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Z U S A M M E N FA S S U N G

Diese Arbeit beschäftigt sich mit der Schätzung von Pose und Ge-
stalt von artikulierten Objekten. Dieses Forschungsfeld hat in den letz-
ten Jahren einen Wandel vollzogen: Es hat sich von modelbasierten
Trackingverfahren hin zu diskriminative Methoden entwickelt. Diese
basieren meist auf tiefen neuronalen Netzen und erlauben die Schät-
zung von Pose und Gestalt basierend auf einem einzigen Bild. Mit
diesem methodischen Wechsel rücken neue Herausforderung in den
Vordergrund, wie die Notwendigkeit von großen Mengen an anno-
tierten Daten, um die diskriminativen Ansätze trainieren zu können.
Diese Arbeit beschäftigt sich mit den Herausforderungen und ent-
wickelt Strategien, um Trainingsdaten zu gewinnen und bestehende
Daten für weitere Aufgaben nutzbar zu machen.

Zunächst wird die Anwendbarkeit von künstlich generierten Da-
tensätzen geprüft, um das Problem der Hand Posen Schätzung von
einem einzelnen Farbbild zu lernen. Hierzu wird eine tiefe Netzar-
chitektur entwickelt und auf dem erzeugten Datensatz trainiert. Der
resultierende Algorithmus erlaubt es 3D Hand Pose von einem ein-
zelnen Farbbild zu bestimmen und dadurch den Stand der Technik
in der Detektion von Handzeichensprache zu verbessern.

Nachfolgend wird ein Ansatz vorgestellt, der es erlaubt Körper-
pose von Menschen anhand von RGBD Bildern zu schätzen. Dieser
baut auf bestehenden RGB Datensätzen auf und benötigt daher nur
eine geringe Menge annotierter RGBD Beispiele. Der entwickelte An-
satz wird dazu genutzt einem Roboter neue Aufgaben beizubringen,
indem er einen menschlichen Lehrer während der Demonstration be-
obachtet und anschließend imitiert.

Als nächstes wird eine Methode vorgestellt, die es erlaubt Pose
von Tieren unter Zuhilfenahme von mehreren Kameras zu bestim-
men. Die Methode verfolgt einen ganzheitlichen Ansatz aller Kamera,
was den vorgestellten Ansatz robuster und exakter arbeiten lässt als
bisherige Methoden. Anwendung findet der Algorithmus im Rahmen
biologischer Experimente mit Versuchstieren. Hierbei ermöglicht er
deren Bewegungsschätzung und erlaubt es die Wirkung von opto-
genetischer Stimulation zu quantisieren.

Letztlich wird die vorige Methode um einen Ansatz zur Schätzung
der Handgestalt erweitert. Hierbei wird ein parametrisches Handmo-
dell verwendet, dass unter Zuhilfenahme von Posen- und Segmentie-
rungsschätzung positioniert wird. Dies erlaubt es einen großen Da-
tensatz mit echten RGB Bildern und zugehörigen Hand Annotation
zu erstellen, in dessen Erstellung manueller Aufwand nur in gerin-
gem Umfang einfließen muss.
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A B S T R A C T

This thesis is set in the field of pose and shape estimation of ar-
ticulated objects from image observations. With the recent shift in
paradigm towards deep learning also the methods for pose estima-
tion evolved from optimizing object models in a tracking fashion, to-
wards powerful discriminative algorithms that make frame indepen-
dent estimation possible. This directional change has introduced new
challenges, such as the need for good training data to supervise deep
learning methods. This thesis tackles some of the challenges and pro-
poses ways to provide training data for discriminative methods or to
extend existing data sources towards new settings.

First, the use of synthetic data is explored in the scope of hand pose
estimation. An architecture for 3D hand pose estimation from a single
image is proposed that, trained on the synthetic dataset, achieved
state of the art in pose estimation and allowed surpassing previous
approaches on sign language recognition.

Second, existing RGB datasets are leveraged to develop an approach
that estimates metrically correct human pose from RGBD inputs, with
only minimal need of labeled RGBD data. The approach outper-
formed comparable approaches and allowed teaching a robot new
tasks from few human demonstrations.

Third, a new approach for estimation of 3D pose incorporating
multiple camera views in a holistic fashion is presented. It is applied
in a biological setting for motion capture of laboratory animals. More
accurate and robust results are obtained than by using non-holistic
prediction methods. Our approach can learn the task at hand from
fewer labeled samples than state of the art methods.

Lastly, the multi-view pose estimation algorithm is adapted to hand
pose and extended by a model-based fitting procedure that yields
shape fits. This allowed to create a real-world dataset of RGB images
with corresponding hand shape fits, which is an important mile stone
for training and evaluating single view methods.
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Part I

P R O L O G U E

This thesis starts with a gentle introduction to the prob-
lems tackled in this work. The contributions of this work
are listed and localized within the scientific spectrum. Im-
portant properties of the image formation process are re-
capitulated to show under which circumstances 3D recon-
struction is possible. Lastly, common solutions for pose
and shape estimation are presented with a broad scope.





1
I N T R O D U C T I O N

Perceiving and understanding the surrounding world is natural for AI needs to
understand the
environment

humans, but turns out to be one of the great challenges artificial in-
telligence is facing. With some type of sensor it is comparatively easy
to turn the environment of a robot into computer-processable data.
In this representation it is possible to evaluate whether a recorded
value is larger than some threshold, but this is not relevant high level
information that allows a robot to operate autonomously in loosely
constrained environments. Relevant points in the context of robots
interacting with humans could be:

• Is there a human in front of me? Far away or close to me?

• Where is the human located in the world? Which way is he
facing?

• Where are objects of interest in the world? How is the human
interacting with them?

• What is the human doing?

Without being able to answer high level questions like these it is im-
possible for artificial agents to act intelligently in the real world or to
interact with humans in a natural way.

The high level of abstraction in the aforementioned questions makes The unconstrained
case is hardthem hard, because information of individual pixels alone is not suffi-

cient to answer them. The image needs to processed holistically, and
possibly multiple frames need to be taken into account. This makes
manually designing robust algorithms for these purposes hard, and
even more difficult, the broader the scope of applicability is supposed
to be. Solving high level problems algorithmically in a narrow labo-
ratory setting might be possible, but engineering a general algorithm
to work for a diverse range of settings is virtually impossible.

This is exactly where machine learning has enabled large progress Machine learning
and large datasetsfor the field of computer vision. Instead of manually designing al-

gorithms to answer these questions, procedures were developed that
allow machines to learn algorithms on their own. This change of
paradigm from handcrafted towards learned features created the need
for large, diverse datasets with annotation for the task in question.
Given such a dataset, learned approaches achieve unprecedented ac-
curacy in benchmarks for most classic computer vision tasks, includ-
ing classification [43], segmentation [16], optical flow [49], and human
pose estimation [14].

Problems arise in fields where such datasets do not exist and data Acquisition of
labeled data

3



4 introduction

acquisition is difficult. It is possible to ask human annotators to tell
cat and non-cat depicting images apart or to draw boxes around all
car objects. These problems are solvable through crowd sourcing,
but there are many tasks where this becomes infeasible. Examples
include dense prediction tasks like optical flow or abstract task like
pose estimation that are difficult, take much time or expertise to an-
notate, and therefore yield erroneous annotations.

Understanding pose of articulated objects from images is essen-Importance of pose
estimation tial information for many applications including self-driving cars,

sign-language, action recognition, activity monitoring, sport analyt-
ics, human-computer interfaces, and virtual or augmented reality.
In these cases measuring motion of the human body, or an animal
body, either provides an expressive intermediate representation or is
directly of interest.

This thesis explores different methods for the acquisition of train-Focus of this thesis

ing data for tasks that are difficult to label, namely pose and shape
estimation. Chapter 3 explores the use of synthetic data to learn 3D
pose estimation of human hands from a single color image. Chap-
ter 4 shows how to leverage existing RGB datasets for human pose
estimation such that a small scale RGBD dataset is sufficient to create
an algorithm that estimates 3D human pose from RGBD. Chapter 5

proposes a method for 3D pose estimation based on a multi-view
camera setup. It serves as a motion capture system for laboratory
animals and allows quantification of animal motion during biolog-
ical experiments. Building on top of this motion capture method
Chapter 6 deploys differential rendering for hand shape annotation
of multi-view RGB recordings. This method is then used to create a
dataset for training single-view hand shape estimation algorithms.

1.1 contributions

This thesis contributes to the state of art in the following ways:

• A large RGB dataset for hand pose estimation was created that
allows training of deep neural networks and induced a notewor-
thy amount of follow-up research in this area (Chapter 3).

• The first CNN-based formulation using a clear distinction be-
tween extraction of 2D pose and a learned prior for 2D to 3D
lifting for hand pose estimation was proposed (Chapter 3).

• A human pose estimation approach based on RGBD input with
state-of-the-art accuracy that enabled robotic learning-from-dem-
onstration was developed (Chapter 4).

• A novel multi-view CNN architecture incorporating camera ge-
ometry for learning pose estimation was presented (Chapter 5).
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• An estimation procedure of hand shape from multi-view im-
agery was developed (Chapter 6).

• The first large-scale real-world dataset with shape annotation
that allows to train monocular hand shape estimation methods
was created (Chapter 6).

1.2 overview of problems

This thesis addresses multiple tasks, which include: Overview of
problems

• Detection: Where is the object of interest? E. g., bounding box
detection.

• Classification: What is the object of interest doing? E. g., sign or
action recognition.

• Pose Estimation: Whats the location, orientation and articula-
tion of the object? E. g., human body pose estimation

• Shape Estimation: What does the surface of the object look like?
E. g., hand shape estimation

It is immediately clear that some problems from this list are harder
to solve than others and that some problems are extensions of others.
For example, if the hand shape is known it is trivial to extract pose in-
formation from a posed shape model or if the pose is known then the
detection problem is also solved. Furthermore, gesture classification
tasks become much simpler once pose is estimated.

Most of this work deals with pose estimation in a 3D setting (Chap- Problems tackled in
this thesister 3, Chapter 4, Chapter 5). Chapter 6 tackles shape estimation and

the other tasks are covered as preliminary tasks. Detection is needed
in Chapter 5, and Chapter 3 uses gesture classification as an applica-
tion.

1.3 challenges

There are several reasons why estimating pose or shape from images
is difficult. Occlusion is a big challenge, not only can the object Occlusion

of interest be occluded by something else, but the object will also
occlude itself. For occluded parts no information can be obtained
from the image. This requires to hallucinate the missing parts need-
ing prior knowledge. Occlusion not only makes inference of the oc-
cluded parts harder, but also complicates acquiring annotation for
these cases. This can create a strong bias in manually labeled datasets
that can not deal with occlusions appropriately.

Secondly, the solution is often ambiguous. There is an ambiguity Ambiguity

that arises from the missing depth information, e. g., is it a small
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object close-by or a larger one further away. Another ambiguity can
come from the appearance of objects; For example fingers of a human
hand can be difficult to tell apart from each other, because they look
very similar.

Different sources of variation make it difficult to develop robustVariation

approaches. One source is appearance which can be caused by cloth-
ing, lighting, shadowing, skin color, viewpoint or the camera used for
recording. Additionally, there can be a lot of scale variation between
subjects, i. e., large and small people to estimate pose of, which is chal-
lenging for 3D estimation methods. Ideally, an algorithm performs
equally well throughout all settings, but this is difficult to achieve.

Lastly, the problem is hard because estimating pose is of high di-High dimensionality

mensionality. Estimating pose of a rigid object is already considered
to be a difficult problem, which means determining 6 parameters
that describe rotation and translation. Whereas, it is common to use
hand skeletons with 27 DoF, inspired by biomechanical constraints
[69], which makes solving the problem a lot harder, because more pa-
rameters have to be estimated. Additionally, optimization methods
tend to get less effective when applied in higher dimensional spaces.

1.4 role of data

Data has always played an important role for computer vision, butCNNs depend on
data its use has shifted from being a pure test bench for hand-crafted al-

gorithms towards deriving large amounts of the algorithm from data.
In current deep learning approaches most of the algorithm is learned
from data given a random initialization. This makes that class of al-
gorithms depending heavily on the data used for training. It was
shown that deep learning based approaches are very good at identi-
fying shortcuts and peculiarities of the data, that help them with the
task on the training set, but this does not guarantee any generaliza-
tion [143]. So careful compilation of the training data at a sufficiently
large scale and in an unbiased way gains importance [77].

When data is needed for supervised training of machine learn-Ways to generate
training data ing algorithms there are two major approaches. One possibility is to

record data in the real world and add the annotation in a post process-
ing step. The other one is to use computer graphics to render images
that mimic the real world. In this case the annotation is available al-
most for free, because rendered scenes consist of graphical models in
a known geometric configuration. This thesis covers both approaches
and each one has its up- and downsides that are discussed now.

When recordings of the real world are used many types of priorsReal-world data

and characteristics are fulfilled automatically. For example, the im-
ages will contain acquisition artifacts that are typical for real cameras.
When imagining humans their poses and interaction between sub-
jects is realistic per definition. In the case of hand pose estimation the
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grasps are plausible and anatomically feasible. Realistic hand-object-
interaction is achieved effortless. On the other hand real recordings
usually contain little variation, because it costs time and effort to in-
troduce many subjects, diverse clothing, different skin color or eth-
nicity. Additional limiting factors of variation are the viewpoints cov-
ered, the background scene and the types of cameras used. These
factors might introduce a strong bias towards what a dataset con-
tains. This can get amplified by further limitations that arise from the
annotation method deployed. The method may show systematic fail-
ure modes for certain configuration, which then get discarded during
manual validation and result in "blind spots" of the respective data
pool. When annotating real datasets one attempts to automate as
many steps of the creation pool as possible, but commonly manual
effort can not be eliminated completely which makes real datasets
hard to scale.

On the other hand, introducing much variation or scaling up the Synthetic data

dataset in terms of samples is effortless, when computer graphical
models and rendering pipelines are used. The synthetic or rendered
datasets are trivially scaled up by introducing randomness in every
run. This means to sample lighting, appearance, viewpoint and mo-
tion repeatedly, and the amount of dataset samples can virtually be
indefinite. This is also where the crux lies: One needs to sample valid
configurations or parameters to perform a rendering run. While it
still might be fine to engineer distributions for lighting and view-
point, this is not trivial for pose or motion because complex correla-
tions exist between parts of articulated objects. The case where two
hands interact with each other, or a hand with an object, are settings
where it is definitely impossible to sample a valid configuration from
an engineered distribution representing the complete space of feasi-
ble poses. The generation of data is usually imperfect such that there
is a remaining gap between data from the simulation and real do-
main. An alternative to sampling from a continuous distribution is
to extract a valid configuration from real data and transfer it to the
simulation, i. e., sample from a discrete set of samples. This allows to
augment the given set of samples, which is frequently performed in
fields where a large corpus of real motion capture data is available.
For this kind of transfer the simulated data is still limited to some
extent by the real data, but variation of appearance, viewpoint and
lighting can be increased through the additional samples.





2
P R E L I M I N A R I E S

Before delving deep into the contribution of this thesis, some general
remarks about the class of problems will be made. This allows to
locate this work in the research context and give an understanding
how common approaches operate.

2.1 estimating 3d geometry from 2d observations

This thesis is set in the fairly common setting of an RGB matrix Focus lies on RGB
camerascamera that is observing the surrounding world. Its prevalence arises

from the low cost of this camera type in conjunction with the easy-to-
understand acquisition result for humans. Color cameras are widely
spread to mobile phones, cars, webcams and robotic systems.

For matrix cameras the image formation process can approximately Projective loss of
informationbe modeled using the pinhole camera model. The underlying idea is

that light from the environment passes through a small opening on
one side of the camera and hits the planar sensor on the other side.
The light is absorbed and accumulated by the sensor over some pe-
riod of time to form the image. Figure 2.1 shows the mathematically
equivalent scenario, where the image plane is mirrored with respect
to the pinhole. Then the image plane is depicted in front of the cam-
era.

zcam

xcam

ycam

~c

xworld

zworld

yworld

R, ~t
f

(u0, v0)

u

v
~P

~p

Figure 2.1: Pinhole camera model. A world point ~P is projected towards the
optical center ~c and intersects the image plane at ~p. The result-
ing image is influenced by the focal length f which is illustrated
by the distance between image plane and optical center. Practi-
cally, the focal length describes the scale between real-world and
image coordinates. One can see that the location of ~P on the
ray is irrelevant for the resulting projection point ~p on the image
plane; a projective ambiguity arises when attempting to reverse
the imaging process.
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A point ~p on the image plane accumulates information along theProblem is ill-posed

ray that connects ~pwith the optical center ~c. The exact location on the
ray where information originated from is lost during projection. This
turns estimating 3D entities from a single 2D observations into an
under-constrained problem that can only be solved using additional
information.

