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Abstract

Health care is currently undergoing a radical change from a evidenced based medicine
towards a more personalized, precise and systematic approach. Therefore, a variety of
data sources, including conventional clinical data, imaging, molecular and genetic data
from high-throughput methods, etc, are needed to provide accurate results. But it is the
interplay of different research areas, such as biology, medicine and bioinformatics, that
enables competent data analysis and interpretation.
Within this thesis a broad spectrum of tools and methods has been applied to answer

specific scientific questions ranging from in vitro studies on an acute myeloid leukemia
(AML) cell line, to studies within a mouse model for clear cell renal cell carcinoma
(ccRCC), and actual in in vivo studies in patients with familial myelodysplastic syn-
drome (MDS). Additionally, a bioinformatics pipeline was developed to analyse the
patients of the molecular tumor board (MTB) Freiburg followed by a subsequent stake-
holder analysis to clarify the needs of clinicians on a platform that supports the MTB.
In summary, this thesis consists of a compendium of manifold applied bioinformatics

approaches that use multi omics high-throughput data sets as well as conventional clin-
ical and biological data to answer different research questions with the aim to foster a
more personalized, precise and systematic way in patient care.
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Zusammenfassung

Die medizinische Versorgung vollzieht derzeit einen radikalen Wandel von einer evidenz-
basierten Medizin hin zu einem stärker personalisierten, präziseren und systematischeren
Ansatz. Daher wird eine Vielzahl von Datenquellen benötigt, darunter konventionelle
klinische Daten, Bildgebung, molekulare und genetische Daten aus Hochdurchsatzver-
fahren usw., um präzise Ergebnisse liefern zu können. Aber erst das Zusammenspiel
verschiedener Forschungsgebiete, wie Biologie, Medizin und Bioinformatik, ermöglicht
eine kompetente Datenanalyse und -interpretation.
Im Rahmen dieser Arbeit wurde ein breites Spektrum an Werkzeugen und Methoden

angewandt, um spezifische wissenschaftliche Fragen zu beantworten, die von in vitro-
Studien an einer Zelllinie der akuten myeloischen Leukämie (AML) über Studien mit
einem Mausmodell für das klarzellige Nierenzellkarzinom (ccRCC) bis hin zu tatsäch-
lichen in vivo-Studien an Patienten mit dem familiären myelodysplastischen Syndrom
(MDS) reichen. Zusätzlich wurde eine Bioinformatik-Pipeline entwickelt, um die Pati-
enten des Molekularen Tumorboards (MTB) Freiburg zu analysieren, gefolgt von einer
anschließenden Stakeholder-Analyse zur Klärung der Bedürfnisse der Kliniker an eine
Plattform, die das MTB unterstützt.
Zusammenfassend besteht diese Arbeit aus einem Kompendium vielfältig angewandter

bioinformatischer Ansätze, die sich sowohl mit Multi Omics Hochdurchsatz-Datensätzen
als auch mit konventionellen klinischen und biologischen Daten befassen, um verschie-
denste Forschungsfragen zu beantworten, mit dem Ziel, eine individuellere, präzisere und
systematischere Art der Patientenversorgung zu fördern.
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1 Introduction

1.1 Systems medicine

Despite the fact that medicine has always been personalized, different terms or termi-
nologies exist nowadays trying to describe a more personalized, precise and systematic
approach to tackle various diseases. Terms like personalized medicine, P4 medicine
(P4 = predictive, preventive, personalized and participatory) or precision medicine and
systems medicine illustrate the desire to establish a novel and advanced approach in
medicine [Apweiler et al., 2018]. The goal, all the approaches have in common, is to im-
prove diagnosis, target therapies, prognosis and prevention. The term ’systems medicine’
includes the word systems, which intuitively describes a set of newly linked objects. In
the context of medicine or biology this could be networks of connected molecules or
populations of interacting cells. The first task in a systems approach is to identify the
relevant yet measurable parameters. Afterwards, the system needs to be modeled such
that the interactions in the system are described in a meaningful way and lead to the
desired output. In a final step, the consequences of a particular interaction are studied
and transferred to disease treatment and prevention [Apweiler et al., 2018].

For all the steps in systems medicine the combination of statistical, mathematical and
computational tools and methods is for the appropriate data sets needed. In systems
medicine all parts of different data sources are incorporated, like the complex biochemical
processes described above as well as physiological and environmental interactions that
sustain living organisms [Federoff and Gostin, 2009].

Modern medicine is rooted on fundamental biological discoveries, elucidation of un-
derlying mechanisms, and is called evidence-based medicine. With this precedence,
symptoms are parsed by organ system, cellular dysfunction, and molecular defect, often
neglecting, due to its complexity, the dynamic interaction of all elements and how they
affect the system as a whole. Therefore, the patient is often viewed as collection of
visceral organs and a nervous system. This leads to an increasingly reduction frame-
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2 1 Introduction

work [Federoff and Gostin, 2009] and to a one-gene-one-disease relationship. However,
for instance the presence of a disease-associated mutation does not always result in man-
ifestation of the disease [Yadav et al., 2020]. Systems medicine tries to get beyond this
reductionism. Type 1 diabetes mellitus and cystic fibrosis are two examples breaking
this paradigm. In diabetes, the genes HLA-DQB1, HLA-DRB1, and 21 non-HLA genes
are known to be contributory, but there are many environmental risk factors affecting
the disease [Federoff and Gostin, 2009]. For cystic fibrosis, the CFTR gene is mainly re-
sponsible for the onset of the disease. Although almost all patients having cystic fibrosis
carrying a CFTR mutation in both alleles. But on the other side, not all individu-
als with disease-associated mutations in the CFTR alleles obtain cystic fibrosis [Yadav
et al., 2020]. Systems medicine, in contrasts, integrates conventional clinical data like
hematologic, clinico-pathological, and imaging data with molecular and genetic data
from multi omics high-throughput methods to achieve greater precision in diagnosis, the
opportunity for earlier intervention, risk-based prevention, individualization of care, and
the optimization of the patient-clinician interface [Federoff and Gostin, 2009].
Only the high availability of high-throughput omics data has made the step towards

systems medicine possible. However, all the aforementioned procedures require a wide
variety of data sources of the highest quality in order to deliver precise results. Addi-
tionally, there is a highly developed understanding of the underlying processes as well
as methods and algorithms from the interdisciplinary fields of biology, systems biology,
medicine, bioinformatics and medical informatics needed.
In the scope of this thesis, six research projects are presented in which numerous tools

and algorithms from all the above-mentioned areas are acquired, adapted, and applied
in order to gain insights and answers to open questions in the context of biological and
medical research. Therefore, handling of multi omics data from genomics and transcrip-
tomics as well as conventional clinical data was required.

1.2 Genomics

Genomics is the interdisciplinary field of biology that studies the structure, function,
evolution, mapping, and editing of genomes. A genome is the complete set of deoxyri-
bonucleic acid (DNA) molecules of an organism that contains all genes and thus the
complete blueprint including instructions for growth, development, function and repro-
duction. The DNA molecule consists of two complementary polynucleotide chains, called
strands, coiled around each other to form a double helix. The two strands are composed
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of one of the four nucleobases adenine (A), thymine (T), guanine (G), cytosine (C),
deoxyribose (sugar) and a phosphate group [Alberts et al., 2014]. The nucleotide chain
is connected by a covalent bond between the sugar and the phosphate group whereas
the strands are connected via hydrogen bonds between the bases to from the double-
stranded DNA. The genetic code of the human genome is organized in 23 chromosomes
containing approximately 3 billion nucleotides [Craig Venter et al., 2001]. Every single
cell in the human body, with the exception of red blood cells, carries at least one copy
of the code in its nucleus. In 1975 Frederick Sanger and Alan Coulson published the
first sequencing method for DNA molecules, a refined version of which is still known and
used today as the Sanger method [Sanger and Coulson, 1975,Sanger et al., 1977]. This
breakthrough in deciphering the genetic code of many species gave birth to the field of
genomics and provided insights into the development and functioning of an organism as
well as into the course and development of diseases, which led to enormous progress in
biological and medical understanding. To meet the high demand for sequencing data,
the Sanger sequencing was superseded by next-generation or high-throughput sequenc-
ing (NGS) methods. NGS technologies produce millions of sequences in a single pass
and enable the sequencing of the entire human genome in less than a day. In 1990, a
huge effort was undertaken from many scientists to decipher the human genome and
after 13 years a first version was published. After another 4 years the human reference
genome was declared "finished" containing less than one error in 20000 base-pairs (bp)
and all chromosomes were assembled [McElheny, 2010].
The genetic information of DNA is contained within genes. A complete set of infor-

mation in an organism is called genotype. A gene is an inheritance unit that contains
transcribable regions, so called open reading frames (ORF), and regulatory regions such
as promoters and enhancers. The regulatory regions control the transcription of the
ORF. The genes are mainly responsible for the functioning and development of an or-
ganism. But only a small fraction of sequences of the genome encode for proteins, e.g.
only about 1.5% of the human genome consists of protein-coding exons [Wolfsberg et al.,
2001].

1.2.1 Gene expression and regulation

During gene expression the genetic code is translated, i.e. the nucleotide sequence of a
gene is translated into the amino acid sequence of a polypeptide that forms a protein.
Two main steps are necessary for this: The first step in formation of proteins is the
transcription of the genetic code contained in the DNA into ribonucleic acid (RNA). Be-
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sides the exchange of thymine (T) to uracil (U), the RNA is a perfect copy of the DNA.
The RNA carrying the protein information is called messenger RNA (mRNA). The start
site of the transcription is defined by a promoter, a small base sequence that marks the
transcription start site (TSS) of a gene. The end of transcription is also marked through
a defined base sequence. In an eukaryote, the mature mRNA is usually shorter than
the original DNA due to a process known as splicing. During RNA-splicing, parts of
a gene sequence (introns) were removed and only the exons remain and are connected
to each other. This process takes place during or immediately after transcription. The
second step is the translation of nucleotide sequences to amino acid sequences. The
amino acid sequence distinguishes the resulting structure and function of the protein.
The translators of the nucleotide sequence into the amino acid sequence are the so called
transfer RNAs (tRNAs), which are carried out on the ribosome. The pathway of the
genetic information is depicted in Fig. 1.1. Apart from mRNAs and tRNAs more RNA
classes exist as described in Tab. 1.1.

The genetic code which carries the blueprint for creating amino acid sequences from
nucleotide sequences has some generic properties related to its functions:

Triplets Three nucleotides, called codons, build the elementary information unit and
encode for a single amino acid. There exist 43 = 64 possible codons. 61 of the 64
codons encode for amino acids, three (UAA, UAG, UGA) encode for stop codons,
i.e. marking the end of a reading section. Two codons, AUG and GUG, encode
for an amino acid (methionine and valine) as well as a start codons, i.e. marking
the beginning of a reading section.

Continuity The triplets are continuously translated. No separators nor overlap of
codons exist.

Degeneracy Although 61 codons encode for amino acids, there exist only 20 different
amino acids. Therefore, an amino acid can be encode by various codons.

Universality Almost all organism use the same genetic code.

In humans exist roughly 21000 coding genes (mRNAs) and about 9000 non-coding
genes. Depending on the cell type, it varies, which genes or how much RNA is tran-
scribed. In general, the cells express between 30 − 60% of the total gene pool. The
amount of transcribed RNA and the selection of genes is not static and could be altered
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Table 1.1: Major types of RNAs and their function [Alberts et al., 2014]

Type of RNA RNA function

mRNAs messenger RNAs encode for protein.
tRNAs transfer RNAs serve as link between mRNA and amino

acids.
rRNAs ribosomal RNAs are the catalytic components of the ribo-

somes and essential for protein synthesis.
snRNAs small nuclear RNAs have various nuclear functions, e.g.

splicing of pre-mRNA.
snoRNAs small nucleolar RNAs process and chemically modify

rRNAs.
scaRNAs small cajal RNAs modify snoRNAs and snRNAs.
miRNAs micro RNAs regulate gene expression.
siRNAs small interfering RNAs turn off gene expression.

Other non-coding RNAs functions in many cell processes, e.g. protein transport and
X-chromosome inactivation.

through external signals. The more differentiated respectively specialized a cell is the
more specific is their expression pattern.

1.2.2 DNA variations

Since DNA contains the blueprint of the genes that are mainly responsible for the de-
velopment and function of an organism, a specific section that correlates with a certain
phenotype is called a quantitative trait loci (QTL). Additionally, a region influencing the
gene expression level is termed expression QTL (eQTL). These regions are of particular
interest in genetics and variations within these regions can change the phenotype by
altering gene expression or the resulting protein structure. Although the organism has
various control and repair mechanisms during DNA replication, transcription or trans-
lation, variations occur with a probability of 1e−8 % per nucleotide. External influences,
such as UV-radiation or chemical substances increase the probability of variations by
breaking or weakening DNA bonds. A disturbed repair mechanism of the organism could
therefore lead to variations within the DNA. In multi-cellular organisms, two forms of
variation are distinguished depending on their heritability:

somatic variations occur in body cells. All cells that originate from these cells via
mitoses carry the variation. Therefore, an organism could consist of cells carrying
the variation and cells without. Somatic variations are not inheritable.
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5'
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5' 3'
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(transcription)

protein synthesis
(translation)

DNA

RNA

PROTEIN
H2N COOH

amino acids
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Genetic pathway - from DNA to protein

Figure 1.1: Genetic pathway: From DNA to protein. The process of protein synthesis
via transcription from DNA to RNA and translation from RNA to protein
occurring in living cells.

germline variations occur in germ cells and are inherited by.

Depending on the size of the DNA variations a distinction is made between:

• gene variants - point mutations

• chromosomal or structural variations

• numerical chromosomal aberrations



1.2 Genomics 7

1.2.2.1 Gene variants - point mutations

The most common variations are so called gene variations or point mutations and occur in
individual gene regions. Single nucleotides can be deleted (deletion), inserted (insertion),
or replaced by another nucleotide (single nucleotide variation (SNV)), as seen in Fig. 1.2.
This can lead to serious changes in the gene product, e.g. when one base is exchanged for
another, a wrong amino acid is incorporated into a protein at the corresponding position
or a newly created stop-codon prematurely terminates the translation of a protein. Due
to the degeneracy of the genetic code, not all mutations lead to consequences in the
resulting protein. Those variations are called ’silent’ or ’synonymous’ mutations. The
different variant classifications of SNVs are depicted in Fig. 1.3.

Variant types

ATTTCACTGTA

ATTTCTCTGTA

reference

SNV

reference

insertion

ATTTCACTGTA

ATTTCAGTCCTGTA

ATTTC--TGTAdeletion } InDel

Figure 1.2: Gene variant types. SNV = single nucleotide variation, InDel = Inser-
tion/Deletion.

If one, two or a number unequal to a multiple of three nucleotides are inserted or
deleted at a position, a frame-shift mutation occurs, i.e. the reading frame of the triplets
is shifted and all consecutive amino acids are affected.
In diploid organism, like humans, every cell carries two complementary copies of the

complete DNA. If both alleles are identical, the state is called homozygous, and if they
differ, it is called heterozygous, as shown in Fig. 1.4. As a result, one can distinguish
between dominant and recessive mutations. For a dominat mutation a heterozygous con-
dition is sufficient to cause a phenotype, whereas for a recessive mutation a homozygous
condition is required. Additionally, loss of heterozygosity (LoH) can occur if a heterozy-
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Variant classification

single nucleotide variant
no mutation

DNA level

mRNA level

protein level

TTC TTT ATC TCC TGC

silent nonsense missense
conservative non-conservative

AAG AAA UAG AGG ACG

Lys Lys STOP Arg Thr

Figure 1.3: Variant classification. The classification of the possible single nucleotide
variations. Lys = lysine, Arg = arginine, Thr = threonine.

gous individual acquires a mutation in the remaining allele leading to a homozygous
state and thus to an observable phenotype.
If a SNV occurs with a frequency of > 0.5% in the population its referred to as a single

nucleotide polymorphism (SNP). Due to the high frequency of SNPs, it is assumed that
they are most likely not the drivers or origin of a rare disease and instead, the focus is
on rare disease variants, especially in cancer research.
Gain-of-function mutations in genes associated with cell growth or cell proliferation

(so-called proto-oncogenes) together with loss-of-function mutations in genes controlling
for cell cycle processes (so-called tumor suppressor genes) play an important role in
the development of cancer through uncontrolled cell growth. Oncogenes and tumor
suppressor genes are grouped together as cancer genes and are frequently studied in the
research field of oncology. Apart from cancer, SNVs on a single gene are also known
to cause various other diseases like Alzheimer’s disease [Wolf et al., 2013], Huntington’
disease [Dayalu and Albin, 2015], or Phenylketonuria [Blau et al., 2010].

1.2.2.2 Chromosomal or structural variations

Chromosomal or structural variations affect the structure of chromosomes and are 1 kilo
base (kb) or larger in size [Freeman, 2006]. A distinction is made between the following
types, as shown in Fig. 1.5,

Deletion Loss of a chromosome fragment.

Duplication Doubling of a section within a chromosome.
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Zygosity
homozygous mutation

phenotype

heterozygous mutation

dominant rezessive

loss of heterozygosity

phenotype no phenotype

phenotype

Figure 1.4: Zygosity. Homozygous and heterozygous mutations and their impact on
phenotype.

Inversion One section rotates 180 degree.

Translocation A chromosomal piece gets transmitted to another, non homologous,
chromosome.

Those structural changes are commonly called copy number variations (CNVs). A
CNV refers to a change in the number of copies of a particular gene or region. In a
diploid organism, each gene consists of two copies and structural variations are thought
to produce gains, three or more copies, or losses, less than one copy.

Structural variations can as well lead to various diseases, such as the Charcot–Marie–Tooth
disease (CMT) caused by a duplication on chromosome 17 around the PMP22 gene [Lup-
ski et al., 1991] or the Cri du chat syndrome caused by a deletion on the p-arm (short
arm) of chromosome 5 [Lejeune et al., 1963].
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Structural variations

deletion

inversion

translocation

duplication

insertion

Figure 1.5: Structural variations. Different types of structural variations.

1.2.2.3 Numerical chromosomal aberration

If the number of chromosomes deviates from the normal configuration, the entire genome
of an organism is affected. This type of variation is known as numerical chromosomal
aberration or chromosome abnormality. The most common chromosome abnormality in
humans is trisomy 21 also known as the Down syndrome [Malt et al., 2013], caused by
the presence of a third copy of chromosome 21.

1.2.3 Fusion genes

A special type of a structural variation is a fusion gene, i.e. a hybrid gene formed
from two independent genes. Fusion genes can occur from translocations, deletions or
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inversions. The first fusion gene described in the early 1980s in the context of cancer was
later termed Philadelphia chromosome; a translocation between chromosomes 9 and 22.
The chromosomal translocation led to the fusion gene BCR/ABL1 which could induce
chronic myeloid leukemia (CML) [Mitelman et al., 2007].





2 Material and Methods

In the following chapter the methods used in this thesis to answer medical and biological
questions were described.

2.1 Genome analysis

Before DNA can be analysed bioinformatically it has to be sequenced. Prior to sequenc-
ing, the DNA needs to be extracted, purified, and the DNA library prepared. In general
the preparation includes five major steps after DNA procedures:

1. Fragmentation

2. Phosphorylation of 5’ ends

3. A-tailing of 3’ ends for adapter ligation

4. Adapter ligation

5. Amplification

Illumina has practically become standard in the field for high-throughput sequencing.
Once the DNA library is prepared, the DNA will be applied to the surface of a so called
flow cell and amplified to form local DNA colonies. The DNA colonies, mixed together
with nucleotides labeled with a fluorophore, are than measured with a high-resolution
camera. This technique is called sequencing by synthesis and the different bases are
distinguished by their fluorescent tag. The output of a sequencing run is stored as a text
file in the FASTQ format. It contains the measured bases and the corresponding quality
scores in ASCII format. One sequence of bases from the sequencer is termed read and
the FASTQ file consists of many such reads. One further distinguishes between single-
end and paired-end reads. For single-end reads, the DNA fragment is only read from on
side whereas for paired-end reads the fragment is read from both directions leading to

13
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a higher accuracy and confidence about the measured bases. Sequencing with the latest
high-throughput devices, like Illumina HighSeq or NovaSeq sequencers, produce around
3 billion reads with a paired-end read length of 150 base pairs (bp). The billion reads
need now to be aligned to their exact location in the reference genome as depicted in
Fig. 2.1 A. But before the process of alignment, the quality of each base contained in
a read has to be analysed and low quality bases were removed. Additionally, adapters
and bases contained in the low quality segment regions of a read, i.e. at the end of
a read, were trimmed to obtain reads with sufficient quality for further processing. In
this work, if not stated differently, a base quality higher than phred-score > 30, i.e. the
probability of a incorrect base is 1 to 1000 or the base call accuracy is 99.9%, is kept.
Trimmomatic [Bolger et al., 2014] was used to perform the task of quality control and
adapter trimming. It uses a sliding window approach to cut the bases once the average
quality fails to reach the quality threshold. For alignment of the reads the method of
’local seed and extend’ using an indexed genome was used as depicted in Fig. 2.1 A.
Therefore the assumption is made that the beginning of a read has few errors. In general,
one has to be aware that sequence alignment is always a trade off between accuracy and
speed and an alignment is never exact.

In this work, the Burrows-Wheeler aligner (bwa) [Li and Durbin, 2010], which relies
on the Burrows-Wheeler transformation, was used for DNA alignment. The Burrows-
Wheeler transformation transforms strings to have repeated characters in sorted order
and than searches whether the DNA fragment is a sub-string of the reference. The
alignment information, including position and mapping quality, is, together with the
information of the read, stored as a text file in the sequence alignment format (SAM or
in a compressed version as BAM).

From an information contextual perspective, a distinction is made between whole
genome sequencing (WGS) and whole exome sequencing (WES). WGS covers the com-
plete genome, including coding and non-coding elements whereas WES focuses only on
coding and functional elements, like protein-coding genes, and approximately 1.2% of
the entire human genome [Sims et al., 2014] is covered. The resulting file size of NGS
depends on the desired coverage or read depth, the read-length and the total size of the
genome. For a complete human genome with a read-length of 100bp and paired-end
sequencing at a coverage of 30x, i.e. each base pair is on average contained in 30 reads,
sums up to a size of 90 GB for WGS respectively 8 GB for WES.
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B - Seed and extend method

AGCCCGT AACACGG
AGCAGAC

seed

Read Index Coordinates

AGCACGT
AGCCCGT

error in seed:
instantly discard

Too many
mismatches
after seed

Final alignments

chr9:77498
chr2:30

chr2:92939
chr1:519

A - Alignment

reads

reference

ATGGCATTGCAATTTGACAT
TGGCATTGCAATTTG

AGATGGTATTG
GATGGCATTGCAA

ATGGCATTGCAATT
AGATGGCATTGCAATTTG

GCATTGCAATTTGAC

AGATGGTATTGCAATTTGACAT

Figure 2.1: Alignment. A Alignment of the reads to the reference genome. B Schema
of the ’seed and extend’ method.

2.1.1 Variant calling

The process of identifying consistent differences between the sequenced reads and the
reference genome is called variant calling. These differences include single nucleotide
variations, small insertions and deletions, and larger copy number variants. Subsequently
to the identification of variants, a proper annotation is necessary and very important.
Depending on the classification of the variants, severe functional implications can occur,
e.g. gain-of-function or loss-of-function mutations. Additionally, the origin of the muta-
tion, i.e. is it a somatic or a germline mutation, the population frequency or minor allele
frequency (MAF), the variant allele frequency (VAF), the potential treatment, etc. is
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inferred or annotated. The variant calling results including the annotation are saved in
a standardized variant calling format (VCF).

In this work, VarScan2 [Koboldt et al., 2012,Koboldt et al., 2013] was used for iden-
tifying the variants and subsequently annotated with annovar [Wang et al., 2010] in-
cluding various databases, e.g. dbNSFP [Liu et al., 2016b] for functional implications,
the Genome Aggregation Database (gnomAD) [Karczewski et al., 2020] for population
frequencies and the drug gene interaction database (DGIdb) [Cotto et al., 2017] for pos-
sible treatment options. If not stated differently, the cutoffs for reporting variants were
VAF > 10%, MAF < 0.1% and only non-silent, i.e. missense and nonsense, variants
were kept. VarScan2 uses the tumor and normal (germline) samples simultaneously as
a pileup file performing pair wise comparisons of sequenced bases and the normalized
read-depth at each position. A heuristic algorithm is used to independently derive the
genotype for the tumor or germline based on the aforementioned limits for VAF, min-
imum coverage (8), baseline quality (30) and adjusted p-value (<0.05). The adjusted
p-value is calculated based on Fisher’s exact test comparing the read counts supporting
either reference or alternative to the expected distribution based on the sequencing er-
ror. A variant with a VAF higher than 75% is considered homozygous. If, at a position,
one or both, tumor and normal, carry a variant, a direct comparison of the genotype
and supporting reads is performed to determine the somatic status. Is a variant present
in the tumor sample it is called somatic, if its present heterozygous in the normal but
homozygous in the tumor it is usually classified as LoH, or if the mutation is shared
by both samples, it is classified as germline. Consecutively, a false-positive filter is ap-
plied to refine the variant call results. The filter aims to correct for the most common
sequencing- or alignment-related artifacts.

2.1.2 Copy number variation calling

Copy number variation calling was performed with the tool Control-FREEC [Boeva
et al., 2011,Boeva et al., 2012] within this work. The used algorithm calculates raw copy
number profiles (CNP) by counting reads in non-overlapping windows. The window size
is dependent and automatically determined by the coverage. Hereafter, the profiles are
normalized either to the supplied control sample or, if not available, by GC content.
The next step is the segmentation of normalized CNP and the analysis of the segmented
profiles. The analyses include the identification of regions of genomic gains or losses and
the prediction of copy number changes in these regions.
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2.2 Trancriptome analysis

The analysis of all transcribed gens within a cell is called transcriptome analysis and
is the foundation for qualitative and quantitative statements about the gene activity of
the studied cells. Depending on the type of data generation, one distinguishes between
microarrays and next-generation sequencing. Both methods have in common that the
RNA is first converted into complementary DNA (cDNA) using reverse transcription.

2.2.1 DNA microarray

A DNA microarray consists of many thousand probes attached to its solid surface. Each
probe carries a specifically designed cDNA sequence belonging to a known transcript.
For a quantitative measurement, the test samples, labeled with a red and green fluores-
cent dye, bind to the corresponding cDNA sequence on the microarray. The position,
intensity, and the emitted wavelength are measured by a high-resolution camera and
provide the information about the amount of bound cDNA. The two most common
manufacturers of microarrays are Affymetrix and Illumina.
The Affymetrix HGU 133 Plus 2 GeneChip microarray was used in this work and its

pre-processing is explained in the following.
The raw Affymetrix CEL Files are imported with the R/Bioconductor [R Development

Core Team, 2008,Gentleman et al., 2004,Huber et al., 2015] package affy [Gautier et al.,
2004]. The CEL files contain the intensity values together with the standard deviation
of each measured probe. After the import, the intensity values are background corrected
and further normalized with the robust multi-array average (RMA) method. RMA fits
a linear model to quantile normalized and log2 transformed intensity values to estimate
the average expression of a gene from multiple probes [Irizarry et al., 2012]. Afterwards,
the probe identifiers are converted to the corresponding gene identifiers. Within this
work, if more than one probe matches to the same gene identifier, the probe with the
largest inter-quartile-range (IQR) across the data set is kept. The resulting matrix
after pre-processing contains gene expression values, i.e. normalized log2-transformed
intensity values, for each measured gene identifier and each sample.

2.2.2 Next-generation sequencing

RNA sequencing follows the same steps as DNA sequencing described above, due to the
reverse transcription of the RNA to cDNA. After the FASTQ files of the sequencing
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are obtained, the reads have to be aligned to the reference genome together with the
annotation of known transcripts with a splice-aware aligner.
In the scope of this thesis, the Spliced Transcripts Alignemnt to a Reference (STAR)

software [Dobin et al., 2013] was used for this purpose. The STAR algorithm consists of
two major steps:

1. seed searching step

2. clustering, stitching and scoring

For each read, the algorithm searches for the longest, exactly matching sequence in the
reference genome. These part of a read is called maximal mapping prefix (MMP). All
the differently aligned parts of a read are called seeds. In a subsequent step STAR
searches the unmapped portion of a read to identify the next longest sequence exactly
matching the reference genome. If a non exact match is identified, STAR allows for
short mismatches compared to the reference and extends the MMP accordingly. But if
the extension does not give a good alignment, the poor quality sequence is soft clipped.
In the second step, the reads are clustered according to proximity to a set of anchor
seeds or seeds without multi-mapping. Afterwards the seeds are stitched together based
on the best alignment, i.e. a score based on mismatches, gaps, etc., for the read. The
aligned reads are subsequently annotated with a gene transfer file (GTF) including the
chromosomal coordinates for every transcript/gene. The STAR output contains the read
counts for every gene within the GTF. A necessary step before down-stream processing
of the raw counts is filtering of low expressed genes. Low expressed genes across all
studied samples in a data set have no biological relevance because a certain amount of
mRNA must be present in a cell for it to be transcribed into a protein.
In this work, a threshold of one count per million (cpm) in at least n samples, whereas

n is equal to the smallest group size in the data set was used. The raw counts need to be
normalized because they are affected by gene-length and total library size, i.e. the total
number of counts in the sequencing run. The two most popular measures for gene-length
normalized counts are either fragments per kilobase million (FPKM) values for paired-
end reads respectively reads per kilobase million (RPKM) values for single-end reads or
transcripts per million (TPM) values. But one major drawback of such measures is the
cross-sample comparison because if the counts are heterogeneously distributed, e.g. if in
one sample only a few highly abundant genes contribute to the biggest part of the library
size, the low expressed genes are underestimated. Therefore, the use of normalization
algorithms addressing such restrictions are recommended. The normalization method
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almost solely used in the community is the weighted trimmed mean of M-value (TMM)
normalization [Head et al., 2014, Conesa et al., 2016] which calculates scaling factors
adjusting for the library size. Although the TMM methods is not correcting for GC bias
and gene length, those effects are negligible for comparative analyses like identifying
differentially expressed genes (DEGs).

2.2.3 Gene expression analysis

Although the two described methods for obtaining gene expression data, namely DNA
microarrays and RNA sequencing (RNA-seq), are based on two completely different
measurements techniques, i.e. DNA microarray intensity values follow a normal distri-
bution whereas the count data from RNA-seq follow a negative binomial distribution,
the same tools can be used for down-stream analyses if the RNA-seq data is used as
log2-transformed CPMs which sufficiently well follow a normal distribution.
In this work, either the R/Bioconductor package limma (including voom if applicable)

[Law et al., 2014,Ritchie et al., 2015] or DESeq2 [Love et al., 2014a,Love et al., 2014b]
were applied for gene expression analysis. The main focus on gene expression analysis
lies in the identification of relative differences in the expression of mRNAs between two,
or more, given groups. More specifically, in the analysis for differentially expressed genes
(DEGs) one tries to distinguish between significant differences between two experimental
conditions or differences occurring just by chance. In the following, the limma workflow
for a RNA-seq experiment is explained in greater detail. After importing the raw counts
and the calculation of normalization factors, the low-expressed genes are filtered out.
Subsequently a dimensionality reduction method, like multidimensional scaling (MDS)
or a principal component analysis (PCA) is used to get an overview about the data and
to identify potential outliers or mislabeled samples. The next step is to define the model
one wants to fit to the data, i.e. define the experimental conditions. The model has to
be defined before applying the voom transformation because voom uses the variance of
the model residuals together with the log2-transformed CPMs to fit a linear model to
each gene obtaining residuals for each. Further, the residuals are used to fit a smoothed
curve to the square root of the residual standard deviation by the average expression
which is later used to obtain weights for each gene and samples that are passed into
limma along with the log2 CPM expression values. Next limma fits a linear model using
weighted least squares to each gene, calculates the contrasts, i.e. log2 fold-changes (FC)
between the groups, and performing empirical Bayes smoothing for standard errors. As
results, for each gene the log2FC, average expression, and some statistical measures like
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p-value or adjusted p-value are reported.

2.2.4 Gene set enrichment analysis

Despite identifying DEGs the normalized expression values can be used to perform a
gene set enrichment analysis (GSEA). The GSEA identifies altered gene sets or path-
ways between two experimental conditions. As gene sets, public available databases
like the Gene Ontology (GO) [Ashburner et al., 2000, Carbon et al., 2019], the Ky-
oto Encyclopedia of Genes and Genomes (KEGG) [Ogata et al., 1999], the Reactome
Pathway Database [Jassal et al., 2020], ConsensusPathDB [Kamburov et al., 2012,Kam-
burov et al., 2013], the Molecular Signatures Database (MSigDB) [Subramanian et al.,
2005,Liberzon et al., 2011,Liberzon et al., 2015], etc. can be used. For the GSEA itself
the R/Bioconductor package GAGE [Luo et al., 2009] was used in this work. GAGE
uses a parametric gene randomization procedure based on the log2FC statistic of each
gene in the data set. The method assumes that the gene set comes from a different
distribution than the background and therefore applies a two-sample t-test accounting
for the variance within the gene set as well as the variance within the background. Ad-
ditionally, GAGE calculates a global p-value for each gene set based on a meta-test on
the negative log sum of the p-values from all one-on-one comparisons.

2.2.5 RNA fusions

For the identification of RNA fusions the tool FusionCatcher [Nicorici et al., 2014] was
used within this work. FusionCatcher uses the raw FASTQ files and an ensemble of
four different methods with four different aligners two identify RNA fusions. The reads
passing the quality and filter criteria are aligned on the transcriptome and additionally
on the genome. All reads mapping to the transcriptome are kept and searched for pairs
such that one read maps on gene A and its paired-read maps on gene B. The identified
gene pairs are than the potential candidate fusions. All unmapped reads are kept as well
and further processed to shrink the candidate fusion list. A unmapped read is counted as
evidence for a candidate fusion if its either found to map on exon-exon junction belonging
to one of the candidate fusion pairs or if its corresponding paired-read maps to one of
the genes forming the candidate fusion. In a further step, the reads are aligned to the
before build database of candidate fusions. A read is counted as evidence for a candidate
fusion if its either found to map on a gene-gene sequence belonging to a candidate fusion
such as the first part of the read maps to the first gene and the second part maps to
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the second gene forming the candidate fusion or the corresponding paired-read maps to
the transcriptome of one of the genes forming the candidate fusion. The resulting list
contains all candidate fusions found with the before mentioned methods.





3 Results

In this chapter, the thesis contains a compendium of research projects answering ques-
tions in the field of systems medicine. A variety of bioinformatics and medical informat-
ics tools are used to elucidate the corresponding data and to clarify specific scientific
questions. In total, there are six projects ranging from in vitro studies of a cancer cell
line, over studies of a cancer entity in a model organism (mouse), and in vivo stud-
ies of a cancer entity in patients, to a bioinformatics approach for molecular tumor
boards which is applied in personalized extended molecular-guided patient care and a
subsequent stakeholder analysis. The research has led to publication, acceptance for
publication or submission of manuscripts to peer-reviewed journals. The manuscripts
include

1. Research on target therapies in acute myeloid leukemia focusing on hypomethy-
lating agents triggering apoptosis pathways [Dittmann et al., 2019]

2. Research on clear cell renal cell carcinoma focusing on the role of two specific genes
on the regulation of tumor development, metabolism and inflammation (accepted
in Nature Communications)

3. Research in patients with GATA2 deficiency in the context of myelodysplastic
syndrome [Kozyra et al., 2020]

4. The development of a bioinformatics workflow to tackle the needs of molecular
tumor boards (in preparations)

5. A retrospective case series of the molecular tumor board Freiburg [Hoefflin et al.,
2018]

6. A stakeholder analysis of the requirements and specifications for a molecular tumor
board to support clinicians [Buechner et al., 2020]

In the next sections the manuscripts are attached together with a short summary and
my contributions to the work.
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3.1 Next-generation hypomethylating agent SGI-110

primes acute myeloid leukemia cells to IAP

antagonist by activating extrinsic and intrinsic

apoptosis pathways

Acute myeloid leukemia (AML) is a disease occurring primarily in older adults mani-
festing itself as a heterogeneous disease characterized by clonal proliferation of poorly
differentiated myeloid cells [O’Donnell et al., 2017]. Prognosis for elderly patients remain
poor due to ineligibility for intensive treatments although some improvements in out-
comes could be achieved for younger AML patients. Therefore, hypomethylating agents
(HMA) are limited and the need for combination strategies is required. A priming of
AML cells with SGI-110 (HMA) sensitizes them to the subsequent treatment with an
antagonist of cellular inhibitor of apoptosis protein 1 and 2 (cIAP1/2 ) and x-linked IAP
(XIAP). Both drugs synergistically induce cell death. In a transcriptome analysis it
could be shown that SGI-110 alone or in combination with ASTX-660 up-regulated the
expression of key regulators of extrinsic as well as intrinsic apoptosis signaling pathways.
Both drugs are acting in a nice interplay providing a link between the two apoptotic
pathways giving rise to a therapeutic potential in AML.

Dittmann, J., Haydn, T., Metzger, P., Ward, G. A., Boerries, M., Vogler, M., Fulda, S.
(2019). Next-generation hypomethylating agent SGI-110 primes acute myeloid
leukemia cells to IAP antagonist by activating extrinsic and intrinsic apop-
tosis pathways. Cell Death and Differentiation.

Contribution: I conducted the transcriptome analyses, including identification of dif-
ferentially expressed genes and gene set enrichment analyses. I wrote the materials and
methods parts Transcriptome analysis and Gene set enrichment analysis (GSEA). I
produced figure 3 and revised the whole manuscript.
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Abstract
Therapeutic efficacy of first-generation hypomethylating agents (HMAs) is limited in elderly acute myeloid leukemia (AML)
patients. Therefore, combination strategies with targeted therapies are urgently needed. Here, we discover that priming with
SGI-110 (guadecitabine), a next-generation HMA, sensitizes AML cells to ASTX660, a novel antagonist of cellular inhibitor
of apoptosis protein 1 and 2 (cIAP1/2) and X-linked IAP (XIAP). Importantly, SGI-110 and ASTX660 synergistically
induced cell death in a panel of AML cell lines as well as in primary AML samples while largely sparing normal CD34+
human progenitor cells, underlining the translational relevance of this combination. Unbiased transcriptome analysis
revealed that SGI-110 alone or in combination with ASTX660 upregulated the expression of key regulators of both extrinsic
and intrinsic apoptosis signaling pathways such as TNFRSF10B (DR5), FAS, and BAX. Individual knockdown of the death
receptors TNFR1, DR5, and FAS significantly reduced SGI-110/ASTX660-mediated cell death, whereas blocking
antibodies for tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) or FAS ligand (FASLG) failed to
provide protection. Also, TNFα-blocking antibody Enbrel had little protective effect on SGI-110/ASTX660-induced cell
death. Further, SGI-110 and ASTX660 acted in concert to promote cleavage of caspase-8 and BID, thereby providing a link
between extrinsic and intrinsic apoptotic pathways. Consistently, sequential treatment with SGI-110 and ASTX660-triggered
loss of mitochondrial membrane potential (MMP) and BAX activation which contributes to cell death, as BAX silencing
significantly protected from SGI-110/ASTX660-mediated apoptosis. Together, these events culminated in the activation of
caspases-3/-7, nuclear fragmentation, and cell death. In conclusion, SGI-110 and ASTX660 cooperatively induced apoptosis
in AML cells by engaging extrinsic and intrinsic apoptosis pathways, highlighting the therapeutic potential of this
combination for AML.

Introduction

Acute myeloid leukemia (AML) is a heterogeneous disease
characterized by clonal proliferation of poorly differ-
entiated myeloid cells and occurs primarily in older adults
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(age ≥ 60 years) [1]. Despite improvements in outcomes for
younger AML patients in recent decades, the prognosis for
older patients, who are ineligible for intensive treatment,
remains dismal [2], highlighting the urgent need for better
therapeutic options.

Dysfunction of epigenetic modifiers, such as DNA
methyltransferases (DNMTs), contributes to AML pathogen-
esis through aberrant epigenetic silencing of tumor suppressor
genes (TSGs) involved in differentiation and apoptosis [3].
DNMT3A mutations are found in ~22% of AML patients, and
around 60% of these mutations affect the R882 codon, which
is highly associated with poor prognosis [3, 4]. First-
generation hypomethylating agents (HMAs), such as azacy-
tidine and decitabine, have been approved for the treatment of
older AML patients [5]. SGI-110 (guadecitabine), a
dinucleotide of decitabine and deoxyguanosine, is a next-
generation HMA that is resistant to degradation by cytidine
deaminase and provides a prolonged in vivo exposure com-
pared with decitabine [6]. Recently, safety and clinical
activity of SGI-110 in both elderly treatment-naive and
relapsed/refractory AML patients have been shown in phase II
trials [7, 8]. The proposed central mechanism of action of
HMAs is the depletion of DNMTs, thus inducing hypo-
methylation of global DNA and CpG-island promoters, which
might lead to gene expression of silenced TSGs [6, 9], and
may sensitize tumor cells to other anticancer agents, including
chemotherapeutics [10, 11], immunotherapeutics [12], or
apoptosis-inducing agents [13].

