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Abstract

The object of this dissertation is to investigate rate-distortion optimization

and to evaluate the prospects of adaptive vector quantization for digital video

compression.

Rate-distortion optimization aims to improve compression performance us-

ing discrete optimization algorithms. We first describe and classify algorithms

that have been developed in the literature to date. One algorithms is extended

in order to make it generally applicable; the correctness of this new procedure

is proven. Moreover, we compare the complexity of the aforesaid algorithms,

first implementation-independent and then by run-time experiments. Finally,

we propose a technique to speed up one of the aforementioned algorithms.

Adaptive vector quantization enables adaption to sources with unknown or

non-stationary statistics. This feature is important for digital video data since

the statistics of two subsequent frames is usually similar, but in the long run

the general statistics of frames may change even if scene changes are neglected.

We examine combinations of adaptive vector quantization with various state-

of-the-art video compression techniques. First we present an adaptive vector

quantization based codec that is able to encode and decode in real-time using

current PC technology. This codec is rate-distortion optimized and adaptive

vector quantization is applied in the wavelet transform domain. The organi-

zation of the wavelet coefficients is then made more efficient using adaptive

partition techniques. Moreover, the main adaptability mechanism of adap-

tive vector quantization, the so-called codebook update, is studied. Finally,

a combination of adaptive vector quantization and motion compensation is

taken into consideration. We show that for very low bitrates adaptive vector

quantization performs on prediction residual frames better or at least as well

as discrete cosine transform coding.



Zusammenfassung

In dieser Dissertation werden “rate-distortion” Optimierungsverfahren betra-

chtet und die adaptive Vektorquantisierung hinsichtlich der Einsatzmöglichkeit

in der Videokompression untersucht.

Das Ziel der “rate-distortion”-Optimierung ist die Verbesserung von Kom-

pressionsergebnissen unter der Verwendung von diskreten Optimierungsalgo-

rithmen. Zunächst werden die in der Literatur behandelten Algorithmen

beschrieben und klassifiziert. Einer dieser Algorithmen wird erweitert um eine

allgemeine Verwendung zu ermöglichen. Die Korrektheit dieses neuen Ver-

fahrens wird bewiesen. Zusätzlich wird die Komplexität der “rate-distortion”

Optimierungsalgorithmen verglichen, sowohl Implementierungsunabhängig als

auch mit Laufzeit-Experimenten. Schließlich wird ein Beschleunigungsver-

fahren für einen dieser Algorithmen vorgestellt.

Die adaptive Vektorquantisierung ermöglicht es, sich an Quellen mit un-

bekannter oder nicht-stationärer Statistik anzupassen. Gerade für digitale

Videodaten ist diese Eigenschaft wichtig, da aufeinanderfolgende Bilder in

einer Bildsequenz zwar eine ähnliche Statistik aufweisen, langfristig jedoch

Änderungen in der Statistik zu erwarten sind, selbst wenn Szenenwechsel

unberücksichtigt bleiben. In dieser Arbeit untersuchen wir die Kombina-

tion der adaptiven Vektorquantisierung mit verschiedenen “state-of-the-art”

Videokompressions-Techniken. Zunächst stellen wir einen auf der adaptiven

Vektorquantisierung basierenden Codec vor mit der Fähigkeit auf einem PC

mit derzeitiger Standardtechnologie in Echtzeit zu kodieren und zu dekodieren.

Dieser Codec wird “rate-distortion”-optimiert und die adaptive Vektorquan-

tisierung wird auf das Bild der Wavelet-Transformation angewendet. Die

Wavelet-Koeffizienten werden anschließend mit Hilfe einer adaptiven Parti-

tionierungstechnik effizienter organisiert. Darüber hinaus untersuchen wir den

wesentlichen Adaptivitätsmechanismus der adaptiven Vektorquantisierung, die

sogenannte Kodebuch-Aktualisierung. Abschließend betrachten wir die Kom-

bination der adaptiven Vektorquantisierung mit Bewegungskompensation.
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Wir zeigen, daß die adaptive Vektorquantisierung für sehr niedrige Bitraten

auf Prädiktionsfehlerbildern bessere oder mindestens genauso gute Ergeb-

nisse erzielt wie eine Transformationskodierung mit der diskreten Kosinus-

Transformation.
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Preface

The objective of data compression is to minimize the number of bits needed for

a given representation of data. We are concerned with lossy data compression

if this representation is only an approximation of the data. The main issue

of this kind of data compression is the trade-off between the approximation

error, called distortion, and the number of bits needed for the representation,

called rate.

Theoretically, this problem has already been solved for a general class of

data by rate-distortion (RD) theory . This theory reveals that only one univer-

sal technique, called vector quantization, can be used to achieve the optimal

RD trade-off. In vector quantization, consecutive data elements are bundled

and subsequently approximated by one of several predetermined vectors. The

rate is given by the address of the vector and the distortion is derived from

approximating the data.

This technique has several drawbacks in practice if applied to concrete

data. The statistics of the data must be known in advance and must not

change during the compression. In addition, the optimal RD trade-off can

only be achieved under unrealistic assumptions, e.g., arbitrary dimension and

number of representation vectors. Finally, this technique is quite complex.

Thus, many other techniques that achieved satisfactory results for practical

data compression have been introduced. For example, in the case of digital

video data the most frequently used techniques are motion compensation and

transform coding.

Therefore, practical data compression demands not only a good data rep-

resentation using the options of a single compression technique, but also a

choice of combinations of several appropriate techniques. To obtain the op-

1
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timal representation for concrete data once the compression techniques have

been determined is an optimization problem since it is necessary to consider

each option for each piece of data. This problem is apparently too complex to

be treated with a brute force method. Suboptimal but fast methods could be

applied instead. This research area, the combination of data compression and

discrete optimization techniques, is called operational rate-distortion theory or

rate-distortion optimization.

One aspect of this dissertation is the evaluation and extension of rate distor-

tion optimization techniques. As we shall demonstrate, there are basically two

rate-distortion optimization techniques that achieve identical results. These

two techniques are presented for different optimization scenarios. One of the

techniques is then extended in order to make it more generally applicable.

We compare the complexity of the two techniques and contribute a speed up

method.

As mentioned above, vector quantization is a theoretically optimal tech-

nique. This technique has practical drawbacks, however, since the data statis-

tics must be known in advance and must not change. These statistical prop-

erties are not given for video data, however. Even though subsequent frames

show similar statistical behavior, the statistical characteristic may change

slightly with time. Thus, in this thesis, a more flexible vector quantization

scheme, called adaptive vector quantization (AVQ), that is able to adapt to

the data statistics for digital video data is investigated. We combine this

technique with state-of-the-art video compression techniques and analyze the

resulting performance. In addition, we use RD-optimization techniques to

improve the results.

In dealing with the aforementioned issues, this thesis will proceed as fol-

lows. Chapter 1 outlines video compression techniques as far as necessary for

the understanding of this thesis. We introduce entropy coding, scalar quanti-

zation, transform coding, motion compensation and hybrid coding.

Chapter 2 is concerned with vector quantization. A general terminology

is presented as well as common design procedures and structures of vector

quantization. We describe the adaptive vector quantization terminology and
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give a short summary of work done in the field previously.

Chapter 3 deals with rate-distortion techniques. Two techniques, the La-

grangian multiplier (LM) algorithm and the incremental computation of the

convex hull algorithm, are presented. For a specific optimization scenario, the

hierarchical dependence, we contribute a new algorithm and prove that it is

correct.

In Chapter 4 different RD optimized AVQ based codecs are presented and

compared. The first codec is capable of encoding and decoding in real-time

using an ad hoc rate control scheme. Subsequently, we apply RD-optimization

to improve the rate-control scheme. This is followed by experiments with

AVQ and wavelet transform as well as adaptive partition techniques. Lastly,

we provide a study with motion compensation.

Chapter 5 evaluates the complexity of rate-distortion techniques. We define

implementation-independent performance measures and compare the complex-

ity of the LM- and the ICCH-algorithm. Additionally, a technique is developed

to speed up the LM-algorithm.

Chapter 6 summarizes the results and presents our conclusions.

In this dissertation, the following contributions are made:

• We create a new terminology for hierarchical RD-optimization problems

and detail the known techniques in this terminology.

• We extent the generalized BFOS algorithm in order to allow a general

optimization. The generalized BFOS algorithm might be used to solve

hierarchical structured rate allocation problems. This algorithm, how-

ever, imposes some restrictions on the hierarchical structure. We propose

an extension that follows the BFOS algorithm but, nonetheless, makes

it possible to optimize hierarchical structures without restrictions. In

addition, we present a proof for the correctness of the algorithm.

• We provide experiments with several AVQ-based codecs. We present

experiments with RD-optimization, codebook organization, variable-

length coding, wavelet transform, adaptive partition techniques and mo-

tion compensation. We show the adaptability of our codec and compare
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these codecs with a state-of-the-art hybrid codec (H.263).

• We compare the RD-optimization techniques using an implementation-

independent complexity measure and provide run-time experiments.

• We propose a speed up method for the LM-algorithm, analyze the per-

formance of the new algorithm and provide run-time experiments.



Chapter 1

Data Compression and Video

Coding

In this chapter, we will introduce basic algorithms and concepts that can be

found in almost every image and image sequence compression scheme. The

objective of this chapter is not to give a detailed and comprehensive overview

of these methods. Rather we describe terms that will be referred to in the

progress of this thesis. Readers not familiar with data and image compression

may consult [5, 64, 55] for an introduction.

1.1 Entropy Coding

In this section we are concerned with lossless data compression. In contrast

to lossy data compression, which approximates the data to achieve high com-

pression ratios, data that has been compressed losslessly can be reconstructed

exactly. First, we define the entropy that can be used to show the theoretical

limit of lossless data compression. Then we show how close practical solutions

can approach these limits. The results and definition in this section follow

[28, 16].

Let there be a discrete random variable X with a finite alphabet, A =

{a0, . . . , aN−1}, consisting of N symbols, and the probability mass function

(pmf) p(a) = Pr{X = a}, a ∈ A.

5
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The entropy H(X) of a discrete random variable X is defined as

H(X) = −
∑

a∈A
p(a) log2 p(a).

For the case that p(a) = 0, we use the convention 0 log2 0 = 0. The entropy is

measured in bits/symbol.

A source code is a mapping γ : A → {0, 1}∗ from the alphabet A to the

set {0, 1}∗ of finite length strings consisting of the symbols {0, 1}. With this

mapping the set of variable-length code (VLC) words V can be defined as

V = {γ(a0), . . . , γ(aN−1)}.

An important class of source codes is the class of prefix codes which satisfy

the condition for all a ∈ V that no a is the prefix of another word in V.

Then we can define the expected length l(V) by

l(V) =
∑

a∈A
p(a)|γ(a)|

where | · | denotes the length of an VLC γ(a), a ∈ V.

A fundamental result is that the entropy is an lower bound of the expected

length l(V), i.e.,

H(X) ≤ l(V). (1.1)

The definition of V constrains the length of source codes to be integers.

Furthermore, it is known that for V equality in (1.1) can only be achieved if

the probabilities p(a) are all powers of 2, i.e., p(a) = 2−la, ∀a ∈ A, la ∈ N. For

all other pmf p, the expected length is larger than the entropy. Therefore, it is

reasonable to look for the source code that yields the closest possible expected

length l(V) to H(X). The construction of such a source code was described

by Huffman [39]. The expected length of this code is bounded by

H(X) ≤ l(V) < H(X) + 1. (1.2)

We denote this kind of source codes by Huffman codes.

For a high entropy the bound in (1.2) is negligible but for small entropies,

H(X) < 1, the resulting performance of a Huffman code is not acceptable.
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Thus, we need another entropy coding strategy that does not have the integer

length constraint. This problem is overcome by merging M consecutive sym-

bols to create a larger alphabet. However, this technique is too complicated

for even small values of M .

Another method is arithmetic coding [94, 54]. In this approach, the unit

interval I0 = [0, 1) is divided in N subintervals proportional to the probabilities

of the symbols in A. Each interval is assigned to a symbol a ∈ A. Encoding

a symbol means selecting the corresponding interval. The selected interval

I1 is then once more divided into N subintervals and encoding of a symbol

again means selection of a corresponding interval and so forth. This process is

illustrated in Fig. 1.1. It can be shown that arithmetic encoding achieves the

entropy H(X) provided that the encoder runs long enough and uses arbitrary

precision for the arithmetic operations. Real implementations use a finite

precision arithmetic as described in [54].

The pmf p of the symbols is often referred to as statistical model . If the

model is not known in advance, it has to be adapted. This is usually done

by counting the frequency of previously encoded symbols. For an arithmetic

coder, the frequency counts have to be represented so as to rapidly determine

the corresponding intervals. Thus, the frequency counts f are organized as

cumulative frequencies fc, i.e. fc(am) =
∑m−1

i=0 f(ai). If we use adaptive

arithmetic encoding in our experiments, we start with uniform cumulative

frequencies that have been derived from f(a) = 1, ∀a ∈ A. Each time a

symbol has been encoded, the corresponding frequency count is incremented

by 1. For our experiments we used the adaptive arithmetic coder from [20].

Finally, we introduce a coding technique that is only efficient for a specific

kind of statistical models. Assume a binary alphabet A = {ZERO, ONE}

with probability of one symbol, say ZERO, close to 1. Then the symbol ONE

seldom appears in a sequence of symbols described by X. In this case it could

be efficient to bundle subsequent symbols ZERO and encode only the number

of such symbols until the appearance of the next ONE. We denote this number

of symbols as a run and this technique as run-length coding (RLC). In this

thesis, RLC is used to encode positions of some few blocks in a map mainly
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0

1
1

0

1

0

Figure 1.1: Arithmetic coding for the alphabet A = {0, 1} with pmf p(0) = 2
3
,

p(1) = 1
3
. The sequence 010 is encoded resulting in the interval ( 11

27
, 15

27
]. This

can be represented by 100.

consisting of zeros (cf. Chapter 4). The RLC was empirically optimized for

our codec. A run is encoded by the symbols $∗Y where $∗ is a sequence of 0

or more escape symbols defining a run of 32 and Y ∈ {1, . . . , 32} is a symbol

describing the final run. This sequence is repeated so as to encode all runs.

The symbols {1, . . . , 32, $} are entropy encoded by a Huffman coder or an

adaptive arithmetic coder.

1.2 Scalar Quantization and Predictive Cod-

ing

Generally speaking, a signal is a continuous time and continuous amplitude

function. In order to make it digitally processible it has to be converted. The

first step of the conversion usually is the sampling to make the signal time-

discrete. The second step is quantization to get discrete amplitude signals.

Thus, the purpose of a quantization is to map a continuous amplitude to a

discrete set of symbols.

Now we define scalar quantization. Scalar quantization consists of a quan-

tizer map Q : R → C and the codebook or the set of reproduction values

C = {c0, . . . , cN−1} ⊂ R with N symbols. In some cases we need supple-

mentary functions to describe various components of scalar quantization more
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detailed. The scalar encoder α : R → I, x 7→ i if Q(x) = ci, with the index

set I = {0, . . . , N − 1}, maps the real line to an index. The scalar decoder

β : I → C maps an index to its reproduction value. Thus, we have Q = β ◦ α.

In some instances it is necessary to encode the indices, e.g., by a variable length

code (see Sect. 1.1). For this purpose, we define the index coder γ : I → V,

where V is a set of variable length codes.

The scalar decoder defines an order on reproduction values,

β(0), . . . , β(N − 1); we use for example β(0) ≤ · · · ≤ β(N − 1). Usu-

ally, the scalar encoder is realized by a nearest neighbor (NN) rule,

α(x) = arg mini∈I ‖x − β(i)‖22 with the Euclidean norm ‖ · ‖2. For the case

‖x − β(i)‖22 = ‖x − β(j)‖22, i 6= j, we have to define a tie break rule, e.g., we

take min{i, j}. A NN-rule scalar quantizer partitioned the real line, R, into N

partition cells Ri = {x ∈ R : α(x) = i}. Therefore, the partition cells can be

described by an interval [yi−1, yi) with the boundary points yi, −1 ≤ i ≤ N .

Thus, scalar quantization can be specified by C and yi, −1 ≤ i ≤ N . The

partition cell that contains 0, Rα(0), is called deadzone. We denote scalar

quantization by Qs, αs, βs, etc., when it is necessary to distinguish the scalar

quantization from other quantization schemes.

Without further information about the codebook structure, a NN-rule vec-

tor encoder α has to search the whole codebook to find a proper reproduction

value. However, special codebook structures make the computation of the in-

dex α(x) more efficient. An example for this is uniform quantization, which

is the most common quantization [28]. Here, the difference between adjacent

reproduction values ci as well as between adjacent boundary points1 is a fixed

value ∆, i.e., ci − ci−1 = ∆, 1 ≤ i < N and yi − yi−1 = ∆, 1 ≤ i < N .

Thus, the index α(x) can be computed with few operations. Even though uni-

form quantization is the simplest example of scalar quantization, this kind of

quantization in conjunction with entropy coding (see Sect. 1.1) yields asymp-

totically optimal results, which means that for a fixed distortion the entropy

is minimal over all scalar quantizer types [56]. A typical uniform quantizer

1The boundary points y
−1 and yN are excluded since they can be defined to be −∞ and

∞ to cover the whole real line, R.
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yi+1 yi+2yiyi−2yi−3

ci−1

ci−3

ci

ci+2

ci−2

ci+2

ci+1

yi+2yi−3 yiyi−2 yi+1

ci−1

ci−3

ci

ci+2

ci−2

ci+2

ci+1

(a) (b)

Figure 1.2: Uniform quantization: (a) with a deadzone equal to the other

boundary intervals ∆, (b) with a deadzone different to the other boundary

intervals.

is depicted in Fig. 1.2a. A uniform quantizer2 with a deadzone differing from

the other boundary intervals is presented in Fig. 1.2b. In this thesis, we only

use uniform quantizers with deadzone for scalar quantization. Moreover, the

deadzone is required to be centered around 0. Thus, in order to specify scalar

quantization, the binsize ∆, the binsize of the deadzone, and the codebook

size N have to be determined.

If consecutive samples are highly correlated, the encoding of the indices

produced by scalar quantization could be done more efficiently with predictive

coding . In predictive coding, previous samples are used to predict the current

sample. Then only the error of the prediction is quantized and encoded. A

special case is the differential pulse code modulation (DPCM) in which only

the previous quantized sample is used to predict the current sample. This

scheme is depicted in Fig. 1.3. In order to specify the DPCM coder we need

only to describe the scalar quantization Qd for the difference signals.

2Apparently, this quantization violates the definition of uniform quantization. Neverthe-

less, in this thesis, we mean this kind of quantization if we refer to uniform quantization.
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Figure 1.3: DPCM encoder/decoder

transform quantization
entropy
coding

(a)

entropy de- inverse
decoding quantization transform

(b)

Figure 1.4: (a) Stages of transform coding and (b) the corresponding transform

decoding.

1.3 Transform Coding

Transform coding is an important part of virtually every state-of-the-art image

and video coding system. A typical transform coding scheme is shown in

Fig. 1.4a. There are usually three stages. In the first stage, the source is

transformed, then, in the transform domain, quantization is used, and, finally,

the quantized transform coefficients are entropy encoded. The corresponding

decoder is depicted in Fig. 1.4b.

The object of the transform stage is to achieve a representation of a signal

that is suitable for a subsequent processing. An example of such a transform is
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the Karhunen-Loeve transform (KLT) which has the following properties [65]:

• It is orthogonal.

• It completely decorrelates the signal in the transform domain.

• It contains the most variance in the fewest number of transform coef-

ficients and it makes possible a dimension reduction with the smallest

possible mean squared error (MSE).

However, the KLT has several drawbacks, too. First, in order to perform an

inverse transform the decoder must know the basis of the transform domain.

This increases the amount of bits needed for compression. Secondly, there

exists no fast algorithm to date that makes the KLT feasible for real-time

applications. Thus, in image and image sequence coding schemes another

transform is applied instead with similar properties, but with a predefined basis

and with a fast transform algorithm, the discrete cosine transform (DCT).

1.3.1 Discrete Cosine Transform

In order to apply the DCT, an image is decomposed into M blocks Gm, 0 ≤

m < M , of N ×N -pixel size. Each block is then transformed separately. The

one dimensional discrete cosine transform is a linear transform that can be

described by the matrix

(CN)nm =

(

2

N

)1/2 [

km cos

(

m(n + 1
2
)π

N

)]

m, n = 0, . . . , N − 1 (1.3)

where

kj =

{

1, if j 6= 0
1√
2
, otherwise.

Thus, if we consider the block Gm as matrix, the two dimensional transform

can be described by the multiplication CT
NGmCN .

The transform coefficients are scalar quantized and afterwards run-length

encoded using a zig-zag scan order as depicted in Fig. 1.5. The RLC coding is

different to the scheme described in Sect. 1.1. For example, in the H.263 scheme
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Figure 1.5: Zig-zag scan of the DCT transform coefficients.

events are encoded consisting of a combination of (LAST, RUN, LEVEL). The

value of LAST indicates whether there are more non-zero coefficients in the

block or if this was the last, the value of RUN describes the number of zeros

preceding the coded coefficient, and LEVEL the non-zero value of the coded

coefficient.

The DCT as presented in (1.3) is known to be asymptotically equivalent to

the KLT of a Markov-1 signal process with correlation coefficient ρ as ρ → 1

[65]. Nevertheless, the application of the DCT on image blocks leads to “block-

ing artifacts” for high compression ratios. Therefore, in the next section, we

introduce the wavelet transform. Wavelet transform decomposes an image not

only into frequency components; the components also have a spatial localiza-

tion.

1.3.2 Wavelet Transform

The details of wavelet transform can be found in [84, 17, 51]. Wavelet trans-

form decomposes an image into subbands using a lowpass filter H0 and a high-

pass filter H1. The filter bank for a decomposition of a 2-dimensional signal is

depicted in Fig. 1.6. Further decompositions of the subbands can be achieved

by cascading the filter bank. A two times uniform decomposition and an oc-

tave band decomposition is shown in Fig. 1.7. General decompositions are

called wavelet packets [12].

An evaluation of several wavelet filters for image compression can be found

in [85]. In reference to this, we use the 9/7-filter developed by Antonini et. al.
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Figure 1.6: Filterbank for subband decomposition (a) and decomposed image

(b).

(a) (b)

Figure 1.7: Types of subband decompositions: (a) octave band decomposition,

(b) uniform decomposition

[2].

The subband coding methods can roughly be classified into inter subband

and crossband techniques [14]. Inter subband techniques encode each sub-

band separately. Crossband techniques exploit dependences between different

subbands. The most popular crossband encoding technique is called zero-tree

[74, 67]. Zero-trees are based on the observation that coefficients of highpass

subbands are likely to be zero if certain coefficients with lower frequency cor-

responding to the same spatial localization are zero. A zero-tree structure

of subband coefficients is presented in Fig. 1.8a. Another crossband coding

technique was proposed in [91]. Each of the 16 subbands from a uniform

subband decomposition contributes one coefficient to a 16-dimensional vector

(Fig. 1.8b).
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(a) (b)

Figure 1.8: Zero-tree structure for crossband coding (a). Grouping of coeffi-

cients in a uniform subband decomposition (b).

00101 1

0011

1

10

(a) (b)

Figure 1.9: Quad-tree example: (a) representation of an image, (b) resulting

tree for binary description. Description code: 1 1100 0101 0011

1.4 Image Partition Techniques

Different areas of an image can show different degrees of activity. For example,

the background of an image can have a uniform structure and need not to be

considered in detail whereas it can be useful to consider the boundary of fore-

ground objects more thoroughly. One method to achieve this is the application

of image partition techniques. An important example of such techniques is the

quad-tree representation of an image. A quad-tree is a tree that contains either

leaf nodes without a child node or internal nodes with four children. Thus, the

tree structure can easily be described by a binary code. Figure 1.9 shows an

example for a quad-tree representing an image and the corresponding binary

code. For more details, the reader is referred to [68, 82, 76, 78, 79].
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Figure 1.10: Block based motion compensation due to [64]

.

1.5 Motion Compensation

Subsequently, we will call one image from an image sequence a frame.

Motion within image sequences leads to a redundancy that can be removed

to achieve a better compression ratio. This is usually made by block motion

compensation (MC)[64]. Block MC creates a prediction of the current frame,

called motion prediction, using blocks from the previously decoded frame. Fig-

ure 1.10 shows a typical scenario for block MC when an object (black ellipse)

moves to another position. First, the frame is decomposed into macroblocks.

Then, for a given macroblock x (shaded block in the current frame), a match-

ing block x̂ in the previous frame is searched (shaded block in the previously

decoded frame). This block is used to create a prediction for the current

macroblock. Since the decoder knows the previous frame, too, only a motion

vector (vx, vy) is necessary to determine the prediction. Then only the error

of the prediction, e = x− x̂, has to be encoded.

The motion vector (vx, vy) is determined by the motion estimation proce-

dure [64, 5].
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1.6 Hybrid Coding

Two techniques, transform coding and motion compensation, are brought to-

gether in hybrid coding . Transform coding is applied to reduce redundancy

within a frame. Motion compensation reduces the redundancy between sev-

eral frames.

A hybrid coding scheme is depicted in Fig. 1.11. The encoding algorithm

works as follows. First, a frame is decomposed into blocks of 16× 16 pixel size

called macroblocks. Then motion estimation is performed for each macroblock.

The coding control decides whether a macroblock is encoded in intra or in inter

mode. This is indicated in Fig. 1.11 with the dashed boxes. In intra mode,

the macroblock is decomposed into four 8 × 8-pixel blocks. These blocks are

transformed, quantized, and variable-length encoded. In the figure, this is

indicated by T , Q and VLC. In inter mode, the macroblock is predicted from

the previously decoded frame using an appropriate motion vector (indicated

by P ). The error of the prediction is decomposed into 8 × 8 pixel blocks,

transformed, quantized, and variable-length encoded.

The encoder and decoder both have to decode the frame that is currently

processed. This frame is used as reference frame for the motion prediction

when the encoder is employed with the next frame. Thus, decoding is also

part of the encoding process. The 8 × 8-pixel blocks are dequantized, and

the inverse transform is applied. The four 8× 8 block then are recomposed to

macroblocks. If the encoding mode has been inter mode, the motion prediction

is added to the decoded macroblock. The inverse transform stage is denoted

by T−1, dequantization by Q−1, and the motion prediction and reference frame

memory by P .

This scheme is used in all digital video coding standards for “natural”

video. All standards have in common that they do not describe an encoding

algorithm. The syntax and the semantics of the encoded bit stream rather are

specified. The concrete encoding algorithm is left to the designers.

We summarize now the standards for digital video coding. The first video

coding standard, H.261, was developed by the International Telecommunica-

tion Union (ITU) [41] and established in 1990. The target bitrate for the codec
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recommended by this standard is p · 64 where 1 ≤ p ≤ 30. A possible appli-

cation is video conferencing over ISDN channels. The transform is made by a

DCT. The scalar quantization of the transform coefficients is performed using

a uniform quantizer with deadzone. Only the DC component in intra mode is

separately quantized with a pure uniform quantizer. The motion vectors have

integer-pel resolution.

The ISO (International Organization for Standardization) standard

MPEG-1 was developed by the Moving Picture Expert Group and established

in 1992. The target application of this standard is the coding of video and

audio signals for digital storage media like CD-ROM at up to 1.5 Mbit/s [64].