Mathematically, the transformation between a 3D world point ~PCamera calibration

and the resulting point in image coordinates ~p is described by the
pinhole camera modeluv

1

 = ~p = K · ~P =

f 0 u0

0 f v0

0 0 1

 ·
Xcam

Ycam

Zcam

 (2.1)

using the camera intrinsic K ∈ R3×3 matrix that depends on the
focal length f and location of the camera’s central point in image
space. The ray originating from the camera central point ~c, which
intersects the image plane perpendicularly at

(
u0, v0

)
is called the

optical axis. Equation 2.1 takes coordinates in a camera centered 3D
coordinate frame and calculates their location in image space. The
transformationXcam

Ycam

Zcam

 = R ·

Xworld

Yworld

Zworld

+~t (2.2)

describes the rotation and translation between camera and world co-
ordinates. This allows the camera to move freely with respect to a
world coordinate frame. For a given camera setting finding K is re-
ferred to as intrinsic calibration and determining R and ~t is called
extrinsic camera calibration. If both are known it is possible to calcu-
late where an arbitrary world point is being projected to in the image
frame.

To calculate the 3D information from their 2D projections addi-Common
assumptions to

resolve ambiguity
tional constraints are needed. Frequently, multiple observations are
used, i. e., multiple cameras observe the same 3D point from differ-
ent locations. Unprojecting the 2D image observations into 3D space
yields rays originating from the respective camera centers and leads
to a point of minimal distance between the rays. Other information
that is commonly used is knowledge about the geometry of the object
of interest. In this setting correspondences between 2D observations
and 3D object points are found and the objects’ pose is calculated.
This setting is usually referred to as the Perspective-n-Point problem
and closed form solutions exist [29, 68]. Note that these approaches
assume rigidness of the object, i. e., 3D object points do not move with
respect to each other.

In practice many objects of interest do not fulfill this assumption,Special case
articulated objects
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e. g., humans, hands or animals can only approximately been seen
as part-wise rigid objects with additional parameters describing ar-
ticulation between parts. This mixture of rigid parts with some well-
defined degrees of freedom between them is referred to as articulated
objects. In this setting additional parameters describing the motion
within the object need to be estimated. The number of DoF is in-
creased by every additional part in the chain, which makes solving
all degrees of freedom from a sufficiently large amount of correspon-
dences impractical.

2.2 broad categorization of approaches

Different approaches to pose and shape estimation can be categorized
in the following ways.

A very important separation between approaches is the type of Dimensionality

representation being estimated. One family of approaches seeks to es-
timate 3D structure, which could directly be locations in 3D [90, 123]
or parameters of a 3D model [10, 56]. Another one are approaches
that aim to predict some quantity in image space, e. g., estimation of
points in 2D [14]. While 3D problems can be seen as a reconstruction
task, estimating 2D is more similar to discriminative pixel-wise esti-
mation task. This thesis deals with estimating 3D structure and uses
2D tasks only as intermediate representation.

The 3D problems can be further split up by a reconstruction point From a
reconstruction point
of view

of view. Whereas pose estimation is similar to a sparse reconstruction
task, shape estimation is a dense reconstruction task. Historically, re-
constructing densely used to be more popular [28, 93], because for-
mulating local optimization objectives between a shape model and ob-
served segmentation masks or depth maps worked well given a good
initialization. Using the shape model allows to model effects like in-
terpenetration [41, 129] or reason about the physical plausibility of
the estimate [129]. More recently, the sparse reconstruction paradigm
became more popular, because with the rise of CNNs powerful and
robust keypoint detectors became available [112, 133]. These allow to
estimate much more abstract concepts, like joint locations, from a sin-
gle image. This was impossible before and alleviates the need to use
explicit models and provide a known initialization to start tracking
from.

Another commonly made distinction is the input modality. Most Input modality

works focus on color images (RGB) or depth maps (D), while less
work is done using both modalities (RGBD) and little work is avail-
able dealing with more exotic variants like infrared or x-ray images.
The most important distinction is if depth information is available
or not. Availability of depth measurement eliminates the projective
ambiguity and allows to use different types of representations (e. g.,
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point clouds) compared to approaches that operate on some sort of
gridded 2D sensory data.

The number of camera views available is another important fac-Number of cameras

tor. The minimal case of a single camera is the most common one
[51, 88, 95], but it raises the need for approaches that can deal well
with occlusions and if no depth is available the scale ambiguity has
to be accounted for. If multiple cameras come into play occlusion
tends to become less of an issue, but usually applications that fall
into this regime are limited to controlled studio settings [112, 115],
because temporal synchronization and camera calibration between
data sources is necessary. Also less prior knowledge is needed for
reconstruction if multiple cameras are available.

Nearest neighbor/ Search-based: Pose estimation is formulated as a re-Type of approach

trieval problem, where the closest pose with respect to a large dataset
of poses is extracted [5, 101]. This creates a trade-off between accu-
racy and speed. If the dataset is rather small this will result in a poor
pose estimation accuracy. On the other hand a large dataset makes
the retrieval problem harder because more comparisons have to be
made. Commonly, some sort of descriptor (HoG, skin color, edges, or
others) is extracted from the image and matched against the database.
Most works in this area either optimize on the matching [48] or de-
scriptor side [18, 109] of this approach.
Model based: There is a model of the 3D entity that is to be repre-
sented. In this case estimating pose means finding deformation pa-
rameters to align the model with image observations. Core parts of
this type of algorithm are: A model, an initial model state, a similar-
ity function between observation and model state, and a optimization
procedure to update the model state according to the similarity func-
tion. Usually, these kinds of approaches need a good initialization
which induced a lot of work on this problem [107, 116, 119]. Further-
more, a large corpus of work deals with different choices on models,
which use some combination of geometric primitives, e. g., cylinders,
spheres, ellipsoids and cones, to model the articulated object: [66, 93,
116]. The number of primitives is usually kept low, because during
optimization iteration through the set of shapes is performed many
times, which makes triangle meshes with a large number of faces im-
practical. These kinds of approaches are also referred to as top-down
approaches and are usually optimization driven.
Discriminative: Most recently proposed approaches fall into this cate-
gory. They use an algorithm to either learn a direct mapping to pose
space [126] or to detect known parts of the object within the image,
e. g., limbs [94] or joints [133]. In the latter case, pose is assembled
from detected parts in a bottom-up fashion [14, 64].
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M A I N PA RT

The following sections describe the contributions this the-
sis makes. Each chapter is based on one publication, which
is stated at the beginning of each section, as well as the
outlining the contributions made by the author. Material
presented there is taken from the respective paper and the
concluding Follow-up work chapters discuss the impact of
the paper on their respective research fields.
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E S T I M AT I N G H A N D P O S E F R O M S I N G L E R G B

Figure 3.1: Problem overview. Given a color image we detect keypoints in
2D (shown overlayed) and learn a prior that allows us to estimate
a normalized 3D hand pose.

This chapter describes ideas and experiments that were previously
presented in the following work; therefore, copyright lies with © 2017

IEEE.

Learning to Estimate 3D Hand Pose from Single RGB Images
Christian Zimmermann and Thomas Brox
IEEE International Conference on Computer Vision (ICCV), 2017

This work introduced neural networks for estimation of 3D hand pose
from color images, along with a synthetic dataset for network training.

The author of this thesis designed the networks’ architecture, cre-
ated the dataset and conducted all experiments. All co-authors con-
tributed to the project discussions as well as writing the publication.

3.1 introduction

The hand is the primary operating tool for humans. Therefore, its lo-
cation, orientation and articulation in space is vital for many potential
applications, for instance, object handover in robotics, learning from
demonstration, sign language and gesture recognition, and using the
hand as an input device for man-machine interaction.

Full 3D hand pose estimation from single images is difficult be-
cause of many ambiguities, strong articulation, and heavy self-occlu-
sion, even more so than for the overall human body. Therefore, spe-
cific sensing equipment like data gloves or markers are used, which
restrict the application to limited scenarios. Also the use of multiple

15
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HandSegNet
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and

Resize

PoseNet

PosePrior

Viewpoint
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Figure 3.2: Approach overview. Our approach consists of three building
blocks. First, the hand is localized within the image by a segmen-
tation network (HandSegNet). Accordingly to the hand mask, the
input image is cropped and serves as input to the PoseNet. This
localizes a set of hand keypoints represented as score maps S.
Subsequently, the PosePrior network estimates the most likely 3D
structure conditioned on the score maps. This figure serves for
illustration of the overall approach and does not reflect the exact
architecture of the individual building blocks.

cameras severly limits the application domain. Most contemporary
works rely on the depth image from a depth camera. However, depth
cameras are not as commonly available as regular color cameras, and
they only work reliably in indoor environments.

In this paper, we present an approach to learn full 3D hand pose
estimation from single color images without the need for any special
equipment. We capitalize on the capability of deep networks to learn
sensible priors from data in order to resolve ambiguities. Our over-
all approach consists of three deep networks that cover important
subtasks on the way to the 3D pose; see Figure 3.2. The first net-
work provides a hand segmentation to localize the hand in the image.
Based on its output, the second network localizes hand keypoints in
the 2D images. The third network finally derives the 3D hand pose
from the 2D keypoints, and is the main contribution of this paper. In
particular, we introduce a canonical pose representation to make this
learning task feasible.

Another difficulty compared to 3D pose estimation at the level of
the human body is the restricted availability of data. While human
body pose estimation can leverage several motion capture databases,
there is hardly any such data for hands. To train a network, a large
dataset with ground truth 3D keypoints is needed. Since there is no
such dataset with sufficient variability, we created a synthetic dataset
with various data augmentation options.

3.2 related work

2D Human Pose Estimation. Spurred by the MPII Human Pose
benchmark [4] and the advent of Convolutional Neural Networks
(CNN) this field made large progress in the last years. The CNN archi-
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tecture of Toshev and Szegendy [126] directly regresses 2D cartesian
coordinates from color image input. More recent works like Thomp-
son et al. [125] and Wei et al. [133] turned towards regressing score
maps. For parts of our work, we employ a comparable network archi-
tecture as Wei et al. [133].

3D Human Pose Estimation. We only discuss the most relevant
works here and refer to Sarafianos et al. [105] for more informa-
tion. Like our approach, many works use a two part pipeline [17,
124]. First they detect keypoints in 2D to utilize the discriminative
power of current CNN approaches and then attempt to lift the set of
2D detections into 3D space. Different methods for lifting the rep-
resentation have been proposed: Chen et al. [15] deployed a nearest
neighbor matching of a given 2D prediction using a database of 2D to
3D correspondences. Tome et al. [123] created a probabilistic 3D pose
model based upon a mixture of probabilistic PCA bases. Pavlakos et
al. [96] proposed a volumetric approach that treats pose estimation as
per voxel prediction of scores in a coarse-to-fine manner, which gives
a natural representation to the data, but is computationally expen-
sive and limited by the GPU memory to fit the voxel grid. Recently,
there have been several approaches that apply deep learning to lifting
2D keypoints to 3D pose for human body pose estimation [85, 147].
Mehta et al. [80] uses transfer learning to infer the 3D body pose di-
rectly from images with a single network. While these works are all
on 3D body pose estimation, we provide the first such work for 3D
hand pose estimation, which is substantially harder due to stronger
articulation and self-occlusion, as well as less data being available.

Hand Pose Estimation. Athitsos and Sclaroff [5] proposed a sin-
gle frame based detection approach based on edge maps and Cham-
fer matching. With the advent of low-cost consumer depth cameras,
research focused on hand pose from RGBD data. Oikonomidis et
al. [92] proposed a technique based on Particle Swarm Optimiza-
tion (PSO). Sharp et al. [107] added the possibility for reinitialization.
A certain number of candidate poses is created and scored against
the observed depth image. Tompson et al. [125] used a CNN for
detection of hand keypoints in 2D, which is conditioned on a multi-
resolution image pyramid. The pose in 3D is recovered by solving
an inverse kinematics optimization problem. Approaches like Zhou
et al. [149] or Oberweger et al. [90] train a CNN that directly re-
gresses 3D coordinates given hand cropped depth maps. Whereas
Oberweger et al. [90] explored the possibility to encode correlations
between keypoint coordinates in a compressing bottleneck, Zhou et
al. [149] estimate angles between bones of the kinematic chain in-
stead of Cartesian coordinates. Oberweger et al. [91] presented an
approach that replaces the explicit man-made hand model with a
CNN that can synthesize a depth map from a given pose estimate.
This allows them to successively refine initial pose estimates by min-
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Prel = Pc ·R>
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Figure 3.3: Proposed architecture for the PosePrior network. Two almost
symmetric streams estimate canonical coordinates and the view-
point relative to this coordinate system. Combination of the two
predictions yields an estimation for the relative normalized coor-
dinates Prel.

imizing the distance between the observed and the predicted depth
image.

There are not yet any approaches that tackle the problem of 3D
hand pose estimation from a single color image with a learning based
formulation. Previous approaches differ because they rely on depth
data [90, 91, 125, 149], they use explicit models to infer pose by match-
ing against a predefined database of poses [5], or they only perform
tracking based on an initial pose rather than full pose estimation [92,
107].

3.3 hand pose representation

Given a color image I ∈ RN×M×3 showing a single hand, we want
to infer its 3D pose. We define the hand pose by a set of coordinates
~Pi = (Xi, Yi,Zi), which describe the locations of 21 keypoints in 3D
space, i.e., i ∈ [1, J] with J = 21.

The problem of inferring 3D coordinates from a single 2D observa-
tion is ill-posed. Among other ambiguities, there is a scale ambiguity.
Thus, we infer a scale-invariant 3D structure by training a network to
estimate normalized coordinates

~Pnorm
i =

1

s
· ~Pi, (3.1)

where s =
∥∥∥~Pk+1 − ~Pk

∥∥∥
2

is a sample dependent constant that normal-
izes the distance between a certain pair of keypoints to unit length.
We choose k such that s = 1 for the first bone of the index finger.

Moreover, we use relative 3D coordinates to learn a translation in-
variant representation of hand poses. This is realized by subtracting
the location of a defined root keypoint. The relative and normalized
3D coordinates are given by

~Prel
i = ~Pnorm

i − ~Pnorm
r (3.2)
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where r is the root index. In experiments the palm keypoint was the
most stable landmark. Thus we use r = 0.

3.4 estimation of 3d hand pose

We estimate three-dimensional normalized coordinates Prel from a
single input image. An overview of the general approach is provided
in Figure 3.2. In the following sections, we provide details on its
components.

3.4.1 Hand segmentation with HandSegNet

For hand segmentation we deploy a network architecture that is based
on and initialized by the person detector of Wei et al. [133]. They cast
the problem of 2D person detection as estimating a score map for the
center position of the human. The most likely location is used as
center for a fixed size crop. Since the hand size drastically changes
across images and depends much on the articulation, we rather cast
the hand localization as a segmentation problem. Our HandSegNet
is a smaller version of the network from Wei et al. [133] trained
on our hand pose dataset. Details on the network architecture and
its training procedure are provided in the supplemental material of
[151]. The hand mask provided by HandSegNet allows us to crop and
normalize the inputs in size, which simplifies the learning task for
the PoseNet.

3.4.2 Keypoint score maps with PoseNet

We formulate localization of 2D keypoints as estimation of 2D score
maps S = {S1(u, v), . . . ,SJ(u, v)}. We train a network to predict J
score maps Si ∈ RN×M, where each map contains information about
the likelihood that a certain keypoint is present at a spatial location.

The network uses an encoder-decoder architecture similar to the
Pose Network by Wei et al. [133]. Given the image feature represen-
tation produced by the encoder, an initial score map is predicted and
is successively refined in resolution. We initialized with the weights
from Wei et al. [133], where it applies, and retrained the network
for hand keypoint detection. A complete overview over the network
architecture is located in the supplemental material of [151].

3.4.3 3D hand pose with the PosePrior network

The PosePrior network learns to predict relative, normalized 3D co-
ordinates conditioned on potentially incomplete or noisy score maps
S(u, v). To this end, it must learn the manifold of possible hand artic-
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ulations and their prior probabilities. Conditioned on the score maps,
it will output the most likely 3D configuration given the 2D evidence.

