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Preface

This thesis deals with computer aided protein structure prediction. Since up to date molecular

rendering has become an integral part of this research field we would like to invite the readers

of this work to read this document in its digital version via a computer screen. Printing three

dimensional protein models is not a good compromise and a lot of valuable information gets

lost during this process.

We have not only included several three dimensional molecular models within this electronic

document; we also provide quick links to almost all references which have been indexed by

PubMed. This is why in the hardcopy several citations will appear underlined; these are all

direct HTML hyperlinks to PubMed.

The molecular rendering is made possible through the Chime Plugin which is available for

free from MDL (http://www.mdl.com) for several operating systems including MS

Windows® and Apple Mac OS®. The addition of this plugin will turn your web browser into

a 3D molecular viewer which may be useful to retrieve data sets from the Brookhaven Protein

database.

Of course, the hardcopy of this work includes all models in a printed form as well. We have

put certain effort on presenting the data nevertheless as clear as it is possible with a printed

form.

http://www.mdl.com
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I. Introduction

Many approaches have been made to predict the three dimensional conformation of the

probably most diverse biomolecules, the proteins (Schultz and Schirmer, 1979; Creighton TE,

1993). Having a backbone mainly composed of twenty different building blocks one can

easily imagine that their nature will be very complex. Experimental approaches to predict the

structure of a protein are highly reliable but can not be done quickly. It takes a lot of time and

work to achieve one single complete structure. This means that only proteins of major interest

can be explored with experimental methods.

Proteins are a crucial component in almost any metabolic and signaling pathway of a cell.

This makes proteins the major target structures for drug design and medical diagnostic

techniques. It is important to gain knowledge on protein structures. Especially for

experimental research groups any information on the structures in question may be helpful.

Life sciences are still increasing in their speed of data gain. In particular, sequence

information on proteins is very often available whereas structural information is rare. Tools

are needed that support researchers with first sequence based predictions on structure in

course or their experiments and for educating new scientists.

Nowadays the continuously increasing capacity of digital information processing devices

makes it possible to support the experimental biochemistry by simulating natural

circumstances. Even though this approach will never reveal more precise data than a real

experiment, it is much cheaper, can be done quicker and may give useful hints to design better

experiments.

The ideal and "holy goal of protein fold prediction software development is to write an

algorithm that will convert a DNA or amino acid sequence directly into an atom coordinate

file as it can be found in the Protein Database Brookhaven format. This format is widely used

for storage of experimentally solved protein structures. Our project tries to work further

towards this aim. It is an approach that wants to be helpful for other scientists who are

interested in additional information on the proteins they actually deal with. Therefore one

should consider this application as a simple and fast tool to achieve first predictions on

protein structures for a given protein sequence. The following pictorial example shall point

out this fact: Imagine a simple slide rule and a pocket calculator. With the slide rule you may

calculate quite accurately for general purposes but you would rather use the calculator to be
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more accurate. There are limitations in using the slide rules for numbers with lots of decimals.

In contrast you may easily type them into the electronic calculator. But still everyone will be

glad to have the slide rule instead of having nothing. With protein structure prediction

algorithms one does not have the choice between the slide rule and the exact calculator. One

can only choose between different heuristic prediction methods or one can use all of them in

parallel. The results they give will differ in some respects and may be equivalent in others.

The user will have to decide in which part of the result he wants to trust. Since the different

protein structure algorithms are based on different principles, the matching parts of the

resulting structures are likely to be correct. This is the context in which the work presented

here should be seen and, of course, should be used.

There are quite a lot of protein structure prediction systems today  providing results which are

more accurate than the results of our application. In contrast to these systems our application

is able to run on a standard desktop computer which is available in most laboratories. In order

to address this problem we always have to make a compromise between accuracy and

calculation speed. Finally, our application needs to process several data and settings

automatically or the user would need to be experienced in protein structure modeling by

simulation.

Nature has always been extraordinarily helpful to learn and copy things from. The Genetic

Algorithm (GA), summarized by Goldberg in 1989 (see references), is an example on how

man can tell a computer to figure out solutions for specific problems as nature did it when it

developed different species as biological solutions for the challenges of the environment. The

GA is a tool to find several solutions that fit a specific problem rather than to find one single

solution for a specific problem. Spoken in a more biological manner this means that a specific

location in environment is the problem and the species that are able to live in it are the

solutions. The GA basically puts individual artificial solution trials to the test on how they

survive in an artificial environment which represents the problem. The mechanisms are

adapted from simple genetics. This explains why there will never be only one single result

coming from a GA based application program. However, regarding protein structure

predictions, all results that are produced will generally converge to the optimal structure as

only the natively observed structure should best fulfill all selection criteria.

Previous application of the genetic algorithm has proven it to be a robust search strategy. It

has been successfully adapted to protein fold prediction many times. However, predictions

with a GA are time consuming, especially if they involve heavy and recurrent calculations. It

is necessary to carefully optimize parameter weights by many simulations. In this thesis we
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circumvent the empirical weight determination by combining two well established strategies:

We have coupled the GA to threading. Threading identifies to which known protein structures

the sequence to be predicted is most similar. It "threads" the sequence on the coordinates of

all known crystal or NMR structures to test this.  This method allows to quickly establish

suitable, protein specific weights for the fitness parameters. The large speed gain of this

procedure makes protein fold prediction on desktop computers possible.

We demonstrate the application in fold prediction for small proteins several of which are of

medical importance, e. g. small toxins and  interleukins. We have tried to extend our strategy

for the prediction of helical transmembrane folds. Proteins containing this structural motif are

of high medical and pharmacological interest such as the GTPase coupled 7-TM receptors.

We show that the expanded concept of the GA is applicable to these structures with certain

modifications. However, complete and detailed simulation of these macromolecules is still a

challenge.

These facts make the GA favorable as a core algorithm for protein structure prediction. This

work is based on previous applications that used the GA (Dandekar, Argos, Du; Saxena et al.

2001). In a GA based application there is no need to figure out a rigid solution path for the

problem. This is exactly what one needs if one has no idea of how the final protein structure

would look like but one still wants a computer to find a solution.

Motivation

We can summarize that protein fold prediction from sequence is a complex task. Currently

there are no desktop versions for protein folding programs available. The GA is a powerful

strategy and the combination with a threading procedure has made it even faster and more

versatile.

As demonstrated in this thesis we achieve in this way a fast and efficient tool to derive first

predictions on the structure of proteins including medical target structures.
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II. Principles

II. 1. Representing a Protein

We address the question how we can represent a three dimensional protein structure in a

linear or sequential manner so that it may easily be processed by a desktop computer.

There are two major ways to encode the conformation of a protein. The absolutely accurate

method encodes every atom of the molecule in form of Cartesian coordinates (x, y, z). A

variant of this kind of representation is an alpha-backbone which only contains the alpha

carbon coordinates for each amino acid. Instead of describing only the alpha carbon atoms

one could also represent each amino acid as a backbone (C-alpha, C' and N position) without

its side chain. It is obvious that this kind of representation exceeds the computational capacity

of a desktop machine.

An alternative to a full Cartesian coordinate system is a grid-free representation system. This

system has succeeded in previous trials already (Dandekar & Argos, 1994, 1996). The

description 'grid-free' should underline the general principle that is applied here.

Ramachandran et al. (Ramachandran and Chandrasekaran, 1971) found standard

conformations when they analyzed lots of crystal structures. The standard conformations e. g.

for the alpha-helix can be described with two dihedral angles that encode the rotations around

the alpha-carbon besides the other fixed angles in any amino acid. A protein can be modeled

in a vector-like manner using several standard conformations as building blocks for the chain.

A suitable set of  seven standard conformations was introduced by Rooman, Kocher and

Wodak (1991, Table II.1.1.). Our augmented set including the experimental data from

Karplus (1996) consists of eight pairs of dihedral angles and provides a ninth conformation

for cis-proline (Du and Dandekar, 1999, 2000). Except for the case of proline we provide

eight possible conformation for any residue. For each proline that occurs the trans

configuration may be changed to a cis and vice versa using the ninth cis-proline

conformation.
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Table II.1.1: standard conformations

conformation code conformation  phi (°) psi (°) omega (°)

A alpha-helix -65 -40 180

C 3/10-helix [...] -89 -1 180

B beta-sheet -117 142 180

P extended #1 -69 140 180

E extended #2 103 -176 180

G extended #3 78 20 180

Y *) extended #4 -109.4 165.6 180

N *) extended #5 79.6 -67.1 180

O cis-proline -82 133 0

*) augmented set

If we compare both the coordinate based and the standard conformation modeling system, the

latter clearly shows advantages for the use with desktop computers. Each residue is encoded

by only one character or integer number. This conformation code addresses a pair of statically

stored dihedral angles. The geometric information is finally used to calculate the positions for

several atoms in any amino acid main backbone. These atoms include the nitrogen, alpha

carbon, carboxyl carbon and, with the exception of glycine, the beta carbon. If we now

compare the amount of data that must be processed per amino acid with both methods we

come to one integer for the standard conformation system versus four or five float point

values for the coordinate based method. These facts clearly make the standard conformation

building blocks a favorable method for our current desktop application. We are now able to

encode a whole protein structure with only a sequence of integers or characters. These linear

strings may individually be converted to three dimensional arrays that contain the absolute

Cartesian coordinates for every single atom represented.

Another problem we encounter is the modeling of linking loops for helical transmembrane

proteins such as the well known adrenergic receptors (Stryer, Biochemistry). Building models

of such complex molecules exceeds the capacity of our simplified grid-free building block

representation. Additional conformations are required to model the short extramembranous

loops which may be as short as two residues. We ask if it is possible to build a database for

such loops without the use of structural information from models of transmembrane

molecules. There are only very few of these molecules known in terms of crystal structure.

The most popular example is the photoreceptor bacteriorhodopsin. The structure of this

interesting molecule was determined experimentally by Nobel laureates Deisenhofer J, Huber



11

R and Michel H (Nobel lecture 1988). Nevertheless there is not enough information on these

loops to build homology models for the linking loops for our purpose. The major difficulty

would be to combine these nature derived structural elements with our standardized helical

building blocks.

We introduce in this thesis a linear search algorithm that creates a loop database whose angles

are derived from the allowed regions of the Ramachandran map. It is obvious that some of the

known angles in linking loops are located even in forbidden or unstable regions of the

Ramachandran map. However, it is not allowed to use any conformation of the complete and

full map since we do not know which parts of the map are inaccessible even for

transmembrane models.

Our search algorithm tries to link two paralleled alpha helices of about 45A length which is

about the diameter of a cellular membrane. It uses steps of one degree (°) and scans the

allowed regions of the RAMACHANDRAN map (Karplus PA, 1996). Conformations for one

and two residues are evaluated. In case of two residues we combine one of our eight standard

conformations with one pair of dihedral angles from the linear search. Every pair of angles

that allows a more or less parallel alignment of the two test helices is stored within the loop

database. The creation of the database may take several hours of computer processing on a

desktop machine. Since the result is stored in a file automatically by our application, this task

needs to be done only once. As an alternative it is possible to distribute such a database file

with the software package.

When sequential data on secondary structure information are entered the user may specify the

position of linking loops. This information is added to the secondary structure file. The

program will now use the extended set of conformations from the database for these loop

regions and is now able to represent these structural features.
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II. 2. The Genetic Algorithm

During the thesis project we fist implemented the successful search strategy established

previously from our group for protein folding, namely, the genetic algorithm. The

performance of the new implementation and its new subroutines for rapid calculation was

tested and the results are given here.

We can show that the GA is confirmed to be a robust and efficient search strategy. The

second challenge, the identification of correct fitness parameters and their weights, will be

explained later exploiting in addition the second strategy introduced in this thesis, the

threading based approach. In order to achieve a fast conformational search for our structural

prediction system we look for an algorithm that minimizes calculation time. Linear search

algorithms would systematically cover an entire conformational space in terms of long time.

However this principle is unsuitable for our purpose. We would like to bring protein structure

modeling to the desktop computer with only a limited amount of calculations within a

preferable time. In addition to a standard GA we apply a breeding procedure (see below) in

our version.

We test here the efficiency of our new and fast implementation of the Genetic Algorithm

(GA) which has been applied to many tough and complex multiple optimization problems

earlier. Such problems involve the earliest trials of optimization of gas flow in jet engines

(Ingo Rechenberg, 1969 and subsequently Prof. Paul Schwefel, University of Dortmund) and

the flow through different gas pipelines (John Holland). John Holland, an investigator in

genetic algorithms (1975) called them an "optimization learned from nature". Subsequently

David Goldberg (1989) showed in his meticulous monograph the efficiency and good

optimization of the GA in a number of problems in mathematics, engineering, biology and

medicine, including hospital costs. Furthermore, Holland and Goldberg gave theoretical

foundations for GA, in particular the identification of GA-hard problems and the schema

theorem (details in Goldberg, 1989), explaining the optimization process of different solutions

by systematic recombination.

