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SUMMARY

In mitochondria, the carrier translocase (TIM22 com-
plex) facilitates membrane insertion of multi-span-
ning proteins with internal targeting signals into the
inner membrane [1-3]. Tom70, a subunit of TOM
complex, represents the major receptor for these
precursors [2, 4-6]. After transport across the outer
membrane, the hydrophobic carriers engage with
the small TIM protein complex composed of Tim9
and Tim10 for transport across the intermembrane
space (IMS) toward the TIM22 complex [7-12].
Tim22 represents the pore-forming core unit of the
complex [13, 14]. Only a small subset of TIM22 cargo
molecules, containing four or six transmembrane
spans, have been experimentally defined. Here, we
used a tim22 temperature-conditional mutant to
define the TIM22 substrate spectrum. Along with car-
rier-like cargo proteins, we identified subunits of the
mitochondrial pyruvate carrier (MPC) as unconven-
tional TIM22 cargos. MPC proteins represent sub-
strates with atypical topology for this transport
pathway. In agreement with this, a patient affected
in TIM22 function displays reduced MPC levels. Our
findings broaden the repertoire of carrier pathway
substrates and challenge current concepts of
TIM22-mediated transport processes.

RESULTS

Inactivation of TIM22 for Quantitative Proteomic
Analyses

Multi-spanning inner mitochondrial membrane (IMM) proteins
with internal targeting signals utilize the carrier import pathway
(Figure 1A). However, only a few of these cargo molecules
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have been experimentally defined by in vitro import analyses
(AAC, Mir1, Tim22, Mrs3, Tim17, Tim23, and DiC) [9, 14-17].
To broaden the substrate spectrum of this pathway, we estab-
lished a quantitative proteomic approach following the concept
of importomics [18] by using a tim22 temperature-conditional
(ts) yeast mutant tim22-14 [19]. tim22-14 mitochondria that
were shifted to the non-permissive temperature prior to import
analyses display assembly defects for the well-defined sub-
strates Mir1 and Tim23 (Figures 1B and 1C). This import defect
was also apparent in vivo, where an N-terminally GFP-tagged
Mir1 mislocalized from mitochondria upon shift of tim22-14 cells
to the non-permissive temperature (Figure S1A). To this end,
mitochondria were isolated from wild-type (WT) and tim22-14
cells after growing them either at 25°C or 37°C. At the non-
permissive temperature, tim22-14 mitochondria displayed
reduced levels of Mir1 (36.5% of WT) and Aac2, whereas the
mutant Tim22 was undetectable (Figure S1B). Components of
other mitochondrial complexes were not significantly affected.
Therefore, we subjected tim22-14 cells to extended growth
times (15, 25, and 40 h) at the non-permissive temperature for
subsequent proteomic analyses of purified mitochondria. Mito-
chondria isolated from all eight conditions were analyzed for
steady-state protein levels (Figure 1D). As expected, Tim22
was moderately reduced at the 0 h time point in tim22-14 and
could not be detected at longer time points. The carriers Mir1
and Aac? displayed reduced levels with increasing growth time
at the non-permissive temperature (48.8% and 45.7% of WT at
25 h, respectively). However, other substrates of the TIM22 com-
plex, Tim17 and to a lesser extent Tim23 were affected (54.2%
and 80.3% of WT at 25 h, respectively). Blue native (BN)-PAGE
analyses revealed that the levels of Aac2 and Mir1 were reduced
in mitochondria isolated from tim22-14 cells grown at the non-
permissive temperature, whereas complex V was not affected
(Figure 1E).

Purified mitochondria isolated under the conditions described
above were subjected to differential stable isotope dimethyl-
based labeling and mass spectrometric analyses. Under non-
permissive conditions, Tim22 was more than ten times less
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Figure 1. tim22-14 Displays Defective Mitochondrial Carrier Protein Import under Non-permissive Conditions
(A) Hydrophobic proteins with internal signals translocate through the TOM complex. In the IMS, the small TIM complex directs cargo to the TIM22 complex for

membrane potential-dependent membrane insertion.

(B and C) [*°S]-labeled Mir1 (6TM) (B) and Tim23 (4TM) (C) were imported into wild-type (WT) and tim22- 14 mitochondria. Membrane insertion was monitored by

BN-PAGE and digital autoradiography.

(D) Mitochondria from cells grown at the non-permissive temperature for indicated times were analyzed by western blotting.
(E) WT and tim22-14 mitochondria from cells grown at 37°C for 15 h analyzed by BN-PAGE and immunodecoration.
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abundant in tim22-14 mitochondria than in the WT control.
Among the most severely affected proteins were the mitochon-
drial inner membrane carrier proteins (Figure S1C; Table S1).
On average, most of the known carrier proteins were significantly
less abundant in tim22-14 than the WT (Figure 1F), supporting
the idea that potential cargo candidates for the TIM22 complex
should be reduced. In agreement with the mass spectrometric
data, the citrate and oxoglutarate carrier (Yhm2) displayed
reduced protein levels in tim22-14 mitochondria with increasing
time at 37°C (Figure 1G). We conclude that the mass-spectrom-
etry-based analyses of tim22-14 mitochondria enabled us to
identify known and new potential substrates of the TIM22
complex.

Identification of Potential Carrier Cargo Proteins

To confirm that selected putative carrier substrates identified by
proteomic analyses depended on the TIM22 pathway, we
analyzed the import into purified mitochondria from cells grown
at a permissive temperature. To exclude indirect effects of the
tim22 mutant on the presequence pathway, we imported the
model matrix proteins Su9-DHFR and Atp5. Both precursors
were efficiently imported into WT and tim22-14 mitochondria af-
ter heat shock (Figure S2A). Moreover, imported Atp5 assem-
bled with similar efficiency into the F4{F,-ATP synthase in both
strains (Figure S2B).

The import of the carrier proteins Yhm2, Crc1 (carnitine car-
rier), Odc1 (oxodicarboxylate carrier), and the glycine transporter
Hem25 (Heme synthesis by SLC25 family member), which
display standard six transmembrane topology, has not been
investigated. Since they were identified as candidate cargo pro-
teins, we performed in vitro import and assembly assays of [>°S]-
labeled proteins into WT and tim22-14 mitochondria combined
with BN-PAGE analyses. As assessed by western blot and as-
sembly analysis, Yhm2 steady-state levels and import were
reduced in tim22-14 mitochondria (Figures 2A and 2B). Similarly,
Crc1, Odc1, and Hem25 assembly were affected in tim22-14
mitochondria (Figures 2C-2E). To assess dependence on the re-
ceptor Tom70 and the small TIM chaperone complex, these pro-
teins were imported into tim10-2 [10] and tom70/71.4 4 [20] mito-
chondria. In both cases, reduced assembly was apparent
(Figures 2F and S2C). These results confirmed the mass spectro-
metric data that Yhm2, Crc1, Odc1, and Hem25 are substrates of
the carrier transport pathway.

Two uncharacterized mitochondrial proteins, Yfr0O45w and
YprOiic, displayed reduced levels in tim22-14 (Figure 1F). In
silico analyses suggested both proteins as members of the mito-
chondrial transporter family [21]. However, metazoan homologs
were not apparent. Transmembrane domain prediction algo-
rithms suggest that Yfr045w contains six transmembrane spans.
In contrast, the same algorithms failed to predict transmembrane
domains in YprO11c. Nevertheless, based on protein alignments
with Aac3, six transmembrane segments could be suggested

with a similar topology to Yfr045w (Figure S2D). yfr0O45w4 and
yprO011c4 mutant cells displayed reduced growth on glycerol-
containing media in comparison with WT cells (Figure S2E).
This suggested that both proteins were required for mitochon-
drial activity. Recombinantly expressed Ypr011c was suggested
to be a mitochondrial transporter for adenosine 5'-phosphosul-
fate and 3'-phospho-adenosine 5'-phosphosulfate, whereas
in vivo studies suggested a role in thermotolerance of yeast
[22]. When we addressed the import of [*°S]-labeled Yfr045w
and YprO1ic, we found it to be reduced in tim22-14 and
tim10-2 mutant mitochondria (Figures 2G-2I), indicating that
both proteins are inserted into the IMM by the TIM22 complex
with contribution of the small Tim proteins.

