
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:2325  | https://doi.org/10.1038/s41598-021-81883-4

www.nature.com/scientificreports

Associated factors of white 
matter hyperintensity volume: 
a machine‑learning approach
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Fabian Bamberg6, Christopher L. Schlett6, Franziska Galie1, Roberto Lorbeer1, 
Sigrid Auweter1, Sonja Selder1, Robin Buelow7, Margit Heier2,15, Wolfgang Rathmann8,9, 
Katharina Mueller‑Peltzer6, Karl‑Heinz Ladwig2,10, Hans J. Grabe5,7,11, Annette Peters2,12,13, 
Birgit B. Ertl‑Wagner1,14 & Sophia Stoecklein1*

To identify the most important parameters associated with cerebral white matter hyperintensities 
(WMH), in consideration of potential collinearity, we used a data-driven machine-learning approach. 
We analysed two independent cohorts (KORA and SHIP). WMH volumes were derived from cMRI-
images (FLAIR). 90 (KORA) and 34 (SHIP) potential determinants of WMH including measures 
of diabetes, blood-pressure, medication-intake, sociodemographics, life-style factors, somatic/
depressive-symptoms and sleep were collected. Elastic net regression was used to identify relevant 
predictor covariates associated with WMH volume. The ten most frequently selected variables in 
KORA were subsequently examined for robustness in SHIP. The final KORA sample consisted of 370 
participants (58% male; age 55.7 ± 9.1 years), the SHIP sample comprised 854 participants (38% 
male; age 53.9 ± 9.3 years). The most often selected and highly replicable parameters associated with 
WMH volume were in descending order age, hypertension, components of the social environment 
(i.e. widowed, living alone) and prediabetes. A systematic machine-learning based analysis of two 
independent, population-based cohorts showed, that besides age and hypertension, prediabetes and 
components of the social environment might play important roles in the development of WMH. Our 
results enable personal risk assessment for the development of WMH and inform prevention strategies 
tailored to the individual patient.
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AIC	� Akaikes information criterion
DEEX	� Depressed mood and exhaustion
FLAIR	� Fluid-attenuated inversion recovery
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NSAID	� Nonsteroidal anti-inflammatory drug
OGTT​	� Glucose tolerance test result
RMSE	� Root mean squared error
SHIP	� Study of health in Pomerania
SD	� Standard deviation
WMH	� White matter hyperintensities
ZINB	� Zero-inflated negative binomial

White matter hyperintensities (WMH) of the brain were considered as incidental findings without clinical sig-
nificance for a long time. However, several studies over the last decade have shown that WMH are associated with 
various severe morbidities such as stroke and cognitive decline1–3. Considering that WMH are more prevalent 
in old age and that our population is continuously aging, it is becoming increasingly important to draw a clear 
picture of the associated risk factors of WMH in order to identify appropriate preventive measures and early 
treatment strategies.

The pathophysiology and aetiology of WMH, however, is not yet fully understood. Histopathological findings 
in regions of WMH are myelin paleness, tissue rarefaction with loss of myelin and axons, as well as mild gliosis4,5. 
Hypoxic-ischemic axonal loss and demyelination, hypoperfusion due to altered cerebrovascular autoregulation as 
well as blood–brain barrier dysfunction have been established as leading pathophysiological causes for WMH5,6.

A wide range of potential risk factors for WMH have been described. Our targeted literature search, that 
included the 100 most relevant publications on WMH over the past 5 years, identified N = 45 different param-
eters potentially associated with WMH. Further details are presented in the Supplemental Material. Frequently 
described factors include hypertension7–9, age1,10,11, diabetes12–14, dyslipidaemia15–17, and renal impairment18–20. 
Yet, studies assessing the effect of these parameters on WMH show partially conflicting results. For instance, 
hypertension is one of the most commonly identified factors associated with WMH1,7–9. It was demonstrated that 
adequate antihypertensive treatment may reduce the course of WMH progression8,9. On the other hand, from 
age 73 to 76 years neither measured blood pressure nor self-reported hypertension were significant predictors 
of WMH volume change17. Wardlaw et al. showed in 2 prospective cohorts that vascular risk factors including 
hypertension explained only 0.1–2.0% of WMH variance, suggesting that “nonvascular” factors largely contribute 
to the aetiology of WMH21. As another example, studies assessing the effect of diabetes status on WMH show 
inconsistent results. While some studies demonstrated an association of WMH burden with diabetes, but not 
prediabetes12,13, a recent population-based cohort study showed a significant association of WMH burden with 
prediabetes and further WMH increase in type 2 diabetes14. These results might be partially explained by strong 
collinearity and partially small effect size of many potential risk factors.