Instead of training the network to predict absolute 3D coordinates,
we rather propose to train the network to predict coordinates within a
canonical frame and additionally estimate the transformation into the
canonical frame. Explicitly enforcing a representation that is invariant
to the global orientation of the hand is beneficial to learn a prior, as
we show in our experiments in Section 3.5.2.

Given the relative normalized coordinates we propose to use a
canonical frame Pc, that relates to Prel in the following way: An inter-
mediate representation

~Pc*
i = R(Prel) · ~Prel

i (3.3)

with R(Prel) ∈ R3×3 being a 3D rotation matrix is calculated in a two
step procedure. First, one seeks the rotation Rxz around the x- and
z-axis such that a certain keypoint ~Pc*

a is aligned with the y-axis of the
canonical frame:

Rxz · ~Pc*
a = λ · (0, 1, 0)> with λ > 0. (3.4)

Afterwards, a rotation Ry around the y-axis is calculated such that

Ry ·Rxz · ~Pc*
o = (η, ζ, 0) (3.5)

with η > 0 for a specified keypoint index o. The total transformation
between canonical and original frame is given by

R(Prel) = Ry ·Rxz. (3.6)

In order to deal appropriately with the symmetry between left and
right hands, we flip right hands along the z-axis, which yields the
side agnostic representation

~Pc
i =

{
(Xc*
i , Yc*

i ,Zc*
i )
> if its a left hand

(Xc*
i , Yc*

i ,−Zc*
i )
> if its a right hand

(3.7)

that resembles our proposed canonical coordinate system. Given this
canonical frame definition, we train our network to estimate the 3D
coordinates within the canonical frame Pc and separately to estimate
the rotation matrix R(Prel), which we parameterize using axis-angle
notation with three parameters. Estimating the transformation R is
equivalent to predicting the viewpoint of a given sample with respect
to the canonical frame. Thus, we refer to the problem as viewpoint
estimation.

The network architecture for the pose prior has two parallel pro-
cessing streams; see Figure 3.3 and use an almost identical architec-
ture. They first process the stack of J score maps in a series of 6
convolutions with ReLU non-linearities. Information on whether the
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image shows a left or right hand is concatenated with the feature
representation and processed further by two fully-connected layers.
The streams end with a fully-connected layer with linear activation,
which yields estimations for viewpoint R and canonical coordinates
Pc. Both estimations combined lead to an estimation of Prel.

3.4.4 Network training

For training of HandSegNet we apply standard softmax cross-entropy
loss and L2 loss for PoseNet. The PosePrior network uses two loss
terms. First a squared L2 loss for the canonical coordinates

Lc =
∥∥∥Pc

gt −P
c
pred

∥∥∥2
2

(3.8)

based on the network predictions Pc
pred and the ground truth Pc

gt. Sec-
ondly, a squared L2 loss is imposed on the canonical transformation
matrix:

Lr =
∥∥Rpred −Rgt

∥∥2
2

. (3.9)

The total loss function is the unweighted sum of Lc and Lr.
We used Tensorflow [1] with the Adam solver [61] for training. De-

tails on the learning procedure are in the supplementary material of
[151].

3.4.5 Available datasets

There are two available datasets that apply to our problem, as they
provide RGB images and 3D pose annotation. The so-called Stereo
Hand Pose Tracking Benchmark [144] provides both 2D and 3D anno-
tations of 21 keypoints for 18000 stereo pairs with a resolution of
640×480. The dataset shows a single person’s left hand in front of
6 different backgrounds and under varying lighting conditions. We
divided the dataset into an evaluation set of 3000 images (S-val) and
a training set with 15000 images (S-train).

Dexter [117] is a dataset providing 3111 images showing two oper-
ators performing different kinds of manipulations with a cuboid in
a restricted indoor setup. The dataset provides color images, depth
maps, and annotations for fingertips and cuboid corners. The color
images have a spatial resolution of 640×320. Due to the incomplete
hand annotation, we use this dataset only for investigating the cross-
dataset generalization of our network. We refer to this test set as
Dexter.

We downsampled both datasets to a resolution of 320×240 to be
compatible with our rendered dataset. We transform our results back
to coordinates in the original resolution, when we report pixel accu-
racies in the image domain.
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Figure 3.4: Our new dataset provides segmentation maps with 33 classes:
three for each finger, palm, person, and background. The 3D
kinematic model of the hand provides 21 keypoints per hand: 4

keypoints per finger and one keypoint close to the wrist.

The NYU Hand Pose Dataset by Tompson et al. [125], commonly
used for hand pose estimation from depth images, does not apply
to a color based approach, because only registered color images are
provided. In the supplementary we show more evidence why this
dataset cannot be used for our task.

3.4.6 Rendered hand pose dataset

The above datasets are not sufficient for training a deep network due
to limited variation, number of available samples, and partially in-
complete annotation. Therefore, we complement them with a new
dataset for training. To avoid the known problem of poor labeling
performance by human annotators in three-dimensional data, we uti-
lize freely available 3D models of humans with corresponding ani-
mations from Mixamo [83]. Then we used the open source software
Blender [26] to render images. The dataset is publicly available.

Our dataset is built upon 20 different characters performing 39 ac-
tions. We split the data into a validation set (R-val) and a training set
(R-train), where a character or action can exclusively be in one of the
sets but not in the other. Our proposed split results into 16 characters
performing 31 actions for training and 4 characters with 8 actions in
the validation set.

For each frame we randomly sample a new camera location, which
is roughly located in a spherical vicinity around one of the hands. All
hand centers lie approximately in a range between 40cm and 65cm
from the camera center. Both left and right hands are equally likely
and the camera is rotated to ensure that the hand is at least partially
visible from the current viewpoint. After the camera location and ori-
entation are fixed, we randomly sample one background image from
a pool of 1231 background images downloaded from Flickr 1. Those

1 http://www.flickr.com

http://www.flickr.com
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images show different kinds of scenes from cities and landscapes. We
manually ensured that they do not contain persons.

To maximize the visual diversity of the dataset, we randomize the
following settings for each rendered frame: we apply lighting by 0
to 2 directional light sources and global illumination, such that the
color of the sampled background image is roughly matched. Addi-
tionally we randomize light positions and intensities. Furthermore,
we save our renderings using a lossy JPG compression with the qual-
ity factor being randomized from no compression up to 60%. We also
randomized the effect of specular reflections on the skin.

In total our dataset provides 41258 images for training and 2728 im-
ages for evaluation with a resolution of 320×320 pixels. All samples
come with full annotation of a 21 keypoint skeleton model of each
hand and additionally 33 segmentation masks are available plus the
background. As far as the segmentation masks are concerned there is
a class for the human, one for each palm and each finger is composed
by 3 segments. Figure 3.4 shows a sample from the dataset. Every
finger is represented by 4 keypoints: the tip of the finger, two interme-
diate keypoints and the end located on the palm. Additionally, there
is a keypoint located at the wrist of the model. For each of the hand
keypoints, there is information if it is visible or occluded in the image.
Also keypoint annotations in the camera pixel coordinate system and
in camera centered world coordinates are given. The camera intrinsic
matrix and a ground truth depth map are available, too, but were not
used in this work.

3.5 experiments

We evaluated all relevant parts of the overall approach: (1) the detec-
tion of hand keypoints of the PoseNet with and without the hand seg-
mentation network; (2) the 3D hand pose estimation and the learned
3D pose prior. Finally, we applied the hand pose estimation to a sign
language recognition benchmark.

3.5.1 Keypoint detection in 2D

Table 3.1 shows the performance of PoseNet on 2D keypoint estima-
tion. We report the average endpoint error (EPE) in pixels and the
area under the curve (AUC) on the percentage of correct keypoints
(PCK) for different error thresholds; see Figure 3.6.

We evaluated two cases: one using images, where the hand is
cropped with the ground truth oracle (GT), and one using the pre-
dictions from HandSegNet for cropping (Net). The first case shows
the performance of PoseNet in isolation, while the second shows the
performance of the complete 2D keypoint estimation. The difference
between the median and the mean for the latter case show that Hand-
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Figure 3.5: Exemplary 2D keypoint localization results. The first two
columns show samples from Dexter, the following three depict
R-val and the last one are samples from S-val.
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Figure 3.6: Results on 2D keypoint estimation when using different train-
ing sets for PoseNet. Shown is the percentage of correct key-
points (PCK) over a certain threshold in pixels evaluated on Dex-
ter. Jointly training on R-train and S-train yields the best results.

SegNet is reliable in most cases but is sometimes not able to segment
the hand correctly, which makes the 2D keypoint prediction fail.

The results show that the method works on our synthetic dataset
(R-val) and the stereo dataset (S-val) equally well. The Dexter dataset
is more difficult because the dataset is different from the training set
and because of frequent occlusions of the hand by the handled cube.
We did not have samples with occlusion (apart from self-occlusion)
in the training set.

In Figure 3.6 we show that training on more diverse data helps
cross-dataset generalization. While training only on our synthetic
dataset R-train yields much better results on Dexter than training on
the limited stereo dataset S-train, training on R-train and S-train to-
gether yields the best results. Figure 3.5 shows some qualitative re-
sults of this configuration.
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AUC EPE median EPE mean

G
T R-val 0.724 5.001 9.135

S-val 0.817 5.522 5.013

N
et

R-val 0.663 5.833 17.041

S-val 0.762 5.528 18.581

Dexter 0.489 13.684 25.160

Table 3.1: Quantitative results for PoseNet. The top rows (GT) report per-
formance for the PoseNet operating on ground truth cropped hand
images. The bottom rows (Net) show results when the hand crops
are generated using HandSegNet. PoseNet was trained jointly on
R-train and S-train, whereas HandSegNet was only trained on R-
train. End point errors are reported in pixels with respect to the
uncropped image and AUC is calculated over an error range from
0 to 30 pixels.

Figure 3.7: Qualitative examples of our complete system. Input to the net-
work are color image and the information if its a left or right
hand. The network estimates the hand segmentation mask, local-
izes keypoints in 2D and outputs the most likely 3D pose. The
samples on the left hand side are from a dataset we recorded
for qualitative evaluation, on the top right hand side is a sample
from the sign language dataset and the bottom right sample is
taken from S-val.

3.5.2 Lifting the estimation to 3D

3.5.2.1 Pose representation

We evaluated the proposed canonical frame representation for pre-
dicting the 3D hand pose from 2D keypoints by comparing it to sev-
eral alternatives. All variants share a common base architecture that
is identical to one stream of the PosePrior proposed in Section 3.4.3.
They were trained on score maps S with a spatial resolution of 32
by 32 pixels. To avoid overfitting, we augmented the score maps by
applying channelwise dropout with a drop probability of 0.2. This
forces the networks to deal with incomplete score maps. Addition-
ally we disturbed the keypoint location with Gaussian noise and ran-
domly translated the keypoints by up to 2.5 pixel. Table 3.2 shows
the resulting end point errors per keypoint.
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Figure 3.8: Analysis of the learned prior. The first row shows the input
image as gray scale with the input score map overlayed as red
dots. Every column corresponds to a separate forward pass of
the network. The second and third row visualize the predicted
3D structure of the network from different viewpoints in canon-
ical coordinates. Ground truth is displayed in dashed green and
the network prediction is shown in solid red.

The Direct approach tries to lift the 2D keypoints directly to the full
3D coordinates Prel without using a canonical frame. This is disad-
vantageous, because it is difficult for the network to learn separate
the global rotation of the hand from the articulation.

The Bottleneck approach is inspired by Oberweger et al. [90], who
introduced a bottleneck layer before estimating the coordinates. We
inserted an additional FC layer before the final FC output layer, pa-
rameterize it as in Oberweger et al. with 30 channels and linear acti-
vation. The outcome was not better than with the Direct approach.

The Local approach incorporates the kinematic model of the hand
and uses the network to estimate articulation parameters of the model
[149]. We generalize by estimating not only the angles but also the
bone length. The network is trained to estimate two angles and one
length per keypoint, which results in 63 parameters. The angles ex-
press rotations in a bone local coordinate system. This approach only
works if the hand is always shown from the same direction, but can-
not capture the global pose of the hand.

Direct Bottleneck Local NN Prop.

R-train 20.15 21.07 35.15 0.00 18.54

R-val 20.85 21.91 39.12 26.92 18.84

Table 3.2: Quantitative results for different Lifting approaches. Average
median end point error per keypoint of the predicted 3D pose
is reported given a noisy ground truth 2D pose. Networks were
trained on R-train and ground truth scale was used at test time to
report results in mm.
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Figure 3.9: Comparison to literature. Results for our complete system on
S-val compared to classical approaches from [144] Shown is the
percentage of correct keypoints (PCK) over respective thresholds
in mm. PoseNet and PosePrior are trained on S-train and R-train,
whereas the HandSegNet is trained on R-train.

Finally, the NN approach matches the 2D keypoints to the most
similar sample from the training set and retrieves the 3D coordinates
from this sample [15]. While this approach trivially works best on the
training set, it does not generalize well to new samples.

The generalization of the other approaches is quite good showing
similar errors for both the training and the validation set. The pro-
posed approach from Section 3.4.3 worked best and was used for the
following experiments.

3.5.2.2 Analysis of the learned prior

To examine the 3D prior learned by the network, Figure 3.8 shows
the 3D pose prediction from two different viewpoints, for score maps
that lack keypoints. The extreme case, with no keypoints provided
as input at all, shows the canonical prior learned by the network. As
more keypoints are added, the networks adjusts the predicted pose to
this additional evidence. This experiment also simulates the situation
of occluded 2D keypoints and demonstrates that the learned prior
allows the network to still retrieve reasonable poses.

3.5.2.3 Comparison to literature

Since there is no work yet on 3D hand pose estimation from RGB
images yet, we cannot compare to alternative approaches. To still
relate our results coarsely to literature, we compare them to Zhang
et al. [144], who provide results in mm for state-of-the-art 3D hand
pose tracking on depth data. They run their experiments on the stereo
dataset S-val, which also contains RGB images. Since in contrast to
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Zhang et al. our approach does not use the depth data, it still comes
with ambiguities with regard to scale and absolute depth.

Thus, we accessed the absolute position of the root keypoint and
the scale of the hand to shift and scale our predicted 3D hand pose,
which yields metric world coordinates P by using (3.1) and (3.2).
For this experiment we trained PosePrior on score maps predicted
by PoseNet using the same schedule as for the experiment in Sec-
tion 3.5.2.2. PoseNet is trained separately as described in Section 3.5.1
and then kept fixed. Figure 3.9 shows that our approach largely out-
performs the approaches presented in Zhang et al. [144] although we
use the depth map only for rescaling and shifting in the end.

Qualitative 3D examples on three different datasets with the com-
plete processing pipeline are shown in Figure 3.7.

3.5.3 Sign language recognition

Previous hand pose estimation approaches depending on depth data
cannot be applied to most sign language recognition datasets, as they
only come with color images. As a last exemplary experiment, we
used our hand pose estimation system and trained a classifier for
gesture recognition on top of it. The classifier is a fully connected
three layer network with ReLU activation functions.

We report results on the so-called RWTH German Fingerspelling Da-
tabase [19]. It contains 35 gestures representing the letters of the alpha-
bet, German umlauts, and the numbers from one to five. The dataset
comprises 20 different persons, who did two recordings each for ev-
ery gesture. Most of the gestures are static except for the ones for the
letters J, Z, Ä, Ö, and Ü, which are dynamic. In order to keep this
experiment simple, we ran the experiments on the subset restricted
to 30 static gestures.

The database contains recordings by two different cameras, but we
used only one camera. The short videos sequences have a resolu-
tion of 320×240 pixels. We grabbed the middle frame from each
video sequence and used those color images and gesture class labels
as training data. This dataset has 1160 images, which we separate
by signers into a validation set with 232 images and a training set
with 928 images. We resize image to 320×320 pixels and trained on
randomly sampled 256×256 crops. Because the images were taken
from a compressed video stream they exhibit significant compression
artifacts previously unseen by our networks. Thus, we labeled 50

images from the training set with hand keypoints, which we use to
fine-tune our PoseNet upfront. Afterwards the pose estimation part is
kept fixed and we solely train the GestureNet. Table 3.3 show that our
system archives comparable results to Dreuw et al. [19] on the subset
of gestures we used for the comparison.
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Method Word error rate

Dreuw et al. [19] 35.7 %

Dreuw on subset [98] 36.56 %

Ours 3D 33.2 %

Table 3.3: Comparison on Sign Language Recognition. Word error rates in
percent on the RWTH German Fingerspelling Database subset of
non dynamic gestures. Results for Dreuw et al. [19] on the subset
were taken from [98].