Pyruvate Carrier Subunits Are Imported along the
Carrier Pathway

The mitochondrial pyruvate carrier (MPC) is a conserved hetero-
oligomeric complex that transports pyruvate across the mito-
chondrial inner membrane [23, 24]. In yeast, depending on the car-
bon source, the functional complex contains Mpc1-Mpc2 as a
“fermentative” complex and Mpc1-Mpc3 as a “respiratory” com-
plex. Mpc1 and Mpc3 levels were reduced in mitochondria upon
inactivation of Tim22 (Figures 1F and 1G; Table S1). We confirmed
this reduction by BN-PAGE analyses (Figure 3A). A low-molecu-
lar-mass Mpc1 form (MPC1*), potentially representing a free
Mpc1 pool, was also decreased in mutant mitochondria.

As described above, a hallmark of TIM22-dependent cargo
proteins is the even number (four or six) of transmembrane spans
with N and the C termini facing the intermembrane space (IMS)
[25, 26]. Interestingly, Mpc1 contains two, whereas Mpc2 and
Mpc3 contain three putative transmembrane spanning regions
(Figure S3A). Mpc1 exposes both N and C termini into the matrix,
whereas in the case of Mpc2 and Mpc3 the N and the C terminus
are exposed to the matrix and the IMS, respectively [27]. This to-
pology and number of transmembrane spans differ significantly
from known TIM22 cargo proteins.

When [*®S]-labeled Mpc1 was imported into WT mitochondria,
it failed to incorporate into the MPC complex. Interestingly, in
mpc 14 mitochondria, the imported Mpc1 protein assembled effi-
ciently into the MPC complex (Figure 3B). This is similar to a phe-
nomenon observed before, where radiolabelled Tim18, Tim22,
Tim54, and Tim23 showed an improved incorporation into the
TIM22 and TIM23 complexes when the corresponding endoge-
nous protein was downregulated or absent [19, 28]. To address
whether Mpc1 import and assembly depend on the carrier
pathway, the MPC1 gene was deleted in WT, tim22-14, and
tim10-2 mutants. When [*®*S]-labeled Mpc1 was imported in
tim22-14 and tim10-2 mitochondria, Mpc1 assembly was affected
(Figure 3C), whereas import and assembly of the presequence
pathway substrate Atp5 were not compromised (Figure 3D).
Moreover, the mutant cells did not display a significant difference
in inner membrane potential in comparison to the WT (Figure 3E).

(F) Proteomic analyses of tim22-14 versus WT mitochondria. Mean logs ratio-intensity plot mitochondria are shown. The ratio-intensity mean plot shows the effect
of loss of Tim22 function on the abundance of mitochondrial carrier proteins (in red, blue for MPC subunits). Filled circles indicate proteins significantly altered in

abundance.

(G) Immunodetection of selected proteins in WT and tim22-14 mitochondria. Ay, membrane potential; N, N terminus; C, C terminus; Cyt., cytoplasm; OMM, outer
mitochondrial membrane; IMM, inner mitochondrial membrane; IMS, intermembrane space; Matr., matrix.

See also Figure S1 and Table S1.
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Figure 2. Mitochondrial Carrier Biogenesis Is Affected in tim22-14 and tim10-2 Mutants

(A) BN-PAGE analysis of Yhm2 in mitochondria isolated from cells grown for 15 h at the non-permissive temperature (37°C).

(B-F) [*°S]-labeled (B) Yhm2, (C) Crc1, (D) Odc1, and (E) Hem25 were imported into WT and tim22-14 mitochondria and (F) into WT and tim70-2 mitochondria.
(G and H) [**S]-labeled (G) Yfr045w and (H) YprO11c were imported into WT and tim22-14 mitochondria.

(I) Both proteins were imported into WT and tim10-2 mitochondria. In allimport experiments, analyses were carried out by BN-PAGE and digital autoradiography.
See also Figure S2.

Mpc3 and Mpc2 imports were also affected in tim22-14
(73.4% and 51.1% of WT, respectively) and tim70-2 (59.7%
and 51.8%, respectively) mitochondria (Figures 3F, 3H, and
S3B). Furthermore, Mpc3 and Mpc2 import was reduced in
tom70/7144 receptor mutant mitochondria, supporting the

idea that these proteins are imported along the carrier pathway
(Figure S3C). To exclude that the reduction of Mpc3 assembly
in tim22-14 was due to inactivation of Tim22 and not indirectly
caused by reduced levels of Mpc1 in this strain, we imported
Mpc3 into mpc14 and tim22-14/mpc14 mitochondria. Indeed,
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Figure 3. MPC Subunits Are Imported along the Carrier Pathway
(A) Isolated mitochondria from WT and tim22-14 cells grown for 15 h at the non-permissive temperature (37°C) were solubilized and analyzed by BN-PAGE and

immunoblotting.

(legend continued on next page)
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a reduction in assembly was observed in tim22-14/mpc14
mutant mitochondria (72.79% of WT), indicating dependence
of Mpc3 import on Tim22 (Figure 3G). To corroborate that the
MPC subunit biogenesis was dependent on Tim22, a second
approach was established in which Tim22 levels were reduced
with the aid of the GAL1 promoter. Steady-state levels of
Tim22 and Mpc1 in mitochondria were drastically reduced, and
also the levels of Ynm2 dropped drastically upon Tim22 deple-
tion (Figure 3l). Because the mitochondrial membrane potential
was not affected in Tim22-depleted mitochondria (Figure 3J),
we imported radiolabelled Mpc2 and Crc1 in vitro into mutant
and WT mitochondria. Both Mpc2 (54.9% of WT) and Crc1 as-
sembly were reduced upon depletion of Tim22. Accordingly,
tim22-14 mutant cells and Tim22-downregulated cells displayed
similar effects on carrier protein import (Figure 3K and 3L).
Finally, to confirm that the MPC subunit import was dependent
only on the carrier pathway, the Mpc3 import was carried out in
Tim23N15%A mutant mitochondria. In this mutant, Mpc3 import
and assembly were not compromised. Instead, we observed a
slight increase in the Mpc3 assembly (Figure S3D). This effect
was similar to what was shown for the AAC assembly in the
same strain or other presequence translocase mutants [29-31].

their yeast counterparts in that they

contain two and three putative TM seg-

ments, respectively (Figure 4A). The
composition of the human carrier translocase differs from
the yeast counterpart [32]. Recently, a mutation in the
conserved channel-forming TIM22 subunit has been associ-
ated with a human disorder [33]. Therefore, we analyzed
MPC1 and MPC2 steady-state levels in isolated mitochondria
from control and TIM22 patient fibroblasts. The amount of
MPC1 was slightly reduced, whereas MPC2 levels were
found to be significantly decreased in patient mitochondria
(Figure 4B). When we assessed MPC proteins under condi-
tions of TIM22 knockdown in HEK293T cells, we similarly
observed reduced amounts of MPC1 and MPC2 in compari-
son with the control (Figure 4C). Therefore, we assessed
in vitro import and assembly of MPC1 and MPC2 into iso-
lated HEK293T mitochondria after TIM22 knockdown.
Assembly of both proteins into the MPC complex was signif-
icantly reduced when TIM22 function was compromised (Fig-
ures 4D-4F). Accordingly, the import of MPC1 and MPC2
depends on the TIM22 complex in human mitochondria.
Despite the fact that the composition of the TIM22 complex
is different in yeast and human mitochondria, recognition
of non-canonical substrates appears to be a conserved
mechanism.