Apoptosis plays an important role in the hematopoietic
system. There are two well-defined pathways of apoptosis:
the extrinsic and the intrinsic pathway [14]. The extrinsic
(death receptor-mediated) pathway is activated upon inter-
action of death receptor ligands, such as tumor necrosis factor
(TNF), TNF-related apoptosis-inducing ligand (TRAIL), and
FAS ligand (FASLG) with their cognate death receptors TNF
receptor 1 (TNFR1), TRAIL-R1 (DR4), TRAIL-R2 (DR5),
and FAS, resulting in the activation of caspase-8, which can
cleave downstream effector caspases [15]. The intrinsic
(mitochondrial-mediated) pathway involves loss of mito-
chondrial membrane potential (MMP) due to mitochondrial
outer membrane permeabilization (MOMP) that is controlled
by proapoptotic (e.g., BAX, BAK, and BID) and anti-
apoptotic proteins of the BCL-2 family. This leads to caspase
activation, nuclear fragmentation, and apoptotic cell death
[14]. A crosslink between extrinsic and intrinsic pathways is
provided by caspase-8-mediated cleavage of BID into its
active form (tBID) [16].

Evasion of apoptosis is a major cause of treatment resis-
tance and is often caused by overexpression of antiapoptotic
proteins such as inhibitor of apoptosis proteins (IAPs) [17].
Overexpression of XIAP has been associated with poor
outcome in AML [18] and high cIAP1 expression has been
reported in pediatric AML [19]. XIAP exerts its antiapoptotic

activity by inhibiting caspases [20], while cIAP1/2 can reg-
ulate proapoptotic signaling complexes [17]. Therefore, IAPs
are considered attractive targets for anticancer therapy. Var-
ious IAP antagonists have been developed which trigger
autoubiquitination and proteasomal degradation of IAPs [21].
ASTX660, a novel orally bioavailable, nonpeptidomimetic
antagonist of cIAP1/2 and XIAP [22], is currently under
evaluation in a phase I/II clinical trial for advanced solid
tumors and lymphomas (NCT: 02503423). However, several
IAP antagonists have so far shown only weak single-agent
efficacy in clinical trials [22].

Since the therapeutic efficacy of HMAs is limited in
AML patients [13], there is a high medical need to identify
novel combinations. Therefore, in the present study we
investigated whether priming with next-generation HMA
SGI-110 increases the sensitivity of AML cells towards cell
death triggered by the novel IAP antagonist ASTX660.

Methods and materials

AML cell lines

AML cell lines were obtained from German Collection of
Microorganisms and Cell cultures (DSMZ, Braunschweig,
Germany), except ML-2 and PLB-985 cells that were kindly
provided by T. Oellerich, Department of Medicine II,
University Hospital Frankfurt, Germany. All cell lines were
authenticated by STR profiling and routinely checked for
mycoplasma contamination. All AML cell lines except
OCI-AML-3 were cultured in RPMI 1640 medium (Life
Technologies, Inc., Darmstadt, Germany) supplemented
with 10% fetal calf serum (FCS), 1% penicillin/streptomy-
cin, and 1% sodium pyruvate (Invitrogen, Karlsruhe,
Germany). OCI-AML3 cells were cultured in alpha-MEM
medium supplemented with 20% FCS, 1% penicillin/strep-
tomycin, and 1% sodium pyruvate.

Primary samples

Bone marrow specimens from AML patients were obtained
at diagnosis before the onset of therapy after obtaining
written informed consent from patients according to the
declaration of Helsinki and after approval by the local ethics
committee of the University Hospital Frankfurt (Approval
No. SHO-05-2014). Mononuclear cell (MNC) fractions
were obtained by density gradient centrifugation using
Ficoll Isopaque (Amersham Bioscience, Freiburg, Ger-
many) and maintained as previously described [23]. The
clinical characteristics of the AML patients are summarized
in Supplementary Table S1. Primary samples with sponta-
neous cell death ≥40% at the time point of measurement
were excluded from the analysis. MNCs and clinical data
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were obtained from the hematological biobank and the
tumor documentation of the UCT Frankfurt, Germany.

Human G-CSF-mobilized CD34+ hematopoietic pro-
genitor cells (HPCs) from healthy donors were kindly
provided by H. Bönig, Institute for Transfusion Medicine
and Immunohematology, Frankfurt, Germany. After thaw-
ing, HPCs were cultured in IMDM enriched with 20% FCS,
1% penicillin/streptomycin, 50 ng/ml rh-SCF, 50 ng/ml
IL-3, 100 ng/ml FLT3-Ligand (AF-300-19, PeproTech),
and 20 ng/ml GM-CSF.

Determination of cell death and apoptosis

For measurements of cell death and apoptosis, cells were
cultured at 1 × 105 cells/ml (AML cell lines) or 1 × 106 cells/ml
(primary AML, CD34+ HPCs). Cell death of suspension cells
was assessed by forward/side scatter (FSC/SSC) and flow
cytometry (FACS Canto II, BD Biosciences, Heidelberg,
Germany). Apoptosis was determined by FACS analysis fol-
lowing staining of the cells with Annexin V-FITC and pro-
pidium iodide (PI). Early-apoptotic (Annexin V+/PI−) and
late-apoptotic cells (Annexin V+/PI+) were summarized as
Annexin V+ cells. Primary AML cells were stained with
Annexin V-FITC and 0.5 µl anti-CD45-APC antibody
(17-0459-42, eBioscience, San Diego, CA, USA). Flow
cytometry was used to determine cell death of primary AML
blasts identified by using a CD45/SSC gating strategy as
described previously [24]. Flow cytometric analysis using a
PI-containing Nicoletti buffer was performed to determine the
proportion of apoptotic sub-G1 hypodiploid cells with inter-
nucleosomal DNA fragmentation as previously described [25].

DNA isolation and global methylation assay

DNA was isolated using the PureLink Genomic DNA Mini
Kit (Invitrogen, Carlsbad, CA, USA). Global DNA Methy-
lation-long interspersed nuclear element-1 (LINE-1) kit
(Active Motif, Carlsbad, CA, USA) was employed in
accordance with the manufacturerʼs instructions.

Human genome microarray profiling

RNA was isolated using the PeqGold Total RNA Kit and the
PeqGOLD DNAase digest kit (Peqlab, Erlangen, Germany)
following the manufacturerʼs protocol. Human genome
microarray profiling was performed at the DKFZ Genomics
and Proteomics Core Facility (Heidelberg, Germany) using
the Affymetrix Human Genome U133 Plus 2.0 Array.

Transcriptome analysis

Raw Affymetrix cell files were analyzed using the
R/Bioconductor [26, 27] package affy [28] followed by

quantile, robust multichip analysis (RMA) background
normalization and log2 transformation. After preproces-
sing and filtering, 20352 genes were further analyzed.
Differentially expressed genes (DEGs) were identified with
the R/Bioconductor package limma [29]. For the compar-
isons of SGI-110/ASTX660-Ctrl, SGI-110-Ctrl, SGI-110-
ASTX660 and SGI-110/ASTX660-ASTX660 the least-
squares method and for the comparisons of ASTX-Ctrl and
SGI-110/ASTX660-SGI-110 the robust method for linear
model fitting were used. Genes were considered significant
with an adjusted p value < 0.05 (Benjamini–Hochberg).
Microarray data were deposited in the publicly accessible
database Gene Expression Omnibus under accession
number GSE138322.

Gene-set enrichment analysis (GSEA)

Enrichment of signaling pathways was performed as
implemented in the R/Bioconductor package [30] with
Gene ontology (GO) terms [31, 32], Reactome pathways
[33] and ConsensusPathDB pathways [34]. Pathways are
considered significant with an adjusted p value < 0.05
(Benjamini–Hochberg).

Cell surface expression of death receptors

Flow cytometric analysis of cell surface expression of
TNFR1, DR4, DR5, and FAS was performed using follow-
ing phycoerythrin (PE)-conjugated antibodies: anti-TNFR1
(130-106-286, Miltenyi Biotech, Bergisch Gladbach, Ger-
many), anti-DR4 (FAB347P), anti-DR5 (FAB6311P, R & D
Systems, Wiesbaden, Germany) and anti-FAS (556641, BD
BioSciences, San Diego, CA, USA) and their respective
isotype controls (IgG1 (IC002P), IgG2b (IC0041P, R & D
systems, Wiesbaden, Germany)), REA control (130-113-462,
Miltenyi Biotech, Bergisch Gladbach, Germany). In brief,
treated cells were harvested and washed twice with ice-cold
staining buffer (2% FCS in PBS). Afterwards, cells were
incubated with PE-conjugated antibodies to the death
receptors or respective isotype controls for 30min at 4 °C in
the dark. Cells were then washed twice with staining buffer
and resuspended in PBS for flow cytometric analysis. Data
were analyzed using FlowJo software.

Immunoprecipitation

BAX activation was determined by immunoprecipitation
using active conformation-specific antibodies. Briefly,
cells were lysed in CHAPS buffer (1% CHAPS, 150 mM
NaCl, 10 mM HEPES, pH 7.4) supplemented with protease
inhibitor cocktail (1169749800, Roche, Mannheim, Ger-
many). Briefly, 500 µg protein was immunoprecipitated
with 2 µl mouse anti-BAX antibody (6A7, Sigma-Aldrich,
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Munich, Germany) and 10 µl pan-mouse IgG Dynabeads
(Dako, Hamburg, Germany) overnight at 4 °C and washed
with CHAPS buffer. The precipitate was analyzed for
BAX expression by Western blotting, using the rabbit anti-
BAX NT antibody (ABC11, Merck-Millipore, Burlington,
MA, USA).

XIAP immunoprecipitation was performed as previously
described [22] with the following exception: cell lysates
were incubated with streptavidin-coated Dynabeads (60210,
Thermo Fisher Scientific). The resulting precipitate was
analyzed by Western blotting and the membranes probed
with antibodies against second mitochondrial activator of
caspases (SMAC) (#2954) and XIAP (#14334, Cell Sig-
naling Technology) to detect interactions.

Determination of MMP

To measure MMP cells were incubated with 100 ng/ml
tetramethylrhodamine methyl ester (TMRM Reagent;
Thermo Fisher Scientific, Waltham, MA, USA) for 10 min
at 37 °C, washed and directly analyzed by flow cytometry.

Western blot analysis

Cells were lysed using a Triton X-100 lysis buffer (30 mM
TrisHCl, 150 mM NaCl, 10% Glycerol, 0.5 mM PMSF, 2
mM DTT, 1% Triton X-100, and 1× Protease Inhibitor
Cocktail). Western blot analysis was carried out using
the following primary antibodies: rabbit anti-BID (2002S,
Cell Signaling), rabbit anti-caspase-8 (ab32125, Abcam),
goat anti-cIAP1 (#AF8181, R & D systems), rabbit
anti-BAX (ABC11, Merck-Millipore), rabbit anti-BAK
(06-536, Upstate/Merck), mouse anti-XIAP (610716, BD
Bioscience), rabbit anti-DNMT1 (39905, Active motif),
mouse anti-DNMT3A (sc-365769, Santa Cruz Biotechnol-
ogy), mouse anti-GAPDH (5G4-6C5, BioTrend (Hy Test
Ltd)), mouse anti-β-ACTIN (A5441, Sigma), and rat anti-
cIAP2 (ALX-803-341-C100, Enzo Life Sciences, Farm-
ingdale, NY, USA). Goat anti-mouse IgG, goat anti-rabbit
IgG (Abcam), goat anti-rat IgG, donkey anti-goat IgG
conjugated to horseradish peroxidase (Santa Cruz Bio-
technology, Santa Cruz, CA, USA), and enhanced chemi-
luminescence (Amersham Bioscience, Freiburg, Germany)
or infrared dye-labeled secondary antibodies and infrared
imaging (Odyssey Imaging System, LI-COR Bioscience,
Bad Homburg, Germany) were used for detection. Repre-
sentative blots of at least two independent experiments
are shown.

RNA interference

Gene silencing with small interfering RNA (siRNA) was
achieved using Silencer Select siRNA (Thermo Fisher

Scientific, Waltham, MA, USA) and Neon Transfection
System (Invitrogen, Karlsruhe, Germany) following the
manufacturerʼs protocol. The following constructs were
used: nontargeting control siRNA (4390843) or targeting
siRNAs for BAX (#1: s1888, #2: s1890), BAK (#1:
s1880, #2: s1881), cIAP1 (#1: s1449, #2: s1450, #3:
s1448), XIAP (#1: s1454, 2: s1555, #3: s1556), TNFR1
(#1: s14266, #2: s14267), DR5 (#1: s16756, #2: s16758),
and FAS (#1: s1506, #2: s1507, #3: s1508). For knock-
down of cIAP1 and XIAP, cells were transfected once
with 200 nM siRNA and immediately treated with SGI-
110. For all other knockdowns, cells were transfected
twice with 100 nM siRNA and treated 24 h after the
second transfection.

Analysis of caspase-3/-7 activity and of
morphological changes of the nucleus

Caspase activity was determined using Cell Event Cas-
pase-3/-7 Green Detection Reagent (Thermo Fisher
Scientific) according to manufacturerʼs instructions. For
analysis by ImageXpress Micro XLS system (Molecular
Devices, Biberach an der Riss, Germany), cells were
additionally counterstained with Hoechst-33342 (Invi-
trogen, Carlsbad, CA, USA). For evaluation of the
nuclear morphology, cells were stained with Hoechst-
33342 and examined using an inverted fluorescence
microscope (ImageXpress Micro XLS system) followed
by analysis with MetaXpress Software (Molecular
Devices Sunnyvale, CA, USA) using the nuclear frag-
mentation scoring tool.

Statistical analysis

All results are expressed as mean and standard deviation
(SD). The numbers of independent repetitions and repli-
cates for each experiment are indicated in the respective
figure legends. Experiments were considered as reliable if
the SD did not exceed 10% within the replicates and
repetitions. For each in vitro independent experiment
using cancer cell lines, technical triplicates were used and
three experiments were performed to ensure adequate
statistical power. Statistical significance was verified by
using t-test in Microsoft Excel (two-samples, two-tailed
distribution, unequal variance), unless otherwise indi-
cated. For drug combination dose–response studies in
multiple AML cell lines, data were analyzed by one-way
ANOVA followed by Tukeyʼs multiple comparisons test,
using GraphPad Prism as specified in the table legend.
Drug interaction was analyzed using CalcuSyn software
(Biosoft, Cambridge, UK) [35]. The obtained values were
rated as follows: CI < 0.9 indicates synergism, 0.9–1.1
additivity and >1.1 antagonism.
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Results

SGI-110 synergizes with ASTX660 to induce cell
death and to suppress clonogenic growth of AML
cell lines

Searching for new clinically relevant drug combinations for
the treatment of AML, we asked the question whether the

next-generation HMA SGI-110 can prime AML cells towards
cell death induced by the novel IAP antagonist ASTX660.
Interestingly, dose–response experiments revealed that SGI-
110 pretreatment synergistically interacted with ASTX660 to
induce cell death in five out of six AML cell lines with various
genetic backgrounds and representing different AML subtypes
(Fig. 1a, Supplementary Table 2–3). Only OCI-AML3 cells
that harbor the hotspot DNMT3AR882C mutation did not

Fig. 1 SGI-110 synergizes
with ASTX660 to induce cell
death and to suppress
clonogenic growth of AML
cell lines. a Following
pretreatment with indicated
concentrations of SGI-110 for
24 h, AML cells were treated
with indicated concentrations of
ASTX660 for another 48 h. Cell
death was determined by FSC/
SSC analysis and flow
cytometry. b After 24 h of
pretreatment with SGI-110
(MOLM-13: 50 nM, ML-2:
2 µM), AML cells were treated
with ASTX660 (MOLM-13: 40
µM, ML-2: 5 µM) for indicated
time points. Cell death was
determined by FSC/SSC
analysis and flow cytometry.
Significances after combination
treatment are calculated versus
single-treated cells. c AML cells
were exposed to SGI-110
(MOLM-13: 50 nM, ML-2:
0.5 µM) for 24 h followed by
ASTX660 (MOLM-13: 40 µM,
ML-2: 5 µM) for 15 h before
incubation in methylcellulose.
Colony formation was assessed
after 10–13 days and the number
of colonies is expressed as
percentage of solvent-treated
controls. Mean and SD of three
independent experiments
performed in triplicate are
shown. *p < 0.05, **p < 0.01;
***p < 0.001.
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respond even to high concentrations of ASTX660 and SGI-
110. Synergistic drug interaction was evidenced by calculation
of combination index (CI) (Supplementary Table S4).

MOLM-13 and ML-2 cells, representing the most common
AML subtypes, were selected for further experiments. To
investigate whether the timing of drug treatment schedules
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influences drug interactions, drug combinations were
hence further tested using simultaneous application. This
treatment schedule induced up to 20% less cell death in
MOLM-13 and ML-2 cells than the sequential treatment
with SGI-110 and ASTX660 (Supplementary Fig. S1,
Supplementary Table S3, S5), demonstrating that pri-
ming by SGI-110 increases the efficacy of ASTX660
treatment.

Time-dependent analysis of drug-induced cell death
demonstrated that sequential treatment with SGI-110 and
ASTX660 increased cell death over time (Fig. 1b). Besides
these short-term assays, we tested the drug combination on
long-term clonogenic survival by performing methylcellulose
colony forming assays. Importantly, SGI-110 and ASTX660
cooperated to significantly reduce colony formation compared
with single-agent treatments (Fig. 1c; Supplementary Fig. S2).
In order to further investigate the effect of sequential SGI-
110/ASTX660 treatment on cell proliferation, we analyzed
cell growth by viable cell counting as well as immuno-
fluorescence staining of the proliferation marker Ki-67 [36].
In line with the results of the colony formation assay, SGI-110
alone, or even more pronounced in combination with
ASTX660, dramatically reduced proliferation of ML-2 cells,
whereas MOLM-13 cells were only slightly affected (Sup-
plementary Fig. S3A–B). Taken together, SGI-110 synergis-
tically acted in concert with ASTX660 to induce cell death
and to suppress proliferation and long-term clonogenic
growth.

SGI-110/ASTX660 regimen is synergistically active
against primary AML blasts, whereas it shows
minimal toxicity against CD34+ HPCs

To assess the translational relevance of our findings we
extended our studies to freshly isolated leukemic blasts
from treatment-naive AML patients, which were pretreated
with SGI-110 for 3 consecutive days, whereby ASTX660

was added on day 2 (Fig. 2a). SGI-110 concentrations
were chosen according to plasma levels reported in
patients [37]. Importantly, combined exposure to SGI-110
and ASTX660 substantially increased cell death in four
out of five AML samples, whereas single-agent treatment
with either SGI-110 or ASTX660 had minimal to moderate
effects on cell death (Fig. 2b). Calculation of CI values
revealed that sequential treatment with SGI-110 and
ASTX660 synergistically induced cell death in most pri-
mary AML samples (Supplementary Table S6).

In contrast to primary AML blasts, the identical treat-
ment failed to synergize in the induction of cell death in
normal CD34+ HPCs from three healthy donors (Fig. 2c),
whereas standard and high doses of Cytarabine, based on
therapeutically achievable plasma concentrations during
standard and high-dose therapy [38, 39], were highly toxic
to normal CD34+ HPCs (Supplementary Fig. S4). Also,
the sequential SGI-110/ASTX660 treatment did not affect
long-term clonogenic survival of CD34+ HPC (Supple-
mentary Fig. S5A), while Cytarabine inhibited colony
formation in a dose-dependent manner (Supplementary
Fig. S5B). Taken together, these data suggest that
sequential SGI-110/ASTX660 treatment exerts some tumor
selectivity against AML blasts with minimal effects on
normal CD34+ HPCs pointing to a potential therapeutic
window.

SGI-110 and ASTX660 demonstrate on-target
activity in AML cell lines

Next, we monitored on-target activity of SGI-110 and
ASTX660. DNMT1 and DNMT3A protein levels were
depleted within 24 h of SGI-110 pretreatment and did not
recover until 48 h of sequential treatment with ASTX660,
confirming that SGI-110 directly targets DNMTs for protein
degradation (Fig. 3a). As depletion of DNMT activity
results in global hypomethylation of the genome, we further
investigated changes in global DNA methylation. Indeed,
SGI-110 significantly caused hypomethylation of LINE-1,
which serves as a surrogate marker for global DNA
methylation [40], within 24 h of SGI-110 pretreatment
(Fig. 3b). As IAP antagonists have been reported to sti-
mulate autoubiquitination and proteasomal degradation of
IAP proteins [21], we examined the effect of ASTX660 on
IAP protein levels. As both model cell lines do not express
cIAP2 (Supplementary Fig. S6), we focused on the antag-
onism of cIAP1 and XIAP by ASTX660 treatment.
ASTX660 induced degradation of cIAP1 in the absence and
presence of SGI-110, while XIAP protein levels remained
relatively unaffected, as expected (Fig. 3c) [22]. To further
confirm the direct antagonism of XIAP by ASTX660 we
also assessed the displacement of SMAC from XIAP by

Fig. 2 SGI-110 cooperates with ASTX660 to induce cell death in
a large proportion of primary AML blasts while showing
minimal toxicity against normal CD34+ HPCs. a Treatment
schedule for primary AML blast cells and CD34+ HPCs. Primary cells
were primed with different concentrations of SGI-110 (0.1–1 µM)
three times at 24 h intervals, followed by different concentrations of
ASTX660 (0.1–25 µM) on day 2. Cell death was determined by flow
cytometric analysis on day 4. Stimulation of the primary AML samples
(b) and CD34+ HPCs (c) with SGI-110 and/or ASTX660 was per-
formed according to our treatment schedule (a). b Combined Annexin
V-FITC/CD45-APC staining and flow cytometry were used to deter-
mine cell death of primary AML blasts identified by CD45/SSC gating
procedure. c Apoptotic cell death in normal CD34+ HPCs was
determined by Annexin V-FITC/PI staining and flow cytometry.
b, c Mean and SD of single experiments performed in triplicate
are shown.
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immunoprecipitation using anti-XIAP antibody. Following
ASTX660 treatment for 4 h, a complete disappearance of
SMAC previously immunoprecipitated with XIAP was
observed in MOLM-13 and ML-2 cells (Fig. 3d). These
results confirm on-target activity of SGI-110 as well as of
ASTX660 in AML cell lines.

Since ASTX660 can antagonize both cIAP1 and XIAP
[22], we individually silenced cIAP1 and XIAP to define
their contribution to the observed synergistic interaction
with SGI-110. The efficiency of cIAP1 and XIAP knock-
down by several independent siRNAs was confirmed by
Western blotting (Fig. 3e, g). Of note, silencing of cIAP1
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(Fig. 3f) or XIAP (Fig. 3h) significantly increased SGI-110-
induced cell death. These results indicate that targeting of
both, cIAP1 and XIAP, contributes to enhance SGI-110-
mediated cell death in AML cells.

Sequential SGI-110/ASTX660 treatment upregulates
extrinsic and intrinsic apoptosis signaling genes

To gain further insights into the molecular mechanisms of
the synergistic activity of SGI-110 and ASTX660 we per-
formed transcriptome analysis prior to the onset of cell
death. A principal component analysis was used to obtain
an overview of treatment-induced changes in transcription
(Fig. 4a). The first principal component (PC1) clearly
separated the control and ASTX660-treated cells from
those treated with SGI-110 alone or in combination with
ASTX660. Analysis of DEGs revealed 2004 and 2571
DEGs upon SGI-110 alone or sequential SGI-110/
ASTX660 treatment, respectively, whereas only 158 DEGs
were detectable following ASTX660 treatment compared
with control (Fig. 4b). These results show that SGI-110 was
primarily responsible for the global transcriptional changes
following sequential SGI-110/ASTX660 treatment. We
further performed GO enrichment analysis to investigate the
biological functions of the identified DEGs (Fig. 4c and
Supplementary Fig. S7). Interestingly, in both SGI-110
alone and sequential SGI-110/ASTX660 treatment, upre-
gulated DEGs were significantly enriched in the apoptotic
signaling pathway and IκB kinase/Nuclear factor-kappa B

signaling. Focusing our analysis on significantly upregu-
lated apoptotic GO terms, we found several GO terms
associated with apoptosis, including the extrinsic apoptotic

Fig. 3 SGI-110 and ASTX660 demonstrate on-target activity in
AML cell lines. a, b Following 24 h of pretreatment with SGI-110
(MOLM-13: 50 nM, ML-2: 2 µM), AML cells were treated with
ASTX660 (MOLM-13: 40 µM, ML-2: 5 µM) for 48 h. a Protein
expression of DNMT1 and DNMT3A was determined at indicated
time points by Western blotting. β-ACTIN was used as loading con-
trol. Asterisks (*) mark unspecific bands. b Global DNA methylation
was determined by colorimetric quantification of methylation levels of
LINE-1, a widely used surrogate marker of global DNA methylation,
and is shown as percentage of solvent-treated control cells. c Fol-
lowing 24 h of pretreatment with SGI-110 (MOLM-13: 50 nM, ML-2:
2 µM), AML cells were treated with ASTX660 (MOLM-13: 40 µM,
ML-2: 5 µM) for 24 h. Protein levels of cIAP1 and XIAP were
assessed by Western blotting. β-ACTIN served as loading control. d
AML cells were treated for 4 h with ASTX660 (MOLM-13: 40 µM,
ML-2: 5 µM). Cell lysates were subjected to immunoprecipitation
using anti-XIAP antibody. Input lysates and precipitates were analyzed
for XIAP and SMAC expression by Western blotting. β-Actin served
as loading control. AML cells were transfected with siRNA against
cIAP1 (e, f), XIAP (g, h) or non-targeting siRNA (siCtrl). Expression
levels of cIAP1 (e) and XIAP (g) were assessed by Western blotting,
with β-ACTIN serving as loading control. f, h To analyze the effect of
siRNA-mediated loss of cIAP1 and XIAP on cell death, transfected
cells were immediately treated with SGI-110 (MOLM-13: 50 nM, ML-
2: 2 µM) for 72 h and apoptotic cell death was determined by Annexin
V-FITC/PI staining and flow cytometry. (b, f, h) Mean and SD of three
independent experiments carried out in triplicate are shown. *p < 0.05,
**p < 0.01, ***p < 0.001.
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signaling pathway via death receptors, the intrinsic apop-
totic signaling pathway and regulation of cysteine-type
endopeptidase activity involved in apoptotic processes
(Fig. 4d). Thus, we concentrated on apoptosis-related genes
which were selected based on the “Apoptosis” pathway of
ConsensusPathDB and Reactome (Fig. 4e). Of note, SGI-
110 alone or in combination with ASTX660 significantly
increased gene expression of FAS, BAX, and TNFRSF10B
(DR5). Since this analysis indicated an involvement of
death receptor-mediated apoptosis, we analyzed in more
detail the transcriptional changes in death receptors and
their ligands (Fig. 4f). Interestingly, FAS, several TRAIL
receptors (i.e., TNFRSF10B (DR5), TNFRSF10C (DcR1),
and TNFRSF10D (DcR2)) as well as TNF (TNFα) were
significantly upregulated (adjusted p value < 0.05 and log2
fold change > 0.5) upon SGI-110 alone or sequential SGI-
110/ASTX660 treatment. With regard to the additionally
observed growth-inhibitory effects of SGI-110 alone or in
combination with ASTX660, we extended our GSEA on
proliferation-related GO terms. Thereby, we identified the
cell cycle regulator CDKN1A (p21) as the strongest upre-
gulated gene in the most significantly enriched proliferation
GO term “negative regulation of proliferation” (Supple-
mentary Fig. S8A–B). The upregulation of CDKN1A by
SGI-110 alone or when combined with ASTX660 was

confirmed by qRT-PCR (Supplementary Fig. S8C). Taken
together, our transcriptome analysis showed that SGI-110
alone or in combination with ASTX660 upregulated sig-
naling pathways in extrinsic and intrinsic apoptosis and
regulated genes involved in proliferative signaling.

Sequential SGI-110/ASTX660 treatment initiates
death receptor-dependent apoptosis

As our transcriptome analysis identified death receptors
and their ligands as top hits following SGI-110 alone or
sequential SGI-110/ASTX660 treatment, we next deter-
mined the functional relevance of the death receptor
pathway for SGI-110/ASTX660-induced apoptosis. Since
DcR1 and DcR2 are unable to transmit death signals [41],
we focused our experiments on TNFR1, DR4, DR5, FAS,
and their respective ligands. Validation experiments using
qRT-PCR confirmed differential expression of selected
death receptors and ligands in both AML cell lines
(Supplementary Fig. S9). To investigate whether these
drug-induced changes in gene expression resulted in
altered protein expression of death receptors we analyzed
cell surface expression by flow cytometry. Indeed, SGI-
110 alone or sequential treatment with SGI-110 and
ASTX660 significantly upregulated the surface expres-
sion of DR5 and FAS, while TNFR1 expression remained
nearly unchanged (Fig. 5a, b). By comparison, DR4 was
hardly detectable on the surface of MOLM-13 and ML-2
cells.

To test the functional relevance of TNFR1, FAS, and
DR5 for SGI-110/ASTX660-induced apoptosis we geneti-
cally silenced these receptors by siRNA and confirmed
knockdown efficiency by flow cytometry (Fig. 5c–e; Sup-
plementary Fig. S10A–C). Importantly, knockdown of
either TNFR1 or FAS significantly rescued SGI-110/
ASTX660-mediated apoptosis in both AML cell lines. By
comparison, DR5 knockdown significantly protected only
ML-2 cells from SGI-110/ASTX660-induced apoptosis
(Fig. 5f–h; Supplementary Fig. S10D–F). This set of
experiments indicates that SGI-110/ASTX660-induced cell
death depended, at least partly, on death receptors such as
TNFR1 and FAS.

Next, we investigated whether the observed upregulation
of TNFα (Fig. 4f) was required for SGI-110/ASTX660-
mediated apoptosis as described previously for similar set-
tings [21, 42–44]. To this end, we used the TNFα-blocking
antibody Enbrel. While Enbrel slightly reduced SGI-110/
ASTX660-induced apoptosis in ML-2 cells, it had no effect
in MOLM-13 cells (Supplementary Fig. S11A). Control
experiments confirmed that Enbrel significantly decreased
TNFα/ASTX660-mediated apoptosis. In addition, TRAIL-
or FASLG-blocking antibodies failed to rescue SGI-110/

Fig. 4 Sequential SGI-110/ASTX660 treatment upregulates
extrinsic and intrinsic apoptosis signaling genes. ML-2 cells were
treated with solvent alone or with 2 µM SGI-110 for 24 h followed by 5
µM ASTX660 for 9 h. RNA expression levels of three independent
experiments were analyzed by microarray. a Principal component
analysis (PCA) of ML-2 cells after drug treatment with SGI-110 and/or
ASTX660 or solvent control (Ctrl). b Number of total, up-, and
downregulated DEGs from multiple comparisons among the four
treatment groups (adjusted p value < 0.05). For two comparisons,
labeled with robust, the robust method for linear model fitting was used.
The rest of the comparisons was fitted with the least-squares method. c
The Top 40 enriched GO terms (biological process, cellular component,
and molecular function, combined to one set for the analysis) of
upregulated genes upon SGI-110 alone (left panel) or sequential SGI-
110/ASTX660 treatment (right panel) compared with control treatment.
d Heatmap showing significantly upregulated apoptotic GO terms in at
least one condition after SGI-110 and/or ASTX660 treatment, normal-
ized to solvent-treated control cells. Pathways were considered sig-
nificant with an adjusted p value < 0.05. e Heatmap showing apoptosis-
related genes regulated in SGI-110 and/or ASTX660-treated ML-2
cells, normalized to solvent-treated cells. Genes were selected based on
the “Apoptosis” pathway of ConsensusPathDB and the “Apoptosis”
pathway of Reactome. Only the genes annotated in both pathways were
considered. f Heatmap displaying log2 fold expression changes of death
receptors and their ligands upon SGI-110 and/or ASTX660 treatment
compared with solvent-treated control cells. (c–f) Columns and rows
were hierarchically clustered by their Euclidian distance using complete
linkage. The colors correspond to the −log10 transformed adjusted p
values from the gene-set enrichment analysis (c, d) or log2 fold changes
(FC) (e, f) obtained by comparing SGI-110 and/or ASTX660-treated
versus solvent-treated control cells.
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ASTX660-induced apoptosis, whereas they potently sup-
pressed TRAIL or FASLG-mediated apoptosis used as
positive controls (Supplementary Fig. S11B–C). This

indicates that SGI-110/ASTX660 induced cell death in
AML cells in a TRAIL- and FASLG-independent fashion,
while the effect of TNFα seems to be cell line-dependent.
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Sequential SGI-110/ASTX660 treatment engages
intrinsic apoptosis as well as a crosstalk between
extrinsic and intrinsic apoptotic pathways

As our transcriptome analysis highlighted the engagement of
the intrinsic apoptosis pathway beyond the extrinsic pathway,
we examined whether a crosstalk between these pathways
may exist during SGI-110/ASTX660-induced apoptosis. One
of the best-characterized connections between the two path-
ways is BID, which translocates to mitochondria after
caspase-8-mediated cleavage [45]. Indeed, sequential SGI-
110/ASTX660 treatment-induced cleavage of caspase-8 and
BID (Fig. 6a), suggesting a crosstalk between extrinsic and
intrinsic apoptosis pathways.

tBID has been reported to facilitate apoptosis by enga-
ging lysosomal permeabilization [46] in addition to pro-
moting activation of BAX/BAK and MOMP [47]. Since
our microarray analysis indicated a potential role of lyso-
somes upon SGI-110/ASTX660 treatment (Fig. 4c, e), we
examined the effect of lysosomal protease inhibitors on
SGI-110/ASTX660-induced apoptosis. However, the addi-
tion of E64D/Pepstatin A failed to rescue AML cells from
SGI-110/ASTX660-induced apoptosis, while control
experiments confirmed the functionality of these inhibitors
(Supplementary Fig. S12).

As our microarray analysis revealed increased BAX
levels by sequential SGI-110/ASTX660 treatment, we then
investigated the role of BAX in SGI-110/ASTX660-
induced apoptosis. SGI-110/ASTX660-stimulated upregu-
lation of BAX was confirmed by qRT-PCR (Fig. 6b)
and Western blotting (Fig. 6c). To investigate whether BAX
is activated upon sequential SGI-110/ASTX660 treatment

we performed immunoprecipitation experiments with
a conformation-specific antibody for activated BAX. Intri-
guingly, SGI-110 and ASTX660 acted in concert to activate
BAX compared with either drug alone (Fig. 6d). To deter-
mine the functional relevance of BAX for SGI-110/
ASTX660-induced apoptosis, we performed BAX knock-
down using siRNA (Fig. 6e). Notably, silencing of BAX
significantly reduced SGI-110/ASTX660-mediated apopto-
sis (Fig. 6f). Furthermore, concomitant knockdown of BAX
and BAK was significantly more effective to inhibit SGI-
110/ASTX660-mediated apoptosis in ML-2 cells compared
with BAX knockdown alone (Fig. 6f). ABT-199 treatment,
reported to kill AML cells in a BAX/BAK-dependent
fashion [48], was used as a positive control (Fig. 6f).

As activated BAX can cause MOMP leading to cyto-
chrome c release into the cytosol [49], we next assessed
MMP. SGI-110 and ASTX660 cooperated to increase loss
of MMP in a time-dependent manner (Fig. 6g). Together,
these data suggest that sequential SGI-110/ASTX660
treatment engages intrinsic apoptosis as well as a cross-
talk between extrinsic and intrinsic apoptotic pathways.

SGI-110 and ASTX660 cooperate to induce
biochemical and morphological hallmarks of
apoptosis

To examine effector mechanisms of SGI-110/ASTX660-
induced cell death we determined activation of the execu-
tioner caspases-3 and -7 by fluorescence microscopy.
Interestingly, sequential treatment with SGI-110 and
ASTX660 significantly increased activation of caspases-3/-
7 compared with either treatment alone in a time-dependent
manner (Fig. 7a). Furthermore, SGI-110 acted together with
ASTX660 to significantly increase DNA fragmentation
(Fig. 7b). Consistently, the analysis of nuclear morphology
revealed that AML cells underwent morphological changes
typical of apoptosis such as chromatin condensation and
nuclear fragmentation (Fig. 7c). Quantification revealed a
significant increase in nuclei fragmentation upon combina-
tion treatment compared with either single treatment or to
untreated cells (Fig. 7d). Together, this set of experiments
demonstrates that SGI-110 and ASTX660 cooperated to
trigger typical apoptotic events such as caspase activation
and nuclear fragmentation.

However, addition of the pan-caspase inhibitor zVAD.
fmk alone failed to protect from SGI-110/ASTX660-
induced apoptosis and even increased cell death, in line
with reports showing that caspase inhibition can cause a
switch from apoptotic to necroptotic cell death in AML cells
[23, 42]. In line with this notion, simultaneous treatment
with zVAD.fmk and the necroptosis inhibitors Necrostatin-
1s (Nec-1s), Necrosulfonamide (NSA), GSKʼ872, or Dab-
rafenib significantly reduced SGI-110/ASTX660-induced

Fig. 5 Sequential SGI-110/ASTX660 treatment initiates death
receptor-dependent apoptosis. a–b Following 24 h of pretreatment
with SGI-110 (MOLM-13: 50 nM, ML-2: 2 µM), AML cells were
treated with ASTX660 (MOLM-13: 40 µM, ML-2: 5 µM) for 15 h.
Death receptor expression on cell surface was determined by flow
cytometric analysis after staining with PE-conjugated antibodies spe-
cific to each death receptor (open histograms) or with isotype-matched
IgG controls (shaded gray histogram). Representative overlay histo-
grams (a) and quantification of cell surface expression of death
receptors (b) from three independent experiments performed in tri-
plicate are shown. (c–h) ML-2 cells were transfected with non-tar-
geting control siRNA (siCtrl) or siRNA against TNFR1, DR5, or FAS.
(c–e) Cell surface expression of death receptors (open histograms) was
analyzed by flow cytometry. Gray shaded histograms represent
respective isotype controls. Representative overlay histograms are
shown. (f–h) Following 24 h of pretreatment with 2 µM SGI-110, ML-
2 cells were treated with 5 µM ASTX660 for 36 h. Treatments with 1
ng/ml TNFα and 5 µM ASTX660 (f), 10 ng/ml TRAIL (g) or 750 ng/
ml hexameric FAS ligand (FASLG) (h) for 36 h were used as positive
controls to demonstrate the efficacy of gene silencing. Cell death was
determined by Annexin V-FITC staining and flow cytometry. In (b, f–
h), mean and SD of three independent experiments performed in tri-
plicate are shown. *p < 0.05, **p < 0.01, ***p < 0.001.
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cell death compared with SGI-110/ASTX660-treated cells
in the presence of zVAD.fmk alone (Supplementary
Fig. S13). This indicates that SGI-110/ASTX660 primarily

induced caspase-dependent apoptosis in apoptosis-
proficient AML cells, while it engaged necroptosis upon
caspase inhibition.
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Discussion

Given the limited treatment options for elderly patients, the
development of more effective and well-tolerated therapies
remains a major unmet medical need [50]. Approval of
decitabine for the first-line treatment of elderly AML
patients highlights the general potential of HMAs in this
setting [51]. However, as HMAs demonstrated only limited
efficacy as monotherapy, combination strategies with either
chemotherapy, immunotherapy, or targeted therapies such
as the BCL-2 inhibitor ABT-199 are currently in different
stages of clinical testing [13]. As evasion of apoptosis, e.g.,
by overexpression of IAPs, contributes to treatment resis-
tance and poor outcome in AML [52], in the present study
we investigated the combination of SGI-110 and the IAP
antagonist ASTX660. Here, we discover that the combina-
tion of SGI-110 and ASTX660 synergistically induced cell
death in a range of AML cell lines as well as in patient-
derived AML blasts. By comparison, sequential treatment
with SGI-110 and ASTX660 exhibited limited toxicity to
normal CD34+ HPCs, pointing to a favorable therapeutic
window. Concentrations of SGI-110 (0.1–1 µM) required

for synergism with ASTX660 in our study might be
achievable in AML patients, as clinically achievable plasma
levels have been reported to range from 20 to 400 nM for
SGI-110 and from 0.3 to 1.6 µM for parental compound
decitabine [37, 53].

