained. Further 

improvement may be possible through refinement of the predictors 

used, addition of new predictors15 or setting up a more complex model. 

However, the contribution of these steps, carried out in Chapters 5.4-

5.5 and Chapter 6, led only to marginal changes in the performance.  

Thus, rather than seeking to improve the theoretically motivated, 

yet weak classifiers, this chapter views the attempt at disfluency 

prediction from a purely computational-linguistic perspective. It 

approaches the task at hand by adapting a successful machine 

translation architecture to disfluency placement. In other words, 

disfluency placement is viewed as a translation task from a fluent 

 

15 An obvious example of a promising predictor that has not been used in the 

previous attempts is that of the speaker ID as there is a clear evidence of 

individual preferences of speakers (Shriberg 1994). Nevertheless, as 

mentioned in Chapter 5.2.8, the data is not suitable for fitting models that 

include the speaker ID as a predictor. 
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language to a disfluent one. This means that the Noisy Channel 

approach is maintained. 

The architecture used is the RNN encoder-decoder model, as 

proposed by Cho et al. (2014b). In this architecture, the lengths of input 

and output sequences may differ, allowing one-to-many and many-to-

one correspondences. Additionally, interactions between the elements 

of each of the sequences are possible in both directions, i.e. individual 

elements may influence the “translation” of those after them as well as 

those before. The next pages will briefly introduce the architecture as 

used in machine translation; afterwards, the adaptation to disfluency 

prediction will be presented. 

7.1 Encoder-decoder 

Early applications of neural networks to machine translation targeted 

the improvement of existing statistical machine translation systems 

(Schwenk 2012; Zamora-Martínez et al. 2010; Schwenk et al. 2006). 

They aimed to improve the estimation of the probability of a given 

phrase in the source language to be translated into another phrase in the 

target language. For this purpose, they usually refined the traditional 

statistical machine translation approach in which sentences from the 

source language 𝑠 were translated to the target language 𝑡 and based on 

the equation (Schwenk 2012): 
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𝑡̂ = argmax

𝑡
𝑃(𝑡|𝑠) = argmax

𝑡

𝑃(𝑠|𝑡)𝑃(𝑡)

𝑃(𝑠)

= argmax
𝑡

𝑃(𝑠|𝑡)𝑃(𝑡) 

( 44 ) 

The neural network was implemented in order to improve the estimate 

of the language model assigning the probability 𝑃(𝑡), which was 

usually estimated using an n-gram model (Schwenk 2012). It realized 

the suggestion of (Bengio et al. 2003) that the joint distribution should 

be modeled in a continuous rather than a discrete space. In a discrete 

space, where each word is viewed as an independent variable, a single 

change in one of the discrete variables may change the outcome 

substantially. On the other hand, if the modelling is done in continuous 

space, the probability function to be learned can be smooth. Thus, while 

the machine translation was still based on pairs of multi-word 

sequences extracted from the training data, the probability with which 

one sequence was translated into another depended to a degree on the 

probability of a given sequence in the target language as estimated by a 

model operating in a continuous space. 

 A further extension of this approach allowed to use the 

continuous space model not only for modelling the target language, but 

to estimate the probability 𝑝(𝑡|𝑠) as well (Cho et al. 2014b; Sutskever 

et al. 2014). In this approach, two neural networks are trained at the 

same time: the encoder, translating the source string into a fixed-length 

vector in continuous space, and the decoder, translating the fixed-length 

vector into the target language. Importantly, the continuous space is 
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shared between the two models, allowing simultaneous training of the 

encoder and decoder, as visualized in Figure 24. While the approach of 

Cho et al. (2014b) only employed the encoder-decoder architecture in 

order to score phrase pairs from a traditional phrase table, Sutskever et 

al. (2014) suggested using the model for direct translation.  

In their approach, the encoder-decoder model selects individual 

words from the vocabulary. Specifically, the encoder translates the 

source sequence 𝑥 = (𝑥1…𝑥𝑇𝑥) into a vector 𝑐, e.g. by means of a 

recurrent neural network with state ℎ𝑡 (after the item 𝑥𝑡 of the source 

sequence) equal to: 

 ℎ𝑡 = 𝑓(𝑥𝑡 , ℎ𝑡−1) ( 45 ) 

Thus, the shared vector 𝑐 is produced by: 

 𝑐 = 𝑔(ℎ1…ℎ𝑇𝑥) ( 46 ) 

where 𝑔() can be any function capable of handling the range of inputs. 

For Sutskever et al. and Cho et al. the final state is taken as the 

representation of the whole sequence. Thus, 

 𝑔(ℎ1…ℎ𝑇𝑥) =  ℎ𝑇𝑥 ( 47 ) 

As a consequence, while the encoder generates a range of hidden states 

(one for each element of the input sequence), only the last one is used. 

Importantly, this state does contain elements of all items in the input 
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sequence; it is not the case that the last hidden state would only reflect 

the last element. 

The decoder is then trained to produce the target sequence one 

word at a time. Thus, instead of searching for a sequence with the 

highest joint probability, it decomposes the joint probability of a target 

sequence 𝑦 into the ordered conditionals (Bahdanau et al. 2015): 

 

𝑝(𝑦) =∏𝑝(𝑦𝑡|𝑦1…𝑦𝑡−1, 𝑐)

𝑇

𝑡=1

 

( 48 ) 

Where 𝑝(𝑦𝑡|𝑦1…𝑦𝑡−1, 𝑐) is estimated by the (recurrent) decoder on the 

basis of the previously produced item 𝑦𝑡−1, its hidden state ℎ𝑡 and the 

encoded vector 𝑐. Hence, 

 𝑝(𝑦𝑡|𝑦1…𝑦𝑡−1, 𝑐) = 𝑓𝑑𝑒𝑐𝑜𝑑𝑒𝑟(𝑦𝑡−1, ℎ𝑡 , 𝑐) ( 49 ) 

Practically, the shared vector 𝑐 is only used directly in the prediction of 

the first character. For the remaining characters, its effect is present in 

the form of the hidden state, yet the vector itself is no longer included 

in the input. 
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Figure 24: Schematic representation of the encoder-decoder 

architecture. The nodes 𝒙𝟏…𝒙𝑻 represent the individual inputs, 

while 𝒚𝟏…𝒚𝑻′ represent the outputs. Note the shared 

representation 𝒄 in continuous space. The dotted arrows 

represent the indirect influence of the shared vector on the 

outputs. Adapted from Cho et al. (2014b). 

Given that encoder-decoder models often have to deal with long 

sequences, the recurrent neural network setup as described in 

Decoder 

𝑐 

𝑦𝑇′ 𝑦2 𝑦2 

𝑥1 𝑥2 𝑥𝑇 

… 

 

Encoder 

… 
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Chapter 5.4.1 is not suitable. This is due to the fact that the errors 

flowing through simple recurrent units have a tendency to either blow 

up or vanish (Pascanu et al. 2013; Hochreiter & Schmidhuber 1997; 

Bengio et al. 1994) which makes learning long-range dependencies 

very difficult. Striving to remedy this weakness, Hochreiter & 

Schmidhuber (1997) proposed the long short-term memory (LSTM) 

unit which is capable of keeping track of items over long time lags. For 

this purpose, each unit is provided with input and output gates 

protecting its contents from being influenced by irrelevant inputs and 

preventing the contents from negatively influencing other units. 

Moreover, the addition of a forget gate (Gers et al. 2000) allowed the 

unit to reset its own state without being specifically told to do so. 

Both the original LSTM used by Sutskever et al. (2014) as well 

as its modified version (gated recurrent unit, GRU) developed by Cho 

et al. (2014b) were capable of building translation models that matched 

the performance of the state-of-the-art statistical machine translation 

systems. Further extension of the architecture was proposed by 

Bahdanau et al. (2015), who suggested that an attention mechanism 

should be added, allowing the model to learn which parts of source 

sentences are particularly important for individual elements of the target 

sequences. The crucial contribution of the attention model is that it 

replaces the single vector in continuous space by a distinct vector for 

each target word, created by an alignment model from the sequence of 

hidden states. Each of these distinct vectors contains the information 
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about the whole source sequence, with particular focus on the 

surroundings of a given word (Bahdanau et al. 2015). 