(B and C) [*°S]-labeled Mpc1 was imported into (B) WT and mpc14 mitochondria and (C) mpc14, tim22-14/mpc14, and tim10-2/mpc14 mitochondria.
(D) [*®S]-labeled Atp5 was imported into mpc14 and tim22-14/mpc1.4 mitochondria.

(E) Membrane potential measurement of mpc14, tim22-14/mpc14, and tim10-2/mpc14 mitochondria.

(F and G) [*°S]-labeled Mpc3 was imported into (F) WT and tim22-74 mitochondria and (G) mpc14 and tim22-14/mpc14 mitochondria.

(H) [*°S]-labeled Mpc2 was imported into WT and tim22-14 mitochondria.

(I) Purified mitochondria from WT and Tim22-downregulated (Tim22 |) cells were analyzed by SDS-PAGE and western blotting.
(J) Membrane potential measurement of WT and Tim22-downregulated mitochondria.
(Kand L) [**S]-labeled (K) Mpc2 and (L) Crc1 were imported into WT and Tim22-downregulated mitochondria. In all import experiments, analyses were carried out

by BN-PAGE and digital autoradiography. Ay, membrane potential.
See also Figure S3.

1124 Current Biology 30, 1119-1127, March 23, 2020



DISCUSSION

In this study, we performed proteomic analyses of tim22-14 yeast
mitochondria to define substrates of the carrier transport pathway.
Our quantitative analyses identified functionally defined (Yhm2,
Crc1, Odc1, and Hem25) and undefined proteins (Yfr045w and
YprO11c) as substrates of the carrier pathway. Transport of the
tested proteins was affected to varying degrees in different
pathway mutants in in vitro import analyses. It is conceivable that
differences in the biophysical properties of the transmembrane
spans of the individual protein or differences in their internal target-
ing signals are at the heart of these distinct requirements and that
conditional mutants display a certain substrate specificity. More-
over, our analyses identified pyruvate carrier subunits as non-ca-
nonical substrates of the carrier pathway. Reduced levels of
MPC1 and MPC2 were also apparent in a patient compromised
in carrier import and upon depletion of TIM22 in human cells.
Therefore, these proteins are substrates of the carrier pathway in
yeast and in human mitochondria despite the drastic differences
in the organization of the translocase. These precursors with two
orthree transmembrane segments do not fit with current concepts
of a membrane insertion mechanism of polypeptides in hairpin
loops mediated by TIM22 [34, 35]. A net positive charge of the ma-
trix-facing loops has been considered as one of the driving factors
for carrier proteins across the membrane [34]. Sequence analysis
of the MPC proteins revealed that the matrix-facing N termini are
positively charged. It is tempting to speculate that these drive
the translocation across the inner membrane by the TIM22 com-
plex. Detailed biochemical analyses will be required to understand
the translocation process in the light of these unexpected findings.

STARXMETHODS

Detailed methods are provided in the online version of this paper
and include the following:

o KEY RESOURCES TABLE
e LEAD CONTACT AND MATERIALS AVAILABILITY
e EXPERIMENTAL MODEL AND SUBJECT DETAILS
O Yeast growth and handling
O Cell culture and knockdown experiments
e METHOD DETAILS
O lIsolation of mitochondria
Microscopy of yeast cells
Import of precursor proteins
Membrane potential measurement
Reduction and alkylation of proteins and tryptic diges-
tion
Dimethyl labeling of peptides on StageTips
Desalting and fractionation of samples
LC-MS analysis
MS data analysis
o QUANTIFICATION AND STATISTICAL ANALYSIS
e DATA AND CODE AVAILABILITY

0 O OO0

OO O0O0

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/].
cub.2020.01.024.

ACKNOWLEDGMENTS

We are grateful to N. Pfanner for the discussion. We thank H. Rampelt and N.
Pfanner for anti-Mpc1 and anti-Yhm2 antiserum. We are also grateful to the
TIM22 patient’s family whose collaboration made this possible. This work
was supported by the Deutsche Forschungsgemeinschaft (SFB1190; Project
P13), the Max Planck Society (P.R.), the PhD program Molecular Biology - In-
ternational Max Planck Research School, and the Goéttingen Graduate School
for Neurosciences and Molecular Biosciences (GGNB) (R.G.). This study was
further supported by the German Research Foundation (DFG) - Project-ID
403222702 - SFB 1381 (B.W.) and under Germany’s Excellence Strategy
(CIBSS - EXC-2189 - Project ID 390939984) (B.W.) and the European
Research Council (ERC) Consolidator grant no. 648235 (B.W.). This work
was also supported by the Instituto de Salud Carlos Il (grant number PI17/
00021), Gobierno de Aragdén (Grupos de Referencia B33_17R), FEDER
2014 - 2020 “Construyendo Europa desde Aragdn”, and Asociacion de Enfer-
mos de Patologia Mitocondrial (AEPMI) (J.M.).

AUTHOR CONTRIBUTIONS

Conceptualization, P.R.; Methodology, P.R., B.W., R.G., and |.S.; Investiga-
tion, R.G., L.D.C.-Z,, I.S., D.P.-G., and S.C.; Resources, P.R., B.W., J.M,,
and B.G.; Writing - Original Draft, P.R., R.G., L.D.C.-Z., D.P.-G., |.S., and
B.W.; Writing — Review & Editing, P.R., R.G., L.D.C.-Z., D.P.-G., and B.W,;
Funding Acquisition, P.R., B.W., and J.M.; Supervision, P.R. and B.W.

DECLARATION OF INTERESTS
The authors declare no competing interests.

Received: July 15, 2019
Revised: November 27, 2019
Accepted: January 8, 2020
Published: March 5, 2020

REFERENCES

1. Brandner, K., Rehling, P., and Truscott, K.N. (2005). The carboxyl-terminal
third of the dicarboxylate carrier is crucial for productive association with
the inner membrane twin-pore translocase. J. Biol. Chem. 280, 6215-
6221.

2. Brix, J., Ziegler, G.A., Dietmeier, K., Schneider-Mergener, J., Schulz, G.E.,
and Pfanner, N. (2000). The mitochondrial import receptor Tom70: identi-
fication of a 25 kDa core domain with a specific binding site for prepro-
teins. J. Mol. Biol. 303, 479-488.

3. Pfanner, N., Hoeben, P., Tropschug, M., and Neupert, W. (1987). The
carboxyl-terminal two-thirds of the ADP/ATP carrier polypeptide contains
sufficient information to direct translocation into mitochondria. J. Biol.
Chem. 262, 14851-14854.

4. Hines, V., Brandt, A., Griffiths, G., Horstmann, H., Briitsch, H., and Schatz,
G. (1990). Protein import into yeast mitochondria is accelerated by the
outer membrane protein MAS70. EMBO J. 9, 3191-3200.

5. Séllner, T., Pfaller, R., Griffiths, G., Pfanner, N., and Neupert, W. (1990). A
mitochondrial import receptor for the ADP/ATP carrier. Cell 62, 107-115.

6. Young, J.C., Hoogenraad, N.J., and Hartl, F.U. (2003). Molecular chaper-
ones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import re-
ceptor Tom70. Cell 112, 41-50.

7. Adam, A., Endres, M., Sirrenberg, C., Lottspeich, F., Neupert, W., and
Brunner, M. (1999). Tim9, a new component of the TIM22.54 translocase
in mitochondria. EMBO J. 78, 313-319.

8. Koehler, C.M., Merchant, S., Oppliger, W., Schmid, K., Jarosch, E., Dolfini,
L., Junne, T., Schatz, G., and Tokatlidis, K. (1998). Tim9p, an essential
partner subunit of Tim10p for the import of mitochondrial carrier proteins.
EMBO J. 17, 6477-6486.

