
Dissertation zur Erlangung des Doktorgrades der Technischen
Fakultät der Albert-Ludwigs-Universität Freiburg im Breisgau

Relaxation Heuristics

for Numeric Planning

vorgelegt von

Johannes Aldinger, M.Sc.

am 31. Juli 2018

Betreut von

Prof. Dr. Bernhard Nebel



Tag der Disputation:
30. November 2018

Dekan:
Prof. Dr. Oliver Paul

Prüfungskommission:
Prof. Dr. Bernd Becker (Vorsitz)
Prof. Dr. Andreas Podelski (Beisitz)
Prof. Dr. Bernhard Nebel (Betreuer)
Prof. Dr. Jörg Hoffmann (Prüfer)



iii

Zusammenfassung

Ein wichtiges Merkmal von intelligenten Agenten ist, das sie denken bevor
sie handeln. Handlungsplanung ist das Teilgebiet der Künstlichen Intelligenz,
welches sich mit dieser Art von Denken beschäftigt. Das Ergebnis eines solchen
Denkprozesses ist eine Handlungsanweisung für die Schritte des Agenten. Ge-
geben ein durch Zustände und Aktionen beschriebenes Modell der Welt, ist ein
Plan eine Sequenz von Aktionen, welche einen initialen Weltzustand in einen
Zustand überführt, in welchem eine gewünschte Zielbedingung erfüllt ist.

Im klassischen Planen werden die Zustände der Welt durch Variablen mit
beschränktem Wertebereich beschrieben. Allerdings ist dieser Formalismus für
viele reale Anwendungsbereiche nicht ausdrucksstark genug. Um etwa Ressour-
cen (z.B. die verbleibende Menge Benzin im Tank) oder physikalsiche Größen
(z.B. die aktuelle Geschwindigkeit eines Autos) zu modellieren, werden numeri-
sche Variablen benötigt. In dieser Arbeit beschäftigen wir uns mit numerischer
Handlungsplanung bei welcher Variablen auch kontinuierliche Werte zugewiesen
werden können.

Im Allgemeinen ist die Existenz einer Lösung eines numerischen Planungs-
problems unentscheidbar. Daher untersuchen wir Näherungslösungen für nu-
merische Planungsprobleme, welche die Kosten von bestimmten numerischen
Fakten abschätzen, insbesondere solche, die zum erreichen eines Ziels benötigt
werden. Im Fokus dieser Arbeit stehen hierbei Intervall-basierte Relaxiserungs-
heuristiken, da diese auf viele numerische Probleme angewendet werden können,
insbesondere auch auf Probleme mit nicht-linearen Änderungen. Bei einigen
Problemen bieten die vorgestellten Relaxierungsheuristiken eine gute Orientie-
rungshilfe, aber selbst in Fällen bei denen die Informationsqualität schwach ist,
ermöglichen Relaxierungsheuristiken eine grundlegende Orientierung für Pro-
bleme in welchen spezialisierte Lösungen nicht verfügbar sind.



iv

Abstract

An important feature of intelligent agents is that they think before they act.
Automated planning is the area in Artificial Intelligence that is concerned with
this art of thinking. The result of such a reasoning process is an instruction for
the steps of the agent. Given a world modeled by states and actions, a plan is a
sequence of actions which transforms an initial world situation into a situation
that satisfies a goal condition, thus solving the planning problem.

Classical planning models the world state with finite-domain variables. How-
ever, this formalism is not expressive enough for many real-world applications.
Numeric variables are required to model resources (e.g. the fuel level in a tank)
or physical quantities (e.g. the current velocity of a car). In this dissertation we
elaborate on numeric planning where the variables can take continuous values.

In general, the existence of a solution to numeric planning problems is un-
decidable. Therefore, we are interested in heuristics for numeric planning that
estimate the cost of reaching certain numeric facts, particularly ones necessary
to reach a goal. The focus of this work are interval-based relaxation heuristics,
as they are applicable to a wide range of numeric planning problems including
problems with non-linear change. The proposed relaxation heuristics offer good
guidance on some problems, but even in cases where the information quality is
poor, a basic guidance is valuable for problems where no specialized solutions
are available.



v

Acknowledgments

I have received support and encouragement from a great number of individu-
als. My deepest gratitude is to my advisor, Prof. Bernhard Nebel, who always
managed to keep the balance between giving me the freedom to explore on my
own and the guidance necessary to complete this thesis.

Further gratitude goes to the colleagues from the Foundations of Artificial In-
telligence groups in Freiburg and Basel, foremost to Robert Mattmüller, but also
to Thomas Keller, Patrick Eyerich, Malte Helmert, Gabi Röger, Mara Göbel-
becker, Christian Dornhege, Andreas Hertle, Roswitha Hilden, Petra Geiger,
Uli Jakob, Stefan Wölfl, Tim Schulte, Florian Geißer, Johannes Löhr, Daniel
Kuhner, Felix Burget, Benedikt Wright, David Speck and Jendrik Seipp.

Last but not least, I thank my wife Meike and my children Clara and Noah
for their support. Thank you!



vi

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter
und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe.
Die aus anderen Quellen direkt oder indirekt übernommenen Daten und Konzep-
te sind unter Angabe der Quelle gekennzeichnet. Insbesondere habe ich hierfür
nicht die entgeltliche Hilfe von Vermittlungs- oder Beratungsdiensten (Promo-
tionsberaterinnen oder Promotionsberater oder anderer Personen) in Anspruch
genommen. Niemand hat von mir unmittelbar oder mittelbar geldwerte Leistun-
gen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten
Dissertation stehen. Die Arbeit wurde bisher weder im In- noch im Ausland in
gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

Freiburg, 13. Januar 2019. Johannes Aldinger



Contents

1 Introduction 1
1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Numeric Planning Tasks 5
2.1 Numeric Planning Task Definition . . . . . . . . . . . . . . . . . 5
2.2 Complexity of Numeric Planning . . . . . . . . . . . . . . . . . . 6

2.2.1 Representation of Numbers . . . . . . . . . . . . . . . . . 6
2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Relaxations 10
3.1 Delete Relaxation for Classical Planning . . . . . . . . . . . . . . 10

3.1.1 Complexity of Relaxed Classical Planning . . . . . . . . . 11
3.2 Relaxations for Numeric Planning . . . . . . . . . . . . . . . . . 12

3.2.1 Accumulation Semantics . . . . . . . . . . . . . . . . . . . 12
3.2.2 Accumulation Semantics for Positive Tasks . . . . . . . . 13
3.2.3 Interval Semantics . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Interval Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.1 Interval Arithmetic . . . . . . . . . . . . . . . . . . . . . . 13
3.3.2 Interval Relaxed Numeric Planning Tasks . . . . . . . . . 15
3.3.3 Interval Relaxation Complexity . . . . . . . . . . . . . . . 17

3.4 Repetition Relaxation . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.1 Repetition Relaxed Numeric Planning Tasks . . . . . . . 18
3.4.2 Efficient Computation of the Repetition Relaxed Interval

Successor . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Numeric Relaxation Heuristics 40
4.1 Interval Based Relaxations . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Cyclic Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 The Maximum and the Additive Heuristic . . . . . . . . . . . . . 42

4.3.1 Heuristic Estimators for Numeric Planning . . . . . . . . 42
4.3.2 Heuristics Based on Planning Graphs . . . . . . . . . . . 46
4.3.3 Heuristics Based on Priority Queues . . . . . . . . . . . . 48

4.4 FF Plan Extraction Heuristics . . . . . . . . . . . . . . . . . . . . 52
4.4.1 Generalized Marking Procedure . . . . . . . . . . . . . . . 52
4.4.2 Target Value Explication . . . . . . . . . . . . . . . . . . 55
4.4.3 Marked Action Scheduling . . . . . . . . . . . . . . . . . . 60

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vii



viii CONTENTS

5 Numeric Fast Downward 63
5.1 PDDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Fast Downward . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.2 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 TFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4 NFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4.1 Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Experiments 68
6.1 Jumpbot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Numeric Planning Experiments . . . . . . . . . . . . . . . . . . . 71

6.2.1 Eager vs. Lazy Evaluation . . . . . . . . . . . . . . . . . . 72
6.2.2 Unit Cost vs. Regular Cost . . . . . . . . . . . . . . . . . 82
6.2.3 Interval + Graph vs. Repetition + Queue Approach . . . 92
6.2.4 Comparison to Other Relaxation-Based Planners . . . . . 103

6.3 Agile Earth Observation: an Application . . . . . . . . . . . . . . 107
6.3.1 Temporal Fast Downward with Modules . . . . . . . . . . 108
6.3.2 Planning the Earth Observation Task . . . . . . . . . . . 109
6.3.3 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . 114
6.3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7 Conclusion 116



Chapter 1

Introduction

A defining characteristic of intelligence is the ability of thinking before acting.
Automated planning is the area of artificial intelligence which is concerned with
this art and practice. Given a world description, a set of actions that modify
the world and a goal formulation, planning seeks to find a sequence of actions
that transforms the current world situation into one that satisfies the goal.
The difficulty of a planning task depends on the assumptions made on the
properties of this world model. Actions can alter the world with deterministic
or with non-deterministic effects. The effects of an action can either be applied
instantaneously or after a duration, and if actions are durative, the change can
either happen at discrete moments or continuously. Actions can be applicable
concurrently or only sequentially. The world can be discrete or continuous.
State variables can be fully accessible or observed only partially. The world
can be static with the only change happening by actions of the acting agent
or exogenous influence can alter the world dynamically. There can be several
agents. The objective can either be to reach a designated goal state or to
maximize a reward function.

The easiest configuration is known as classical planning where the unique
and fully observable initial world state is described by discrete finite-domain
variables. A single agent can sequentially apply actions with deterministic and
instantaneous effects. Depending on the objective of a classical planning prob-
lem we distinguish optimal planning where we are only interested in plans which
are optimal regarding a certain cost function and satisficing planning, where a
good plan quality is preferable but not necessarily required. Classical planning
has been extensively studied in the recent years and many planning systems
have emerged, e.g., the FF Planning System [HN01], Fast Downward [Hel06]
and many others. However, classical planning is not expressive enough for
many practically relevant planning problems. Modeling of physical properties
(e.g. velocity) or resources (e.g. fuel level) requires real-valued variables. Many
interesting problems require reasoning about continuous quantities and there-
fore, they can not be expressed appropriately in classical planning. While there
exist planning problems which rely on an expressivity that goes beyond numeric
variables, e.g., concurrent temporal actions, or the modeling of exogenous ef-
fects of a dynamic environment, there are many interesting problems that can
be solved by numeric planning but not by classical planning.

We define numeric planning as single agent planning in a world with a unique

1



2 CHAPTER 1. INTRODUCTION

and fully observable initial world state which is described by variables whose do-
main are continuous numbers. Instantaneous actions with deterministic effects
are applied sequentially in order to achieve a state satisfying a goal formula.

A predominant approach to solve classical planning problems is heuristic
search. In this thesis we study approaches to obtain heuristic guidance by
solving a simplified planning problem that can be solved efficiently and use the
solution of the simplified problem to guide search in the original problem. We
investigate relaxation heuristics for numeric planning, a simplification where
negative interactions are removed from the planning problem. Such relaxations
are well known as they are one of the first successful approaches for classical
planning [BG99].

1.1 Outline

This thesis is structured as follows: Chapter 2 introduces the formal definition
of the numeric planning tasks that we are interested in this dissertation. We
will briefly discuss the complexity of numeric planning and the representation
of numbers, before we give an overview over related work.

Chapter 3 introduces the delete relaxation for classical planning and elabo-
rates on different ideas to extend the relaxation concept to numeric planning.
Interval-based relaxations turn out to be suited very well and we advance into
the interval relaxation in more depth. Afterwards we discuss a more sophisti-
cated interval based relaxation, the repetition relaxation, where arbitrary many
repetitions of the same numeric effect are aggregated to a single step.

Based on these relaxations for numeric planning, we discuss relaxation heuris-
tics Chapter 4, functions that are computed on these simplified problems and
than can be used to guide search in the original numeric planning problem.

In Chapter 5, we introduce the Numeric Fast Downward (NFD) planning sys-
tem, a planning system suitable for numeric planning problems that is equipped
with the heuristics presented in Chapter 4.

In Chapter 6 we present the Jumpbot domain as well as other benchmark
problems for numeric planning. Afterwards, we show the experimental results
from comparing different configurations of our NFD planner in terms of plan
cost, coverage and algorithmic quality. We conclude our experiments with a
comparison to other numeric planners. Finally, we examine an agile Earth
observation scenario that is motivated by a real world application.

Finally, Chapter 7 concludes the thesis.

1.2 Contribution

During the doctoral process, the author has contributed to research in several
areas of automated planning.

Interval based relaxations and their complexity were analyzed at the ICAPS-
2015 Workshop on Heuristics and Search for Domain-independent Planning (HS-
DIP 2015) [AMG15a] as well as a paper published at the 38th German Confer-
ence on Artificial Intelligence [AMG15b]. The results build the foundations of
Chapter 3.



REFERENCES TO AUTHOR’S CONTRIBUTIONS 3

Chapter 4 is based on our work on relaxation heuristics for numeric planning,
which is published at the 40th German Conference on Artificial Intelligence (KI
2017) [AN17c] with an extended abstract presented at the 10th International
Symposium on Combinatorial Search (SoCS 2017) [AN17b] and Technical Re-
port 280 containing some proofs [AN17a].

In Chapter 6, we briefly introduce the Jumpbot benchmark domain which
was first described in Technical Report 279 [AL16]. At the end of the chapter
we also discuss an application scenario, where we plan slew maneuvers of an
agile Earth observation satellite that has to find a trajectory to scan as many
observation sites on the Earth surface as possible. The corresponding paper was
presented at the ICAPS-2013 Workshop on Planning in Continuous Domains
(PCD 2013) [AL13]. Additional contributions in the area of Earth observation
planning have been published in the Jahrbuch der Deutschen Gesellschaft für
Luft- und Raumfahrt (DGLR2013) [LAWW13].

Outside the scope of this thesis are publications on a brain-controlled robotic
assistant for users with limited communication skills that appear at the 2017
European Conference on Robotics (ECMR 2017) [BFK+17] which is based on a
robot control framework which is presented at the 2018 International Conference
on Intelligent Robots and Systems (IROS 2018) [KAB+18]. An article in the
Journal of Robots and Autonomous Systems (RAS) (2018) [KFB+18] is still
under review.

References to Author’s Contributions

[AL13] Johannes Aldinger and Johannes Löhr. “Planning for Agile Earth
Observation Satellites.” In: Proceedings of the ICAPS-2013 Work-
shop on Planning in Continuous Domains (PCD 2013). 2013, pp. 9–
17.

[AL16] Johannes Aldinger and Johannes Löhr. The Jumpbot Domain for
Numeric Planning. Tech. rep. 279. University of Freiburg, Apr.
2016.

[AMG15a] Johannes Aldinger, Robert Mattmüller, and Moritz Göbelbecker.
“Complexity Issues of Interval Relaxed Numeric Planning”. In:
Proceedings of the ICAPS-2015 Workshop on Heuristics and Search
for Domain-independent Planning (HSDIP 2015). 2015, pp. 4–12.

[AMG15b] Johannes Aldinger, Robert Mattmüller, and Moritz Göbelbecker.
“Complexity of Interval Relaxed Numeric Planning”. In: Proceed-
ings of the 38th German Conference on Artificial Intelligence (KI
2015). Ed. by Steffen Hölldobler, Markus Krötzsch, Rafael Peñaloza,
and Sebastian Rudolph. Vol. 9324. LNAI. Springer-Verlag, 2015,
pp. 19–31.

[AN17a] Johannes Aldinger and Bernhard Nebel. Addendum to ‘Interval
Based Relaxation Heuristics for Numeric Planning with Action
Costs’. Tech. rep. 280. University of Freiburg, Oct. 2017.

[AN17b] Johannes Aldinger and Bernhard Nebel. “Extended Abstract: In-
terval Based Relaxation Heuristics for Numeric Planning with Ac-
tion Costs”. In: Proceedings of the 10th International Symposium
on Combinatorial Search (SoCS 2017). 2017, pp. 155–156.



4 CHAPTER 1. INTRODUCTION

[AN17c] Johannes Aldinger and Bernhard Nebel. “Interval Based Relax-
ation Heuristics for Numeric Planning with Action Costs”. In: Pro-
ceedings of the 40th German Conference on Artificial Intelligence
(KI 2017). Ed. by Gabriele Kern-Isberner, Johannes Fürnkranz,
and Matthias Thimm. Vol. 10505. LNAI. Springer-Verlag, 2017,
pp. 15–28.

[BFK+17] Felix Burget, Lukas D.J. Fiederer, Daniel Kuhner, Martin Völker,
Johannes Aldinger, Robin T. Schirrmeister, Chau Do, Joschka
Boedecker, Bernhard Nebel, Tonio Ball, and Wolfram Burgard.
“Acting Thoughts: Towards a Mobile Robotic Service Assistant for
Users with Limited Communication Skills”. In: Proceedings of the
European Conference on Robotics (ECMR 2017). 2017, pp. 385–
390.

[KAB+18] Daniel Kuhner, Johannes Aldinger, Felix Burget, Mara Göbel-
becker, Wolfram Burgard, and Bernhard Nebel. “Closed-Loop Robot
Task Planning Based on Referring Expressions”. In: Proceedings
of the 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2018). 2018.

[KFB+18] Daniel Kuhner, Lukas Fiederer, Felix Burget, Martin Völker, Jo-
hannes Aldinger, Robin Schirrmeister, Chau Do, Wolfram Bur-
gard, and Bernhard Nebel. “A Deep Learning Framework for BCI
Control of a Robotic Service Assistant using Intelligent Goal For-
mulation”. In: Journal of Robots and Autonomous Systems (RAS)
(2018), to appear.

[LAWW13] Johannes Löhr, Johannes Aldinger, Stefan Winkler, and Georg
Willich. “Automated Planning for Earth Observation Spacecraft
under Attitude Dynamical Constraints”. In: Jahrbuch der Deut-
schen Gesellschaft für Luft- und Raumfahrt (DGLR2013). 2013.



Chapter 2

Numeric Planning Tasks

In this chapter we define the structure of problems that we want to solve in
this thesis. We begin with a formal definition of numeric planning tasks. After-
wards, we discuss the computational complexity of numeric planning and the
representation of real numbers. We conclude the chapter with a summary of
related work.

2.1 Numeric Planning Task Definition

A numeric planning task is a formalization of the problem of reaching a goal
state in a world modeled by continuous variables. The static and fully ob-
servable world can be altered sequentially by actions with instantaneous effects
performed by a single agent. Figure 2.1 depicts a small example plan in a world
described with only two state variables v0 and v1. The sequence of actions
π = 〈a0, a1, a2〉 transforms the initial state s0 to s1 then s2 and finally s3, a
state that satisfies a goal condition (e.g. −v1 − 1 > 0).

Formally, a numeric planning task Π = 〈V,A, I,G, κ〉 is a 5-tuple where V is
a set of numeric variables v with domain Q∞⊥ := Q ∪ {−∞,∞,⊥}: the rational
numbers with positive and negative infinity and an “undefined” value ⊥. A is
a set of actions, I the initial state, G a goal condition and κ : A → Q+ is a
function assigning a strictly positive rational cost to each action. A state is a
(full) mapping from variables from V to values from Q∞⊥ . The value of variable
v in state s is denoted by s(v). A numeric expression is either a variable v
from V, a constants c from Q, or of the form ξ1 ◦ ξ2 where ◦ ∈ {+,−,×,÷}

s0

v0

v1

0

2

a0

s1

v0

v1

1

3

a1

s2

v0

v1

−1

4

a2

s3

v0

v1

−1

−4

Figure 2.1: A numeric plan with instantaneous actions modifying two state
variables v0 and v1 with a sequence of actions 〈a0, a1, a2〉.

5



6 CHAPTER 2. NUMERIC PLANNING TASKS

is an arithmetic operator and expressions ξ1 and ξ2 are recursively defined. A
numeric constraint ξ D 0 compares expressions ξ to 0 with D ∈ {≥, >,=} and
a (goal or action) condition is a conjunction of numeric constraints. Effects are
assignments v ◦= ξ where v is a variable from V, ◦= ∈ {+=,−=,×=,÷=, :=}
and ξ is a numeric expression. Actions in A have the form 〈pre, eff〉 and consist
of a condition pre and a set of effects eff containing at most one effect for each
variable.

The semantics of a numeric planning task is straightforward. Numeric ex-
pressions ξ1 ◦ ξ2 for ◦ ∈ {+,−,×,÷} are recursively evaluated in state s:
s(ξ1 ◦ ξ2) = s(ξ1) ◦ s(ξ2). Constants c ∈ Q are mapped to themselves s(c) = c
and variables v ∈ V to the respective value in their domain. Division by zero
results in the undefined value ⊥, i.e. if ◦ = ÷ and s(ξ2) = 0, s(ξ1 ÷ 0) = ⊥. If
either ξ1 ∈ {−∞,∞,⊥} or ξ2 ∈ {−∞,∞,⊥}, s(ξ1 ◦ ξ2) evaluates to either −∞,
∞ or ⊥ as intuitively expected, i.e. adding a finite number to an infinite value
remains infinity, the difference of two infinite values is undefined and undefined
values are propagated. The semantic adheres to the IEEE 754 floating point
guidelines where “⊥” corresponds to the NaN value.

For conditions, satisfaction in state s is defined in the obvious way: numeric
constraints ξ D 0 are satisfied in s if the arithmetic comparison of the evaluated
expression is, i.e. s � (ξ D 0) iff s(ξ) D 0. The conjunction of conditions ci and
cj is satisfied, if both conditions are, i.e. s � ci ∧ cj iff s � ci and s � cj .

Actions a = 〈pre, eff〉 are applicable in s iff s � pre. The successor state
app(a, s) = s′ resulting from an application of a in s is defined as follows:
for each numeric effect effi ∈ eff = {eff1, . . . , effn} of the form v ◦= ξ with
◦= ∈ {+=,−=,×=,÷=}, s′(v) = s(v) ◦ s(ξ) where ◦ ∈ {+,−,×,÷} is the
arithmetic operator corresponding to the respective assignment operator. If effi
is a numeric assignment v := ξ, then s′(v) = s(ξ). Finally, if a variable v does
not occur in the left-hand side of any effect, then s′(v) = s(v).

A plan π is a (possibly empty) sequence of actions 〈a1, . . . , an〉 that leads
from I to a state satisfying G such that each action is applicable in the state that
follows by executing the plan up to that action, i.e. s0 = I, si = app(ai−1, si−1)
where si−1 � pre(ai) for 1 ≤ i ≤ n and sn � G.

2.2 Complexity of Numeric Planning

Automated planning is computationally hard even in its most basic form as
Strips [FN71] planning, modeling propositional variables in a closed world,
where action preconditions are positive literals and actions are not allowed
to have conditional effects. Even this restricted classical planning formalism
is PSPACE-complete [Byl94]. Numeric planning is undecidable [Hel02]. Even
though completeness of numeric planning algorithms can therefore not be achieved
in general, numeric planners can find plans or an assurance that the problem is
unsolvable for many practical tasks.

2.2.1 Representation of Numbers

Real numbers are generally not representable in a computer and have to be
approximated. Asymptotic complexity is usually measured with respect to the
size of the representation of the input. Analyzing the complexity of numeric



2.3. RELATED WORK 7

planning is therefore only sensible if the representation is bounded. Moreover,
the time complexity depends on the definition of a time step. Two different
cost models are typically used to define such a step [CLRS09]: the uniform
cost model assumes that basic operations have constant cost independent of the
representation size of the involved numbers. The logarithmic cost model assigns
a cost proportional to the number of bits required to store involved numbers.
For rational numbers, the result of addition and subtraction are numbers with a
similar representation requirement. However, for multiplication or division the
representation size of the result requires an order of twice the representation
size of its factors. In the following chapters we base our analysis on a uniform
cost model. Therefore, polynomial input complexity results shown in this thesis
would translate to polynomial output complexity results if we would base our
step size on a logarithmic cost model instead, as the representation size can grow
exponentially in the input for a polynomial number of steps in a logarithmic cost
model.

In our implementation we use 64-bit floating point numbers. For a fixed
representation size, the complexity of a step is obviously constant for all basic
operations. However, not all numbers are representable by floating point num-
bers. While we are aware of error propagation issues that come from rounding
of values to the closest representable number [Gol91], such representation prob-
lems did not become apparent in our practical applications and are beyond the
scope of this thesis.

2.3 Related Work

Numeric planning received attention of the automated planning community
when planning paradigms with increased expressiveness were advocated for in
the International Planning Competition (IPC) 2002 [LF03]. Among the partici-
pating planners MIPS [EH01] and LPG [GS02], the Metric-FF planning system
[Hof03] is most relevant to our work, as it also follows the approach to ex-
tending the concept of a delete relaxation to numeric planning. However, the
numeric benchmark domains of the IPC 2002 were rather simple extensions of
the classical domains that also model numeric resources. The numeric effects
in these benchmarks are mostly restricted to linear tasks that assign constant
expressions (e.g. actions that decrease the energy of a rover by 3). This re-
stricted expressivity can be exploited. The Metric-FF planning system [Hof03]
tries to convert the planning task into a linear numeric task, which ensures
that variables can “grow” in only one direction. When high values of a variable
are beneficial to fulfill the preconditions, decrease effects are considered harmful
and a generalization of the delete relaxation concept translates into ignoring
decrease effects. Edelkamp [Ede04] proposes a generalization of this approach
to non-linear tasks which then roughly corresponds to the interval based relax-
ation that will be proposed in the upcoming sections. Still, we were the first to
properly formalize and analyze numeric extensions to the relaxation idea.

On the application side, several planners support numeric quantities, albeit
usually only restricted to a subset of numeric planning tasks, most commonly
to linear planning problems. Additionally, most planners ignore action costs, a
strategy that usually increases coverage at the expense of plan quality. In the
following, we will enlarge upon other relaxation based approaches for numeric



8 CHAPTER 2. NUMERIC PLANNING TASKS

planning and briefly discuss other alternatives.
The Colin Planning System [CFLS08; CCFL13] combines a planning graph

based relaxation approach with a solver for linear programs (LP). The relaxation
heuristic is built by a planning graph based progression similar to the planning
graph based approach discussed in Section 4.3.2. While intervals are used to
represent the values of variables at each layer of the planning graph, these
intervals are not determined by an interval relaxation (cf. Section 3.3) in the
way we propose it in this thesis. Instead, Coles, Fox, Long, and Smith identify
variables that are used to model resources, and they identify actions that produce
or consume such resources. Based on this change, they create a mixed integer
linear program (MILP), where the variables of the linear program model either
planning variables or actions copied for each fact layer. The actions variables
indicate whether an action has been applied or not in the respective layer of
the graph. The constraints of the MILP ensure that resources can only be
consumed if they have been produced before. Solving the LP relaxed program,
where action variables are allowed to attain values between 1 and 0, results in
tighter bounds as compared to the interval relaxation approach at the cost of
having to solve a linear program for each layer of the planning graph. More
severely, the approach requires variables to model resources and change on such
resources has to be linear. However, if these conditions are met, the LP-approach
has a huge structural advantage over relaxation based approaches, which suffer
from the cyclic resource transfer problem which is common in many logistics
settings. When a resource can be transferred from one location to another, the
corresponding actions appear to consume the resource at the first location, and
produce it at the second, when in fact the available amount of the resource does
not change at all. While relaxations relax this property and erroneously assume
that an arbitrary amount of the resource could be produced by such actions,
LP-based approaches handle such situations very well. As such, the hybrid LP-
RPG approach of Coles, Fox, Long, and Smith excels at resource heavy domains
such as Settlers, but it is not as well suited for domains that model physical
properties such as Jumpbot.

The ENHSP planning system [SHTR16; SHT16] is a recent planner for nu-
meric planning problems that is most closely related to our work. There are
several configurations that draw on different techniques to approach numeric
planning. Most closely related to our work is an interval-based relaxation ap-
proach by Scala, Haslum, Thiébaux, and Ramı́rez [SHTR16]. The additive
interval based relaxation heuristic hAIBR pursues a similar idea to a repetition
relaxation (cf. Section 3.4) with a planning graph based approach to generate re-
laxed state progression sequences (cf. Section 4.3.2). One major difference is the
handling of cyclic effects (cf. Section 4.2) v := ξ where a variable v is assigned
an expression ξ that depends on variable v. The additive effect transformation
transforms such assignment effects v := ξ to additive effects v += ξ − v. If a
variable extends its upper bound by assigning expression ξ to it, in the relax-
ation, this transformation translates to the assumption that an arbitrary upper
bound can be reached by applying the action cycle repeatedly, and analogously
for the lower bound. After this transformation, the task does not contain effects
that are critical (cf. Section 3.4.2) and as such heuristics can be computed in
polynomial time. Now the additive interval based relaxation heuristic hAIBR is
computed by identifying supporters: conditions which support that an additive
effect extends the upper bound (or the lower bound respectively) of the affected



2.3. RELATED WORK 9

variable. If these support conditions are met, the intervals upper (lower) bound
is set to infinity in the next layer of the planning graph. This relates very much
to the repetition relaxation (cf. Section 3.4) where the repetition successor of
an additive effect sets respective bounds to infinity as well. The heuristic esti-
mate of the additive interval based relaxation heuristic hAIBR is then the sum
of all actions that appear in the planning graph. Opposed to the extensions of
the FF heuristic that we propose in Section 4.4, actions that do not contribute
towards reaching the goal are not eliminated from this estimate. Additionally
the approach assumes unit action costs.

A different approach used in ENHSP is based on generalizations of the for-
ward propagation heuristics hmax and hadd [BLG97; BG99] in a way differing
from our approach in Section 4.3. In classical planning, the cost of a proposition
can be estimated recursively by the cost of the best achieving action. The cost
of achieving an action is estimated by the action cost plus the most expensive
(hmax) or the sum (hadd) of all costs of achieving all propositions occurring in
the precondition in isolation. Scala, Haslum, and Thiébaux [SHT16] extend
this approach by estimates for the cost of numeric conditions that are further
differentiated into simple and hard conditions. Simple conditions compare lin-
ear expressions to zero where all variables in the expression are only affected
by simple increase or decrease effects, and can be computed more accurately
than hard conditions, whose estimate is based on an interval based relaxation
resembling additive interval based relaxation heuristic hAIBR. Additionally, re-
dundant constraints can be added to the planning problem, which help to avoid
severe underestimation of the heuristic estimate. We compare against this hy-
brid subgoaling heuristics ĥraddhbd+ with redundant constraints in our experiments
(cf. Chapter 6).

Apart from generalizations of the delete relaxation idea, there are approaches
that are based on planning as satisfiability [KS92]. Satisfiability modulo theo-
ries (SMT) allows sat-solvers to outsource theory-solvers which deal with the
numeric aspects of a SAT problem. Examples of numeric planning systems
that pursue such an approach include the Springroll planning system Scala,
Ramı́rez, Haslum, and Thiébaux [SRHT16] and the RANTANPLAN planner
[BAV15] which combines an SMT approach with linear programs as well.



Chapter 3

Relaxations

A relaxation is an approximation of a difficult problem by a related problem
that has fewer constraints which makes it easier to solve.

For planning, we can ignore negative interactions between the actions, thus
making the problem monotone. In classical Strips [FN71] planning, the plan-
ning task can be transformed into a positive normal form where all preconditions
require propositional variables to be true. Negative interactions are relaxed by
ensuring that all propositions which are achieved once cannot be invalidated
during the planning process. This delete relaxation ignores effects that delete
propositions from the world model, i.e. a delete relaxation ignores effects that
would set propositional variables to false.

We are interested in relaxation approaches for numeric planning that can
be computed in polynomial time. Interval based relaxations are particularly
interesting as they allow us to represent arbitrarily many values of a variable
compactly.

This chapter is based on our paper presented at the 38th German AI Confer-
ence [AMG15b] and the corresponding workshop paper presented at the ICAPS
2015 HSDIP workshop [AMG15a]. This chapter is structured as follows: we
start with providing the background of relaxations for classical planning in Sec-
tion 3.1 before we discuss different extensions of the relaxation concept to nu-
meric planning in Section 3.2. In Section 3.3 we delve deeper into interval based
relaxations. Finally, we present the repetition relaxation, in Section 3.4: an
interval based relaxation that deals with the problem that numeric actions are
non-idempotent operations by applying actions arbitrarily often in one step.

3.1 Delete Relaxation for Classical Planning

The idea of a delete relaxation is that facts that are achieved once can not be
deleted in future steps. The propositional Strips encoding of classical planning
operates under a closed world assumption and only lists the true propositions in
a state. In Strips, planning tasks are in a positive normal form where all (action
and goal) conditions require propositions to be true (a restriction that can be
ensured by introducing inverted propositions to the planning task) so that it is
always beneficial for propositions to be true in order to make actions applicable
or reach the goal. The effects of an action can then be separated into add effects

10



3.1. DELETE RELAXATION FOR CLASSICAL PLANNING 11

which add propositional facts (set the value of the corresponding variable to
true) and delete effects which “delete” propositional facts (set the value of the
corresponding variable to false). A relaxation which ignores the delete effects
of all actions introduces a simplified monotonous planning problem where the
application of each action can only add new propositions to the current state.

More recent planning systems are usually not restricted to propositional state
variables. Instead they use the SAS+ formalism [BN93], which allows for (finite-
domain) multi-valued variables. Here, the counterpart of a “delete relaxation”
is a relaxation which replaces the domains of variables in the relaxation by a set
of reachable values. E.g. in a Logistics domain with a variable modeling the
position of a truck, the truck could be located in several cities at the same time
in the relaxation. Instead of setting a variable to a new value, relaxed actions
add the new value to the set of reachable values.

3.1.1 Complexity of Relaxed Classical Planning

In classical planning, the search space is finite and we will show that the relaxed
plan existence problem can be decided in polynomial time, even for classical
SAS+ planning with conditional effects. As the search space is bounded in
relaxed classical planning, and as the delete relaxation is monotone, each fact
has to be achieved at most once. Similarly, applying a relaxed action could set
some variables to new values. However, if this same action would be applied
repeatedly, these values would not change again (at least for Strips-planning).
This property is known as idempotence.

Definition 1 (Idempotence). An effect e = eff(v) on a variable v ∈ V is idem-
potent if appe(s) = appe(appe(s)) for all states s, where appe(s) = app(e, s).

An effect is idempotent if applying it to a state results in the same state as
applying it to a state and then applying the effect to the resulting state again.
Idempotence is a beneficial property that gives an a priori bound on the number
of effects that have to be applied. Yet, idempotence is no necessary requirement
for the polynomiality of the plan existence problem. The important aspect is the
existence of an a priori bound on the number of effects that have to be applied.
In classical planning formalisms that allow for conditional effects, applying an
action can achieve a new value which also enables a conditional effect, so the
number of required action applications is bounded by the number of conditional
effects. We denote this property as pseudo-idempotence.

Definition 2 (Pseudo-Idempotence). An effect e = eff(v) on a variable
v ∈ V is pseudo-idempotent if there exists a k ∈ N so that appk+1

e (s) = appke(s)
for all states s, where recursively appne (s) = appe(appn−1

e (s)) with base case
app0

e(s) = s.

After k applications of the same effect, we reach a fix-point. We also say that
e is k-pseudo-idempotent where the special case k = 1 is known as idempotence
and k = 0 is known as identity.

Actions in classical planning with conditional effects are k-pseudo-idempotent
for k = |cond eff(amax)|, where amax is the action with most conditional effects
in the planning task. We can now show polynomiality of the relaxed plan
existence problem with the help of a fix-point algorithm for relaxed parallel
planning.



12 CHAPTER 3. RELAXATIONS

Definition 3 (Parallel Fix-Point Algorithm). A parallel fix-point algorithm
for relaxed classical planning is a planning algorithm that starts with the initial
state and iteratively applies all applicable actions to the current relaxed state
in parallel.

The algorithm terminates either if a fix point is reached of if the current
relaxed state satisfies the goal condition.

As propositions are only added but never deleted in relaxed planning, the
states accumulate more and more propositions in each step, or more and more
values of a variable for a SAS+ encoding.

Theorem 1 (Polynomiality of Relaxed Plan Existence Problem). The
relaxed plan existence problem is polynomial in |A| × condmax × |V| × dommax

where condmax is the maximal number of conditional effects among all actions in
the planning task plus one for unconditional effects, and dommax is the maximal
number of values in the domain among all variables in the SAS+ encoding of
the relaxed classical planning task.