A GA simulates an evolution process and uses it to find solutions that fit a given problem. In

the case of grid-free protein modeling the problem is to find a correct three dimensional

structure of a protein and the solution consists of a linear vector array representing all

conformational elements. The easiest way to understand the GA is to compare it with nature

as John Holland did it before. We summarize this comparison in table II.2.1..
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Table II.2.1: Comparison of nature and the GA

Nature GA

species / individuals
chromosomes / individuals = solution trials = secondary
structure strings

environment, i. e. temperature, humidity, food
etc.

objective function, judges the fitness of the individuals

mutations = random base shifts, deletions,
insertions

mutations = random number shifts within the coding range

generation = period of time between sexual
propagation, i. e. genetic recombination

1 generation = 1 program cycle that includes chromosomal
recombination and judgment by the objective function

cross over: pairwise exchange of chromosomal
material

cross over: pairwise exchange of data between two
chromosomes

reproduction
number of copies of a single chromosome in the next
generation

Since we try to make programs easier for a computer to process we choose a bytewise

representation of the secondary structure. Nine different letters or numbers are used. An

integer number from 0 to 8 represents one amino acid conformation each. An integer number

in the computer's random access memory is nothing but a bit string consisting of 4 bytes = 32

bits (on the Power PC processor). One could call this a waste of memory, but the aim was to

use the most standard variable type in the C programming language to make the program

most portable. This setting virtually allows to encode as many different building blocks as the

integer number can grow. We use a larger spectrum of numbers when we model database

derived structural elements. The GA described by Goldberg worked on 0 & 1's only, but

finally it used short integers to store either 0 or 1. Accessing the RAM bitwise is not a

preferable method when using a higher compilable programming language such as C.

Table II.2.2.: Standard conformations and their representations in computer memory

conformation
code

conformation
integer
code

A alpha-helix 0

C 3/10-helix 1

B beta-sheet 2

P extended #1 3

E extended #2 4

G extended #3 5

Y extended #4 6

N extended #5 7

O
cis-proline
(allowed only if the
amino acid is a proline)

8
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The synthetic evolution process starts from a chaos or, precisely spoken, with numbers that

were generated by the computer's random number generator. A population of random integer

arrays will result. Each individual within this population is a sequence of integer numbers and

represents a protein structure. A skeptic may say that a GA is a random search. It is so only at

start. Subsequently, selection leads to information storage in the individuals or chromosomes

(table II.2.1.), and the search space is intelligently explored by always better adapted solution

structures. The GA now uses a subroutine, called the objective function, to judge all

individuals or chromosomes. Their fitness according to the problem is returned as a number

of credit points. The objective function will be discussed later and we will now look at the GA

core functions.

The GA decides how the chromosomes will reproduce. It determines, according to the fitness

values, the number of copies that each chromosome will contribute to the new population. In

contrast to nature the population size can neither increase nor decrease. Chromosomes with a

low fitness value will be replaced with copies from fitter individuals. In analogy to nature a

low fitness value should not set the probability of survival to zero. We realize this by the use

of a roulette wheel selection. A chromosome with a high fitness value is given more winning

numbers than a chromosome with a low fitness value. In most cases the fitter chromosomes

will replace the worse but there can be exceptions since the roulette wheel is based on the

random number generator.

The next step is mating. The chromosomes are crossed over at random positions and with

random partners. Figure II.2.1.  shows the analogy to nature.

Figure II.2.1.: Crossing over in nature and in the GA

Generations and crossing over alone would already bring up results that are more than just

random products. On the long run this can not be efficient since all solutions  would depend



15

on the first randomly generated population. As nature does we introduce mutations similar to

those which occur in genomes. On a computer they are represented by random integer shifts

within individuals of the population. Again, we use a random number generator to determine

the occurrence of these shifts. The overall mutation rate per integer is determined by the user.

In addition to these traditional functions of a GA we apply a synthetic breeding procedure. By

doing so we try to save as much calculation time as possible. The breeding is realized by a

backcrossing routine. The fittest offspring is conserved and will be brought back to the

population by crossing over with randomly chosen individuals. The positions of backcrossing

are determined randomly with a user defined probability.

It is important to understand the relevance of the GA in this application. The GA is the core

search routine of the program. The fitness functions are the most complex part. The figure

II.2.2. depicts the object hierarchy and shows that the GA is the master function. The box

sizes represent the complexity of the routines mentioned.

Figure II.2.2.: The GA in the program hierarchy and the comparison of complexity between

the routines.
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II. 3. Threading Procedures

The GA is a robust optimization strategy. However, it can only perform well, if there is

sufficient information to judge the quality of different solution trials and to develop the

evolution in the correct direction further.

To this end, previous efforts from us and others optimized different fitness criteria and

weights to judge protein structure and fitness by complex fitness functions and different

weights.

This way is typical for a protein folding expert but involves a huge amount of time until

optimal weights and fitness parameters are established and also long running times in

individual simulation runs.

In this thesis, a new strategy is successfully implemented: Using a threading strategy we

identify before the start of the GA simulation the optimal weights for the protein fitness

function features according to the protein sequence for which the three dimensional prediction

is desired. In other words: The correct environment (table II.2.1.) for the evolution of the

protein structure to be predicted is chosen before the GA starts.

Compact and efficient implementation of the different fitness criteria (see next chapter) was

established as well. In this way it was possible to get fast access to optimal weights for the

simulation and run the simulation with low time effort for smaller proteins as a desktop

application.

We examine to this end in this chapter the results obtained from a threading procedure that

uses existing protein structure data for an automatized calibration process. We are in this way

able to replace empirically determined maxima for most of our fitness functions. The program

scans a set of PDB files from experimentally determined protein structures irrespective of

their size and conformation. Since it is capable of predicting monomeric structures only, it

reads the first chain from each file. Therefore the user should primarily provide monomeric

structural information for a reliable calibration.

The coordinate data are transferred to a three-dimensional array which is judged by the fitness

functions. Each function will return a value that corresponds to the structural characteristics of

the known structure. These values are transferred to a file in order to create a set of expectable
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values for native structures.

In addition to the function values the program saves additional general information for the

native molecule. This information includes the PDB code of the molecule. This may be

important to the user in case of errors during the calibration. An example could be a truncated

PDB file that causes unexpected results. The calibration routines also need some general

protein criteria to quantify the relation and similarities between the unknown protein structure

and the data sets in the calibration database. These primarily include the length of the protein,

the amino acid sequence and information on the secondary structure. Many PDB files in the

Brookhaven database include detailed information on the secondary structure. The calibration

routines will use the information supplied by the authors of the structure file only.

The calibration generates a single output file of a few kilobytes and allows quick processing

of large amounts of data. One could call that process a very strong simplification of the

protein database. This data set of rudimentary and general characteristics stores general

building principles of the protein according to the fitness criteria. This means that the

unknown structure will most probably not result in a model of a known protein using the

sequence of the unknown one. It rather evolves into a specific solution for the new, unknown

structure. An environment appropriate for the evolution of the sequence, in particular with

suitable selection weights for the different fitness criteria, is chosen. Our threading procedure

does not use the concept of homology modeling.

The algorithm is mainly intended to predict structures for small soluble proteins. Their length

should be limited by only a few hundred residues. Having this in mind it does not make sense

to include large molecules such as the proteasome in the database. For convenience large

molecules will not cause any errors and unexpected results during the calibration. They

simply won't be used for comparison because of their length. This leads to selection criteria

suitable for native models during the calibration for an unknown protein.

The program reads the length and the other characteristics and summarizes the deviation of

each native structure data set to the data set of the unknown protein. It chooses the two closest

relatives to the unknown structure. These two are used to determine the expected values for

all calibrated fitness functions. A linear correlation between the chain length and some

parameters is assumed. In most cases both of the chosen native data sets will not largely differ

in chain length, given a good interpolation result. Figure II.3.1. shows an example.



18

Figure II.3.1.: simplified selection criterion for native structures from the database

In this sample we only use six native structures for calibration. The structures #1 and #2 are

the closest relatives to the unknown structure and have therefore been chosen to determine

expected function value.

An expected value is estimated for each fitness function and is used to optimize this function.

In contrast to prior versions (Dandekar and Argos, 1994; Saxena et al., 2001) the fitness value

tells the GA the deviation from the expected optimum in percent. The GA finally optimizes

the fitness functions to achieve values close to 100%.
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III. Materials and Methods

This work was exclusively developed on a desktop computer. In this chapter the

specifications of the system and the software that was used are listed.

Hardware

Most parts of the software were developed on a Macintosh computer with OS 9 running on a

G3 PowerPC processor. However, the software has successfully been tested on IBM

compatible PC's running MS Windows.

Programming Language and Compilers

The source code for the application was developed in ANSI C, mainly by means of the MPW

shell source code editor from Apple Computers Inc., Version 3.5, 1999. The source code has

been originally compiled with the SIOW library on the MrC C compiler included in the

Macintosh Programmers Workshop software Package from apple. As the application designed

as a shell-based program it has been successfully compiled with the GNU C Compiler (GCC)

Version 2.95.2 on Microsoft® Windows®. Compilation was successful as well on OS 10.2

from Apple, here the version 3 of GCC was used that comes with the Developers Toolkit for

OS X from Apple. The application is able to run native on the following computer

environments:

• Mac OS classic versions on a PowerPC, i. e. mainly 8.x to 9.x

• Mac OS X / Darwin

• MS Windows including 95, 98, NT, XP

There is also a LINUX version of GCC, on which our application has not been tested yet. The

3D rendering environment does currently not exist for LINUX (see next paragraph).

Rendering and Display of Results

The PDB format is used for any kind of coordinate set, no matter if input or output. PDB files

can be rendered to a 3D picture with a large number of software packages. Rasmol (Sayle and
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Milner-White, 1995) was mainly used during development. In order to automatize the

rendering and combine textual and graphical results the Chime plugin from MDL (MDL

Information Systems, Inc. Chemscape Chime 2.0a; 1996-1998; based on Rasmol) is used in

combination with the web browser Netscape Communicator (tested on version 4.5) or Mozilla

(tested on version 1.0.1). The application creates all necessary HTML code during a

simulation and the user only needs to open a master page. This page will then open subpages

and embedded PDB files that display simulation characteristics and the resulting structures.

The Chime Plugin is currently available for Mac OS classic and MS Windows only.

 

Brookhaven Protein Database

Our application uses large parts of the protein database (founded by Bernstein et al., 1977) for

self calibration. The software package includes a list of all proteins that have been used for

calibration. It may be extended or changed by the user at any time.

In addition, certain models have been used for reference and testing purposes. The PDB codes

are the following: 1crn, 2gb1, 1dfn, 1erp, 1atx, 1pnh, 1ubq. Several of these small proteins are

of biomedical relevance:

• 1crn - crambin: Plant seed storage protein, a storage protein

• 2gb1 - domain B1 of protein G, an immune system protein

• 1erp - ER-10: mating pheromone, a hormone

• 1ubq - ubiquitin: important among several other mechanisms for receptor stability and

controlled protein degradation

Furthermore, two proteinous toxins were simulated in their structure:

• 1atx - sea anemone toxin from Anemonia sulcata: This toxin inhibits neuronal

function by specifically blocking the sodium channel. It delays inactivation of the

sodium channel and thereby stimulates the mammalian cardiac muscle contraction.

• 1pnh - scorpion toxin from Androctonus mauretanicus: This molecule has affinity for

the ampamine sensitive potassium channel (also known as small conductance calcium-

activated potassium channels) and binding to this channel inhibits neuronal function.
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Superposition Routine and RMSD calculation

The application provides an RMSD calculator which superimposes two protein structure PDB

files and then calculates the RMSD between them. The superposition and RMSD calculation

routines were taken from Goodfellow JM, Moss DS (1992, refined by Walter D., 1996,

EMBL Heildelberg, unpublished). Both were slightly modified to fit the application context.
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IV. Results

IV. 1. Grid Free Building Block Protein Representation

We have explained in the introduction and principles section that protein folding is a complex

phenomenon, on the other hand a simple representation or encoding is critical since we want

to achieve a fast tool for desktop computers. We prefer to reach a good resolution as well as

detailed representation of the molecule with a minimized amount of calculations. A lot of

effort has been made on this topic and solutions such as protein representation on a fixed grid

(Skolnick and Kolinski) have been developed. Other ways of representation are reviewed by

Schultz and Schirmer (1979) e. g. to describe the protein structure in cylindrical or polar

coordinates. Furthermore, a tree-like representation of peptide structures was introduced by

Abagyan and Totrov (1994).

Building on previous experience (Dandekar & Argos, 1994, 1996; Saxena et al., 2001), we

test here a grid free representation of protein building blocks found to be useful in our

previous studies on protein folding and prediction, In this strategy, we answer the search for a

simple but still versatile protein representation system with a building block mechanism,

originally introduced by Rooman, Kocher and Wodak (1991). Each of those building blocks

consists in a pair of two dihedral angles, phi and psi, and an additional omega angle to model

a cis-proline. If we use this modeling procedure we are able to represent helical, stranded and

looped conformations in protein folding simulations as it has been shown by our group before

(Dandekar and Argos, 1994).