9. Sirrenberg, C., Endres, M., Fdlsch, H., Stuart, R.A., Neupert, W., and
Brunner, M. (1998). Carrier protein import into mitochondria mediated by

Current Biology 30, 1119-1127, March 23, 2020 1125

CellPress



https://doi.org/10.1016/j.cub.2020.01.024
https://doi.org/10.1016/j.cub.2020.01.024
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref1
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref1
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref1
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref1
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref2
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref2
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref2
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref2
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref3
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref3
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref3
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref3
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref4
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref4
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref4
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref5
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref5
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref6
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref6
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref6
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref7
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref7
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref7
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref8
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref8
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref8
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref8
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref9
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref9

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

the intermembrane proteins Tim10/Mrs11 and Tim12/Mrs5. Nature 397,
912-915.

Truscott, K.N., Wiedemann, N., Rehling, P., Miiller, H., Meisinger, C.,
Pfanner, N., and Guiard, B. (2002). Mitochondrial import of the ADP/ATP
carrier: the essential TIM complex of the intermembrane space is required
for precursor release from the TOM complex. Mol. Cell. Biol. 22, 7780-
7789.

Webb, C.T., Gorman, M.A., Lazarou, M., Ryan, M.T., and Gulbis, J.M.
(2006). Crystal structure of the mitochondrial chaperone TIM9.10 reveals
a six-bladed alpha-propeller. Mol. Cell 27, 123-133.

Weinhaupl, K., Lindau, C., Hessel, A., Wang, Y., Schitze, C., Jores, T.,
Melchionda, L., Schénfisch, B., Kalbacher, H., Bersch, B., et al. (2018).
Structural Basis of Membrane Protein Chaperoning through the
Mitochondrial Intermembrane Space. Cell 175, 1365-1379.

Kovermann, P., Truscott, K.N., Guiard, B., Rehling, P., Sepuri, N.B., Mller,
H., Jensen, R.E., Wagner, R., and Pfanner, N. (2002). Tim22, the essential
core of the mitochondrial protein insertion complex, forms a voltage-acti-
vated and signal-gated channel. Mol. Cell 9, 363-373.

Rehling, P., Model, K., Brandner, K., Kovermann, P., Sickmann, A., Meyer,
H.E., Kihlbrandt, W., Wagner, R., Truscott, K.N., and Pfanner, N. (2003).
Protein insertion into the mitochondrial inner membrane by a twin-pore
translocase. Science 299, 1747-1751.

Sirrenberg, C., Bauer, M.F., Guiard, B., Neupert, W., and Brunner, M.
(1996). Import of carrier proteins into the mitochondrial inner membrane
mediated by Tim22. Nature 384, 582-585.

Kaldi, K., Bauer, M.F., Sirrenberg, C., Neupert, W., and Brunner, M. (1998).
Biogenesis of Tim23 and Tim17, integral components of the TIM machin-
ery for matrix-targeted preproteins. EMBO J. 17, 1569-1576.

Leuenberger, D., Bally, N.A., Schatz, G., and Koehler, C.M. (1999).
Different import pathways through the mitochondrial intermembrane
space for inner membrane proteins. EMBO J. 18, 4816-4822.

Peikert, C.D., Mani, J., Morgenstern, M., Kaser, S., Knapp, B., Wenger, C.,
Harsman, A., Oeljeklaus, S., Schneider, A., and Warscheid, B. (2017).
Charting organellar importomes by quantitative mass spectrometry. Nat.
Commun. 8, 15272.

Wagner, K., Gebert, N., Guiard, B., Brandner, K., Truscott, K.N.,
Wiedemann, N., Pfanner, N., and Rehling, P. (2008). The assembly
pathway of the mitochondrial carrier translocase involves four preprotein
translocases. Mol. Cell. Biol. 28, 4251-4260.

Melin, J., Kilisch, M., Neumann, P., Lytovchenko, O., Gomkale, R.,
Schendzielorz, A., Schmidt, B., Liepold, T., Ficner, R., Jahn, O., et al.
(2015). A presequence-binding groove in Tom70 supports import of
MdI1 into mitochondria. Biochim. Biophys. Acta 7853, 1850-1859.

Belenkiy, R., Haefele, A., Eisen, M.B., and Wohlrab, H. (2000). The yeast
mitochondrial transport proteins: new sequences and consensus resi-
dues, lack of direct relation between consensus residues and transmem-
brane helices, expression patterns of the transport protein genes, and pro-
tein-protein interactions with other proteins. Biochim. Biophys. Acta 71467,
207-218.

Todisco, S., Di Noia, M.A., Castegna, A., Lasorsa, F.M., Paradies, E., and
Palmieri, F. (2014). The Saccharomyces cerevisiae gene YPRO11c en-
codes a mitochondrial transporter of adenosine 5'-phosphosulfate and
3'-phospho-adenosine 5'-phosphosulfate. Biochim. Biophys. Acta 1837,
326-334.

Bricker, D.K., Taylor, E.B., Schell, J.C., Orsak, T., Boutron, A., Chen, Y.-C.,
Cox, J.E., Cardon, C.M., Van Vranken, J.G., Dephoure, N., et al. (2012). A
mitochondrial pyruvate carrier required for pyruvate uptake in yeast,
Drosophila, and humans. Science 337, 96-100.

Herzig, S., Raemy, E., Montessuit, S., Veuthey, J.-L., Zamboni, N.,
Westermann, B., Kuniji, E.R.S., and Martinou, J.-C. (2012). Identification
and functional expression of the mitochondrial pyruvate carrier. Science
337, 93-96.

Palmieri, F. (2004). The mitochondrial transporter family (SLC25): physio-
logical and pathological implications. Pflugers Arch. 447, 689-709.

1126 Current Biology 30, 1119-1127, March 23, 2020

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

Tavoulari, S., Thangaratnarajah, C., Mavridou, V., Harbour, M.E.,
Martinou, J.-C., and Kunji, E.R.S. (2019). The yeast mitochondrial pyruvate
carrier is a hetero-dimer in its functional state. EMBO J. 38. Published on-
line May 15, 2019. https://doi.org/10.15252/embj.2018100785.

Bender, T., Pena, G., and Martinou, J.-C. (2015). Regulation of mitochon-
drial pyruvate uptake by alternative pyruvate carrier complexes. EMBO J.
34,911-924.

van der Laan, M., Meinecke, M., Dudek, J., Hutu, D.P., Lind, M., Perschil,
I., Guiard, B., Wagner, R., Pfanner, N., and Rehling, P. (2007). Motor-free
mitochondrial presequence translocase drives membrane integration of
preproteins. Nat. Cell Biol. 9, 1152-1159.

Geissler, A., Chacinska, A., Truscott, K.N., Wiedemann, N., Brandner, K.,
Sickmann, A., Meyer, H.E., Meisinger, C., Pfanner, N., and Rehling, P.
(2002). The mitochondrial presequence translocase: an essential role of
Tim50 in directing preproteins to the import channel. Cell 777, 507-518.

Frazier, A.E., Dudek, J., Guiard, B., Voos, W., Li, Y., Lind, M., Meisinger, C.,
Geissler, A., Sickmann, A., Meyer, H.E., et al. (2004). Pam16 has an essen-
tial role in the mitochondrial protein import motor. Nat. Struct. Mol. Biol.
11, 226-233.

Denkert, N., Schendzielorz, A.B., Barbot, M., Versemann, L., Richter, F.,
Rehling, P., and Meinecke, M. (2017). Cation selectivity of the prese-
quence translocase channel Tim23 is crucial for efficient protein import.
eLife 6. Published online August 31, 2017. https://doi.org/10.7554/eLife.
28324.