Proof. The polynomial complexity of the relaxed plan existence problem is
shown by applying the parallel fix-point algorithm (cf. Definition 3) for re-
laxed planning. The number of values that can be achieved is bounded by
|V| × dommax. In each iteration that does not reach a fix point, at least one
new value has to be achieved for one of the variables. This bounds the number
of parallel steps by the number actions in the task |A| times the number of
conditional effects of the action with most conditional effects plus one condmax.
As no action can invalidate the preconditions of other actions, a serialized plan
can be obtained by ordering parallel actions arbitrarily.

The state space is infinite in numeric planning and we can use the concept of
pseudo-idempotence to derive a relaxation framework where the plan existence
problem can be decided in polynomial time as well.

3.2 Relaxations for Numeric Planning

In this section, we discuss extensions of delete relaxation to numeric planning.
The idea behind delete relaxation is that values of a variable that are achieved
once remain achieved. We discuss several ways to extend this concept to numeric
planning.

3.2.1 Accumulation Semantics

In the accumulation semantics, instead of changing their values, variables ac-
cumulate all values achieved so far. The number of accumulated values after
k parallel steps is finite, but generally exponential in k. Therefore, it quickly
becomes infeasible to maintain the set of possible values, as can be seen in the
following example.

Example 1. Let Π be a planning task with initial state I(v) = 0 and actions
a1 = 〈∅, {v += 1}〉 and a2 = 〈∅, {v ÷= 2}〉. Denoting by rk(v), k = 0, . . . , 3, the
reachable values of v after k parallel steps, we get r0(v) = {0}, r1(v) = {0, 1},
r2(v) = {0, 1

2 , 1, 2} and r3(v) = {0, 1
4 ,

1
2 , 1,

3
2 , 2, 3}, an exponentially growing set

of values.



3.3. INTERVAL RELAXATION 13

Besides this observation for bounded plan existence, one can also show that
unbounded plan existence with respect to the accumulation semantics is still un-
decidable. To see this, we can adapt the undecidability proof for numeric plan-
ning by Helmert [Hel02]. A reduction of the search for solutions to Diophantine
equations to numeric planning with respect to the accumulation semantics shows
that the latter problem is undecidable, since solutions to Diophantine equations
have to be integers and the delete relaxation does not relax this property.

3.2.2 Accumulation Semantics for Positive Tasks

One possible approach to dealing with the exploding number of accumulated
values is the restriction to tasks where higher values are always better. Then,
instead of storing all values a variable has attained so far, it is sufficient to
store (an upper bound on) the highest value. A sufficient criterion for this is
that all preconditions and goals have the form v − c D 0, where v is a numeric
variable and c a constant, and that all numeric effects only add or subtract a
positive constant to or from a variable. The Metric-FF planner uses this type
of relaxation, and Hoffmann [Hof03] shows that a large class of problems can be
compiled into the required linear normal form.

3.2.3 Interval Semantics

One can handle a larger class of tasks with higher precision by only making
the assumption that one of the extreme values, the highest or lowest, is best.
This necessitates keeping track of two values for each variable v, a lower bound
v and an upper bound v. As long as preconditions and goals are comparisons
of variables to constants and effects only add or subtract constants, it is in-
substantial whether one considers the values between v and v reached or not.
By considering the entire interval reached in a relaxed sense, one can handle
even more expressive tasks. In particular, when allowing divisions in effects,
besides “higher values are better” and “lower values are better”, one also has
the objective “values closer to c are better” for constants c. Then, if c is in the
interval between v and v, one may assume that values arbitrarily close to c can
be reached, whereas otherwise, one can assess the proximity to c achieved so
far. The Planning Domain Definition Language PDDL [MGH+98] that is used
to model most planning problems allows for algebraic base operations which are
also supported by interval arithmetic [You31]. As such, we consider interval
relaxation a viable approach and focus on it in the following section.

3.3 Interval Relaxation

In this section we investigate the interval relaxation for numeric planning. We
start by discussing the underlying interval arithmetic before we formally define
interval relaxed planning tasks. We then discuss the complexity of the plan
existence problem in this relaxation.

3.3.1 Interval Arithmetic

Interval arithmetic uses an upper and a lower bound to enclose the actual value
of a variable. Closed intervals [x, x] = {q ∈ Q | x ≤ q ≤ x} contain all rational



14 CHAPTER 3. RELAXATIONS

numbers from x ∈ Q to x ∈ Q. Throughout this thesis we refer to the lower
bound of an interval x by x and to the upper bound by x. The set Ic = {[x, x] |
x ≤ x} contains all closed intervals. Open intervals (x, x) = {q ∈ Q∞ | x < q <
x} and the respective set of open intervals Io = {(x, x) | x < x}, as well as half
open intervals [x, x) = {q ∈ Q∞ | x ≤ q < x} and (x, x] = {q ∈ Q∞ | x < q ≤ x}
and the respective sets Ico = {[x, x) | x < x} and Ioc = {(x, x] | x < x} are de-
fined analogously. Note that open intervals are also allowed to contain positive
or negative infinity, which is not allowed for closed interval bounds. The set
of mixed-bounded intervals is Im = Ic ∪ Io ∪ Ioc ∪ Ico. Finally, ∅ is the empty
interval and I = Im ∪ ∅ the set of all intervals.

Sometimes we want to make general statements on intervals where the open-
ness is not relevant for the statement. In such situations we denote intervals
with indeterminate parentheses Lx, xM. If we want to refer to values q ∈ x we use
an indeterminate comparison operator C where x C q is interpreted as x < q if
the lower bound of x is open and x ≤ q if the lower bound is closed. Analogously
q C x is interpreted as q < x if the upper bound is open and as q ≤ x otherwise.
The symmetric comparator “B” is defined analogously.

Numbers q can be identified with the degenerate interval [q, q]. The interval
resulting from basic arithmetic operations x ◦ y where x, y ∈ I is defined as
{(qx ◦ qy)|qx ∈ x and qy ∈ y}. If both intervals x and y are non-empty, the
basic operations can be computed as:

• addition: Lx, xM + Ly, yM = Lx+ y, x+ yM,

• subtraction: Lx, xM− Ly, yM = Lx− y, x− yM,
• multiplication: Lx, xM× Ly, yM = Lmin(xy, xy, xy, xy),max(xy, xy, xy, xy)M,

• division: the result of a division depends on whether or not y contains
zero. Lx, xM÷Ly, yM = Lmin

(
x/y, x/y, x/y, x/y

)
,max

(
x/y, x/y, x/y, x/y

)
M

if 0 /∈ Ly, yM. Otherwise, at least one of the bounds diverges to ±∞, and

one typically treats division Lx, xM÷ Ly, yM as multiplication Lx, xM× 1
Ly,yM

and splits 1
Ly,yM into 1

Ly,0) = (−∞, 1
y M and 1

(0,yM = L 1
y ,∞). In case 0 is on

the bound of the interval, only one of the split intervals contributes to the
result. Finally, 1

[0,0] = ∅, and the division evaluates to the empty interval

∅.
For more detailed information on interval arithmetic we refer to the literature

[MKC09].
The openness of interval bounds is determined as follows: For arithmetic

operations between interval bounds, whenever one of them contributes to the
new interval bound, the bound is open, and only if both contributing bounds
are closed the new bound is closed. For minimum or maximum, if there is a
tie in the minimal or the maximal value, the bound is closed if at least one
contributing bound is closed as well, and it is open otherwise.

Example 2. The product (−2, 4]× (−6, 3] is (−24, 12]. The lower bound is the
result of 4×−6 and the left bound is open because one of the factors (namely
−6) has an open bound. The new upper bounds is computed by the maximum
of −2×−6 and 4× 3 both yielding a value of 12. Because the contributing pair
4× 3 consists of two closed bound factors, one of the values contributing to the
maximum is closed and thus, the upper bound is closed.



3.3. INTERVAL RELAXATION 15

The computation instructions for the basic operations x ◦ y can also be used
for intervals with infinite bounds. The arithmetic operations yield the intuitively
expected results that adhere to the IEEE 754 floating point guidelines as in
the definition of a numeric planning task (cf. Section 2.1). The undefined value
−∞+∞ = ⊥ cannot arise from interval addition or subtraction x± y, as −∞
is always the lower bound and ∞ always the upper bound of an interval (e.g.,
(−∞,−∞) /∈ I). For multiplication, the critical values are multiplications of
±∞ and 0. We obtain the desired behavior {(qx × qy)|qx ∈ x and qy ∈ y} by
setting such values to 0 instead of ⊥ with the rationale that an interval with
an infinite bound also contains values q <∞ (or q > −∞) for which the result
would be 0. The bound of this special zero is the same as the bound of the
factor zero.

Example 3. The interval multiplication of [3,∞) and (−5, 0] results in

[3,∞)× (−5, 0] = Lmin(−15, 0,−∞,0),max(−15, 0,−∞,0)M = (−∞, 0].

The special case (−∞,∞)× [0, 0] is covered by our definition as well:

(−∞,∞)× [0, 0] = Lmin(0,0,0,0),max(0,0,0,0)M = [0, 0]

This leaves us with divisions by the point interval zero [0, 0] that result in
the empty interval ∅. As there exist no q ∈ ∅, there also exist no pair qx ◦ q
or respectively q ◦ qx and the result of such arithmetic operations results in the
empty interval ∅ ◦ x = x ◦ ∅ = ∅.

3.3.2 Interval Relaxed Numeric Planning Tasks

We will now formally define interval relaxed numeric planning tasks. In order
to capture the relaxation idea “whatever we achieved once remains achieved”
in numeric planning, intervals are expanded monotonously. As such, the result
of a relaxed numeric action has to include the original values. The result of a
relaxed numeric effect is the convex union of the old value and the new value.

Definition 4 (Convex Union). Let x, y ∈ I be intervals. The convex union
u = x t y is the convex hull of x and y:

x t u := conv(x, y) = {λqx + (1− λ)qy|0 ≤ λ ≤ 1, qx ∈ x, qy ∈ y}.

For x, y ∈ Im the convex union is the interval u with u = min(x, y) and
u = max(x, y). Whether the bounds of u are open or closed depends on whether
those of x and y are open or closed. If at least one interval of the convex union
is empty, x t ∅ = ∅ t x = x where x ∈ I.

If there is a gap between the intervals x and y, i.e. x < y or y < x, u also
includes intermediate values not present in either x or y (namely all values from
x to y or from y to x respectively).

We can now define interval relaxed planning tasks. The interval relaxation
of a numeric planning task differs only marginally from the original task de-
scription on a syntactic level. The only difference are the domains of numeric
variables which are now mapped to intervals. We allow mixed-bounded intervals
in relaxed planning tasks even though open bounds can only be generated by
limit value considerations which will become relevant for the repetition relax-
ation in the upcoming Section 3.4.



16 CHAPTER 3. RELAXATIONS

Definition 5 (Interval Relaxed Planning Task). Let Π be a numeric plan-
ning task (cf. Section 2.1). The corresponding interval relaxed planning task
Π+ = 〈V+,A+, I+,G+, κ+〉 of Π is a 5-tuple where V+ are the variables from
Π with the domains replaced by mixed-bounded intervals dom(v) = Im for all
v ∈ V+. The initial state I+ is derived from I by replacing numbers I(v) with
degenerate intervals I+(v) = [I(v), I(v)]. Actions A+ = A, the goal condition
G+ = G and the cost function κ+ = κ remain unchanged.

The semantics of Π+ draws on interval arithmetic. Numeric expressions
are defined recursively. Constant expressions are interpreted as s+(c) = [c, c].
Numeric expressions ξ1 and ξ2 are recursively evaluated s+(ξ1 ◦ ξ2) = s+(ξ1) ◦
s+(ξ2) for ◦ ∈ {+,−,×,÷} where “◦” now operates on intervals. For (goal and
action) conditions, the relaxed semantics of numeric constraints is defined as
follows: let ξ be a numeric expression and D ∈ {≥, >,=} a comparison operator.
Then s+ � (ξ D 0) iff ∃q ∈ s+(ξ) with q D 0. This implies that intervals can be
“greater” and “less” than zero at the same time. Note that for expressions that
evaluate to ⊥, s+ 2 (⊥ D 0) as s+(⊥) = ∅.

For numeric actions, the relaxation idea that “values remain achieved” re-
quires the intervals of variables to be monotonically expanding. This translates
to assigning the convex union of the old and the new value to the variable v
altered by a numeric effect v ◦= ξ where ◦= ∈ {+=,−=,×=,÷=, :=}. The
state app+(a, s+) = s+′ resulting from an application of a is then

s+′(v) =



s+(v) t (s+(v) + s+(ξ)) for +=

s+(v) t (s+(v)− s+(ξ)) for −=

s+(v) t (s+(v)× s+(ξ)) for ×=

s+(v) t (s+(v)÷ s+(ξ)) for ÷=

s+(v) t s+(ξ) for := .

As we use the convex union from Definition 4, s+′(v) contains all values
between the old value s+(v) of v and the evaluated expression s+(v) ◦ s+(ξ).
Again, s+′(v) = s+(v) if v occurs in no effect. Note that unlike expressions,
variables never evaluate to the undefined value ⊥: each variable is assigned a
defined value in the initial state, and the intervals are monotonously expanded.

A relaxed plan π+ is again a sequence of actions 〈a+
1 , . . . , a

+
n 〉 that leads from

I+ to a state satisfying G+ such that each action is applicable in the state that
follows by executing the plan up to that action.

Example 4. Applying a = 〈∅, x ×= ξ〉 in a state with s+(x) = [8, 10] and
s+(ξ) = [− 1

2 ,
1
2 ] leads to s+′(x) = [8, 10]t ([8, 10]× [− 1

2 ,
1
2 ]) = [8, 10]t [−5, 5] =

[−5, 10].

The intervals s+(v) of a relaxed planning task are generated by continuously
expanding the bounds of a degenerate interval I+(v) = [I(v), I(v)]. The initial
value of this point interval is relevant in different contexts. In order to highlight
that this initial value I(v) is a number, opposed to the interval I+(v), we
introduce a new symbol iv for it:

Definition 6 (Initial Value). Let v be a variable that occurs in an interval
relaxed planning task. We refer to the point iv ∈ Q in the unrelaxed initial state
iv = I(v) = I+(v) = I+(v) as initial value of v.



3.4. REPETITION RELAXATION 17

We sometimes interpret the notion of an initial value more broadly and also
apply it to expressions ξ with the same meaning, namely the point iξ = I(ξ)
which the expression evaluates to in the initial state of the unrelaxed planning
task. As all operations are monotone, iv ∈ s+(v) in all reachable states s+.

3.3.3 Interval Relaxation Complexity

The search space is infinite in numeric planning. As such, an a-priori bound on
the required number of effects that have to be applied is not known. Neverthe-
less, we can use the parallel approach from classical planning (cf. Definition 3)
for interval relaxed numeric planning as well. The monotonicity requirement en-
sures that interval relaxed actions can not invalidate the preconditions of other
actions and can therefore be applied in parallel. While the sequential application
of a set of actions does not necessarily yield the same intervals as the parallel
application of this set, the sequentially reachable intervals are super-intervals
of the intervals reachable from parallel execution. The complexity of the plan
existence problem is therefore polynomial in O(len(π+)), where len(π+) is the
length of a shortest plan.

If relaxed numeric planning operators were idempotent operations (cf. Defi-
nition 1), polynomiality in the input of the relaxed plan existence problem could
be achieved even though the search space is unbounded. However, the number
of values that can be reached by a numeric planning operator is unbounded, and
applying the same effect repeatedly to a variable is possible and often necessary
to achieve a goal.

Example 5. Let Π+ be an interval relaxed numeric planning task with V+ =
{v}, A+ = {a} with a = 〈∅, v += 1〉, I+ = {v 7→ [0, 0]} and G+ = {v ≥ 10 000}.

The shortest plan is to apply action a 10 000 times. Then, v 7→ [0, 10 000]
which satisfies G+.

To overcome this problem, we will introduce a relaxation that simplifies the
repeated application of actions by considering the values that are reachable by
repeatedly applying such effects in one step (cf. Chapter 3.4) which makes ef-
fects pseudo-idempotent (cf. Definition 2), at least for acyclic numeric planning
tasks (cf. Definition 12). We transform the planning task into a semi-symbolic
representation that captures repeated application of numeric actions. We define
repetition relaxed planning tasks, where we simulate the behavior of applying
numeric effects arbitrarily often independently. As we will see later, the indepen-
dence assumption is not justified for numeric effects v ◦= ξ where the assigned
expression ξ contains (or indirectly depends on) the affected variable v. How-
ever, we succeed in showing that the plan existence problem is polynomial for
tasks with acyclic dependencies as interval relaxed plans can be constructed
from repetition relaxed plans in polynomial time.

3.4 Repetition Relaxation

In order to show polynomiality of the interval-based relaxation for numeric plan-
ning, we have to solve the problem that numeric actions are non-idempotent
operations. The repetition relaxation is an interval-based relaxation which re-
laxes the interval relaxation of a numeric planning task even further. Instead



18 CHAPTER 3. RELAXATIONS

of applying a numeric effect only once, repetition relaxed actions are made
pseudo-idempotent by yielding the interval that is reachable by applying the
action arbitrarily often. While we use the repetition relaxation as a tool to show
polynomiality for the interval relaxation at first, the idempotent actions in the
repetition relaxed semantics are also beneficial to compute relaxation heuristics
for numeric planning (cf. Chapter 4).

3.4.1 Repetition Relaxed Numeric Planning Tasks

Repetition relaxed planning tasks use mixed-bounded intervals to capture the
attainable values of a numeric variable. We are interested in the behavior of
numeric effects in the limit. This limit can be computed compactly by analyzing
the behavior of the effect’s arithmetic operator.

Example 6. Let a1 be an action with an additive effect v1 ±= c for c ∈ Q and
±= ∈ {+=,−=}. If operator and constant c share the algebraic sign, applying
a in a state s extends the upper bound of s(v) and can extend that bound to any
value by applying a multiple times. The same is true for the lower bound if the
algebraic sign of operator and c are different. The result of applying an additive
effect v ±= ξ arbitrarily often in s only depends on whether the evaluation of
the assigned expression ξ contains negative values, zero or positive values.

The behavior of multiplicative effects v >= ξ where >= ∈ {×=,÷=} is
slightly more complex. Multiplicative effects can contract or expand depending
on whether ξ contains elements with absolute value greater one and switch signs
if ξ contains negative elements, resulting in up to seven different behaviors of ξ.

In order to define the semantics of repetition relaxed planning tasks, we first
define the semantics of applying a numeric effect k times to an interval with the
limit of applying it arbitrarily often to an interval.

Definition 7 (k-Repetition Successor). Let x, e ∈ Im be mixed bounded
intervals and x ◦= e with ◦= ∈ {+=,−=,×=,÷=, :=} an assignment operating
on intervals. Let x0 = x and

xi+1 =



xi t (xi + e) for +=

xi t (xi − e) for −=

xi t (xi × e) for ×=

xi t (xi ÷ e) for ÷=

xi t e for := .

The k-repetition successor by succk◦=(x, e) =
⋃k
i=0 xi is the result of assigning

e k times to x.

The limit of the k-repetition successor is then the result of applying the
numeric effect arbitrarily often to an interval.

Definition 8 (Repetition Relaxed Interval Successor). The repetition
relaxed interval successor succ◦=(x, e) = succ∞◦=(x, e) =

⋃∞
i=0 xi is the result of

assigning e arbitrarily often to x.



3.4. REPETITION RELAXATION 19

As xi+1 ⊇ xi by definition of the convex union (cf. Definition 4) and because
all xi are convex, the resulting set succ◦=(x, e) is an interval. However, open
intervals can be generated in the limit even if x and e are closed.

For convenience we allow x or e to be empty with the consequential in-
tervals succ◦=(x, ∅) = x, succ◦=(∅, e) = ∅ for ◦= ∈ {+=,−=,×=,÷=} and
succ:=(∅, e) = e.

As the repetition relaxed interval successor succ◦=(x, e) is the limit of ap-
plying e arbitrarily often to x, succ◦=(x, e) is an idempotent operation.

We can now define repetition relaxed numeric planning tasks.

Definition 9 (Repetition Relaxed Planning Task). Let Π be a planning
task. The repetition relaxation of Π is a 5-tuple Π# = 〈V#,A#, I#,G#, κ#〉.
The domains of numeric variables dom(v) = Im for v ∈ V# are mixed-bounded
intervals. The initial state I# maps variables again to the degenerate interval
I#(v) = [I(v), I(v)]. Actions A# = A, the goal condition G# = G and the cost
function κ# = κ remain again unchanged.

As with the pure interval relaxation, the repetition relaxation differs mainly
in the semantics of numeric effects. The semantics of numeric expressions op-
erates on mixed-bounded intervals which are also supported by interval arith-
metic. The interpretation of a numeric expression is given as s#(ξ1 ◦ ξ2) =
s#(ξ1) ◦ s#(ξ2) for expressions ξ1 and ξ2 and ◦ ∈ {+,−,×,÷}. Again, numeric
constraints ξ D 0, where ξ is a numeric expression and D ∈ {≥, >,=} is a com-
parison operator, are satisfied in state s# � (ξ D 0) iff ∃q ∈ s#(ξ) with q D 0,
and s# 2 (⊥ D 0).

The semantics of numeric effects captures the repeated application of ac-
tions. We use the repetition relaxed interval successor succ◦=(x, e) of Defi-
nition 8 which is the interval obtained from applying a numeric assignment
x ◦= e arbitrarily often to an interval x. Numeric effects v ◦= ξ are defined
by fixing the variable x = s#(v) and the expression s#(ξ) to the interval they

evaluate to before the application of the effect. The state app#(a, s#) = s#′

resulting from an application of a with effect eff = {eff1, . . . , effn} is then

s#′(v) = succ◦=(s#(v), s#(ξ)) for numeric effects effi = (v ◦= ξ), and s#′(v) =
s#(v) if v occurs in no effect.

Repetition relaxed plans π# are again sequences of actions 〈a#
1 , . . . , a

#
n 〉

that lead from I# to a state satisfying G# such that each action is applicable in
the state that follows by executing the plan up to that action. The repetition
relaxation Π# of a planning task relaxes Π+ further and plans for Π+ are still
plans for Π#. The reason is that each repeated action application can only
extend the interval of affected numeric variables more.

3.4.2 Efficient Computation of the Repetition Relaxed In-
terval Successor

Fixing expressions ξ of numeric effects v ◦= ξ to the interval e = s(ξ) they
evaluate to in the current state is beneficial for the computation of the successor.
Changes in the assignment (which can be an arbitrary arithmetic expression) do
not have to be considered immediately. This allows us to compute the repetition
relaxed interval successor in a computationally efficient closed form.



20 CHAPTER 3. RELAXATIONS

:= ẽ
(−∞,∞)

x̃ (−∞,∞) Lmin(x, e),max(x, e)M

+= ẽ
(−∞, 0) {0} (0,∞)

x̃ (−∞,∞) (−∞, xM Lx, xM Lx,∞)

−= ẽ
(−∞, 0) {0} (0,∞)

x̃ (−∞,∞) Lx,∞) Lx, xM (−∞, xM

×= ẽ
(−∞,−1) {−1} (−1, 0) {0} (0, 1) {1} (1,∞)

x̃
(−∞, 0) (−∞,∞) Lx,−xM Lx, x×eM Lx, 0] Lx, 0) Lx, xM (−∞, xM
{0} [0, 0]

(0,∞) (−∞,∞) L−x, xM Lx×e, xM [0, xM (0, xM Lx, xM Lx,∞)

÷= ẽ
(−∞,−1) {−1} (−1, 0) {0} (0, 1) {1} (1,∞)

x̃
(−∞, 0) Lx, x÷eM Lx,−xM (−∞,∞) ∅ (−∞, xM Lx, xM Lx, 0)
{0} [0, 0] ∅ [0, 0]

(0,∞) Lx÷e, xM L−x, xM (−∞,∞) ∅ Lx,∞) Lx, xM (0, xM

Table 3.1: Partial behaviors for numeric effects

The successors succ◦=(x, e) of numeric effects x ◦= e are defined by the
limit

⋃∞
i=0 xi and we are interested in determining the result of such an effect

as efficiently as possible. The idea is to consider the behavior of the change
that the assignment e causes on x. Possible assignment behaviors are exten-
sion, contraction, flip and constancy. Which of these behaviors occur only de-
pends on which of up to 21 symbolic behavior classes are covered by x and e.
The behavior classes for x are X = {(−∞, 0), {0}, (0,∞)}, and for e they are
E = {(−∞,−1), {−1}, (−1, 0), {0}, (0, 1), {1}, (1,∞)}. We decompose e and x
into the behavior classes they hit, i.e, where e∩ ẽ 6= ∅ for a behavior class ẽ ∈ E
and x ∩ x̃ 6= ∅ for a behavior class x̃ ∈ X, respectively. Table 3.1 contains par-
tial behaviors T◦=(x, e) for ◦= ∈ {:=,+=,−=,×=,÷=} where T◦=(x, e) is only
defined if x ⊆ x̃ ∈ X and e ⊆ ẽ ∈ E. T◦=(x, e) is the table entry with column
x̃ and row ẽ in the table with the corresponding ◦= operator. Divisions by the
degenerate zero interval [0, 0] result in the empty interval ∅.

Before we will show that the partial behaviors T◦=(x, e) correspond to the
repetition relaxed interval successor succ◦=(x, e) if x and e hit the respective be-
havior classes, we show the monotonicity of succ◦=(x, e) in the following Lemma.

Lemma 2 (Monotonicity of k-Repetition Successor). The intervals xi in
the k-repetition successor (cf. Definition 7) are monotonically expanding, i.e.
xi ⊆ xi+1 for 0 ≤ i ≤ k.

Proof. Monotonicity follows inductively from the definition of the k-repetition
successor. Independently of the assignment operator, the interval xi+1 is defined
as convex union of the interval xi with a possibly empty or undefined interval.
Whereas the monotonicity is therefore not necessarily strict, the convex union
(cf. Definition 4) ensures that the k-repetition successor is monotone.

Theorem 3 (Partial Behavior Table Entries are Correct). The partial
behaviors T◦=(x, e) equal succ◦=(x, e) for x ⊆ x̃ ∈ X and e ⊆ ẽ ∈ E.



3.4. REPETITION RELAXATION 21

We prove Theorem 3 exemplarily for two of the less obvious entries in Ta-
ble 3.1. The proofs for the remaining cases can be done similarly and are there-
fore omitted. Our proceeding is to show succ◦=(x, e) = T◦=(x, e) for a given ta-
ble entry by showing succ◦=(x, e) ⊆ T◦=(x, e) and succ◦=(x, e) ⊇ T◦=(x, e). The
repetition relaxed interval successor succ◦=(x, e) is defined as limit for k → ∞
of succk◦=(x, e) (cf. Definition 8) and is monotone (cf. Lemma 2). Therefore,
we usually determine a parameter k so that q ∈ xi for i ≥ k and q ∈ T◦=(x, e).

Proof for multiplication, x ⊆ x̃ = (0,∞) and e ⊆ ẽ = (0, 1): We have to show that
succ×=(x, e) = (0, xM. We take advantage of the contracting behavior of e. In
the progression defining succ×=(x, e), starting from x0 = x we get

xi+1

= xi t (xi × e)
= Lxi t (xi × e), xi t (xi × e)M
= Lmin(xi, xi × e, xi × e, xi × e, xi × e),max(xi, xi × e, xi × e, xi × e, xi × e)M
= Lxi × e, xiM

The last step can is shown inductively: as all numbers in x0 = x ⊆ (0,∞) and
e ⊆ (0, 1) are positive, so are numbers in the product x × e, and therefore,
inductively all numbers in xi. The minimum is obtained for xi × e and the
maximum for xi because e is a contraction (0 < e ≤ e < 1). This even allows us
to write xi in a closed form namely xi = Lx× ei, xM.

“⊆”: In order to prove succ×=(x, e) ⊆ (0, xM, we show that there exists an
index k ∈ N with q ∈ xk and xk ⊆ (0, xM. With our preliminary consideration
we can reformulate xk to Lx × ek, xM. The subset relation follows directly: the
lower bound xk is the product of k+1 numbers all of which are greater zero and
as such, 0 < xk C q (“C” is interpreted as “<” or as “≤” depending whether
the lower bound is open or closed, cf. Section 3.3.1). For the upper bound we
have q C x ≤ x and therefore, we can conclude that q ∈ (0, xM.

“⊇”: Now we have to show the converse direction succ×=(x, e) ⊇ (0, xM. Let
q ∈ (0, xM. We have to show that q ∈ succ×=(x, e) respectively that there exists
a k ∈ N with q ∈ xk. We can determine such a k by using the closed form again.
For the upper bound we get q C x ≤ x and for the lower bound we have to solve
the inequality

x× ek C q
⇐ ek C q ÷ x
⇐ loge(e

k) B loge(q ÷ x) (e < 1→ log flips the inequality sign)

⇐ k B loge(q ÷ x)

A suitable k ∈ N is k = bloge(q ÷ x)c+ 1.

Proof for division, x ⊆ x̃ = (−∞, 0) and e ⊆ ẽ = (−∞,−1): We have to show
that succ÷=(x, e) = Lx, x÷ eM.

“⊆”: We prove succ÷=(x, e) ⊆ Lx, x ÷ eM by showing that every from q ∈
succ÷=(x, e) there exists a k ∈ N with q ∈ xk = Lxk, xkM so that xk ⊆ Lx, x÷ eM.
We show the subset relation inductively for all k ∈ N.
Base case: For q ∈ x0 = x, it is easy to show that also q ∈ Lx, x ÷ eM. For the



22 CHAPTER 3. RELAXATIONS

lower bound q ≥ x follows trivially from x0 = x. For the upper bound we know
from x ⊆ (−∞, 0) and e ⊆ (−∞,−1) that x, x, e and e are all negative and
therefore x ÷ e > 0 > x so the upper bound on the right hand side is always
greater than the upper bound of x0 and we have x = x0 ≤ q ≤ x0 < x÷ e.
Inductive step, lower bound: We show that the lower bound xi+1 = x, with the
induction hypothesis that xi = x holds. The new bound xi+1 = xi t (xi ÷ e)
= min(xi, xi ÷ e, xi ÷ e, xi ÷ e, xi ÷ e). We will now show that min(xi, xi ÷
e, xi ÷ e, xi ÷ e, xi ÷ e) = xi. Because −∞ < e < e < 0 and xi are nega-
tive, we can immediately rule out xi÷e and xi÷e from attaining the minimum.
If xi is also negative, xi ÷ e and xi ÷ e are positive as well and we are done. So
we can assume that xi ≥ 0. But then we have the following chain of inequalities

xi = x (3.1)

= (x÷ e)÷ e (3.2)

≤ xi ÷ e (3.3)

≤ xi ÷ e (3.4)

where 3.1 because of induction hypothesis, 3.2 by division by the neutral element
1 = e ÷ e and associativity, 3.3 by plugging in the induction hypothesis xi ≤
(x ÷ e) where the inequality sign is flipped as e < 0 and finally, 3.4 because
e ≤ e < 0 are both negative and |e| ≥ |e|. Whether xi is positive or negative,
the minimum is attained at xi and therefore xi+1 = xi ≥ x
Inductive step, upper bound: We now have to show that xi+1 ≤ x ÷ e. The
new bound xi+1 is computed as = max(xi, xi ÷ e, xi ÷ e, xi ÷ e, xi ÷ e). We will
show now that the maximum is either attained at xi ÷ e or at xi. The fraction
of two negative numbers attains its maximum when the dividend has its highest
absolute value and the divisor has its lowest absolute value. As e < e < 0,
the dividend has to be negative, and among the two candidates xi and xi, xi
maximizes the fraction as it is either the only negative candidate or it has the
higher absolute value. As e < e < −1 the lowest absolute value of the divisor
is attained at e. Thus, max(xi ÷ e, xi ÷ e, xi ÷ e, xi ÷ e) = xi ÷ e. With the
induction hypothesis xi ≥ x we also have xi ÷ e ≤ x ÷ e as e is negative and
flips the inequality sign. If the maximum is attained at xi instead, the inductive
step follows directly from the hypothesis xi ≤ x÷ e.
“⊇”: We have to show that succ÷=(x, e) ⊇ Lx, x ÷ eM. Let q ∈ Lx, x ÷ eM. We
have to show that it then also follows that q ∈ succ÷=(x, e). As xk = x for all
k ∈ N we only have to show that there exists a k ∈ N with q ∈ xk = Lxk, xkM
because xi+1 ⊆ xi and therefore q ∈ succ÷=(x, e) =

⋃∞
i=0 xi. The maximum is

obtained after k = 1 steps because the maximum to compute xi+1 = xi÷e only
depends on the lower bound xi which equals x for all k ≥ 0.

This decomposition allows us to compute partial behaviors in constant time.
Partitioning x and e into behavior classes and building the union of all partial
behaviors results in an interval.

Lemma 4. The union of the decomposition of the intervals x and e into behavior
classes

⋃
x̃∈X,ẽ∈E T◦=(x ∩ x̃, e ∩ ẽ) is an interval.

Proof. Let r be the union
⋃
x̃∈X,ẽ∈E T◦=(x∩x̃, e∩ẽ) of all partial behaviors. Each

table entry T◦=(xp, ep) for the partitions xp = x∩ x̃ and ep = e∩ ẽ is an interval.
We prove by contradiction that r has to be an interval. Assume that r is not an



3.4. REPETITION RELAXATION 23

interval. As r consists of intervals this means that r has gaps. Each table entry
T◦=(xp, ep) equates to the repetition relaxed interval successor succ◦=(xp, ep) for
the respective partial intervals xp and ep (cf. Theorem 3). Repetition relaxed
interval successors are defined with the convex union (cf. Definition 8), which
ensures that each interval T◦=(xp, ep) = succ◦=(xp, ep) ⊇ xp is a super-interval
of the partition xp. Therefore, if r had a gap, the split of x into xp would not
be a partitioning but a split into intervals introducing a gap, which contradicts
the partitioning of xp.

With such a decomposition, repetition relaxed numeric effects can now be
computed using table look-ups. Unfortunately, the union of the partial be-
haviors of an effect does not equal the succeeding interval according to the
semantics.

False Hypothesis 5. The repetition relaxed interval successor succ◦=(x, e) of
an effect x ◦=e equals the union of the successors obtained by decomposition of
the effect into behavior classes, i.e.

⋃
x̃∈X,ẽ∈E succ◦=(x ∩ x̃, e ∩ ẽ) = succ◦=(x, e).

Hypothesis 5 does not hold in general, as the following example illustrates.
The successor can grow into behavior classes which were not covered initially:

Example 7. Let a = 〈∅, {v ×= ξ}〉 have an effect on v in a state with s#(v) =
[1, 4] and s#(ξ) = [− 1

2 , 2]. The partial behaviors are:

succ×=([1, 4], [− 1
2 , 0)) = [−2, 4]

succ×=([1, 4], [0, 0]) = [0, 4]

succ×=([1, 4], (0, 1)) = (0, 4]

succ×=([1, 4], [1, 1]) = [1, 4]

succ×=([1, 4], (1, 2]) = [1,∞).

However, the union
⋃
x̃∈X,ẽ∈E succ×=(s#(v) ∩ x̃, s#(ξ) ∩ ẽ) = [−2,∞), differs

from succ×=(s#(v), s#(ξ)) = (−∞,∞).

Yet, this counterexample does not invalidate our approach. The number
of behavior classes is restricted, and therefore, new classes can only be hit a
restricted number of times. We correct the hypothesis by including the partial
behaviors T◦=(x, e) of the classes hit by x in a nested fix-point iteration:

Definition 10 (Decomposition Successor). Let x, e ∈ Im be mixed-bounded
intervals and the sequence 〈xj〉 for a parameter j ∈ N0 be recursively defined as

x0 = x

xj+1 =
⋃

x̃∈X,ẽ∈E
succ◦=(xj ∩ x̃, e ∩ ẽ).

The decomposition successor s̃ucc◦=(x, e) =
⋃∞
j=0 xj is the fix-point of this

sequence.

Now, newly attained behavior classes become part of the decomposition in
the next iteration, and we will later show that succ◦=(x, e) = s̃ucc◦=(x, e) (cf.
Theorem 7).



24 CHAPTER 3. RELAXATIONS

Example 8. Recall Example 7 starting with x0 = s#(v) = [1, 4] and e =
s#(ξ) = [− 1

2 , 2]. The successor x1 =
⋃
x̃∈X,ẽ∈E succ×=(x0 ∩ x̃, e ∩ ẽ) = [−2,∞)

hits new behavior classes for x. In the next iteration, the combination of the
newly achieved behavior class x̃ ∩ x1 = (−∞, 0) ∩ [−2,∞) = [−2, 0) and e =
[− 1

2 , 2] contains among others the successor succ×=([−2, 0), (1, 2]) = (−∞, 0).
The union still contains partial behaviors that set the upper bound to ∞, so
succ×=(x1 ∩ x̃, e ∩ ẽ) = (−∞,∞). Now, a fix-point is reached and s̃ucc◦=(x, e) =
succ◦=(x, e).