With respect to the input format, Sutskever et al. (2014) proposed 

to present the source sequence backwards in order to create short 

dependencies. However, such an approach also lengthens the short 

dependencies of the traditional forward RNN. To remedy this, the 

bidirectional recurrent neural network (Schuster & Paliwal 1997) may 

be employed (Wu et al. 2016; Cho et al. 2014b). In the bidirectional 

RNN, the outputs of forward and backward RNNs are concatenated, 

thus providing the model with access to the whole input sequence at any 

stage. 

Furthermore, the early models segmented their input into 

individual words in order to simplify the modelling of long-range 

dependencies. However, such an approach has an inherent weakness for 

the application in machine translation – it makes the approach only 

easily applicable in analytic languages. In any language with rich 

morphology, word-based translation is inherently linked to data sparsity 

which complicates the learning of language rules and their application 

to rare words. An application to agglutinating languages becomes 

virtually impossible. Thus, it has been suggested that the models should 

work with smaller units such as “wordpieces” (Wu et al. 2016) or 

individual characters (Lee et al. 2017). On the one hand, this allows the 

model to learn the application of morphology and improves the 

processing of rare words (Wu et al. 2016). On the other hand, it makes 

the computation of the attention mechanism substantially more 
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challenging since “computational complexity of the attention 

mechanism grows quadratically with respect to the sentence length, as 

it needs to attend to every source token for every target token” (Lee et 

al. 2017: 368).

7.2 Present study 

In this study, the encoder-decoder architecture was employed in order 

to evaluate the suitability of the machine translation approach for 

disfluency prediction, exploring a possible avenue of further research. 

Thus, the disfluency prediction was viewed as a translation task from a 

fluent language into a disfluent one. 

 For this purpose, the data from MICASE was used again as the 

input. The disfluencies were identified and removed in a manner closely 

similar to the procedure described in Chapter 5.2.8.1. In order to allow 

training, locations in which disfluencies were present in the original text 

were marked with a special character (“~”). The training data consisted 

of a series of sentence pairs, similar to Example 12.  

 In order to simplify the training process, the tag “<unk>” was 

used as a replacement for extremely rare words: the original vocabulary 

of 19124 words was limited to the 5964 most frequent words by only 

keeping those with frequency ≥ 5). To further improve the training 

( 11 ) 
  what 's the name for blood in spanish. 

 
Input 

 
~ what 's the name for blood in spanish. 

 
Output 
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efficiency, extremely long and extremely short sentences were removed 

(keeping the central 90%, that is 79884 sentences). Finally, the input 

and output were translated into a form suitable for the model, i.e. the 

individual characters were mapped to integer values which were then 

one-hot encoded. 

Then, the encoder model was built with three layers each 

consisting of 1024 GRUs (Cho et al. 2014b), the first layer consisting 

of 512 units reading the input sequence forwards and 512 units 

processing the input backwards. The encoder was then connected to the 

decoder with three layers of 1024 GRUs each, too. The hidden states at 

the end of the input sequence processing were used as the initial states 

for the decoder (cf. Equation 47). 

During the training, the decoder was tasked to predict the next 

character given the encoded sequence and the previously produced 

characters. The previous characters were not taken from the output of 

the decoder; rather they were drawn from the actual output sequence 

one character at a time. Thus, the training implemented teacher forcing 

(Williams & Zipser 1989). Additionally, the training used dropout rate 

(Srivastava et al. 2014) of 0.5 in order to reduce the probability of 

overfitting and improve the generalizability of the model. This means 

that during training, 50% of randomly selected units were dropped 

along with their connections as a means of preventing the individual 

units to co-adapt too much, i.e. to depend too strongly on the output of 

other units. Figure 25 visualizes the model.  
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Figure 25: The architecture used in this chapter. Note that the 

output at time 𝒕 is fed back into the decoder (in training, teacher 

forcing replaces the actual prediction with the correct one) to be 

used for prediction at 𝒕 + 𝟏. The final dense layer maps the 

decoder output into probabilities of the individual characters. 

 The training minimized the categorical cross-entropy function 

through the RMSProp algorithm (Tieleman & Hinton 2012) with initial 

learning rate of 0.001 and learning rate decay set to 0.00001.16 The 

improvement was monitored on a held-out validation set (containing 

approx. 10% of the data) and interrupted once the performance on the 

 

16 The learning rate 𝛼𝑖 at iteration 𝑖 with decay rate 𝑑 = 0.00001 and initial 
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validation set stopped improving. The performance of the model was 

evaluated on a separate test set (another 10% of the data) without 

teacher forcing. Two models were fitted, one distinguishing between 

the individual disfluency types and one with a single tag for all types of 

disfluencies.  

Importantly, an exact parallel of the disfluency type selector 

proposed in the previous chapters is not possible within the architecture 

used in this chapter.17 Similarly, the 𝐹1 score is not directly comparable: 

first, in the present study, the 𝐹1 score is calculated on a per-character 

base. As a consequence, there are many more cases where the model 

can be correct/incorrect. Secondly, given that the 𝐹1 in this case verifies 

the exact correspondence of each character, one additional/missing 

character (or disfluency tag) can influence further scoring. For example, 

even though the disfluency before you know is predicted correctly in 

Example 13, it is not counted as such in the evaluation, as it did not 

occur at the same index [6]. While it would be possible to align the 

 

17 A close approximation of the disfluency type selector could replace the 

disfluencies with a pair of special characters, one signaling a disfluency, the 

other denoting its type. Then, teacher forcing could be used in the prediction 

for all characters except the disfluency type tag. In this case, the model would 

likely quickly learn that a disfluency tag can only be followed by the disfluency 

type tag and the prediction at this location would mostly consist of the selection 

of the correct tag to predict. 
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predicted sequences with the correct ones to some degree, this would 

be unfeasible for cases where the network’s output is vastly different 

from the actual one, such as in the case produced at an early iteration, 

where the sequence actually he's just teaching the honors intro for this 

fall was reproduced as actually he's just teaching the honors into froit 

harily. 

( 13 ) 
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4
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5

 

Index 

In addition to the 𝐹1 score, the performance was evaluated with 

two additional metrics: the exact string accuracy and normalized 

Levenshtein distance. The exact string accuracy counts the proportion 

of character matches between the predicted/original sequence. First, the 

shorter of the sequences is padded to the length of the longer one with 

a non-character symbol Ø, then the characters at each index are 

compared. The final score equals the number of character matches 

divided by the length of the longer of the sequences. 

This makes the metric particularly sensitive to misalignments 

that occur early in the sequence. This is visible in Example 13 used 

previously for the illustration of the 𝐹1 score. Because the decoder did 

not predict the initial disfluency, all subsequent items are misaligned 

and thus labeled as incorrect. As a consequence, the accuracy metric 
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would be very low, in spite of most of the sequence being predicted 

correctly.  

This issue becomes particularly pronounced once teacher forcing 

is disabled. With teacher forcing enabled, the decoder can recover from 

some of the errors which would otherwise propagate. I will illustrate 

this on Example 13: the processing starts with the encoder reading the 

cleaned sequence but you know forwards and backwards and projecting 

it into the multidimensional continuous space. This projection is passed 

to the decoder. The decoder works incrementally, one character at a 

time; each character depends on the encoded input and the characters 

produced up to that point. In an ideal case, the decoder should produce 

the sequence ~ but ~ you know. However, it may happen that the 

decoder fails to identify the first disfluency. In such a case, the first 

character produced will be b. With teacher forcing disabled (as was the 

case in the testing scenario), b would be fed back into the decoder which 

would then likely continue to produce ut ~ you know. However, as 

Example 14 shows, this sequence would not be identified as matching 

with the true sentence, yielding very low exact string accuracy in spite 

of the considerable overlap between the predicted sequence but ~ you 

know and the true sequence ~ but ~ you know. 
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( 12 )    
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On the other hand, with teacher forcing enabled, the first 

produced character b would be reported on the output, but the correct 

prediction ~ would be sent back to the decoder. Then, the decoder may 

produce the rest of the sequence correctly as but ~ you know. The 

accuracy metric and the 𝐹1 score would still report the error in the first 

character; however, the rest would not be affected. Example 14 

illustrates this in more detail. 