3.6 conclusion

We have presented the first learning based system to estimate 3D
hand pose from a single image. We contributed a large synthetic
dataset that enabled us to train a network successfully on the task.
We have shown that the network learned a 3D pose prior that allows
it to predict reasonable 3D hand poses from 2D keypoints in real
world images. While the performance of the network is even compet-
itive to approaches that use depth maps, there is still much room for
improvements. The performance seems mostly limited by the lack of
an annotated large scale dataset with real-world images and diverse
pose statistics.

3.7 follow-up work

Consequently to this publication numerous works appeared that ex-
tend the ideas presented.

A lot of work focused on novel approaches that were trained on the
dataset presented here. Some examples are the latent 2.5D heatmap
representation by Iqbal et al. [51], that achieved state of the art for 3D
hand pose estimation in a supervised training setting or Panteleris et
al. [95] that combined 2D keypoint detection with explicit optimiza-
tion using a hand skeleton model. Tekin et al. [120] extended the task
from hand pose alone towards estimating interaction of hands and
objects being held.

Building on our insights on the usefulness of rendered training
data multiple following works presented new datasets in a similar
manner. Some examples are extensions towards hand and object in-
teraction [41, 88].

Another line of works tackled the dataset sparsity by exploring
ways to combine various data modalities. One prominent work among
these is Spurr et al. [113], where encoders are learned that map into
a joint representation space for color and depth input images. These
are combined with a decoder that can estimate the 3D pose from the
joint representation space. This allows to train jointly using both color
and depth images and shows improvements over separately training
on either resource.
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Figure 4.1: Problem overview. Given a color image and depth map, our
system detects body keypoints in 3D, which are useful for many
robotic tasks. Exemplary use in a learning from demonstration
setting was described in detail in the respective paper [152] and
is shortly summarized in Section 4.6.3.

This chapter describes ideas and experiments that were previously
presented in the following work; therefore, copyright lies with © 2018

IEEE.

3D Human Pose Estimation in RGBD Images for Robotic Task Learn-
ing
Christian Zimmermann*, Tim Welschehold*, Christian Dornhege,
Wolfram Burgard and Thomas Brox (* equal contribution)
IEEE International Conf. on Robotics and Automation (ICRA), 2018

This work presented an approach for human pose estimation from RGBD
input images using a neural network. Using the pose estimation enables
robot task learning through learning from human demonstration.

The author of this thesis designed the network architecture, created
the training datasets and conducted experiments related to the pose
estimation system. Tim Welschehold developed the action imitation
framework and conducted all robotic experiments. All co-authors
contributed to the project discussions as well as writing the publica-
tion.

4.1 introduction

Perception and understanding of the surrounding environment is vi-
tal for many robotics tasks. Tasks involving interaction with humans
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Figure 4.2: Approach overview. First, we predict the keypoint locations in
the color image. The predicted score maps are tiled along the
z-dimension and a person centered occupancy voxel grid is cal-
culated from the depth map. Based on these inputs VoxelPoseNet
predicts keypoints in 3D. Red and green blocks represent con-
volutional and deconvolutional operations. Concatenation is de-
noted by ⊗ and ⊕ is the elementwise add operation.

heavily rely on prediction of the human location and its articulation
in space. These applications involve, e.g., gesture control, hand-over
maneuvers, and learning from demonstration.

On the quest of bringing service robots to mass market and into
common households, one of the major milestones is their instructabil-
ity: consumers should be able to teach their personal robots their own
custom tasks. Teaching should be intuitive and not require expert
knowledge or programming skills. Ideally, the robot should learn
from observing its human teacher demonstrating the task at hand.
Hence it needs to be able to follow the human motion.

Estimation of human pose is challenging due to variation in ap-
pearance, strong articulation and heavy occlusions by themselves or
objects. Recent approaches present robust pose estimators in 2D, but
for robotic applications full 3D pose estimation in real-world units
is indispensable. In this paper, we bridge this gap by lifting 2D pre-
dictions into 3D while incorporating information from a depth map.
This lifting via a depth map is non-trivial for multiple reasons, for
instance, occlusion of the person by an object leads to misleading
depths, see Figure 4.7.

In this chapter a learning based approach that predicts full 3D hu-
man pose is presented which outperforms existing baseline methods
and enables teaching a robot tasks by demonstration.

The approach first predicts human pose in 2D given the color im-
age. A deep network takes the 2D pose and the depth map as input
and derives the full 3D pose from this information. Based on this
pose estimation system, we demonstrate the feasibility of our action
learning from human demonstration approach without the use of ar-
tificial markers on the person.
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4.2 related work

The vast majority of publications in the field of human pose esti-
mation deal with the problem of inferring keypoints in 2D given a
color image [14, 133], which is linked to the availability of large scale
datasets [4, 70]. Due to the large datasets, networks for keypoint
localization in 2D have reached impressive performance, which we
integrate into our approach.

Recent techniques learn a prior for human pose that allows pre-
diction of the most likely 3D pose given a single color image [74,
123]. Predictions of most monocular approaches live in a scale and
translation normalized frame, which makes them impracticable for
many robotic applications. Approaches that can recover full 3D from
RGB alone [81] use assumptions to resolve the depth ambiguity. Our
approach does not need any assumptions to predict poses in world
coordinates.

All approaches that provide predictions in real-world units are
based on active depth sensing equipment. Most prominent is the
Microsoft Kinect v1 sensor. Shotton et al. [111] describes a discrim-
inative method that is based on random forest classifiers and yields
a body part segmentation. This work was followed by numerous
approaches that propose using random tree walks [55], a viewpoint
invariant representation [40] or local volumetric convolutional net-
works for local predictions [84]. In contrast to the mentioned tech-
niques, we incorporate depth and color in a joint approach. So far
little research went into approaches that incorporate both modalities
[11]. We propose a deep learning based approach to combine color
and depth. Our approach leverages the discriminative power of key-
point detectors trained on large scale databases for color images and
complements them with information from the depth map for lifting
to 3D real-world coordinates.

4.3 human pose estimation

We aim to estimate 3D human poses from RGBD input and this pro-
cedure is summarized in Figure 4.2.

We aim for estimating the human body keypoints P = (~P1, . . . ,~PJ) ∈
R3×J for J keypoints in real-world coordinates relative to the Kinect
sensor given color image I ∈ RN×M×3, depth map D ′ ∈ RN

′×M ′

and their calibration. Without loss of generality we define the coor-
dinate system, our predictions live in, to be identical with the color
sensors frame.

For the Kinect, the color and depth sensors are located in close
proximity, but still the frames resemble two distinct cameras. Our
approach needs to collocate information of the two frames. Therefore
we transform the depth map into the color frame using the camera



34 estimating human pose from single rgbd

calibration. As a result, our approach operates on the warped depth
map D ∈ RN×M. Due to occlusions, differences in resolution and
noise, the resulting depth mapD is sparse, but for better visualization
a linear interpolation of D is shown in Figure 4.2.

4.3.1 Color Keypoint Detector

The keypoint detector is applied to the color image I, which yields
score maps S2D ∈ RN×M×J encoding the likelihood of a specific hu-
man keypoint being present. The maxima of the score maps S2D cor-
respond to the predicted keypoint locations p = (~p0, . . . ,~pJ) ∈ R2×J

in the image plane. Thanks to many datasets with annotated color
frames for human pose estimation [4, 70], robust detectors are avail-
able. We use the Open Pose Library [14, 112, 133] with fixed weights
in this work.

4.3.2 VoxelPoseNet

Given the warped depth mapD a voxel occupancy grid V ∈ RK×K×K

is calculated with K = 64. For this purpose the depth map D is
transformed into a point cloud and we calculate an 3D coordinate ~Pr,
which is the center of V. We calculate ~Pr as back projection of the
predicted 2D ’neck’ keypoint ~pr using the median depth dr extracted
from the neighborhood of ~pr in D:

~Pr = dr ·K−1 · ~pr. (4.1)

Where K denotes the intrinsic calibration matrix camera and ~pr is
in homogeneous coordinates. We pick the value dr from the depth
map taking into account the closest 3 neighboring valid depth values
around ~pr. We calculate V by setting elements to 1, when there is
at least one point of the point cloud lying in the interval represented
and zero otherwise. We chose the resolution of the voxel grid to be
approximately 3 cm.

VoxelPoseNet gets V and a volume of tiled score maps S2D as in-
put and processes them with a series of 3D convolutions. We pro-
pose to tile S2D along the z-axis, which is equivalent to an ortho-
graphic projection approximation. VoxelPoseNet estimates score vol-
umes S3D ∈ RK×K×K×J, which resemble keypoint likelihoods the
same way as its 2D counterpart

PVPN = arg max
x,y,z

(S3D). (4.2)

We use the following heuristic to assemble our final prediction: On
the one hand PVPN is predicted by VoxelPoseNet. On the other hand
we take the z-component of PVPN and the predicted 2D keypoints
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p2D to calculate another set of world coordinates Pprojected. For these
coordinates the accuracy in x- and y-direction is not limited by the
choice of K anymore. We chose our final prediction P from Pprojected

and PVPN based on the 2D networks prediction confidence, which is
the score of S2D at p.

Figure 4.2 shows the network architecture used for VoxelPoseNet,
which is a encoder decoder architecture inspired by the U-net [103]
that uses dense blocks [47] in the encoder. While decoding to the full
resolution score map, we incorporate multiple intermediate losses
denoted by si

3D, which are discussed in Section 4.4.

4.4 network training

We train VoxelPoseNet using a sum of squared L2 losses:

L =
∑
i

∥∥∥sgt
3D − s

i, pred
3D

∥∥∥2
2

(4.3)

with a batch size of 2. Datasets used for training are discussed in
Section 4.5. The networks are implemented in Tensorflow [1] and
we use the ADAM solver [61]. We train for 40000 iterations with
an initial learning rate of 10−4, which drops by the factor 0.1 every
10000 iterations. Ground truth score volumes sgt

3D are calculated from
the ground truth keypoint location within the voxel V. A Gaussian
function is placed at the ground truth location and normalized such
that its maximum is equal to 1.

4.5 datasets

Currently there are no datasets for the Kinect v2 that provide high-
quality skeleton annotation of the person. Due to its long presence,
most publicly available sets are recorded with the Kinect v1. These
datasets are not suited for our scenario, because of major technical dif-
ferences between the two models. More recently published datasets,
such as Shahroudy et al. [106], transitioned to the new model but
used the Kinect SDK’s prediction as pseudo ground truth. Using
those datasets is prohibitive for exceeding the Kinect SDK’s perfor-
mance.

4.5.1 Multi View Kinect Dataset (MKV)

Therefore, for training of our neural network we recorded a new
dataset, which comprises 5 actors, 3 locations, and up to 4 viewpoints.
There are 2 female and 3 male actors and the locations resemble dif-
ferent indoor setups. Some examples are depicted in Figure 4.3. The
poses include various upright and sitting poses as well as walking se-
quences. Short sequences were recorded simultaneously by multiple
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Figure 4.3: Dataset Samples. Examples from the MKV dataset with ground
truth skeleton overlayed. The two leftmost ones are samples
from the training set and the other two show the evaluation set.

calibrated Kinect v2 devices with a frame rate of 10Hz, while record-
ing the skeletal predictions of the Kinect SDK. In a post processing
step we applied state-of-the-art Human Keypoint Detectors [14, 112,
133] and used standard triangulation techniques to lift the 2D predic-
tions into 3D. This results in a dataset with 22406 samples. Each sam-
ple comprises of color image, depth map, infrared image, the SDK
prediction and a ground truth skeleton annotation we get through
triangulation. The skeleton annotations comprises of 18 keypoints
that follow the Coco definitions [70]. We apply data augmentation
techniques and split the set into an evaluation set of 3546 samples
(MVK-e) and a training set with 18860 (MVK-t). We divide the two
sets by actors and assign both female actors into the evaluation set,
which also leaves one location unique to this set.

4.5.2 Captury Dataset

Due to the limited number of cameras in the MKV setup and the ne-
cessity to avoid occluding too many cameras views at the same time,
we are limited in the amount of possible object interaction of the ac-
tors. Therefore we present a second dataset that was recorded using
a commercial marker-less motion capture system called Captury1. It
uses 12 cameras to track the actor with 120Hz and we calibrated a
Kinect v2 device with respect to the Captury. The skeleton tracking
provides 23 keypoints, from which we use 13 for comparison. We
recorded three actors, which performed simple actions like pointing,
walking, sitting and interacting with objects like a ball, chair or um-
brella. One actor of this setting was already recorded for the MKV
dataset and therefore constitutes the set used for training. Two previ-
ously unseen actors were recorded and form the evaluation set. There
are 1535 samples for training (CAP-t) and 1505 samples for evalua-
tion (CAP-e). The definition of human keypoints between the two
datasets is compatible, except for the "head" keypoint, which misses
a suitable counterpart in the MKV dataset. This keypoint is excluded
from evaluation to avoid systematic error in the comparison.

1 http://www.thecaptury.com
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Figure 4.4: Qualitative results. Images taken from the InOutDoor Dataset
[79], which covers a wide variety of environments our approach
consistently works well in. Top row shows the color input im-
age and the bottom row contains the respective pose predictions
our method yields. Please note that the field of view between
depth and color sensor differ, which results in some missing pre-
dictions towards the borders of the color image.

4.6 experiments

4.6.1 Datasets for training

Table 4.1 shows that the proposed PoseNet3D already reaches good
results on the evaluation split of both datasets when trained only
on MKV-t. Training a network only on CAP-t leads to inferior per-
formance, which is due to starkly limited variation in the training
split of the Captury dataset, which only contains a single actor and
scene. Training jointly on both sets performs roughly on par with
training exclusively on MKV-t. Therefore we use MKV-t as default
training set for our networks and evaluate on CAP-e for following
experiments. Furthermore, we confirm generalization of our MKV-t
trained approach on the InOutDoor Dataset [79]. Because the dataset
does not contain pose annotations we present qualitative results in
Figure 4.4.

Training set CAP-e full CAP-e subset MKV-e

MKV-t 0.627 0.618 0.793

CAP-t 0.603 0.588 0.665

CAP-t & MKV-t 0.633 0.625 0.794

Table 4.1: Generalization between datasets. Performance measured as area
under the curve (AUC) for different training sets of VoxelPoseNet.
CAP-t does not generalize to MKV-e, whereas MKV-t provides suf-
ficient variation to generalize to CAP-e. Training jointly on CAP-t
and MKV-t doesn’t improve results much anymore.
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Captury full Captury subset Multi Kinect

Kinect SDK 13.5 16.4 8.9

Naive Lifting 14.7 15.2 8.8

Tome et al. [123] 22.7 21.9 15.1

Proposed 11.2 11.6 6.1

Table 4.2: Approach comparison over various datasets. Average mean end
point error per keypoint of the predicted 3D pose for different ap-
proaches in cm. For the Captury dataset we additionally report
results on the subset of non-frontal scenes and with object interac-
tion.

4.6.2 Comparison to literature

In Table 4.2 we compare our approach with common baseline meth-
ods. The first baseline is the Skeleton Tracker integrated in Microsofts
Software Development Kit2 (Kinect SDK). We show that its perfor-
mance heavily drops on the more challenging subset and therefore
argue that it is unsuitable for many robotics applications. Further-
more, Figure 4.6 shows that the Kinect SDK is unable to predict key-
points farther away than a certain distance. The qualitative examples
in Figure 4.7 reveal that the SDK is led astray by objects and is unable
to distinguish if a person is facing towards or away from the camera,
which expresses itself in mixing up left and right side.

The baseline named Naive Lifting uses the same Keypoint detec-
tor for color images as our proposed approach and simply picks the
corresponding depth value from the depth map. It chooses the depth
value as median value of the 3 closest neighbors. The approach shows
reasonable performance, but is prone to pick bad depth values from
the noisy depth map. Also any kind of occlusion results into an error,
which is seen in Figure 4.7.

Tome et al. [123] predicts scale and translation normalized poses.
So in order to compare the results to the other approaches we pro-
vide the algorithm with ground truth scale and translation. For every
prediction we seek scale and translation in order to minimize the re-
construction error between ground truth and prediction. Table 4.2
shows that the approach reaches competitive results, but performs
worst in our comparison, which is reasonable given the lack of depth
information. In Figure 4.5 the approach stays far behind, which partly
lies in the fact that the approach misses to provide predictions in 8.7%
of the frames of CAP-e, which compares to 12.4% for Kinect SDK and
0% for Naive Lifting and our approach.