Compared with H.261, the new features are bidirectional interpolation and

half-pel resolution motion prediction. Bidirectional interpolation is a motion

prediction technique that uses two frames, one taken from the past and one

taken from the future. Half-pel resolution motion prediction allows half-pel

resolution of the motion vectors. In order to achieve around 1.5 Mbit/s during

the encoding, certain parameters of the MPEG-1 encoding are constrained.

For example, the horizontal picture size has to be smaller than 768 pels, the

vertical picture size smaller than 576 pels, and the maximal number of mac-

roblocks per frame smaller than 396.

In 1994, MPEG-2, designed for digital video transmission, became an in-

ternational standard [35, 64]. A bitrate in the range of 2 to 15 Mbit/s is

supported. MPEG-2 mainly differs from MPEG-1 in that MPEG-2 is able to

handle interlaced frames and has many scalability facilities. Scalability means

that the frames can be decoded on various resolutions and quality levels. There

are four scalability modes:

• spatial scalability

• SNR scalability

• temporal scalability

• data partitioning

The spatial scalability mode offers the decoder different spatial resolutions

of the frames. In the SNR scalability mode, the quantization of transform
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coefficients can be refined. Temporal scalability makes possible a decoding at

different frame rates. Data partitioning splits the bit stream into layers with

different priorities. The bit stream with the highest priority contains the low

frequency transform coefficient. The lower the priority of the layer, the higher

is the frequency of the transform coefficients.

The purpose of the H.263 standard is encoding with very low bitrates

(< 64 kbit/s). Compared with H.261, the H.263 standard contains an im-

proved motion compensation scheme and better entropy coding. The motion

compensation can be made with half-pel resolution. The motion vectors may

have a large range and cross the frame boundaries. In addition, the overlapped

block motion estimation technique [43, 57] and bidirectional interpolation can

be used for motion prediction. For entropy coding, it is possible to apply

syntax based arithmetic coding. This technique uses predefined cumulative

frequencies for different encoding contexts.

A further improvement of H.263 standards is called H.263+ and contains

many new features like scalability modes and improved error resilience [15].

Currently, H.263++ and H.26L are under development. Techniques like long-

term memory and multi-hypothesis MC are taken into consideration [93, 81, 21]

An ISO standard for multimedia needs has been established with MPEG-4.

This standard covers a large number of encoding tools for digital video and

audio. A scene can be composed with different audio visual objects using a

source description language. Moreover, interactivity with the consumer has

become possible. The conventional “natural” video coding part is similar to

H.263. The most significant improvement is the capability to encode arbitrary

boundary objects. In addition, a subband coding with wavelet transform is

possible for frames that are encoded only in intra mode [18].
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Figure 1.11: Hybrid coding adapted from [42].



Chapter 2

Vector Quantization

Vector quantization (VQ) was first considered by Shannon in his fundamental

work [72, 73] and was used to show theoretical bounds of data compression.

Shannon’s idea was to bundle consecutive separate symbols of a source into

vectors in order to represent the source in an efficient way.

The practical feasibility of VQ was studied in the late 1970s and the early

1980s. Only then, practical structures and design algorithms have been de-

veloped (see e.g. [48, 26]). Since that time, VQ was successfully applied for

image, image sequence, and speech coding [29, 27, 32].

Figure 2.1 shows a basic VQ-system. The encoder reads a vector x from a

source. Then the encoder tries to find a good representation x̂ ∈ C of the vector

x where the set C of all possible representations is called the codebook. The

address i ∈ I of the vector x̂ in the codebook is transmitted to the decoder.

With the transmitted index i, the decoder is able to determine x̂ from the

codebook C. Note that this works only if encoder and decoder use the same

codebook C.

The basic VQ approach has the disadvantage that the statistical behavior

of the source must be known in advance and that it is not able to deal with non

stationary sources, i.e., sources that change their statistical behavior in time.

Since the encoding and the decoding process demands identical codebooks

for the encoder and decoder, the encoder must not vary the content of the

codebook independently. The decoder rather must be informed to synchronize

21
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Figure 2.1: Vector quantization
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Figure 2.2: Adaptive vector quantization

its codebook. Thus, a special communication structure is needed to transmit

changes of the codebook C. The additional information to be transmitted is

called side information. Figure 2.2 shows VQ with side information. Such

kind of VQ is called adaptive VQ (AVQ).

In this chapter, we will describe VQ as detailed as it is necessary for the

understanding of the following chapters. The notation we use is due to [28,

10, 22]. Readers should consult these references for further details.

First, we introduce in Sect. 2.1 a formal description of a VQ-system. Then,

in Sect. 2.2 and 2.3, we describe common VQ design and structures in this no-

tation. Finally, adaptive VQ is introduced, and an overview of work previously

done in the field is given (Sect. 2.4).
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Figure 2.3: Formal scheme of vector quantization [10]

2.1 Basic Definitions and Properties

A (variable rate) VQ-system is based on a codebook C = {c0, ..., cN−1} with

N vectors ci ∈ R
L, the index set I = {0, ..., N − 1} and a variable-length-code

(VLC) given by a set V of N codewords; the connection between these sets

is specified by the vector encoder α, vector decoder β, and the bijective index

coder γ where

• α : R
L → I maps a vector to an index,

• β : I → C maps an index to a vector in the codebook C, and

• γ : I → V maps an index to a VLC-word.

The encoder α : R
L → V is given by γ ◦ α and the decoder β : V → C

by β ◦ γ−1. The quantization Q : R
L → C can be defined as Q = β ◦ α =

β ◦ γ−1 ◦ γ ◦ α = β ◦ α. These terms are illustrated in Fig. 2.3.

In Sect. 2.2 we will show how to create a codebook C, but in this section we

assume that C does already exist. Vector decoder β then can be easily defined

by ordering the vectors in C and mapping I to C according to this order.

To assess the distortion between x = (x(0), . . . , x(L−1))t and Q(x) = x̂ =

(x̂(0), . . . , x̂(L−1))t, a distortion measure d(x, x̂) is necessary. Usually d(·, ·) is

defined as d(x, x̂) = ‖x− x̂‖22 =
∑L−1

i=0 (x(i) − x̂(i))2.

Having defined a distortion measure, the vector encoder α often is realized

by the nearest neighbor (NN) rule which selects the index of a vector in C with
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the smallest distortion, α(x) = arg mini∈I d(x, β(i)). A tie break rule has to

be applied in case the minimum is achieved for two or more indices.

In order to evaluate the performance of a vector quantizer, we consider

vectors x described by a random variable X and the corresponding probability

density function (pdf) fX. The average distortion D and the average rate R

can be expressed as

D = E[d(X, Q(X))] =

∫

�
L

d(x, Q(x))fX(x)dx (2.1)

and

R = E[|γ(α(X))|] =

∫

�
L

|γ(α(x))|fX(x)dx (2.2)

where |γ(i)| is the length of the VLC γ(i) in bits and E is the expectation

operator. The vector encoder partitions the space R
L into N partition cells

Ri = {x ∈ R
L : α(x) = i}. Each of the partition cells has a partition probability

pi and a partition distortion di defined as

pi = prob(X ∈ Ri) =

∫

Ri

fX(x)dx (2.3)

and

di = E[d(X, Q(X)) : X ∈ Ri] (2.4)

With these terms we can define the partial distortion

Di = di · pi. (2.5)

VQ is, theoretically, the best encoding method for a general class of sources.

In fact, it is shown in [4] that VQ achieves the asymptotically optimal result

for the encoding of stationary and ergodic random processes when providing

arbitrary codebook size and vector dimension.

2.2 Codebook Design

The performance of a vector quantizer is mainly determined by the quality of

the codebook C. A codebook that does not match the statistical characteristics
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of the source cannot be compensated substantially by other VQ parameters

like α, β, and γ. Thus, designing a codebook is of crucial importance and

has been the subject of thorough investigations in the literature. It is known

that creating a codebook that minimizes the average distortion, D, is a NP-

complete problem [25]. Therefore, less complex but suboptimal iterative design

algorithms have been developed [48, 8, 28, 49, 66, 10]. The most famous

algorithm for codebook design is the generalized Lloyd algorithm (GLA). This

algorithm was popularized by Linde, Buzo and Gray [48] and a generalization

of the idea published by Lloyd in 1957 [49, 50]. Another technique to determine

the number of codebook vectors is the splitting method [48].

2.2.1 The generalized Lloyd algorithm

In order to outline the GLA, we need two optimality conditions for the vector

quantizer.

Proposition 1 (Nearest Neighbor Condition [28]) For a given codebook

C, the optimal partition cells Ri satisfy Ri ⊂ {x : d(x, β(i)) ≤ d(x, β(j)), ∀j ∈

I}.

Proof: [28, p. 350f]. �

Proposition 2 (Centroid Condition [28]) For a given partition {Ri : i ∈

I}, the optimal codebook vectors satisfy β(i) = cent(Ri) where cent(R)= E[X :

X ∈ R] with the expectation operator E.

Proof: [28, p. 352]. �

In Proposition 1, a condition for the vector encoder α is formulated assum-

ing a fixed vector decoder β, and in Proposition 2, a condition for the vector

decoder β is formulated assuming a fixed vector encoder α. This suggests the

following iteration step: Starting with a fixed codebook Cn, the vector encoder

αn+1 is defining the partition cells Ri by the nearest neighbor rule. Then a

new codebook Cn+1 can be computed by defining βn+1(i) = cent(Ri). This

iteration step is called the Lloyd iteration.
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The above form of the Lloyd iteration assumes that the pdf fX(x) is known

and the boundaries of the partition cells Ri can be analytically determined.

In general, however, this is impossible. The probability distribution is rather

given by an empirical set of training vectors B. Thus, the centroid computation

and the computation ofRi in the Lloyd iteration can be substituted by discrete

computations,

Ri = {x ∈ B : d(x, β(i)) ≤ d(x, β(j)), ∀j ∈ I} (2.6)

and

cent(Ri) =
1

|Ri|

∑

x∈Ri

x, (2.7)

where | · | denotes the set cardinality. For the partition distortions di, partition

probabilities pi, and partial distortion Di, we can proceed in an analogous way.

It can be shown that the average distortion D cannot increase after one

Lloyd iteration. Therefore, subsequent applications of the Lloyd iteration cre-

ates a sequence of codebooks Cm with corresponding non-increasing average

distortions Dm. This iterative algorithm is called the generalized Lloyd algo-

rithm (GLA). It stops if the change of the average distortions Dm is small

enough, i.e., Dm−Dm−1

Dm
< ε (Alg. 1). This always happens for a finite training

set B after a finite number of steps. Furthermore, for this case, it can be shown

that the sequence of distortions Dm converges to a local minimum.

In order to let the sequence of distortions converge to a reasonably small

local minimum, the initialization of the GLA, i.e., the selection of the first

codebook C0, is crucial. The simplest initialization technique is a random

selection of N codebook vectors from the test set B. Advanced techniques use

clustering algorithms to create the initial codebook [28, 19].

The GLA optimizes only the average distortion D and does not take into

consideration the average rate R. Moreover, it assumes that the index coder is

a fixed length coder, i.e., |γ(n)| = dlog2 Ne, ∀n. Thus, the average rate does

not vary during the GLA. If optimizing the average rate R is an objective,

too, one is concerned with entropy constrained vector quantization (ECVQ).

To apply this algorithm, the trade-off between the rate and the distortion must
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Algorithm 1 The generalized Lloyd algorithm

Given: initial codebook C0,

vector decoder β0,

training set B,

stopping threshold ε,

average distortion D0 of init. vector quantizer,

m = 0
repeat

αm+1(x)
def
= arg minn d(x, βm(n))

Rn ← {x ∈ B : αm+1(x) = n}, ∀n ∈ I

βm+1(n)← 1
|Rn|

∑

x∈Rn
x, ∀n ∈ I

Cm+1 ← {βm+1(n) : n ∈ I}

Dm+1 ←
1
|B|
∑

x∈B d(x, βm+1(αm+1(x)))

m← m + 1

until Dm−Dm−1

Dm
< ε

be specified by a parameter λ. The interpretation of λ is discussed in detail

in Chapter 3.

The codebook design for entropy constrained vector quantization is very

similar to the GLA with two main differences. First, the vector encoder α has

to take the index coder γ into account. Secondly, the index coder also has to

be estimated within a Lloyd iteration (see Alg. 2).

2.2.2 Codebook Splitting

The GLA has the disadvantage that the number of code vectors N must be

fixed in advance. A technique to create codebooks growing successively larger

has been introduced by Linde et al. [48]. In this technique, the first code-

book C0 = {c0
0} contains only a single vector, namely, c0

0 =cent(B). This

vector is then “split” by a small vector, ∆, into {c0
0, c

0
0 + ∆0

0} and the GLA

is applied resulting in C1. The new codebook, C1 = {c1
0, c

1
1}, is “split” to

{c1
0, c

1
0 + ∆1

0, c
1
1, c

1
1 + ∆1

1} and C2 is created by the GLA etc. The splitting

algorithm is depicted in Fig. 2.4.
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Algorithm 2 The generalized Lloyd algorithm for ECVQ

Given: initial codebook C0,

vector decoder β0, index coder γ0,

training set B,

stopping threshold ε,

average distortion D0 and rate R0 of init. vector quantizer,

trade-off parameter λ

m = 0
repeat

αm+1(x)
def
= arg minn d(x, βm(n)) + λ · |γm(n)|

Rn ← {x ∈ B : αm+1(x) = n}, ∀n ∈ I

βm+1(n)← 1
|Rn|

∑

x∈Rn
x

|γm+1(n)| ← − log2
|Rn|
|B|

Cm+1 ← {βm+1(n) : n ∈ I}

Dm+1 ←
1
|B|
∑

x∈B d(x, βm+1(αm+1(x)))

Rm+1 ←
1
|B|
∑

x∈B |γm+1(α(x))|

m← m + 1

until Jm+1−Jm
Jm+1

< ε, where Jm = Dm + λ ·Rm
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Figure 2.4: The splitting algorithm. A sequence of codebooks, C0 = {c0
0}, C
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3
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3
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3
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3
7}, is created.

This procedure creates a sequence of codebooks, C0, C1, . . . , doubling the

codebook size with each step. The algorithm stops when the desired number

of code vectors has been achieved or the average distortion D is small enough.

2.3 Structured Vector Quantization

The function α is used to map any desired vector, x ∈ R
L, to an index, i ∈ I.

Typically, α implements a NN rule. The index i is selected for which the

minimal distortion d(x, β(i)) is found. A brute force method to determine

the desired index i is to compute d(x, β(i)) for all vectors in the codebook

C. However, for large codebook size N and high vector dimension L this

approach is too complex. Therefore, structures have been developed to speed

up searching the codebook.
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2.3.1 Tree Structured Vector Quantization

A structure that is inspired by the splitting method for the codebook design

(Sect. 2.2) is the tree-structured VQ (TSVQ). The index α(x) for a given

vector x is computed in several stages. In each stage, some codebook vectors

of C are excluded from the search. Only after the last stage it is known which

index and which vector in C has been selected.

We illustrate this in Fig. 2.4. Let us assume C = C3. In order to determine

the NN of x in C, we compute the distortions d(x, c1
0) and d(x, c1

1) of vectors

in codebook C1 in the first stage. Let d(x, c1
0) be smaller than d(x, c1

1). In the

second stage we consider the vectors in C2 but only those vectors that have

been created by splitting the vector c1
0 with the smallest distortion in the first

stage, i.e., c2
0 and c2

1. Let d(x, c2
0) be smaller than d(x, c2

1). Then only the split

vectors of the vector c2
0 with the smallest distortion, c3

0 and c3
1, are considered.

The comparison of the distortions d(x, c3
0) and d(x, c3

1) determines the desired

vector in C. Therefore, α(x) can be found within log2 N stages and in each

stage only the distortions of two vectors have to be compared. Apparently, this

can be described by a tree (see Fig. 2.5). The search strategy described above,

defines a path from the root to one of the leaves. The leaf nodes represent

the codebook C = C3. All vectors cl
n of level l in the tree are contained in the

intermediate codebook C l. Note that the design procedure for the intermediate

codebooks as well as the final codebook, C, in this case slightly differs from

the splitting method. In the original splitting method, when the codebook

CK is created, αK is given by the nearest neighbor rule and the intermediate

codebooks {Ck : k < K} are not taken into account. The design algorithm

for the TSVQ, however, applies the vector coder αK defined by the algorithm

described above using vectors from the intermediate codebooks. Thus, the

resulting codebook vector βK(αK(x)) is not necessarily the NN from x in CK

[28].

Since every node in the tree has only two successors, the index coder γ for

a TSVQ can be realized as binary code by encoding the path from the root to

the desired leaf. This, however, leads to a fixed length code. In order to design

a VLC, the interpretation of the codebooks, C0, C1, . . . , as a tree structure in
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Fig. 2.5 can be helpful. If some branches are pruned, the length of the path

from the root to several leaves is variable. Thus, the index coder, γ, induced

by the pruned tree, no longer represents a fixed-length code (FLC). This leads

to the so called pruned tree-structured VQ (PTSVQ). These tree structures

are very important for the progress of the subsequent chapters. Thus, we

introduce suitable notation for trees that is due to [6, 11]. It is essential to

note that the following definitions of tree-structures are unconventional. For

example, we do not formalize the fact that the nodes of a tree are related by

edges. However, this relation should be clear from the context. A classical

definition of tree structures can be found in [61, 53].

We define a tree T as a finite set of nodes T = {t0, t1, . . . } with the root

t0. The leaves of T are denoted by T̃ . Nodes that are not leaves are called

internal nodes1. We say S is a subtree of T (S @ T ) if S = {s0, s1, . . . } ⊂ T .

S is a pruned subtree (S � T ) of T if S @ T and s0 = t0. A branch St of T

is a subtree of T with root t and S̃t ⊂ T̃ .

With these terms it is possible to describe basic tree structures and re-

lations between trees. An example is shown in Fig. 2.6. The full tree is

T = {t0, t1, t2, t3, t4, t5, t6}. The pruned subtree S = {t0, t1, t2, t3, t4} � T is

described by the light shape. The branch St2 @ T is defined by {t2, t5, t6}

1We assume that all internal nodes have the same number of children.
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Figure 2.6: Example for the PTSVQ terms.

(dark shape). The leaves are given by T̃ = {t3, t4, t5, t6}, S̃ = {t3, t4, t2} and

S̃t2 = {t5, t6}.

In order to describe the performance of the PTSVQ we need performance

measures for tree structures. Therefore, we introduce tree functionals.

Let u be a map defined on each subtree of T , u : UT → R, UT = {S :

S @ T }, then we call u a tree functional . In the following we define some

important properties of tree-functionals.

Definition 1 A tree functional is called affine if ∀S ∈ UT there is the de-

composition property ∀R � S : u(S) = u(R) +
∑

t∈R̃ ∆u(St) where ∆u(St) =

u(St)− u(t) (u(t) is short hand for u({t}), a tree consisting of the single node

t) and St is branch of S.

Definition 2 A functional u is denoted as monotonically increasing if S @

T ⇒ u(S) ≤ u(T ). In an analogous way a monotonically decreasing func-

tional can be defined.

A tree T is pruned at node t if all offsprings of t are removed in order to make

t a leaf.

We now introduce two examples of tree functionals that arise from PTSVQ.

As in Sect. 2.1, a probability distribution for vectors is assumed. Then the

vector encoder αS , the vector decoder βS , the index coder γS , and the quantizer

QS of PTSVQ are dependent on the tree structure S. According to (2.1) and
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(2.2), we have

δ(S) = D(S) = E [d(X, QS(X))] =

∫

�
L

d(x, QS(x))fX(x)dx (2.8)

and

l(S) = R(S) = E [|γS(αS(X))|] =

∫

�
L

|γS(αS(x))|fX(x)dx. (2.9)

The maps δ and l are tree functionals [11]. The properties of these tree func-

tionals are summarized by the following lemma.

Lemma 1 The tree functionals δ and l are affine. Moreover, δ is monotoni-

cally decreasing and l is monotonically increasing.

Proof: see [11]. �

Since each pruned subtree S � T defines a different VQ-system with differ-

ent rate and distortion, one can optimize the average rate-distortion trade-off

by selecting an appropriate tree S. Fixing the target rate lT we seek the sub-

tree S∗ � T that satisfies l(S∗) ≤ lT and that leads to the minimum distortion

δ(S∗), i.e.,

S∗ = arg min
S�T :l(S)≤lT

δ(S). (2.10)

Computing S∗ is a rate-distortion optimization problem. This issue is thor-

oughly discussed in Chapter 3.

2.3.2 Mean-Removed VQ

If the statistical mean of the components of vectors is different from zero or is

varying widely, then the codebook structure can be organized more efficiently.

Instead of using one large codebook, the codebook size can be reduced by

treating the mean of a vector separately and quantizing only vectors with a

zero mean.

A typical mean-removed vector quantization (MRVQ) structure is depicted

in Fig. 2.7a. First, the mean µ of vector x is computed. Then the mean-

removed residual of x, r = x− µ1L, where 1L describes the vector (1, . . . , 1)t
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Figure 2.7: Mean-removed vector quantization.

with L components, is passed to the vector quantizer and mapped to an index

i by the vector encoder α. Scalar quantization (cf. Sect. 1.2) is employed to

quantize the mean, µ, and uses the scalar encoder αs to produce index j. The

decoding is done by x̂ = Qs(µ)1L + Q(r). In this structure, both quantizers

act independently. The application of the scalar quantizer does not influence

the vector encoding of the vector quantizer and vice versa. In addition, all

vectors r are located in a hyper space of R
L because of 〈r, 1L〉 = 0, where 〈·, ·〉

denotes the inner product.

Another variant of MRVQ is shown in Fig. 2.7b. Unlike the former ap-

proach, the mean-removed residual is computed using the quantized mean,

i.e., r = x − µ̂1L with µ̂ = Qs(µ). Thus, the vector quantizer is no longer

independent of the scalar quantizer. However, it can be shown that this vari-

ant leads to a smaller average distortion than the previous one [28, p. 438f].

Therefore, if we refer in this thesis to MRVQ we think of the MRVQ scheme

depicted in Fig. 2.7b. Note that in this case the mean-removed residuals r do

not lie in a linear subspace of R
L. They rather lie in a “narrow slice” of R

L
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that can be characterized by [28]

{x ∈ R
L : |

L−1
∑

i=0

x(i)| < Lδ}

where δ is the maximum quantizing error of the scalar quantizer Qs.

2.3.3 Product Code VQ

In MRVQ, the vector quantizer has two parts: the scalar quantizer and the

mean-removed residual vector quantizer. This structure reduces the search

complexity significantly. We do not need to search all combination of means

and mean-reduced residuals. We only need to search the codebooks of both

quantizers separately. Thus, the complexity of one task is reduced by its

decomposition into smaller sub-tasks. This idea is generalized by product

code VQ . We do not introduce product code VQ in its full generality. This

can be found in [28]. We rather define it as far as it is of use to this thesis.

A product code VQ for independent quantizers as defined in [28] is shown

in Fig. 2.8. The vector x is decomposed into P component vectors, ui : 0 ≤

i < P , by the functions fi. Then the component vectors are fed in independent

quantizers Qi. The quantized component vectors ûi are used by the function

g to produce the reconstruction x̂.

The simplest product code VQ is the partition of a vector into several

subvectors. For the case P = 2 and the vector x = (x(0), . . . , x(L−1))t, we can

define

f0 : R
L → R

K, (x(0), . . . , x(L−1))t 7→ (x(0), . . . , x(K−1))t

and

f1 : R
L → R

L−K, (x(0), . . . , x(L−1))t 7→ (x(K), . . . , x(L−1))t

with K < L. This kind of product code VQ is often referred to as partitioned

VQ [28].
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Figure 2.8: Product code VQ for independent quantizers due to [28].

2.4 Adaptive Vector Quantization

In Sect. 2.1, we defined a vector quantizer that can be used for the encoding

of vectors produced by a stationary and ergodic random process. In that case,

the vector quantizer was theoretically optimal, provided that the codebook

size and vector dimension are sufficiently large [4] and the probability density

function of the random process is known in advance. However, if the random

process is not stationary, e.g., the statistics vary slightly in time, or the prob-

ability density function is not known in advance, a structure is desirable that

can adapt to new statistics. Thus, we need a more general coding scheme. The

terminology of this section is due to [28, 22, 46] and has been, when necessary,

slightly extended or restricted.

Adaptability is provided by an adaptive vector quantization (AVQ) scheme.

In this scheme, all parameters of VQ are time dependent. Unlike the typical

VQ scheme, we not only have to encode vectors from a random process. We

also do have to encode the information for the change of the parameters. This

information is called side information.

Particularly, the contents of the codebook Ct changes in time and this

change has to be dealt with specifically. New vectors have to be inserted

and old ones have to be removed. In order to make the encoding of the
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side information efficient, a “super-codebook” C∗ must exist to constrain the

vectors that can be inserted in the codebook Ct. Therefore, the codebook Ct

must always be a subset of C∗. The definition of AVQ will be formalized in

the following.

An adaptive VQ-system is defined by a (local) codebook Ct containing

Nt vectors with dimension Lt, an index set It and a VLC given by the set

Vt; similar to basic VQ the connection between these sets is specified by the

vector encoder αt, vector decoder βt and the index coder γt. The quantization

Qt is specified as in the case of basic VQ, Qt = βt ◦ αt.

In addition, a universal codebook C∗ is defined with ∀t : Ct ⊂ C
∗. To make

the description of the vectors in C∗ easier we also introduce a universal vector

encoder α∗, universal vector decoder β∗, universal index coder γ∗, the universal

quantization Q∗, and the universal set of VLC-words V∗. The universal vector

encoder can be used to find a proper vector that is inserted in the codebook

Ct. The universal vector decoder reconstructs this vector and the universal

index coder transmits this vector to the decoder and, thus, produces the side

information. Note that, unlike [22], this is a restriction of the set cardinality

of C∗. The universal codebook C∗ either is be finite or countable infinite.

In order to describe the change of the codebook Ct at time t, we define the

learning set Lt = Ct − Ct−1 and the forgetting set Ft = Ct−1 − Ct. Thus, we

can update the codebook Ct at time t by Ct = Ct−1 ∪ Lt − Ft.

For ease of notation we drop the index t when it is not essential.

2.5 Adaptive Vector Quantization Algorithms

The purpose of this section is to give an overview over previously published

adaptive vector quantization algorithms. A taxonomy of AVQ was intro-

duced by Fowler [22]. Three general types of AVQ algorithms were classified

in [22], namely, constrained-distortion, constrained-rate, and rate-distortion

based AVQ algorithms.
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2.5.1 Constrained-Distortion AVQ Algorithms

Constrained-distortion AVQ algorithms usually employ a distortion threshold

Dmax to decide whether the codebook Ct should be updated or not. Presently,

we outline the Paul algorithm and the Wang-Shende-Sayood algorithm.

The Paul Algorithm

In the Paul algorithm (move-to-front variation) [22], βt is organized in a way

that makes it possible to determine the least recently used (LRU) vector, that

is, the vectors are sorted with respect to their last use, βt(0) is the recently

used vector and βt(N − 1) is the LRU vector. Furthermore, αt is a NN vector

coder, αt(x) = arg mini∈I d(x, βt(i)), and γt is a variable length coder with the

shortest codes for small indices and the longer codes for higher indices. This

enables efficient encoding of the recently used vectors.