As we will see later, in this thesis we successfully introduce a new ingredient: Specific turn

conformations are critical for modeling of TM proteins. They are introduced in a way which

does not unduly increase the conformational search space as may be the effect from

introducing general additional conformations (e.g. according to Karplus, 1996) as investigated

earlier by Du and Dandekar (presented at Molecular Modeling Workshop Darmstadt, 1997).

Our application generates a library with possible loop conformations that may potentially be

integrated into transmembrane protein models. Recent work from Forrest et al. (2003) has

shown that libraries for linking loops are an important tool for fold prediction in this class of

molecules. In contrast to their work we generate our library based on systematic plotting the
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allowed regions of the Ramachandran map. This algorithm is much less calculation intensive

than the method applied by Forrest et al. (2003) and therefore suitable for desktop computer

purposes.

The building procedure for each of our models starts at the coordinates [x, y, z] = [0, 0, 0]

with the N-terminal nitrogen of the protein. It continues with the alpha carbon and the

carboxyl carbon and so on. Looking at any set of coordinates that was created in that manner

it would look like the following extract in PDB format (table IV.1.1.)

Table IV.1.1.: Beginning of a PDB encoded protein that starts with aspartic acid (ASP). It

was generated with the grid free representation technique.

ATOM      1  N   ASP     1       0.000   0.000   0.000

ATOM      2  CA  ASP     1       1.470   0.000   0.000

ATOM      3  C   ASP     1       1.980   1.443   0.000

All distances are given in Angstrom (10Å = 1nm) and one can now easily recognize the

distance between N and CA (alpha-carbon) Figure IV.1.1. shows a rendered model of the

three atoms from table IV.1.1.. The PDB format allows rendering with any PDB viewer such

as the Chime Plugin from MDL. (The online HTML version of this document contains a 3D

model for Figure IV.1.1.. Click on the snapshot to open a new window with the 3D

representation if you have the Chime Plugin installed.)

Figure IV.1.1.: The N-terminus in three dimensional representation

To make the representation more accurate we add the oxygens and beta-carbons to the model.

Oxygens and nitrogens may serve as electron donor and acceptor pairs in order to scan for
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possible hydrogen bonding. The beta-carbon enables us of applying fitness functions which

look for interactions between side chains. The entire side chains are not represented. Figure

IV.1.2. shows a hypothetical tripeptide in AAA conformation, i. e. a very short helix (The

HTML version allows visualization with the Chime Plugin through a click on the snapshot).

The sequence of the peptide is ASP-GLY-CYS.

Figure IV.1.2.: The model in three dimensional representation

Please note that there is no beta carbon atom for glycine. The algorithm adds these atoms to

all amino acids except for glycine which only has a hydrogen as side chain.

Representation of whole proteins is possible with this method as well and figure IV.1.3.

shows a model of the plant seed protein Crambin (PDB code 1CRN) compared to the

experimentally derived crystal structure. This model was generated by our structural

prediction system.
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Figure IV.1.3.: left model: 1CRN original structure; right model: program output, 4.77 Å

RMSD

With the set of standard conformations we are easily able to represent structures of small

soluble proteins.

However, to allow more accuracy for transmembrane proteins a specific library of TM-

conformations is specifically introduced for protein modeling in this thesis.

When we intend to model helical transmembrane proteins we apply a loop database which is

based on a combination of standard conformations and an extra pair of angles derived from

the RAMACHANDRAN map. Figure IV.1.4. shows one of the test models during database

creation. The helices may span a phospholipid bilayer membrane, a model of which is

depicted at the right side.

Figure IV.1.4.: left side: two transmembrane helices and a linking loop; right side:

phospholipid bilayer membrane surrounded by water.
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Indeed it is possible to represent a 7-TM receptor molecule by the loop database extended set

of building blocks. In figure IV.1.5. we compare the N-terminus of a bacteriorhodopsin

simulation to the N-terminus of the experimentally determined structure.

Figure IV.1.5.: right: bacteriorhodopsin structure from the PDB (1QM8 ), residues 2 to 62

compared to left: generated model with application of loop database; RMSD = 6.496 Å

We may conclude that it is possible to represent protein molecules with the building block

system in a way that is accurate enough for the simulation of smaller chains. Extensions of the

building blocks make the program more flexible so that conformations typical for TM

proteins, such as linking loops, may be added.

The building block grid-free modeling system only requires a string of identifiers. This string

is directly converted into a set of coordinates for every represented atom of the protein. The

GA is able to optimize these strings by means of the fitness functions. These functions operate

on the atomic coordinates and measure distances between atoms or points of the coordinate

system. The orientation of the model inside the coordinate system is irrelevant for these

calculations.

For an efficient computer implementation of this method we use several dynamic arrays to

store the values. We need an integer string that represents the current conformation of a model

in the synthetic evolution. These strings are stored in a two dimensional array. Coordinate

output is temporarily stored in a three dimensional floating point array and the amino acid

sequence as well as secondary structure data are stored in linear character arrays. If needed,

the loop database is loaded into a linear floating point array. All those arrays are allocated

dynamically leaving the upper limit open to the physically available size of memory. Finally
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we are able to write the coordinate values of our models to PDB files. This file format is

standardized and allows the user to process the program output with any other application.
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IV. 2. Capabilities of the GA

We have shown in the previous chapter that we have achieved in this work to represent

protein molecules by simple integer strings and now tackle the problem of fast detection of

suitable folds. There are large numbers of possible folds in the conformational search space

and we are interested in finding the few correct ones. The way of complete evaluation is not

feasible since we want our program to run on desktop computers. There are many models and

hypotheses on mechanisms of protein folding which is clearly an important topic. Several

genetic and sporadic diseases, such as cystic fibrosis or ALZHEIMER's dementia are caused

by protein misfolding (Cohen and Kelly, 2003; Dobson 2003). The problem is that these

models and theories are in general much too complex to implement in a desktop computer

application. However, recent literature indicates that there are probably not more than 10'000

folds in the protein universe (Koonin, Wolf and Karev, 2002). Despite this fact, protein fold

prediction and kinetics still remain a problem that requires multiple solution strategies. Work

from Snow, Nguyen, Pande and Gruebele (2002) presents a in silico (i. e. computed)

simulation of protein folding for several nanoseconds and compares it to the in vitro results.

Similarly, Yang and Gruebele (2003) have chosen a small, quickly self folding protein for

their simulations. In contrast, we do not to simulate the complete process of protein folding,

our main output remains the final structure. Of course, it is more consistent with reality to

simulate the folding mechanism instead of trying to predict a fixed structure, but the

calculation speed aspect was not considered as important in the two above mentioned studies.

Many researchers have found that Genetic Algorithms are suitable tools to approach complex

functions which require an undetermined and open time to arrive at a solution (NP complete

problem) (Corne et al., 2003). Indeed the GA is able to evolve towards maxima for functions

that have never been solved before. For example, identification of complex alignments

(SAGA algorithm, Notredame et al., 1996), prediction of new protein structures (Dandekar

and Leippe, 1997; Saxena et al. 2001), as well as other complex and new optimization

problems in economy and engineering have been elucidated by GAs. Only by means of

descriptive data it is possible to describe the function and then let the GA find the optima. The

GA is an analog to nature and represents a fast method for systematic information

accumulation. Like nature it is a robust tool that is likely to run stable even in case of difficult

simulations.
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The effectiveness in search that is achieved by a GA mainly depends on the quality of the

objective function. In this thesis we implemented a new set of fitness criteria which are

suitable for desktop computation in terms of memory usage and speed. We show that these

simple criteria make our GA a robust core application which is capable of representing

protein structures well. The function is able to separate and identify correct structures for

short protein chains without any fitness parameter weight determination or adjustment by the

user. The overall application speed makes usage on a desktop computer possible.

We present here the results of different simulations and the GA search strategy to show that

successful modeling of protein structures with known crystal structure as golden standards

was well achieved. Subsequently we will discuss the different fitness criteria.

In our trials the algorithm in table IV.2.1. has shown to be useful. The original concept was

taken from Goldberg et al. (1989) and has been extended in this thesis by a synthetic breeding

procedure. This backcrossing method takes place in steps eight and nine.

Table IV.2.1.: simplified flow scheme of the GA

STEP

1 generate random population

2
cross over pairs of two individuals with each other at random positions (The population size is always an
even number.)

3 call the objective function for each individual to get the fitness values

4 distribute roulette wheel winning numbers according to fitness

5 run roulette wheel

6 distribute propagation space in new population and fill it with copies from the winning individuals

7 mutate if random generator indicates it while copying individuals to new population

8 find out if there is a fitter individual than the individual that has been the fittest so far...

9 ... if this is the case replace the so-far-fittest with the new fitter individual

10 backcross the fittest individual if triggered by the random generator

11
go to step 2 until the number of generations given by the user is reached. (We recommend to run as long
as a increasing gain in fitness may be achieved. Crambin with approximately 50 residues requires about
100 generations.)

12 give out the fittest individual that has ever occurred.

A GA may be used in a standardized manner to optimize nearly any solution for a specific

problem. However there are several parameters that must be adapted to the problem

individually. If one misses this step the GA may be able to optimize in the course of the

simulation but the performance in terms of the solution achieved will be low. Parameters

which must be adjusted according to the GA include such elementary values as the number of

generations, the population size and the mutation rate. For the breeding procedure we also
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give a backcrossing probability. The easiest way to illustrate the importance of these values is

to run the GA on a small protein such as the mating pheromone (1ERP). Our program features

a fitness log file that is presented together with the simulation results. These log files may be

copied to spreadsheet applications with graph generation routines. The visualization is helpful

in determining the performance of the GA with specific settings for the variables mentioned

in this paragraph. In addition, these logs may be evaluated if the application is used for

teaching purposes. The following table (IV.2.2.) and the figures IV.2.1. to IV.2.4. show four

examples with different settings in mutation rate and backcrossing.

Table IV.2.2.: Parameters for GA demonstration in figures IV.2.1 - IV.2.4.

Test:
1) no mutation and
low backcrossing

2) no mutation and
normal backcrossing

3) high mutation and
normal backcrossing

4) normal mutation
and backcrossing

population size 500 500 500 500

number of
generations

100 100 100 100

mutation
probability per
integer copy

0 % 0 % 10 % 0.1 %

backcross
probability per
generation

25 % 50 % 50 % 50 %

average fitness at
start (= random)

17.40 % 17.75 % 18.14 % 18.76 %

average fitness
reached

81.45 %  83.71 %  5.87 % 76.78 %

maximum fitness
reached

81.45 % 83.71 % 78.36 % 86.70 %

Note: The maximum and average fitness values strongly depend on the settings within the

objective function and it's subfunctions. They only represent the quality of the GA in this

example and do not indicate the quality of the protein structure.
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Figures IV.2.1 - IV.2.4. from left to right /top to bottom:

1) low mutation and low backcrossing

2) low mutation and normal backcrossing

3) high mutation and normal backcrossing

4) normal mutation and backcrossing

The maximum line represents the actual best solution, the x-axis indicates the generations. On

the y-axis the actual fitness points are measured where 10'000 equals the maximum fitness

that can be reached. The average graph represents the mean fitness value of the whole

population which starts out of the chaos from a low level in each simulation.

Each simulation was run for 100 generation and 500 individuals.

Figure IV.2.4. represents a good setting for mutation rate and backcross probability. This is

pointed out by the following features:

 

1. The maximum value continues to rise for a long time - much longer than in the three

other simulations. It stops increasing at about 50 generations. This indicates that for

further modeling with these settings it would most probably be enough to run the

evolution for only 50 generations instead of 100.

2. The average graph never touches the maximum graph. This is due to mutations,

indicating sufficient diversity of the solution trials. One can recognize this behavior

with a high mutation rate in an extreme manner (Figure IV.2.3.) whereas one does not

find it without mutations (Figures IV.2.1. and IV.2.2.)
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3. The speed aspect becomes clear when we compare the graphs in figure IV.2.1. which

has a low probability of backcrossing compared to IV.2.2.. The mutation parameter

has been excluded (no mutations allowed) for this comparison: This leads to a fusion

of the maximum and average graph, i. e. every individual in the population becomes

identical from the point of fusion. Since there is no further information change due to

the missing mutations, the fitness does neither increase nor decrease. The GA

operations like crossing over become futile from this point. The only difference

between the two graphs is the moment when the fusion occurs. In other words a higher

rate of backcrossing makes this event happen earlier. It is clear that a graph fusion is

equivalent to a booster for the maximum fitness in combination with a normal

mutation rate. And it is important to achieve these boosters as fast and often as

possible to save calculation time. Of course, excessive and inadequate use of

backcrossing bears the risk of trapping the population in local minima.

