Appendix 2: Brownian Motion Simulation
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Session Info

Give the session info (reduced).
## [1] "R version 3.6.3 (2020-02-29)"
## [1] "x86_64-pc-linux-gnu"

Load Packages

Load packages. If they are not installed yet on your local machine, use install.packages() to install them.

library (ape)
library (phytools)
library(GGally)
library(tidyr)
library(plyr)
library(scales)
library(rstatix)

Give the package versions.

## rstatix  scales plyr tidyr GGally ggplot2 phytools maps
## "0.6.0" "1.1.1" "1.8.6" "1.1.2" "2.0.0" "3.3.3" "O0.7-70" "3.3.0"
## ape
## "5.4-1"

Phylogenetic Tree

We here use an Indo-European phylogenetic tree from Bentz et al. (2018), which was built by using lexical
items from word lists of the Automated Similarity Judgment Program (ASJP). For details on how such
phylogenetic trees are automatically built see Jager (2018).

# load phylogenetic tree in newick format as a text file
tree <- read.newick("https://raw.githubusercontent.com/IWMLC/complexityMeaning/main/IENewickTree.txt")
# choose the languages which are supposed to remain on the phylogeny
languages <- c("'Swedish [i-swe]'","'Dutch [i-nld]'","'Romanian [i-ron]'",
"'Ttalian [i-ita]'","'German [i-deu]'", "'French [i-fra]'",
"'Spanish [i-spal'", "'English [i-eng]'")
# prune the tree by dropping all other tips
pruned.tree <- drop.tip(tree, setdiff (tree$tip.label, languages))



# change tip labels
plot(pruned.tree)

‘Romanian [i-ron]'

'Spanish [i-spa]'

— Italian [i-ita]’

'French [i-fra]'

‘German [i—deu]'

‘Dutch [i-nld]'

‘English [i-eng]'

‘Swedish [i-swe]'

Simulate Brownian Motion along the Phylogenetic Tree

We here simulate the evolution of trait values (i.e. pseudo-complexity values in our case) via the process
of Brownian motion along the branches of our phylogenetic tree. The number of simulations per taxon
(i.e. language) is set as “nsim”. This is conceptualized as the number of pseudo-complexity measurements per
language. For further explanations of the function fastBM() see Revell (2016).

# define wvariance of diffusion process

sig2 = 2 # this variance setting is 0.01 in Revell (2016)

# define number of BM simulations

nsim = 20

# set the seed for random number gemeration im order to get the same result

# when the code is re-run

set.seed(09012020)

# simulate Brownian motion on a tree with fastBM()

simulation <- fastBM(pruned.tree, mu = O, sig2 = sig2, internal = F, nsim = nsim)

Correlation Plots

It is expected that the trait values for taxa which are close on the tree (e.g. Spanish and French or English
and Dutch) are positively correlated. This can be checked in the below correlation plot. However, significance
of correlations depends on the number of data points simulated here.

simulation.df <- as.data.frame(t(simulation))

# the t() function is transposing the rows and columns

cor.plot <- ggpairs(simulation.df,
lower = list(continuous = wrap('"smooth_loess", size = 1)),
upper = list(continuous = wrap('cor', method = "spearman"))) +
theme_bw() +



theme (axis.text.x = element_text(angle = 90, hjust = 1))
print(cor.plot)
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Save figure to file.

ggsave ("Figures/BM_CorPlot.pdf", cor.plot, dpi = 300, scale = 1,
cairo_pdf)

device

## Saving 8 x 8 in image

w




Visualization: Density Distributions

Plot density distributions of BM generated pseudo-complexity measurements by language. Individual values
for each complexity pseudo-measurement are plotted as black dots.

Transform data frame from wide format to long format (this is necessary for later plotting and analyses by
columns rather than rows).

# change column names

colnames(simulation.df) <- c("Swedish", "English", "Dutch", "German", "French", "Italian", "Spanish", "
simulation.df.long <- gather(simulation.df, key = language, value = value, Swedish:Romanian)
head(simulation.df.long)

##  language value
## 1 Swedish 0.4853566
## 2 Swedish -0.7807461
## 3 Swedish -0.7283216
## 4 Swedish 0.2428126
## 5 Swedish 0.3781923
## 6 Swedish -0.1739058

Get mean, median, and standard deviation values.