Now we describe the encoding procedure for a vector xt. If d(Qt(xt), xt) ≤

Dmax then the index αt(x) is encoded by γt together with a flag signaling that

the codebook is not updated, i.e., Ct+1 ← Ct.

Otherwise, the codebook is updated. The universal codebook C∗ contains

all possible source vectors. Thus, the vector that is sent to the decoder and

inserted in the codebook is the vector xt itself. Therefore, Q∗ must satisfy

Q∗(x) = x, ∀x, and the index coder γ∗ must be able to encode an index for

every source vector. In addition, a flag is sent signaling the codebook update.

The learning set is Lt+1 = {xt} and the forgetting set is Ft+1 = {βt(N − 1)}.

After all, the vector Qt(xt) or Q∗(xt), respectively, are moved to the front

of the codebook, i.e., βt+1(0) = Qt(xt) or βt+1(0) = Q∗(xt), and the vector

decoder β is rearranged to maintain the aforementioned LRU order.

Wang-Shende-Sayood Algorithm

The Wang-Shende-Sayood algorithm [22, 89] is very similar to the Paul al-

gorithm. The main difference is the organization of the universal codebook

realized by using a lattice [13, 28]. The universal vector coder α∗ determines

the nearest neighbor of a vector x in the lattice.
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2.5.2 Constrained-Rate AVQ Algorithms

Constrained-distortion AVQ algorithms use a distortion threshold Dmax to

decide whether the codebook should be updated or not. Consequently, it is

not possible to predict the encoding rate for an interval of vectors in advance

since the number of codebook updates is unknown and, along with it, the rate

of side information.

In constrained-rate AVQ algorithms, the number of codebook updates is

fixed for a given adaption interval of vectors xt, xt+1, . . . , xt+τ−1 where τ is

the interval length. Therefore, the rate cannot exceed a predetermined target

rate.

The constrained-rate AVQ algorithms can roughly be divided into two sub-

classes: The local context and the codebook retraining algorithms.

Local context algorithms compute several measurements on the vectors of

the adaption interval. This measurement is then used to select the codebook

Ct.

In the second class, the codebook-retraining algorithms apply techniques

from non-adaptive VQ to adapt the codebook Ct to changing statistics. Typical

approaches use the GLA [30, 33, 34]. Other methods use learning techniques

like Kohonen learning [44] as proposed by Lancini et al. [45].

Here, we will describe only two algorithms based on the GLA in more

detail, namely, the algorithms proposed by Gersho and Yano [33, 34] and by

Goldberg and Sun [30].

The Gersho-Yano algorithm splits its codebook vectors to achieve equal

partial distortions as far as possible. The Goldberg-Sun algorithm uses the

mth adaption interval as test data and runs several iterations of the GLA on

codebook Cm−1 to create Cm.

Gain-Adaption Algorithm

Gain-adaption VQ [28] is an example of a local context algorithm. In this

approach, the average gain, g = 1
τ

∑τ−1
i=0 ‖xt+i‖

2
2, of the vectors in the adaption

interval is computed and quantized to ĝ. Then, the vectors of the adaption

interval are divided by ĝ. Subsequently, the “normalized” vectors are quantized
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using a static codebook C. The procedure is repeated with the next adaption

interval. As side information we have only to transmit the quantized gain ĝ.

Since the codebook C does not change during the encoding, it is, at first

sight, not clear why the gain-adaption approach is considered as AVQ. But in

[22] the reason for that is revealed. A universal codebook can be created by

multiplying all vector in C with all possible quantized gains ĝ. Then we can

interpret the gain as a measurement for the codebook selection.

The Gersho-Yano Algorithm

The Gersho-Yano algorithm [22, 31] is based on the partial distortion theo-

rem. The proposition of this theorem is that for an asymptotic optimal vector

quantizer the partial distortions Di (see Sect. 2.1) are nearly constant with

value
� N−1

i=0 Di

N
as N approaches infinity [28, p. 187].

Therefore, the Gersho-Yano algorithm tries to change the codebook vectors

so as to make the partial distortions “as equal as possible”. The basic version

of the algorithm works as follows. First, consecutive vectors are partitioned

into adaption intervals Bm = {xt, xt+1, . . . , xt+τ−1} with the interval length τ

and t = τ(m − 1) + 1. Then for one adaption interval Bm the partitions Ri

and the partial distortions Di are computed using Cm, βm, and the NN vector

encoder αm. Let imax and imin be the index of the partition with the largest

and smallest partial distortion, respectively.

The vector cmax 1 = βm(imax) is “split” into two vectors, i.e., a new vector

cmax 2 is created by adding a small random vector to cmax 1. Then one iteration

of the GLA is applied with the training set Rimax and the initial codebook

{cmax 1, cmax 2}. The two resulting codebook vectors c′max 1 and c′max 2 describe

the learning set, Lm+1 = {c′max 1, c
′
max2}. The forgetting set is given by Fm+1 =

{βm(imax), βm(imin)}.

As side information, the new vectors c′max 1 and c′max 2 are transmitted to the

decoder using α∗ and γ∗. In addition, the indices imin and imax are transmitted

using the index coder γm.

Finally, all vectors in Bm are encoded using codebook Cm+1 and m is in-

cremented by 1.



41

The Goldberg-Sun Algorithm

The basic version of the Goldberg-Sun algorithm [34, 22] is another example

for an adaption algorithm using the GLA. This time, one or more iterations of

GLA are applied using the whole adaption interval Bm as training set and the

codebook Cm−1 = {c0, . . . , cN−1}. The resulting codebook is denoted as C ′m =

{c′0, . . . , c′N−1}. Each codeword in Cm−1 is compared with its corresponding

codeword in C ′m. The learning and the forgetting set are defined as Lm = {c′i :

‖ci− c′i‖2 > δ} and Fm = {ci : ‖ci− c′i‖2 > δ} with the predefined threshold δ.

As side information, we have to transmit a flag for every codebook vector

ci indicating whether the vector is updated or not. Then, where necessary, the

code vector c′i is encoded by γ∗.

Finally, the vectors in the mth adaption interval are vector quantized using

the new codebook Cm.

2.5.3 Rate-Distortion-Based AVQ Algorithm

The AVQ algorithms presented so far consider either the distortion or the rate

to decide whether the codebook should be updated or not. Even though in gen-

eral the constrained-distortion algorithms try to achieve a low encoding rate,

too, and the constrained-rate algorithms also have the objective to achieve a

low distortion, this trade-off is not considered explicitly. However, this is done

by rate-distortion (RD) based AVQ. The distortion reduction ∆D by the im-

provement of the codebook and the rate increase ∆R by the side information

are taken into account. The trade-off between these values is specified by the

RD parameter λ. Typically, RD based AVQ minimizes J = D + λR with D

being the overall distortion and R the overall rate including side information.

The interpretation of the parameter λ is discussed more thoroughly in Chap-

ter 3. In the literature, two essentially different algorithms are known [22].

A batch algorithm of Lightstone and Mitra [47, 46] and an online algorithm

proposed by Fowler [24, 23].

The batch algorithm analyses an interval of vectors and sends the codebook

update in an RD optimized fashion. Subsequently, the vectors are quantized.
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The online algorithm decides “on the fly” if the current codebook should

be updated or not.

Another algorithm proposed by Chen et al. can be considered as a com-

bination of the Lightstone-Mitra and the Fowler approach. This algorithm

decides “on the fly” whether the current vector xt should be encoded by a

vector in the codebook or the xt itself should serve as a new codebook vec-

tor. After an adaption interval, a general codebook update, e.g., moving and

deleting of vectors, is performed. All decisions are made in a RD-optimization

sense.

However, in the following we consider only the two essentially different

algorithm, the online and the batch algorithm.

The Lightstone-Mitra Algorithm

This approach [46, 22] assumes that both encoder and decoder own the code-

book Cm that roughly suits the current source statistic. Then the encoder

analyses an adaption interval, B = {x0, . . . , xM−1}, and if the codebook mis-

matches the source it is updated as follows. For each vector in the codebook,

ci, the distortion reduction, ∆Di, by changing ci and the rate increase, ∆Ri,

for the corresponding side information are considered. Subsequently, for each

vector in the codebook it is decided whether it should be changed or not.

This scheme is depicted in Alg. 3. First, one iteration of the ECVQ-GLA

is applied. The new vector coder αm+1, index coder γm+1, partition cells Rn,

and preliminary vector decoder β ′
m+1 are estimated. Note that, provided βm is

known to the decoder, the estimation of αm+1 does not require side information

and the amount of side information for the VLC of γm+1 is either negligible

or zero using a Huffman coder or adaptive arithmetic coder, respectively [46].

The only substantial side information is needed for updating the codebook,

i.e., specifying βm+1. This side information is expressed in RD-terms with

∆Ji = ∆Di + λ · ∆Ri for every potentially new codebook vector c′i. Only

vectors are transmitted for which ∆Ji < 0 holds true. Then the procedure is

repeated until the stopping criteria is satisfied. After that, the vectors in B

are quantized using the updated vector quantizer.
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Algorithm 3 The Lightstone-Mitra algorithm

1: Given: initial codebook C0, vector decoder β0, index coder γ0,

adaption interval B = {x0, . . . , xM−1},

stopping threshold ε,

trade-off parameter λ,

m = 0
2: repeat

3: Let Cm = {c0, . . . , cN−1}.

4: Define αm+1(x)
def
= arg mini[d(x, βm(i)) + λ · γm(i)]

5: Rn ← {x ∈ B : αm+1(x) = n}, ∀n ∈ I

6: Calculate a VLC that meets approximately |γm+1(n)| = − log2
|Rn|
|B| .

7: Estimate the preliminary vector decoder, β ′
m+1(n)← 1

|Rn|
∑

x∈Rn
x.

8: Quantize possible new codebook vectors, c′i = Q∗(β ′m+1(i)).

9: Compute potential distortion reduction for every c′i, ∆Di =
1

|Ri|
∑

x∈Ri
d(x, c′i)−

1
|Ri|
∑

x∈Ri
d(x, ci).

10: Compute rate increase required by side information for every c′i, ∆Ri =
γ∗(α∗(c′i))

|Ri| .

11: Compute RD measure for every c′i, ∆Ji = ∆Di + λ ·∆Ri.

12: Create forgetting set Fm+1 = {ci : ∆Ji < 0} and learning set Lt = {c′i :

∆Ji < 0}; update Cm+1 and βm+1 accordingly.

13: m← m + 1

14: until the relative change of the cost function J is small enough (< ε).

15: Quantize the vectors in B.
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The Generalized Threshold Replenishment Algorithm of Fowler

One drawback of the batch algorithm described above is that the adaption

interval B must be known in advance. The encoder must be able to look

ahead in time. The online algorithm of Fowler et al. adapts its codebook

considering each vector separately without knowledge about the future. This

algorithms is called generalized threshold replenishment (GTR).

In [23], two similar GTR versions are presented. Here, we describe only

the, better performing, move-to-front variant. This approach is depicted in

Alg. 4.

We describe the procedure for a given time t. It is assumed that a prob-

ability pt−1(i) is known for every codebook vector ci ∈ Ct−1. We start with

estimating the index coder γt. Then the vector coder αt is defined. In the next

step, the cost of a codebook update is computed. If the update pays in the

RD sense, the codebook is updated. Otherwise, the vector is quantized with

Q(xt). The vector Q∗(xt) or Q(xt), respectively, is then moved to the front of

the codebook.

The estimation of the new probability works as follows. First, we define

a window parameter ω useful for the estimation of the number of vectors in

the past that have been mapped to ci, ηt(i) = ωpt−1(i). Let j be described by

j = αt(xt). If no codebook update occurred, the new probabilities are then

estimated by

pt(i) =

{

[ωpt−1(i)]/(ω + 1), i 6= j

[ωpt−1(i) + 1]/(ω + 1), i = j

Otherwise, the new probabilities are estimated by

ηt(i) =

{

ωpt−1(i), i 6= j

ωpt−1(i)/2, i = j

and

pt(i) =
ηt(i)

∑N−1
n=0 ηt(n)

In either case, the indices of the probability function must be rearranged

according to βt.
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Algorithm 4 The GTR algorithm (Move-to-front variant)

1: Given: codebook Ct−1,

vector decoder βt−1,

codeword probability, pt−1(i), for each codeword ci ∈ Ct−1,

RD trade-off parameter λ,

time t
2: Calculate the index coder γt. The variable length codes of γt satisfy ap-

proximately |γt(ci)| = − log2 pt−1(i).

3: Define αt(x)
def
= arg mini[d(x, βt−1(i)) + λ · γt(i)]

4: Calculate the change of the RD-function in case of a codebook update,

∆d = −d(αt(xt), xt), ∆r = γt(xt), and ∆J = ∆d + λ ·∆r.

5: if ∆J < 0 then

6: Lt = {xt} and Ft = {βt−1(N − 1)}, update codebook Ct,

7: send to the decoder a flag indicating a codebook update and γ∗(α∗(xt)).

8: Update the vector decoder, βt(i) =

{

βt−1(i− 1) if i > 0

Q∗(xt) otherwise
.

9: else

10: Send a flag indicating no codebook update and set Ct ← Ct−1.

11: Compute new vector decoder, let j = αt(xt),

then βt(i) =















βt−1(j) i = 0

βt−1(i) i > j

βt−1(i− 1) i ≤ j

.

12: end if

13: Compute pt(i) for all ci ∈ Ct.



Chapter 3

Rate-Distortion Optimization

In this chapter, we will present rate-distortion optimization techniques. The

problems that are solved by this kind of algorithms are also known as bit

allocation or, more general, rate allocation problems [84, 82]. First, we present

general theoretical results for continuous random variables. We then describe

the problem for the discrete case, where we are mainly concerned with two

kinds of optimization algorithms: the Lagrangian multiplier algorithm and

incremental computation of the solution. These algorithms are discussed for

different optimization scenarios. In addition, a new algorithm for a general

optimization scenario based on incremental computation is contributed. A

proof of its correctness is provided.

3.1 The Rate Allocation Problem

We consider M independent random variables, Xm, 0 ≤ m < M . For each ran-

dom variable, Xm, there is a distortion-rate function, Dm(R) : R
+ → R

+, 0 ≤

m < M describing the trade-off between the rate needed to approximate the

values of Xm and the corresponding distortion of the approximation. The rate

allocation problem can be stated as follows:

min
M−1
∑

m=0

Dm(Rm) subject to
M−1
∑

m=0

Rm ≤ RT

with the target rate RT .

46
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X0

D0(R)

R R

X1

slope=λ
slope=λ

R∗
1R∗

0

D1(R)

Figure 3.1: Geometric interpretation of the optimal solution of the continuous

rate allocation problem.

This optimization problem can be solved by a Lagrangian multiplier ap-

proach. Provided that Dm(R), 0 ≤ m < M , is differentiable, the solution

(R∗
0, . . . , R∗

M−1) has the property

∂Dm(R∗
m)

∂R
= −λ, 0 ≤ m < M, (3.1)

known as constant slope property since all curves described by the distortion

rate function Dm(R) have the same slope −λ at the optimal solution R∗
m [84].

The geometric interpretation of (3.1) is shown in Fig. 3.1. Note that the

distortion-rate curves, defined by Dm(R), are always convex [4].

With (3.1) it is possible to derive a closed form approximation for some

special cases. For example, if the random variables, Xm, have an independent

Gaussian distribution with variance σ2
m, the approximate rate, R∗

m, is given by

the expression [38]

R∗
m ≈

RT

M
+

1

2
log2

σ2
m

(

∏M−1
i=0 σ2

m

)1/M
. (3.2)

3.2 Rate Allocation for Discrete Rates and

Distortions

In this section, we introduce the most basic case of practical rate allocation

problems. In addition, we discuss different solution methods.
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A typical rate allocation problem arises with the encoding process of a

vector quantizer (for the terminology see Sect. 2.1). There are M vectors

x0, . . . , xM−1 that have to be encoded and the codebook size of the vector

quantizer is N . For each xm we get N distortions by computing the distortions

between xm and the codebook vectors, Dn
m = d(xm, β(n)). In addition, for

every xm we get the encoding costs1Rn
m = |γ(n)|. From the example we can see

that we do not deal any longer with distortion-rate functions but rather with

distortion-rate sets Pm = {(Rn
m, Dn

m) : 0 ≤ n < N}. One possible encoding of

the vectors x0, . . . , xM−1 can be described by choosing for each vector xm an

appropriate codebook vector β(im) ∈ C, im ∈ I of the codebook C. Thus, one

possible encoding of the M vectors is determined by an M-dimensional index

vector I = (i0, . . . , iM−1). The discrete rate allocation problem can therefore

be formulated as

min
I∈IM

M−1
∑

m=0

Dim
m subject to

M−1
∑

m=0

Rim
m ≤ RT (3.3)

where I = {0, . . . , N − 1} describes the set of possible indices.

If adjacent points in the set Pm that could contribute to an optimal so-

lution are connected by lines, the operational rate-distortion curve is defined

(Fig. 3.2). Note that, unlike Sect. 3.1, the operational RD-curve is not neces-

sarily convex.

One possible solution method could be exhaustive search in the space of

all index vectors. But an examination of MN solutions is not feasible for large

M or N .

3.2.1 Computing the optimal solution

Under the assumption that all rates, Rn
m, are integers, the rate allocation

problem can be optimally solved with the Viterbi algorithm [60, 59]. We

assume that the reader is familiar with this kind of dynamic programming.

Thus, we give only a short description of how to compute the optimal solution.

1In this example, the encoding costs are independent of the parameter m. Nevertheless

we use the notation Rn
m to consider the general case.
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P1P0

Rate

Distortion

Rate

Distortion

Figure 3.2: Operational rate-distortion-curve.

We create a trellis with the entries dmin(j, r). The vertical axis describes

the cumulative rate, i.e., the rate that is achieved summing up the rates taken

from points of certain sets Pm. Therefore, we can have RT cumulative rates

where RT denotes the target rate.

The horizontal axis describes the stages of the trellis. Each stage j can be

assigned to a set of RD-points, Pj. Hence, the trellis has M stages.

The entry of the trellis node (j, r), dmin(j, r), describes the smallest achiev-

able distortion for a given cumulative rate r considering all stages ≤ j, i.e.,

dmin(j, r) = min

j
∑

t=0

Dit
t subject to

j
∑

t=0

Rit
t ≤ r, it ∈ I (3.4)

If we assume that the values dmin(m, r) for all m < j and all r < RT are

already known, then the value of dmin(j, r) can be computed with

dmin(j, r) = min{dmin(j − 1, r − Rn
j ) + Dn

j : 0 ≤ n < N ∧Rn
j < r}.

Thus, the transition cost from node (j − 1, r − Ri
j) to node (j, r) is given by

Di
j. If there are equal rates, Ri

j = Rn
j , i 6= n, then we take the smallest of the

corresponding distortions.

The computation of dmin(j, r) is illustrated in Fig. 3.3. For all rates, Rn
j ,

n ∈ I, we must consider the value dmin(j − 1, r−Rn
j ) + Dn

j . The minimum of

these values equals dmin(j, r). Only if the value of dmin(M − 1, RT ) is known,

the optimal path from the last stage M −1 to stage 0 can be determined. The

complexity of this algorithm is O(M ·N ·RT ).
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Figure 3.3: Viterbi Algorithm to find the optimal solution

3.2.2 The Lagrangian Multiplier Algorithm

If one is not interested in the optimal solution but only in a sufficient approx-

imation of the solution, the Lagrangian multiplier (LM) technique might be

applied. Classical LM approaches assume continuously differentiable functions

[52]. But it was shown in [40] that this technique also works in the case of dis-

crete values. Thus, this method can be used to find an approximate solution

of the discrete rate allocation problem. If we set

J(λ, I) =

M−1
∑

m=0

Jm(λ, im) =

M−1
∑

m=0

Dim
m + λ ·Rim

m ,

the constrained optimization problem formulation of (3.3) can be transformed

into the unconstrained optimization problem

min
I∈IM

J(λ, I) =

M−1
∑

m=0

min
im∈I

Jm(λ, im) =

M−1
∑

m=0

min
im∈I

[Dim
m + λ ·Rim

m ]. (3.5)

Moreover, if there exists a solution of the unconstrained problem then it is

also a solution of the constrained problem.

Proposition 3 If R∗(λ) =
∑M−1

m=0 R
i∗m
m and D∗(λ) =

∑M−1
m=0 D

i∗m
m is a so-

lution of the unconstrained optimization problem (3.5) with a given λ and

the optimal indices i∗m ∈ {0, . . . , N − 1}, then it is also a solution of the
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Figure 3.4: Geometrical interpretation of the Lagrangian multiplier.

constrained optimization problem (3.3) with minI∈IM

∑M−1
m=0 Dim

m subject to

R =
∑M−1

m=0 Rim
m ≤ RT = R∗(λ).

Proof: see [40, 75, 71] �

A geometrical interpretation of the solution is shown in Fig. 3.4. Two

sets, P0 and P1, are considered. A line with slope −λ is drawn through the

origin. Then it is shifted toward the lower part of the convex hull (LCH).

The first point met by this line is the point minimizing J0(λ, i0) and J1(λ, i1),

respectively [71, 59]. This shows that even in the discrete case there is a

“constant slope” constraint for the solution if only solutions on the LCH

are considered. The “constant slope” property is shared by the set P =

{(
∑M−1

m=0 Rim
m ,
∑M−1

m=0 Dim
m ) : I ∈ IM} of all possible sums where the addends

are taken from every set Pm : 0 ≤ m < M one at a time. This time, the

point met by the line with slope −λ minimizes J(λ, I). We call P the global

set and Pm the local sets. Together with Proposition 3 we can conclude that

the LM-technique can only describe optimal solutions of the rate allocation

problem that are located on the LCH of the global set P. If the target rate

RT is not exactly reached, an RD-point on the LCH with the closest rate to

RT is selected. In the following we call this solution optimal LCH solution.

Note that (3.5) explicitly defines a solution procedure. Fixing a value for λ,

every Jm(λ, im) can be minimized separately by computing the indices i∗m. We

call such computations for a given value of λ an LM-iteration. The complexity

of one LM-iteration is O(N ·M).
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The LM-approach poses the problem to determine the value of λ that yields

an optimal LCH solution for the given target bitrate RT . Thus, a search

strategy is necessary. The LM-iteration together with the search strategy

describes the LM-algorithm.

The next proposition will help to understand the development of search

strategies in the following.

Proposition 4 The optimal rates of (3.5), R∗(λ) =
∑M−1

m=0 R
i∗m
m , are mono-

tonically decreasing with λ, that is, if λ2 ≥ λ1 > 0 then R∗(λ2) ≤ R∗(λ1).

Likewise, the optimal distortion D∗(λ) is monotonically increasing.

Proof: see [75, 71] �

In later chapters, we will need the following corollary.

Corollary 1 The optimal rates of mini∈I Jm(λ, i) in (3.5), R∗
m(λ) = R

i∗m
m , are

monotonically decreasing with λ for 0 ≤ m < M .

Proof: A special case of Proposition 4. �

Using the monotonicity of optimal rates and distortion, search strategies

like bisection or Newton’s method can be applied [80, 63, 62]. In the following,

we describe a fast convex search algorithm to determine the value of λ that

leads to an optimal LCH solution of (3.5) [75, 63]. This algorithm works as

follows. The search is started with an initial interval [λU , λL] where R∗(λU) ≥

RT ≥ R∗(λL). If R∗(λU) = RT or R∗(λL) = RT , we stop since we know from

Proposition 3 that we have found an optimal LCH solution already. Otherwise,

we compute λN = D∗(λL)−D∗(λU )
R∗(λU )−R∗(λL)

which is within the search interval [λU , λL].

If λN = λU or λN = λL, we can stop the search since this indicates that

there could exist no other point with a rate between [R∗(λL), R∗(λU)] on the

LCH of the global set P. If this is not the case, we check if R∗(λN) ≤ RT or

R∗(λN) > RT and set λL ← λN or λU ← λN , respectively. If R∗(λN) = RT , we

have found an optimal solution. Otherwise, the algorithm is repeated with the

smaller interval [λU , λL]. The procedure is depicted in Alg. 5. To complete the

description of the algorithm we only have to specify the initial search interval.

A default initialization could be [0,∞]. However, the algorithm can be sped

up if it starts with a tight initial interval. In the experiments in this thesis, we
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used the following scheme to find the initial interval. Assuming a good guess

λlast (usually estimated from λ of previous optimizations), the λlast is doubled

or halved until an initial interval is found. Then, Alg. 5 is applied.

To the best of the author’s knowledge, complexity considerations of this

algorithm have not appeard in the literature so far. Moreover, in the author’s

view it seems that the mainstream opinion is that such considerations are not

reasonable because the computation of the RD-points is supposed to have a

much higher complexity. However, in Chapter 5 we will see that this actually

is not the case for the RD-problems we will be concerned with afterwards.

The complexity of the LM-algorithm has the same order of magnitude as the

computation of the RD-points and depends highly on the number of iterations

that the fast convex search algorithm needs. Let A be the number of iterations.

Then the complexity is O(N ·M ·A). An upper bound of A is M ·N since in the

worst case all points in P lie on the LCH and the LM-algorithm could find all

points during the search for the optimal λ. Thus, the worst case estimation of

the complexity is O(N 2 ·M2). We will reconsider the complexity in Chapter 5.

Algorithm 5 Fast convex search of λ.

INPUT: initial search interval [λU , λL], target rate RT with R∗(λL) < RT <

R∗(λU)

while R∗(λU) 6= RT and R∗(λL) 6= RT do

compute λN ←
D∗(λL)−D∗(λU )
R∗(λU )−R∗(λL)

compute R∗(λN) and D∗(λN)

if R∗(λN) = R∗(λU) or R∗(λN ) = R∗(λL) then

stop

end if

if R∗(λN) ≤ RT then

λL ← λN

else

λU ← λN

end if

end while
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3.2.3 Incremental Computation of the Rate-Distortion

Curve

From Sect. 3.2.2 we already know that the LM-algorithm needs several itera-

tions to find a value for λ that yields an optimal LCH solution. In [28, 75, 90],

a different approach is proposed that computes the LCH directly. Starting

from the minimal (maximal) rate of the set of global RD-points P, this al-

gorithm computes the LCH of P for increasing (decreasing) rates until the

best approximation of the target rate RT is reached. This algorithm works as

follows. First, the smallest achievable bitrate is searched, i.e., for every local

set Pm the index im with the smallest rate Rim
m is computed. Subsequently,

for every local set Pm the index jm describing the next point on the LCH of

Pm is determined. Let λm be the slope between the RD-points specified by

im and jm. The set Pn with the “steepest”, i.e., minimal, λn is selected. The

selected index of Pn is changed, in ← jn. Then, the next point on the LCH of

Pn is searched and so forth. This algorithm is detailed in Alg. 6.