From empirical observations we propose several suitable default values for the basic GA

parameters in our application software. The user may apply these values but may freely

decide to use other values as well. It is important to adjust these parameters according to the

size of protein structure that should be predicted. The calculation time per model does not

increase in a simple linear manner per residue added to the protein. Linearity is true for the

standard GA operations only since any residue or integer in the representing bit string will be

treated similarly. In reality the calculation time increases in a more exponential manner. The

fitness functions measure distances all over the molecule and the number of necessary

calculations dramatically grows with the chain length. We summarize that for short protein

chains there is a variety of choices for population size and number of generations. The total

calculation times will differ in terms of just seconds which is irrelevant to the user. As soon as

the structures to predict become longer than two hundred residues, the calculation times will

differ by several minutes which indeed is important for an effective workflow with a

computer application. Our application always tries to predict the running time, the

computation of which is more or less accurate depending on the computer system. This may

help the user to change the values adequately before making the mistake of waiting a long

time for a result.

In general we propose a population size not smaller than fifty individuals and not bigger than

a few hundred. The mutation rates should be increased when the population size is decreased.
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A good value is 0.01 (1%). The backcrossing probability has proven effective in time

reduction for middle sized populations (50-100 individuals) with values around 0.1 (10%).
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IV. 3. Threading and GA Combination

Fitness determination is critical for the selection procedure by the GA.

The crucial and most challenging factor in evolutionary computation is a suitable fitness

function. Complex tasks such as protein structure prediction usually require extended

knowledge and large numbers of empirical tests in order to achieve a reasonable selection.

This selection is the heart of any genetic optimization procedure.

Our group has shown earlier that empirical testing is a possible way in determination of

fitness function weights for the use in a GA based application. Now, since we intended to

further develop the protein structure prediction for laboratory usage with desktop computers

we have decided to automate the fitness weight determination as complete and, at the same

time, as protein specific as possible.

If we look at our previous versions that use a GA we find that the user applied empirically

determined fitness parameters and weights to all proteins desired to predict. We now examine

a solution that is able to run without this input. We have combined the potentials of protein

database threading with the GA to build a tool for automated predictions with protein specific

weights.

In contrast to complex protein structure simulations that after extensive computations can be

more accurate than ours (e. g. TOUCHSTONE, PROSPECTOR; Skolnik et. al e. g. 2002,

2003), another example is the ROSETTA algorithm (Bradley et al., 2003). However, none of

these applications seems to be suitable for desktop computer use. Our application is ready for

desktop computer use and still, it yields quick and topologically satisfactory results.

Furthermore we describe the implementation of several extensions allowing more accurate

and faster prediction under special circumstances. These include helical TM proteins with

their linking loops and inclusion of experimental data as distance constraints. We obtain the

potential for predictions that are similarly accurate as above if large scale simulations,

including threading, are attempted.

We have introduced above the combination of a threading procedure coupled to our GA as a

new way of solving the problem of fast and automated structure prediction. The program

takes advantage of the continuously growing protein database. in contrast to homology search

it does not copy parts of known structures in order to get template motifs for the molecule in
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question. Our threading procedure is a way of bypassing the necessity of empirical fitness

function weight determination. It stays adapted to current protein structure knowledge by re-

calibration and thus provides an efficient method for structure prediction without time

consuming user input.

Fitness Function parameters

Different parameters or criteria judge the quality of a protein structure during simulation.

However, the absolute values of fitness parameters alone are not meaningful. It is difficult to

write fitness functions in such a way where the resulting value indicates higher fitness by a

higher or lower value directly. The problem consists in the missing information on the

correlation between the function value and a correct structure.

The newly implemented fitness parameters return function values that are context defined.

Optimization towards a maximum or minimum would never succeed here. Instead we test

known protein structures from the PDB against these functions and store the resulting

numeric values in a database file. This process derives threading based optimal values for the

fitness parameters to select the best 3D prediction trials for a given sequence. It effectively

serves for the calibration of our fitness functions. The program is now able to determine

expected function values and optimizes solution models in order to achieve them. Some of the

calibrated functions have turned out to show a linear correlation between the chain length of a

protein and the function value. Even though one might propose to add this linearity to the

function and use it without calibration afterwards we do not convert it that way. The threading

procedure is much more flexible than the method with fixed fitness functions since the

increasing data from the PDB may always be included for calibration.

The interactions fitness parameter is a good example to explain the capabilities of our

threading and GA combination. Figure IV.3.1. shows a flow diagram of the function.
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Figure IV.3.1.: Flow diagram of the interactions function

The resulting function value will be a number representing the amount of intramolecular

interaction. Although it does not correlate with any specific scale it is possible to evaluate

these function values by comparison to structural features of unknown protein folds. Such a

feature is the chain length which the user already knows from the sequence. Figure IV.3.2.

depicts the correlation within large parts of the PDB.
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Figure IV.3.2.: Function values from the interactions function compared to chain length of

known proteins

Our application relies on several fitness parameters since the description of a structure is too

complex to be put into a single criterion. Similar to prior versions we use a certain number of

fitness criteria. In contrast to those versions we try to keep their relative weights equal. This

standardized setting simplifies the use of the software especially if there are no precise data on

the unknown structure. Since the fitness functions do all return values from zero to one

hundred percent there is no need for adjusted correction or weight factors. As soon as the user

gets more information on the protein, e. g. through the simulation output, he may choose to

emphasize on certain parameters more than on others. The user may now adjust the weights in

terms of an increment in the factor for one fitness function and decrement of another. In case

a criterion turns out to be difficult to optimize for the GA, it may also be given a higher

weight.

We did experiments on automated weight adjustment during simulation. These trials did not

succeed since continous change of the environment for the GA interrupts the optimization.

These events can be compared to harsh climatic changes in the real world where even well-

adapted species would die out. Exactly the same happens to specialized solutions in the

synthetic evolution that evolve while a certain fitness criterion has a high priority. These

circumstances suggest that it is a wise decision to keep weights stable during these folding

simulations and to keep them equal in order not to overrate a single criterion.
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Using standardized equal weights for four of our fitness parameters we find low RMSD

structures at the end of the simulations for the Crambin molecule. Figure IV.3.3. shows a plot

from hundred simulations that all used the functions 'H-bond formation', 'interactions', 'beta

interactions' and 'loops' with twenty five percent weight each.

Figure IV.3.3.: Plot of RMSD of 100 standard simulations of Crambin and the fitness values

We see that in this example there are individuals with a low RMSD in the medium fitness

regions. These regions also show a large scatter of RMSD. If this region is compared to the

higher fitness region the scatter disappears. It may be concluded that molecules with a high

fitness will turn out to have a low RMSD.

The advantage of the new combined algorithm is the automatic adaptation of optima for each

different protein that is simulated. A medical application of this method is the fold prediction

of small toxin proteins that mostly are ligands to larger macromolecular cell components.
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IV. 4. Important Subroutines

An optimized and completely new implementation of fitness functions was necessary for the

application software presented in this thesis. These criteria partly are further developed

modifications of functions that were used previously (Dandekar and Argos 1996, Saxena et al.

2001). They were tested in numerous runs. For clarity and simplicity their final form yielding

best results in our simulations are given here only.

At this point we describe the most important subroutines of our application. Most of these

routines are called for a standard prediction run. They are part of the result of our research and

development. We describe them  in order of their occurrence if this is possible. The following

listing should give the reader an overview of the core functions that we have integrated. This

chapter mainly contains simplified descriptions of the program subroutines which may

usually not described in form text. Basic computer needs are not discussed here and the

summaries usually are not complete. Such basic need include e. g. memory and file

management as well as variable and pointer types. This information is part of the digital

appendix of this work which includes a copy of the commented source code.

Subroutine void chromosome_generator();

This subroutine randomly generates a population of solution trials. The user has defined a

population size, and the protein that will be modeled determines the length of the string that

will be used. These values are provided to the chromosome_generator() function through

global variables. To illustrate what this routine does, let us imagine a protein with 10 amino

acids, all glycine for simplicity, and one tiny alpha helix - an assumed result from a secondary

structure prediction - in the middle. This is artificial, of course, but will come out very clear.

The secondary structure data which were entered by the user would look like this:

uuuAAAAAuu

And the amino acid sequence is quite simple:

GGGGGGGGGG



40

With a set of the first four building blocks (chapter II.1.),  the GA uses one integer number for

each block which makes a total of 10 integers for each individual. We exclude the extended

conformations from this example for simplicity.

The random number generator is called and produces the following solution trials:

Figure IV.4.1.:10 random solution trials

3110310302  =>  PCCAPCAPAB

2313301331  =>  BPCPPACPPC

1231100130  =>  CBPCCAACPA

0111111032  =>  ACCCCCCAPB

1130320011  =>  CCPAPBAACC

0213001201  =>  ABCPAACBAC

1323101322  =>  CPBPCACPBB

3130313012  =>  PCPAPCPACB

2021112301  =>  BABCCCBPAC

1312000100  =>  CPCBAAACAA

These would not be correct with the given secondary structure prediction in mind. Although it

is possible to let the GA find the helix by running it for many generations, every redundant

calculation should be avoided. For that reason we call the routine that is described next.

 

Subroutine void secondary_formation();

This subroutine adds given secondary structure data to the random solution trials by

overwriting these regions. The routine replaces the random patterns in locations were a

secondary structure prediction is given. This does not mean the GA will be unable to change

these at all. It is allowed to change everything if necessary to reach a higher fitness. There will

be an exception to this adjustment but for the moment we will not consider it. Since the

secondary structure pattern is checked by one of the fitness functions, the corresponding value

will start from a higher level when the secondary_formation() routine is called before the

GA starts. Figure IV.4.2. shows the result of secondary_formation() after it has processed

the data from figure IV.4.1..
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Figure IV.4.2.: The 10 random solution trials after the secondary_formation() routine has

been called

uuuAAAAAuu      uuuAAAAAuu

3110000002  =>  PCCAAAAAAB => model shown in figure IV.4.3.

2310000031  =>  BPCAAAAAPC

1230000030  =>  CBPAAAAAPA

0110000032  =>  ACCAAAAAPB

1130000011  =>  CCPAAAAACC

0210000001  =>  ABCAAAAAAC

1320000022  =>  CPBAAAAABB

3130000012  =>  PCPAAAAACB

2020000001  =>  BABAAAAAAC

1310000000  =>  CPCAAAAAAA

To visualize the corresponding PDB files to these ten trials they are included in the online

version and can be visualized with the chime plugin. (click here to open the files in a new

window).

Figure IV.4.3.: rendered structure from the first trial in figure IV.4.2.., i. e.

3110000002  =>  PCCAAAAAAB

In order to avoid misunderstandings with these two routines it must be said that they can not

convert the integer string data into building block sequences nor do they give Cartesian

coordinate output. The data presented here have been obtained from an original run of the

complete application with all representation subroutines. The conversion to the final output

format, i. e. PDB has only been done to illustrate what happens with the integer strings.
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Subroutine void decode_conf_solo();

This function is needed to build up a set of Cartesian coordinates for the current solution trial

using the GA determined building block sequence. This routine is the bridge between the

genetic algorithm and the protein representation. Its input data are a chromosome consisting

of integer values and the amino acid sequence. A complete set of Cartesian coordinates is

generated from these data. It includes all atoms that are represented in the simulation (see

chapter II). This set of coordinates is stored in form of floating point values in a three

dimensional array. The three dimensions in this array do not represent the three spatial

dimensions. The values are encoded as follows (Dandekar & Argos, 1994):

xyz[AA][REP][coordinate] = float point value

AA = residue No.

REP = number of atoms in residue using the following coding table

0: N

1: C-alpha

2: C'

3: O

4: C-beta

coordinate = kind of coordinate: x, y or z

0: x

1: y

2: z

The kind of amino acid is interesting to decide whether to build a C-beta or not in case of

glycine. In addition there is the conformation for cis-proline. In some cases this must be used

for proline. Otherwise there is no difference made between the amino acids.

The calculation of coordinates (Dandekar and Argos 1994) starts at the N-terminus of the

protein. It continues towards the carboxy-terminus. This explains why the first nitrogen

always gets the coordinates x,y,z = 0,0,0. Basically the first residue of any simulation will

have the same coordinates. The first phi, psi and omega angles come in when the routine
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reaches the second residue. The calculation is stereotypic from that point. One could imagine

someone putting preformed building blocks, defined by the three angles, together. The GA

chromosome serves as template. The calculation mainly consists of three dimensional

geometry and vector operations.

Since the position of any amino acid must be calculated relative to the previous residue it

becomes clear that the coordinates may only be calculated as a whole set in a sequential

manner. It is impossible to calculate the atomic coordinates for a single residue separately.

 

Subroutine void calibrate();

This is the master function that calibrates the system by execution of the threading process.

Calibration tests fitness functions on known crystal structures. The calibration routine applies

the fitness subroutines to known crystal structures from the protein database (PDB).

Coordinate data are transferred to the common x, y, z array. Amino acid and secondary data

are translated into strings and stored in the corresponding arrays. The fitness subroutines are

called sequentially on this set of information as if it was a structure returned by the GA.

