
On change in length of stay associated with an
intermediate event: estimation within
multi-state models and large sample

properties.

Dissertation zur Erlangung des Doktorgrades
an der Fakultät für Mathematik und Physik

der Albert-Ludwigs-Universität Freiburg im Breisgau.

vorgelegt von

Jan Beyersmann

April 2005



Dekan: Prof. Dr. Josef Honerkamp

1.Referent: Prof. Dr. Martin Schumacher

2.Referent: Prof. Dr. J. C. van Houwelingen

Datum der Promotion: 27.06.2005



Contents

1 Introduction 9

1.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Scope of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Data examples . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Change in LOS 15

2.1 A multistate model for change in LOS . . . . . . . . . . . . . 15

2.2 Expected change in LOS given status at time s . . . . . . . . 18

2.3 Expected change in LOS . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 A summary quantity . . . . . . . . . . . . . . . . . . . 19

2.3.2 Alternative weightings and discussion . . . . . . . . . . 20

2.3.3 Differences to Schulgen and Schumacher (1996) . . . . 22

2.4 Constant transition intensities . . . . . . . . . . . . . . . . . . 23

2.5 Other quantities of interest . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Comparison between avoidable and unavoidable inter-
mediate events . . . . . . . . . . . . . . . . . . . . . . 25

2.5.2 ‘Median change’ in LOS . . . . . . . . . . . . . . . . . 26

2.6 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6.1 Estimating the joint distribution function F of (T0, T ) 27

2.6.2 Estimating expected change in LOS . . . . . . . . . . . 29

2.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7.1 SIR 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7.2 Comparison with ad hoc approaches . . . . . . . . . . 32

2.7.3 Constant transition intensities . . . . . . . . . . . . . . 34

2.7.4 Reanalysis of the data in Schulgen and Schumacher
(1996) . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Large sample properties 39

3.1 Bivariate time scale . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Uncensored situation . . . . . . . . . . . . . . . . . . . . . . . 43

3



4 CONTENTS

3.2.1 Hadamard-differentiability and weak convergence for
expected change in LOS given status at time s . . . . . 44

3.2.2 Hadamard-differentiability and weak convergence for
expected change in LOS . . . . . . . . . . . . . . . . . 49

3.3 Censored situation . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Change in LOS: competing endpoints 63
4.1 A multistate model with competing endpoints . . . . . . . . . 64
4.2 Expected change in LOS given status at time s . . . . . . . . 65
4.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5 Large sample properties . . . . . . . . . . . . . . . . . . . . . 75

5 Discussion 79
5.1 A random time interval situation . . . . . . . . . . . . . . . . 79

5.1.1 Competing Risks . . . . . . . . . . . . . . . . . . . . . 79
5.1.2 The random time interval [T0, T ] and summaries . . . . 83
5.1.3 Bivariate approaches in the literature . . . . . . . . . . 86

5.2 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A An R-program to compute change in LOS 91
A.1 Some computational issues . . . . . . . . . . . . . . . . . . . . 91
A.2 Data structure and running the program . . . . . . . . . . . . 92
A.3 Code for cLOS() . . . . . . . . . . . . . . . . . . . . . . . . . 94

B Symbols and abbreviations 99



List of Figures

1.1 The illness-death model and different interpretations . . . . . 10

2.1 Potential states and transitions for occurrence of nosocomial
infection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Potential states and transitions for the occurrence of exoge-
nous as compared to endogenous nosocomial infection. . . . . 25

2.3 SIR 3: change in LOS due to nosocomial pneumonia at time s 32
2.4 SIR 3: weights . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5 SIR 3: Nonparametric and parametric estimates of the cumu-

lative incidence function for nosocomial pneumonia. . . . . . . 34
2.6 Data in Schulgen and Schumacher (1996): change in LOS due

to nosocomial pneumonia at time s . . . . . . . . . . . . . . . 36
2.7 Data in Schulgen and Schumacher (1996): weights . . . . . . . 37

3.1 Bivariate time scale . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 SIR 3: Aalen-Johansen estimator of P (Xs = 1). . . . . . . . . 59
3.3 Data in Schulgen and Schumacher (1996): Aalen-Johansen

estimator of P (Xs = 1). . . . . . . . . . . . . . . . . . . . . . 60

4.1 Potential states and transitions for occurrence of nosocomial
infection with competing absorbing states. . . . . . . . . . . . 64

4.2 SIR 3: Kaplan-Meier curves given daywise infection status . . 70
4.3 SIR 3: Cumulative incidence functions given daywise infection

status (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4 SIR 3: Cumulative incidence functions given daywise infection

status (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.5 SIR 3: Cumulative incidence functions for death given daywise

infection status . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.6 SIR 3: change in LOS at time s and distinguished for compet-

ing endpoints ‘discharge’ and ‘death’. . . . . . . . . . . . . . . 74

5.1 Competing risks model . . . . . . . . . . . . . . . . . . . . . . 80

5



6 LIST OF FIGURES

5.2 Data in Schulgen and Schumacher (1996): Observed pairs of
waiting times (T0, T ). . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Data in Schulgen and Schumacher (1996): Observed pairs of
waiting times (T0, T ) and infection status on day 5.. . . . . . . 85



List of Tables

2.1 Selected nonparametric and parametric estimates of change in
LOS due to nosocomial infection. . . . . . . . . . . . . . . . . 35

3.1 Point estimates with confidence intervals for restricted change
in LOS as explained in Section 3.4. . . . . . . . . . . . . . . . 61

7



8 LIST OF TABLES



Chapter 1

Introduction

1.1 General introduction to this thesis

This thesis is on the impact of an intermediate on a terminal event. More
precisely, it is concerned with quantifying such an impact in terms of (ex-
pected) change in length of stay until occurrence of the terminal and associ-
ated with the intermediate event. Essentially, we will treat the situation as
a random time interval problem, with length of the time interval (possibly
zero) equal to the time spent in the intermediate state. We will suggest and
study functionals quantifying change in length of stay. Our approach applies
quite generally to functionals summarizing the impact of an intermediate on
a terminal event.

The motivating application comes from clinical research: Here, length
of hospital stay (LOS) is used at large to assess the utilization of hospital
resources, the costs and the general impact of a disease, cf., e. g., Li (1999)
and Lee et al. (2003) for recent references. Consequently, physicians would
like to use information on change in LOS to assess the impact and the costs of
an intermediate event during the course of a patient’s disease. A prominent
example are nosocomial, i. e. hospital-acquired infections. Since a nosocomial
infection represents an additional complication during a patient’s hospital
stay, physicians reckon with an extra time needed to treat that patient. As
recent references, consider, e. g., Mahieu et al. (2001), Mylotte et al. (2001),
Orsi et al. (2002) and Olaechea et al. (2003). Other examples include
adverse drug events, cf., e. g., Classen et al. (1997), Bates et al. (1997)
and Vargas et al. (2003). Generally speaking, information on change in
LOS is considered in particular when assessing complications that occur after
admission to hospital, cf., e. g., Epstein et al. (2000) and Harbrecht et al.
(2002) for further recent examples.

9



10 CHAPTER 1. INTRODUCTION

When investigating the question of change in LOS, it is crucial to account
for the timing of events: The intermediate event can only have an effect on
LOS, once the event has occurred. It cannot have an effect on the time spent
in hospital before. On the contrary, a long time in hospital without having
experienced the intermediate event may even be considered a ‘reason’ for
finally experiencing it: The patient has been under risk, i. e. in hospital,
‘long enough’ for the intermediate event to finally occur. Usually, applied
analyses do not adequately account for this. We will elaborate a bit more on
this in the following Section 1.2. The major difficulty stems from the fact
that the occurrence of nosocomial infection is time-dependent on the one
hand. On the other hand, hazard-based methods do not straightforwardly
supply us with an estimate of the summary change in LOS. At this point,
we should note that while our methods will allow for independent censoring,
the key issue for our motivating data problem is not censoring (which could
be avoided, time being counted in days rather than years), but the temporal
dynamics by which information on infection status becomes available.

Our approach will be based on multi-state models (Andersen, Borgan,
Gill, and Keiding 1993). This is illustrated in Figure 1.1. Figure 1.1 also
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Figure 1.1: The so-called illness-death model without recovery for the occur-
rence of an intermediate event together with possible interpretations of the
states. Possible transitions are indicated by arrows.

shows that the question of change in LOS is not restricted to hospital stay
alone. Blossfeld and Rohwer (2002) give a lot of possible interpretations that
do not come from biometry. Since our data examples are on nosocomial
infections, we will often speak of ‘nosocomial infection’ representative of ‘in-
termediate event’ for linguistic ease and in order to make the presentation
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more vivid. For examples of recent research related to the other interpreta-
tions of Figure 1.1 see Utikal et al. (2003) and Abbring and van den Berg
(2003).

The thesis is organized as follows:

• The remainder of this introduction discusses previous work by Schulgen
and Schumacher (1996), the scope of this thesis and introduces the data
examples.

• In Chapter 2, we define and estimate quantities describing change in
LOS within the three-state model.

• Large sample properties of the latter estimates are investigated in
Chapter 3.

• Chapter 4 extends the results of the preceding two chapters to two
competing absorbing endpoints. This is, for instance, relevant in the
infection example if we want to distinguish the effect of an infection on
discharge and death, respectively.

• A discussion is offered in Chapter 5. In particular, we discuss analysing
the effect of an intermediate event in a bivariate time setting. We argue
that the methodology presented in this thesis constitutes a quite general
framework of describing and analysing the impact of an intermediate
event.

• Appendix A introduces an R-program to estimate change in LOS.

• Appendix B lists symbols and abbreviations.

1.2 Temporal dynamics, previous work and

scope of this thesis

Ad hoc approaches of analysing change in LOS due to a nosocomial infection
retrospectively stratify patients into those who have and into those who have
not experienced the intermediate event. By doing so, they do not adequately
account for the timing of events. In particular, they cannot account for an
effect on LOS an early occurrence of the intermediate event may have as com-
pared to a late one. This is even true for matched analyses where ‘controls’
(uninfected patients) still have to be in hospital the day the ‘case’ acquires
an infection. The main reason is that even with such a matching procedure
one needs to define on day 0 the group of ‘cases’ and the group of ‘controls’.
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This information is simply not available on admission. A more mathematical
formulation of this has it that the information on future infection status is
not contained in the filtration generated by the observable counting processes
(e. g. Andersen et al. (1993), Chapter II). A filtration represents the available
information (or: data) up to some time point. It is generally agreed upon in
the applied literature that such ad hoc approaches tend to overestimate the
effect of a nosocomial infection on LOS, see for instance Irala-Estévez et al.
(2001). A major reason for overestimation is that ad hoc approaches cannot
distinguish between long LOS due to an infection and long LOS leading to
an infection. Still, such analyses are almost exclusively used in the applied
literature.

Schulgen and Schumacher (1996) proposed methods based on multi-state
models in order to appropriately account for the timing of events. A non-
technical presentation of their ideas can be found in Schulgen et al. (2000),
together with a detailed comparison with ad hoc techniques. In particular,
Schulgen et al. (2000) drive home the point why matching is no cure.

Multi-state models provide an appropriate framework to study the effect
of an intermediate event. A prominent example is the occurrence of graft-
versus-host disease in bone marrow transplantation patients, cf. Klein and
Shu (2002) for an overview. Multi-state models are discussed in detail by
Andersen et al. (1993), and an overview is given by Andersen and Keiding
(2002). These models are usually assumed to be Markovian; see, however,
Remark 3.16 for relaxing this assumption within our framework.

Of the estimation techniques proposed by Schulgen and Schumacher (1996),
their ‘approach B’ relied on observable quantities only. Our approach is based
on the ideas of ‘approach B’, but not identical to it. We revisit their approach
in Chapter 2, formulating it in a rigorous way, in the course of which we offer
some refinements. In particular, we consider different weighting schemes; the
latter issue is connected with the basic methodological question of how to
weight group differences observed over the course of time, if group member-
ship (uninfected/infected) only becomes definite as time progresses. Differ-
ences are discussed in detail in Chapter 2.3.3. In a reanalysis of the data
used by Schulgen and Schumacher (1996) in Chapter 2.7.4, we show that
these refinements do make a difference in practice. In addition, we consider
the special case of constant transition intensities which facilitates the mathe-
matical treatment considerably, but shows a bad fit at least for one data set.
We also briefly discuss further quantities of interest, namely ‘median change’
in LOS and a comparison between avoidable and unavoidable intermediate
events.

Schulgen and Schumacher (1996) did not consider more theoretical prop-
erties of their estimates. Large sample results are given in Chapter 3, which
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allow for constructing asymptotic confidence intervals.
In Chapter 4, we then take up a critique frequently brought forward

against the concept of change in LOS — often a prolongation of hospital
stay — due to an intermediate event: While such an event may prolong
hospital stay for a patient eventually discharged, one might suspect it to
even expedite death for a patient who eventually dies in hospital. This calls
for distinguishing the effect an intermediate event has on two competing,
absorbing events. We will do so in the sense of a ‘cumulative incidence
function’. We also give large sample properties.

A major theme is that change in LOS is a summary to judge the effect of
an intermediate on the occurrence of a terminal event as opposed to a hazard-
oriented analyses. In our data analyses, we will also consider nosocomial
infection as a time-dependent covariate in a proportional hazards model.
Such an analysis can be used to decide whether there is an effect on LOS
at all. It cannot, at least not straightforwardly, be used to estimate the
extra time in hospital associated with a nosocomial infection, say, because
the model is not formulated in these terms. Schulgen and Schumacher (1996)
make this point very clear. First of all, one has to define what it is meant by
change in LOS in stochastic terms.

Multi-state models display a complex stochastic behaviour. Summaries
are therefore considered to make an interpretation more accessible than from
an hazard-based analysis alone. Such difficulties are for instance illustrated
in our proportional hazards-analysis of the competing events discharge and
death in Chapter 4.4. In the discussion presented in Chapter 5.1, we will
argue that our treatment of change in LOS provides for a framework of
defining and analysing such summaries in general, not just specifically change
in LOS.

An implementation of the methods discussed in this work is illustrated
in Appendix A using the open source statistical computing language R (R
Development Core Team 2004). We comment on computational issues and
data representation intimately connected with the mathematical theory, and
the code is extensively annotated.

At this point, we would like to stress that while our treatment starts
from the summaries suggested in ‘approach B’ by Schulgen and Schumacher
(1996), we do not claim that the functionals we will be investigating are
the only possible ones to study change in LOS. In fact, our consideration of
different weighting schemes in Chapter 2 already supports this point of view.
Of course, the major difficulty is that it is not straightforward to actually
define in (observable) stochastic terms what change in LOS associated with
an intermediate event is. To the best of our knowledge, this thesis makes the
first attempt — based on the previous work by Schulgen and Schumacher
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(1996) — to rigorously define this. We should also like to to stress that
alternative suggestions may be studied along the lines presented in this thesis.

1.3 Data examples

We consider two data examples in this work.
Our major data example will be the SIR 3 (Spread of nosocomial infections

and resistant pathogens) cohort study initiated in 2000 at the Charité uni-
versity hospital in Berlin with prospective assessment of data to examine the
effect of nosocomial infections, cf. Grundmann et al. (2005). All patients
admitted to one medical, two interdisciplinary, one surgical and one neuro-
surgical intensive care unit (ICU) during the 18 month-period from February
2000 to July 2001, and who stayed on the unit for more than 48 hours,
entered the study. Altogether, 1876 admissions were included in the cohort.

341 (18.2%) of these 1876 admissions acquired at least one nosocomial
infection. Overall, 214 (11.4%) patients died. Of the admissions who ac-
quired nosocomial infection, 65 (19.1%) died. 30 (1.6%) observations were
censored, i. e. still on ICU as the study was finished. Eleven of these 30
censored observations had acquired a nosocomial infection.

We will exemplarily focus on nosocomial pneumonia, a both frequent
and grave nosocomial infection. 158 (8.4%) admissions acquired nosocomial
pneumonia. Of these, 33 (20.9%) died. Seven admissions were censored after
having acquired nosocomial pneumonia.

The mean duration of ICU stay was estimated as 15.6 (± standard error
1.0) days, the median duration was estimated as 9 days (95%-confidence
interval: [9, 10]).

As a second example we will use the data originally considered by Schul-
gen and Schumacher (1996). We will offer a brief reanalysis of these data in
Sections 2.3.3 and 2.7.4. The data were collected at one anesthesiological and
one medical ICU at the university hospital Freiburg from July 1991 to June
1993. 756 admissions with an ICU stay of more than 48 hours were included,
for all of which complete follow-up information is available. 191 (25.3%) pa-
tients died. 124 (16.4%) patients acquired nosocomial pneumonia, of which
34 (27.4%) patients died. The mean duration of ICU stay was estimated as
10.5 (± standard error 0.37) days, the median duration was estimated as 7
days (95%-confidence interval: [7, 8]).



Chapter 2

Change in length of stay
associated with an intermediate
event

In this chapter, we describe the possible occurrence of an IE by a multi-
state model and derive a functional for (expected) change in length of stay
associated with the intermediate event.

2.1 A multistate model for change in LOS

Let (Xt)t∈[0,∞) be a nonhomogeneous, continuous-time stochastic process
with state-space {0, 1, 2} and right-continuous sample paths. We will often
simply write Xt for the stochastic process, if the meaning is clear from the
context. The state-space together with its possible transitions is illustrated
in Figure 2.1 for the example of nosocomial infections.

0Uninfected -
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Nosocomial infection
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Q
Q

Q
Q

QQs�
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�
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��3

2 Discharge/death

Figure 2.1: Potential states and transitions for occurrence of nosocomial
infection.
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Define transition probabilities

Phj(s, t) := P (Xt = j |Xs = h) for h, j ∈ {0, 1, 2}, s ≤ t. (2.1)

The transition matrix is then given as

P(s, t) :=
(
Phj(s, t)

)
hj
. (2.2)

As depicted in Figure 2.1, we do not model backward transitions, i. e. Phj(s, t)
= 0 for j < h. We do not do so, because once an individual has experienced
the intermediate event, (s)he has become a ‘case’. We elaborate on this point
in the following two Sections 2.2 and 2.3. We also assume the initial distribu-
tion of Xt to be degenerated at state 0, i. e. P (X0 = 0) = 1. Corresponding
to the transition probabilities, define transition intensities

αhj(t) := lim
∆t→0

Phj(t, t + ∆t)

∆t
, (2.3)

which we assume to exist. Moreover, define integrated transition intensities

Ahj(t) :=

∫ t

0

αhj(u) du. (2.4)

In this chapter, we derive quantities within the multistate framework to
describe change in LOS associated with the intermediate state 1. In our
study on large sample properties of the respective estimators in Chapter 3,
we will assume thatXt occupies one of the transient states 0 or 1 with positive
probability on a finite time interval only. Thus, let

τ := sup{t : P (Xt 6= 2) > 0}; (2.5)

we assume τ to be finite. For τ ≤ s ≤ t let P00(s, t) = P11(s, t) = 1 (and
P(s, t) be the unit matrix). As a consequence, we have

sup{u :

∫ u

0

αhj(t) dt <∞, h 6= j} = ∞. (2.6)

In addition, Xt is usually assumed to be Markovian, if censored obser-
vations occur. For ease of presentation, we will make this assumption in
Chapter 3.3. See Remark 3.16 for a detailed discussion on this and how the
Markov assumption may be dropped even in the censored case. Also recall
that for the question of change in length of hospital stay, hospital stay being
counted in days, censoring is not a central issue, but the temporal dynamics
by which information on infection status becomes available are.



2.1. A MULTISTATE MODEL FOR CHANGE IN LOS 17

We interpret the multistate model for the nosocomial infection example in
the following way: A patient enters the initial state 0 on admission (time t =
0). His or her time of hospital stay is terminated by reaching the absorbing
state 2. The individual moves to the intermediate state 1, once a nosocomial
infection has occurred.

Let us finally define two waiting times connected with the multistate
model. We are interested in the time of hospital stay; it can be defined as
the waiting time in the sub-state-space {0, 1}:

T := inf {t ≥ 0 : X(t) 6∈ {0, 1}} . (2.7)

More specifically, we are interested in how a nosocomial infection affects the
time of hospital stay T . Obviously, the timing of the intermediate event is
crucial. We may rephrase our question as: ‘How does the time to nosocomial
infection affect the time of hospital stay?’ This formulation is somewhat
ambiguous, since a patient need not acquire a nosocomial infection. We
consider the closely connected waiting time in the initial state 0,

T0 := inf {t ≥ 0 : X(t) 6= 0} , (2.8)

which is well defined and finite for every patient. Note that a patient acquires
an infection by time T0, if (and only if) T0 < T . Otherwise T0 = T , and the
patient is directly discharged without prior nosocomial infection. The process
Xt may equivalently be described in terms of T and T0:





Xt = 0 ⇐⇒ t < T0

Xt = 1 ⇐⇒ T0 ≤ t < T
Xt = 2 ⇐⇒ T ≤ t



 . (2.9)

One can think of the pair of waiting times (T0, T ) in terms of the random
time interval [T0, T ] denoting the time span spent in the intermediate state.
(This formulation is a little imprecise, since at time T the process enters
the absorbing state.) If the random time interval is degenerated, its length
being 0, the patient has not passed through the intermediate state.