While the DNMT3A mutant AML cell line OCI-AML3
proved to be resistant to sequential SGI-110/ASTX660
treatment, SGI-110 together with ASTX660 synergistically
induced cell death in the tested primary AML sample har-
boring DNMT3A mutation. In line with this finding, Met-
zeler et al. reported that DNMT3A-mutated patients benefit
from HMA treatment [54]. A possible explanation might be
that DNMT3AR882-associated hypomethylation patterns are
preserved in primary AML samples, but not in the
DNMT3AR882C-mutated AML cell line OCI-AML3 [55].
Further studies are required to unravel the mechanisms for
SGI-110/ASTX660 resistance in OCI-AML3 cells.

Importantly, our study provides new insights into the
molecular mechanisms underlying the synergistic induction
of cell death by SGI-110 and ASTX660. We identify acti-
vation of both extrinsic and intrinsic apoptotic pathways as
key events during SGI-110/ASTX660-induced cell death in
AML cells. This conclusion is supported by several lines of
evidence.

First, unbiased transcriptome analysis revealed that SGI-
110 alone and sequential SGI-110/ASTX660 treatment
upregulated the death receptors DR5 and FAS, which was
accompanied by increased protein expression on the cell
surface. FAS upregulation might be a direct effect of HMA-
induced FAS promoter demethylation [56]. By comparison,
DR4 was hardly detectable on the cell surface of both AML
cell lines, which is in line with previous studies demon-
strating the absence or low expression of DR4 for different
cancer entities [57, 58]. Second, TNFR1, DR5, and FAS
were all required for cell death induction, since individual
silencing of these death receptors significantly reduced SGI-
110/ASTX660-induced apoptosis. The fact that SGI-110/
ASTX660-mediated cell death did not depend on a single
death receptor underlines the importance of the death
receptor pathway as a whole rather than single gene acti-
vation. Third, experiments with blocking antibodies
revealed a contribution of TNFα-driven autocrine/paracrine
signaling to SGI-110/ASTX660-mediated apoptosis in a
cell line-dependent manner, which is consistent with our
previous studies showing that Enbrel rescued leukemia cells
from HMA/IAP antagonist-induced cell death [42, 43].
However, SGI-110/ASTX660-induced cell death occurred
independently of TRAIL and FASLG, suggesting an acti-
vation of DR5 and FAS in a ligand-independent fashion.
This is in line with previous evidence suggesting that
anticancer drug-mediated apoptosis involved ligand-
independent death receptor clustering and activation of
caspases in leukemia as well as solid cancer cells [59–61].

Fig. 6 Sequential SGI-110/ASTX660 treatment engages intrinsic
apoptosis as well as a crosstalk between extrinsic and intrinsic
apoptotic pathways. a AML cells were pretreated with SGI-110
(MOLM-13: 50 nM, ML-2: 2 µM) for 24 h followed by ASTX660
(MOLM-13: 40 µM, ML-2: 5 µM) for 15 h. a Cleavage of caspase-8
and BID was assessed by Western blotting, GAPDH, and β-ACTIN
served as loading controls. b, c AML cells were pretreated with SGI-
110 (MOLM-13: 50 nM, ML-2: 2 µM) for 24 h followed by ASTX660
(MOLM-13: 40 µM, ML-2: 5 µM) for 9 h (b) or 15 h (c). b BAX
mRNA expression was analyzed by qRT-PCR and fold changes
relative to untreated control are shown with mean and SD of three
independent experiments performed in triplicate. Significances are
calculated versus control cells. c BAX expression was determined by
Western blotting, GAPDH, and β-ACTIN served as loading controls. d
After 24 h of pretreatment with SGI-110 (MOLM-13: 50 nM, ML-2: 2
µM), AML cells were treated with ASTX660 (MOLM-13: 40 µM,
ML-2: 5 µM) for 15 h (MOLM-13) or 24 h (ML-2). Activation of BAX
was assessed by immunoprecipitation using active conformation-
specific antibodies and protein expression of BAX was detected by
Western blotting. GAPDH and β-ACTIN served as loading controls. e,
f AML cells were transiently transfected with siRNA against non-
targeting siRNA (siCtrl) or BAX, BAK, or both. e Expression of BAX
and BAK were assessed by Western blotting, with GAPDH serving as
loading control. f Transfected cells were pretreated with SGI-110
(MOLM-13: 50 nM, ML-2: 2 µM) for 24 h, followed by addition of
ASTX660 (MOLM-13: 40 µM, ML-2: 5 µM) for 24 h (MOLM-13) or
36 h (ML-2). Treatment with 1 µM ABT-199 for 24 h (MOLM-13) or
36 h (ML-2) was used as positive control to demonstrate the efficacy
of gene silencing. Apoptotic cell death was measured by Annexin V-
FITC/PI staining and flow cytometry. g Following 24 h of pretreatment
with SGI-110 (MOLM-13: 50M, ML-2: 2 µM), AML cells were
treated with ASTX660 (MOLM-13: 40 µM, ML-2: 5 µM) for indicated
time points. Loss of MMP was analyzed by flow cytometry using the
fluorescent dye TMRM. Significances after sequential SGI-110/
ASTX660 treatment are calculated versus single-treated cells. In b, f,
g, mean and SD of three independent experiments carried out in tri-
plicate are shown. *p < 0.05, **p < 0.01, ***p < 0.001.
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Fourth, SGI-110/ASTX660-induced death signals are
transmitted by caspase-8 and tBID to mitochondria, leading
to activation of BAX and finally mitochondrial apoptosis.
Fifth, SGI-110 increases BAX expression, in line with a

previous study using decitabine [62], thus shifting the bal-
ance of pro- and antiapoptotic factors towards apoptosis.
The crucial role of BAX for SGI-110/ASTX660-induced
apoptosis is emphasized by genetic silencing of BAX,
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which significantly protected AML cells from SGI-110/
ASTX660-mediated apoptosis. Taken together, our in-depth
molecular studies highlight the importance of both extrinsic
and intrinsic apoptotic pathways in mediating SGI-110/
ASTX660-induced apoptosis.

Since both SGI-110 and ASTX660 as single agents are
currently under evaluation in early clinical trials, our find-
ings have important implications for the development of
new combination strategies for AML. SGI-110 may offer
several advantages compared with first-generation HMAs,
as subcutaneous administration of SGI-110 exhibited
increased efficacy and reduced toxicity compared with
decitabine due to reduced peak plasma levels and prolonged
half-life [8]. In addition, response rates to SGI-110 were
reported in AML patients after azacytidine failure [63].
Previously, only first-generation HMAs such as azacytidine
and decitabine have been shown to synergistically induce
cell death together with IAP antagonist in AML [42], acute
lymphoblastic leukemia [43] as well as in many NCI-60 cell
lines from different cancer types [64], indicating a potential
broad application of this combination strategy in cancer
therapy. The success of current antileukemic therapies is
often limited by evasion of apoptosis [52] highlighting the
potential of this combination strategy of SGI-110 and
ASTX660 for the treatment of AML.
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In kidney carcinoma, clear cell renal cell carcinoma (ccRCC) represents 70− 80% of all
observed carcinomas [Frew and Moch, 2015]. In the majority of cases a homozygeous in-
activation of the VHL tumor suppressor gene is present and represents a central element
in the early tumor onset [Gerlinger et al., 2014]. Subsequent mutations or copy number
variations in epigenetic regulators, cell cycle regulators or in the PI3K pathway further
promote the development of ccRCC. It is known that a mutational inactivation of VHL
leads to accumulation of the HIF-1α and HIF-2α transcription factors [Maxwell et al.,
1999]. Various studies reported HIF-1α as tumor suppressor inhibiting, and HIF-2α as
an oncogene promoting the aggressiveness of ccRCC behaviour [Monzon et al., 2011,Tu-
rajlic et al., 2018,Gordan et al., 2008,Shen et al., 2011]. In this research we could show
that HIF-1α is essential for tumor formation and that the deletion of HIF-2α has only
minor effects on tumor initiation and growth. Nevertheless, both genes are required for
the clear cell phenotype of ccRCC. Therefore, we concluded that HIF-1α has an onco-
genic role in ccRCC initiation and suggested alterations in the balance of HIF-1α and
HIF-2α which affects different aspects of ccRCC biology and disease aggressiveness.