# get mean values for each language

mu <- ddply(simulation.df.long, "language", summarise, grp.mean = mean(value, na.rm = T))

# get median values for each language

med <- ddply(simulation.df.long, "language", summarise, grp.median = median(value, na.rm = T))
# get standard deviation values for each language

sdev <- ddply(simulation.df.long, "language", summarise, grp.sd = sd(value, na.rm = T))

Plot density distributions with indication of median (mean) values.

density.plot <- ggplot(simulation.df.long, aes(x = value)) +
# histograms could be added as well here (or instead of the density distributions)
# geom_histogram(aes(y = ..density..), colour = "white", fill = "light grey",
# binwidth = 0.1) +
geom_density(alpha = .2, fill = "grey", color = "darkgrey") +
geom_jitter(data = simulation.df.long, aes(x = value, y = 0),
size = 0.7, height = 0.03, width
facet_wrap(~ language) +
# geom vline(data = mu, aes(zintercept=grp.mean),
# linetype = "dotted", color = "blue") +
geom_vline(data = med, aes(xintercept = grp.median),
linetype = "dashed", color = "red") +
geom_vline(aes(xintercept = 0), linetype = "dotted") +
labs(x = "Pseudo-Complexity Value", y = "Density") +
xlim(-2, 2) +
theme_bw ()
print(density.plot)

0) + # add some jitter to prevent overplotting
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Save figure to file.

ggsave ("Figures/BM_simulation_densities.pdf", density.plot, dpi = 300, scale = 1,
device = cairo_pdf)

## Saving 6 x 5 in image

Descriptive Statistics

Give an overview of mean, median, and standard deviation values (i.e. values reflecting the location of a
distribution).

stats.df <- cbind(mu, med[, 2], sdev[, 2])

colnames(stats.df) <- c("language", "mu", "med", "sdev'")
stats.df.sorted <- stats.df [order(stats.df$language), ]

# round values to two decimal places, the "-1" excludes column 1
stats.df.sorted[, -1] <- round(stats.df.sorted[, -1], 2)
print(stats.df.sorted)

##  language mu med sdev
## 1 Dutch -0.07 -0.10 0.34
## 2 English 0.03 -0.04 0.40
## 3 French 0.03 0.07 0.44
## 4 German -0.02 0.05 0.31



## 5 Italian 0.08 0.01 0.49

## 6 Romanian 0.03 0.05 0.46

## 7 Spanish 0.15 0.17 0.46

## 8 Swedish -0.06 -0.09 0.44

Output data frame as csv file.

write.csv(stats.df.sorted, file = "Tables/BMsimulation_descriptiveStats.csv", row.names = F)

Normality

The assumption that the tested data stems from a normally distributed population is often necessary for the
mathematical proofs underlying standard statistical techniques. We might apply normality tests to check for
this assumption (e.g. Baayen 2008, p. 73), but some statisticians advice against such pre-tests, since they are
often too sensitive (MacDonald 2014, p. 133-136, Rasch et al. (2020), p. 67). In fact, Rasch et al. (2020,
p. xi) argue based on earlier simulation studies that almost all standard statistical tests are fairly robust
against deviations from normality. In a similar vein, Lumley et al. (2009) argue that non-normality of the
data is a negligible issue with the t-test, at least for larger sample sizes, e.g. >= 100. However, especially
for smaller sample sizes, it is still advisable to check for gross deviations from normality in the data. One
common way of doing this is quantile-quantile plots. The points should here roughly follow a straight line
(Crawley 2007, p. 281).

ggplot(simulation.df.long, aes(sample = value)) + stat_qqQ)
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Statistical Tests

Standard t-tests can be used to assess significant differences in the means of the pseudo-complexity distributions,
if we assume that the underlying population distributions are normal. Wilcoxon tests are a non-parametric
alternative, i.e. they do not make assumptions about the underlying population distribution (Crawley 2007,
p- 283; Baayen 2008, p. 77). We here run pairwise t-tests. If we supply two data vectors, then by default the
function pairwise.t.test() runs a Welch two sample t-test (for unpaired samples); with the argument “paired
= T” a paired t-test is invoked. We here assume that our data consists of two vectors which are linked via
the same measurement procedure(s), and we hence consider them “paired”. A more general term is “related



samples”, which are defined as “two sets of data where a data point in one set has a pairwise relationship to
a point in the other set of data” (Cahusac 2021, p. 56).