Regarding the plethora of parameters influencing the development of WMH, drawing a clear picture of the 
most powerful parameters associated with WMH volume is challenging, especially as these factors usually do 
not occur isolated but as a combination of multiple risk factors determining WMH volume. In this context, 
classic regression models have major downsides. First, they are inherently hypothesis-driven, requiring prior 
knowledge about relevant confounding variables. Second, they are unable to deal with multiple correlated, pos-
sibly collinear variables. Third, they have limitations in datasets with a large number of variables in relation to 
sample size. Thus, more complex methods are required to thoroughly evaluate predictors of WMH. Elastic net 
regularization is a machine-learning method able to select and rank the most important factors out of a large 
number of variables, even when intercorrelation is present22. For instance, elastic net regularization was previ-
ously applied to identify the most important parameters associated with gray matter volume, showing better 
performance than a constant linear regression model23.

The aim of this study was to use elastic net machine-learning algorithms in order to disentangle and better 
understand the respective roles of different variables on WMH volume in two independent population-based 
cohorts.

Methods
Study design.  Our study comprises cross-sectional data from two independent, population-based cohorts. 
The MRI substudy of the Cooperative Health Research in the Region of Augsburg (KORA) study served to train 
and internally test the elastic net regression model24. This yielded a “top 10 list” of important predictors of WMH 
volume, ranked according to their relative importance. The MRI substudy of the Study of Health in Pomerania 
(SHIP-TREND-0) was used as a second independent sample to externally assess the robustness of these predic-
tors of WMH volume25.

KORA-MRI was sampled in Southern Germany and consists of 400 participants who underwent whole-body 
MRI to investigate differences in subclinical disease between diabetic, prediabetic and normoglycemic partici-
pants. Therefore, the study was enriched with participants with impaired glucose metabolism, i.e. 54 individuals 
(13.5%) had established Type 2 diabetes and 103 individuals (25.8%) had prediabetes26. SHIP-TREND-0 was 
sampled in North-eastern Germany and comprises 2188 MRI participants. There was no enrichment for impaired 
glucose metabolism. Further details of the respective study designs are presented in the Supplementary Material.

This study was approved by the ethics committee of the Bavarian Chamber of Physicians, the ethics committee 
of the Ludwig-Maximilians-University Munich and the ethics committee of the University of Greifswald and 
complies with the Declaration of Helsinki, including written informed consent of all participants.

Collected parameters.  As potential predictors of WMH volume, a panel of 90 parameters including 
measures of diabetes, blood pressure, adipose tissue, medication intake, sociodemographics including gender, 
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anthropometrics, life-style factors, somatic and depressive symptoms, and sleep were collected in a standardised 
method as part of the KORA study design and have been described previously24.

Briefly, the applied definition of hypertension was systolic blood pressure ≥ 140 mmHg, diastolic blood pres-
sure ≥ 90 mmHg and/or use of antihypertensive medication, given that the individuals were aware of being 
hypertensive. “Hypertension, unknown” was defined as unawareness of hypertension in a participant with 
hypertension, “controlled hypertension” as self-reported diagnosis of hypertension by a physician and intake of 
antihypertensive medication. Medications were classified as antihypertensive if the compounds were regarded as 
antihypertensively effective by recent guidelines. Diabetes was determined as either established type 2 diabetes 
validated by a physician or by fasting glucose level and OGTT. For the definition of prediabetes and diabetes 
the World Health Organization/International Diabetes Federation criteria were applied27. HbA1c values were 
assessed. Details on the collected parameters are provided in Supplementary Table 2.

MRI.  In the KORA sample, image acquisition was performed on a single 3 T MRI system (Magnetom Skyra; 
Siemens AG, Healthcare Sector, Erlangen, Germany). WMH volume was assessed on T2w 3D-FLAIR sequences 
(SPACE, slice thickness (ST): 0.9  mm, 0.5  mm × 0.5  mm in-plane spatial resolution, repetition time (TR): 
5000 ms, echo time (TE): 389 ms, inversion time (TI): 1800 ms, flip angle: 120°), in accordance with STRIVE 
recommendations28.

In the SHIP sample, imaging was performed on a single 1.5 T MRI system (Magnetom Avanto; Siemens AG, 
Healthcare Sector, Erlangen, Germany). WMH volume was assessed on T1w sequences (ST: 1.0 mm, 1 × 1 mm 
in-plane spatial resolution, TR: 1900 ms, TE: 3.4 ms, flip angle: 15°) and T2w 3D-FLAIR sequences (ST: 3.0 mm, 
0.9 × 0.9 mm in-plane spatial resolution, TR: 5000 ms, TE: 325 ms, flip angle: 15°), in accordance with STRIVE 
recommendations28.