Hoefflin, R., Harlander, S., Schäfer, S., Metzger, P., Kuo, F., Schönenberger, D., Adlesic,
M., Peighambari, A., Seidel, P., Chen, C., Consenza-Contreras, M., Jud, A., Lahrmann,
B., Grabe, N., Heide, D., Uhl, F., Chan, T. A., Duyster, J., Zeiser, R., Schell, C.,
Heikenwalder, M., Schilling, O., Hakimi, A. A., Boerries, M., Frew, I. J. (2020). HIF-
1α and HIF-2α differently regulate tumour development, metabolism and
inflammation of clear cell renal cell carcinoma in mice. Nature Communications.
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ABSTRACT 46 
 47 
Mutational inactivation of VHL is the earliest genetic event in the majority of clear cell renal cell carcinomas 48 
(ccRCC), leading to accumulation of the HIF-1α and HIF-2α transcription factors. While correlative studies of 49 
human ccRCC and functional studies using human ccRCC cell lines have implicated HIF-1α as an inhibitor 50 
and HIF-2α as a promoter of aggressive tumour behaviours, their roles in tumour onset have not been 51 
functionally addressed. Herein we show using an autochthonous ccRCC model that Hif1a is essential for 52 
tumour formation whereas Hif2a deletion has only minor effects on tumour initiation and growth. Both HIF-1α 53 
and HIF-2α are required for the clear cell phenotype. Transcriptomic and proteomic analyses reveal that HIF-54 
1α regulates glycolysis while HIF-2α regulates genes associated with lipoprotein metabolism, ribosome 55 
biogenesis and E2F and MYC transcriptional activities. HIF-2α-deficient tumours are characterised by 56 
increased antigen presentation, interferon signalling and CD8+ T cell infiltration and activation. Single copy 57 
loss of HIF1A or high levels of HIF2A mRNA expression correlate with altered immune microenvironments in 58 
human ccRCC. These studies reveal an oncogenic role of HIF-1α in ccRCC initiation and suggest that 59 
alterations in the balance of HIF-1α and HIF-2α activities can affect different aspects of ccRCC biology and 60 
disease aggressiveness. 61 
  62 
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INTRODUCTION  63 
More than 400,000 new cases of kidney cancer arose worldwide in 2018 1. Clear cell renal cell carcinoma 64 
(ccRCC) represents 70-80% of all cancers of the kidneys 2. Biallelic inactivation of the von Hippel-Lindau 65 
(VHL) tumour suppressor gene is a truncal genetic event that arises in the majority of cases of ccRCC 3–6, 66 
demonstrating that loss of one or more of the various tumour suppressor functions of the pVHL protein 67 
isoforms 2,7 is central to the earliest steps in the initiation of tumour formation. Subsequent mutations or 68 
chromosomal copy number alterations in epigenetic regulatory genes (including PBRM1, BAP1, SETD2, 69 
KDM5C), cell cycle regulatory genes (including TP53, CDKN2A, MYC) or PI3K pathway genes (including 70 
PIK3CA, PTEN, MTOR, TSC1) arise recurrently in ccRCC and are believed to cooperate with VHL 71 
inactivation to promote the development and evolution of ccRCC tumours 8,9. Numerous mouse models have 72 
supported this notion of genetic cooperation by showing that renal epithelial cell-specific inactivation of 73 
different combinations of Vhl together with Pten 10, Tsc1 11, Pbrm1 11–13, Bap1 11,14, Trp53 15, Trp53/Rb1 16, 74 
Cdkn2a 17 or with Myc 17 overexpression causes the formation of cystic and solid precursor lesions or ccRCC 75 
tumours. 76 
 77 
The best characterised tumour suppressor function of pVHL relates to its role in targeting the alpha subunits 78 
of the hypoxia-inducible transcription factors (HIF-1α and HIF-2α) for oxygen-dependent, ubiquitin-mediated 79 
proteolytic degradation 18. Genetic inactivation of VHL causes the constitutive stabilisation of HIF-1α and 80 
HIF-2α, which induce gene expression programs that play a central role in the pathogenesis of ccRCC by 81 
altering cellular metabolism, inducing angiogenesis, promoting epithelial to mesenchymal transition, invasion 82 
and metastatic spread. Numerous lines of evidence argue that HIF-2α plays a major pro-tumourigenic role in 83 
established human ccRCCs, whereas HIF-1α appears to function rather to inhibit aggressive tumour 84 
behaviour. Loss of the region of chromosome 14q harbouring HIF1A correlates with poor survival 19 and is 85 
commonly found in ccRCC metastases 20. ccRCC tumours that express only HIF-2α have higher proliferation 86 
rates than those expressing HIF-1α and HIF-2α 21. ccRCC tumour cell lines frequently display intragenic 87 
deletions of HIF1A but express wildtype HIF-2α 22. HIF-2α is necessary for the formation of ccRCC 88 
xenografts 23,24 while knockdown of HIF-1α enhances xenograft tumour formation in cell lines that express 89 
both HIF-1α and HIF-2α 22. These observations have given rise to the concept that HIF-2α functions as a 90 
ccRCC oncogene and HIF-1α as a tumour suppressor. This prompted the development of HIF-2α-specific 91 
inhibitors which show excellent on-target efficacy in ccRCC xenograft models, efficacy in a subset of patient-92 
derived xenograft models and clinical responses in some patients in phase I clinical trials 25–27. These 93 
pharmacological studies in patient-derived xenograft models however also indicate that HIF-2α specific 94 
inhibition is not sufficient to inhibit the growth of all ccRCCs 25, suggesting that other oncogenic drivers may 95 
be important in some or all tumours. It should be noted that all of the functional and genetic data described 96 
above largely relates to either studies of established, later stage ccRCC human tumours or to the somewhat 97 
artificial setting of xenograft tumour formation by cultured ccRCC cell lines or patient-derived xenograft 98 
models. These studies have necessarily been unable to adequately assess the involvement of HIF-1α and 99 
HIF-2α throughout the entire process of tumour evolution beginning with VHL mutant cells in the context of a 100 
normal renal tubular epithelium.  101 
 102 
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To address the roles of HIF-1α and HIF-2α in the development of ccRCC we take advantage of an accurate 103 
mouse model of ccRCC based on tamoxifen-inducible renal epithelial cell-specific deletion (Ksp-CreERT2) of 104 
Vhl, Trp53 and Rb1 16. This mouse model at least partly reflects the complex patterns of chromosomal copy 105 
number gains and losses of cell cycle regulatory genes in human ccRCC and reproduces many aspects of 106 
the evolution of human ccRCC by first developing cystic and solid precursor lesions that progress to tumours 107 
over the course of 5-12 months following gene deletion in adult mice 16. Tumours arising in this model exhibit 108 
histological, immunohistochemical, transcriptional and mutational similarities to human ccRCC 16. We 109 
introduce floxed alleles of Hif1a and Hif2a (also known as Epas1) into this genetic background and show that 110 
HIF-1α is essential for tumour formation whereas deletion of HIF-2α has only moderate effects on tumour 111 
onset and growth rate but leads to increased intratumoural immune activation. This study defines differing 112 
roles of HIF-1α and HIF-2α in ccRCC formation and progression and suggests a model in which alterations 113 
in their relative activities affect different aspects of tumour biology and immunology.  114 
 115 
  116 
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RESULTS 117 
ccRCC formation is strongly dependent on Hif1a 118 
We fed 6 week-old mice tamoxifen-containing food for two weeks to induce gene deletion in cohorts of Ksp-119 
CreERT2; Vhlfl/fl; Trp53fl/fl; Rb1fl/fl (hereafter termed Vhl∆/∆Trp53∆/∆Rb1∆/∆ in the text and VpR in figures), Ksp-120 
CreERT2; Vhlfl/fl; Trp53fl/fl; Rb1fl/fl; Hif1afl/fl (hereafter termed Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif1a∆/∆ in the text and VpRH1 121 
in figures) and Ksp-CreERT2; Vhlfl/fl; Trp53fl/fl; Rb1fl/fl; Hif2afl/fl (hereafter termed Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ in 122 
the text and VpRH2 in figures) mice. Tumour onset, volume and numbers were monitored over time using 123 
contrast-assisted μCT imaging and mice were sacrificed at individual timepoints based on the presence of 124 
rapid tumour growth. These data were added to, or compared to, our previously published 16 analyses of 125 
separate Vhl∆/∆Trp53∆/∆Rb1∆/∆ and Trp53∆/∆Rb1∆/∆ (termed pR in figures) cohorts, respectively. All animals 126 
from both cohorts were housed in the same animal facility. We first determined that tumour growth curves 127 
(Supplementary Fig. 1a) showed an excellent goodness of fit (Supplementary Fig. 1b) to the exponential 128 
linear regression eαt where α describes the co-efficient of exponential growth, a mathematical description of 129 
the tumour growth rate, and t represents time in days after gene deletion. These analyses showed that Vhl 130 
deletion accelerates tumour onset (Fig. 1a), increases tumour number (Fig. 1b) and increases tumour growth 131 
rate (Fig. 1c) in the Trp53∆/∆Rb1∆/∆ background. Hif1a co-deletion completely abolished these tumour-132 
promoting effects of Vhl deletion (Fig. 1a) and these mice developed very few tumours (Fig. 1b), which grew 133 
slowly when they did develop (Fig. 1c). In contrast, Hif2a deletion caused more moderate, yet statistically 134 
significant effects, partly delaying tumour onset (Fig. 1a), partly reducing the number of tumours per mouse 135 
(Fig. 1b) and average tumour growth rates (Fig. 1c). Metastases were not observed in any of the genotypes. 136 
These data indicate that HIF-1α is very important for the efficient evolution and growth of Vhl mutant 137 
ccRCCs, while HIF-2α is only partly required and many tumours still develop in the Vhl/Trp53/Rb1/Hif2a 138 
quadruple mutant background.  139 
 140 
Since Hif1a deletion provided such a strong phenotypic rescue we next investigated whether the Hif1a and 141 
Hif2a genes are indeed deleted in the relevant tumours to exclude that the tumours might be escapers in 142 
which Cre activity failed to correctly recombine the floxed Hif1a or Hif2a alleles. PCRs specific for the 143 
recombined Hif1a and Hif2a alleles revealed that tumour DNA exhibited Cre-induced recombined alleles of 144 
these genes in tumours from the relevant mice (Supplementary Fig. 2a). To compare the extent of Cre-145 
mediated deletion of Vhl, Trp53, Rb1, Hif1a and Hif2a we conducted quantitative real time PCR using 146 
primers to specifically amplify floxed exons of each gene as well as non-floxed exons of the Vhl, Trp53 and 147 
Hif2a genes (which served as normalisation controls) from genomic DNA from cortex samples from non-Cre 148 
mice (WT cortex), as well as tumours from Vhl∆/∆Trp53∆/∆Rb1∆/∆, Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif1a∆/∆ and 149 
Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ mice. These analyses showed that the allelic ratios of floxed exons normalised 150 
to the average of the 3 non-floxed exons were reduced for Vhl, Trp53 and Rb1 compared to WT cortex and 151 
for Hif1a and Hif2a when compared to WT cortex or to mouse genotypes that did not harbour the floxed 152 
allele (Supplementary Fig. 2b). Residual floxed exons (approximately 10-15% allelic burden) in the genomic 153 
DNA of tumours likely reflect DNA derived from non-Cre-expressing cells of the tumour stroma. These 154 
analyses demonstrated that all genes are deleted by Cre and importantly that Hif1a and Hif2a are deleted to 155 
similar extents to Vhl, Trp53 and Rb1 in the relevant tumour samples. We additionally analysed RNA 156 
sequencing data (see experiments described below) which showed that Vhl∆/∆Trp53∆/∆Rb1∆/∆ tumours 157 
displayed lower mRNA levels of Hif1a and Hif2a than WT cortex but that there was no compensatory 158 
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upregulation of Hif2a in Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif1a∆/∆ tumours, nor of Hif1a in Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ 159 
tumours (Supplementary Fig. 3a,b). This data also revealed the specific reduction in the relative numbers of 160 
sequencing reads in the floxed exons compared to adjacent non-floxed exons. This was true for all floxed 161 
genes in the mouse genotypes that contain the floxed alleles but not in those that do not (Supplementary 162 
Fig. 2c), consistent with specific Cre-mediated recombination occurring equivalently for all genes in all 163 
genotypes. In the case of Vhl, the deletion of the first exon including the first intronic mRNA splice site leads 164 
to sequencing read-through into the intron. Since the intronic sequencing reads do not start at the same 165 
position in different tumour samples, it is difficult to assess the effect of this read-through on potential 166 
translation of the resulting mRNA transcript, however western blotting of primary cells derived from Vhlfl/fl 167 
mice demonstrated that Cre-mediated recombination results in complete loss of the pVHL protein isoforms 168 
(15 and Supplementary Fig. 5). The slightly varying degrees of residual sequencing reads in the floxed exons 169 
of the different genes likely reflects gene expression in various types of tumour stromal cells, which likely 170 
differentially express the different genes.  171 
 172 
Tumours in Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif1a∆/∆ mice lacked the clear nuclear HIF-1α signal that was present in 173 
tumours from Vhl∆/∆Trp53∆/∆Rb1∆/∆ and Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ mice when staining with an anti-HIF-1α 174 
antibody (Fig. 1d). RNA sequencing analyses identified Car9 as a HIF-1α specific target gene 175 
(Supplementary Fig. 3c) and the protein product of this gene, CA9, showed membrane staining in tumours 176 
from Vhl∆/∆Trp53∆/∆Rb1∆/∆ and Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ mice but not in tumours from 177 
Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif1a∆/∆ mice (Fig. 1d). Nuclear HIF-2α staining was present in tumours from 178 
Vhl∆/∆Trp53∆/∆Rb1∆/∆ and Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif1a∆/∆ mice but absent in all tumours from 179 
Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ mice. Collectively these analyses demonstrate that Cre activity occurs 180 
equivalently for all floxed genes and that Hif1a and Hif2a are deleted in the tumours arising in the relevant 181 
mouse backgrounds. 182 
 183 
Characterisation of Hif1a- and Hif2a-deficient mouse ccRCC 184 
Histomorphological analyses and comparisons were performed for the different genetic backgrounds on a 185 
total of 26 (Vhl∆/∆Trp53∆/∆Rb1∆/∆), 16 (Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif1a∆/∆) and 21 (Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆) H&E 186 
stained tumours. In line with our previous report 16, all Vhl∆/∆Trp53∆/∆Rb1∆/∆-tumours were classified as mid- 187 
to high grade (46% grade 2; 54% grade 3) tumours. The malignant lesions in the Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif1a∆/∆ 188 
(19% grade 2; 75% grade 3; 6% grade 4) or Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆-background (14% grade 2; 81% 189 
grade 3; 5% grade 4) displayed on average higher grades. Since tumour grade up to grade 3 is classified 190 
mostly based on nucleolus size, these data hint that loss of HIF-1α or HIF-2α may modify processes such as 191 
transcription of ribosomal DNA genes that affect the nucleolus 28. Potentially relevant mechanisms that have 192 
been previously linked to HIF-α activities and that might contribute to nucleolar alterations include metabolic 193 
generation of ATP and deoxynucleotides to fuel transcription, epigenetic regulatory mechanisms and DNA 194 
repair 28. In order to analyse similarities to the classical human ccRCC clear cell phenotype, we established a 195 
scoring system (Fig. 1e) based on a three-tiered classification of tumours with completely clear cytoplasm 196 
(score 1), partly clear or weakly stained cytoplasm (score 2) or stronger cytoplasmic eosin staining (score 3). 197 
Fifty-seven percent of the Vhl∆/∆Trp53∆/∆Rb1∆/∆ tumours were classified with a clear cell score of one or two, 198 
whereas the vast majority of tumors in the other genetic backgrounds showed a score of three (86% of 199 
Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif1a∆/∆ and 83% of Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆) (Fig. 1f). This observation is consistent 200 
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with our previous findings that HIF-1α is necessary for the clear cell phenotype of normal renal epithelial 201 
cells following Vhl deletion 29 but also implicates HIF-2α in the clear cell phenotype in this tumour model. 202 
Intratumoural histomorphological heterogeneity was observed mainly in Vhl∆/∆Trp53∆/∆Rb1∆/∆ (23%) and 203 
Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ tumors (28%) (Supplementary Fig. 4a) and is a well-known characteristic of 204 
human ccRCC 30. Other typical histopathological features of ccRCC like necrosis (Supplementary Fig. 4b) or 205 
intratumoural hemorrhage (Supplementary Fig. 4c) were equally distributed throughout the different 206 
genotypes and were mainly detected in larger tumours. The vast majority of tumours showed a solid and 207 
spherical growth pattern with pushing rather than infiltrating borders. Hemangioinvasion with direct tumour 208 
infiltration of blood vessels or extra-parenchymal invasion of the perirenal fat tissue was not observed in any 209 
of the cases. A subset of Vhl∆/∆Trp53∆/∆Rb1∆/∆ (15%), Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif1a∆/∆ (25%) and 210 
Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ tumours (19%) exhibited cystic features (Supplementary Fig. 4d). While all 211 
ccRCC in the Vhl∆/∆Trp53∆/∆Rb1∆/∆ background showed strong phospho-4E-BP1-staining, indicative of 212 
PI3K/mTOR-pathway activation, only 50% of the Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif1a∆/∆ and 88% of the 213 
Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ tumours were positive (Fig. 1d). Irrespective of the genetic background, all 214 
malignant lesions stained positively for the proximal tubule marker CD10 (Fig. 1d).  215 
 216 
Cancer assays do not reflect HIF-1α’s in vivo oncogenic role  217 
Since our genetic experiments demonstrated that HIF-1α is necessary for the efficient initiation of ccRCC 218 
formation we wondered firstly if HIF-1α is generally required for cellular proliferation following loss of Vhl and 219 
secondly whether established Vhl∆/∆Trp53∆/∆Rb1∆/∆ tumours remain dependent on HIF-1α or whether they 220 
might lose this dependency during tumour evolution. To mimic the earliest events in ccRCC formation in a 221 
genetically tractable cellular system that allows long term proliferation assays, we derived mouse embryo 222 
fibroblasts (MEFs) from wild type, Vhlfl/fl, Vhlfl/flHif1afl/fl, Vhlfl/flHif2afl/fl and Vhlfl/flHif1afl/flHif2afl/fl embryos, 223 
infected them with Adeno-GFP as control or Adeno-Cre-GFP and confirmed the deletion of the floxed genes 224 
by real time PCR and western blotting (Supplementary Fig. 5a,b). Long term proliferation assays confirmed 225 
previous findings that loss of Vhl in MEFs induces an early loss of proliferative capacity, however, in contrast 226 
to the initial claim that this senescence phenotype is independent of HIF-α activity 31, our results clearly 227 
demonstrate the dependency on Hif1a but not on Hif2a (Fig. 2a). This proliferative rescue due to Hif1a 228 
deletion contrasts with the suppression of ccRCC initiation by Hif1a deletion in vivo. To remove the potential 229 
confounding factor of senescence we took advantage of the fact that deletion of Trp53 overcomes the 230 
phenotype of loss of proliferative capacity associated with loss of Vhl 15,32.  To investigate the effect of loss of 231 
HIF-1α function in immortalised cells we infected Vhlfl/flTrp53fl/fl MEFs with lentiviruses expressing either non-232 
silencing control shRNA or expressing two different shRNAs against Hif1a and infected the cells with Adeno-233 
GFP or Adeno-Cre-GFP. Western blotting confirmed the reduced abundance of pVHL, p53 and HIF-1α 234 
(Supplementary Fig. 5c). Knockdown of HIF-1α further increased the proliferation rate of immortalised 235 
Vhl/Trp53 null MEFs (Fig. 2b), furthering illustrating that HIF-1α generally acts to inhibit proliferation in the 236 
context of Vhl deletion. 237 
 238 
We next used a cell line derived from a mouse Vhl∆/∆Trp53∆/∆Rb1∆/∆ ccRCC (termed 2020 cells) 239 
(Supplementary Fig. 5d) and introduced human pVHL30 to rescue Vhl function (Supplementary Fig. 5e) as 240 
well as knocked down Hif1a with two independent shRNAs (Supplementary Fig. 5f). We confirmed the 241 
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efficient functional re-introduction of pVHL30 and knockdown of Hif1a mRNA in reducing HIF-1α protein 242 
(Supplementary Fig. 5g) and showed that the knockdowns reduced the abundance of the PDK1 and LDH-A 243 
proteins, that are encoded by the HIF-1α transcriptional target genes Pdk1 and Ldha, equivalently to 244 
pVHL30 reintroduction (Supplementary Fig. 5h). Proliferation assays revealed that neither pVHL30 245 
reintroduction (Fig. 2c), nor Hif1a (Fig. 2d) knockdown affected cellular proliferation of 2020 cells growing in 246 
renal epithelial medium on cell culture plastic but that either of these manipulations were sufficient to 247 
increase the growth of 2020 cells as spheroids in non-adherent cell culture conditions (Fig. 2e, 2f and 2g), a 248 
common readout of cellular transformation. Since re-introduction of pVHL into human ccRCC cell lines does 249 
not affect proliferation rates in culture, but does inhibit tumour formation in the xenograft setting 33, we 250 
conducted allograft studies in SCID-Beige mice. pVHL re-introduction into 2020 cells significantly delayed 251 
tumour growth (Fig. 2h) but HIF-1α knockdown did not (Fig. 2i). 252 
 253 
Collectively, these studies show that HIF-1α in fact antagonises cellular proliferation of normal mouse cells 254 
lacking Vhl and is dispensable for proliferation and allograft tumour formation of a mouse ccRCC cell line, 255 
highlighting the specificity of the requirement for HIF-1α for tumour onset in the autochthonous setting. This 256 
argues that the oncogenic role of HIF-1α is evident only in the context of the physiological environment of the 257 
renal epithelium.  258 
 259 
Impact of HIF-1α and HIF-2α on mouse ccRCC transcriptome 260 
Our previous analyses demonstrated that the mouse ccRCC model exhibits an excellent overlap with human 261 
ccRCC at the global transcriptional level 16. To gain further insight into in vivo relevant functions of HIF-1α 262 
and HIF-2α we compared the molecular features of tumours that developed in the presence of both HIF-1α 263 
and HIF-2α to those that were genetically restricted to develop in the absence of either HIF-1α or HIF-2α. 264 
We conducted RNA sequencing of 6 wild type (WT) cortex samples, 6 Vhl∆/∆Trp53∆/∆Rb1∆/∆ tumour samples, 265 
8 Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif1a∆/∆ tumour samples and 10 Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ tumour samples, and 266 
combined these data with our previously-obtained RNA sequencing data from 3 WT cortex samples and 6 267 
Vhl∆/∆Trp53∆/∆Rb1∆/∆ tumour samples. After read trimming and mapping (Supplementary Fig. 6a,b) the mRNA 268 
abundance of 19,723 genes was determined in each sample. All normalised gene expression values are 269 
provided in Supplementary Data 1. Transcriptomic profile principal component analysis and unsupervised 270 
hierarchical clustering by sample Euclidean distance matrix (Supplementary Fig. 6c) suggested minimal 271 
batch effect amongst different sequencing runs. Principal component analysis (Fig. 3a) also revealed clear 272 
separation of WT cortex from all tumour samples on the PC1 axis and this accounted for 36% of the overall 273 
variability. Vhl∆/∆Trp53∆/∆Rb1∆/∆ tumours and Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ tumours tended to segregate from 274 
one another on the PC2 axis, which represented 9% of total variability, suggesting that they are the most 275 
distinct in terms of gene expression patterns, whereas Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif1a∆/∆ tumours were more 276 
widely distributed along the entire axis. These analyses are consistent with the deletion of Vhl, Trp53 and 277 
Rb1 in all three tumour genotypes inducing large transcriptional changes, with more limited and specific 278 
contributions of HIF-1α and HIF-2α to the regulation of specific sets of genes. 279 
 280 
We focused analyses on genes that were differentially expressed between Vhl∆/∆Trp53∆/∆Rb1∆/∆ tumours and 281 
the Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif1a∆/∆ and Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ tumour genotypes and identified 396 282 
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differentially expressed genes that are dependent on HIF-1α (Supplementary Fig. 7a), 804 differentially 283 
expressed genes that are dependent on HIF-2α (Supplementary Fig. 7b) and 131 differentially expressed 284 
genes that are dependent on both HIF-1α and HIF-2α (Supplementary Fig. 7c). To begin to identify 285 
biological processes that these sets of genes are likely to reflect or regulate, we conducted Generally 286 
Applicable Gene-set Enrichment (GAGE) analyses using the pathway databases from ConsensusPathDB, 287 
the Biological Processes from Gene Ontology and MSigDB terms for Chemical and Genetic Perturbations 288 
and Transcription Factor Targets.  The full list of statistically significantly altered (P adj. < 0.05) gene sets of 289 
these GAGE analyses are provided in Supplementary Data 2. Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif1a∆/∆ tumours in 290 
comparison to Vhl∆/∆Trp53∆/∆Rb1∆/∆ and Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ tumours show low expression of 291 
glycolytic genes (Fig. 3b), as well as signatures associated with hypoxia and known HIF-1α targets. This is 292 
consistent with a large body of previous work in human ccRCC cells 34 and in mouse models 29 that shows 293 
that HIF-1α is the primary transcription factor that promotes Warburg-like metabolism of high rates of 294 
glycolysis and low oxidative phosphorylation. Additional HIF-1α-dependent signatures include reduced 295 
expression of genes involved in cell adhesion (Fig. 3c) and focal adhesion and receptor signalling (Fig. 3d). 296 
Genes that were expressed at low levels in Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ tumours compared to the other two 297 
tumour genotypes included those involved in different DNA repair processes (e.g. Fancf – DNA interstrand 298 
cross link repair, Rad52 – homologous recombination repair, Ogg1 – oxidative stress induced base excision 299 
repair, Ercc2 – transcription coupled nucleotide excision repair) (Fig. 3e), cholesterol uptake and lipoprotein 300 
metabolism (Fig. 3f), which may relate to the observed dependency of the clear cell phenotype on HIF-2α, 301 
and ribosome biogenesis (Fig. 3g), potentially consistent with the slower rate of proliferation of 302 
Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ tumours. Other HIF-2α-dependent GAGE terms that might be relevant to the 303 
evolution and proliferation of Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ tumours included genes that are targets of the MYC 304 
and E2F transcription factors, consistent with previous studies showing that HIF-2α promotes the activity of 305 
the MYC transcription factor 21. GAGE analyses also identified a significant downregulation of the gene set 306 
HIF-2α Transcription Network, including Epo, Egln1, Egln3, Igfbp1 and Pfkfb3. To further investigate 307 
potential overlap with recently-defined HIF-2α-dependent genes in human ccRCC, we used a set of 277 308 
genes that were identified as being inhibited specifically in tumour cells in ccRCC tumorgrafts in mice treated 309 
with the HIF-2α inihibitor PT2399 25,35. Analyses of the expression levels of the mouse orthologues of this set 310 
of HIF-2α target genes revealed that many of these genes are highly upregulated in Vhl∆/∆Trp53∆/∆Rb1∆/∆ 311 
tumours compared to WT cortex, but that the loss of either HIF-1α or HIF-2α did not broadly affect the up-312 
regulation of these genes (Supplementary Fig. 7d). Nonetheless, 11 genes, marked in red in Supplementary 313 
Fig. 7d and shown in Supplementary Fig. 7e, were expressed at significantly lower levels (fold change < -314 
1.7, P < 0.05) in Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ tumours than in Vhl∆/∆Trp53∆/∆Rb1∆/∆ tumours. The relatively 315 
small overlap between mouse and human HIF-2α-dependent genes may be due to inherent differences 316 
between mice and humans, to the very different experimental settings of acute pharmacological inhibition 317 
versus tumour evolution in the genetic absence of Hif2a, or to specific features of this particular model of 318 
ccRCC. In this latter context, it is noteworthy that many human HIF-2α-dependent ccRCC genes are related 319 
to the cell cycle and to DNA damage responses. These signatures are highly represented in the comparison 320 
Vhl∆/∆Trp53∆/∆Rb1∆/∆ vs WT cortex (see GAGE signatures in Supplementary Data 2). We speculate that it is 321 
likely that these genes are not dependent on HIF-2α in the mouse model due to the fact that the deletion of 322 
Rb1 and Trp53 already strongly affects these classes of genes.  323 
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 324 
Interestingly, genes that were upregulated in HIF-2α-deficient tumours include those enriched in diverse 325 
GAGE terms for interferon signalling, T cell activation, innate immunity, adaptive immunity, antigen 326 
processing and presentation and NF-κB as well as IRF transcription factor targets, suggestive of an altered 327 
immune environment in these tumours. Supplementary Fig. 8a shows a selection of these enriched immune 328 
signatures and highlights that the signatures are upregulated in Vhl∆/∆Trp53∆/∆Rb1∆/∆ tumours compared to 329 
WT cortex, that there are very few or no statistically significant differences in these signatures between 330 
Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif1a∆/∆ and Vhl∆/∆Trp53∆/∆Rb1∆/∆ tumours (i.e. that HIF-1α deficiency does not strongly 331 
alter the inflammatory tumour environment in Vhl∆/∆Trp53∆/∆Rb1∆/∆ tumours) and that all of these signatures 332 
are further highly statistically significantly upregulated in Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ tumours in comparison 333 
to Vhl∆/∆Trp53∆/∆Rb1∆/∆ tumours. Gene expression heatmaps of differentially expressed genes associated 334 
with GAGE terms for T cell activation (Fig. 3h), response to IFN-β (Fig. 3i) and IFN-γ production 335 
(Supplementary Fig. 8b) are shown as examples of these inflammatory signatures. We conclude that these 336 
analyses suggest that there is a complex inflammatory response in Vhl∆/∆Trp53∆/∆Rb1∆/∆ tumours that is 337 
further modified by HIF-2α deficiency. These phenotypes were further investigated in experiments described 338 
in the following sections. 339 
 340 
Impact of HIF-1α and HIF-2α on mouse ccRCC proteome 341 
In order to further explore whether the biological alterations predicted by transcriptomic analyses are also 342 
reflected at the protein expression level, as well as to attempt to capture differences in the proteomes of the 343 
tumours that might not be reflected in their transcriptomes, we used exploratory quantitative proteomic 344 
analyses of 6 samples of WT cortex and 6 tumours each from Vhl∆/∆Trp53∆/∆Rb1∆/∆, 345 
Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif1a∆/∆ and Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ mice as an independent discovery tool. These 346 
analyses allowed the quantification of 4257 proteins that were present in at least 4 of 6 samples of each 347 
genotype (Supplementary Data 3). As is commonly observed in comparisons of proteome and transcriptome 348 
data, the overall correlations of protein abundance and mRNA abundance were low (Supplementary Fig. 9a). 349 
However, there were strong correlations between fold changes in mRNA abundance and fold changes in 350 
protein abundances when analysing only those proteins that showed differential expression between 351 
genotypes (Supplementary Fig. 9b-d). Through comparison with previously-conducted analyses of the 352 
proteome of 8 human ccRCC tumours 36,37, we identified a strong correlation in the relative abundance of 353 
proteins in mouse Vhl∆/∆Trp53∆/∆Rb1∆/∆ ccRCC and in human ccRCC (Fig. 4a). Of the differentially expressed 354 
proteins identified in the comparison between mouse Vhl∆/∆Trp53∆/∆Rb1∆/∆ ccRCC and wild type cortex, 82% 355 
were also identified as differentially expressed proteins in comparisons of human ccRCC to normal kidney 356 
(Figure 4b), further emphasising that the Vhl∆/∆Trp53∆/∆Rb1∆/∆ model accurately reflects the molecular 357 
features of human ccRCC. Using a less stringent cut-off for statistical significance (P < 0.01), we identified 358 
884 proteins that are upregulated in Vhl∆/∆Trp53∆/∆Rb1∆/∆ ccRCCs compared to WT cortex (Fig. 4c). To 359 
characterise biological pathways that are altered in tumour compared to normal tissue, we conducted two 360 
complementary analyses; ROAST (rotation gene set testing) analysis 38 was used to assess gene set 361 
enrichment based on the expression levels of all measured proteins and gene set enrichment analysis using 362 
the online platform of MSigDB (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp) was performed using 363 
only the lists of statistically differentially upregulated proteins. These analyses revealed many overlaps with 364 
one another as well as with GAGE gene set terms that emerged from the analyses of the transcriptome, 365 
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including glycolysis, hypoxia, DNA repair, mTORC1 signalling, E2F and MYC targets and IFNγ response 366 
(Supplementary Data 3 and Supplementary Fig. 10a). 367 
 368 
To compare the effect of the absence of HIF-1α or HIF-2α on the proteome, we first conducted principal 369 
components analysis (Supplementary Fig. 10b), which revealed that all tumour samples clustered separately 370 
from the WT cortex samples, but that the tumour samples of all of the different genotypes largely overlapped 371 
with one another, suggesting a relatively high degree of similarity in the overall protein expression patterns of 372 
tumours from the different genetic backgrounds. ROAST analyses as well as gene set enrichment analyses 373 
of the lists of proteins that are differentially expressed between Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif1a∆/∆ and 374 
Vhl∆/∆Trp53∆/∆Rb1∆/∆ tumours (Fig. 4d) and between Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ and Vhl∆/∆Trp53∆/∆Rb1∆/∆ 375 
tumours (Fig. 4d,e and Supplementary Data 3) both also highlighted numerous similarities to the 376 
transcriptomic analyses. HIF-1α deficiency reduced expression of glycolytic enzymes and increased 377 
expression of proteins associated with oxidative phosphorylation and respiratory electron transport (Fig. 4f), 378 
while HIF-2α deficiency reduced the expression of MYC targets and resulted in increased expression of 379 
genes associated with immune responses, interferon signaling, cytokine signalling and antigen presentation 380 
(Fig. 4g). In conclusion, the analyses of the proteomes strongly align with the analyses of the transcriptomes, 381 
providing independent validation for the predicted biological differences between the tumour genotypes. 382 
 383 
HIF-2α deficiency alters antigen presentation in ccRCC 384 
Our transcriptomic and proteomic analyses implicated antigen presentation as being upregulated in 385 
Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ tumours. Heatmaps of RNA sequencing data revealed higher levels of 386 
expression of many MHC class I (Fig. 5a) and MHC class II (Fig. 5b) genes, as well as other genes involved 387 
in antigen processing and presentation (Fig. 5c) in Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ tumours than in the tumours 388 
of the other genotypes. Immunohistochemical staining with an anti-MHC class II antibody revealed that all 389 
tumour genotypes displayed cases in which the tumour cells were either negative, partly positive or almost 390 
entirely positive (Fig. 5d). However, tumour cells in Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ tumours were more 391 
frequently positive than the other genotypes (Fig. 5e). Since MHC class II expression is upregulated by 392 
interferon-γ signalling, these results are consistent with the fact that interferon signalling terms were 393 
upregulated in Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ tumours in our transcriptomic and proteomic analyses. Tumour 394 
cells in at least half of ccRCCs are immunohistochemically positive for MHC class II expression 39,40 and 395 
ccRCC cells have been shown to present class II ligands 41. Building upon these observations, we next 396 
sought to determine in human ccRCC whether HIF2A (also known as EPAS1) expression correlates with 397 
expression of MHC class I and class II genes, as well as other genes involved in antigen processing and 398 
presenting. Analyses of TCGA mRNA expression data revealed that HIF2A, but not HIF1A, is more highly 399 
abundant in ccRCC in comparison to normal kidney and that HIF2A shows a wide distribution of expression 400 
levels amongst tumours (Fig. 5f,g). This upregulation and wide expression level distribution is not observed 401 
in chromophobe RCC or papillary RCC (Fig. 5f,g). The wide expression distribution provided a good basis to 402 
investigate potential correlations between HIF2A mRNA abundance and the abundance of mRNAs involved 403 
in antigen presentation. Examples of correlations of MHC class I (Fig. 5h,i), MHC class II (Fig. j,k) and 404 
antigen processing and presentation (Fig. 5l,m) genes are shown. The Spearman correlation analyses of the 405 
full lists of these classes of genes are provided in Supplementary Data 4. Consistent with our mouse tumour 406 
data, Spearman correlation analyses revealed statistically significant negative correlations between HIF2A 407 
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expression and the expression of 3 of 6 MHC class I genes, 12 of 15 MHC class II genes and 26 of 51 non-408 
MHC genes from the GO Antigen Processing and Presentation gene set. While highly statistically significant, 409 
the relatively small magnitudes of some of these correlations suggest that HIF2A expression levels may be 410 
one of several factors that influence the overall expression of antigen presenting genes in ccRCC. 411 
Collectively the mice and human data suggest that HIF-2α suppresses antigen presentation. 412 
 413 
HIF-1α and HIF-2α alter the ccRCC immune microenvironment 414 
Since diverse and complex inflammatory signatures were observed in the transcriptomes and proteomes of 415 
ccRCC tumours, we next applied three different bioinformatic methods to our RNA sequencing data to 416 
attempt to further deconvolve the relative abundance of different types of immune cells or specific gene 417 
signatures associated with inflammation in the different tumour genotypes. We applied two methods that 418 
were previously used to deconvolve the immune microenvironment of human ccRCC 42,43. These methods 419 
are based on single sample gene set enrichment analyses (ssGSEA) using the mouse orthologues of an 420 
expanded number of immune-specific gene signatures to those initially described by Bindea et al. 44 , which 421 
we term Bindea&Others (described in 43), and a set of gene signatures that were identified by analyses of 422 
human ccRCC tumourgrafts, termed eTME (described in 42). The genes in these signatures and their overlap 423 
are listed in Supplementary Data 5. The third method is CIBERSORT with the mouse specific ImmuCC gene 424 
panel, which uses a matrix-weighted score, based on both high and low expressed genes in each immune 425 
subset, to assess the relative abundance of each immune cell population 45. For all three methods we 426 
generated z-scores representing the degree of enrichment of each signature and statistically compared the 427 
immune infiltration scores of all tumours of a given genotype in a series of pairwise comparisons to WT 428 
cortex and to the other genotypes (Fig. 6a). In general, comparisons of all three tumour genotypes to WT 429 
cortex revealed enrichment of gene sets associated with myeloid cell inflammation, including dendritic cells, 430 
monocytes, macrophages and neutrophils, but not mast cells or eosinophils. Terms associated with different 431 
types of T cells and B cells revealed inconsistent results, varying depending on the deconvolution method 432 
used. Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ tumours showed greater enrichment of a number of different immune cell 433 
signatures when compared to Vhl∆/∆Trp53∆/∆Rb1∆/∆ tumours and to Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif1a∆/∆ tumours, 434 
including several types of T cells, monocytes and macrophages, and notably for interferon-γ signalling 435 
(REACTOME.IFNG), consistent with the previous GAGE analyses. Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif1a∆/∆ tumours 436 
showed statistically lower average z-scores, or trends to lower scores, for myeloid cell signatures than 437 
Vhl∆/∆Trp53∆/∆Rb1∆/∆ and Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ tumours. 438 
 439 
To further characterise the immune microenvironments of the three different tumour genotypes, we next 440 
conducted immunohistochemical stainings for a series of markers of different types of immune cells to permit 441 
analyses of a larger set of tumours of each genotype (n = 14-26 tumours). We stained sections of whole 442 
tumour-bearing kidneys with antibodies against CD3 to label T cells, CD4 to label helper T cells, CD8 to label 443 
effector T cells, CD69 as an early activation marker of T cells and NK cells, Perforin to label activated 444 
cytotoxic T cells and NK cells, PD-1 to label antigen-exposed activated or exhausted T-cells, B220 to label B 445 
cells, CD68 to label monocytes and macrophages, F4/80 to label differentiated macrophages and Ly-6G to 446 
label granulocytes and neutrophils. These markers revealed considerable inter-tumoural heterogeneity in 447 
terms of the density of infiltrating cells, even within the same kidney (Supplementary Fig. 11a-j). We 448 
quantified the densities of positively stained cells either by manual counting, via automated detection and 449 
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quantification algorithms, or we calculated the average relative staining intensity for F4/80 where it was not 450 
possible to identify individual cells in the network of macrophages, within the tumours as well as in 451 
unaffected regions of kidney tissue (normal) within the same mouse (Supplementary Fig. 11k,l). Consistent 452 
with HIF-2α deficient tumours showing the highest GAGE mRNA signatures of T cell inflammation, 453 
Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ tumours displayed increased densities of CD3 (Fig. 6b), CD4 (Fig. 6c) and CD8 454 
(Fig. 6d) positive T cells compared to normal tissue, whereas only CD8 positive T cell densities were 455 
significantly increased in Vhl∆/∆Trp53∆/∆Rb1∆/∆ and Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif1a∆/∆ tumours compared to the 456 
respective normal tissues. Notably, both Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif1a∆/∆ and Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ 457 
tumours exhibited higher densities of CD8 positive T cells than Vhl∆/∆Trp53∆/∆Rb1∆/∆ tumours, in line with the 458 
Bindea&Others ssGSEA CD8 T cell signature results. Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif1a∆/∆ but not 459 
Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ tumours showed increased densities of CD4 positive cells compared to 460 
Vhl∆/∆Trp53∆/∆Rb1∆/∆ tumours. This result is not reflected by any of the bioinformatic immune deconvolution 461 
methods. Analyses of the T cell activation markers CD69 (Fig. 6e) and Perforin (Fig. 6f) revealed that all 462 
tumours showed increased T cell activation compared to normal tissue, and that Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ 463 
tumours showed higher levels of T cell activation than Vhl∆/∆Trp53∆/∆Rb1∆/∆ or Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif1a∆/∆ 464 
tumours, consistent with our conclusions from the GAGE analyses. There was no statistically significant 465 
enrichment of PD-1 positive cells, a marker of exhausted T cells, in any of the tumour genotypes (Fig. 6g). 466 
B220 staining revealed increased B cell density in all tumour genotypes compared to normal tissue, and 467 
higher densities in Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif1a∆/∆ tumours than in Vhl∆/∆Trp53∆/∆Rb1∆/∆ or 468 
Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ tumours (Fig. 6h). Interestingly, these observations do not reflect the results of 469 
the bioinformatic immune cell deconvolutions for B cells. In contrast to the relatively low numbers of tumour-470 
infiltrating lymphocytes, myeloid lineage cells were much more abundant within tumours. CD68 positive 471 
monocytes/macrophages (Fig. 6i), F4/80 positive macrophages (Fig. 6j) and Ly-6G-labelled 472 
granulocytes/neutrophils (Fig. 6k) were highly abundant in tumours compared to normal tissue but there 473 
were no differences in abundance of these cells between tumour genotypes. 474 
 475 
Given that HIF-1α and HIF-2α deficiencies increase CD8 positive T cell infiltration, we first sought to gain 476 
insight into potential mechanisms that might explain these observations by examining our RNA sequencing 477 
data. We previously demonstrated that Vhl∆/∆Trp53∆/∆Rb1∆/∆ tumours show upregulation of numerous 478 
cytokines in comparison to WT cortex 16, however analyses of the new dataset did not reveal any cytokines 479 
that were specifically altered by the absence of HIF-1α or HIF-2α  (Supplementary Fig. 12a) that might be 480 
expected to influence T cell infiltration or activation. To functionally investigate whether signalling molecules 481 
or metabolic factors that are released by mouse or human ccRCC cells might directly influence the 482 
proliferation of CD8+ T cells, we activated mouse splenic CD8+ T cells and incubated them for 3 days in 483 
conditioned medium from mouse 2020 ccRCC cells (including VHL30 rescue and Hif1a knockdown cells), 484 
human renal proximal tubule epithelial cells (RPTEC), human A498 ccRCC cells or human 786-O (including 485 
VHL 30 rescue) ccRCC cells, compared to non-conditioned medium. However, none of the conditioned 486 
media altered CD8+ T cell proliferation (Supplementary Fig. 12c,d), arguing against a direct, soluble factor-487 
mediated, VHL- or HIF-α-dependent cross-talk between ccRCC and T cells as being the mechanism that 488 
underlies the altered immune microenvironment in the Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif1a∆/∆ and 489 
Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆  tumours. 490 
 491 
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To investigate whether genetic alterations in HIF1A or HIF2A might influence immune cell infiltration in 492 
human ccRCC, we analysed data from the TCGA KIRC study (Firehose-legacy data set) 9 using cBioPortal 493 
46,47. ccRCC tumours frequently lose one copy of HIF1A and less frequently gain one copy of HIF2A (Fig. 494 
7a). Loss of one copy of either gene correlated with lower mRNA levels but gain of a copy did not correlate 495 
with increased mRNA abundance (Supplementary Fig. 13a,b).  ccRCC tumours that exhibit mono- or bi-496 
allelic loss of HIF1A (collectively HIF1A loss) show worse overall survival (Fig. 7b) and progression-free 497 
survival (Supplementary Fig. 13c) than unaffected tumours, whereas there are no overall or progression-free 498 
survival differences between tumours with a copy number gain of HIF2A and unaffected tumours (Fig. 7c 499 
and Supplementary Fig 13d). Previous studies have identified that loss of larger regions of chromosome 14q, 500 
including the HIF1A gene, correlates with poor prognosis 19. We took advantage of the extensive clinical and 501 
whole exome sequencing data of the TCGA dataset to investigate whether co-variants of HIF1A loss may 502 
account for the observed survival differences. Tumours with HIF1A loss were statistically more likely to have 503 
higher grade and stage, and display lymph node positivity and metastases (Supplementary Table 1), 504 
consistent with this subgroup representing a more aggressive form of ccRCC. The only mutation that 505 
occurred more frequently in the HIF1A loss subgroup than the unaltered subgroup was BAP1, which was 506 
detected in 9% of all ccRCC tumours (Supplementary Fig. 13e,f). However, BAP1 mutation status alone did 507 
not significantly affect survival (Supplementary Fig. 13g) in this cohort and removal of all BAP1 mutant 508 
tumours from the cohort did not alter the correlation of HIF1A loss with poor prognosis (Supplementary Fig. 509 
13h,i). The conclusion that BAP1 mutation status is not a relevant co-variant that affects survival outcome in 510 
the HIF1A loss cohort was also demonstrated by COX univariate (HR 1.839, 95% CI 1.332-2.539, P = 511 
0.00021) and multivariate proportional hazards analyses (HR 1.776, 95% CI 1.274-2.474, P = 0.00069). 512 
These findings suggest that loss of one allele of HIF1A, which is predicted to lead to diminished HIF-1α 513 
abundance, may be selected for during the evolution of some ccRCC tumours and that this correlates with 514 
aggressive disease. 515 
 516 
To investigate whether HIF1A loss correlates with altered inflammation, we first demonstrated that HIF1A 517 
loss tumours exhibit on average between 1.9- and 2.1-fold higher levels of mRNA of CD3D, CD3E, CD8A 518 
and CD8B and 1.4-fold higher levels of CD4 than unaltered tumours (Fig. 7d,f,h,j,l), suggesting that this 519 
group of tumours has higher CD8+, and to a lesser extent CD4+, T cell infiltration. This observation is 520 
consistent with the mouse analyses in which Hif1a-deficient tumours on average display approximately 521 
double the number of CD8+ and CD4+ T cells. In contrast, HIF2A gain tumours show no differences in the 522 
expression of any of these T cell marker genes compared to unaltered tumours (Fig. 7e,g,I,k,m). To gain a 523 
more in-depth overview of the effects of HIF gene copy number or expression level alterations on the 524 
immune microenvironment, we performed immune deconvolution analyses of RNA-seq data, again using 525 
three independent methods of immune cell deconvolution; ssGSEA using the Bindea&Others and eTME 526 
gene signatures and using the CIBERSORT method 48. We compared HIF1A loss and HIF2A gain tumours 527 
to diploid human ccRCCs (Fig. 7n) and also took advantage of the wide distribution of mRNA expression 528 
levels of HIF2A to compare tumours in the top (Q4) and bottom (Q1) quartiles of HIF2A mRNA abundance. 529 
While HIF2A gain tumours exhibited very few alterations in immune scores, HIF1A loss tumours showed 530 
statistically significant increases or decreases in 57 of 83 immune signatures of a variety of lymphoid and 531 
myeloid lineage cells. Notable amongst these are consistently upregulated scores for T helper cells and for B 532 
cells, mirroring our immunohistochemical findings of the comparison of Vhl∆/∆Trp53∆/∆Rb1∆/∆ and 533 
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Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif1a∆/∆ tumours. It should however be noted that the magnitude of the z-scores are 534 
generally low, suggesting that this group of ccRCCs on average exhibits numerous subtle differences in 535 
immune inflammation compared to tumours with normal HIF1A copy number. In contrast, high HIF2A mRNA 536 
expressing tumours displayed downregulation of scores for interferon-γ and for APM2 (measuring MHC class 537 
II antigen presentation), consistent with the upregulation of these features in mouse ccRCC tumours lacking 538 
HIF-2α. Somewhat paradoxically, high HIF2A expressing tumours also displayed general upregulation of 539 
CD8 T cell scores and some NK cell scores and downregulation of all three scores for regulatory T cells and 540 
for the immune checkpoint proteins PD1 and CTLA4. These scores might be predicted to reflect elevated 541 
CD8 T cell activity. However, these tumours also display elevated scores for monocytes, neutrophils and 542 
mast cells, which in some settings contribute to suppression of anti-tumour CD8 T cell responses. 543 
Immunosuppressive mast cells were shown to correlate with HIF2A mRNA abundance in human ccRCC 49. 544 
Thus, the extent of T cell mediated anti-tumour immunity is likely to be determined by the balance of the 545 
abundance and activities of several different immune cell types in a manner that is partly influenced by 546 
HIF2A expression. Finally, it is also noteworthy that HIF1A copy loss and HIF2A mRNA high tumours 547 
showed opposite effects on signatures for pericytes, endothelial cells and angiogenesis, implying that both 548 
HIF-1α and HIF-2α may act as positive factors that promote blood vessel formation in ccRCC tumours. 549 
 550 
Collectively, the mouse and human analyses demonstrate that the genetic copy number or expression level 551 
status of the HIF genes in ccRCC tumour cells correlate with the composition and activation state of the 552 
innate and adaptive immune systems in the tumour microenvironment. 553 
 554 
 555 
 556 
 557 
 558 
  559 
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DISCUSSION 560 
Herein we show by introducing floxed alleles of Hif1a or Hif2a into an autochthonous mouse model of ccRCC 561 
that HIF-1α is necessary for tumour formation whereas HIF-2α deficiency has only a moderate effect on 562 
tumour initiation and growth. While it cannot be excluded that there might be differences between mice and 563 
humans, and the findings may be contextual to the Vhl/Trp53/Rb1 mutant background, this result seemingly 564 
contrasts with several independent lines of evidence from the study of human ccRCC tumours and ccRCC 565 
cell lines, which have demonstrated that HIF-2α possesses strong oncogenic activity and HIF-1α acts in the 566 
manner of a tumour suppressor to suppress aggressive tumour behaviour. How can these apparent 567 
discrepancies be reconciled? There are several possible explanations which suggest that these observations 568 
may not in fact be discrepancies. Additionally, our current study also suggests that there may be caveats to 569 
the interpretation of previous studies, arguing against an oversimplified, binary oncogene/tumour suppressor 570 
model of the contributions of these proteins to ccRCC development. We argue that HIF-1α and HIF-2α are 571 
likely to play different roles at different stages of tumour formation and progression and that these roles 572 
might potentially be modulated by the spectrum of mutations present in each individual ccRCC. We further 573 
argue that it is possible that the balance of the relative strengths of the activities of the different HIF-α 574 
proteins might be dynamically modulated via different mechanisms throughout the lifetime of a ccRCC 575 
tumour to tailor their combined transcriptional outputs to provide an evolutionary advantage at the given 576 
stage of the tumour.  577 
 578 
In addition to genetic mechanisms that can irreversibly affect the balance of HIF-1α and HIF-2α activities, 579 
such as loss of one copy of chromosome 14q, encoding HIF1A, or intragenic deletions of HIF1A 22, several 580 
mechanisms exist that potentially provide tumour cells with a more dynamic mode of fine-tuning the relative 581 
strengths of HIF-1α and HIF-2α expression and activities. These include mutual epigenetic suppression 50, 582 
mutual suppression of protein levels 23, HIF-2α-mediated suppression of HIF-1α translation 51 and HAF-583 
mediated ubiquitination and degradation of HIF-1α to promote the switch from HIF-1α towards HIF-2α 584 
activity 52. Analyses of expression patterns in human ccRCC support the notion that HIF-1α plays an 585 
oncogenic role at early and late stages of ccRCC development and progression. In VHL patients, the earliest 586 
VHL-null multi-cellular renal tubule lesions tend to strongly express HIF-1α and weakly express HIF-2α, but 587 
later lesions such as cysts and tumours express HIF-1α as well as higher levels of HIF-2α 23,53. While HIF-2α 588 
protein is present in the vast majority of all sporadic ccRCC tumours, HIF-1α protein expression is not 589 
detected in about 30% of cases and this correlates with increased tumour cell proliferation 21. Nonetheless, 590 
HIF-1α is detected in about 70% of ccRCC tumours and several studies have correlated higher HIF-1α 591 
expression levels with poor patient survival (reviewed in 54). Consistent with our current findings of an 592 
obligate oncogenic role of HIF-1α, transgenic overexpression of constitutively stabilised HIF-1α 55, but not 593 
HIF-2α 56 in mouse renal tubules causes the formation of small lesions that have some features of precursor 594 
lesions of ccRCC. Interestingly, combined overexpression of HIF-1α and HIF-2α did not cause a more 595 
severe phenotype than HIF-1α overexpression alone 56, demonstrating that even the combined actions of 596 
both HIF-1α or HIF-2α are insufficient to induce tumour formation. In agreement with this conclusion, 597 
numerous previous studies showed that deletion of Vhl in mouse renal epithelial cells in vivo 10,57–62, resulting 598 
in abrogation of the many different tumour suppressor functions of pVHL 2,7,63, was insufficient to cause 599 
tumour initiation either when both HIF-1α and HIF-2α were stabilised, or when the balance of HIF-1α and 600 
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HIF-2α activities were genetically altered by co-deletion of Hif1a or Hif2a 29. Nonetheless, deletion of either 601 
Hif1a or Hif2a was sufficient to inhibit the formation of cysts and tumours induced by Vhl/Trp53 double 602 
mutation 29, demonstrating that both HIF-1α and HIF-2α have pro-tumourigenic activities. In this context, it is 603 
noteworthy that we now show that Hif2a deletion fails to strongly inhibit tumour formation in the 604 
Vhl/Trp53/Rb1 deletion model. One explanation for these different findings may relate to our RNA 605 
sequencing observations which highlighted that HIF-2α increases expression of MYC and E2F target genes, 606 
consistent with previous findings that HIF-2α stimulates MYC activity 21. This predicted cell-cycle promoting 607 
activity of HIF-2α is likely to be necessary for tumour formation in the Vhl/Trp53 background, but may 608 
become at least partly redundant due to the additional mutation of Rb1, which promotes the cell cycle by 609 
removing the negative regulation of E2F transcription factors.  610 
 611 
The patterns of copy number alterations that arise in the TGCA ccRCC dataset are consistent with the idea 612 
that the balance of HIF-1α and HIF-2α activities may be differently selected for, or tolerated, depending on 613 
the status of the network of G1-S cell cycle controlling genes. We have previously described a copy number 614 
signature in which multiple genes involved in the p53 pathway and G1-S checkpoint are altered in about two 615 
thirds of ccRCC tumours 16. While HIF1A copy number losses or mutations (45%) occur in ccRCC more 616 
frequently than gains (2.5%), HIF2A losses are very rare (4%) and gains more common (15%) 617 
(Supplementary Fig. 14a). Importantly, of the rare tumours with HIF2A losses or mutations, only 2 of 16 did 618 
not exhibit a copy number alteration in one or more genes that control the G1-S checkpoint (Supplementary 619 
Fig. 14b). Thus, rare genetic events that might be predicted to result in lowered HIF-2α activity almost 620 
always arise in the background of genetic alterations that are predicted to abrogate or weaken normal cell 621 
cycle control. We speculate that this may allow the tumours to grow in the absence of a lowered cell cycle 622 
promoting activity of HIF-2α. In contrast, the distribution of copy number losses of HIF1A does not correlate 623 
with the presence or absence of alterations in the G1-S network: 52 tumours harbouring HIF1A copy loss 624 
showed no alteration in G1-S genes, while 146 tumours with HIF1A copy loss did display alterations 625 
(Supplementary Fig. 14c). 626 
 627 
Since our current and previous mouse genetic studies collectively show that the requirement for HIF-1α and 628 
HIF-2α is dependent on the underlying genotype of the tumour (Vhl/Trp53 mutations versus Vhl/Trp53/Rb1 629 
mutations), it will be important to test the generality of our findings in other genetic mouse models of ccRCC, 630 
particularly as epigenetic modifications resulting from mutations in Pbrm1 have been shown to alter HIF-α 631 
transcriptional outputs  12,64,65. It is likely that other ccRCC-relevant epigenetic tumour suppressors such as 632 
BAP1, SETD2 and KDM5C also influence HIF-α transcriptional outputs. Thus, the combinations of mutations 633 
present in ccRCC cells might represent another mechanism for altering the balance of the relative activities 634 
of HIF-1α and HIF-2α, potentially affecting the genetic dependency on the two HIF-α proteins. 635 
 636 
Our present study also highlights a potential general caveat to the interpretation of the results of studies of 637 
human ccRCC cell lines, or patient-derived tumour lines, in cell culture and in xenograft assays. In contrast 638 
to the clear requirement for Hif1a in tumour formation in the autochthonous setting, we find that HIF-1α 639 
rather exhibits putative tumour suppressor activities in cell culture-based assays, including inducing the early 640 
loss of proliferative capacity of MEFs following Vhl deletion, inhibiting the proliferation of immortalised 641 
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Vhl/Trp53 null MEFs and inhibiting anchorage independent growth of a Vhl/Trp53/Rb1 mutant mouse ccRCC 642 
cell line. Furthermore, HIF-1α knockdown did not affect the growth of allograft tumours generated with this 643 
ccRCC cell line. This latter experiment argues against the idea that removal of HIF-1α activity in an 644 
established mouse ccRCC tumour, to mimic the loss of HIF-1α function that arises as a later event in tumour 645 
progression in a subset of human ccRCCs, has a potent effect on tumour aggressiveness. Collectively, our 646 
studies show that in the same genetic ccRCC tumour model, the cell culture and allograft assays do not 647 
reflect the in vivo requirement in the autochthonous setting. Previous studies which have interpreted the 648 
oncogenic and tumour suppressive roles of HIF-α factors in ccRCC based on studies of cultured ccRCC 649 
cells and xenograft models may therefore not necessarily be reflective of the true in vivo functions of HIF-1α 650 
and HIF-2α at different stages of tumour development in the physiological context of the kidney.  651 
 652 
Our transcriptomic and proteomic analyses suggest that one potential oncogenic contribution of HIF-1α to 653 
tumour initiation is the induction of expression of genes that induce Warburg metabolism of high rates of 654 
conversion of glucose to lactate and low rates of pyruvate entry into mitochondrial respiration. These findings 655 
of HIF-1α dependency are in accordance with numerous studies in mice and humans 29,66–68. This mode of 656 
Warburg tumour metabolism has recently been proven to occur in vivo in human ccRCC tumours 69 and is in 657 
stark contrast to the normal mode of metabolism of renal proximal tubule epithelial cells, the cell of origin of 658 
ccRCC, which generate ATP predominantly through mitochondrial oxidation of substrates other than 659 
glucose, allowing them to fuel solute transport, including the transport of glucose, from the tubular fluid back 660 
to the blood stream 70,71. It remains to be functionally elucidated if and how this shift to glucose metabolism 661 
contributes to ccRCC formation by proximal tubule cells and whether this represents a true driver of tumour 662 
formation or acts as an enabler of tumour formation once additional transforming genetic mutations arise. 663 
Previously published mouse genetic data suggest that the latter is likely to be the case as induction of 664 
Warburg metabolism in mice through Vhl deletion alone did not cause tumour formation. We identified that 665 
both HIF-1α and HIF-2α are necessary for the clear cell phenotype of Vhl/Trp53/Rb1-deficient ccRCCs, 666 
implying that they might differently contribute to the accumulation of cytoplasmic glycogen and lipids. HIF-1α-667 
dependent alterations in glucose and glycogen utilisation and reduction of mitochondrial abundance and 668 
activity 29 might lead to accumulation of glycogen and failure to efficiently metabolise fatty acids. We also 669 
identified a HIF-2α-dependent metabolic signature involving genes involved in cholesterol and lipoprotein 670 
uptake and metabolism, which may account for the requirement of HIF-2α in the clear cell phenotype. 671 
 672 
A major advantage of the study of autochthonous models of ccRCC is that the tumours develop in the 673 
presence of a functioning immune system. In general, the activities of cytotoxic innate and adaptive immune 674 
cells can act to inhibit or delay tumour formation and progression, but an inflamed tumour microenvironment 675 
can also promote tumour formation through a variety of mechanisms 72. The immune microenvironment of 676 
human ccRCC appears to be unusual in some respects as higher levels of T cell infiltration have been 677 
shown to correlate with disease recurrence and worse survival 43,73,74. In almost all other tumour types the 678 
degree of T cell inflammation is a good prognostic factor 14. ccRCC tumours are also frequently inflamed with 679 
immature myeloid lineage cells that at least partly reflect different states of differentiation along the path from 680 
myeloid progenitor to differentiated dendritic cells, macrophages and neutrophils. At least some of these 681 
myeloid lineage cells have been proposed to promote tumour formation by suppressing T cell activation 75–77. 682 
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Our bioinformatic immune deconvolution and immunohistochemical analyses of the immune 683 
microenvironment of mouse ccRCC tumours is broadly consistent with this latter observation, namely that 684 
the immune microenvironment is dominated by myeloid lineage cells with a modest degree of T cell 685 
inflammation and activation. An unexpected finding was that tumours with Hif2a deletion showed stronger 686 
mRNA signatures associated with tumour immune cell infiltration, antigen presentation and interferon 687 
activity, as well as higher densities of CD8 T cells and cells expressing the T cell activation markers CD69 688 
and Perforin, compared to the other two tumour genotypes. Furthermore, MHC class I and II genes, as well 689 
as other genes involved in antigen processing and presentation, were upregulated and tumour cells in 690 
Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ tumours were more frequently immunohistochemically positive for MHC class II 691 
expression, suggestive of increased presentation of intracellular and extracellular epitopes in this tumour 692 
genotype. Collectively, these observations reflect a generally higher degree of immune activity directed 693 
against Hif2a-deficient tumour cells and it is plausible that this immune control may at least partly contribute 694 
to the reduced numbers of tumours and delayed tumour onset seen in this genotype. Interestingly, we 695 
demonstrated not only in Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif2a∆/∆ tumours but also in Vhl∆/∆Trp53∆/∆Rb1∆/∆Hif1a∆/∆ 696 
tumours that the density of intra-tumoural CD8+ T cells were approximately double the density in 697 
Vhl∆/∆Trp53∆/∆Rb1∆/∆ tumours. The densities of CD8+ T cells observed in the mouse ccRCC tumours 698 
(approximately 40-80 cells/mm2) are within the range seen in most cases of human ccRCC (approximately 699 
20-160 cells/mm2) 49, providing support for the relevance of our mouse model. Consistent with our findings of 700 
HIF-2α acting as a suppressor of T cell inflammation in mouse ccRCC, it was shown that HIF-2α expression 701 
levels in human ccRCCs anti-correlate with T cell abundance and markers of T cell activation 49. We 702 
speculate that this apparent suppression of anti-tumour immune responses by HIF-2α might reflect a 703 
mechanism of positive selection that maintains HIF-2α expression in ccRCCs. Moreover, we show that loss 704 
of one copy of HIF1A correlates with a worse survival outcome, higher mRNA signatures of T cell abundance 705 
and a broadly altered immune microenvironment in human ccRCCs. This observation is consistent with the 706 
fact that higher levels of T cell infiltration have been shown to correlate with disease recurrence and worse 707 
survival in ccRCC 43,73,74. 708 
 709 
Thus, genetic and likely transcriptional and translational mechanisms that alter the balance of HIF-1α and 710 
HIF-2α abundance and activities appear to affect T cell inflammation. The mechanisms that underlie the 711 
increased T cell infiltration and/or activity in the absence of HIF-1α or HIF-2α will require further study. 712 
Analyses of RNA sequencing revealed that the mRNA levels of many cytokine-encoding genes are 713 
upregulated in tumours compared to normal cortex, but none of these genes were differentially regulated by 714 
HIF-1α or HIF-2α. Our functional tests to investigate if T cell proliferation might be suppressed by ccRCC 715 
cells in general, for example through the secretion of immunosuppressive glycolytic metabolic products such 716 
as lactate or H+ 78, did not reveal any crosstalk between mouse or human ccRCC cells and mouse CD8+ T 717 
cells under cell culture conditions. It is possible that these simplified assays failed to reproduce the metabolic 718 
conditions that are present in vivo. It is also likely that many other complex factors such as the presence and 719 
activation states of other immune microenvironmental cells (such as macrophages, MDSCs, dendritic cells, 720 
regulatory T cells), antigen presentation and presence or absence of co-activating or inhibitory ligands by 721 
ccRCC cells, as well as the composition of the extracellular matrix might all play a role in the trafficking and 722 
activation of T cells. Indeed, immune deconvolution analyses revealed that the group of tumours that exhibit 723 
loss of one copy of HIF1A or that show high levels of mRNA expression of HIF2A show many differences in 724 
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signatures of different types of cells in the immune microenvironment. Since our own studies comparing 725 
multiple bioinformatic immune cell deconvolution methods showed that different methods and different 726 
signatures can lead to different results for the same immune cell type, as well as the fact that we observed 727 
both consistencies and inconsistencies between bioinformatic predictions and direct immune cell 728 
enumeration using immunohistochemistry, it will be important to treat these bioinformatic observations as 729 
hypothesis-generating starting points that will need to be orthogonally tested by staining for specific immune 730 
cell markers in larger cohorts of human ccRCC tumours. Given the clinical importance of immune 731 
checkpoint-based therapies for ccRCC and the fact that not all patients respond to these regimes, we believe 732 
that further investigation of the relationship between HIF-1α and HIF-2α status and the immune 733 
microenvironment is of potential therapeutic relevance. A further corollary of our findings is that inhibition of 734 
HIF-1α and HIF-2α transcription factor activities in ccRCC cells could be investigated therapeutically to 735 
inhibit tumour cell proliferation and simultaneously to attempt to increase T cell infiltration and activation. The 736 
potential direct effects of pharmacological inhibition of HIF-α factors on different immune cells would also 737 
have to be considered in this strategy. Finally, while specific inhibitors of HIF-2α are available and are 738 
currently being tested in clinical trials 25–27, our findings demonstrating the importance of HIF-1α for ccRCC 739 
formation argue that the development of specific inhibitors of HIF-1α or of new specific dual HIF-1α/HIF-2α 740 
inhibitors would also be desirable and may have therapeutic benefit in ccRCC. Proof-of-principle that these 741 
approaches are likely to be tolerable and effective comes from previously reported therapeutic effects of 742 
Acriflavine, which inhibits the binding of both HIF-1α and HIF-2α to HIF-1β 79,80, in the Vhl∆/∆Trp53∆/∆Rb1∆/∆ 743 
ccRCC model 16, as well as in xenograft and autochthonous mouse models of  several different types of 744 
tumours 79,81–83. 745 
 746 
  747 
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METHODS 748 
Mice 749 
Previously-described Ksp1.3-CreERT2;Vhlfl/fl;Trp53fl/fl;Rb1fl/fl mice 16 were intercrossed with previously-750 
described  Ksp1.3-CreERT2;Vhlfl/fl;Trp53fl/fl;Hif1afl/fl and Ksp1.3-CreERT2;Vhlfl/fl;Trp53fl/fl;Hif2afl/fl mice 29 to 751 
generate the experimental Ksp1.3-CreERT2;Vhlfl/fl;Trp53fl/fl;Rb1fl/fl, Ksp1.3-752 
CreERT2;Vhlfl/fl;Trp53fl/fl;Rb1fl/flHif1afl/fl and Ksp1.3-CreERT2;Vhlfl/fl;Trp53fl/fl;Rb1fl/flHif2afl/fl mouse lines. 753 
Littermate mice that lacked the Cre transgene served as wild type controls. Gene deletion in 6 week-old mice 754 
was achieved by feeding with food containing tamoxifen (400 parts per million) for 2 weeks. Mouse crosses 755 
and phenotyping were conducted under the breeding license of the Laboratory Animal Services Center, 756 
University of Zurich and tumour monitoring studies were conducted under license ZH116/16 of the Canton of 757 
Zurich. Investigators were not blinded to the genotype of the mice. 758 
 759 
µCT imaging 760 
Monitoring of tumour growth in mice was performed on a monthly basis using µCT as previously described 761 
16. Tumour size was assessed by measuring the maximum diameter of all three dimensions in the respective 762 
planes (x, y and z-plane). The volumes were then calculated using the mathematical formula of an ellipsoid: 763 
(1)  ܸ = ସଷ ∗ ߨ	 ∗ (ݔ)	ݏݑ݅݀ܽݎ ∗ (ݕ)	ݏݑ݅݀ܽݎ ∗  764 (ݖ)	ݏݑ݅݀ܽݎ