The achieved absolute values for each crystal structure must not be confused with fitness

values. They will be written into a file. These values are raw numbers. A short example will

point this out clearly:

The interactions() routine counts the number of interactions between amino acid residues.

The result returned by interactions() is a number like "15". This value will be stored for

the calibration sample protein in the calibration file. Browsing the database, the algorithm will

store the corresponding values for each of the proteins used for calibration. This value will be

of general importance during a simulation.

Some descriptive information on the proteins that are used to calibrate is absolutely necessary

to conserve within the calibration file. This information includes:

 

•  location / path to the PDB file

•  length of the protein
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•  amino acid sequence

•  secondary structure data read from PDB file if present.

•  number of hydrophobic residues - the program has already counted them, so

we store them since the value will be needed later anyway

The following data are the fitness criteria information. Everything in the calibration data file

is written in a machine-friendly format without comment lines. Finally the file contains the

following fitness data for each structure used. Although absolute values for some of these

criteria may turn out not to be required in a specific simulation their calibration data are listed

here, too. Additional criteria will be added if the simulations are developed further.

•  path

•  length

•  sequence

•  tertiary() value

•  hydrophobicity() value

•  number hydrophobic residues with glycine

•  number of glycines

•  number of H-bonds

•  scatter histogram "all" values: 10 numbers

•  scatter histogram "fatty AA" values: 10 numbers

•  number of interactions between residues
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The PDB code "TER" terminates the input from the PDB file. That is where the first chain

terminates. If no "TER" tag is found the file is read until EOF occurs.

A new text file called "calibration.out" is created to store the resulting absolute values in

sequential manner. The data are encoded using the following convention, here the example

from 1erp:

Table IV.4.1.: Format convention for the "calibration.out" file.

Line Parameter Value

# 1 filename:  path to 1erp.pdb

# 2 chain length: 38

# 3 AA seq:
DLCEQSALQCNEQGCHNFCS
PEDKPGCLGMVWNPELCP

# 4 secondary seq:
uAAAAAAAuuuAAAAAAAAu
uuuAAAAAAAAAAuuuuu

# 5 tertiary: 103.062553

# 6 hydrophobicity: 29.000000

# 7 No. of hydrophobic AA: 16

# 8 No. of Gly: 3

# 9 No. of H-bonds: 0

# 10 scatter histogram 1:  0

# 11 scatter hist.2: 0

# 12 scatter hist.3: 10

# 13 scatter hist.4: 7

# 14 scatter hist.5: 13

# 15 scatter hist.6: 31

# 16 scatter hist.7: 7

# 17 scatter hist.8: 13

# 18 scatter hist.9: 7

# 19 scatter hist.10: 7

# 20 scatter hist. fatty 1: 0

# 21 sc. hist. f. 2 0

# 22 sc. hist. f. 3 15

# 23 sc. hist. f. 4 7

# 24 sc. hist. f. 5 7

# 25 sc. hist. f. 6+ 23

# 26 sc. hist. f. 7 7

# 27 sc. hist. f. 8 15

# 28 sc. hist. f. 9 7

# 29 sc. hist. f. 10 15

# 30
inter_quotient:
[inter_quotient = interactions() /
lastresidue]

0.263158
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This information should not be manipulated by the user. In case of unwanted data sets it is

recommended to remove the corresponding filenames from the "calibration.cal" file and to

calibrate again.

The flow scheme for the database generation is given in table IV.4.2.:

Table IV.4.2.: Flow scheme of the database generation

STEP

1 open "calibration.cal" for input

2 read one line until carriage return

3 open path indicated in STEP 2, i. e. PDB file

4
read PDB file until "TER" tag or until EOF and count residues,
determine whether this file is longer than the previous

5 go to STEP 2 until EOF occurs in file "calibration.cal"

6 close "calibration.cal"

7 allocate as much memory as the longest model will need

8 open "calibration.cal" for input and "calibration.out" for output

9 read one line until carriage return

10 open path indicated in STEP 9

11 read PDB file into array in memory

12 apply all calibrated fitness functions

13
write the function values to "calibration.out" according to the format in
table IV.4.1.

14 go to STEP 10 until EOF occurs in file "calibration.cal"

15 close "calibration.cal" and "calibration.out"

Subroutine void read_native_prefs();

This routine reads the calibration data. This function is the counterpart of calibration at the

beginning of any simulation. It needs to choose some of the calibration data to be applied in

the following structure simulation. This decision is made on parameters that one has to

provide to run the whole program. These are:

•  sequence of the unknown protein

•  secondary structure information that should be as precise as possible

A selection on the two most related proteins in the protein structure database (PDB, Francis

and Bernstein) is made for the current GA simulation using the following criteria:



47

•  length of the protein

•  shared hydrophobic residues within the protein

•  shared alpha-helical sequences

•  shared beta-sheets

These values of any protein in the calibration database are compared to those of the protein in

question. This comparison will lead to two structures which are closest to the unknown

protein. Using these two structures the expected values from the fitness functions are

calculated by linear interpolation (figure II.3.1.). The final fitness value will then represent the

deviation from the expected values and may be given in percent.

It is advisable to re-check the files chosen by the application before letting the application use

them. A software solution that is capable of reading multi-chain PDB files is necessary since

many files on monomeric proteins contain more than one crystal structure of the same protein.

All these files would be dropped by a single-chain selection method.

Subroutine void objective_function();

This function calls all fitness criteria functions and returns fitness values to the GA. This

function is the master relative to the whole set of  fitness functions that are called through the

decode_fitness(); function. All fitness subroutines are applied to each new model generated

by the decode_conf_solo(); function. The model is temporarily stored in the RAM for that

purpose. The values returned by the fitness functions are filtered to avoid unexpected results

such as negative fitness values. All fitness functions return a value encoded in percent

meaning that a high correlation with threading data corresponds to a high fitness value.

Formula IV.4.1.:

fitness value [%]= function value [absolute] / calibration value [absolute] *

100
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Since the objective function needs to summarize all fitness values in one single return value it

is necessary to define a distribution pattern or so-called weights for the single fitness criteria.

Let's imagine the following setting:

•  function for packaging in space, called tertiary(), returns 75%

•  function for residue interactions, called interactions(),  returns 67%

•  function for beta sheet interactions, called beta_interactions(), returns

70%

•  function for loops, called loops(), returns 60%

These values would make a scientist say: "Well, there are some nice loop data, but the overall

packaging has been achieved in a better way." The GA is unable to generate such an

interpretation. It needs to get a value like "76" or "88" and would then find that "88" > "76".

A conditional clause would define ">" as "better" or "fitter". The next task is to summarize

the values to a single one which represents the structure in the best way.  The user is asked to

assign so called weights to each parameter. These weights act as factors for multiplication

with the fitness values. Finally the sum of all weights should be a number like 100 or 1000

indicating a good overall fitness of the structure. Testing has shown that it is most efficient to

equally distribute the weights between the fitness criteria although some of them are much

easier to achieve than others. We prefer to find a structure that shows high fitness values in all

criteria at a time. This is also justified by the fact that we included only few, but equally

important criteria to judge protein structure quality. An extremely high weight given to a

specific fitness function will lead to structures that fulfill this criterion easily. Still, the

resulting structure will be a bad prediction since all other criteria would not have been

optimized anymore.

Subroutine double clash();

This is the clash fitness criterion. It returns the number of residue overlaps. The clash

function searches the structure for overlaps and crossings of the polypeptide chain. Such

clashes do not occur in reality and are physically impossible. Models containing such clashes

must not be kept as valid and should therefore be eliminated during the simulation. Despite
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this it is possible that a model with a high overall fitness does contain single clashes,

especially in case of long chains. Single clashes should not immediately lead to the

destruction of a model. The user may set a number of allowed clashes for any simulation. This

number is generally limited to two clashes. With this setting most final models still will not

contain any clashes. Since the clash function has some influence on the fitness of the structure

it may be considered as a fitness function, too. In contrast to all other fitness functions it does

not return a value between 1 and 100. It may be considered as a master function that acts

completely independent of all other criteria. It contains the following condition clause:

IF the number of clashes found EXCEEDS the given MAXIMUM the fitness

value of this structure WILL BE SET TO "1".

Fitness values lower than one are not allowed within the genetic algorithm due to possible

division by zero. The clash() function enables the GA to eliminate the majority of clash

containing structures efficiently while on the other side it does not destroy any new "thought"

immediately as soon as it contains one or two clashes. In case of structures that are difficult to

predict to the GA, the user may decide to allow more than two clashes. Even though this will

bear the risk of clashes in the final result the overall fitness of the model may rise to a higher

value.

Figures IV.4.4. and IV.4.5. to IV.4.7. show the resulting models and optimization processes in

simulations with Crambin (1crn). Crambin contains both helical and stranded elements and

thus is suitable for such example calculations. In all cases, i. e. zero, two and ten clashes

allowed during the simulation, we are able to achieve models with a tolerable overall fitness

and low RMSD (below 6Å). However, there are markable differences in quality depending on

the number of clashes allowed. We compare the two samples with zero and ten clashes to our

standard setting of two clashes. While ten clashes usually lead to a fast optimization due to a

higher conformational flexibility the GA exploits these ten clashes in most cases (7.9 clashes

mean, maximum 10, minimum 7). This means they remain part of the final model in the end

of each simulation. Such a series of clashes is depicted in figure IV.4.4. '10' (arrow). They are

located between the unfolded carboxyl terminus and one strand of the beta sheet. Compared

to the two other optimization plots, a simulation with 10 allowed clashes clearly shows the

best increment both in fitness quality and speed. Still the overall RMSD similarly low as in

the other simulations, but a model that contains such an obvious error is not useful in practice.
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Interestingly, the final outcomes with zero and two allowed clashes are very similar. A

difference may be seen in optimization plots. Two allowed clashes show a slightly higher

increment in optimization speed which makes the evolutional search more efficient. This is

important for our goal, namely a fast desktop application. A low number of possible clashes is

not exploited by the GA finally. Ten of ten simulations have turned out to contain zero

clashes in the final result, even if two clashes were allowed.

We therefore propose the usage of a limited number of clashes adapted to the protein length.

Larger molecules will possibly bear more clashes and the user may allow more. In general, it

is advisable to start with a low number and increase the clash possibility if the optimization

gets stuck quickly. The optimization plots may be a helpful tool for determining when this

happens.

Figure IV.4.4.: Models compared to the original structure using different clash preferences
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Figure IV.4.5.-IV.4.7.: optimization plots with different clash preferences.

Subroutine float tertiary();

This fitness function returns the atom scatter around the geometrical center of the molecule as

a single value. It needs calibration. The tertiary criterion is the first parameter presented in

this work that needs calibration. It calculates the sum of all distances between the center of
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geometry of the model and all C-alpha atoms in the chain. The resulting value is compared to

the expected value from calibration and then given in percents of deviation. A smaller value

means a tighter packing of the structure. To avoid errors values below zero are not allowed

and are set to zero.

Subroutine float interactions();

This fitness function returns the number of spatially neighbored residues. It needs calibration.

The routine counts all closely related residues in the chain. The criteria on which the

calculation is based are the following:

•  Residues may not be direct neighbors in the chain. There must be at least

five residues between them.

•  The interaction distance must be between zero and one. This distance is

calculated by measuring the distance between the two C-beta atoms. Then, the

sum of the interaction radii of the residues involved are subtracted. The

resulting value is the interaction distance.

The interaction radii for all amino acids are derived from native structures and are

approximations only. The important thing about this calculation is that the program always

uses the same parameters and therefore they are encoded as constants in the source code.

Even if one may disagree with some of these constants it does not really matter to be very

precise here as long as the conditions are the same for both calibration and judgment by the

GA.

Finally the amount of all interactions found is returned by the function. In case of beta-sheet

containing proteins the routine uses the calculation time consuming distance results to detect

closely neighbored beta strands as well, and to reward those. For this kind of interactions the

distance is allowed to vary within a lager range. Measurements on some native state sheets

has shown that two to five Å are a good setting. This range is encoded as a constant, too. Of

course, searching for beta sheets in this manner is only applied to predicted strand regions and

not to strands which have been generated by the algorithm. The criterion must not be able to

transform regions to sheets to avoid unexpected results and of course to emphasize on

building up the predicted sheets. This criterion does thus operate only on the beta-strands
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derived from secondary structure prediction whereas the beta-bonds function (i. e.

count_hbonds) creates (and shrinks) newly evolved beta-strands as well.

This function is a very important to the overall fitness. To emphasize on the flow of operation

a quick flow diagram is shown in figure IV.3.1. (paragraph IV.3.).

The protein database clearly shows that there is a good linear correlation between the function

values returned by interactions() and the number of amino acids in the proteins. 398 PDB

proteins have been tested on this function. The linear regression coefficient is r=0.975530816.

The plot is depicted in figure IV.3.2. (paragraph IV.3.).