WMH volume.  In the KORA sample, ITK-SNAP Version 3.6.0 was used for segmentation29. Cerebral WMH 
were manually segmented by a radiology resident (2 years of experience in neuroimaging), and edited and modi-
fied where necessary by a board-certified radiologist (7 years of experience in neuroimaging) on sagittal acquired 
FLAIR images reconstructed in axial plane with a ST of 0.5 mm (see Fig. 1). For homogeneous image intensity 
the tool “auto-adjust contrast” in ITK-SNAP Version 3.6.0 was used29. WMH were defined as signal abnormali-
ties of variable size in the white matter of the brain that show a hyperintense signal on FLAIR images28. WMH 
in the brainstem and the cerebellum were not included.

In the SHIP sample an automated multimodal segmentation algorithm for WMH quantification was used. The 
algorithm produced a probabilistic map that was further thresholded to generate a binary image3. Furthermore, 
to calculate WMH volume within specific regions of interest a multiatlas segmentation method was applied30. 

Figure 1.   Example of manual WMH segmentation in the KORA sample (A,B) and automated WMH 
segmentation in the SHIP sample (C,D). (A) Axial view of the T2-weighted fluid attenuated inversion recovery 
data of a KORA participant with a WMH volume of 9600 mm3. (B) Manual segmentation of WMH in KORA. 
(C) Axial view of the T2-weighted fluid attenuated inversion recovery data of a SHIP participant with a WMH 
volume of 8600 mm3. (D) Automated multimodal segmentation of WMH in SHIP.
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This included nonlinear registration of multiple atlases with ground-truth labels for every individual scan. Finally, 
WMH volume was determined for every region of the brain by masking WMH from all other regions31. For 
the present analysis, measurements from the frontal, parietal, temporal and occipital lobes were summarised.

Image analyses were performed blinded to all clinical data as well as other measurements.

Descriptive statistics.  Continuous predictor covariates are described as arithmetic means with standard 
deviation (SD) or medians with 1st and 3rd quartile. Categorical predictor variables are presented as counts and 
percentages. P-values < 0.05 are considered to denote statistical significance.

Analysis model.  In both the KORA and SHIP sample, the outcome of interest was WMH volume on a 
continuous scale. We identified relevant predictor covariates associated with WMH volume in the KORA cohort 
by penalised zero-inflated negative binomial (ZINB) regression models based on elastic net regularization32. The 
ZINB model accounts simultaneously for the skewed distribution of WMH volumes with overdispersion (“count 
part”) and the large point mass at zero stemming from those participants without WMH (“structural zeros”). 
Elastic net combines the properties of both Ridge and least absolute shrinkage and selection operator (LASSO) 
regression and is therefore appropriate for variable selection on potentially correlated covariates22. The amount 
of blending between Ridge and LASSO regression is regulated by the hyperparameter α (Ridge: α = 0, LASSO: 
α = 1). All analyses were computed on a grid of α values from 0.01 to 1 with stepwise increments of 0.1.

The model was derived and evaluated on 1000 data splits. A data split was defined as a random division of 
the full data set into 90% training data and 10% testing data. By evaluating the model on 1000 data splits with 
mutually exclusive training and testing data, we ensured a very comprehensive internal model validation. Con-
tinuous covariates were standardised to mean = 0 and SD = 1. A ZINB model was computed on the training data, 
with WMH volume data being modelled by a negative binomial model using logarithmic link. The shrinkage 
parameter λ was determined by internal tenfold cross validation on the training data with upper thresholds being 
fractions of 0.5 and 0.1 of λmax (the smallest value of λ for which all coefficients are shrunk to zero). Selection 
frequency across the 1000 splits served as a measure of variable importance. To disentangle and assess the roles 
of different variables in their association with WMH volume, both the model’s explanatory performance and its 
predictive performance have to be evaluated. Root Mean Squared Error (RMSE) served as a measure of predic-
tive performance on the testing data and Akaikes Information Criterion (AIC) served as measures of model fit, 
i.e. explanatory performance, on the training data. Coefficient estimates are reported as raw beta values which 
have to be exponentiated to obtain incidence rate ratios. For comparison, we calculated the Null ZINB model 
that includes no covariates and predicts the mean WMH volume for each participant. A likelihood-ratio test was 
used to formally assess the model fit of the final model compared to the Null model.

Predictors of WMH volume identified in the KORA sample were then ranked according to selection fre-
quency across 1000 data splits. A cut-off value based on selection frequency was not applicable due to the varying 
numbers of parameters in the KORA sample (N = 90) and SHIP sample (N = 34). Consequently, the ten most 
frequently selected variables were subsequently examined in the SHIP sample. A negative binomial regression 
model was evaluated on the whole sample and compared to the Null model predicting constant WMH volume 
in terms of RMSE and AIC. Furthermore, analogous to the procedure on the KORA cohort, variables were evalu-
ated on 1000 data splits with 90% training and 10% testing data and ranked according to selection frequency.