In competing risks terminology, the random variable XT0 (with XT0(ω) :=
XT0(ω)(ω)) denotes the cause (either 1 or 2) for leaving the initial state 0;
the mapping [0;∞) 3 t 7→ P (T0 ≤ t, XT0 = 1) is often called the cumulative
incidence function for cause 1, e. g. Crowder (2001). (Note that for some
stochastic process X̃ and some stopping time T̃ measurability of X̃T̃ need
not be immediately clear. This is, however, of no concern in our context,
e. g. Andersen et al. (1993), p. 62.) We assume that both state 1 and state 2
are entered with positive probability at T0:

P (XT0 = 1) · P (XT0 = 2) > 0. (2.10)
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Finally, we denote the joint distribution function of (T0, T ) by F : For
s ≥ 0 and t ≥ 0 let

F (s, t) := P (T0 ≤ s and T ≤ t) . (2.11)

In the following, we will use both ‘waiting time notation’ in terms of (T0, T )
and ‘stochastic process notation’ in terms of Xt whatever appears to be more
intuitive. In our study on large sample properties in Chapter 3, we will study
large sample properties of our estimated quantities of interest as functionals
of an empirical counterpart of F .

2.2 Expected change in LOS given status at

time s

Let us think of infected patients as ‘cases’ and of uninfected patients as
‘controls’. The key idea of ‘approach B’ in (Schulgen and Schumacher 1996)
was that, while one could not unambiguously distinguish between ‘cases’
and ‘controls’ over the complete course of time, one might very well do so for
some fixed, but otherwise arbitrary time s. Our approach will be based on
this idea, but is not identical with ‘approach B’ of Schulgen and Schumacher
(1996); differences will be discussed in Section 2.3.3 and highlighted in a data
reanalysis in Section 2.7.4.

Consider some time s > 0 such that

P (Xs = 1) > 0 and P (Xs = 0) > 0 (2.12)

and define
φ(s) := E (T |Xs = 1) − E (T |Xs = 0) . (2.13)

The assumption in (2.12) stipulates that, at time s, there are two groups to
compare, namely patients who have acquired a nosocomial infection up to
time s, and patients who are still free of it. The quantity φ(s) then compares
the expected time of hospital stay between these two groups. In doing so, it
allows to account for two aspects inherent in the temporal character of the
situation at hand: First, it allows for the impact of a nosocomial infection to
depend on the time by which the infection has been acquired. (This aspect
is illustrated in Figures 2.3 and 2.6 in the data examples to follow.) Second,
it takes care of changes in group membership: An individual who is still free
of nosocomial infection by time s contributes to E (T |Xs = 0). He or she
may become a ‘case’ for some later time s′, s′ > s, though, i. e. acquire
a nosocomial infection in the time interval (s, s′]. The individual will then
contribute to E (T |Xs′ = 1).
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The difference of two conditional expectations in Equation (2.13) can be
considered as the expected change in LOS due to nosocomial infection present
at time s. We have

φ(s) = E (T |Xs = 1) − E (T |Xs = 0)

=

∫
1 (Xs = 1) · 1

P (Xs = 1)
· T − 1 (Xs = 0) · 1

P (Xs = 0)
· T dP.

(2.14)

The integrand on the right-hand side of Equation (2.14) has an interpretation:
Basically, the integrand consists of the time of hospital stay T . However, T
is assigned a positive sign, if a nosocomial infection has been acquired up
to time s, and a negative sign, if the individual is still infection-free, but in
hospital. In order to compare these two addends, they are weighted by the
inverse of the probabilities of being in state 1 and state 0, respectively, by
time s. Note that in a Markovian framework, φ(s) can even be interpreted as
the expected change in LOS due to nosocomial infection acquired at time s.

In the following Section 2.3, we will aim at arriving at a summary to
quantify the impact of a nosocomial infection on LOS. In order to do so, we
need to define φ(s) if assumption (2.12) is violated. If P (Xs = 1) = 0, but
P (Xs = 0) > 0, say, there is no group of ‘cases’. As a consequence of that,
we cannot ascribe a change in LOS at time s to nosocomial infection and set
φ(s) := 0 in this situation. We deal with P (Xs = 1) > 0, P (Xs = 0) = 0
and P (Xs = 1) = 0, P (Xs = 0) = 0 likewise and define

φ(s) :=





E (T |Xs = 1) − E (T |Xs = 0) P (Xs = 0) · P (Xs = 1) > 0
if

0 else
(2.15)

Note that, although meaningful, setting φ(s) equal to 0 in the discussed
situation is somewhat arbitrary, since E(T |Xs) is only PXs-a. s. defined.

2.3 Expected change in LOS

2.3.1 A summary quantity

The notion of change in LOS due to nosocomial infection recalls the idea of a
classical two-group comparison: A patient either acquires a nosocomial infec-
tion (‘case’) or remains free of it during his or her stay in hospital (‘control’).
Among patients discharged, we expect a patient to stay longer in hospital,
if he or she acquires a nosocomial infection. Unlike the classical two-group
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comparison, however, every patient starts as a ‘control’. Only as time pro-
gresses do some patients become a ‘case’, i. e. acquire a nosocomial infection,
while others remain a ‘control’, i. e. free of nosocomial infection, until the end
of hospital stay. This temporal aspect of the data has been, e. g., emphasized
by Klein et al. (2001) in the context of bone marrow transplants and the
occurrence of graft-versus-host disease, and by Schulgen et al. (2000) in the
context of nosocomial infection.

In the previous Section 2.2, we compared ‘cases’ and ‘controls’ with re-
spect to some fixed time s. A meaningful weighting of the difference φ(s)
between groups at time s is now given by the distribution of the time until
group membership becomes definite. Group membership becomes definite at
the random time T0, when a patient leaves the initial state 0. The expected
change in LOS associated with an IE is then given as

EPT0 (φ) =∫

{s :P (Xs=0)·P (Xs=1)>0}

EP (T |Xs = 1) − EP (T |Xs = 0) dP T0(s),

(2.16)

where we write EPT0 (φ) for E(φ) etc. in order to make integration unambigu-
ous.

In the following Section 2.3.2, we will discuss alternative weightings of
φ. For the time being, note that EPT0 (φ) can be thought of as an ‘overall
summary’, with every patient of a study cohort contributing to the weighting
of the weighted average (ignoring, for the moment, possibly censored obser-
vations). We will emphasize this weighting scheme. It can be given further
interpretation on the individual level in a Markovian framework: It is ex-
actly the waiting time in the initial state when a patient directly discharged
may ask how many days in hospital he or she has been spared by avoiding
a nosocomial infection. And it is a point in time when an infected patient
may ask how many extra days in hospital he or she has to reckon with, now
that a nosocomial infection has been acquired. The respective mean number
of days is given by φ.

2.3.2 Alternative weightings and discussion

To the expected change in LOS patients who acquire a nosocomial infection
and patients who are discharged or die without a prior nosocomial infection
contribute in the following way:

EPT0 (φ) = P (XT0 = 1) ·E
P

T0|XT0
=1 (φ)+ P (XT0 = 2) ·E

P
T0|XT0

=2 (φ) . (2.17)
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As said at the end of the previous Section 2.3.1, EPT0 (φ) can be under-
stood as an ‘overall’ summary. On the other hand, the quantity E

P
T0|XT0

=1 (φ),
e. g., gives the expected change in LOS due to nosocomial infection given a
nosocomial infection is acquired. It thus assumes the viewpoint of a patient
who becomes infected at some time during his or her hospital stay. Conse-
quently, only patients who acquire a nosocomial infection contribute to the
weighting. Analogously, E

P
T0|XT0

=2 (φ) assumes the viewpoint of a patient
who remains free of nosocomial infection throughout.

Note that the effect a nosocomial infection has on the time of hospital
stay may differ between infected and non-infected patients. That is to say, if
hospital stay is prolonged by k days given an infection is acquired, hospital
stay need not necessarily be reduced by k days given discharge or death
without prior infection. This peculiarity is illustrated in the example in
Section 2.7. It is an immediate consequence of the temporal characteristic
of the data: By the definition of φ(s), we have allowed for an impact of
nosocomial infection that depends on the time by which the infection has
been acquired, or by which the individual is still infection-free, respectively.
Now, on the right-hand side of Equation (2.17), we weight φ(s) according
to the distribution of the onset of nosocomial infection given an infection is
acquired, P T0|XT0

=1, or according to P T0|XT0
=2, the distribution of the time of

hospital stay given no infection is acquired. There is no reason for these two
distributions to be identical; i. e. there is no reason why nosocomial infections
should be acquired in the same way patients are directly discharged (or die).

We will see in Section 2.7 that the respective point estimates differ at
most by about one day for our data example. One may, however, think of
at least two situations where the difference may be more pronounced. First,
consider a very common (hypothetical) nosocomial infection. ‘Controls’ at
time s are potential future ‘cases’ and, in the situation under consideration,
will very likely become ‘cases’. This possibly leads to the somewhat para-
doxical situation that the change in LOS expressed in terms of EPT0 (φ) may
get smaller the more frequent the infection is. This, of course, limits the
interpretation of change in LOS in terms of ‘How many days could be saved
by the hypothetical prevention of the infection?’ This difficulty is not re-
stricted to change in LOS alone, but may arise for other quantities, too. An
example is the innovation gain, cf. Arjas and Eerola (1993), which could here
be used to contrast the probabilities of death given infection or given being
infection-free at time s, say. For an example of the use of the innovation gain
in analysing the effect of an intermediate event cf. Klein and Shu (2002).
The bottom line here is that the effect of an infection is hard to tell if vir-
tually everyone gets infected. However, a let-out may exist in our situation
by explicitly assuming the viewpoint of a definite ‘control’. If the times of
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infection and the times of direct discharges or deaths are rather distinct,
weighting φ(s) by P T0|XT0

=2 might tell us more about the days potentially to
be saved even in the situation of a very common infection.

A second situation where the change in LOS might become ‘paradoxically’
small is this: Consider an infection that arises during two distinct and short
time intervals (due to a very specific hygiene problem, say) and quickly leads
to death. Then φ(s) will often equal zero, because the ‘case’-group is often
empty, and EPT0 (φ) may consequently be close to zero. While this would
reflect the situation of many patients, one would consider the effect of the
infection, once it has occurred, to be a pronounced reduction in LOS. The
latter effect might be analysed weighting φ(s) by P T0|XT0

=1. Note that a
distinctive feature of this situation is that the group of ‘cases’ would be non-
empty only for two short time intervals. This distinguishes the situation
in question from one where an infection that typically arises rather late is
studied, say. In the latter situation one might think of excluding all patients
who left hospital before the first (late) infection arises. However, this is
no solution in the general case as the original situation shows: We cannot
exclude patients who leave hospital before the second time interval with a
non-empty ‘case’-group.

2.3.3 Differences to Schulgen and Schumacher (1996)

In their original paper, Schulgen and Schumacher (1996) suggested to look at
the quantity (2.13), i. e. E (T |Xs = 1)−E (T |Xs = 0), which played the key
role in their ‘approach B’. (However, they did not give the interpretation of
Equation (2.14) as expected change and did not discuss assumption (2.12).)
While we have based our approach on this idea, there are two major differ-
ences: First, Schulgen and Schumacher (1996) used a different multi-state
model. Their exemplary intermediate event of interest was nosocomial pneu-
monia, and they introduced a second intermediate event ‘sepsis’, since the
occurrence of sepsis is often fatal. They treated patients who acquired sepsis
after pneumonia as ‘cases’, but patients who acquired sepsis without a pre-
ceding pneumonia dropped out of the ‘control’-group. Contrary to this, we
have chosen to still treat patients with sepsis (or some other major complica-
tion), but without preceding intermediate event of interest as ‘controls’. We
believe this leads to a more ‘balanced’ analysis, since patients with sepsis after
pneumonia are still compared to patients with only sepsis. Second, Schulgen
and Schumacher (1996) suggested to weight φ by P T0|XT0

=1. (And in a model
studying the effect of pregnancy on time to marriage, Utikal et al. (2003)
considered analogous weighting according to the time to pregnancy. How-
ever, the functional by which Utikal et al. (2003) judge the effect differs from
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φ.) We emphasize weighting according to P T0, since it has (in an uncensored
situation) every patient of a study cohort contribute to the weighting. We
also considered weights according to P T0|XT0

=2 and explained the relationship
between weights according to P T0 on the one hand and weights according to
P T0|XT0

=1 and P T0|XT0
=2 on the other hand in the previous Section 2.3.2.

We will illustrate these differences in a data example in Section 2.7.4.

2.4 A parametric approach: constant transi-

tion intensities

If a parametric form may be assumed for the distribution of Xt, our analysis
may be considerably easier. In particular, we may hope for a lesser variation
of the estimator of the expected change in LOS in the data examples to fol-
low. A natural candidate for a parametric approach is a homogeneous Markov
model assuming constant transition intensities, cf. e. g. Kijima (1997). We
derive formulas for the cumulative incidence function and for change in LOS
in this model; they will be applied to the SIR 3 data in Section 2.7. Inter-
estingly, we will see that cumulative incidence functions may reasonably well
be described by this parametric model, while this need not be the case for
change in LOS.

Assume the process Xt introduced Section 2.1 to be a homogeneous
Markov process with constant transition intensities α01, α02 and α12, i. e. α01(t)
= α01 = const. for all t ≥ 0 etc.. The probability that the process enters
state 1 or state 2, respectively, at the random time T0 can be expressed in
terms of the transition intensities,

P (XT0 = 1) =
α01

α01 + α02

,

P (XT0 = 2) =
α02

α01 + α02
,

and the waiting time distribution in state 0 is given by means of

P (T0 > t) = e−(α01+α02)·t

for all t ≥ 0. Since, in the present set up, the waiting time T0 in state 0 and
the cause XT0 for leaving this state are independent, e. g. Elandt-Johnson
(1976), we have for the cumulative incidence function:

P (T0 ≤ t, XT0 = 1) = P (XT0 = 1) − P (T0 > t, XT0 = 1)

= P (XT0 = 1) − P (T0 > t) · P (XT0 = 1)

=
α01

α01 + α02
·
(
1 − e−(α01+α02)·t

)
. (2.18)
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We can now derive an expression for the expected prolongation of hospital
stay due to nosocomial infection. Introduce

µ0 :=
1

α01 + α02
,

µ1 :=
1

α12
.

µ0 is equal to the expected waiting time in state 0. Given the process enters
state 1, µ1 is equal to the expectation of the respective waiting time in
state 1. Following from this, we have for the change in LOS φ(s) at time s,
cf. Equation (2.13):

φ(s) = E (T |Xs = 1) − E (T |Xs = 0)

= µ1 − [P (XT0 = 1) (µ0 + µ1) + P (XT0 = 2)µ0]

= P (XT0 = 2)µ1 − µ0

=

(
α02

α12
− 1

)
· 1

α01 + α02
(2.19)

=: φ.

Note that the functional φ(·) does not depend on s anymore, since the Markov
process Xt is assumed to be homogeneous. The expected change in LOS is
therefore equal to φ in this model. Equation (2.19) has the intuitive inter-
pretation that hospital stay is prolonged by an infection, if (and only if) the
transition intensity α12 out of the intermediate state 1 is less than the ‘direct
discharge’ intensity α02.

An estimator of P (T0 ≤ t, XT0 = 1) as well as of φ may now be derived by
using the usual maximum likelihood estimator for the transition intensities,
cf. e. g. Hougaard (2000).

2.5 Other quantities of interest

We will make in Chapter 4 the important distinction what the effect on LOS
is for patients discharged and patients deceased. Obviously, while for the
former LOS may be prolonged, an infection may even expedite death for the
latter. In this section we briefly consider other quantities of interest which
will not be further considered in the remainder of this thesis.
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2.5.1 Comparison between avoidable and unavoidable

intermediate events

A major goal of the SIR 3 study was to detect so-called transmission-asso-
ciated nosocomial infections, where the causative organism has been acquired
in hospital, cf. Grundmann et al. (2005). Only these infections are consid-
ered to be truly avoidable (by preventing the nosocomial transmission of the
causative organism); for short, we will call them exogenous nosocomial infec-
tions. In contrast to this, infections where the causative organism is already
carried on admission by the respective patient are called endogenous nosoco-
mial infections. The medical reasoning here is that such a patient is already
that weak due to his or her illness that the infection eventually breaks out.
A healthier patient may also carry such an organism, but may avoid the
infection. One may then be specifically interested in comparing exogenously
infected patients (the new ‘cases’) with endogenously infected patients (the
new ‘controls’). I. e., the question now is: What change in LOS is associated
with exogenous nosocomial infection as compared to endogenous nosocomial
infection?

In order to deal with this question, we have to distinguish the intermediate
event 1 of our old model (Figure 2.1) into two intermediate events 1a and 1b
as depicted in Figure 2.2.

0Uninfected -

1a

endogenous NI

Q
Q

Q
Q

Q
Q
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exogenous NI

�
�

�
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�
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��3Q
Q

Q
Q

Q
Q

QQs

?

2 Discharge/death

Figure 2.2: Potential states and transitions for the occurrence of exogenous
as compared to endogenous nosocomial infection.

Note that we are not interested in modelling acquiring an endogenous
nosocomial infection that follows an exogenous nosocomial infection, since,
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once a exogenous infection has been acquired, the respective patient has
become a ‘case’.

For the present problem, let (Xt)t∈[0,∞) be a (nonhomogeneous, continuous-
time) stochastic process with state-space {0, 1a, 1b, 2}. The time of hospital
stay is now given by

T := inf {t ≥ 0 : X(t) 6∈ {0, 1a, 1b}} .

For fixed time points s, we are interested in the difference

E (T |Xs = 1b) − E (T |Xs = 1a) . (2.20)

It less evident than in Section 2.3 how to weight the quantity of (2.20), since
no patient starts out as a ‘control’. In fact, many patients will neither become
‘control’ or ‘case’ but move directly to the absorbing state 2. A weighting
scheme that immediately transfers from the previous situation is weighting
according to the time until one becomes a ‘case’, i. e. acquires an exogenous
infection. Denote the waiting in the sub-state-space {0, 1a} by T{0,1a},

T{0,1a} := inf {t ≥ 0 : X(t) 6∈ {0, 1a}} .

The role played by dP T0|XT0
=2 in Section 2.3.2 is now played

by dP
T{0,1a}|XT{0,1a}=1b

.

2.5.2 ‘Median change’ in LOS

Motivated by applied work, we have chosen to look at expected (change in)
LOS. Typically, data on LOS will be (positively) skewed, which may raise
concerns whether it is appropriate to look at the expectation. While this is
indeed often overlooked in data analyses (and the data sometimes implicitly
assumed to be Gaussian), one established way to deal with this is looking
at the logarithm of (possibly trimmed) LOS. A recent discussion is given by
Lee et al. (2003). Note that for estimation purposes we will rely on T to
be nonnegative, computing E(T ) as an integral over the survival function of
T . While ln(T ) will not be nonnegative in general, this need not be of any
practical consequence here. Typically, LOS data in studies on complications
will be greater than one. E. g., a usual requirement in studies on nosocomial
infection is that patients have been in hospital for at least 48 hours.

Alternatively, one might want to look at the median rather than the
expectation. Thus, instead of Equation (2.13), one might consider

φ̃(s) := inf {t ≥ 0 : P (T > t |Xs = 1) ≤ 0.5} −
inf {t ≥ 0 : P (T > t |Xs = 0) ≤ 0.5} .
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The discussion on weighting schemes in Section 2.3 now applies analo-
gously (as will the estimation techniques). However, an interpretation as in
Equation (2.14) does not seem to be as obvious.

2.6 Estimation based on the Aalen-Johansen

estimator of the transition matrix.

We will base estimation mainly on the Aalen-Johansen or Product-Limit es-
timator P̂(s, t) of the transition matrix P(s, t) for nonhomogeneous Markov

processes with a finite state-space. The Aalen-Johansen estimator P̂(s, t) is
given as a finite matrix product, one matrix for every observed transition
time in (s, t]. For any such matrix, non-diagonal entries (h, j), h 6= j, are
given as the number of observed transitions from state h to state j, divided
by the number of individuals in state h just prior to the transition time in
question. The diagonal elements are chosen such that the sum of each row
equals 1. Thus, non-diagonal entries are equal to the increments of the re-
spective Nelson-Aalen estimators. If no transitions were observed in (s, t],

P̂(s, t) is estimated by the the unit matrix, as is P̂(s, s). This formulation
of the Aalen-Johansen estimator allows for right-censoring and tied obser-
vations. The Aalen-Johansen estimator and the Nelson-Aalen estimator are
considered in detail by Andersen et al. (1993).

We have seen by the system of equations (2.9) that the process Xt is
fully determined by the pair of waiting times (T0, T ). In fact, we will, in
Chapter3, study φ and E(φ) as functionals of the joint distribution F of
(T0, T ). Therefore, we now firstly write F in terms of the transition matrix P
and secondly write our quantities of interest in terms of F . We then estimate
by plugging in P̂ for P. We also give perhaps more intuitively appealing
representations of φ and E(φ) in terms of the transition probabilities and
transition intensities, respectively, at the end of Section 2.6.2.