Kang, Y., Fielden, L.F., and Stojanovski, D. (2018). Mitochondrial protein
transport in health and disease. Semin. Cell Dev. Biol. 76, 142-153.

Pacheu-Grau, D., Callegari, S., Emperador, S., Thompson, K., Aich, A,
Topol, S.E., Spencer, E.G., McFarland, R., Ruiz-Pesini, E., Torkamani,
A., etal. (2018). Mutations of the mitochondrial carrier translocase channel
subunit TIM22 cause early-onset mitochondrial myopathy. Hum. Mol.
Genet. 27, 4135-4144.

Rehling, P., Brandner, K., and Pfanner, N. (2004). Mitochondrial import and
the twin-pore translocase. Nat. Rev. Mol. Cell Biol. 5, 519-530.

Chacinska, A., Koehler, C.M., Milenkovic, D., Lithgow, T., and Pfanner, N.
(2009). Importing mitochondrial proteins: machineries and mechanisms.
Cell 138, 628-644.

Sikorski, R.S., and Hieter, P. (1989). A system of shuttle vectors and yeast
host strains designed for efficient manipulation of DNA in Saccharomyces
cerevisiae. Genetics 122, 19-27.

Callegari, S., Richter, F., Chojnacka, K., Jans, D.C., Lorenzi, |., Pacheu-
Grau, D., Jakobs, S., Lenz, C., Urlaub, H., Dudek, J., et al. (2016). TIM29
is a subunit of the human carrier translocase required for protein transport.
FEBS Lett. 590, 4147-4158.

Wach, A., Brachat, A., P6himann, R., and Philippsen, P. (1994). New het-
erologous modules for classical or PCR-based gene disruptions in
Saccharomyces cerevisiae. Yeast 710, 1793-1808.

Meisinger, C., Pfanner, N., and Truscott, K.N. (2006). Isolation of yeast
mitochondria. Methods Mol. Biol. 373, 33-39.

Lazarou, M., Smith, S.M., Thorburn, D.R., Ryan, M.T., and McKenzie, M.
(2009). Assembly of nuclear DNA-encoded subunits into mitochondrial
complex |V, and their preferential integration into supercomplex forms in
patient mitochondria. FEBS J. 276, 6701-6713.

Mohanraj, K., Wasilewski, M., Benincd, C., Cysewski, D., Poznanski, J.,
Sakowska, P., Bugajska, Z., Deckers, M., Dennerlein, S., Fernandez-
Vizarra, E., et al. (2019). Inhibition of proteasome rescues a pathogenic
variant of respiratory chain assembly factor COA7. EMBO Mol. Med. 71.
Published online March 18, 2019. https://doi.org/10.15252/emmm.
201809561.

Aich, A., Wang, C., Chowdhury, A., Ronsor, C., Pacheu-Grau, D., Richter-
Dennerlein, R., Dennerlein, S., and Rehling, P. (2018). COX16 promotes
COX2 metallation and assembly during respiratory complex IV biogenesis.
eLife 7. Published online January 30, 2018. https://doi.org/10.7554/eLife.
32572.


http://refhub.elsevier.com/S0960-9822(20)30024-5/sref9
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref9
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref10
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref10
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref10
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref10
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref10
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref11
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref11
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref11
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref12
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref12
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref12
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref12
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref12
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref13
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref13
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref13
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref13
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref14
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref14
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref14
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref14
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref15
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref15
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref15
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref16
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref16
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref16
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref17
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref17
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref17
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref18
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref18
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref18
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref18
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref18
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref19
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref19
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref19
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref19
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref20
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref20
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref20
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref20
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref21
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref21
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref21
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref21
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref21
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref21
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref22
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref22
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref22
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref22
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref22
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref22
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref22
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref22
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref23
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref23
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref23
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref23
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref24
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref24
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref24
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref24
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref25
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref25
https://doi.org/10.15252/embj.2018100785
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref27
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref27
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref27
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref28
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref28
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref28
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref28
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref29
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref29
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref29
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref29
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref30
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref30
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref30
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref30
https://doi.org/10.7554/eLife.28324
https://doi.org/10.7554/eLife.28324
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref32
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref32
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref33
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref33
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref33
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref33
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref33
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref34
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref34
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref35
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref35
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref35
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref36
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref36
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref36
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref48
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref48
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref48
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref48
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref37
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref37
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref37
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref38
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref38
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref39
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref39
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref39
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref39
https://doi.org/10.15252/emmm.201809561
https://doi.org/10.15252/emmm.201809561
https://doi.org/10.7554/eLife.32572
https://doi.org/10.7554/eLife.32572

43.

44,

45.

Topf, U., Suppanz, I., Samluk, L., Wrobel, L., Boser, A., Sakowska, P.,
Knapp, B., Pietrzyk, M.K., Chacinska, A., and Warscheid, B. (2018).
Quantitative proteomics identifies redox switches for global translation
modulation by mitochondrially produced reactive oxygen species. Nat.
Commun. 9, 324.

Rappsilber, J., Mann, M., and Ishihama, Y. (2007). Protocol for micro-pu-
rification, enrichment, pre-fractionation and storage of peptides for prote-
omics using StageTips. Nat. Protoc. 2, 1896-1906.

Cox, J., and Mann, M. (2008). MaxQuant enables high peptide identifica-
tion rates, individualized p.p.b.-range mass accuracies and proteome-
wide protein quantification. Nat. Biotechnol. 26, 1367-1372.

46.

47.

48.

Cox, J., Neuhauser, N., Michalski, A., Scheltema, R.A., Olsen, J.V., and
Mann, M. (2011). Andromeda: a peptide search engine integrated into
the MaxQuant environment. J. Proteome Res. 710, 1794-1805.

Cox, J., and Mann, M. (2012). 1D and 2D annotation enrichment: a statis-
tical method integrating quantitative proteomics with complementary
high-throughput data. BMC Bioinformatics 13 (Supp/ 16), S12.

Morgenstern, M., Stiller, S.B., Libbert, P., Peikert, C.D., Dannenmaier, S.,
Drepper, F., Weill, U., H6B, P., Feuerstein, R., Gebert, M., et al. (2017).
Definition of a High-Confidence Mitochondrial Proteome at Quantitative
Scale. Cell Rep. 79, 2836-2852.

Current Biology 30, 1119-1127, March 23, 2020 1127


http://refhub.elsevier.com/S0960-9822(20)30024-5/sref42
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref42
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref42
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref42
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref42
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref43
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref43
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref43
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref44
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref44
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref44
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref45
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref45
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref45
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref46
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref46
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref46
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref46
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref47
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref47
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref47
http://refhub.elsevier.com/S0960-9822(20)30024-5/sref47

CellPress

STARXMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Antibodies

Rabbit polyclonal anti-Tim22 This paper #164
Rabbit polyclonal anti-Tim54 This paper #215
Rabbit polyclonal anti-Tim18 This paper #233
Rabbit polyclonal anti-Tim23 This paper #3846
Rabbit polyclonal anti-Tim17 This paper #4968
Rabbit polyclonal anti-Tim50 This paper #3314
Rabbit polyclonal anti-Tim21 This paper #3111
Rabbit polyclonal anti-Tim44 This paper #3869
Rabbit polyclonal anti-Tom40 This paper #4901
Rabbit polyclonal anti-Hsp70 This paper #4945
Rabbit polyclonal anti-Mir1 This paper #171
Rabbit polyclonal anti-Aac2 This paper #51