Subroutine double count_hbonds();

This fitness function scans for hydrogen bonds within predicted beta sheets it works with or

without calibration. This routine applies to beta sheet regions. It counts existing hydrogen

bonds between O's and N's. Each donor or acceptor atom may only contribute one simple

bond to avoid exceeding the actual number of bonds. The distances allowed for a H-bond

between an O and N are encoded in constants, two to five Å have been successfully used. One

must clearly see that these distances are not always realistic. The advantage of this adjustment

is a more efficient search for the correct structure. If the criteria are too difficult to reach, the

GA might be able to achieve them with only a low probability. The status of achieving the

criterion gradually is impossible with a strict criterion whereas a mild judgment will give

more hints to the GA. Spoken in pictures one may imagine a blindfolded person that should

find something by being given hints from a person that is able to see everything. The latter

person is only allowed to say "closer" or "you're moving away". The radius around the object

to find from which the "closer" may be applied corresponds to the maximum distance for an

hydrogen bond. If one imagines a larger radius the blind person will reach this range quickly

and will then get more hints. As soon as the radius is set smaller the blind person will get into

it with a smaller probability and finally will need much more time to find the object.

Another point to deal with in this function is the calibration. Since it searches for H-bonds

within sheets, an expected number of bonds must be given to calculate a fitness value in

percent from the number of bonds that were found. This expected number mainly depends on

the number of amino acids in the sheet regions. The problem of sheets that consist of more

than two parallel strands may be solved by a calibration on known beta proteins. Another way

is to estimate the number of bonds from the number of amino acids with strand conformation.
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This mainly applies to double-stranded sheets. The decision on using either the calibration or

the estimation therefore depends on the known structures which have been chosen for

calibration. If these resemble the unknown protein in their beta content, the number of

expected H-bonds will be derived from the crystal structure. If the deviation is too high the

estimation will be based on the beta sheet prediction for the unknown protein. In any case the

program will tell the user which method has been applied.

Subroutine double secondary();

This fitness function returns the similarity between the given and the evaluated secondary

structure element sequence. This is a very simple fitness function. It determines how many

percent of the given secondary structure prediction has been fulfilled in the model. To some

extend this function becomes obsolete. The user may enable the protection mode to given

secondary structure data. This mode does not allow any point mutation within the predefined

structure elements. The protection mode should only be run if the user wants the algorithm to

fully build in the prediction. In such a case the modeling process will be much shorter since

the conformational space is reduced. When the protection mode is turned on, the secondary()

function should be turned off. It will then always return 100% and the only thing it does is

wasting processor time. Turning the secondary_formation() routine off while having the

secondary protection mode on is not advisable at all. The randomly generated elements can

not be changed anymore even in case they are completely wrong. The software will come up

with a warning if these parameters are set in such a way.

In case of a good secondary structure prediction the following mode will return the best

results:

•  secondary_formation(): ON

•  secondary fitness function: 0% = OFF

•  secondary structure protection: ON = no mutations allowed here

Subroutine void loops();

This fitness function scans for loops in regions that were predefined by the user. In case of

known loop regions for the protein that is modeled, the user may predefine these loops in the
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secondary structure sequence. We have empirically found the distance settings from table

IV.4.2. that are able to identify correctly folded loops.

Table IV.4.2.: Loop distance settings

Parameter Value

minimum number of residues to measure between 5

maximum number of residues to measure between 10

minimum distance [Å] 6.0

maximum distance [Å] 4.7

Figure IV.4.8.: Length and distance convention for loop detection; helical elements dark and

loop region bright

The routine starts with n for the first residue and scans the entire molecule. As soon as a

distance between minimum and maximum is found we count a loop. Figure IV.4.8. shows a

successful detection process in the Crambin molecule.

The loop fitness value is the percentage of found loops relative to the number of expected

loops though user input.

 

The structural simulation package has been tested by the means of known protein atomic

coordinate sets. Several proteins have been used for testing some of which are of medical

importance (see next paragraph). Testing has revealed certain parameters and subroutines as

unnecessary for optimal results. Even though their resulting value correlates with correct

structural motives and features they do not contribute to optimization. However, these
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functions are still part of this application and stay turned off with conventional preference

data settings. In special cases (e. g. research; structure modeling etc.) these functions may still

be useful.
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IV. 5. Prediction of Small Protein Folds Including Toxins

Any algorithm needs testing in order to find potential hidden errors and to make statement on

its and quality. Many trials with a GA in protein fold prediction were made by our group

earlier. This version differs from these prior versions in terms that it combines the GA to a

threading procedure. This method does no longer rely on empirical testing, however it is

immensely important to provide successful sample runs for potential users. We show here

some sample predictions on medically interesting proteins such as small toxins and an Ig

binding domain. This is, at the same time, a performance testing of our program,

incorporating all the detailed results on the different parameters and subroutines described in

the previous section.

Former work (Dandekar and Argos, 1994, 1996) shows that the GA could be successfully

applied to the non polynomial problem of fold prediction in small proteins. This algorithm

was guided by empirically determined fitness functions. We have modified this part in this

thesis and need to know whether the newly implemented threading procedure is able to

reproduce the results. In order to test our program we have used small proteins with known

structure and give the quality in terms of the root mean square deviation (RMSD) of our

models from the original. We show that the results are satisfactory and present at the same

time a high gain in speed.

An important application of structure prediction is medical research. A possible question the

we would like to address with the current program is the prediction of small toxins some of

which are interesting ligands for pharmacological target structures. The next step could be the

prediction of other soluble effector molecules such as interleukins. Finally, we have tried to

make our GA structure prediction system capable of handling helical TM segments as they

occur in GTPase coupled 7-TM receptor proteins. These proteins are of increased size

compared to our regular target molecules, however, we need to extensively test our approach

to reach further improvement.

Since we would like to help experimental scientists with our program, too, we have integrated

the possibility of continuously adding newly acquired data. These data are entered by the user

in form of distance constraints. They may aid the fitness functions in detection of atypic and

unusual folds which have been elucidated recently. We present tests for these routines as well.
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Known protein structures are chosen and certain intramolecular interactions are added to the

standard sequence information in from of distance constraints, simulating a potential user who

enters his experimental data. Again, we compare the resulting structures to the X-ray

diffraction derived model and give the RMSD.

 

IV. 5 . 1. Test Proteins

With all these criteria we achieved suitable folding results on a number of proteins. To show

that our application software masters many different topologies, the following proteins have

been used for general performance testing:

Table IV.5.1.: Test proteins

Protein
Name

PDB
code

length
(AA)

structural
features

biological
function

fitness
criteria

best result from a
batch of simulations
(10-1000)
(RMSD, Å)

ER-10 1ERP 38
3 helix bundle
a-a-a

mating pheromone from
Euplotes Raikovi

tertiary
interactions
loops

3.76

Crambin 1CRN 46

2 helix bundle
paired beta-
sheet
b-a-a-b

plant seed protein from
Crambe Abyssinica

tertiary
h-bonds
interactions
loops

4.77

'protein G' Ig
binding
domain

2GB1 56
helix with 4
beta strands
b-b-a-b-b

immunoglobulin binding
protein

tertiary
interactions
loops

5.98

Scorpion
toxin

1PNH 31

helix with
paired beta-
sheet
a-b-b

toxin from Androctonus
mauretanicus
potassium channel
(apamin sensitive)
blocker

interactions
beta
interactions
loops

4.34

Sea anemone
toxin

1ATX 46
atypical sheet
structure
b-b-b-b

toxin from Anemonia
sulcata,
sodium channel blocker
(mammalian heart),
neurotoxin 

tertiary
h-bonds
interactions
loops

7.58 to 8.43
depending on
conformation

The figures below show the simulation results that were summarized in table IV.5.1.. In the

online version, you may open the corresponding models for 3D visualization in a new

browser window by clicking the links above the figures.
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Figure IV.5.1.: 1ER-10 (open in 3D window)

Figure IV.5.2.: Crambin (open in 3D window)

Figure IV.5.3.: Protein G Ig binding domain (open in 3D window)

Figure IV.5.4.: Scorpion toxin (open in 3D window)
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Modeling of dynamic and atypically folded structures such as sea anemone toxin (1ATX) is a

difficult task. However, it is possible to predict their flexibility since simulations with the

analogous fitness criteria settings will result in a range of related folds. We compare here

eight NMR data derived structures from the protein database to our prediction. The overall

RMSD is not as low as in other proteins. Still, our resulting models share certain elements

with the natural fold. Figure IV.5.5. shows the eight NMR structures and figure IV.5.6.

represents two predicted folds, both with different settings. The model to the left was

calculated using standard criteria only. The GA was given the positions of the three disulfide

bonds within the toxin as distance constraints and then predicted the model on the right side.

The RMSD's are given in table IV.5.1.. (The online HTML version includes all models

rendered with the chime plugin. Click here to open them in a new window.) Certainly, this is

only a first order estimation for such challenging protein structures but the two simulations

cover the range of different NMR structures for this protein to some extent.

Figure IV.5.5.: 8 NMR structures with different conformations of sea anemone toxin (1ATX)

Figure IV.5.6.: 2 predicted folds for sea anemone toxin
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IV. 5. 2. Test Parameters

Generalized fitness function weights have been used building on knowledge of previous

efforts (Dandekar and Argos, 1994, 1996; Saxena et al., 2001). However, in this software

version we present a new implementation of these functions, mostly in a modified form.

Moreover, in order to eliminate empirical weights for fitness function parameters, we have

added automatic sequence guided adaptation by database threading. Alignment of helical TM

segments was made possible by the creation of a linking loop library which may be generated

by the application software directly or which alternatively  may be imported. The scoring

system for the distinct fitness functions was unified. Most functions finally return relative

fitness values in percent according to known 3D structures which are most closest related and

whose general parameters match best.

The major fitness functions are

• interactions

• tertiary

• secondary

• loops

• beta interactions, if there are sheets to be predicted

• clashes

Table IV.5.1. indicates which fitness functions had been used.

IV. 5. 3. Evaluation

It is important to respect the random part within GA simulations. In the example of a

simulation for scorpion toxin (1PNH) we show that our fitness parameters mostly are able to

distinguish correct from incorrectly folded structures. However the GA will produce some

escaping structures. It is the task of the user to carefully interpret the results.

For this combined helix and sheet molecule we have used three fitness functions with equal

weights. These were interactions, beta interactions and loops. Figure IV.5.7. shows a diagram

representing the fitness values and the RMSD from the experimentally derived structure. We

have used the secondary structure data including user defined loops and the amino acid

sequence as input.
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Figure IV.5.7.: 100 simulations for 1PNH

The lowest RMSD reached here was 4.34 Å. If we look at the best simulations (equal or more

than 75% of the optimal parameter values achieved overall) which include 39 of 100 trials we

find that the mean RMSD achieved is 5.93 Å (Fitness values from 6005 to 7163, i. e. 75% of

total and above). We see a linear correlation with r = -0.71 between the RMSD and the fitness

value, meaning that the better structures have a lower RMSD.
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IV. 6. Prediction of Transmembrane Helical Segments

This work presents a method that will enhance the prediction of protein structures with helical

transmembrane segments. Such proteins are of major medical interest since a number of ion

selective membrane channels and receptors are integrated into the cell membrane. This part of

the software will be developed further, and results of the current method are shown here.

The major problem that comes up with the simulation of transmembrane models is the size of

such proteins. While smaller soluble proteins consist of only 50 to 100 amino acids, the

smaller transmembrane molecules have already more than 250 amino acids. It is possible to

partially break down the size in terms of data processing using fixed transmembrane helical

elements. Transmembrane proteins are usually stabilized by the lipid bilayer membrane. This

fact may explain why interhelical linking loops of these molecules do not match standard

conformations. A simple experiment shows that it is impossible to rely on the eight standard

conformations inside loop regions: Two 25 amino acid long alpha helical elements that are

linked by several standard conformations are aligned in a mostly parallel manner so that they

potentially could span a membrane. Such helical elements occur in transmembrane molecules

like the photoreceptor bacteriorhodopsin. This molecule belongs to the group of receptors

with seven transmembrane segments. The outcome shows the following:

Table IV.6.1.: Transmembrane loop segments generated from standard conformations

Number of AA in
loop region

Number of possible standard
conformations

1 0

2 0

3 0

4 5

5 354

Most known linking loops in transmembrane proteins consist of less than four residues. This

fact makes the application of standard conformations unsuitable.

Another approach is the use of the few experimentally determined loops as templates for the

unknown molecule. The disadvantages of this method are the deviation from the original

concept of ab-initio modeling and the structural incompatibility of standardized helices with
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natural linking loops. Several adapter conformations would be required or the vast majority of

suitable building blocks would need do be discarded.

The current approach with systematically generated short linking loops allows complete

modeling of transmembrane proteins that yield a correct membrane topology. The N- an C-

terminus are located correctly for the 7-TM protein bacteriorhodopsin.