2.6.1 Estimating the joint distribution function F of
(T0, T )

Recall that T0 denotes the waiting time in the initial state 0 and T denotes
the waiting time in the sub-state-space {0, 1}. The initial distribution of the
process Xt is degenerated at state 0. It suffices to consider times 0 < s ≤
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t <∞. We have:

F (s, t) = P (T0 ≤ s, T ≤ t)

= P (Xs ∈ {1, 2}, Xt = 2)

= P (Xs = 1, Xt = 2) + P (Xs = 2, Xt = 2)

= P (Xs = 1) · P (Xt = 2 |Xs = 1) + P (Xs = 2)

= P01 (0, s) · P12 (s, t) + P02 (0, s) . (2.21)

Note that we can make (2.21) also work for s > t by setting it to

F (s, t) = P01 (0, s) · P12 (s, t) + P02 (0,min(s, t)) , (2.22)

since then P12 (s, t) = 0. The plug-in estimator of F is now given as

F̂ (s, t) := P̂01 (0, s) · P̂12 (s, t) + P̂02 (0,min(s, t)) . (2.23)

If we have complete data, the estimator F̂ coincides with the usual empir-
ical distribution function. The argument runs completely analogous to the
respective result for the Kaplan-Meier estimator.

Remark 2.1. From a multistate point of view, it is natural to consider the
matrix of transition probabilities, which is why we have based estimation of F
on the Aalen-Johansen estimator, see also Schulgen and Schumacher (1996).
In particular, the single ingredients of Equation 2.23 are meaningful and
interpretable in terms of the multistate model of Figure 2.1. Alternatively,
we could have based estimation of F on one of the available estimators of
bivariate survival, see Chapter 3 and Chapter 5.1 for a detailed discussion.
Here, we note that estimation based on the Aalen-Johansen estimator is not
of the inverse probability of censoring weighted (IPCW) type. A number of
IPCW estimators for the bivariate survival function have been proposed, if
the pair of failure times is subject to only one censoring variable (so-called
univariate censoring): The bivariate survival function is estimated by the
empirical survival function of the observable data divided by an estimator of
one minus the censoring distribution function (Lin and Ying (1993), Tsai and
Crowley (1998), Kosorok (2002), van der Laan et al. (2002)). To see that
our approach is not of this type, note that the bivariate survival function
P (T0 > s, T > t) can be written as

P00(0,max(s, t)) + P00(0, s) · P01(s, t), (2.24)

The estimator of the bivariate survival function based on Equation (2.24)
and the Aalen-Johansen estimator is not an IPCW estimator: This is easily



2.6. ESTIMATION 29

shown by modifying the multistate model such that state 2 becomes ‘dis-
charge/death or censored’. The Aalen-Johansen estimate of the analogue of
Equation (2.24) then equals the empirical survival function of the observable
data; however it does not factor to the IPCW-type. To see this, note that the
risk sets in state 0 and state 1 as well as the state 0 to state 1-transitions re-
main unaffected by modifying the multistate model. Compare the estimates
at some (s, t), such that s is less than the first observed 0 to 1-transition
time and t is equal to the second one. Consider different censoring patterns,
e. g. assume that only a censoring event in state 1 has happend between these
two transition times.

2.6.2 Estimating φ(s) and E(φ)

We will rely on the fact that the expectation of a non-negative random vari-
able may be (through integration by parts) computed as the integral over its
survival function, i. e. one minus its distribution function. This argument
leads, inter alia, to the usual estimator of mean live as the area under the
Kaplan-Meier curve, see e. g. Gill (1983).

Recall that we assume the process Xt to be unequal the absorbing state 2
on the finite time interval [0, τ) only, cf. (2.5). We first consider (see the
definition of φ in (2.15))

P (Xs = 0) = P (T0 > s)

= 1 − F (s, τ) (2.25)

and

P (Xs = 1) = P (T0 ≤ s < T )

= P (T0 ≤ s, T ≤ τ) − P (T0 ≤ s, T ≤ s)

= F (s, τ) − F (s, s). (2.26)

Let us now consider the conditional expectations of T . We have

E (T |Xs = 0) =

∫
1 (Xs = 0) · 1

P (Xs = 0)
· T dP

=

∫
1 (T0 > s) · 1

1 − F (s, τ)
· T dP

=

∫
1 (u > s) · 1

1 − F (s, τ)
· v dF (u, v), (2.27)

where we identify, as usual, integration with respect to the distribution func-
tion with integration with respect to the corresponding probability measure.
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Analogously, we have

E (T |Xs = 1) =

∫
1 (Xs = 1) · 1

P (Xs = 1)
· T dP

=

∫
1 (0 < u ≤ s < v) · 1

F (s, τ) − F (s, s, )
· v dF (u, v).

(2.28)

We may now estimate φ(s) by plugging in F̂ for F . Also, we may esti-
mate integrals over φ: P T0 is a marginal distribution from F , and we have
P T0 |XT0

=1 = P T0 |T0<T and P T0 |XT0
=2 = P T0 |T0=T .

Additionally, we now give representations of φ and E(φ) in terms of the
transition probabilities and transition intensities, respectively. Obviously, we
have P (Xs = 0) = P00(0, s) and P (Xs = 1) = P01(0, s), respectively. The
conditional expectations of T can be written as

E (T |Xs = 1) =

∫ τ

0

P T |Xs=1 ((t, τ ]) dt

= s+

∫ τ

s

P T |Xs=1 ((t, τ ]) dt

= s+

∫ τ

s

P11(s, t) dt,

and

E (T |Xs = 0) = s+

∫ τ

s

P00(s, t) + P01(s, t) dt,

respectively. Considering the (conditional) waiting time distributions in the
initial state 0, we first note that P (T0 ≤ t) = 1 − P00(0, t). Secondly, we
exemplarily consider P T0 |XT0

=1. We rely on a Kolmogorov forward differen-
tial equation describing the relationship between transition probabilities and
transition intensities, cf. Andersen et al. (1993), Chapter II.6, and write for
the cumulative incidence function for state 1:

P (T0 ≤ t, XT0 = 1) =

∫ t

0

P00(0, u−) · α01(u) du. (2.29)

Analogously, we get

P (XT0 = 1) = P (T0 ≤ τ, XT0 = 1)

=

∫ τ

0

P00(0, u−) · α01(u) du.
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2.7 Examples

The data are briefly introduced in Section 1.3. All analyses were done using
the statistical computing language R (R Development Core Team 2004).

We computed bootstrap standard errors based on the bootstrap distribu-
tion of the respective nonparametric estimators, using 2000 bootstrap sam-
ples and the function bootstrap() of the R package bootstrap. We will
report these results as ± standard error (SE) in this section. Later, in Chap-
ter 3, we will show that ‘the bootstrap works’ for our quantities of interest
and that confidence intervals can be constructed by Gaussian approximation.

2.7.1 Analysis of the SIR 3 data

Before estimating change in LOS, we analysed nosocomial pneumonia as
a time-dependent covariate in a proportional hazards model. While this
approach does not directly lead to an estimate of change in LOS, it can
be used for a first evaluation whether there is an effect on the combined
intensity of dying or being discharged, i. e. on the time spent in hospital
at all. The effect of nosocomial pneumonia as a time dependent covariate
in a proportional hazards model was significant (Wald test: p < 0.0001).
Nosocomial pneumonia significantly reduced the hazard of (the combined end

point of) death or discharge (ĤR = 0.65; 95%-CI=[0.54, 0.77]), i. e. prolonged
ICU stay. This analysis may be refined, distinguishing between competing
endpoints discharge and death, cf., e. g., Therneau and Grambsch (2000),
and we will do so in Chapter 4.4.

Estimates of φ(s) are illustrated in Figure 2.3. They are weighted by the
respective distributions illustrated in Figure 2.4. Time points with an empty
‘case’-group were 1, 2 and 184; there were no time points with an empty
‘control’-group. The noticeable low value at 6.5 days for the distributions
depicted in Figure 2.4 results from a patient who both acquired pneumonia
and died on the seventh day after admission to hospital; we treated this
case of pneumonia as having occurred after 6.5 days. We estimated the
expected change in LOS, i. e.

∫
φ(s) dP T0(s), due to nosocomial pneumonia

as 4.9 (±2.9) days. The expected change in LOS
∫
φ(s) dP T0|XT0

=1 due to
nosocomial pneumonia given the infection was acquired at some time during
hospital stay was estimated as 6.2 (±2.6) days. The expected change in LOS∫
φ(s) dP T0|XT0

=2 due to nosocomial pneumonia given the infection was not
acquired was estimated as 4.8 (±3.0) days.
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Figure 2.3: Estimated expected change in LOS due to nosocomial pneumonia
at time s: The solid curve indicates the estimated expected time of hospital
stay, given nosocomial pneumonia has been acquired by time s. The broken
curve indicates the respective time, given still being free of nosocomial pneu-
monia by time s. The estimates of the expected change φ(s) at time s equal
the vertical difference between the two curves. Note that the solid curve
starts on day 3, the first day with a non-empty ‘case’-group.

2.7.2 Comparison with ad hoc approaches

The different concepts of change in LOS due to an intermediate event in-
troduced in Section 2.3 adequately account for the timing of events. They
thus avoid the pitfalls of retrospective stratification used in ad hoc analy-
ses that, in the majority of cases, will overestimate the effect, cf. Schulgen
et al. (2000). In the following, we contrast the approach based on multi-state
models with two-group comparison and confounder and time matching.

Admissions who did not acquire nosocomial pneumonia stayed on ICU
for a mean duration time of 13.3 (±0.6) days. Admissions who acquired
nosocomial pneumonia stayed on average for 35.1 (±3.6) days. The extra
time spent on ICU attributable to nosocomial pneumonia would consequently
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Figure 2.4: Estimated densities of the (conditional) distributions of the wait-
ing time T0 in the initial state 0.

have been overestimated by a simple two-group comparison as an extra time
of 21.8 (±3.5) days.

In order to lessen overestimation, a matched two-group comparison is
often considered. We exemplarily matched for age, sex and time to manifes-
tation of nosocomial pneumonia for the cases. Matching for time to mani-
festation implied that admissible controls were still on ICU when infection
was diagnosed for the case; Schulgen et al. (2000) argue the latter to be the
single most important matching factor. We allowed for a maximum of five
controls per case, using a SAS macro courtesy of Bergstrahl et al. of the
Mayo Medical Center, cf. (Bergstrahl, Kosanke, and Jacobsen 1996). Match-
ing yielded an estimate of 15.8 (±3.6) days of prolongation of hospital stay
due to nosocomial pneumonia. Note that matching cannot capture the effect
an early nosocomial pneumonia has on LOS as compared to a late occurrence
of nosocomial pneumonia.



34 CHAPTER 2. CHANGE IN LOS

2.7.3 Constant transition intensities

We have seen in Section 2.4 that a model assuming constant transition
intensities can facilitate the analysis considerably. In fact, such a model
seems to offer a reasonable fit judged by the cumulative incidence function
t 7→ P (T0 ≤ t, XT0 = 1): Figure 2.5 contrasts the parametric with the
nonparametric estimates. The parametric estimate has been derived from
Equation (2.18), the nonparametric estimate from Equation (2.29).
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Figure 2.5: Nonparametric and parametric estimates of the cumulative inci-
dence function for nosocomial pneumonia.

Table 2.1 lists both the nonparametric and the parametric estimates of
the change in LOS due to nosocomial pneumonia, but also due to nosocomial
infection in general and due to the most frequent type of nosocomial infection,
urinary tract infection.

Looking at nosocomial pneumonia, the reason for the substantial differ-
ence between the nonparametric and the parametric estimate can be seen to
be twofold.

In the model assuming constant transition intensities, the extra time
spent in hospital due to nosocomial infection does not depend anymore on
the time by which the nosocomial infection has been acquired, cf. Equa-
tion (2.19). Speaking in terms of the expected time of hospitalization, this im-
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Estimate
Nonparametric Parametric

First acquired
nosocomial infection 5.2 16.1

Nosocomial pneumonia 6.1 19.7
Nosocomial urinary

tract infection -0.2 18.6

Table 2.1: Selected nonparametric and parametric estimates of change in
LOS due to nosocomial infection.

plies that nosocomial pneumonia prolongs hospital stay by the same amount
φ on any day s in hospital compared to still being free of nosocomial pneumo-
nia on that day. As a consequence of that, lines illustrating the conditional
expected duration of ICU stay given the state of an admission would run
parallel, their vertical distance being φ. However, contradictory to the ho-
mogeneous Markov model, the lines illustrating the nonparametric estimates
in Figure 2.3 cross.

Closely related to the assumed constant effect of nosocomial pneumo-
nia in the parametric model is another point why we observe a substantial
difference between the nonparametric and the parametric estimate of the ex-
tra time spent in hospital. The nonparametric estimate usually emphasizes
early differences in the conditional expected times of hospitalization, cf. Fig-
ure 2.4. Unlike the parametric estimate, the nonparametric estimate weights
these differences according to the empirical waiting time distribution in the
initial state. More than 60% of the mass of the empirical distribution lie
within the first 10 days, nearly 90% of the mass lie within the first 20 days.
Judged by Figure 2.5, though, the fit of the parametric model is not best for
early, but for late times of hospitalization.

Following from this, we get the impression that the assumption of an
underlying homogeneous Markov process with constant transition intensities
describes the cumulative incidence as depicted in Figure 2.5 fairly well overall.
However, it does not appear to be an adequate model for the specific issue in
question. As a consequence of that, a more complex parametric model would
have to be considered in order to estimate the extra time spent in hospital
due to nosocomial infection. Yet, it seemed difficult to find a parametric
model suitable for the analysis of all types of nosocomial infection, which
was the aim of the original analysis.
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2.7.4 Reanalysis of the data originally considered by

Schulgen and Schumacher (1996)

We estimated the expected change in LOS, i. e.
∫
φ(s) dP T0(s), due to noso-

comial pneumonia as 2.0 (±1.2) days. The expected change in LOS∫
φ(s) dP T0|XT0

=1 due to nosocomial pneumonia given the infection was ac-
quired at some time during hospital stay was estimated as 2.1 (±1.2) days.
The expected change in LOS

∫
φ(s) dP T0|XT0

=2 due to nosocomial pneumonia
given the infection was not acquired was estimated as 2.0 (±1.1) days. The
first day with a non-empty ‘case’-group was day 3. Only one further day
with an empty ‘case’-group was observed (day 78); there was no day with an
empty ‘control’-group.
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Figure 2.6: Estimated expected change in LOS due to nosocomial pneumonia
at time s for the data originally used by Schulgen and Schumacher (1996).
The limits of the x- and y-axis are chosen as in Schulgen and Schumacher
(1996), Figure 4. We have drawn both curves starting with day 3, the first
day with a non-empty ‘case’-group.

Estimates of φ(s) are illustrated in Figure 2.6. They are weighted by the
respective distributions illustrated in Figure 2.7.

For their version of φ, weighted by dP T0|XT0
=1, Schulgen and Schumacher
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Figure 2.7: Estimated densities of the (conditional) distributions of the wait-
ing time T0 in the initial state 0 for the data originally used by Schulgen and
Schumacher (1996).

(1996) reported an estimate of 3.4. Since there are very few days with one
of the groups of ‘cases’ or ‘controls’ being empty, and since our different
weighted summaries of φ do not differ substantially, the main reason for
the difference between our result and the one of Schulgen and Schumacher
(1996) is seen to lie in the use of different multi-state models. In fact, the
residual hospital stay increases within the ‘control’-group, if patients with
nosocomial sepsis, but no preceding nosocomial pneumonia are still counted
as ‘controls’. This supports our belief that the 3-state model leads to a more
balanced analysis, cf. Section 2.3.3.
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Chapter 3

Large sample properties for
change in length of stay
associated with an intermediate
event

In this chapter, we consider s 7→ φ(s) and the different summaries E · (φ) as

functionals of P (T0,T ). Given an estimator P̂ (T0,T ) of the joint distribution of
(T0, T ), we want to study the asymptotic expansion of the plug-in estimators.

If we know weak convergence of
√
n
(
P̂ (T0,T ) − P (T0,T )

)
as the sample size

increases, we may deduce weak convergence of our functionals by means of
the delta method. In order to make the delta method work, we need to show
that our functionals can be approximated at P (T0,T ) by a linear functional;
this is done by showing Hadamard-differentiability. This will also give us
asymptotic correctness of the bootstrap.

We will consider convergence of P̂ (T0,T ) in the (to be defined) space
D ([0, τ ]2) of bivariate cadlag (continu à droite, limité à gauche) functions
on [0, τ ]2, endowed with the supremum norm and the Borel σ-field, which
is generated by all open sets. However, a function x 7→ supf |f(x)|, the
supremum taken over a class of measurable, real-valued functions f , need
not itself be measurable (e. g. Billingsley (1968), Chapter 3.18). As a con-
sequence, a new weak convergence theory has been established that only
requires asymptotic measurability. We will use this theory as presented in
the book by van der Vaart and Wellner (1996), which we also use as our
main reference on Hadamard-differentiability and the delta method. We
shall, however, not be further concerned with the technicalities and simply

write
D→ for weak convergence: Our functionals will take values in the space

39
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D ([0, τ ]) of univariate cadlag functions on [0, τ ] (or even in the space R of
real numbers), and our limiting processes will have continuous sample paths,
i. e. are elements of C ([0, τ ]), the subset of continuous functions in D ([0, τ ]).
In this case, weak convergence in the ‘old’ sense of the Skohorod metric (e. g.,
Billingsley (1968)) and in the ‘new’ sense of the supremum norm coincide,
see, e. g., the discussion of Præstgaard of Gill (1989). Note that Gill (1989)
tackles the issue of measurability of suprema by looking at the ball σ-field
on D ([0, τ ]), generated by all open balls. The ball σ-field is smaller than the
Borel σ-field, and they coincide on separable spaces. D ([0, τ ]) endowed with
the supremum norm is not separable, but C ([0, τ ]) is. Van der Vaart and
Wellner (1996), Chapter 1.7, show that the weak convergence theory for ball
measurable maps is a special case of the more general theory discussed in
their book, see also the discussion of Wellner of Gill (1989) and Gill’s reply.
We will leave these issues aside from now on.

This chapter is organized as follows: In Section 3.1, we briefly comment on
the use of the bivariate time scale (T0, T ). This needs some explanation, since,
in general, bivariate survival analysis is much more difficult than univariate
survival analysis. We will see, however, that our situation is essentially easier
than bivariate survival analysis in general, as (T0, T ) derives from a multi-
state model. We then study the uncensored situation in Section 3.2. We do so
for several reasons: Of course, our motivating data example being on length
of hospital stay, counted in days, such a situation is practically feasible and
therefore relevant. More important for our presentation, our large sample
result will hold for

∫ r
q
φ dP T0 , with 0 < q < r < τ such that Xt fullfills some

boundness assumptions on [q, r]. We will see that these assumptions are
fullfilled, if P (Xs = 0) ·P (Xs = 1) > c > 0 for all s ∈ [q, r]. For applications,
such a result suffices. In this respect, it is comparable to early results on
restricted mean survival (e. g. Fleming (1978)); however, the reason for the
restriction to [q, r] in our case stems from the multi-state model, not from
some outward censoring mechanism. To clarify this issue, we have chosen to
present the uncensored case first. It also simplifies the presentation a bit and
allows us to defer assuming the process Xt to be Markovian to Section 3.3.
(See, however, Remark 3.16 for relaxing the Markov assumption even in the
censored case.) Section 3.5 concludes this chapter with a discussion.

3.1 Bivariate time scale (T0, T )

The reason for using a bivariate time scale is essentially this: We are looking
at a series of differences E (T |Xs = 1) − E (T |Xs = 0). For some fixed s,
the difference depends on the later time of discharge (or death), which gives
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us one time dimension. A second one comes into play by letting s vary,
i. e. by looking at the series of differences. In Chapter 2.1, we have seen by
the system of equations (2.9) that our multi-state model may equivalently be
described by the stochastic process (Xt)t∈[0,τ ] or by the pair of waiting times
(T0, T ). So far, we have used the waiting time T to determine, of course,
length of stay, and the waiting time T0 to determine time until group mem-
bership (‘case’/‘control’) becomes definite and to thus motivate meaningfully
weighted summaries. Finding expressions suitable for plug-in estimation in
Section 2.6.2, we have given such expressions both in terms of transition
probabilities and transition intensities and in terms of the joint distribution
of (T0, T ). In the following two sections 3.2 and 3.3, we will find that the
asymptotic expansion of our estimators follows rather straightforwardly from
the respective knowledge on estimators of the joint distribution of (T0, T ).
In addition, we will argue in Section 5.1 that the question of the impact of
an intermediate on a terminal event can be formulated unambiguously and
straightforwardly in the setting of the random time interval [T0, T ]. Here,
[T0, T ] essentially denotes the time span spent in the intermediate state. (See
also page 17.)

The bivariate situation is illustrated in Figure 3.1 for two patients l and
m: Let (T

(i)
0 , T (i)), i = 1, . . . , n denote n i. i. d. replicates of (T0, T ). Patient l

has T
(l)
0 < T (l); (s)he reaches the intermediate state by time T

(l)
0 and leaves

hospital by time T (l). Contrary to patient l, patient m does not pass through
the intermediate state, but leaves hospital directly at time T

(m)
0 = T (m). The

distribution of (T0, T ) has mass only on the upper rectangle {(s, t) ∈ (0, τ ]2 :
s ≤ t}, with positive mass on the diagonal {(s, t) ∈ (0, τ ]2 : s = t}. Recall
that τ has been defined in Equation (2.5) as the supremum over all times
with positive probability of being in one of the transient states 0 or 1, and
that we assume τ to be finite.