Rabbit polyclonal anti-Yhm2 This paper #3053 (Freiburg)
Rabbit polyclonal anti-Mpc1 This paper #5021 (Freiburg)
Rabbit polyclonal anti-Atp20 This paper #1517
Rabbit polyclonal anti-Mic10 This paper #345
Rabbit polyclonal anti-Atp5 This paper #1546

Rabbit polyclonal anti-MPC1
Rabbit polyclonal anti-MPC2
Rabbit polyclonal anti-TIM22
Rabbit polyclonal anti-AGK
Rabbit polyclonal anti-ANT3
Rabbit polyclonal anti-TIM23
Rabbit polyclonal anti-LETM1
Rabbit polyclonal anti-COX1
Rabbit polyclonal anti-COX4-1
Rabbit polyclonal anti-ATP5B
Goat anti Rabbit IgG (H+L) HRPO

Thermo Fisher Scientific
Proteintech

Proteintech

This paper

Proteintech

This paper

This paper

This paper

This paper

This paper

Jackson ImmunoResearch Labs

Cat# PA5-60929; RRID: AB_2638597

Cat# 20049-1-AP

Cat# 14927-1-AP; RRID: AB_11183050

#5045

Cat# 14841-1-AP; RRID: AB_2190371

#1526
#0538
#5120
#1522
#4826

Cat# 111-035-144; RRID: AB_2307391

Chemicals, Peptides, and Recombinant Proteins

Digitonin

MitoTrackerTM Orange CMTMRos
3,3'-Dipropylthiadicarbocyanine lodide (DiSC3)
deuterated cyanoborohyride NaBD3zCN
deuterated formaldehyde CD,O

deuterated '*C-labeled formaldehyde '*CD,0
[3°S] methionine

Merck Millipore

Thermo Fisher Scientific
Invitrogen
Sigma-Aldrich
Sigma-Aldrich
Sigma-Aldrich
Hartmann Analytic

Cat# 300410
Cat# M-7510
Cat# D306

Cat# 190020
Cat# 492620
Cat# 596388
Cat# SCM-01

Critical Commercial Assays

KOD Hot Start DNA Polymerase
mMessagemMachine SP6 transcription kit
Flexi Rabbit Reticulocyte Lysate System

Merck
Invitrogen

Promega

Cat# 71086-3
Cat# AM1340
Cat# L4540

Experimental Models: Cell Lines

HEK293-Flp-InTM T-RexTM (HEK293T)
Cell Line

Control Fibroblasts (immortalized)
TIM22 Patient Fibroblasts (immortalized)

ThermoFisher Scientific

(33]
(33]

RRID: CVCL_U421

N/A
N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

YPH499 MATa ade2-101, his3-A200, leu2-41, [36] Yeast collection# 13

ura3-52, trp1-463, lys2-801

BY4741 MATa his341, leu240, met1540, EUROSCARF http://euroscarf.de/index.php?name=News
ura340

BY4741 yfrO45w 4::KanMX4 EUROSCARF http://euroscarf.de/index.php?name=News
BY4741 yprO11c4::KanMX4 EUROSCARF http://euroscarf.de/index.php?name=News
BY4741 mpc14::KanMX4 EUROSCARF http://euroscarf.de/index.php?name=News
tim22-14: YPH499 tim22-M4 [19] Yeast collection# 172

tim10-2: YPH499 tim10::ADE2 [10] Yeast collection# 173

YPH499 mpc14: YPH499 mpc14::KanMX4 This paper N/A

tim22-14/mpc14: YPH499 tim22-M4 This paper N/A

mpc14::KanMX4

tim10-2/mpc14: YPH499 tim10::ADE2 This paper N/A

mpc14::KanMX4

tom70/71 A4: YPH499 tom704::HIS3, [20] Yeast collection# 796

tom714::KanMX4

Tim22 | : YPH499 KanMX-pGal1-Tim22 This paper N/A

Oligonucleotides

TIM22 siRNA GUG-AGG-AGC-AGA-AGA-UGA [37] N/A

Recombinant DNA

Plasmid: GFP-Mir1 This paper pRG3

pFA6a-KanMX6 [38] Plasmid# R66

Software and Algorithms

ImageQuantTL v8.1 GE Healthcare https://www.gelifesciences.com/en/us/shop/
protein-analysis/molecular-imaging-for-
proteins/imaging-software/imagequant-

tl-8-1-p-00110
Imaged v1.47 NIH https://imagej.nih.gov/ij/download.html
Geneious v9.1.2 Biomatters Ltd https://www.geneious.com/download/
Prism 8 GraphPad Software https://www.graphpad.com/

scientific-software/prism/

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Peter
Rehling (peter.rehling@medizin.uni-goettingen.de). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Yeast growth and handling

S. cerevisiae strains used in this study were YPH499 and BY4741. The genotypes are listed in the Key Resources Table. Cells were
grown in YP media (1% yeast extract, 2% peptone) containing 2% glucose (YPD) or 3% glycerol (YPG) as a carbon source. YPH499,
BY4741, yfr045w 4, yprO11c4 and tom70/tom71 44 [20] strains were grown at 30°C with shaking. Temperature sensitive (ts) strains
tim22-14 [19] and tim10-2 [10] were cultivated at 24°C and 19°C, respectively. For proteomic analysis, incubation of temperature
conditional mutant strains was carried out at 37°C for indicated times. For growth on plates, 1.5% agar was added to synthetic
YPD, YPG or YPL (3% lactate, pH 5.0) media. For comparing growth of different strains, serial dilutions of an overnight growing cul-
ture were prepared and plated on appropriate plates. These plates were incubated at 24°C, 30°C, and 37°C for 3-5 days. GFP-Mir1
was expressed in YPH499 and tim22-14 cells. For this MIR1 was cloned into pUG36. The resulting plasmid (pRG3) was transformed
into yeast strains. Transformants were selected on SD-Ura (selective media lacking uracil). Deletion of the MPC1 open reading frame
in YPH499, tim10-2, and tim22-14 was achieved by homologous recombination following transformation of a PCR product contain-
ing the KanMX gene flanked by regions complementary to the MPC1 UTRs and subsequent selection of Kan-resistant transformants.
For Tim22 | strain, the Gal1 promoter with a Kanamycin marker was integrated 5’ upstream of the open reading frame of Tim22. The
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Gal1 promoter is activated in the presence of Galactose and repressed in Glucose. For downregulation of Tim22 expression, yeast
cells were pre-cultured in YP media with 3% Lactate, 1% Galactose and 1% Raffinose pH 5.0 for 25 hours at 30°C. Subsequently, the
cells were cultured in YP media with 3% Lactate and 0.1% Glucose pH 5.0 for 10 hours at 30°C.

Cell culture and knockdown experiments

Immortalized fibroblasts and HEK293T cells were cultured in DMEM, supplemented with 10% (v/v) heat-inactivated fetal bovine
serum (Biochrom, Berlin, Germany), 2 mM L-glutamine, 1 mM sodium pyruvate and 50 pg/ml uridine, and incubated at 37°C with
5% CO,. Mitochondria from control and patient fibroblast were isolated after incubating the cells at 50°C for 5 hours and were sub-
jected to SDS-PAGE and western blotting.

TIM22 knock down was performed as previously described [37]. An siRNA targeting TIM22 (GUG-AGG-AGC-AGA-AGA-UGA) and
the corresponding non-targeting control were purchased from Eurogentec (Liege, Belgium). A concentration of approximately
1.5x10° cells/25 cm? flask were transfected with 16 nM siRNA. Lipofectamine RNAIMAX (Invitrogen, CA, USA) in OptiMEM-I medium
(GIBCO, Thermo Fisher Scientific, MA, USA) was used for transfection, following the manufacturer’s instructions. Cells were trans-
fected for 72 h and used for subsequent analyses.