It was thus crucial that the influence of teacher forcing be taken 

into account both during training and evaluation. Exact string accuracy 

is a good representation of the ability to predict the next character; 

however, it is too strict to be used with models without teacher forcing. 

As a consequence, it was used in order to observe the improvement of 

the model during training. For the evaluation of the model performance 

on the test data, a different score had to be found, capable of dealing 

with the misalignment caused e.g. by the incorrect prediction of 

disfluencies. 

For this purpose, the Levenshtein distance was selected 

(Levenshtein 1965). This metric calculates the minimum cost at which 

one string can be converted into another by editing single characters. 

The available edits are substitution, insertion and deletion and may be 

assigned various costs (in this case, all operations had the cost of 1). 

Importantly, the metric is not inherently normalized, i.e. the string 

length is not taken into account. The possible approaches to 

normalization include the alignment length (used e.g. by Heeringa et al. 

2006) or the length of the longer string (used e.g. by Inkpen et al. 2005). 
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In the present thesis, the latter method was adopted. To illustrate, the 

raw Levenshtein distance between the true sequence in Example 14 and 

the output of the decoder would be: 

- 1 with teacher forcing (replacing b by ~ in b but ~ you know) 

- 2 without teacher forcing (inserting ~ and a space prior to but ~ 

you know) 

After normalization (i.e. division by 16), the final scores would by 
1

16
 

and 
2

16
 respectively (smaller is better), reflecting the similarity of both 

sequences to the correct one better than the exact string accuracy scores 

of 
15

16
 and 

1

16
 (larger is better). 

Finally, beam search strategy (with beam width 10) was used 

during inference. Thus, rather than keeping only the most likely output 

at time 𝑡 and using it to predict the output at 𝑡 + 1, ten outputs with the 

highest joint probability were kept at any given moment and used for 

the inference of the next character. This should allow the network to 

recover from some of the errors caused by assigning an incorrectly high 

probability to a character. To reduce the computational complexity, the 

outputs were pruned after each iteration. The inference was stopped 

once the end-of-sequence character was produced by the decoder or 

once the maximum observed length was reached. In this manner, the 

model never had to work with sequences longer than those it has seen 

in the training set. 
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The models were implemented using the keras API (Chollet & 

others 2015) with TensorFlow backend (Abadi et al. 2015) and trained 

using a dedicated GPU. The loss function minimized was the 

categorical cross-entropy.

7.3 Results 

The first model (distinguishing between individual disfluency types) 

was trained for approx. 180000 iterations (or 36 hours) with batches of 

256 sentences (each batch was a randomly drawn sample of sentence 

pairs, padded to the length of the longest sentence in the sample). At the 

moment the training was interrupted, the training loss fell below 0.001, 

with validation loss 0.053 and validation accuracy 99.3%, i.e. the model 

correctly predicted 993 characters out of 1000 in the validation set 

(validation used teacher forcing). Its mean normalized Levenshtein 

distance was 0.02 (SD = 0.03, median = 0). On the test set, the 

architecture achieved 67.6% accuracy. This deterioration is likely to be 

linked to the lack of teacher forcing in the processing of the test set – 

erroneous predictions may propagate further through the sentence. This 

is supported by the mean normalized Levenshtein distance on the test 

set which was 0.09 (SD = 0.16, median = 0). 

Table 22 shows the performance of the model over individual 

disfluency types. The achieved performance is clearly not balanced 

across the distinguished types: repetitions seem easier to predict than 

filled pauses (um) in particular. This may be related to their frequency 

– as mentioned in Chapter 5.3.1, repetitions are the most frequent type 
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of disfluencies in the data. However, this does not explain the observed 

trend completely: the model was more successful in predicting silent 

pauses than filled ones, in spite of their relative rareness. Thus, it would 

seem that filled pauses, even though they are more different from the 

fluent text in terms of the surprisal at their location (cf. Chapter 4.4.2), 

are harder to predict solely from the text. This suggests that they may 

be related to background processes not having any realization in the 

surface form, such as the silent repairs suggested by Levelt (1983). 

Disfluency Precision Recall 𝑭𝟏 

Pause 5.48% 15.38% 8.08% 

Repetition 9.01% 20.13% 12.45% 

Uh 3.28% 9.32% 4.86% 

Um 1.82% 5.06% 2.68% 

Overall 8.71% 22% 12.48% 

Table 22: The performance of disfluency prediction using 

encoder-decoder architecture. The overall scores were 

calculated after individual disfluency types were conflated 

in both the predicted and real test data. 

The second model (only working with one tag for all disfluency 

types) required approx. 150000 weight updates (corresponding to 30 

hours of training) on batches of 256 sentences. At the moment the 

training stopped, it achieved loss on the training data below 0.001. The 

performance over validation data was even slightly better than in the 

first model (lower loss of 0.045, same accuracy of 99.3%), with mean 

normalized Levenshtein distance of 0.01 (SD = 0.03, median = 0). 
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Similarly, this model achieved better results over the test set with an 

overall accuracy of 68.8% and mean normalized Levenshtein distance 

of 0.08 (SD = 0.15, median = 0). Table 23 shows that this model 

outperformed the one trained with distinct tags for each disfluency type 

both in precision and in recall. Such an observation suggests that the 

training data was not sufficiently large for the network to learn the 

underlying function regulating the placement of the disfluency types 

distinguished in this data. Though conflating the types may have 

increased the noisiness of the dataset, it also provided the network with 

many more examples of a single category to train on. This improvement 

hints that while disfluency type is not selected randomly (as shown in 

Study IIa by comparison to the baseline), the individual types do share 

some of the characteristics of their placement. 

Model Precision Recall 𝑭𝟏 

Occurrence + 

type 
8.71% 22% 12.48% 

Occurrence 9.86% 24.31% 14.03% 

Table 23: The performance of disfluency prediction using 

encoder-decoder architecture. Comparison of the model 

which was trained using distinct disfluency types (thus 

predicting both occurrence and type of disfluency) with a 

model trained with only one tag for all disfluencies (thus 

predicting occurrence only). 

This shared characteristic allows the model to improve its 

performance. Conceptually, it is similar to replacing all nouns in a 

corpus with a single tag. While it is clearly not true that all nouns are 
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mutually interchangeable in any context, a model learning on such data 

may acquire better understanding of the syntactic constraints of noun 

placement than a model that is trained on an identical dataset with the 

actual noun strings in place.

7.4 Conclusion 

The study presented in this chapter shows that approaching disfluency 

prediction as a translation task from fluent language to a disfluent one 

may achieve results similar to predicting disfluencies through a set of 

theoretically motivated predictors. Even though the 𝐹1 scores are not 

directly comparable (due to the difference in the resolution: character 

vs. word), the encoder-decoder model was clearly capable of achieving 

some understanding of disfluency placement. Furthermore, the 

superiority of the model that did not distinguish individual disfluency 

types provides two suggestions that further research should address. 

First, the tandem of disfluency prediction and disfluency selection 

models, as presented by Ohta et al. (2008) may present a potential 

avenue of improvement. Second, to achieve better results, the training 

data should be even larger. In the context of machine translation, the 

MICASE is a rather small dataset, compared to, e.g. the 5 million 

sentences used by Wu et al. (2016). 

 Additionally, the implementation of attention mechanism, as 

suggested by Bahdanau et al. (2015) may further improve the 

performance, especially in the case of long sentences, as shown by 

Vaswani et al. (2017). The present study did not employ attention due 
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to the limitations of the hardware used: a character-based model with 

attention did not fit into the memory of the GPU used for training. This 

issue could be alleviated by using subword-units as the basic units of 

the model, reducing the computational complexity. Such an approach 

would, however, be negatively reflected in the increased sparsity of the 

training data. 

 To conclude, advanced models used in machine translation may 

yield good results on the task of disfluency prediction, similar in 

performance to models employing theoretically motivated predictors. 