Algorithm 6 Basic algorithm for incremental computation of the convex hull.
INITIALIZATION

for all macroblocks Xm, 0 ≤ m < M do

im ← arg mini{R
i
m : i ∈ I}

jm ← arg mini{
Di

m−Dim
m

Ri
m−Rim

m
: Ri

m > Rim
m ∧Di

m < Dim
m ∧ i ∈ I}

λm ←
Djm

m −Dim
m

Rjm
m −Rim

m

end for

rate←
∑M−1

m=0 Rim
m

OPTIMIZATION

while rate < target rate do

n← arg min0≤m<M λm

rate← rate + Rjn
n − Rin

n

in ← jn

jn ← arg mini{
Di

n−Din
n

Ri
n−Rin

n
: Ri

n > Rin
n ∧Di

n < Din
n ∧ i ∈ I}

λn ←
Djn

n −Din
n

Rjn
n −Rin

n

end while
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The complexity of Alg. 6 can be estimated as follows. During the initial-

ization, all RD-points are considered to find the smallest rate in every local

set Pm. In addition, the first λm has to be computed for every Pm. The

complexity of the initialization can be estimated by O(M · N). During the

optimization, we have to compute a new λm each time we find the next point

on the LCH. The computation of λm needs O(N) operations. Let there be B

of such steps. Then the complexity of all steps can be estimated by O(B ·N).

In the worst case, all points on the LCH are traversed. Therefore, an upper

bound for B is M · N and, thus, for the algorithm it is O(M · N 2). The

complexity is considered in more detail in Chapter 5.

In the following section we will consider a more complicated kind of de-

pendences between the local sets of RD-points, the hierarchical dependences.

Finally, in Sect. 3.4 we present general dependences.

3.3 Optimization with Hierarchical Depen-

dences

In the previous section, the global set P of rate-distortion points was created by

considering all combinations of points in the local sets, i.e., P0×P1×. . .×PM−1,

and adding up their rates and distortions. The summation was independent in

the sense that the selection of a point in a certain local set does not affect the

other selections. In this section we present examples which do not have this

“independence” property. Thus, we have to extend the terminology to be able

to describe such kind of optimization problems. Moreover, in the following

we will have to merge two different notations: the one from the last section

and the one used for tree structured optimization problems [11]. The resulting

notation can be viewed as a generalization of [63].

As an example for a typical hierarchical RD-problem we consider tree-

structured VQ. From Sect. 2.3.1 we know that such VQ contains not only

one codebook but also a series of K codebooks, C0, . . . , CK−1 = C, where

only the last codebook C, containing N codebook vectors, is used for the

quantization of vectors and the intermediate codebooks are only needed for
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the search strategy. We assume that the indices are encoded with a FLC, i.e.,

|γ(i)| = dlog2 Ne, 0 ≤ i < N . Such VQ can be considered as a full tree with

the leaves taken from CK−1. The rate needed to encode one vector cn ∈ C,

|γ(n)|, can be determined by counting the number of internal nodes that have

to be traversed from the root node to the leaf corresponding to cn.

A new codebook can be created by pruning the tree and considering the

resulting leaves as new codebook vectors. This can be viewed as a rate allo-

cation problem where the rate-distortion points are derived from the expected

rates and distortions of all possible pruned trees. Using the notation from

Sect. 2.3.1, we can state the problem as:

min
S�T

δ(S) subject to l(S) ≤ RT . (3.6)

From Sect. 3.2 we know that the optimization can be understood as choosing

an index vector I = (i0, . . . , iM−1). We will show that (3.6) can also be restated

in this terminology.

The solution in Sect. 3.2.2 was given by summing up independently a proper

combination of rates and distortions from all local sets Pm. Now we have

to deal with hierarchically organized nodes of a tree T = {t0, . . . , tM−1}.

Therefore, we will use the affinity of the tree functionals δ and l to investigate

them at each node t ∈ T . For this, we need the following decomposition

property.

Proposition 5 Let u be an affine tree functional defined on T and S � T .

Then u(S) =
∑

t∈S̃ u(t)+
∑

t∈S\S̃ a(t) where a(t) denotes the value of t if t is an

internal node and u(t) = u({t}) the corresponding value if t is a leaf. The term

a(t) can be expressed as a(t) = u({t, left(t), right(t)})− u(left(t))− u(right(t))

with the left and right child of node t, left(t) and right(t). For t ∈ T̃ we define

a(t) =∞.

Proof: Easy conversion of the affinity definition. �

With this proposition in mind, we can assign two possible encoding options

to each node t, namely u(t) if t is a leaf node and a(t) if t is an internal node.

The value of the tree functional u(S) can then be computed for all S � T by
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the term

u(S) =
∑

t∈S
v(t) (3.7)

where v(t) is selected from {u(t), a(t)} with

v(t) =

{

u(t), if t ∈ S̃

a(t), otherwise.

In particular, we can decompose the functionals l and δ. To each node t,

we can assign two (l, δ) pairs, namely

(l0(t), δ0(t))
def
= (l(t), δ(t))

and

(l1(t), δ1(t))
def
=















(l({t, left(t), right(t)})− l(left(t))− l(right(t)),

δ({t, left(t), right(t)})− δ(left(t))− δ(right(t))), if t ∈ T \ T̃

(∞,∞), otherwise.

The (l, δ) pairs can be considered as rate-distortion points. Thus, we as-

sign two possible rate-distortion points to each node t ∈ T , (l0(t), δ0(t)) =

(R0
t , D

0
t ) for the case t is a leaf node and (l1(t), δ1(t)) = (R1

t , D
1
t ) for the

case t is an internal node. Therefore, the local sets, Pt, can be defined as

Pt = {(R0
t , D

0
t ), (R

1
t , D

1
t )}. With the above defined local sets Pt, we can ex-

press the tree functional (l(S), δ(S)) as follows. We know from (3.7) that

(l(S), δ(S)) can be computed by summing up a term for every t ∈ S depend-

ing on whether t ∈ S̃ or t ∈ S \ S̃. Since there is only one RD-point for the

case t is a leaf node and one for the case t is an internal node there is a map

fS from a subtree S = {s0, s1, . . . } � T to an index vector (is0 , is1, . . . ),

fS : S → {0, 1}, sm 7→

{

0 : sm ∈ S̃

1 : otherwise
. (3.8)

With ism
= fS(sm) we can rewrite δ and l as

δ(S) = D(S, fS)
def
=
∑

sm∈S
Dism

sm
and l(S) = R(S, fS)

def
=
∑

sm∈S
Rism

sm
. (3.9)
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The optimization problem now can be described as:

min
S�T

∑

sm∈S
Dism

sm
subject to

∑

sm∈S
Rism

sm
≤ RT . (3.10)

As in Sect. 3.2, we define the global set PT as the “sum of local sets Pt”,

PT
def
= {(R(S, fS), D(S, fS)) : S � T }.

Up to now the use of the index vector (is0, is1 , . . . ) seems to be redundant

since a tree structure, S, implicitly defines an index vector via (3.8). The next

example for a typical hierarchical dependence arising with image and video

coding will show that a more general view is useful.

We would like to encode an image macroblock of 16×16 pixel size, a typical

macroblock size for image and video coding (cf. Sect. 1.6), in the following

way. There exist N different encoding options for the full macroblock, e.g.,

different vectors in a vector quantizer. Alternatively, the macroblock can be

decomposed into four 8 × 8 pixel blocks. Again, there are N independent

encoding options for each 8× 8 pixel block and each 8× 8 pixel block can be

independently decomposed into four 4 × 4 pixel blocks. Each of these 4 × 4

pixel blocks can be independently encoded with N coding options. Such a

structure can be described by a quad-tree (cf. Sect. 1.4).

The pure tree structure can be described with the notation of Sect. 2.3.

But unlike the optimization problem in (3.10) the local set Pt of the node t

contains N points for each coding option and one point (RN
t , DN

t ) for the case

of t being an internal node, i.e., Pt = {(R0
t , D

0
t ), . . . , (RN

t , DN
t )}. Thus, the

index vector (is0 , is1, . . . ) is not completely specified by the tree structure S.

We know that if t is an internal node, we have only one possible encoding

option, it = N . On the other hand, if t is a leaf node, there are N possible

encoding options, it ∈ {0, . . . , N − 1}. Therefore we have to consider the set

of all possible index functions,

FS
def
= {f : S → {0, . . . , N}, f(sm) ∈

{

{0, . . . , N − 1} : sm ∈ S̃

{N} : otherwise.

With ism
= f(sm), the optimization problem can be described as

min
(S,f): S�T ,f∈FS

∑

sm∈S
Dism

sm
subject to

∑

sm∈S
Rism

sm
≤ RT (3.11)
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Unlike the optimization problem (3.10), we have not only to determine the tree

structure, but also the encoding option for the leaf nodes. Obviously, (3.10)

is a special case of (3.11). The global set PT amounts to

PT = {(R(S, f), D(S, f)) : S � T , f ∈ FS .}

Now we have to explain the term “hierarchical dependence”. Unlike

Sect. 3.2, the global set PT is not created by a summation of points inde-

pendently contributed by several local sets Pt. The selection of an index for a

node t ∈ T could rather exclude all children of t from the sum if t is selected a

leaf-node. Thus, the contribution of node t to the sum depends on the index

of parent nodes.

In the following, we present algorithms to solve rate allocation problems

discussed above. Section 3.3.1 describes an algorithm to find solutions for prob-

lem (3.6) and (3.11) with the Lagrangian multiplier algorithm. In Sect. 3.3.2,

an algorithm to solve problem (3.6) is presented based on incremental com-

putation of the LCH of the global set. Finally we contribute an algorithm to

solve (3.11) with incremental computation of the LCH.

To keep things simple, the algorithms are shown only for binary trees. The

generalization for trees with more children can be made straight-forwardly.

3.3.1 The Lagrangian Multiplier Algorithm

As we have seen in Sect. 3.2.2, the constrained optimization problems (3.6)

and (3.11) can be transformed into the unconstrained problems

min
S�T

[δ(S) + λ · l(S)] (3.12)

and

min
(S,f): S�T ,f∈FS

[

∑

sm∈S
Dism

sm
+ λ

∑

sm∈S
Rism

sm

]

. (3.13)

An algorithm to solve (3.12) and (3.13) has been presented in [82, 63]. This

algorithm is based on dynamic programming [3].
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In the following, we denote the argument of the solution of (3.13) restricted

to a subtree R @ T by (R∗, f ∗R∗) , i.e.,

(R∗, f ∗R∗) = arg min
(S,f): S�R,f∈FS

[

∑

sm∈S
Dism

sm
+ λ

∑

sm∈S
Rism

sm

]

. (3.14)

We call (R∗, f ∗R∗) the solution for R.

The minimum value that is achieved by the argument (R∗, f ∗R∗) in (3.14)

is denoted by J(R∗, f ∗R∗), i.e.,

J(R∗, f ∗R∗) = min
(S,f): S�R,f∈FS

[

∑

sm∈S
Dism

sm
+ λ

∑

sm∈S
Rism

sm

]

.

The “principle of optimality” for the dynamic programming solution for a

fixed value of λ reads:

If a node t ∈ T is considered, we do not know in advance whether

t ∈ T ∗ or not. But if t ∈ T ∗, then (S∗t , f ∗S∗t ) with the branch

St of T also belongs to the solution of (3.13), i.e., S∗t ⊂ T
∗ and

∀s ∈ S∗t : f ∗S∗t (s) = f ∗T ∗(s).

With this principle, a recursive algorithm can be developed. Let us consider

node t. We assume that the solution for the left branch, Sleft(t), (S∗left(t), f
∗
S∗

left(t)
)

and for the right branch (S∗right(t), f
∗
S∗right(t)

) is known. Then we can compute

(S∗t , f ∗S∗t ) as follows. We compute J
�

t , the value of J(S∗t , f ∗S∗t ) for the case t is

an internal node, and Jt, the corresponding value if t is a leaf node. J
�

t can

be calculated by

J(S∗left(t), f
∗
S∗

left(t)
) + J(S∗right(t), f

∗
S∗right(t)

) + (DN
t + λ ·RN

t )

and the cost for the case t is a leaf, Jt, by

min
i∈{0,... ,N−1}

Di
t + λ ·Ri

t.

If Jt ≤ J
�

, then S∗t = {t} otherwise S∗t = {t} ∪ S∗left(t) ∪ S
∗
right(t). In the

former case, we have f ∗S∗t (t) = arg mini∈{0,... ,N−1} Di
t + λ ·Ri

t, in the latter case

f ∗S∗t (t) = N . The solution (S∗t , f ∗S∗t ) for St can be directly computed for the
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leaf nodes of T since no child nodes have to be taken into account and only Jt

must be calculated. For an internal node t ∈ T \ T̃ , (S∗t , f ∗S∗t ) can be computed

when (S∗left(t), f
∗
S∗

left(t)
) and (S∗right(t), f

∗
S∗right(t)

) are known. Thus, (S∗t0 , f
∗
S∗t0

) can

be computed for the root node, t0, by traversing the tree from the leaves to

the root.

The complete procedure is shown in Alg. 7. The algorithm computes the

indices i∗t = f ∗S∗t (t) and the minimal Lagrangian cost function J(S∗t , f ∗S∗t ) for all

t ∈ T . The optimal tree structure S∗t0 consists of all nodes that can be reached

from the root traversing only nodes t for which i∗t = N .

The computational complexity is dominated by the term

it = arg min
0≤i<N

[Di
t + λ ·Ri

t]

Thus, the LM-iteration can be estimated by O(M ·N) for a fixed value of λ.

Like the LM-iteration in Sect. 3.2.2, a proper value for λ must be determined.

This can be done with the fast convex search algorithm described in Alg. 5 since

for even hierarchical dependences there exists a monotonic property similar to

Proposition 4.

Proposition 6 The optimal rates of (3.13), R∗(λ) =
∑

sm∈T ∗ R
i∗sm
sm , are mono-

tonically decreasing with λ, that is, if λ2 ≥ λ1 > 0 then R∗(λ2) ≤ R∗(λ1).

Likewise, the optimal distortion D∗(λ) is monotonically increasing.

Proof: see [71] �

Like P in Sect. 3.2.2, the solution of (3.12) and (3.13) describes a point of

the LCH of the global set PT [11, 82].

3.3.2 The Generalized BFOS

In this section we present an algorithm to solve (3.12). It was developed by

Breiman et al. [6] for the optimization of classification and regression trees.

This approach, in turn, was used by Chou et al. to solve rate allocation op-

timization and related problems [11]. The tree functionals δ and l in (3.6)

are assumed to satisfy several conditions, namely to be affine, monotonic, and

having only one option for the case node t is a leaf.
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Algorithm 7 LM-iteration for hierarchical dependences

Given: RD-parameter λ

LM iteration(node t)

{

if t ∈ T \ T̃ then

LM iteration(left(t))

LM iteration(right(t))

else

J∗
left(t) ←∞

J∗
right(t) ←∞

end if

J
�

t ← J∗
left(t) + J∗

right(t) + (DN
t + λ ·RN

t )

it ← arg min0≤i<N [Di
t + λ ·Ri

t]

Jt ← Dit
t + λ ·Rit

t

if J
�

t < Jt then

i∗t ← N

J∗
t ← J

�

t

else

i∗t ← it

J∗
t ← Jt

end if

}
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Figure 3.5: Sequence of pruned trees.

The key of the algorithm is that one can construct the optimal LCH so-

lution S∗ � T by successive pruning of several branches of T (Fig. 3.5), i.e.,

T = S0 � S1 � . . . � S∗. In [11] it is proven that the corresponding sequence

of RD-points (l(S0), δ(S0)), . . . , (l(S∗), δ(S∗)) describes the LCH of the global

set PT = {(l(S), δ(S)) : S � T }.

Let St be the branch that was pruned to reach Si+1 from Si. The affinity of

the components of u = (l, δ) assures that the difference between Si and Si+1,

∆ui = (l(Si)− l(Si+1), δ(Si)−δ(Si+1)) can be described with ∆ui = ∆u(St) =

u(St)− u(t) where

u(S) =

(

l(S)

δ(S)

)

.

To manage the pruning and the change of the tree efficiently, a special data

structure is used,

node(t) =



















∆u(St)

λ(t)

λmin(t)

left(t)

right(t)



















, (3.15)

where ∆u(St) = (∆l, ∆δ) denotes the rate decrease ∆l and the distortion in-

crease ∆δ if node t is pruned, λ(t) denotes the ratio−∆δ
∆l

, left(t) and right(t) the

left and right child of node t, and λmin = min{λ(t), λmin(left(t), λmin(right(t))}.

Apart from the initialization, the generalized BFOS algorithm can be di-

vided into two phases: In the first phase, the node tp with the smallest λ(t)

is searched and pruned. This tp can be determined as follows. Every node t

contains λmin(t) = min{λ(s) : s ∈ St} the smallest value λ(s) over all nodes
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s in the branch St. This information is also available for the left and right

child node. Therefore, λmin only has to be compared with λ(t), λmin(left(t))

and λmin(right(t)) to find out whether the node with the smallest λ is t itself,

in the left, or in the right subtree, respectively. If node t contains the smallest

value of λ, it has to be pruned otherwise the search continues recursively to

left(t) or right(t). If M is the number of nodes and the search starts at the

root t0 of the full tree T , the search for the smallest value of λ needs O(log M)

steps. This phase is called search and prune phase.

After the node tp has been pruned, the data structure (3.15) has to be

updated. This applies to all nodes that lie on the way from the root to tp,

i.e., to all t ∈ {t : tp ∈ St}. Let ∆ be ∆u(tp). Since the tree functionals

δ and l are affine, each t ∈ {t : tp ∈ St} can be updated in the following

way: ∆u(t) ← ∆u(t) − ∆, λ(t) ← −∆δ(t)
∆l(t)

. Afterwards, we have to update

λmin(t) ← min{λ(t), λmin(left(t)), λmin(right(t))}. This phase is called update

phase. The complete algorithm is shown in Alg. 8.

3.3.3 Extension of the Generalized BFOS

The generalized BFOS can be used to optimize tree structured rate allocation

problems. This algorithm, however, imposes several assumptions on the tree

functionals δ and l, namely monotonicity and only one option for every t

to be a leaf. This is the reason for the simplicity of the algorithm. The rate

decreases if the tree gets smaller. The monotonicity assures that once nodes are

removed by pruning they do not need to be reconsidered. If the monotonicity

assumption is dropped, this feature is lost. It can happen that for smaller rates

the tree increases and nodes that have been pruned before are, nevertheless,

part of the optimal LCH solution. Furthermore, if the assumption is dropped

that only one option is provided for every node t to be a leaf the value of the

functionals can change without changing the tree structure.

In this section, we develop an algorithm for affine tree functionals without

any constraint. This algorithm can be used to solve optimization problems like

(3.13). In addition, it is possible to maintain the “spirit” of the generalized

BFOS (GBFOS) algorithm.
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Algorithm 8 The generalized BFOS
INITIALIZATION

for each leaf node t do

∆u(St)← 0

λmin(t)←∞

end for

for each interior node t do

∆u(St)← u(St)− u(t)

λ(t)← −∆δ(t)
∆l(t)

λmin(t)← min{λ(t), λmin(left(t)), λmin(right(t))}

end for

u← u(t0) + ∆u(St0)

while λmin(t0) <∞ do

SEARCHING. Start with root node t0

while λ(t) > λmin(t0) do

if λmin(left(t)) = λmin(t0) then

t← left(t)

else

t←right(t)

end if

end while

∆← ∆u(St)

λmin(t)←∞

UPDATE

while t 6= t0 do

t←parent(t)

∆u(St)← ∆u(St)−∆

λ(t)← −∆δ(St)
∆l(St)

λmin(t)← min{λ(t), λmin(left(t)), λmin(right(t))}

end while

u← u−∆

if l(St0) < ltarget then

break

end if

end while
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In the following, we investigate the data structure (3.15) for one node t

during the GBFOS algorithm. We show that the restrictions of the GBFOS are

implied by this data structure in order to motivate that a new data structure

is necessary. We know from (3.9) that the functionals can be interpreted as

the sum of points from the local sets Pt selected by the function f . In the

GBFOS algorithm, there is only one possible RD-point for t being a leaf,

namely (R0
t , D

0
t ). In addition, there is a variety of implicit RD-points that

are given by the tree functionals of all possible subtrees of the branch St,

{(l(S), δ(S) : S � St}. These RD-points have to be considered by the GBFOS

algorithm but do not appear explicitly in the data structure (3.15).

Since the GBFOS starts with the highest possible bitrate, the monotonic-

ity of the tree functional assures that the algorithm starts with the maximal

subtree St. The value of ∆u(t) = u(St)−u(t) describes the rate and distortion

difference between the local point u(t) = (l(t), δ(t)) = (R0
t , D

0
t ) and the branch

RD-point (l(St), δ(St)) = (Rb
t , D

b
t ) from the currently “selected” subtree, and,

thus, we define λ0(t) = λ(t) in order to describe the slope between the local

point and the branch point. This holds true throughout all steps of the GB-

FOS algorithm. Even if a node in St is pruned, the update procedure assures

that the updated λ(t), denoted by λ1(t), still describes the slope between the

RD-point of the new branch and the local RD-point that does never change.

This is shown by Fig. 3.6a. The black circle describes the single local RD-

point. The open circle with the highest rate describes the RD-point of subtree

St. All other open circles correspond to subtrees S � St. Therefore, the data

structure (3.15) can manage only one local RD-point. The case that a branch

point is smaller than the local point may cause problems since it can happen

that λ(t) = λmin(t0) but the pruning of t increases the rate. Thus, we can

conclude that the restrictions of the GBFOS are implied by the data structure

(3.15).

In contrast to the generalized BFOS algorithm, the algorithm presented in

the following computes the LCH of the global set PT counter clockwise. Thus,

the algorithm starts with the smallest rate, and the sign of λ(t) is reversed.

Nevertheless, with slight changes, this algorithm can also be used to compute
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Dist

λ0

λ1

(l(St), δ(St))

(R0
t ,D0

t )

Rate

(R0
t ,D0

t )

(R(St), D(St))

Rate

Dist

(a) (b)

Figure 3.6: RD-points for a node t. For the GBFOS, (a) shows only one

local RD-point (black circle). The open circles describe RD-points assigned to

subtrees S � St. For the extension of the GBFOS (b) there exist some more

local RD-points.

the LCH of PT clockwise.

If the two conditions for the tree-functionals, monotony and only one local

point, are dropped, the implicit data structure has to be enhanced since λ(t)

can now also describe the slope between two local points, and without the

monotony it can also describe the slope of the step from a local point to a

branch point when the local point has a smaller rate than the branch point

(Fig. 3.6b). Therefore, we define an enhanced data structure.

node(t) =



































Pt[i], 0 ≤ i ≤ N

Pb(t)

fc(t)

fn(t)

λ(t)

λmin(t)

left(t)

right(t)



































. (3.16)

Here, λmin, left(t) and right(t) have the same meaning as in the implicit data

structure (3.15). The first component in the data structure, Pt[i], is an array

consisting of N + 1 RD-points. We take the first N points into consideration,

Pt[i], 0 ≤ i < N , that are the points of the local set Pt corresponding to the

case t is a leaf. Thus, for 0 ≤ i < N we set Pt[i] = (Rt[i], Dt[i])
def
= (Ri

t, D
i
t).

Note that the notation (Rt[i], Dt[i]) differs purposely from the previously de-
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fined notation (Ri
t, D

i
t). This new notation is introduced because of a slight

difference in both notations for the Nth RD-point. We will see that in our

algorithm (Rt[N ], Dt[N ]) 6= (RN
t , DN

t ). The next component, Pb(t), describes

the RD-point of the “currently selected branch” as described before and is

called branch point . The component fc(t) describes the selection function for

the node t and fn(t) a potentially next candidate for fc(t). The node t is

a leaf node with RD-point Pt[fc(t)] = (Rt[fc(t)], Dt[fc(t)]) if 0 ≤ fc(t) < N

and an internal node if fc(t) = N . For ease of notation, we set in the fol-

lowing Pt[N ] = P b
t and, thus, Pt[N ] = (Rt[N ], Dt[N ]) 6= (RN

t , DN
t ). The

next selection function fn(t) is chosen in order to minimize the value of λ(t),

fn(t) = arg mini{
Dt[i]−Dt[fc(t)]
Rt[i]−Rt[fc(t)]

: 0 ≤ i ≤ N ∧ Rt[i] > Rt[fc(t)]}. To illustrate

these terms, an example is provided in Appendix A.

It is an essential difference to the GBFOS that the following algorithm is

applied on all nodes t ∈ T throughout, independent of the selected indices it,

e.g., even if parent nodes are leaf nodes. This is due to the fact that, without

the monotony condition, the size of the optimal tree can decrease or increase

if the target rate increases.

First, we must consider the initialization of the data structure. It is as-

sumed that tree structure T is given and the local points Pt[i] do not change

during the algorithm. Hence the values of left(t), right(t) and Pt[i], 0 ≤ i < N

are fixed. Note, that the values of left(t) and right(t) serve the purpose to find

all nodes in the full tree T and indicate children nodes of t even if t is a leaf

in the optimal tree T ∗. The remaining elements of the data structure have to

be initialized. This is made by the procedure INIT depicted in Alg. 9. For

all t ∈ T , the branch point P b
t describes the subtree S � St with the smallest

achievable rate for the case t is an internal node. Therefore, P b
t can be recur-

sively computed by P b
t = (RN

t , DN
t ) + Pleft(t)[fc(left(t))] + Pright(t)[fc(right(t))]

where (RN
t , DN

t ) ∈ Pt is the RD-point for the case t is an internal node. Then

the point with the smallest rate Pt[fc(t)] over all points Pt[n], 0 ≤ n ≤ N is

calculated.

After the initialisation, the point Rt0 [fc(t0)] describes the point in PT with

the smallest rate.
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Algorithm 9 INIT

INIT(node t)

{

if (left(t) or right(t)) then

P b
t ← (RN

t , DN
t )

else

P b
t ←(∞,∞)

end if

if left(t) then

INIT(left(t))

P b
t ← P b

t + Pleft(t)[fc(left(t))]

end if

if right(t) then

INIT(right(t))

P b
t ← P b

t + Pright(t)[fc(right(t))]

end if

fc(t)← arg mini{Rt[i] : Pt[i] = (Rt[i], Dt[i]) ∧ 0 ≤ i ≤ N}

FIND NEXT LAMBDA(t)

λmin(t)← min{λ(t), λmin(left(t)), λmin(right(t))}

}
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Like the GBFOS algorithm, we now have to determine two phases: The

search for the smallest value of λ(t) (search and prune phase) and the subse-

quent update of the data structure (update phase).

The search for the smallest value of λ(t) can be organized as it is in the

GBFOS algorithm. For each node t, it can be determined whether the smallest

λ has been found or if it is in the left or in the right branch. Starting with the

root node and assuming M nodes in the full tree T , the node tp can be found

in about dlog Me steps.

For the GBFOS algorithm, the pruning has the consequences that the

selection function fc(tp) is changed. Before the change, the branch-point was

selected, i.e., fc(tp) = N . After the change, the (single) local point is selected,

i.e., fs(tp) = 0. The “pruning” in the extended case is more complicated. The

value of fc(tp) is changed to a value, indicated by the next selection function

value fn(tp). There are three possible cases:

1. fn(tp) < N and fc(tp) = N

2. fn(tp) < N and fc(tp) < N

3. fn(tp) = N

The first case describes the situation that can arise with the GBFOS algo-

rithm. Before fc(tp) is changed, tp was an internal node. After that, tp is

a leaf node. In the second case, fc(tp) still indicates a local RD-point after

the change. In the third case, tp becomes an internal node. In all cases the

selection function is changed fc(tp) ← fn(tp). A new next selection function

value fn(tp) must be computed as well as the new corresponding λ(tp). This

is done by the procedure FIND NEXT LAMBDA detailed in Alg. 10. Af-

terwards, the value of λmin must be maintained for each node that is met

traversing the tree from the root t0 to tp; this is achieved by computing

λmin ← min{λ(t), λmin(left(t)), λmin(right(t))} at the end of every recursion2.