VoxelPoseNet outperforms its baseline methods, because it exploits
both modalities. On the one hand, color information helps to disam-
biguate left and right side, which is infeasible from depth alone. On
the other hand, the depth map provides valuable information to ex-

2 https://www.microsoft.com/en-us/download/details.aspx?id=44561
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actly infer the 3D keypoint. Furthermore, the network learns a prior
about possible body part configurations, which makes it possible to
infer 3D locations even for completely occluded keypoints (see Fig-
ure 4.7).
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Figure 4.5: Qualitative comparison between approaches. Performance of
different algorithms on CAP-e measured as percentage of correct
keypoints (PCK) on the more challenging subset of non-frontal
poses and object interaction.
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Figure 4.6: Qualitative comparison over distances. Percentage of correct
keypoints (PCK) over their distance to the camera. Most ap-
proaches are only mildly affected by the keypoint distance to
the camera, but the Kinect SDK can only provide predictions in
a limited range.

4.6.3 Action Imitation by the Robot

In our respective paper [152] a recently proposed graph-based ap-
proach [135] for learning a mobile manipulation task from human
demonstrations was used on data acquired with the approach for 3D
human pose estimation presented in this work. The methods were
evaluated on the same four tasks as in [135]: one task of opening
and moving through a room door and three tasks of opening small
furniture pieces. The tasks will be referred to as room door, swivel
door, drawer, and sliding door. Each consists of three parts. First a
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Figure 4.7: Qualitative Examples. Typical failure cases of the algorithms
evaluated for samples from CAP-e. The first row shows the
scene and the other two rows depict the ground truth skele-
ton in dashed blue and the prediction in solid green and red.
Green color indicates the persons right side. Predictions of our
proposed approach are shown in the last row, whereas the mid-
dle row shows predictions by other algorithms. The first two
columns correspond to predictions of the Kinect SDK, the next
two are by the Naive Lifting approach and the last two by the
approach presented by Tome et al. [123]. Typical failures for the
SDK are caused by objects and or people that face away from the
camera. Naive Lifting fails when any sort of keypoint occlusion
is present.

specific part of the object is grasped, i. e., a handle or a knob, then the
object is manipulated according to its geometry, and lastly released.
The demonstrations were recorded with a Kinect v2 at 10Hz. As we
need to track both, the manipulated object and the human teacher,
the actions were recorded from a perspective that show the human
from the side or back making pose estimation challenging. For an
example of the setup see Figure 4.8.

We used adapted demonstrations from our pose estimation ap-
proach to learn action models that our PR2 robot can use to imitate
the demonstrated actions in real-world settings. For details about
the adaptation and learning process we refer the reader to our paper
[152].

With the learned models each action was reproduced five times.
For opening the swivel door there was one failure due to localization
problems during the grasping. For the drawer and the room door all
trials of grasping and manipulating were successful. The sliding door
was always grasped successfully but due to the small door knob and
the tension resulting from the combined gripper and base motion,
the knob was accidentally released during the manipulation process.
Five successful trials of opening the sliding door were run by keeping
the robot base steady. A visualization of the teaching process and the
robot reproducing the action demonstration can be seen in Figure 4.8.
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Figure 4.8: Demonstration and robot execution. On the left image the
teacher demonstrates the task of opening the swivel door. Su-
perimposed on the image the recorded trajectories for hand (or-
ange), torso (green) and manipulated object (blue) are shown
which serve as the input for the action learning. The right image
shows the robot reproducing the action using a model learned
from the teacher demonstration.

4.7 conclusion

A CNN based system was proposed that jointly uses color and depth
information in order to predict 3D human pose in real-world units
which exceeds the performance of existing methods. Furthermore,
two RGBD datasets are proposed, which can be used for future ap-
proaches. In Section 4.6.3, the approach for 3D human pose estima-
tion is applied in a task learning application that allows non-expert
users to teach tasks to service robots. This is demonstrated in real-
world experiments that enabled a PR2 robot to reproduce human-
demonstrated tasks without any markers on the human teacher.

4.8 follow-up work

The presented approach was made available as a ROS node to the
community; therefore, numerous works used or extended it: Weschehold
et al. [136, 137] used it for human pose estimation. Lindner et al. [71,
72] analyzed its applicability for people detection and Kollmitz et
al. [63] performed detection of people conditioned on their mobility
aids. Guo et al. [37] used a similar approach to perform gait analy-
sis. Biswas et al. [8] optimized run-time towards real-time capability.
Wengefeld et al. [138] specialized in people orientation estimation and
optimizes the algorithm for run-time and accuracy for this scenario.
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Figure 5.1: Approach to estimate pose from calibrated multi-view. Given
the camera images first a bounding box detection network is ap-
plied. Then image features are extracted from the cropped im-
ages and unprojected into a common 3D representation. The 3D
representation is used to estimate the initial pose P0, which is
projected into the views for further refinement. Finally, the re-
fined 2D estimations p̃i are used to calculate the final 3D pose
P1.

This chapter describes ideas and experiments that were mostly pre-
sented in the following work.

FreiPose: A Deep Learning Framework for Precise Animal Motion
Capture in 3D Spaces
Christian Zimmermann*, Artur Schneider*, Mansour Alyahyay,
Thomas Brox and Ilka Diester (* equal contribution)
Submission is in preparation.
bioRxiv, 2020

This work presents a generic approach for pose capture from multi-view
RGB input and shows application of the system to pose estimation of
laboratory animals. Using the animal pose information it was possible
to attribute and quantify the effect of optogenetic stimulation in rodents.

The author of this thesis implemented FreiPose and analyzed the op-
togenetic data. A.S. conducted the animal recordings, and performed
viral injections for optogenetic stimulation. Contributions of M.A. are
not presented in this thesis. A.S., T.B., I.D and the author of this thesis
conceived and designed the study and wrote the manuscript.

5.1 introduction

Detailed tracking of the animals’ movements including single body
parts and correlating them to neuronal activity is essential to assign
functions to neuronal circuits and their activity. Several new tools

43
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are already available for interpreting video data. However, existing
tools are limited by one of two possible factors: (1) Marker-based
approaches influence natural movements, are restricted to applicable
body sites and rely on the tolerance of the animal. (2) Marker-free
analyses have been applied only in 2D so far, thus preventing the
true pose reconstruction of freely moving animals covering all three
dimensions with their movements. Using multiple cameras for video
taping, 2D outputs can be triangulated to yield 3D estimates a pos-
teriori; however, such post-processing suffers from the ambiguities
in the initial 2D analysis reducing accuracy and reliability. Though,
exactly this tracking accuracy is crucial to subdivide movements into
well-defined trajectories and behavioral classes for isolated analysis.

Here, we introduce the new tracking tool FreiPose, which allows re-
constructing detailed body postures and single body part movements
directly in 3D.

We used FreiPose to quantify the behavioral effect of optogenetic
stimulation in motor cortex based on the rat’s movements. Impor-
tantly, FreiPose even allowed to attribute the stimulation effect to
individual body parts of the animal as well as to draw conclusions
about the temporal dynamics of the stimulation effect. Altogether,
FreiPose enabled marker-free tracking of individual body parts in an
unprecedented manner. Thus, FreiPose is particularly suited for stud-
ies in which physiological recordings are conducted in freely moving
animals and would allow conclusions about the behavioral state of
the animal as well as detailed information of individual body parts
in trained as well as in spontaneously behaving animals.

5.2 related work

Estimating pose of animals from images is a closely coupled research
field to human pose estimation, and frequently human pose methods
were transferred to animal pose problems with only little modifica-
tions, e. g., Mathis et al. [75].

Therefore, similar trends can be found in both fields: Historically,
marker based approaches like Mimica et al. [82] were used, which can
achieve high accuracy when applicable. But this type of approach
shows limitations when small animals need to be tracked. Further-
more, it must be prevented that the markers can be removed by the
animal, and markers can hinder natural movement. Generative ap-
proaches that use a deformable mesh model of the object of interest,
like [2, 28, 60], are less common for animal pose estimation, because
creating accurate shape models is challenging for animals. On the
one hand this is grounded by the fact that creating a 3D model forces
the subject to stand still for some period of time (static scene assump-
tion) and on the other hand many types of animals have fur which
is intrinsically hard to reconstruct and model. Furthermore, the com-
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mon starting pose tracking from a canonical pose requirement (like
the commonly used T-pose for human pose estimation) is obviously
not enforceable in an animal context. There are only few examples for
generative approaches [155, 156] that use offline created parametric
shape models. These approaches need foreground cropped images
with manual landmark annotation alongside with a good foreground
segmentation and run an offline optimization to fit their models to
the observations.

This makes marker-less methods especially appealing for animal
pose estimation. Lately, approaches were presented that transfer
methods from 2D human pose over to animal pose estimation [35,
75, 97], and subsequently solutions were proposed that estimate 3D
pose by triangulating points from multiple camera observations [36,
76].

These are fundamentally different from the approach presented
here, because they do not estimate a 3D pose directly but it is cal-
culated from 2D point estimations. This includes a hard decision to-
wards one 2D estimate for each keypoint per view and then finding
a consistent 3D point to best explain the chosen 2D detections. This
makes it inherently hard to account for ambiguities and introduce 3D
pose priors.

5.3 method

We combine a bounding box detection network, to extract the region
of interest from the full scale images Ii ∈ RH1×W1×3, with a novel
pose estimation architecture, see Figure 5.1. The approach resolves
ambiguities after integration of information from all views. Due to
occlusion, it is typically impossible from a single view to measure
the exact location of all body landmarks in that view, yet existing
methods attempt to predict the landmark locations in the images,
regardless of their visibility. This favors learning priors, to halluci-
nate the invisible landmarks, over measuring their location diminish-
ing performance in the subsequent 3D lifting step. To circumvent
the problem, FreiPose extracts features fi ∈ RH3×W3×C rather than
landmarks from the cropped images Ic,i ∈ RH2×W2×3 and deploys a
differentiable inverse projection operation Π−1, which maps features
into a 3D representation

Fi = Π
−1(fi) ∈ RX×Y×Z×C (5.1)

based on the features fi of camera view i. In this notation H and
W represent spatial dimensions and C the number of channels for
feature representation, which throughout this work are chosen as:
H2 = W2 = 224, H3 = W3 = 28 and C = 128. N denotes the num-
ber of keypoints, which is 12 for freely roaming rodents and 14 in the
reaching experiment. Input image resolution H1 andW1 lies between



46 estimating pose from multi-view rgb

600 and 1280 pixels due to varying image resolutions captured by
the cameras deployed. The representations across views are merged
by averaging across views F = 1/N

∑
i(Fi) and deploy a U-Net-like

encoder-decoder architecture 3D CNN [23] on the voxelized represen-
tation. The 3D network learns to reason on the joint representation
and predicts an initial 3D pose P0 incorporating information from all
views.

The pose P0 ∈ RN×3 is a matrix representing the location of the
N predefined body landmarks at a given time in world coordinates.
Subsequently, we use ~P0 ∈ R3 as being a single keypoint sliced from
P0, or R4 in its homogeneous coordinate form if needed. Similarly, ~pi
denotes a single 2D keypoint in R2 taken from pi ∈ RN×2 of camera
view i.

For refinement, the initial 3D pose ~P0 is projected into the camera
views

~pi = Ki ·Mi · ~P0︸ ︷︷ ︸
=:~P0i

(5.2)

using the cameras’ intrinsic Ki ∈ R3×3 and extrinsic matrices Mi ∈
R3×4, which are obtained via the camera calibration procedure.

Given the initial 2D pose ~pi and image features fi from view i sub-
sequent convolutional layers estimate refined 2D coordinates ~̃pi. To
obtain the final 3D estimate ~P1 the refined 2D landmarks are unpro-
jected into the world using:

~P1i = ~P1i (z) ·K−1
i · ~̃pi . (5.3)

~P1i (z) retrieves the third component from the pose in camera coordi-
nates ~P1i , which corresponds to the respective keypoints’ depth in this
cameras coordinate frame. Secondly, the scalar prediction confidence
ci is used to calculate the final estimate as a confidence weighted
average:

~P1 =

∑
i(
~P0i · ci)∑
i ci

. (5.4)

Extensive details on architectural choices and algorithmic hyperpa-
rameters are located in the supplemental material of our paper [154]
or can simply be taken from the released code.

5.4 experiments

5.4.1 Skeletal model

During the freely moving rat experiment we use a 12 keypoint model
(Figure 5.2a), which includes keypoints along the body axes, faces
and paws (Figure 5.2b).
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a b
# Name

0 Ear Right

1 Eye Right

2 Paw Front Right

3 Paw Back Right Ankle

4 Paw Back Right Tip

5 Ear Left

6 Eye Left

7 Paw Front Left

8 Paw Back Left Ankle

9 Paw Back Left Tip

10 Nose

11 Tail

0
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3
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6
5

8

7
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9
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Figure 5.2: Keypoints defined on the animals’ body. a Names and indices
of keypoints. b Keypoint locations on the rat body.

5.4.2 Network architecture and training

For bounding box detection we used a COCO [70] pretrained Mo-
bileNet V2 [46], which was retrained for the task of detecting the
foreground objects. In the freely moving rat scenario, it was trained
using each view of the 1199 labeled time instances separately, i.e., a to-
tal of 9592 samples. We trained it for 150 k iterations using a learning
rate of 0.004 and the RMSProp optimizer. As data augmentation op-
erations, we employed random flipping, cropping, scaling, and color
space variation.

For pose estimation the network was trained for 60 k using ADAM
optimizer [61] with a base learning rate of 10−4 and decay by a factor
of 0.1 every 30 k steps. To improve convergence we found it helpful
to not train the refinement module for the first 30 k steps.

5.4.3 Motion capture accuracy

We measured the accuracy (in terms of median 3D error) and reliabil-
ity (in terms of percentage of samples below a maximum error bound)
of FreiPose on video recordings of freely moving rats consisting of
1813 manually labeled samples with 12 distinct body landmarks. The
frames were sampled from 12 recording sessions featuring 5 different
individuals (3 Long-Evans (hooded) and 2 Sprague Dawley (albino)
rats). Some animals were recorded once, some on several days. We
split the recordings into training and evaluation, resulting in 1199

training samples and 614 evaluation samples. Each sample contained
7 images recorded from different cameras simultaneously and a sin-
gle manually annotated 3D pose, which is one 3D location for each
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Number of cameras 1 2 3 4 5 6

Camera sets
{1} {1, 5} {1, 5, 7} {1, 3, 4, 5} {1, 3, 4, 5, 7} {1, 2, 3, 4, 5, 7}

{5} {1, 7} {1, 3, 5} {1, 3, 4, 7} {2, 6, 4, 5, 7} {1, 2, 3, 4, 5, 6}

{7} {1, 3} {4, 5, 7} {1, 4, 5, 7} {1, 3, 4, 5, 6} {1, 2, 4, 5, 6, 7}

Table 5.1: Camera subsets for reduced number of views experiment. Given
a number of cameras three different subsets of cameras are se-
lected. Reducing the amount of cameras both leaves less frames
for training and increases the difficulty to precisely localize key-
points (Figure 5.3d). Evaluation all possible configurations is
computationally very expensive so, manually selected subsets are
used instead that reflect reasonable camera placements.

keypoint that is obtained from at least two manual 2D annotation in
two camera views.

We trained DeepLabCut (DLC) [75], which is a popular tool for
2D landmark tracking, on the same dataset of images and applied
standard triangulation methods to compute 3D poses [76]. FreiPose
compares favorably in terms of the number of camera views required
to reach a certain accuracy (Figure 5.3d), data efficiency (lower me-
dian error with the same number of labeled samples, Figure 5.3e),
accuracy (median error of 4.54mm vs. 7.81mm for the full sample
setting, Figure 5.3e), and reliability (percentage of landmarks with an
error smaller than 7.5mm is 82.8% vs. 48.1%, Figure 5.4b).

The experimental motion capture results of Figure 5.3 were ob-
tained by splitting the base dataset of 1199 training and 614 evalua-
tion frames providing 7 cameras into different subsets. To analyze the
role the available number of cameras plays (Figure 5.3d), for a given
number of cameras the experiment is run in 3 trials chosing different
sets of cameras as listed in Table 5.1. For example, if only 2 cam-
eras are used we pick the following camera pairs: {{1, 5}, {1, 7}, {1, 3}}.
Each number uniquely identifies a camera (Figure 5.3a) and the pairs
chosen correspond to the cases ’long side + short side’, ’long side +
bottom’ and ’long side + long side’. Each of the resulting datasets
still covers 1199 time instances, but only 1199 · 2 = 2398 individual
frames compared to 1199 · 7 = 8393 in the all camera setting. The
same procedure is applied to the evaluation set. Table 5.1 lists the se-
lected subsets of cameras used for experiments in Figure 5.3d. Please
note, that testing all possible permutations is computationally very
expensive, why we resort to testing manually chosen subsets repre-
senting meaningful cases, i. e., chose cameras how one would if only
a limited number of cameras is available.