However, they suffer from the limited size of the training data, too. This 

negative influence is perhaps even more pronounced in the case of the 

architecture used in this chapter, as it only had access to the MICASE 

dataset. The approach developed in Studies I and II, on the other hand, 

employed statistics drawn from a much larger corpus. Further research 

should thus explore whether pre-training the encoder-decoder model on 

a large general dataset (dominated by written language) with 

subsequent fine-tuning on the disfluent corpus improves the 

performance of the system by yielding better representations in the 

shared space of the encoder and the decoder.



 

Chapter 8  

Final discussion 

This thesis attempted to predict three types of disfluencies in the human 

language: filled and unfilled pauses (further distinguishing uh and um) 

and repetitions. The prediction included a number of predictors 

proposed by previous research, such as sentence/syntactic unit 

boundary, part of speech, bigram association metrics. In addition to 

these measures, the estimate of the surprisal of each word in the text 

was added. This was motivated by the claim of the Uniform Information 

Density (Jaeger 2006, 2010) hypothesis, as extending the Information 

Theory (Shannon 1948). Concretely, the assumption was that 

disfluencies may be used as surprisal smoothing agents where other 

smoothing options are unavailable (e.g. the insertion of an optional 

syntactic element, cf. Jaeger 2006, 2010) or insufficient (e.g. the 

smoothing by phonetic detail, cf. Sayeed et al. 2015; Aylett & Turk 

2004, 2006). In such cases, the interruption of the speech stream by a 

pause or by repeating an element allows additional time to pass between 

the pronunciation of two neighboring items, thus lowering the average 

rate at which information is transmitted. 

 Naturally, this hypothesis was unlikely to explain the variation 

in disfluency placement completely. First of all, the surprisal estimate 

employed in this thesis does not contain the information whether an 

optional syntactic element is available or to what extent was the 

phonetic smoothing employed. Furthermore, interspeaker variation 
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(Shriberg 1994), influence of the topic complexity (Goldman-Eisler 

1968) or familiarity (Good & Butterworth 1980), or the truthfulness of 

the conveyed message (Smith & Clark 1993) were not coded for, even 

though all of these are claimed to be predictors of disfluencies. 

 On the other hand, the surprisal measure does capture many 

other hypothesized triggering events to some degree. Among other, it 

gives information whether the upcoming input is 

unpredictable/uncommon (Schnadt & Corley 2006; Beattie & 

Butterworth 1979), new to the conversation (Barr & Seyfeddinipur 

2010) or complex (Watanabe et al. 2008; Arnold et al. 2007).  

 Given the design of the studies presented and the results, the 

causal link to high surprisal or – as observed in Study I – a sudden 

surprisal peak in comparison to the previous item, will require further 

verification through experimental studies. Importantly, the 

decomposition of the surprisal elements in Figure 7 (Chapter 4.4.2) has 

shown that the difference in surprisal at disfluency locations is partially 

limited to syntactically complex environments, with limited differences 

in the case of the n-gram surprisal and the semantic coherence measure. 

This suggests that models with some awareness of the underlying 

syntactic structure should perform better in explaining disfluency 

placement than those without. 

 This matches the observations of previous research pointing out 

that disfluencies tend to occur at syntactic boundaries (Schneider 2014; 

Bortfeld et al. 2001; Maclay & Osgood 1959). These are compatible 
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with the function of disfluencies as time-inserting surprisal-smoothing 

agents: at syntactic boundaries, additional time would benefit both the 

listener (as would be the traditional motivation for surprisal lowering in 

the UID) and the speaker. This perspective is also interesting in the light 

of the observations reported by Engelhardt et al. (2017) and 

summarized in Chapter 3.1: there are both studies arguing for the 

listener- and speaker-orientation of unfilled pauses on the basis of 

patterns observed in individuals affected by autism spectrum disorder. 

A perspective, in which disfluencies (or at least some of their types) are 

beneficial for both the listener and the speaker would allow one to unite 

these studies. The conflicting results would then not be consequences 

of study design imperfections, but merely due to different study designs 

putting more focus on the listener- or speaker-related sources of 

disfluencies. 

Ultimately, however, even syntactically informed models were 

not capable of predicting disfluencies flawlessly. This applies both to 

the model used in Study IIb, which was specifically provided with 

syntactic information, and to the encoder-decoder architecture 

presented in Study III, which should be capable of inferring the 

syntactic structure of a language automatically through training on 

examples. Both of these studies show that even the addition of syntactic 

rules does not make disfluency prediction a deterministic process. 

Rather, at least some of the disfluencies seem to be placed by a 

stochastic process. This is particularly likely for those disfluencies 

which are symptoms of silent repairs in the output formulation, at least 
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from the perspective of the current state of research. Even though past 

studies have uncovered some regularities in the uncaught retrieval 

errors (Harley 2006; Bock & Levelt 1994; Fromkin 1971), the process 

causing the wrong retrieval remains largely unexplained. If we cannot 

predict the cause (the retrieval error caught by the self-monitoring 

system prior to pronunciation), predicting its consequence (the 

disfluency as a symptom of repair in the background) is equally 

difficult. 

In this light, the results of Adell et al. (2007), who achieved a 

striking success with a precision score of 96.7% and recall of 57.7%, 

seem particularly interesting. Outperforming other studies in the area 

(Qader 2017; Schneider 2014; Ohta et al. 2008) as well as the present 

study, it is worth pointing out the differences in their setup. On the one 

hand, there are the algorithmic differences: while Adell et al. used 

classification trees (as did this thesis and – as an element of the random 

forest algorithm – Schneider), Ohta et al. and Qader opted for the 

conditional random field model. On the other hand, in terms of 

predictors, Adell et al. employed the concept of candidate (i.e. a word 

particularly likely to be followed by a disfluency) which was to my 

knowledge not included in any other work except in the present thesis. 

Their other predictors (part-of-speech tags of surrounding words, 

bigram probability, word string and probability of a disfluency to occur 

given the preceding word) were in some way included in the other 

models. In summary, the concept of candidate is the most pronounced 

distinguishing factor separating their approach from the other studies. 
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Considering the similarity of the method proposed by Adell et al. 

and other previously used approaches in terms of algorithms and 

predictors, it would seem that precisely this concept of candidate 

(though not having a particular theoretical motivation) is the decisive 

factor. However, Study IIa in this thesis did not confirm this claim; 

rather, the inclusion of the candidate predictor did not lead to any 

change in the performance at all (see Chapter 5.2). A potential answer 

to this discrepancy is provided by this thesis, concretely by the 

comparison of Study I with Studies IIa, IIb and III. While Study I 

achieved very good results (recall of 76.9%, precision of 90.8% on a 

held out test set), Studies IIa and IIb did not match this performance, in 

spite of including the independent variables of Study I in their predictor 

sets and using more advanced models capable of handling more 

complex interactions as well as imbalanced data. Even the 

implementation of a state-of-the-art translation model in Study III did 

not bring the results any closer to those of Study I. The reason for this 

discrepancy is likely to lie in the largest difference between the studies: 

the data. While Study I was very successful in disfluency prediction in 

the JSCC, Studies IIa, IIb and III attempted to find disfluent locations 

in the MICASE dataset. It is possible that the results of Adell et al. are 

influenced by the structure of the dataset used, too. Unfortunately, to 

my knowledge, there has been no replication study attempting to use 

the model of Adell et al. on a different Spanish dataset or test a much 

simpler model on the dataset used by Adell et al., i.e. the data collected 

in the LC-STAR project (Bisani et al. 2003). However, the note of Adell 
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et al. (2007: 361) that 10 candidates account for 53% of all disfluencies 

in the corpus may hint towards similarity to the JSCC, in which 74% of 

disfluencies were sentence-initial. The similarity would in this case lie 

in the systematic skew of the transcription conventions. In the JSCC, it 

seems likely that sentence-initial disfluencies had a higher probability 

of being transcribed than those located sentence-medially or sentence-

finally, given that the overwhelming domination of sentence-initial 

disfluencies has not been reported by previous research. If a similar 

transcription policy was adopted in the compilation of the LC-STAR 

dataset, Adell et al. would inevitably be training their model on 

unrealistic data. 