As a sensitivity analysis, the complete machine-learning pipeline was re-run on a subsample of N = 333 par-
ticipants of the KORA study with available data on intracranial volume (ICV), including ICV as an additional 
predictor to all the other variables.

R version 3.4.4 was used for all statistical analyses, including descriptive statistics. Package zipath 0.3–5 was 
used for calculation of ZINB models.

Results
Study population.  In the KORA sample of 400 participants 12 had to be excluded due to insufficient MRI 
image quality, 2 due to visible lesions with other aetiology (1 participant with lesions suspicious for multiple 
sclerosis; 1 participant with not WMH-like FLAIR-hyperintense lesion in the left parietal lobe) and 16 par-
ticipants due to missing covariate data. The final KORA sample consisted of 370 participants (58% male; age: 
55.7 ± 9.1 years). In the SHIP sample of 2188 participants 229 had to be excluded due to missing WMH data, 322 
due to insufficient MRI image quality, 415 due to missing covariate data. In addition, for consistency between 
the KORA and SHIP study 86 SHIP participants with prior myocardial infarction, stroke or revascularization 
and 368 SHIP participants younger than 39 years or older than 73 years were excluded. The final SHIP sample 
consisted of 854 participants (38% male; age 53.9 ± 9.3 years), as presented in Fig. 2. Further details are presented 
in Table 1. In the KORA sample, mean WMH volume was 2798 ± 7392 mm3 (median: 997 mm3) compared to 
532 ± 1750 mm3 (median: 135 mm3) in the SHIP sample. The distribution of WMH volume is presented in Fig. 3, 
an example of different WMH volumes in Fig. 4.

Identification of predictors of WMH volume—KORA sample.  In the KORA sample, the best model 
in terms of RMSE and AIC was obtained for α = 0.8 (RMSE = 4742 mm3, AIC = 4130). For comparison, the Null 
elastic net model (without adjusting for any cofactors) yielded RMSE = 4829 mm3 and AIC = 1,396,092, which 
serves as a proof-of-concept that the elastic net model provides additional explanatory value of WMH volume. 
The likelihood ratio test showed that the final model fitted the data significantly better than the Null model 
(p < 0.001). The ten most frequently selected variables for α = 0.8 are presented in Fig. 5. Variables included “age” 
(22.4% selection frequency), “controlled hypertension” (16.9%), “HbA1c” (14.8%), “widowed” marital status 
(14.5%), “prediabetes” assessed by OGTT (13.5%), “antiplatelet medication” (13.4%), “hypertension, unknown” 
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defined as hypertension unawareness of a participant with hypertension (10.6%), “NSAID medication” (6.5%), 
“physical activity of 2 h/week” (4.6%; negative mean beta) and “alcohol consumption up to 20 g/day” (4.6%). 
Variable selection was relatively stable across all values of α, as presented in Supplementary Figure 1. In the sen-
sitivity analysis including only KORA participants with available ICV volume, ICV was not selected in the top 
ten of predictors (Supplementary Table 4).

Robustness testing of predictors of WMH volume—SHIP sample.  In the SHIP sample, a negative 
binomial model incorporating the top ten predictors from the KORA sample yielded a RMSE of 1667 mm3 and 
an AIC of 11,600 on the whole cohort, whereas the Null model (predicting constant WMH volume) yielded an 
RMSE of 1749 mm3 and an AIC of 12,000 on the whole cohort.

When evaluating the elastic net regression model on 1000 data splits, the best model in terms of RMSE and 
AIC was obtained for α = 1 (RMSE = 1499 mm3, AIC = 10,443). For both KORA and SHIP, prediction seemed to 
be worse for high WMH volumes, i.e. on average the model underestimated true WMH volumes (Supplemental 
Figure 5). Ranking of the variables according to selection frequency is presented in Fig. 5 and Supplementary 
Figure 4. “Age” (selection frequency 100%), “controlled hypertension” (100%), “unknown hypertension” (97%) 
and “prediabetes” (66%) were replicated as important predictors. Furthermore, while “widowed” family status 
was not replicated in the SHIP sample, “separated or divorced” (87%) and “living alone” (80%) were selected. 
Other variables were either not replicated (HbA1c, antiplatelet medication) or showed different effect directions 
compared to the KORA sample (alcohol consumption, physical activity, NSAID medication).

Discussion
In a population-based sample, we performed a data-driven analysis without a-priori hypotheses including 90 
different parameters in order to disentangle and better understand the respective roles of these parameters on 
WMH volume. Relevant parameters were re-examined in an independent population-based sample.