To simulate sparsity of labeled samples (Figure 5.3e) we use all
cameras, but randomly select a subset of 10%, 20%, 30%, 60%, 80% or
all time instances. For example, in the 20% case there are 1199 · 0.2 =



5.4 experiments 49

a

Behavioral box

Recording system

Trigger system

Cam1

Electrophysiology /
synchronization system 

λ

Cam4

Cam7

Cam6 Cam3

Cam5

Cam2

Laser

b c

I1 ∈ R224×224×3

I2 ∈ R224×224×3

...

2D CNN

2D CNN
...

p1 ∈ R12×2

p2 ∈ R12×2

...

Robust
Triangulation

P ∈ R12×3

I1 ∈ R224×224×3

I2 ∈ R224×224×3

...

2D CNN

2D CNN

...

f1 ∈ RH×W×C

f2 ∈ RH×W×C

...

Π−1

Π−1

Π−1

3D CNN

P ∈ R12×3

d e

2 4 6

0

2

4

Number of cameras used

3D
JP

E
in

cm

FreiPose

DLC

500 1,000

0

0.5

1

1.5

2

Number of samples used

3D
JP

E
in

cm

FreiPose

DLC

f g

Figure 5.3: Overview over the proposed motion capture framework and
its evaluation. a Motion capture setup with required hardware
elements. Orange line - connection for electrophysiology, blue
line - fiber optics for optogenetic stimulation. b State-of-the-art
motion capture methods predict independent 2D poses for each
view independently and subsequently calculate a 3D prediction,
which requires resolving ambiguities in each view separately. c
FreiPose accumulates evidence from all views leading to a holis-
tic 3D prediction. Ambiguities are only resolved after informa-
tion from all views is available. d, e Median of the Joint Position
Error in cm for different number of cameras and number of sam-
ples compared to the DeepLabCut (DLC) et al. [75] based single
view network. Shaded areas refer to the 30% and 70% percentiles.
FreiPose is more data efficient and performs better regardless of
the number of cameras. Largest differences can be observed for
highly articulated landmarks, e. g.the front paws (see Figure 5.4).
f, g FreiPose can be easily adapted towards other tasks, e. g. pose
estimation of mice or paw estimation during a pellet reaching
task (see Figure 5.5.)

239 time instances of 7 cameras in the training set, which results in an
effective number of 239 · 7 = 1673 camera frames used. This dataset
is used for training both methods, FreiPose and DLC, and evaluation
is performed with respect to the complete evaluation set. Each level
of sparsity is sampled 3 times for a more robust estimation.

Building on the notation introduced in Section 5.3 the median error

is calculated as follows: Let ~̂P ∈ R3 denote the predicted keypoint
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coordinate of one keypoint and ~P ∈ R3 represent the label then the
reported metric is defined as

JPE =
∥∥∥~P− ~̂P

∥∥∥
2

(5.5)

and represents the Joint Position Error (JPE). For Figure 5.3d, e the
median, 30% and 70% percentiles of the JPE are calculated over all
trials, evaluation frames and keypoints.
Detailed Results. We complement the experiments with Figure 5.4,
which provides JPE results on a per keypoint level in the full dataset
and full camera setting. Figure 5.4a shows the JPE as box plots for
both approaches. Largest errors are present for the highly articu-
lated paw and tail keypoints. Compared to FreiPose the error and
variance of DLC is much larger for these keypoints. Figure 5.4b is ob-
tained by calculating the percentage of predictions that do not exceed
a certain error threshold, which shows that FreiPose can detect key-
points much more reliably than DLC. Within an 5mm error threshold
FreiPose can detect 57.3% keypoints compared to 28.7%, which DLC
can detect.
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Figure 5.4: Keypoint errors and percentage of correct keypoints for freely
moving rats. a Box plot of the keypoint prediction error per
keypoint for FreiPose (green) and DLC (blue), where whiskers
indicate 1.5× IQR. Largest improvements between FreiPose and
DLC are observed for highly articulated keypoints, e. g., paws. b
Percentage of correct keypoints for a given threshold. For any
given error tolerance FreiPose retrieves more keypoints correctly
than DLC.

Qualitative Examples. Comparison of DLC and FreiPose method on
a qualitative basis shows that the DLC based single view estimation
plus post-hoc triangulation is prone to erroneous predictions from
individual views (Figure 5.5). DLC was run with a RANSAC based
triangulation method to take outlier measurements into account. Key-
point predictions with a confidence below 0.1 were discarded. The
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triangulation method is part of the released code within the FreiPose
Github repository. Despite these modifications, DLC’s predictions
were not reliably correct.

Annotator DLC 2D DLC 3D FreiPose

a

b

c

d

e

f

Figure 5.5: Qualitative comparison between FreiPose and DLC. Rows a, b,
respectively c, d and e, f, show images recorded at the same time
but from different cameras. DLC is able to correctly estimate
poses in rows a, c, e but during triangulation from 2D predictions
to 3D points the less accurate predictions from b, d and f have
a deteriorating influence on the final results even though robust
triangulation techniques were used. On the other side FreiPoses’
predictions look visually similar to the annotations created by a
human annotator.
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Name Number of factors

Keypoints in cartesian rat local frame 12 · 3 = 36
Keypoints velocity in cartesian rat local frame 12 · 3 = 36

Keypoints distance to rat local frame origin 12

Keypoints distance velocity to rat local frame origin 12

STFT of Keypoint distance to rat local frame origin using 33 frequencies 12 · 33 = 396
Keypoint distance to ground plane 12

STFT of Keypoint distance to ground plane using 33 frequencies 12 · 33 = 396
Body elevation: ^(g, [11, {0, 5}]) 1

Head elevation: ^(g, [10, {0, 5}]) 1

Head roll: ^(g, [0, 5]) 1

Head nick: ^([11, {0, 5}], [{0, 5}, 2]) 1

Paw right: ^([11, {0, 5}], [{0, 5}, 2]) 1

Paw left: ^([11, {0, 5}], [{0, 5}, 7]) 1

Angle velocity of the aforementioned angles 6

Total 912

Table 5.2: Tested behavioral variables. ^(.) measures the angle between
two three dimensional vectors and [a,b] defines an vector that
goes from point a to point b. The notation {a,b} calculates the
average of the points a and b. 3D points are denoted as keypoint
indices, that find their textual counterpart in Figure 5.2. The rat
local coordinate frame is defined with its origin at {0, 5}, its z axis
being aligned with the up pointing normal of the ground plane
and its y axis rotated towards [{0, 5}, 11]. STFT - short-time Fourier
transform.
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5.4.4 Quantifying the effect of optogenetic stimulation.

Manipulations in motor cortex are likely to impact movements. This
effect can be quantified via coarse measurements, e. g., rotational be-
havior, speed, mobile time, mobile episodes, and distance traveled
[34, 73]. Recently, effects on single body parts have also been started
to be investigated via video analysis [20]. To systematically investi-
gate the effect of optogenetic stimulation in freely moving rats, we
recorded the movements of 3 animals in 4 sessions, 2 sessions with
30Hz laser burst frequency and 2 sessions with 10Hz with a stimu-
lation duration of 5 s, 10% duty cycle. During each recording ses-
sion we stimulated each animal 5 to 7 times, with a minimum inter-
stimulus time interval of 45 sec. We retrained FreiPose based on 136
samples from these recordings and systematically defined 908 behav-
ioral variables for every time step from the predicted poses. Behav-
ioral variables included transformation of the pose into a rat-aligned
Cartesian coordinate frame, the distance of landmarks with respect
to the ground floor as well as their velocities and Fourier transforms.
Additionally, we calculated angles between body limbs with respect
to each other and the direction of gravity (e. g., angle between head
and body axis, see Table 5.2 for the full list of variables).

To reveal changes in behavior, we followed an attribution-by-classifi-
cation paradigm, i.e.; given the behavioral variables at a time step twe
trained a linear SVM model (C = 0.0025) to classify every time step
into stimulated (i. e., positive) or not stimulated (i. e., negative). We
trained separate classifiers for each animal, used one recording for
training and left one for evaluation. The resulting classifiers achieved
a balanced average accuracy of 59.1% to 73.1% on their evaluation
sets. The average classifier response was able to follow the temporal
dynamics of the stimulation effect and revealed an increasing effect
over the course of stimulation (Figure 5.6a).

To attribute the effect of stimulation to individual body parts, we
trained classifiers on a single variable level. A separate classifier was
trained for each animal, burst frequency, and behavioral variable (Fig-
ure 5.6b and Figure 5.7). The rhythmic 10Hz movements of the Right
Front Paw was a strong indicator for the 10Hz stimulation. The height
of this paw in the rats’ body reference frame was a highly correlated
behavioral variable for the application of the 30Hz laser stimulation.
The pronounced effect on the Right Front Paw was in line with the ex-
pected outcome for the stimulation of the left motor cortex [45]. More
importantly, the classifier exclusively trained on a single sequence
of Animal3 was able to generalize to another sequence of the same
animal as well as to recordings of Animal1 and Animal2 indicating
that FreiPose performs robustly across sessions and animals. Thus,
FreiPose allows a detailed comparison of stimulation effects across
animals without the need to retrain for individual cases (Figure 5.7).
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Figure 5.6: Automatic evaluation of the optogenetic stimulation effect via
FreiPose. a Automatic detection of the effect during optogenetic
stimulation with temporal resolution. The classifier predicted
whether a time step was stimulated ’1’ or not ’0’ based o the
behavioral variables calculated from FreiPose. Shown is the av-
eraged predicted stimulus of the classifier model within tempo-
rally aligned windows across stimulation trials on a recording
which was withheld for evaluation. The stimulation spans from
0 sec to 5 sec and the prediction scores trend indicates an increas-
ingly visible effect over time. b Attribution of the stimulation
effect to individual body parts. We trained an ensemble of clas-
sifiers to distinguish (not) stimulated frames given only a single
behavior variable as input to each classifier. Analyzing the result-
ing classifiers allowed to distinguish important factors from less
important ones. Shown is the F-score of the respective classifier
and white dots indicate significance below a p-value of 0.001 (Bon-
ferroni adjusted) supported by the chi2 test between predicted
and actual classes. The classifiers shown here were exclusively
trained on Animal3, but generalize across animals. Other config-
urations are shown in Figure 5.7.
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Figure 5.7: Permutations of the optogenetic stimulation experiment. Simi-
lar findings during automatic attribution of the simulation effect
when training was performed on Animal1 (a) or Animal2 (b).
Shown is the F-score of the respective classifier and white dots in-
dicate significance below a p-value of 0.001 (Bonferroni adjusted)
supported by the chi2 test between predicted and actual classes.

5.5 conclusion

Here we present the marker-free, deep learning based motion cap-
ture tool FreiPose for holistic 3D tracking of individual body parts
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and pose reconstruction of freely moving animals. Instead of triangu-
lating 2D pose estimates, FreiPose directly reconstructs body poses
and movement trajectories in 3D resulting in unprecedented preci-
sion. Analyzing the problem holistically by fusing information from
all views into a joint 3D predictions allows us to surpass the state of
the art in pose estimation of freely moving rats.

5.6 follow-up work

Estimating keypoints of articulated objects is still a very active field of
research. Most works still follow estimating keypoints from 2D and
triangulating to 3D paradigm [108, 142, 148], and potentially combine
it with dense surface depth estimation [142, 148] to fit shape models
to the surface.

Where applicable also still marker-based systems are applied, e. g.,
Kearneyet al. [59] work on pose estimation for dogs and use dedi-
cated motion suits in conjunction with a commercial capture system
to extract 3D ground-truth skeletons.

Concurrent to our work is the approach by Iskakov et al. [52], who
proposed a very similar holistic 3D estimation approach. They show
strong results and achieve state of the art in human pose estimation
from multiple views in a supervised training setting.

Great impact is to be expected by releasing our approach embed-
ded as a toolkit to the research community. It is suitable to investigate
sorts of biological questions. One early example is Eriksson et al. [21]
where FreiPose is used to track paw trajectories and quantify paw
movement.
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Figure 6.1: Overview of creation and deployment of the dataset. We create
a hand dataset via a novel iterative procedure that utilizes mul-
tiple views and sparse annotation followed by verification. This
results in a large scale real-world dataset with pose and shape la-
bels, which can be used to train single-view networks that have
superior cross-dataset generalization performance on pose and
shape estimation.

This chapter describes ideas and experiments that were previously
presented in the following work; therefore, copyright lies with © 2019

IEEE.

FreiHAND: A Dataset for Markerless Capture of Hand Pose and
Shape From Single RGB Images
Christian Zimmermann, Duygu Ceylan, Jimei Yang, Bryan Russell,
Max Argus and Thomas Brox
IEEE/CVF International Conference on Computer Vision (ICCV), 2019

This work presents a semi-automated human-in-the-loop approach, which
includes hand fitting optimization to infer both the 3D pose and shape
for multi-view samples. The approach is used to create a large-scale
dataset, which shows superior cross-dataset generalization.

The author of this thesis recorded the dataset, developed the fitting
optimization and conducted all experiments. All co-authors con-
tributed to the project discussions as well as writing the publication.
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Training Set Evaluation Set

Figure 6.2: Qualitative examples from the FreiHAND dataset. Examples
from our proposed dataset showing images (top row) and hand
shape annotations (bottom row). The training set contains com-
posited images from green screen recordings, whereas the eval-
uation set contains images recorded indoors and outdoors. The
dataset features several subjects as well as object interactions.

6.1 introduction

3D hand pose and shape estimation from a single RGB image has a
variety of applications in gesture recognition, robotics, and AR. Var-
ious deep learning methods have approached this problem, but the
quality of their results depends on the availability of training data.
Such data is created either by rendering synthetic datasets [10, 31,
87, 88, 151] or by capturing real datasets under controlled settings
typically with little variation [32, 112, 129]. Both approaches have
limitations, discussed in our related work section.

Synthetic datasets use deformable hand models with texture infor-
mation and render this model under varying pose configurations. As
with all rendered datasets, it is difficult to model the wide set of char-
acteristics of real images, such as varying illumination, camera lens
distortion, motion blur, depth of field and debayering. Even more
importantly, rendering of hands requires samples from the true dis-
tribution of feasible and realistic hand poses. In contrast to human
pose, such distributional data does not exist to the same extent. Con-
sequently, synthetic datasets are either limited in the variety of poses
or sample many unrealistic poses.

Capturing a dataset of real human hands requires annotation in a
post-processing stage. In single images, manual annotation is difficult
and cannot be easily crowd sourced due to occlusions and ambigu-
ities. Moreover, collecting and annotating a large scale dataset is a
respectable effort.

In this paper, we analyze how these limitations affect the ability of
single-view hand pose estimation to generalize across datasets and to
in-the-wild real application scenarios. We find that datasets show ex-
cellent performance on the respective evaluation split, but have rather
poor performance on other datasets, i.e., we see a classical dataset
bias.
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As a remedy to the dataset bias problem, we created a new large-
scale dataset by increasing variation between samples. We collect a
real-world dataset and develop a methodology that allows us to auto-
mate large parts of the labeling procedure, while manually ensuring
very high-fidelity annotations of 3D pose and 3D hand shape. One
of the key aspects is that we record synchronized images from multi-
ple views, an idea already used previously in [7, 112]. The multiple
views remove many ambiguities and ease both the manual annota-
tion and automated fitting. The second key aspect of our approach is
a semi-automated human-in-the-loop labeling procedure with a strong
bootstrapping component. Starting from a sparse set of 2D keypoint
annotations (e.g., finger tip annotations) and semi-automatically gen-
erated segmentation masks, we propose a hand fitting method that
fits a deformable hand model [102] to a set of multi-view input. This
fitting yields both 3D hand pose and shape annotation for each view.
We then train a multi-view 3D hand pose estimation network using
these annotations. This network predicts the 3D hand pose for un-
labeled samples in our dataset along with a confidence measure. By
verifying confident predictions and annotating least-confident sam-
ples in an iterative procedure, we acquire 11592 annotations with
moderate manual effort by a human annotator.