The fix-point is reached after at most two steps, and computing the decom-
position successor by partitioning the effect into behavior classes is therefore
2-pseudo-idempotent.

Lemma 6 (Fix Point of Decomposition Successor). The decomposition
successor sequence 〈xj〉 (c.f. Definition 10) converges after at most two steps.

The decomposition successor sequence 〈xj〉 consists of intervals (cf. Lemma 4)
xj which are monotonously expanding, because each partial effect is based on the
convex union (cf. Definition 8). The sequence converges as soon as xj = xj−1.
A bound of xj−1 can only be extended if some behavior class x̃ ∈ X, ẽ ∈ E yields
an interval T◦=(xj−1 ∩ x̃, e ∩ ẽ) that extends xj−1. The evaluated expression
s#(ξ) = e is fixed for interval successors, and only changes on xj−1 can cause
xj to change again.

We will now investigate all possible progressions of the sequences 〈xj〉 based
on the assignment operator ◦= ∈ {:=,+=,−=,×=,÷=} to show Lemma 6.

Proof for x := e: The interval x0 = x is assigned e and

x1 = Lmin(x0, e),max(x0, e)M
x2 = Lmin(x1, e),max(x1, e)M

= Lmin(min(x0, e), e),max(max(x0, e), e)M
= Lmin(x0, e),max(x0, e)M
= x1

In the case of an assignment x := e the fix-point is already reached after one
step.

Proof for x += e: Let again x0 = x. For the interval x1, depending on whether
e ∩ (−∞, 0) is empty or not, the lower bound x1 will be either x0 or −∞.
Similarly, the upper bound x1 will be either x0 or ∞ depending on whether
the behavior class e ∩ (0,∞) is hit. The exact same reasoning holds for x2 and
because e is fixed, x2 = x1 and again, after one step a fix-point is reached.

Proof for x −= e: The proof is analogous to the case for x += e with the be-
havior classes of e exchanged. Again, a fix-point is reached after one step.

Proof for x ×= e: Let again x0 = x. The behaviors for multiplication depend
on the combinations of behavior classes x̃ and ẽ that are hit. The value of x1

is determined by all partial behaviors which are hit by x0 and by e. Table 3.2
is a copy of Table 3.1 for multiplication and division where all entries that are
relevant for this proof are either marked in black, green or red. The interval
bounds that are marked in black are already contained in x0 and thus, the



3.4. REPETITION RELAXATION 25

×= ẽ
(−∞,−1) {−1} (−1, 0) {0} (0, 1) {1} (1,∞)

x̃
(−∞, 0) (−∞,∞) Lx,−xM Lx, x× eM Lx, 0] Lx, 0) Lx, xM (−∞, xM
{0} [0, 0]

(0,∞) (−∞,∞) L−x, xM Lx× e, xM [0, xM (0, xM Lx, xM Lx,∞)

÷= ẽ
(−∞,−1) {−1} (−1, 0) {0} (0, 1) {1} (1,∞)

x̃
(−∞, 0) Lx, x÷ eM Lx,−xM (−∞,∞) ∅ (−∞, xM Lx, xM Lx, 0)
{0} [0, 0] ∅ [0, 0]

(0,∞) Lx÷ e, xM L−x, xM (−∞,∞) ∅ Lx,∞) Lx, xM (0, xM

Table 3.2: Partial behaviors for multiplication and division. Unchanged bounds
are marked in black, idempotent bounds in green and non-idempotent bounds
in red.

respective partial behaviors can not extend a bound of x1. Interval bounds
marked in green can cause a change but the respective partial behaviors are
idempotent in the sense that the sequence 〈xj〉 would converge after 1 step if
only these behaviors are hit. E.g. for ẽ = (−∞,−1) and x̃ = (−∞, 0) the
interval x1 = (−∞,∞) is a fix-point and cannot be extended any further. For
ẽ = {0}, and x̃ = (0,∞) the new bound [0, xM does not only extend the lower
bound but it even hits a new behavior class. However, the only behavior class
hit is x̃ = {0} which does not contain expanding successors independently of e.
All other partial behaviors marked in green expand the respective bound in an
idempotent way as well.

This restricts critical combinations to assignments e that hit ẽ = {−1} and
ẽ = (−1, 0). The critical bound extensions are marked in red in Table 3.2. Here,
the new value of the lower bound depends on the value of the upper bound and
vice versa. As such, 〈xj〉 could be a sequence that alternately extends the
lower and the upper bound without ever reaching a fix-point. However, we will
show now that such a sequence cannot be constructed and a fix-point is already
reached after two steps. We will now systematically analyze combinations of
e and e to show that the decomposition successor is 2-pseudo-idempotent. In
the following case analysis, we first differentiate the lower bound of the effect e,
and then the upper bound e in a nested differentiation. We combine adjacent
behaviors if appropriate to simplify our proof.

Case 1 (e < −1). If e hits the behavior class ẽ = (−∞,−1), x1 = (−∞,∞)
unless x0 = [0, 0] and in both cases a fix-point is already reached after one step.

Case 2 (e = −1). If we hit the critical behavior class ẽ = {−1} with e we have
to differentiate the behavior class hit by the upper bound e as well.

Case 2.1 (e = −1). If also e = −1, x1 = x2 = Lmin{x,−x},max{x,−x}M.
Case 2.2 (e ∈ (−1, 0)). Both behavior classes of E reach the same values
x× e = x×−1 = −x and x× e = x×−1 = −x. Therefore we reach the
same values as in Case 2.1: x1 = x2 = Lmin{x,−x},max{x,−x}M.
Case 2.3 (e ∈ [0, 1]). For ẽ = {0}, ẽ = (0, 1) and ẽ = {1}, all new behavior
intervals are Lmin{x,−x},max{x,−x}M as the only extended (green) bounds
add values up to zero.

Case 2.4 (e ∈ (1,∞)). If both x and x are negative, we get x1 = (−∞,−xM
from x1 = Lmin{x,−∞},max{−x, x×e, 0, x}M and we reach a fix-point after



26 CHAPTER 3. RELAXATIONS

the upper bound (which is now positive) gets expanded by ẽ = (1,∞) yield-
ing x2 = (−∞,∞). For x < 0 and x > 0, the expanding behavior ẽ = (1,∞)
already yields x1 = (−∞,∞) after one step, but if both x and x are positive,
we get a progression analogous to the negative case and x1 = L−x,∞) and
x2 = (−∞,∞) again. The behaviors from x̃ = {0} do not add new values.

Case 3 (e ∈ (−1, 0)). We will now consider cases where the lower bound is in
the second critical behavior class.

Case 3.1 (e ∈ (−1, 0)). Again, we reach a fix-point after one step: the in-
terval x1 = Lmin{x, x× e},max{x, x× e}M can not be extended because e is
contracting for all q ∈ e. If x̃ = (−∞, 0) is hit, the upper bound is extended
to x1 = x×e but then for x2 the newly hit behavior class neither extends the
lower bound (x1 × e > x1 nor the upper bound (x1 = x1). And analogously
for x̃ = (0,∞).

Case 3.2 (e ∈ [0,∞)). The reasoning for the other behavior classes that
could be hit by e is analogous as for the Cases 2.3–2.4 where e = −1.

Case 4 (e ∈ [0,∞)). No critical behavior class is hit and a fix-point is reached
after one step.

Concluding, effects intervals where e ∈ [−1, 0) and e ∈ (1,∞) require two
steps until they converge to a fix point and all other intervals reach the fix-point
of the decomposition successor after only one step.

Proof for x ÷= e: Let again x0 = x. The proof for division is somewhat similar
to the case of multiplication. However, the number of critical combinations
is much lower because a division by a number close to zero causes at least
one bound diverge to infinity, often reaching the fix-point interval (−∞,∞)
immediately. As for multiplication, we marked the relevant interval bounds in
Table 3.2. Interval bounds are depicted in black if the bound is not extended at
all. If the bound is extended in an idempotent way, we mark the bound green.
Finally, potentially critical bound extensions are marked in red. Again, we
systematically analyze all possible combinations of e and nest the differentiation
of the upper bound e.

Case 1 (e ∈ (−∞,−1]). We start with cases where the lower bound hits one of
the potentially critical behavior classes.

Case 1.1 (e ∈ (−∞,−1]). We reach a fix-point Lmin{x, x÷e},max{x, x÷e}M
after one step as in the proof for multiplication with e = −1 and e ∈ (−1, 0)
(cf. Case 2.1–2.2 and Case 3.1). The argumentation is the same as for
multiplication because we perform the reciprocal operation.

Case 1.2 (e ∈ (−1,∞)). We immediately reach the fix-point (−∞,∞) as the
behavior class ẽ = (−1, 0) is hit.

Case 2 (e ∈ (−1,∞)). No critical behavior classes are hit and we converge after
one step.

Concluding, all repetition relaxed interval divisions reach a fix-point after
only one step.



3.4. REPETITION RELAXATION 27

We know from Lemma 6 that the sequence defining the decomposition suc-
cessor s̃ucc◦=(x, e) reaches a fix-point after at most two steps. As such, it is
feasible to compute the repetition relaxed interval successor with the help of
reformulating it to the decomposition successor, which is shown by the following
Theorem:

Theorem 7. Let x, e ∈ Im be intervals. The repetition relaxed interval successor
succ◦=(x, e) of an interval assignment x ◦= e equates to the fix-point of the
decomposition successor, i.e. s̃ucc◦=(x, e) = succ◦=(x, e).

Proof. We show equality by proving that s̃ucc◦=(x, e) ⊆ succ◦=(x, e) as well as
s̃ucc◦=(x, e) ⊇ succ◦=(x, e).

To see that s̃ucc◦=(x, e) ⊆ succ◦=(x, e) consider the first decomposition of
the sequence 〈xj〉 defining s̃ucc◦=(x, e): all partial effects succ◦=(x ∩ x̃, e ∩ ẽ)
are operations on subsets of x and e. The repetition relaxed interval successor
succ◦=(x, e) is monotone in both arguments i.e. x̆ ⊆ x∧ ĕ ⊆ e⇒ succ◦=(x̆, ĕ) ⊆
succ◦=(x, e). Therefore, x1 is the union of sub-intervals which are all part
of succ◦=(x, e). Iteratively for x2 we know that x1 ⊆ succ◦=(x, e). Again
succ◦=(x, e) is monotone in both arguments and all partial effects if x2 are sub-
sets of succ◦=(x1, e). As x2 is already the fix-point of s̃ucc◦=(x, e) (cf. Lemma 6),
we have s̃ucc◦=(x, e) ⊆ succ◦=(x, e).

The converse direction s̃ucc◦=(x, e) ⊇ succ◦=(x, e) is shown by contradiction.
Let q ∈ succ◦=(x, e) but not in s̃ucc◦=(x, e). Both successor functions are
defined recursively starting with x0 = x. Therefore, q /∈ x0. Let succk◦=(x, e)
be the sequence of intervals defining succ◦=(x, e). There has to be a k > 0
with xk+1 = xk t (xk ◦ e) so that xk ⊂ s̃ucc◦=(x, e) but xk+1 6⊂ s̃ucc◦=(x, e).
After k steps, the bound of the successor is extended beyond the decomposition
s̃ucc◦=(x, e) for the first time. As xk ⊂ s̃ucc◦=(x, e), q /∈ xk but the value has
to be in the second part of the interval xk+1: q ∈ (xk ◦ e). The resulting
interval depends on xk, xk, e, e and in case of division also on whether 0 ∈ e.
Each combination of these extreme bounds is contained in one partial behavior
T◦=(xk, e), which also contains all values entailed by the convex union up to
this new value. If (xk ◦ e) hits a new behavior class or extends the bounds
within a behavior class, this is a contradiction to s̃ucc◦=(x, e) being a fix-point.
If (xk ◦ e) stays within a behavior, this is a contradiction to T◦=(xk, e) being
correct (cf. Theorem 3). Thus, such a k cannot be found, and therefore, it is
impossible for q ∈ succ◦=(x, e) but not q ∈ s̃ucc◦=(x, e).

The decomposed successor s̃ucc◦=(x, e) allows as to compute the result of
applying an action a in state s#, app#(a, s#), under the repetition relaxed
semantics in constant time. This allows us to use the parallel fix-point algorithm
(cf. Definition 3) from the classical case analogously: apply all applicable actions
in parallel until a fix-point is reached, where the value of a variable is the convex
union of all values that can be achieved by applying an action to the current
relaxed state.

Theorem 8. The parallel fix-point algorithm for repetition relaxed planning is
sound, i.e. if the algorithm outputs an alleged plan, it is indeed a plan for Π#.

Proof. Actions are only applied if the precondition is fulfilled and only outputs
an alleged plan if the goal condition is satisfied in the last relaxed state.



28 CHAPTER 3. RELAXATIONS

k s#
k (v) s#

k (ξ)
0 [−1,−1] [0, 0]
1 [−1, 0] [−0.5, 0]
2 [−1, 0.5] [−0.75, 0]
3 [−1, 0.75] [−0.875, 0]
4 [−1, 0.875] [−0.9375, 0]
5 [−1, 0.9375] [−0.96875, 0]
6 [−1, 0.96875] [−0.984375, 0]
7 [−1, 0.984375] [−0.9921875, 0]

...
...

Table 3.3: Progression of the state s#
k (v) for applying an action k times whose

effect multiplies v by ξ = −v+1
2 .

We are interested in sequential and not in parallel plans the following theo-
rem shows that sequential plans can be obtained from parallel plans easily:

Theorem 9. Ordering parallel actions arbitrarily in a parallel repetition relaxed
numeric plan yields a valid sequential plan.

Proof. Applying an action can only extend the intervals of affected variables
(i.e. variables which appear as effects of the action). Therefore, if a numeric
constraint is satisfied in a state s, it is also satisfied in the successor state s′

after applying an arbitrary relaxed action, i.e. s � ξ D 0 ⇒ s′ � ξ D 0. As the
preconditions of all parallel actions remain achieved, the order in which parallel
actions are applied can not invalidate any action that was applicable in parallel.

For the effects, we again have monotonicity in both arguments of succ◦=(x, e)
i.e. x̆ ⊇ x ∧ ĕ ⊇ e ⇒ succ◦=(x̆, ĕ) ⊇ succ◦=(x, e). While the resulting intervals
may not be the same as for parallel application, the intervals reached by sequen-
tially applying actions are super-intervals of the intervals reachable by applying
actions in parallel.

Unfortunately, the parallel algorithm does not necessarily terminate. In the
definition of the semantics of a repetition relaxed planning task, we fix the
effect s#(ξ) = e and the value of the variable s#(v) = x even if ξ depends on v.
However, this implicit independence assumption is not justified. Critical entries
are marked in bold red in Table 3.1. They occur for multiplicative effects
that contract x and flip the arithmetic sign at the same time, as well as for
assignment effects T:=(x, e) = Lmin(x, e),max(x, e)M. In such cases, v does not
only depend on ξ, but ξ also depends on v and the evaluated intervals s#(ξ) = e
and s#(v) = x are cyclically dependent.

Example 9. Let a = 〈∅ → {v ×= ξ}〉 for ξ = −1 × ((v + 1)÷ 2) and let

G = {v − 1 ≥ 0} be the goal. Let furthermore s#(v) = s#
0 (v) = [−1,−1]. Ap-

plying action a arbitrarily often according to the repetition semantics yields the
progression s#

k for k action applications as depicted in Table 3.3.

The interval s#(v) does not only change a restricted number of times, so the
fix-point algorithm for interval relaxed numeric planning will not terminate.



3.4. REPETITION RELAXATION 29

If we succeeded in directly computing the fix-point to which the intervals
converge with a symbolic interval we could continue the fix-point algorithm from
here. In Example 9 we would set s#′(v) = [−1, 1) resulting in s#′(ξ) = (−1, 0].

Unfortunately, to the best of our knowledge, a general and yet efficient (i.e.
polynomial time computable) approach to determine this fix-point is not known.
Neither are we aware of a proof that such a general approach does not exist.
The problem in Example 9 is that ξ depends on v. We conjecture that we
could substitute variables that depend on v by a function that depends on v, at
least if there is only one cyclic dependency. If the arithmetic expressions do not
contain division, resolving these functions results in higher order polynomials
that depend on v. A necessary conditions for equations v = p(v) where p(v) is
a higher order polynomial, is that the derivation p′(v) = 0. So candidate fix-
points coincide with polynomial roots of p′(v). However, besides that there are
no closed form solutions for polynomials with a degree of 5 or more, the values
of v are intervals and it is not apparent which bound is relevant at which step.
This is already under the simplifying assumptions that there is only one cycle
and arithmetic expressions do not contain division, and a general computation
instruction of the fix-point could become even more involved with several cycles
and divisions.

Thus, we restrict planning tasks to contain only effects where the assigned
expression is independent of the affected variable. For our heuristics we discuss
methods that handle such cyclic dependencies in Section 4.2. For now, we
restrict ourselves to planning tasks where the aforementioned problem does not
occur. We show that such planning tasks are solvable in polynomial time.

Definition 11 (Dependency of Variables). A variable v1 is directly depen-
dent on a variable v2 in task Π if there exists an a ∈ A with a numeric effect
v1 ◦= ξ so that v2 occurs in ξ.

Definition 12 (Acyclic Dependency Task). A planning task with acyclic
direct dependency relation is an acyclic dependency task.

Note that the definition of direct dependence is purely syntactic. A task is
considered to be cyclic even if a semantically identical task is acyclic. Examples
include inapplicable actions with a dependent effect, or semantically equivalent
representations of effects (e.g. in the effect v := v + 5, v is dependent on itself
while it is not for v += 5).

Example 10. Consider a planning task with the four actions depicted on the
left in Figure 3.1. The dependency graph of this task, depicted on the right, is
acyclic and as such a topology. While v1 occurs in an effect of action a1, the
assignment ξ = 2 of the division only consists of constants and therefore, v1 does
not depend from other variables. Dependency can be induced by assignments of
a single variable, e.g., v3 depends on v1 because of the first effect of a2, as well
as by more sophisticated expressions, e.g., v4 depending on v1 and v2 because of
the second effect of a2. A variable can occur in the assigned expression multiple
times (v1 in a3’s first effect on v5) and the same dependency relation can be
induced by several effects, e.g., v8 depends on v4 because of the second effect of
a1 and also because of the second effect of a4.

The dependency graph of this planning task is acyclic and variables of the
task can be partitioned into dependency layers V #

0 = {v1, v2}, V #
1 = {v3, v4, v5},



30 CHAPTER 3. RELAXATIONS

a1 ∶ ⟨∅,{ v1 ÷= 2
v8 += v2 × (v4 ÷ 3) }⟩,

a2 ∶ ⟨∅,{ v3 −= v1
v4 ∶= (3 + v1) ÷ v2 }⟩,

a3 ∶ ⟨∅,{ v5 ∶= (v1 − v2) ÷ (3 × v1)
v6 ÷= v3 ÷ v4 }⟩,

a4 ∶ ⟨∅,{ v7 ×= (v5 − 3)
v8 += v4 − v7 }⟩.

v1 v2

v3 v4 v5

v6 v7

v8

a2 a
2

a3 a2 a
3

a
1

a3
a
3

a
1

a
4

a
4

a
4

Figure 3.1: Left: a planning task with 4 actions, right: the corresponding
dependency graph which is acyclic.

V #
2 = {v6, v7} and V #

3 = {v8}. A possible topological ordering is v2 ≺ v1 ≺
v4 ≺ v3 ≺ v5 ≺ v6 ≺ v7 ≺ v8.

Theorem 10. The parallel fix-point algorithm for repetition relaxed planning
terminates for acyclic dependency tasks.

Proof. As the planning task has acyclic dependencies, the direct dependency
relation induces a topology. Let a phase of the algorithm be a sequence of
parallel action applications, where no new action becomes applicable. During
each phase, we consider numeric effects in topological order concerning the de-
pendency graph. Let V #

l ⊆ V # be the variables in dependency layer l. We
iterate over the layers k ≥ 0 of the topology assuming that a fix-point is reached
for all variables V #

k starting with the variables V #
0 that only depend on con-

stants. Variables V #
k+1 only depend on variables V #

l with 0 ≤ l ≤ k or on
constants. A fix-point is reached for all those variables by induction hypothesis.
Inductively, we can assume that the expressions of numeric effects that alter
the variables of layer V #

k+1 are fixed. Therefore, the successor succ◦=(x, e) of an

effect v ◦= ξ with x = s#(v) and e = s#(ξ) does not change the variable more
than twice, because for fixed intervals, the successor converges after two steps
(cf. Lemma 6). The number of steps required for one phase is k where k is the
number of topology layers which is bounded by the number of variables |V#|.

The number of phases is restricted, with the same argument as for the fix-
point algorithm in the classical case (cf. Theorem 1). Preconditions cannot be
invalidated and during each phase at least one previously inapplicable action
must become applicable. The number of phases is therefore restricted to the
number of actions in the planning task.

Finally, actions are 2-pseudo-idempotent (cf Lemma 6) and can be evaluated
in two steps.

In conclusion, repetition relaxed plans have at most 2 · |V#| · |A#| steps.

Theorem 11. The parallel fix-point algorithm for repetition relaxed planning
is complete for acyclic dependency tasks.



3.4. REPETITION RELAXATION 31

Proof. We prove completeness by contradiction and show that it is impossi-
ble that the algorithm terminates and reports “unsolvable” although a plan
exists. Now assume there is a plan, but the algorithm terminates and re-
ports “unsolvable”. All actions are applied as soon as they are applicable,
so a satisfiable condition must have been unsatisfied. Therefore, a satisfiable
numeric constraint was not achieved by the algorithm. This implies that an
effect v ◦= ξ would have been able to assign a value to a variable that was not
reached by our algorithm. Therefore, the successor defined by the semantics
succ◦=(s#(vn), s#(ξ)) has to be different from the successor computed by the
algorithm s̃ucc◦=(s#(vn), s#(ξ)), which contradicts (cf. Theorem 7).

Until now we have an algorithm which can compute parallel plans for repe-
tition relaxed planning tasks in polynomial time for acyclic dependency tasks.
With Theorem 9 we can also straighten parallel plans into repetition relaxed se-
quential plans. Yet, we are interested in plans for the interval relaxation without
the symbolic description of numeric variables. We will show that we can derive
interval relaxed plans π+ from repetition relaxed plans π# in Theorem 15. The
idea of our proof is to regressively explicate the number of action applications
from a plan obtained by the fix-point algorithm for repetition relaxed planning,
where a regressive step is the application of one action. In order to determine
the number of repetitions we also explicate target values in the intervals of each
variable which are sufficient to satisfy all numeric constraints of subsequent ac-
tions or the goal. The number of action repetitions k that is required to reach
the chosen target values is obtained from the behavior class enabling the target
value and coincides with the repetitions from the proof of Theorem 3. Before we
prove constructively that interval relaxed plans can be derived from repetition
relaxed ones in Theorem 15, we provide some preliminaries.

In order to determine target values for each variable, we have to decompose
numeric expressions so that target values in the decomposition achieve the target
value in the composed expression.

Definition 13 (Target Value Decomposition). Let x, y ∈ Im be mixed
bounded intervals, ◦ ∈ {+,−,×,÷} and q ∈ x ◦ y. We refer to this number q
as target value. A target value decomposition for x, y, ◦ and q is a pair 〈qx, qy〉
where qx ∈ x, qy ∈ y and qx ◦ qy = q.

Lemma 12 (Existence of Target Value Decomposition). Let x, y ∈ Im
be mixed bounded intervals, ◦ ∈ {+,−,×,÷} and q ∈ x ◦ y. Then, there exist a
target value decomposition for x, y, ◦ and q.

Proof. By definition, x ◦ y = {(qx ◦ qy)|qx ∈ x and qy ∈ y}. Let q ∈ x ◦ y then
there exists a pair 〈qx, qy〉 so that q = qx ◦ qy.

We can compute a target value decomposition by restricting the feasible tar-
get value choices of qx to values which have a partner qy ∈ y so that qx ◦ qy = q.

For q ∈ x ◦ y where q ∈ Q and x, y ∈ Im, we are looking for target values
qx ◦ qy = q. Feasible choices for qx are not only restricted to the interval x, but
they also need a partner qy ∈ y. Depending on ◦ ∈ {+,−,×,÷} this results in



32 CHAPTER 3. RELAXATIONS

the following values for qx:

qx + qy = q → qx = q − qy for addition

qx − qy = q → qx = q + qy for subtraction

qx × qy = q → qx = q ÷ qy for multiplication

qx ÷ qy = q → qx = q × qy for division.

The set xc of all potential candidates qx which have a partner in y can then be
determined in the following way, using the reciprocal operation:

xc =


[q, q]− y for addition

[q, q] + y for subtraction

[q, q]÷ y for multiplication

[q, q]× y for division.

The feasible choices for qx are then all values in xc ∩ x. This intersection is not
necessarily an interval, as xc is computed by means of a division by an interval
possibly containing zero.

Example 11. Let x = [2, 4] and y = [3, 7], and q = 10 in the interval x + y =
[2, 4] + [3, 7] = [5, 11]. All candidates xc that have a partner in y so that
qx + qy = 10 are [10, 10] − [3, 7] = [3, 7]. Feasible choices for qx are all target
values in the intersection [2, 4] ∩ [3, 7] = [3, 4]. We can chose an arbitrary
qx ∈ [3, 4] and its corresponding partner to obtain a target value decomposition
e.g. 〈3, 7〉, 〈4, 6〉 or 〈3.217, 6.783〉.

In order to decompose target values in a state sequence that is generated
by a relaxation, intervals enclose values that cannot be reached in reality. As
such, target values q could be in the unreachable gap of divisions by an interval
containing zero. While q is not reachable in this case, it is relaxed reachable. If
we are to decompose q into target values for x and y this means that we are
looking for target values so that relaxed reachability of q is implied by them. If
q lies inside a gap, we can reach a value on both sides of the gap if we include
an additional target value for y. Therefore, a relaxed target value decomposition
is a triple that includes an auxiliary target value.

Definition 14 (Target Value Decomposition (Relaxed Semantics)). Let
x, y ∈ Im be mixed bounded intervals, ◦ ∈ {+,−,×,÷} and q ∈ Q be a number
in the result q ∈ conv(x ◦ y). A relaxed target value decomposition for x, y, ◦ and
q is a triple 〈qx, q`y , qay 〉 so that qx ∈ x, q`y , q

a
y ∈ y and q ∈ conv([qx, qx] ◦ [q`y , q

a
y ]).

Lemma 13 (Existence of Target Value Decomposition (Relaxed Se-
mantics)). Let x, y ∈ Im be mixed bounded intervals, ◦ ∈ {+,−,×,÷} and
q ∈ conv(x ◦ y). Then, there exists a relaxed target value decomposition
〈qx, q`y , qay 〉 for x, y, ◦ and q.

Proof. If q ∈ x ◦ y in the unrelaxed interval arithmetic (cf. Section 3.3.1), there
exists a target value decomposition with Lemma 12 and we can set q`y = qay = qy.
Otherwise, we can assume that x ◦ y is a division splitting x ÷ y where 0 ∈ y
so that the result is split into two intervals and that q lies in the gap between
these intervals. We will show now that every triple 〈qx, q`y , qay 〉 where qx ∈ x,



3.4. REPETITION RELAXATION 33

2 3 ÷ −0.5 0.2

qx = 2.3 q⊢y = −0.5 q⊣y = 0.2= 2 3 × −∞ −2 ∪ 5 ∞
qx = 2.3 1/q⊢y = −2 1/q⊣y = 5= −∞ −4 ∪ 10 ∞

−4.6 11.5

q = 2

Figure 3.2: The target value q = 2 lies in the gap of [2, 3]÷ [−0.5, 0.2]

q`y , q
a
y ∈ y and q`y < 0 and qay > 0 is a target value decomposition of q. Such

target values exist, as divisions by y only introduce a gap, if it contains values
less than zero as well as values greater than zero.

Let e1, e2 ∈ Im be the two intervals resulting from the division x÷ y, where
e1 = x× (−∞, 1

y M and e2 = x× L 1
y ,∞) (cf. Section 3.3.1). As q`y and qay differ

in their algebraic sign, so do qx ÷ q`y and qx ÷ qay . By the definition of interval
division and depending on whether qx is positive or negative, one of these results
is in e1 and the other in e2. In both cases q ∈ conv([qx, qx] ◦ [q`y , q

a
y ]), as q is in

the gap between e1 and e2.

Example 12. Let x = [2, 3] and y = [−0.5, 0.2] be intervals and q = 2 ∈
conv([2, 3] ÷ [−0.5, 0.2]) = (−∞,∞) be a target value in the relaxed result as
illustrated in Figure 3.2. This target value lies in the gap resulting from a
division by an interval containing zero and is therefore only relaxed reachable.
Nevertheless we can find a relaxed target value decomposition, in our example
〈2.3,−0.5, 0.2〉 where qx = 2.3 ∈ x = [2, 3], q`y = −0.5 ∈ y = [−0.5, 0.2]

and q`y < 0 as well as qay = 0.2 ∈ y = [−0.5, 0.2] and qay > 0 resulting in

qx ÷ q`y = −4.6 and qx ÷ qay = 11.5 so that q ∈ [−4.6, 11.5].

Instead of a single target value qy, relaxed target value decomposition pro-
vides a pair of target values q`y and qay (cf. Lemma 13). If we recursively
decompose an expression to determine target values for all variables occurring
in the expression, using two target values for each sub-expression would cause
an exponential blow-up in the number of target values to determine for the
expression. However, we can usually save one of the target values if we have
access to the initial value (cf. Definition 6) iy of y. Depending on whether iy is
positive or negative, we can continue the decomposition with either q`y or with

qay . The exception to this rule are the rare occurrences where the initial value is
inaccessible, most notably if y originates from the result of a numeric expression
that is undefined in the initial state (e.g. ξ = v4 ÷ 0).

Next, we determine a target value regression for numeric effects based on the
repetition relaxed interval successor succ◦=(x, e) (cf. Definition 8), i.e. target
values in the intervals qx ∈ x and qe ∈ e contributing to the interval successor,
so that a desired target value q is reached.

As the computation of the repetition relaxed interval successor succ◦=(x, e)
is based on the 2-pseudo-idempotent (cf. Lemma 6) decomposition successor,



34 CHAPTER 3. RELAXATIONS

the target value regression of a numeric effect is defined with an auxiliary target
value again, this time for the effect interval e.

Definition 15 (Target Value Regression). Let x, e ∈ Im be mixed bounded
intervals and x ◦= e be an effect where ◦= ∈ {+=,−=,×=,÷=} and q ∈
succ◦=(x, e).

Then, a target value regression 〈qx, q`e , qae , k〉 is a quadruple where qx ∈ x,
q`e , q

a
e ∈ e and k ∈ N so that q ∈ succk◦=([qx, qx], [q`e , q

a
e ]).

Lemma 14 (Existence of Target Value Regression). Let x, e ∈ Im be
mixed bounded intervals and q ∈ succ◦=(x, e). There exists a target value re-
gression 〈qx, q`e , qae , k〉 for q.

Proof. We first distinguish whether q is already in the interval x before the
application of the effect or not.

Case 1 (q ∈ x). If q is already in x, all quadruples 〈q, q`e , qae , 0〉 with q`e , q
a
e ∈

e are target value regressions, and q ∈ succ0
◦=([q, q], [q`e , q

a
e ]) = [q, q] follows

directly from the definition.

Case 2 (q /∈ x). As q ∈ succ◦=(x, e) but not in x, the target value q has to be
achieved by the repeated application of the effect x ◦= e. From Theorem 7 we
can compute the successor interval succ◦=(x, e) by s̃ucc◦=(x, e). We will now
look at the sequence 〈xj〉 defining s̃ucc◦=(x, e).

The sequence 〈xj〉 is defined as union (cf. Lemma 6) of partial behaviors
T◦=(xj−1 ∩ x̃, e ∩ ẽ) (cf. Table 3.1) for behavior classes x̃ ∈ X and ẽ ∈ E.
This sequence reaches a fix-point after one step for all assignment operators
◦ ∈ {+,−,×,÷} except for multiplications that are both expanding and flipping.
Thus, most of the time, there exists at least one combination of behavior classes
x̃ and ẽ so that q ∈ x1 = T◦=(x0 ∩ x̃, e ∩ ẽ). This partial behavior extends
the bounds of x0 = x to an interval containing the desired target value as
q /∈ x but q ∈ T◦=(x0 ∩ x̃, e ∩ ẽ). The sole exception for expanding and flipping
multiplications is then treated in the respective sub-case.

Case 2.1 (x := e). For assignment effects, 〈xj〉 reaches a fix-point after one
step where x1 = x t e. If q ∈ e, the quadruple 〈qx, q, q, 1〉 is a target value
regression for all qx ∈ x as q ∈ succ1

:=([qx, qx], [q, q]) = [qx, qx] t [q, q] =
[min(q, qx),max(q, qx)]. Otherwise, there has to be a gap between x and e
and q is in this gap. Thanks to the convex union, any pair of target values
qx and qe will enclose the gap and therefore also q in which case 〈qx, qe, qe, 1〉
is a target value regression for all qx ∈ x and all qe ∈ e.
Case 2.2 (x ±= e). For additive effects where q /∈ x, we can reach q from any
pair of target values qx ∈ x ∩ x̃ and qe ∈ e ∩ ẽ from the behavior class that
achieves q. If q > x it is the behavior class that extends the upper bound of
x and vice versa. A repetition count r ∈ Q+ corresponding to such qx and
qe is obtained by the solution of the equation qx ± r · qe = q and k ∈ N is
then obtained by rounding r up to the next integer k = dre. A target value
regression is then the quadruple 〈qx, qe, qe, k〉.

The target value q ∈ succ
dre
±=([qx, qx], [qe, qe]) as the arithmetic operations

are continuous and the interval bounds qx and qx ± dre · qe enclose q.

Case 2.3 (x >= e, q ∈ x1). Even for multiplicative effects, the sequence 〈xj〉
converges after one step most of the time, so that q ∈ x1. As q /∈ x = x0,



3.4. REPETITION RELAXATION 35

there exists again one combination of behavior classes x̃ ∈ X and ẽ ∈ Be
that achieves q. Any pair of target values qx ∈ x∩ x̃ and qe ∈ e∩ ẽ is suitable
to reach q.

Similarly to the additive effects (cf. Case 2.2), a repetition constant
r ∈ Q+ is obtained by solving equations qx > qre = q and again, k = dre
yields an integer k ∈ N. Note that k is determined analogously to the k from
the proof of Theorem 3. A target value regression is then the quadruple

〈qx, qe, qe, dre〉 where q ∈ succ
dre
>=([qx, qx], [qe, qe]) with the same reasoning

that multiplication and division are continuous operations (at least within
the behavior class which exclude the singularity of division).

Case 2.4 (x >= e, q /∈ x1). In case the decomposition successor requires
two steps to reach a fix-point, we are in the scenario where we first have
to flip the algebraic sign of qx by multiplying with a negative target value
q`e < 0, and then, we have to expand the resulting interval by repetitively
multiplying it with qae > 1.

Quadruples 〈qx, q`e , qae , k + 1〉 are then target value regressions if qx ∈ x,
q`e ∈ e ∩ (−∞, 0) and qae ∈ e ∩ (1,∞). Such target values exist, as q /∈ x1

and there are no other combinations that require two steps (cf. Lemma 6).

The corresponding k is determined by solving the equation qx×q`e ×qare =
q for r. Again k = dre is obtained by rounding r up to the next integer. As
we first have to flip the algebraic sign by multiplying qx with q`e , we need an

additional repetition. This way, q ∈ succ
dre+1
>= ([qx, qx], [q`e , q

a
e ]), which can

basically be traced back to Case 2.3 which becomes obvious if we think of
q′x = qx × q`e as intermediate regression target value for x after one step.

This allows us to formulate the following plan equivalence theorem:

Theorem 15. Let π# = 〈a1, a2, . . . , an〉 be a sequential repetition relaxed plan.
There exist k1, . . . , kn ∈ N+ such that π+ = 〈ak11 , a

k2
2 , . . . , a

kn
n 〉 is an interval

relaxed plan, where akii denotes a sequence of ki repetitions of action ai.