Using the bivariate time scale (T0, T ) comes with a certain price: Perhaps
most palpable, we lose our usual concept of future and past. This is illus-
trated for patient l in Figure 3.1: Two dashed lines run through the bivariate
time point (T

(l)
0 , T (l)), marking four time regions. The upper right rectangle

clearly is future, and the lower left rectangle clearly is past, but this concept
gets blurred looking at the remaining two rectangles. Looking at the upper
left rectangle (all bivariate times (s, t) such that s < T

(l)
0 and t > T (l)), these

time points are ‘past’ with respect to the waiting time in the initial state, but
‘future’ with respect to the waiting time until reaching the absorbing state.
Gill (1992a) argues that the upper left and lower right rectangles are rather
‘past’ and further explains the connected problems of multivariate survival
analysis. One problem that follows is that there are now many pathes in
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Figure 3.1: Pair of waiting times for two exemplary patients l and m. The
waiting time in the initial state is plotted on the x-axis, length of stay is
plotted on the y-axis. Patient l passes through the intermediate state, while
patient m does not. The distribution of (T0, T ) has mass only on the dotted
area.
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bivariate time to move from one time point to another one, and, as one con-
sequence, in general martingale methods don’t work anymore. Fortunately,
our case is much easier, since the pair of waiting times (T0, T ) derives from
the multi-state model. In particular, we have only one outward censoring
mechanism. The multi-state model also implies that we may think of (T0, T )
as the random time interval [T0, T ], its length being equal to the time spent
in the intermediate state. We will get back to this notion in Section 3.3,
studying weak convergence of the estimator F̂ from Equation (2.23), where
we will use results from Gill and Johansen (1990) on differentiability of the
product integral, taking interval functions as an argument. (An interval
function is a bivariate function only taking arguments where the first entry
of its argument is less than or equal to the second entry.)

3.2 Uncensored situation

We first define the space of bivariate cadlag functions on [0, τ ]2, following
Neuhaus (1971) (see also Ren and Sen (1995) for a more recent reference),
and then restate the usual weak convergence result for bivariate empirical
distribution functions. We write f(s+, t) for limsn→s,sn>s f(sn, t) etc..

Definition 3.1 (Bivariate cadlag function space). Let D ([0, τ ]2) be
the vector space of bivariate functions f : [0, τ ]2 → R for which all limits
f(s−, t−), f(s−, t+), f(s+, t−) and f(s+, t+) exist and which are ‘contin-
uous from above’:

f(s+, t+) = f(s, t).

We call D ([0, τ ]2) the space of bivariate cadlag functions on [0, τ ]2.

Remark 3.2. Note that we have defined D ([0, τ ]2) for τ as defined in Equa-
tion (2.5). For the definition of a bivariate cadlag function space in general
there is nothing special about τ , however, and it may be replaced by some
other positive real number.

Also note that the limits which are assumed to exist in the previous
definition correspond to the four time regions illustrated in Figure 3.1 for the
bivariate time point (T

(l)
0 , T (l)). Neuhaus (1971) calls these limits ‘quadrant

limits’.

By Neuhaus (1971), Corollary 1.6, every bivariate cadlag function on
([0, τ ]2) is bounded. We consider D ([0, τ ]2) as a subspace of the space
l∞ ([0, τ ]2) of all bounded functions on [0, τ ]2: Let

||f || := ||f ||[0,τ ]2 := sup
[0,τ ]2

|f(s, t)| (3.1)
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be the supremum norm for bivariate real-valued functions f on [0, τ ]2, and
let

l∞
(
[0, τ ]2

)
:= {f : [0, τ ]2 → R : ||f || <∞}. (3.2)

We can now consider D ([0, τ ]2) and l∞ ([0, τ ]2) as metric spaces, equipped
with the metric induced by the supremum norm. The respective Borel σ-fields
are the smallest σ-fields containing the open sets. We may now restate the
usual weak convergence result for bivariate empirical distribution functions:
As before, let (T

(i)
0 , T (i)), i = 1, . . . , n denote n i. i. d. replicates of (T0, T ).

In (2.11), we have defined the bivariate distribution function F of (T0, T ),

which we have estimated by an plug-in estimator F̂ in (2.23) derived from
the Aalen-Johansen estimator. For complete observations we have

F̂ (s, t) =
∣∣∣
{
i ∈ {1, . . . , n} : T

(i)
0 ≤ s and T (i) ≤ t

}∣∣∣ /n, (3.3)

i. e. the proportion of observations in the lower left rectangle defined by the
upper right time point (s, t), (s, t) ∈ (0, τ ]2. We consider F̂ as a stochastic
process with index set [0, τ ]2. For notational ease we have suppressed the

dependence of F̂ on the sample size n. We now have the following theorem:

Theorem 3.3 (CLT for bivariate edf’s). For F̂ as in (3.3) and F as
in (2.11) we have √

n
(
F̂ − F

)
D→ G as n→ ∞, (3.4)

where G is a mean zero Gaussian process, also with index set [0, τ ]2, and
covariance function

Cov (G(s, t), G(u, v)) = F (min(s, u),min(t, v)) − F (s, t) · F (u, v). (3.5)

For a proof of the preceding theorem, see for instance Wellner (1992),
p. 252. The theorem follows from more general results in van der Vaart
and Wellner (1996), see also van der Vaart (1998), Chapter 19. The gen-
eral theory is developed for much larger index sets than [0, τ ]2, but for our
purposes the ‘usual’ index set [0, τ ]2 suffices. The limit process G is called a
F -Brownian bridge process.

3.2.1 Hadamard-differentiability and weak convergence

for expected change in LOS given status at time s

Introduce for r ∈ (0, τ), s ∈ [0, τ ] and functions G ∈ D ([0, τ ]2)

ι(G, s, r) = 1(s < r) · 1 (1 −G(s, τ) > 0) · 1 (G(s, τ) −G(s, s) > 0) . (3.6)
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Note that

ι(F, s, r) ·
(
E (T |Xs = 1) − E (T |Xs = 0)

)
= φ(s),

if s < r, cf. Equation (2.15) and Equations (2.25) and (2.26). We first show
Hadamard-differentiability of the functional corresponding to E (T |Xs = 0),
but restricted to a certain time interval [0, r) $ [0, τ ].

Lemma 3.4. Let r ∈ (0, τ) be fixed, such that ι(F, s, r)/(1 − F (s, τ)) is
bounded away from infinity, i. e. ι(F, s, r)/(1−F (s, τ)) < b(r), 0 < b(r) <∞
for all s < r (with 0/0 := 0). Then the mapping ψ0 : {G ∈ D ([0, τ ]2) :
G is a bivariate distribution function.} → D ([0, τ ]), G 7→ ψ0(G) with

ψ0(G)(s) :=

∫
ι(G, s, r) · 1(s < u) · v

1 −G(s, τ)
dG(u, v)

is Hadamard-differentiable in F with derivative ψ ′
0,F : D ([0, τ ]2) → D ([0, τ ]),

G 7→ ψ′
0,F (G) with

ψ′
0,F (G)(s) :=

∫
ι(F, s, r) · 1(s < u) · v

1 − F (s, τ)
dG(u, v)

+

∫
ι(F, s, r) · 1(s < u) · v ·G(s, τ)

(1 − F (s, τ))2
dF (u, v),

where the first integral on the right hand side in the last display is defined
via integration by parts, if G is not of bounded variation.

Remark 3.5. Note that ψ0 evaluated at F gives the mapping s 7→ 1(s <
r) · 1(P (Xs = 0) > 0) · 1(P (Xs = 1) > 0) · E (T |Xs = 0).

For a bivariate version of the integration by parts-formula, which we use to
define integrals with respect to some G ∈ D([0, τ ]2) of unbounded variation,
see van der Laan (1995), Lemma 6.1.

Proof of Lemma 3.4. Define Ft := F + t · Gt with t → 0 and Gt → G, such
that Ft is in the domain of ψ0. We have to show

1

t
(ψ0(Ft) − ψ0(F )) → ψ′

0,F (G)
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in D([0, τ ]) endowed with the supremum norm. For s ∈ [0, τ ] consider

1

t
(ψ0(Ft) − ψ0(F )) (s)

=
1

t

(∫
ι(Ft, s, r) · 1(s < u) · v

1 − Ft(s, τ)
d(F + t ·Gt)(u, v)

−
∫

ι(F, s, r) · 1(s < u) · v
1 − F (s, τ)

dF (u, v)

)

=

∫
ι(Ft, s, r) · 1(s < u) · v

1 − Ft(s, τ)
dGt(u, v)

+
1

t

(∫
1(s < u) · v ·

(
ι(Ft, s, r)

1 − Ft(s, τ)
− ι(F, s, r)

1 − F (s, τ)

)
dF (u, v)

)

(3.7)

We first consider the first addend on the right hand side of (3.7). For every
ε > 0 there is tε such that Gt is only ε away from G for all t with |t| < |tε|
and with respect to the uniform metric. Thus, we get as an upper bound:

∫
ι(Ft, s, r) · 1(s < u) · v

1 − Ft(s, τ)
dG(u, v) + 2ε sup

(u,v)∈[0,τ ]2

(
ι(Ft, s, r) · 1(s < u) · v

1 − Ft(s, τ)

)

The supremum in the latter display will eventually be bounded for |t| small
enough. As a consequence, the second addend can be made arbitrarily small
by choice of ε. Now substract from the first addend in the latter display the
supposed limit and consider

sup
s∈[0,τ ]

∣∣∣∣
∫ (

ι(Ft, s, r)

1 − Ft(s, τ)
− ι(F, s, r)

1 − F (s, τ)

)
· 1(s < u) · v dG(u, v)

∣∣∣∣

≤ sup
s∈[0,τ ]

∣∣∣∣
ι(Ft, s, r)

1 − Ft(s, τ)
− ι(F, s, r)

1 − F (s, τ)

∣∣∣∣ · sup
s∈[0,τ ]

∣∣∣∣
∫

1(s < u) · v dG(u, v)

∣∣∣∣

The integral on the right hand side of the latter display is bounded via the
integration by parts formula. (Note that G itself is uniformly bounded and
the limits of integration are finite.) The first supremum on the right hand
side of the latter display converges to 0 by construction of Ft. An lower
bound of the first addend on the right hand side of (3.7) may be treated
analogously.

For the second addend on the right hand side of (3.7), it suffices to con-
sider ∣∣∣∣

1

t

(
ι(Ft, s, r)

1 − Ft(s, τ)
− ι(F, s, r)

1 − F (s, τ)

)
− ι(F, s, r) ·G(s, τ)

(1 − F (s, τ))2

∣∣∣∣ ,
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which does not depend on the integration variables u and v. The latter
display is equal to
∣∣∣∣
1

t
· ι(Ft, s, r) · (1 − F (s, τ)) − ι(F, s, r) · (1 − F (s, τ)) + ι(F, s, r) · t ·Gt

(1 − Ft(s, τ)) · (1 − F (s, τ))

− ι(F, s, r) ·G(s, τ)

(1 − F (s, τ))2

∣∣∣∣ ,

which uniformly in s converges to 0.
Note that the proof shows that ψ′

0,F as stated in the lemma is continuous.

In the same manner one shows an analogous result for E (T |Xs = 1),
but now restricted to a certain time interval (q, r) $ (0, τ). The reason for
the new restriction on left side of the time interval stems from the fact that
the initial distribution of the process Xt is degenerated in state 0. As a
consequence, we have to wait until the intermediate state is occupied with
positive probability. Introduce for q, r ∈ (0, τ), q < r, s ∈ [0, τ ] and functions
G ∈ D ([0, τ ]2)

ι̃(G, s, q, r) = 1(q < s < r) · 1 (1 −G(s, τ) > 0) · 1 (G(s, τ) −G(s, s) > 0) .
(3.8)

We have the following lemma:

Lemma 3.6. Let q < r ∈ (0, τ) be fixed, such that ι̃(F, s, q, r)/(F (s, τ) −
F (s, s)) is bounded away from infinity, i. e. ι̃(F, s, q, r)/(F (s, τ)−F (s, s)) <
b(q, r), 0 < b(q, r) < ∞ for all s ∈ (q, r) (with 0/0 := 0). Then the mapping
ψ1 : {G ∈ D ([0, τ ]2) : G is a bivariate distribution function.} → D ([0, τ ]),
G 7→ ψ1(G) with

ψ1(G)(s) :=

∫
ι̃(G, s, q, r) · 1(0 < u ≤ s < v) · v

G(s, τ) −G(s, s)
dG(u, v)

is Hadamard-differentiable in F with derivative ψ ′
0,F : D ([0, τ ]2) → D ([0, τ ]),

G 7→ ψ′
1,F (G) with

ψ′
1,F (G)(s) :=

∫
ι̃(F, s, q, r) · 1(0 < u ≤ s < v) · v

F (s, τ) − F (s, s)
dG(u, v)

+

∫
ι̃(F, s, q, r) · 1(0 < u ≤ s < v) · v · (G(s, s) −G(s, τ))

(F (s, τ) − F (s, s))2
dF (u, v),

where the first integral on the right hand side in the last display is defined
via integration by parts, if G is not of bounded variation.
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We now get Hadamard-differentiability of the functional corresponding
to s 7→ φ(s) on a true subinterval of (0, τ).

Lemma 3.7. Let q < r ∈ (0, τ) be fixed, such that the boundness as-
sumptions of Lemma 3.4 and of Lemma 3.6 are fullfilled. Then ψ : {G ∈
D ([0, τ ]2) : G is a bivariate distribution function.} → D ([0, τ ]), ψ(G)(s) :=
ψ1(G)(s) − ψ0(G)(s) · ι̃(G, s, q, r)/ι(G, s, r), is Hadamard-differentiable in
F with derivative ψ′

F : D ([0, τ ]2) → D ([0, τ ]), ψ′
F (G)(s) := ψ′

1,F (G)(s) −
ψ′

0,F (G)(s) · ι̃(G, s, q, r)/ι(G, s, r). (With 0/0 := 0.)

Proof of Lemma 3.7. The lemma follows immediately from Lemma 3.4 and
Lemma 3.6 together with, e. g., Flett (1980), Theorem 4.2.3. Note that
replacing ι by ι̃ in Lemma 3.4 is of no consequence.

Weak convergence of our estimator of expected change in LOS given sta-
tus at time s, restricted to a proper subinterval of (0, τ) and properly stan-
dardized, towards a Gaussian limit now follows:

Theorem 3.8. Let q < r ∈ (0, τ) be fixed, such that the boundness as-

sumptions of Lemma 3.4 and of Lemma 3.6 are fullfilled. Let F̂ denote the
bivariate empirical distribution function as in (3.3) and let G denote the
Gaussian limit process of Theorem 3.3. Then

√
n
(
ψ(F̂ ) − ψ(F )

)
D→ ψ′

F (G) as n→ ∞

on D([0, τ ]). Moreover,

√
n
(
ψ(F̂ ) − ψ(F )

)
and ψ′

F

(√
n(F̂ − F )

)

are asymptotically equivalent. The limit variable ψ ′
F (G) is a mean zero Gaus-

sian process.

Proof of Theorem 3.8. The first assertion follows from Hadamard-differen-
tiability of ψ at F , i. e. Lemma 3.7 and the delta method, e. g. van der Vaart
and Wellner (1996), Theorem 3.9.4. The second assertion also follows from
the delta method and the fact that the derivative ψ′

F is defined on the whole
of D([0, τ ]2), rather than just on the subset of all bivariate distribution func-
tions. Finally, the assertion that the limit is Gaussian follows from van der
Vaart and Wellner (1996), Chapter 3.9.2.

Remark 3.9. In the situation of Theorem 3.8, we also get asymptotic cor-
rectness of the bootstrap process. A precise statement of this assertion can
be found in van der Vaart and Wellner (1996), Chapter 3.9.3, see also Gill
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(1989). We rely on this, computing bootstrap standard errors in our data
examples.

Note that the boundness assumptions of Lemma 3.4 and of Lemma 3.6 are
fullfilled if we assume both P (Xs = 0) and P (Xs = 1) to be greater than some
constant c > 0 on a proper subset of (0, τ). This is a reasonable assumption
for our motivating data example. In fact, s 7→ P (Xs = 0) is decreasing with
P (X0 = 0) = 1. Recall that τ := sup{t : P (Xt 6= 2) > 0}, see (2.5). It also
reasonable to assume that P (Xs = 0) > 0 for s ∈ (0, τ), i. e. a patient does
not inescapably acquire a nosocomial infection, even if (s)he stays in hospital
very long. Moreover, Figures 2.4 and 2.7 loosely suggest that we may assume
s 7→ P (Xs = 1) to be first increasing and then decreasing. We will get back
to this issue in Section 3.4 when looking at the data.

3.2.2 Hadamard-differentiability and weak convergence

for expected change in LOS

In this section, we aim at showing Hadamard-differentiability for functionals
corresponding to weighted summaries of φ. We first consider weighting ac-
cording to dP T0. More precisely, we want to show Hadamard-differentiability
at ψ(F ) for a functional corresponding to

∫
1(q < s < r)φ(s) dP T0(s) with

q and r as in Lemma 3.7. The composition of such a functional and ψ will
also be Hadamard-differentiable according to the chain rule for Hadamard-
differentiability, e. g. van der Vaart and Wellner (1996), Lemma 3.9.3. For
such a result, we need not only know ψ(F ), but we also have to remember
F . The following lemma is useful:

Lemma 3.10. Let ψ be as in Lemma 3.7 and define ψ̃ : {G ∈ D ([0, τ ]2) :
G is a bivariate distribution function.} → D ([0, τ ]) ×D ([0, τ ]),

G 7→ ψ̃(G) := (ψ(G), G) ,

where D ([0, τ ]) ×D ([0, τ ]) is endowed with the maximum supremum norm,
i. e.:

For (x, y) ∈ D ([0, τ ]) ×D ([0, τ ]) : ||(x, y)|| := max {||x||, ||y||} .

Then ψ̃ is Hadamard-differentiable at F under the assumptions of Lemma 3.7
with derivative ψ̃′

F : D ([0, τ ]2) → D ([0, τ ])×D ([0, τ ]), ψ̃′
F (G) := (ψ′

F (G), G).

Proof of Lemma 3.10. Follows from the definition of Hadamard-differentiabi-
lity and Lemma 3.7.

Moreover, we have
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Lemma 3.11. Define for fixed c > 0 the mapping ϕ : D([0, τ ]) × {G ∈
D ([0, τ ]2) : G is a bivariate distribution function, its total variation bound-
ed by c.} → R,

(f,G) 7→ ϕ(f,G) :=

∫
f(x)1 (y ∈ [0, τ ]) dG(x, y).

Then ϕ is Hadamard-differentiable at each (f,G) in the domain of ϕ with f
of bounded variation. The derivative ϕ′

(f,G) : D([0, τ ]) × D([0, τ ]2) → R is
given as

ϕ′
(f,G)(a, b) :=

∫
f(x)1 (y ∈ [0, τ ]) db(x, y) +

∫
a dG,

where the first integral on the right hand side of the latter display is defined
via integration by parts, if b is not of bounded variation.

Proof of Lemma 3.11. The proof runs completely analogous to the proving
the ‘usual’ result on integration for functionals on D([0, τ ])×{G ∈ D([0, τ ]) :
total variation of G bounded by some constant c}, e. g. van der Vaart and
Wellner (1996), Lemma 3.9.17. It is of no consequence that G is a bivariate
distribution function, since integration is only carried out with respect to the
marginal distribution corresponding to the first argument ofG. (1 (y ∈ [0, τ ])
is constantly equal to 1.)

Remark 3.12. Note that, for some suitable constant c, we have:

ϕ
(
ψ̃(F )

)
=

∫
ψ(F )(s) · 1 (t ∈ [0, τ ]) dF (s, t)

=

∫
1(q < s < r) · φ(s) dP T0(s),

which is the expected change in LOS associated with an IE as defined in (2.16),
but restricted to some time interval (q, r) $ (0, τ). In Section 3.4, we will
discuss for our data example that we may assume q and r to be close to left
and right limit, respectively, of the support of the distribution of T0S.

Weak convergence of our estimator of expected change in LOS (as weighted
by the waiting time distribution in the initial state), restricted to a proper
subinterval of (0, τ) and properly standardized, towards a Gaussian limit
now follows. Also, the remark made on the correctness of the bootstrap in
Remark 3.9 still holds.
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Theorem 3.13. Let q < r ∈ (0, τ) be fixed, such that the boundness assump-

tions of Lemma 3.4 and of Lemma 3.6 are fullfilled. Denote by φ̂ and by

P̂ T0 the empirical counterparts of φ and P T0, respectively, which are derived
as plug-in estimators from the bivariate empirical distribution function F̂
of (3.3). The plug-in procedure is described in Section 2.6.2. Also, let G
denote the Gaussian limit process of Theorem 3.3. Then

√
n

(∫
1(q < s < r) · φ̂(s) dP̂ T0(s) −

∫
1(q < s < r) · φ(s) dP T0(s)

)

D→ ϕ′
ψF ,F

◦ (ψ′
F (G), G) as n→ ∞

on R. Moreover,

√
n

(∫
1(q < s < r) · φ̂(s) dP̂ T0(s) −

∫
1(q < s < r) · φ(s) dP T0(s)

)

and
ϕ′
ψF ,F

◦
(
ψ′
F (
√
n(F̂ − F )),

√
n(F̂ − F )

)

are asymptotically equivalent. The limit variable ϕ′
ψF ,F

◦(ψ′
F (G), G) is a mean

zero Gaussian process.