METHOD DETAILS

Isolation of mitochondria

Differential centrifugation of yeast extracts was carried out to isolate mitochondria [39]. Unless otherwise stated, wild-type, tim22-14
and tim10-2 yeast cells were cultured in YPG at 30°C, 24°C, or 19°C to ODgq of 1.5-2.5 and harvested. The pellet was washed with
water and then treated in DTT buffer (10 mM DTT, 100 mM Tris/H,SO,, pH 9.4) for 30 min at appropriate temperature with shaking.
Subsequently, cells were washed and treated with Zymolyase buffer (20 mM KPOy, pH 7.4, 1.2 M sorbitol, and 0.57 mg/L zymolyase)
for 1 h with shaking at the appropriate temperature. Cells were harvested and washed with zymolyase buffer. Cold homogenization
buffer (600 mM sorbitol, 10 mM Tris/HCI, pH 7.4, 1 g/L BSA, 1 mM PMSF, and 1 mM EDTA) was added to the pellet and cells were
homogenized using a homogenizer. Mitochondria were obtained by differential centrifugation and resuspended in SEM buffer
(250 mM sucrose, 20 mM MOPS/KOH pH 7.2, 1 mM EDTA). They were aliquoted in appropriate volume, flash frozen in liquid nitrogen,
and stored at —80°C. Steady-state analysis of proteins was carried out using SDS-PAGE followed by immunodecoration.

For experiments involving human cells, mitochondria used for western blotting purposes were isolated by differential centrifugation
as previously described [40]. Briefly, PBS recovered cells were dissolved in isolation buffer (300 mM trehalose, 10 mM KCI, 10 mM
HEPES pH 7.4, 2mg/ml BSA, and 2mM PMSF). Cells were subsequently homogenized on ice using a Potter S homogenizer. Cell
debris was removed by a first centrifugation step at 400 x g for 10 min at 4°C and after recovering the supernatant a second one
at 800 x g for 7 min at 4°C. Mitochondria were collected by centrifugation at 10,000 x g for 10 min at 4°C. Freshly isolated mitochon-
dria were washed in isolation buffer lacking BSA once and protein concentrations were determined by Bradford assay. For import
experiments, mitochondria were isolated as previously described [41]. Briefly, cells were resuspended in ice-cold isotonic buffer
(10 mM MOPS pH 7.2, 225 mM sucrose, 75 mM mannitol, and 1 mM EGTA) supplemented with 2 mM PMSF and 2 mg/ml BSA
and subjected to centrifugation at 1,000 x g for 5 min at 4°C. The cell pellet was subsequently resuspended in cold hypotonic buffer
(10 mM MOPS pH 7.2, 100 mM sucrose, and 1 mM EGTA) and incubated on ice for 7 min. The cell suspension was homogenized in a
Dounce glass homogenizer. Cold hypertonic buffer (1.25 M sucrose and 10 mM MOPS pH 7.2) was used to restore isotonic condition
and added to the cellhomogenate. The homogenate was subjected to centrifugation at 1,000 x g for 10 min at 4°C to pellet the cellular
debris, recovering the supernatant and repeating this step. Mitochondria were pelleted by centrifuging the supernatant at 10,000 x g
for 10 min at 4°C and washed once with isotonic buffer without BSA. Protein concentration of isolated mitochondria was determined
using the Bradford assay.

Microscopy of yeast cells

Wild-type and tim22-14 cells transformed with the GFP-Mir1 plasmid were grown in SD-Ura media at 25°C overnight. Next day,
0.5 uM MitoTracker™ Orange CMTMRos (Thermo Fisher Scientific, MA, USA) was added to the culture. Cells were kept shaking
for 20 min. Afterward, cells were harvested, washed once with media and analyzed using a DeltaVision fluorescence microscope
(GE Healthcare, IL, USA). Cells grown overnight at 25°C and temperature shifted to 37°C for 25 h were treated and analyzed as above.

Import of precursor proteins

mMessagemMachine SP6 transcription kit (Invitrogen, CA, USA) was used to generate mRNAs in vitro based on the manufacturer’s
instructions. A DNA fragment for mRNA generation was obtained by PCR using a forward primer containing a SP6 Polymerase bind-
ing site (ATTTAGGTGACACTATAG) followed by bases from the 5’ sequence of the gene and a reverse primer containing bases from
the 3’ end. For synthesis of [3°S] methionine labeled protein, in vitro translation was carried out using the Flexi Rabbit Reticulocyte
Lysate System (Promega, WI, USA). Prepared lysates were used directly for import reactions.

Import reactions were performed as previously described [31], with few modifications. Briefly, mitochondria were suspended in
import buffer (250 mM sucrose, 10 mM MOPS/KOH pH 7.2, 80 mM KCI, 2 mM KH,PO4, 5 mM MgCl,, 5 mM methionine and 3% fatty
acid-free BSA) supplemented with 2 mM ATP, 2 mM NADH, 5 mM creatine phosphate and 0.1 mg/ml creatine kinase. For all imports
into mitochondria from temperature sensitive strains, mitochondria (mutant and control) were subjected to 15 min heat shock at 37°C
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prior to the import reaction. Import was performed at 25°C and terminated using AVO cocktail (final concentration 1 M valinomyin,
8 uM antimycin A and 20 uM oligomycin) to disrupt the membrane potential. Samples were treated with 20 ug/ml Proteinase K (PK) for
10 min on ice. PK was inactivated with 2 mM phenylmethylsulphony! fluoride (PMSF) for 10 min on ice. Mitochondria were subse-
quently sedimented and washed with SEM buffer. In Mpc1 and Mpc3 imports, the samples were resuspended in 100 mM sodium
carbonate pH 11,5 and incubated for 30 min on ice. The membranes were sedimented at 100,000 x g for 1 h in TLAS5 rotor. For
BN-PAGE analyses of imported proteins, mitochondria were solubilized in 1.25% digitonin as described previously [42] or in
0.6% DDM for Atp5 imports. Imports into isolated human mitochondria were performed at 37°C in import buffer (250 mM sucrose,
80 mM potassium acetate, 5 mM magnesium acetate, 5 mM methionine, 10 mM sodium succinate, 5 mM adenosine triphosphate,
and 20 mM HEPES/KOH pH 7.4) supplemented with 2 mM ATP, 1 mM DTT, 5 mM creatine phosphate and 0.1 mg/mL creatine kinase
and 10% of radioactive lysate.

Membrane potential measurement

Membrane potential measurements were carried out as previously described [31]. Briefly, isolated mitochondria were resuspended
in potential buffer (0.6M Sorbitol, 0.1% BSA, 10 mM MgCI2, 0.5 mM EDTA, 20 mM Kpi pH 7.2) in the presence of 2mM 3,3'-Dipro-
pylthiadicarbocyanine iodide (DISC3) and changes of fluorescence (EX 622 nm/EM 670 nm) were recorded. Membrane potential was
dissipated using 1mM Valinomycin. Representative images are shown, measurements were done with n = 3.

Reduction and alkylation of proteins and tryptic digestion

Mitochondria prepared from wild-type and tim22-14 cells harvested after 0 h, 15 h, 25 h or 40 h after temperature shift to 37°C were
pelleted by centrifugation for 10 min at 12,000 x g and 4°C. Mitochondria were resuspended in 6 M urea dissolved in 50 mM ammo-
nium bicarbonate. Reduction and alkylation of cysteines was performed as described before [43]. Samples were diluted with H,O to a
final urea concentration of 1.5 M. Sequencing grade trypsin (Serva, Heidelberg, Germany) was added in a 1:30 (trypsin:protein) ratio
and samples were incubated at 37°C overnight. Tryptic digests were acidified by adding trifluoroacetic acid (TFA) to a final concen-
tration of 0.7% (v/v).