 765 
Generation of MEFs and mouse ccRCC cell line 766 
Isolation of MEF lines 29 and preparation of primary renal epithelial cells 15 have been previously described. 767 
MEFs were infected with adenovirus expressing Cre recombinase and GFP (Ad-Cre-GFP; Vector Biolabs; 768 
#1700) or GFP only (Ad-CMV-GFP; Vector Biolabs; #1060). The mouse ccRCC cell line 2020 was isolated 769 
from a piece of tumour tissue from a Vhl∆/∆Trp53∆/∆Rb1∆/∆ mouse, minced with a scalpel blade and digested 770 
for 70 minutes at 37°C with 1 mg/ml Collagenase II solution in 1x HBSS. The digestion was inactivated with 771 
20 ml K1 medium (Dulbecco’s modified Eagle’s medium (DMEM) and Hams F12 mixed 1:1, 2 mM glutamine, 772 
10 kU/ml penicillin, 10 mg/ml streptomycin, hormone mix (5 µg/ml insulin, 1.25 ng/ml prostaglandin E1 773 
(PGE1), 34 pg/ml triiodothyronine (T3), 5µg/ml transferrin, 1.73 ng/ml sodium selenite, 18 ng/ml of 774 
hydrocortisone and 25 ng/ml epidermal growth factor (EGF)) + 10% FCS. The cell solution was 775 
subsequentially filtered through a 70-µm cell strainer, pelleted, and plated in K-1 medium + 10% FCS in a 776 
humidified 5% (v/v) CO2 and 20% O2 incubator at 37°C. Medium was changed 48 hours after plating. Cells 777 
were split 1:5 when sub confluent.  778 
 779 
Retroviral and lentiviral infections 780 
Retroviral and lentiviral infections and cell selection were carried out as previously described 84. Cells were 781 
infected with the retroviruses pBabe-PURO (Vector) or pBabe-PURO-VHL30 (VHL30) or the lentiviruses 782 
LKO.1 expressing non-silencing control shRNA (shRNA-ns), or shRNAs against Hif1a (TRCN0000232220, 783 
TRCN0000232222 or TRCN0000232223), respectively termed shRNA-Hif1a #220, shRNA-Hif1a #222 and 784 
shRNA-Hif1a #223. 785 
 786 
MEF and ccRCC cell proliferation assays 787 
3T3 proliferation assays of MEFs 15 have been previously described. 3,000 mouse ccRCC 2020 cells per 788 
well were seeded in 96 well plates in 6 replicates and incubated for six days. Cells were cultivated in K-1 789 
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medium + 10% FCS, medium was changed after 3 days of incubation. Cell proliferation was measured using 790 
a sulforhodamine B (SRB) colorimetric assay 15. After the indicated time points the cells were fixed with 10 % 791 
(w/v) trichloroacetic acid and stained with 0.057 % (w/v) SRB solution. 10 mM Tris base solution (pH 10.5) 792 
was used to solubilize SRB, followed by OD measurement at 510 nm in a microplate reader (Tecan Spark 793 
10M plate reader). For sphere-forming assays, cell suspensions were filtered through a 40-µm cell strainer 794 
and 1,000 cells were seeded in 6 well low attachment plates (Corning). The cells were cultivated in K-1 795 
medium + 10% FCS. Every three days fresh medium was added to the wells. After 14 days, microscopy 796 
pictures of the formed spheres were captured with DKM 23U274 camera connected to Eclipse Ts2R-FL 797 
microscope (Nikon) at 20x magnification. Images were acquired with IC Capture 2.4 software and analysed 798 
using ImageJ software. 799 
 800 
Allograft assay 801 
Single cell suspensions were prepared with Accutase (Gibco) and 5x106 cells were re-suspended in 75 μl 802 
RPMI following transfer into a precooled 30G insulin syringe mixed with 75 μl Matrigel (Corning). Syringes 803 
with cell suspension were kept on ice to avoid hardening of the Matrigel. SCID Beige mice (Charles River 804 
Laboratories) were anesthetised by inhalation of 3 % isoflurane using oxygen as carrier gas. Mice were 805 
shaved and cells were injected subcutaneously in the flank. Tumour volumes were measured weekly with a 806 
calliper. Experiments were conducted under license G-17/165 of the Regierungspräsidium Freiburg. 807 
 808 
Conditioned medium T cell proliferation assay 809 
10,000 mouse ccRCC 2020, human RPTEC (from Dr. Jiing-Kuan Yee), 786-O (ATCC) or A498 (ATCC) 810 
ccRCC cells were seeded in triplicates in a 6-well-plate with 2 ml RPMI + 10% FCS and kept incubated in a 811 
humidified 5% (v/v) CO2 and 20% O2 incubator at 37°C for two days. Two days later, spleens from C57BL/6 812 
mice were extracted, washed in PBS and mashed through a 100 µm cell strainer in MACS buffer (PBS 1x + 813 
2 % FCS + 2 mM EDTA). The mashed spleen was filtered again through a 100 µm cell strainer into a 50 ml 814 
conical tube and centrifugated for 10 minutes at 290g. The pellet was labelled manually with magnetic CD8a 815 
(Ly-2) MicroBeads (Miltenyi Biotech). Isolated CD8a+ T cells were centrifuged, resuspended in proliferation 816 
medium (RPMI + 10% FCS supplemented with 25 µM β-Mercaptoethanol) and counted. CD8a+ T cells were 817 
then stained with the CellTrace Violet Proliferation Dye (Thermo Fisher). Stained CD8a+ T cells were 818 
stimulated with CD3/CD28 Dynabeads (Thermo Fisher) and activated with interleukin-2 (IL-2). The 819 
conditioned medium was distributed into fresh 6-well-plates and 2x105 of stained, stimulated and activated 820 
CD8a+ T cells were added. The mix of conditioned medium and T-cells was incubated for three days in a 821 
humidified 5% (v/v) CO2 and 20% O2 incubator at 37°C. After the incubation time the T cells were 822 
resuspended and centrifuged in a 2 ml reaction tube for 5 minutes at 1600 rpm and 4 °C. The dead cells 823 
within the pellet were stained with the Live/Dead Fixable Aqua Dead Cell Stain Kit (Thermo Fisher), washed 824 
with 200 µl MACS buffer and centrifuged for 5 minutes at 515g and 4 °C, 25 µl CD16/32 antibody (Fisher 825 
Scientific, 14016185, diluted 1:25 in MACS buffer) was added to the pellet to block Fc-mediated reactions. 826 
After 10 minutes of incubation at 4 °C in the dark, 25 µl of CD8a antibody (APC-conjugated, Biolegend, 827 
100712, diluted 1:100 in MACS buffer) was added to the suspension and incubated for 30 minutes at 4 °C in 828 
the dark. Afterwards T cells were washed twice with MACS buffer and the pellet was resuspended in 100 µl 829 
MACS buffer. Via flowcytometry (BD LSRFortessa) dead/living cells were measured with a 405 nm 830 
Extinction Laser (AmCyan), T cells were measured with a 640 nm Extinction Laser (APC) and the 831 
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Proliferation Dye was measured with a 405 nm Extinction Laser (Pacific Blue). Data was gated and analysed 832 
using FlowJo Software. 833 
 834 
Immunohistochemistry 835 
Immunohistochemical stainings were performed as previously described10. Primary antibodies against the 836 
following proteins or epitopes were used at the following dilutions and antigen retrieval conditions: B220 837 
(1:3,000, BD Biosciences, 553084, Tris/EDTA 20 min, 100oC), CA9 (1:2,000, Invitrogen, PA1-16592, citrate, 838 
10 min, 110oC), CD3 (1:250, Zytomed, RBK024, citrate 30 min, 95oC), CD4 (1:1,000, eBioscience, 14-9766, 839 
citrate, 30 min, 100oC), CD8a (1:200, Invitrogen, 14-0808-82, citrate buffer, 15 min, 114oC), CD10 (1:2,000, 840 
Thermo Fisher Scientific, PA5-47075, citrate buffer, 10 min, 110oC), CD68 (1:100, abcam ab125212, citrate 841 
buffer, 30 min, 95oC), CD69 (1:1,000, Bioss, bs-2499R, Tris/EDTA, 15 min, 114 oC), F4/80 (1:250, Linaris 842 
Biologische Produkte, T-2006, BOND Enzyme Pretreatment Kit (Leica AR9551), 10 min, 37 oC), HIF-1α 843 
(1:20,000, Novus Biotechnologies, NB-100-105, citrate buffer, 10 min, 110oC, Catalyzed Signal Amplification 844 
Kit (DakoCytomation)), HIF-2α (1:1,000, abcam ab109616, Tris/EDTA 15 min, 114 oC ), Ly-6G (1:800, BD, 845 
551459), MHC II (1:500, Novus Biotechnologies, NBP1-43312, BOND Enzyme Pretreatment Kit (Leica 846 
AR9551), 10 min, 37 oC), PD-1 (1:100, R&D systems, AF1021, Tris/EDTA 20 min, 100oC), Perforin (1:100, 847 
Biorbyt, orb312827, Tris/EDTA, 15 min, 114 oC), phospho-Thr37/Thr46-4E-BP1 (1:800, Cell Signaling 848 
Technologies, 2855, citrate buffer, 10 min, 110oC). The following anti-HIF-2α antibodies did not provide 849 
specific nuclear signals in immunohistochemical staining using either Citrate or Tris/EDTA antigen retrieval 850 
methods: abcam ab199, Aviva Systems Biology ARP32253, Biorbyt orb96817, Sigma MAB3472, GeneTex 851 
GTX30114. For analyses of immune cell markers sections were scanned using a Nanozoomer Scansystem 852 
(Hamamatsu Photonics). Automatic quantifications of B220, CD3, CD4, CD8a and CD68 positive cells were 853 
carried out from duplicate stains (average values were determined) as previously described 85 using the VIS 854 
software suite (Visiopharm, Hoersholm, Denmark). Each tumor was outlined manually. Immune cell densities 855 
were calculated as cells per mm² based on surface area and immune cell quantification. The quantifications 856 
of cells stained with F4/80 was performed using a positive pixel count and presented as percentage positive 857 
pixel (%PP). PD-1, Perforin, Ly-6G and CD69 stains were quantified by manual annotation of positively 858 
stained cells. 859 
 860 
Real-time PCR of mRNA and genomic DNA and recombination-specific genomic DNA PCR 861 
RNA was isolated from powdered frozen samples using the NucleoSpin RNA kit (Machery Nagel), cDNA 862 
prepared using random hexamer primers and Ready-To-Go You-Prime First-Strand Beads (GE Healthcare). 863 
Real-time PCR was performed using the LightCycler 480 SYBR Green Master mix (Roche) using a 864 
LightCycler 480 (Roche). The following sets of primer pairs (sequences provided as 5′-3′) were used:  865 
18s (fwd GTTCCGACCATAAACGATGCC, rev TGGTGGTGCCCTTCCGTCAAT)  866 
Hif1a (fwd GGTTCCAGCAGACCCAGTTA, rev AGGCTCCTTGGATGAGCTTT) 867 
Hif2a (fwd GAGGAAGGAGAAATCCCGTGA, rev CTGATGGCCAGGCGCATGATG) 868 
Vhl (fwd CAGCTACCGAGGTCATCTTTG, rev CTGTCCATCGACATTGAGGGA) 869 
 870 
Genomic DNA was isolated from powdered frozen samples using the GeneElute Mammalian Genomic DNA 871 
Miniprep kit (Sigma-Aldrich). 60ng genomic DNA per reaction was subjected to real time PCR using the 872 
LightCycler 480 SYBR Green Master mix (Roche) using a LightCycler 480 (Roche) and annealing 873 
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temperature of 55oC. The following sets of primer pairs (sequences provided as 5′-3′) were used to amplify 874 
the following floxed and non-floxed exons: 875 
Vhl Exon 1 (floxed) (fwd ATAATGCCCCGGAAGGCAG, rev TGAGCCACAAAGGCAGCAC) 876 
Vhl Exon 3 (not floxed) (fwd ACCCTGAAAGAGCGGTGCCTTC, rev CGCTGTATGTCCTTCCGCACAC 877 
Hif1a Exon 2 (floxed) (fwd CGGCGAAGCAAAGAGTCTGAAG, rev CGGCATCCAGAAGTTTTCTCACAC) 878 
Hif2 Exon 2 (floxed) (fwd GCTGAGGAAGGAGAAATCCCG, rev CTTATGTGTCCGAAGGAAGCTG) 879 
Hif2a Exon 1 (not floxed) (fwd TGGCGTCTTACAACCTCCTCCC, TCCGAGAGTCCCGCTCAATCAG) 880 
Trp53 Exon 4 (floxed) (fwd TGAAGCCCTCCGAGTGTCAG, rev AGCCCAGGTGGAAGCCATAG) 881 
Trp53 Exon 11 (not floxed) (fwd AGAAGGGCCAGTCTACTTCCCG, rev AAAAGGCAGCAGAAGGGACCG) 882 
Rb1 Exon 19 (floxed) (fwd AATACAGAGACACAAGCAGCC, rev GAGCCACAACTTAACCTAGTCC) 883 	884 
The following sets of primers were used for PCR amplification of DNA products that are specific to Cre- 885 
recombined alleles of the Hif1a 86 and Hif2a 87 genes. 886 
Hif1a (Fwd II GCAGTTAAGAGCACTAGTTG, Rev GGAGCTATCTCTCTAGACC,) 887 
Hif2a (P1 CAGGCAGTATGCCTGGCTAATTCCAGTT, P3 GCTAACACTGTACTGTCTGAAAGAGTAGC) 888 	889 
Western blotting 890 
Antibodies against the following proteins were used for Western blotting: β-ACTIN (1:5,000, Sigma Aldrich, 891 
A2228), HIF-1α (1:500, Novus Biologicals, NB-100-479), LAMIN-A/C (1:500, Santa Cruz, sc-376248), LDH-A 892 
(1:500, Santa Cruz Biotechnology, sc-27230), PDK1 (1:1,000, Assay Designs, KAP-PK112-0), VHL (1:1,000, 893 
Cell Signaling Technologies, #68547), VINCULIN (1:5,000, Abcam, ab130007).  894 
 895 
RNA-sequencing 896 
RNA was isolated from powdered frozen samples of wild-type kidney cortex controls from Cre negative mice 897 
in the Vhlfl/flTrp53fl/flRb1fl/fl background and from tumours of the different genetic backgrounds using the 898 
NucleoSpin RNA kit (Machery Nagel). Paired-end RNA-sequencing was performed on an Illumina 899 
HISEQ4000 device by the core facility of the German Cancer Research Center (DKFZ) in Heidelberg with 900 
the Illumina TruSeq Stranded RNA library preparation kit. Previously published sequencing data of wild type 901 
cortex and tumours from the Vhl∆/∆Trp53∆/∆Rb1∆/∆ mouse model was also included for subsequent analyses 902 
16. Raw data fastq-files were pre-processed with trimmomatic 88 to assure sufficient read quality by removing 903 
adapters and bases in the low quality segment regions (end of the reads) with a base quality below 20. 904 
Before trimming the average number of reads was 48309915 ± 12246964 [26804116,70620322], after 905 
trimming the average number of reads was 45451780 ± 13975818 [20629675,70032834]. Hence, an 906 
average of 93.2% ± 10.5% of the raw reads survived the trimming step (Supplementary Fig. 6a). The overall 907 
quality of the bases and reads was good. After quality control and trimming the reads were 2-pass aligned 908 
using the STAR aligner 89 and the GRCm38 reference genome from Ensembl. 85.1% ± 3.3% of the reads 909 
were uniquely mapped and considered (Supplementary Fig. 6b). The alignment step was followed by 910 
normalization and differential expression analysis with the R/Bioconductor 90 package DESeq2 91. The 911 
normalisation of the raw read counts was performed with DESeq2 by considering the library size.  912 
Additionally, all genes with a low count across all samples, i.e. the row sum of a gene was below 5 in a gene 913 
by sample matrix, were removed from the dataset. After pre-processing and filtering 19,723 genes were 914 
further analysed and fitted with a negative binomial generalised linear model followed by Wald statistics to 915 
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identify differentially expressed genes. Genes were considered significant with an adjusted p-value < 0.001 916 
(Benjamini-Hochberg). Raw RNA sequencing data have been uploaded to GEO with identifier GSE150983 917 
[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE150983]. 918 
 919 
Gene Set Enrichment Analysis 920 
Enrichment of signalling pathways was performed as implemented in the R/Bioconductor package GAGE 921 
(Generally Applicable Gene-Set Analysis) 92 with signalling pathways from Gene Ontology 93,94, 922 
ConsensusPathDB 95 and MSigDB 96. The human gene identifiers from the MSigDB pathways were mapped 923 
on mouse homologs with the R/Bioconductor package GeneAnswers (R package version 2.28.0). Pathways 924 
were considered significant with an adjusted p-value < 0.05 (Benjamini-Hochberg). 925 
 926 
ssGSEA Immune Deconvolution Analysis 927 
RNA-seq raw read sequences were aligned against mouse genome assembly mm10 by STAR 2-pass 928 
alignment 89. QC metrics, for example general sequencing statistics, gene feature and body coverage, were 929 
then calculated based on the alignment result through RSeQC. RNA-seq gene level count values were 930 
computed by using the R package GenomicAlignments 97 over aligned reads with UCSC KnownGene 98 in 931 
mm10 as the base gene model. The Union counting mode was used and only mapped paired reads after 932 
alignment quality filtering were considered. Gene level FPKM (Fragments Per Kilobase Million) and raw read 933 
count values were computed by the R package DESeq2 91. Single-Sample GSEA 99 was utilised for immune 934 
deconvolution analyses based on FPKM expression values to estimate the abundance of immune cell types 935 
44, MHC class I antigen presenting machinery expression, T-cell infiltration score (TIS), Immune Infiltration 936 
Score (IIS) 43 and immune cytolytic score (CYT) 100 as well as the eTME signatures 42 which was developed 937 
from leveraging RCC patient-derived xenograft RNA-sequencing data. In addition to the gene signature-938 
based deconvolution approach, CIBERSORT 48 which is a regression-based method using Support Vector 939 
Machine algorithm was also employed using either the human gene panel or the mouse specific reference 940 
panel, ImmuCC 45. 941 
 942 
Mass spectrometry-based proteome profiling 943 
Tissue sections of wild-type kidney cortex controls from Cre negative mice in the Vhlfl/flTrp53fl/flRb1fl/fl 944 
background and from tumours of the different genetic backgrounds were homogenised by sonication 945 
(Diagenode, 4102 Seraing, Belgium) in 100 mM HEPES, pH 8.0, 4 % (w/v) SDS, 10 mM DTT, followed by 946 
heat incubation (95°C, 10 min), centrifugation (16,000 g, 10 min), cysteine alkylation, and buffer exchange to 947 
100 mM HEPES, pH 8.0 with subsequent trypsination of 100 μg proteome based on the filter aided sample 948 
preparation protocol 101. 24 samples (six mice from four genotypes) were distributed across three sets and 949 
differentially labeled by amine-reactive tandem-mass tags (TMT11plex, Thermo/Pierce, Rockford, lL, USA) 950 
including a pooled normalisation sample. A summary of the labeling scheme can be found online as part of 951 
the ProteomeXchange submission (see below for details).  Each batch was fractionated by high pH reversed 952 
phase chromatography (XBridge C18, 3.5μm, 150 mm x 4.5 mm column (Waters, MA, USA)). Both eluents A 953 
(water) and B (70 % acetonitrile) contained 10 mM ammonium formate, adjusted to pH 10 with ammonium 954 
hydroxide. Flow rate was 0.3 ml/min. After washing with 16 % B, samples were eluted by a linear gradient 955 
from 16 – 55 % B in 40 minutes. Peptide elution was monitored by UV/VIS absorption at 214 nm. 16 956 
fractions were collected and concatenated into eight final fractions (pool scheme was 1+9, 2+10, 3+11, 957 
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4+12, 5+13, 6+14, 7+15, 8+16). For analysis by liquid chromatography – tandem mass spectrometry (LC-958 
MS/MS), fractions were separated by an EASY nano-LC system 1000 (Thermo Fisher Scientific, Waltham, 959 
MA, USA) and using an EASY-Spray™ C18 column (250 mm x 75 µm, 2µm particles heated at 50°C, 960 
Thermo Fisher Scientific, Waltham, MA, USA). Both eluents A (water) and B (acetonitrile) contained 0.1% 961 
formic acid. The gradient program consisted of the following steps: linear 2 - 25% B increase in 60 minutes 962 
and 25 - 60% B in 30 minutes, providing a 90 min separation window at 300 nl/min flow rate. Peptides were 963 
analyzed using an Oribtrap Q-Exactive Plus mass spectrometer (Thermo Fisher Scientific, Waltham, MA, 964 
USA) operating in data dependent acquisition (DDA) mode. Survey scans were performed at 70,000 965 
resolution, an AGC target of 3e6 and a maximum injection time of 50 ms followed by targeting the top 10 966 
precursor ions for fragmentation scans at 35,000 resolution with 1.2 m/z isolation windows, an NCE of 32 967 
and a dynamic exclusion time of 40 s. For all MS2 scans, the intensity threshold was set to 1000, the AGC to 968 
1e5, maximum injection time of 100 ms and the fixed first mass to 100 m/z. Data were analyzed by 969 
MaxQuant v 1.6.013 with the following settings: tryptic specificity, up to two missed cleavages, TMT-970 
modification of peptide N-termini and lysine side chains; cysteine carbamidomethylation, mouse reviewed 971 
sequences (downloaded from Uniprot on Aug 26th, 2019), 1 % FDR for peptides and proteins, precursor 972 
intensity fraction = 0.5, one or more unique peptides for protein quantitation. MaxQuant output was further 973 
processed by MSStatsTMT 102 for normalisation, batch removal, and protein assembly. Differential protein 974 
abundance was assessed using linear models of microarray analysis. Data are available via PRIDE / 975 
ProteomeXchange with identifier PXD016630 [http://www.ebi.ac.uk/pride/archive/projects/PXD016630] 103. 976 
Of note, the dataset is associated with the ontology term “TMT6plex” since an ontology term for the isobaric 977 
TMT11plex has not yet been established. 978 
 979 
DATA AVAILABILITY 980 
Raw proteomics data are available via PRIDE / ProteomeXchange with identifier PXD016630 981 
[http://www.ebi.ac.uk/pride/archive/projects/PXD016630]. Raw RNA sequencing data have been uploaded to 982 
GEO with identifier GSE150983 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE150983]. The 983 
source data underlying analyses in Figs 3b-i, 4c-g, 5a-c, 6a, 7a and Supplementary Figs S3, S7a-e, S8a,b, 984 
S9a-d, S10a and S12a are provided as Supplementary Data 1-6. Full scan blots for Supplementary Figure 2 985 
and 5 are provided as Source Data file. All remaining relevant data are available in the article, 986 
supplementary information, or from the corresponding author upon reasonable request. 987 
 988 
 989 
 990 
 991 

992 



 27

REFERENCES 993 
 994 
1. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide 995 

for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 68, 394–424 (2018). 996 
2. Frew, I. J. & Moch, H. A Clearer View of the Molecular Complexity of Clear Cell Renal Cell Carcinoma. 997 

Annu. Rev. Pathol. Mech. Dis. 10, 263–289 (2015). 998 
3. Gerlinger, M. et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by 999 

multiregion sequencing. Nat Genet 46, 225–233 (2014). 1000 
4. Turajlic, S. et al. Deterministic Evolutionary Trajectories Influence Primary Tumor Growth: TRACERx 1001 

Renal. Cell 173, 595-610.e11 (2018). 1002 
5. Mitchell, T. J. et al. Timing the Landmark Events in the Evolution of Clear Cell Renal Cell Cancer: 1003 

TRACERx Renal. Cell 173, 611-623.e17 (2018). 1004 
6. Batavia, A. A., Schraml, P. & Moch, H. Clear cell renal cell carcinoma with wild-type von Hippel-Lindau 1005 

gene: a non-existent or new tumour entity? Histopathology 74, 60–67 (2019). 1006 
7. Frew, I. J. & Krek, W. pVHL: A Multipurpose Adaptor Protein. Science Signaling 1, pe30–pe30 (2008). 1007 
8. Sato, Y. et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat Genet 45, 860–867 1008 

(2013). 1009 
9. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell 1010 

renal cell carcinoma. Nature 499, 43–49 (2013). 1011 
10. Frew, I. J. et al. pVHL and PTEN tumour suppressor proteins cooperatively suppress kidney cyst 1012 

formation. EMBO J 27, 1747–1757 (2008). 1013 
11. Gu, Y.-F. et al. Modeling Renal Cell Carcinoma in Mice: Bap1 and Pbrm1 Inactivation Drive Tumor 1014 

Grade. Cancer Discov 7, 900–917 (2017). 1015 
12. Nargund, A. M. et al. The SWI/SNF Protein PBRM1 Restrains VHL-Loss-Driven Clear Cell Renal Cell 1016 

Carcinoma. Cell Reports 18, 2893–2906 (2017). 1017 
13. Espana-Agusti, J., Warren, A., Chew, S. K., Adams, D. J. & Matakidou, A. Loss of PBRM1 rescues VHL 1018 

dependent replication stress to promote renal carcinogenesis. Nat Commun 8, 2026 (2017). 1019 
14. Wang, S.-S. et al. Bap1 is essential for kidney function and cooperates with Vhl in renal tumorigenesis. 1020 

Proc Natl Acad Sci USA 111, 16538–16543 (2014). 1021 
15. Albers, J. et al. Combined mutation of Vhl and Trp53 causes renal cysts and tumours in mice. EMBO 1022 

Mol Med 5, 949–964 (2013). 1023 
16. Harlander, S. et al. Combined mutation in Vhl, Trp53 and Rb1 causes clear cell renal cell carcinoma in 1024 

mice. Nat Med 23, 869–877 (2017). 1025 
17. Bailey, S. T. et al. MYC activation cooperates with Vhl and Ink4a/Arf loss to induce clear cell renal cell 1026 

carcinoma. Nat Commun 8, 15770 (2017). 1027 
18. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-1028 

dependent proteolysis. Nature 399, 271–275 (1999). 1029 
19. Monzon, F. A. et al. Chromosome 14q loss defines a molecular subtype of clear-cell renal cell carcinoma 1030 

associated with poor prognosis. Mod Pathol 24, 1470–1479 (2011). 1031 
20. Turajlic, S. et al. Tracking Cancer Evolution Reveals Constrained Routes to Metastases: TRACERx 1032 

Renal. Cell 173, 581-594.e12 (2018). 1033 
21. Gordan, J. D. et al. HIF-α Effects on c-Myc Distinguish Two Subtypes of Sporadic VHL-Deficient Clear 1034 

Cell Renal Carcinoma. Cancer Cell 14, 435–446 (2008). 1035 
22. Shen, C. et al. Genetic and Functional Studies Implicate HIF1 as a 14q Kidney Cancer Suppressor 1036 

Gene. Cancer Discovery 1, 222–235 (2011). 1037 
23. Raval, R. R. et al. Contrasting Properties of Hypoxia-Inducible Factor 1 (HIF-1) and HIF-2 in von Hippel-1038 

Lindau-Associated Renal Cell Carcinoma. Molecular and Cellular Biology 25, 5675–5686 (2005). 1039 
24. Kondo, K., Kim, W. Y., Lechpammer, M. & Kaelin, W. G. Inhibition of HIF2a Is Sufficient to Suppress 1040 

pVHL-Defective Tumor Growth. 6. 1041 
25. Chen, W. et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 539, 112–117 (2016). 1042 
26. Courtney, K. D. et al. Phase I Dose-Escalation Trial of PT2385, a First-in-Class Hypoxia-Inducible 1043 

Factor-2α Antagonist in Patients With Previously Treated Advanced Clear Cell Renal Cell Carcinoma. 1044 
JCO 36, 867–874 (2018). 1045 

27. Cho, H. et al. On-target efficacy of a HIF-2α antagonist in preclinical kidney cancer models. Nature 539, 1046 
107–111 (2016). 1047 

28. Lindström, M. S. et al. Nucleolus as an emerging hub in maintenance of genome stability and cancer 1048 
pathogenesis. Oncogene 37, 2351–2366 (2018). 1049 

29. Schönenberger, D. et al. Formation of Renal Cysts and Tumors in Vhl/Trp53 -Deficient Mice Requires 1050 
HIF1α and HIF2α. Cancer Res 76, 2025–2036 (2016). 1051 

30. Zaldumbide, L., Erramuzpe, A., Guarch, R., Cortés, J. M. & López, J. I. Large (>3.8 cm) clear cell renal 1052 
cell carcinomas are morphologically and immunohistochemically heterogeneous. Virchows Arch 466, 1053 
61–66 (2015). 1054 



 28

31. Young, A. P. et al. VHL loss actuates a HIF-independent senescence programme mediated by Rb and 1055 
p400. Nat Cell Biol 10, 361–369 (2008). 1056 

32. Welford, S. M., Dorie, M. J., Li, X., Haase, V. H. & Giaccia, A. J. Renal Oxygenation Suppresses VHL 1057 
Loss-Induced Senescence That Is Caused by Increased Sensitivity to Oxidative Stress. Molecular and 1058 
Cellular Biology 30, 4595–4603 (2010). 1059 

33. Kondo, K., Klco, J., Nakamura, E., Lechpammer, M. & Kaelin, W. G. Inhibition of HIF is necessary for 1060 
tumor suppression by the von Hippel-Lindau protein. Cancer Cell 1, 237–246 (2002). 1061 

34. Semenza, G. L. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. 1062 
J. Clin. Invest. 123, 3664–3671 (2013). 1063 

35. Courtney, K. D. et al. HIF-2 Complex Dissociation, Target Inhibition, and Acquired Resistance with 1064 
PT2385, a First-in-Class HIF-2 Inhibitor, in Patients with Clear Cell Renal Cell Carcinoma. Clin Cancer 1065 
Res 26, 793–803 (2020). 1066 

36. Drendel, V. et al. Proteome profiling of clear cell renal cell carcinoma in von Hippel-Lindau patients 1067 
highlights upregulation of Xaa-Pro aminopeptidase-1, an anti-proliferative and anti-migratory 1068 
exoprotease. Oncotarget 8, 100066–100078 (2017). 1069 

37. Weißer, J. et al. Quantitative proteomic analysis of formalin-fixed, paraffin-embedded clear cell renal cell 1070 
carcinoma tissue using stable isotopic dimethylation of primary amines. BMC Genomics 16, 559 (2015). 1071 

38. Wu, D. et al. ROAST: rotation gene set tests for complex microarray experiments. Bioinformatics 26, 1072 
2176–2182 (2010). 1073 

39. Saito, T., Kimura, M., Kawasaki, T., Sato, S. & Tomita, Y. MHC class II antigen-associated invariant 1074 
chain on renal cell cancer may contribute to the anti-tumor immune response of the host. Cancer Lett. 1075 
115, 121–127 (1997). 1076 

40. Gastl, G. et al. Major histocompatibility complex class I and class II expression in renal cell carcinoma 1077 
and modulation by interferon gamma. J. Urol. 155, 361–367 (1996). 1078 

41. Dengjel, J. Unexpected Abundance of HLA Class II Presented Peptides in Primary Renal Cell 1079 
Carcinomas. Clinical Cancer Research 12, 4163–4170 (2006). 1080 

42. Wang, T. et al. An Empirical Approach Leveraging Tumorgrafts to Dissect the Tumor Microenvironment 1081 
in Renal Cell Carcinoma Identifies Missing Link to Prognostic Inflammatory Factors. Cancer Discov 8, 1082 
1142–1155 (2018). 1083 

43. Şenbabaoğlu, Y. et al. Tumor immune microenvironment characterization in clear cell renal cell 1084 
carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. 1085 
Genome Biol 17, 231 (2016). 1086 

44. Bindea, G. et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in 1087 
human cancer. Immunity 39, 782–795 (2013). 1088 

45. Chen, Z. et al. seq-ImmuCC: Cell-Centric View of Tissue Transcriptome Measuring Cellular 1089 
Compositions of Immune Microenvironment From Mouse RNA-Seq Data. Front Immunol 9, 1286 (2018). 1090 

46. Cerami, E. et al. The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional 1091 
Cancer Genomics Data: Figure 1. Cancer Discovery 2, 401–404 (2012). 1092 

47. Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. 1093 
Sci Signal 6, pl1 (2013). 1094 

48. Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 1095 
12, 453–457 (2015). 1096 

49. Xiong, Y. et al. Tumor infiltrating mast cells determine oncogenic HIF-2α-conferred immune evasion in 1097 
clear cell renal cell carcinoma. Cancer Immunol Immunother 68, 731–741 (2019). 1098 

50. Xu, J. et al. Epigenetic regulation of HIF-1α in renal cancer cells involves HIF-1α/2α binding to a reverse 1099 
hypoxia-response element. Oncogene 31, 1065–1072 (2012). 1100 

51. Schulz, K. et al. HIF-1α protein is upregulated in HIF-2α depleted cells via enhanced translation. FEBS 1101 
Letters 586, 1652–1657 (2012). 1102 

52. Koh, M. Y., Lemos, R., Liu, X. & Powis, G. The Hypoxia-Associated Factor Switches Cells from HIF-1 - 1103 
to HIF-2 -Dependent Signaling Promoting Stem Cell Characteristics, Aggressive Tumor Growth and 1104 
Invasion. Cancer Research 71, 4015–4027 (2011). 1105 

53. Mandriota, S. J. et al. HIF activation identifies early lesions in VHL kidneys: Evidence for site-specific 1106 
tumor suppressor function in the nephron. Cancer Cell 10 (2002). 1107 

54. Gudas, L. J., Fu, L., Minton, D. R., Mongan, N. P. & Nanus, D. M. The role of HIF1α in renal cell 1108 
carcinoma tumorigenesis. J Mol Med 92, 825–836 (2014). 1109 

55. Fu, L., Wang, G., Shevchuk, M. M., Nanus, D. M. & Gudas, L. J. Generation of a Mouse Model of Von 1110 
Hippel–Lindau Kidney Disease Leading to Renal Cancers by Expression of a Constitutively Active 1111 
Mutant of HIF1a. Cancer Research 71, 6848-6856 (2011). 1112 

56. Fu, L., Wang, G., Shevchuk, M. M., Nanus, D. M. & Gudas, L. J. Activation of HIF2a in Kidney Proximal 1113 
Tubule Cells Causes Abnormal Glycogen Deposition but not Tumorigenesis. Cancer Research, 73, 1114 
2916-2925 (2013). 1115 

57. Farsijani, N. M. et al. Renal epithelium regulates erythropoiesis via HIF-dependent suppression of 1116 
erythropoietin. Journal of Clinical Investigation 126, 1425–1437 (2016). 1117 



 29

58. Pritchett, T. L., Bader, H. L., Henderson, J. & Hsu, T. Conditional inactivation of the mouse von Hippel–1118 
Lindau tumor suppressor gene results in wide-spread hyperplastic, inflammatory and fibrotic lesions in 1119 
the kidney. Oncogene 34, 2631–2639 (2015). 1120 

59. Rankin, E. B., Tomaszewski, J. E. & Haase, V. H. Renal Cyst Development in Mice with Conditional 1121 
Inactivation of the von Hippel-Lindau Tumor Suppressor. Cancer Res 66, 2576–2583 (2006). 1122 

60. Iguchi, M. et al. Acute Inactivation of the VHL Gene Contributes to Protective Effects of Ischemic 1123 
Preconditioning in the Mouse Kidney. Nephron Exp Nephrol 110, e82–e90 (2008). 1124 

61. Schietke, R. E. et al. Renal Tubular HIF-2a Expression Requires VHL Inactivation and Causes Fibrosis 1125 
and Cysts. PLoS ONE 7, 12 (2012). 1126 

62. Mathia, S. et al. Action of hypoxia-inducible factor in liver and kidney from mice with Pax8-rtTA-based 1127 
deletion of von Hippel-Lindau protein. Acta Physiol 207, 565–576 (2013). 1128 

63. Frew, I. J. & Krek, W. Multitasking by pVHL in tumour suppression. Current Opinion in Cell Biology 19, 1129 
685–690 (2007). 1130 

64. Gao, W., Li, W., Xiao, T., Liu, X. S. & Kaelin, W. G. Inactivation of the PBRM1 tumor suppressor gene 1131 
amplifies the HIF-response in VHL −/− clear cell renal carcinoma. Proc Natl Acad Sci USA 114, 1027–1132 
1032 (2017). 1133 

65. Chowdhury, B. et al. PBRM1 Regulates the Expression of Genes Involved in Metabolism and Cell 1134 
Adhesion in Renal Clear Cell Carcinoma. PLoS ONE 11, e0153718 (2016). 1135 

66. Fu, L., Minton, D. R., Zhang, T., Nanus, D. M. & Gudas, L. J. Genome-Wide Profiling of TRACK Kidneys 1136 
Shows Similarity to the Human ccRCC Transcriptome. Molecular Cancer Research 13, 870–878 (2015). 1137 

67. Minton, D. R. et al. Analyses of the Transcriptome and Metabolome Demonstrate That HIF1α Mediates 1138 
Altered Tumor Metabolism in Clear Cell Renal Cell Carcinoma. PLoS ONE 10, e0120649 (2015). 1139 

68. Hakimi, A. A. et al. An Integrated Metabolic Atlas of Clear Cell Renal Cell Carcinoma. Cancer Cell 29, 1140 
104–116 (2016). 1141 

69. Courtney, K. D. et al. Isotope Tracing of Human Clear Cell Renal Cell Carcinomas Demonstrates 1142 
Suppressed Glucose Oxidation In Vivo. Cell Metabolism 28, 793-800.e2 (2018). 1143 

70. Curthoys, N. P. & Moe, O. W. Proximal tubule function and response to acidosis. Clin J Am Soc Nephrol 1144 
9, 1627–1638 (2014). 1145 

71. Lee, J. W., Chou, C.-L. & Knepper, M. A. Deep Sequencing in Microdissected Renal Tubules Identifies 1146 
Nephron Segment-Specific Transcriptomes. J. Am. Soc. Nephrol. 26, 2669–2677 (2015). 1147 

72. Gonzalez, H., Hagerling, C. & Werb, Z. Roles of the immune system in cancer: from tumor initiation to 1148 
metastatic progression. Genes Dev. 32, 1267–1284 (2018). 1149 

73. Giraldo, N. A. et al. Orchestration and Prognostic Significance of Immune Checkpoints in the 1150 
Microenvironment of Primary and Metastatic Renal Cell Cancer. Clinical Cancer Research 21, 3031–1151 
3040 (2015). 1152 

74. Giraldo, N. A. et al. Tumor-Infiltrating and Peripheral Blood T-cell Immunophenotypes Predict Early 1153 
Relapse in Localized Clear Cell Renal Cell Carcinoma. Clin Cancer Res 23, 4416–4428 (2017). 1154 

75. Najjar, Y. G. et al. Myeloid-Derived Suppressor Cell Subset Accumulation in Renal Cell Carcinoma 1155 
Parenchyma Is Associated with Intratumoral Expression of IL1β, IL8, CXCL5, and Mip-1α. Clin Cancer 1156 
Res 23, 2346–2355 (2017). 1157 

76. Chevrier, S. et al. An Immune Atlas of Clear Cell Renal Cell Carcinoma. Cell 169, 736-749.e18 (2017). 1158 
77. Dannenmann, S. R. et al. Tumor-associated macrophages subvert T-cell function and correlate with 1159 

reduced survival in clear cell renal cell carcinoma. OncoImmunology 2, e23562 (2013). 1160 
78. O’Sullivan, D., Sanin, D. E., Pearce, E. J. & Pearce, E. L. Metabolic interventions in the immune 1161 

response to cancer. Nat. Rev. Immunol. 19, 324–335 (2019). 1162 
79. Lee, K. et al. Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization. Proceedings of 1163 

the National Academy of Sciences 106, 17910–17915 (2009). 1164 
80. Wu, D., Potluri, N., Lu, J., Kim, Y. & Rastinejad, F. Structural integration in hypoxia-inducible factors. 1165 

Nature 524, 303–308 (2015). 1166 
81. Shay, J. E. S. et al. Inhibition of hypoxia-inducible factors limits tumor progression in a mouse model of 1167 

colorectal cancer. Carcinogenesis 35, 1067–1077 (2014). 1168 
82. Yin, T., He, S., Shen, G. & Wang, Y. HIF-1 Dimerization Inhibitor Acriflavine Enhances Antitumor Activity 1169 

of Sunitinib in Breast Cancer Model. oncol res 22, 139–145 (2015). 1170 
83. Mangraviti, A. et al. HIF-1α- Targeting Acriflavine Provides Long Term Survival and Radiological Tumor 1171 

Response in Brain Cancer Therapy. Sci Rep 7, 14978 (2017). 1172 
84. Thoma, C. R. et al. pVHL and GSK3β are components of a primary cilium-maintenance signalling 1173 

network. Nat Cell Biol 9, 588–595 (2007). 1174 
85. Hoefflin, R. et al. Spatial niche formation but not malignant progression is a driving force for 1175 

intratumoural heterogeneity. Nat Commun 7, ncomms11845 (2016). 1176 
86. Rankin, E. B. et al. Inactivation of the arylhydrocarbon receptor nuclear translocator (Arnt) suppresses 1177 

von Hippel-Lindau disease-associated vascular tumors in mice. Mol. Cell. Biol. 25, 3163–3172 (2005). 1178 
87. Gruber, M. et al. Acute postnatal ablation of Hif-2alpha results in anemia. Proc. Natl. Acad. Sci. U.S.A. 1179 

104, 2301–2306 (2007). 1180 



 30

88. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. 1181 
Bioinformatics 30, 2114–2120 (2014). 1182 

89. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). 1183 
90. Huber, W. et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods 12, 1184 

115–121 (2015). 1185 
91. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and  dispersion for RNA-seq 1186 

data with DESeq2. Genome Biol. 15, 550 (2014). 1187 
92. Luo, W., Friedman, M. S., Shedden, K., Hankenson, K. D. & Woolf, P. J. GAGE: generally applicable 1188 

gene set enrichment for pathway analysis. BMC Bioinformatics 10, 161 (2009). 1189 
93. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. 1190 

Nat. Genet. 25, 25–29 (2000). 1191 
94. Gene Ontology Consortium. Gene Ontology Consortium: going forward. Nucleic Acids Res. 43, D1049-1192 

1056 (2015). 1193 
95. Kamburov, A., Stelzl, U., Lehrach, H. & Herwig, R. The ConsensusPathDB interaction database: 2013 1194 

update. Nucleic Acids Res. 41, D793-800 (2013). 1195 
96. Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting 1196 

genome-wide expression profiles. Proceedings of the National Academy of Sciences 102, 15545–15550 1197 
(2005). 1198 

97. Lawrence, M. et al. Software for Computing and Annotating Genomic Ranges. PLoS Comput Biol 9, 1199 
e1003118 (2013). 1200 

98. Rosenbloom, K. R. et al. The UCSC Genome Browser database: 2015 update. Nucleic Acids Res. 43, 1201 
D670-681 (2015). 1202 

99. Barbie, D. A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require 1203 
TBK1. Nature 462, 108–112 (2009). 1204 

100.Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of 1205 
tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015). 1206 

101.Wiśniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for 1207 
proteome analysis. Nat. Methods 6, 359–362 (2009). 1208 

102.Choi, M. et al. MSstats: an R package for statistical analysis of quantitative mass spectrometry-based 1209 
proteomic experiments. Bioinformatics 30, 2524–2526 (2014). 1210 

103.Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support 1211 
for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).	1212 	1213 

 1214 
  1215 



 31

ACKNOWLEDGEMENTS 1216 
 1217 
We are most grateful to the team of Stephan Wolf from the Genomics and Proteomics Core Facility, German 1218 
Cancer Research Center/DKFZ, Heidelberg, Germany for their sequencing service, to Martin Biniossek for 1219 
support with the proteomic analysis and to the members of the Frew laboratory for helpful discussions. This 1220 
work was supported by grants from the Deutsche Forschungsgemeinschaft to IJF (BIOSS Excellence 1221 
Cluster and CRC 850), to RZ and MB (CRC 850), to OS (SCHI 871/11-1), from the Else-Kröner-Fresenius 1222 
Stiftung and Berta-Ottenstein Programme for Clinician Scientists to RH, and to MB and PM from the German 1223 
Federal Ministry of Education and Research (BMBF) for MIRACUM within the Medical Informatics Funding 1224 
Scheme (FKZ 01ZZ1801B). 1225 
 1226 
AUTHOR CONTRIBUTIONS 1227 
RH, SH, SS, DS, MA, AP, FU, PS, DH, CC and IF, designed and conducted experiments, PM, CC, MC-C, 1228 
RH, OS, FK and IF analysed RNA seq and proteomic data, CS contributed pathological analyses, AJ, BL, 1229 
NG, TC, JD, RZ, MH, OS, AH, MB and IF provided technical assistance and scientific advice, IF designed 1230 
the study and wrote the manuscript in consultation with all authors. 1231 
 1232 
COMPETING INTERESTS 1233 
The authors declare no potential conflicts of interest.  1234 