The dataset spans 32 different people and features fully articulated
hand shapes, a high variation in hand poses and also includes inter-
action with objects. Part of the dataset, which we mark as training
set, is captured against a green screen. Thus, samples can easily be
composed with varying background images. The test set consists
of recordings in different indoor and outdoor environments; see Fig-
ure 6.2 for sample images and the corresponding annotation.

Training on this dataset clearly improves cross-dataset generaliza-
tion compared to training on existing datasets. Moreover, we are able
to train a network for full 3D hand shape estimation from a single
RGB image. For this task, there is not yet any publicly available data,
neither for training nor for benchmarking. Our dataset is available on
our project page and therefore can serve both as training and bench-
marking dataset for future research in this field.

6.2 related work

Since datasets are crucial for the success of 3D hand pose and shape
estimation, there has been much effort on acquiring such data.

In the context of hand shape estimation, the majority of methods
fall into the category of model-based techniques. These approaches
were developed in a strictly controlled environment and utilize either
depth data directly [121, 122, 128] or use multi-view stereo methods
for reconstruction [7]. More related to our work are approaches that
fit statistical human shape models to observations [9, 67] from in-the-
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train

eval
STB RHD GAN PAN LSMV FPA HO-3D Ours Average

Rank

STB [144] 0.783 0.179 0.067 0.141 0.072 0.061 0.138 0.138 6.0

RHD [151] 0.362 0.767 0.184 0.463 0.544 0.101 0.450 0.508 2.9

GAN [87] 0.110 0.103 0.765 0.092 0.206 0.180 0.087 0.183 5.4

PAN [53] 0.459 0.316 0.136 0.870 0.320 0.184 0.351 0.407 3.0

LSMV [32] 0.086 0.209 0.152 0.189 0.717 0.129 0.251 0.276 4.1

FPA [30] 0.119 0.095 0.084 0.120 0.118 0.777 0.106 0.163 6.0

HO-3D [38] 0.154 0.130 0.091 0.111 0.149 0.073 - 0.169 6.1

Ours 0.473 0.518 0.217 0.562 0.537 0.128 0.557 0.678 2.2

Table 6.1: Quantitative evaluation of cross-dataset generalization. This ta-
ble shows cross-dataset generalization measured as area under the
curve (AUC) of percentage of correct keypoints following [151].
Each row represents the training set used and each column the
evaluation set. The last column shows the average rank each train-
ing set achieved across the different evaluation sets. The top-three
ranking training sets for each evaluation set are marked as follows:
first, second or third. Note that the evaluation set of HO-3D was
not available at time of submission, therefore one table entry is
missing and the other entries within the respective column report
numbers calculated on the training set.

wild color images as input. Such methods require semi-automatic
methods to acquire annotations such as keypoints or segmentation
masks for each input image to guide the fitting process.

Historically, acquisition methods often incorporated markers onto
the hand that allow for an easy way to estimate pose. Common
choices are infrared markers [44], color coded gloves [132], or electri-
cal sensing equipment [150]. This alters hand appearance and, hence,
makes the data less valuable for training discriminative methods.

Annotations can also be provided manually on hand images [87,
117, 144]. However, the annotation is limited to visible regions of
the hand. Thus, either the subject is required to retain from complex
hand poses that result in severe self-occlusions, or only a subset of
hand joints can be annotated.

To avoid occlusions and annotate data at larger scale, Simon et
al. [112] leveraged a multi-view recording setup. They proposed an
iterative bootstrapping approach to detect hand keypoints in each
view and triangulate them to generate 3D point hypotheses. While
the spirit of our data collection strategy is similar, we directly incorpo-
rate the multi-view information into a neural network for predicting
3D keypoints and our dataset consists of both pose and shape anno-
tations.

Since capturing real data comes with an expensive annotation setup
and process, more methods rather deployed synthetic datasets re-
cently [87, 151].
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6.3 analysis of existing datasets

We thoroughly analyze state-of-the-art datasets used for 3D hand
pose estimation from single RGB images by testing their ability to
generalize to unseen data. We identify seven state-of-the-art datasets
that provide samples in the form of an RGB image and the accompa-
nying 3D keypoint information as shown in Table 6.2.

6.3.1 Considered Datasets

Stereo Tracking Benchmark (STB) [144] dataset is one of the first and
most commonly used datasets to report performance of 3D keypoint
estimation from a single RGB image. The annotations are acquired
manually limiting the setup to hand poses where most regions of the
hands are visible. Thus, the dataset shows a unique subject posing
in a frontal pose with different background scenarios and without
objects.

The Panoptic (PAN) dataset [53] was created using a dense multi-
view capture setup consisting of 10 RGB-D sensors, 480 VGA and
31 HD cameras. It shows humans performing different tasks and
interacting with each other. There are 83 sequences publicy available
and 12 of them have hand annotation. We select 171204_pose3 to serve
as evaluation set and use the remaining 11 sequences from the range
motion, haggling and tools categories for training.

Garcia et al. [30] proposed the First-person hand action bench-
mark (FPA), a large dataset that is recorded from an egocentric per-
spective and annotated using magnetic sensors attached to the finger
tips of the subjects. Wires run along the fingers of the subject altering
the appearance of the hands significantly. 6 DOF sensor measure-
ments are utilized in an inverse kinematics optimization of a given
hand model to acquire the full hand pose annotations.

Using the commercial Leap Motion device [86] for keypoint an-
notation, Gomez et al. [32] proposed the Large-scale Multiview 3D
Hand Pose Dataset (LSMV). Annotations given by the device are
transformed into 4 calibrated cameras that are approximately time
synchronized. Due to the limitations of the sensor device, this dataset
does not show any hand-object interactions.

The Rendered Hand Pose Dataset (RHD) proposed by Zimmer-
mann et al. [151] is a synthetic dataset rendered from 20 characters
performing 31 different actions in front of a random background im-
age without hand object interaction.

Building on the SynthHands [87] dataset Mueller et al. [88] pre-
sented the GANerated (GAN) dataset. SynthHands was created by
retargeting measured human hand articulation to a rigged meshed
model in a mixed reality approach. This allowed for hand object in-
teraction to some extend, because the subject could see the rendered
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dataset num. num. real obj- shape labels

frames subjects ects

STB [144] 15 k / 3 k 1 3 7 7 manual

PAN [53] 641 k / 34 k > 10 3 3 7 MVBS [112]

FPA [30] 52 k / 53 k 6 3 3 7 marker

LSMV [32] 117 k / 31 k 21 3 7 7 leapmotion

RHD [151] 41 k / 2.7 k 20 7 7 7 synthetic

GAN [88] 266 k / 66 k - 7 3 7 synthetic

HO-3D [38] 11 k / - 3 3 3 3 automatic [38]

Ours 33 k / 4 k 32 3 3 3 hybrid

Table 6.2: State-of-the-art datasets for the task of 3D keypoint estimation
from a single color image used in our analysis. We report dataset
size in number of frames, number of subjects, if it is real or ren-
dered data, regarding hand object interaction, if shape annotation
is provided and which method was used for label generation.

scene in real time and pose the hand accordingly. In the following
GANerated hand dataset, a CycleGAN approach is used to bridge the
synthetic to real domain shift.

Recently, Hampali et al. [38] proposed an algorithm for dataset
creation deploying an elaborate optimization scheme incorporating
temporal and physical consistencies, as well as silhouette and depth
information. The resulting dataset is referred to as HO-3D.

6.3.2 Evaluation Setup

We trained a state-of-the-art network architecture [50] that takes as
input an RGB image and predicts 3D keypoints on the training split
of each of the datasets and report its performance on the evaluation
split of all other datasets. For each dataset, we either use the stan-
dard training/evaluation split reported by the authors or create an
80%/20% split otherwise.

The single-view network takes an RGB image I as input and infers
3D hand pose P = {~Pk} with each ~Pk ∈ R3, representing a predefined
landmark or keypoint situated on the kinematic skeleton of a human
hand. Due to scale ambiguity, the problem to estimate real-world
3D keypoint coordinates in a camera centered coordinate frame is ill-
posed. Hence, we adopt the problem formulation of [50] to estimate
coordinates in a root relative and scale normalized fashion:

~Pk = s · ~̂Pk = s ·

X̂kŶk
Ẑk

 =

 X̂k

Ŷk

Ẑrel
k + Ẑroot

 , (6.1)

where the normalization factor s is chosen as the length of one refer-
ence bone in the hand skeleton, Ẑroot is the root depth and Ẑrel

k the
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relative depth of keypoint k. We define the resulting 2.5D representa-
tion as:

~̂Prelk =
(
X̂k, Ŷk, Ẑrel

k

)T
. (6.2)

Given scale constraints and 2D projections of the points in a calibrated
camera, 3D hand pose P can be recovered from P̂rel. For details about
this procedure we refer to [50].

We train the single-view network using the same hyperparameter
choices as Iqbal et al. [50]. However, we use only a single stage and
reduce the number of channels in the network layers, which leads to
a significant speedup in terms of training time at only a marginal de-
crease in accuracy. We apply standard choices of data augmentation
including color, scale and translation augmentation as well as rota-
tion around the optical axis. We apply this augmentation to each of
the datasets.

6.3.3 Results

It is expected that the network performs the best on the dataset it
was trained on, yet it should also provide reasonable predictions for
unseen data when being trained on a dataset with sufficient variation
(e.g., hand pose, viewpoint, shape, existence of objects, etc.).

Table 6.1 shows for each existing training dataset the network is
able to generalize to the respective evaluation split and reaches the
best results there. On the other hand, performance drops substan-
tially when the network is tested on other datasets.

Both GAN and FPA datasets appear to be especially hard to gen-
eralize indicating that their data distribution is significantly different
from the other datasets. For FPA this stems from the appearance
change due to the markers used for annotation purposes. The altered
appearance gives the network trained on this dataset strong cues to
solve the task that are not present for other datasets at evaluation
time. Thus, the network trained on FPA performs poorly when tested
on other datasets. Based on visual inspection of the GAN dataset,
we hypothesize that subtle changes like missing hand texture and
different color distribution are the main reasons for generalization
problems. We also observe that while the network trained on STB
does not perform well on remaining datasets, the networks trained
on other datasets show reasonable performance on the evaluation
split of STB. We conclude that a good performance on STB is not a
reliable measure for how a method generalizes to unseen data.

Based on the performance of each network, we compute a cumula-
tive ranking score for each dataset that we report in the last column of
Table 6.1. To calculate the cumulative rank we assign ranks for each
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column of the table separately according to the performance the re-
spective training sets achieve. The cumulative rank is then calculated
as average over all evaluation sets, i. e., rows of the table. Based on
these observations, we conclude that there is a need for a new bench-
marking dataset that can provide superior generalization capability.

We present the FreiHAND Dataset to archieve this goal. It consists
of real images, provides sufficient viewpoint and hand pose variation,
and shows samples both with and without object interactions. Con-
sequently, the single-view network trained on this dataset achieves
a substantial improvement in terms of ranking for cross-dataset gen-
eralization. We next describe how we acquired and annotated this
dataset.

Figure 6.3: The Recording setup used. It contains 8 calibrated and tempo-
rally synchronized RGB cameras located at the corners of a cube.
A green screen background can be mounted into the the setup,
enabling easier background subtraction.

6.4 freihand dataset

The dataset was captured with the multi-view setup shown in Fig-
ure 6.3. The setup is portable enabling both indoor and outdoor cap-
ture. We capture hand poses from 32 subjects of different genders
and ethnic backgrounds. Each subject is asked to perform actions
with and without objects. To capture hand-object interactions, sub-
jects are given a number of everyday household items that allow for
reasonable one-handed manipulation and are asked to demonstrate
different grasping techniques.
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Figure 6.4: Workflow overview. The dataset labeling starts from manual an-
notation followed by the shape fitting process described in Sec-
tion 6.4.1, which yields candidate shape fits for our data sam-
ples. Sample fits are manually verified allowing them to be ac-
cepted, rejected or queued for further annotation. Alternatively
a heuristic can accept samples without human interaction. The
initial dataset allows for training the networks involved, which
for subsequent iterations of the procedure, can predict informa-
tion needed for fitting. The labeling process can be bootstrapped,
allowing more accepted samples to accumulate in the dataset.

To preserve the realistic appearance of hands, no markers are used
during the capture. Instead we resort to post-processing methods
that generate 3D labels. Manual acquisition of 3D annotations is ob-
viously unfeasible. An alternative strategy is to acquire 2D keypoint
annotations for each input view and utilize the multi-view camera
setup to lift such annotations to 3D similar to Simon et al. [112].

We found after initial experiments that current 2D hand pose es-
timation methods perform poorly, especially in case of challenging
hand poses with self- and object occlusions. Manually annotating all
2D keypoints for each view is prohibitively expensive for large-scale
data collection. Annotating all 21 keypoints across multiple-views
with a specialized tool takes about 15 minutes for each multi-view
set. Furthermore, keypoint annotation alone is not sufficient to ob-
tain shape information.

We address this problem with a novel bootstrapping procedure (see
Figure 6.4) composed of a set of automatic methods that utilize sparse
2D annotations. Since our data is captured against a green screen,
the foreground can be extracted automatically. Refinement is needed
only to co-align the segmentation mask with the hand model’s wrist.
In addition, a sparse set of six 2D keypoints (finger tips and wrist)
is manually annotated. These annotations are relatively cheap to ac-
quire at a reasonably high quality. For example, manually correcting
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a segmentation mask takes on average 12 seconds, whereas annotat-
ing a keypoint takes around 2 seconds. Utilizing this information we
fit a deformable hand model to multi-view images using a novel fit-
ting process described in Section 6.4.1. This yields candidates for both
3D hand pose and shape labels. These candidates are then manually
verified, before being added to a set of labels.

Given an initial set of labels, we train our proposed network, Frei-
Pose, that takes as inputs multi-view images and predicts 3D keypoint
locations along with a confidence score, described in Section 6.4.2.
Keypoint predictions can be used in lieu of manually annotated key-
points as input for the fitting process. This bootstrapping procedure
is iterated. The least-confident samples are manually annotated (Sec-
tion 6.4.3). With this human-in-the-loop process, we quickly obtain a
large scale annotated dataset. Next we describe each stage of this
procedure in detail.

6.4.1 Hand Model Fitting with Sparse Annotations

Our goal is to fit a deformable hand shape model to observations
from multiple views acquired at the same time. We build on the
statistical MANO model, proposed by Romero et al. [102], which is
parameterized by θ ∈ R61. The model parameters θ = (α,β,γ)T

include shape α ∈ R10, articulation β ∈ R45 as well as global trans-
lation and orientation γ ∈ R6. Using keypoint and segmentation
information we optimize a multi-term loss,

L = L2D
kp +L

3D
kp +Lseg +Lshape +Lpose, (6.3)

to estimate the model parameters θ̃, where the tilde indicates vari-
ables that are being optimized. We describe each of the terms in (6.3)
next.
2D Keypoint Loss L2D

kp : The loss is the sum of distances between

the 2D projection Πi of the models’ 3D keypoints ~̃Pk ∈ R3 to the 2D
annotations ~qik over views i and visible keypoints k ∈ Vi:

L2D
kp = w2D

kp ·
∑
i

∑
k∈Vi

∥∥∥~qik −Πi(~̃Pk)∥∥∥
2

. (6.4)

3D keypoint Loss L
3D
kp : This loss is defined in a similar manner as

(6.4), but over 3D keypoints. Here, ~Pk denotes the 3D keypoint anno-
tations, whenever such annotations are available (i. e., if predicted by
FreiPose),

L
3D
kp = w

3D
kp ·
∑
i∈V

∥∥∥~Pk − ~̃Pk

∥∥∥
2

. (6.5)
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Segmentation Loss Lseg: For shape optimization we use a sum of
l2 losses between the model dependent mask M̃i and the manual
annotation Mi over views i:

Lseg = wseg ·
∑
i

(
∥∥Mi − M̃i

∥∥
2
+
∥∥EDT(Mi) · M̃i

∥∥
2
). (6.6)

Additionally, we apply a silhouette term based on the Euclidean Dis-
tance Transform (EDT). Specifically, we apply a symmetric EDT to
Mi, which contains the distance to the closest boundary pixel at ev-
ery location.
Shape Prior Lshape: For shape regularization we employ

Lshape = wshape ·
∥∥β̃∥∥

2
, (6.7)

which enforces the predicted shape to stay close to the mean shape
of MANO.
Pose Prior Lpose: The pose prior has two terms. The first term ap-
plies a regularization on the PCA coefficients aj used to represent the
pose α̃ in terms of PCA basis vectors cj (i.e., α̃ =

∑
j ãj · cj). This

regularization enforces predicted poses to stay close to likely poses
with respect to the PCA pose space of MANO. The second term regu-
larizes the distance of the current pose α̃, to the N nearest neighbors
of a hand pose dataset acquired from [30]:

Lpose = wpose ·
∑
j

∥∥ãj∥∥2 +wnn ·
∑
n∈N

‖αn − α̃‖2 . (6.8)

We implement the fitting process in Tensorflow [1] and use MANO
to implement a differentiable mapping from θ̃ to 3D model keypoints
p̃k and 3D model vertex locations Ṽ ∈ R778×3. We adopt the Neural
Renderer [58] to render the segmentation masks M̃i from the hand
model vertices Ṽ and use the ADAM optimizer [61] to minimize:

θ = arg min
θ̃

(L(⊆̃)) (6.9)

6.4.2 Multiview 3D Keypoint Estimation

To automate the fitting process, we seek to estimate 3D keypoints
automatically. We propose to use FreiPose, as presented in Chapter 5,
shown in Figure 6.5 that aggregates information from all eight camera
images Ii and predicts a single hand pose P = {~P1, . . . ,~PJ}.