 This observation raises the inevitable concern about the 

availability of high quality data and a standardized benchmarking 

dataset. Since each of the studies reviewed worked with different data, 

their results cannot be compared directly. While a model may perform 

well on the LC-STAR corpus, the same architecture may not perform 

well on the corpus of Japanese used by Ohta et al. (2008). Even within 

the same language, this thesis has shown that large differences may 

exist between models trained and tested on two different datasets, in 

spite of both datasets being compiled by trained transcribers. 

Nevertheless, since disfluencies belong to the items most commonly 

neglected in transcription (Lindsay & O'Connell 1995), they may have 

been transcribed selectively in some of the datasets used for their 

prediction. This is especially likely if the transcribers were not 

specifically instructed to listen for them and transcribe them, as listeners 
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tend to not perceive disfluencies unless they focus on them (Rieger 

2003). To conclude, future advances in the area of disfluency prediction 

would likely benefit from a standardized benchmark dataset similar to 

those used for the development of machine translation or speech 

recognition systems. 

From the corpus linguistic perspective, this thesis validated some 

of the previously observed trends. It found evidence for the claim that 

noun phrase beginnings attract disfluencies (Schneider 2014; Bortfeld 

et al. 2001; Goldman-Eisler 1968; Maclay & Osgood 1959) while verb 

phrase beginnings repel them (Schneider 2014; Maclay & Osgood 

1959). Furthermore, it provided further perspective to Schneider’s 

analysis of association scores, generalizing her observations outside of 

specific contexts and showing that complex interplay between the 

individual scores exists and that individual collocation metrics may 

even suggest opposite explanations. For example, the mutual 

information score (MI, defined in Chapter 5.2.3) of a bigram was found 

to be negatively correlated with its probability of being disfluent (all 

else being equal) while the lexical gravity score (G, defined in Chapter 

5.2.4) was positively correlated. Thus, while one metric would hint that 

strongly mentally associated items should not be separated by a 

disfluency, the other provides conflicting evidence. In this respect, the 

comment of Gries (2013) that there is no unanimously accepted 

measure of collocation strength becomes particularly relevant: the 

uncertainty as to which of the measures actually correlates with the 

mental representation strength complicates the explanation of such an 
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observation. One helpful perspective is provided by a recent paper by 

McConnell & Blumenthal-Dramé (2019). In their self-paced reading 

study, they bring the cognitive reality of many of the metrics used for 

association strength measurement into question, showing that they are 

outperformed by transitional probability and bigram frequency. They 

argue that while these metrics may be useful for the corpus-linguistic 

definition of collocations, they are not capable of predicting reading 

times well. As a consequence, they may not correlate with the 

association strength of individual items in the brain. If this was the case, 

they would also not be capable of capturing the degree to which a 

bigram is stored as a fused chunk in the memory, inseparable by a 

disfluency. Rather, the correlation of these scores with the probability 

of disfluency insertion may be due to another underlying variable.18 

Thus, further inquiries into the cognitive reality of the individual 

association metrics are needed. In particular, it should be validated 

which of the scores, if any, truly capture the strength of association of 

two elements of a bigram in the memory. Similarly, careful analysis of 

the correlation of association metrics with other effects is needed in 

order to explore their strengths and weaknesses. 

 

18 As an example of the effect of the MI as independent on the G score, this 

variable could be related to the syntactically-dependent association that is 

contained in the MI score, but should not be present in the G score 
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For the sake of compactness, this thesis did not address some of 

the previously described facets of disfluency use, as it did not expect 

that these could be employed as powerful predictors of disfluency 

location with the algorithms and training data used. However, a brief 

discussion of these is necessary in order to show potential avenues of 

further improvement.  

First, the sociolinguistic perspective was suppressed due to the 

limited variety of speakers in the JSCC and (to a smaller degree) the 

MICASE. However, previous research has shown that there is both 

considerable variation in terms of individual speakers, e.g. the ‘deleters’ 

and ‘repeaters’ described by Shriberg (1994), and speaker groups, such 

as males versus females or younger versus older speakers (Rousier-

Vercruyssen et al. 2019; Fruehwald 2016; Laserna et al. 2014; Tottie 

2014, 2011; Acton 2011). Most of the differences are restricted to the 

choice of disfluency to be used, particularly the um/uh-variation. 

Concretely, Fruehwald (2016) observes an almost complete transition 

from uh to um in the course of the 20th century: speakers born around 

1900 used almost exclusively um, while speakers born in late 1990s 

were much more likely to choose uh. As a result, including this 

information as a predictor could improve the precision of disfluency 

type selection. In terms of practical application to disfluency prediction 

as an element of a speech synthesis pipeline, systems aware of this 

variation could simulate various speaker profiles, leading to a more 

natural output. However, it would also require that other parts of the 

speech synthesis system be matched with the speaker profile used in the 
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disfluency insertion/selection mechanism. Thus, the practical 

applicability is most relevant for systems that use identical training 

datasets for both the speech synthesis and disfluency prediction. Yet, in 

such systems, the disfluency prediction may not necessarily be a 

separate element in a pipeline; rather it may be a joint task performed 

together with the synthesis.  

Secondly, this thesis did not evaluate the impact of disfluency 

placement on the message itself. Operating within the Noisy Channel 

framework, it assumed that the message is drafted prior to disfluencies 

being inserted. This is not an uncontroversial assumption, even though 

it is useful as a helpful simplification in disfluency prediction. On the 

contrary, there are studies pointing out that disfluencies may be used on 

purpose as an inherent part of the message (O'Connell & Kowal 2004). 

In such a case, disfluencies may be used to express information (in the 

traditional sense) or to structure it. From the functional perspective, 

disfluencies may operate e.g. as elements of junctures19 segmenting an 

utterance into utterance parts (Daneš 1960). This may lead to emphasis 

on a particular segment as in the example (Daneš 1960: 51) below (the 

pipe character is used to indicate the juncture):  

 

19 Daneš (1960: 44) defines junctures as the combination of a pause and the 

preceding intonation contour. 
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( 13 ) 
It is the country | that suits my wife 

best. 

Normal 

complex 

sentence 

 It is the country that suits my wife best. 
Contrastive 

emphasis 

Alternately, the juncture location may signal different grammatical 

structure (and by extension a different message) as in the difference 

between мост деревянный (‘a wooden bridge’) and мост | 

деревянный (‘the bridge is made of wood’), as also pointed out by 

Daneš (1960: 53).20 Thus, the inclusion/exclusion of a disfluency may 

serve as a pointer that a specific sentence perspective should be 

employed. Such an interplay between the factors influencing the 

functional sentence perspective and disfluency placement was not fully 

included in the present model of disfluency placement due to both 

limitations in terms of data and of the language models used. First of 

all, many of the juncture-marking pauses are likely not transcribed 

given that MICASE transcription includes pauses of 1 second or more 

(Simpson-Vlach et al. 2003). Second, the language model defined in 

Chapters 2.2 and 2.3 is not capable of distinguishing individual 

sentence perspectives unless they are marked by the change in the 

textual surface form. In order to be capable of making fine-grained 

 

20 In this respect, it should be noted that мост деревянный, while attested in 

the Russian National Corpus (2019), is a marked version (6 attestations in 

approx. 300 million words) of the default деревянный мост (77 attestations).  
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distinctions of the perspective applying to a given sentence, the model 

would also need to include phonetic information such as the intonation 

pattern. Then, it would also need a large enough training dataset in 

which each message is encoded including the intended perspective, i.e. 

the description of a sentence as a distributional field of degrees of 

communicative dynamism (Firbas 1985). Only then could the model 

learn both the unmarked and marked intonation patterns and align them 

with the corresponding distributions of degrees of communicative 

dynamism. Finally, in the disfluency prediction phase, the model would 

need to be provided with both the fluent message and its description 

from the viewpoint of the functional sentence perspective: this would 

be the only way to distinguish such cases as in Example 15. Including 

this factor in the disfluency prediction – and in the speech synthesis in 

particular – may lead to even more natural synthesized speech. 

However, to my knowledge, there is currently no large enough dataset 

with annotation of the degrees of communicative dynamism, nor an 

automated tool devised for such a purpose. Thus, an attempt to include 

such a feature in the disfluency prediction would be beyond the scope 

of the present thesis. 

Finally, the function of disfluencies is not entirely resolved. 