2This is, strictly speaking, a part of the update phase. However, in the extended GBFOS,

this has to be done for the “pruned” node, too. Thus, it is convenient to carry out this

computation at the end of the recursion of Alg. 11.
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The extended “search and prune” algorithm is depicted in Alg. 11. The value

∆← Pt[fn(t)]− Pt[fc(t)] is computed for the update phase later on.

Algorithm 10 find next lambda and next selection function value

FIND NEXT LAMBDA(node t)

{

for all 0 ≤ i ≤ N do

if ((Rt[i] > Rt[fc(t)]) and (Dt[i] <= Dt[fc(t)])) then

λh[i]←
(Dt[i]−Dt[fc(t)])
(Rt[i]−Rt[fc(t)])

else

λh[i]← 0

end if

end for

fn(t)← arg min0≤i≤N λh[i]

λ(t)← λh[fn(t)]

if λ(t) = 0 then

fn(t) =∞

end if

}

In the update phase, all nodes on the way from tp to the root node t0 have

to be updated. This already has been indicated in Alg. 11 by the call of the

procedure UPDATE in each recursion. Therefore, to complete the description

of the extension of the GBFOS, the update procedure must be specified.

The update is applied after the “search and prune” procedure. If the node

tp was “pruned” the nodes t ∈ {t : tp ∈ St} have to be updated. Since the

local points Pt[i] : 0 ≤ i < N do not depend on the child nodes of t we have to

investigate only the impact of the change on the branch point P b
t . Apparently,

P b
t can only change if the value of Ps[fc(s)] of one of the descendants s of t

that contribute to P b
t is changed. The amount of the change is stored in ∆.

There are three cases for each node t:

1. fc(t) = N

2. fn(t) = N
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Algorithm 11 Search and “prune” algorithm

SEARCH(node t)

{

if (λmin(t) 6= λ(t)) then

if (λmin(t) = λmin(left(t))) then

SEARCH(left(t))

else

SEARCH(right(t))

end if

UPDATE(t)

else

∆← Pt[fn(t)]− Pt[fc(t)]

fc(t)← fn(t)

FIND NEXT LAMBDA(t)

end if

λmin(t)← min{λ(t), λmin(left(t)), λmin(right(t))}

}
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∆
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Figure 3.7: Update case 1: (a) before, (b) possible situation after update

3. fn(t) < N ∧ fc(t) < N

If in the first case P b
t is changed by ∆ then the values of λ(t) and

fn(t) must be adapted (Fig. 3.7). This can be done with the procedure

FIND NEXT LAMBDA (Alg. 10). In the second case, after P b
t ← P b

t +∆, the

new value of λ(t) can be computed directly by λ(t) ←
Db

t−Dt[fc(t)]

Rb
t−Rt[fc(t)]

(Fig. 3.8).

In the third case the branch RD-point P b
t lies, before the update, above the

line that is defined by the points Pt[fc(t)] and Pt[fn(t)]. It must be verified

whether the branch RD-point after the update P b
t ← P b

t + ∆ lies below this

line or not. If it does, then P b
t is the next point, i.e., fn(t) = N , after the

update (Fig. 3.9). The procedure UPDATE is provided in Alg. 12. In update

case 2 and 3, the point Pt[fc(t)] is not changed. However, this point is the only

point that could change a branch point in parent nodes. Thus, in updated case

2 and 3 we set the change amount ∆ to zero, ∆ ← 0. This is equivalent to

break off the whole update procedure.

Now, we can decide whether tp is part of the optimal tree or not. If there is

a path from the root t0 to tp consisting only of internal nodes, then tp belongs

to the optimal subtree (S∗ � T ) with the rate R(S∗, fc) and the distortion

D(S∗, fc).

An example of the procedures INIT, SEARCH and UPDATE can be found

in Appendix A.

Note that a similar algorithm was proposed in [80], however, without a

proof and without the strict following of the GBFOS approach in this thesis.
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Algorithm 12 Update

UPDATE(node t)

{

P b
t ← P b

t + ∆

if (fc(t) = N) then

FIND NEXT LAMBDA(t)

else

if fn(t) = N then

λ(t)←
Db

t−Dt[fc(t)]

Rb
t−Rt[fc(t)]

else

if (−Rb
t ∗ λ(t) + Db

t < −Rt[fc(t)] ∗ λ(t) + Dt[fc(t)]) then

λ(t)←
Db

t−Dt[fc(t)]

Rb
t−Rt[fc(t)]

fn(t)← N

end if

end if

∆← (0, 0)

end if

}
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Figure 3.8: Update case 2: (a) before, (b) possible situation after update
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Figure 3.9: Update case 3: (a) before, (b) possible situation after update

3.3.4 Proof of Correctness

In this section, we prove the correctness of our algorithm. We claim that

the complete LCH of PT can be computed by the algorithm described in

Sect. 3.3.3. We prove this in three steps. First, we show that the point on the

LCH with the smallest rate is found after the application of INIT (Alg. 9).

The second step is to show that SEARCH (Alg. 11) is able to find points on

the LCH if it is applied to a data structure already describing a point on the

LCH. Finally, we show that the procedure SEARCH is even able to find the

edges of the LCH. Then we conclude that the algorithm is able to compute

the complete LCH.

Before we will describe some useful terms, we take a look at the data struc-

ture (3.16). Some values are fixed during the complete optimization process

like left(t), right(t) and Pt[i] : 0 ≤ i < N which describe the tree structure and

the local points. The other components of (3.16) may have any desired value.

We call a concrete allocation of such values a configuration.
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If the configuration contains reasonable values, e.g., P b
t contains the sum

of the current child nodes, λ(t) contains the slope between the current and

the next point, etc. In this case, we call the configuration consistent . Each

consistent configuration of T defines a tree and selection function pair, (S∗, fc).

The selection function is defined by the data structure, and the tree S∗ consists

of all nodes t ∈ T that can be reached from the root by traversing nodes s for

which fc(s) = N is true.

Definition 3 For every node t the forward lambda λf(t) is defined as

λf(t)
def
= min{D−Dt[fc(t)]

R−Rt[fc(t)]
: (D, R) ∈ {Pt[i] : 0 ≤ i ≤ N} ∧ R > Rt[fc(t)]}.

If this set is empty, we set λf (t)←∞. Analogously, the backward lambda

λb(t) is defined as λb(t)
def
= max{D−Dt[fc(t)]

R−Rt[fc(t)]
: (D, R) ∈ {Pt[i] : 0 ≤ i ≤ N}∧R <

Rt[fc(t)]}. If this set is empty, we set λb(t)← −∞.

Definition 4 We call a consistent configuration of tree T convex

1. if there is a λ such that ∀t ∈ T : λf(t) ≥ λ ≥ λb(t) and

2. if ∀t ∈ T : λ(t) = λf(t).

Lemma 2 Let (S∗, fc) be a tree defined by a convex configuration of T . Then

(R(S∗, fc), D(S∗, fc)) describes a point on the LCH of PT .

Proof: T has a convex configuration. Let λ be taken from Def. 4. Then, if

the tree is traversed from the leaves to the root the term Dt[fc(t)]+λ·Rt[fc(t)] is

always the minimum for all possible RD-points Pt[i] : 0 ≤ i ≤ N including the

branch node, i.e., Dt[fc(t)]+λ ·Rt[fc(t)] = min{Dt[n]+λ ·Rt[n] : 0 ≤ n ≤ N}.

Consequently Pt[fc(t)] lies on the LCH of PSt
(see, for example, [82, 71]).

In particular, this is true for the root node t0. Thus, Pt0 [fc(t0)] apparently

describes a point on the LCH of PT .�

The next lemma shows how to find a convex configuration.

Lemma 3 Let T be a tree with root t0. After applying INIT to a data structure

of T , the resulting configuration is convex. Let (S∗, fc) be defined by this

configuration. Then, (R(S∗, fc), D(S∗, fc)) is the point on the LCH of PT with

the smallest rate.
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Proof: The procedure INIT determines recursively for each node t ∈ T

the point with the smallest rate. Thus, Pt0 [fc(t0)] describes the point of PT

with the smallest rate which is always a point on the LCH. Part 2 of Def. 4

is satisfied by the search of the procedure FIND NEXT LAMBDA (Alg. 10).

From Def. 3, we conclude λb = −∞. Then, if we set λ ← λmin(t0), part 1 of

Def. 4 is satisfied. �

The next lemma shows that we can find points on the LCH of T if we

already know a point on the LCH of T .

Lemma 4 Let T be a tree with root t0 and a convex configuration. After

applying SEARCH to T , the resulting configuration is still convex.

Proof: The configuration of T is convex. This means that we can find

a λ that complies with Def. 4. A good candidate is λmin(t0), thus, we set

λ ← λmin(t0). If we apply SEARCH, first the “search and prune” phase is

launched. A node tp which contains λ(tp) = λ is found. We set f old
c (tp) ←

fc(tp), λold(tp) ← λ(tp) and λold
f (tp) ← λf (tp). The algorithm sets fc(tp) ←

fn(tp) and computes new fn(tp) and λ(tp). With the change of fc(tp), the

values of λf (tp) and λb(tp) change, too. For the new λ(tp), the condition

λ(tp) ≥ λ must be true. Otherwise, the λold(tp) might not have been λold
f (t)

before the “pruning” which is contradicting part 2 of Def. 4. In order to satisfy

part 1 of Def. 4, we see λf(tp) = λ(tp) ≥ λ and it remains to be shown that

λb(tp) ≤ λ. But we know that λb(tp) ≥ λ since λ describes the slope between

Pt[f
old
c (tp)] and Pt[fc(tp)]. If λb(tp) > λ we set j to be the argument for which

Dt[j]−Dt[fc(t)]
Rt[j]−Rt[fc(t)]

= λb(tp). Then either Rt[j] > Rt[f
old
c (tp)] which contradicts part

2 of Def. 4 or Rt[j] ≤ Rt[f
old
c (tp)] contradicting part 1 of Def. 4. Thus, we have

λb(tp) = λ.

Up to now we have shown that the “pruned” node tp satisfies convexity

after the application of SEARCH. The next step is to show the same for the

updated nodes.

In the update phase, only nodes s ∈ {s : tp ∈ Ss} are considered. There

are three different cases in the procedure UPDATE (Alg. 12). We show that

convexity of node s is maintained in each case.
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1. The first case is displayed in Fig. 3.7 on Page 73. First, we set λold(s)←

λ(s). Since Ps[fc(s)] = P b
s , Ps[fc(s)] is changed by ∆ and this changes

the values of λ(s), λf(s), and λb(s). Since λ ≤ λold(s) and λ is the

slope of ∆, we have λold(s) ≤ λ(s) after the update, and, thus, we still

have λf(s) ≥ λ. Analogously, one can see that the new λb(s) satisfies

λb(s) ≤ λ, and, thus, the convexity is preserved.

2. In the second case, we have as similar situation (see Fig. 3.8 on Page 75).

The value of λ(s) = λf (s) decreases but still λ(s) > λ. The backward

lambda λb(s) does not change.

3. The third case is depicted in Fig. 3.9. Here, we have two possible situa-

tions after P b
s was changed by ∆.

(a) If the new point does not “cross” the line defined by

(Ps[fc(s)], Ps[fn(s)]), the convexity is not violated.

(b) If the new point crosses this line, it is assured that Rb
s > Rs[fc(s)].

Otherwise, the new point must also have crossed the line defined

by Ps[fc(s)] and the slope λb(s). This means that λ, the slope of ∆,

satisfies λ < λb. But this contradicts the choice of λ and, thus, the

convexity. The new λ(s) = λf(s) becomes smaller, but no smaller

than λ since the slope of ∆ is λ. Here again, λb(s) does not change

and the convexity is preserved.

In summary, convexity is preserved if the procedure SEARCH is applied on

an already convex configuration. �

Corollary 2 The application of SEARCH on a convex configuration produces

a non decreasing sequence λ0
min(t) ≤ λ1

min(t) ≤ . . . .

Proof: This follows from the proof of Lemma 4. Taking λmin as λ from

Def. 4 again leads to a convex configuration after the “pruning” and update.

�

The next lemma shows that the procedure SEARCH determines edges of

the LCH of T .
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Lemma 5 Let T be a tree with root t0 and with a convex configuration. Let

Pk = (Dk, Rk)
def
= arg min(D,R){R : (D, R) ∈ LCH of PT ∧R > Rt0 [fc(t0)]} and

let us assume that this set is not empty. Then after finitely many successive

applications of SEARCH on T , Pk is determined.

Proof: Let λ =
Dk−Dt0 [fc(t0)]

Rk−Rt0 [fc(t0)]
. First, we show that the algorithm stops

after a finite number of steps. We denote λmin(t0) that is achieved after n

applications of the procedure SEARCH with λn
min(t0). From Corollary 2 we

know λ0
min(t0) ≤ λ1

min(t0) ≤ λ2
min(t0) ≤ . . . .

Furthermore, we know that after a finite number of steps , say n, λn
min =∞.

This can be seen from the fact that every application of SEARCH increases

Ru[fc(u)] for a node u and Ru[fc(u)] can be either a fixed local point Pu[i],

0 ≤ i < N or the sum of fixed local points of a finite number of children. The

fact that every node has only a finite number of local points concludes the

assertion.

Now let be λ0
min(t0) < λ1

min(t1) < λ2
min(t0) < . . . without loss of generality.

We apply the procedure SEARCH m times until λm−1
min (t0) < λ ≤ λm

min(t0).

From Lemma 4 we conclude that the configuration is still convex. After m− 1

steps we can be sure that fc(t0) has not changed. If it had changed, the slope

of the change would be smaller than λ, which either means that we have found

a new point on the LCH of PT with smaller rate than Pk or the point Pk is not

on the LCH. This contradicts the choice of Pk. On the other hand, after m

steps we can be sure, that fc(t0) changes. If it does not, we can conclude that

the point Pk can not be achieved at all. This is due to the fact that such a step

must be induced by λ(t0) or a ∆ defined in any node tp. But λ(t0) > λm
min(t0)

and the slope of ∆ = (∆R, ∆D)t is λ(tp) which must satisfy λ(tp) > λm
min(t0)

if ∆R > 0 and λ(tp) < λm
min(t0) if ∆R < 0. Thus, no consistent configuration

can cross the line defined by Pt0 [fc(t0)] and λm
min(t0). Thereby, the lemma has

been proven. �

Proposition 7 If the tree T is initialized with INIT and if SEARCH is applied

on T , the complete LCH of PT is computed.

Proof: Let Palg
T be the set of computed points by our algorithm. Further,
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let PLCH
T be the LCH of PT . From Lemma 3 and 4 it follows that Palg

T ⊂ P
LCH
T .

From Lemma 3 and 5 we can conclude PLCH
T ⊂ Palg

T . Altogether, we have

PLCH
T = Palg

T . �

3.4 Optimization with General Dependences

Up to now, we considered only dependences that can be treaded very efficiently.

We now investigate more general dependences.

Let I = (i0, . . . , iM−1) be the vector of the selected encoding indices. The

general rate allocation problem can be formulated as

min
I∈IM

M−1
∑

m=0

DI
m subject to

M−1
∑

m=0

RI
m ≤ RT .

Thus, the set of local RD-points is also dependent on I, Pm(I) =

{(RI
m, DI

m) : I ∈ IM}.

As before, the constrained problem can be transformed into an uncon-

strained problem using a Lagrangian multiplier. An LM-algorithm to solve

the unconstrained problem in the general case is proposed in [71]. Here, we

present the algorithm for an important special case if the rates and distortions

of Pm(I) depend only on the previous index, im−1, and the current index, im

[92, 58].

Such dependences can occur, e.g., in the video compression standard H.263

[42]. This is due to the encoding method of the quantizer factor Q. The

quantizer factor, Qm, can be adjusted for each macroblock m. In order to

encode Qm efficiently, the quantizer factor, Qm, is encoded with differential

coding. Since the difference is computed considering the previous macroblock

m − 1, the encoding costs of macroblock m depend on the quantizer factor

Qm−1. A similar dependence is given in the encoding of motion vectors. In this

case, however, the differential encoding of the current motion vector depends

on several previous macroblocks.

We now describe a single LM-iteration. As before, the full LM-algorithm

derives from the LM-iteration and the search for the value of λ that yields the
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Figure 3.10: Viterbi algorithm for dependent RD-points.

optimal LCH solution. If we assign each quantizer step size Qm to an index

im ∈ I, the unconstrained problem can be written as

min
I∈IM

M−1
∑

m=0

D(im,im−1)
m + λ ·R(im,im−1)

m

This problem can be solved by the Viterbi algorithm (cf. Sect. 3.2.1). The

Viterbi trellis is depicted in Fig. 3.10. Each node d(n, j) contains the smallest

cumulative Lagrangian cost resulting in state in = j,

d(n, j) = min
im∈I:0≤m<n∧in=j

M−1
∑

m=0

D(im,im−1)
m + λ ·R(im,im−1)

m .

The transitional costs of the trellis from node (m−1, im−1) to (m, im) are given

by the term D
(im,im−1)
m + λ ·R

(im,im−1)
m .

Therefore, a single LM-iteration, if computed with the Viterbi algorithm,

has the complexity O(M ·N 2).

To the best of the author’s knowledge, there is no algorithm known that

solves the general dependence rate allocation problem by incremental compu-

tation of the convex hull. Thus, such kind of problems can only be solved by

the Lagrangian multiplier algorithm.



Chapter 4

Adaptive Vector Quantization

and Video Coding

In this chapter, we will evaluate adaptive vector quantization (AVQ) in the

context of image sequence coding. To do so, we develop several codecs to

analyze AVQ combined with state-of-the-art coding concepts.

The first codec is designed to meet real-time constraints. This codec is

presented in Sect. 4.1.1. We proceed to analyze the performance of the ad hoc

encoding strategy of the real-time codec by employing a rate-distortion (RD)

optimization technique (Sect. 4.1.3). Subsequently, in Sect. 4.2, the AVQ ap-

proach is applied in the wavelet transform domain. Furthermore, in order to

encode the transform coefficients more efficiently, we consider adaptive parti-

tion techniques (Sect. 4.3). The last study, presented in Sect. 4.4, combines

motion compensation and AVQ.

The description of our encoding framework can be divided into four stages:

1. Preprocessing

2. Encoding modes

3. Encoding parameters

4. RD-optimization

The preprocessing covers all steps needed to create appropriate vectors, e.g.,

wavelet transform, motion compensation, and the transformation process from

82
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a frame to a vector sequence. The encoding modes describe all possible modes

that can be used to encode a vector and how to transmit the corresponding

information, if necessary. This stage does not describe how to chose the modes.

This is the purpose of the RD-optimization stage later on. The third stage,

encoding parameters, specifies typical AVQ parameters like α, β, γ, C∗, details

of the scalar quantization, variable-length-coding (VLC), and the handling

of the codebook update. The RD-optimization translates the encoding modes

into a rate-allocation problem that can be solved by appropriate rate-allocation

algorithms from Chapter 3.

Now we outline these stages for the codecs in this chapter.

Preprocessing. The preprocessing stage is different for the several codecs

presented in this chapter. The first step is always to get a YUV representation

of the frame. The frame size is, if not otherwise stated, QCIF (176 × 144).

There is almost no further preprocessing in the real-time codec in Sect. 4.1.1.

The codec described in Sect. 4.2 uses a wavelet transform and regroups the

transform coefficients. An additionally partition of the frame by quad-trees is

made in the preprocessing in Sect. 4.3. And, finally, motion compensation is

applied in the preprocessing stage of Sect. 4.4.

Encoding modes. In principle, the encoding modes are the same for all

codecs. There are three encoding modes for each vector xm:

Mode 0. Replenishment mode. A vector in the previously decoded frame

from the same position as xm is taken to encode xm.

Mode 1. VQ mode. In this mode, a suitable vector from the codebook C is

taken to represent xm.

Mode 2. Update mode. A vector c∗ ∈ C∗ is taken to represent xm, transmit-

ted as side information, and inserted in the codebook C.

Encoding parameters. The codebook size is fixed during the encoding.

Thus, if new vectors are inserted into the codebook we need a replacement
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strategy. Usually, we employ a strategy similar to the least-frequently-used

(LFU) strategy, even though we present experiments with other strategies.

The encoding of vector c∗ from the universal codebook, C∗, is, in principle,

made with scalar quantization of the components. If it is appropriate, we use

a DPCM scheme.

RD-optimization. The encoding mode ωm for each vector xm must be se-

lected during the RD-optimization. According to the different encoding op-

tions of vectors, several sets of RD-points have to be created and are passed

to an appropriate RD-optimization technique.

4.1 Basic Codec

4.1.1 Real-Time Codec

This section describes the basic codec structure due to [7, 70].

Preprocessing. The preprocessing stage decomposes the luminance frame

into blocks of 4× 4 pixel size. The blocks are scanned, using a spiral scheme,

in order to get 16-dimensional vectors. After the scanning, the means, µm, of

the vectors, xm, are computed.

Encoding modes. It is assumed that a previously decoded frame, xr
0, . . . ,

xr
M−1, (reference frame) is known to the encoder and decoder. For each vector

xm, an approximating vector x̂m shall be created. The three encoding modes

are realized as follows:

Mode 0 Vector xm is encoded by x̂m ← xr
m.

Mode 1 Vector xm is encoded with MRVQ. Then the mean µm is quantized,

µ̂m = Qµ(µm); xm is encoded by x̂m ← Q(xm − µ̂m1L) + µ̂m1L.

Mode 2 Vector xm is encoded with a proper vector c∗m = Q∗(xm−µ̂m1L) ∈ C∗

and µ̂m, i.e., x̂m ← µ̂m1L + c∗m.
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Here, 1L denotes the vector (1, . . . , 1)t of dimension L. The resulting modes

are collected in a mode map Ω = (ω0, . . . , ωM−1) : ωm ∈ {0, 1, 2}. The posi-

tions of the vectors encoded in mode 1 or 2 are sent to the decoder using run-

length encoding. For each vector xi encoded in mode 1 or 2, additional infor-

mation has to be sent. First, a flag indicating the mode is transmitted. Then,

in both cases we send an index for the scalar quantized mean γµ(αµ(µm)). If

xm is encoded in mode 1 we also have to send an index of the quantized shape

vector γ(α(xm − µ̂m1L)). For mode 2, we send γ∗(α∗(xm − µ̂m1L)).

Encoding parameters. By reasons of encoding efficiency, the codebook of

the adaptive vector quantizer is organized as follows. Every vector in the

codebook C has got a frequency count (FC) f : C → N that is responsible for

the order of the vectors in the codebook. The vector decoder β satisfies

i < j ⇒ f(β(i)) ≥ f(β(j)). (4.1)

Therefore, the vectors in C can be ordered where the vector with the highest

FC, β(0), can be found at the top of the codebook and the vector with the

lowest FC, β(N − 1), at the end of the codebook. When a vector ci = β(i) is

used for mode-1 encoding, the frequency count of this vector is incremented

by 1, i.e., f(ci) ← f(ci) + 1. Then the vector decoder β is rearranged to

re-establish the condition (4.1). Thus, the vector ci is moved upwards to the

top of the codebook. If a vector c∗m = Q∗(xm) is used for mode-2 encoding,

the new vector c∗m has to be inserted in the codebook. For this task, the new

vector requires a frequency count. Empirically, the value f(β(bN
2
c)) + 1 has

proven a good performance, i.e., we take the FC of the vector in the middle

of the codebook and increment it by 1. Since the codebook size should stay

constant, a vector of C has to be removed. In this codec, we scheduled the

vector with the smallest frequency count to be removed. After that, the vector

decoder, β, has to be recomputed to maintain (4.1).

The vector encoder, α, realizes a nearest neighbor quantizer (according to

the Euclidean norm) with additional speed up techniques that are described

in detail in [7]. The index coder, γ, is a Huffman coder. The correspond-

ing probabilities have been estimated using the test sequences Miss America,
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Mother & Daughter, and Salesman. The codebook size is N = 512 and the

vector dimension is L = 16.

The vectors of the universal codebook C∗ are encoded as follows. The

quantization Q∗(x) is done by encoding the shape vector x with DPCM. The

corresponding scalar quantizer Qd has binsize 8 and deadzone 8. Furthermore,

the codebook size is Nd = 64. The parameters for Qµ are binsize 4, deadzone

8, and Nµ = 64. The scalar quantizers Qd and Qµ have been empirically

optimized in [7].

RD-optimization. Since the objective of the codec is to meet real-time

constraints, the selection of the encoding modes is not RD-optimized. We

rather use a fast ad hoc rate control scheme working as follows. The mean

squared error (MSE) between the vectors in the reference frame xr
0, . . . , xr

M−1

and the original frame x0, . . . , xM−1 is computed, i.e., e0
m = 1

L
‖xm − xr

m‖
2
2,

0 ≤ m < M . Then the vectors xm are sorted with respect to decreasing errors,

e0
m, that is, with the highest errors first. This priority queue is processed as

long as the target bit budget RT or the target time budget Tt is exhausted.

The vectors that have not been processed up to that time are encoded in mode

0. The other vectors are either encoded in mode 1 or in mode 2. The decision

whether a vector is encoded in mode 1 or 2 is made by a threshold value tol.

Let e1
m be the MSE if xm is encoded in mode 1. Then, xm is encoded in mode

1 if e1
m ≤tol, otherwise, mode 2 is selected. The tolerance tol is computed with

tol = max(30, min(ed, 150))

where ed describes the MSE of the difference between the current frame (x0,

. . . , xM−1) and the reference frame (xr
0, . . . , xr

M−1).

Now we describe the encoding of the UV-components. The chrominance

components are not treated with AVQ. We rather apply only scalar quantiza-

tion. First, the UV components are subsampled in order to get one U- and

one V-component per luminance vectors. Then for each UV-pair it is decided

if it should be encoded or not. This decision is made in a similar fashion to

the vectors of the luminance component. A priority queue is created according

to the MSE of the original and the reference frame. The chrominance compo-
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nents are processed until a bit budget RUV
T or a time budget T UV

t is exhausted.

The UV-components are quantized and transmitted by Qµ and γµ respectively.

The resulting modemap ΩUV is encoded with run-length encoding. The bi-

trate spent for the encoding of the chrominance components is constrained to

about 1
10

of the bitrate for the complete frame.

4.1.2 Experiments with the Codebook Organization

In this subsection we investigate the importance of the codebook organization

for the coding performance. In the codebook organization of the last section,

a least-frequently-used (LFU) strategy was employed to determine the vectors

to be removed. Furthermore, the mode 2 vectors were inserted in the middle

of the codebook according to the order given by the frequency count. Other

strategies are conceivable, e.g.,

• the just mentioned LFU removal of vectors with the insertion in different

areas of the codebook, e.g., in the upper quarter,

• a least-recently-used (LRU) removal strategy for the vectors, and

• a theoretically optimal insertion strategy developed in [95] combining

LRU and LFU strategies.

In the following, we describe experiments in codebook organization. For

this, we substitute the codebook management of the codec introduced in

Sect. 4.1.1 by several strategies. We investigate six different update strate-

gies.