Proof of Theorem 3.13. The argument is analogous to the proof of Theo-
rem 3.8 together with the chain rule for Hadamard-differentiability, e. g. van der
Vaart and Wellner (1996), Lemma 3.9.3, and lemmas 3.10 and 3.11.

We finally comment on the alternative weightings introduced and dis-
cussed in Section 2.3.2. We exemplary discuss weighting according to
dP T0|XT0

=1. The assertions of Theorem 3.13 will hold in an analogous man-
ner, if a variant of Lemma 3.10 holds, with the second entry, i. e. G, of the
image of ψ̃(G) is replaced by a univariate ‘conditional version’. Lemma 3.11
would then have to be slightly modified (ϕ would only take univariate distri-
butions as a second argument), but this is of no consequence, cf. the proof of
Lemma 3.11. Note that we have assumed that both state 1 and state 2 are
entered with positive probability at T0, cf. (2.10), and consider

P T0|XT0
=1([0, s]) =

P (T0 ≤ s,XT0 = 1)

P (XT0 = 1)

=
P (T0 ≤ s, T0 < T )

P (T0 < T )

=

∫
1(x ≤ s) · 1(x < y) dF (x, y)∫

1(x < y) dF (x, y)

It suffices to consider the following lemma.
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Lemma 3.14. Let ρ : {G ∈ D ([0, τ ]2) : G is a bivariate distribution func-
tion.} → D ([0, τ ]), G 7→ ρ(G) with

ρ(G)(s) :=

∫
1(x ≤ s) · 1(x < y) dG(x, y)∫

1(x < y) dG(x, y)

Then ρ is Hadamard-differentiable in F with derivative ρ′F : D ([0, τ ]2) →
D ([0, τ ]) given as

ρ′F (G)(s) :=

∫
1(x ≤ s) · 1(x < y) dG(x, y)∫

1(x < y) dF (x, y)

−
∫

1(x < y) dG(x, y) ·
∫

1(x ≤ s) · 1(x < y) dF (x, y)
(∫

1(x < y) dF (x, y)
)2 ,

where integrals with respect to G are defined via integration by parts, if G is
not of bounded variation.

Proof of Lemma 3.14. As in the proof of Lemma 3.4 define Ft := F + t ·Gt

with t→ 0 and Gt → G, such that Ft is in the domain of ρ. Consider

1

t
·
(∫

1(x ≤ s) · 1(x < y) dFt(x, y)∫
1(x < y) dFt(x, y)

−
∫

1(x ≤ s) · 1(x < y) dF (x, y)∫
1(x < y) dF (x, y)

)

=

∫
1(x ≤ s) · 1(x < y) dG(x, y)∫

1(x < y) dFt(x, y)
+

1

t
·
∫

1(x ≤ s) · 1(x < y) dF (x, y)

·
[

1∫
1(x < y) dFt(x, y)

− 1∫
1(x < y) dF (x, y)

]

It suffices to consider the term in square brackets in the latter display times
1/t. It is equal to

1

t
· −t ·

∫
1(x < y) dGt(x, y)∫

1(x < y) dF (x, y) · 1(x < y) dFt(x, y)

and the desired result now follows.

3.3 Censored situation

In the censored situation, we essentially need a censored variant of Theo-
rem 3.3 stating weak convergence of an estimator of the censored bivariate
distribution function. The remainder of Section 3.2 then carries over with-
out further ado. By ‘censored situation’ we mean: The data are subject to
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independent right-censoring, see Andersen et al. (1993), Chapter III.2.2 for
a formal definition.

Indeed, such weak convergence results exist for general bivariate survival,
most prominent, perhaps, on the Dabrowska estimator (Dabrowska 1989).
However, the general bivariate survival set-up is difficult, where little can be
assumed about the two waiting times except for them not being indepen-
dent. (Think of twins, for instance.) Our situation is much easier, where
the relationship between the two waiting times T0 and T can be described in
terms of the multi-state model. Consequently, we want to study estimation
based on the Aalen-Johansen estimator of the transition matrix. Recall that
by Equation (2.22)

F (s, t) = P01 (0, s) · P12 (s, t) + P02 (0,min(s, t))

for (s, t) ∈ [0, τ ]2. Equation (2.23) defines the plug-in estimator we want to
study:

[0, τ ]2 3 (s, t) 7→ F̂ (s, t) := P̂01 (0, s) · P̂12 (s, t) + P̂02 (0,min(s, t)) ,

where P̂·· are the respective entries of the Aalen-Johansen estimator P̂ de-
scribed in Section 2.6. In order to show weak convergence of F̂ we first
discuss weak convergence of

{
(s, t) ∈ [0, τ ]2 : s ≤ t

}
3 (s, t) 7→ P̂(s, t).

We then show that F̂ can be expressed as an image of P̂ under an Hadamard-
differentiable functional; the desired result then follows again by the delta
method. Note that the restriction to s ≤ t in the latter display is of no
consequence, since this is where F and every F̂ have mass only.

Note that we do need convergence of (s, t) 7→ P̂(s, t) as a bivariate func-
tion. In their original paper on the estimator named after the authors, Aalen
and Johansen (1978) show convergence of t 7→ P̂(0, t) using a martingale
central limit theorem, as does the detailed treatment of the Aalen-Johansen
estimator by Andersen et al. (1993), Chapter IV.4, see in particular their
Theorem IV.4.2. The latter authors also offer a proof based on writing the
transition matrix P as a product integral with respect to the matrix of inte-
grated transition intensities A(t) := (Ahj(t)), i. e.

P(s, t) =

(s,t]

(I + dA(u)) ,

where we write I for the identity matrix and for the product integral.
They then use Hadamard-differentiability of the product integral and the
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respective convergence result on the Nelson-Aalen estimator of A to show
the desired result. See Andersen et al. (1993), Chapter II.6 as well as Gill
and Johansen (1990) and Gill (1994) for details on product integration. We

may hope for the desired result on convergence for (s, t) 7→ P̂(s, t) along
the latter lines, if we have Hadamard-differentiability of the product integral
taking interval functions as an argument. In fact, such a result is shown
to hold by Gill and Johansen (1990), Theorem 8. Gill and Johansen (1990)
also envisage the desired application (on page 1542), but then turn to more
probabilistic issues.

We now first state the convergence result for (s, t) 7→ P̂(s, t) in a manner
analogous to Andersen et al. (1993), Theorem IV.4.2. We then derive the

convergence result for (s, t) 7→ F̂ (s, t) by means of the delta method. To

do so, we need counting process notation. Let (X
(1)
t )t, (X

(2)
t )t, . . . , (X

(n)
t )t,

i = 1, . . . , n, denote n stochastic processes, all with initial distribution degen-
erated in state 0 and right-continuous sample paths, that are independent
replicates of (Xt)t. The relationship to the observations (T

(i)
0 , T (i)), i =

1, . . . , n of the uncensored case, cf. Section 3.2, is given by means of

T (i) := inf
{
t ≥ 0 : X

(i)
t 6∈ {0, 1}

}
.

and
T

(i)
0 := inf

{
t ≥ 0 : X

(i)
t 6= 0

}
,

cf. Equations (2.7) and (2.8). Closely following Andersen et al. (1993),
Chapter VI.4, define the 3-variate counting process N(t) := (Nhj; h 6= j) (t),
whereNhj(t) counts the number of observed transitions from state h to state j
in [0, t], i. e.

Nhj(t) :=
∣∣∣
{
i ∈ {1, . . . , n} : There is u ∈ [0, t] such that X

(i)
u− = h and

X(i)
u = j

}∣∣ (3.9)

Note that the multi-state model of Figure 2.1 allows three possible transition
types and no backward transitions. Let Yh(t) denote the number of sample
paths observed to be in state h just prior to time t, i. e.

Yh(t) :=
∣∣∣
{
i ∈ {1, . . . , n} : X

(i)
t− = h

}∣∣∣ , (3.10)

and let Jh(t) denote whether there are sample paths observed to be in state h
at all just prior to time t, i. e.

Jh(t) := 1 (Yh(t) > 0) . (3.11)
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As usual, we understand Jh(t)/Yh(t) to be zero, if Yh(t) is zero. Also, define
the intensity process λ := (λhj; h 6= j), where

λhj(t) := Yh(t) · αhj(t). (3.12)

Note however that Andersen et al. (1993) make different use of the letter ‘τ ’
in their Chapter VI.4 on the Aalen-Johansen estimator. We have defined τ
as τ := sup{t : P (Xt 6= 2) > 0} and assume τ to be finite, cf. Section 2.1.
Andersen et al. (1993) use the letter for sup{u :

∫ u
0
αhj(t) dt < ∞, h 6= j}

and show properties of the Aalen-Johansen estimator on time intervals with
right limits less than this supremum. Since in our setting the supremum is
equal to infinity, see Equation 2.6, such properties hold for [0, τ ]. Also note
that the processes Nhj, Yh, Jh and λhj depend on the sample size n, but we
have suppressed this in the notation.

As stated at the beginning of this section, we assume our observations
to be subject to independent right-censoring. Intuitively, this is to say that
the intensity process λ at time t is not altered by knowing about the right-
censoring times up to t−.

We are now ready to state the convergence result for (s, t) 7→ P̂(s, t).

Theorem 3.15. Let the process (Xt)t as defined in Section 2.1 be Markovian.
Assume the assumptions of Andersen et al. (1993), Theorem IV.1.2 on weak
convergence of the multivariate Nelson-Aalen estimator to hold, i. e.: Assume
that there exist non-negative functions yh with domain [0, τ ] such that αhj/yh
is integrable over [0, τ ] for all h 6= j. Let

σhj :=

∫ t

0

αhj(u)

yh(u)
du

for h 6= j and assume the following conditions (A)–(C) to hold:

(A) For every t in [0, τ ] and all h 6= j:

n

∫ t

0

Jh(u)

Yh(u)
· αhj(u) du

P→ σhj(t) as n→ ∞.

(B) For all ε > 0 and all h 6= j:

n

∫ τ

0

Jh(u)

Yh(u)
· αhj(u) · 1

(∣∣∣∣
√
n · Jh(u)

Yh(u)

∣∣∣∣
)

du
P→ 0 as n→ ∞.

(C) For all h 6= j:

√
n ·
∫ τ

0

(1 − Jh(u)) · αhj(u) du
P→ 0 as n→ ∞.
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Furthermore, let U = (Uhj) be a 3 × 3 matrix valued process, such that the
non-diagonal elements Uhj, h 6= j are independent Gaussian martingales
with Uhj(0) = 0 and Cov(Uhj(t1), Uhj(t2)) = σhj(min(t1, t2)), and diagonal
elements Uhh := −∑j 6=h Uhj. Then we have

(s, t) 7→
√
n ·
(
P̂(s, t) − P(s, t)

)
D→ (s, t) 7→

∫ t

s

P(s, u) dU(u)P(u, t)

on the space of 3 × 3-matrix valued, bivariate cadlag functions with do-
main [0, τ ]2, where the norm of a matrix (Mhj) is defined as ||(Mhj)|| :=
maxh

∑
j ||(Mhj)||.

Proof of Theorem 3.15. The proof runs completely analogous to the proof
of Andersen et al. (1993), Theorem IV.4.2 based on the delta method (a
martingale-based proof is also presented), but with the slightly more general
result on Hadamard-differentiability for product integration offered in Gill
and Johansen (1990), Theorem 8: The assumptions (A)–(C) imply conver-
gence of

√
n(Â − A), see Andersen et al. (1993), Theorem IV.1.2, where Â

denotes the Nelson-Aalen estimator of the integrated transition intensities A.
Since P(s, t) = (s,t] (I + dA(u)) is an Hadamard-differentiable functional of
the integrated transition intensities, the assertion of the theorem follows via
the delta method.

Remark 3.16. The validity of the assumptions of Theorem 3.15 for finite-
state Markov processes is discussed by Andersen et al. (1993), Example
IV.1.9. The Markov assumption itself may be relaxed: Datta and Sat-
ten (2001) discuss the Aalen-Johansen estimator to be consistent for non-
Markovian data, and claim that an asymptotic distribution theory is feasi-
ble. Glidden (2002) appears to be the first to offer such results, also using
Hadamard-differentiability of product integration. Aalen et al. (2001), in
a paper on covariate adjustment for the Aalen-Johansen estimator, discuss
that consequently the Markov assumption may be less essential than thought
earlier, but point out that it is not clear how to apply the lines of Datta and
Satten (2001) and Glidden (2002) to the treatment of covariates (then avail-
able to the authors in form of technical reports). We have chosen to stay
in the more classical framework of Markov processes for a straightforward
presentation of the results, with the book by Andersen et al. (1993) as a
ready reference. Of particular importance to us is the immediate connection
to the work of Gill and Johansen (1990) on product integration and inter-
val functions, since we have been treating the impact of the intermediate on
the terminal event as a random time interval situation. Starting out from a
multistate point of view, we have based estimation on the Aalen-Johansen es-
timator of the transition matrix, which is a natural to consider in a multistate
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framework. Alternatively, we could have chosen to use one of the available
estimators for bivariate survival and associated results on weak convergence
(in particular Dabrowska (1989) and Lin and Ying (1993)), which do not re-
quire to assume Xt to be Markovian. The remainder of our treatment would
remain unaffected. We discuss the connection to bivariate survival in greater
detail in Chapter 5.1, see in particular Chapter 5.1.3.

We should note that for our motivating data problem (for which the
Markov assumption may be questioned) the temporal dynamics by which the
intermediate event occurs is the key issue, less so censoring and consequently
the Markov assumption.

To derive a convergence result for F̂ we first need a result on differentia-
bility:

Lemma 3.17. Let us call a bivariate, real-valued function an interval func-
tion on [0, τ ]2, if it only takes arguments (s, t) ∈ [0, τ ]2 with s ≤ t. Consider
a functional ρ with domain

{
f : f : [0, τ ] ⊇ [s, t] 7→

(
fhj(s, t)

)
h,j=1,2,3

with sup
(s,t)

|fhj(s, t)| <∞
}

into the set of all interval functions on [0, τ ]2 with

ρ(f)(s, t) := f01(0, s) · f12(s, t) + f02(0, s).

Endow the set of interval functions with the supremum norm and the domain
of ρ with the induced matrix norm ||(fhj)|| := maxh

∑
j ||(fhj)||. Then ρ is

Hadamard-differentiable in [s, t] 7→ P(s, t) with derivative ρ′
P

given as

ρ′
P
(f)(s, t) := f01(0, s) · P12(s, t) + f12(s, t) · P01(0, s) + f02(0, s).

Proof of Lemma 3.17. Consider t → 0 and ft → f such that P + t · ft is in
the domain of ρ. Consider

1

t
·
(
ρ(P + t · ft) − ρ(P)

)
(s, t) =

1

t
·
(
P01(0, s) · t · ft,12 + P12(s, t) · t · ft,01(0, s) + t2 · ft,01(0, s) · ft,12(s, t)

+ t · ft,02(0, s)
)

The assertion of the lemma now follows considering each addend in the pre-
ceding display separately.
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Since ρ(P) = F , we can now invoke the delta method and get from
Theorem 3.15 together with Lemma 3.17 the following theorem:

Theorem 3.18. Let U be as in Theorem 3.15 and define

Z(s, t) :=

∫ t

s

P(s, u) dU(u)P(u, t)

for s ≤ t ∈ [0, τ ]. Assume the assumptions of Theorem 3.15 to hold. Then
with ρ, ρ′

P
as in Lemma 3.17 we have

√
n
(
F̂ − F

)
D→ ρ′

P
(Z).

on the set of all interval functions on [0, τ ]2, endowed with the supremum
norm. Moreover,

√
n
(
F̂ − F

)
and ρ′

P

(√
n
(
P̂ − P

))

are asymptotically equivalent. The limit variable ρ′
P
(Z) is a mean zero Gaus-

sian process.

Remark 3.19. The result of the preceding Theorem 3.18 can be immediately
extended to the ‘complete’ index set [0, τ ]2 by noting that for s > t ∈ [0, τ ]

we have F (s, t) = F (t, t) and F̂ (s, t) = F̂ (t, t), see also Section 2.6.1.

3.4 Examples

Applying the results of this chapter to the data examples of Section 2.7.1
and Section 2.7.4 in order to compute confidence intervals, we essentially
need to be concerned whether the the boundness assumptions of Lemma 3.4
and of Lemma 3.6 are fullfilled. In Remark 3.9, we have discussed that these
assumptions are fullfilled if both P (Xs = 0) and P (Xs = 1) are greater than
some constant c > 0 on a proper subset of (0, τ). In particular, we have
discussed that s 7→ P (Xs = 0) is decreasing on [0, τ ] and can be assumed

to be strictly positive on [0, τ). Figures 3.2 and 3.3 show s 7→ P̂ (Xs = 1) =

P̂01(0, s) for the SIR 3 data and the data used by Schulgen and Schumacher
(1996). The curves agree with assuming P (Xs = 1) to be greater than
some c > 0 on a proper subset of (0, τ). They even suggest that s 7→
P (Xs = 1) may be assumed to be first increasing and then decreasing on
[0, τ ]. In Remark 3.9, we argued that we may assume that a patient does not
inescapably acquire a nosocomial infection, even if (s)he stays in hospital very
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Days s since admission
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Figure 3.2: Aalen-Johansen estimator of P (Xs = 1) for the SIR 3 data.

long. The assumptions is still reasonable the other way round: Of course, we
can assume that a patient is not necessarily free of a a nosocomial infection,
even if (s)he stays in hospital very long. Consequently, we may assume
P (Xs = 1) to be strictly positive close to (but unequal to) τ . Thus, we
may assume the boundness assumptions to hold on some proper subinterval
(q, r), where r can be chosen arbitrarily close to τ . In order to determine
possible choices of q, note that a usual requirement in studies on hospital-
acquired infections is that patients have been in hospital for at least 48 hours.
Infections occurring before that time are rarely considered nosocomial due
to lack of a sufficiently long incubation period, but infections occurring after
that time usually are. Consequently, we may assume q to be arbitrarily
close to (but greater than) 2. Table 3.1 displays results for the estimates
of Section 2.7, where we now reinterpret the point estimates as estimates of
appropriately weighted integrals of 1(q < s < r) · φ(s). We have argued in
this section, that the difference between an appropriately weighted integral
of φ(s) and of 1(q < s < r) ·φ(s), respectively, is of no practical importance,
since the results may be assumed to hold for any interval (q, r) $ [2, τ ].
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Days s since admission
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Figure 3.3: Aalen-Johansen estimator of P (Xs = 1) for the data originally
used by Schulgen and Schumacher (1996).

3.5 Discussion

In Chapter 5, we will argue that the program pursued in this chapter con-
stitutes a meaningful and general framework to discuss intermediate events
and their impact on some terminal event.

We have used a multi-state model to describe the occurrence of the inter-
mediate event. Since multi-state models can be thought of as a generaliza-
tion of survival analysis in terms of states rather than time dimensions, it is
however not immediately clear why one should not apply a martingale limit
theorem to get the desired results. In particular, a martingale-based proof
may be more instructive than a proof on Hadamard-differentiability. We
therefore briefly discuss problems in applying the martingale central limit
theorem (Rebolledo 1980) as presented in Andersen et al. (1993), Chap-
ter II.5.1. We will see that these difficulties pertain to two essential issues of
the situation at hand, namely the timing of events and the question whether
its fruitful to adopt a time-bivariate view.

To simplify things, we only consider the uncensored case. We use counting
process notation as in Section 3.3. In addition, let us denote by N0•(t) :=
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weighting point estimate 95%-confidence interval

SIR 3 study
dP T0 4.9 [−0.7, 10.6]
dP T0|XT0

=1 6.2 [1.1, 11.3]
dP T0|XT0

=2 4.8 [−1.0, 10.6]

Data used by Schulgen and Schumacher (1996)
dP T0 2.0 [−0.3, 4.2]
dP T0|XT0

=1 2.1 [−0.3, 4.5]
dP T0|XT0

=2 2.0 [−0.3, 4.2]

Table 3.1: Point estimates with confidence intervals for restricted change in
LOS as explained in Section 3.4.

N01(t)+N02(t) the number of transitions out of the initial state 0 in the time
interval [0, t]. Our estimator of

∫
φ dP T0 equals a weighted sum of differences

of arithmetic means:

1

n

∫ n∑

i=1

(
1(X

(i)
s = 1)

Y1(s+)
− 1(X

(i)
s = 0)

Y0(s+)

)
J0(s+) · J1(s+) · T (i) dN0•(s),

where the sample size is n. To make Rebolledo’s theorem work, we need
the integrand in the latter display to be predictable with respect to the
self-exciting filtration of the three-variate counting process (N01, N02, N12)(t),
i. e. with respect to σ((N01, N02, N12)(s) : s ≤ t). It is not: Right from the
start, we will need to know T (i), i = 1, . . . , n. This issue touches upon the
temporal dynamics of the data: So far, we have argued that accounting for
the timing of the events is crucial: an infection can only have an effect once
it has occurred.