While multiple perspectives exist – the aforementioned functional 

sentence perspective approach being one of them – neither has been 

able to reliably account for all disfluencies. The origin of disfluencies 

is likely not a single one of the three basic motivations defined by Clark 

& Fox Tree (2002) for filled pauses in the “filler-as-symptom”, “filler-
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as-nonlinguistic-signal” and “filler-as-word” views. Rather, each of the 

views may account for a share of disfluency observations. Thus, while 

some disfluencies may carry a meaning (thus being representatives of 

the disfluency-as-word view), other may be symptoms of the stochastic 

process of retrieval errors or floor-holding signals issued while the next 

output is being prepared.  

Appending the list of disfluency triggers, this thesis explored an 

additional information-theoretically inspired perspective, framing 

disfluency use as an example of information transmission smoothing. It 

has shown that this perspective, too, can explain some of the 

disfluencies used and that disfluent locations do have a surprisal profile 

different from the fluent ones. Though there is an overlap between the 

values of the surprisal estimate at fluent and disfluent locations, 

disfluent locations tend to be less predictable, i.e. have higher surprisal. 

In other words, there is a correlation between the processing complexity 

of an item and its probability of being disfluent.



 

Chapter 9  

Concluding remarks and outlook 

This thesis set out to present a system for disfluency prediction that 

could be incorporated into a speech synthesis pipeline, improving the 

naturalness of synthesized speech. At the same time, observations of 

previous research were validated against new data and outside of 

precisely specified experimental contexts. 

 This thesis proposed an additional predictor of disfluency use: 

the surprisal, an estimate of the processing complexity associated with 

each item, assessed by a psycholinguistically motivated language 

model. Because locations with high surprisal should be harder to 

process, they should also be less likely to be available and prepared in 

time for production. Thus, it was hypothesized that high-surprisal 

locations should be more likely to be disfluent. This hypothesis drew 

on and extended the Uniform Information Density hypothesis. It was 

argued that disfluencies fulfil the role of surprisal smoothing agents: 

items employed in order to smoothen sudden peaks in surprisal. These 

may be employed where the smoothing methods described by previous 

research (optional syntactic elements or phonetic smoothing) are 

unavailable or insufficient. Indeed, Studies I and IIa showed that 

surprisal correlates with disfluency use. They have also revealed that 

the position of an item within a sentence and a turn plays the decisive 

role in disfluency placement. 
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 The importance of the position of an item also pointed to the 

influence of structural factors. This was further explored in Study IIb 

through POS-tagging and IOB-chunking. This study also confirmed 

some observations of previous research, such as the tendency of noun 

phrase boundaries to attract disfluencies and verb phrase boundaries to 

repel them. On the other hand, it also showed that some of the 

previously described structural relationships only hold when explored 

in isolation: in particular the relationship between function/content 

words and disfluency use was completely reversed once other factors 

(such as surprisal, association strength of two neighboring words or 

bigram frequency) were taken into account.  

 Finally, Study III offered a purely computational perspective 

on disfluency prediction. Framing it as a translation task from a fluent 

language into a disfluent one, it employed state-of-the-art neural 

translation model (the encoder-decoder architecture) in order to 

evaluate the relevance of this approach. The results showed that this 

model can perform on par with theoretically motivated models 

employing a range of complex predictors. In spite of training on a 

relatively small dataset, the encoder-decoder model achieved 

performance similar to models employing statistics drawn from a 

corpus of more than 400 million words. 

All in all, this thesis offered a new approach to the complex 

matter of disfluency prediction. The discovered link between local 

surprisal and disfluency placement points to a framework that can unite 

some of the previously suggested triggers of disfluencies under one 
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notion, that of processing complexity. Additionally, it has been shown 

that structural factors must not be neglected in disfluency prediction: 

items with equal surprisal values have distinct probabilities of being 

disfluent, dependent on their structural embedding. Thus, models with 

structural awareness should perform better in disfluency prediction. 

Finally, this thesis has presented two approaches to disfluency 

prediction: the theoretically motivated prediction by surprisal and the 

computational neural translation model. Since they performed 

similarly, both of them should be developed by further research. 

 The encoder-decoder architecture presented in Study III is 

particularly promising for practical applications in speech synthesis. On 

the one hand, it allows efficient training without the need to find or 

create extremely large corpora of the desired language or preprocess the 

data heavily; on the other hand, it can be adapted to serve for disfluency 

clean-up in automated speech recognition. This versatility allows 

efficient simultaneous training of disfluency prediction and detection 

systems for speech synthesis and recognition pipelines. The main 

limitation of this approach is the size of the training data. Given that the 

encoder-decoder architecture as implemented here must learn the 

complete rules of language from the training corpus, the MICASE is 

not sufficient. Future attempts at disfluency prediction should either 

employ a larger training dataset of transcribed natural speech or 

experiment with pre-training the model on a large collection of written 

texts, so as to improve the quality of the representations in continuous 

space. 
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 Additionally, the application of the psycholinguistically 

motivated measure of surprisal provided a new perspective on the origin 

of disfluencies: the processing load caused by an item plays a role in 

determining its likelihood of being disfluent. Future research should 

investigate this observation further. Among other, experimental studies 

should verify the relationship while controlling for other factors not 

captured by the model used here. At the same time, large scale corpus 

studies should extend the model by other potential predictors, such as 

the profile of the speaker and the interlocutor. 
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Appendix 

 

A.1: The distributions of syntactic and n-gram surprisal 

estimates in the JSCC corpus. 
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A.2: Effect of the magnitude of local change in surprisal on 

disfluency placement in the JSCC. 

 

 β Std.Error z p-value  

(Intercept) -4.18 2.80×10-02 -149.35 <0.001 *** 

Sentence-

initial 
1.79 3.79×10-02 47.16 <0.001 *** 

MI -3.67×10-01 6.04×10-03 -60.70 <0.001 *** 

G 7.83×10-02 4.39×10-03 17.81 <0.001 *** 

TP-D 3.37×10+01 4.19 8.05 <0.001 *** 

TP-B 9.78×10-01 1.90×10-01 5.14 <0.001 *** 
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Bigram 

frequency 
-6.56×10-06 5.78×10-07 -11.36 <0.001 *** 

Surprisal 

difference 
2.01×10-02 5.74×10-03 3.50 <0.001 *** 

Surprisal 4.11×10-01 3.55×10-02 11.58 <0.001 *** 

n-gram 

surprisal 
3.23×10-02 5.51×10-03 5.87 <0.001 *** 

Syntactic 

surprisal 
-2.33×10-01 3.18×10-02 -7.33 <0.001 *** 

Sentence-

initial : MI 
1.81×10-01 1.12×10-02 16.21 <0.001 *** 

Sentence-

initial : G 
-4.31×10-02 4.37×10-03 -9.86 <0.001 *** 

Sentence-

initial : TP-

D 

-9.55 9.56×10-01 -9.99 <0.001 *** 

Sentence-

initial : TP-

B 

-1.06 4.94×10-01 -2.15 0.031 * 

Sentence-

initial : 

bigram 

frequency 

1.16×10-06 2.71×10-07 4.28 <0.001 *** 

Sentence-

initial : 

surprisal 

difference 

-3.38×10-04 1.08×10-02 -0.03 0.975  

Sentence-

initial : 

surprisal 

-1.19 2.10×10-01 -5.69 <0.001 *** 
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Sentence-

initial : n-

gram 

surprisal 

-7.79×10-02 1.41×10-02 -5.53 <0.001 *** 

Sentence-

initial : 

syntactic 

surprisal 

9.92×10-01 1.94×10-01 5.11 <0.001 *** 

MI : G -1.04×10-02 1.16×10-03 -8.99 <0.001 *** 

MI : TP-D -5.45 3.23×10-01 -16.84 <0.001 *** 

MI : TP-B 2.17×10-01 1.05×10-01 2.07 0.039 * 

MI : 

bigram 

frequency 

-1.48×10-06 9.94×10-08 -14.88 <0.001 *** 

MI : 

surprisal 

difference 

-7.96×10-03 2.83×10-03 -2.81 0.005 ** 

MI : 