Considering that WMH are associated with cognitive decline, increased stroke risk and worse outcome post 
stroke, decreased mobility due to gait disturbance as well as increased risk of depression, having a clear picture 
of the associated risk factors is important, especially regarding treatment and prevention2,33–37. Although a lot 
of information is nowadays available on the epidemiology and risk factors of WMH, some of these data are 
conflicting1. Given that plenty partially inter-correlated factors with potentially small effect size impact WMH 
volume, drawing a clear picture of the most powerful determinants of WMH volume is challenging. In order to 
overcome limitations of traditional regression models we used a machine-learning approach that allows for the 
selection and ranking of the most important factors out of a large number of variables, even when intercorrela-
tion is present. Our machine-learning based model identified age and hypertension as well established determi-
nants of WML volume. Additionally, the model identified the less established, more controversial parameters 
“prediabetes”, “HbA1c”, “alcohol consumption”, “NSAID medication” and components of the social environment 
such as “widowed marital status” as potential factors that contribute to WMH burden. Interestingly, ICV was 
not selected among the ten most important predictors. We hypothesise that in our analysis the association of 
ICV with WMH was captured by other variables in the model.

Diabetes-related atherosclerosis appears to be an important component in the development of WMH38,39. 
However, the relation between diabetes and particularly prediabetes and WMH is under debate1,12,14. Stud-
ies assessing the correlation between WMH and HbA1c show conflicting results40,41. Interestingly, our analysis 
yielded prediabetes, but not diabetes, as a relevant predictor of WMH volume. This result was replicated in the 

Figure 2.   Participant flow diagram of the KORA sample and SHIP sample. (1): Missing WMH volume data 
or visible lesions with other aetiology. (2): Insufficient image quality (3): KORA: missing visceral or hepatic fat 
measurements. SHIP: missing OGTT. (4): CVD exclusion criteria were prior myocardial infarction, stroke or 
revascularization. KORA participants fulfilling these criteria were not eligible for MRI by study design26. For 
consistency between the two studies SHIP participants fulfilling these criteria were excluded. (5): KORA-MRI 
participants were between 39 and 73 years old by study design26. For consistency SHIP participants outside this 
age range were excluded.
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KORA sample SHIP sample p

N = 370 N = 854

Sociodemographics Sociodemographics

Age, years 55.7 ± 9.1 Age, years 53.9 ± 9.3 0.001

Men 214 (57.8%) Men 325 (38.1%)  < 0.001

Family status Family status 0.040

Married, living with partner 268 (72.4%) Living with partner 712 (83.4%)

Unmarried, living alone 34 (9.2%) Living alone 53 (6.2%)

Unmarried, living with partner 15 (4.1%)

Married, not living with partner 9 (2.4%)

Divorced 29 (7.8%) Divorced 61 (7.1%)

Widowed 15 (4.1%) Widowed 28 (3.3%)

Schooling Schooling

Lower secondary school 168 (45.4%) Lower secondary school Not assessed

Secondary school 86 (23.2%) Secondary school Not assessed

Higher secondary school 116 (31.4%) Higher secondary school Not assessed

Schooling, years 12.3 ± 2.6 Schooling, years Not assessed

Highest professional degree Highest professional degree

No degree 14 (3.8%) No degree Not assessed

Apprenticeship 189 (51.1%) Apprenticeship Not assessed

Vocational/technician/master craftsman 92 (24.9%) Vocational/technician/master craftsman Not assessed

Engineering/polytechnic degree 4 (1.1%) Engineering/polytechnic degree Not assessed

University degree 71 (19.2%) University degree Not assessed

Per-capita income, Euro 1374.4 ± 712.2 Per-capita income, Euro Not assessed

Equivalence income, Euro 1521.0 ± 718.8 Equivalence income, Euro Not assessed

Social stratum, Helmert scale 15.7 ± 5.0 Social stratum, Helmert scale Not assessed

Anthropometric measurements Anthropometric measurements

Weight, kg 82.7 ± 15.9 Weight, kg 79.5 ± 15.1  < 0.001

Height, cm 171.8 ± 9.6 Height, cm 168.4 ± 9.0  < 0.001

BMI, kg/m2 28.0 ± 4.7 BMI, kg/m2 27.9 ± 4.5 0.923

Waist circumference, cm 98.2 ± 13.7 Waist circumference, cm 89.8 ± 12.7  < 0.001

Hip circumference, cm 106.7 ± 8.8 Hip circumference, cm Not assessed

Waist-To-Hip Ratio 0.92 ± 0.09 Waist-To-Hip Ratio Not assessed

Right-handed 341 (92.2%) right-handed Not assessed

Diabetes related measurements Diabetes related measurements

Glycemic Status Glycemic Status 0.060

Normal 229 (61.9%) Normal 579 (67.8%)

Prediabetes 90 (24.3%) Prediabetes 192 (22.5%)

Diabetes 51 (13.8%) Diabetes 83 (9.7%)