Proof. In a first step we identify the intervals s#
i reachable after the i-th re-

petition relaxed step. As π# is a valid plan, the intermediate states s#
i satisfy

the preconditions of the succeeding action s#
i � pre(ai+1) or the goal s#

n � G.
Generally, these intervals can be more extended than they need to be in order to
satisfy the numeric constraints of action ai+1 or the goal G. This is particularly
relevant for open interval bounds where the sequence defining the repetition
relaxed interval success converges to 0 or diverges to ±∞. We will regressively
determine explicit target values in the intervals of s#

i which are sufficient to
satisfy the conditions of ai+1 or of G. A regressive step consists of three tasks:
first, a target value determination task where we determine up to two target
values for each variable in s#

i+1, so that reaching both target values for each
variable is sufficient to satisfy all constraints of ai+1 or of G. Second, a target
value regression task where we ensure that each target value is either reachable in
s#
i or by an effect of the action ai. Third, a repetition determination task, where

the number of repetitions of action ai is determined as maximum repetition
count from the target value regressions (cf. Definition 15) identified in the
second task.



36 CHAPTER 3. RELAXATIONS

Target value determination task : For each variable in state s#
i we have

to determine up to two target values so that all conditions of ai (or the goal
condition G for s#

n ) are satisfied. Two target values are sufficient, even if a
variable v appears in the expressions of more than two numeric constraints.
The state sequence 〈s#

i 〉 is monotonously expanding for each variable v, starting
with initial values (cf. Definition 6) iv. If there are several occurrences of target
values qv for the same variable v in the constraints, using the highest target value
q+
v and the lowest target value q−v among them is sufficient. If q−v ∈ s#

i (v) and

q+
v ∈ s#

i (v), the interval s#
i (v) includes all other target values as well, because

the convex union is used in the relaxation. In fact, if all target values on one
variable are greater (less) than the initial value iv, only the highest (lowest) is
sufficient to satisfy all constraints.

The values that are required to satisfy a constraint of the action ai (or of the
goal if i = n) are obtained by first choosing an arbitrary target value qξ D 0 with

qξ ∈ s#
i (ξ) from each constraint ξ D 0. Recursive target value decomposition

of the intervals s#
i+1(ξ1) and s#

i+1(ξ2) from the expressions ξ = ξ1 ◦ ξ2 are then
decomposed into the corresponding sub-expressions until the sub-expressions are
variables or constants. Existence of a target values decomposition is ensured by
Lemma 13. Additional target values are propagated upwards from the target
value regression task. The sketched procedure identifies up to two target values
for each variable which ensure that all constraints for actions (or the goal) of
the following layer are satisfied.

Target value regression task : Given an action ai and up to two target values
q+
v and q−v for each variable as well as the intervals s#

i (v) that each variable
evaluates to before the application of the action, we have to determine a target
value regression for each target value. As actions have at most one effect on
each variable, we perform a target value regression according to Definition 15
for all target values and the corresponding effects. If the target value is already
contained in the interval of the preceding state s#

i (v), we do not have to apply
the action at all, the repetition count is kq = 0 and we can propagate the
target value regressively upwards to the preceding layer. As the target value
determination task determines up to two target values for each variable, we have
to perform up to two target value regression tasks for each variable, all of them
include a repetition constant kq.

Repetition determination task : The action ai has to be repeated k times,
where k = max(kq) among all kq identified in the target value regression task.

Example 13 (Target Value Determination Task). Let s(vx) = [0, 1),
s(vy) = [0, 1) and s(vz) = (1.7, 3] and let a = {(vx + vy)− vz > 0, va += 1} be
an action with conditions on all 3 variables. The expression ξ = (vx+vy)−vz is
decomposed into the sub-expression ξxy = vx + vy 7→ [0, 2) and ξ = ξxy − vz 7→
[−3, .3). From s(ξ) > [0, 0] we can choose an arbitrary target value in the in-
terval (0, .3) and choose an arbitrary q = 0.1 satisfying q > 0. Now, we have to
recursively find appropriate target values qx, qy and qz in the sub-expressions.

First, we perform a target value decomposition of q = 0.1 for intervals
a = s(ξxy) = [0, 2), b = s(vz) = (1.7, 3] with operator “−”. From the set
of candidates ac = [0.1, 0.1] + (1.7, 3] = (1.8, 3.1] we can chose an arbitrary
qa ∈ (1.8, 3.1] ∩ [0, 2) = (1.8, 2) e.g. qa = 1.9 with partner qb = qa − q =
1.9− 0.1 = 1.8 ∈ (1.7, 3]. As b = s(vz) this already yields the first target value



3.4. REPETITION RELAXATION 37

qz = qb = 1.8. We now continue by a target value decomposition of q = qa = 1.9
for intervals c = s(vx) = [0, 1) and d = s(vy) = [0, 1) with operator “+”. The
set of candidates cc = [1.9, 1.9] − [0, 1) = (0.9, 1.9] intersected with c = [0, 1)
yields (0.9, 1.9] ∩ [0, 1) = (0.9, 1) and we chose qc = 0.95 ∈ (0.9, 1) arbitrarily.
With the corresponding qd = q − qc = 1.9 − 0.95 = 0.95 ∈ [0, 1) we have now
successfully determined target values for all variables, namely qx = qc = 0.95
for vx, qy = qd = 0.95 for vy and qz = qb = 1.8 for vz.

Example 14 (Target Value Regression Task). Consider again the scenario
of Example 13. In this example we demonstrate the target value regression for
the target value qx = 0.95.

Assume that qx = 0.95 has to be reached in s2(vx) = [0, 1) as the result of
applying a repetition relaxed action a1 = 〈∅, {vx := ξ}〉 with ξ = (va + 1) in
state s1 with s1(va) = [−1, 0), s1(vx) = [0, 0] and therefore s1(ξ) = [0, 1).

A target value regression (cf. Definition 15) of intervals x = s1(vx) = [0, 0],
y = s1(ξ) = [0, 1) and target value q = 0.95 is 〈0, 0.95, 0.95, 1〉. Then, a target
value decomposition of qe = 0.95 for the expression ξ = (va + 1) is 〈−0.05, 1〉
yielding for qa = −0.05 for va and qc = 1 for the constant 1. The action a0 has
to be applied k = 1 times.

Let now a0 = 〈∅ → {va ÷= 2}〉 be the action that manipulated va from
s0(va) = [−1,−1] to s1(va) = [−1, 0) in the repetition relaxed plan. A target
value regression of x = s0(va) = [−1,−1] and y = s0(2) = [2, 2] with q = −0.05
is 〈−1, 2, 2, 5〉. While the target values −1 and 2 are obvious for point intervals,
the number of repetitions k is determined by solving −0.05 = −1÷2k so 2k = 20
and k = log2(20) ≈ 4.3. As such a0 has to be applied 5 times.

Theorem 16 (Polynomiality of Plan Equivalence). The repetition explica-
tion procedure that derives an interval relaxed plan π+ from a repetition relaxed
plan π# described in the proof of Theorem 15 is in P.

Proof. During each step in the plan there are at most 2 target values for each
variable. The total number of target value regressions that has to be found in
one step is therefore restricted to 2 · |V|.

For each target value, there is at least one action enabling the respective
target value. We have to recursively determine a target value decomposition for
each precondition of the enabling action. The target value regression demands
for two more expressions to reach a target value namely q`e and qae for the
expression ξ assigned to variable v. Recursively determining a target value
decomposition (cf. Lemma 13) is linear in the size of the expression, unless it is
a division by an interval containing zero, where all target values q`y and qay are

a target value decomposition for q`y < 0 and qay . As we have access to the initial
values of all variables, we can evaluate the expression generating y and replace
either q`y or qay by the initial value iy. The only exception to this rule is if the
expression ξy evaluates to the undefined value ⊥ in the initial state. While we
have to find a decomposition for both q`y and qay , this blow-up can not happen
for all recursive expressions as divisions by intervals containing zero evaluate
to (−∞,∞) with a singularity at 0 which is not hit by recursive target values
q` < 0 and qa > 0.

Summarizing, the number of target values that have to be determined is
restricted to the size of all numeric expressions occurring in the preconditions



38 CHAPTER 3. RELAXATIONS

of actions that have to be applied plus twice the size of the expression in the
effect.

Theorem 17. The problem to generate an interval relaxed numeric plan is in
P for tasks with acyclic dependencies (cf. Definition 12).

Proof. The fix-point algorithm for repetition relaxed planning tasks is sound
(Theorem 8), complete (Theorem 11) and terminates in polynomial time (The-
orem 10). Thus, generating a repetition relaxed plan π# is in P. An inter-
val relaxed plan π+ can be constructed from π# (Theorem 16) in polynomial
time.

In order to asses the quality of a heuristic, Hoffmann [Hof03] define basic
criteria that relaxations should meet.

Definition 16 (Adequate Relaxation). A relaxation is adequate if it is ad-
missible, offers basic informedness, and if the plan existence problem for the
relaxation is in P.

A relaxation is admissible if any plan π for the original task Π is also a
relaxed plan for Π+.

A heuristic offers basic informedness if the empty plan is a plan for Π iff it
is a plan for Π+.

Theorem 18. The interval relaxation is adequate for acyclic dependency tasks.

Proof. Admissibility: After each step of the original plan π, the value of numeric
variables of the original task is contained in the interval of the respective vari-
able. Admissibility follows from the semantics of comparison constraints that
hold if they do for any pair of elements from the two intervals.

Basic informedness: No (goal or action) conditions are dropped from the
task. Relaxed numeric variables are mapped to degenerate intervals that only
contain one element. Therefore, conditions in the original task ξ D 0 correspond
to interval constraints [s(ξ), s(ξ)] D [0, 0], a constraint that is satisfied iff it is
satisfied in the relaxed task.

Polynomiality: As a corollary to Theorem 17, we can also conclude that
interval relaxed numeric plan existence is in P for tasks with acyclic dependen-
cies.

In this chapter we presented interval algebra as a means to carry the con-
cept of a delete relaxation from classical to numeric planning. We introduced
the interval relaxation which uses intervals to compactly over-approximate the
set of reachable values. As interval based operations are non-idempotent opera-
tions in numeric planning, we introduced the repetition relaxation that handles
arbitrary many repetitions of an action in a single step. We then showed that
interval relaxed plans can be explicated from repetition relaxed plans in poly-
nomial time. As such, we could prove that the original interval relaxation is
adequate for acyclic dependency tasks, i.e. tasks where the expressions of nu-
meric effects do not depend on the affected variable. The proposed relaxation
advanced the state of the art even though adequacy of interval relaxation was
only shown for the restricted set of acyclic dependency tasks. However, the
requirement of acyclic dependency for numeric expressions is a proper general-
ization of expressions ξ being required to be constant, a requirement for other



3.4. REPETITION RELAXATION 39

state-of-the-art approaches, e.g. [Hof03], which is met in many practically rel-
evant problems. The complexity of the approach for arbitrary interval relaxed
planning problems remains an open research issue, though. In the upcoming
section we will present heuristics based on the interval-based relaxations intro-
duced in this chapter. For the heuristics, we also discuss practical solutions of
cyclic dependency tasks, where the planning problem is relaxed even more if a
cyclic dependency occurs.



Chapter 4

Numeric Relaxation
Heuristics

Informed search algorithms such as hill-climbing or best-first search are an effec-
tive approach to solve planning problems. The performance of these informed
search algorithm depends on the quality of the underlying heuristic. In order to
use informed search algorithms for numeric planning problems, we require good
heuristic estimators which are suitable for numeric planning. In this chapter,
we discuss adaptations of the forward chaining delete relaxation heuristics hmax,
hadd and hFF to numeric planning. The chapter is based upon work published at
the 40th German Conference on Artificial Intelligence [AN17c] supplemented by
an extended abstract presented at the 10th International Symposium on Com-
binatorial Search [AN17b]. Furthermore, several proofs were first presented in
a technical report [AN17a].

In this chapter, we explore the design space of numeric relaxation heuris-
tics with regard to two relaxation methods (interval or repetition relaxation)
introduced in Chapter 3, two methods of aggregating heuristic costs (maximum
and sum), and two search techniques for relaxed reachability (a planning graph
method and priority queues). We identify tractable combinations and derive
heuristics which also take action costs into account. We propose a new method
to handle tasks with cyclic dependencies in the numeric effects. Finally we
present a generalization to the marking method of relevant operators used by
hFF, which explicates target values in the intervals to extract relaxed plans.

4.1 Interval Based Relaxations

A delete relaxation is a simplification of a planning instance where facts which
are achieved once remain achieved. Thus, the set of achieved values grows mono-
tonically. Intervals offer a compact representation of an over-approximation the
achievable values. However, using only an interval representation is not suffi-
cient to derive tractable relaxation heuristics for numeric planning. In relaxed
classical Strips planning, actions are idempotent and therefore, the monotonic
growth is bounded by the number of actions as well as the number of facts
in the planning task. If we allow for conditional effects in classical planning,
actions become pseudo-idempotent (cf. Definition 2), but the growth is still

40



4.2. CYCLIC DEPENDENCIES 41

bounded by the number of actions and the number of the conditional effects, as
each condition that is achieved remains achieved. By contrast, in numeric plan-
ning, actions are non-idempotent operations and the number of values a variable
can attain is unbounded even by executing a single action repeatedly. Aiming
towards a tractable relaxation for numeric planning, we have to restrict the
number of action applications within the heuristic. We consider two relaxation
frameworks which approach this challenge differently: the interval relaxation
that is described in more depth in Chapter 3.3 and the repetition relaxation
which is described in Chapter 3.4.

The depth of a relaxed planning graph is restricted to the length of a short-
est parallel relaxed plan (cf. Section 3.3.3), which allows us to compute an
interval relaxed planning graph very much like in classical planning. However,
desired heuristic properties (such as admissibility for hmax for non-unit cost
tasks) can not be guaranteed in this framework. The repetition relaxation uses
a semi-symbolic representation of intervals to simulate the behavior of arbi-
trarily many action repetitions at once. This relaxation makes relaxed actions
pseudo-idempotent, i.e. actions can change the value of a variable only a re-
stricted number of times and thus, the repetition relaxed plan existence problem
can be decided in polynomial time.

4.2 Cyclic Dependencies

The interval which is reached by applying an effect v ◦= ξ depends on the values
of all variables in ξ (cf. Definition 12) in interval based relaxations. This
dependency relation induces a dependency graph. If the dependency graph is
acyclic, and if actions are pseudo-idempotent (cf. Definition 2), sequences of
actions are pseudo-idempotent as well, as the values of the variables only depend
on other variables which stabilize in topological order.

Cyclic dependencies can make sequences of actions non-idempotent. To the
best of our knowledge, we are not aware whether the interval that is reached after
repeatedly applying a sequence of actions causing a cycle can be determined in
polynomial time. In order to enforce a topology nevertheless, we can break cycles
by introducing auxiliary variables. The check for cycles can be done in linear
time by algorithms checking for strongly connected components (e.g., Tarjan’s
algorithm [Tar72]) in the dependency graph. If v is a variable that occurs in a
cycle, we can break the cycle by introducing an auxiliary variable v′ and replace
v in the effect of the action that leads to the cycle by v′. Now in order to
guarantee completeness of the reachability, we have to reinsert the value of v′

to v if the values of these variables differ. However, we can do so in a controlled
manner by including special cycle breaker actions. The implementation of these
cycle breaker actions opens design space. Tractable heuristics have to bound
the number of re-insertions.

The coarsest cycle breaker action sets changing variables to v := (−∞,∞):
an interval which can not be extended, thus ensuring idempotence of the cycle
when v′ = (−∞,∞) = v. A more accurate estimate is obtained by only setting
the interval bound of v to positive or negative infinity if the interval of v′ changed
into the respective direction. The cost of traversing the cycle can be used as
cost for the cycle breaker action. This relates very much to the additive effects
transformation [SHTR16], which compiles assignments x := ξ into increase



42 CHAPTER 4. NUMERIC RELAXATION HEURISTICS

effects x += ξ−x. Both approaches relax cyclic effects even further by assuming
that if a bound can be extended once, it can be extended arbitrarily often
by the same margin at the same cost. An advantage of our method is the
restriction of cycle handling to the cycle breaker actions, which does not affect
the preconditions of all other actions and thus avoids an unnecessary blow-up.
Then again, in the presence of several cycles on the same variable, handling all
cycles by the same action is a coarser simplification than the separate handling
done by Scala, Haslum, Thiébaux, and Ramı́rez [SHTR16].

4.3 The Maximum and the Additive Heuristic

We want to solve a delete relaxed simplification of a planning problem in order
to guide search in the original one. For classical planning, the relaxed plan
existence problem is easy: starting from the initial state, we can iteratively
apply all applicable actions to the relaxed state in parallel. The procedure
terminates when a fix-point is reached. The forward propagation heuristics
hadd [BLG97; BG01] and its admissible counterpart hmax [BG99] estimate the
cost κ(p) to achieve the propositional fact p by a fix-point equation that can be
computed with the recurrence relation

κt+1(p) := min

(
κt(p), min

a∈ach(a)
(κ(a) + κt(pre(a)))

)
(4.1)

where ach(a) is the set of all actions a ∈ A that achieve p at time step t.
Propositions that hold in the state for which the heuristic is computed are

initialized to cost κ0(p) = 0, and to κ0(p) =∞, otherwise. Whereas the action
cost κ(a) is given by the planning task, the action precondition cost κ(pre(a))
is an estimate of the cost of a set of propositions. The heuristics differ in how
the cost of this set is estimated. For hmax, the most expensive proposition cost

κt(pre(a)) := max
p∈pre(a)

κt(p) (4.2)

is used, while hadd uses the sum of all preconditions

κt(pre(a)) :=
∑

p∈pre(a)

κt(p) (4.3)

instead.
The recurrence relation defines a sequence. In classical planning, the fix-

point of this sequence exists and is reached after a finite number of steps (cf.
Section 3.1.1).

The hFF heuristic [HN01] improves on hadd by marking actions that are
required to compute the hadd estimate regressively, and as such it computes a
relaxed plan, using its cost as hFF estimate.

4.3.1 Heuristic Estimators for Numeric Planning

We discuss tractable extensions of the heuristics hmax, hadd and hFF in the
two interval based relaxation frameworks introduced in the previous chapter:
the interval relaxation (Section 3.3) and the repetition relaxation (Section 3.4).



4.3. THE MAXIMUM AND THE ADDITIVE HEURISTIC 43

Applying an analogous recurrence in numeric planning demands for numeric
interpretations of facts, achievers and preconditions in Formula 4.1, Formula 4.2
and Formula 4.3. Propositional facts p or ¬p can be seen as variable-value pairs
vp 7→ true or vp 7→ false of a propositional variable vp with domain {true, false}.
The interpretation of facts as variable-value pairs generalizes naturally to multi-
valued variables with a finite domain as well. Following this approach, a numeric
fact is a variable-value pair v 7→ q where v ∈ V and q ∈ Q. If we view numeric
actions as grounded actions with conditional effects, we can define a grounded
interpretation of achievers and preconditions in the following way. An achiever
of such a numeric fact is a ground action that has an effect assigning q to v and
the precondition of this action are variable-value pairs for all variables occurring
in the action’s precondition so that all numeric constraints are satisfied, as well
as variable-value pairs for all variables occurring in the effect so that the desired
numeric fact v 7→ q is achieved.

Example 15. Let a = 〈{v1−v2 > 0}, {v3 += v4×v1}〉 be an action and v3 7→ 5
be a fact. One possible grounded interpretations of a that achieves v3 7→ 5 is
〈{v1 7→ 7, v2 7→ 5, v3 7→ 1, v4 7→ 4, v1 7→ 1}, {v3 7→ 5}〉 where v1 7→ 7 and v2 7→ 5
satisfy the action precondition 7 − 5 > 0, and v3 7→ 1, v4 7→ 4 and v1 7→ 1
achieve the desired effect as the new value for v3 is 1 + (4× 1) = 5. Note that
the grounded interpretation may include several different precondition facts on
the same variable (in our case v1 7→ 7 and v1 7→ 1) which makes the action only
applicable in the relaxation.

This grounded interpretation is not practical: numeric constraints ξ D 0 in
the action precondition can be satisfied by potentially infinitely many numeric
facts. Similarly for the effect, infinitely many combinations of facts could achieve
a certain fact of the altered variable. Explicitly listing all achievers and all
corresponding preconditions would result in an infinite set of achieving actions.

As we are interested in tractable relaxation heuristics, we cannot pursue this
approach, and, opposed to classical planning with a finite domain representa-
tion, it is not possible to compute a separate cost estimate for each fact. In
interval based relaxations, we use a different interpretation of facts, achievers
and preconditions that is computationally tractable. As we cannot consider all
variable-value pairs, we have to aggregate several variable-value pairs to one
fact. As such, a relaxed numeric fact is a variable-interval pair. Now, in or-
der to define achievers of such facts in a tractable and yet meaningful way, we
can investigate the structure that is produced by the recurrence relation (cf.
Formula 4.1): cost values κt+1(p) are assigned a value depending on the cost
estimates κt(p) before. For numeric relaxations we pursue a similar approach,
and make this recursive structure explicit. A relaxed state progression sequence
is a recursive graph structure consisting of states, facts and action edges that
are constrained by the underlying relaxation. In this structure, states contain a
fact for each variable of the underlying relaxed planning task and action edges
〈si, a, sj〉 connect state si to state sj with action a.

Definition 17 (Relaxed State Progression Sequence). Relaxed state pro-
gression sequences are recursively defined as follows: let s0 = I be the initial
state of the underlying relaxation. Then, 〈s0〉 is a relaxed state progression
sequence.



44 CHAPTER 4. NUMERIC RELAXATION HEURISTICS

⋮
1

−1v0

v1

s0

⋮
0 2

−1v0

v1

s1

⋮
−1 2

−1v0

v1

s2

a2

a0

a1

Figure 4.1: An exemplary relaxed state progression sequence.

Now let 〈s0, . . . , sn−1〉 be a relaxed state progression sequence. Then, re-
cursively, 〈s0, . . . , sn−1,An, sn〉 where An is a set of action edges 〈si, a, sj〉 is a
relaxed state progression sequence iff

• si � pre(a) for all 〈si, a, sj〉 ∈ An, i.e. the “starting” state of each action
edge satisfies the action’s precondition.

• sj = sn for all 〈si, a, sj〉 ∈ An, i.e. all action edges “end” in the new state
sn

• sn = sn−1 t
⊔
〈si,a,sj〉∈An

app(a, si) where app(a, si) is the state obtained
by applying action a to state si according to the underlying relaxation,
and the convex union of two states is the convex union of the intervals of
corresponding variables. I.e. the intervals assigned to variables v in state
sn are the convex union of all effects on v from actions “ending” in sn.

The initial state consists of a set of relaxed numeric facts where all intervals
are degenerate point intervals. In order to make use of relaxed state progression
sequences, we are particularly interested in sequences that reach a goal, i.e.
sequences where the last state satisfies the goal condition of the underlying
planning task.

For now, we assume that such a sequence is given and look at ways to
generate such a sequence thereafter. Instead of computing cost estimates for
all numeric facts, we are only interested in estimates for the facts that appear
in the relaxed state progression sequence. Achievers and preconditions of such
relaxed numeric facts are defined as follows. An action edge 〈si, a, sj〉 achieves
a fact v 7→ x in state sj if a has an effect on v. By definition of the sequence, the
effect of a is then included in the interval sj(v). Preconditions of an achiever
〈si, a, sj〉 are all facts in si whose corresponding variable appear in the action’s
precondition or effect.

Example 16. Consider the state sequence depicted in Figure 4.1 where s0(v1) =
[1, 1] and let a0 = 〈∅, v1 −= 1〉 and a1 = 〈∅, v1 += 1〉. The effects v′1 7→ [0, 1]
from a0 and v′1 7→ [1, 2] from a1 are aggregated to the fact v1 7→ [0, 2] in s1.
Both action edges 〈s0, a0, s1〉 and 〈s0, a1, s1〉 achieve v1 7→ [0, 2] in s1 in the
given relaxed state progression sequence.



4.3. THE MAXIMUM AND THE ADDITIVE HEURISTIC 45

As relaxed numeric facts aggregate many values, there are implicit precon-
ditions on the variables occurring in the achieving action and the values that
lead to the desired effect are not explicitly present as in the grounded inter-
pretation. The facts that are used to compute the precondition of an achiever
κt(pre(〈st, a, sj〉)) are then all facts v 7→ st(v) for variables v that appear in the
effect of a.

Example 17. Consider Example 16 from Figure 4.1 again. The precondition
that is considered by Formula 4.2 or Formula 4.3 is v1 7→ [1, 1] in s0 for a0 as
well as for a1. Moreover, let a2 = 〈{v2 ≥ 0}, {v1 := v0}〉, and s0(v2) = 5. The
precondition are then the facts v0 7→ [−1,−1], v1 7→ [1, 1] and v2 7→ [5, 5] in s0.

With this definition of facts, achievers and preconditions, we can apply For-
mula 4.1, Formula 4.2 and Formula 4.3 to the facts in the relaxed state progres-
sion sequence. Note that facts appear in the context of a state. In Formula 4.1,
the cost κt(p) of a fact p with the form v 7→ x is the cost of p in st. Usually,
the fact cost that is estimated for κt+1(p′) is the cost of a different fact p′ 6= p,
namely p′ of the form v 7→ x′. As such, κt(p) =∞, unless x = x′ and therefore
p = p′.

Example 18. Consider Figure 4.1 again. The cost κ0(v1 7→ [0, 2]) = ∞ and
therefore, κ1(v1 7→ [0, 2]) is achieved by action a0 and a1 but not by the “idle
arc”. On the other hand, κ1(v0 7→ [−1,−1]) = 0 as the same fact v0 7→ [−1,−1]
exists in s0 as well.

We discuss a planning graph based and a priority queue based approach to
generate such relaxed state progression sequences, both of which are motivated
by the method of computing the cost formulas in classical planning.

The first approach is based on the parallel planning graph representation
for relaxed planning. In Formula 4.1, this corresponds to generating new states
from the recurrence by evaluating all new costs in parallel. As such, j = i + 1
for all action edges 〈si, a, sj〉. The “state layers” of the planning graph are the
relaxed states in the state progression sequence. Facts aggregate the intervals
of all actions that have an effect on the corresponding variable.

A different approach to restrict the considered numeric facts is to use a
generalized Dijkstra algorithm for estimating the fact or fact set costs. Facts
are processed according to a priority queue storing the cost to achieve them.
In Formula 4.1, this corresponds to generating a new state for the fact with
the least cost. This way, the states in the relaxed state progression sequence
aggregate facts with equal cost.

Both approaches, the planning graph and the priority queue based approach
restrict the number of considered facts. Note that other approaches are con-
ceivable, e.g. Scala, Haslum, and Thiébaux [SHT16] view propositional facts
as conditions and generalize the formulas to a recurrence based on numeric
constraints. We will now discuss the planning graph and the priority queue
based approach to generate a relaxed state progression sequences in more detail
and analyze combinations of both fact aggregation approaches with interval or
repetition relaxation which guarantee polynomial time bounds on the heuristic
computation.



46 CHAPTER 4. NUMERIC RELAXATION HEURISTICS

3

5

2

1

8v0

v1

v2

v3

v4

s0

a1

a0

a2

3

4 5

2

1 7

86 16v0

v1

v2

v3

v4

s1

a1

a0

a2

3 21

5−3 4

2

1 7−2

6 12 32v0

v1

v2

v3

v4

s2

a0 ∶ ⟨∅,{ v0 ∶= 6,
v1 ∶= 7 }⟩ κ(a0) = 1

a1 ∶ ⟨{v2 − v1 > 0} ,{ v0 ×= v2,
v3 −= v1 }⟩ κ(a1) = 5

a2 ∶ ⟨{v1 − v0 ≥ 0} ,
⎧⎪⎪⎪⎨⎪⎪⎪⎩

v1 ∶= −1 × v2,
v3 ÷= v2,
v4 ×= v1

⎫⎪⎪⎪⎬⎪⎪⎪⎭⟩ κ(a2) = 2

Figure 4.2: A relaxed numeric planning graph with five variables v0 to v4 and
the progression of applying the three actions a0 to a2 in parallel.

4.3.2 Heuristics Based on Planning Graphs

The relaxed parallel planning graph [HN01] is a graph representation of the
parallel fix-point algorithm from Definition 3. It consists of alternating state
layers of reachable propositions and action layers of actions which are applicable
in that propositional state.

In the relaxed planning graph, the length of a shortest relaxed plan restricts
the maximal number of layers required until the goal formula is satisfied for the
first time. Therefore, heuristic cost estimations are polynomial in the output size
|A|×|V|×|π?| where π? is a shortest (but not necessarily cost minimal regarding
κ) plan. Variations of this approach are often used for numeric planning [Ede04;
CCFL13; Hof03; SHTR16].

Just as in classical planning, a planning graph consists of alternating fact
and action layers. A fact layer is a relaxed state that consists of a variable-
interval pair for each variable v ∈ V of the planning task. Starting from s0 = I
we iteratively apply all applicable actions in parallel until we reach a relaxed
state that satisfies the goal condition. We will now illustrate the process using
the following example.

Example 19. Figure 4.2 depicts a planning graph with blue relaxed states s0,
s1 and s2. We depict the values of all variables occurring in the planning task
in green and use circles for degenerate point intervals. We use a dark green to
indicate the sub-intervals that are achieved by applying the action of an action
edge in the corresponding starting state. The interval that was reachable in the
previous state is indicated in medium green. The values that are not directly
reached but that are enclosed by the convex union are depicted in light green.
In the action layer, we depict applicable actions in orange and inapplicable



4.3. THE MAXIMUM AND THE ADDITIVE HEURISTIC 47

actions in red. Arrows drawn from relaxed states to actions indicate the implicit
preconditions of the action. Arrows from variables occurring in satisfiable action
preconditions are drawn in orange and the unsatisfiable precondition of a2 in
the first action layer is drawn in red. Additionally, blue arrows indicate the
implicit preconditions for each of the actions’ effects. The blue gradient in
the background of the state boxes indicates the color of the effect: implicit
preconditions for the effects on variable v0 are light blue, gradually getting
darker and effects on v4 are indicated in dark blue. This scheme is also used for
the colors of arrows from the actions to the altered variables in the subsequent
relaxed states.

Starting with the fact layer s0, we apply all actions in parallel. The precon-
ditions of a0 and a1 are satisfied in I = s0: s0 � ∅ and s0 � v2 − v1 > 0 as
s0(v2 − v1) = s0(v2) − s0(v1) = 2 − 1 = 1 > 0, whereas the precondition of a2,
v1 − v0 ≥ 0, is not satisfied in s0 as s0(v1 − v0) = [1, 1]− [8, 8] = [−7,−7] 6≥ 0.
Action a0 has two effects: v0 := 6 and v1 := 7, which are applied in the sub-
sequent fact layer s1. For v1, the newly achieved value 7 results in the fact
v1 7→ [1, 7] because of the convex union with the old value s0(v1) = [1, 1]. For
v0, the fact considered in s1 is an aggregate of [8, 8], the old value in s0, the
effect interval [6, 6] of a0 as well as the effect v0 ×= v2 from action a1 which sets
v0 to s0(v0)× s0(v2) = [8, 8]× [2, 2] = [16, 16]. The convex union of all three is
[8, 8] t [6, 6] t [16, 16] = [6, 16], and therefore v0 7→ [6, 16] in s1. Finally, a1 also
has an effect on v3 where s0(v3)− s0(v1) = [5, 5]− [1, 1] = [4, 4] yields the inter-
val [4, 5]. In the following action layer, action edges 〈s1, a, s2〉 are considered.
Action a0, while applicable, does not achieve any value beyond s1. Applying
the effects of action a1 yields s1(v0) × s1(v2) = [6, 16] × [2, 2] = [12, 32] which
results in the fact v0 7→ [6, 32] for v0 and applying the effect s1(v3) − s1(v1) =
[4, 5]−[1, 7] = [−3, 4] for v3 resulting in the fact v3 7→ [−3, 5] in s2. Action a2 be-
comes applicable in s1 as s1(v1−v0) = [1, 7]−[6, 16] = [−15, 1] ≥ [0, 0]. The first
effect of a2 sets v1 to s1(−1×v2) = [−1,−1]× [2, 2] = [−2,−2] and again, values
between −2 and 1 are considered reachable for fact v1 7→ [−2, 7] because of the
convex union. The second effect which would achieve [4, 5]÷ [2, 2] = [2, 2.5] for
v3 is subsumed by the effect of a1. Finally, s2(v4) = s1(v4)t (s1(v4)× s1(v1)) =
[3, 3] t ([3, 3]× [1, 7]) = [3, 21].

Given a planning graph based relaxed state progression sequence, we can
determine cost estimates. For planning with action costs, one source of heuristic
imprecision comes from the aggregation of different achieved values to one fact.

Example 20. Consider the fact v0 7→ [6, 16] in s1 in Figure 4.2. Actions
a0 and a1 both achieve new values for v0. However, they differ in the action
cost: κ(a0) = 1 whereas κ(a1) = 5 resulting in a fact cost κ1(v0 7→ [6, 16]) =
min(κ(a0) +κ0(pre(a0)), κ(a1) + (κ0(pre(a1))) = min(1 + 0, 5 + 0) = 1. As such,
achieving values in the sub-interval (8, 16] is assumed to cost 1 in the heuristic
whereas it would cost 5 in an actual task.

In spite of this underestimation of the true cost, one weakness of the planning
graph approach is that hmax does not compute admissible estimates in tasks
with action costs when paired with an interval relaxation. The reason is that a
fact can be achieved at a better cost in a deeper layer in the planning graph.
Likewise, the cost estimates for hadd can be higher than the estimates that
would be computed by the formulas for classical planning. Opposed to classical



48 CHAPTER 4. NUMERIC RELAXATION HEURISTICS

planning, the facts change from one relaxed state to the next, and therefore, we
cannot update the cost estimate any more.

Example 21. Consider the planning task from Figure 4.2 and let G : 3−v3 ≥ 0
be the goal. It could be achieved by the action sequence 〈a0, a2〉 with cost
κ(a0) + κ(a2) = 1 + 2 = 3. However, a2 has implicit preconditions on v0 and
v1 to satisfy the numeric constraint v1 − v0 ≥ 0 and on v3 and v2 for the
relevant numeric effect. The cost estimates in s1 are κ1(v0 7→ [6, 16]) = 1),
κ1(v1 7→ [1, 7]) = 1), κ1(v2 7→ [2, 2]) = 0) and κ1(v3 7→ [4, 5]) = 5. This yields
max(1, 1, 0, 5) = 5 for the precondition and with κ(a2) = 2 we get κ2(v3 7→
[−3, 5]) = 7.

The absence of an a priori bound for the depth in which a fact could be
achievable with better cost is a problem for numeric planning which also ap-
pears in the context of termination. Opposed to relaxed classical planning,
where heuristic computation terminates when a fix-point is reached and no new
facts are added or reached at a cheaper cost from one layer to the next, unbound-
edly many new interval relaxed facts will have to be considered. To avoid an
unbounded blow-up, we terminate graph generation as soon as the goal formula
is satisfied for the first time, even though this strategy impairs admissibilty of
the heuristic, i.e. it is possible that the heuristic overestimates the actual cost
and thus, algorithms like A? [Nil80] are not guaranteed to find optimal solutions.
Admissibility of hmax can be enforced by setting the cost of all actions to the
cheapest cost among action costs applicable in the current layer, which coun-
teracts the purpose of using action costs in the first place. Scala, Haslum, and
Thiébaux [SHT16] run into a similar problem using “asynchronous subgoaling”
and have to set the cost of hard conditions to 0 to ensure admissibility of hmax.

A combination of the repetition relaxation with the planning graph based
approach is not as promising as other combinations. The repetition relaxation is
coarser than the interval relaxation as it aggregates arbitrarily many repetitions.
The planning graph approach is less accurate than the priority queue based
approach that we will introduce in the upcoming section. When several actions
of different cost alter the same variable: the result is the convex union of all
individual results but the cost is the cost of the best achiever. Splitting up the
result into sub-intervals with different cost estimates makes the computation
of heuristics intractable and goes into a similar direction of a relaxation of
numeric planning with an accumulation semantics (cf. Section 3.2.1). As such,
a planning graph based approach with the repetition relaxation combines the
downsides of the components without really making up for that.

4.3.3 Heuristics Based on Priority Queues

In classical planning, the cost estimates Formula 4.1 and Formula 4.2 or For-
mula 4.3 are usually computed with a generalized Dijkstra algorithm [Dij59].
Estimating the fact costs this way is more efficient than building a planning
graph. This method translates into an approach that builds a different relaxed
state progression sequence, namely one where the states are ordered by increas-
ing cost, where the cost of a state is the cost of the most expensive fact within
the state. Facts are processed according to a priority queue storing the cost to
achieve them. Whenever a variable attains a new value, all actions that have an
implicit precondition on this variable are triggered. All variables that appear



4.3. THE MAXIMUM AND THE ADDITIVE HEURISTIC 49

0 3

2 5

2

1 3

7 ∞v0

v1

v2

v3

v4

sj−1

v1 −∞ −2

κ = 3

. . .
v3 2 ∞

κ = 5

. . .
v4 −∞ ∞

κ = 7

. . .