surprisal 
-1.02×10-01 1.22×10-02 -8.39 <0.001 *** 

MI : n-

gram 

surprisal 

2.16×10-04 1.89×10-03 0.11 0.909  

MI : 

syntactic 

surprisal 

1.20×10-01 1.12×10-02 10.77 <0.001 *** 

G : TP-D 3.67 2.33×10-01 15.73 <0.001 *** 

G : TP-B -4.07×10-02 3.21×10-02 -1.27 0.206  

G : bigram 

frequency 
5.16×10-07 4.49×10-08 11.49 <0.001 *** 
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G : 

surprisal 

difference 

-1.46×10-03 1.16×10-03 -1.26 0.207  

G : 

surprisal 
-3.71×10-03 7.00×10-03 -0.53 0.596  

G : n-gram 

surprisal 
-9.79×10-03 7.41×10-04 -13.21 <0.001 *** 

G : 

syntactic 

surprisal 

3.35×10-03 6.58×10-03 0.51 0.610  

TP-D : TP-

B 
-2.86×10+01 1.44×10+01 -1.98 0.048 * 

TP-D : 

bigram 

frequency 

-3.32×10-04 7.94×10-05 -4.18 <0.001 *** 

TP-D : 

surprisal 

difference 

4.21×10-01 1.84×10-01 2.29 0.022 * 

TP-D : 

surprisal 
-2.78×10-01 1.01 -0.28 0.782  

TP-D : n-

gram 

surprisal 

2.84 2.97×10-01 9.53 <0.001 *** 

TP-D : 

syntactic 

surprisal 

-1.60 8.57×10-01 -1.87 0.062 . 

TP-B : 

bigram 

frequency 

-7.11×10-07 5.71×10-07 -1.25 0.213  

TP-B : diff -1.61×10-02 1.08×10-01 -0.15 0.881  
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TP-B : 

surprisal 
5.31×10-02 1.59×10-01 0.33 0.739  

Bigram 

frequency : 

n-gram 

surprisal 

2.68×10-07 7.47×10-08 3.59 <0.001 *** 

Bigram 

frequency : 

surprisal 

difference 

-5.73×10-08 4.10×10-08 -1.40 0.162  

Bigram 

frequency : 

surprisal 

3.88×10-08 3.70×10-07 0.11 0.917  

Bigram 

frequency : 

syntactic 

surprisal 

-3.17×10-07 3.01×10-07 -1.05 0.292  

Surprisal 

difference : 

surprisal 

-4.98×10-02 1.34×10-02 -3.71 <0.001 *** 

Surprisal 

difference : 

n-gram 

surprisal 

-6.83×10-03 1.86×10-03 -3.68 <0.001 *** 

Surprisal 

difference : 

syntactic 

surprisal 

3.97×10-02 1.25×10-02 3.18 0.001 ** 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

A.3 Full model parameters of a simple logistic regression 

disfluency prediction model on the MICASE dataset. 
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A.4 Disfluency rates as related to the frequency of the POS-

tag before the potential disfluency location. 
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A.5: Disfluency rates as related to the frequency of the POS-

tag before the potential disfluency location: ditto tags were 

simplified. 

 

 

 β Std.Error z p-value  

(Intercept)  -3.86 5.33×10-02 -72.46 <0.001 *** 

B-NP  2.55×10-01 4.83×10-02 5.29 <0.001 *** 

B-PP  -4.85×10-01 7.53×10-02 -6.45 <0.001 *** 

B-VP  -9.11×10-02 7.93×10-02 -1.15 0.251  

I-NP  -3.96×10-01 7.37×10-02 -5.37 <0.001 *** 

I-PP  -1.08×10+02 5.22×10+02 -0.21 0.836  

I-VP  -5.34×10-01 9.64×10-02 -5.54 <0.001 *** 
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Sentence-

initial  
1.45 3.88×10-02 37.29 <0.001 *** 

MI  -2.52×10-01 1.27×10-02 -19.82 <0.001 *** 

G  3.26×10-02 6.49×10-03 5.03 <0.001 *** 

TP-D  6.02 4.33 1.39 0.165  

TP-B  5.96×10-01 9.74×10-01 0.61 0.541  

Bigram 

frequency 
-9.46×10-06 1.03×10-06 -9.20 <0.001 *** 

Surprisal 

difference 
-7.16×10-03 1.20×10-02 -0.60 0.551  

Surprisal  1.17×10-01 1.81×10-02 6.46 <0.001 *** 

POS-tag 

frequency 
-1.06×10-06 5.49×10-07 -1.94 0.053 . 

Content 

word 
-6.46×10-01 4.92×10-02 -13.15 <0.001 *** 

B-NP : 

Sentence-

initial  

7.14×10-02 3.66×10-02 1.95 0.051 . 

B-PP : 

Sentence-

initial  

3.54×10-01 6.34×10-02 5.60 <0.001 *** 

B-VP : 

Sentence-

initial  

3.41×10-01 7.35×10-02 4.64 <0.001 *** 

B-NP : MI  1.01×10-02 1.19×10-02 0.85 0.393  

B-PP : MI  2.73×10-02 1.68×10-02 1.62 0.105  

B-VP : MI  4.88×10-02 1.79×10-02 2.72 0.006 ** 

I-NP : MI  -4.52×10-02 1.54×10-02 -2.93 0.003 ** 
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I-PP : MI  -1.21×10+01 5.11×10+01 -0.24 0.812  

I-VP : MI  -5.36×10-03 2.87×10-02 -0.19 0.852  

B-NP : G  -5.13×10-03 4.85×10-03 -1.06 0.291  

B-PP : G  1.46×10-03 7.44×10-03 0.20 0.844  

B-VP : G  1.30×10-02 7.50×10-03 1.73 0.083 . 

I-NP : G  -3.63×10-02 8.01×10-03 -4.54 <0.001 *** 

I-PP : G  1.27×10+01 6.43×10+01 0.20 0.843  

I-VP : G  7.31×10-03 1.11×10-02 0.66 0.510  

B-NP : TP-

D  
1.61 8.19×10-01 1.96 0.050 * 

B-PP : TP-

D  
2.39×10-01 9.01×10-01 0.27 0.791  

B-VP : TP-

D  
3.16 1.79 1.77 0.078 . 

I-NP : TP-

D  
1.13 1.05 1.08 0.281  

I-PP : TP-D  2.67×10+03 1.13×10+05 0.02 0.981  

I-VP : TP-

D  
-1.81 3.09 -0.58 0.559  

B-NP : TP-

B  
-1.86×10-01 9.90×10-01 -0.19 0.851  

B-PP : TP-

B  
-1.90×10-01 1.15 -0.17 0.869  

B-VP : TP-

B  
-3.28×10-01 1.30 -0.25 0.801  

I-NP : TP-

B  
-1.92×10-01 1.15 -0.17 0.868  

I-PP : TP-B  -1.13×10+04 1.06×10+04 -1.07 0.283  
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I-VP : TP-

B  
-1.81 2.26 -0.80 0.423  

B-NP : 

bigram 

frequency 

5.40×10-06 9.06×10-07 5.96 <0.001 *** 

B-PP : 

bigram 

frequency 

-4.71×10-06 1.51×10-06 -3.11 0.002 ** 

B-VP : 

bigram 

frequency 

-2.90×10-06 1.16×10-06 -2.51 0.012 * 

I-NP : 

bigram 

frequency 

1.24×10-06 1.38×10-06 0.90 0.369  

I-PP : 

bigram 

frequency 

-5.30×10-04 5.75×10-03 -0.09 0.927  

I-VP : 

bigram 

frequency 

-3.40×10-06 1.19×10-06 -2.85 0.004 ** 

B-NP : 

surprisal 

difference 

3.41×10-02 1.17×10-02 2.91 0.004 ** 

B-PP : 

surprisal 

difference 

4.37×10-02 1.73×10-02 2.52 0.012 * 

B-VP : 

surprisal 

difference 

9.84×10-02 1.94×10-02 5.08 <0.001 *** 

I-NP : 

surprisal 

difference 

4.15×10-02 2.18×10-02 1.91 0.056 . 
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I-PP : 

surprisal 

difference 

5.24×10-01 6.80×10-01 0.77 0.442  

I-VP : 

surprisal 

difference 

-4.80×10-02 2.88×10-02 -1.67 0.095 . 