Duration of diabetes, years (median) 7.0 [5.5, 11.5] Duration of diabetes, years (median) Not assessed

Fasting serum glucose, mg/dL 104.4 ± 23.2 Fasting serum glucose, mg/dL Not assessed

Fasting serum insulin, mg/dL 10.9 ± 6.8 Fasting serum insulin, mg/dL Not assessed

HbA1c, % 5.6 ± 0.7 HbA1c, % 5.3 ± 0.7  < 0.001

Behaviour Behaviour

Alcohol Alcohol  < 0.001

No consumption 88 (23.8%) No consumption 95 (11.1%)

 < 20 g/day 146 (39.5%)  < 20 g/day 669 (78.3%)

 < 40 g/day 70 (18.9%)  < 40 g/day 64 (7.5%)

 > 40 g/day 66 (17.8%)  > 40 g/day 26 (3.0%)

Alcohol consumption, g/day 18.8 ± 24.2 Alcohol consumption, g/day Not assessed

… Spririts, g/day 0.5 ± 1.6 … Spririts, g/day Not assessed

… Wine, g/day 6.7 ± 14.1 … Wine, g/day Not assessed

… Beer, g/day 11.6 ± 19.0 … Beer, g/day Not assessed

Smoking Smoking 0.015

Never smoker 135 (36.5%) Never smoker 386 (45.2%)

Ex-smoker 160 (43.2%) Ex-smoker 308 (36.1%)

Smoker 75 (20.3%) Smoker 160 (18.7%)

Packyears (median) 15.0 [5.0, 29.0] Packyears (median) Not assessed

Physically active 220 (59.5%) Physically active Not assessed

Continued
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Table 1.   Description of predictor covariates for the KORA sample and SHIP sample. Continuous variables 
are presented as arithmetic means with standard deviation or medians with 1st and 3rd quartile. Categorical 
variables are presented as counts and percentages. P-values from t-test, Kruskal–Wallis test or χ2-test, where 
appropriate.

KORA sample SHIP sample p

N = 370 N = 854

Physical activity Physical activity 0.402

No 94 (25.4%) No 228 (26.7%)

Sporadic 56 (15.1%) Sporadic 145 (17.0%)

Regularly, around 1 h/week 114 (30.8%) Regularly, around 1 h/week 275 (32.2%)

Regularly, 2 h/week 106 (28.7%) Regularly, 2 h/week 206 (24.1%)

Somatic and depressive symptoms Somatic and depressive symptoms

Angina pectoris 19 (5.1%) Angina pectoris Not assessed

Sf-12 Somatic Scale 49.7 ± 7.4 Sf-12 Somatic Scale Not assessed

PHQ-9, points 3.0 ± 2.7 PHQ-9, points Not assessed

DEEX scale, points 7.3 ± 4.7 DEEX scale, points Not assessed

Blood pressure Blood pressure

Systolic BP, mmHg 120.7 ± 16.7 Systolic BP, mmHg 125.8 ± 16.5  < 0.001

Diastolic BP, mmHg 75.5 ± 10.0 Diastolic BP, mmHg 77.6 ± 9.7 0.001

Pulse pressure 71.2 ± 10.0 Pulse pressure Not assessed

Hypertension 124 (33.5%) Hypertension Not assessed

Control and awareness of hypertension Control and awareness of hypertension 0.001

No hypertension 246 (66.5%) No hypertension 470 (55.0%)

Controlled hypertension 69 (18.7%) Controlled hypertension 192 (22.5%)

Uncontrolled hypertension 21 (5.7%) Uncontrolled hypertension 78 (9.1%)

Hypertension, untreated 19 (5.1%) Hypertension, untreated 41 (4.8%)

Hypertension, unknown 15 (4.1%) Hypertension, unknown 73 (8.5%)

Laboratory Measurements Laboratory Measurements

Glomerular Filtration Rate, ml/min 87.0 ± 12.8 Glomerular Filtration Rate, ml/min Not assessed