We may rewrite the estimator: Rather than counting transitions out of
the initial state, we count transitions into the absorbing state. At T (i) those
T

(j)
0 ’s are known at which the i-th patient was in state 0 and at which (s)he

was in state 1. It is as straightforward exercise that our estimator equals

1

n

n∑

i=1




∑

{j:T
(i)
0 ≤T

(j)
0 <T (i)}

J(T
(j)
0 +)

Y1(T
(j)
0 +)

−
∑

{j:T
(j)
0 <T

(i)
0 }

J(T
(j)
0 +)

Y0(T
(j)
0 +)


 · T (i).

We may now aim at rewriting the sum with index i in the latter display as
an integral with respect to a counting process N•2 := N02 +N12, counting the
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transitions into the absorbing state. The integrand, however, will depend on
the individual waiting time T

(i)
0 in the initial state. We would therefore have

to rewrite the latter display in terms of patient-individual counting processes.
If in such a setting the conditions of Rebolledo’s theorem can be verified, we
do not know. The major difficulty is this: By having to consider individual
rather than aggregated counting processes and by integrating with respect
to a counting measure that informs us about LOS, but not about the waiting
time in the initial state, we are left with the impression that not ‘enough
randomness’ is ‘aggregated’ in the counting measure. This touches upon the
second crucial issue: It would be nice to have a counting process that informs
us both about the waiting time in state 0 and about the waiting time in the
sub-state-space {0, 1} at the moment of ‘click’. This leads us to adopting a
time-bivariate view. However, we then loose our intuitive notion of past and
future as briefly described in Section 3.1.



Chapter 4

Change in length of stay
associated with an intermediate
event, distinguished for
competing endpoints ‘death’
and ‘discharge’

Looking at length of stay as such does not distinguish whether a patient has
been discharged or died, although the individual implications are contrarian.
In terms of change in LOS, a nosocomial infection may prolong the time in
hospital among patients discharged. But one can imagine a severe infection
to even expedite death among patients deceased. In this chapter, We dis-
cuss how to distinguish between patients discharged and patients deceased
in terms of change in LOS. Note that this question is not only of impor-
tance to the hospital example: If we are interested, say, in how pregnancy
affects time to marriage for unmarried couples, we may want to account for
the competing event that the couple splits. If we study the effect of some
training program on the time of unemployment, say, we will possibly need to
account for retirement as a competing event. We will, in the following, term
the competing events ‘discharge’ and ‘death’ for linguistic ease. We first need
to make some adjustments to the underlying stochastic process.

63
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4.1 A multistate model with competing end-

points

Let (Xt)t∈[0,∞) be a nonhomogeneous, continuous-time stochastic process
with right-continuous sample paths as in Chapter 2.1, but with state-space
{0, 1, 2, 3}. The state-space together with its possible transitions is illustrated
in Figure 4.1 for the example of nosocomial infections.

0No NI -

-

-

1

NI

Q
Q

Q
Q

Q
Q

QQs

�
�

�
�

�
�

��3 2 Discharge

3 Death

Figure 4.1: Potential states and transitions for occurrence of nosocomial
infection (labelled ‘NI’) with competing absorbing states ‘discharge’ and
‘death’.

The interpretations of states 0 and 1 remain the same, but we now dis-
tinguish two absorbing states, ‘discharge’ (state 2) and ‘death’ (state 3). We
need to make few modifications of the quantities defined in Chapter 2.1.
Transition probabilities Phj(s, t) and transition intensities αhj(t) are now de-
fined for h, j ∈ {0, 1, 2, 3}. Equation (2.5) now becomes

τ := sup{t : P (Xt /∈ {2, 3}) > 0}. (4.1)

(This is not a major modification; we could have originally defined τ as
sup{t : P (Xt ∈ {0, 1}) > 0}.) The definitions of the waiting time T0 in the
initial state and the waiting time T in the sub-state space {0, 1}, respectively,
carry over without modification. However, knowing (T0, T ) does not suffice
anymore to completely determine the state of the stochastic process Xt at
any time t. We additionally need the ‘mark’ XT telling us, which absorbing
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state is entered at the random time T :




Xt = 0 ⇐⇒ t < T0

Xt = 1 ⇐⇒ T0 ≤ t < T
Xt = 2 ⇐⇒ T ≤ t and XT = 2
Xt = 3 ⇐⇒ T ≤ t and XT = 3




. (4.2)

We assume that both state 2 and state 3 are entered with positive probability
at T :

P (XT = 2) · P (XT = 3) > 0. (4.3)

Finally, we define for s ≥ 0, t ≥ 0 and i = 2, 3

F (s, t, i) := P (T0 ≤ s, T ≤ t and XT = i) , (4.4)

a ‘marked’ variant of the joint distribution function of (T0, T ). Slightly abus-
ing parlance, we will call F the joint distribution function of (T0, T,XT ).
(Although we have not defined F (s, t, i) as P (T0 ≤ s, T ≤ t, XT ≤ i), but
an order on the mark space {2, 3} would be arbitrary anyways.) We also
write

F (s, t, {2, 3}) := P (T0 ≤ s, T ≤ t) .

4.2 Expected change in LOS given status at

time s, distinguished for competing end-

points ‘death’ and ‘discharge’

In the present subsection, we again look at a fixed, but arbitrary time s > 0,
as we did in Chapter 2.2. Weighting with respect to s will then carry over
in a manner analogous to Chapter 2.3. Let us assume that s is such that

P (Xs = 1) > 0 and P (Xs = 0) > 0.

Note that this is the assumption of (2.12) of Chapter 2.2.
The situation at hand is one of competing events or ‘competing risks’. The

time T of hospital stay is terminated by either reaching state 2 (discharge) or
state 3 (death). The occurrence of these events is mutually exclusive. Thus,
the state of the process at the random time T , i. e. XT , denotes, in competing
risks terminology, the ‘cause’ for leaving hospital.

In competing risks, one often looks at the cumulative incidence function
in order to consider different ‘causes’ (or absorbing states), cf., e. g., An-
dersen et al. (2002) for a recent reference. In our situation, the cumulative



66 CHAPTER 4. CHANGE IN LOS: COMPETING ENDPOINTS

incidence function is the joint distribution of the time T of hospital stay and
the reason XT for leaving hospital being discharge or death, respectively.
This suggests to decompose φ(s) as follows:

φ(s) = E (T |Xs = 1) − E (T |Xs = 0)

=
∑

i=2,3

E
(
T · 1 (XT = i) |Xs = 1

)
− E

(
T · 1 (XT = i) |Xs = 0

)

(4.5)

However, this will not serve our purpose. To see this, consider a situation
where an infection at time s is virtually lethal, while being uninfected at
time s is ‘protective’, i. e. an uninfected patient is very likely to be eventually
discharged. The latter might, e. g., be the case if the lethal infection is rare.
The addend from Equation (4.5) for patients who eventually die is:

E
(
T · 1 (XT = 3) |Xs = 1

)
− E

(
T · 1 (XT = 3) |Xs = 0

)

=

∫
1 (Xs = 1)

P (Xs = 1)
· T · 1 (XT = 3)

︸ ︷︷ ︸
(?)

− 1 (Xs = 0)

P (Xs = 0)
· T · 1 (XT = 3)

︸ ︷︷ ︸
(??)

dP

(4.6)

In the situation just described, the integrand of the right-hand side of Equa-
tion (4.6) would mainly consist of terms (?), while terms (??) would almost
vanish. Thus the integral would be positive. However, it need not hold true
that the few patients uninfected at time s who die have a shorter LOS than
those infected at time s (of which most die).

Alternatively, we seek to decompose

φ(s) =
∑

i=2,3

∫
1 (Xs = 1)

P (Xs = 1)
· T · 1 (XT = i) − ai(s) ·

1 (Xs = 0)

P (Xs = 0)
· T dP (4.7)

with nonrandom coefficients ai(s), a1(s) + a2(s) = 1, such that, e. g., in the
hypothetical situation mentioned above the addend

a3(s) · T · 1 (Xs = 0) /P (Xs = 0)

does not ‘vanish’. We propose to use

ai(s) = P (XT = i |Xs = 1) , i = 2, 3. (4.8)

Before we give an interpretation, we note that, in the hypothetical situation
above, the proposed choice of the ai’s performs more meaningful: With an
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infection at time s being virtually lethal, a3(s) = P (XT = 3 |Xs = 1) will
be close to one. Thus, there will ‘always’ be a comparison term for the
addend (?) from Equation (4.6). On the other hand, both respective terms
will almost vanish for XT = 2.

For an interpretation, we rewrite Equation (4.7) for the proposed choice
of the ai’s:

φ(s)

=
∑

i=2,3

E
(
T · 1 (XT = i) |Xs = 1

)
− P (XT = i |Xs = 1) · E (T |Xs = 0)

(4.9)

=
∑

i=2,3

P (XT = i |Xs = 1) ·
[
E (T |XT = i, Xs = 1) − E (T |Xs = 0)

]

(4.10)

The term in square brackets of Equation (4.10) compares, for i = 3, the
expected LOS for patients infected at time s, who eventually die, with the
expected LOS for patients still uninfected at time s. The contribution to
φ(s) then depends on how many of the infected patients eventually die. Note
that it is meaningful that only the expectation for those infected is further
conditioned on the endpoint type: It thus acknowledges that the particular
endpoint, ‘death’ in the case of i = 3, may be a consequence of the infection.

As stated earlier, the weighting discussed in Chapter 2.3 now carries over
for the addends on the right-hand side of Equation (4.7). We will refer to
the addends of the right-hand side of Equation (4.10) as φi(s), i = 2, 3. If
the assumption of (2.12) is violated, i. e. if s is such that

P (Xs = 1) · P (Xs = 0) = 0,

then we define φi(s) := 0, i = 2, 3, which is in agreement with (2.15).
The quantity φ3(s), e. g., can be interpreted as the contribution to the ex-

pected change in LOS at time s by patients infected up to time s who eventu-
ally die. Note, however, that we may not conclude from EPT0 (φ2) > EPT0 (φ3),
say, that LOS is prolonged more for infected and discharged patients than for
infected and deceased patients. This is in analogy to a cumulative incidence
function. Because the cumulative incidence function for failure type 1 runs
beneath the respective function for failure type 2, say, this need not mean
that one is less likely to fail if failure will be of type 1. It could also mean
that failure type 1 is much less frequent. As stated following Equation (4.10),
the contributions of φ2(s) and of φ3(s) to the expected change φ(s) depend
on how many of those infected up to time s are discharged or die. If one is
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specifically interested in what the effect on LOS would be for infected pa-
tients that are eventually discharged, say, Equation (4.10) suggests to pursue
E (T |XT = 2, Xs = 1) − E (T |Xs = 0).

4.3 Estimation

The techniques are essentially as in Chapter 2.6. We exemplarily consider
φ2. Let us first consider an estimator of the joint distribution function F of
(T0, T,XT ). For s ≤ t consider

F (s, t, 2) = P (T0 ≤ s, T ≤ t, XT = 2)

= P (Xs 6= 0, Xt = 2)

= P (Xs = 1, Xt = 2) + P (Xs = 2, Xt = 2)

= P (Xs = 1) · P (Xt = 2 |Xs = 1) + P (Xs = 2)

= P01 (0, s) · P12 (s, t) + P02 (0, s) . (4.11)

Note that the preceding lines follow the same argumentation as the ones
leading to (2.21) in the model with state-space {0, 1, 2}. Note, however, that
space 2 has different meanings. Here, we explicitly use — and need to do
so — the information, that the process cannot enter state 3, if XT = 2. For
arbitrary (s, t) ∈ [0, τ ]2 and i ∈ {2, 3} we have

F (s, t, i) = 1(i = 2) ·
(
P01 (0, s) · P12 (s, t) + P02 (0,min(s, t))

)

+ 1(i = 3) ·
(
P01 (0, s) · P13 (s, t) + P03 (0,min(s, t))

)

(4.12)

The plug-in estimator F̂ of F is now given by plugging in the empirical
counterparts of the transition probabilities from the Aalen-Johansen estima-
tor in (4.12).

We now give representations of the addends of φ2(s) for times s, where
both state 1 and state 2 are occupied with positive probability, in terms of F .
We have

E
(
T · 1 (XT = 2) |Xs = 1

)

=

∫
1(Xs = 1)

P (Xs = 1)
· T · 1 (XT = 2) dP

=

∫
1(0 < u ≤ s < v)

F (s, τ, {2, 3})− F (s, s, {2, 3}) · v · 1(i = 2) dF (u, v, i)

(4.13)



4.4. EXAMPLE 69

In order to rewrite the second addend of φ2(s) note that

P (XT = 2 |Xs = 1) =
P (XT = 2 and Xs = 1)

P (Xs = 1)

=
P (XT = 2 and T0 ≤ s < T )

P (T0 ≤ s < T )

=
F (s, τ, 2) − F (s, s, 2)

F (s, τ, {2, 3})− F (s, s, {2, 3}) (4.14)

The second addend of φ2(s) may then be written as

P (XT = 2 |Xs = 1) · E (T |Xs = 0) =

F (s, τ, 2) − F (s, s, 2)

F (s, τ, {2, 3})− F (s, s, {2, 3}) ·
1

1 − F (s, τ, {2, 3}) ·∫
1 (u > s) · v dF (u, v, {2, 3})

(4.15)

We additionally give somewhat nicer representations of the addends of φ2(s)
directly in terms of the transition probabilities and transition intensities,
respectively. We have

E
(
T · 1 (XT = 2) |Xs = 1

)
=

∫ τ

s

P (T > t, XT = 2 |Xs = 1) dt

=

∫ τ

s

P (XT = 2 |Xs = 1)

− P (T ≤ t, XT = 2 |Xs = 1) dt

=

∫ τ

s

P (XT = 2 |Xs = 1) − P12(s, t) dt,

where

P (XT = 2 |Xs = 1) =

∫ τ

s

P11(s, u−) · α12(u) du.

4.4 Example

We consider the SIR 3 data. Before turning to the actual analysis, let us con-
sider a number of plots illustrating the problem at hand. Figure 4.2 recalls
the situation of the preceding chapters, where we considered the combined
endpoint ‘discharge/death’. The estimator s 7→ φ̂(s) can be thought of as
a series of differences between the area under Kaplan-Meier curves. This is
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Figure 4.2: One minus Kaplan-Meier curves (combined event dis-
charge/death) given Xs = 0 (solid line) and given Xs = 1 (dotted line):
Plots are presented for s ∈ {3, 4, . . . , 9, 10}.

illustrated in Figure 4.2 for s ∈ {3, 4, . . . , 9, 10}. Prolonged LOS for patients
infected up to day s is illustrated by delayed increase of the respective one
minus Kaplan-Meier curve. The decreasing differences between these curves
correspond to the plot of φ̂(s) in Figure 2.3. The Kaplan-Meier curves of
Figure 4.2 are split into cumulative incidence functions in Figures 4.3 and
4.4. These cumulative incidence functions display the mixing of effects for
infected patients both in possibly prolonged LOS and in increased proportion
of patients deceased, which we have discussed in Section 4.2. The cumulative
incidence functions for death — of particular interest, because one may sus-
pect that an infection leads to earlier death — are redisplayed in Figure 4.5
at a larger scale. From Figure 4.5, we get the impression that hospital stay
may even be prolonged for patients eventually deceased.

We now turn to the actual analysis of the contributions of patients dis-
charged and patients deceased, respectively, to

∫
φ(s) dP T0. As in Chap-

ter 2.7, we also analysed nosocomial pneumonia as a time-dependent covari-
ate in a proportional hazards model, this time distinguishing between the
competing endpoints discharge and death. We allowed for different baseline
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Figure 4.3: Cumulative incidence functions for discharge (solid line) and
death (dotted line) given infection status on day s. Plots are presented for
s ∈ {3, 4, 5, 6}.

hazards per endpoint and for endpoint-specific effects of the covariate. Also,
the admission-ID was entered as a cluster-term to the function coxph of
the R-package survival. This leads to a ‘robust’ variance estimation, which
is desirable, since, technically, each admission is entered twice into the anal-
ysis. For uncensored admissions, the entry corresponding to the endpoint
which was not reached is treated as censored. See Therneau and Gramb-
sch (2000) for a detailed discussion on these issues. We found for the death

hazard ĤR = 0.91 (95%-CI=[0.62, 1.35], Wald test: p = 0.65) and for the

discharge hazard ĤR = 0.59 (95%-CI=[0.51, 0.69], Wald test: p < 0.0001).
Note that we may not conclude from the fact that nosocomial pneumonia
reduces the death hazard (looking, for the moment, only at the point esti-
mates of the respective hazard ratios) that a patient is less likely to die after
having acquired pneumonia. This is a consequence of the competing risks
situation: Nosocomial pneumonia reduces the discharge hazard much more
than it reduces the death hazard. A particularly easy and intriguing example
of this peculiarity has been given by Gray (1988). The analysis, however,
shows that LOS may even be prolonged for infected patients who eventually
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Figure 4.4: Cumulative incidence functions for discharge (solid line) and
death (dotted line) given infection status on day s. Plots are presented for
s ∈ {7, 8, 9, 10}.

die. To the estimated expected change in LOS of 4.9 ([−0.7, 10.6]) days due
to nosocomial pneumonia, 2.9 ([−1.4, 7.3]) days were contributed by patients
infected and discharged, and 2.0 ([−0.16, 4.1]) days were contributed by pa-
tients infected and deceased. Note that the latter two estimates add up to 4.9
days, cf. Equation (4.9). In anticipation of the results of Section 4.5, where
we will study large sample properties, we have given 95%-confidence intervals
obtained by Gaussian approximation. As in chapter 3.4, these results are to
be interpreted as change in LOS restricted to some interval (q, r) $ [2, τ ]. It
is interesting to note that the contribution of patients infected and deceased
is larger than one would perhaps expect from the proportional hazards analy-
sis. We have to keep in mind, however, that this analysis can only be used to
decide whether there is an effect on LOS at all. The estimates of the contri-
butions to change in LOS given status at time s are illustrated in Figure 4.6.
The Figure shows that daywise change in LOS evolves slightly differently for
patients discharged and patients deceased, which is also why the contribu-
tion of patients deceased is larger than perhaps expected: The LOS-curve
for uninfected patients runs underneath the one for infected patients (‘pro-
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Figure 4.5: Cumulative incidence function for death given Xs = 0 (solid line)
and given Xs = 1 (dotted line): Plots are presented for s ∈ {3, 4, . . . , 9, 10}.

longation’) for both patients discharged and patients deceased and for early
times of hospital stay. These are the days where most weighting is put on,
see Figure 2.4. The curves cross in both cases, but do so at different points
in time. While the difference in LOS between infected and non-infected pa-
tients is more pronounced for early days in hospital for patients discharged,
the curves already cross on day 15. The respective difference is less pro-
nounced for patients deceased, but the curves cross as late as day 38.
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Figure 4.6: Estimated expected change in LOS given status at time s and
distinguished for competing endpoints ‘discharge’ and ‘death’: The upper
plot is the same as in Figure 2.3. Note that the solid lines and the dashed
lines, respectively, in the two lower plots add up to the respective lines in the
upper plot.
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4.5 Large sample properties

We now study large sample properties of our estimators the way we did in
Chapter 3. Essentially, we need analogous results to Theorem 3.3 and The-
orem 3.18 on weak convergence of our estimator of the joint distribution
function of (T0, T,XT ) and an result analogous to Lemma 3.7. Having laid
out in detail the line of argumentation in Chapter 3, we now directly con-
sider the censored case. We note, however, that a weak convergence result for
the empirical joint distribution function of (T0, T,XT ) follows immediately
by the lines of, e. g., Wellner (1992), see also our brief discussion following
Theorem 3.3. Essentially, one has to note that the index set of the empiri-
cal process does not get too large by moving from [0, τ ]2 to [0, τ ]2 × {2, 3}.
Technically speaking, [0, τ ]2×{2, 3} is still a Vapnik-Čhervonenkis class. Let
us now consider estimation based on Aalen-Johansen estimator. We will see
that a weak convergence result follows rather straightforwardly. The reason
for this is that the Aalen-Johansen estimator has essentially been formulated
in the language of marked point processes with finite mark space correspond-
ing to the transitions of the multi-state model. See Andersen et al. (1993),
Chapter II.4.1.1 for a concise discussion on this.