1. Removal of the LFU vectors and insertion in the middle of the codebook.

The frequency count of a vector is increased by 1 each time it is used for

mode-1 encoding. Vectors encoded in mode 2 get the frequency count

f(β(bN
2
c)) + 1.

2. Removal of the LFU vectors and insertion in the lower quarter of the

codebook. The frequency count of a vector is increased by 1 each time

it is used for mode-1 encoding. Vectors encoded in mode 2 get the

frequency count f(β(bN∗3
4
c)).
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3. Removal of the LFU vectors and insertion in the upper quarter of the

codebook. The frequency count of a vector is increased by 1 each time

it is used for mode-1 encoding. Vectors encoded in mode 2 get the

frequency count f(β(bN
4
c)).

4. LFU update strategy published in [70]. The frequency count of a vector is

increased by 1 each time it is used for mode-1 encoding. Vectors encoded

in mode 2 get the frequency count f(β(N−1))+(f(β(0))−f(β(N−1)))/4

rounded to an integer.

5. Removal of LRU vectors with a move to front strategy [23].

6. Update strategy published in [9]. This update strategy is based on the

gold washing method in [95]. The codebook is divided into two parts

(part-1 and part-2 of the codebook). Part-1 of the codebook contains

vectors that have been proven to match the current statistical character-

istic of the image sequence. Part-2 contains the vectors that have been

recently inserted and must prove their match for the current statistical

properties of the image sequences. Part-1 is organized with the move to

front method. If a vector is encoded in mode 1, it is inserted at the top

of the codebook. The other vectors are pushed down by one position.

The vectors in part-2 of the codebook have got a frequency count. Each

time a vector is encoded in mode 1, its frequency count is increased by

1. Each time a vector is encoded in mode 2, it is inserted at the top of

part-2 with frequency count 0. The other vectors in part-2 are pushed

down by one position. The frequency count of the previously last vector

is compared with a threshold θ. If it is smaller than θ, it is discarded.

Otherwise, this new vector is inserted at the top of part-1. The other

vectors are pushed down by one position. The last vector is discarded.

This codebook structure is illustrated in Fig. 4.1.

We start with a comparison of the first four LRU strategies. The codec is

run for several image sequences and bitrates. The mean PSNR is computed

dropping the first 15 frames in order to give the codec time to initialize its

codebook. The results are shown in Fig. 4.2.
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Figure 4.1: Codebook parts in gold washing algorithm due to [9].
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The results for the LRU strategies 1–3 are nearly indistinguishable. There-

fore, we are free to take strategy 1 as representative for these LRU-strategies

to make the following comparisons easier. Strategy 4 performs significantly

worse than the other three.

The same experiments for comparison of the update strategies 1–4 are

repeated for the gold washing strategy 6 with different thresholds θ. Figure 4.3

shows the results for θ = 1 and θ = 2. We see that the strategy with θ =

1 performs slightly better compared with θ = 2. This suggests taking the

strategy with θ = 1 as a representative for strategy 6.

We proceed to compare the performance of all update strategies. This

is shown in Fig. 4.4. Apparently, the update strategies perform very similar

except for strategy 4.

It remains to account for the deviating behavior of strategy 4 by carrying

out the following experiment. Each time a new vector is inserted in the code-

book with mode 2, it receives a time stamp, i.e., the frame number is stored.

If a vector is encoded with mode 1, the difference between the current frame

and the time stamp of this vector is computed. This value is called age of a

vector. The mean age of mode-1 encoding is computed per frame, excluding

the most frequent vector β(0) that is usually the zero vector with the time

stamp 0. The results are shown in Fig. 4.5. The mean age of strategy 1 is

increasing with time. In contrast, the mean age of strategy 4 is oscillating

around 10. In the former case, the codec uses for mode-1 encoding vectors

that have been inserted more than 100 frames ago. In the latter case, vectors

of 10 frames in the past are used on the average throughout.

An analysis of the two update rules reveals a large difference between the

frequency counts of the first and the second vectors, β(0) and β(1). Even

though the value β(0)− β(N − 1) is divided by four, the resulting FC is often

higher than β(1). This leads to a move-to-front update for the new vectors

encoded in mode 2. But in contrast to the move-to-front strategy 5 the vectors

encoded in mode 1 are still updated by an increment of the FC. Thus, the new

vectors inserted in mode 2 displace the old vectors. No vector, except β(0),

stays in the codebook any longer.
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Figure 4.5: Mean age of vectors encoded in mode 1. (28000 bit/s).

A second experiment with the time stamp can be seen in Fig. 4.6. Here, a

histogram of the time stamps of the codebook vectors was computed after all

frames have been encoded.

It can be seen that the last codebook for strategy 1 contains vectors from

all over the sequence. The last codebook of strategy 4 contains mainly vectors

of the last 20 frames.

This supports the assumption that the inserted vectors completely displace

the old vectors after only a few frames.

The experiments show that the codebook management strategy is, if care-

fully chosen, of no importance for the performance of the codec. Thus, in the

following we use strategy 1 if not otherwise stated.

4.1.3 RD-Optimization of the Real-Time Codec

In Sect. 4.1.1, a fast encoding strategy was used to guarantee the real-time

property of the codec. Since we want to evaluate the efficiency of this ad hoc

strategy, we need an optimized codec for comparison. Thus, in this section,

we develop an RD-optimized version of the real-time codec due to [36]. How-
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ever, the RD-optimization technique imposes some restrictions on the codec

structure. Sect. 4.1.1 shows that efficient RD-optimization techniques assume

certain kinds of dependences between the sets of RD-points, Pm, that can be

derived for every vector, xm, in the frame and the selection index vector, I.

The dependences may only become hierarchical at the most.

Let us now reconsider what happens if the real-time codec encodes a vector

xm. If the vector is encode in mode 1, the corresponding codebook vector can

change its codebook position. If the vector is encoded in mode 2, it is inserted

in the codebook, a vector is replaced, and the codebook positions of some

other vectors are changed. Therefore, in each case the codebook structure,

and thus, the rate for the encoding of the following vectors can be changed.

This leads to a general dependence since the encoding of a block depends on

all preceding blocks of the frame. But this kind of dependence can not be

handled reasonable by RD-optimization techniques. Thus, we have to change

the codec structure in order to allow RD-optimization.

In the following we describe the RD-optimized codec.

Preprocessing. The preprocessing is made as described for the real-time

codec.

Encoding modes. The three encoding modes and the mode map encoding

are identical, as well.

Encoding parameters. Some of the encoding parameters are different to

Sect. 4.1.1. The vector encoder, α, is now realized by using an RD-measure.

Fixing an RD-trade-off, λ, that will be determined in the RD-optimization

stage, α can be described by α(λ, x) = arg mini∈I[d(x, β(i)) + λ · γ(i)] where

d(x, y) = ‖x− y‖22.

The codebook organization is also slightly different. Each time a vector

ci ∈ C in Sect. 4.1.1 was used for mode-1 encoding, its frequency count f(ci)

was incremented by 1, and the vectors in the codebook were rearranged with

respect to f . Furthermore, each time a new vector c∗m was encoded in mode

2, it was immediately inserted in the codebook. This strategy does not work
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here for reasons discussed above. Therefore, a similar strategy, more suitable

to the RD-optimization, is applied. The order of the vectors in C is not changed

during the encoding of a frame. Each time a vector in the codebook is used for

mode-1 encoding, its FC is incremented by 1 without changing the codebook

order. Each time a vector is encoded in mode 2, it is stored separately and

cannot be accessed again during the encoding of the frame. When the encoding

of a frame is completed, the codebook is updated. At first, the vectors are

sorted with respect to the new FC. Let k vectors be encoded in mode 2. Then,

the k vectors with the least frequency counts are removed from C. The k

new vectors get the frequency count f(β(
⌊

N
2

⌋

)) + 1 and are inserted in the

codebook. After this procedure is finished, the codebook is sorted again with

respect to the FC.

RD-optimization. The RD-optimization, i.e., the computation of λ, can

be made with the incremental computation of the convex hull for independent

RD-sets (see Alg. 6). For all M vectors xm in the frame, the sets Pm have to

be computed.

We consider the construction of Pm for the encoding of an arbitrary vector

xm. Therefore, all possible encoding modes for this vector are considered. For

mode 0, there is only one RD-point. If xm is represented by xr
m, we have the

distortion d(xm, xr
m), where d(x, y) = ‖x − y‖22, and no encoding costs. The

corresponding RD-point is (R0
m, D0

m) = (0, d(xm, xr
m)). For mode 1, there are

N RD-points. For each vector β(i), 0 ≤ i < N , there is a distortion Di+1
m =

d(xm, β(i) + βµ(αµ(µm))1L) and a rate Ri+1
m = γ(i) + γµ(αµ(µm)) + 1 where

the addend 1 comes from the flag indicating mode 1 (mode flag). The last

RD-point for Pm is given by mode-2 encoding. Therefore, the encoding cost

for the DPCM encoding of the vector, the mean encoding, and the mode flag,

RN+1
m = γ∗(α∗(xm)) + γµ(αµ(xm)) + 1, and the remaining distortion, DN+1

m =

d(xm, β∗(α∗(xm)) + βµ(αµ(µm))1L) are taken. Note that the encoding of the

positions of the mode-1 or mode-2 vectors is not object of RD-optimization

since this would lead to a general dependence within the encoding of the

vectors xm. However, in order to estimate the rate needed for the encoding of

these positions in the current frame the corresponding rate from the preceding
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frame is taken.

The UV-component encoding is applied as described for the real-time

codec.

4.1.4 Comparison of the Codecs

We now compare the real-time codec with the RD-optimized version. The

PSNR course for several sequences at bitrate 28000 is shown in Fig. 4.9. At

the beginning of the encoding, the PSNR curves start from a low level and

after about 15 frames achieve a “stabilization” of the PSNR values. In the

following, we call this initial area the initialization phase. Moreover, during

the initialization phase, the RD-codec shows an increase in the PSNR values

much faster than the real-time codec. Another observation can be made for

the salesman sequence at the end of the initialization phase. After the fast im-

provement at the beginning, the RD-codec is outrun by the real-time codec for

a short period. After this period, the performance RD-optimized coder again

clearly does much better. Generally, the RD-optimized codec outperforms the

real-time codec by more than 1 dB if the initialization phase is neglected.

In order to explain the faster increase of the RD-codec during the initializa-

tion phase, we provide statistics about the frequency of the selected modes for

the RD-optimized (Fig. 4.7) and the real-time codec (Fig. 4.8). One can see

that the real-time codec starts with mode-2 encoding. Since at the beginning

the codebook is empty, i.e., it contains only zero vectors, it seems reasonable

to fill the codebook with new vectors. But mode-2 encoding needs a large

bitrate because of the side information that is necessary to transmit the whole

vector. Therefore, there are only few blocks of the frame encoded until the bit

budget is exhausted.

At the beginning of the encoding, the strategy of the RD-optimized codec

is to use only mode-1 vectors. Since the codebook contains only zero vectors,

the frame is filled with zero shape vectors and the means. Hence, the codec can

encode much more blocks for a given bit budget because of the lower cost of

mode-1 encoding. Thus, at first the RD-codec tries to find a fast approximation

of the frame, and only then it starts filling the codebook. Therefore, the PSNR
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curve of the RD-codec increases faster in the initialization phase.

The different strategies applied during the initialization also explain the

observed period at the end of the initialization phase of Salesman. At this

point, the codebook of the real-time codec is already filled with useful vectors,

but the RD-optimized codec still has an empty codebook. Thus, for a short

period, the RD-codec has to invest a substantial number of bits to fill the

codebook. During this time, the real-time codec shows a better performance

since it can apply mode-1 encoding using vectors from previous frames.

One might argue that it is not surprising if an RD-optimized codec performs

better than without RD-optimization. This is, however, not as obvious as it

seems. First of all, the codecs differ not only in the method that determines

the encoding modes but also in the usage of already encoded vectors. For

example, in case of the real-time codec, vectors that are encoded in mode

2 are immediately inserted in the codebook and could be used again in the

same frame for mode-1 encoding of subsequent vectors. This is on the other

hand not possible for the RD-optimized codec. Our experiments, however,

discovered that the real-time codec hardly uses mode-2 vectors in the same

frame again.

Secondly, we know that inserted vectors can stay in the codebook for a

long time and, thus, influence the efficiency of the coding of later frames. The

RD-optimization, however, considers only one frame at a time and does not

purposely insert vectors that lead to a coding gain for later frames. But the

selection of the mode-2 vectors seems to have a similar “look-ahead” quality

for both codecs.

The performance of the average PSNR value for several bitrates is shown

in Fig. 4.10. The first 15 frames were not considered for the computation of

the average in order to fade out the initialization phase.

4.1.5 Experiments with Variable Length Coding

Up to this point, we only used Huffman coding for variable length coding.

Presently, we show how to improve the codecs by employing arithmetic coding.

In the first experiment the cumulative frequencies needed for arithmetic coding
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Figure 4.7: Number of vectors per frame encoded in mode 1 or mode 2 for the

RD-optimized codec at 28000 bit/s. The corresponding figure for Mother &

Daughter can be found in Fig. B.2 on Page 161.
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of the symbols are derived from the symbol frequencies that have been used

to create the Huffman code. In the second experiment, we use an adaptive

arithmetic coder starting with equal probability for all symbols. The results

are shown in Fig. 4.11 for the RD-codec and in B.5 for the real-time codec.

Note that the adaptive arithmetic coder of the real-time codec adapts its

frequencies for each symbol, but for the RD-codec the optimization constraints

enforce an adaption that occurs only after the frame has been fully encoded;

i.e., the symbol frequencies are kept separately during the encoding and are

only added to the cumulative frequencies in one piece after the frame has been

encoded.

The figures show that the Huffman coder is outperformed by the arithmetic

coders. The best performing coder is the adaptive arithmetic coder.

From now on we use the adaptive arithmetic coder as default variable

length coder1 if not otherwise stated.

4.2 Wavelet Transform

Many of the image and most of the video compression algorithms make use of

transform coding. Normally, a decorrelation transform is applied that concen-

trates the signal energy on a few components. This property is then exploited

in subsequent quantization and VLC encoding (cf. Sect. 1.3). Theoretically, a

vector quantizer is able to encode decorrelated vectors more efficiently than a

scalar quantizer because of the so-called sphere packing property; moreover a

vector quantizer is able to exploit higher order statistical dependences [28, 56].

Thus, transform coding with VQ theoretically outperforms scalar quantization

schemes. But we expect much more than only exploiting higher order statis-

tics from combining these schemes. Since we deal with an adaptive vector

1Note that, unlike Huffman coding, arithmetic coding does not assign a codeword to every

symbol. Thus, we run into difficulties if we use arithmetic coding, since for RD-optimization

we need the codeword lengths |γ(a)| for the encoding of symbol a. In addition, the index

coder γ does not satisfy its definition. However, for convenience’ sake we continue to use

this notation. The length |γ(a)| is computed by − log2 p(a) where p(a) is the estimated

probability of symbol a.
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Figure 4.11: Comparison of different VLC coding methods for (a) Miss Amer-

ica and (b) Salesman. The corresponding figure for Mother & Daughter can

be found in Fig. B.5 on Page 163.



106

Miss America

Huffman
arithmetic

adapt. arith.

Frame

P
S
N

R

2800026000240002200020000

33.5

33

32.5

32

31.5

31

30.5

30

29.5

29

Salesman

Huffman
arithmetic

adapt. arith.

Frame

P
S
N

R

2800026000240002200020000

32

31.5

31

30.5

30

29.5

29

28.5

28

Figure 4.12: Real-time codec. Comparison of different VLC coding methods

for (a) Miss America and (b) Salesman. The corresponding figure for Mother

& Daughter can be found in Fig. B.6 on Page 163.
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quantizer, we have to transmit the codebook updates. In Sect. 4.1, this was

done by DPCM encoding in the spatial domain. In the transform domain, the

transmission of vectors works more efficiently.

The codec presented in this section is due to [37, 86].

4.2.1 Description of the Codec

Preprocessing. The preprocessing stage consists of a wavelet transform,

grouping of transform coefficients, and subsequent scanning of these coeffi-

cients to get vectors for AVQ. The wavelet transform is done with a 2-times

octave-band decomposition using 9/7-filters [2]. After the transform, the coef-

ficients are grouped into blocks in a“zero-tree”-like fashion. The space localiza-

tion property of the wavelet transform is used to create blocks corresponding

to a certain region in the spatial domain. This is described in Fig. 4.13. Only

highpass coefficients are organized as vectors. The lowpass coefficient is treated

separately.

At the end of the preprocessing there are M 15-dimensional vectors x0,

. . . , xM−1 and lowpass coefficients µ0, . . . , µM−1.

Encoding modes. It is assumed that the vectors and lowpass coefficients of

a previously decoded transformed frame (reference frame), xr
0, . . . , xr

M−1 and

µ0, . . . , µM−1, are known both to the encoder and decoder. Then the encoder

offers three encoding modes to approximate xm by x̂m:

Mode 0. In this mode (replenishment mode), the content of the same position

in the reference frame is restored, i.e., x̂m ← xr
m and µ̂m ← µr

m.

Mode 1. The lowpass coefficient µm is quantized, µ̂m ← Qµ(µm); then xm is

represented by x̂m ← Q(xm).

Mode 2. The lowpass coefficient is quantized by Qµ and the vector xm is

represented by a proper vector c∗m = Q∗(xm) ∈ C∗, i.e., x̂m ← c∗m and

µ̂m ← Qµ(µm).
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The resulting modes are collected in a modemap Ω = (ω0, . . . , ωM−1) : ωm ∈

{0, 1, 2}. The position of the vectors encoded in mode-1 or mode-2 are trans-

mitted by using run-length coding. For mode-1 and mode-2 encoding ad-

ditional informations have to be sent. First, a flag indicating the mode is

encoded. In both cases, an index for the scalar quantized lowpass coefficient

γµ(αµ(µm)) is sent. If xm is encoded in mode 1, we also have to send an index

of the quantized vector γ(α(xm)). For mode-2 encoding, the index γ∗(α∗(xm))

is transmitted.

Encoding parameters. All parameters that are not described explicitly in

this paragraph are realized as in Sect. 4.1.3. The codebook size of the vector

quantizer is N = 512 and the dimension of the vectors is L = 15. The index

coder of the universal codebook works as follows. Each component of xm is

independently quantized by the scalar quantizer Qs and separately encoded

by γs. The binsizes of Qs and Qµ as well as the deadzones are 16. The

codebook sizes are Ns = 32 and Nµ = 64, respectively. These values have

been experimental optimized in [37]. The index coders γ, γ∗, γµ, and γs are

adaptive arithmetic coders starting with uniform cumulative frequencies.

RD-optimization For this codec, we can use the incremental computation

of the convex hull method (see Alg. 6). The sets of RD-points Pm are created

in an analogue way to Sect. 4.1.3.

The UV-component encoding is done as described in Sect. 4.1.

4.2.2 Results

In order to show the improvement by introducing the wavelet transform, we

compare the current RD-optimized wavelet codec with the RD-optimized codec

from Sect. 4.1.3. The PSNR course for a bitrate of 28000 bit/s is presented in

Fig. 4.14. From this figure we see that the RD-optimized wavelet-based codec

performs better than the RD-optimized basic codec by more than 1 dB PSNR.

In order to analyze this performance gain, we compare the amount of bits spent

for the different modes. This is shown in Tab. 4.1. Here, the average number
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(a) (b)

Figure 4.13: Organization of wavelet coefficients; (a) subband structure after

transform, (b) grouping of blocks.

of bits per mode-1 and mode-2 encoded vector is computed over the whole

sequence. As can be seen from the figure, the costs for a codebook update

were reduced dramatically. The number of bits for mode-2 encoding is in the

wavelet domain one-third of the mode-2 encoding in the spatial domain or less.

Therefore, encoding of vectors in the transform domain is, as expected, more

efficient than in the spatial domain. Moreover, the encoding cost for mode 1

is reduced by about 1 bit. Thus, we can conclude that the selected wavelet

representation is suitable for AVQ.

The average PSNR values for different bitrates are provided in Fig. 4.15.

As before, we excluded the first 15 frames from the average computation. We

see from this figure that the above mentioned coding gain can be achieved for

a wide range of bitrates.

4.3 Adaptive Partition with Quad-Trees

The codecs in the last sections used a mode map to store the different encoding

modes for every vector. Then the mode map was scanned line by line and the

positions of vectors encoded in mode 1 and mode 2 were transmitted with run-

length coding. However, run-length coding of these positions leads to several
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Figure 4.14: PSNR course at a bitrate of 28000 bit/s. The corresponding plot

for Miss America can be found in Fig. B.8 on Page 164.
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Figure 4.15: Mean PSNR of several bitrates for the wavelet codec. The corre-

sponding figure for Mother & Daughter can be found in Fig. B.7 on Page B.7.
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Miss America Salesman Mthr. & Dotr.

Bitrate Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2

16000 2.6 52.7 4.6 60.7 3.5 51.4

28000 4.6 47.2 6.3 49.8 5.2 51.7

(a)

Miss America Salesman Mthr. & Dotr.

Bitrate Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2

16000 1.8 14.2 4.0 15.0 2.3 14.2

28000 3.0 10.5 5.5 14.0 3.5 13.0

(b)

Table 4.1: Average cost of the two modes in bits per vector for the (a) RD-

optimized codec and the (b) wavelet codec. The first 15 frames are excluded

from the average computation.

problems:

1. The RD-optimization can not take into account the positions of the

vectors since the encoding method of the positions would introduce de-

pendences between the vectors that RD-optimization algorithms are not

feasible to process.

2. Since each vector corresponding to a 4 × 4 area in the spatial domain

might have a different mode, the encoding of modes for such small por-

tions of the frame could be inefficient. Better results could be achieved

by combining blocks that are spatially close to each other.

In order to illustrate the first point, we consider the costs of the bitmaps of

the preceding codecs. Table 4.2 shows the cost for transmitting the positions

of the blocks encoded in mode 1 or 2. The costs are computed by taking the

average of the costs per frame for different image sequences and the preceding

AVQ-codecs. As before, in order to exclude the initialization, the first 15

frames are not considered for the computation of the average.

It can be seen that the costs are increasing as the codec performance im-

proves. This is due to the fact that better codecs encode more blocks and
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hence more positions have to be encoded. This makes the run-length coding

less efficient. The same argument holds true for smaller bitrates: The costs

decrease with the bitrate since a smaller number of blocks must be encoded

for smaller bitrates.

Table 4.2 shows that all codecs spend a reasonable amount of bits on the

encoding of the positions of mode-1 or mode-2 vectors. For example, the

wavelet codec demands for Miss America and Mother & Daughter at a bitrate

of 28000 bit/s on the average 500 bit per frame and more. However, RD-

optimization algorithms can not take these costs into account. Thus, the costs

have to be estimated using the costs from the preceding frame. If we use for the

positions a different encoding scheme that can be handled by RD-optimization,

a coding gain might be achieved since the costs for the positions of different

blocks can be an object of minimization.

The second point, mentioned in the enumeration above, is demonstrated in

Fig. 4.16. This figure shows a typical mode map during the encoding of Miss

America. One can see that the blocks that are encoded in mode 1 or mode 2

are concentrated in few small areas of the frame. We might expect to achieve

a reasonable coding improvement if we offer the additional option to represent

four blocks corresponding to a 4 × 4 pixel area by one vector corresponding

to a 8× 8 pixel area. In addition, we can expect to save bits for the encoding

of the positions if we are able to merge four positions of small blocks by one

position of larger blocks.

Such an adaptive, hierarchical organization of a frame can be managed by

quad-trees (cf. Sect. 1.4).

There are a lot of conceivable organizations of different levels in the wavelet

transform domain. But, in order to remain consistent with the preceding

sections we organize this section as follows. First, we describe the codec for

one example of quad-tree organizations. Then, in Sect. 4.3.2, we describe

experiments with different quad-trees.

4.3.1 Description of the Codec

We describe the codec-structure published in [87, 88].
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codec type Miss America Salesman Mother & Daughter

real-time 307 246 295

RD-optimized 516 428 538

with wavelets 542 442 572

(a)

codec type Miss America Salesman Mother & Daughter

real-time 400 328 427

RD-optimized 660 510 712

with wavelets 704 549 754

(b)

Table 4.2: Average number of bit per frame needed to encode positions of

mode-1 or mode-2 vectors (a) at a bitrate of 16000 and (b) at a bitrate of

28000.
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Figure 4.16: (a) Mode map of (b)
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Preprocessing. As in Sect. 4.2, we start with the wavelet transform. The

coefficients in the wavelet domain then are regrouped into macroblocks corre-

sponding to 16× 16 pixel areas in the spatial domain. The organization of the

wavelet coefficients of a macroblock is shown in Fig. 4.17. Each macroblock

consists of 16 pixels from each of the subbands 1,2,3,4 and 64 pixels from each

of the subbands 5,6,7, resulting in a total of 256 coefficients.

For every macroblock, there are three possible decomposition levels ranging

from coarse to fine. Level-0 encoding describes the whole macroblock with all

256 wavelet coefficients. Alternatively, the level-0 block can be decomposed

into four level-1 blocks corresponding to a spatial 8× 8-pixel area, containing

four pixels from each of the 1,2,3,4 subbands and 16 pixels from each of the

5,6,7 subbands. Moreover, one can decompose every level-1 block into four

level-2 blocks each corresponding to 4 × 4-pixel blocks in the spatial domain

containing one pixel from each of the 1,2,3,4 subbands and four pixels from

each of the 5,6,7 subbands. The grouping of the wavelet coefficients for level-1

and level-2 blocks within a macroblock is depicted in Fig. 4.18.

In order to create vectors from blocks, the blocks are scanned line by line,

excluding coefficients from several subbands depending on the block level. For

level-0 vectors, we take all coefficients of the level-0 blocks, that is, level-0

vectors are 256-dimensional. For level-1 vectors, only the coefficients from

subbands 2,3 and 4 of level-1 blocks are taken. The coefficients of higher

subbands are set to zero, whereas the four coefficients of subband 1 are treated

separately. Thus, the dimension of level-1 vectors is 12. For level-2 vectors

all coefficients of level-2 blocks are taken except the coefficient of subband 1

which is, similar to level-1 vectors, treated separately. The dimension of level-2

vectors is 15.

After the preprocessing, several vectors of several levels can be assigned to

the M macroblocks. If we consider the mth macroblock, 0 ≤ m < M , then this

macroblock contains one level-0 vector, x0
m, 4 level-1 vectors, x1

4m, . . . , x1
4m+3,

and 16 level-2 vectors, x2
16m, . . . , x2

16m+15. In addition, there are 4 vectors with

level-1 means, µ1
4m, . . . , µ1

4m+3, from subband 1 and 16 scalar level-2 means,

µ2
16m, . . . , µ2

16m+15. Analogously, the macroblock m of the reference frame is
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given by x̃0
m, x̃1

4m, . . . , x̃1
4m+3, x̃2

16m, . . . , x̃2
16m+15 and µ1

4m, . . . , µ1
4m+3, µ2

16m,

. . . , µ2
16m+15.

Encoding modes. For level-0 vectors, there exists only one encoding mode.

Replenishment is applied, i.e., the content of the same position in the reference

frame is restored. For level-1 and level-2 vectors , the AVQ-approach is used.