Total cholesterol, mg/dL 217.9 ± 35.9 Total cholesterol, mg/dL Not assessed

HDL cholesterol, mg/dL 62.0 ± 17.4 HDL cholesterol, mg/dL Not assessed

LDL cholesterol, mg/dL 139.7 ± 32.5 LDL cholesterol, mg/dL Not assessed

Triglycerides, mg/dL 130.5 ± 83.2 Triglycerides, mg/dL Not assessed

Uric Acid, mg/dL 5.6 ± 1.5 Uric Acid, mg/dL Not assessed

Creatinine, mg/dL 0.88 ± 0.15 Creatinine, mg/dL Not assessed

Adipose Tissue Adipose Tissue

Hepatic Fat, % 8.6 ± 7.8 Hepatic Fat, % Not assessed

Visceral Fat, l 4.5 ± 2.7 Visceral Fat, l Not assessed

Medication Intake Medication Intake

Antidiabetic 29 (7.8%) Antidiabetic Not assessed

Antihypertensive 90 (24.3%) Antihypertensive Not assessed

Anticoagulant 6 (1.6%) Anticoagulant Not assessed

Antiplatelet 14 (3.8%) Antiplatelet 39 (4.6%) 0.642

Thyroidal 62 (16.8%) Thyroidal Not assessed

NSAID 8 (2.2%) NSAID 73 (8.5%)  < 0.001

ASS 100/300 13 (3.5%) ASS 100/300 Not assessed

Sleep Sleep

Sleep, h/day 7.1 ± 1.1 Sleep, h/day Not assessed

Problems falling asleep Problems falling asleep

Never 237 (64.1%) Never Not assessed

Sometimes 96 (26.0%) Sometimes Not assessed

Often 37 (10.0%) Often Not assessed

Problems keeping asleep Problems keeping asleep

Never 166 (44.9%) Never Not assessed

Sometimes 127 (34.3%) Sometimes Not assessed

Often 77 (20.8%) Often Not assessed

Feeling tired and exhausted because of sleep problems Feeling tired and exhausted because of sleep problems

Never 236 (63.8%) Never Not assessed

Sometimes 111 (30.0%) Sometimes Not assessed

Often 23 (6.2%) Often Not assessed
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SHIP sample. Furthermore, HbA1c was only identified in the KORA sample, but failed to replicate in the SHIP 
sample. These results might be due to the co-occurrence of diabetes and hypertension and the different risk 
factor distribution in the two studies: Individuals with diabetes in SHIP are more likely to have hypertension 
(prevalence of “controlled hypertension” is 41%) compared to KORA (prevalence of “controlled hypertension” 

Figure 3.   Categorised distribution of WMH volume in the KORA sample and SHIP sample. Mean WMH 
volume was 2798 ± 7392 mm3 (median: 997 mm3) in KORA and 532.4 ± 1750.0 mm3 (median 135.5 mm3) 
in SHIP. Possible explanations for this discrepancy in WMH volume are different measurement methods 
and different study collectives. Note that for elastic net regression, data was modelled continuously and not 
categorised.

Figure 4.   Example of different WMH volumes. Axial view of the T2-weighted fluid attenuated inversion 
recovery data of a subject with low WMH volume of 58 mm3 (A) and of a subject with high WMH volume of 
31,300 mm3 (B).
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is 31%). Therefore, unfavourable effects of diabetes might be superimposed by stronger effects of unfavourable 
blood pressure profiles.

Our results thus suggest that the prediabetic phenotype as a dynamic state between normoglycemia and type 
2 diabetes represents an independent risk factor for the development of WMH. Hence, individuals with predia-
betes would need more comprehensive assessments for signs of early pathophysiological changes, preventive 
measures and adequate treatment not only to stop the underlying development of diabetes, but also to avoid the 
development of WMH-associated morbidity.

The relation between WMH and alcohol consumption is still unclear. Heavy alcohol consumption might lead 
to a higher WMH burden through cerebrovascular effects of associated hypertension42. However, after correcting 
for hypertension, heavy alcohol did not show a significant association with WMH in previous analyses43,44. Prior 
studies also demonstrated a protective effect of moderate alcohol consumption on the development of WMH 
through multiple potential pathways, including anti-atherosclerotic, anti-thrombotic and anti-inflammatory 
mechanisms reducing the risk of cardiocerebrovascular morbidity43,45,46. However, while moderate alcohol con-
sumption was associated with decreased WMH volume in the SHIP sample, it was associated with increased 
WMH volume in the KORA sample; heavy alcohol consumption was associated with increased WMH volume 
in the SHIP sample.

In both the KORA sample and the SHIP sample, “NSAID medication” was identified as a relevant predictor 
of WMH volume, albeit with different effect directions. NSAID medications are generally used for pain and 
inflammation treatment, which comprises multiple conditions, thus rendering the groups under treatment quite 
heterogeneous. In KORA, all participants under NSAID medication reported regular intake of their medication, 
as opposed to intake as needed. No distinction between regular intake and intake as needed of NSAID medication 
was made in SHIP. This does not only explain the difference in prevalence (2.2% in KORA vs. 8.5% in SHIP), but 
might indicate that participants in KORA are affected by more severe and chronic pain. Severity of pain could be 
a relevant determinant of WMH volume. In this regard, our findings might support findings of previous studies 
that report associations of pain and increased WMH burden47.