Recall that we have defined

F (s, t, i) := P (T0 ≤ s, T ≤ t and XT = i)

in (4.4) for s ≥ 0, t ≥ 0 and i = 2, 3. For s ≤ t our estimator of F is given
as

F̂ (s, t, i) = 1(i = 2) ·
(
P̂01 (0, s) · P̂12 (s, t) + P̂02 (0, s)

)

+ 1(i = 3) ·
(
P̂01 (0, s) · P̂13 (s, t) + P̂03 (0, s)

)

, (4.16)

We first state an result analogous to Lemma 3.17:

Lemma 4.1. Consider a functional ρ with domain

{
f : f : [0, τ ] ⊇ [s, t] 7→

(
fhj(s, t)

)
h,j=1,2,3,4

with sup
(s,t)

|fhj(s, t)| <∞
}

into

{g : {(s, t) ∈ [0, τ ]2} × {2, 3} → R : g(·, i) is an interval function for

i = 2, 3}
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with

ρ(f)(s, t, i) := 1(i = 2) ·
(
f01(0, s) · f12(s, t) + f02(0, s)

)

+ 1(i = 3) ·
(
f01(0, s) · f13(s, t) + f03(0, s)

)
.

Endow the domain of ρ with the matrix norm ||(fhj)|| := maxh
∑

j ||(fhj)||
induced by the supremum norm on the set of interval functions. Endow the
range of ρ with the supremum norm. Then ρ is Hadamard-differentiable in
[s, t] 7→ P(s, t) with derivative ρ′

P
given as

ρ′
P
(f)(s, t, i)

:= 1(i = 2) ·
(
f01(0, s) · P12(s, t) + f12(s, t) · P01(0, s) + f02(0, s)

)

+ 1(i = 3) ·
(
f01(0, s) · P13(s, t) + f13(s, t) · P01(0, s) + f03(0, s)

)

Proof of Lemma 4.1. As the proof of Lemma 3.17.

Since ρ(P) equals the marked joint distribution function, we can now
invoke the delta method and get from Theorem 3.15 together with Lemma 4.1
the following theorem:

Theorem 4.2. Let Z be as in Theorem 3.18 and let F̂ be as in (4.16).
Assume the assumptions of Theorem 3.15 to hold. Then with ρ, ρ′

P
as in

Lemma 4.1 we have √
n
(
F̂ − F

)
D→ ρ′

P
(Z).

with respect to the supremum norm. Moreover,

√
n
(
F̂ − F

)
and ρ′

P

(√
n
(
P̂ − P

))

are asymptotically equivalent. The limit variable ρ′
P
(Z) is a mean zero Gaus-

sian process.

We finally need a result on Hadamard-differentiability analogous to Lemma 3.7:

Lemma 4.3. Let q < r ∈ (0, τ) be fixed, such that the boundness assumptions
of Lemma 3.4 and of Lemma 3.6 are fullfilled. Consider ψ with domain

{G : G a function with domain [0, τ ]2 × {2, 3} such that G(·, i) is a

bivariate distribution function on D([0, τ ]2 for i = 2, 3}

and range D([0, τ ]) with

ψ(G)(s) := ι̃
(
G(·, {2, 3}), s, q, r

)
·
(∫ 1(0 < u ≤ s < v) · v · 1(i = 2)

G(s, τ, {2, 3}) −G(s, s, {2, 3}) dG(u, v, i)

−
∫

G(s, τ, 2) −G(s, s, 2)

G(s, τ, {2, 3})−G(s, s, {2, 3}) ·
1(u > s) · v

1 −G(s, τ, {2, 3}) dG(u, v, {2, 3})
)
.
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Then ψ is Hadamard-differentiable in F . Its derivative ψ ′
F has domain

{G : G a function with domain [0, τ ]2 × {2, 3} such that

G(·, i) ∈ D([0, τ ]2) for i = 2, 3}

and range D([0, τ ]). For G in the domain of ψ′
F and s ∈ [0, τ ] define

α(G, s) :=
(
G(s, τ, 2) −G(s, s, 2)

)
·
(
F (s, τ, {2, 3}) + F (s, s, {2, 3})

)

−
(
F (s, τ, 2) − F (s, s, 2)

)
·
(
G(s, τ, {2, 3}) +G(s, s, {2, 3})

)
.

Then ψ′
F is given via

ψ′
F (G)(s) := ι̃(F (·, {2, 3}), s, q, r) ·(∫

1(0 < u ≤ s < v) · v · 1(i = 2)

F (s, τ, {2, 3})− F (s, s, {2, 3}) dG(u, v, i)

+∫
1(0 < u ≤ s < v) · v · 1(i = 2) · (G(s, s, {2, 3})−G(s, τ, {2, 3}))

(F (s, τ, {2, 3})− F (s, s, {2, 3}))2
dF (u, v, i)

−∫
F (s, τ, 2) − F (s, s, 2)

F (s, τ, {2, 3})− F (s, s, {2, 3}) ·
1(u > s) · v

1 − F (s, τ, {2, 3}) dG(u, v, {2, 3})
−∫

1(s < u) · v · α(G, s)

(F (s, τ, {2, 3})− F (s, s, {2, 3}))2 · (1 − F (s, τ, {2, 3}))2
dF (u, v, {2, 3})

)
,

where integrals with respect to G are defined via integration by parts, if G is
not of bounded variation.

Proof of Lemma 4.3. Essentially as for Lemma 3.4 and Lemma 3.6. The
term α(G, s) is a result of lengthy algebraic computations.

Since ψ(F ) = φ2, we can once again invoke the delta method. Moreover,
we can also follow the route of Chapter 3.2.2 in order to get the desired
weak convergence result for our estimator of

∫
φ2 dP T0. Since this is rather

technical, but otherwise straightforward, we refrain from doing so. Instead,
we emphasize the importance of asymptotic correctness of the bootstrap as
one result of the delta method. Obviously, the analytic evaluation of the
limit variable becomes increasingly involved, as is clear from the form of the
Hadamard-derivative in the preceding Lemma.
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Chapter 5

Discussion

5.1 The occurrence of an intermediate event

as a time-bivariate or random time inter-

val situation

A defining characteristic and therefore intrinsic problem in analysing the
effect of an intermediate event is this: The potential effect depends on the
random time of occurrence of the intermediate event. Hence, we want to
consider the stochastic properties of the intermediate event, in particular the
distribution of the random time of occurrence. However, an intermediate
event need not occur. This is where we run into trouble if we want to look
at the distribution of the random time of occurrence, since it is not, without
further ado, clear what we mean by this.

This problem already occurs in the simpler competing risks situation. We
will first discuss this situation before turning to the random time interval
[T0, T ], because our approach of writing the data as a pair of waiting times
(T0, T ) is closely related to what is called a cumulative incidence function in
competing risks. We will argue that our treatment of change in LOS actually
constitutes a general program to analyse the effect of an intermediate on a
terminal event. The program does not rely on hypothetical quantities.

5.1.1 Competing Risks

Reconsider the three-state model of Figure 2.1. Ignoring the transition from
the intermediate to the absorbing state for the moment, i. e. only considering
the state reached on leaving the initial state 0, this is the simplest competing
risks situation, with just two competing absorbing states. This situation is
illustrated in Figure 5.1. Within our framework, the stochastic behaviour

79
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Figure 5.1: The three-state model turns into a competing risks model if we
only consider the first event that occurs, i. e. ignore the transition between
states 1 and 2.

of a multi-state model is perfectly determined by the transition intensities,
see for instance Andersen et al. (1993), Chapter II.6. However, their in-
terpretation is less straightforward than in the two-state model ‘alive’ and
‘dead’ of classic survival analysis: Some dichotomous baseline covariate may
reduce both transition intensities, say, but may reduce the discharge/death-
hazard much more than the infection-hazard. Firstly, this will lead to an
increased waiting time in the initial state, and secondly, to an eventually
higher proportion of infected patients. For a more accessible interpretation,
one would therefore like to talk about (the distribution of) the random time
of occurrence of a competing event. Once again, we run into the trouble that
a certain competing event need not occur (and the other one will, compet-
ingly). One approach to deal with this has been the so-called latent failure
time approach: Here, one associates one waiting time with each transition
out of the initial state 0. The observable waiting time in the initial state
is then modelled as the minimum of the two supposed latent waiting times.
There has been a long and controversial discussion about how meaningful
this approach is, see for instance Crowder (2001) for a recent and sedate
discussion. For instance, it can be considered meaningful to assume a life-
time of its own for a light bulb in a light bulb chain, say. This is less clear
for latent lifetimes of organs whose failure is lethal: A light bulb may exist
without the chain, but an organ does not usually ‘live’ without the rest of
the human body. Latent waiting times may be even more debatable in our
context: There is no such thing as a hospital-acquired infection, after one
has been discharged from hospital. (We would need to reinterpret the in-
termediate state as simply ‘infection’.) There are also genuinely statistical
problems (e.g. Crowder (2001)): We cannot infer from the observable data on
the dependence structure of the supposed latent waiting times. A quantity
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generally agreed upon to deal with this situation is the so-called cumulative
incidence function. For the competing event ‘nosocomial infection’ it is given
as

t 7→ P (T0 ≤ t, XT0 = 1) = P01(0, t), (5.1)

see for instance Andersen et al. (2002) and Crowder (2001). Without going
into the technical details, this quantity is identifiable, since the corresponding
data are observable (except for independent right-censoring). The notion of
a cumulative incidence function is closely related to our writing of the data
as a pair of waiting times (T0, T ). We have

T0 ≤ t and XT0 = 1 ⇐⇒ T0 ≤ t and T0 < T.

Figure 5.2 plots the observed pairs of waiting times (T0, T ) for the data orig-
inally used by Schulgen and Schumacher (1996). This data set is complete,
without right-censored observations. For any t, P (T0 ≤ t, XT0 = 1) may be
estimated by the number of non-diagonal dots in the square [0, t] × [0,∞]
divided by the total number of individuals. Counting the diagonal dots gives
an estimator of P (T0 ≤ t, XT0 = 2).

It is the essential idea of a cumulative incidence function to consider
the observable data only. Essentially, this has also been our approach for
analysing the effect of an intermediate event. (We do not think, however,
that models going further than the data cannot be helpful.)

Finally, before we turn to the ‘full’ three-state model and the random
time interval [T0, T ], let us briefly comment on the term ‘cumulative incidence
function’ and the discussion thereon. One might wonder why there is such a
discussion at all, and why the cumulative incidence function deserves a name
in its own right: After all, it can be explained, at least for discrete finite
time spans, by elementary means and is essentially a transition probability
for the simplest multi-state model other than the two-state model without
backward transition. We believe this is less a question of mathematical but
of interpretational difficulty: A nice way to think of the cumulative incidence
function is in terms of how a probabilist would likely define the random time
of occurrence of an event, which may, but need not occur: If the event occurs
at time t, we define the random time as t. If it does not occur, i. e. if there
is no finite occurrence time t, we define it as infinity. This is, for instance,
the way Shiryaev (Shiryaev 1995) does it in his book on probability (e. g. on

page 559.)1. Let us denote the latter random time T̃0. Then we have:
{
T̃0 = t ⇐⇒ T0 = t < T

T̃0 = ∞ ⇐⇒ T0 = T

}
. (5.2)

1We will use this notion in Appendix A, where we introduce an R-program, for a concise

and intuitive representation of the collected data.
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Figure 5.2: Observed pairs of waiting times (T0, T ) for the data originally
used by Schulgen and Schumacher (1996). Note that the data have been
jittered, i. e. a small random noise has been added in order to better separate
ties for plotting. The three plots on the right magnify certain regions of the
left plot. The range of the x- and of the y-axis are always the same within
one plot, but the scaling is different within the lower right plot.
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Note that T̃0 is completely determined by (T0, T ). The distribution function

for T̃0 on [0,∞) now equals the cumulative incidence function for state 1:

P (T̃0 ≤ t) = P (T0 ≤ t, XT0 = 1), t ∈ [0,∞).

In a paper on a regression model for cumulative incidence functions, Fine
and Gray (1999) call T̃0 an ‘improper random variable’. The mass that the
cumulative incidence function lacks to be a proper distribution function is
P (T̃0 = ∞) = P (XT0 = 2). (This is why, for instance, Crowder (2001) or
Fine and Gray (1999) call the cumulative incidence function a subdistribution
function.) Intuitively, it appears to be an uncomfortable notion that the
distribution of a waiting time has positive mass at infinity. In fact, the name
‘cumulative incidence function’ itself can be regarded as being representative
of these interpretational difficulties, since it is, somewhat misleadingly, not
an integrated transition intensity in the sense of

A0j(t) =

∫ t

0

α0j(u) du, j = 1, 2,

cf. Equation (2.4). These difficulties reappear in our analysis of state 1 as an
intermediate state, since we want to compare patient groups defined by their
infection status. These difficulties are further complicated, since we want to
compare the groups in terms of some future outcome, namely LOS.

5.1.2 The random time interval [T0, T ] and summaries

Two cornerstones of the discussion in the literature on competing risks play
a key role in our treatment of the impact of an intermediate on a terminal
event: Firstly, while the stochastic behaviour of the multi-state model is
essentially determined by the transition intensities, we aim at summaries
for interpretational purposes. Secondly, our treatment shall be based on
modelling the observed data.

Multi-state models display a complex stochastic behaviour. In fact, al-
ready the transition matrix P is often a called a summary, not only func-
tionals thereof, e. g. Keiding et al. (2001) or Glidden (2002). This work
has dealt with a rather involved summary, change in length of stay associ-
ated with an intermediate event. This summary is being used by clinical
researchers, because it obviously makes sense to them, but we have found it
somewhat involved to settle on a formal definition. An intrinsic problem is
that there is no immediate way of formalizing what the distribution of the
time until the intermediate event occurs is, since it may, but need not oc-
cur. In fact, such a distribution is sometimes used in the literature without
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explicitly stating what is meant by it. To deal with this problem we have
introduced the waiting time T0 in the initial state 0 and the waiting time T
in the sub-state-space {0, 1}. The pair of waiting times (T0, T ), interpretable
as the random time interval [T0, T ], has all the ingredients we desire: Firstly,
it is important to note that the state of the stochastic process Xt (with state
space {0, 1, 2} and initial distribution degenerated in state 0) at time t is com-
pletely determined by (T0, T ), cf. Equation (2.9): There is no way to learn
more from the data than knowledge of P (T0,T ). Secondly, we have argued
that the time the intermediate event occurs — if it occurs — is crucial, since
it cannot have an effect on the occurrence of the terminal event before. This
is perfectly mirrored by the random time interval [T0, T ]. Its length denotes
the random time span spent in the intermediate state, possibly zero. If its
length is positive, its left limit denotes the time the intermediate event has
occurred. It is meaningful and unambiguous to consider the joint distribution
of (T0, T ). The data according to (T0, T ) are observable except for indepen-
dent right-censoring, no hypothetical quantities are involved. Thirdly, and
important for applications, the meaning of the random time interval [T0, T ]
can be communicated to practioners without being overtly technical. One
may speak of it as the random time span spent in the intermediate state until
discharge/death. (This is only a little imprecise, as at time T the individual
reaches the absorbing state.)

We have shown in Equation (2.22) that the joint distribution function
can be expressed as functional of the transition matrix P. We may think
of the joint distribution of (T0, T ) as a summary of P, the way P is a sum-
mary of the transition intensities. However, an analysis of the impact of an
intermediate event will not likely stop with estimating P (T0,T ). An empiri-
cal joint distribution for the data used by Schulgen and Schumacher (1996)
is displayed in Figure 5.2. Fortunately, the data are complete, so that the
picture is not complicated by right-censored observations. Still, it is hard to
judge on grounds of this figure whether an infection prolongs hospital stay,
say, and if so, for how many days. Further summaries are needed. Figure 5.3
illustrates one step of how we have computed a summary from the empirical
distribution of Figure 5.2: The data are split according to infection status
on day 5. One gets the impression that the average LOS within the unin-
fected group is lower, mainly because of the large number of observations on
the lower left part of the diagonal. Our summary considers a series of plots
like Figure 5.3, so to speak, and eventually computes a weighted average of
differences of average LOS gathered from these plots. The weights are much
harder to grasp from a plot like Figure 5.2, and Figures 2.6 and 2.7 offer a
much nicer graphical presentation of the summary. Still, Figures 5.2 and 5.3
show how a summary evolves from the joint distribution of (T0, T ).
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Infected on day 5

T0

T

3 4 5

6
10

15
20

Not Infected on day 5

T0

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

direct discharge/death
nosocomial pneumonia prior to discharge/death

Figure 5.3: Observed pairs of waiting times (T0, T ) for the data originally
used by Schulgen and Schumacher (1996) for individuals who were still in
hospital on day 5 (i. e. with T > 5). The left plot corresponds to the ‘cases’
on day 5, i. e. patients infected on day 5 (T0 ≤ 5). The right plot corresponds
to the ‘controls’ on day 5 (T0 > 5). Note that the y-axis has been truncated
at day 20 to better separate points on the diagonal for plotting. Also, the
data have again been jittered as in Figure 5.2. Confer Figure 5.2 for a plot
with untruncated axes.

We have shown that weak convergence of an estimator of P (T0,T ) can be
derived from weak convergence of the Aalen-Johansen estimator of P, and
that weak convergence also carries over to a plug-in estimator of the summary
measure, if the latter can be written as an Hadamard-differentiable functional
of P (T0,T ). This constitutes a general approach to analyse the impact of an
intermediate on a terminal event:

• Write the data as a pair of waiting times (T0, T ).

• Quantify the impact of the intermediate event as functional of P (T0,T ).

• Show Hadamard-differentiability of the functional.

• Estimate P (T0,T ) via the Aalen-Johansen estimator.
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• Plug in the estimate of P (T0,T ) in order to estimate the summary.

We have seen that summaries may be rather involved. It is therefore an
important surplus of this program that by Hadamard-differentiability of the
summary and the delta method we get asymptotic correctness of the boot-
strap.

5.1.3 Bivariate approaches in the literature

We have stated in Chapter 3.1 that the general bivariate case is essentially
more difficult than ours. Still, there has been some related work: Most
recently, Jiang and coworkers in a series of articles (Fine et al. (2001),
Kosorok et al. (2002), Jiang et al. (2003), Jiang et al. (2004)) as well
as Wang (2003a) have considered the so-called semi-competing risks model.
This model is closely related to both our three-state model and the latent
failure time model for competing risks: The waiting time in the initial state
is modelled as the minimum of two latent failure times. Unlike the classical
competing risks setting, however, both latent failure times can be observed,
if first the intermediate event occurs and then the absorbing state is entered.
Otherwise the time until the intermediate event is said to be (possibly de-
pendently) censored by the time to the absorbing state. Interest focuses on
the dependence structure between the latent failure times, which is mod-
elled by a so-called copula, and on estimating the marginal distribution of
the latent failure time until the occurrence of the intermediate event. The
copula function also serves the purpose of reducing estimating the bivariate
distribution to estimating the marginals. For related work on (then explic-
itly called:) dependent competing risks see, e. g., Moeschberger and Klein
(1995) and Rivest and Wells (2001). For related work explicitly interested
in measuring the dependence structure of bivariate failure times see, e. g.,
Fan et al. (2000) and Fan and Prentice (2002). Another line of research
models that a fraction of the population in the initial state is not susceptible
to experiencing a certain event, infection, say. See Wang (2003b) for a recent
application to semi-competing risks.

The scope of semi-competing risks models somewhat differs from ours:
Firstly, it has been an essential feature of our approach to model the ob-
servable data only. Secondly, our interest has laid less on the marginal dis-
tribution of the time until nosocomial infection or on explicitly modelling
the dependence between that time and the discharge time, but rather on the
effect of the intermediate event on the residual time to discharge. Study-
ing the relationship between semi-competing risks models and the approach
suggested in this work promises to be interesting research.



5.2. GENERAL 87

For general bivariate survival analysis, the most famous estimator of the
joint distribution function is probably the Dabrowska-estimator (Dabrowska
(1988) and Dabrowska (1989)). (See Prentice and Kalbfleisch (2003) for an
overview on recent work in this area and also Prentice et al. (2004) for recent
work on bivariate survival function estimation.) The difficulties encountered
in bivariate survival reduce to a certain degree if there is only one outward
censoring mechanism, i. e. if both failure times are censored by one com-
mon censoring variable, see Lin and Ying (1993), Tsai and Crowley (1998),
Kosorok (2002) and van der Laan et al. (2002). It has been noted in the liter-
ature that bivariate survival under univariate censoring can be described as a
multi-state model (e. g. Hougaard (2000), Chapter 14 as well as Figures 5.12–
5.14); we do not know, however, of any explicit use of the Aalen-Johansen
estimator to estimate the bivariate distribution function like we have done fol-
lowing Equation (2.21) in our (admittedly even more restricted) multi-state
setting . Lin and Ying (1993) mention, inter alia, an example which would
be a classic for multi-state modelling — development of AIDS and time to
death among HIV-infected persons —, but then pursue different techniques
(as does the other aforementioned work), see Remark 2.1. Still, the time-
bivariate aspect, which has played such a prominent role in our treatment of
an intermediate event within the three-state model, has at least been present
in form of an ‘undercurrent’ in the literature on multi-state models and the
Aalen-Johansen estimator. Very importantly, Gill and Johansen (1990) have
treated product integration as a functional between spaces of interval func-
tions, see Chapter 3.1. In his seminal paper on multivariate survival analysis
(Gill (1992a), Gill (1992b)), Gill mentions ‘Markov [. . . ] models for mod-
eling the different stages in an individual’s life history’ as one example for
a time-univariate analysis, where the general problem is time-multivariate.
The use of the Aalen-Johansen estimator to study bivariate survival under
univariate censoring certainly deserves further research.