6.4.3 Iterative Refinement

In order to generate annotations at large scale, we propose an iter-
ative, human-in-the-loop procedure which is visualized in Figure 6.4.
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Figure 6.5: Approach for prediction of keypoints in a multi-view setting.
FreiPose predicts a single hand pose P using images of all 8 views
(for simplicity only 2 are shown). Each image is processed sep-
arately by a 2D CNN that is shared across views. This yields
2D feature maps fi. These are individually reprojected into a
common coordinate frame using the known camera calibration
to obtain Fi = Π−1(fi). The Fi are aggregated over all views
and finally a 3D CNN localizes the 3D keypoints within a voxel
representation.

Method mesh error ↓ F@5mm ↑ F@15mm ↑
Mean shape 1.63 0.340 0.839

MANO Fit 1.44 0.416 0.880

MANO CNN 1.07 0.529 0.935

Boukhayma et al. [10] 1.30 0.435 0.898

Hasson et al. [41] 1.32 0.436 0.908

Table 6.3: Quantitative evaluation of single view shape estimation. This ta-
ble shows shape prediction performance on the evaluation split of
FreiHAND after alignment. We report two measures: The mean
mesh error and the F-score at two different distance thresholds.

For initial bootstrapping we use a set of manual annotations to gen-
erate the initial dataset D0. In iteration i we use dataset Di, a set
of images and the corresponding MANO fits, to train FreiPose and
HandSegNet [151]. FreiPose makes 3D keypoint predictions along with
confidence scores for the remaining unlabeled data and HandSegNet
predicts hand segmentation masks. Using these predictions, we per-
form the hand shape fitting process of Section 6.4.1. Subsequently, we
perform verification that either accepts, rejects or partially annotates
some of these data samples.

Heuristic Verification. We define a heuristic consisting of three
criteria to identify data samples with good MANO fits. First, we
require the mean FreiPose confidence score to be above 0.8 and all
individual keypoint confidences to be at least 0.6, which enforces a
minimum level of certainty on the 3D keypoint prediction. Second,
we define a minimum threshold for the intersection over union (IoU)
between predicted segmentation mask and the mask derived from
the MANO fitting result. We set this threshold to be 0.7 on average
across all views while also rejecting samples that have more than 2
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views with an IoU below 0.5. Third, we require the mean Euclidean
distance between predicted 3D keypoints and the keypoints of the
fitted MANO to be at most 0.5 cm where no individual keypoint has
a Euclidean distance greater than 1 cm. We accept only samples that
satisfy all three criteria and add these to the set Dhi .

Manual Verification and Annotation. The remaining unaccepted
samples are sorted based on the confidence score of FreiPose and we
select samples from the 50th percentile upwards. We enforce a min-
imal temporal distance between samples selected to ensure diversity
as well as choosing samples for which the current pose estimates
are sufficiently different to a flat hand shape as measured by the Eu-
clidean distance in the pose parameters. We ask the annotators to
evaluate the quality of the MANO fits for these samples. Any sample
that is verified as a good fit is added to the set Dmi . For remaining
samples, the annotator has the option of either discarding the sample
or provide additional annotations (e.g., annotating mislabeled finger
tips) to help improve the fit. These additionally annotated samples
are added to the set Dli.

Joining the samples from all streams yields a larger labeled dataset

Di+1 = Di +Dhi +Dmi +Dli (6.10)

which allows us to retrain both HandSegNet and FreiPose. We repeated
this process 4 times to obtain our final dataset.

6.5 experiments

6.5.1 Cross-Dataset Generalization of FreiHAND

To evaluate the cross-dataset generalization capability of our dataset
and to compare to the results of Table 6.1, we define the following
training and evaluation split: there are samples with and without
green screen and we chose to use all green screen recordings for
training and the remainder for evaluation. Training and evaluation
splits contain data from 24 and 11 subjects, respectively, with only
3 subjects shared across splits. The evaluation split is captured in 2
different indoor and 1 outdoor location. We augmented the training
set by leveraging the green screen for easy and effective background
subtraction and creating composite images using new backgrounds.
To avoid green color bleeding at the hand boundaries we applied the
image harmonization method of Tsai et al. [127] and the deep image
colorization approach by Zhang et al. [145] separately to our data.
Both the automatic and sampling variant of [145] were used. With
the original samples this quadruples the training set size from 33 k

unique to 132 k augmented samples. Examples of resulting images
are shown in Figure 6.2.
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Given the training and evaluation split, we train the single view
3D pose estimation network on our data and test it across different
datasets. As shown in Table 6.1, the network achieves strong accuracy
across all datasets and ranks first in terms of cross-dataset generaliza-
tion.

6.5.2 3D Shape Estimation

Having both pose and shape annotations, our acquired dataset can be
used for training shape estimation models in a fully supervised way.
In addition, it serves as the first real dataset that can be utilized for
evaluating shape estimation methods. Building on the approach of
Kanazawa et al. [56], we train a network that takes as input a single
RGB image and predicts the MANO parameters θ̃ using the following
loss:

L = w3D
∥∥Pk − P̃k∥∥2 +w2D

∥∥Π(Pk) −Π(P̃)∥∥2+
wp
∥∥θ− θ̃

∥∥
2

. (6.11)

We deploy l2 losses for 2D and 3D keypoints as well as the model
parameters and chose the weighting to w3D = 1000, w2D = 10 and
wp = 1.

We also provide two baseline methods, constant mean shape pre-
diction, without accounting for articulation changes, and fits of the
MANO model to the 3D keypoints predicted by our single-view net-
work.

For comparison, we use two scores. The mesh error measures the
average Euclidean distance between corresponding mesh vertices in
the ground truth and the predicted hand shape. We also evaluate the
F-score [62] which, given a distance threshold, defines the harmonic
mean between recall and precision between two sets of points [62]. In
our evaluation, we use two distances: F@5mm and F@15mm to report
the accuracy both at fine and coarse scale. In order to decouple shape
evaluation from global rotation and translation, we first align the pre-
dicted meshes using Procrustes alignment. Results are summarized
in Table 6.3. Estimating MANO parameters directly with a CNN per-
forms better across all measures than the baseline methods. The eval-
uation reveals that the difference in F-score is more pronounced in the
high accuracy regime. Qualitative results of our network predictions
are provided in Figure 6.6.

6.5.3 Evaluation of Iterative Labeling

In the first step of iterative labeling process, we set w2D
kp = 100 and

w2D
kp = 0 (since no 3D keypoint annotations are available), wseg =

10.0, wshape = 100.0, wnn = 10.0, and wpose = 0.1. (For subsequent
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Figure 6.6: Quantitative results for shape estimation from a single view.
Given a single RGB image as input (top rows), qualitative re-
sults of predicted hand shapes (bottom rows) are shown. Please
note that we don’t apply any alignment of the predictions with
respect to the ground truth.

iterations we set w2D
kp = 50 and w3D

kp = 1000.) Given the fitting results,
we train FreiPose and test it on the remaining dataset. After the first
verification step, 302 samples are accepted. Validating a sample takes
about 5 seconds and we find that the global pose is captured correctly
in most cases, but in order to obtain high quality ground truth, even
fits with minor inaccuracies are discarded.

We use the additional accepted samples to retrain FreiPose and
HandSegNet and iterate the process. At the end of the first iteration
we are able to increase the dataset to 993 samples, 140 of which are au-
tomatically accepted by heuristic, and the remainder from verifying
1000 samples. In the second iteration the total dataset size increases
to 1449, 289 of which are automatically accepted and the remainder
stems from verifying 500 samples. In subsequent iterations the com-
plete dataset size is increased to 2609 and 4565 samples, where heuris-
tic accept yields 347 and 210 samples respectively. This is the dataset
we use for the cross-dataset generalization (see Table 6.1) and shape
estimation (see Table 6.3) experiments.
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Dataset D0 D1 D2 D3 D4

#samples 302 993 1449 2609 4565

RHD 0.244 0.453 0.493 0.511 0.518

PAN 0.347 0.521 0.521 0.539 0.562

Table 6.4: FreiHAND dataset over iterations. Bootstrapping convergence
is evaluated by reporting cross-dataset generalization to RHD
and PAN. The measure of performance is AUC, which shows
monotonous improvement throughout.

We evaluate the effectiveness of the iterative labeling process by
training a single view 3D keypoint estimation network on different
iterations of our dataset. For this purpose, we chose two evaluation
datasets that reached a good average rank in Table 6.1. Table 6.4
reports the results and shows a steady increase for both iterations as
our dataset grows.

6.6 conclusion

We present FreiHAND, a large RGB dataset with hand pose and
shape labels of real images. We capture this dataset using a novel
iterative procedure. The dataset allows us improve generalization
performance for the task of 3D hand pose estimation from a single
image, as well as supervised learning of monocular hand shape esti-
mation.

To facilitate research on hand shape estimation, we extended our
dataset towards a challenging benchmark that takes the community
a big step towards evaluation under realistic in-the-wild conditions.

6.7 follow-up work

Due to its good generalization properties, the proposed dataset Frei-
HAND was used in numerous works either for training or evaluation
of approaches: Yang et al. [139] trained their approach using the pro-
posed dataset to learn hand shape estimation of image sequences.
Kulon et al. [65] worked in a weakly-supervised setting where hand
shapes were fitted to crowd-sourced videos and our dataset was used
for evaluation. In Spurr et al. [114] 3D hand pose estimation was
learned from only 2D annotations and additional biomechanical con-
straints using FreiHAND for training and evaluation.

In the meantime similar datasets were presented using comparable
techniques: Hampali et al. [39] used a single RGBD sensor and jointly
optimized hand and object poses in a sequence-wise manner. In [142,
148] similar multi-view setups are built, but many more cameras are
used, which allows for dense surface reconstruction.
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C O N C L U S I O N

There are many tasks humans can solve with their vision system at
ease, and estimating the pose of a known object is one at which they
excel, but why are we so good at it?

It is believed that the reason is probably in how humans combine
the information from their vision system with their prior knowledge.
The effective use of priors describing structure and the ability to rea-
son about plausibility are powerful tools that we are all using without
even realizing it. We know what a hand looks like in general and how
it can move anatomically. There is some understanding what feasible
grasps look like and how these are conditioned on the object being
manipulated, while taking into account functionality of the grasp.

The goal of this thesis is to bring perception algorithms closer to the
human level of performance. In its different projects similar strategies
like the use of prior knowledge and integrating it into the structure
of algorithms were successfully pursued.

Results from Chapter 3 showed that hand pose estimation from
a color image is possible and that introducing additional structure
into the task, i. e., separating viewpoint and articulation, eases the
learning problem significantly. It also shows that using synthetic data
for this task is beneficial.

This thesis also brought robots a little bit closer towards the human
level of learning: namely understanding demonstrations of new tasks
from vision alone, see Chapter 4. Observing a teacher perform the
task in question multiple times proved to be sufficient for imitation
of the action demonstrated.

Understanding animal motion from a single camera turned out to
be infeasible due to frequent occlusions. Thus, in Chapter 5 multiple
cameras were deployed. The approach developed integrates camera
geometry in a clear and concise way. This imposes a strong structure
onto the algorithm, helping it to learn faster and more precisely than
approaches that do not incorporate this information. The resulting
algorithm was used for animal motion capture and allowed quantify-
ing behavior during biological experiments.

Adding more structure was also leveraged in Chapter 6, where the
strong prior of a parametric hand shape model was used to fit the
hand shape from noisy predictions of hand joints and information
about the hand silhouette. This allowed creating a real-world dataset
with superior generalization properties and learning shape estima-
tion from a single view.
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In summary, this thesis introduces multiple new approaches for
marker-less pose and shape prediction tasks, which present small im-
provements over previous works. In the course of their development
datasets were created and made available to the community enabling
future research in this area.



8
O U T L O O K

While this thesis shows encouraging steps towards better perception
systems, there is still plenty of room for future improvement. In my
view there are some directions that future research should focus on.

Weaker supervision. In the supervised setting training on a larger
dataset usually leads to better results. This phenomenon is commonly
explained by the fact that neural networks have a very large number
of parameters that are optimized and more training samples help
finding a better, i. e., more general solution. Unfortunately, creating
labeled data is costly and therefore naturally limited, which makes ex-
ploring methods that do not need full supervision increasingly attrac-
tive. A possible future direction is to leverage consistencies between
different data sources to learn. For example one could use multiple
observations across different camera views and learn from the con-
straint that they show the same pose, but seen from different angles.
Another possibility could leverage the agreement of two simultane-
ously recorded data modalities, for example the color and depth im-
age. These concepts provide a much weaker supervision signal than
explicit labels, but if performed at scale it could help tremendously
in pushing algorithms to work robustly and with few failures. Initial
steps into this direction were already taken [12, 99, 100, 131], but here
is still much room for further improvement left.

Occluded Keypoints. Current approaches are usually trained to
learn a mapping from image to pose space from annotated image
pose pair samples. There is no notion if a keypoint is visible in an
image or not, if there is an annotation it has to be predicted simi-
larly to every other point. This creates an imbalance between points
that are visible in the image and those that are occluded. This is
because for visible points information can be extracted from the im-
age. Whereas, the missing information for occluded points must be
compensated for with learned priors, which can be highly specific
to the respective dataset and therefore hinder generalization. Future
work should address this issue and find a concise way to handle this
problem. Possible approaches could incorporate a measure of uncer-
tainty or to allow multiple hypothesis for occluded keypoints. The
first attempt in this direction was taken by Ye et al. [141], but they
only show performance below state-of-the-art on depth datasets that
do not contain object interaction.
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Tracking. In the past, approaches used a model that was tracked
over multiple frames. Each frame being initialized from the last one
and the initial estimate being handled separately. Currently, most
research focuses on approaches that allow making predictions from
only a single frame. While these might be scientifically more interest-
ing, many applications for pose estimation allow leveraging temporal
smoothness in motion over the course of a video stream. There is
plenty of room in practical applications to mix both approaches and
combine the discriminative power of CNNs to extract information
from single frames and complement it with a model enforcing tem-
poral smoothness. The work by Müller et al. [89] shows promising
results using such an hybrid approach, but they only show results
using a single RGBD camera and can not yet handle the presence of
objects.

Interaction. Another direction for further research is to make the task
harder by introducing additional degrees of freedom. One possibility
is to focus on the interaction of two tightly interacting hands. Another
possibility is to jointly estimate pose of hands and interacting objects.
The setting of two hands is very difficult because to estimate pose
it is not only necessary to disambiguate fingers from each other, but
also to assign fingers to their correct hand. This results into a much
more difficult learning task, which is set in a regime where acquiring
training data is more difficult. Motion for synthetic datasets is hard
to animate when two hands are interacting and human annotation is
also much more difficult to obtain. Introducing objects into the task
suffers from similar problems. Annotated data is harder to obtain
and the hand is occluded much more frequently when interacting
closely with the object. Also, a new degree of variation emerges:
how to represent different objects in a unified way that allows pose
estimation to generalize to unseen objects. This will make creating
training datasets much more difficult and require new algorithms to
be developed that account for physical plausibility and functionality
of a grasp. Hasson et al. [41] presents an initial attempt to deal with
a priori known objects. Müller et al. [89] and Tzionas et al. [129] can
track two interacting hands from RGBD input.
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