0 3

2 5

2

1 3−∞ −2

7 ∞v0

v1

v2

v3

v4

sj , κ = 3
a2

a5

a2 ∶ ⟨∅, v3 ∶= 5 − v1⟩ κ(a2) = 2
a5 ∶ ⟨∅, v4 ÷= v1⟩ κ(a5) = 4

Figure 4.3: Priority queue based state sequence. The fact v1 7→ (−∞,−2] is
dequeued from the priority queue and triggers actions a2 and a5.

in the triggered actions effect can then enqueue new variable-interval pairs into
the priority queue if an interval extends a bound. The priority of these new
facts is the current priority increased by the cost κ(a) of the action a.

In order to generate a relaxed state progression sequence, action edges start
in the state in which the action becomes applicable and is enqueued. The
enqueued fact is the interval app(si, v), i.e. the interval obtained by applying
the effect to the current state si. The index j of the ending state sj depends on
the number of states generated with a priority between i and j. In general and
opposed to relaxed state progression sequences generated by a planning graph
based approach, action edges span several nodes. Again, several intervals are
aggregated for a relaxed state in order to ensure monotonicity. For the priority
queue based approach, the facts in a relaxed state aggregate the newly reached
interval form the priority queue with the interval of that variable in the previous
state sj−1. This is necessary as actions can achieve values for a variable which
has unprocessed values achieved by other actions on the priority queue. Again,
the process is best illustrated on the basis of an example, and we explain the
priority queue approach in the following example.

Example 22. Figure 4.3 depicts a relaxed state progression sequence generated
by a priority queue based approach. The priority queue is depicted in the top
and contains three facts: v1 7→ (−∞,−2] reachable at cost κ = 3, v3 7→ [2,∞)
at cost κ = 5 and v4 7→ (−∞,∞) at cost κ = 7. The state sj reachable with
priority κ = 3 is obtained by dequeueing v1 7→ (−∞,−2]. It extends the bound
of v1 from sj−1(v1) = [1, 3] to sj(v1) = (−∞, 3]. The intervals reachable in
the previous state are marked in light green, and the new value for v1 in dark
green. Then, actions a2 and a5 which have implicit preconditions on v1 are
triggered. Action a2 has an effect on v3 an can reach sj(v3)t (sj(5)− sj(v1)) =
[2, 5] t ([5, 5]− (−∞, 3]) = [2, 5] t [2,∞) = [2,∞), and enqueues v3 7→ [2,∞)
with a cost of κ = 3 + κ(a2) = 5 as v3 reaches a new value. Similarly, a5 is
triggered an enqueues sj(v4) t (sj(v4)÷ sj(v1)) = (0, 3] t ((0, 3]÷ (−∞, 2]) =
(0, 3] t (−∞,∞) = (−∞,∞) at cost κ = 3 + κ(v4) = 7.

The number of facts which are inserted into the priority queue has to be



50 CHAPTER 4. NUMERIC RELAXATION HEURISTICS

bounded in order to derive tractable heuristics. We will show that combining a
priority queue based approach with an interval relaxation framework is infeasible
as unboundedly many cheap actions can be processed before relevant ones in
the following example.

Example 23. Let Π be a planning task where I = {v1 7→ [0, 0], v2 7→ [0, 0]}
with two actions a1 = 〈∅, v1 += 1〉 and a2 = 〈∅, v2 += 5〉 with G = {v2 > 0}
and cost κ(a1) = 1 and κ(a2) = 10 000. As a1 is orders of magnitude cheaper,
a1 will enqueue 10 000 facts for v1 before considering a2 for the first time. It
is also easy to extend the example by several variables and actions so that a
combinatorial explosion worsens the already prohibitive result.

Therefore, we concentrate on pairing the priority queue based approach to
generate a relaxed state progression sequence with the repetition relaxation
whose effects are 2-pseudo-idempotent (cf. Lemma 6) operations.

Unfortunately, sequences of repetition relaxed actions can be non-idempotent
even though actions are 2-pseudo-idempotent. Effects in the repetition relax-
ation are applied on the intervals fixed to the preceding state and applying these
numeric effects is 2-pseudo-idempotent. However, interactions of effects on vari-
ables that appear in the assigned numeric expression are not considered when
computing the result. Similarly, a sequence of actions can be non-idempotent,
even if every single action is idempotent. For the computational complexity it
does not matter so much whether such interactions come from several effects of
the same action or from interacting effects of several actions. More important
is whether the planning task is acyclic or not (cf. Definition 12).

While the plan existence problem in the repetition relaxation is polynomial
for acyclic tasks (cf. Theorem 16) this is not sufficient to restrict the number of
queue insertions polynomially. The problem occurs if cheap actions depend on
many other more expensive actions which reside in topologically higher layers of
the dependency graph. A change in the value of a variable v triggers all actions
that have an effect depending on v, that is v appears in the assigned expression
of one of the actions effects. If the dependency graph is acyclic, the repetition
relaxation can be computed in polynomial time by evaluating variables accord-
ing to the topology of that graph. This way, the intervals of topologically higher
variables have already converged and changes in topologically lower layers can
not influence the values of variables in topologically higher layers. Unfortu-
nately, for planning tasks with action costs, priority queue based approaches
alter variables in an order of the cost to achieve new values, and this order does
not necessarily respect the topology. As such, the number of required enqueue
operations can become exponential in the number of variables.

Theorem 19. The number of insertions of numeric facts into the priority queue
can become super-polynomial even if the dependency graph is acyclic.

Proof. Let VN = {v0, . . . , vn} be a set of variables and A = {an} ∪ {aij |0 ≤ i <
j ≤ n} be a set of n2+n

2 + 1 actions with costs κ(aij) = 2i, and κ(an) = 2n. So
there are n actions with first index i = 0 all costing κ = 20 = 1, n − 1 actions
with first index i = 1 and cost κ = 2 and so forth.

Let each action aij = 〈preij , effij〉 have an empty precondition preij = ∅
and a single assign effect effij = (vi := vj + 2i) on variable vi. The additional



4.3. THE MAXIMUM AND THE ADDITIVE HEURISTIC 51

[0,0]
v3

[0,8]

[0,0]
v2

[0,4]
v2

[0,12]

[0,0]
v1

[0,2]
v1

[0,6]
v1

[0,10]
v1

[0,14]

[0,0]
v0

[0,1]
v0

[0,3]
v0

[0,5]
v0

[0,7]
v0

[0,9]
v0

[0,11]
v0

[0,13]
v0

[0,15]

Figure 4.4: Enqueue and dequeue times of variables for n = 3.

action an has an effect effn = (vn := 2n). This way, each variable vi has a
dependency on all variables vj with higher index: vi ≺ vj iff i < j. All variables
are initialized to vi 7→ [0, 0]. The idea of this construction is to have exactly
one fact be dequeued at each time step (cost) from 1 to 2n+1 − 1. The lower
bound of all intervals remains at 0 for all variables, and the upper bound of the
altered variable is extended to a value coinciding to the current cost. Initially,
all actions are applicable, and as such all of them enqueue their effect facts with
their respective costs. Note that all actions aij with the same first index i have
the same effect vi 7→ [0, 2i] as vj 7→ [0, 0] for all j. Therefore, among the initial
enqueues, only the first fact to be dequeued for each variable will extend the
respective interval.

We determine the number of required enqueue operations enq inductively:
action an has no dependencies and its effect (vn := 2n) enqueues the fact vn 7→
[0, 2n] with cost κ = 2n once: enq(vn) = 1. We will now show inductively that
enq(vi−1) = 2 · enq(vi). Whenever a fact referring to a variable vi is enqueued,
so is a fact referring to vi−1 by construction. Whenever an action achieves a
new value for higher-layer variable k with i < k, it will trigger action aik for
vi and a(i−1)k for vi−1. E.g. consider the example depicted in Figure 4.4 for
n = 3. Action a3 sets v3 to [0, 8] and triggers a23 on v2, a13 on v1 and a03 on v0

enabling the respective intervals to reach 12, 10 or 9 respectively. The second
enqueue operation on vi−1 is triggered by vi changing itself. Because of action
a(i−1)i, vi−1 is not only enqueued at the same time as vi, but it is enqueued
again whenever vi is dequeued. E.g. consider the triggers of a23 and a13 by
setting v3 to [0, 8] from Figure 4.4 again: v1 is not only triggered at the same
time as v2, but again, when v2 reaches its new value [0, 12].

The initial situation is slightly different in that there are n actions enqueued

for each variable n instead of one. Save for the overhead of n2−n
2 enqueue

operations in the initially state, this already sets an upper bound of enq(vi−1) =
2 · enq(vi) enqueue operations for each variable. It remains to be shown that
this upper bound is actually reached. Independent of k, aik costs twice as much
as a(i−1)k, and therefore, the effect triggered by vk on vi−1 will be dequeued
before the effect triggered on vi. Therefore, all changes triggered at enqueue



52 CHAPTER 4. NUMERIC RELAXATION HEURISTICS

time are processed before vi is dequeued. We still have to ensure that the facts
triggered from vi at dequeue time are processed before vi is enqueued again.
E.g. in Figure 4.4, for v2 we have to ensure that the changes marked in blue fit
into the space marked by the blue double-arrow or that the actions triggered by
v3 marked in red fit into the region marked by the red double-arrow. Changes in
vi−1 trigger changes in vi−2 and so on. The execution of the sequence of actions
a(i−1)(i), . . . , a01 costs

∑i−1
k=0 2k = 2i − 1 which is cheaper than 2i. Therefore,

also the changes triggered at dequeue time are processed before the variable is
re-enqueued, resulting in twice as many enqueue operations for vi−1 as compared
to vi.

The total number of enqueue operations is then
∑n
i=0 enq(vi) =

∑n
i=0 2i =

2n+1−1 plus the overhead of n
2−n
2 enqueue operations in the initial state which

is exponential in the input size.

The heuristic becomes tractable if actions which have an implicit precondi-
tion on a variable v are only enqueued after all topologically higher variables
have been processed. However, this means that variables in the lower layers
have to wait for variables in a higher layer regardless of their cost. As the
values achieved by the topologically higher variables might not be required, ad-
missibility of hmax is impaired with this approach. For hadd, overestimating
the heuristic value is acceptable, allowing us to block enqueuing of topologically
lower variables until topologically higher variables are processed. A workaround
for hmax is to compute hmax in two phases. In the first phase, maximally reach-
able intervals for all variables are determined, and tractability is ensured by
delaying topologically lower variables. Then, in a second phase, the maximally
reachable values from the first phase are used for the assign effects. Topological
dependencies do not have to be respected with maximally reachable intervals,
as now action sequences are idempotent.

If the dependency graph contains cycles, we can introducing auxiliary vari-
ables as presented in Section 4.2.

Bounding non-idempotence ensures that priority queue based algorithms can
compute repetition relaxed estimates for hmax and hadd in polynomial time.

4.4 FF Plan Extraction Heuristics

The hFF heuristic computes a relaxed plan, and uses the cost of this plan as
heuristic estimate. As in classical planning, this plan is computed regressively
by greedily marking required facts and actions based on the hadd estimates.

Independently of the approach to generate it, a relaxed state progression
sequence (cf. Definition 17) is a sequence of relaxed states with the property
that the intervals for each variable are monotonically increasing and the last
state satisfies the goal condition. We will now investigate a generalization of a
marking method for numeric planning.

4.4.1 Generalized Marking Procedure

In relaxed numeric planning, the progression step of the heuristic creates a
relaxed state progression sequence. Given such a sequence, we can derive a
sequential relaxed plan with the help of a bucket plan as follows.



4.4. FF PLAN EXTRACTION HEURISTICS 53

Definition 18 (Bucket Plan). A bucket plan is a possibly empty sequence
〈B1, . . . ,Bn〉 where action buckets Bi are sets of actions a for 1 ≤ i ≤ n.

Bucket plans are useful if we have precedence constraints on some actions,
but other actions can be ordered arbitrarily. E.g., in a relaxed planning graph,
the buckets Bi correspond to the action layers of the relaxed planning graph.

There are two natural ways to derive a bucket plan from a given relaxed
state progression sequence: action edges 〈si, a, sj〉 are already sorted by ending
state sj in the action edge sets Aj . Therefore, 〈B1, . . . ,Bn〉 for buckets Bj =
{a|〈si, a, sj〉 ∈ Aj} is a corresponding bucket plan. Alternatively, action edges
can be sorted by starting state, and a ∈ Bi+1 if there exist an action edge
〈si, a, sj〉 starting in si in the relaxed state sequence.

A sequential relaxed plan can be derived from a bucket plan by ordering
actions from each bucket arbitrarily.

However, the bucket plan or the corresponding sequential plans contain many
actions that are not relevant for achieving the goal. While the cost of a relaxed
plan can be used as a heuristic estimate, the cost of all actions in a relaxed state
progression sequence is not very informative. In classical planning, a marking of
actions in relaxed state progression is a function that assigns a label marked or
not marked to each action. A labeling procedure can then determine a subset of
relevant actions and only mark those. The sum of the costs of marked actions
is then a much better heuristic estimate and the hFF heuristic is based on such
a marking approach.

For numeric planning, we want to restrict the actions in the plan to relevant
actions as well. Whereas marking action edges like in classical planning is
sufficient for the interval relaxation (cf. Section 3.3), actions can not be applied
arbitrarily often in an actual plan and we are also interested in interval relaxed
plans for the repetition relaxation (cf. Section 3.4). Relevance of a repetition
relaxed action therefore also includes the number of repetitions for which an
action has to be executed in order to achieve a desired effect. As such, we
generalize the concept of a marking from a function that assigns marked or not
marked to each actions to a function µ :

⋃n
j=1Aj → N≥0 assigning a repetition

counter to each action edge. Here, µ = 0 corresponds to not marked and
numbers greater or equal than one µ ≥ 1 correspond to the label marked.

A marking pursuing state sequence is a structure that allows us to verify
whether a restriction to marked action edges is sufficient to satisfy the goal
condition as well: we compute a new state sequence with the same structure
but different values of the variables, where we only apply marked actions and
verify that the last state of this sequence satisfies the goal condition. The
intervals in the marking pursuing state sequence are more restrained compared
to the original state sequence.

Definition 19 (Marking Pursuing State Sequence). Let 〈s0, . . . ,An, sn〉
be a relaxed state progression sequence and µ :

⋃n
j=1Aj → N≥0 be a marking.

The marking pursuing state sequence 〈s′0, . . . ,A′n, s′n〉 is a new state sequence
where s′0 = s0 as in the original state sequence.

The set of action edges A′j contains an edge 〈s′i, a, s′j〉 iff

• there exists an edge with corresponding state indices 〈si, a, sj〉 ∈ Aj ,

• µ(〈si, a, sj〉) ≥ 1, i.e. the corresponding edge in Aj is marked,



54 CHAPTER 4. NUMERIC RELAXATION HEURISTICS

−1

1

0v0

v1

v2

0

0

0

s0

−1

1 5

0v0

v1

v2

0

10

0

s1

−1 2

1 5

0v0

v1

v2

0

10

11

s2

−1 2

1 5

0 5v0

v1

v2

22

10

11

s3

a1

a2

a 0

Figure 4.5: State sequence where a generalized marking is beneficial.

• s′i � pre(a), i.e. the action is applicable in its starting state

.
The state s′j is inductively given by the convex union

s′j = s′j−1 t
⊔

〈s′i,a,s′j〉∈A′
j

appµ(〈si,a,sj〉)(a, s′i)

where appµ(〈si,a,sj〉) is the repeated application of the effect in the interval
relaxation semantics according to the repetition counter of the marking.

The marking is valid if the last state of the marking pursuing state sequence
satisfies the goal condition. The cost of a marking is the sum of the costs of
all marked actions multiplied with their respective repetition count. A marking
is optimal if it is valid and the cost of the marking is minimal among all valid
markings.

Our marking procedure generalizes the marking method from classical plan-
ning in several ways. In classical planning actions are idempotent and therefore,
it is sufficient to mark actions only once. This makes the exact time point at
which an action is marked insubstantial. In contrast, for numeric planning it
might be necessary to execute actions at different time steps and thus, the la-
beling procedure has to mark action edges that contain a starting state and an
ending state in addition to the action itself. As the number of facts in classi-
cal planning is bounded, the heuristics do not have to generate a relaxed state
progression sequence, and an optimal marking is one that marks the actions of
an optimal relaxed plan. In numeric planning, the actions of an optimal relaxed
plan might not be present in the state progression sequence, and a marking is
optimal only regarding this structure.

Like in classical planning, the marking procedure captures beneficial inter-
actions such as an action enabling precondition facts of several others. Numeric
planning offers even more room for improving hFF over hadd by not having to
fully enable facts in a given state.

Example 24. Let I = {v0 7→ [0, 0], v1 7→ [1, 1], v2 7→ [−1,−1]} as depicted
in Figure 4.5 and actions a0 = 〈v2 > 0, v0 += v1〉, a1 = 〈∅, v1 := 5〉 and
a2 = 〈∅, v2 += 3〉 with costs κ(a0) = 1, κ(a1) = 10 and κ(a2) = 11. Let
furthermore G = {v0 > 0}.

Whereas marking actions a2 and a0 yields a valid plan, 〈a2, a0〉 with cost 12,
a1 is applicable before a0, the fact v2 7→ [1, 5] in state s2 has a cost κ2 = 10 in
the given relaxed state progression sequence, which leads to an estimated cost



4.4. FF PLAN EXTRACTION HEURISTICS 55

of κ3(v0 7→ [0, 5]) = 22. Yet, a marking procedure that ignores the irrelevant
action a1 allows us to find the better plan.

In order to determine a marking of a relaxed state progression sequence, we
will illustrate a marking procedure based on the regressive explication of tar-
get values using target value decomposition (cf. Definition 14) and regression
(cf. Definition 15) from Theorem 15. But first, we will show that an optimal
marking can not be computed efficiently. We will show that the cost bounded
marking problem is NP-complete as in classical planning. Analogously to clas-
sical planning, the costs annotated to each fact by the progression search only
matter to approximate a “good” valid marking, but they are insubstantial for
the complexity proof where a non-deterministic oracle guesses a marking which
is then verified by a polynomial checking procedure.

We show NP-completeness of an optimal marking by considering the corre-
sponding decision problem where the cost of the marking is bounded β.

Theorem 20. Marking actions in an relaxed state progression sequence so that
the cost of the corresponding interval relaxed plan is bounded by β is weakly
NP-complete.

Proof. NP-hardness of the marking problem for numeric planning is evident as it
is a generalization of the hFF marking problem for classical planning. Reducing
minimum set cover to h+: the cost of an optimal relaxed plan, can therefore
also be used to show NP-hardness of the generalized numeric marking problem.

Membership in NP is shown by guessing a marking of action edges. For the
interval relaxation, actions are marked with µ = 1, however, for the repetition
relaxation we also have to guess a number of repetitions for each action. The
plan cost bound β bounds the number of repetitions that can be chosen for
each action a, namely b β

κ(a)c. For very small action costs κ(a) this number can

become large which is the reason for pseudo-polynomial membership and weak
NP-completeness.

The maximal number of repetitions b β
mina∈A κ(a)c also ensures that the ra-

tional numbers on the interval bounds can be represented in polynomial space.
The checking procedure that verifies that a given marking is indeed a re-

laxed plan, the marking pursuing state sequence (cf. Definition 19), is a simple
progression scan that is restricted to the marked actions. In each relaxed state
of this sequence, all marked actions are executed, unless they are not applicable
in which case the marking is either suboptimal or not a valid relaxed plan. If
the last state of the verification procedure satisfies the goal condition, the mark-
ing is valid. The procedure runs in time polynomial in b β

mina∈A κ(a)c × l: the

number of marked actions and the length of the sequence l, thus demonstrating
membership in NP.

4.4.2 Target Value Explication

As we have shown in the previous section, an optimal marking can not be found
in polynomial time unless P = NP. We propose a marking method for numeric
planning that approximates an optimal marking based on the hadd estimates as
it is done in the hFF heuristic from classical planning.

Given a relaxed state progression sequence, we have to mark action edges,
so that the marking pursuing state sequence satisfies the goal G. Opposed to



56 CHAPTER 4. NUMERIC RELAXATION HEURISTICS

the repetition relaxation, we are not allowed to apply actions arbitrarily often
in this plan. Instead, action edges are marked with a repetition count that
allows the action to reach certain target values: numbers which are sufficient to
satisfy the constraints in the remaining state sequence. As these target values
are not known upfront we explicate target values and the repetition counts in
a regressive procedure based on target value decomposition (cf. Definition 14)
and target value regression (cf. Definition 15) from Theorem 15.

The sequence of relaxed states starts in a state I = s0 consisting of degen-
erate point intervals, the state for which the hFF estimate has to be computed.
The generated relaxed state sequence depends on the progression method: with
the planning graph approach, relaxed states are the “fact layers” of the planning
graph, whereas with a priority queue based approach the states are given by
all intervals reachable with cost equal to the priority at enqueue time. The last
state of the reachability sequence satisfies the goal condition.

We start by explicating target values which satisfy the goal constraints ξ D 0
by choosing an arbitrary target value qξ ∈ sn(ξ) with qξ D 0 for each constraint.
This choice is arbitrary, as the regressive target value explication procedure has
to be tractable, and as we only have one cost estimate for all reachable values,
we cannot test several target values efficiently. Nevertheless, we will propose
heuristic rules to estimate target values that usually lead to a good marking.
Now given this target value qξ, we determine target values for all variables oc-
curring in the expression ξ with the help of target value decomposition, For
each variable, we select an achieving action for the target values assigned to the
corresponding variable. Target value regression generates new target values in
the “starting”-state of the action edge, so that satisfying the implicit precondi-
tions in the preceding state is sufficient to reach the desired target value in the
“ending” state. Additional target values are generated in the “starting”-state
in order to satisfy the precondition of the action. Again, we chose arbitrary
target values qξ for the preconditions ξ D 0 of the action, where qξ ∈ si(ξ) in
the “starting”-state si and generate target values for the variables occurring in
the expression by target value decomposition. Then, the regression procedure
continues with the relaxed state sj−1 preceding the current state sj in the state
sequence. Note that in general, this state differs from the starting state si of
the action edge for which the new target values are generated.

Example 25. Recall the state sequence depicted in Figure 4.5, and assume
that we have to achieve a target value for variable v2 in state s2. The target
value is achieved by applying a2 from s0 and therefore, the new target values
will be generated for s0. However, the regression continues with the search for
achievers of the target values in the preceding relaxed state s1.

The number of target values that has to be achieved for a given variable in a
given state is restricted to two (cf. Theorem 15), as each variable starts with the
initial value (cf. Definition 6) and expands monotonously. As such, keeping the
lowest target value q− less than the initial value and the greatest target value
q+ greater the initial value is sufficient as monotonicity automatically achieves
all target values between q− and q+ as well.

The regression terminate as soon as all target values reach the initial values
of the corresponding variables.

Given a relaxed state progression sequence as well as a set of target values
that have to be reached in a certain relaxed state sj , we can use target value



4.4. FF PLAN EXTRACTION HEURISTICS 57

regression to determine target values in the preceding states si as well as a
repetition count that is sufficient to enable the desired target values. However,
in general, the same interval can be achieved by several actions in the same
step. Moreover, not all actions that achieve some value for an interval in the
current step also achieve the desired target value. As in classical planning, we
estimate the cost of achieving a target value with the help of the hadd fact
cost estimates, and select the most promising action according to the cost of
the respective action evaluated by the sum of precondition fact estimates in
the respective starting state si. With a concrete target value at hand we can
identify valid achievers and select the one with the best hadd estimate. We can
even stick to Formula 4.1 more closely again by allowing for the “idle arc” fact
in sj−1 again, if the target value is already reachable in the previous state, and
the “idle action” is a valid achiever even though the interval changed from sj−1

to sj .

We have to select arbitrary target values satisfying numeric constraints of
action preconditions as well as side constraints in the target value decomposition
and target value regression. Our explication process selects locally promising
target values. The values of all variables have to reach the point intervals from s0

at the end of the regression procedure, making proximity to the initial values iv
an indicator for good target values. An exception to this rule are open intervals
in the repetition relaxation. Open intervals are only generated as the result of
a contracting effect that approaches zero, which can then be moved by other
effects to arbitrary positions. Therefore, it is advisable to keep a safety margin
to open interval bounds.

Example 26. Figure 4.6 depicts a relaxed state progression sequence. We start
with the goal G = {v2−15 > 0} and chose an arbitrary target value qG = 1 that
satisfies the goal condition. The target value decomposition of the expression
ξ = v2 − 15 yields the pair 〈16, 15〉 to achieve qG = 1 and we can continue with
the target value qv2 = 16 for v2 and q15 = 15 for the constant 15.

There are two achievers for the fact v2 7→ (−∞,∞) in s3: a1 and a2. The
relevant effect of a1 is v2 := v1 ÷ 2. However, while assigning s2(v1 ÷ 2) =
[−1, 10]÷ [2, 2] = [− 1

2 , 5] to v2 extends v2 as compared to s2 (values from 2 to 5
become reachable), the effect does not reach the target value q = 16 and thus,
it is not a valid achiever. On the other hand, a2 has the effect v2 := v0 × v1

which assigns s2(v0 × v1) = [0,∞)× [−1, 10] = (−∞,∞) containing q = 16.

The target value regression 〈2, 16, 16, 1〉 of the effect v2 := v0 × v1 assigns
the initial value qv2 = 2 to v2 and qξ = 16 to the expression ξ = v0 × v1. A
possible target value decomposition 〈8, 2〉 results in the target values qv1 = 8
for and qv0 = 2 in s2.

The target value qv0 = 2 in s2 is achievable by action a0 for a cost of
κ1(v0 7→ [0, 2]) + κ1(v1 7→ [−1, 0]) + κ(a0) = 1 + 1 + 1 = 3. However, qv0 = 2
is reachable in the preceding state s1 and as such, the “idle arc” v0 7→ [0, 2] is
a valid achiever as well. And as the “idle arc” has a better hadd estimate, we
propagate the target value qv0 = 2 to the preceding relaxed state s1.

The target value qv1 = 8 is achieved by action a1 with effect v1 := 5×v0 and
the target value regression 〈−1, 8, 8, 1〉 and decomposition 〈5, 1.6〉 of ξ = v0× v1

generates target values qv0 = 1.6 and qv2 = −1 in s1. Now we have two target
values qv0 = 1.6 and qv0 = 2 for v0 which are both greater than the initial value
0 and thus, we only have to achieve the second one qv0 = 2.



58 CHAPTER 4. NUMERIC RELAXATION HEURISTICS

2

q=−
1

−
1 0

v
0

v
1

v
2

000

s
0

−
12

2

−
1

0

q=
2

0
2

v
0

v
1

v
2

111

s
1

−
12

2

q=
8

−
1

1
0

q=
2

0
∞

v
0

v
1

v
2

331

s
2

q=
1
6

−∞
∞

−
1

∞

−∞
∞

v
0

v
1

v
2

775

s
3

a
0

a
1

a
2

a
0

a
1

a
2

a
0

a
1

a
2

a
0
∶⟨∅

,{
v
0 ∶=−

2÷
v
1 }⟩

∶ κ
1

a
1
∶⟨∅

,{
v
1 ∶=

5×
v
0 ,

v
2 ∶=

v
1 ÷

2 }⟩
∶ κ

1

a
2
∶⟨{v

1 >
0},{

v
2 ∶=

v
0 ×

v
1 }⟩

∶ κ
1

G∶{v
2 −

15>
0}

F
igu

re
4
.6

:
R

ela
x
ed

state
p

rog
ressio

n
seq

u
en

ce
w

h
ere

so
m

e
a
ctio

n
s

a
re

m
a
rked

in
g
reen

an
d

th
e

target
valu

e
ex

p
lication

u
sed

in
h

F
F

.



4.4. FF PLAN EXTRACTION HEURISTICS 59

Finally, a0 with the effect v0 := −2÷ v1 can achieve qv0 = 2 with the target
value regression 〈0, 2, 2, 1〉 and the decomposition for qξ = 2 of ξ = −2 ÷ v1

is 〈−2,−1〉 with qv1 = −1 = iv1 so that all target values are regressed to the
respective initial values.

As all actions are marked with a repetition count of 1, the resulting relaxed
plan is then 〈a1

0, a
1
1, a

1
2〉.

Target values are of great practical help for a regressive marking procedure
which has to select numeric facts that do not have to be achieved completely.
Additionally, target values allow us to select a valid achiever for the relevant
value in a fact that is achieved by several actions in the relaxed state progression
sequence. This opens the question whether we can derive a marking from target
values and vice versa so that every plan that corresponds to the one corresponds
to the other as well so that we could use “a marking” and “a set of target values”
interchangeably.

Given a marking of actions in a relaxed state progression sequence, a set
of target values that yield the same fact progression as the one obtained from
applying all marked actions can be derived with the help of the marking pursuing
state sequence (cf. Definition 19) as follows: For each marked action, we look at
the facts in the effect and for each variable that extends the assigned interval,
we select the new bounding element as target value. In a marking pursuing
state sequence, effects are applied with a restricted number of repetitions (the
marking) and therefore, all bounds are closed. The sole exception to this are
divisions by an interval containing zero in which case bounds can diverge to
infinity. In this case a sufficiently large / small number is used as target value.
Such a number can easily be determined by executing the plan corresponding to
the marking once, and by monitoring the constraints that have to be achieved.
Whereas a single action can therefore assign two target values to a fact at most,
each fact can have several achievers. However, it is sufficient to only store the
greatest and the lowest value among the target values from all achievers.

Now for the converse direction we want to generate a marking given a set
of target values in the relaxed state sequence efficiently. If we go through the
state sequence starting from the initial state s0, we can copy the intervals from
state si to state si+1 until we reach a target value qv for a variable v where
qv /∈ si+1 that has to be achieved in si+1. We have to mark a valid achiever for
this target value and extend the interval si+1(v) to the target value qv. While
this procedure allows us to find some marking for a given set of target values,
we cannot find the best achiever efficiently, if there are several achievers for the
same fact. The reason is that actions can have positive side effect on other
target values that have to be achieved in the same or a following step. To see
that finding the best achiever cannot be done efficiently unless P = NP, we can
reduce minimum set cover to this problem: the subsets are given by unit cost
actions whose effects achieves exactly one target value for the next relaxed state.

Finding a best achiever would be important if we would have access to an
optimal set of target values from which we could then derive an optimal marking.
In the next section we will discuss optimality of a marking with respect to the
optimality of a corresponding plan.



60 CHAPTER 4. NUMERIC RELAXATION HEURISTICS

4.4.3 Marked Action Scheduling

One major advantage of the estimate of the hFF heuristic over the hadd esti-
mate is that it captures beneficial side-effects of an action that achieves several
relevant facts at once. In the numeric setting, actions are marked in respect to
action edges. If we want to exploit beneficial interactions to the same degree as
in classical planning, we have to aggregate repetitions from marking the same
action edge several times, but we would also like to aggregate repetitions of the
same action from several action edges that can be executed in parallel. Given a
marking of a relaxed state progression sequence (cf. Definition 17) we want to
derive an optimal relaxed plan that corresponds to the marking.

Before we define what we mean by plan correspondence, we have to generalize
bucket plans (cf. Definition 18) to allow for repetitions of the same action.
The action buckets Bi of a bucket plan 〈B1, . . . ,Bn〉 contain actions a with a
repetition count r.

Definition 20 (Plan Correspondence). Let 〈s0, . . . ,An, sn〉 be a relaxed
state progression sequence with n+ 1 states, µ :

⋃n
j=1Aj → N≥0 be a marking

and 〈B1, . . . ,Bm〉 be a bucket plan with m buckets that contain actions with a
repetition cardinality.

The bucket plan corresponds to marking of the relaxed state progression
sequence if the number of states exceeds the number of buckets by one, and
if for each action edge 〈si, a, sj〉,

∑
ar∈Bk

r ≥ µ(〈si, a, sj〉) for i < k ≤ j. I.e.
the sum of repetitions r of action a in buckets with an index between i and j
is greater or equal to the number of repetitions that the action edge is marked
with.

Figuratively speaking, a bucket plan corresponds to the marking of a relaxed
state progression sequence, if we can put a bucket between all states of the
sequence and the action of an action edge is contained in the bucket between
its starting state and its ending state at least as often as it is marked.

Whereas bucket plans can again be obtained in two very natural ways by
the bucket at the start or by the bucket at the end of an action edge, where
actions of an action edge 〈si, a, sj〉 that are marked r times are inserted into
Bucket Bi+1 or respectively in bucket Bj with a cardinality of r, we can usually
distribute the actions among the buckets in a way that beneficial interactions
are exploited more effectively. Encouragingly, an optimal corresponding plan,
i.e. a plan whose cost is minimal among all plans that correspond to a given
marking, can be scheduled efficiently.

The relaxed states si and sj of an action edge can be seen as time bounds
which determine the earliest and the latest execution time of an action. The
deploy time i of an action is given by the index of the starting state and the
deadline j is the index of the ending state. If several actions edges of the same
action are marked and the execution time of these action edges overlaps, we can
save executions by applying the action at a moment where the action enables
several target values at once, i.e. by putting it into a bucket that is feasible for
both action edges.

Theorem 21 (Optimal Corresponding Bucket Plan). Given a relaxed
state progression sequence and a marking, we can construct an optimal corre-
sponding bucket plan efficiently.



4.5. CONCLUSION 61

Proof. We construct an optimal corresponding bucket plan by sorting action
edges by earliest deploy time and regressively building the bucket plan starting
from the action with the latest deploy time. At each step, we add µ(〈si, a, sj〉)
copies of the action a into bucket Bi+1 and reduce the marking of all action
edges 〈s′i, a, s′j〉 whose deadline is after the current actions deploy time, i.e.
j′ > i, by the current repetition count. If an action edge’s remaining repetition
marking count reaches a number less or equal than zero, we can remove the
action edge from the remaining scheduling task as the desired target value is
already achieved from beneficial side effects. Then, we continue the regression
with the action with the latest deploy time again.

The sketched procedure outputs a bucket plan corresponding to the marking,
as the marking is valid and the repetition count of an action a is only reduced
by the an amount that is included in sum

∑
ar∈Bk

r.
The procedure yields an optimal corresponding plan as each as the action

edge with the latest deploy time cannot be scheduled earlier. As there is no
action edge that starts later, scheduling the action can not have more beneficial
side-effects by scheduling at a later time point. While the actions whose deadline
is after the current deploy time might be applied at an earlier time for a different
optimal plan (with the same cost), the action has to be executed anyways so
while we might not gain anything from scheduling the “free repetitions” from
the side effect we reduce the number of repetitions by the largest number of
repetitions possible. The remaining repetitions (if any repetitions remain) can
have beneficial side effects if they are scheduled earlier, so we leave them in the
remaining scheduling problem.

The procedure can be computed efficiently, as sorting the marked action’s
by deploy time and by deadline can be done efficiently. The bucket plan can
be constructed in a single sweep without branching which is even linear in the
input.

Now that we know that an optimal corresponding plan can be constructed
efficiently, it would be interesting to know whether an optimal marking of a
relaxed state progression sequence can be found efficiently, where an optimal
marking is now defined as marking where the corresponding optimal bucket plan
has minimal cost among all markings opposed to minimizing the action cost of
the marked actions. In Theorem 20 we restricted the bound β to the sum of
costs of all marked actions. Now the optimal marking could be one that has
to mark additional actions because the corresponding plan could be scheduled
more efficiently as compared to another marking with lesser actions cost bound
β. It seems highly unlikely that finding an optimal marking in respect to the
cost of an optimal corresponding plan could be possible more efficiently, but we
note that this is still an open research question.

4.5 Conclusion

We discussed different approaches to tractable heuristics for interval relaxed
numeric planning and considered different relaxation frameworks: the interval
relaxation and the repetition relaxation with different approaches to restrict the
number of facts considered during heuristic exploration: one motivated by the
planning graph, another from a priority queue to build a relaxed state progres-



62 CHAPTER 4. NUMERIC RELAXATION HEURISTICS

sion sequence. We highlighted critical combinations that impair tractability of
the heuristic or restrict algorithms to a subset of numeric planning tasks. Fur-
thermore, we generalized the marking procedure of hFF which extracts valid
relaxed plans out of the sequence of monotonically increasing state intervals by
explicating target values.

In the next chapter we present the details of our implementation of the well
known planning graph heuristics hmax, hadd and hFF from classical planning in
these frameworks and established heuristics which are suitable for all numeric
planning tasks expressible in PDDL 2.1, layer 2. We showed experimentally
that the general heuristics can find plans even for planning tasks with cycles,
non-linear effects and action costs, providing a baseline for future approaches.