Dimethyl labeling of peptides on StageTips

StageTips were assembled as described previously [44] using three discs of C18 material (Empore 3M) per tip. StageTips were condi-
tioned with 25 pl of 100% methanol, equilibrated with 25 ul of 0.5% (v/v) acetic acid/80% (v/v) acetonitrile (ACN) and washed twice
with 25 pl of 100 mM triethylammonium bicarbonate (TEAB), each by centrifugation at 800 x g for 1-2 min. 10 pg of acidified peptides
were loaded onto each StageTip by centrifugation at 800 x g for 5 min. Labeling solutions were freshly prepared by mixing 70 pl of
50 mM monosodium phosphate with 245 pl of 50 mM disodium phosphate, 17.5 pl of 4% (v/v) formaldehyde in 100 mM TEAB and
17.5 pl of 0.6 M sodium cyanoborohydride in 100 mM TEAB. For labeling of peptides from wild-type cells, the light versions of form-
aldehyde and sodium cyanoborohydride (CH,O and NaBH3;CN, Sigma-Aldrich) were used. For peptides from tim22-14 control cells
(grown at 25°C), deuterated formaldehyde (CD,O, Sigma-Aldrich) and light NaBH3CN were mixed. For peptides from tim22-14 cells
harvested 15 h, 25 h or 40 h after shift to 37°C, deuterated '*C-labeled formaldehyde ('*CD,0, Sigma-Aldrich) and deuterated sodium
cyanoborohydride (NaBD3;CN; Sigma-Aldrich, MO, USA) were used. For labeling, StageTips were loaded twice with 150 pl of the
respective labeling solution and centrifugation at 800 x g for 5-7 min. StageTips were washed twice with 25 pl of 100 mM TEAB. Pep-
tides were eluted twice with 20 ul of 0.5% (v/v) acetic acid/80%(v/v) ACN by centrifugation at 800 x g for 1 min. Light-, medium- and
heavy-labeled samples were mixed and dried in vacuo.

Desalting and fractionation of samples

StageTips were assembled as described previously [44] using three discs of C18 material (Empore 3M) per tip for each 17 to 20 ug of
mixed peptides. StageTips were conditioned and equilibrated as described above and washed twice with 25 pl of 0.5% (v/v) acetic
acid. Dried peptides were resuspended in 50 pl of 0.5% (v/v) acetic acid and loaded onto the StageTips by centrifugation at 800 x g for
2-5min. StageTips were washed twice with 25 il of 0.5% (v/v) acetic acid. Each sample was fractionated in eight fractions by sequen-
tial basic elution using 20 ul of 10 mM ammonium hydroxide (pH 10) with increasing concentrations of ACN (i.e., 0%, 2.7%, 5.4%, 9%,
11.7%, 14.4%, 22.5% and 64.8%; v/v each). Peptides were dried in vacuo and resuspended in 20 pl of 0.1%(v/v) TFA, of which 15 pl
were used for LC-MS/MS analysis.

LC-MS analysis

Nano-HPLC-ESI-MS/MS analyses were performed on an Orbitrap Elite mass spectrometer (Thermo Fisher Scientific, MA, USA) con-
nected to an UltiMate 3000 RSLCnano HPLC system (Thermo Fisher Scientific, MA, USA). Samples were washed and preconcen-
trated using C18 precolumns (nanoEase™ M/Z Symmetry C18; length, 20 mm); inner diameter, 180 pm; Waters) with a flow rate of
5 pl/min for 5 min. Peptide separation was performed using a C18 reversed-phase nano LC column (nanoEase™ M/Z HSS C18 T3;
length, 25 cm; inner diameter, 75 um; particle size, 1.8 um; pore size, 100 A; Waters) at 40°C and a flow rate of 300 nl/min. Peptides
were separated using a binary solvent system consisting of 0.1% (v/v) FA/4% (v/v) dimethyl sulfoxide (DMSO) (solvent A) and 48%
methanol/30% ACN/0.1% (v/v) FA/4% (v/v) DMSO (solvent B). They were eluted with a gradient of 5%-65% B in 65 min and 65%-—
80% B in 5 min. Subsequently, the analytical column was washed with 80% B for 5 min before re-equilibration with 100% A. Peptides
eluting from the column were transferred to a fused silica picotip emitter (SilicaTip "™, NewObjective) via a DirectJunction™ adaptor
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(Thermo Fisher Scientific) for electrospray ionisation (ESI, source voltage 1.5-1.8 kV, temperature of heated capillary 200°C) using a
nanospray flex ion source (Thermo Fisher Scientific). Mass spectra were acquired in a mass-to-charge (m/z) range of 370-1,700 with
a resolution (R) of 120,000 at m/z 400. Automatic gain control (AGC) was set to 1 x 108 with a maximum (max.) injection time of
200 ms. The 25 most intense peptide ions were selected for low-energy collision-induced dissociation experiments in the linear
ion trap with the following parameters: normalized collision energy, 35%; activation g, 0.25; activation time, 10 ms; AGC, 5,000;
max. injection time, 150 ms; isolation width, m/z 2.0. The instrument was operated in the positive ion mode for data-dependent acqui-
sition of MS/MS spectra. The dynamic exclusion time of previously selected precursor ions was set to 45 s and only +2 or higher
charged ions were selected for MS/MS fragmentation.

MS data analysis

Raw files of LC-MS/MS analyses were jointly processed using MaxQuant v.1.6.0.1 [45]. For peptide identification, spectra were
correlated with the Saccharomyces cerevisiae protein database (UniProtKB canonical set including isoforms for strain AC204508/
S288c, Proteome ID UP000002311, release 01.02.2018, 6,757 entries) using Andromeda [46]. N-terminal and lysine dimethylation
were set as light (+28.03 Da), medium (+32.06 Da) and heavy (+36.08 Da) labels, respectively. Trypsin was set as the enzyme in spe-
cific digestion mode allowing two missed cleavage sites. Oxidation of methionine was included as variable modification and cysteine
carbamidomethylation was set as fixed modification. The minimum peptide length was set to 6 amino acids. The precursor mass
tolerance was set to 20 ppm for the “first search” option of Andromeda and to 4.5 ppm for the main search. MSMS match tolerance
was set to 0.5 Da. A false discovery rate of 1% was applied to both peptide and protein lists using the decoy mode “Revert.” For
protein quantification, the option “Re-quantify” was checked and the option “Match between runs” was enabled with a retention
time window of 0.7 min. The minimum ratio count for protein quantification was set to two and only unique peptides were considered
for protein quantification. Normalized heavy-over-light ratios of the MaxQuant output file “proteingroups.”txt (excluding entries
marked as contaminants, ‘reverse’ and ‘only identified by site’) were log-transformed. Light and heavy intensities for each protein
group were summed up and log-transformed. Mean log. ratios and mean log; intensities were calculated across the treated samples
(15 h, 25 h and 40 h after temperature shift to 37°C). Perseus v.1.5.5.3 [47] was used to determine significant outliers in the different
populations with the implemented algorithm “Significance B,” setting a P value significance threshold to 0.05. Proteins or protein
groups were annotated as “mitochondrial carrier protein” if the protein or at least one protein of the group was part of the high-con-
fidence mitochondrial proteome [48] and contained the term “carrier” in its protein description.

QUANTIFICATION AND STATISTICAL ANALYSIS
For steady-state analysis of proteins, quantifications were performed from the corresponding immunoblots using ImageQuant TL (GE
Healthcare, NJ, USA) using a rolling ball background subtraction.

For analysis of imports, after digital autoradiography, quantifications were performed using Imaged. A threshold was applied to
select the area of interest and minimize non-specific signal. Integral intensities of these areas were acquired. For yeast, time points
in the linear range of import reaction were considered.

DATA AND CODE AVAILABILITY

The proteomic dataset generated in this study is included as Table S1 associated with this manuscript.
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