 32

Figure 1. ccRCC formation is strongly dependent on Hif1a and only moderately affected by Hif2a deletion. a 1235 
Tumor onset in cohorts of pR, VpR, VpRH1 and VpRH2 mice. P values were calculated by two-sided log-1236 
rank Mantel–Cox test. b Number of tumours per mouse at the time of sacrifice based on μ-CT imaging (VpR 1237 
n=65, pR n=25, VpRH1 n=36 and VpRH2 n=65 mice). Mean ± SEM are shown, P values were calculated by 1238 
Dunn’s multiple comparisons test. c Tumour growth rates based on μ-CT imaging (VpR n=48, pR n=5, 1239 
VpRH1 n=7 and VpRH2 n=56 tumours). Box-whisker plots depict median, bounded by Q1 (25% lower 1240 
quartile) and Q3 (75% upper quartile) and whiskers depict 1.5 times the Q3-Q1 interquartile range. P values 1241 
were calculated by two-sided Student’s t-test without adjustment for multiple comparisons. d Representative 1242 
immunohistochemical stainings for the indicated antibodies in samples from WT cortex, a non-tumour region 1243 
of VpR cortex, VpR, VpRH1 and VpRH2 tumours. All panels are the same magnification, scale bar = 50 μm. 1244 
The number of positive tumours / number of tumours examined are indicated. e Representative examples of 1245 
the histological appearance of tumours assigned clear cell scores of 1, 2 or 3. Scale bars = 100 μm. f 1246 
Distribution of clear cell scores between VpR (n = 10 mice, 23 tumours), VpRH1 (n = 8 mice, 14 tumours) 1247 
and VpRH2 (n = 9 mice, 18 tumours) tumour cohorts. P values were calculated using the two-sided Mann-1248 
Whitney U test without adjustments for multiple comparisons. 1249 
 1250 
Figure 2. HIF-1α is dispensable for cellular proliferation and for allograft tumour formation. a 3T3 1251 
proliferation assays of MEFs derived from mice of the indicated genotypes infected with adenoviruses 1252 
expressing GFP or Cre. Mean ± std. dev. are derived from three independent cultures. b 3T3 proliferation 1253 
assays of MEFs derived from Vhlfl/flTrp53fl/fl mice infected with non-silencing shRNA (shRNA-ns) or shRNA 1254 
against Hif1a (shRNA-Hif1a #1 and shRNA-Hif1a #2), followed by infection with adenoviruses expressing 1255 
GFP or Cre. Mean ± std. dev. are derived from three independent cultures. c,d Proliferation assays of mouse 1256 
ccRCC cell line 2020 expressing empty vector control or human pVHL30 (c) or non-silencing shRNA 1257 
(shRNA-ns) or shRNA against Hif1a (shRNA-Hif1a #1 and shRNA-Hif1a #2) (d). Mean ± std. dev. are 1258 
derived from two independent experiments each with replicates of six cultures.  e-g Representative images 1259 
(scale bars depict 200 μm) (e) and size distributions (f,g) of spheres formed by the cells described in c,d 1260 
when grown in non-adherent cell culture plates. Mean ± std. dev. of the total number of colonies pooled from 1261 
three independent experiments are shown, P values were calculated by two-sided Student’s t-test. h,i 1262 
Survival of mice following subcutaneous allograft tumour assays of the cells described in c into SCID-Beige 1263 
mice. P values were calculated by two-sided log-rank Mantel Cox test. 1264 
 1265 
Figure 3. HIF-1α and HIF-2α deletion affect different transcriptional programs and inflammatory responses. 1266 
a Principal component analysis of RNA sequencing of WT Cortex and VpR, VpRH1 and VpRH2 tumours b-i 1267 
Gene expression heatmaps for selected differentially regulated genes from the indicated GSEA terms 1268 
glycolysis (b), cell adhesion molecules (c), focal adhesion and receptor signalling (d), DNA repair (e), 1269 
lipoprotein metabolism (f), ribosome biogenesis (g), T cell activation (h) and response to IFN-β (i). Rows 1270 
represent row-normalised z-scores of mRNA abundance, each column represents an individual sample from 1271 
WT cortex or VpR, VpRH1 and VpRH2 tumours. Source data is provided in Supplementary Data 1 and 2. 1272 
 1273 
Figure 4.  Proteomic analyses of the effects of HIF-1α and HIF-2α deletion in mouse ccRCCs. a Correlation 1274 
of protein abundance in mouse and human ccRCC samples. Each dot represents a unique pair of 1275 
orthologous proteins between the two species. Spemann’s correlation coefficient is depicted. b Venn 1276 
diagram showing the overlap of differentially expressed proteins derived from comparison of mouse ccRCC 1277 
with WT cortex and human ccRCC with normal kidney. c-e Volcano plots showing differentially expressed 1278 
proteins (green dots) between VpR and WT cortex (c), VpRH1 and VpR (d) and VpRH2 and VpR (e). f,g 1279 
Protein expression heatmaps showing differentially expressed proteins between VpRH1 and VpR (f) and 1280 
VpRH2 and VpR (g) as well as a summary of GSEA terms associated with the down- and up-regulated 1281 
proteins. Rows represent row-normalised z-scores of protein abundance, each column represents an 1282 
individual sample from WT cortex or VpR, VpRH1 and VpRH2 tumours. Source data is provided in 1283 
Supplementary Data 3. 1284 
 1285 
Figure 5. HIF-2α influences the expression of MHC class I and II genes. a-c Gene expression heatmaps for 1286 
MHC class I (a), class II (b) and other antigen processing and presenting (c) genes. Rows represent row-1287 
normalised z-scores of mRNA abundance, each column represents an individual sample from WT cortex or 1288 
VpR, VpRH1 and VpRH2 tumours. Source data is provided in Supplementary Data 1 and 2. d Examples of 1289 
different scores for MHC class II immunohistochemical staining. All panels are the same magnification, scale 1290 
bar = 100 μm. e Distribution of MHC class II staining scores in the indicated (n) number of VpR, VpRH1 and 1291 
VpRH2 tumours. P values are derived from the two-sided Mann-Whitney U test without adjustments for 1292 
multiple comparisons. f,g Relative HIF1A and HIF2A mRNA abundance in TCGA datasets of human 1293 
chromophobe (KICH, n=66), clear cell (KIRC, n=533) and papillary (KIRP, n=290) renal cell carcinomas and 1294 
associated normal renal tissues (Normal_KICH n=25, Normal_KIRC n=72, Normal_KIRP n=32). Box-whisker 1295 
plots depict median, bounded by Q1 (25% lower quartile) and Q3 (75% upper quartile) and whiskers depict 1296 
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1.5 times the Q3-Q1 interquartile range. h-m Spearman’s correlation analyses between HIF2A mRNA 1297 
abundance and mRNA abundance of two MHC class I (h,i), class II (j,k) and antigen 1298 
processing/presentation (l,m) genes in ccRCC (TCGA KIRC dataset). Source data is provided in 1299 
Supplementary Data 4. 1300 
 1301 
Figure 6.  Deconvolution of the immune microenvironment of VpR, VpRH1 and VpRH2 tumours. a Summary 1302 
of immune deconvolution results using ssGSEA with the Bindea&Others and eTME gene signatures, as well 1303 
as the ImmuCC method. Pairwise comparisons of the expression levels of each immune cell-specific gene 1304 
set between WT cortex, VpR, VpRH1 and VpRH2 tumours are shown. Columns depict the comparison 1305 
between the genotypes and rows depict the gene set. Heatmap colours represent the mean differences in 1306 
the z-scores. Comparisons marked with an asterix show P values < 0.05 between each genotype, two-sided 1307 
Mann-Whitney U test without multiple comparisons. Gene signatures and source data with z-scores and P 1308 
values are provided in Supplementary Data 5 and 6, respectively. b-k Quantification of the densities of 1309 
immunohistochemically positive cells stained with the indicated antibodies in unaffected normal renal tissue 1310 
and VpR (n=26), VpRH1 (n=14) and VpRH2 (n=21) tumours. Mean ± SEM are shown, P values for pairwise 1311 
comparisons were calculated by 1-way ANOVA followed by two-sided Mann-Whitney U test without 1312 
adjustments for multiple comparisons.  1313 
 1314 
Figure 7.  HIF1A copy number loss and HIF2A mRNA expression levels correlate with altered immune 1315 
microenvironments in human ccRCC. a Oncoprint showing the genetic alterations in HIF1A and HIF2A in 1316 
human ccRCC tumours based on GISTIC. b,c Kaplan-Meier curves showing overall survival of ccRCC 1317 
patients whose tumours exhibit loss of one or two copies of HIF1A (loss) or gain of a copy of HIF2A (gain) 1318 
versus patients without these copy number alterations (Unaltered). P values are derived from the two-sided 1319 
log-rank test. d-m mRNA abundance (log2 transformed, normalised, RNAseq v2 RSEM) of CD3D (d,e), 1320 
CD3E (f,g), CD4 (h,i), CD8A (j,k), CD8B (l,m) in HIF1A loss and HIF2A gain ccRCC tumours compared to 1321 
Unaltered tumours. P values are derived from two-sided Student’s t-test. n Summary of immune 1322 
deconvolution results in ccRCC (TCGA KIRC dataset) using ssGSEA with the Bindea&Others and eTME 1323 
gene signatures, as well as the CIBERSORT method. Depicted are pairwise comparisons of the expression 1324 
levels of each gene set between HIF2A gain (n=65) and HIF2A diploid (Unaltered, n=349), between HIF1A 1325 
loss (n=188) and HIF1A diploid (Unaltered, n=220) tumours and between tumours in the top quartile (Q4) 1326 
and the lowest quartile (Q1) of HIF2A expression. Columns depict the comparison between the genotypes 1327 
and rows depict the gene set. Heatmap colours represent the mean differences in the z-scores. 1328 
Comparisons marked with an asterix show P values < 0.05 between each genotype, two-sided Mann-1329 
Whitney U test without multiple comparisons. Source data with z-scores and P values is provided in 1330 
Supplementary Data 6. 1331 
 1332 
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3.3 Synonymous GATA2 Mutations Result in

Selective Loss of Mutated RNA and are Common

in Patients with GATA2 Deficiency

One of the main genetic disorders causing an immunodeficiency / myelodysplasia syn-
drome manifesting in a multitude of clinical phenotypes, like acute myeloid leukemia
(AML) or familial myelodysplastic syndrome (MDS), is a germline mutation in the
GATA2 gene [Hahn et al., 2011]. GATA2 deficiency is considered the most hereditary
predisposition to pediatric MDS, accounting for 15% of MDS cases [Wlodarski et al.,
2016]. Three major types of pathogenic GATA2 mutations are described in literature:
(i) missense mutations in the zinc finger 2 domain, (ii) splice site, nonsense, frameshift,
and whole gene deletions, and (iii) noncoding substitutions in intron 4 leading to hap-
loinsufficiency [Hirabayashi et al., 2017,Wlodarski et al., 2017,Hsu et al., 2013]. Silent
mutations are mostly overlooked and only little is known about them. Although silent
mutations are not affecting the protein structure or their stability it is reported that
such variants can alter RNA by pre-mRNA splicing, mRNA stability and structure,
miRNA binding, and translation [D’Souza et al., 1999,Macaya et al., 2009]. Initial a
synonymous substitution in exon 3 of the GATA2 gene with the clinical phenotype of
GATA2 deficiency was identified [Wehr et al., 2018]. Further analyses of our cohort with
the focus on silent GATA2 substitutions revealed five distinct silent GATA2 mutations
leading to a RNA deleterious effect in nine patients. We concluded that silent GATA2
substitutions are a common, mostly overlooked, cause of GATA2 deficiency and should
affect the evaluation of pathogenic variant discovery and genetic counseling.

Kozyra, E. J., Pastor, V. B., Lefkopoulos, S., Sahoo, S. S., Busch, H., Voss, R. K.,
Erlacher, M., Lebrecht, D., Szvetnik, E. A., Hirabayashi, S., Pasaulienė, R., Pedace, L.,
Tartaglia, M., Klemann, C., Metzger, P., Boerries, M., Catala, A., Hasle, H., de Haas,
V., Wlodarski, M. W. (2020). Synonymous GATA2 mutations result in selective
loss of mutated RNA and are common in patients with GATA2 deficiency.
Leukemia.

Contribution: I supported the analyses of the whole exome sequencing data of the
patients. This included the quality control steps of the raw sequencing files, followed
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by the alignment to the reference genome, the variant calling and the annotation of the
identified variants. Adjustments to the pipeline were necessary to reliable detect the
silent GATA2 substitutions. I revised the manuscript.
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Abstract
Deficiency of the transcription factor GATA2 is a highly penetrant genetic disorder predisposing to myelodysplastic
syndromes (MDS) and immunodeficiency. It has been recognized as the most common cause underlying primary MDS in
children. Triggered by the discovery of a recurrent synonymous GATA2 variant, we systematically investigated 911 patients
with phenotype of pediatric MDS or cellular deficiencies for the presence of synonymous alterations in GATA2. In total, we
identified nine individuals with five heterozygous synonymous mutations: c.351C>G, p.T117T (N= 4); c.649C>T, p.L217L;
c.981G>A, p.G327G; c.1023C>T, p.A341A; and c.1416G>A, p.P472P (N= 2). They accounted for 8.2% (9/110) of cases
with GATA2 deficiency in our cohort and resulted in selective loss of mutant RNA. While for the hotspot mutation
(c.351C>G) a splicing error leading to RNA and protein reduction was identified, severe, likely late stage RNA loss without
splicing disruption was found for other mutations. Finally, the synonymous mutations did not alter protein function or
stability. In summary, synonymous GATA2 substitutions are a new common cause of GATA2 deficiency. These findings
have broad implications for genetic counseling and pathogenic variant discovery in Mendelian disorders.

Introduction

Germline mutations in the GATA2 gene, mostly arising
de novo, had been reported to cause an immunodeficiency/
myelodysplasia syndrome manifesting with a multitude of
clinical phenotypes. These include monocytopenia and
mycobacterial infections syndrome (MonoMAC syndrome)
[1], dendritic cell, monocyte, B and NK lymphoid defi-
ciency (DCML deficiency) [2], familial myelodysplastic

syndrome (MDS)/acute myeloid leukemia (AML) [3],
chronic neutropenia [4], Emberger syndrome [5] and warts,
immunodeficiency, lymphedema and anogenital dysplasia
syndrome (WILD syndrome) [6]. Finally, GATA2 deficiency
is considered the most common hereditary predisposition to
pediatric MDS, accounting for as much as 15% of MDS with
excess of blasts (MDS-EB), with a particularly high pre-
valence among MDS patients carrying monosomy 7 (37%)
[7]. To date, more than 400 GATA2-deficient cases have
been published [8, 9] with three major types of pathogenic
GATA2 mutations: (1) missense mutations within zinc finger
2 (ZnF2), (2) null mutations (splice site, nonsense, frame-
shift, and whole gene deletions), and (3) noncoding sub-
stitutions in the EBOX-GATA-ETS regulatory region in
intron 4 (hg19, g.128202128-128202173, NM_032638.4)
[8–10]. Overall, germline GATA2 mutations are thought to
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result in haploinsufficiency and context-dependent loss of
essential transcription factor activity [3, 5, 11–14].

Genomic studies typically focus on the discovery of
nonsynonymous variants that alter coding regions or
canonical splice sites because their effect is predictable.
Conversely, due to codon degeneracy, synonymous sub-
stitutions do not alter the amino acid composition of the
encoded protein and are usually not reported as pathogenic.
However, previous studies revealed that such variants can
alter RNA or protein on multiple levels including pre-
mRNA splicing, messenger RNA (mRNA) stability and
structure, miRNA binding, and translation [15–24].

Here, we initially identified a synonymous substitution in
exon 3 of the GATA2 gene (c.351C>G, p.T117T) in two
unrelated pedigrees, with the clinical phenotype of GATA2
deficiency. The variant was recently reported in an adult
patient (the mother of two siblings studied here) presenting
with immunodeficiency, severe infections and lung disease
[25]. This prompted us to study the contribution of synon-
ymous alterations to the genetic spectrum of GATA2 defi-
ciency and to assess their pathogenic role. We discovered
and characterized five distinct synonymous mutations with
RNA-deleterious effect in nine patients. They represent a
new type of mutation in GATA2 deficiency and have broad
implications for both the discovery of disease-causing
mutations and genetic counseling.

Methods

Patient cohort and genomics

The screening cohort consisted of 911 patients (Fig. 1a):
729 children and adolescents with primary MDS classified
according to WHO criteria [26–28] enrolled in the studies
1998 and 2006 of the European Working Group of MDS in
Childhood (EWOG-MDS, #NCT00662090), and 182
patients with cytopenias and/or GATA2-specific clinical
problems, referred to our diagnostic laboratory. GATA2
gene sequence, including intron 4 was analyzed in bone
marrow (BM) samples using targeted deep sequencing with
Sanger sequence validation, and subsequent confirmation of
germline mutational status in nonmyeloid tissues as pre-
viously reported [7, 29]. Whole exome/genome sequencing
(WES/WGS) was performed in patients with synonymous
GATA2 variants to rule out other hereditary causes (Sup-
plementary methods, Supplementary Table 1).

Targeted investigations of GATA2 transcript
expression

We analyzed RNA expression in blood, BM or fibroblasts
using Sanger, deep sequencing, and TA cloning-based

sequencing (Supplementary methods, Supplementary Fig. 1
and Supplementary Table 2). In addition, GATA2 expres-
sion in various hematopoietic compartments of healthy
controls was measured (Supplementary methods).

Studies of GATA2 protein stability and function

In order to explore the influence of synonymous mutations
on protein stability and function, in vitro analysis of exo-
genously expressed GATA2 was performed in 293T cells.
To further investigate the protein function, in vivo studies in
zebrafish were accomplished (for details see Supplementary
methods). Experiments were performed in duplicates or
triplicates as indicated in the figure legends.

Statistics

For reporter assay, data from biological and technical tri-
plicate experiments were presented as the mean values ±
standard deviation (SD). Statistical significance was asses-
sed using GraphPad Prism v 7.04 software employing either
standard one-way ANOVA test (reporter assay, thermo-
dynamic effect of GATA2 variants) or Student’s t test
(allele quantification in patients’ cDNA by deep sequen-
cing, frequency of zebrafish phenotypes). P values < 0.05
were considered statistically significant.

Results

Identification of synonymous GATA2 variants

We initially discovered two unrelated individuals (P1, P3)
with GATA2 deficiency carrying an identical synonymous
GATA2 variant. This prompted a systematic evaluation of the
GATA2 gene sequence in our screening cohort of patients
presenting for the most part with the phenotype of pediatric
MDS (Fig. 1a). At first, we categorized “classical” disease-
causing alterations and identified 101 patients with 62 dis-
tinct pathogenic GATA2 mutations (Fig. 1a). The distribution
of mutations corroborated data reported in previous studies
[9]. The most common were null mutations affecting the N-
terminal part of the protein: stop-gain, frameshift, splice site
(N= 52), followed by missense mutations within or adjacent
to ZnF2 (N= 36), intron 4 EBOX-GATA-ETS site altera-
tions (N= 10), and other aberrations (N= 3): one in-frame
and two whole gene deletions (Fig. 1b).

Next, we searched GATA2 coding sequence for the pre-
sence of synonymous substitutions. Variants that are either
not reported or very rare (<0.05% allele frequency) in the
gnomAD population database were found in nine patients.
These variants were present in 8.2% (9/110) of all patients
with GATA2 alterations, and 14.8% (9/61) of cases with
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GATA2 exonic substitutions only (Fig. 1c). In comparison,
common polymorphisms with synonymous effect p.P5P, p.
P22P, p.Q38Q, p.T188T, and p.A411A were not sig-
nificantly enriched in our cohort (not shown), arguing
against their disease-causing role in MDS.

The synonymous substitutions encountered in P1–P9
were predicted to have a likely benign effect using the
combined annotation-dependent depletion score (CADD)
and gene-specific calibration by Gene-Aware Variant
INterpretation (GAVIN) (Table 1). The evolutionary

N=110
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Fig. 1 Composition and genetics of the study cohort. a Flow dia-
gram depicts the screening cohort and GATA2 mutations identified. b
Overall distribution of genotypes among 110 patients with GATA2
deficiency. Truncating variants are localized prior to or within zinc
finger 2; missense mutations cluster mainly to zinc finger 2 region;
intron 4 mutations affect the EBOX-GATA-ETS regulatory region
(+9.5 kb) of GATA2; other: one in-frame deletion and two whole gene
deletions; synonymous variants are proposed as a new group of
pathogenic GATA2 mutations. Numbers in parentheses refer to indi-
vidual patients. c Frequency of patients with synonymous mutations

among all GATA2 positive cases and among the group of patients
carrying exonic substitutions. d Schematic representation of the
GATA2 gene (NM_032638.4) with synonymous variants identified.
Affected nucleotide is shaded blue and dashed line boxes indicate
respective codon triplet. Nucleotide conservation is presented for nine
species. Evolutionary conservation is depicted on the bottom as
Genomic Evolutionary Rate Profiling (GERP++RS) score with
values ranging from −12.36 to 6.18, and 6.18 being the most con-
served. Splicing prediction was performed with Human Splicing Fin-
der v.3.0. ESS exonic splicing silencer, ESE exonic splicing enhancer.
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nucleotide conservation was high for c.351 and c.649
nucleotides (Fig. 1d), suggesting their resistance to evolu-
tionary change. Splicing prediction tools assigned a high
chance of splice defects to c.351C>G, c.981G>A, and
c.1023C>T variants either via activation of a cryptic donor,
introduction of an alternative splicing silencer or disruption
of an existing splicing enhancer (Fig. 1d, Supplementary
Fig. 2, and Table 1).

Phenotype of patients with synonymous GATA2
mutations

Patients with synonymous GATA2 mutations were diagnosed
at a median age of 11.5 (3–24) years. Hematologic and
immunological phenotypes were consistent with the hetero-
geneous clinical picture of GATA2 deficiency and included
varying degrees of immune cytopenias (low B/NK, DC cells,
monocytopenia), immunodeficiency, neutropenia, and/or
pancytopenia (supplemental case descriptions). P2 is the
sibling of GATA2-deficient patient P1 and was categorized
as a silent GATA2mutation carrier with a reduction of B- and
NK-cells. Their mother was previously reported with pul-
monary alveolar proteinosis [25]. P7 and P8 (unrelated,
carrying the same mutation), initially presented with throm-
bocytopenia and while P8 developed transfusion-dependent

refractory cytopenia of childhood (RCC), P7 remained stable
with BM morphology suspicious for RCC. P9 was first seen
with complications of immunodeficiency and clinically
evolved to MDS. Monosomy 7 in BM was detected at
diagnosis in four patients (P1, P3, P4, and P6), normal kar-
yotypes were present in four (P5, P7, P8, and P9), while no
marrow exam was performed in P2 (Table 2). According to
the WHO classification, P1 and P4–P8 were diagnosed with
RCC, and P9 with MDS with multilineage dysplasia as a
young adult. Initial disease of P3 was MDS-EB, which
progressed to AML after 6 months. Other clinical problems
in the affected patients were transient organ dysfunction after
birth and facial abnormalities in P4, hepatosplenomegaly in
P5, hypospadias in P6, and Crohn’s colitis as well as HPV-
driven neoplasia in P9. The majority of patients (6/9)
underwent allogeneic hematopoietic stem cell transplantation
(HSCT) with favorable outcome: 5/6 patients were alive at
last follow up (at a median of 1.9 years after HSCT) and 1/6
(P3) died from infection 7 months following HSCT
(Table 2).

Exclusion of other hereditary causes

We next aimed to determine if other genetic conditions
predisposing to inherited bone marrow failure (IBMF) or

Table 1 Synonymous variants identified in MDS patients.

Patient
no. (ID)

GATA2
mutation

Genomic DNA
VAF%
(total depth)

cDNA VAF%
WT/Mut
(total depth)

Evol conser/
PhysChem diff

CADD/GAVIN
(C2; P > 26, B <
19)

gnomAD browser
MAF% (mutant/
total)

Splicing
prediction

P1 (D 1239) c.351C>G;
p.T117T

WES50% (160),
DS47% (766)

DS99.88%/0.006%
(320215)

Medium/none 10.5/B None Cryptic donor,
new ESS site

P2
(sister of P1)

c.351C>G;
p.T117T

Heterozygous
(Sanger)

Not done As above As above As above As above

P3 (D 749) c.351C>G;
p.T117T

WES47% (130),
DS51% (703)

DS99.89%/0.004%
(838094)

As above As above As above As above

P4 (LT) c.649C>T;
p.L217L

WES48% (196),
DS51% (725)

DS79.43%/20.56%
(429616)

High/none 10.7/B 0.001% (2/246096) None

P5 (D 722) c.981G>A;
p.G327G

WES52% (156),
DS48% (788)

DS99.96%/0.014%
(7190)

Medium/none 18.5/B None New ESS site

P6 (D 1142) c.1023C>T;
p.A341A

WES47% (296),
DS49% (1449)

DS99.91%/0.095%
(4213)

Weak/none 15.4/B 0.002% (6/275438) ESE
site broken

P7 (D) c.1416G>A;
p.P472P

WES49% (63) DS99.91%/0.085%
(388784)

Medium/none 12.4/B 0.027% (70/256322) None

P8 (I 386) c.1416G>A;
p.P472P

Heterozygous
(Sanger)

Not done As above As above As above As above

P9
(UKA2604)

c.351C>G;
p.T117T

Heterozygous
(Sanger)

Not done Medium/none 10.5/B None Cryptic donor,
new ESS site

Gene annotation: GATA2 (NM_032638.4).

VAF variant allelic frequency, WT wild-type allele, Mut mutated allele, WES whole exome sequencing, DS deep sequencing, Sanger identified by
Sanger sequencing, Evol (evolutionary) conservation assessed using Phylop and PhastCons, PhysChem diff physicochemical difference between
amino acids, CADD combined annotation-dependent depletion score, GAVIN Gene-Aware Variant Interpretation (C2: CADD scores significantly
predictive for pathogenicity (p < 0.05), P pathogenic if CADD > 26, B benign if CADD lower than 19), MAF minor allelic frequency, Splicing
prediction Human Splicing Finder v. 3.0. ESS exonic splicing silencer, ESE exonic splicing enhancer.
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MDS might have been previously missed in our patients.
WES/WGS was performed in all families with exception of
P8 who was assessed by a 135 IBMFS/MDS gene panel.
The WES analysis focused on known IBMF/MDS and
pancancer genes (300 genes) [26, 30]. Multiple hetero-
zygous variants of uncertain significance (VUS) were
identified (Supplementary Table 1). After comprehensive
review by a multidisciplinary board representing pediatric
hematology, genetic counseling, and molecular biology,
only P6 remained with additional potentially pathogenic
SAMD9 variants p.K877E and p.F366LfsX33. This patient
did not have features typical for MIRAGE syndrome, which
was initially ascribed to SAMD9 mutations [31, 32]. Nota-
bly, we discovered VUS in the Fanconi anemia (FA) genes
FANCD1, FANCD2, and FANCS in three patients. How-
ever, these VUS were heterozygous and FA was ruled out in
all three patients by means of chromosomal breakage stu-
dies and clinical phenotyping.

Synonymous GATA2 variants result in selective loss
of mRNA expression

Building on the assumption that synonymous variants
detected in our patients were associated with degradation of
the mutant (Mut) mature mRNA, we first sequenced cDNA
transcribed from polyadenylated RNA transcripts (equiva-
lent to mRNA) using Sanger method. Compared with
genomic DNA, cDNA sequences showed loss of hetero-
zygosity manifested by complete lack of the Mut allele in
five out of seven cases: P1, P3, P5, P6, and P7, and a
substantial reduction in P4 and P9 (Fig. 2a upper panel).
Compared with hematopoietic specimens, Mut allele

expression was slightly higher in skin fibroblasts of P1 and
P4 (Fig. 2a lower panel). Because it is not known if
monoallelic GATA2 expression might be a general phe-
nomenon in normal hematopoiesis, we sequenced three
healthy controls who carried a common heterozygous
polymorphism (rs2335052: c.490G>A; p.A164T). Both the
genomic DNA and cDNA showed an equal ratio of alter-
native to reference alleles (Fig. 2b).

Deep sequencing based quantification of allelic fre-
quency showed nearly total absence of Mut alleles in P1,
P3, P5–P7, and a reduction of Mut expression to 21% in P4
(Table 1 and Fig. 2c). Combined across all samples, we
observed median values of 27 reads for Mut, versus
330,544 reads for wild-type (WT) alleles. Lastly, TA
cloning of P5’s and P6’s cDNA followed by sequencing of
an average of 345 single colonies was a third independent
method confirming the RNA reduction (0% and 11% of
Mut amplicons for P5 and P6, respectively, not shown). In
order to address at which stage of RNA maturation the Mut
alleles were lost, we deep sequenced products that were
reverse-transcribed using alternative priming approaches.
While oligo(dT) that are specific to mature transcripts
(mRNA) produced almost exclusively GATA2 WT reads,
the use of random hexamers (enriching both pre-mRNA and
mRNA) resulted in an increase of Mut reads to ~30% for P1
and P6 (Fig. 2d).

Splicing analysis of the GATA2 gene

In order to ascertain the mechanism of monoallelic GATA2
expression, RNA sequencing (RNAseq) was performed in
sorted CD34+ BM cells of five patients (P1, P4–P7).

Table 2 Clinical characteristics of patients with synonymous GATA2 mutations.

Patient no. (ID) Age at Dx Sex Hematological presentation and other features Karyotype Therapies Age and status
at last FUP

P1 (D 1239) 12 F RCC, low IgG, low monocytes/B/DC −7 MUD-HSCT 13.5 years: alive

P2 (sister of P1) 11 F B/NK-cell lymphopenia, low IgA/G Not done Observation 12 years: alive

P3 (D 749) 14 F MDS-EB −7 CB-HSCT 15.4 years: died from
infection 7 months
after HSCT

P4 (LT) 3 M RCC, facial abnormalities, skin
hypopigmentation, joint hypermobility

−7 MSD-HSCT 7.6 years: alive

P5 (D 722) 11 M RCC, hepatosplenomegaly Normal Observation 18.5 years: alive

P6 (D 1142) 11.5 M RCC, hypospadias −7 MUD-HSCT 15.2 years: alive

P7 (D) 14 F Suspicious for RCC Normal – 20.9 years: alive

P8 (I 386) 4 F RCC Normal MUD-HSCT 4 years: alive

P9 (UKA2604) 24 F MDS-MLD, low monocytes/B/NK/DC,
recurrent viral warts, mycobacterium avium
infections, HPV-driven neoplasia, Crohn’s colitis

Normal MUD-HSCT 32 years: alive

Dx diagnosis, RCC refractory cytopenia of childhood, DC dendritic cells, NK natural killer cells, MDS-EB myelodysplastic syndrome with excess
blast, MDS-MLD myelodysplastic syndrome with multilineage dysplasia, HSCT allogeneic hematopoietic stem cell transplantation, −7 monosomy
7, MUD matched unrelated donor, CB cord blood, MSD matched sibling donor, FUP follow-up.

Synonymous GATA2 mutations result in selective loss of mutated RNA and are common in patients with. . .



Isoform analysis revealed two novel splice junctions in P1,
not observed in the Ensembl database and healthy controls
(Fig. 3a and Supplementary Fig. 3). In both new transcripts
in P1 the c.351C>G mutation acts as a new splice donor that
joins to alternative acceptors either at c.488 or at c.608.
Long range RT-PCR and sequencing in P1′ BM and
fibroblasts (Fig. 3b) confirmed the presence of the transcript

with c.488 alternative acceptor. Finally, TA cloning of the
cDNA PCR products of P1 and sequencing of 348 colonies
revealed the presence of three novel transcripts (Fig. 3c).
Two of these were identical as detected by RNAseq; the
third transcript found in only nine colonies harbors the
c.351 donor that joins to a new splice acceptor at position
c.539. All three transcripts resulted in sequence frameshift
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and occurrence of a premature stop codon at c.650. No new
isoforms were found in P4–P7 by RNAseq; additional TA
cloning and sequencing of cDNA in P5 and P6 detected
only properly spliced full length transcripts.

Synonymous variants are predicted not to affect
RNA stability

The impact of synonymous variants on mRNA stability
and secondary structure was determined using Mfold,
RNAfold, and Quickfold tools. Synonymous substitutions
were predicted not to significantly affect secondary struc-
ture of mRNA (Supplementary Fig. 4a). In addition, no
relevant energy change (ΔG) was observed between Mut
and WT (Supplementary Fig. 4b). As a comparison, five
common synonymous polymorphisms from GnomAD and
five nonsynonymous pathogenic GATA2 mutations were
included in the analysis. None of these variants had
influence on the mRNA structure and thermodynamic
characteristics.

Analysis of protein stability and function

We investigated the levels of endogenous GATA2 protein
in P9 who carried RNA-deleterious mutation c.351C>G, p.
T117T and had sufficient primary specimen. Analysis was
performed in patient-derived platelets since GATA2 was
previously found to be highly expressed in this hemato-
poietic subpopulation (Supplementary Fig. 5) [33, 34].

GATA2 protein levels were severely reduced, similarly
to other known pathogenic GATA2 mutations (Fig. 4a).
Next, to determine the effect of the synonymous variants
on GATA2 transcriptional function, GATA-specific
reporter assay was performed. Transactivation activity
was comparable between synonymous Mut and WT
(Fig. 4b). We subsequently assessed the protein:DNA-
binding ability using the electrophoretic mobility shift
assay (EMSA) for the mutation c.649C>T, p.L217L. Using
this limited approach, no significant difference in DNA
binding between Mut and WT GATA2 proteins was seen
(Fig. 4c). Of note, both functional experiments were
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performed at steady state with a high level of ectopic
protein expression.

Because it is known that synonymous variants can impair
translation, we aimed to analyze the effect of Muts on
protein levels. We ectopically expressed cDNA under the
principle that splicing effect will not be expected due to
missing introns, and observed protein changes will result
from altered translation. We blocked the transcription with
actinomycin D in transfected 293T cells and analyzed
protein levels over time (Fig. 4d). Expectedly, protein
content decreased during the course of treatment for all
genotypes resulting from exhaustion of mRNA reserves.
However, p.L217L showed slightly higher protein content
as compared with WT. To better delineate the cause for the
relative increase in protein levels after transcription block-
ade, we then quantified the proteins after translation inhi-
bition (cycloheximide). The p.L217L variant was associated
with a slowdown of protein degradation visible after 5–7 h
of treatment (Fig. 4d).

Effect of synonymous GATA2 c.649C>T variant on
zebrafish hematopoiesis

For further analysis we selected the c.649C>T, p.L217L
variant due to only partial reduction of the mutated allele
expression in hematopoietic specimen of the P4. We
hypothesized that the mutation may exert its effect on the
protein level and aimed to determine if it alters zebrafish
hematopoiesis. We used a previously published MO against
gata2b [35] and visualized hematopoietic stem and pro-
genitor cell (HSPC) in zebrafish embryos by whole-mount
in situ hybridization of the HSPC marker c-myb at 28 h post
fertilization, when HSPCs arise from the dorsal aorta.
Expectedly, gata2b inhibition resulted in a reduction of
HSPCs in zebrafish embryos (Fig. 5a, top right) [35]. We
then performed a phenotype rescue experiment by co-
injecting gata2b MO with human GATA2 WT or Mut
mRNA. Phenotype rescue (defined as medium/high phe-
notype; Supplementary Fig. 6) was achieved in 83% and
98% of embryos injected with WT and Mut mRNA,
respectively, (Fig. 5b–d). However, we observed a sig-
nificantly higher proportion of high phenotypes in animals
rescued with Mut mRNA (42%) as compared with WT
(19%), p < 0.05 (Fig. 5d right panel).

Discussion

GATA2 deficiency is a monogenic disorder known so far to
be caused by heterozygous nonsynonymous mutations,
whole gene deletions or intronic enhancer mutations, all of
which result in haploinsufficiency. In this study, we report
the identification of synonymous, RNA-deleterious

mutations in GATA2 that accounted for 8.2% of all
GATA2–mutated patients and 14.8% of cases with GATA2
exonic substitutions. In total, we identified nine patients
harboring five distinct synonymous GATA2 variants that are
either absent or exceedingly rare in general population: p.
T117T, p.P472P, p.L217L, p.G327G, and p.A341A. Two
of these (p.T117T and p.P472P) were encountered in mul-
tiple unrelated pedigrees, suggesting either independent
mutational events or rare founders in the European popu-
lation (which is possible at least for p.P472P present in
gnomAD in 23 individuals of non-Finnish European
ancestry). The phenotype of patients carrying synonymous
variants resembled GATA2 deficiency. All of the patients
were alive at last follow-up with exception of one patient
who died from HSCT-related complications. Additional
mutations in GATA2 were not identified. Other MDS-
predisposing conditions were excluded based on clinical
studies and WES/WGS in all patients with the exception of
P6 who carried two VUS in the SAMD9 gene. No specific
features demarcating GATA2 from SAMD9 syndrome were
present in this patient; hypospadias are unspecific and had
been reported in both conditions [36, 37]. At this point, we
cannot rule out that in P6 both gene defects acted in a
synergistic manner facilitating MDS development.

Computational prediction assigned an increased prob-
ability of missplicing to three of the five variants. Further
assessment of mutation deleteriousness with existing in silico
tools failed to ascribe pathogenic effects. Because of the
difficulty in predicting deleteriousness, synonymous muta-
tions have been generally left out in genomic studies.
However, it is likely that many disease-causing mutations are
being consistently overlooked—including mutations located
in noncoding regions of the genome as well as synonymous
variants. So far, little is known about the role of such
mutations in hematopoietic malignancies due to lack of
routine screening of the inter-/intragenic regions. Besides
known recurrent deleterious mutations in the regulatory
element of GATA2 [10] there are only few examples of
noncoding mutations associated with BMF. Recently, two
patients were reported with dyserythropoietic anemia and an
intronic substitution in GATA1 gene that is 24 nucleotides
upstream of the canonical splice acceptor site. This alteration
resulted in reduced canonical splicing and increased use of
an alternative splice acceptor site that causes a partial intron
retention event [38]. Moreover, mutations in 5’UTR and
deep intronic region of ELANE gene have been reported to
be associated with severe congenital neutropenia [39]. Due to
lack of studies integrating functional evaluation, the pre-
valence of such variants in Mendelian disorders is yet to be
determined. It is remarkable that recent pancancer studies
report acquired synonymous driver mutations at a rate of
~6–8% among all single-nucleotide changes found in human
cancers [40]. This is strikingly similar to the proportion of
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(germline) synonymous mutations identified in our study.
Mutations causing phenotypically severe hereditary disease
are mainly introduced as random de novo events, and it is

well accepted that purifying selection will eventually elim-
inate these deleterious alleles. This is especially valid in
high-penetrance conditions, such as GATA2 deficiency that
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often manifests before the reproductive age and thus results
in reduced fecundity.

There are multiple ways how synonymous substitutions
can exert deleteriousness even though the amino acid
sequence is not changed. As confirmed using three ortho-
gonal approaches, all of the mutations found here resulted in
a nearly complete and selective loss of the Mut transcript in
hematopoietic cells, with the exception of c.649C>T, p.
L217L that showed Mut allele reduction to ~20%. In con-
trast, paired analysis of two patients revealed a higher Mut
allele expression in skin fibroblasts versus hematopoietic
cells. Potential explanations for this discrepancy might be
the variability of allelic expression across different tissues
[41, 42] or the notion of context-dependent monoallelic
expression observed for ~20% of human genes [43]. In
addition, we observed that divergence in allelic ratio
depends not only on the tissue analyzed but also on the
stage of RNA processing. Strikingly, the mutation fre-
quency in BM of two patients (c.351C>G and c.1023C>T)
increased from nearly absent in mRNA to 30% in total RNA
transcripts, implying that the defect manifests at a late stage
of RNA maturation, at least for these two variants. Splicing
disruption was predicted for three variants (c.351C>G,
c.981G>A, and c.1023C>T); however, splicing analysis
confirmed novel splicing pattern only for c.351C>G. This
mutation resulted in aberrant transcripts with premature stop
codon which makes it functionally equivalent to a
frameshift-truncating mutation causing nonsense-mediated
decay. For the remaining four mutations, no abnormal
splicing was detected. It is conceivable that these Mut
mRNAs are extremely unstable and subjected to a very
rapid sequestration. Another potential explanation for loss
of allelic expression is epigenetic silencing that could arise
from aberrant promoter methylation. Supporting this, allelic
disbalance due to hypermethylation was recently observed
in one patient with GATA2 p.T354M mutation [44].
Synonymous variants can also affect translation and thus
result in increased or decreased protein stability or function.
Surprisingly, p.L217L Mut protein was slightly more stable
in vitro, although its function (tested in vitro using the
EMSA DNA gel shift assay at steady state, with ectopic
GATA2 overexpression) seemed not to be affected. Further,
this mutation not only rescued the GATA2-deficient phe-
notype in zebrafish, but also resulted in a significantly
higher number of HSPCs in comparison with control ani-
mals. Higher stability of this mutated protein might poten-
tially explain the relative increase in its functional properties
in vivo. In analogy, it is known that moderate GATA2
overexpression enhances proliferation and self-renewal of
progenitor cells [45]. We reason that the more efficient
rescue of the morphant phenotype can be associated with
higher stability of the p.L217L Mut, which is seen when

transiently overexpressed in 293T cell line (Fig. 4d).
Because of the challenging data (decrease of Mut RNA
expression but higher protein stability of protein) we do
question the pathogenicity of this mutation until additional
biological data or patients are reported. Limited availability
of patients’ primary specimens as well as instability of the
transcripts with synonymous mutations precluded further
mechanistic studies.