Table IV.6.2.: correlation with TM angles and final fitness in five simulations of

bacteriorhodopsin

TM angles function
return value [%]

number of helices
oriented correctly 

[7 total]

relative
fitness [%]

RMSD [Å] 
(whole

molecule)

83.333 5 89.46 16.138

83.333 5 86.4 21.242

83.333 5 72.8 17.851

100 7 83.89 14.556

100 7 78.57 14.963

There is no clear correlation between the relative fitness and the actual RMSD of the

simulated fold from the original structure. The general fitness parameters do not respect the

stabilizing lipid membrane around the molecule as they model a globular protein in water.

However, an implemented function function that does so is the transmembrane angle

calculation which checks whether the helices are oriented in parallel or not. This parameter

correlates with the quality of the folds and may therefore be applied to sort the results as it has

been done with the five examples.

Still, the RMSD is far too high for the complete protein (without the application of extra

transmembrane linking loops the mean RMSD is 35.98 Å: n = 9, minimum = 28.97 Å,

maximum = 43.31 Å). However, the individual TM loop is already well modeled with

RMSD's around 5 Å. Table IV.6.3. contains the individual segment-turn-segment RMSD's

from the last example in table IV.6.2.. Figure IV.6.1. shows the model with the lowest RMSD

in the trial series.
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Table IV.6.3.: individual linking loops and helix RMSD's compared to 1QM8

Start AA End AA motif RMSD [Å]

9 56 turn 5.525

35 99 turn - sheet - turn - sheet - turn 5.592

80 126 turn 4.815

105 159 turn 2.431

134 191 turn 3.900

167 230 turn 3.385

We conclude that modeling of individual loops is now possible with our program whereas

additional fitness parameters are required for correct modeling of the overall structure of

transmembrane proteins.

Figure IV.6.1.: PDB Model of bacteriorhodopsin (1QM8) compared to a prediction
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IV. 7. Application of User Defined Distance Constraints

Known interactions of side chains such as disulfide bonds or ligand binding sites may be

entered by the user in form of so-called distance constraints. The user can specify fixed

distances between any of the represented side chain atoms. The use of this feature may be

useful to integrate experimental results into the protein fold simulations. The same

corresponds to known secondary structure elements. Experiments with known structures show

that user defined distance constraints improve fitness sorting especially after a batch of

simulations has been run. Nevertheless good results can not be achieved by optimizing against

these distance constraints alone. Still, the sum of general fitness functions remains the only

mean within this application to reach a suitable optimization process. This becomes apparent

if the distance constraints were not given a weight during the simulation: Their value clearly

correlates with the RMSD of the newly simulated model. With this further option, the user is

now able to select the most correct models from a batch of simulations by analysis of the

fulfillment of the distance constraint parameter.
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V. Discussion

V. 1. General Aspects

The primary motivation for this work was the fact that currently there is no protein structure

prediction tool available for desktop and laboratory computers. This application software

should be a compromise between high power prediction systems as they are presented at the

Critical Assessment of Techniques for Protein Structure Prediction (CASP) (e. g. Bradley et

al. 2003, Colubri, 2004, Eyrich et al., 2003, Fang and Shortle, 2003, Skolnick et al, 2003, Xu

et al., 2003) conventions (e. g. ROSETTA, TOUCHSTONE, RAPTOR) and the need for fast

structural information on proteins in the experimental laboratory. The program should provide

the user with a quick glance at the structure of unknown proteins. This, of course, is difficult

to achieve since protein folds are complex systems and the computational capacity of desktop

machines is still limited. The target user group for this application are researchers in

medicine, pharmacology and biology. These professionals may not have experience in

bioinformatics and the human interface must be user friendly. Finally, the program should run

on several desktop computer operating systems in order not to restrict any user group from the

use of the software.

A program that fulfills these criteria must match the following technical features:

•  Compact source code and elimination of redundant tasks for fast execution

•  Standardized programming language

•  Standardized user interface

•  Simplicity of operation

As described in Materials and Methods the software was written in C. The corresponding

compilers usually generate fast executable binaries. Genetic algorithms in general are tools to

break down calculation time to a minimum. Therefore the GA is the core component of this

package. A single simulation of a 50 AA long protein usually takes 15-30 seconds using a
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common desktop computer for the program. Such amounts of times make work flow between

the machine and the user reasonably fast.

The user interface is partly based on a command line and partly on a web browser. These two

features are available on different computer platforms. The user friendliness may suffer from

the textual interface but still it provides a very easy and accurate medium to communicate. It

lacks the possibility of visual transmission of results. This work is done by an automated

visualization in a web browser. No specific computer experience is needed to use this option

due to the standardized PDB molecular data format. Professional users are able to render,

manipulate and import their results with other software packages available.

Complex formatting conventions such as user defined distance constraints are simplified with

a Java Script Form. This kind of editor will work on any Java capable web browser and

dramatically speeds up data input.

Preference files with standard values are generated by the application directly if they are

needed. The user may modify them but he is not confronted with the specific formatting

conventions. This principle is very common on Macintosh computers and increases the user

friendliness.

Structures predicted by this application should be interpreted carefully. This software does not

replace human combinatorial thinking. On the contrary the user should always be aware of

errors and should critically analyze the results. The application theoretically consists in an ab-

initio prediction system which is not very accurate. The amount of additional information

supplied by the user largely determines the quality of the results. Therefore he should operate

the software as a tool to put bricks of information together to generate three dimensional

models of the protein he tries to predict.

The Genetic Algorithm used in this application has several modifications that eliminate a

large number of calculations needed for a standardized GA. These features resemble breeding

procedures in order to optimize species, i. e. solutions faster. The backcrossing mechanisms

increase the risk of trapping in local minima of suboptimal evolution but may be compensated

by running the algorithm several times. Batch processing routines provide automation of this

feature.

A general and well known problem with the use of GA's consists in the use of random

numbers as a motor of evolution. Starting the program with the same random number seed

will exactly reproduce all structures obtained. However, for a certain random start population

only a part of the solution space is explored. Statistic evidence shows that evolution still may

be directed and large numbers of simulations which all start from different random numbers
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will converge towards the optimal result. This fact legitimizes the use of a GA.

The second innovation examined in this thesis is based on a threading procedure. Data from

experimentally determined protein structures are scanned for generalized and simplified

architectures. The threading results are summarized and are compactly stored for calibration

of several fitness functions called by the GA. In contrast to homology modeling systems no

structural components are copied from the protein database in our application. It is

theoretically possible to correctly determine a structural motive that does not occur in the

database by this method.
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V. 2. Limitations of the Grid Free Building Block Protein

Representation

In contrast to a primarily grid based model on a Cartesian coordinate modeling system our

system uses pairs of predefined dihedral angles. Amino acids are hereby represented as

building blocks and a model will strictly contain these predefined angles. This, of course,

leads to a certain inflexibility in contrast to natural protein structures. In case of proteins that

mainly show these standardized angles with low deviations our system may predict these

structures correctly. As soon as atypical structural elements occur within a protein our

algorithm is unable to model these abnormalities. Still, the overall structure may be modeled

correctly if it is possible to represent the unusual conformation with an atypical mixture of

standard conformations.

In accordance with previous results (Dandekar and Argos, 1994, 1996; Saxena et al., 2001)

we find that the advantages in speed and simplicity outweigh the limitations of the standard

conformation modeling technique and prefer it for our desktop computer application. Similar

observations have also been made for other types of reduced representations of protein

molecules (e. g. Skolnick and Kolinski, 2001).

A crucial aspect of search algorithms is the size of the search space. This dimension is the

most limiting or extending factor for that kind of prediction algorithms. Here, we try to find

possible folds for proteins which are highly complex (Schulz and Schirmer, 1979). The

building block mechanism narrows the search space dramatically. It is a conversion from the

almost infinite search space of floating point dihedral angles to eight applied conformations.

We accept that our application will be unable to do a fine tuning on protein structures and we

get a fast software in return. It is always important to make a fair compromise between

accuracy and computational efficiency.

Our first experiments with transmembrane models have shown that the building blocks were

insufficient in those simulations. However, we would not accept the necessity of stepping into

an infinite search space that is based on freely selectable dihedral angles. We have tried to

break up the problem to pieces. Individual solutions will be discussed in the corresponding

subchapters.
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V. 3. Performance of the Genetic Algorithm

In order to judge and improve efficiency of the GA one can distinguish the GA optimization

conventions from the optimized weights and parameters of the objective functions. GA

conventions include variables such as mutation and recombination rates, population size or

types of recombination. The GA can process binary or string data only while most problems

are obviously not binary. The objective function must therefore serve as a bridge or as an

interface between the non-binary problem and the GA. It is obvious that we can describe the

performance in terms of optimization whatever the subject that becomes optimized will be.

As mentioned earlier, many people have used evolutional computation in technical problems.

In the 1960s, Schwefel and Rechenberg worked on principles for a machine that would

exploit principles of evolution. Similar to them, J. Holland (1975) introduced the so called

genetic algorithm. In the beginning, this work was not taken seriously but as soon as it was

able to solve technical problems their methods became popular. Nowadays, evolutional

calculation has evolved to a robust tool in optimization and a topic for international

conferences (Schwefel and Rechenberg, Holland).

A GA needs several environmental parameters to run. The main task in building a Genetic

Algorithm is the determination of suitable values for these parameters. We use empirically

determined mutation rates, population sizes and numbers of generations. These values at first

may not be optimal but as soon as a fast evolutional simulation is achieved by a certain set of

conditions, we are able to apply these to different protein folding simulations and protein

sequences.

We found that a standard GA like the one described by Goldberg et al. (1989) is already able

to serve for protein fold prediction (Dandekar and Argos, 1994). Still, it requires a lot of

calculation time due to the possible occurrence of fitness reduction. This loss may

spontaneously occur if mutations randomly destroy regions in a solution string that already

had been optimized. During the following generations the standard GA would rebuild these

regions and the necessary calculations become redundant. In the GA version presented here

we introduce a backcrossing procedure to conserve the highest fitness levels during each

simulation. This procedure may be compared to breeding procedures. The positive effect of

this phenomenon has been used by human beings for centuries or even millenniums, so why

should it not turn out to be useful in a synthetic evolution as well? Our experiments show that

the backcrossing procedure clearly increases the calculation speed by elimination of
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redundant tasks.

A further advantage of our program is that it can teach people in the function and use of the

GA. Our application provides output files that contain simulation data from the genetic

algorithm that is independent from the structure simulation. Not only do these data help the

user to empirically adjust the environmental parameters for the GA, it also allows experiments

with a GA as a stand alone teaching instrument for students and schooling.

If we would replace the Genetic Algorithm with a systematic or random search, we would

have to process large amounts of data with the objective function. Both would yield much too

large sets of calculations for a desktop computer. One argument against a GA is the

possibility of exclusion of the good results hidden in some corners of the solution space. This

event may potentially happen with the GA in contrast to a total coverage of the entire search

space, where it could never occur. However, in general the systematic optimization of the

randomized solution trials will prevent this. The user will see these useless events occur

during the first generation of new simulations. While some simulations already contain at

least one individual with a fitness value above ground level, some populations do not have

such a solution trial from the beginning. However, in that case all individuals are given

similar chances for propagation. As soon as the mutations and crossing over start, some

solutions will be fitter than the baseline. We find that the randomized solution mix from the

start may speed up the evolution for some generations if it already contained suitable strings.

Moreover, the GA is able to turn nearly any random population into a set of suitable solutions.

The only conceivable problem would be a starting population with all strings being equal.

Indeed, this is a setting that hardly appears with a computer derived random number set for

any population with reasonable size.
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V. 4. Threading and GA Combination

The calibration process makes it necessary to provide at large set of known protein structure

coordinate sets. In case of the lack of structural information on a special and unusual protein

fold the calibration routine may fail. As mentioned above the calibration is not a process that

copies distinct structural patterns of known molecules to a database. This opens up the

possibility to even detect folds that have not been used during the calibration process if those

are suitably covered and judgeable with the generalized fitness criteria.

Even a very small set of calibration proteins may be sufficient to simulate a structure that

belongs to the same kind of proteins as the ones used for calibration. However if the the

database grows larger the predictions may cover a more extended field of structural patterns.

Atomic coordinate files containing errors are usually dropped during the calibration process

since they cause errors or unreadable data. Oligomeric proteins that are unstable as monomers

should be excluded from the calibration process. In case of inclusion of a large percentage of

those structures some of the fitness functions may become miscalibrated. Should there be any

doubt whether  this happened or not the user may check the files that were used in the current

simulation. If an oligomeric structure was included, the user may delete it from the calibration

file and re-calibrate the system.