Chapter 5

Numeric Fast Downward

In order to assess the quality of the interval based relaxation heuristics proposed
in the previous chapter, we implemented a planning system able to deal with
numerical state variables: Numeric Fast Downward (NFD). It is based on the
Fast Downward Planning System [Hel06] which is a modular planning system
based on heuristic search. Most successful planners at the International Plan-
ning Competition IPC nowadays are based on Fast Downward or at least on
some of its components. In the next section, we briefly outline the planning
domain definition language PDDL that is used to express planning problems.
The aspects of Fast Downward that are relevant for the numeric extension are
then described in Section 5.2. NFD also inherits parts of Temporal Fast Down-
ward (TFD) [EMR09], another planning system which is also based on Fast
Downward. TFD can handle numeric quantities as well as temporal aspects of
planning. However, TFD deals with numeric aspects very roughly and focuses
of concurrency issues of temporal planning. The relevant aspects are described
in Section 5.3. We will then discuss the features we implemented in Section 5.4.

5.1 PDDL

The planning domain definition language PDDL [MGH+98] is most commonly
used to express domain independent planning problems. PDDL is the lan-
guage which is used for the International Planning Competition (IPC), [McD00].
As such, most benchmark instances for automated planning are formulated in
PDDL.

PDDL uses a closed world representation, i.e. facts that are missing in a
world description are assumed to be false. There is no need to model that a
fact is false which implies that there is full observability.

The syntax of PDDL has a prefix notation similar to LISP. Operators are
described in a schematic representation. In order to obtain a planning task
description as in Section 2.1 the schematic operators have to be grounded by
instantiating them.

Usually, planning tasks in PDDL are separated into a planning domain and
into a planning problem. The former describes the commonalities of all instances
of a planning problem, most notably the available actions. The latter describes
the initial state and the objects that exist in a particular planning instance.

63



64 CHAPTER 5. NUMERIC FAST DOWNWARD

This allows to easily generate benchmark instances that share the same domain
description and vary in the number of objects available in the world.

Among the various extensions that have been proposed for PDDL, Fox and
Long [FL03] introduced PDDL 2.1 with five layers of increasing expressiveness.
Classical planning resides in layer 1. Layer 2 allows to express numeric planning
problems with instantaneous actions which is the area of automated planning
that we focus on in this thesis. Layer 3 allows for durative actions and for
concurrency where changes in the world happen at discrete moments (e.g. at
the beginning or the end of an action). Actions with continuous change can be
expressed by PDDL 2.1, layer 4 and layer 5 allows for exogenous events i.e. the
world is not assumed to be static any more.

The numeric planning problems with instantaneous actions that we are in-
terested in can be expressed with PDDL 2.1, layer 2.

5.2 Fast Downward

Fast Downward is a planning system based on heuristic forward search and
hierarchical task decomposition. It takes a planning problem, usually described
in PDDL, and outputs one or several plans. Fast Downward first performs
several preprocessing steps (cf. Section 5.2.1) before performing a heuristic
search (cf. Section 5.2.2) to output a plan or several plans of increasing quality
if it is called in an anytime mode.

5.2.1 Preprocessing

The preprocessing components of Fast Downward translate the PDDL task into
a grounded SAS+ representation that is more suitable for the actual search. Pre-
processing is split into a translation phase and a knowledge compilation phase.
During translation, Boolean formulas in preconditions and effects are simplified.
Then, mutex invariants are identified, i.e. variables that are mutually exclusive,
i.e. they can never be true at the same time. After grounding the schematic
PDDL operators, the mutex invariants can be used to translate Boolean to
multi-valued variables.

In the knowledge compilation step, domain transition graphs and causal
graphs are determined that are required for some of the heuristics used dur-
ing search. Additionally, they allow for the detection of variables that can be
eliminated beyond the simplifications performed during the translation phase.
Moreover, a successor generator and an axiom evaluator are determined which
allow the search to generate successors and evaluate axioms more efficiently.

5.2.2 Search

Fast Downward’s search component allows for many different configurations.
Most commonly, the core search algorithm is a variant of a greedy best first
search. The search is greedy in the sense that it always expands the best node ac-
cording to an evaluation function. The configuration of this evaluation function
allows for many different search algorithms, e.g. A? search [HNR68] evaluates
nodes by summing the path cost from the initial node to the current node and
the heuristic estimate of the current node to a goal. The evaluation function



5.3. TFD 65

is usually evaluated when search nodes are generated (eager evaluation). How-
ever, for search problems with a large branching factor, it is usually advisable
to defer node evaluation to the time when they are expanded (lazy or deferred
evaluation) and use the heuristic information of the parent node instead.

Moreover, Fast Downward allows for multi-heuristic best first search where
several separate open lists for different evaluation functions are maintained.

5.3 TFD

Temporal Fast Downward [EMR09] is a Fast Downward based planning system
for planning problems with temporal concurrency. TFD can also deal with
numeric aspects of planning, although its main focus is the support of temporal
actions.

As a temporal planner, TFD does not support instantaneous actions (ac-
tions without a duration) and can therefore not be applied on regular planning
problems. TFD is not as optimized as Fast Downward and several simplifi-
cations and optimizations performed during preprocessing are skipped. TFD
aims at solving temporal planning problems and implements one heuristic, the
context enhanced additive heuristic (CEAH). While the heuristic deals with the
propositional aspects of the planning task and gives an estimate on the cost of
the actions that have to be applied in order to derive the propositional part,
the support of numeric variables is very basic in nature. Numeric aspects are
retrospectively added to the heuristic estimate, after the actions that are rele-
vant for the propositional aspect have been determined. For each action that
CEAH considers relevant, TFD checks the preconditions of this actions for nu-
meric comparisons. If the comparison is not satisfied in the current state, the
deviation of the current value of the variable to the required value contributes
directly to the heuristic cost. The sum of all deviations is then used to establish
basic guidance for the numeric aspect of the planning problem. Obviously, this
difference does not reflect the actual effort that has to be spent to alter the value
of a variable to its target value. Additionally, it can mislead the propositional
aspect of the heuristic, as the deviation of a numeric variable from its target
value can be orders of magnitude larger.

On the implementation side, TFD decomposes complex numeric expressions
into a tree of binary expressions by inserting auxiliary variables. Thus,

Similarly, auxiliary propositional variables are introduced for the comparison
result of numeric constraints. Numeric axioms evaluate these auxiliary variables
on demand which reduces memory consumption during search.

5.4 NFD

The Numeric Fast Downward (NFD) planning system is a planner based on
Fast Downward that has been developed during the doctoral process. NFD
occupies the space between regular Fast Downward and TFD, namely numeric
planning with instantaneous actions. NFD supports numeric planning from
PDDL 2.1, layer 2 [FL03] as well as selected features from PDDL 3 such as
global constraints. Classical planning benchmarks can be solved with NFD as
well. The original Fast Downward does not support floating point numbers and



66 CHAPTER 5. NUMERIC FAST DOWNWARD

thus, major modifications had to be performed in preprocessing, state handling
and search. In addition to the propositional variables that are compiled to
multi-valued variables in Fast Downward, NFD also maintains a set of numeric
variables. Opposed to TFD, NFD does not have to deal with temporal aspects.
Thus, it can find much more accurate estimates for the numeric aspects of
planning.

Structurally, NFD handles numeric expressions as TFD: it introduces aux-
iliary variables for all intermediate results and evaluates expressions with the
help of binary arithmetic axioms. Similarly for numeric constraints an auxiliary
propositional variable stores the result of a comparison axiom. These auxiliary
variables facilitate target value decompositions (cf. Definition 13) and regres-
sions (cf. Definition 15) as the sub-expressions are then present in the problem
representation. Opposed to TFD, NFD performs all preprocessing optimiza-
tions on the propositional variables and can solve classical planning problems
analogously. During preprocessing, numeric axioms are simplified (e.g., the sum
of two constants is not evaluated by an axiom but replaced by a new constant
whose value is computed once during preprocessing) and irrelevant variables are
removed analogously to regular Fast Downward. Data structures like domain
transition graph and causal graph are also generated for numeric variables, with
the simplified assumption that all values (i.e. all values from −∞ to ∞) are
considered reachable if a variable is assigned a new value.

Fast Downward supports integer valued action costs (i.e. κ(a) ∈ N) where
NFD allows for 64-bit floating point numbers. This comes with a big disad-
vantage concerning compatibility to classical planning: a bucket based priority
queue is usually the most efficient data structure for search nodes, but it be-
comes impractical when search nodes are rarely enqueued with the same priority.
Thus, while classical planning problems can be solved with NFD as well, NFD
can not always keep up with the performance of regular Fast Downward on
classical benchmark problems. Another challenge with rational numbers is the
representation problem, as numbers have to be rounded to the closest repre-
sentable floating point number. For the interval based relaxations we round the
upper interval bound up to the next representable number and for the lower
bound we round down. This way we ensure that all reachable numbers are
enclosed in the interval. However, if we compute target value decomposition
or regression, we have to derive target values by applying inverse arithmetic
operations. As such, we had to implement floating point rounding in a context-
aware way. Critical situations appear often in practice, as locally promising
target values are often found directly on the interval bounds for target value
decomposition and regression.

The implementation of the priority queue based numeric heuristics follows
instructions for classical planning presented by Röger and Helmert [RH13]: nu-
meric effects of an action are evaluated in isolation. The “concurrency” of the
effects of an action does not influence any of the heuristic computations, and
therefore, actions are decomposed into unary actions: actions with only one
effect. This also allows for easy handling of conditional effects, as the effect
condition can be merged into the action precondition for such effects.

In order to ensure polynomial time complexity of the heuristic computa-
tion, we break cycles by the introduction of auxiliary variables as discussed in
Section 4.2. A related issue of the priority queue based approach is discussed
in Theorem 19: enqueuing actions respective to their cost does not necessarily



5.4. NFD 67

respect topological restrictions. As suggested in the section, we use a two phase
computation for hmax, where we identify maximally reachable intervals in a first
phase, and use these intervals in the second phase. For hadd, we block variables
from being enqueued in the priority queue if a topologically higher variable has
not been processed yet. For hFF, we base tie-breakers on the hadd estimate. At
the time of implementing the heuristics, we were not aware that actions can be
scheduled optimally in polynomial time in order to exploit beneficial side effects
from marking actions (cf. Section 4.4.3). Instead we mark actions at the earli-
est possible time (close to si for marked action edges 〈si, a, sj〉). Even without
this optimization, hFF with a priority queue based progression approach yields
impressive results as we will see in the upcoming section.

5.4.1 Metric

While classical planning tasks are restricted to actions with integer valued action
costs, numeric planning tasks come with more sophisticated metric expressions
instrumenting over several variables. Numeric Fast Downward (NFD) supports
linear state-independent instrumentation effects [CCFL13], which are evaluated
in the initial state and compiled into a rational valued action cost. Instrumen-
tation variables are detected automatically and stored separately which allows
search algorithms to prune states that only differ in these variables.



Chapter 6

Experiments

In this section we present the experiments we performed. First, we will introduce
the Jumpbot domain, a collection of benchmark instances that is particularly
interesting as it uses numeric variables to model physical quantities. Then, we
briefly discuss the other benchmark instances we used for our experiments. In
Section 6.2, we will introduce the configurations that we tested before we show
the performance of several NFD configurations in terms of plan cost, coverage
and algorithmic quality. Afterwards, we compare the best NFD configurations
to other state-of-the-art planners Metric FF [Hof03] and ENHSP [SHTR16;
SHT16]. Finally, we discourse into Earth observation planning that was solved
with Temporal Fast Downward with semantic attachments (TFD/M).

6.1 Jumpbot

The Jumpbot domain is a planning domain for numeric planning with instan-
taneous actions which models physical properties in a dynamic world. We intro-
duced the Jumpbot domain in a technical report [AL16] on which this section
is based. It features cyclic, non-linear effects for turning, accelerating or decel-
erating the robot, as well as classical preconditions. Therefore, it can neither be
solved by control engineering [LEKN12] nor by planners requiring linear tasks
such as Metric FF [Hof03].

Jumpbot models a walking robot that has to reach a target region by jump-
ing over water ditches. The kinematic of the robot is modeled by its current
position and velocity vector. The planner has to reason about the correct ac-
celerations, rotations, velocities, jump positions and space for the deceleration.
States of the world are the footprints of the robot modeled by four numeric
variables x, y, vx, vy describing the position vector and the velocity vector of the
robot. A description of the scenario is depicted in Figure 6.1. The task is to
plan a step trace from an initial pose (depicted by a red cross with a velocity
vector depicting orientation and speed of the robot) to a pose where the robot
is located inside the green goal region with a velocity close to zero. Water is
depicted by blue waves and solid ground by white surface. The robot is only
allowed to step on solid ground but it may step or jump over water ditches. The
domain contains information about the robot’s mass, velocity, momentum and
acceleration capacities. There are six actions to steer the robot: step, jump,

68



6.1. JUMPBOT 69

x

y

G

initial pose

solid ground

water

goal region

Figure 6.1: Scenario description of an exemplary Jumpbot instance.

accelerate, decelerate, steer left and steer right.
The state evolution is obtained by state transition matrices considering the

physical dynamics of the robot where actions discretize the world model by ex-
erting the respective force for a duration of 0.5 seconds for most actions after
which the robot “steps on the ground” again. The exception is the jump ac-
tion where the robot progresses towards its current orientation for 1 second.
Propositional preconditions prevent the robot from turning to alternating di-
rections in consecutive actions and the jump action requires the robot to move
at a minimum velocity in order to be executed.

Jumpbot provides a set of benchmark instances for numeric planning in an
area which is underrepresented by prevailing benchmarks: the use of numeric
variables to model physical properties as opposed to their use for modeling
resources. As such it offers challenges that go beyond little modifications of
classical planning systems and is particularly interesting to benchmark numeric
planning systems.

6.1.1 Benchmarks

Besides the Jumpbot domain, we tested our NFD configurations as well as
the other numeric planning algorithms on various numeric benchmark domains
from the IPC 2002 [LF03], Francès and Geffner [FG15] and Scala, Haslum, and
Thiébaux [SHT16].

• BlockGrouping: blocks of different colors have to be moved in a grid so
that all blocks of the same color end up in the same grid cell. The number
of blocks of a certain color in a grid cell is modeled as resource that can
be increased or decreased.

• Counters: a set of counters that can be increased or decreased, have to
be transferred into a state where the numbers of the counter are sorted



70 CHAPTER 6. EXPERIMENTS

in increasing order. For Counters-0, all counters are initialized to zero,
for Counters-inv, they are initially sorted in decreasing order and for
Counters-rnd at random.

• Depots: a combination of Blocks and Logistics, where trucks trans-
port crates that have to be stacked at the target locations. The numeric
variant adds resources such as weight, capacity and fuel.

• DriverLog: a Logistics problem on two layers: trucks drive around to
deliver packages, but the drivers have to walk between trucks on another
map. The numeric variants have cost associated to driving and walking.
In the hard variant this cost is non-linear.

• FarmLand: several locations (“farms”) contain a resource x which can be
transferred from connected locations slowly (−1/ + 1) or fast (−4/ + 2).
Farms have a weight factor, and the goal is to move the resource from
farms with low weight to farms with high weight without depleting it (the
option to move fast is a trap for relaxation approaches).

• Geo-Rovers: a newer variant of the planetary Rovers domain.

• Hydraulic-Blocks-World: a Blocksworld problem where the blocks
contain liquids and pistons that pose additional constraints.

• Jumpbot: a robot has to jump over water ditches, see previous section
for more details.

• Plant-Watering: an agent has to navigate in a grid world, moving
water from a grid with a taps to grids with flowers.

• Rovers: a planetary rover as to navigate a planet and collect soil samples
etc. Energy is a resource that can be replenished by recharging in the sun.

• Sailing: a boat has to set sail in a continuous 2D world in order to save
drowning people.

• Satellite: several satellite have to collect data like taking images from
Earth. Satellites are equipped with non-replenishable fuel and capacity.
In the hard variant the empty plan is a goal, but one that accumulates no
reward.

• Settlers: a domain that heavily relies on resource management. Pri-
mary resources (timber, stone, ore) have to be gathered and refined to
secondary resources (wood, coal, iron). Transport vehicles and refinement
structures have to be built before they can be used.

• Sokoban: the famous puzzle in a version where agent and stones are
modeled with numeric variables for x and y coordinates.

• UMT2: a complex numeric Logistics domain using different vehicle
types (plane, train, truck).

• ZenoTravel: a Logistics domain where people fly in a plane that can
either run fast or slow. If it runs faster it consumes more fuel.



6.2. NUMERIC PLANNING EXPERIMENTS 71

6.2 Numeric Planning Experiments

We ran the NFD planner on 3× 2× 2× 2 = 24 configurations, all using greedy
best first search. We compared the heuristics hmax, hadd and hFF in the two
most promising combinations of relaxation and progression approach identified
in Chapter 4.3: the planning graph approach in an interval relaxation (identified
by the superscript hig) and the priority queue based approach in the repetition
relaxation (identified by the superscript hrq). We compared eager search, where
heuristic estimates are computed for each search state as soon as the node
is generated and put into the algorithm’s priority queue to lazy search where
successor nodes are enqueued with the cost estimate of their parents and the
heuristic is only computed when nodes are dequeued and processed. Lazy search
is also known as deferred evaluation in other contexts. Besides the regular action
costs given in the planning task, we also performed experiments with a unit
cost task transformation where actions are assumed to cost 1 during search and
heuristic computation.

Experiments were run on an Oracle cluster with two Intel E5-2650v2 proces-
sors per node each with eight cores and a clock frequency of 2.6 GHz. Processes
were given a timeout of 30 minutes CPU-time for each instance and a memory
limit of 3 GB.

We used Lab [SPSH17] to perform the experiments and extract the experi-
mental results in the form of tables and plots from the raw data. In our experi-
ments we measure three quantities to asses the performance of an algorithm and
its configuration: cost, coverage and quality. In the following, we will explain
these measures in more detail.

The cost assesses the plan cost of the solutions returned by the algorithm.
The plan cost measure can only be applied to instances where all algorithms
have found a solution, so we usually show such differences with scatter plots.
E.g., Figure 6.2 shows a scatter plot comparing an eager (E) and the lazy (L)
configuration of the higFF heuristic. The coordinate axes are labeled with the al-
gorithm’s configuration and plan costs in the range from 0 to 50. In the example,
the x-axis is the eager configuration and the y-axis the lazy configuration. As it
is beneficial for a plan to have lower cost, values above the diagonal indicate that
the eager configuration at the x-axis performed better for the given planning
instance. The marks are colored depending on the domain and a legend is de-
picted to the right of the graph. We group domains with different variants such
as counters-0 and counters-inv. Planning instances that could be solved
by one configuration but not by the other are depicted at the very top or the
very right respectively. As the plans of planning instances can become quite
costly, depicting all instances would distort the coordinate range. We decided
to crop plans with a cost greater than 50. If one configuration finds a plan with
a cost less than 50 but the other configuration does not, the mark is depicted
at the very top or right as well. Combinations where no configuration can find
a plan with a cost less than 50 are excluded from the scatter plots.

Additionally, we compare plan cost in tables such as Table 6.1. Here, we
compare configurations pairwise that only differ in the one feature that we want
to assess. For each domain, we sum up the plan costs of all instances that
both configurations could solve. Note that we can only compare the entries of
adjacent rows in these tables. In particular, if one configuration has a smaller
plan cost as compared to another one this does not necessarily mean that it



72 CHAPTER 6. EXPERIMENTS

found a better plan, it can also mean that it solved fewer instances.
The coverage assesses the number of instances solved by a given planner

configuration for a given domain. It can be either 0 (no solution found) or 1
(solution found) for each instance.

Finally, quality assesses the configurations quality as trade-off between cost
and coverage. It is sometimes also referred to as IPC-score as the International
Planning Competitions IPC [McD00] use that metric. Given the optimal solu-
tion of a certain benchmark instance, the IPC-score is defined as ratio between
the cost of the optimal plan and the cost of the plan reported by the planning
algorithm resulting in a number between 0 and 1. E.g., the planner receives
an IPC-score of 1 if it finds the optimal plan, an IPC-score of 0.25 if it finds
a plan that costs four times as much and an IPC-score of 0 if it cannot solve
the problem. Unfortunately, the IPC-score can usually not be computed, as the
cost of an optimal plan is unknown. As such, we approximate the cost of an
optimal plan by the best plan cost that is known, which usually coincides with
the plan cost reported by the planner that performed best on a given benchmark
instance. An example where this approximation goes wrong can be found in the
SatelliteHard domain where the objective is to maximize the data accumu-
lated by the satellite. The empty plan is valid and found by all planners. As
such all receive an IPC score of 1 even though they should receive a score of 0
if at least one planner that accumulates some reward would participate.

In our tables, we indicate the domains in the first row. The number in
parentheses following the domain name indicates the number of instances that
are available. For coverage and quality, this number is the theoretical maximum
that a planning algorithm could receive for the domain. For all tables, the
best configuration is marked in bold and domains where no instance could be
solved are marked with a dash. For tables that evaluate plan cost, we compare
configurations pairwise and as such the better configuration is indicated in bold.

6.2.1 Eager vs. Lazy Evaluation

In a first experiment, we evaluate the impact of using eager evaluation (E)
compared to evaluating heuristic estimates lazily (L). Deferred (lazy) evaluation
of search states allows the search algorithm to visit more states at the cost of a
less informed heuristic estimate.

We first compare the plan length of the plans returned by both configu-
rations. We compare configurations pairwise where all parameters except the
evaluation method are fixed. Whenever both planners solve an instance of a
planning domain, we record the cost of the resulting plan. The entry in Ta-
ble 6.1, Table 6.2 and Table 6.3 is then the sum of all instances from the domain
that both configurations could solve.

The pairwise comparisons of configurations using the hmax heuristic are pre-
sented in Table 6.1, starting with unit cost transformed heuristics with interval
relaxation and planning graph based approach to generate the relaxed state
progression 1higmax, followed by unit cost transformed heuristics with repetition
relaxation and a priority queue based approach 1hrqmax. Then, the same con-
figurations are shown in a setting where regular action costs are used, higmax

and hrqmax. The plans generated by eager evaluation are shorter (in the sense
of summed up action cost) on average, though there are a few exceptions. The
plan costs of all pairwise solved instances sum up to 1.52 million (abbreviated by



6.2. NUMERIC PLANNING EXPERIMENTS 73

M in the following) for Ehmax whereas lazy configurations Lhmax return plans
with a total length of 1.69M , an increase in length by approximately 11%.

Configurations using the hadd heuristic, depicted in Table 6.2, show the in-
crease in plan length from eager evaluation to lazy evaluation even more clearly.
There is almost no domain (with Sokoban being the exception) where a lazy
approach outperforms eager in terms of plan length. Eager instances sum up to
7.72M whereas lazy instances yield plans with a summed up cost of 10.23M ,
a significant increase of approximately 32%. The increase in total cost as com-
pared to hmax can be attributed to hadd finding more solutions especially on
harder problems which require longer plans to be solved.

Finally, the pairwise comparison of plan cost of plans found by the hFF

heuristic is shown in Table 6.3. Again, the total plan cost sum of all eager
instances, 5.56M is less than the respective sum of 5.79M for lazy instances,
indicating an increase in plan length of 4% on average. However, this increase
is far from significant and there is one configuration, lazy evaluation with a rep-
etition relaxed priority queue approach LhrqFF, where lazy can even find shorter
plans compared to the corresponding eager configuration.

Summing up the costs over all instances from all heuristics hmax, hadd and
hFF, the combined plan cost of eager instances is 14.800M whereas a cost of
17.704M is required for an increase of approximately 20%. Even though the
increase can be mostly attributed to configurations using variants of the hadd

heuristic, eager evaluation yields better plans averaged over all domains.
In addition to the tables, we depicted the cost of four combinations of al-

gorithms in the scatter plots Figure 6.2, Figure 6.3, Figure 6.4 and Figure 6.5
all using the hFF heuristic. In all plots we cropped plan cost to 50 and treated
plans with a cost greater than 50 as unsolvable. We can see that there are more
marks above the diagonal than below which supports our initial claim that eager
evaluation usually yields slightly better plans, and that the result in the table
are not distorted by single outliers.

Whereas eager evaluation performs better comparing plan cost, we experi-
ence the opposite concerning coverage. Again, we compare all configurations
using eager heuristic evaluation to all combinations using deferred evaluation.
Opposed to plan cost, we can compare the coverage of one particular configu-
rations to all others. Note that in theory this would also be possible for plan
costs if we restrict ourselves to instances that can be solved by every single
configuration. However, this applies only to the most simple instances of the
simpler domains and would therefore not be meaningful.

Again we start by hmax and the coverage of all configurations can be found
in Table 6.4. This time, we aggregate the four eager configurations to the
left, and the lazy configurations to the right. For hmax, lazy configurations
marginally outperform eager configurations by 2.3% in coverage averaged over
all instances. A similar picture emerges for configurations based on hadd that
are stated in Table 6.5. Again, the lazy approach achieves a marginal increase
in coverage over eager by 0.7% on average. Finally, for LhFF there is an slight
increase in coverage of 1.8% over eager configurations as well. Details are found
in Table 6.6. Summarizing the coverage of all eager instances from all three
heuristics, evaluating instances lazily increases coverage by a small amount of
1.6%. Even though this increase in coverage is not overly impactful, we can see
that there is a trade-off between plan quality (eager) and coverage (lazy).

In order to relate plan cost and coverage, we use the IPC-score inspired



74 CHAPTER 6. EXPERIMENTS

P
la
n

C
o
st

h
m

a
x

1
E
h
igm
a
x

1
L
h
igm
a
x

1
E
h
r
q

m
a
x

1
L
h
r
q

m
a
x

E
h
igm
a
x

L
h
igm
a
x

E
h
r
q

m
a
x

L
h
r
q

m
a
x

b
lo
ck
-g
ro
u
p
in
g

2
5
9
.0
0

2
5
9
.0
0

6
6
.0
0

6
6
.0
0

2
5
9
.0
0

2
5
9
.0
0

6
6
.0
0

6
6
.0
0

co
u
n
ters-0

3
5
.0
0

3
5
.0
0

7
.0
0

7
.0
0

3
5
.0
0

3
5
.0
0

7
.0
0

7
.0
0

co
u
n
ters-in

v
1
5
.0
0

1
5
.0
0

1
5
.0
0

1
5
.0
0

1
5
.0
0

1
5
.0
0

1
5
.0
0

1
5
.0
0

co
u
n
ters-rn

d
1
0
1
.0
0

1
0
4
.0
0

2
7
.0
0

2
7
.0
0

1
0
1
.0
0

1
0
4
.0
0

2
7
.0
0

2
7
.0
0

d
ep

o
ts

2
9
6
.0
0

3
0
6
.0
0

2
9
6
.0
0

3
0
6
.0
0

1
8
5
.0
0

1
9
5
.0
0

1
8
4
.0
0

1
9
4
.0
0

d
riv

erlo
g

1
5
7
4
8
.0
0

1
7
1
6
6
.0
0

1
5
7
4
8
.0
0

1
7
1
6
6
.0
0

1
8
3
0
5
.0
0

1
9
9
8
3
.0
0

1
2
9
5
3
.0
0

1
4
1
2
7
.0
0

d
riv

erlo
g
-h
a
rd

8
5
5
4
0
.0
0

9
4
2
9
0
.0
0

8
5
5
4
0
.0
0

9
4
2
9
0
.0
0

9
2
5
4
0
.0
0

1
0
3
6
9
0
.0
0

5
7
8
3
0
.0
0

6
3
7
3
0
.0
0

fa
rm

la
n
d

8
8
2
5
.0
0

8
8
6
4
.0
0

4
3
8
0
.0
0

4
3
8
0
.0
0

8
8
3
4
.0
0

8
8
7
6
.0
0

4
3
8
0
.0
0

4
3
8
0
.0
0

g
eo
-rov

ers
–

–
–

–
–

–
–

–
h
y
d
ra
u
lic-b

w
7
0
5
4
.0
0

7
1
1
0
.0
0

7
0
5
4
.0
0

7
1
1
0
.0
0

7
0
5
4
.0
0

7
1
1
0
.0
0

7
0
5
4
.0
0

7
1
1
0
.0
0

ju
m
p
b
o
t

2
1
8
.5
0

2
1
8
.5
0

–
–

1
5
2
.5
0

1
5
9
.0
0

–
–

p
la
n
t-w

a
terin

g
–

–
5
2
1
.0
0

5
2
1
.0
0

–
–

5
2
1
.0
0

5
2
1
.0
0

rov
ers

0
.0
0

0
.0
0

0
.0
0

0
.0
0

–
–

0
.0
0

0
.0
0

sa
ilin

g
1
0
1
8
.0
0

1
0
1
9
.0
0

1
9
6
.0
0

1
9
6
.0
0

1
0
1
8
.0
0

1
0
1
9
.0
0

1
9
6
.0
0

1
9
6
.0
0

sa
tellite

–
–

4
0
6
.7
4

3
6
9
.7
6

7
3
.5
8

7
3
.5
8

2
2
5
.4
8

1
8
3
.4
6

sa
tellite-h

a
rd

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

settlers
–

–
9
.0
0

9
.0
0

–
–

–
–

so
k
o
b
a
n

2
7
7
1
.0
0

2
5
2
5
.0
0

6
9
9
.0
0

6
7
7
.0
0

2
7
7
7
.0
0

2
5
2
6
.0
0

7
5
1
.0
0

7
2
9
.0
0

zen
o
trav

el
1
6
9
3
0
3
.0
0

1
6
8
3
9
1
.0
0

1
6
9
3
0
3
.0
0

1
6
8
3
9
1
.0
0

4
1
5
5
1
1
.0
0

5
2
3
1
8
2
.0
0

3
1
4
1
6
9
.0
0

3
3
7
9
8
8
.0
0

S
u
m

2
9
1
1
8
3
.5
0

3
0
0
3
0
2
.5
0

2
8
4
2
6
7
.7
4

2
9
3
5
3
0
.7
6

5
4
6
8
6
0
.0
8

6
6
7
2
2
6
.5
8

3
9
8
3
7
8
.4
8

4
2
9
2
7
3
.4
6

S
u
m

e
a
g
e
r:

1
5
2
0
6
8
9
.8

S
u
m

la
z
y
:

1
6
9
0
3
3
3
.3

T
a
b

le
6.1:

P
lan

co
sts

of
ea

ger
eva

lu
a
tio

n
(E

)
co

m
p

a
red

to
la

zy
eva

lu
a
tio

n
(L

)
w

ith
varian

ts
of
h

m
a
x .



6.2. NUMERIC PLANNING EXPERIMENTS 75

P
la
n

C
o
st

h
a
d
d

1
E
h
ig a
d
d

1
L
h
ig a
d
d

1
E
h
r
q

a
d
d

1
L
h
r
q

a
d
d

E
h
ig a
d
d

L
h
ig a
d
d

E
h
r
q

a
d
d

L
h
r
q

a
d
d

b
lo
ck
-g
ro
u
p
in
g

5
6
7
.0
0

5
6
8
.0
0

4
3
6
.0
0

4
6
1
.0
0

5
6
7
.0
0

5
6
8
.0
0

3
6
9
.0
0

3
8
9
.0
0

co
u
n
te
rs
-0

1
0
7
.0
0

1
0
1
.0
0

7
.0
0

9
.0
0

1
0
7
.0
0

1
0
1
.0
0

7
.0
0

9
.0
0

co
u
n
te
rs
-i
n
v

1
9
5
.0
0

1
9
5
.0
0

1
5
.0
0

1
5
.0
0

1
9
5
.0
0

1
9
5
.0
0

1
5
.0
0

1
5
.0
0

co
u
n
te
rs
-r
n
d

5
5
6
.0
0

5
5
6
.0
0

3
9
.0
0

4
5
.0
0

5
5
6
.0
0

5
5
6
.0
0

3
9
.0
0

4
5
.0
0

d
ep

o
ts

9
6
1
.0
0

1
1
5
1
.0
0

1
0
5
8
.0
0

1
2
0
9
.0
0

6
9
9
.0
0

7
5
9
.0
0

7
1
0
.0
0

8
0
8
.0
0

d
ri
v
er
lo
g

5
4
7
3
6
.0
0

6
7
6
6
5
.0
0

6
5
0
6
7
.0
0

7
7
3
1
7
.0
0

3
5
3
1
8
.0
0

4
3
1
1
6
.0
0

3
2
7
9
0
.0
0

3
8
2
1
5
.0
0

d
ri
v
er
lo
g
-h
a
rd

2
5
4
3
4
0
.0
0

3
4
8
8
9
0
.0
0

3
5
3
0
2
0
.0
0

4
5
3
0
1
0
.0
0

1
7
1
9
4
0
.0
0

2
0
5
9
6
0
.0
0

1
8
5
8
3
0
.0
0

2
2
3
9
9
0
.0
0

fa
rm

la
n
d

6
1
3
1
.0
0

6
1
4
0
.0
0

4
4
1
0
.0
0

4
4
4
0
.0
0

6
1
3
0
.0
0

6
1
5
0
.0
0

4
4
1
0
.0
0

4
4
4
0
.0
0

g
eo
-r
ov
er
s

1
0
1
.0
0

1
1
9
.0
0

–
–

1
0
1
.0
0

1
1
9
.0
0

–
–

h
y
d
ra
u
li
c-
b
w

7
8
5
2
.0
0

7
8
8
0
.0
0

7
8
5
2
.0
0

7
8
8
0
.0
0

7
8
5
2
.0
0

7
8
8
0
.0
0

7
8
5
2
.0
0

7
8
8
0
.0
0

ju
m
p
b
o
t

2
0
7
.0
0

2
4
1
.5
0

–
–

1
8
1
.5
0

2
0
0
.5
0

–
–

p
la
n
t-
w
a
te
ri
n
g

–
–

1
0
5
2
.0
0

1
1
8
5
.0
0

–
–

1
0
5
2
.0
0

1
1
8
5
.0
0

ro
v
er
s

0
.0
0

0
.0
0

2
.0
0

3
.0
0

–
–

0
.0
0

0
.0
0

sa
il
in
g

1
7
2
6
6
.0
0

1
7
6
7
8
.0
0

5
4
6
.0
0

5
5
7
.0
0

1
7
2
6
6
.0
0

1
7
6
7
8
.0
0

1
3
9
1
.0
0

1
4
0
4
.0
0

sa
te
ll
it
e

6
6
2
.3
2

7
0
4
.7
2

1
7
9
3
.6
9

2
1
9
1
.5
4

5
1
0
.8
4

5
7
4
.0
7

8
0
3
.7
1

1
0
1
8
.5
3

sa
te
ll
it
e-
h
a
rd

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

se
tt
le
rs

1
5
0
.0
0

1
4
8
.0
0

1
6
4
.0
0

1
6
4
.0
0

–
–

–
–

so
k
o
b
a
n

1
3
7
4
7
.0
0

1
3
3
8
7
.0
0

8
0
3
6
.0
0

7
6
1
0
.0
0

1
3
6
6
1
.0
0

1
3
7
6
3
.0
0

8
1
2
2
.0
0

7
4
7
2
.0
0

ze
n
o
tr
av
el

2
1
3
1
0
0
2
.0
0

2
2
8
3
1
4
3
.0
0

2
1
9
3
6
9
2
.0
0

2
3
8
1
5
3
0
.0
0

1
0
3
0
8
0
9
.0
0

1
8
2
5
1
6
6
.0
0

1
0
6
8
7
4
3
.0
0

2
1
3
1
3
1
4
.0
0

S
u
m

2
4
8
8
5
8
0
.3
2

2
7
4
8
5
6
7
.2
2

2
6
3
7
1
8
9
.6
9

2
9
3
7
6
2
6
.5
4

1
2
8
5
8
9
3
.3
4

2
1
2
2
7
8
5
.5
7

1
3
1
2
1
3
3
.7
1

2
4
1
8
1
8
4
.5
3

S
u
m

e
a
g
e
r:

7
7
2
3
7
9
7
.0
6

S
u
m

la
z
y
:

1
0
2
2
7
1
6
3
.8
6

T
ab

le
6.

2:
C

os
ts

of
ea

ge
r

ev
a
lu

a
ti

o
n

(E
)

co
m

p
a
re

d
to

la
zy

ev
a
lu

a
ti

o
n

(L
)

w
it

h
d

iff
er

en
t

va
ri

a
n
ts

o
f
h

a
d
d
.