Reported diagnostic yields for WES/WGS in single
individuals can reach ~40% and heavily rely on compu-
tational predictions [46, 47] which are difficult to achieve
for synonymous mutations. Moreover, WES is limited to
the analysis of coding regions only. Even though genome
sequencing overcomes this constraint, it generates an
enormous output of alterations within coding and non-
coding regions of the genes. In setting of GATA2 defi-
ciency, WGS would facilitate the detection of pathogenic
intronic mutations in regulatory region in intron 4 (corre-
sponding to +9.5 kb enhancer region) as well as whole
gene and partial gene deletions. However, allelic loss on
RNA level would be missed. The utility of transcriptome
analysis was previously highlighted by the identification of
disease-causing mutations in patients with negative exome
or genome sequencing results, increasing the diagnostic
rate by as much as 35% [48, 49]. Hence, we propose that
diagnostic sequencing should incorporate a cascade
approach where RNA sequencing follows inconclusive
DNA analysis in patients with suspected disease. This
approach is feasible not only for patients with GATA2
deficiency but also in patients with high index of suspicion
for a specific Mendelian disorder but without a known
pathogenic mutation. Our findings suggest that a straight-
forward Sanger or deep sequencing of cDNA would be
sufficient to confirm the RNA-deleteriousness of a
synonymous variant.

In summary, we demonstrate that a significant pro-
portion of GATA2-deficient patients carry damaging
synonymous alterations. These genetic changes, pre-
viously excluded from analysis due to their likely silent
effect, should be incorporated into standard diagnostic
pipeline for individuals with GATA2 disease phenotype.
However, patients with other hereditary BM failure and
MDS syndromes might also benefit from this extended
diagnostic approach. In the long term, identification of
pathogenic synonymous variants has the potential to
improve genetic counseling, HSCT donor selection, and
clinical outcomes.

Data availability

WES data have been deposited at the European
Genome–phenome Archive (EGA), which is hosted by the
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EBI and the CRG, under accession number
EGAS00001003817. Further information about EGA can
be found on https://ega-archive.org “The European
Genome–phenome Archive of human data consented for
biomedical research”.
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The increasing demand of high-throughput data in medical centers, especially for ther-
apy recommendations for advanced tumor patients within an interdisciplinary molecular
tumor board (MTB) requires the development of bioinformatics workflows for their stan-
dardized processing. Therefore, the use and exchange of standardized and harmonized
data is needed. The Medical Informatics Initiative (MI-I) has set itself the task of solv-
ing the standardization and integration of data on a large scale. MIRACUM (Medical
Informatics for Research And Care in University Medicine) [Prokosch et al., 2018], as
one of the founded consortia in Germany, supports interdisciplinary MTBs combining
extensive molecular pathology with state-of-the art sequencing and subsequent bioinfor-
matics analyses for personalized tumor diagnostics and therapy recommendations in a
multi-center setting. Hence, transparent data integration and decision making is key. As
a result, the MIRACUM-Pipe was developed to provide an automated analyses workflow
for whole exome and targeted next-generation sequencing data to produce reliable and
reproducible results. For easier installation and a flawless distribution MIRACUM-Pipe
is deployed as a Docker container.

Metzger, P., Hess, M. E., Scheible R., Beoker, M., Geoffroy, A., Boerries, M.MIRACUM-
Pipe: an adaptable pipeline for whole exome sequencing and reporting for
clinical decision making. (under preparations, 2020).

Contribution: I developed and tested the workflow of the pipeline and wrote the
manuscript.
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Abstract

Motivation: Whole exome sequencing of patients with advanced tumors is becoming an established
method in medical centers. However, somatic variant calling and interpretation as well as report creation
requires in-depth knowledge in both bioinformatics and oncology. Since most medical centers rely on in-
house solutions for quality control and data analysis, reporting can vary substantially which hinders reliable
data exchange of results between medical centers.
Results: MIRACUM-Pipe provides a simple to use, “one-click” standardized solution to analyzing whole
exome sequencing data including quality control, variant calling, copy number calling, annotation and
report generation.
Availability: https://github.com/AG-Boerries/MIRACUM-Pipe-docker
Contact: patrick.metzger@uniklinik-freiburg.de

1 Introduction
The increasing use of and demand for high-throughput data in medical
centers, particularly those generated for therapy recommendations of
advanced tumor patients of a Molecular Tumor Board, requires the
development of bioinformatics tools for their standardized handling,
analysis and interpretation. An important prerequisite for multi-
center clinical studies is the exchange and usage of standardized and
harmonization data in order to provide the best comprehensive insight into
and understanding of the disease. As one of its objectives, the Medical
Informatics Initiative (MI-I) of the German Ministry of Education and
Research (BMBF) has established this large-scale data standardization and
integration scenario. MIRACUM (Medical Informatics for Research And
Care in University Medicine) [3], as one of the four funded MI-I consortia,
is rolling out three use cases in twelve university hospitals in Germany. One
use case is the establishment of interdisciplinary Molecular Tumor Boards

(MTBs), which combine extensive molecular pathology with state-of-the-
art sequencing and subsequent bioinformatics analysis for personalized
tumor diagnostics and therapy recommendations. To support transparent
data integration and decision making across the individual MIRACUM
tumor boards we have developed MIRACUM-Pipe, an automated analysis
workflow for whole exome sequencing (WES) that produces reliable
and reproducible results across different facilities. In order to facilitate
the installation and flawless distribution of MIRACUM-Pipe within the
MIRACUM consortium and beyond, we put the entire application into a
docker container [1].

2 MIRACUM-Pipe
MIRACUM-Pipe incorporates tools for detecting single nucleotide
variants (SNVs), insertions and deletions (InDels), loss of heterozygosity
(LoH), copy number variations (CNVs) as well as for determining quality
and statistics. Various functional prediction and annotation databases are
integrated to automatically annotate the identified variants. The workflow

© The Author 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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Fig. 1. This illustration shows the architecture of the MIRACUM-Pipe. The pipeline pre-
processes and aligns tumor DNA and germline DNA in parallel. Subsequently, VS and CNV
are also performed in parallel. The pipeline again waits for these two tasks to be computed
and finally generates the PDF report.

is designed as a fully automated "one-click" solution from the raw
sequencing files to the PDF report containing quality assessments, the
identified and annotated variants (SNVs, InDels and LoH), CNVs, and a
gene-set enrichment analysis both of the SNVs and CNVs, respectively.

MIRACUM-Pipe comprises bash and R code to perform WES data
processing and basic annotations as well as complex functional annotations
and downstream analysis of the results. The pipeline is divided into
three main parts, namely (1) alignment and quality control; (2) analysis,
annotation and interpretation including variant calling (VC) and copy
number calling; and (3) assembly of results into a PDF report. The main
focus lies on the annotation, from various available sources, of identified
variants and results to facilitate its interpretation.
Performance: The pipeline requires potent computing power for the
individual computation processes and is therefore recommended for
operation on a high-performance computer cluster. At the same time, all
its internally provided tools are desgined to use the available hardware
resources. Most tools we use internally run in parallel and require a
configurable amount of memory. Moreover, we have also implemented
certain abstract steps of MIRACUM-Pipe, which by default run in parallel
(see Figure 1) with the aim of distributing resources evenly. As an example,
a WES dataset, consisting of a tumor and a matched germline sample
each with 80 million paired-end reads each, was analyzed in 10.5 h on a
high-performance computer cluster [Two 18-Core Intel Xeon E5-2697v4
processors (2.3-3.6 GHz) with 1 TB of RAM].
Usability: To make the installation as simple and error-free as possible,
we offer a docker container. This container includes a shell script that
implements the pipeline processes, certain tools and several databases.
Since the MIRACUM-Pipe requires a large number of additional user-
specific databases and files, we designed an environment which is wrapped
around the docker container. This simplifies the application and setup of
the MIRACUM-Pipe. Furthermore, some tools cannot be delivered with
the docker container due to existing license rights. To address these issues,
our software is split into two GitHub repositories: one for the pipeline
itself which is intended to be used as a docker container, and another
for its application and setup. Alternatively, the MIRACUM-Pipe can be
installed and used without the docker container, which might be interesting
for further development purposes.

Configuration: MIRACUM-Pipe contains several tools which are
adjustable via several parameters. We offer customization of the
recommended default settings within the configuration files. Two levels of
customization are possible: (1) for the entire MIRACUM-Pipe installation
and (2) individually for selected patients. The latter allows for a high
customization of the application settings within one installation. In
addition to the parameters of the used tools, resource limits and file names
are also adjustable.
Flexibility: The result of a pipeline run is a report in the form of a PDF
document with several plots and data based on various analyses of several
used tools. This PDF is created based on a generated LATEX-document.
Therefore, the report can be easily adapted and recompiled to a PDF at any
time, and parts of it can additionally be extracted and re-used in different
documents. This applies to texts, tables and to each individually generated
image or graph within the report.

3 Conclusions
Next-generation sequencing, and WES in particular, is increasingly used
to guide physicians in making personalized therapy recommendations in
oncology. Common standards for in-depth analysis strategies and their
medical translation are still lacking. To overcome these problems, we
have developed MIRACUM-Pipe to simplify analysis and to make the data
interoperable and reusable. This is the current standard for analyzing and
reporting for patients in the Molecular Tumor Board of the Comprehensive
Cancer Center Freiburg, Medical Center University of Freiburg [2] as
well as for the Use Case 3 "From Knowledge to Action - Support
for Molecular Tumor Boards" within the MIRACUM consortium. The
pipeline is easily adaptable to incorporate or merge future databases,
analysis tools and workflows, which will help to unify personalized
oncology endeavors within the German health system. The creation of
a docker container simplified the distribution in general. The approach of
providing an environment wrapped around the docker container further
simplifies the application. Parallel computation allows a high degree of
capacity utilization. Configuration files limit the hardware resources that
are required and allow the tools’ parameters to be adjusted, both for the
entire installation and individually for selected patients. The resulting PDF
report is based on a LATEX-document including all generated images, which
can subsequently be used in many ways.
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Due to improved availability and decreasing sequencing costs, oncology is undergoing a
paradigm shift towards personalized, biomarker-based cancer treatment. Additionally,
the availability of an increased number of molecular targeted therapies is beneficial for
this process. For example, in melanoma cases, the use of molecular biomarkers for
standard treatment stratification in a systems medicine approach, such as the activation
of BRAF mutations for treatment with BRAF inhibitors, has shown beneficial results
[Chapman et al., 2011]. It has been shown that the one-mutation-one-drug approach
may not be sufficient and thus the molecular profiling of a tumor for treatment decision
increases the impact and the tendency of combination therapies [Hoadley et al., 2014,
Hyman et al., 2015,Borghaei et al., 2015]. However, the challenge remains to distinguish
relevant mutations from passenger mutations [Lawrence et al., 2013], or clonal molecular
intra- and intertumoral heterogeneity [Gerlinger et al., 2012], or the dynamic changes
in the molecular composition of cancer in the background of different treatments. In
our retrospective case series we analysed 198 patients from the molecular tumor board
(MTB) Freiburg in a two year time frame. The performed genetic tests included targeted
NGS, i.e. gene panels, whole exome sequencing, and RNA sequencing. We were able
to show that such a personalized treatment concept, like the MTB Freiburg, which
integrates clinical, molecular, and high-throughput results for clinical decision making,
is feasible and that patients significantly benefit from therapy recommendations based
on a systems medicine approach.

Hoefflin, R., Geißler, A.-L., Fritsch, R., Claus, R., Wehrle, J., Metzger, P., Reiser, M.,
Mehmed, L., Fauth, L., Heiland, D. H., Erbes, T., Stock, F., Csanadi, A., Miething,
C., Weddeling, B., Meiss, F., von Bubnoff, D., Dierks, C., Ge, I., von Bubnoff, N.
(2018). Personalized Clinical Decision Making Through Implementation of a
Molecular Tumor Board: A German Single-Center Experience. JCO Precision
Oncology.

Contribution: I performed the whole exome analyses, the RNA sequencing analyses
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and the gene fusion analyses of the patients discussed in the molecular tumor board
Freiburg. I wrote the part Investigational Genetic Tumor Characterization. I created
figure 1 and revised the entire manuscript.



© 2018 by American Society of Clinical Oncology	 ascopubs.org/journal/po JCO™ Precision Oncology	 1

Personalized Clinical Decision 
Making Through Implementation of 
a Molecular Tumor Board: A German 
Single-Center Experience

INTRODUCTION

Personalized cancer medicine uses molecular 
biomarkers for standard-of-care treatment strat-
ification, such as activating BRAF mutations for 
the treatment of melanoma with BRAF inhib-
itors.1 In parallel, it has become evident that 
therapeutic strategies with targeted drugs are 
no longer specific for the treatment of distinct 
entities but rather for particular molecular pro-
files across different cancers.2-4 Thus, testing 
for single-drug targets can provide therapeutic 

information, but its predictive value may vary 
between entities. Although an activating BRAF 
V600E mutation will predict response to BRAF 
inhibitors in melanoma,1 it may not do so in 
colorectal cancers because of epidermal growth 
factor receptor (EGFR) feedback activation with 
requirement of additional EGFR targeting.5,6 
Moreover, non-V600 BRAF mutations might 
not be responsive to BRAF inhibition at all.7 
Thus, one-mutation–one-drug approaches may 
be ineffective, especially in heavily pretreated 
patients with cancer. Underlying causes include 

Purpose Dramatic advances in our understanding of the molecular pathophysiology of 
cancer, along with a rapidly expanding portfolio of molecular targeted drugs, have led 
to a paradigm shift toward personalized, biomarker-driven cancer treatment. Here, we 
report the 2-year experience of the Comprehensive Cancer Center Freiburg Molecular 
Tumor Board (MTB), one of the first interdisciplinary molecular tumor conferences 
established in Europe. The role of the MTB is to recommend personalized therapy for 
patients with cancer beyond standard-of-care treatment.
Methods This retrospective case series includes 198 patients discussed from March 2015 
through February 2017. The MTB guided individual molecular diagnostics, assessed 
evidence of actionability of molecular alterations, and provided therapy recommendations, 
including approved and off-label treatments as well as available matched clinical trials.
Results The majority of patients had metastatic solid tumors (73.7%), mostly progressive 
(77.3%) after a mean of 2.0 lines of standard treatment. Diagnostic recommendations re-
sulted in 867 molecular diagnostic tests for 172 patients (five per case), including exome 
analysis in 36 cases (18.2%). With a median turnaround time of 28 days, treatment rec-
ommendations were given to 104 patients (52.5%). These included single-agent target-
ed therapies (42.3%), checkpoint inhibitors (37.5%), and combination therapies (18.3%). 
Treatment recommendations were implemented in 33 of 104 patients (31.7%), of whom 
19 (57.6%) showed stable disease or partial response, including 14 patients (7.1% of the 
entire population) receiving off-label treatments.
Conclusion Personalized extended molecular-guided patient care is effective for a small 
but clinically meaningful proportion of patients in challenging clinical situations. Limit-
ed access to targeted drugs, lack of trials, and submission at late disease stage prevents 
broader applicability, whereas genome-wide analyses are not a strict requirement for 
predictive molecular testing.
JCO Precis Oncol. © 2018 by American Society of Clinical Oncology Licensed under the Creative Commons Attribution 4.0 
License
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the challenge to discriminate relevant muta-
tions and pathway aberrations from background 
and passenger mutations,8 the clonal molecular 
intra- and intertumoral heterogeneity,9,10 and 
dynamic changes in the molecular composition 
of cancer, especially if treatment leads to selec-
tion of resistant subclones. Examples include 
the selection of RAS mutant clones in colorectal 
cancer treated with EGFR antibodies, such as 
cetuximab or panitumumab,11 or the acquisition 
of a secondary EGFR T790M kinase domain 
mutation mediating resistance to EGFR kinase 
inhibitors, such as gefitinib or erlotinib in non–
small-cell lung cancer.12,13

This increasing amount of complexity requires 
tools to translate individual information into 
personalized treatment concepts. A molecular 
tumor board (MTB) represents a platform that 
integrates clinical and molecular parameters for 
clinical decision making. Here, we report the 
2-year experience of the Comprehensive Cancer 
Center Freiburg MTB that provides personal-
ized treatment recommendations on the basis 
of individual molecular diagnostics. We hereby 
present detailed data on patient characteristics, 
treatment recommendations, clinical adherence 
to recommendations, and outcomes of treated 
patients.

METHODS

MTB Implementation and Organization

The MTB is run by an interdisciplinary team 
of medical and scientific experts with a focus 
on clinical and translational oncology and com-
putational and molecular biology. Cases are 
submitted using an online registration and doc-
umentation system (Appendix Fig A1). Each case 
is assigned to a clinician scientist with expertise 
in the specific cancer type (entity expert), who 
reviews the literature and available clinical tri-
als. In parallel, the molecular pathology team 
reviews the individual tumor pathology and 
sets up a presentation of already performed and 
suggested diagnostic tests. The initial discus-
sion includes a clinical case presentation, review 
of the pathology data and the tumor-specific 
genetic landscape, known molecular predictive 
or prognostic markers, active clinical trials, and 
potential in- and off-label molecular targeted 
treatments. The molecular diagnostic requests 
are performed using certified and standard 
operating procedure (SOP)–driven processes. 

Diagnostic results are presented to the MTB by 
the molecular pathology and/or the computa-
tional biologist team. After discussion, treatment 
recommendations are given and are supported 
by levels of evidence (Data Supplement). These 
are based on published molecular biomarker 
recommendations.14

Patients and Patient Informed Consent

All patients discussed (n = 198) were included 
in this retrospective single-center case series. 
All molecular diagnostic tests were conducted 
in accordance with the medical treatment con-
tract signed by each patient. Patient tissue was 
stored in the local biobank and required a signed 
informed consent, approved by the University 
of Freiburg institutional review board. Patients 
with individual or family history indicative 
of germline disease-causing mutations were 
referred to the Institute of Human Genetics  
for counseling and possibly germline genetic 
analyses.

Diagnostic Molecular Pathology

Appropriate tissues were subjected to molecular 
analyses as recommended by the MTB (Fig 1). 
All analyses were carried out according to rou-
tine pathology laboratory testing procedures, 
with assays being nationally validated and cer-
tified. Targeted next-generation sequencing 
(tNGS) included a custom-designed hotspot 
eight-gene panel (designed by S.L. and produced 
by Illumina, San Diego, CA), a BRCA1/2 panel 
(produced by Illumina), a hotspot 48-gene panel 
(TruSeq Amplicon Cancer Panel, Illumina), and 
a 54-gene myeloid panel (TruSight Myeloid 
Sequencing Panel, Illumina).15-17

Investigational Genetic Tumor 
Characterization

Whole-exome sequencing (WES) and RNA 
sequencing (RNA-Seq) were performed on 
tumor tissue. Complementary germline DNA 
was obtained from peripheral blood or healthy 
tissue. Only nonsynonymous mutations detected 
with a variant allele frequency > 10% and listed 
with a minor allele frequency < 0.001% by the 
Exome Aggregation Consortium18 were reported. 
Single nucleotide variations were classified 
according to ClinVar,19 COSMIC,20 dbSNP,21,22 
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hotspot mutation23,24 (http://cancerhotspots.org/ 
#/home), TARGET db (http://archive.broadin-
stitute.org/cancer/cga/target), drug-gene inter-
action (DGIdb; http://www.dgidb.org),25 and 
CADD (http://cadd.gs.washington.edu), and  
categorized according to the predicted impact on 
protein function by Condel.26-31 Copy number 
alteration analysis was performed using Con-
trol-FREEC.32 The STAR33 aligner was used  
to align and infer the gene expression level. 
FusionCatcher (https://doi.org/10.1101/011650) 
was used to predict gene fusions. Differentially 
expressed genes were identified using the limma- 
voom package from R/Bioconductor.34,35

RESULTS

From March 2015 through February 2017, 49 
MTB meetings were attended by a median of 16 
physicians and scientists, ensuring continuous 
interdisciplinary data interpretation and discus-
sions with diagnostic and therapeutic decision 
making. The workflow of the MTB included a 
case and literature review, molecular diagnostic 
recommendations, and follow-up discussions 
of the molecular diagnostic results, including 
treatment recommendations (Appendix Fig A1). 
Thus, a total of 385 case discussions were held 
for 198 patients (1.9 discussions per patient; 
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Fig 1. Molecular diagnostic testing. (A) The panels depict the type of molecular diagnostic testing performed (left panel) and specify the number 
of immunohistochemical stains (one to eight antibodies) per case (middle panel) as well as the type of targeted next-generation sequencing (tNGS) 
library sequenced (right panel). tNGS was performed either by a custom panel (eight-gene panel), a 48-gene panel (TruSeq Amplicon Cancer 
Panel, Illumina, San Diego, CA), a 54-gene myeloid panel (TruSight Myeloid Sequencing Panel, Illumina) or a custom BRCA1/2 consortium panel. 
(B) The bar plot depicts the number of sequence variants detected in tumor DNA of 139 patients using tNGS. The bars indicate the numbers of 
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HPV, human papillomavirus; IHC, immunohistochemistry; ISH, in situ hybridization; MSI, microsatellite instability.
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Table 1). In total, 505 structured recommenda-
tions were given (2.5 per patient; Table 1). These 
included 305 diagnostic and 104 treatment rec-
ommendations.

Patient Characteristics

The average patient age at the time of the initial 
MTB presentation was 58 years (range, 1 to 85 
years). Detailed patient characteristics are listed 
in Table 2. One hundred ninety-one of 198 
patients (96.4%) had an underlying malignant 
condition. Patients with solid tumors largely 
outbalanced hematopoietic malignancies (95.5% 
v 4.5%). Soft tissue tumors (12.6%), CNS 
tumors (11.1%), and carcinoma of unknown 
primary (CUP; 10.1%) were the most frequent 
tumor entities. The majority of patients (n = 146; 
73.7%) suffered from metastatic disease, and 
77.3% (n = 153) showed disease progression 
while receiving the standard treatment (Table 2). 
The mean time interval from diagnosis to first 

MTB discussion was 33.6 months (range, 1 to 
541 months). Patients with treatment-refractory 
metastatic disease had undergone a mean of 2.0 
(range, one to 11) lines of systemic pretreat-
ments. A minority of the patients was referred 
to the board with rare tumors (n = 33; 16.7%) or 
because of young age (n = 3; 1.5%).

Molecular Diagnostic Testing

The distribution of molecular diagnostic recom-
mendations is shown in Table 1. For 172 patients 
(86.9%), 305 recommendations were given and 
included routine molecular tests in 153 (89%), 
extended genetic analysis in 69 (40.1%), and 
both in 53 (30.8%) patients. Rebiopsies were 
recommended in 15 cases, mostly because of 
lack of adequate tissue. Of all diagnostic recom-
mendations, 234 (76.7%) were implemented, 
resulting in 867 single diagnostic tests (mean, 
five per patient), including 815 routine molec-
ular tests and 52 extended genetic analyses (Fig 
1A, left panel).

Routine molecular diagnostics included immu-
nohistochemical (IHC) staining for biomarkers 
(n = 492; Fig 1A, middle panel), such as pro-
grammed death-ligand 1 (PD-L1) and mismatch 
repair proteins, in situ hybridizations (ISH) for 
gene copy number analyses (n = 92), and test-
ing for microsatellite instability and/or gene 
hotspot variations (n = 89) and tNGS (n = 139; 
Fig 1A). The latter included libraries of differ-
ent gene panels (Fig 1A; right panel). The most 
frequent COSMIC annotated sequence variants 
detected by tNGS occurred in TP53, BRCA1, 
KDR, KIT, KRAS, PIK3CA, BRCA2, and BRAF 
(Fig 1B; Data Supplement). Therapeutically rel-
evant mutations in hotspot regions were iden-
tified in 41 of 139 patients (29.5%), including 
drug-sensitizing variants in BRAF, PIK3CA, 
IDH1, EGFR, and KIT, as well as drug resistance 
variants in KRAS and NRAS.

Extended genetic analyses including exome and 
transcriptome assays were performed for 36 
patients (18.2%; WES and RNA-Seq: n = 35; 
RNA-Seq only: n = 1). In those, we identified 
a total of 5,335 variants, including 18 COSMIC 
annotated hotspot mutations (Data Supple-
ment). Sixteen were classified as therapy rele-
vant according to the DGI and the TARGET 
databases. Among the remaining non-hotspot 
mutations, 1,518 were annotated in COSMIC, 
including 288 and 28 mutations annotated in 
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Table 1. Results

Recommendations No. (%)

Meetings, No. 49

Case discussions, total No. (per-patient average) 385 (1.9)

Recommendations, No. 505

Diagnostic 305 (60.4)

Therapeutic 104 (20.6)

No treatment recommendation 77 (15.2)

Conditional recommendation 14 (2.8)

Genetic counseling 4 (0.8)

Referral to organ board 1 (0.2)

Diagnostic recommendations, total No. (per-patient average) 305 (1.5)

Patients with diagnostic recommendations 172 (86.9)

Routine pathology 153 (89.0)

Extended genetic analysis* 69 (40.1)

Rebiopsy 15 (8.7)

Other 6 (3.5)

Diagnostic recommendations, not implemented 71 (23.3)

Patients with treatment recommendations 104 (52.5)

Implemented 33 (31.7)

Partial response 11 (33.3)

Stable disease 8 (24.2)

No. of treatment recommendations 104

Treatment recommendations, not implemented 71 (68.3)

NOTE: Data presented as No. (%) unless otherwise noted. See Figure 2 and Data Supplement for 
details of treatment recommendations and treatment recommendations not implemented.
*Whole-exome sequencing, RNA-seq.
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DGI and TARGET databases, respectively 
(Data Supplement). A total of 3,799 mutations 
were unknown to COSMIC (Data Supplement). 
The disease impact of non-hotspot mutations is 
more difficult to evaluate; however, it can lead to 

additional therapy-relevant insights. For exam-
ple, the ERBB2 S656F mutation might, accord-
ing to TARGET and DGI databases, constitute 
an activating mutation, therefore targetable by 
trastuzumab or lapatinib. The most frequently 
mutated genes were TP53 and BRAF (Fig 1C).

Overall, 71 of 305 diagnostic recommendations 
(23.3%) were not pursued. As shown in the 
Data Supplement, reasons for nonadherence 
included technical reasons (53.5%; mostly lack 
of sufficient tissue or DNA/RNA), patient death 
(12.7%), loss to follow-up (11.3%), medical rea-
sons (9.9%), or patient will (9.9%).

Treatment Recommendations

Specific treatment recommendations were given 
to 104 patients (Table 1; Fig 2) and mainly 
included off-label immune checkpoint inhibitor 
(CPI; n = 36; 34.6%), off-label targeted therapy 
(n = 19; 18.3%) with tyrosine kinase inhibitors, 
small molecules or antibodies that were not CPI 
(AB), trial inclusions (n = 13; 12.5%), and off- 
label combination treatments (n = 18; 17.3%; Data 
Supplement; Fig 2). Ninety of 104 treatment 
recommendations (86.5%) were either off-label 
therapies (n = 77) or trial inclusions (n = 13).

The implementation rate of treatment recom-
mendations was 31.7% (33 of 104). In-label 
recommendations were pursued in nine of 14 
cases (64.3%), whereas off-label recommenda-
tions and trial inclusions were implemented in 
only 28.6% (22 of 77) and 15.4% (two of 13) of 
the cases, respectively. Intended trial inclusion in 
11 patients failed because of poor performance 
status or patient death (n = 5), closed trial arm 
(n = 4), or patient will (n = 2). Main reasons for 
nonimplementation of treatment recommen-
dations included loss to follow-up (22.5%), 
recommendation in the future (19.7%), patient 
death (16.9%), patient will (14.1%), and medi-
cal reasons (14.1%; Data Supplement). Of note, 
evidence level of individual off-label recommen-
dations did not affect implementation rates (data 
not shown).

Clinical Outcome

In 33 patients with implemented treatment rec-
ommendations, partial remissions (PR) and sta-
ble diseases (SD) were seen in 11 (33.3%) and 
eight patients (24.2%; Table 1), respectively. 
After excluding in-label therapies, nine patients 
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Table 2. Patient Characteristics

Characteristic

Total, No. 198

Sex

Female 84 (42.4)

Male 114 (57.6)

Age, years, median (range) 58 (1-85)

Time interval from diagnosis to first MTB, months, median 
(range)

33.6 (1-541)

Tumor type

Soft tissue 25 (12.6)

CNS 22 (11.1)

Unknown primary site 20 (10.1)

Colorectal 19 (9.6)

Urogenital 15 (7.5)

Thyroid 14 (7.0)

Breast 10 (5.1)

Lung 9 (4.5)

Hepatobiliary 8 (4.0)

Skin 8 (4.0)

Upper GI tract 8 (4.0)

Hematologic 8 (4.0)

Neuroendocrine 6 (3.0)

Pediatric 5 (2.5)

Head and neck 1 (0.5)

Others 13 (6.6)

Solid tumors (n = 189): stage at presentation

Complete remission 1 (0.5)

Localized disease 42 (22.2)

Metastatic disease 146 (77.3)

No. of previous lines of therapy, mean (range) 2.0 (0-11)

0 25 (12.6)

1 66 (33.3)

2 to 3 80 (40.4)

> 3 27 (13.6)

Reason for referral

Progressive disease after standard treatment 153 (77.3)

Rare tumor 33 (16.7)

Others 12 (6.1)

NOTE: Data presented as No. (%) unless otherwise noted.
Abbreviation: MTB, Molecular Tumor Board.
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achieved PR and five patients SD, resulting in 
an overall response rate of 4.6% (nine of 198 
patients) and a disease control rate (DCR) of 
7.1% (14 of 198 patients). Of note, all five 
patients experiencing SD experienced disease 
progression while receiving the previous treat-
ment. Of 14 responders receiving off-label ther-
apies, eight (57.1%) showed a progression-free 
survival (PFS) ratio (PFS2/PFS1; PFSr) > 1.3, 
supporting the impact of the recommended 
therapies.36 Three patients had a PFSr < 1.3 with 
ongoing responses, meaning that their PFSr is 
still increasing. Details about the outcome of 
responding patients are shown in Table 3. Two 
individual cases are shown in the Data Supple-
ment. Adherence to recommendations and out-
come according to type of treatment is shown 
in Fig 2. To assess whether implementation of 
treatment recommendations affected overall 
survival from first MTB discussion, we analyzed 
all patients with stage IV malignancies accord-
ing to three subgroups (n = 148; Fig 3). The 
median survival was not reached for patients 
with implemented treatment recommendations 
(n = 33 recommendations pursued; 95% CI, 9 

months to not reached), 8 months for patients 
for whom treatment recommendations were not 
implemented (n = 43 recommendations not pur-
sued; 95% CI, 3 to 10 months), and 10 months 
for patients who did not receive a treatment 
recommendation (n = 72 no recommendations; 
95% CI, 7 to 17 months). Patients who did not 
receive the recommended therapy because of 
death before treatment initiation (n = 12) were 
excluded from analysis.

DISCUSSION

In a cohort of 198 patients with mostly advanced 
malignancies beyond standard-of-care treatment, 
the Comprehensive Cancer Center Freiburg 
MTB identified actionable targets in 52.5% 
of the cases. Thirty-two percent received the 
recommended treatment. In 33 patients with 
implemented treatment recommendations the 
disease-control rate was 57.6%; it was 9.6% (19  
of 198 patients) for the entire cohort. Because 
the primary goal of an MTB is to give treatment 
recommendations beyond standard of care, we 
excluded five responders who received in-label 
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Patients discussed
(N = 198)

Patients with rationale for single-agent TT
(n = 44)

 PR
 SD
 PD
 Lost to FU
   or NE

(n = 1)
(n = 5)
(n = 5)

(n = 2)

Not implemented
 TKI/SM
 AB
 Others
 Medical reason
 Patient death
 Declined by
   company
 Patient will
 In future
 Other

(n = 31)
(n = 21)

(n = 3)
(n = 7)
(n = 6)
(n = 6)

(n = 2)
(n = 4)
(n = 5)
(n = 8)

Implemented
  TKI/SM
  AB
  Other
  In-label
  Off-label
  Study

(n = 13)
(n = 8)
(n = 2)
(n = 3)
(n = 4)
(n = 7)
(n = 2)

No actionable target
(n = 94)

In-label chemotherapy
(n = 2)

 PR
 SD

(n = 1)
(n = 1)

Patients with rationale for drug combination
(n = 19)

Implemented
 TT-Combi
 CPI + TT
 In-label
 Off-label
 Study

(n = 6)
(n = 3)
(n = 3)
(n = 0)
(n = 6)
(n = 0)

Not implemented
 TT-Combi
 CPI + TT
 Medical reason
 Patient death
 Declined by
   company
 Patient will
 In future
 Other

(n = 13)
(n = 8)
(n = 5)
(n = 1)
(n = 4)

(n = 0)
(n = 0)
(n = 4)
(n = 4)

Patients with rationale for CPI
(n = 39)

Implemented
 In-label
 Off-label
 Study

(n = 12)
(n = 3)
(n = 9)
(n = 0)

Not implemented
 Medical reason
 Patient death
 Declined by
    health insurance
 Patient will
 In future
 Other

(n = 27)
(n = 3)
(n = 2)

(n = 4)
(n = 6)
(n = 5)
(n = 7)

Outcome

Outcome

 PR
 SD
 PD
 Lost to FU
   or NE

(n = 7)
(n = 1)
(n = 3)

(n = 1)

Outcome

 PR
 SD
 PD
 Lost to FU
   or NE

(n = 2)
(n = 1)
(n = 1)

(n = 2)

Outcome

Fig 2. Flow diagram of 
patients discussed at the 
Molecular Tumor Board. 
Responses were determined 
according to Response 
Evaluation Criteria in Solid 
Tumors (RECIST) version 
1.1. AB, antibody; Combi, 
combination; CPI, check-
point inhibitor; FU, fol-
low-up; NE, not evaluable; 
PD, progressive disease; PR, 
partial remission; SD, stable 
disease; SM, small molecule; 
TKI, tyrosine kinase inhibi-
tor; TT, targeted therapy.
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therapies resulting in a DCR of 7.1% (14 of 
198 patients). Other MTB case series reported 
DCRs in 3.2%, 7.8%, 9%, and 23.3% of the 
patients,38-41 suggesting that approximately 10% 
of patients might benefit from advanced person-
alized decision making.

Although molecular heterogeneity will limit the 
effect of therapeutic kinase inhibitors, higher 
nonsynonymous mutational burden can cre-
ate more neoantigens and therefore improve 
response rates to CPI.42,43 In our series, eight of 
11 patients (72.7%) showing PR received CPI, 
including seven off-label uses. Predictive bio-
markers for individualized immunotherapies are 
emerging and changing rapidly, with strong dif-
ferences between entities.44 Here, we used IHC 
for programmed cell death protein 1 (PD-1)/
PD-L1, tumor-infiltrating lymphocytes, micro-
satellite instability testing, and mutational bur-
den assessment as predictive biomarkers. In the 
near future, identifying individual cancer neoan-
tigens might allow a more precise prediction of 
responses to immunotherapies.45 This highlights 
the importance of an interdisciplinary MTB 
team that analyzes and interprets biomarkers to  
identify patients who might benefit from off- 
label immuno-oncology treatments.

In an MTB workflow, the portfolio of molecu-
lar diagnostic tests, as well as criteria to match 
and prioritize targeted therapies to molecular 
biomarkers, affects the probability to identify 
patients with actionable targets. Here, we used 
customized molecular diagnostics, including 
IHC/ISH and tNGS, in 153 out of 198 patients 
(77.3%) We implemented WES or RNA-
Seq analyses for patients with carcinomas of 
unknown primary and rare cancers and with 
diseases in which routine molecular diagnostics 

did not reveal any actionable target (18.2% of 
patients).

Multidimensional data have not been imple-
mented successfully to clinical routine, partly 
because of the complexity of developing and 
evaluating mathematical predictive models.46,47 
A recent analysis showed that an MTB workflow 
including WES/whole-genome sequencing, 
RNA-Seq, and data interpretation by a multi-
disciplinary board required a turnaround time 
of 6 weeks.48 Using high-dimensional molec-
ular data, the Molecular Screening for Cancer 
Treatment Optimization (MOSCATO-01) trial 
reported actionable mutations in less than half 
of the patients with advanced solid tumors,49 
and in the National Cancer Institute Molecular 
Analysis for Therapy Choice (NCI-MATCH) 
trial, only 9% of the patients could be assigned 
to one of the prespecified treatment arms.50 In 
contrast, our approach of customized molecular 
diagnostic testing with restricted use of extended 
genetic analyses (WES, RNA-Seq) allows a 
faster turnover with comparable rates of genet-
ically matched treatment recommendations. 
Therefore, average costs per case can be reduced 
at least by half when compared with perform-
ing extended molecular analysis for each patient. 
We identified actionable targets in 52.5% of 
cases and provided treatment recommendations 
with a median turnaround time of 28 days. To 
improve standardization and turnaround time, we  
recently implemented SOPs for diagnostic work- 
ups (Data Supplement). Our approach shares 
similarities with Memorial Sloan Kettering- 
Integrated Mutation Profiling of Actionable 
Cancer Targets (MSK-IMPACT), focusing on 
therapeutically targetable biomarkers for fast 
clinical decision making and referral of patients 
to available clinical trials.51

Targeted drug combinations might offer better 
DCR over single-agent therapies.52-55 In part, 
this is due to crosstalk between signaling path-
ways as well as spatial and temporal clonal het-
erogeneity, especially in patients with advanced 
cancer who failed standard-of-care treat-
ment.56,57 Most current programs for precision 
oncology use prespecified, genetically matched, 
single-agent treatments (NCI-MATCH, Clin-
icalTrials.gov identifier: NCT02465060; or 
Targeted Agent and Profiling Utilization Reg-
istry [TAPUR], ClinicalTrials.gov identi-
fier: NCT02693535). In our series, three of 19 
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Fig 3. Survival analysis. 
The Kaplan-Meier curve 
shows the survival of the 
following three subgroups 
of patients with stage IV 
malignancies (n = 148): 
patients who implemented 
the treatment recommen-
dation (Rec. pursued,  
n = 33), patients who did not 
implement the treatment 
recommendation (Rec. 
not pursued, n = 43; of 
note: patients who did not 
receive the recommended 
therapy because of death 
before treatment initiation 
[n = 12] were excluded 
from analysis), and patients 
who did not receive a 
treatment recommendation 
(n = 72). The curve com-
parison with the log-rank 
(Mantel-Cox) test revealed 
statistical significant differ-
ences as shown on graph. 
OS, overall survival.  
(*) P < .01.
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treatments that successfully controlled disease 
(15.8%) included molecular combination treat-
ments (Fig 2). These patients did not suffer from 
grade 3 to 4 adverse effects, although treatment 
combinations may bear a higher risk of toxicity.58

Earlier referral to an MTB (eg, after failure of 
first-line treatment) might prevent the insti-
tution of ineffective treatments, improve the 
implementation rate, and increase the likelihood 
of success of molecular biomarker–matched 
treatments. In our series, patient death, patient 
preference, or medical reasons precluded imple-
mentation in 23.3% of diagnostic and 68.3% 
of treatment recommendations. The survival 
analysis revealed a significant overall survival 
advantage for patients with implemented MTB 
treatment recommendations (median overall 
survival not reached; 95% CI, 9 months to not 
reached) compared with patients where rec-
ommendations were not pursued (8 months; 
95% CI, 3 to 10 months; P = .002) as well as 
for patients without treatment recommendation 
(10 months; 95% CI, 7 to 17 months; P = .008). 
Because of the low sample size and the heteroge-
neous composition of patients in the cohorts, the 
validity of this survival analysis is limited.