In this work we introduce an efficient combination of two well established and stable

methods. This linkage makes our application a fast tool since a GA usually decreases the

number of necessary calculations. The threading process is unsuitable in terms of speed since

analysis is a time consuming task. We bypass the time consumption during the definitive

simulations through a summary file resulting from previous database indexing (all files are

summarized regarding their values for individual fitness parameters). Now, the time is spent

only once for a lot of simulations. Such a combination has been used by others for different

tasks such as in loop optimization and drug design. However, this is to our knowledge the first

time that such a combination is exploited for rapid (desktop computer) ab initio predictions

for research and teaching.
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V. 5. Application for Teaching Purposes

Our new program is also useful for teaching purposes. We avoid to confuse the user with

prompts for fitness weight attribution. Since the functions we use are calibrated on the

threading summary or otherwise guided by user data such as secondary structure or loop

positions, we can achieve useful results with just equally distributed fitness weights. The user

may or may not decide which fitness criteria should be used for a specific simulation. In case

of no decision the application automatically uses a set of default values. Binary files

illustrating the progress of the simulation, population size and generations are generated for

each run and may be analyzed if desired. Clickable graphical displays, embedded in HTML

format compare simulated structures with the crystal structure (if known) and among each

other. All input is either self-explanatory or automatically adjusted using default values.
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V. 6. User Defined Distance Constraints

Every protein structure prediction can profit from additional structural information (e. g.

Dandekar and Argos, 1997; Sibbald, 1995), and we need a method to enter these data into our

program. We have chosen the way of a distance constraint fitness criterion. This subroutine

works similar to other distance calculation routines. The user is able to define experimentally

derived or otherwise known distances between any atom that is represented by our

application.

Our application lacked a graphic user interface for these data and we have decided to

implement it for this routine as a javascript form. The text returned by this form may be

copied into a text file and should be saved by the user under a given filename in the working

directory. The distance constraints entering form checks whether the format for these data are

correct. A textual interface is incapable of generating such a file quickly since the protein

sequence must not be processed in a linear manner for this purpose.

The resulting fitness value corresponds to the fulfillment of the defined distance constraints. It

is given a weight like any other function and may be used to direct the GA evolution. As an

alternative we offer to use distance constraints after a number of simulations has been

processed.

If the distance constraints are used for optimization there, more than only one distance like a

known disulfide bond should be defined. The less distance constraints are defined the more

the resulting fitness will alter between high and low values. The absolutely necessary and

continous increment of the value is now missing and the function is unable to efficiently

guide the evolution. Therefore the user should decide whether the use of only few known

distances is possible or if there are more experimental data to add. As soon as we provide

more distances to the algorithm, the distance constraints function turns into a solid fitness

criterion. The returned value may increase sequentially during the evolution and lead to

models that fulfill a large part of the user definitions.

The distance constraint function makes our application a useful tool in experimental protein

analysis including prediction of unknown protein structures in collaboration with

experimental researchers.. Researchers may continuously interact with the program and add

their newest data directly. Our application runs quickly on desktop machines making the

workflow even more efficient for such tasks as a design help or as a teaching and simple

testing tool.



76

V. 7. Transmembrane Proteins

We present a method for prediction of helical transmembrane protein structures. The current

routines have not achieved overall suitable RMSD values yet. Still, we are able to show here

in new work from our group that TM modeling is possible with the GA and a modified

building block concept. An extended library of dihedral angles based on a scan through the

RAMACHANDRAN map allows the representation of transmembrane hairpin conformations

with tight and short linking loops. Data from this library are added to the building blocks and

increases the flexibility for the GA optimization in extramembranous regions of the protein.

The RMSD values for single two helix segments may be tolerated. The parallel orientation of

the helical transmembrane segments is judged by trigonometric angle calculation and returned

in percent of 100% optimum to fulfill the fitness criterion as implemented.

By these means we show that the GA is now able to predict a correct topology for a 7-TM

protein such as bacteriorhodopsin. There remains considerable work left to do on this

promising method, especially in terms of extension of the library with extra conformations.

The opposite demands for computation regarding a fast and stable desktop application and a

detailed, flexible modeling system are obvious. We will continue the development and will

always try to find a compromise between speed and accuracy. Libraries of loops (Forrest et al,

2003) as well as rotamers have been successfully applied to different problems in structure

solution, and we are confident that this approach is suitable for our challenge as well.

Libraries are a suitable way to encode the required information. In contrast to free float point

values a library always features a specific number of loops and hence a specific resolution.

Adjustment of this parameter makes it in turn possible to adapt the search space to the

computational capacity of the system. This is important for a desktop computer application. If

the capacity is not limiting we can either use an increment in the resolution of the library for

more accuracy within the representation, or we can spend additional calculations for extra

fitness criteria in order to better detect local optima.
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V. 8. Conclusion

We now conclude that is possible to achieve protein structure prediction on a regular desktop

computer. We are able to demonstrate the potential of our new software in the case of

medically interesting proteins such as interleukins, hormones and different toxins. Our

application is simple to use and portable to several common computer operating systems. We

have been able to reduce the calculation time to an acceptable amount of only several minutes

for a batch of predictions for short protein chains (around 50 residues) on a standard processor

type. Thus, our software package may serve as a tool in research and teaching.

We will persue our effort on a prediction system for helical transmembrane proteins and on

more capacity to model larger proteins, always with the aspect of calculation speed in mind.

Protein structure prediction from protein sequences is a critical point for computer aided drug

design and medicine, in particular in times when genomic data is growing fast (e. g. sequence

databases for many species). The informational values of these data will dramatically increase

with first structural knowledge of the resulting proteins that are encoded here.



78

V. 9. Summary

We present new approaches and programs in our study of protein tertiary structure prediction

based on the genetic algorithm (GA), applying also knowledge guided and database guided

methods. Common desktop computers are able to run our new software which makes its

application possible in the laboratory and in student teaching.

We introduce a new fitness function weight estimate for the genetic algorithm based on

similarity of predicted secondary element content to known x-ray crystal structures from the

Brookhaven Protein Database. In analogy to existing strategies we call this principle

"threading-GA". This allows us to assist previous folding routines with a more natural

approach. The evaluation routines are included within the application software so that future

crystal structures may be easily included later and directly by the user.

As examples we show the simulation for several proteins. Some of them, like small toxin

proteins, are of medical importance and should underline the need of prediction software in

this research field. In times where protein sequence information is growing daily, tools are

needed to derive structure predictions from it. Our software may be directly used for ab initio

prediction of protein structure from sequence. In addition, the user may add specific

information on the protein in question. This increases the quality of the resulting model.

We show further that a GA may have the potential to serve in prediction of structures for

helical transmembrane proteins. Here we combine a systematic plot of the Ramachandran

protein conformation map with our existing application. This setting allows us to generate

models with correct membrane topology. However, further investigation will be necessary on

that challenging topic.

The core GA has been optimized for the specific task of protein structure prediction. The

program is now able to simulate small protein structures in less than a minute. Our software is

completely written in ANSI C programming language. A system independent  interface

allows our application to run on the major operating systems.
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V. 10. Zusammenfassung

Wir stellen neue Ansätze und Programme im Rahmen unserer Forschung zur Vorhersage von

Proteinstrukturen vor. Dabei wenden wir neben dem genetischen Algorithmus (GA) auch

Methoden an, die auf vorhandenen Informationen beruhen und durch eine Datenbank

unterstützt werden. Herkömmliche Heimcomputer können unsere neue Software ausführen,

was ihre Verwendung im Labor und beim Studentenunterricht ermöglicht.

Wir führen eine neue Abschätzung der Gewichtung für Fitnessfunktionen des GA ein, die auf

Ähnlichkeiten beruhen zwischen den vorhergesagtem Strukturelementen und durch

Röntgenkristallstrukturanalyse bekannten Strukturen aus der Brookhaven-Proteindatenbank.

In Analogie zu existierenden Strategien nennen wir dieses Prinzip "threading-GA" (threading

= Sequenz-Struktur-Datenbankvergleich). Dies erlaubt eine Unterstützung der früheren

Faltungsroutinen mit einem naturnahen Datenbankansatz. Die Auswertungsroutinen sind Teil

der Software, so dass zukünftige Kristallstrukturen später durch den Anwender mitverwendet

werden können.

Als Beispiele zeigen wir die Simulation einiger Proteine. Einige davon, wie kleine Toxin-

Proteine, sind von medizinischer Relevanz. In Zeiten, wo die Sequenzinformationen über

Proteine täglich zunehmen, sind Werkzeuge wichtig, die möglichst viele Strukturdaten daraus

ableiten. Unsere Software kann direkt zur ab initio Vorhersage von Proteinstrukturen aus der

Sequenz verwendet werden. Zusätzlich kann der Anwender spezifische Informationen zu der

fraglichen Proteinstruktur angeben, was die Qualität des Modells verbessert.

Wir zeigen weiterhin, daß ein GA das Potential aufweisen kann, Strukturen für helikale

transmembranäre Proteine vorherzusagen. Dieser Ansatz erlaubt uns die Erzeugung von

Modellen mit korrekter Membrantopologie. Dennoch ist auf diesem anspruchsvollen Gebiet

der Strukturvorhersage noch weitere Entwicklung erforderlich.

Der GA-Kern wurde für die spezifische Aufgabe der Proteinstrukturvorhersage optimiert und

kann kleine Proteinstrukturen in weniger als einer Minute simulieren. Unsere Software ist

vollständig in der Programmiersprache ANSI C geschrieben. Mit seiner systemunabhängigen

Schnittstelle läuft unser Programm direkt auf den wichtigsten Betriebssystemen.
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Appendix

A. 1. Source code written in C

The source code is written  in ANSI C. It may be compiled on several computer platforms

such as Apple MacOS®, Microsoft Windows® and UNIX systems like Linux or Mac OS X®.

The dimension of the source is too large to be printed out here. Please refer to the digital

version of this document on CD-ROM or download the source from URL:

http://www.biozentrum.uni-wuerzburg.de/bioinformatik/links/links.htm

Please follow the corresponding link

user: Hench

password: 1CRN.pdb

COPYRIGHT NOTE - PLEASE READ CAREFULLY

This software is freeware. The copyright remains by the authors. It may be used for non-profit

use by anyone without permission in its unmodified form. It may be ported to other operating

systems freely.

This software MUST NOT be sold by anyone or any organization. Any portion of this

software MUST NOT be published in a modified manner without permission by the author. If

modified it is still not permitted to charge anybody for using this modified version.

If you agree to these terms you may download the modeling package.

http://www.biozentrum.uni-wuerzburg.de/bioinformatik/links/links.htm
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A. 2. Technical Specifications

This program is completely written in ANSI C and has been successfully compiled on several

platforms which are listed in Materials and Methods. The application is a stand-alone

executable that runs directly from a command line or equivalent. It uses a textual user

interface and several input / output files to communicate with the user. All of these necessary

files with exception of user data supplies can be generated by the program itself. They will

contain standard values and may be modified by the user with any text editor.

Output files containing cartesian coordinate sets of predicted protein structures are stored in

PDB format. These files contain all calculated atomic coordinates and several simulation

details in order to locate specific problems that may occur. In addition the coordinate sets are

accompanied by automatically generated HTML and script files. These files are linked

together and allow the user to visualize both structures and summarized simulation details

with a web browser that features the well known Chime Plugin from MDL. This plugin is a

scritptable version of the standard PDB viewer from R. Sayle, Rasmol. The direct

visualization is available for Apple Mac OS and MS Windows. There is currently no version

of the Chime plugin for LINUX or UNIX.

The system independence does not allow any file selection dialogs since they are not part of

the standard ANSI C libraries. The alternative is the use of running directories which contain

all necessary files for a simulation and which are created by the user. It is possible to

automatize this process on some operating platforms such as Mac OS which provides Apple

Script. The executable itself only requires a small amount of storage capacity, e. g.

approximately 160 kb for the Mac OS version. No specific installation procedure is needed

except that a copy of the executable must be located in the running directory.

The use of ANSI C allows porting of the application to nearly any operating platform without

any or with only few modifications. The same argument applies to output in PDB and HTML

format.

Random access memory is mostly allocated dynamically. This makes the size of the unknown

protein the major determinant of the necessary amount of RAM. In most cases five to ten MB

are sufficient. Only a few hundred kb needed for a standard simulation.
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Additional features of the application include analysis of existing PDB structures, loop

database creation and RMSD calculation (Goldfellow and others, 1992).

In order to enter user defined distance constraints correctly the package provides an editor in

form of a Java Script form embedded in an HTML file. This editor should work

independently of the operating system. The results may by transferred to text files with the

system specific text editors by means of the system clipboard.
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A. 3. Brief Listing of all Subroutines

The following list contains all of the existing subroutines regardless of their size and their

importance. This section is some kind of index where one can look up the relations between

the routines. For those readers who do not know the C programming language here is a short

summary on how C defines function types:

-void is a function that does not return a specific value when it is called. It is able to process

global variables and may be primarily used if a complex array of values is being processed at

a time. These values are stored in global variables and arrays.

-double returns a long decimal number, basically a long signed integer. Like any function it

processes global data, too.

-float is very similar to double. The difference is, that float returns a value in scientific format

and highest precision.

You may open the list of subroutines from the CD-ROM included with this document. It is

located in the beginning of the source code. Alternatively, you may download the source from

the URL given in A. 1.
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