P-value adjustment for multiple comparisons: In case of multiple testing, we should account for the fact that
the likelihood of finding a significant result by chance increases with the number of statistical tests. One of
the most conservative methods to account for this is the so-called Bonferroni correction, i.e. multiplying the
p-values with the number of tests. This method assumes that tests are independent of one another (MacDonald
2014, p. 254-260). However, since we here compare, for example, French to Spanish and then French to
German, there is dependence between the test results. We therefore apply the so-called Holm-Bonferroni
method, which is less conservative. It does not assume independence between tests (see the descriptions in
the vignette invoked by the command “?p.adjust()”).

p-values <- pairwise.t.test(simulation.df.long$value, simulation.df.long$language,
paired = T, p.adjust.method = "holm")
p.values

#i#

## Pairwise comparisons using paired t tests

#i#

## data: simulation.df.long$value and simulation.df.long$language
##

## Dutch English French German Italian Romanian Spanish
## English
## French
## German
## Italian
## Romanian
## Spanish
## Swedish
#it

## P value adjustment method: holm
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Effect sizes

Statistical significance is only one part of the story. For instance, a difference in complexity values might be
statistically significant, but so small that it is negligible for any theorizing. In fact, it is sometimes argued
that effect sizes — rather than p-values — should be the aim of statistical inquiry (Cahusac 2020, p. 12-15).
An overview of effect size measures per statistical test is given in Patil (2020). In conjunction with the t-test
we here use Cohen’s d (i.e. function cohens_d() of the “rstatix” package). (Note: the d estimate given by
this function can be negative. However, the sign is not relevant here, only the absolute value.)

effect.sizes <- cohens_d(simulation.df.long, value ~ language, paired = T)
print (effect.sizes)

## # A tibble: 28 x 7

#i# .y. groupl group2 effsize nil n2 magnitude
## * <chr> <chr> <chr> <dbl> <int> <int> <ord>
## 1 value Dutch English -0.277 20 20 small
## 2 value Dutch French -0.182 20 20 negligible
## 3 value Dutch German -0.163 20 20 negligible
## 4 value Dutch Italian -0.264 20 20 small
## b5 value Dutch Romanian -0.183 20 20 negligible
## 6 value Dutch Spanish -0.434 20 20 small
## 7 value Dutch  Swedish -0.0247 20 20 negligible
## 8 value English French  -0.00948 20 20 negligible



## O value English German 0.116 20 20 negligible
## 10 value English Italian -0.0889 20 20 negligible
## # ... with 18 more rows

Effect size heatmap

Plot a heatmap with effect sizes to get a better overview.

effect.sizes.plot <- ggplot(as.data.frame(effect.sizes), aes(groupl, group2)) +
geom_tile(aes(fill = abs(effsize)), color = "white") +
scale_fill_gradient2(low = "light blue", mid = "light grey", high = "red",

midpoint = 0.5, limit = c(0, 2.5)) +
geom_text (aes(label = round(abs(effsize), 2))) +
labs(x = "", y = "") +
theme_minimal() +
theme (axis.text.x = element_text(angle = 90, hjust = 1))
effect.sizes.plot
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Save figure to file.

ggsave ("Figures/BMsimulation_effectSizes.pdf", effect.sizes.plot, dpi = 300, scale = 1,
device = cairo_pdf)

## Saving 5 x 4 in image

Interpretation

Note that the exact results of the tests above will differ every time the random vectors are re-sampled (which
is avoided here by using the set.seed() function). Having said this, we do not seem to find any significant
differences between the distributions of values generated along the branches of the tree by Brownian motion.



In fact, it follows from the core properties of (the basic) Brownian motion model that the expected value of a
trait at any time is equal to the value of the trait at time zero (Harmon 2019, p. 41). This means we should
not expect to see significant differences in the average trait values (pseudo-complexities) of the languages
in this simple simulation. What we do expect, on the other hand, are positive correlations between closely
related languages. For instance, if a given complexity measure yields a relatively high value for Italian, we
would expect it to also yield a relatively high value for French (according to our phylogeny). Such correlations
can indeed be observed in our Brownian motion simulation.
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