5.2 General

Based on previous work by Schulgen and Schumacher (1996), we have stud-
ied expected change in LOS associated with an intermediate event using
multi-state models, thereby adequately accounting for the timing of events.
We have refined and rigorously formulated the approach of Schulgen and
Schumacher (1996). The refinements are seen to make a difference in con-
crete analyses. We have extended their approach to distinguishing the effect
of an intermediate event on two competing endpoints, which is of interest
not only in the nosocomial infection example. Large sample properties have



88 CHAPTER 5. DISCUSSION

been given, and the program constitutes a general framework for analysing
summaries that quantify the impact of an intermediate event. There are,
however, numerous points worthwhile of further research. Areas connected
to bivariate survival have been mentioned in the previous section. A number
of points are essentially on the work in this thesis:

• Our large sample properties hold for some true subinterval (q, r) of
[0, τ ]. Usually, as in our motivating data examples, it should be possible
to choose (q, r) large enough to suffice for applications. Still, it would be
more pleasing to get rid of this restriction. A related issue is considering
the multi-state model on [0,∞) rather than on the finite interval [0, τ ].

• The confidence intervals of Table 3.1 leave something to be desired.
Intuitively, we think that zero ‘should not’ be included, i. e. we are a
priori sure that a nosocomial infection prolongs hospital stay. We have
used bootstrap standard errors based on the bootstrap distribution of
the respective nonparametric estimators and the normal limit results to
compute the confidence intervals. We should note however that there
is not one single way to apply bootstrap methods to this problem.
Empirical comparisons appear to be worthwhile. We refer to Davison
and Hinkley (1997), Chapter 5, for a detailed discussion.

• An analytical evaluation of the limit variables will also be of interest,
in particular in connection with the latter item, although very likely
burdensome.

There are, of course, further issues:

• We have built on what Schulgen and Schumacher (1996) called ‘ap-
proach B’, which did not use hypothetical quantities. In addition,
Schulgen and Schumacher (1996) have considered alternative methods.
One approach, in a kind of sensitivity analysis, varied the transition
intensity α01 of acquiring a nosocomial infection by factors between
zero and one. Future applications of this approach could possibly ac-
count for dependence between intensities by means of frailty models,
cf. Hougaard (2000). In a third approach, Schulgen and Schumacher
(1996) used structural nested failure time models, cf. Robins et al.
(1992), considering counterfactual lengths of hospital stay, had the in-
dividual patient (not) acquired a nosocomial infection. Interestingly, all
three approaches considered by Schulgen and Schumacher (1996) pro-
vided comparable results. Future research on these approaches might
consider the connection to the framework of this thesis. One interesting
question is how the different weighting schemes of Chapter 2.3 fit into
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the alternative suggestions of Schulgen and Schumacher (1996). As an-
other worthwhile problem, one might study these alternative quantities
as functionals of the joint distribution of (T0, T ).

• Apart from the aforementioned alternative quantities considered by
Schulgen and Schumacher (1996), there may be further functionals of
interest. One interesting research question would be how to incorporate
(and account for) length of stay so far in the intermediate state into
our notion of change in LOS given status at some fixed time. This
information is contained in the pair (T0, T ). (Note that the functional∫
φ dP T0 implicitly takes the time spent in the intermediate state into

account, since one contributes the longer to this weighted average, the
longer one has been in the intermediate state.)

• An area completely neglected in this work, but very important is that
of regression models. An incorporation of discrete covariates would
be straightforward by means of Equation (2.13); here, the expectation
of T could be further conditioned on the discrete covariates. Also,
one might seek to model the influence of covariates on the transition
probabilities and to move on thence. Aalen et al. (2001) and Andersen
et al. (2003) have put forward recent proposals how to adjust transition
probabilities for covariate values directly. Another line of research deals
with ‘functional mean models’, see Fine et al. (2004) for a recent
reference.

• Yet another important issue is that of efficiency (in some appropriate
asymptotic sense). See Wellner (1992) for a brief overview on empirical
processes and efficiency, for connections to Hadamard-differentiability
see van der Vaart (1991) and Gill and van der Vaart (1993). Van der
Laan (1995) considers the case of bivariate survival; see also van der
Laan and Gill (1999) for a more recent reference.



90 CHAPTER 5. DISCUSSION



Appendix A

An R-program to compute
change in LOS

In this section, we briefly introduce an R-program to estimate
∫
φ dP T0,∫

φ dP T0|XT0
=1 and

∫
φ dP T0|XT0

6=1. So far, we have emphasized the impor-
tance of the bootstrap in our setting, and it is consequently important to
have a fast program to do the computations in practice. Our R-function
cLOS() makes heavy use of R’s ability to perform calculations on arrays to
achieve this. One run only took about 2–3 seconds on a multi-user Linux PC
for the SIR 3 data encompassing 1876 admissions, whereas generating 2000
bootstrap replicates of the data lasted for about one and a half hours. We
make a short comment on some computational issues as well as on the data
structure. For the latter, note that R allows ∞ as a numerical value which
we will use to provide for a concise and intuitive representation of the data.
This data structure has one row per patient and is therefore well suited to
be bootstrapped.

A.1 Some computational issues

Denote the observed event times by t1, t2, . . . , tn, where experiencing a com-
plication, being discharged and death are considered an ‘event’. In addition,
let τ̂ denote the largest observed time. This may be a pure censoring time
and τ̂ > tn; otherwise, if the largest observed time was an event time, τ̂ = tn.
We will need to estimate expected times of hospital stay given status at time
ti, i = 1, . . . , n. We will rely on the fact that the expectation of a non-
negative random variable may be computed as the integral over its survival

91
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function, see Chapter 2.6.2. Thus, the following equations hold:

Ê (T |Xti = 1) = ti+1 + (ti+2 − ti+1, ti+3 − ti+2, . . . , τ − tn) ·(
P̂11(ti, ti+1), P̂11(ti, ti+2), . . . , P̂11(ti, tn)

)>

Ê (T |Xti = 0) = ti+1 + (ti+2 − ti+1, ti+3 − ti+2, . . . , τ − tn) ·
(
P̂00(ti, ti+1)

+ P̂01(ti, ti+1), P̂00(ti, ti+2) + P̂01(ti, ti+2), . . . , P̂00(ti, tn) + P̂01(ti, tn)
)>

To compute these terms, we will need the Aalen-Johansen estimator which
was introduced at the beginning of Chapter 2.6 as a finite product of matrices
P̂(ti−, ti). It will be convenient to have the Aalen-Johansen estimates neces-

sary for computing Ê
(
T |Xti+1

= ·
)

available when computing Ê (T |Xti = ·),
since

P̂ (ti, ti+1) = P̂(ti+1−, ti+1),

P̂ (ti, ti+2) = P̂(ti+1−, ti+1) · P̂ (ti+1, ti+2) ,
...

P̂ (ti, tn) = P̂(ti+1−, ti+1) · P̂ (ti+1, tn) .

This backward algorithm has been explicitly mentioned by Aalen and Jo-
hansen (1978) in their original paper on the estimator P̂. One easily verifies

that Ê
(
T |Xtn−1 = ·

)
= τ . Our R-program therefore starts with computing

Ê
(
T |Xtn−2 = ·

)
and moves ‘down’ to Ê (T |Xt1 = ·).

A.2 Data structure and running the program

Our R-function cLOS to compute change in LOS due to an intermediate
event requires a data frame (of the data on LOS) passed to the argument
my.data. A second argument, a vector x, is only required for bootstrapping
the computed change in LOS. To run cLOS, the package survival has to be
loaded.

Assume the data set on LOS is named los.data. It should be a data
frame, which can be achieved by help of the R function data.frame. Usually,
data sets in R will already be data frames. los.data should have one row
per patient and should include the variables j.01, j.02, j.03, j.12, j.13
and cens. The variables starting with ‘j’ will hold the time when a respec-
tive transition (or ‘jump’) was observed within the state space depicted in
Figure 4.1. E. g., if a patient experiences a complication 7 days after admis-
sion to hospital and is being discharged 23 days after admission, the variable
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j.01 will be equal to 7, and the variable j.12 will be equal to 23. Entries
for non-observed transitions have to be set to infinity, which is represented
in R by Inf. In the example, the variables j.02, j.03 and j.13 would be
set to Inf. Note that setting transitions that do not occur to infinity recalls
the idea of what we have termed T̃0 in Equation (5.2).

In addition, if a patient is censored, i. e. still in hospital by the end of
the study, the variable cens is set to the time when censoring occurred. If
the patient is not censored, it is set to Inf. This is the case in our exam-
ple. The exemplary patient would yield the following entry to los.data:
j.01 j.02 j.03 j.12 j.13 cens

7 Inf Inf 23 Inf Inf

These variables fully describe the patients’ movements within the state space
depicted in Figure 4.1. The mechanism is best illustrated by an example:
E. g., the number of patients who experienced a complication is given by:
los.data[is.finite(los.data$j.01),]

and the number of patients censored without having experienced a compli-
cation yet is given by:
los.data[is.infinite(los.data$j.01) & is.finite(los.data$cens),]

The change in LOS can now be computed as:
los.result <- cLOS(my.data=los.data)

los.result will be a list with the following arguments:

cLOS change in LOS
times time points t1, t2, . . . , tn
e.given.1 estimates E (T |Xti = 1) , i = 1, . . . n
e.given.0 estimates E (T |Xti = 0) , i = 1, . . . n
weights weights for the weighted average w. r. t. dP T0

matrices matrices P̂(t1−, t1), P̂(t2−, t2), . . . , P̂(tn−, tn)
Weights for the alternative weighting schemes are also provided for in

the code below, although not returned in the list above in order to save on
computational resources. The code is easily altered accordingly.

In addition, the function cLOS provides a straightforward way to compute
bootstrap variances based on the bootstrap distribution of the estimator.
Note that a number of R packages provide bootstrap functions. For instance,
after the R package bootstrap has been loaded, this may be done (with, e. g.,
2000 bootstrap samples) by means of:
los.var <- bootstrap(x=1:length(los.data[,1]), nboot=2000,

theta=function(x){y <- cLOS(x); return(y$cLOS)}, func=var)

The bootstrap standard error is now given by:
sqrt(los.var$func.thetastar)
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A.3 Code for cLOS()

The following code is extensively documented. Comments are preceded by
one or more characters #.

"cLOS" <- function(x=NA, my.data)

{

## This program is published under the terms of the GNU General

## Public License. The terms of GNU General Public License can be

## obtained at http://www.gnu.org/copyleft/gpl.html. The program

## is free software and comes with absolutely no warranty. It may

## be redistributed under the conditions of the GNU

## General Public License.

## Author: Jan Beyersmann, jan@fdm.uni-freiburg.de

## need package survival

require(survival)

## need x for bootstrapping, e. g.:

## library(bootstrap)

## result <- bootstrap(x=1:length(los.data[,1]), nboot=50,

## theta=function(x){y <- cLOS(x); return(y$cLOS)}, func=var)

if(is.na(x[1])){## war bis 19.9.04: if(is.na(x)){

x <- 1:length(my.data[,1])

}

my.data <- my.data[x,]

## compute variables cens.0 for admissions censored in the

## initial state 0 and cens.1 for admissions censored in state 1

my.data$cens.0 <- my.data$cens

my.data$cens.0[is.finite(my.data$j.01)] <- Inf

my.data$cens.1 <- my.data$cens

my.data$cens.1[is.infinite(my.data$j.01)] <- Inf

## compute ‘transition matrix’ for every jump time

jump.times <- sort(unique(c(my.data$j.01, my.data$j.02,

my.data$j.03, my.data$j.12, my.data$j.13)))

jump.times <- jump.times[is.finite(jump.times)]
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jump.matrices <- array(0, c(4,4,length(jump.times)))

for(i in 1:length(jump.times)){

## compute number of jumps

jump.matrices[1,2,i] <- length(my.data$j.01

[my.data$j.01==jump.times[i]]) ## jump 0->1

jump.matrices[1,3,i] <- length(my.data$j.02

[my.data$j.02==jump.times[i]]) ## jump 0->2

jump.matrices[1,4,i] <- length(my.data$j.03

[my.data$j.03==jump.times[i]])

# etc.

jump.matrices[2,3,i] <-

length(my.data$j.12[my.data$j.12==jump.times[i]])

jump.matrices[2,4,i] <-

length(my.data$j.13[my.data$j.13==jump.times[i]])

## divide by number at risk

## (only necessary, if risk set is not empty)

risk.0 <- length(my.data[,1]) - length(

c(my.data$j.01, my.data$j.02, my.data$j.03, my.data$cens.0)

[c(my.data$j.01, my.data$j.02, my.data$j.03, my.data$cens.0)

< jump.times[i]])

risk.1 <- length(my.data$j.01[my.data$j.01 < jump.times[i]])

- length(c(my.data$j.12, my.data$j.13,my.data$cens.1)

[c(my.data$j.12, my.data$j.13, my.data$cens.1)

< jump.times[i]])

if(risk.0 > 0) jump.matrices[1,,i]

<- jump.matrices[1,,i]/risk.0

if(risk.1 > 0) jump.matrices[2,,i]

<- jump.matrices[2,,i]/risk.1

## compute diagonal elements; sum over each row should be 1.

jump.matrices[,,i] <- jump.matrices[,,i] + diag(1,4,4) -

diag(apply(jump.matrices[,,i], 1, sum))

}## end of compute transition matrices
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## compute expected LOS given the state at every observed

## transition time _except for_ the greatest observed time

## (which may be a censoring time)

## is there a censoring time greater than the last observed

## transition time? my.times <- sort(unique(c(jump.times,

## max(my.data$cens[is.finite(my.data$cens)], jump.times))))

los <- matrix(data=rep(my.times,3), ncol=3, byrow=FALSE,

dimnames=list(NULL, c("Time", "Given in state 1",

"Given in state

0"))) los[length(my.times)-1,2:3] <- rep(max(my.times), 2)

## last two rows in los already correct. compute the rest,

## starting with the last but two row (which corresponds to the

## third greatest time in my.times)

## will need to temporarily store Aalen-Johansen estimates aj <-

## array(NA, c(4,4,1)) aj[,,1] <- diag(1,4,4)

## will need function that does matrix multiplication running

## thru the ‘slices’ of array aj "my.function" <-

## function(x,y){x%*%aj[,,y]}

for(i in (length(my.times)-2):1){

## compute time differences diffs <-

## diff(my.times[(i+1):length(my.times)])

## find ‘transition matrix’ that corresponds to my.times[i +

## 1]... my.matrix <-

## jump.matrices[,,length(jump.times[jump.times <= my.times[

## i + 1]])]

## ...and multiply it with Aalen-Johansen estimates of the

## previous loop

aj <- array(apply(X=diag(1:dim(aj)[3]), 1, my.function,

x=my.matrix), c(4,4,dim(aj)[3]))

## LOS given in state 1 at time my.times[i] los[,2][i] <-

## my.times[i+1] + matrix(diffs, nrow=1) %*%

## matrix(aj[2,2,],ncol=1)
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## LOS given in state 0 at time my.times[i] los[,3][i] <-

## my.times[i+1] + matrix(diffs, nrow=1) %*% matrix((aj[1,1,]

## + aj[1,2,]),ncol=1)

## stack identity matrix on top for the next loop

aj <- array(c(diag(1,4,4), aj), c(4,4, (dim(aj)[3] + 1)))

}

## compute distribution to weight differences in LOS

## need waiting time distribution in initial state 0.

## create a survival object and fit it.

## event: left state 0. T0 <-

## Surv(apply(as.matrix(my.data[, c("j.01","j.02",

## "j.03","cens")]), 1, min), 1-is.finite(my.data$cens.0))

## T0.fit <- survfit(T0)

## Only need ‘time’ and ‘surv’ for non-censoring

## events: T0.fit$time <- T0.fit$time[T0.fit$n.event!=0]

## T0.fit$surv <- T0.fit$surv[T0.fit$n.event!=0]

## weight by waiting time distribution in initial state 0

## need mass for each event time my.weights[i] corresponds

## to T0.fit$time[i] my.weights <- diff(c(0,1-T0.fit$surv))

## compute estimate estimate <-

## matrix((los[,2]-los[,3])[is.element(los[,1], T0.fit$time)],

## nrow=1) %*% matrix(my.weights, ncol=1)

## return results my.return <- list(cLOS=estimate,

## times=jump.times, e.given.1=c(los[,2]), e.given.0=c(los[,3]),

## weights=my.weights, matrices=jump.matrices)

return(my.return)

## 2nd: waiting time distribution in initial state 0

## given cause for leaving is state 1

pr.cause1 <-
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matrix(c(1, T0.fit$surv[1:length(T0.fit$surv)-1]),nrow=1) %*%

matrix(jump.matrices[1,2,][is.element(jump.times,T0.fit$time)]

, ncol=1)

## my.weights.1[i] corresponds to T0.fit$time[i] my.weights.1

## <- diag(diag(c(1, T0.fit$surv[1:length(T0.fit$surv)-1]))

## %*% diag(jump.matrices[1,2,]

## [is.element(jump.times, T0.fit$time)]))/ pr.cause1

estimate.1 <- matrix((los[,2]-los[,3])[is.element(los[,1],

T0.fit$time)], nrow=1) %*% matrix(my.weights.1, ncol=1)

## 3rd: waiting time distribution in initial state 0 given

## cause for leaving are states 2 or 3

pr.cause23 <- matrix(c(1,

T0.fit$surv[1:length(T0.fit$surv)-1]),nrow=1) %*%

matrix((jump.matrices[1,3,] + jump.matrices[1,4,])

[is.element(jump.times, T0.fit$time)], ncol=1)

## my.weights.23[i] corresponds to

## T0.fit$time[i] my.weights.23 <-

## diag(diag(c(1, T0.fit$surv[1:length(T0.fit$surv)-1])) %*%

## diag((jump.matrices[1,3,] +

## jump.matrices[1,4,])[is.element(jump.times, T0.fit$time)])) /

## pr.cause23

estimate.23 <- matrix((los[,2]-los[,3])[is.element(los[,1],

T0.fit$time)], nrow=1) %*% matrix(my.weights.23, ncol=1)

## return results my.return <- list(overall=estimate,

## given.1=estimate.1, given.no1=estimate.23)

return(my.return)

}## end of function



Appendix B

Symbol index and list of
abbreviations

The symbol index lists symbols in the order in which they appear in the
thesis. Symbols that are only used in the immediate context in which they
have been defined are not listed. In Chapter 4, some symbols are adapted
to the new four-state model. For instance, the transition matrix becomes
a 4 × 4- instead of 3 × 3-matrix. The adaptions are made in Chapter 4.1
and Chapter 4.5, respectively. Since the symbols’ essential meaning does not
change and they are only used in the described way in Chapter 4, they have
not been listed twice.

Symbol index
1(·) indicator function
(Xt)t stochastic process with finite state-space
Phj(s, t) transition probability, see (2.1)
P(s, t) transition matrix, see (2.2)
αhj(t) transition intensity, see (2.3)
Ahj(t) integrated transition intensity, see (2.4)
A(t) matrix of integrated transition intensities, see page 53
τ finite time defined as sup{t : Xt 6= absorbing state}, see (2.5)
T length of stay (LOS), see (2.7)
T0 waiting time in initial state, see (2.8)
F distribution function of (T0, T ), see (2.11)
φ(s) change in LOS given status at time s, see (2.15)
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Symbol index (cont.)

P̂(s, t) Aalen-Johansen estimator of the transition matrix

F̂ estimator of the distribution function F of (T0, T ),
see (2.23)

D→ weak convergence, see p. 39
D ([0, τ ]2) bivariate cadlag functions on [0, τ ]2, see Defini-

tion 3.1
D ([0, τ ]) univariate cadlag functions on [0, τ ], see p. 39
C ([0, τ ]) univariate continuous functions on [0, τ ], see p. 40

(T
(i)
0 , T (i)), i = 1, . . . , n n i. i. d. replicates of (T0, T ), see page 41

f(s+, t) limsn→s,sn>s f(sn, t), see p. 43
||f ||, ||f ||[0,τ ]2 supremum norm for function f on [0, τ ]2, see (3.1)
l∞ ([0, τ ]2) uniformly bounded functions on [0, τ ]2, see (3.2)
ι(G, s, r) see (3.6)
ψ0, ψ

′
0,F see Lemma 3.4

ι̃(G, s, q, r) see (3.8)
ψ1, ψ

′
1,F see Lemma 3.6

ψ, ψ′
F see Lemma 3.7

ψ̃, ψ̃′
F see Lemma 3.10

ϕ, ϕ′ see Lemma 3.11

I identity matrix, see page 53
product integral, see page 53

(X
(i)
t )t, i = 1, . . . , n n i. i. d. replicates of (Xt)t, see page 54

N(t) := (Nhj; h 6= j) (t) counting process, see (3.9)
Yh(t) risk set process, see (3.10)
Jh(t) defined as 1 (Yh(t) > 0), see (3.11)
λ := (λhj; h 6= j) intensity process, see (3.12)
ρ, ρ′

P
see Lemma 3.17
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Abbreviations
cadlag continu à droite, limité à gauche
edf empirical distribution function
HR hazard ratio
ICU intensive care unit
IE intermediate event
NI nosocomial infection
SE standard error
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