B-NP : 

surprisal  
3.72×10-02 1.75×10-02 2.13 0.033 * 

B-PP : 

surprisal  
5.64×10-02 3.05×10-02 1.85 0.064 . 

B-VP : 

surprisal  
4.26×10-02 2.53×10-02 1.69 0.092 . 

I-NP : 

surprisal  
-8.38×10-02 2.80×10-02 -2.99 0.003 ** 

I-PP : 

surprisal  
-1.06 1.01 -1.05 0.295  

I-VP : 

surprisal  
-2.08×10-02 3.99×10-02 -0.52 0.603  

B-NP : 

POS-tag 

frequency 

2.65×10-06 4.77×10-07 5.56 <0.001 *** 

B-PP : 

POS-tag 

frequency 

-6.81×10-07 7.49×10-07 -0.91 0.363  

B-VP : 

POS-tag 

frequency 

3.84×10-06 7.07×10-07 5.43 <0.001 *** 

I-NP : 

POS-tag 

frequency 

3.43×10-07 5.37×10-07 0.64 0.524  
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I-PP : POS-

tag 

frequency 

1.22×10-03 6.38×10-03 0.19 0.848  

I-VP : 

POS-tag 

frequency 

2.41×10-06 9.66×10-07 2.50 0.013 * 

B-NP : 

content 

word 

-1.05×10-01 5.04×10-02 -2.08 0.038 * 

B-PP : 

content 

word 

8.31×10-02 8.34×10-02 1.00 0.319  

B-VP : 

content 

word 

-3.82×10-01 6.55×10-02 -5.83 <0.001 *** 

I-NP : 

content 

word 

1.21×10-01 7.31×10-02 1.65 0.099 . 

I-PP : 

content 

word 

2.22 5.09×10+02 0.00 0.997  

I-VP : 

content 

word 

2.50×10-01 9.69×10-02 2.58 0.010 ** 

Sentence-

initial : MI  
1.39×10-01 1.11×10-02 12.62 <0.001 *** 

Sentence-

initial : G  
1.65×10-02 4.09×10-03 4.03 <0.001 *** 

Sentence-

initial : TP-

D  

-1.47 7.44×10-01 -1.98 0.048 * 
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Sentence-

initial : TP-

B  

-7.17×10-01 5.37×10-01 -1.34 0.182  

Sentence-

initial : 

bigram 

frequency 

6.53×10-07 2.75×10-07 2.37 0.018 * 

Sentence-

initial : 

surprisal 

difference 

2.03×10-02 1.08×10-02 1.88 0.061 . 

Sentence-

initial : 

surprisal  

-1.86×10-01 2.18×10-02 -8.52 <0.001 *** 

Sentence-

initial : 

POS-tag 

frequency 

-9.18×10-07 4.67×10-07 -1.97 0.049 * 

Sentence-

initial : 

content 

word 

4.02×10-01 4.53×10-02 8.87 <0.001 *** 

MI : G  -2.01×10-03 1.04×10-03 -1.94 0.052 . 

MI : TP-D  -1.41 2.74×10-01 -5.15 <0.001 *** 

MI : TP-B  1.90×10-01 1.16×10-01 1.64 0.102  

MI : 

bigram 

frequency 

-1.07×10-06 1.27×10-07 -8.38 <0.001 *** 

MI : 

surprisal 

difference 

-4.90×10-03 2.97×10-03 -1.65 0.099 . 
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MI : 

surprisal  
9.37×10-03 4.01×10-03 2.34 0.019 * 

MI : POS-

tag 

frequency 

2.57×10-07 8.43×10-08 3.05 0.002 ** 

MI : 

content 

word 

-1.01×10-02 1.21×10-02 -0.84 0.404  

G : TP-D  9.69×10-01 1.85×10-01 5.22 <0.001 *** 

G : TP-B  -2.72×10-02 4.24×10-02 -0.64 0.521  

G : bigram 

frequency 
4.57×10-07 5.41×10-08 8.46 <0.001 *** 

G : 

surprisal 

difference 

1.44×10-03 1.16×10-03 1.25 0.213  

G : 

surprisal  
-3.88×10-03 1.65×10-03 -2.35 0.019 * 

G : POS-

tag 

frequency 

-2.12×10-08 3.72×10-08 -0.57 0.569  

G : content 

word 
-2.33×10-02 5.15×10-03 -4.53 <0.001 *** 

TP-D : TP-

B  
-3.37×10+01 1.73×10+01 -1.95 0.052 . 

TP-D : 

bigram 

frequency 

-9.78×10-05 8.35×10-05 -1.17 0.241  

TP-D : 

surprisal 

difference 

1.74×10-01 2.00×10-01 0.87 0.384  
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TP-D : 

surprisal  
5.62×10-01 3.87×10-01 1.45 0.147  

TP-D : 

POS-tag 

frequency 

1.01×10-05 1.00×10-05 1.00 0.316  

TP-D : 

content 

word 

1.26×10-01 1.79 0.07 0.944  

TP-B : 

bigram 

frequency 

-2.10×10-07 5.33×10-07 -0.39 0.694  

TP-B : 

surprisal 

difference 

9.91×10-03 1.14×10-01 0.09 0.931  

TP-B : 

surprisal  
-1.50×10-02 1.80×10-01 -0.08 0.933  

TP-B : 

POS-tag 

frequency 

-5.25×10-06 3.85×10-06 -1.36 0.172  

TP-B : 

content 

word 

9.03×10-01 5.07×10-01 1.78 0.075 . 

Bigram 

frequency : 

surprisal 

difference 

-1.72×10-08 4.28×10-08 -0.40 0.687  

Bigram 

frequency : 

surprisal 

2.40×10-07 1.06×10-07 2.28 0.023 * 

Bigram 

frequency : 
-6.02×10-11 4.85×10-12 -12.41 <0.001  
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POS-tag 

frequency 

Bigram 

frequency : 

content 

word 

3.08×10-06 7.77×10-07 3.96 <0.001  

Surprisal 

difference: 

surprisal  

-8.08×10-03 2.06×10-03 -3.93 <0.001 *** 

Surprisal 

difference: 

POS-tag 

frequency 

-1.88×10-07 1.01×10-07 -1.87 0.062 . 

Surprisal 

difference: 

content 

word 

-3.44×10-03 1.36×10-02 -0.25 0.800  

Surprisal : 

POS-tag 

frequency 

3.31×10-08 1.35×10-07 0.25 0.806  

Surprisal : 

content 

word 

7.60×10-02 1.86×10-02 4.08 <0.001 *** 

POS-tag 

frequency : 

content 

word 

-3.18×10-06 4.00×10-07 -7.95 <0.001  

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

A.6 Full parameters of the disfluency prediction model using 

both the predictors from Study IIa and the structural features 

from Study IIb. 
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Die Publikationsreihe NIHIN – New Ideas in Human Interaction – entstand 2010
und ist ein Kooperationsprojekt zwischen der Hermann Paul School of
Linguistics (HPSL) und der Universitätsbibliothek Freiburg (UB).

NIHIN bietet eine moderne, frei zugängliche Plattform für wissenschaftliche
Essays erfahrener WissenschaftlerInnen sowie Prädikatsdissertationen,
Textsammlungen zum Thema Sprache in der Interaktion und multimodale
Sprachkorpora.

Until recently, disfluencies in human language were outside of the focus
of linguistic research. However, with the advent of technologies such as
digital personal assistants, this approach changed. In order to mimic
natural conversation, it is necessary to create a natural sounding output,
including phenomena deemed undesirable in an idealized view of the
language, such as disfluencies.

This thesis presents two novel approaches to disfluency prediction. It
extends the list of known predictors of disfluencies with surprisal, a
measure of processing complexity derived from psycholinguistic and
information-theoretic observations. Additionally, it presents a compu-
tational-linguistic approach in which a machine translation architecture
(encoder-decoder) is used for the prediction of disfluencies.

New Ideas in Human Interaction

Jiří Zámečník

Disfluency Prediction
in Natural Spoken Language
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