Access to molecular biomarker–matched, off- 
label agents for cancer treatment is limited. In a 
recent single-center study, only 5% of molecular 
biomarker–matched treatment recommenda-
tions were implemented, mainly because of lim-
ited access to clinical trials or to restricted use 
of drugs outside their marketed label.59 Thus, it 
is crucial to build up platforms for patients and 
treating physicians to link individual molecular 
information of the tumor to appropriate nonap-
proved drugs and available clinical trials. To this 
end, MTB networks might implement SOPs 
for diagnostic work-ups and data interpreta-
tion and build alliances to governmental insti-
tutions and insurance companies to generate 

criteria for the financial coverage of molecular 
analyses and off-label treatments. Finally, an 
MTB is predestined to generate knowledge 
and evidence in oncology via single-person tri-
als instead of large, time- and cost-intensive 
clinical trials. In case of sequence variants with 
undetermined significance, precision oncology 
workflows should allow fast reverse translation 
of sequence variants into informative preclinical 
models. In a patient with melanoma, we identi-
fied a kinase-inactivating BRAF mutation (Data 
Supplement). In vitro characterization indicated 
antitumor activity of combined pan-RAF and 
mitogen-activated protein kinase kinase inhi-
bition and guided successful treatment with 
sorafenib and trametinib. In rare entities, and 
especially in the setting of treatment-refractory 
cancers, precision oncology networks should 
allow hypothesis-driven in vitro studies and val-
idation in small sets of individuals. Thus, within 
the concept of patient-centric, biomarker-driven 
trial designs,60 an MTB might constitute a criti-
cal tool to identify informative patients for clin-
ical trials of targeted therapies in rare molecular 
subgroups.

In summary, this MTB experience illustrates 
that patient management, on the basis of indi-
vidual molecular biomarker profiling and analysis, 
is feasible in patients beyond standard-of-care  
treatment. We show a high proportion of trial-  
and off-label treatment recommendations (86.5%)  
and a DCR for off-label treatments of 7.1%. In 
cases where no approved treatment is available, 
an MTB might allow molecular biomarker–
matched off-label use of approved drugs across 
entity barriers or alternatively facilitate the 
access to therapeutic basket trials.
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3.6 Requirements Analysis and Specification for a

Molecular Tumor Board Platform Based on

cBioPortal

Due to the growing amount of high-throughput sequencing data, clinicians involved in
the Interdisciplinary Molecular Tumor Board (MTB) need a platform that supports
the processes and visualization of these results within an MTB. Recent data suggest
that such MTBs are beneficial for patients as they improve therapy and subsequent
care [Hoefflin et al., 2018, Parker et al., 2015, Bryce et al., 2017]. However, there is a
great need for standardized tools that support the interpretation and presentation of such
large omics data [Hinderer et al., 2017]. To address this issue the MIRACUM (Medical
Informatics in Reseach and Care in University Medicine) consortium has established
Use Case 3 which focuses on supporting and providing IT, bioinformatics and medical
informatics tools to translate and visualize the resulting data [Prokosch et al., 2018] for
MTBs. The cBio Cancer Genomics Portal (cBioPortal) was identified as the platform,
and two rounds of interviews, supported by descriptive screenshot mockups, allowed
additional requirements to be identified for the platform. A total of 24 new requirements
were identified that had not been implemented in cBioPortal before. Based on the
clinical requirements, the study provides important information to support the members
of the MTB in interpreting the complex heterogeneous data for a personalized therapy
recommendation.

Buechner, P., Hinderer, M., Unberath, P., Metzger, P., Boeker, M., Acker, T., Haller,
F., Mack, E., Nowak, D., Paret, C., Schanze, D., von Bubnoff, N., Wagner, S., Busch,
H., Boerries, M., Christoph, J. (2020). Requirements analysis and specification
for a molecular tumor board platform based on CBIoPortal. Diagnostics.
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Abstract: Clinicians in molecular tumor boards (MTB) are confronted with a growing amount of 
genetic high-throughput sequencing data. Today, at German university hospitals, these data are 
usually handled in complex spreadsheets from which clinicians have to obtain the necessary 
information. The aim of this work was to gather a comprehensive list of requirements to be met by 
cBioPortal to support processes in MTBs according to clinical needs. Therefore, oncology experts at 
nine German university hospitals were surveyed in two rounds of interviews. To generate an 
interview guideline a scoping review was conducted. For visual support in the second round, 
screenshot mockups illustrating the requirements from the first round were created. Requirements 
that cBioPortal already meets were skipped during the second round. In the end, 24 requirements 
with sometimes several conceivable options were identified and 54 screenshot mockups were 
created. Some of the identified requirements have already been suggested to the community by 
other users or are currently being implemented in cBioPortal. This shows, that the results are in line 
with the needs expressed by various disciplines. According to our findings, cBioPortal has the 
potential to significantly improve the processes and analyses of an MTB after the implementation 
of the identified requirements. 

Keywords: decision making, computer-assisted; decision support systems, clinical; precision 
medicine; computational biology; molecular tumor board; cBioPortal; requirements analysis; 
neoplasms 

 

1. Introduction 

Advances in next-generation sequencing (NGS) technology and the resulting decrease of costs 
hold large promises for personalized medicine, currently revolutionizing cancer diagnostics in 
particular. The sequencing of whole tumor exomes, genomes and transcriptomes of patients allows 
physicians to make individual molecular-guided decisions. However, the complex nature of cancer 
and its large interindividual heterogeneity require an interdisciplinary board composed of medical 
and scientific experts to review and interpret the equally complex analysis results. Recent data 
suggest that such molecular tumor boards (MTBs) have the potential to improve therapy and care for 
patients that have run out of guideline-based treatment options or have rare tumors [1,2]. 

Several German medical centers have already started to implement MTBs in their clinical 
environment, all working with various types of omics data from, e.g., NGS and other technologies 
[3,4]. To handle the many results from a large amount of omics data there is a high need for a 
standardized toolset that supports clinicians in analyzing and interpreting these data and creating 
high-quality presentations of complex multi-dimensional data effectively. Moreover, it requires both 
the integration of clinical with molecular and genomic data and the visualization of joint analysis 
results. However, experiences with the implementation and establishment of information technology 
(IT) and bioinformatics support for MTBs are still rare in Germany and probably world-wide, thus in 
need of improvement and optimization [5]. 

To address this issue, the MIRACUM consortium (Medical Informatics in Research and Care in 
University Medicine) has established the Use Case 3 which focuses on the provision of IT and 
bioinformatics support for translation and visualization of data analyzed in MTBs. As part of this use 
case, we will establish a generic, open-source framework that supports the analysis, interpretation 
and visualization of both clinical and omics data [6]. Data analysis is handled through MIRACUM-
Pipe [7] which provides automatic, parameter-controlled processing of omics data with alignment, 
variant calling, annotation and analysis. The second aspect of the framework will be the data 
visualization and documentation of the results of the MTB. Both, the pipeline and the visualization, 
will be provided as separate and open-source components developed in a user-centered design 
process. 

The cBio Cancer Genomics Portal (cBioPortal) was selected as a suitable platform to visualize 
the generated data supplied by the MIRACUM-Pipe [7] and to support the decision-making 
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processes in an MTB. cBioPortal provides an extensive set of tools for exploring, visualizing and 
analyzing multi-dimensional and large-scale cancer genomics data sets [8,9]. Within the context of an 
MTB, cBioPortal may support case preparation, case review, and the documentation and 
communication of treatment recommendations in the near future. Therefore, it is well suited to 
replace the current practice at some German university hospitals of managing complex mutation data 
in huge spreadsheets by providing comprehensible visualizations [10,11]. At the participating clinics, 
cBioPortal could optimize the processing of up to 200 cases per year with sometimes hundreds of 
identified but not necessarily relevant mutations, and thus improve the decision making [5]. 

The integration of cBioPortal into the workflow of MTBs requires adjustments regarding 
different functionalities and needs (requirements). For instance, to meet some of our requirements 
the user needs to have write access to the data stored in cBioPortal. Therefore, we must find a proper 
solution to accomplish this in line with the concepts cBioPortal currently pursues as a (read-only) 
data warehouse. 

The objective of this work is to provide a requirements specification for an IT platform based on 
cBioPortal that supports processes in molecular tumor boards to find and document a therapy 
recommendation. To our knowledge, there is so far no systematic assessment of such requirements 
from the point of view of MTB participants in different hospitals, even though there are already 
existing tools that integrate numerous data sources and even support the documentation process in 
a uniform MTB tool [12,13]. Our work could serve as a blueprint for the development of further tools 
based on cBioPortal for MTBs in Germany and worldwide. 

2. Materials and Methods 

To identify the requirements, we conducted a qualitative research to assess a set of potential 
requirements in two consecutive rounds of interviews. The second round of interviews became 
necessary because the first round was developed iteratively and therefore not all participants had the 
chance to comment on all mentioned potential requirements. 

In preparation, we reviewed the literature published between 1997 and 2017 (scoped review) for 
existing systems, tools and knowledgebases that support molecular tumor boards (see Figure 1), 
resulting in an interview guideline for the first round of interviews. 
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Figure 1. Outline of the process of requirements analysis. 

Based on almost all assessments from the first round of interviews, for the second round, we 
created screenshot mockups for better understanding and visualization of possible implementations 
in cBioPortal. 

2.1. Details about Scoping Review 

We conducted a review of literature for potential MTB tools following the Preferred Reporting 
Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines [14,15] as far as appropriate 
for the requirements analysis. Therefore, we searched MEDLINE and Web of Science (all databases) 
for articles focusing on MTBs or equivalent clinical decision-making structures published between 
1997 and 2017. We captured several features of different potential MTB tools which are either 
described in the literature or used by physicians at our MIRACUM sites. We used these findings to 
prepare for the first round of interviews. A detailed description of the methods we used can be found 
in Appendix 1. 

2.2. First and Second Round of Interviews 

Based on this prior knowledge, we conducted one group interview per partner site and per 
round from a constructivist point of view. We hypothesized that each site would have different views 
and visions on requirements for supporting a local MTB. Therefore, we took all suggestions regarding 
the demands of the participants into account. 

The interviews were conducted in local focus groups, in which the interviewers served as 
moderators. This approach allowed discussions between the participants and thus as many 
requirements and their potential variants as possible could be identified. At each site, all participants 
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were interviewed together in one session. The interviewers had an interdisciplinary background: 
medicine (Philipp Buechner, Melanie Boerries), medical informatics (Jan Christoph, Marc Hinderer), 
bioinformatics (Jan Christoph, Melanie Boerries) and biology (Melanie Boerries). 

All interviews, except the one at the first author’s local university hospital, took place as web 
conferences with transmission of voices and screen contents. In addition to the option of easily 
recording the session, the major argument for this setting was that the participants at the various 
university hospitals were spread all over Germany. 

All interview participants were members of the MIRACUM Use Case 3 and thus known to us. 
The members responsible for the use case at each site arranged an appointment and invited additional 
local experts, who all were also members of the use case. All participants had to have experiences 
with the processes related to an MTB in order to join the interviews. 

2.2.1. Structure and Purpose of the First Round of Interviews 

PB, MH and JC conducted the interviews of the first round together as members of MIRACUM’s 
Use Case 3 between June 2018 and August 2018. It comprised a short guideline with questions (see 
Appendix 2) we developed from the results of the scoped review. We also demonstrated the main 
functionalities (see Appendices 3 and 4) of the following potential MTB tools: 
• cBioPortal [9], 
• OncoKB [16], 
• Sophia Genetics [17], 
• Clarivate “Key Pathway Advisor” [18], 
• Clarivate “MetaCore” [18] and 
• “CIViC” (Clinical Interpretations of Variants in Cancer) [19]. 

We collected all mentioned requirements cBioPortal must meet (including details about 
potential options for implementation) that were mentioned during the meetings. The interview 
process was developed iteratively and the information gained was immediately incorporated into 
the subsequent interviews with other partner sites during this first round. We used the web 
conference system “Adobe Connect” [20] to conduct, record and subsequently analyze these 
interview sessions. 

2.2.2. Structure and Purpose of the Second Round of Interviews 

The second round of interviews was performed by Philipp Buechner, Melanie Boerries and Jan 
Christoph between November 2018 and December 2018. In order to make optimal use of the limited 
time during the interviews, Philipp Buechner developed a comprehensive interview guideline 
describing the requirements and their potential options identified in the first round with text and 
screenshot mockups (see Appendix 5). However, this round did not cover the requirements 
mentioned in the first round of interviews, that are already implemented in cBioPortal or are 
generally out of the scope of MIRACUM Use Case 3. To familiarize the participants with the 
requirements, this guideline—once it was finally validated by Melanie Boerries, Jan Christoph and 
Philipp Unberath —was handed out to them prior the meetings. 

Since some requirements had more than one potential option regarding implementation and 
visualization, sites were asked to select one during this round of interviews. In case they had different 
opinions, they were encouraged to find a compromise. 

For the final software specification—after all interviews have been conducted and analyzed - we 
grouped related features into larger meta-categories to account for individual requirements and yet 
to keep the assessment structured. For example, the term “sample metadata”, comprises six 
(individual) data features: 
• Localization and time of the sampling; 
• Type of sampling (e.g., fine-needle aspiration biopsy); 
• Distinction between fresh-frozen and formalin-fixed paraffin-embedded samples; 
• Scope of sequencing (e.g., gene panel or whole-exome sequencing); 
• Name and version of both the used panel and kit; 
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• Hyperlink to the corresponding product-specific website of the manufacturer. 
When calculating the total number of requirements identified by us, we only counted those 

combined meta categories. Therefore, the above-mentioned example of “sample metadata” counts as 
one requirement instead of six individual ones. 

We used the web conference system “Zoom” [21] to conduct, record and subsequently analyze 
these interview sessions. 

2.3. Low-Fidelity Mockup Demonstrator 

We created 54 descriptive screenshot mockups for almost all options of the identified 
requirements from the first round of interviews using the image-editing tool GNU Image 
Manipulation Program (GIMP), version 2.10.8 [22]. These low-fidelity mockups are based on full-
screen screenshots of the cBioPortal graphical user interface and have been manipulated to give the 
realistic appearance of providing the respective functions. To quickly direct the viewer’s focus to the 
part of the image that represents the demanded function we indirectly highlighted the area by 
darkening the rest of the image with a black overlay (opacity: 20%). 

2.4. Consultation with Main Developers of MSKCC 

After all interviews have been conducted, we discussed the requirements with the main 
developers of cBioPortal from the Memorial Sloan Kettering Cancer Center (MSKCC) in New York, 
USA, in an online audio conference. Prior to that, we had detailed the most important and far-
reaching changes in a letter including excerpts from our mockups. 

The aim of this was to increase the chances of merging our planned implementations into the 
main development branch of cBioPortal and to maintain contact with the main developers right from 
the beginning. 

2.5. Ethical Approval 

This study was ethically approved by the ethics committee of the Friedrich-Alexander-
University Erlangen-Nürnberg (FAU) (see Appendix 6). 

3. Results 

3.1. Overview of Scoped Review 

Based on our keyword search we selected 306 unique articles out of which 27 dealt with MTBs 
and were kept for further review. Next, two papers were discarded because their full texts were not 
available. From the remaining 25 publications, we excluded another 13 since they did not describe IT 
support in MTBs, which resulted in a total of twelve articles for our review. For details see Appendix 
1. 

3.2. Details about Interviewees 

We conducted the first round of interviews with a total of 18 participants at nine different 
university hospitals to determine all requirements for an MTB software tool based on cBioPortal. Up 
to four participants were interviewed simultaneously at each site. Representatives of the following 
disciplines were involved: oncology (10), pathology (4), systems medicine/systems biology (2), 
bioinformatics (1) and human genetics (1). 

The second round of interviews discussed and evaluated the requirements identified in the first 
round in detail with a total of 16 participants at the same university hospitals as above. Up to three 
participants were interviewed simultaneously at each site. Representatives of the following 
disciplines were present: oncology (7), pathology (4), systems medicine/systems biology (2), 
bioinformatics (1), human genetics (1) and urology (1). 
  



Diagnostics 2020, 10, 93 7 of 15 

 

3.3. Requirements from the First Round of Interviews and Screenshot Mockups 

During the first round of interviews, a total of 49 requirements with up to seven potential options 
for implementation each were surveyed (see Appendix 7). Ten requirements either already 
implemented in cBioPortal or out of scope of our Use Case were dropped prior to the second round 
of interviews. This included features to: 
• Highlight mutations with existing treatment options; 
• Display information about general availability of a specific drug in Germany; 
• Point out mutations causing treatment resistance; 
• Mark germline mutations; 
• Display variant allele frequencies alongside corresponding coverage; 
• Integrate the database “Clinical Interpretations of Variants in Cancer” (CIViC) [19]; 
• Visualize mRNA expression data. 

A platform to discuss individual mutations across hospitals, for example in the context of a 
forum, is outside the scope of MIRACUM’s Use Case 3 and was, therefore, not included in the second 
round of interviews either. 

The choice of the file format to be used for the import of the mutation data into cBioPortal was 
made independently of the interviews by all use case members (MAF: “mutation annotation format”). 
In addition, a feature to permanently hide mutations in a specific sample in cBioPortal was denied 
since this filtering should be done by MIRACUM-Pipe [7] only. 

In preparation for the second round of interviews, we created a total of 54 screenshot mockups 
demonstrating almost all surveyed requirements and their respective options (see Appendix 8). 

3.4. Consolidated Requirements from the Second Round of Interviews 

Below we provide a rough overview of the consolidated requirements we surveyed during the 
second round of interviews. For a list and detailed description of all final requirements and their 
respective options see Appendix 9 (All Appendix files can be found in the Supplementary files). 

3.4.1. Improving Patient Case Analysis 

Since case analysis in personalized medicine relies on various information such as details about 
the patient or—in case of MTBs—the underlying tumor, cBioPortal should provide those by 
integrating various information and knowledge sources in a single tool. Therefore, the participants 
requested, amongst others, clinical patient data to be stored in cBioPortal. Displaying sample 
metadata and their subsequent analysis was also requested. This includes, for example, the type and 
location of a biopsy as well as the exact specifications of the sequencer used. 

Furthermore, cBioPortal seems to lack important (calculated) values for its usage in molecular 
tumor boards. Ranging from the tumor mutational burden (see Figure 2A) up to values that indicate 
the pathogenicity of individual mutations (see Figure 2C). Mutations are automatically annotated 
with the latter by the MIRACUM-Pipe [7] and this information should be displayed in cBioPortal. We 
also discovered potential improvements for already existing features in cBioPortal, like the 
visualization of copy number variations (see Figure 2E). 
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Figure 2. Collage demonstrating some requirements for the case analysis. This collage is a synthesis 
of different screenshot mockups, which exemplarily illustrates some requirements for individual case 
analysis: (A) A visual representation of the tumor mutational burden relative to the expected range 
of the corresponding tumor entity using a box plot. (B) Integration of data from the JAX Clinical 
Knowledgebase (JAX-CKB) via annotation and pop-up. (C) Classification of pathogenicity as an 
example of data extension in the mutation table of the patient view. (D) Tool for an entity-specific 
display of how often a certain mutation was found and classified as relevant for the therapy 
recommendation at the partner sites. If necessary, the contact data may be used to exchange 
experiences. (E) Extension of the table with copy number variation (CNV) data by the exact number 
of copies. Example data adopted from the public cBioPortal (https://cbioportal.org) and JAX-CKB 
knowledgebase [23]. 

Since the interviewees also use numerous different databases when evaluating a patient case, 
the integration of additional knowledgebases is highly desired. In this context, the JAX Clinical 
Knowledgebase [23] was mentioned explicitly and considered to be beneficial when integrated (see 
Figure 2B). 

Besides that, the visualization of molecular pathways can be an important tool that links 
individual mutations to molecular function and pathway in the search for a therapy option. 

In order to improve cooperation, there were requests for a central service to (automatically) 
report a mutation that has led to a therapy recommendation before. If other participating hospitals 
similarly identify this mutation in one of their samples, it should be highlighted and contact details 
should be displayed (see Figure 2D) for detailed, personal exchange of expertise. 

3.4.2. Supporting the Development and Recording of a Therapy Recommendation 

Once the patient’s data has been reviewed, the members of the molecular tumor board 
determine—if possible—the potentially relevant mutations for a therapy recommendation based on 
their previous analysis. This selection should be recorded in cBioPortal (see Figure 3A) and serve as 
the basis of the following features. 
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Figure 3. Collage demonstrating some requirements for the development and recording of a therapy 
recommendation. This collage depicts image sections from the screenshot mockups we created based 
on the original interface of cBioPortal: (A) Checkboxes and text fields in the mutation table of the 
patient view to mark potentially relevant mutations for the therapy recommendation. (B) Search 
functionality with automatic parameter transfer to find previous patient cases with a mutation pattern 
similar to that of the current patient. (C) Extension of OncoKB’s information to cover the European 
Medicines Agency’s (EMA) approval status of a given drug. (D) Summary of already entered 
components of the therapy recommendation for the current patient. (E) Option to record follow-up 
data for the current patient. Example data adopted from the public cBioPortal (https://cbioportal.org) 
and OncoKB [16]. 

This set of relevant mutations is used to search for similar patient cases that have been analyzed 
in the local hospital before. A search should be comprehensively parameterizable and values from 
the current patient case (e.g., tumor entity, relevant mutations, etc.) should be automatically applied 
(see Figure 3B). The interviewees considered the gathering of information related to therapy 
recommendations for previous patients as the main goal of this functionality. This requirement was 
complemented by the need to document follow-up data (see Figure 3E). Therefore, details on the 
progression status of similar patient cases can be reviewed and included in the evaluation of the 
current case more easily. 

Building on this, further information on a possible therapy approach is required. In addition to 
the already available functions in cBioPortal provided by OncoKB [16], the interviewees requested a 
way to easily query the approval status of a drug in their respective country (in the case of 
MIRACUM: Germany) (see Figure 3C). 

Since, according to the participants, some therapy components (e.g., a drug) are only available 
in the context of (pre-) clinical studies, integration of clinical trial databases such as ClinicalTrials.gov 
[24] were requested. The interviewees expect a more efficient search for suitable studies through the 
automatic transfer of relevant search parameters, which are taken from the cBioPortal data record. 

Once a patient case has been prepared based on its individual data, it will be presented and 
discussed during a meeting of the MTB in order to jointly develop a therapy recommendation. There 
was no consensus as to what extent cBioPortal must support such a presentation. Some considered 
an automatically generated set of slides with individualized content as helpful. Others preferred to 
use the cBioPortal graphical user interface itself during the presentation with an option to hide 
irrelevant content. However, some interviewees also considered such assistance to be completely 
unnecessary. 

After a therapy recommendation has been decided upon within the MTB, it must be recorded in 
detail in cBioPortal. Besides information on the therapy itself (e.g., the name of a drug), the molecular 
and clinical rationale for the recommendation needs to be documented, too. As a justification, the 
mutations earlier classified as relevant or the tumor mutational burden (TMB) may be referenced. 
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To submit the results of the MTB to the client (e.g., the treating physician), the interviewees 
requested a function to generate a PDF report. Besides the actual therapy recommendation, this 
report should also contain extracts from the consulted databases and thus also be used to archive the 
current state of knowledge that led to the decisions made. 

3.4.3. Requirements for IT Infrastructure 

In order to integrate cBioPortal in the various clinical system landscapes, a standardized 
application programming interface (API) like FHIR (Fast Healthcare Interoperability Resources [25]) 
should be used by the respective components of the hospital information system to feed a local 
cBioPortal instance with various and comprehensive data (e.g., clinical data). In addition, the 
information, which is created or altered within cBioPortal, should be accessible via this interface for 
export into the local hospital information system. 

The existing user system in cBioPortal must be extended by a comprehensive and flexible user 
and rights management. Of course, only authenticated and authorized users should be permitted to 
use the cBioPortal instance for an MTB at all. Furthermore, it should be possible to “freeze” a therapy 
recommendation made by the molecular tumor board and to allow subsequent changes only for 
certain users and only in a reproducible way. This implies that all alterations to the data records in 
cBioPortal can be traced, thus guaranteeing their integrity and authenticity. 

In addition, some sites indicated that patient data may be stored in a pseudonymized manner if 
this becomes necessary for legal reasons (like it is done in the public available cBioPortal instance 
hosted by the Memorial Sloan Kettering Cancer Center). Of course, in this case, it must be guaranteed 
that the data can be reassigned to the patient at the end. For this purpose, an identification code 
assigned to the patient by the hospital information system could be used for pseudonymization. 

4. Discussion 

Due to the huge amount of data produced by NGS technologies, the growing number of clinical 
studies and released targeted therapies to address treatment of cancer, new tools are required to 
identify relevant molecular alterations and matching therapy options for individual patients. The 
present paper outlines which of those are essential and which functionalities exactly have to be 
provided to support processes in MTBs. To our knowledge, there is no comparable work so far 
tackling this issue from the point of view of participants in MTBs. 

4.1. Results and Future Work 

We worked out a requirements specification for the software supporting the processes in an 
MTB based on the open source project cBioPortal, an integrated database, which allows to visualize 
clinical parameters and molecular findings of individual patients in the context of current knowledge 
about cancer diseases. It turned out that the screenshot mockups we had created prior to the second 
round of interviews played an important role in the further requirements analysis. They allowed us 
to describe the different requirements and their potential options identified in the first round of 
interviews briefly and succinctly and thus to quickly start a discussion in the second round. They 
may also serve as blueprints for the future implementation of the requirements as it was the case with 
the integration of the Genome Aggregation Database (gnomAD [26]), where our mockups served as 
inspiration for the core cBioPortal development [27]. 

This conversation with the participants turned out to be the most important part of this work at 
all, as on the one hand questions that occurred could be resolved immediately and on the other hand, 
requirements that had not yet been considered by neither the interviewees nor us came to light by 
intensive discussions. Therefore, we could finally identify 24 requirements that were not yet 
integrated into cBioPortal at the time of the survey. Some of them have been proposed to the 
community of cBioPortal with requests for comments (RFC) filed by other users or even have been 
implemented before the finalization of this paper [27–34]. RFCs are publicly available documents 
everyone can create with proposals for new features in cBioPortal that often also include descriptions 
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of a potential way to implement these. They are an important step in the development of new 
functionalities in cBioPortal and help to involve the community in the process of implementation. 
This demonstrates, how important those requirements—even outside of an MTB context—seem to 
be for the future of cBioPortal. 

Besides that, some of our requirements identified are also met by tools not directly associated 
with cBioPortal, like MatchMiner [35] published by the Dana–Farber Cancer Institute. This tool, 
which has recently been prototypically integrated in cBioPortal [36], offers a service to match clinical 
trials to a patient case. At the moment, all studies have to be cured manually, so to use this feature to 
prepare MTBs in Germany, the ongoing challenge of an automatic import from databases like 
ClinicalTrials.gov [24] still remains to be resolved. 

For the future we plan to integrate cBioPortal in the hospital information systems (HIS) of our 
partner sites. This means the cBioPortal instance imports clinical data related to patients that have 
been registered for the MTB directly from the corresponding electronic health record (EHR). This 
data comprises at least age, gender and tumor entity and ideally also recent diagnoses and therapy 
attempts as well as data from cancer registries. The sequencing data is automatically processed by 
the MIRACUM-Pipe [7] under parameter control, including alignment, variant calling, annotation 
and analyses, in order to finally be passed directly to the cBioPortal instance. 

In addition to the import of existing data into cBioPortal, users also need to add persistent 
information to patient cases in cBioPortal to mark relevant mutations in a patient’s sample or to 
finally document the therapy recommendation. Since we are in ongoing contact with the main 
developers of cBioPortal, who finally determine which new features are merged into their project and 
provide future maintenance of them, we identified a considerable conflict with this requirement: 
cBioPortal’s primary focus is to support research in form of a read-only data warehouse. Therefore, 
the main developers stressed, that having direct write access by the user is currently not intended. A 
solution for this problem would be to place a hyperlink in cBioPortal to an input mask not hosted in 
cBioPortal itself, where the user can enter the data (e.g., the therapy recommendation). This form 
forwards the data to the patient’s EHR in the HIS via a standardized application programming 
interface (API) like FHIR [25], which is supported by most modern systems of an EHR (e.g., MEONA 
[37]). In order to make this data available again in cBioPortal, an (automatic) import must take place 
on a regular basis (e.g., twice daily). Thus, the data warehouse concept of cBioPortal would remain 
and no user write access in cBioPortal itself is necessary. 

We also discussed another problem we came across: the rigid process to import mutation data 
into cBioPortal. At the moment, there is no way to (dynamically) import additional annotation data 
on individual mutations without fundamental changes to the backend, which would be necessary for 
the integration of the demanded scores and similar. The team in Use Case 3 of the MIRACUM 
consortium responsible for the implementation already took the first steps and submitted a request 
for comments to the community to address this problem. This request deals with a flexible integration 
of further mutation data by means of an additional database column with the data stored in JavaScript 
object notation (JSON) format [38]. 

In general, it is necessary to store data in a structured manner rather than in free text in order to 
achieve a high grade of automation during import. For example, the International Classification of 
Diseases for Oncology (ICD-O) can be used to encode the tumor entity, the German Federal Ministry 
of Health has stated in its announcement [39]. The use of a standardized ontology, such as that 
provided by OncoTree [40], can also be useful. 

However, not only technical hurdles have to be tackled, but also legal ones. For example, when 
integrating further databases, particular attention must be paid to licensing as some restrict use to 
research purposes only. For example, even though the JAX Clinical Knowledgebase (JAX-CKB) was 
developed “to support clinical decision-making” [23], in the disclaimer of their website they allow 
usage “only for research and educational purposes” [14]. Use Case 3 of the MIRACUM consortium 
currently uses cBioPortal in clinical research. However, if it is used outside of a research context in 
the future, of course, this and also existing laws and regulations must be taken into account during 
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the development, as well. Besides compliance with data protection regulations [15,17] and the 
Medical Devices Act [18], this is a very broad field. 

As for future works, the implementation of the collected requirements must address these 
problems and find viable ways in close coordination with the main developers and the community 
around cBioPortal. This is the only way to integrate the features into the project permanently and to 
ensure their further maintenance and support. 

4.2. Related Work 

We came across two related works taking place in Germany. Halfmann et al. report that they 
developed a tool that aims to support the preparation process of a molecular tumor board as well as 
the presentation of a patient case during a meeting [12]. A video published by them demonstrates 
how different tools, including cBioPortal, can be combined in a single user interface [20]. Among 
other requirements, they discovered, like we did, that a function “to search for comparable local 
cases” [12] is demanded by clinical experts. 

Fegeler et al. also describe a software solution for the support of molecular tumor boards. In 
addition to the option of planning and managing the processes in an MTB, they also describe an 
integrated video conferencing system. They plan to integrate cBioPortal and knowledge databases, 
to support the development of a therapy recommendation [13]. 

4.3. Limitations 

Since we collected the requirements based on the expertise of clinicians who could only spend a 
certain amount of time for the survey and interviews (timeframe ranged between 40 min and two 
hours per interview and per round), we concentrated on the requirements which had not yet been 
implemented in cBioPortal. Therefore, we cannot make any statements about already existing 
features of the software that are useful for an MTB. As we iteratively improved and extended the 
interview guideline in the first round, the second round of interviews for consolidation had to be 
conducted so that in the end all sites had the opportunity to comment on every single requirement. 

We also limited the number of sites interviewed to nine university hospitals spread all over 
Germany. Furthermore, not all disciplines and their representatives involved in a molecular tumor 
board were interviewed. Although we tried to incorporate as many disciplines as possible, this may 
not be a representative sample for Germany. 

As a by-product of our requirements analysis and in preparation for the interviews, we 
performed a scoped review to provide an overview of already existing tools and systems that support 
molecular tumor boards. A limitation of it is its methodological rigor as compared to a full systematic 
review. We limited our database search to the MEDLINE and Web of Science databases. Therefore, 
we might have neglected relevant articles neither listed in MEDLINE nor in Web of Science. In 
addition, only one author performed the review, so this might also reduce the quality of results since 
misinterpretations cannot be systematically excluded. However, we believe that for our purposes we 
achieved a high degree of methodological quality throughout this scoping review by following the 
PRISMA statement [21,22] as far as appropriate for the requirements analysis. 

5. Conclusions 

By interviewing experts at our partner sites, we identified and consolidated for the first time a 
list of requirements for IT-supported preparation of molecular tumor boards based on cBioPortal. 
This list comprises a total of 24 requirements that had not yet been implemented during the time of 
the interviews. For almost all of them and their subordinated features, we have created descriptive 
screenshot mockups (54 in total) which supported the interview process and may contribute to the 
further development of cBioPortal. This work provides important information based on the clinical 
needs that will ultimately support the members of an MTB interpret the complex data for a 
personalized therapy recommendation. 

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/xxx/s1. 
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4 Discussion

In this thesis, different clinical, biological, bioinforamtics and medical informatics ap-
proaches were applied in six research projects to answer scientific questions in the field
of systems medicine. The projects covered a broad spectrum from in vitro over in vivo
to retrospective cases studies, including research on various diseases like AML, ccRCC
and MDS.
One of the biggest challenges in the field of medical research is the limited treat-

ment options which are effective and well-balanced, especially for elderly patients with
AML [Bell et al., 2018]. Hypomethylating agent (HMA) treatments although com-
bined with immunotherapy, chemotherapy or targeted-therapy have to be shown less
effective [Bewersdorf et al., 2019] and the over expression of the inhibitor of apoptosis
proteins (IAPs) family could be linked to a poor outcome in AML [Fulda, 2012]. In our
HMA and IAP antagonist focused AML research ( [Dittmann et al., 2019]) we could
show that the synergism between the HMA SGI-110 and the IAP ASTX-660 induced
both, the extrinsic as well as the intrinsic apoptosis pathways leading to a reliable cell
death. Therefore, both pathways are essential and necessary by shifting the interplay of
pro- and anti-apoptotic factors towards apoptosis. This is of major importance for de-
veloping new treatment combination strategies. The findings are important not only for
AML but also for many cancer therapies, as they are often limited by the circumvention
of apoptosis [Fulda, 2012].
In the ccRCC study (ccRCC; Höfflin et al.) it became obvious that a simplification or

binarization of genes in only two categories, like tumor suppressors and oncogenes, is not
sufficient to explain the complex mechanisms of tumor development. Although HIF-1α
is reported as inhibitor and HIF-2α as promoter of aggressive tumor behaviour and a
higher HIF-1α expression correlates with poor outcome of renal cell carcinoma [Gudas
et al., 2014] we could show that HIF-1α is necessary for tumor formation but HIF-2α
has only moderate effects on tumor initiation and growth. We assume that the HIF-2α
deletion fails to inhibit tumor formation in our Vhl/Trp53/Rb1 deletion model since the
Rb1 deletion eliminates the negative regulation of E2F transcription factors by cell cycle
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promotion. Therefore, an additional cell cycle stimulus by HIF-2α, which increases the
expression ofMyc and E2F target genes [Gordan et al., 2008], may no longer be necessary.
In summary, both investigated genes show pro tumorigenic activities and don’t fit in the
categorical thinking of tumor suppressors and oncogenes.

Further, we studied the influence of synonymous or silent mutations in the GATA2
gene. Mutations in GATA2 lead to a GATA2 deficiency. The deficiency is a monogenetic
disorder caused by heterozygeous missense mutations, whole gene deletions, or intronic
enhancer mutations, which causes haploinsufficiency. In our GATA2 research ( [Kozyra
et al., 2020]) we identified silent GATA2 variants causing RNA deleteriousness and
showing the same clinical GATA2 deficiency phenotype in patients. Silent, intergenic,
and intronic variants are usually overlooked and routine diagnostic procedures do not
include routine screening for such variants. Therefore, only a few regions are known
[Hsu et al., 2013]. We confirmed that silent mutations affect translation and plead for
integration of silent GATA2 mutations in the context of GATA2 deficiency in routine
diagnostic. Furthermore, analysing and understanding of silent, intergenic and intronic
variants will improve genetic counseling, donor selection for hematopoietic stem cell
transplantation and thus the clinical outcome.

In our retrospective case study over two years and nearly 200 patients of the MTB
Freiburg ( [Hoefflin et al., 2018]) we showed the positive effects for patients with ad-
vanced personalized decision making in accordance with comparable boards [Larkin
et al., 2014, Sohal et al., 2016, Johnson et al., 2014,Dalton et al., 2017]. Additionally,
we showed an increased response rate to checkpoint inhibitors by combining NGS re-
sults, e.g. tumor mutational burden (TMB), with molecular pathological measurements,
like PD-1 and PD-L1 expression or the microsatellite stability status (MSI/MSS). It
is known that a higher TMB can create more neoantigens which is beneficial for the
treatment with checkpoint inhibitors [Rizvi et al., 2015,McGranahan et al., 2016]. Due
to resource constraints, particularly time and money, a NGS approach is not feasible for
all patients [Horak et al., 2017] and therefore selection is made based on clinical back-
ground and available treatment options. If extended genetic analyses are carried out
only in appropriate cases, processing time and costs could be reduced and the outcome
improved. A similar study at the Memorial Sloan Kettering Cancer Center (MSK-CC),
which focused on the targeted combination of drugs, concluded with a better outcome
for patients if they followed their therapy recommendations [Cheng et al., 2015]. In gen-
eral, targeted-drug combinations provide better disease control rates than single-agent
therapies [Tannock and Hickman, 2016, Yap et al., 2013, Liu et al., 2016a, Turner and
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Reis-Filho, 2012], due to cross-talk between signaling pathways [Swanton and Govindan,
2016,Shi et al., 2014] and at the same time without increased toxicity [Soria et al., 2009].
Earlier consultations of such an interdisciplinary tumor board, e.g. after failure of first-
line treatment, could prevent ineffective treatments, improve the implementation rate,
and increase the likelihood of success of molecular biomarker-matched treatments. And
foremost, a MTB is predestined for knowledge generation and evidence generation in
oncology through one-person studies instead of the traditional cost- and time-intensive
clinical trials.

For a long-term lasting success and the proper integration of high-throughput omics
data into clinical routine, integration into the electronic patient record (EHR) and the
hospital information system (HIS) is essential. The possible integration interfaces, e.g.
with FHIR, are already available for most systems. With our stakeholder analysis (
[Buechner et al., 2020]) further requirements for a platform supporting MTBs were
identified, including sequencing results together with clinical and molecular-pathological
findings, the proper annotation and interpretation of variants and last but not least the
meaningful visualization. The platform of choice is cBioPortal as for two other tumor
boards [Fegeler et al., 2018] and [Halfmann et al., 2019]. Together with the help of the
core developers of cBioPortal, we plan to integrate the requirements not yet available
in the tool. Additionally, we have to consider licensing issues, as many databases may
only be used in a research environment, but not in a medical environment. Further
implications for data security, privacy and ethics have to be be considered.

With the increasing amount of high-throughput omics data and the integration of
corresponding molecular pathological and conventional clinical data, a deeper under-
standing of the underlying processes, not only in the filed of oncology, could be gained.
Mutational profiles, expression patterns or methylation motifs of different cancer entities
or diseases could help to specify and discover further cancer/disease sub-classes [Shyr
and Liu, 2013] and shed light on tissue or disease diversity which, in the case of on-
cology, leads to tumor heterogeneity and heterogeneous therapy responses. The closer
connection between the above-mentioned data sources contribute to improve the three
key elements in medicine, namely diagnostics, prognostics, and prediction. Diagnos-
tics will be improved through the establishment of robust disease biomarkers in clinical
practice [Goossens et al., 2015] which could be also used to predict prognosis [Ludwig
and Weinstein, 2005] and therapy efficiency [La Thangue and Kerr, 2011]. One of the
remaining problems is no longer the availability of such data sets but comparability
between different laboratories or institutions. Each laboratory has its own standard
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of processing or generation, especially high-throughput omics data. The subsequent
bioinformatics pipeline adds an additionally layer of complexity and possible sources of
error to the process. Therefore, the research area needs standardized processes to har-
monize the produced data and to foster data sharing, which we have tackled with the
development of the MIRACUM-Pipe. Only by sharing data, the amount of generated
information can reach a peak and meaningful knowledge to support clinical decision
making is produced. In Germany many research projects aim to solve precisely these
issues. One of the projects is MIRACUM, one of the consortia funded by the Medical In-
formatics Initiative. MIRACUM designed three use cases to address the aforementioned
problems. Use Case 1 supports the enrolment of patients into clinical trials, Use Case 2
uses the tremendous amount of clinico-molecular data to build a predictive knowledge
tool and Use Case 3 aims to support molecular tumor boards and to establish a generic
framework for all necessary steps from the analysis, interpretation, and visualization of
multi omics data to the final therapy recommendation [Prokosch et al., 2018]. Further-
more the federal state of Baden-Württemberg is establishing centers for personalized
medicine (Zentren für Personalisierte Medizin; ZPM). The aim is to network and to har-
monize all medical centers within Baden-Württemberg and to use the generated data
for a broader understanding of the diseases. However, the extensive sequencing also
poses ethical challenges, in particular with regard to the sequencing of germline mate-
rial, which might involve predispositions for different diseases. Sharing between different
institutions must be carried out in accordance with the applicable data protection laws,
which must be taken into account and implemented. Last but not least, the clinicians
have to be trained in reading, understanding, and interpreting multi omics analyses.
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