There are three encoding modes:

Mode 0. Replenishment mode. This is identical with the replenishment mode

for level-0 vectors, i.e., the content of the same position of the reference

frame is restored.

Mode 1. VQ-mode. First, a flag is sent indicating mode 1. The vector xm is

then processed according to its level.

Level-1. The level-1 vector x1
m is represented by Q1(x

1
m). Then the

mean µ1
m of the four lowpass coefficients µ1

m is computed and repre-

sented by Qµ(µ1
m)14. Thus, γ1(α1(x

1
m)) and γµ(αµ(µ

1
m)) are trans-

mitted.

Level-2. The level-2 vector x2
m is represented by Q2(x

2
m), and the low-

pass coefficient µ2
m is represented by Qµ(µ2

m). Thus, γ2(α2(x
2
m)) and

γµ(αµ(µ
2
m)) are transmitted.

Mode 2. Update mode. First, a flag is sent indicating mode 2. Then the

vector xm is processed according to its level.

Level-1. The level-1 vector x1
m is represented by Q∗

1(x
1
m). Then the

mean µ1
m of the four lowpass coefficients µ1

m is represented by

Qµ(µ1
m)14. Thus, γ∗1(α

∗
1(x

1
m)) and γµ(αµ(µ1

m)) are transmitted.

Level-2. The level-2 vector x2
m is represented by Q∗

2(x
2
m) and the lowpass

coefficient µ2
m is represented by Qµ(µ2

m). Thus, γ∗2(α
∗
2(x

2
m)) and

γµ(αµ(µ
2
m)) are transmitted.

The resulting positions of vectors that are encoded in mode 1 or mode 2 are

managed by a quad-tree structure.
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Encoding parameters. Since we have different vector dimensions, we need

two vector quantizers, namely one vector quantizer for level-1 vectors (N1, C1,

L1, I1, V1, α1, β1, γ1, C
∗
1 , α

∗
1, β∗1 , γ

∗
1) and one for level-2 vectors (N2, C2, L2, I2,

V2, α2, β2, γ2, C
∗
2 , α

∗
2, β∗2 , γ

∗
2). The vector dimensions are L1 = 12 and L2 = 15.

The codebook sizes are N1 = 64 and N2 = 512. The vector encoders α1 and

α2 are realized by α1(λ, x) = arg mini∈I [d(x, β1(i)) + λ · γ1(i)] and α2(λ, x) =

arg mini∈I [d(x, β2(i)) + λ · γ2(i)]. The codebooks, C1 and C2, and the vector

decoders, β1 and β2, are organized as described in Sect. 4.1.1, i.e., each vector

in the codebooks has a frequency count of its own and each vector decoder, β1

and β2, satisfies (4.1).

The universal quantizers, Q∗
1 and Q∗

2, and index coders, γ∗1 and γ∗2 , work as

follows. The coefficients of x are independently scalar quantized and encoded

by Qs and γs, respectively. Qf has binsize 16, deadzone 32 and Nf = 32.

Qµ has binsize 16, deadzone 32, and Nµ = 64.

The index coders γ1, γ2, γs and γµ are realized by adaptive arithmetic

coders with an initially uniform cumulative frequency.

RD-optimization. Since the different levels are managed by quad-trees,

we can use the incremental computation of the convex hull for hierarchical

dependences (see Sect. 3.3.3).

We assign a tree Tm = {t0, . . . , t20} to the macroblock m as shown in

Fig. 4.19. Then, {t0}, {t1, . . . , t4} and {t5, . . . , t20} describe level 0, level 1

and level 2 of the macroblock. We define for each node tn, 0 ≤ n < 21, a set

of RD-points, Ttn . In the following we set d(x, y) = ‖x− y‖22.

Level 0. Pt0 = {(R0
t0 = 0, D0

t0 = d(x0
m, x̃0

m))}

Level 1. The sets Ptn+1 , 0 ≤ n < 4, contain one point for mode-0 encoding,

N1 points for mode-1 encoding, and one point for mode-2 encoding.

Mode 0 (R0
tn+1

= 0, D0
tn+1

= d(x1
4m+n, x̃1

4m+n) + d(µ1
4m+n, µ̃1

4m+n)),

Mode 1 (Ri+1
tn+1

= |γ1(i)| + |γµ(αµ(µ1
4m+n))|, Di+1

tn+1
= d(x1

4m+n, β1(i)) +

d(µ1
4m+n, Qµ(µ1

4m+n)14)), 0 ≤ i < N1
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Figure 4.17: Regrouping of macroblocks in the wavelet domain. (a) Subband

grouping. Coefficients are grouped corresponding to their type of subband

membership. (b) Macroblock grouping. Coefficients are grouped correspond-

ing to their spatial position.

Mode 2 (RN1+1
tn+1

= |γ∗1(α
∗
1(x4m+n))| + |γµ(αµ(µ1

4m+n))|, DN1+1
tn+1

=

d(x1
4m+n, Q∗

1(x
1
4m+n)) + d(µ1

4m+n, Qµ(µ1
4m+n)14))

Level 2. The sets Ptn+5 , 0 ≤ n < 16, contain one point for mode-0

encoding,N2 points for mode-1 encoding, and one point for mode-2 en-

coding.

Mode 0 (R0
tn+5

= 0, D0
tn+5

= d(x2
16m+n, x̃2

16m+n) + d(µ2
16m+n, µ̃2

16m+n))

Mode 1 (Ri+1
tn+5

= |γ2(i)|+ |γµ(αµ(µ
2
16m+n))|, Di+1

tn+5
= d(x2

16m+n, β2(i))+

d(µ2
16m+n, Qµ(µ

2
16m+n))), 0 ≤ i < N2

Mode 2 (RN2+1
tn+5

= |γ∗2(α
∗
2(x

2
16m+n))| +|γµ(αµ(µ

2
16m+n))|, DN2+1

tn+5
=

d(x2
16m+n, Q∗

2(x
2
16m+n)) +d(µ2

16m+n, Qµ(µ2
16m+n)))

The UV-component encoding is done as described in Sect. 4.1.

4.3.2 Experiments with Quad-Tree Organizations

The quad-tree based codec in Sect. 4.3.1 has been developed by evaluating var-

ious quad-tree organizations. In this section, we describe these experiments.

All experiments are governed by the following basic structure. The coefficients

are organized in macroblocks (see Fig. 4.17). For the coding of the macroblocks
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Figure 4.18: Grouping of macroblock coefficients for different block levels.
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Figure 4.19: Tree Tm = {t0, . . . , t20}(a) corresponding to macroblock m (b).
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we have three possible encoding levels: Level-0 blocks describe the whole mac-

roblock corresponding to a 16 × 16-pixel area in the spatial domain. Level-0

blocks can be decomposed into four level-1 blocks, each corresponding to a

8× 8 pixel area in the spatial domain. Analogously, each level-1 block can be

subdivided into four level-2 blocks corresponding to a 4× 4 pixel spatial area.

The block structure is depicted in Fig. 4.18. In the following we enumerate

the quad-trees (QT) structures by describing the encoding options provided

for every level. The vectors and lowpass coefficients of the different levels are

denoted as in Sect. 4.3.1.

QT 1. For level 0, there is only a replenishment mode. For level 1, first the

mean of the vector of lowpass coefficient µ1
m is computed, µ1

m, and

represented by Qµ(µ1
m). The vectors x1

m are encoded either in mode

1 or mode 2, i.e., x1
m can be represented by Q1(x

1
m) or Q∗

1(x
1
m) and is

encoded by γ1 or γ∗1 , respectively. For level 2, the lowpass coefficient

µ2
m is quantized, Qµ(µ2

m), and represented by the quantized value. The

vectors x2
m are encoded either with mode 1 or mode 2, i.e., x2

m can be

represented by Q2(x
2
m) or Q∗

2(x
2
m) and is encoded by γ2 or γ∗2 .

QT 2. Same as QT 1, but with an additional replenishment mode (mode 0)

for level-1 blocks.

QT 3. Same as QT 2, but with an additional replenishment mode (mode 0)

for level-2 blocks.

QT 4. Same as QT 3, but the encoding of µ1
m is different. The vector of low-

pass coefficients µ1
m is quantized with DPCM, using the corresponding

scalar quantizer Qd, and encoded with γd.

QT 5. Same as QT 3, but the encoding of µ1
m and x1

m is different. In addi-

tion to the encoding of the mean µ1
m, the shape vector µ1

m − µ1
m14 is

appended to the level-1 vector. Thus, the resulting vector x̂1
m is 16-

dimensional. For mode-1 and mode-2 encoding, Q3(x̂
1
m) and Q∗

3(x̂
1
m)

are used together with the index coders γ3 and γ∗3 , respectively.
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QT 6. Same as QT 5, but the shape vector µ1
m − µ1

m14 is vector quantized

separately. Thus, the shape vector and x1
m are encoded with product

code VQ or, to be more specific, with partitioned VQ (see Sect. 2.3.3).

The shape vector is quantized by Q4 and Q∗
4 and is encoded by γ4 and

γ∗4 for mode-1 and mode-2 coding of level-1 blocks.

The parameters of the experiments described above are as follows. The

vector quantizers Q1 and Q2 are described in Sect. 4.3. The scalar quantizer

Qd has binsize 16 and deadzone 32 and Nd = 64. The quantizers Q3 and

Q4 are organized analogously to Q1 and Q2 with different codebook sizes and

vector dimensions, namely, L3 = 16, L4 = 4, N3 = 256, and N4 = 128. As

before, all index coders, γ, are realized by an adaptive arithmetic coder with

an initially uniform cumulative frequency.

Presently, we come to the results of the experiments. Figure 4.20 and 4.21

show the PSNR courses of the experiments compared with the PSNR course

of the wavelet codec for bitrates 16000 and 28000 bit/s.

We observe that all quad-tree codecs finish the initialization phase much

faster than the wavelet codec. This is due to the fact that the quad-tree codec

is able to encode a mean for a block corresponding to a 8×8-pixel area. Thus,

the rough approximation of the frame is faster than for the wavelet codec.

Now we consider QT 1. After the initialization phase, the PSNR courses

of the two test sequences behave differently. While for Miss America the

codec with quad-trees maintains good performance, the quad-tree encoding of

Salesman performs worse than the wavelet codec. For QT 2 we observe the

same. For QT 3 the quad-tree codec for both sequences is better than the

wavelet codec. This upward trend for Salesman is preserved in QT 4, that is,

the gap between the quad-tree codec and the wavelet codec is getting wider.

On the other hand, this gap becomes smaller for the encoding of Miss America.

The performance of the subsequent experiment, QT 5, is similar to QT 3. The

same holds true for QT 6.

First, we have to consider the question why QT 1 performs that badly.

Apparently, the performance depends on the test sequence. For Miss America

it turns out to be better for Salesman worse than the wavelet codec. But if
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we take a look at the implicit assumption of QT 1, it becomes clearer why

the codec fails for Salesman. The assumption is that replenishment is needed

only for level-0 blocks. This means, however, that if a block is not encoded

with replenishment then it must be completely represented with mode-1 and

mode-2 encoding for level 1 and level 2. This encoding strategy is efficient

for sequences whose image blocks encoded in mode 1 and mode 2 are locally

concentrated and do not spread over the whole frame. This holds true for

Miss America (as one can see, for example, in Fig. 4.16), but not always for

Salesman. Thus, replenishment is needed for level-1 and level-2 encoding.

This hypothesis is verified by QT 2 and 3. Even though the encoding costs

increase by introducing additional replenishment modes, the performance of

the salesman sequence noticeably improves. For QT 3 the coding performance

is even better than the wavelet codec. On the other hand, the performance of

Miss America does not change significantly.

Now let us consider level-1 encoding for QT 3. It seems that this scheme

is not well-balanced. On the one hand, a lot of bits are spent to encode

some bandpass coefficients with VQ (see Fig. 4.18). On the other hand, the

lowpass coefficients are roughly approximated by only one mean. This aspect

is evaluated by QTs 4–6. Here, we can observe what happens, if we spend more

bits on the encoding of the 4 lowpass coefficients. However, in all experiments

we trade a performance increase in the case of Salesman for a decrease in the

case of Miss America.

The average PSNR values for QTs 3–6 are presented in Fig. 4.22. The

figure shows that QT 3,5,6 perform very similar. The results of QT 4 depend

on the test sequence. For Miss America, this QT performs worse than QT

3,5,6. The opposite holds true for Salesman; here, QT 4 is better than the

other QTs.

We conclude that QT 3, 5, and 6 perform best over all test sequences.

Thus, for further comparisons with other codecs, we select QT 3 since this has

the lowest complexity.

Finally, we would like to continue the discussion from the beginning of

Sect. 4.3. We asserted then that the use of a quad-tree structure could, among
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Figure 4.20: PSNR coursed of (row by row) QT 1, 2 and 3 for (column by

column) Miss America and Salesman.
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Figure 4.21: PSNR courses of (row by row) QT 4, 5 and 6 for (column by

column) Miss America and Salesman.
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Figure 4.22: Average PSNR values for the quad-tree experiments. The corre-

sponding plot for Mother & Daughter can be found in Fig. B.9 on Page 165.
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Bitrates Miss America Salesman Mother & Daughter

16000 219 180 248

28000 279 221 303

Table 4.3: Average number of bits needed to encode the position of mode-1

and mode-2 vectors with a quad-tree structure.

other things, improve the encoding of the positions of the mode-1 and mode-2

vectors. This is now proven by Tab. 4.3. This table shows, corresponding to

Tab. 4.2, the costs for the quad-tree codec. The costs are more than halved.

Thus, the encoding of the position of mode-1 and mode-2 vectors can be made

more efficient as previously asserted.

4.3.3 Comparison

We now compare the quad-tree based codec with our previously developed

AVQ codecs.

In Fig. 4.23, we present the average PSNR values of the test sequences for

different bitrates. The real-time codec from Sect. 4.1.1, its RD-optimization

(Sect. 4.1.3), the application of wavelets (see Sect. 4.2) and, finally, the quad-

tree based codec developed in Sect. 4.3.1 are compared.

The figure shows that we achieved an improvement ranging between 3 dB

(Salesman) and 6 dB (Miss America). Different techniques lead to differ-

ent improvements. The RD-optimization of the real-time codec yields the

largest improvement for Miss America and Mother & Daughter, whereas, the

largest gain for Salesman results from the wavelet transform. Some frames of

Salesman are presented in Fig. 4.24 for the real-time and the quad-tree based

AVQ-codec.

Unfortunately, only a small number of results have been reported in the

literature for VQ coding of video sequences that are suitable for a comparison.

To give the reader some sort of measure at hand to assess the performance of

our codec, we provide a comparison with the tmn codec (H.263) [1, 42]. The

tmn codec is used with syntax based arithmetic coding at a bitrate of 8000

bit/s and a frame rate of 8.3 frames/s. The target bitrate is achieved by the
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Figure 4.23: Comparison of all AVQ-codecs. The corresponding figure for

Mother & Daughter can be found in Fig. B.10 on Page 165.
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Figure 4.24: Line by line (top down): The 5th, 20th, 50th, and 100th frame

of the Salesman sequence. Column by column (left to right): The original

sequence, the decoded sequence of the quad-tree codec, and the decoded se-

quence of the real-time version at a bitrate of 16 kbit/s.
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off-line rate control method of the tmn codec, i.e., the codec tries to adjust

an average bitrate of 8000
8.3

bit/frame over the whole sequence. The result is

compared with the quad-tree based AVQ-codec (see Fig. 4.25). For Mother

& Daughter one can see that at the beginning the performance gap between

these two encoding schemes is very large. The gap is decreasing during the

encoding of the first 100 frames. After that, an average difference of about 1.2

dB PSNR between the tmn and the quad-tree codec is maintained over the

rest of the sequence. After subsequent 100 frames the average performance

gap is about 0.9 dB PSNR. A similar observation can be made for Salesman.

This shows the adaptability of our approach that needs about 100 frames to

evolve. Note that, unlike H.263, we are not using motion compensation.

4.4 Motion Compensation

In the last sections we successively improved the AVQ based codecs. Up to

now, the codecs did not apply block based motion compensation (MC). There-

fore, in this section we describe experiments with this technique. However, the

concept of macroblocks consisting of wavelet transform coefficients is not suit-

able for a block based MC scenario. Since the classical wavelet transform is

not shift-invariant and advanced methods trade shift invariance in the wavelet

domain for an overcomplete wavelet representation [77, 69], which is not desir-

able for image and image sequence compression, we cannot apply MC in the

wavelet domain. On the other hand, using MC in the spatial domain makes

it impossible to decide for each macroblock in the wavelet domain separately

whether it should be motion compensated or not. Thus, motion information

cannot be encoded efficiently.

For that reason, we focus on experiments exploring the performance of the

AVQ-method that encodes motion compensated residual frames in the spatial

domain. In addition, we compare this scheme with the performance of discrete

cosine transform (DCT) coding.
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and the AVQ-codec at 8000 bit/s.
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4.4.1 AVQ Codec with Motion Compensation

In this section, we describe the combination of AVQ and motion compensation.

In order to exclude the influence of other parameters, we essentially use the

H.263 encoding scheme substituting only the DCT encoding of the motion

compensated residual by AVQ. The results of our first experiments have been

published in [88].

Preprocessing. In the preprocessing stage, we divide the frame into M

16 × 16-pixel blocks, called macroblocks (MB). Then the basic block motion

estimation scheme of the H.263 standard is applied on each MB. The motion

estimation determines for the mth MB, 0 ≤ m < M , a motion vector (MV)

(vx, vy)m. Thereafter, we create for each macroblock three different types of

blocks:

Intrablock. The macroblock without prediction.

Differenceblock. The residual block created by motion compensation with

MV (0, 0).

Interblock. The residual block created by motion compensation with MV

(vx, vy)m.

For every difference- and interblock, there are three possible decomposition

levels. Level-0 describes the difference- and interblock as a whole. Alterna-

tively, a level-0 block can be decomposed into four level-1 blocks of 8× 8 pixel

size. Each level-1 block, again, can be subdivided into four 4× 4-pixel blocks,

called level-2 blocks.

In order to create vectors, the blocks are scanned line by line. Thus, level-

0 vectors are 256-dimensional, level-1 vectors are 64-dimensional, and level-2

vectors are 16-dimensional.

After the preprocessing, several vectors of several levels can be assigned to

the M macroblocks. For the mth macroblock there are two level-0 vectors e0
m

and ẽ0
m corresponding to the difference- and interblock, respectively, and, in an

analogous way, we have 4 level-1 vectors, e1
4m, . . . , e1

4m+3 and ẽ1
4m, . . . , ẽ1

4m+3,
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and 16 level-2 vectors, e2
16m, . . . , e2

16m+15 and ẽ2
16m, . . . , ẽ2

16m+15. In addition,

there are the vector xm, 0 ≤ m < M , scanned from the M intrablocks.

Encoding modes. For each macroblock, there are basically three encoding

modes according to the the block types mentioned above: intrablock-mode,

differenceblock-mode, and interblock-mode. In intrablock-mode the MB en-

coding scheme for intrablocks of H.263 is used. For difference- and interblocks

the AVQ-approach combined with a quad-tree structure is applied. Hence, we

have to specify the encoding modes for each of the different levels.

For level-2 encoding, there is only a replenishment mode. Note that replen-

ishment in this case means padding the residual block with zeros. This can

be interpreted as taking the motion prediction from the previously decoded

frame as reference block. This justifies the term “replenishment” since it can

be considered as a generalization of the replenishment of the last sections. In

fact, for blocks predicted with MV (0, 0), padding the residual block with zeros

means exactly “taking the contents of the block at the same position in the

previously decoded frame”.

Level-1 vectors can be represented either by replenishment or by the quan-

tized mean µ̂m. The µm is quantized and encoded by Qµ and γµ, respectively.

For level-2 vectors there are three encoding modes:

Mode 0. Replenishment mode as described above.

Mode 1. VQ mode. The prediction error is vector quantized, Q(e2
m) and

Q(ẽ2
m), and encoded with γ(α(e2

m)) and γ(α(ẽ2
m)), respectively.

Mode 2. Update mode. The prediction error is transmitted as side informa-

tion and inserted in the codebook. The vector is represented by Q∗(e2
m)

and Q∗(ẽ2
m) and is transmitted by γ∗(α∗(e2

m)) and γ∗(α∗(ẽ2
m)), respec-

tively.

The encoding of the modes of the macroblocks is done in the H.263 fashion.

Encoding parameters. The codebook organization of the vector quantizer

as well as the vector decoder β is the same as described for the previous codecs.
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The vector encoder α is realized by α(λ, x) = arg mini∈I[d(x, β(i)) + λ · γ(i)].

The rate distortion trade-off λ is determined by a RD-optimization. The

universal vector encoder α∗ uses a scalar quantizer Qs to quantize the vector

components separately. The binsize of Qs is 11 and the deadzone is 23.

RD-Optimization. The RD-optimization can be achieved by an RD-

algorithm for hierarchical dependences (cf. Sect. 3.3). The details of the

quad-tree structure are analogous to that of Sect. 4.3.1.

The UV-component encoding is done in the H.263 fashion.

4.4.2 Results

In this section, we describe the results of the combination of the AVQ-approach

with MC (AVQ-MC-codec).

The following experiment is carried out. First, we run the pure tmn-codec

with a fixed quantization parameter q and the syntax based arithmetic coder

option. The bits used for every frame are stored. After that, we apply the new

AVQ-MC-codec on the same frames, using for every frame the same number

of bits that the pure tmn-codec consumed. The frame format is QCIF and

every third frame is taken.

Figure 4.26 shows the result of the experiment for Mother & Daughter

and Salesman at 8000 bit/s. We see that at the beginning the AVQ-MC-

codec performs worse than the tmn codec for both sequences. But after 50

frames, the performance is similar, and after 100 frames, the tmn codec is

outperformed. The coding gain is 0.4 dB PSNR and 0.2 dB PSNR for Mother

& Daughter and Salesman. The same experiment for 10000 bit/s is presented

in Fig. 4.27. In this figure, the AVQ-MC-codec performs similar to the tmn

codec for Salesman. Mother & Daughter performs slightly better for the AVQ-

MC-codec. Both figures show, as in Sect. 4.3.3, the adaptability of the AVQ-

MC-codec.

The results of our experiments show that, after an initialization phase,

the AVQ performs better or at least as well as the DCT on motion compen-

sated residual frames. Note that the AVQ-MC-codec uses RD-optimization
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for the mode-decision. In order to provide fair comparison the pure tmn codec

should also apply RD-optimization for mode decision. However, applying RD-

optimization solely on mode decision without optimizing motion compensation

only leads to a very small improvement of less than 0.2 dB PSNR [83]. But

optimizing motion compensation would also improve the results of our AVQ-

MC-codec.

4.5 Summary and Discussion

In this chapter, we investigated the application of AVQ on image sequences.

First, we described a fast AVQ codec that is able to encode image sequences

in real-time using current PC technology. Then, we applied successively state-

of-the-art techniques to improve the codec. The RD-optimization results in a

smaller overall distortion for a given bit budget. The wavelet transform helps

to encode the codebook update more efficiently and enables a better vector

representation. Finally, the quad-tree structure leads to a better encoding of

the vector positions in the frame and enables hierarchical macroblock coding.

Many details had to be taken into account. The update strategy of the

codebook turned out to be an unproblematic design issue if carefully selected.

The use of an adaptive arithmetic coder significantly improves the entropy

coding. And, finally, an efficient quad-tree structure was determined.

However, comparison of the quad-tree codec with standard transform cod-

ing shows that inspite of the significant improvement over the previous versions

it still leads to a performance gap of about 1 dB PSNR. We conclude that mo-

tion compensation is essential also for codecs based on AVQ.

Therefore, we studied the performance of AVQ applied on motion compen-

sated residual frames. The experiments we made show that AVQ improves at

least to the level of DCT coding and beyond.

We now discuss the relation of our AVQ to the schemes previously ap-

peared in the literature (see Sect. 2.4). The real-time codec applies a distortion

threshold tol to decide whether a block is encoded in mode 1 or mode 2. This

strategy at first sight is very similar to the Paul algorithm. On the other hand,
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the real-time codec also observes the bitrate and breaks off the encoding if a

predetermined bit budget is exhausted. Moreover, unlike the Paul algorithm

the blocks are processed according to a priority list, and, thus, the blocks of

the whole frame have to be known in advance. Therefore, the AVQ-scheme

of the real-time codec should rather be considered as a constrained-rate AVQ

algorithm.

The AVQ-scheme of the other codecs presented in this chapter applies a

rate-distortion trade-off to decide in which mode a block has to be encoded.

Therefore, it can be considered as rate-distortion-based. If we neglect the

search for the appropriate value of λ, the AVQ-scheme in this case is very

similar to the online algorithm of Fowler. The main differences are the addi-

tional mode-0 encoding, the fact that vectors selected for the insertion in the

codebook are not inserted immediately but after the encoding of a frame has

been completed, and the different codebook update strategies. Moreover, tak-

ing into account the RD-optimization, our AVQ-scheme is not even an online

algorithm since all blocks in a frame are analyzed prior to the encoding.



Chapter 5

Complexity Evaluation of

RD-Techniques for AVQ Video

Coding

In this chapter, we will evaluate the complexity of rate-distortion (RD) op-

timization techniques of Chapter 3 for the AVQ-codecs described in Chap-

ter 4. In particular, we compare the complexity of the Lagrangian multiplier

(LM) algorithm with the incremental computation of the convex hull (ICCH)

approach. To do so, we introduce an implementation independent complex-

ity measure and investigate the two approaches accordingly (Sect. 5.1). In

Sect. 5.2 we then show how to speed up the LM-algorithm.

5.1 Comparison of the LM- and the ICCH-

Algorithm

In our study, we consider the codec of Sect. 4.3. The frame size is QCIF;

therefore we have 99 macroblocks and, counting only level-1 and level-2 blocks,

M = 20 · 99 = 1980 blocks. For all nodes we assume the same number of RD-

points, N = 514, the same vector dimension, L = 15, and the structure of

level-2 vectors.

First, we analyze the complexity of the computation of the local sets, Pt, of

138
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RD-points. Obviously, the complexity is dominated by the computation of the

distortions for each encoding option. The encoding options derive from the dif-

ferent codebook vectors that could represent a certain part of the macroblock.

To compute the sum of squared errors for level-2 blocks, 15 subtractions, 15

multiplications and 14 additions are necessary. One further addition is needed

to take into account the distortion of the lowpass coefficient. Thus, 45 op-

erations1 are needed to compute one RD-point for one subblock. The total

number of operations to compute the RD-points is 45 ·N ·M .

Now we consider the LM-algorithm (Alg. 7) for hierarchical dependences.

Here, the complexity is dominated by the arg min computation. This compu-

tation is made by one multiplication, one addition, and one comparison per

RD-point. Let A be the number of iterations that are necessary to find an

appropriate value of λ. Then the LM-algorithms needs 3 ·A ·N ·M operations.

For the ICCH-algorithm (Sect. 3.3.3), we analyze the complexity of the

different procedures FIND NEXT LAMBDA, INIT, SEARCH, and UPDATE.