76 CHAPTER 6. EXPERIMENTS

P
la
n

C
o
st

h
F
F

1
E
h
igF
F

1
L
h
igF
F

1
E
h
r
q

F
F

1
L
h
r
q

F
F

E
h
igF
F

L
h
igF
F

E
h
r
q

F
F

L
h
r
q

F
F

b
lo
ck
-g
ro
u
p
in
g

7
3
0
.0
0

8
1
5
.0
0

9
8
4
.0
0

1
0
7
3
.0
0

5
6
6
.0
0

6
2
3
.0
0

9
9
0
.0
0

1
0
7
9
.0
0

co
u
n
ters-0

6
8
9
.0
0

6
9
1
.0
0

2
3
7
.0
0

2
6
9
.0
0

6
9
1
.0
0

6
8
9
.0
0

2
3
5
.0
0

2
6
3
.0
0

co
u
n
ters-in

v
6
5
.0
0

7
1
.0
0

4
0
8
.0
0

5
0
7
.0
0

7
7
.0
0

7
9
.0
0

4
0
8
.0
0

5
0
7
.0
0

co
u
n
ters-rn

d
3
0
8
.0
0

3
6
4
.0
0

2
2
7
3
.0
0

2
7
1
1
.0
0

2
9
6
.0
0

3
5
7
.0
0

2
2
7
3
.0
0

2
7
1
1
.0
0

d
ep

o
ts

1
8
9
2
.0
0

1
9
1
4
.0
0

1
8
7
9
.0
0

2
5
9
3
.0
0

7
9
7
.0
0

8
4
0
.0
0

1
2
3
1
.0
0

1
5
2
4
.0
0

d
riv

erlo
g

8
9
3
8
7
.0
0

1
0
9
5
0
0
.0
0

8
5
2
3
9
.0
0

1
3
3
4
9
4
.0
0

2
2
7
4
0
.0
0

2
4
1
4
8
.0
0

2
8
2
7
2
.0
0

2
8
0
0
5
.0
0

d
riv

erlo
g
-h
a
rd

4
4
2
5
4
0
.0
0

6
0
0
1
4
0
.0
0

4
7
0
2
1
0
.0
0

8
1
8
9
1
0
.0
0

1
4
0
4
2
0
.0
0

1
7
8
1
4
0
.0
0

1
4
3
0
2
0
.0
0

1
3
4
2
6
0
.0
0

fa
rm

la
n
d

1
0
5
1
9
.0
0

8
9
5
1
.0
0

8
8
3
6
.0
0

8
8
6
6
.0
0

1
3
9
9
8
.0
0

1
1
6
3
1
.0
0

1
1
5
4
5
.0
0

1
1
1
8
8
.0
0

g
eo
-rov

ers
–

–
6
0
4
.0
0

7
0
5
.0
0

–
–

1
0
7
5
.0
0

1
0
1
5
.0
0

h
y
d
ra
u
lic-b

w
7
6
3
0
.0
0

1
0
2
7
8
.0
0

7
4
1
6
.0
0

9
0
2
2
.0
0

7
6
3
0
.0
0

1
0
2
7
8
.0
0

7
4
1
6
.0
0

9
0
2
2
.0
0

ju
m
p
b
o
t

2
0
1
.5
0

2
1
2
.5
0

9
5
.0
0

1
2
1
.5
0

1
6
2
.0
0

1
5
6
.0
0

8
5
.5
0

1
0
6
.0
0

p
la
n
t-w

a
terin

g
–

–
1
9
4
5
.0
0

3
3
6
1
.0
0

–
–

1
9
1
1
.0
0

3
3
2
5
.0
0

rov
ers

0
.0
0

0
.0
0

2
3
.0
0

2
3
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

sa
ilin

g
9
9
9
.0
0

1
0
2
1
.0
0

1
9
7
4
.0
0

2
8
0
8
.0
0

9
9
9
.0
0

1
0
2
1
.0
0

1
9
7
4
.0
0

2
8
0
8
.0
0

sa
tellite

1
1
4
8
.9
9

1
1
8
3
.6
4

5
6
8
5
.1
3

5
2
1
2
.9
3

3
7
1
.9
8

3
9
8
.5
3

1
1
5
2
.5
9

4
9
6
.8
6

sa
tellite-h

a
rd

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

settlers
1
7
6
.0
0

1
7
6
.0
0

2
0
0
2
.0
0

1
9
8
2
.0
0

–
–

2
0
8
.0
0

2
1
2
.0
0

so
k
o
b
a
n

9
4
4
4
.0
0

7
7
5
9
.0
0

8
7
4
3
.0
0

8
4
0
5
.0
0

1
0
1
5
2
.0
0

9
4
3
1
.0
0

9
4
0
2
.0
0

9
7
3
1
.0
0

zen
o
trav

el
1
2
2
8
7
5
0
.0
0

1
0
5
9
7
1
3
.0
0

1
8
8
7
2
5
0
.0
0

1
6
9
3
9
8
8
.0
0

4
7
8
1
6
9
.0
0

5
3
0
8
9
5
.0
0

3
8
6
7
3
3
.0
0

3
1
4
3
9
2
.0
0

S
u
m

1
7
9
4
4
7
9
.4
9

1
8
0
2
7
8
9
.1
4

2
4
8
5
8
0
3
.1
3

2
6
9
4
0
5
1
.4
3

6
7
7
0
6
8
.9
8

7
6
8
6
8
6
.5
3

5
9
7
9
3
1
.0
9

5
2
0
6
4
4
.8
6

S
u
m

e
a
g
e
r:

5
5
5
5
2
8
2
.6
9

S
u
m

la
z
y
:

5
7
8
6
1
7
1
.9
6

T
a
b

le
6
.3

:
P

la
n

co
sts

of
ea

ger
eva

lu
a
tio

n
(E

)
co

m
p

a
red

to
la

zy
eva

lu
a
tio

n
(L

)
w

ith
d

iff
eren

t
varian

ts
of
h

F
F

.



6.2. NUMERIC PLANNING EXPERIMENTS 77

Figure 6.2: Comparison of interval relaxation + planning graph based higFF with
lazy and eager evaluation in a original cost setting.

Figure 6.3: Comparison of interval relaxation + planning graph based 1higFF with
lazy and eager evaluation in a unit cost setting.



78 CHAPTER 6. EXPERIMENTS

Figure 6.4: Comparison of repetition relaxation + priority queue based hrqFF with
lazy and eager evaluation in a original cost setting.

Figure 6.5: Comparison of repetition relaxation + priority queue based 1hrqFF

with lazy and eager evaluation in a unit cost setting.



6.2. NUMERIC PLANNING EXPERIMENTS 79

Coverage hmax Ehig
max 1Ehig

max Ehrq
max 1Ehrq

max Lhig
max 1Lhig

max Lhrq
max 1Lhrq

max

block-grouping (192) 11 11 8 8 11 11 7 7
counters-0 (34) 3 3 2 2 3 3 2 2
counters-inv (11) 2 2 2 2 2 2 2 2
counters-rnd (33) 8 8 6 6 9 8 6 6
depots (22) 5 5 5 5 5 5 5 5
driverlog (20) 13 13 10 13 14 12 10 12
driverlog-hard (20) 12 13 10 13 12 12 10 12
farmland (50) 20 20 10 10 20 20 10 10
geo-rovers (21) 0 0 0 0 0 0 0 0
hydraulic-bw (562) 541 541 541 541 541 541 541 541
jumpbot (20) 15 19 0 0 15 19 0 0
plant-watering (51) 0 0 11 11 0 0 11 11
rovers (20) 0 1 3 5 0 1 3 4
sailing (45) 12 12 3 3 12 12 3 3
satellite (20) 1 0 2 3 1 0 2 3
satellite-hard (20) 9 10 14 20 10 10 20 20
settlers (20) 0 0 0 1 0 0 0 1
sokoban (325) 31 32 24 24 59 59 28 26
umt2 (15) 0 0 0 0 0 0 0 0
zenotravel (20) 11 8 10 8 11 8 10 8

Sum (1 521) 694 698 661 675 725 723 670 673
Sum eager: 2 728 Sum lazy: 2 791

Table 6.4: Coverage of eager evaluation (E) compared to lazy evaluation (L)
with different variants of hmax.

Coverage hadd Ehig
add 1Ehig

add Ehrq
add 1Ehrq

add Lhig
add 1Lhig

add Lhrq
add 1Lhrq

add
block-grouping (192) 15 15 17 19 15 15 17 19
counters-0 (34) 5 5 2 2 4 4 3 3
counters-inv (11) 4 4 2 2 4 4 2 2
counters-rnd (33) 13 13 6 6 13 13 6 6
depots (22) 7 7 9 7 7 7 10 7
driverlog (20) 15 17 16 18 15 17 16 19
driverlog-hard (20) 14 16 15 17 14 17 15 18
farmland (50) 18 17 10 10 17 17 10 10
geo-rovers (21) 1 1 0 0 1 1 1 1
hydraulic-bw (562) 541 541 541 541 541 541 541 541
jumpbot (20) 18 19 0 0 17 19 0 0
plant-watering (51) 0 0 15 15 0 0 15 15
rovers (20) 0 5 3 9 0 6 3 9
sailing (45) 37 37 6 6 36 36 6 5
satellite (20) 2 3 5 11 2 5 4 13
satellite-hard (20) 9 15 15 20 10 15 20 20
settlers (20) 0 3 0 4 0 3 0 4
sokoban (325) 67 67 68 70 70 70 70 70
umt2 (15) 0 0 0 0 0 0 0 0
zenotravel (20) 15 20 15 20 16 20 16 20
Sum (1 521) 781 805 745 777 782 810 755 782

Sum eager: 3 108 Sum lazy: 3 129

Table 6.5: Coverage of eager evaluation (E) compared to lazy evaluation (L)
with different variants of hadd.



80 CHAPTER 6. EXPERIMENTS

Coverage hFF Ehig
FF 1Ehig

FF Ehrq
FF 1Ehrq

FF Lhig
FF 1Lhig

FF Lhrq
FF 1Lhrq

FF
block-grouping (192) 17 14 25 25 14 14 25 25
counters-0 (34) 7 7 6 6 7 7 5 5
counters-inv (11) 3 3 5 5 3 3 5 5
counters-rnd (33) 12 10 20 20 10 10 21 21
depots (22) 10 9 10 9 10 9 11 9
driverlog (20) 13 20 15 20 15 20 15 20
driverlog-hard (20) 15 19 15 20 15 19 15 20
farmland (50) 19 19 25 25 18 19 27 22
geo-rovers (21) 0 0 4 3 1 1 5 5
hydraulic-bw (562) 541 541 541 541 541 541 541 541
jumpbot (20) 13 17 8 10 15 17 14 10
plant-watering (51) 0 0 15 15 0 0 15 15
rovers (20) 1 6 4 15 2 2 4 13
sailing (45) 15 15 17 17 14 14 18 18
satellite (20) 2 4 7 16 2 8 8 16
satellite-hard (20) 10 15 15 20 20 20 20 20
settlers (20) 0 5 3 10 0 5 1 13
sokoban (325) 57 58 67 68 69 69 70 67
umt2 (15) 0 0 0 0 0 0 0 1
zenotravel (20) 15 20 14 20 14 20 17 20

Sum (1 521) 750 782 816 865 770 798 837 866
Sum eager: 3 213 Sum lazy: 3 271

Table 6.6: Coverage of eager evaluation (E) compared to lazy evaluation (L)
with different variants of hFF.

Quality hmax Ehig
max 1Ehig

max Ehrq
max 1Ehrq

max Lhig
max 1Lhig

max Lhrq
max 1Lhrq

max

block-grouping (192) 10.79 10.79 8.00 8.00 10.79 10.79 7.00 7.00
counters-0 (34) 3.00 3.00 2.00 2.00 3.00 3.00 2.00 2.00
counters-inv (11) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
counters-rnd (33) 7.79 7.79 6.00 6.00 8.34 7.63 6.00 6.00
depots (22) 4.40 2.92 4.42 2.92 4.18 2.84 4.21 2.84
driverlog (20) 11.36 10.36 8.56 10.36 10.72 8.84 7.89 8.84
driverlog-hard (20) 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04
farmland (50) 19.80 19.84 10.00 10.00 19.70 19.71 10.00 10.00
geo-rovers (21) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
hydraulic-bw (562) 497.55 497.55 497.55 497.55 494.59 494.59 494.59 494.59
jumpbot (20) 12.64 16.24 0.00 0.00 12.15 16.35 0.00 0.00
plant-watering (51) 0.00 0.00 11.00 11.00 0.00 0.00 11.00 11.00
rovers (20) 0.00 1.00 3.00 5.00 0.00 1.00 3.00 4.00
sailing (45) 10.07 10.07 3.00 3.00 10.06 10.06 3.00 3.00
satellite (20) 0.39 0.00 1.24 2.15 0.39 0.00 1.38 2.20
satellite-hard (20) 9.00 10.00 14.00 20.00 10.00 10.00 20.00 20.00
settlers (20) 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00
sokoban (325) 18.73 19.31 22.37 22.28 38.94 38.70 26.84 24.93
umt2 (15) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
zenotravel (20) 6.04 5.23 5.24 5.23 4.99 5.25 4.77 5.25

Sum (1 521) 613.61 616.15 598.43 608.54 629.89 630.82 603.71 604.70
Sum eager: 2 436.73 Sum lazy: 2 469.12

Table 6.7: Quality of eager evaluation (E) compared to lazy evaluation (L) with
different variants of hmax.



6.2. NUMERIC PLANNING EXPERIMENTS 81

Quality hadd Ehig
add 1Ehig

add Ehrq
add 1Ehrq

add Lhig
add 1Lhig

add Lhrq
add 1Lhrq

add
block-grouping (192) 14.83 14.83 13.63 15.07 14.71 14.71 13.16 14.38
counters-0 (34) 4.92 4.92 2.00 2.00 4.00 4.00 2.75 2.75
counters-inv (11) 3.73 3.73 2.00 2.00 3.73 3.73 2.00 2.00
counters-rnd (33) 12.46 12.46 5.17 5.17 12.46 12.46 4.96 4.96
depots (22) 4.06 3.73 7.90 3.82 4.03 3.21 8.26 3.65
driverlog (20) 8.53 11.24 9.67 12.24 7.19 9.63 8.28 11.31
driverlog-hard (20) 0.04 1.04 0.04 1.04 0.03 0.57 0.04 1.25
farmland (50) 17.68 16.68 9.89 9.89 16.68 16.74 9.79 9.79
geo-rovers (21) 1.00 1.00 0.00 0.00 0.85 0.85 1.00 0.99
hydraulic-bw (562) 476.01 476.01 476.01 476.01 474.85 474.85 474.85 474.85
jumpbot (20) 15.73 16.84 0.00 0.00 14.01 15.96 0.00 0.00
plant-watering (51) 0.00 0.00 13.06 13.06 0.00 0.00 11.59 11.59
rovers (20) 0.00 5.00 3.00 7.00 0.00 5.00 3.00 6.00
sailing (45) 35.10 35.10 4.50 4.50 33.61 33.61 4.42 3.52
satellite (20) 0.65 1.11 3.14 7.73 0.48 2.23 2.21 8.63
satellite-hard (20) 9.00 15.00 15.00 20.00 10.00 15.00 20.00 20.00
settlers (20) 0.00 2.96 0.00 3.73 0.00 2.98 0.00 3.73
sokoban (325) 37.27 37.19 57.19 60.95 43.81 44.67 64.43 64.72
umt2 (15) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
zenotravel (20) 7.21 8.91 7.11 8.90 5.42 8.63 5.22 8.46

Sum (1 521) 648.23 667.78 629.31 653.11 645.86 668.85 635.97 652.58
Sum eager: 2 598.43 Sum lazy: 2 603.18

Table 6.8: Quality of eager evaluation (E) compared to lazy evaluation (L) with
different variants of hadd.

Quality hFF Ehig
FF 1Ehig

FF Ehrq
FF 1Ehrq

FF Lhig
FF 1Lhig

FF Lhrq
FF 1Lhrq

FF
block-grouping (192) 16.32 13.46 23.63 23.69 11.93 12.22 21.68 20.97
counters-0 (34) 6.96 6.99 5.73 5.70 6.93 6.98 4.52 4.51
counters-inv (11) 2.77 2.96 4.65 4.65 2.63 2.75 3.70 3.70
counters-rnd (33) 11.46 9.45 18.45 18.45 8.80 8.88 15.98 15.98
depots (22) 8.66 4.47 6.86 4.60 8.35 3.95 6.36 4.11
driverlog (20) 9.04 15.13 10.75 15.82 9.02 12.45 10.71 12.24
driverlog-hard (20) 0.05 1.83 0.06 2.79 0.04 1.34 0.05 1.96
farmland (50) 14.76 15.17 22.76 23.32 15.73 16.62 24.84 21.06
geo-rovers (21) 0.00 0.00 2.95 2.29 0.91 0.92 3.16 2.85
hydraulic-bw (562) 483.69 483.69 487.39 487.39 436.94 436.94 462.47 462.47
jumpbot (20) 9.47 13.39 6.58 7.29 10.44 13.23 9.89 6.55
plant-watering (51) 0.00 0.00 7.89 7.97 0.00 0.00 5.04 5.02
rovers (20) 1.00 3.00 4.00 13.64 2.00 2.00 4.00 11.47
sailing (45) 14.29 14.29 14.32 14.32 12.92 12.92 12.42 12.42
satellite (20) 0.67 1.72 4.70 10.45 0.41 4.18 8.00 11.46
satellite-hard (20) 10.00 15.00 15.00 20.00 20.00 20.00 20.00 20.00
settlers (20) 0.00 4.92 2.89 9.52 0.00 4.70 0.98 12.53
sokoban (325) 35.64 36.13 52.42 50.89 45.57 49.22 58.27 55.62
umt2 (15) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
zenotravel (20) 12.22 14.39 10.25 11.32 10.64 16.19 13.46 11.91
Sum (1 521) 637.00 655.98 701.27 734.11 603.25 625.47 685.53 697.84

Sum eager: 2 728.36 Sum lazy: 2 612.09

Table 6.9: Quality of eager evaluation (E) compared to lazy evaluation (L) with
different variants of hFF.



82 CHAPTER 6. EXPERIMENTS

Summary eager lazy
Cost - Sum 14.800 M 17.704 M
Coverage - Sum 9 049 9 191
Quality - Sum 7 763.53 7 684.47

Table 6.10: Summary comparison of eager evaluation (E) and lazy evaluation
(L).

quality metric that weights the coverage with the length of the best known plan
for a certain benchmark instance. For each solved instance, a configuration can
achieve up to 1 quality point, proportional to the cost of the best known plan.
Table 6.7 summarizes this algorithmic quality score for all configurations using
the hmax heuristic. As the plan length of lazy Lhmax configurations increased by
11% for the solved instances, an increase in only 2.3% coverage does not appear
to be sufficient in order to catch up in terms of quality score. Surprisingly, Lhmax

configurations even outperform Ehmax configurations in terms of quality, if only
by 0.2%. Yet, if the lazy instances that can be solved exceeding beyond eager
instances cannot be solved by other planners or if the plans are extraordinarily
good, up to 1 quality point can be obtained per extra coverage, whereas a plan
that is 11% more expensive can still yield a score of up to 0.9.

A similar phenomenon can be observed for the additive heuristic. The qual-
ity scores for all configurations using hadd can be found in Table 6.8. Again,
we would expect that the plan cost increase of lazy Lhadd configurations by
32% cannot be compensated by an increase of 0.7% in coverage. However, the
overall quality score indicates that lazy can equalize and even surpass the eager
configurations by 0.2%.

A different picture emerges for hFF based heuristics as shown in Table 6.9.
While the increase in coverage of lazy instances by 1.8% with a mere increase
of 4% in plan cost, and with LhrqFF even producing better plans in a pairwise
comparison, lazy could presumably reach a higher algorithmic quality score as
well. However, deferred evaluation does not pay off for the hFF heuristic and
eager EhFF configuration achieve an average quality score that exceeds lazy by
4.5%. This is so much in the favor of eager EhFF that averaging over all three
relaxation heuristics still outvalues lazy configurations by 1.0%.

Summarizing, as also shown in Table 6.10, evaluating heuristics at enqueue
time (eager) increases the plan quality, as the search behaves a little bit more
like breadth-first search whereas evaluating heuristics lazily allows the algorithm
to explore more nodes and reach a larger search depth, resulting in an increase
of coverage. Eager evaluation wins with a quality increase of 1.0% and while it
suffers from 1.6% coverage decrease, it wins by having 20% better plans.

6.2.2 Unit Cost vs. Regular Cost

In our second set of experiments, we evaluate the impact of using the regular
cost function as it appears in the planning task as opposed to using a unit
cost transformation where all actions are considered to have a cost of 1 for the
purpose of heuristic and search algorithm. Only in the resulting plan, the action
costs of regular task are used again. A unit cost setting optimizes the length of
a shortest plan which can be better if we are interested in coverage.



6.2. NUMERIC PLANNING EXPERIMENTS 83

Again, we start by pairwise comparisons of all configurations that only differ
in the action costs that are used in the heuristic and during search. We denote
unit cost transformed heuristics by 1hmax and omit a cost indicator for regular
costs. The sum of all plan costs of instances that both configurations can solve
in a pairwise comparison of hmax is given in Table 6.11. It is immediately
apparent that both approaches return plans of exactly the same cost for all
configurations of several domains. This comes at no surprise, as many domains
have unit cost actions domains by default. However, if domains feature non-
uniform action costs, the difference is quite significant. Overall, the regular cost
tasks return plans that are 17.1% more costly. This comes quite surprisingly as
heuristics that are closer to the true cost should be able to find plans of better
cost, especially with a greedy search algorithm.

Pairwise comparisons of configurations based on hadd are shown in Ta-
ble 6.12. Again, unit cost transformed tasks produce plans of better quality
unless the domain has unit cost actions, this time even by 42.9%. We would
have expected the opposite result and unfortunately, we fail to explain this clear
advantage of the unit cost transformation.

For the hFF heuristic, the comparisons in Table 6.13 of unit cost transformed
tasks to regular tasks are less surprising, and the overall plan length is increased
by 11.4% from using the unit cost transformation.

A possible explanation for the anomalies is provided by scatter plots that
compare different configurations of hFF comparing unit cost transformed con-
figurations to regular ones. Figure 6.6 compares eager interval relaxation +
planning graph based EhigFF heuristics, with the lazy variant LhigFF depicted in
Figure 6.7. Additionally, Figure 6.8 shows the comparison of an eager repetition
relaxation + priority queue based EhrqFF combination, and the lazy variant LhrqFF

is shown in Figure 6.9. Marks of unit cost domains are usually directly on the
diagonal with domains like Jumpbot that are almost unit cost (actions cost
either 0.5 or 1) scattered close to the diagonal as well. Apart from that, we see
a large number of marks on the very top or the very right, indicating that plan
costs differ heavily or that the coverage of both approaches has complementary
strengths and one configuration can solve tasks the other cannot. This opens a
vulnerability to outliers that can impact direct comparisons heavily. Still, this
is not satisfactory to explain the strength of the unit cost transformation of the
hadd configurations.

Whereas we did not expect configurations of unit cost transformed to yield
plans with better cost, an increase in coverage comes expected. Table 6.14
compares hmax based heuristics with a regular cost setting (left) to unit cost
transformed tasks (right). The average increase in coverage over all instances is
with 0.7% rather small and, surprisingly, Lhigmax achieves the highest coverage
among all configurations even though it uses regular costs.

For hadd, the results are shown in Table 6.15 and here, the coverage of the
best performing configuration, 1Lhigadd uses the unit cost transformation as well.
The total coverage increase of 3.6% averaged over all instances is also more
pronounced.

Finally, in Table 6.16 we show the coverage results of comparing regular cost
tasks to unit cost transformed tasks with hFF based heuristics. Again, unit cost
transformed tasks achieve 4.3% more coverage as compared to regular tasks.

With the unit cost variants achieving better plan quality (surprisingly) and
better coverage (as expected) it comes at no surprise that unit cost transformed



84 CHAPTER 6. EXPERIMENTS

P
la
n

C
o
st

h
m

a
x

1
E
h
igm
a
x

E
h
igm
a
x

1
L
h
igm
a
x

L
h
igm
a
x

1
E
h
r
q

m
a
x

E
h
r
q

m
a
x

1
L
h
r
q

m
a
x

L
h
r
q

m
a
x

b
lo
ck
-g
ro
u
p
in
g

2
5
9
.0
0

2
5
9
.0
0

2
5
9
.0
0

2
5
9
.0
0

7
6
.0
0

7
6
.0
0

6
6
.0
0

6
6
.0
0

co
u
n
ters-0

3
5
.0
0

3
5
.0
0

3
5
.0
0

3
5
.0
0

7
.0
0

7
.0
0

7
.0
0

7
.0
0

co
u
n
ters-in

v
1
5
.0
0

1
5
.0
0

1
5
.0
0

1
5
.0
0

1
5
.0
0

1
5
.0
0

1
5
.0
0

1
5
.0
0

co
u
n
ters-rn

d
1
0
1
.0
0

1
0
1
.0
0

1
0
4
.0
0

1
0
4
.0
0

2
7
.0
0

2
7
.0
0

2
7
.0
0

2
7
.0
0

d
ep

o
ts

2
9
6
.0
0

1
8
5
.0
0

3
0
6
.0
0

1
9
5
.0
0

2
9
6
.0
0

1
8
4
.0
0

3
0
6
.0
0

1
9
4
.0
0

d
riv

erlo
g

1
9
1
2
7
.0
0

1
8
3
0
5
.0
0

1
7
1
6
6
.0
0

1
7
2
6
4
.0
0

1
3
5
6
1
.0
0

1
2
9
5
3
.0
0

1
4
8
1
9
.0
0

1
4
1
2
7
.0
0

d
riv

erlo
g
-h
a
rd

8
8
9
8
0
.0
0

9
2
5
4
0
.0
0

7
6
5
7
0
.0
0

7
8
2
9
0
.0
0

5
5
0
5
0
.0
0

5
7
8
3
0
.0
0

5
8
3
0
0
.0
0

6
3
7
3
0
.0
0

fa
rm

la
n
d

8
8
2
5
.0
0

8
8
3
4
.0
0

8
8
6
4
.0
0

8
8
7
6
.0
0

4
3
8
0
.0
0

4
3
8
0
.0
0

4
3
8
0
.0
0

4
3
8
0
.0
0

g
eo
-rov

ers
–

–
–

–
–

–
–

–
h
y
d
ra
u
lic-b

w
7
0
5
4
.0
0

7
0
5
4
.0
0

7
1
1
0
.0
0

7
1
1
0
.0
0

7
0
5
4
.0
0

7
0
5
4
.0
0

7
1
1
0
.0
0

7
1
1
0
.0
0

ju
m
p
b
o
t

1
5
0
.0
0

1
5
2
.5
0

1
4
7
.5
0

1
5
9
.0
0

–
–

–
–

p
la
n
t-w

a
terin

g
–

–
–

–
5
2
1
.0
0

5
2
1
.0
0

5
2
1
.0
0

5
2
1
.0
0

rov
ers

–
–

–
–

0
.0
0

0
.0
0

0
.0
0

0
.0
0

sa
ilin

g
1
0
1
8
.0
0

1
0
1
8
.0
0

1
0
1
9
.0
0

1
0
1
9
.0
0

1
9
6
.0
0

1
9
6
.0
0

1
9
6
.0
0

1
9
6
.0
0

sa
tellite

–
–

–
–

2
8
2
.3
9

2
2
5
.4
8

2
4
5
.4
2

1
8
3
.4
6

sa
tellite-h

a
rd

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

settlers
–

–
–

–
–

–
–

–
so
k
o
b
a
n

2
7
7
1
.0
0

2
7
7
7
.0
0

9
3
2
9
.0
0

9
3
3
0
.0
0

6
9
9
.0
0

6
9
9
.0
0

8
2
7
.0
0

8
2
7
.0
0

zen
o
trav

el
1
6
9
3
0
3
.0
0

1
7
5
8
2
6
.0
0

1
6
8
3
9
1
.0
0

2
3
3
0
7
6
.0
0

1
6
9
3
0
3
.0
0

2
0
2
7
5
8
.0
0

1
6
8
3
9
1
.0
0

2
4
0
0
9
1
.0
0

S
u
m

2
9
7
9
3
4
.0
0

3
0
7
1
0
1
.5
0

2
8
9
3
1
5
.5
0

3
5
5
7
3
2
.0
0

2
5
1
4
6
7
.4
0

2
8
6
9
2
5
.4
8

2
5
5
2
1
0
.4
2

3
3
1
4
7
4
.4
6

S
u
m

u
n
it

c
o
st

1
0
9
3
9
2
7
.3
2

S
u
m

re
g
u
la
r
m
e
tric

c
o
st

1
2
8
1
2
3
3
.4
4

T
a
b

le
6
.1

1:
P

lan
co

sts
of

u
n

it
co

st
(1

)
co

m
p

a
red

to
regu

la
r

co
st

(n
o

a
d

d
itio

n
a
l

in
d

ication
)

w
ith

d
iff

eren
t

varian
ts

of
h

m
a
x .



6.2. NUMERIC PLANNING EXPERIMENTS 85

P
la
n

C
o
st

h
a
d
d

1
E
h
ig a
d
d

E
h
ig a
d
d

1
L
h
ig a
d
d

L
h
ig a
d
d

1
E
h
r
q

a
d
d

E
h
r
q

a
d
d

1
L
h
r
q

a
d
d

L
h
r
q

a
d
d

b
lo
ck
-g
ro
u
p
in
g

6
1
6
.0
0

6
1
6
.0
0

5
7
7
.0
0

5
7
7
.0
0

3
6
6
.0
0

3
6
9
.0
0

3
9
1
.0
0

3
8
9
.0
0

co
u
n
te
rs
-0

2
2
7
.0
0

2
2
7
.0
0

1
0
1
.0
0

1
0
1
.0
0

7
.0
0

7
.0
0

3
7
.0
0

3
7
.0
0

co
u
n
te
rs
-i
n
v

1
9
5
.0
0

1
9
5
.0
0

1
9
5
.0
0

1
9
5
.0
0

1
5
.0
0

1
5
.0
0

1
5
.0
0

1
5
.0
0

co
u
n
te
rs
-r
n
d

5
5
6
.0
0

5
5
6
.0
0

5
5
6
.0
0

5
5
6
.0
0

3
9
.0
0

3
9
.0
0

4
5
.0
0

4
5
.0
0

d
ep

o
ts

9
6
1
.0
0

6
9
9
.0
0

1
1
5
1
.0
0

7
5
9
.0
0

1
0
5
8
.0
0

4
2
4
.0
0

1
2
0
9
.0
0

4
4
4
.0
0

d
ri
v
er
lo
g

2
9
2
4
6
.0
0

3
5
3
1
8
.0
0

3
4
3
3
0
.0
0

4
3
1
1
6
.0
0

2
9
2
4
6
.0
0

3
2
7
9
0
.0
0

3
3
6
9
6
.0
0

3
8
2
1
5
.0
0

d
ri
v
er
lo
g
-h
a
rd

1
7
6
5
6
0
.0
0

1
7
1
9
4
0
.0
0

2
1
6
4
3
0
.0
0

2
0
5
9
6
0
.0
0

1
9
3
4
0
0
.0
0

1
8
5
8
3
0
.0
0

2
3
0
8
7
0
.0
0

2
2
3
9
9
0
.0
0

fa
rm

la
n
d

6
1
3
1
.0
0

6
1
3
0
.0
0

6
1
4
0
.0
0

6
1
5
0
.0
0

4
4
1
0
.0
0

4
4
1
0
.0
0

4
4
4
0
.0
0

4
4
4
0
.0
0

g
eo
-r
ov
er
s

1
0
1
.0
0

1
0
1
.0
0

1
1
9
.0
0

1
1
9
.0
0

–
–

2
5
7
.0
0

2
5
5
.0
0

h
y
d
ra
u
li
c-
b
w

7
8
5
2
.0
0

7
8
5
2
.0
0

7
8
8
0
.0
0

7
8
8
0
.0
0

7
8
5
2
.0
0

7
8
5
2
.0
0

7
8
8
0
.0
0

7
8
8
0
.0
0

ju
m
p
b
o
t

1
9
2
.0
0

1
9
4
.0
0

1
8
5
.0
0

2
0
0
.5
0

–
–

–
–

p
la
n
t-
w
a
te
ri
n
g

–
–

–
–

1
0
5
2
.0
0

1
0
5
2
.0
0

1
1
8
5
.0
0

1
1
8
5
.0
0

ro
v
er
s

–
–

–
–

0
.0
0

0
.0
0

0
.0
0

0
.0
0

sa
il
in
g

1
7
8
4
3
.0
0

1
7
8
4
3
.0
0

1
7
6
7
8
.0
0

1
7
6
7
8
.0
0

1
3
9
1
.0
0

1
3
9
1
.0
0

5
5
7
.0
0

5
5
7
.0
0

sa
te
ll
it
e

4
2
9
.9
4

5
1
0
.8
4

3
7
7
.1
8

5
7
4
.0
7

8
2
2
.9
7

8
0
3
.7
1

9
6
8
.1
6

1
0
1
8
.5
3

sa
te
ll
it
e-
h
a
rd

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

se
tt
le
rs

–
–

–
–

–
–

–
–

so
k
o
b
a
n

1
3
7
4
7
.0
0

1
3
6
6
1
.0
0

1
4
0
9
3
.0
0

1
4
4
4
1
.0
0

7
8
1
5
.0
0

8
1
2
2
.0
0

7
6
1
0
.0
0

7
6
9
1
.0
0

ze
n
o
tr
av
el

1
0
0
9
7
3
1
.0
0

1
0
3
0
8
0
9
.0
0

1
0
9
3
9
1
4
.0
0

2
0
7
9
4
0
1
.0
0

9
8
9
2
1
0
.0
0

1
0
6
8
7
4
3
.0
0

1
1
4
9
8
0
5
.0
0

2
3
6
0
3
6
7
.0
0

S
u
m

1
2
6
4
3
8
7
.9
4

1
2
8
6
6
5
1
.8
4

1
3
9
3
7
2
6
.1
8

2
3
7
7
7
0
7
.5
7

1
2
3
6
6
8
3
.9
7

1
3
1
1
8
4
7
.7
1

1
4
3
8
9
6
5
.1
6

2
6
4
6
5
2
8
.5
3

S
u
m

u
n
it

c
o
st

5
3
3
3
7
6
3
.2
5

S
u
m

re
g
u
la
r
m
e
tr
ic

c
o
st

7
6
2
2
7
3
5
.6
5

T
ab

le
6.

12
:

P
la

n
co

st
s

of
u

n
it

co
st

(1
)

co
m

p
ar

ed
to

re
gu

la
r

co
st

(n
o

a
d

d
it

io
n

a
l

in
d

ic
a
ti

o
n

)
w

it
h

d
iff

er
en

t
va

ri
a
n
ts

o
f
h

a
d
d
.