Figure 5.   Top ten selected variables from elastic net regression in the KORA sample and SHIP sample. Results 
in KORA are based on α = 0.8 and a zero-inflated negative binomial model, results in SHIP based on α = 1 and 
a negative binomial model. On the x-axis: Predictor variable. Grey bars indicate the selection frequency (%) of 
the respective variable in 1000 data splits (scale according to the left y-axis). Diamonds indicate the size of the β 
coefficient of the respective variable, averaged over all splits where the variable was selected (scale according to 
the right y-axis).
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The elastic net model showed a strong correlation between age and WMH burden. This result is in keeping 
with literature suggesting that age is the most important risk factor for WMH1,10. WMH are a common finding 
in elderly people, where WMH burden increases with age1. As such, WMH may to some extent be part of the 
normal aging process of the brain, yet precise data on the burden of WMH that can be regarded as “normal” at 
a certain age do not exist. As populations are aging, WMH-related morbidities, such as cognitive decline and 
increased stroke risk will have an increasing impact on individuals and health care systems34,35.

Hypertension is strongly associated with and probably the most important modifiable risk factor of WMH. 
Several studies clearly indicate that an increased systolic as well as diastolic blood pressure favour the develop-
ment of WMH1,3,5,7–9. Our results are consistent with these findings. The variables “hypertension, controlled” and 
“hypertension, unknown (hypertension unawareness of a participant with hypertension)” were both among the 
10 most frequently selected variables of the elastic net model associated with WMH. The frequent selection of 
the variable “hypertension, controlled” in the elastic net model could be indicative of irreversible brain damage 
caused by micro- and macroangiopathy in the pre-treatment episode of hypertension38.

A meta-analysis showed that higher physical activity was cross-sectionally associated with lower WMH vol-
ume, although effect sizes were small and many studies reported null findings48. A recent longitudinal study and 
a recent intervention trial found no effect of physical activity on WMH volumes49,50. In our study, high physical 
activity was associated with decreased WMH volume in the KORA sample, but not in the SHIP sample, indicat-
ing that the role of physical activity is unstable.

“Widowed family status”, “separated or divorced” and “living alone” are components of the social environ-
ment that were revealed to be relevant predictors of WMH volume in our study. It can be hypothesised that these 
predictors might comprise a cluster of mental-health related factors, such as loneliness, anxiety or post-traumatic 
stress disorder, which were not assessed in this study38. The importance of social networks and stressful life 
events on mental well-being and health in general51,52, as well as the association of social economic factors with 
WMH have been established53. It was also shown that widowhood accelerates cognitive decline in cognitively 
normal older adults54. Our results support this finding, having in mind that WMH are associated with cognitive 
decline3. However, further studies are needed to clarify the association of components of the social environment 
with WMH volume.

The results of this study need to be interpreted in light of its limitations. The regularised regression employed 
here is not a causal model in the formalised sense and thus cannot identify whether the reported variables are 
etiologically linked to WMH volume. For observational data, different statistical tools can be used to evaluate 
causality, e.g. graphical models such as directed acyclic graphs, methods based on counterfactuals from the 
potential outcomes framework, methods based on instrumental variables such as Mendelian Randomization 
which emulate the design of randomised controlled trials, or structural causal models55. These methods, however, 
require prior knowledge and assumptions about the potential etiologic layout in the analysed variables. By our 
statistical model, we used a hypothesis-free approach without assumptions about the underlying etiologic fac-
tors. It has been emphasised, especially within the epidemiologic field, that evidence from different study designs 
and models should be taken into account to investigate causality56. We therefore believe that the results of our 
prediction-based analysis can provide useful starting points to inform further, more formalised, causal reasoning.

For (zero-inflated) negative binomial models as employed here, easily interpretable metrics of the proportion 
of outcome variance explained are not straightforward. Therefore, the relative contribution of the respective 
predictor variables has to be assessed by the inclusion frequencies only.

In the same vein, the regularization by elastic net and the underlying ZINB regression represent an intricate 
multi-layered model with complex interpretation. However, elastic net regularization is an appropriate and 
established method for variable selection, and the ZINB model captures the data distribution best. By present-
ing a ranking according to inclusion frequencies of the identified variables, we can still provide an adequate 
interpretation of the findings.

Furthermore, in the KORA sample mean WMH volume was significantly higher than in the SHIP sample. 
Possible explanations for this discrepancy in WMH volume are different measurement methods and different 
study collectives. However, identical methodologies across large population-based studies are not to be expected, 
and the fact that some parameters were consistently associated with WMH volume in both, KORA and SHIP, 
does show a certain robustness of the association. Further well-characterised MRI studies are needed to cor-
roborate these findings.

Conclusion
In conclusion, a systematic machine-learning based analysis of 90 parameters showed in two independent sam-
ples, that besides age and hypertension prediabetes and components of the social environment (i.e. widowed, 
living alone) might play important roles in the development of WMH. Our results therefore enable personal risk 
assessment for high WMH burden and prevention strategies tailored to the individual patient.
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