The search for the next λ, FIND NEXT LAMBDA (Alg. 10), is dominated

by the for-loop and the arg min computation. Notice that the comparison

(Dt[i] <= Dt[fc(t)])) serves the purpose to speed up the computation since

it excludes many RD-points from the subsequent computation of λh. How-

ever, if we consider the worst case complexity, this computation is not essen-

tial for the correctness of the algorithm and, thus, may be omitted. There-

fore, for every RD-point we have one comparison, two additions, and one

division within the for-loop and one comparison for the computation of the

arg min expression, a total of 5 operations per RD-point. The initialization,

INIT (Alg. 9), needs the most operations for the arg min computation and

in FIND NEXT LAMBDA. Thus, we have 6 operations per RD-point. The

algorithms SEARCH (Alg. 11) and UPDATE (Alg. 12) use the most opera-

tions in the procedure FIND NEXT LAMBDA. Let B be the number of calls

of FIND NEXT LAMBDA from SEARCH during the optimization. Then the

algorithm requires M · N · 6 operations for the initialization and 5 · B · N

1We assume equal complexity of the addition, multiplication, division and comparison

operation. This is, however, platform dependent.
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bitr.(bit/s) 8000 16000 28800

Miss Am. 12.2 12.5 12.5

Salesm. 12.4 12.8 12.9

Mthr. 12.5 12.8 13.1

bitr.(bit/s) 8000 16000 28800

Miss Am. 9.1 9.8 10.3

Salesm. 8.8 9.8 9.8

Mthr. 9.1 9.8 10.3

(a) (b)

Table 5.1: Number of LM-iterations (a) without prediction of λ from the last

frame and (b) with prediction of λ from the last frame.

bitr.(bit/s) 8000 16000 28800

Miss Am. 6.2 6.1 5.2

Salesm. 7.0 7.1 6.0

Mthr. 7.4 6.8 6.6

bitr.(bit/s) 8000 16000 28800

Miss Am. 2.5 2.7 1.9

Salesm. 3.6 3.5 2.8

Mthr. 3.6 3.4 3.0

(a) (b)

Table 5.2: Number of LM-iterations for an approximate solution (a) with 1%

tolerance and (b), with 10% tolerance.

operations for the determination of the optimal LCH solution. Since the level-

2 blocks are dominating, the case that FIND NEXT LAMBDA is called in

the UPDATE procedure is of no significance. Thus, we assume that each

call of FIND NEXT LAMBDA after the initialization by INIT is invoked by

SEARCH. We denote one call of SEARCH by one search step.

Our first experiments concern the LM-algorithm. We run the codec with

several bitrates on the test sequences Miss America, Salesman and Mother &

Daughter. As initial interval, we take [0,∞] and use the fast convex search to

find the value of λ that yields the closest LCH solution to the target rate, called

the optimal LCH solution. The results of the average number of LM-iterations

bitrate (bit/s) 8000 16000 28800

Miss America 200 351 572

Salesman 232 344 457

Mthr. & Dotr. 247 386 554

Table 5.3: Average number of search steps for Alg. 11.
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is shown in Tab. 5.1a.

The next experiment examines predictability of the value of λ using the

value of λ from the previous frame (see Sect. 3.2.2). As in the last experiment,

the codec is run for several bitrates and sequences. The average number of

LM-iterations needed in this case can be seen in Tab. 5.1b.

The LM-algorithm can also be applied to find an approximation of the

optimal LCH solution. A tolerance is defined and if the bitrate that was

computed for a value of λ deviates from the target rate less than the tolerance

does, the search is stopped. The results of the average number of iterations

are depicted in Tab. 5.2a for a tolerance of 1% and in Tab. 5.2b for a tolerance

of 10%. Note that in this case the initial search interval is predicted from the

last frame, too.

From the tables it can be gathered that the LM-algorithm needs 12.2–13.1

iterations without prediction of λ, 8.8–10.3 iterations with prediction of λ, 5.2–

7.4 iterations with a 1% tolerance approximation, and 1.9–3.6 iterations with

a 10% tolerance. In addition, we can see that the number of iterations to a

slight degree is dependent on the bitrate. In Tab. 5.1 the number of iterations

increases with increasing bitrate and, vice versa, in Tab 5.2 the number of

iterations decreases with increasing bitrate.

The most iterations are needed by the algorithm without prediction. The

algorithm with prediction uses about 3 less iterations. This means that the

λ can be predicted from the preceding frame, but the prediction is not much

better than starting with the [0,∞] interval. The approximating algorithms

behave as expected. Stopping within a tolerance is more efficient that search-

ing for the optimal LCH solution since in the worst case the approximating

algorithm stops if the optimal LCH solution has been found. Thus, the ap-

proximating algorithm needs less iterations. Apparently, the algorithm with a

larger tolerance needs less or at most the same number of iterations compared

to the algorithm with a smaller tolerance. Therefore, the difference between

the algorithm with 10% tolerance and 1% tolerance is not surprising.

Only the dependence on the bitrates is not that obvious at first sight. In

order to find an explanation, we must take a look at the lower convex hull
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(LCH) of the global set of RD-points for the different bitrates. An example

for this can be seen in Fig. 5.1. We count the average number of RD-points on

the LCH of the global set PT within the rate interval [500, 4000]. This value is

averaged for the different bitrates over all frames of one sequence excluding the

first 15 frames from the computation. The result is presented in Tab. 5.5. From

this table it can be seen that the LCH of the global set of RD-points is denser

“populated” for higher rates. This explains the rate dependence in Tab. 5.1.

The search algorithm for higher rates is employed with “fine-tuning” of the

solution whereas the lower rates determine faster the optimal LCH solution

with a larger gap to the target rate. The rate dependence in Tab. 5.2 can be

explained as follows. The absolute value of the tolerance becomes larger with

increasing target rates. Thus, for larger target rates a satisfying solution can

be found faster, provided that the LCHs of the global sets have similar dense

“population” of RD-points for different bitrates. The fact that the number

of the RD-points on the LCH increases with the rate further increases the

probability to determine faster a tolerable solution.

Now we consider the complexity of the ICCH-algorithm. The average num-

ber of search steps needed to find the optimal LCH solution is presented in

Tab. 5.3. Note that one LM-iteration has about 3
5
·M = 1188 times the com-

plexity of one ICCH-step. Thus, without the initialization, the complexity of

the ICCH-algorithm is much less than one LM-iteration. The complexity of

the ICCH-initialization is two times of the complexity of one LM-iteration,

however, in contrast to the LM-iteration, the estimation of the complexity of

one ICCH-step as well as of the ICCH-initialization is a worst case estimation.

Altogether, the ICCH-algorithm needs about one-fourth of the complexity of

the LM-algorithm to find the optimal LCH solution. Even if the LM-algorithm

seeks a solution with tolerance 10%, the ICCH algorithm performs better.

In Tab. 5.4, we provide run-time experiments made on a Silicon Graphics

O2 with a 150 MHz R10000 processor. This table contains the run-time for

computation of the local RD-sets, the direct computation of the LCH for all

local RD-sets with Graham’s scan (cf. [53, p. 275ff]), the LM-algorithm that

predicts the initial search interval from the previous frame, ICCH initializa-
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tion, and ICCH search steps. Furthermore, the codec was compiled with and

without compiler optimization. Without optimization, the ICCH-algorithm,

including initialization and search steps, is around 7 times faster than the

LM-approach. The time needed for the LM-approach is about the same or-

der of magnitude as the computation of RD-sets. Actually, the LM-algorithm

performs as expected compared with the computation of the RD-sets since,

e.g., for Salesman, we have 3.65
2.27
≈ 45·N ·M

3·A·N ·M . Note that the LM-algorithm needs

significantly more time than the direct computation of the LCH of the local

sets Pt by Graham’s scan. Surely, the computation of the local LCHs is not

equivalent to the computation of the LCH of the global set PT , but comput-

ing the global LCH from the known local LCHs has a smaller complexity than

the ICCH search steps and, thus, may be neglected. Also notice that in con-

trast to the implementation-independent estimation the ICCH-init procedure

needs roughly the time of one LM-iteration. This is due to the fact that, as

mentioned above, the estimation for the ICCH-init procedure is a worst case

estimation since many operations are applied only conditionally.

Apparently, the performance of the two RD-optimization algorithms de-

pends on the statistical characteristic of the RD-points. In Fig. 5.2 we present

typical local RD-sets, Pt. Figure 5.2a shows the RD-points of a block en-

coded in mode 1 and Fig. 5.2b shows the RD-points of a block encoded in

mode 0. From these figures it can be seen that only a small number of points

are located on the LCH of the local sets. Thus, only a few search steps are

needed to traverse the LCH. In addition, the ICCH algorithm excludes the

blocks with low activities, i.e., blocks that will be encoded in mode 0 after

RD-optimization, from further investigations since the optimization procedure

automatically knows after the initialization that the first slope in Fig. 5.2d is

very flat and needs only to be reconsidered if the steeper slopes of all active

blocks, like in Fig. 5.2c, have been processed. Therefore, since a large num-

ber of blocks shows low activity due to their image background membership,

this feature of the LCHs of the local RD-sets seems to be suitable for the

ICCH-algorithm.

From Tab. 5.4a, it can be seen that our AVQ-codec based on the ICCH
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Miss America Salesman Mthr. & Dotr.

computing RD-sets 3.63s 3.65s 3.63s

direct comp. of LCH 1.08s 1.03s 1.16s

LM-algorithm 2.19s 2.27s 2.39s

ICCH init 0.28s 0.28s 0.29s

ICCH search steps 0.06s 0.05s 0.06s

(a)

Miss America Salesman Mthr. & Dotr.

computing RD-sets 1.02s 1.02s 1.02s

direct comp. of LCH 0.50s 0.46s 0.53s

LM-algorithm 1.67s 1.73s 1.83s

ICCH init 0.10s 0.10s 0.10s

ICCH search steps 0.04s 0.03s 0.04s

(b)

Table 5.4: Run-time per frame of the AVQ-codec at 28800 bit/s compiled (a)

without (b) with additional compiler optimization.

approach needs less than 1.2 seconds per frame for vector quantization and

RD-optimization. Together with the wavelet transform (not optimized) one

frame is encoded in less than 1.5 seconds.

bitrate (bit/s) 8000 16000 28800

Miss America 259 321 357

Salesman 147 191 224

Mother & Daughter 201 222 240

Table 5.5: Average number of RD-points ont the global LCH within [500, 4000]

for several bitrates and sequences.
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Figure 5.1: Points on the LCH in the global set of RD-points for the 30th

frame of Miss America for different bitrates. The distortion is measured in

MSE per pixel.

5.2 Speed up Techniques for the LM-

Algorithm

In this section, we develop a technique to speed up the hierarchical LM-

algorithm (Alg. 7). The main idea is to reduce the complexity of the arg min

computations. This can be done with an approach based on Proposition 6

(Page 61). This proposition shows that the rates R∗(λ) of the solution of

(3.13) are monotonically decreasing with λ. From Corollary 1 (Page 52) we

know that the rate R̃∗
t (λ) of the optimal solution of

min
i∈I

D̃i
t + λ · R̃i

t

is also monotonically decreasing with λ, where (R̃i
t, D̃

i
t) ∈ P̃t and P̃t

def
=

{(Rn
t , Dn

t ) : 0 ≤ n < N} consists of all local points (Ri
t, D

i
t) ∈ Pt except

the point for the case t is an internal node. This means that the range of the

arg min computation in Alg. 7 can be bounded using informations from previ-

ous LM-iterations. For example, let us assume that the preceding LM-iteration
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Figure 5.2: Local sets of RD-points of blocks in the 30th frame of Miss Amer-

ica: The block was encoded in (a) mode 1 and (b) mode 0. The segments of

(a) and (b) containing the LCH are depicted in (c) and (d).
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used λi and found a rate R∗(λi) that is smaller than the target rate, RT . Then

every reasonable algorithm that seeks a λT yielding an optimal LCH solution

will apply a λj that satisfies λj < λi in further iterations since R∗(λj) > R∗(λi).

Therefore, for every node t ∈ T , we can safely assume that R̃∗
t (λj) > R̃∗

t (λi)

for all further iterations. Thus, each LM-iteration determines either a lower or

an upper bound for the arg min search in every t ∈ T . If the RD-points, P̃t, of

all local sets, are sorted with respect to the rate, the upper and lower bound

for the rate are corresponding to an index interval [ilt, i
u
t ]. To find R̃∗

t for the

nodes t ∈ T , only this interval has to be searched. Unfortunately, we cannot

expect to have sorted RD-points at all and it is doubtful whether a sorting as

preprocessing would improve the performance, since the lower bound of the

complexity of sorting of all local sets is Ω(M · N · log N). But if a sorting

of N rates is sufficient to know the sorting of all sets, this technique can be

promising. Apparently, this is the case for our RD-sets P̃t since the rates are

mainly determined by the index coders of VQ (cf. Sect. 4.3.1). Thus, we need

only to sort the N VQ indices once to know the order of the RD-points for all

P̃t. The additional points for mode 0 and mode 2 do not significantly affect the

complexity. Furthermore, the rate from the lowpass coefficient that is added

to the VQ index rates does not change the order of the index rates, since the

rate of the lowpass coefficient is fixed for a given node t. Therefore, it can be

expected that this technique speeds up the LM-algorithm.

However, it is even possible to improve the LM-iteration without restric-

tions to the rate order. We consider the case if ilt = iut . Then the set P̃t can

be excluded from searches in further iterations. Otherwise the search must be

performed within the full index range since the indices are not ordered with

respect to the rate. In the following, we describe this generally applicable algo-

rithm. The new LM-iteration is called LM iteration bound . We introduce an

additional data structure to manage the indices of the upper and lower bound

for each local set P̃t. The indices are denoted by ilt for the lower bound and by

iut for the upper bound. However, the two bounds can not be updated during

the iteration. The problem is that, during the iteration for a fixed λi, it is

not possible to decide in every node t ∈ T whether the index that was found
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by the arg min computation describes the upper or the lower bound until the

rate R∗
t (λi) has been computed and is compared with RT . Thus, in iteration

i, only the type of bound of the index determined in the previous iteration,

i−1, is known. Therefore, we have to store the result of the arg min operation

to make it accessible in the next iteration. This is made by ilastt . The variables

have to be initialized for all local sets of RD-points by iut = N +1, ilt = −1 and

ilastt = 0. The new LM-iteration is depicted in Alg. 13. The parameter ulstat

indicates if the last iteration was a lower bound (ulstat = 0), upper bound

(ulstat = 1) or if it is not known (e.g. ulstat = −1).

In the following we compare the complexity of the two LM-algorithms, the

LM-algorithm that applies the original LM-iteration as described in Alg. 7,

called LMO-algorithm, and the LM-algorithm that uses the new LM-iteration

(Alg. 13), called LMN-algorithm. An implementation-independent perfor-

mance measure is given by the number a of arg min computations. Apparently,

in the LMO-algorithm this is directly dependent on the number of iterations

A, a = A ·M . For the LMN-algorithm, the number of arg min computations

must be counted during the optimization. Table 5.6a shows the average num-

ber of arg min computations needed by the LMN-algorithm to find the optimal

LCH solution for several bitrates and sequences. The initial search interval is

predicted from the preceding frame. The arg min operations for the LMN-

algorithm with prediction of the initial search interval and the 10% tolerance

version are provided in Tab. 5.6a and 5.6b.

It can be seen that the complexity of the LMN-algorithm is about four to

five times lower than the LMO-algorithm. In addition, the LMN-algorithm

needs even less arg min computations than the 10% tolerance version of the

LMO-algorithm even though the LMN-algorithm computes the optimal LCH

solution.

The run-time experiments presented in Tab. 5.7 show similar results. The

new LM-algorithm without an optimized compilation is about 3.5 times faster

than the old LM-algorithm. For the version that has been compiled with an

optimizing flag, the new LM-algorithm is even about 4.5 times faster.

The average number of the arg min computations in the different LM-
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bitrate (bit/s) 8000 16000 28800

Miss America 4205 4292 4450

Salesman 4360 4474 4348

Mthr. & Dotr. 4352 4442 4494

(a)

bitrate (bit/s) 8000 16000 28800

Miss America 18018 19404 20394

Salesman 17424 19404 19404

Mthr. & Dotr. 18018 19404 20394

(b)

bitrate (bit/s) 8000 16000 28800

Miss America 4950 5346 3762

Salesman 7128 6930 5544

Mthr. & Dotr. 7128 6732 5940

(c)

Table 5.6: Number of arg min computations for (a) the LMN-algorithm, (b)

the LMO-algorithm with prediction of the initial search interval, and (c) the

LMO-algorithm with 10% tolerance.

iterations of the LMN-algorithm is depicted in Fig. 5.3. This figure shows

that in the first two iterations there are M arg min computations. This is

always the case since only in the third iterations exists a defined upper and

lower bound for the sets P̃t. Then the number of arg min operations declines

fast. After the eighth iteration, the number of arg min operations is near to

zero. The most local sets, P̃t, are excluded from the arg min computation.

The implementation-independent complexity measure suggests that the

LMN-algorithm is as fast as the ICCH-algorithm since the LMN-algorithm

has the complexity of about 2.5 LM-iterations of the LMO-algorithm. Yet,

the run-time experiments show that the ICCH-algorithm is more than two

times faster. This can be explained by the fact that the complexity estimation

for the ICCH-algorithms is, unlike the LM-algorithm, a worst case estimation

(cf. Sect. 5.1).
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bitrate (bit/s) 8000 16000 28800

Miss America 0.62s 0.64s 0.65s

Salesman 0.64s 0.67s 0.65s

Mthr. & Dotr. 0.64s 0.66s 0.67s

(a)

bitrate (bit/s) 8000 16000 28800

Miss America 0.38s 0.39s 0.42s

Salesman 0.41s 0.42s 0.41s

Mthr. & Dotr. 0.40s 0.41s 0.42s

(b)

Table 5.7: Run-time experiments for the LMN-algorithm: compiled (a) with-

out and (b) with compiler optimization flag.
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Figure 5.3: Average number of arg min computations in the different iterations

of the LMN-algorithm: for (a)Miss America and (b)Salesman at 28800 bit/s.
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Algorithm 13 Improved LM-iteration.

Given: RD-parameter λ

LM iteration bound(node t,int ulstat)

{

if t ∈ T \ T̃ then

LM iteration bound(left(t),ulstat)

LM iteration bound(right(t),ulstat)

else

J∗
left(t) ←∞

J∗
right(t) ←∞

end if

if ulstat=0 then

ilt ← ilastt

end if

if ulstat=1 then

iut ← ilastt

end if

if ilt = iut then

equal(t)← 1

end if

J
�

t ← J∗
left(t)

+ J∗
right(t)

+ (DN
t + λ ·RN

t )

if not equal(t) then

it ← arg min0≤i<N [Di
t + λ ·Ri

t]

else

it ← ilt

end if

ilastt ← it

Jt ← Dit
t + λ ·Rit

t

if J
�

t < Jt then

it ← N

J∗
t ← J

�

t

else

J∗
t ← Jt

end if

}
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5.3 Summary

In this chapter, we probed into complexity aspects of two kinds of RD-

optimization algorithm, the Lagrangian multiplier (LM) algorithm and the

algorithm for the incremental computation of the convex hull (ICCH). First,

we defined implementation-independent complexity measures. We proceeded

to estimate the complexity of RD-optimization algorithms using these mea-

sures. The comparison reveals that the ICCH-algorithm outperforms the LM-

algorithm if the optimal LCH solution is sought. However, unlike the ICCH-

algorithm, the LM-algorithm enables to find a tolerable solution fast. But even

in this case, the ICCH-algorithm computes the optimal LCH solution faster.

A speed up technique for the LM-algorithm was developed. It was shown

that this new LM-algorithm determines the optimal LCH solution faster than

the old LM-algorithm even if the old LM-algorithm computes only a tolerable

solution.

Finally, run-time experiments showed that the ICCH-algorithm is still

the fastest RD-optimization algorithm even though the implementation-

independent measure suggests that the new LM-algorithm has the same run-

time. This is due to the fact that the implementation-independent complexity

measure of the ICCH-algorithm is, unlike the LM-algorithm, a worst case es-

timation.



Chapter 6

Summary and Conclusions

In this thesis, we inquired into two aspects of video coding. First, we dealt

with rate distortion (RD) optimization. Secondly, we contributed experiments

with a compression technique called adaptive vector quantization (AVQ).

At the start of of Chapter 3 we described rate distortion optimization for

independent continuous random variables. We stated a central problem of this

theory, the rate allocation problem. We then presented the discrete rate allo-

cation problem and showed similarities with the continuous case. Three types

of dependences of the random variables can be determined, the independent ,

the hierarchical dependent , and the general dependent type. We perceived that

the discrete rate allocation problem for the independent type can be optimally

solved by a complex dynamic programming approach and be approximately

solved by two fast algorithms, the Lagrangian multiplier (LM) algorithm and

the incremental computation of the convex hull (ICCH) algorithm. For the

second type of dependences, the hierarchical dependence, we presented the

LM-algorithm which used dynamic programming to find the solution and the

generalized BFOS algorithm for ICCH. The generalized BFOS, however, im-

poses restrictions on the hierarchical structure, and, thus, we contributed an

extended generalized BFOS algorithm that solves the problem without restric-

tions. As it is not obvious that the extended algorithm should determine the

same solution as the LM-algorithm, we proved the correctness of this new ap-

proach. Finally, general dependence is considered. This type of dependence
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can be solved with the LM-algorithm using dynamic programming. To the

best of the author’s knowledge, solutions applying other techniques are not

found in the literature. To summarize, we gave a detailed review of the RD-

optimization techniques and contributed a new technique in this chapter. In

addition, we developed a new terminology that permits a concise and consis-

tent description of the algorithms.

Chapter 4 described the experiments performed with adaptive vector quan-

tization (AVQ) and video coding. First, we presented a codec that is able to

encode and decode in real-time. The concept of mean-removed vector quan-

tization was applied where the vector quantization was made by AVQ. We

then carried out experiments with the codebook update strategy showing that

the update strategy, if carefully designed, has little influence on the coding

performance. It was demonstrated that the real-time codec can be improved

significantly by more than 1 dB PSNR using a RD-optimization technique even

though the RD-optimized codec is too complex to retain the real-time abil-

ity. Furthermore, we provided experiments with variable-length coding. With

respect to our AVQ-codec, the adaptive arithmetic coder proved to perform

best. Transform coding was considered next. We transfered the RD-optimized

mean-removed AVQ scheme into the transform domain of a wavelet transform.

Our experiments revealed that this led not only to a striking improvement of

the AVQ update cost, as we had anticipated, but the pure vector quantization

cost also yielded a better result. The overall improvement was more than 1

dB PSNR. This approach was refined by application of an adaptive partition-

ing technique, called quad-trees in the wavelet domain. We described how we

found an appropriate partitioning structure. We used the RD-optimization

for hierarchical dependences to optimize this structure. Again, this led to a

significant performance gain over the previous codec. Comparison with stan-

dard transform coding, however, reveals that in spite of these improvements

and apparent adaptability of our AVQ-codec it still shows a performance gap

of about 1 dB PSNR. We conclude that this is due to the lack of motion

compensation in our quad-tree based AVQ-scheme. Finally, we presented a

study combining AVQ and motion compensation. Unlike the previous quad-
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tree codec, AVQ was combined with quad-tree coding in the spatial domain.

We substituted the discrete cosine transform coding of a H.263 codec by AVQ.

These experiments demonstrated that AVQ coding of the motion prediction

error frame for low bitrates performs at least as well as DCT coding after an

adaption period, if not better.

In Chapter 5 we used the AVQ-codec from Sect. 4.3 to analyze the complex-

ity of the two RD-optimization techniques. We first defined implementation-

independent complexity measures for the two algorithms. These measures were

used to estimate the complexity of the LM- and the ICCH-algorithm. It was

observed that the estimated complexity of the LM-algorithm is in the same or-

der of magnitude as the estimated complexity of the computation of the sets of

RD-points. What is more, the estimated complexity of the ICCH-algorithm is

one-fourth of the estimated complexity of the LM-algorithm. Run-time exper-

iments were provided which support the implementation-independent results.

It was demonstrated that the characteristic of the specific RD-sets derived

from AVQ is suitable for the ICCH-algorithm. Then we proposed an im-

provement of the LM-algorithm. We exploited a monotonicity property of

the operational RD-function to exclude some RD-sets from the optimization

procedure. This technique makes the LM-algorithm four times faster for both

implementation-independent complexity and run-time experiments. With this

technique RD-optimization can be performed mostly in three LM-iterations.

Therefore, provided that the RD-sets have the same characteristics as in our

experiments, it is not to be expected that techniques which reduce the number

of LM-iterations would further speed up the improved LM-algorithm signifi-

cantly.

Without doubt, the above results are dependent on the characteristic of

RD-sets. In future research these complexity considerations should therefore

be made for abstract sources of RD-points. In addition, the number of LM-

iterations should be analyzed theoretically in order to find a tighter worst

case complexity bound than the one presented in this thesis. What is more,

the number of points on the lower convex hull of abstract RD-sets should

be analyzed in order to find a lower bound for the complexity of the ICCH-



156

algorithm.

Further research is also desirable for the combination of AVQ and motion

compensation. Even though the results presented in this thesis are promising,

this concept needs a more thorough consideration. For example, the codebook

update might be transmitted with transform coding, and AVQ could be applied

for level-1 vectors, too. In addition, an investigation into the application of

AVQ on DCT coefficients might improve the encoding results.



Appendix A

Example for the Proposed

Algorithm

This section provides an example of the extended GBFOS algorithm presented

in section 3.3.3. The tree structure of T is shown in Fig. A.1a. Node 0 has

four RD-points and the additional option to be decomposed into node 1 and

2. Each of node 1 and 2 has 2 RD-points. Note that the branch point P b
m

is not contained in Pm[] but appears separately. In addition, we have no

decomposition cost, i.e., (RN
0 , DN

0 ) = (0, 0) with N=4.

At the beginning, values are undefined except the values referring to the

tree structure, e.g. the local points Pm[] and left(t) and right(t). The set,

PT , of all points representable by T is PT = {(2, 11), (3, 10), (5, 7), (7, 5),

(9, 4), (10, 8), (12, 3), (17, 1)}. This set is depicted in Fig. A.2. The points

{(2, 11), (5, 7), (7, 5), (9, 4), (17, 1)} belong to the LCH. These points will be

computed by our proposed algorithm. Figure A.3 shows the result if the

procedure SEARCH is applied to T .
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Figure A.1: Example of the proposed algorithm, (a) before, (b) after initial-

ization.
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Figure A.2: Example of PT . The points {(2, 11), (5, 7), (7, 5), (9, 4), (17, 1)}

belong the the LCH.
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Figure A.3: Example of the application of the procedure SEARCH.
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Figure B.1: PSNR course for the real-time codec compared with its RD-

optimization for the sequence Mother & Daughter at bitrate 28000 bit/s.
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Figure B.2: Number of vectors per frame encoded in mode 1 or mode 2 for

Mother & Daughter (RD-codec).



162

mode 2
mode 1

Frame

N
u
m

b
er

350300250200150100500

250

200

150

100

50

0

Figure B.3: Number of vectors per frame encoded in mode 1 or mode 2 for

Mother & Daughter (real-time codec).
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Figure B.4: Average PSNR values for several bitrates for the real-time codec

compared with its RD-optimization for the sequence Mother & Daughter at

bitrate 28000 bit/s.
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Figure B.5: Comparison of different VLC methods for Mother & Daughter.
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Figure B.6: Real time codec. Comparison of different VLC methods for Mother
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Figure B.7: Mean PSNR of several bitrates for Mother & Daughter.
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