86 CHAPTER 6. EXPERIMENTS

P
la
n

C
o
st

h
F
F

1
E
h
igF
F

E
h
igF
F

1
L
h
igF
F

L
h
igF
F

1
E
h
r
q

F
F

E
h
r
q

F
F

1
L
h
r
q

F
F

L
h
r
q

F
F

b
lo
ck
-g
ro
u
p
in
g

7
5
5
.0
0

7
5
5
.0
0

5
6
7
.0
0

5
4
5
.0
0

9
8
4
.0
0

9
9
0
.0
0

1
0
7
3
.0
0

1
0
7
9
.0
0

co
u
n
ters-0

6
8
9
.0
0

6
9
1
.0
0

6
9
1
.0
0

6
8
9
.0
0

4
5
3
.0
0

4
4
7
.0
0

2
6
9
.0
0

2
6
3
.0
0

co
u
n
ters-in

v
6
5
.0
0

7
7
.0
0

7
1
.0
0

7
9
.0
0

4
0
8
.0
0

4
0
8
.0
0

5
0
7
.0
0

5
0
7
.0
0

co
u
n
ters-rn

d
3
0
8
.0
0

2
9
6
.0
0

3
6
4
.0
0

3
5
7
.0
0

2
2
7
3
.0
0

2
2
7
3
.0
0

3
1
3
5
.0
0

3
1
3
5
.0
0

d
ep

o
ts

1
5
7
4
.0
0

6
2
2
.0
0

1
9
1
4
.0
0

8
5
1
.0
0

1
8
7
9
.0
0

1
0
4
5
.0
0

2
5
9
3
.0
0

1
2
5
6
.0
0

d
riv

erlo
g

2
0
4
0
9
.0
0

2
2
7
4
0
.0
0

3
2
3
2
0
.0
0

3
2
2
8
0
.0
0

2
4
8
4
2
.0
0

2
8
2
7
2
.0
0

3
3
6
2
0
.0
0

2
8
0
0
5
.0
0

d
riv

erlo
g
-h
a
rd

1
6
2
0
4
0
.0
0

1
4
0
4
2
0
.0
0

2
0
9
0
8
0
.0
0

1
7
8
1
4
0
.0
0

1
6
5
1
8
0
.0
0

1
4
3
0
2
0
.0
0

2
1
9
5
4
0
.0
0

1
3
4
2
6
0
.0
0

fa
rm

la
n
d

1
1
8
3
3
.0
0

1
0
6
0
5
.0
0

1
0
9
3
6
.0
0

1
1
1
4
1
.0
0

9
9
5
8
.0
0

1
0
2
9
5
.0
0

9
0
7
5
.0
0

9
0
6
6
.0
0

g
eo
-rov

ers
–

–
1
1
0
.0
0

1
1
1
.0
0

6
0
4
.0
0

6
8
0
.0
0

1
6
6
2
.0
0

1
4
6
8
.0
0

h
y
d
ra
u
lic-b

w
7
6
3
0
.0
0

7
6
3
0
.0
0

1
0
2
7
8
.0
0

1
0
2
7
8
.0
0

7
4
1
6
.0
0

7
4
1
6
.0
0

9
0
2
2
.0
0

9
0
2
2
.0
0

ju
m
p
b
o
t

1
4
3
.5
0

1
6
2
.0
0

1
9
3
.0
0

1
9
8
.5
0

7
5
.0
0

6
5
.0
0

1
3
9
.0
0

1
3
5
.0
0

p
la
n
t-w

a
terin

g
–

–
–

–
1
9
4
5
.0
0

1
9
1
1
.0
0

3
3
6
1
.0
0

3
3
2
5
.0
0

rov
ers

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

sa
ilin

g
1
0
9
6
.0
0

1
0
9
6
.0
0

1
0
2
1
.0
0

1
0
2
1
.0
0

2
2
8
0
.0
0

2
2
8
0
.0
0

3
3
3
6
.0
0

3
3
3
6
.0
0

sa
tellite

6
1
0
.0
9

6
8
9
.1
1

4
2
6
.1
6

6
3
3
.1
0

2
0
4
4
.3
2

1
6
6
8
.5
3

1
9
4
4
.9
2

8
2
8
.3
9

sa
tellite-h

a
rd

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

settlers
–

–
–

–
7
5
0
.0
0

7
6
8
.0
0

2
2
8
.0
0

2
1
2
.0
0

so
k
o
b
a
n

8
4
0
7
.0
0

9
1
9
6
.0
0

1
0
2
9
2
.0
0

1
2
2
6
5
.0
0

8
9
3
8
.0
0

9
1
2
8
.0
0

8
7
1
3
.0
0

9
6
3
5
.0
0

zen
o
trav

el
6
7
8
8
0
0
.0
0

5
3
8
4
2
4
.0
0

4
0
9
1
3
8
.0
0

5
3
0
8
9
5
.0
0

5
2
2
7
7
7
.0
0

4
4
5
7
2
8
.0
0

8
9
4
8
8
4
.0
0

7
9
3
1
0
2
.0
0

S
u
m

8
9
4
3
5
9
.5
9

7
3
3
4
0
3
.1
1

6
8
7
4
0
1
.1
6

7
7
9
4
8
3
.5
9

7
5
2
8
0
6
.3
2

6
5
6
3
9
4
.5
3

1
1
9
3
1
0
1
.9
2

9
9
8
6
3
4
.3
9

S
u
m

u
n
it

c
o
st

3
5
2
7
6
6
8
.9
9

S
u
m

re
g
u
la
r
m
e
tric

c
o
st

3
1
6
7
9
1
5
.6
2

T
ab

le
6
.1

3
:

P
la

n
co

sts
of

u
n

it
co

st
(1

)
co

m
p

a
red

to
regu

la
r

co
st

(n
o

a
d

d
itio

n
a
l

in
d

ication
)

w
ith

d
iff

eren
t

varian
ts

of
h

F
F

.



6.2. NUMERIC PLANNING EXPERIMENTS 87

Figure 6.6: Comparison of unit cost transformed task to tasks with regular cost
on an eager interval relaxation + planning graph based EhigFF setting.

Figure 6.7: Comparison of unit cost transformed task to tasks with regular cost
on an lazy interval relaxation + planning graph based LhigFF setting.



88 CHAPTER 6. EXPERIMENTS

Figure 6.8: Comparison of unit cost transformed task to tasks with regular cost
on an eager repetition relaxation + priority queue based EhrqFF setting.

Figure 6.9: Comparison of unit cost transformed task to tasks with regular cost
on an eager repetition relaxation + priority queue based LhrqFF setting.



6.2. NUMERIC PLANNING EXPERIMENTS 89

Coverage hmax Ehig
max Ehrq

max Lhig
max Lhrq

max 1Ehig
max 1Ehrq

max 1Lhig
max 1Lhrq

max

block-grouping (192) 11 8 11 7 11 8 11 7
counters-0 (34) 3 2 3 2 3 2 3 2
counters-inv (11) 2 2 2 2 2 2 2 2
counters-rnd (33) 8 6 9 6 8 6 8 6
depots (22) 5 5 5 5 5 5 5 5
driverlog (20) 13 10 14 10 13 13 12 12
driverlog-hard (20) 12 10 12 10 13 13 12 12
farmland (50) 20 10 20 10 20 10 20 10
geo-rovers (21) 0 0 0 0 0 0 0 0
hydraulic-bw (562) 541 541 541 541 541 541 541 541
jumpbot (20) 15 0 15 0 19 0 19 0
plant-watering (51) 0 11 0 11 0 11 0 11
rovers (20) 0 3 0 3 1 5 1 4
sailing (45) 12 3 12 3 12 3 12 3
satellite (20) 1 2 1 2 0 3 0 3
satellite-hard (20) 9 14 10 20 10 20 10 20
settlers (20) 0 0 0 0 0 1 0 1
sokoban (325) 31 24 59 28 32 24 59 26
umt2 (15) 0 0 0 0 0 0 0 0
zenotravel (20) 11 10 11 10 8 8 8 8
Sum (1 521) 694 661 725 670 698 675 723 673

Sum regular cost: 2 750 Sum unit cost: 2 769

Table 6.14: Coverage of unit cost (1) compared to regular cost (no additional
indication) with different variants of hmax.

Coverage hadd Ehig
add Ehrq

add Lhig
add Lhrq

add 1Ehig
add 1Ehrq

add 1Lhig
add 1Lhrq

add
block-grouping (192) 15 17 15 17 15 19 15 19
counters-0 (34) 5 2 4 3 5 2 4 3
counters-inv (11) 4 2 4 2 4 2 4 2
counters-rnd (33) 13 6 13 6 13 6 13 6
depots (22) 7 9 7 10 7 7 7 7
driverlog (20) 15 16 15 16 17 18 17 19
driverlog-hard (20) 14 15 14 15 16 17 17 18
farmland (50) 18 10 17 10 17 10 17 10
geo-rovers (21) 1 0 1 1 1 0 1 1
hydraulic-bw (562) 541 541 541 541 541 541 541 541
jumpbot (20) 18 0 17 0 19 0 19 0
plant-watering (51) 0 15 0 15 0 15 0 15
rovers (20) 0 3 0 3 5 9 6 9
sailing (45) 37 6 36 6 37 6 36 5
satellite (20) 2 5 2 4 3 11 5 13
satellite-hard (20) 9 15 10 20 15 20 15 20
settlers (20) 0 0 0 0 3 4 3 4
sokoban (325) 67 68 70 70 67 70 70 70
umt2 (15) 0 0 0 0 0 0 0 0
zenotravel (20) 15 15 16 16 20 20 20 20
Sum (1 521) 781 745 782 755 805 777 810 782

Sum regular cost: 3 063 Sum unit cost: 3 174

Table 6.15: Coverage of unit cost (1) compared to regular cost (no additional
indication) with different variants of hadd.



90 CHAPTER 6. EXPERIMENTS

Coverage hFF Ehig
FF Ehrq

FF Lhig
FF Lhrq

FF 1Ehig
FF 1Ehrq

FF 1Lhig
FF 1Lhrq

FF
block-grouping (192) 17 25 14 25 14 25 14 25
counters-0 (34) 7 6 7 5 7 6 7 5
counters-inv (11) 3 5 3 5 3 5 3 5
counters-rnd (33) 12 20 10 21 10 20 10 21
depots (22) 10 10 10 11 9 9 9 9
driverlog (20) 13 15 15 15 20 20 20 20
driverlog-hard (20) 15 15 15 15 19 20 19 20
farmland (50) 19 25 18 27 19 25 19 22
geo-rovers (21) 0 4 1 5 0 3 1 5
hydraulic-bw (562) 541 541 541 541 541 541 541 541
jumpbot (20) 13 8 15 14 17 10 17 10
plant-watering (51) 0 15 0 15 0 15 0 15
rovers (20) 1 4 2 4 6 15 2 13
sailing (45) 15 17 14 18 15 17 14 18
satellite (20) 2 7 2 8 4 16 8 16
satellite-hard (20) 10 15 20 20 15 20 20 20
settlers (20) 0 3 0 1 5 10 5 13
sokoban (325) 57 67 69 70 58 68 69 67
umt2 (15) 0 0 0 0 0 0 0 1
zenotravel (20) 15 14 14 17 20 20 20 20
Sum (1 521) 750 816 770 837 782 865 798 866

Sum regular cost: 3 173 Sum unit cost: 3 311

Table 6.16: Coverage of unit cost (1) compared to regular cost (no additional
indication) with different variants of hFF.

Quality hmax Ehig
max Ehrq

max Lhig
max Lhrq

max 1Ehig
max 1Ehrq

max 1Lhig
max 1Lhrq

max

block-grouping (192) 10.79 8.00 10.79 7.00 10.79 8.00 10.79 7.00
counters-0 (34) 3.00 2.00 3.00 2.00 3.00 2.00 3.00 2.00
counters-inv (11) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
counters-rnd (33) 7.79 6.00 8.34 6.00 7.79 6.00 7.63 6.00
depots (22) 4.40 4.42 4.18 4.21 2.92 2.92 2.84 2.84
driverlog (20) 11.36 8.56 10.72 7.89 10.36 10.36 8.84 8.84
driverlog-hard (20) 0.05 0.05 0.04 0.04 0.05 0.05 0.04 0.04
farmland (50) 19.80 10.00 19.70 10.00 19.84 10.00 19.71 10.00
geo-rovers (21) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
hydraulic-bw (562) 497.55 497.55 494.59 494.59 497.55 497.55 494.59 494.59
jumpbot (20) 12.64 0.00 12.15 0.00 16.24 0.00 16.35 0.00
plant-watering (51) 0.00 11.00 0.00 11.00 0.00 11.00 0.00 11.00
rovers (20) 0.00 3.00 0.00 3.00 1.00 5.00 1.00 4.00
sailing (45) 10.07 3.00 10.06 3.00 10.07 3.00 10.06 3.00
satellite (20) 0.39 1.24 0.39 1.38 0.00 2.15 0.00 2.20
satellite-hard (20) 9.00 14.00 10.00 20.00 10.00 20.00 10.00 20.00
settlers (20) 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00
sokoban (325) 18.73 22.37 38.94 26.84 19.31 22.28 38.70 24.93
umt2 (15) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
zenotravel (20) 6.04 5.24 4.99 4.77 5.23 5.23 5.25 5.25

Sum (1 521) 613.61 598.43 629.89 603.71 616.15 608.54 630.82 604.70
Sum regular cost: 2 445.64 Sum unit cost: 2 460.21

Table 6.17: Quality of unit cost (1) compared to regular cost (no additional
indication) with different variants of hmax.



6.2. NUMERIC PLANNING EXPERIMENTS 91

Quality hadd Ehig
add Ehrq

add Lhig
add Lhrq

add 1Ehig
add 1Ehrq

add 1Lhig
add 1Lhrq

add
block-grouping (192) 14.83 13.63 14.71 13.16 14.83 15.07 14.71 14.38
counters-0 (34) 4.92 2.00 4.00 2.75 4.92 2.00 4.00 2.75
counters-inv (11) 3.73 2.00 3.73 2.00 3.73 2.00 3.73 2.00
counters-rnd (33) 12.46 5.17 12.46 4.96 12.46 5.17 12.46 4.96
depots (22) 4.06 7.90 4.03 8.26 3.73 3.82 3.21 3.65
driverlog (20) 8.53 9.67 7.19 8.28 11.24 12.24 9.63 11.31
driverlog-hard (20) 0.04 0.04 0.03 0.04 1.04 1.04 0.57 1.25
farmland (50) 17.68 9.89 16.68 9.79 16.68 9.89 16.74 9.79
geo-rovers (21) 1.00 0.00 0.85 1.00 1.00 0.00 0.85 0.99
hydraulic-bw (562) 476.01 476.01 474.85 474.85 476.01 476.01 474.85 474.85
jumpbot (20) 15.73 0.00 14.01 0.00 16.84 0.00 15.96 0.00
plant-watering (51) 0.00 13.06 0.00 11.59 0.00 13.06 0.00 11.59
rovers (20) 0.00 3.00 0.00 3.00 5.00 7.00 5.00 6.00
sailing (45) 35.10 4.50 33.61 4.42 35.10 4.50 33.61 3.52
satellite (20) 0.65 3.14 0.48 2.21 1.11 7.73 2.23 8.63
satellite-hard (20) 9.00 15.00 10.00 20.00 15.00 20.00 15.00 20.00
settlers (20) 0.00 0.00 0.00 0.00 2.96 3.73 2.98 3.73
sokoban (325) 37.27 57.19 43.81 64.43 37.19 60.95 44.67 64.72
umt2 (15) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
zenotravel (20) 7.21 7.11 5.42 5.22 8.91 8.90 8.63 8.46
Sum (1 521) 648.23 629.31 645.86 635.97 667.78 653.11 668.85 652.58

Sum regular cost: 2 559.37 Sum unit cost: 2 642.24

Table 6.18: Quality of unit cost (1) compared to regular cost (no additional
indication) with different variants of hadd.

Quality hFF Ehig
FF Ehrq

FF Lhig
FF Lhrq

FF 1Ehig
FF 1Ehrq

FF 1Lhig
FF 1Lhrq

FF
block-grouping (192) 16.32 23.63 11.93 21.68 13.46 23.69 12.22 20.97
counters-0 (34) 6.96 5.73 6.93 4.52 6.99 5.70 6.98 4.51
counters-inv (11) 2.77 4.65 2.63 3.70 2.96 4.65 2.75 3.70
counters-rnd (33) 11.46 18.45 8.80 15.98 9.45 18.45 8.88 15.98
depots (22) 8.66 6.86 8.35 6.36 4.47 4.60 3.95 4.11
driverlog (20) 9.04 10.75 9.02 10.71 15.13 15.82 12.45 12.24
driverlog-hard (20) 0.05 0.06 0.04 0.05 1.83 2.79 1.34 1.96
farmland (50) 14.76 22.76 15.73 24.84 15.17 23.32 16.62 21.06
geo-rovers (21) 0.00 2.95 0.91 3.16 0.00 2.29 0.92 2.85
hydraulic-bw (562) 483.69 487.39 436.94 462.47 483.69 487.39 436.94 462.47
jumpbot (20) 9.47 6.58 10.44 9.89 13.39 7.29 13.23 6.55
plant-watering (51) 0.00 7.89 0.00 5.04 0.00 7.97 0.00 5.02
rovers (20) 1.00 4.00 2.00 4.00 3.00 13.64 2.00 11.47
sailing (45) 14.29 14.32 12.92 12.42 14.29 14.32 12.92 12.42
satellite (20) 0.67 4.70 0.41 8.00 1.72 10.45 4.18 11.46
satellite-hard (20) 10.00 15.00 20.00 20.00 15.00 20.00 20.00 20.00
settlers (20) 0.00 2.89 0.00 0.98 4.92 9.52 4.70 12.53
sokoban (325) 35.64 52.42 45.57 58.27 36.13 50.89 49.22 55.62
umt2 (15) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
zenotravel (20) 12.22 10.25 10.64 13.46 14.39 11.32 16.19 11.91
Sum (1 521) 637.00 701.27 603.25 685.53 655.98 734.11 625.47 697.84

Sum regular cost: 2 627.05 Sum unit cost: 2 713.40

Table 6.19: Quality of unit cost (1) compared to regular cost (no additional
indication) with different variants of hFF.



92 CHAPTER 6. EXPERIMENTS

Summary unit cost regular cost
Cost - Sum 9.955 M 12.207 M
Coverage - Sum 9254 8986
Quality - Sum 7815.93 7632.07

Table 6.20: Comparison summary of unit cost and regular cost.

configurations achieve a higher algorithmic quality score on average. For hmax,
quality scores are shown in Table 6.17 with an average increase in algorithmic
quality of 0.6%. Similarly, Table 6.18 presents the results for hadd based config-
urations where unit cost transformed configurations achieve an average increase
in algorithmic quality by 3.2%. The same pattern can be observed for hFF in
Table 6.19 where unit cost transformed tasks achieve an increase in quality by
3.3%. Nevertheless, if we look at the best algorithm for each instance, results
are wide spread indicating that configurations using action based costs in the
heuristics are beneficial, at least for some problem classes. If we compare the
gains in coverage for all three heuristics to the gains in quality, we see that
quality is mostly dependent on coverage.

Overall, ignoring action costs is beneficial for most instances, as we find
shorter plans (in terms of the number of actions in the plan) and surprisingly
also of better cost. A summary of comparisons between unit cost transformed
configurations to regular costs is shown in Table 6.20.

6.2.3 Interval + Graph vs. Repetition + Queue Approach

In the third set of experiments we investigate the difference in using a planning
graph based approach to generate the relaxed state progression sequence with
an interval relaxation (abbreviated interval + graph or ig, cf. Section 4.3.2)
and compare it to a priority queue based approach in the repetition relaxation
(abbreviated repetition + queue or rq, cf. Section 4.3.3). We did not include a
planning graph based approach in a repetition relaxation, as it only combines
the downsides of both options and we did not include a priority queue based
approach in an interval relaxation as the computation time is not bounded and
the approach usually will not be able to compute heuristic estimates at all.

The interval relaxed planning graph based heuristics are denoted by hig and
the repetition relaxed priority queue based heuristics by hrq. Again we start by
comparing the cost of pairwise configurations that only differ in the relaxation
approach.

For hmax based configurations, shown in Table 6.21, the differences in plan
cost are rather small for all instances for which both configurations that only
differ in the relaxation approach find a plan. Whereas higmax finds 1.7% shorter
plans compared to hrqmax by summing the plan costs of all instances, this increase
can only be attributed to the eager Ehmax configuration that uses regular costs.
For all other configuration, the repetition relaxed priority queue approach pro-
duced better plans, although not significantly.

Table 6.22 shows the results for configurations based on hadd. Here, the
interval based planning graph approaches higadd produce better plans for all com-
binations that is also reflected by the overall increase in total plan cost by 4.7%.

A more differentiated picture emerges for hFF based comparisons in Ta-



6.2. NUMERIC PLANNING EXPERIMENTS 93

Figure 6.10: Comparison of eager EhigFF to EhrqFF in a original cost setting.

ble 6.23. Whereas the total plan cost speaks for configurations based on the
interval relaxed planing graph approach higFF again, with hrqFF reporting 29.4%
more costly plans overall, there is one combination: lazy evaluation in a regular
cost setting LhFF where the plan cost of LhrqFF finds plans that are almost 10%
shorter. If we investigate the domains more closely, we can see that much of
this cost sum is dominated by ZenoTravel and excluding this domain results
in a much more balanced picture.

Again we investigate the consistence of the aggregated results in the tables
with scatter plots. We compare the relaxation approaches of eager EhFF heuris-
tics in Figure 6.10 and the unit cost variants 1EhFF in Figure 6.11. The lazy
heuristics LhFF are compared in Figure 6.12 and the unit cost variants in Fig-
ure 6.13. With the exception of the Jumpbot domain, there tend to be more
marks below the diagonal indicating that the repetition relaxed priority queue
approach often performs better on the smaller instances with a plan cost of up
to 50. Concluding, the relaxation approach has an impact on the expected plan
cost, however, there is no clear winner over all domains and depending on the
domain, one approach or the other can produce plans of lower costs.

The coverage of the different configurations using the hmax heuristic is shown
in Table 6.24. The configurations using an interval relaxed planing graph ap-
proach to generate the relaxed state progression, higmax, are found at the left
and heuristics using a repetition relaxed priority queue approach, hqrmax are at
the right. Aggregated over all configurations, the coverage of higmax increases
by 6.0%. However, this increase in coverage can mostly be attributed to three
domains: Farmland, Sailing and Sokoban, with hrqmax-variants achieving a
higher coverage in PlantWatering.



94 CHAPTER 6. EXPERIMENTS

P
la
n

C
o
st

h
m

a
x

1
E
h
igm
a
x

1
E
h
r
q

m
a
x

E
h
igm
a
x

E
h
r
q

m
a
x

1
L
h
igm
a
x

1
L
h
r
q

m
a
x

L
h
igm
a
x

L
h
r
q

m
a
x

b
lo
ck
-g
ro
u
p
in
g

1
9
.0
0

1
9
.0
0

1
9
.0
0

1
9
.0
0

1
9
.0
0

1
9
.0
0

1
9
.0
0

1
9
.0
0

co
u
n
ters-0

7
.0
0

7
.0
0

7
.0
0

7
.0
0

7
.0
0

7
.0
0

7
.0
0

7
.0
0

co
u
n
ters-in

v
1
5
.0
0

1
5
.0
0

1
5
.0
0

1
5
.0
0

1
5
.0
0

1
5
.0
0

1
5
.0
0

1
5
.0
0

co
u
n
ters-rn

d
2
7
.0
0

2
7
.0
0

2
7
.0
0

2
7
.0
0

2
8
.0
0

2
7
.0
0

2
8
.0
0

2
7
.0
0

d
ep

o
ts

2
9
6
.0
0

2
9
6
.0
0

1
8
5
.0
0

1
8
4
.0
0

3
0
6
.0
0

3
0
6
.0
0

1
9
5
.0
0

1
9
4
.0
0

d
riv

erlo
g

1
9
1
2
7
.0
0

1
9
1
2
7
.0
0

1
1
5
7
0
.0
0

1
2
9
5
3
.0
0

1
7
1
6
6
.0
0

1
7
1
6
6
.0
0

1
3
0
8
1
.0
0

1
4
1
2
7
.0
0

d
riv

erlo
g
-h
a
rd

1
0
5
1
0
0
.0
0

1
0
5
1
0
0
.0
0

6
0
9
3
0
.0
0

5
7
8
3
0
.0
0

9
4
2
9
0
.0
0

9
4
2
9
0
.0
0

6
6
2
6
0
.0
0

6
3
7
3
0
.0
0

fa
rm

la
n
d

4
4
1
0
.0
0

4
3
8
0
.0
0

4
4
1
0
.0
0

4
3
8
0
.0
0

4
4
4
0
.0
0

4
3
8
0
.0
0

4
4
4
0
.0
0

4
3
8
0
.0
0

g
eo
-rov

ers
–

–
–

–
–

–
–

–
h
y
d
ra
u
lic-b

w
7
0
5
4
.0
0

7
0
5
4
.0
0

7
0
5
4
.0
0

7
0
5
4
.0
0

7
1
1
0
.0
0

7
1
1
0
.0
0

7
1
1
0
.0
0

7
1
1
0
.0
0

ju
m
p
b
o
t

–
–

–
–

–
–

–
–

rov
ers

0
.0
0

0
.0
0

–
–

0
.0
0

0
.0
0

–
–

sa
ilin

g
2
7
5
.0
0

1
9
6
.0
0

2
7
5
.0
0

1
9
6
.0
0

2
7
5
.0
0

1
9
6
.0
0

2
7
5
.0
0

1
9
6
.0
0

sa
tellite

–
–

7
3
.5
8

1
1
5
.6
0

–
–

7
3
.5
8

7
3
.5
8

sa
tellite-h

a
rd

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

settlers
–

–
–

–
–

–
–

–
so
k
o
b
a
n

1
0
2
1
.0
0

6
2
9
.0
0

1
1
3
0
.0
0

6
8
1
.0
0

1
2
7
3
.0
0

8
2
7
.0
0

1
4
6
5
.0
0

9
4
6
.0
0

zen
o
trav

el
1
6
9
3
0
3
.0
0

1
6
9
3
0
3
.0
0

2
7
8
1
2
9
.0
0

3
1
4
1
6
9
.0
0

1
6
8
3
9
1
.0
0

1
6
8
3
9
1
.0
0

3
4
5
3
9
4
.0
0

3
3
7
9
8
8
.0
0

S
u
m

3
0
6
6
5
4
.0
0

3
0
6
1
5
3
.0
0

3
6
3
8
2
4
.5
8

3
9
7
6
3
0
.6
0

2
9
3
3
2
0
.0
0

2
9
2
7
3
4
.0
0

4
3
8
3
6
2
.5
8

4
2
8
8
1
2
.5
8

S
u
m

h
igm

a
x

1
4
0
2
1
6
1
.1
6

S
u
m

h
r
q

m
a
x

1
4
2
5
3
3
0
.1
8

T
a
b

le
6
.2

1:
P

lan
co

sts
of

in
terva

l
rela

xa
tio

n
+

p
la

n
n

in
g

gra
p
h

(h
igm

a
x )

co
m

p
a
red

to
repetitio

n
rela

xa
tio

n
+

p
rio

rity
qu

eu
e

(h
r
q

m
a
x ).



6.2. NUMERIC PLANNING EXPERIMENTS 95

P
la
n

C
o
st

h
a
d
d

1
E
h
ig a
d
d

1
E
h
r
q

a
d
d

E
h
ig a
d
d

E
h
r
q

a
d
d

1
L
h
ig a
d
d

1
L
h
r
q

a
d
d

L
h
ig a
d
d

L
h
r
q

a
d
d

b
lo
ck
-g
ro
u
p
in
g

2
1
5
.0
0

2
9
0
.0
0

1
9
0
.0
0

2
5
3
.0
0

2
2
5
.0
0

3
2
3
.0
0

2
0
0
.0
0

2
8
3
.0
0

co
u
n
te
rs
-0

7
.0
0

7
.0
0

7
.0
0

7
.0
0

3
5
.0
0

3
7
.0
0

3
5
.0
0

3
7
.0
0

co
u
n
te
rs
-i
n
v

1
5
.0
0

1
5
.0
0

1
5
.0
0

1
5
.0
0

1
5
.0
0

1
5
.0
0

1
5
.0
0

1
5
.0
0

co
u
n
te
rs
-r
n
d

2
7
.0
0

3
9
.0
0

2
7
.0
0

3
9
.0
0

2
7
.0
0

4
5
.0
0

2
7
.0
0

4
5
.0
0

d
ep

o
ts

9
6
1
.0
0

1
0
5
8
.0
0

6
9
9
.0
0

4
2
4
.0
0

1
1
5
1
.0
0

1
2
0
9
.0
0

7
5
9
.0
0

4
4
4
.0
0

d
ri
v
er
lo
g

5
4
7
3
6
.0
0

5
3
6
5
0
.0
0

3
5
3
1
8
.0
0

3
2
7
9
0
.0
0

6
7
6
6
5
.0
0

6
6
6
9
5
.0
0

4
3
1
1
6
.0
0

3
8
2
1
5
.0
0

d
ri
v
er
lo
g
-h
a
rd

2
5
4
3
4
0
.0
0

2
5
4
3
4
0
.0
0

1
7
1
9
4
0
.0
0

1
6
9
8
9
0
.0
0

4
6
3
3
7
0
.0
0

4
5
3
0
1
0
.0
0

2
0
5
9
6
0
.0
0

2
0
1
7
9
0
.0
0

fa
rm

la
n
d

4
4
1
0
.0
0

4
4
1
0
.0
0

4
4
1
0
.0
0

4
4
1
0
.0
0

4
4
4
0
.0
0

4
4
4
0
.0
0

4
4
4
0
.0
0

4
4
4
0
.0
0

g
eo
-r
ov
er
s

–
–

–
–

–
–

–
–

h
y
d
ra
u
li
c-
b
w

7
8
5
2
.0
0

7
8
5
2
.0
0

7
8
5
2
.0
0

7
8
5
2
.0
0

7
8
8
0
.0
0

7
8
8
0
.0
0

7
8
8
0
.0
0

7
8
8
0
.0
0

ju
m
p
b
o
t

–
–

–
–

–
–

–
–

ro
v
er
s

0
.0
0

0
.0
0

–
–

1
.0
0

1
.0
0

–
–

sa
il
in
g

3
1
0
5
.0
0

1
3
9
1
.0
0

3
1
0
5
.0
0

1
3
9
1
.0
0

4
9
0
.0
0

5
5
7
.0
0

3
2
0
7
.0
0

1
4
0
4
.0
0

sa
te
ll
it
e

6
6
2
.3
2

6
6
8
.1
1

7
3
.5
8

7
2
.5
2

1
0
8
8
.7
3

1
3
3
1
.2
1

1
2
6
.1
1

1
4
2
.1
7

sa
te
ll
it
e-
h
a
rd

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

se
tt
le
rs

1
5
0
.0
0

1
4
8
.0
0

–
–

1
4
8
.0
0

1
4
8
.0
0

–
–

so
k
o
b
a
n

1
3
7
4
7
.0
0

7
4
8
6
.0
0

1
3
2
5
8
.0
0

7
5
7
2
.0
0

1
4
0
9
3
.0
0

7
6
1
0
.0
0

1
4
4
4
1
.0
0

7
6
9
1
.0
0

ze
n
o
tr
av
el

2
1
3
1
0
0
2
.0
0

2
1
9
3
6
9
2
.0
0

1
0
3
0
8
0
9
.0
0

1
0
6
8
7
4
3
.0
0

2
2
8
3
1
4
3
.0
0

2
3
8
1
5
3
0
.0
0

2
0
7
9
4
0
1
.0
0

2
3
6
0
3
6
7
.0
0

S
u
m

2
4
7
1
2
2
9
.3
2

2
5
2
5
0
4
6
.1
1

1
2
6
7
7
0
3
.5
8

1
2
9
3
4
5
8
.5
2

2
8
4
3
7
7
1
.7
3

2
9
2
4
8
3
1
.2
1

2
3
5
9
6
0
7
.1
1

2
6
2
2
7
5
3
.1
7

S
u
m

h
ig a
d
d

8
9
4
2
3
1
1
.7
4

S
u
m

h
r
q

a
d
d

9
3
6
6
0
8
9
.0
1

T
ab

le
6.

22
:

P
la

n
co

st
s

of
in

te
rv

a
l

re
la

xa
ti

o
n

+
p
la

n
n

in
g

gr
a
p
h

(h
ig a
d
d
)

co
m

p
a
re

d
to

re
pe

ti
ti

o
n

re
la

xa
ti

o
n

+
p
ri

o
ri

ty
qu

eu
e

(h
r
q

a
d
d
).



96 CHAPTER 6. EXPERIMENTS

P
la
n

C
o
st

h
F
F

1
E
h
igF
F

1
E
h
r
q

F
F

E
h
igF
F

E
h
r
q

F
F

1
L
h
igF
F

1
L
h
r
q

F
F

L
h
igF
F

L
h
r
q

F
F

b
lo
ck
-g
ro
u
p
in
g

7
5
5
.0
0

7
5
9
.0
0

8
4
3
.0
0

8
5
7
.0
0

8
2
9
.0
0

7
9
0
.0
0

6
3
3
.0
0

6
5
3
.0
0

co
u
n
ters-0

4
1
1
.0
0

4
5
3
.0
0

4
1
5
.0
0

4
4
7
.0
0

2
2
1
.0
0

2
6
9
.0
0

2
2
3
.0
0

2
6
3
.0
0

co
u
n
ters-in

v
6
5
.0
0

7
5
.0
0

7
7
.0
0

7
5
.0
0

7
1
.0
0

9
7
.0
0

7
9
.0
0

9
7
.0
0

co
u
n
ters-rn

d
3
0
8
.0
0

3
2
0
.0
0

5
3
0
.0
0

5
3
4
.0
0

3
6
4
.0
0

4
2
0
.0
0

3
5
7
.0
0

4
2
0
.0
0

d
ep

o
ts

1
8
9
2
.0
0

1
8
7
9
.0
0

7
9
7
.0
0

9
8
6
.0
0

1
9
1
4
.0
0

2
5
9
3
.0
0

1
0
1
6
.0
0

1
5
2
4
.0
0

d
riv

erlo
g

8
9
3
8
7
.0
0

8
5
2
3
9
.0
0

2
2
7
4
0
.0
0

2
2
0
9
7
.0
0

1
0
9
5
0
0
.0
0

1
3
3
4
9
4
.0
0

3
2
2
8
0
.0
0

2
8
0
0
5
.0
0

d
riv

erlo
g
-h
a
rd

4
4
2
5
4
0
.0
0

4
4
3
5
4
0
.0
0

1
4
0
4
2
0
.0
0

1
4
3
0
2
0
.0
0

6
0
0
1
4
0
.0
0

7
8
3
7
7
0
.0
0

1
7
8
1
4
0
.0
0

1
3
4
2
6
0
.0
0

fa
rm

la
n
d

1
2
1
0
7
.0
0

7
5
4
5
.0
0

1
4
8
0
7
.0
0

8
7
6
4
.0
0

1
1
8
5
5
.0
0

8
3
7
7
.0
0

1
1
6
3
1
.0
0

7
9
5
7
.0
0

g
eo
-rov

ers
–

–
–

–
1
1
0
.0
0

1
4
3
.0
0

1
1
1
.0
0

1
2
0
.0
0

h
y
d
ra
u
lic-b

w
7
6
3
0
.0
0

7
4
1
6
.0
0

7
6
3
0
.0
0

7
4
1
6
.0
0

1
0
2
7
8
.0
0

9
0
2
2
.0
0

1
0
2
7
8
.0
0

9
0
2
2
.0
0

ju
m
p
b
o
t

1
1
1
.0
0

1
3
6
.0
0

9
9
.0
0

8
2
.0
0

1
2
8
.0
0

1
4
7
.0
0

1
6
2
.5
0

1
8
5
.0
0

rov
ers

3
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

sa
ilin

g
9
2
2
.0
0

1
1
3
0
.0
0

9
2
2
.0
0

1
1
3
0
.0
0

8
4
4
.0
0

1
3
6
9
.0
0

8
4
4
.0
0

1
3
6
9
.0
0

sa
tellite

1
1
4
8
.9
9

1
3
6
6
.3
9

3
7
1
.9
8

3
7
0
.8
6

2
8
5
7
.3
5

2
9
6
3
.5
5

6
3
3
.1
0

1
4
2
.0
7

sa
tellite-h

a
rd

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

settlers
1
7
6
.0
0

1
7
8
.0
0

–
–

1
7
6
.0
0

1
7
8
.0
0

–
–

so
k
o
b
a
n

8
6
8
8
.0
0

6
8
5
6
.0
0

9
7
5
7
.0
0

7
0
6
0
.0
0

9
9
1
5
.0
0

8
3
9
2
.0
0

1
2
6
3
2
.0
0

1
0
0
6
2
.0
0

zen
o
trav

el
1
2
2
8
7
5
0
.0
0

1
8
8
7
2
5
0
.0
0

3
8
8
2
1
2
.0
0

4
4
5
7
2
8
.0
0

1
0
5
9
7
1
3
.0
0

1
6
9
3
9
8
8
.0
0

5
3
0
8
9
5
.0
0

5
0
8
6
8
8
.0
0

S
u
m

1
7
9
4
8
9
3
.9
9

2
4
4
4
1
4
2
.3
9

5
8
7
6
2
0
.9
8

6
3
8
5
6
6
.8
6

1
8
0
8
9
1
5
.3
5

2
6
4
6
0
1
2
.5
5

7
7
9
9
1
4
.5
9

7
0
2
7
6
7
.0
7

S
u
m

h
igF
F

4
9
7
1
3
4
4
.9
1

S
u
m

h
r
q

F
F

6
4
3
1
4
8
8
.8
7

T
a
b

le
6
.2

3:
P

lan
co

sts
of

in
terva

l
rela

xa
tio

n
+

p
la

n
n

in
g

gra
p
h

(h
igF

F
)

co
m

p
a
red

to
repetitio

n
rela

xa
tio

n
+

p
rio

rity
qu

eu
e

(h
r
q

F
F

).



6.2. NUMERIC PLANNING EXPERIMENTS 97

Figure 6.11: Comparison of eager 1EhigFF to 1EhrqFF in a unit cost setting.

Figure 6.12: Comparison of eager LhigFF to LhrqFF in a original cost setting.



98 CHAPTER 6. EXPERIMENTS

Figure 6.13: Comparison of eager 1LhigFF to 1LhrqFF in a unit cost setting.

The coverage of hadd based configurations can be found in Table 6.25. Again,
higadd achieves an increase in coverage by 3.9% and again, this increase is not
uniform but very domain dependent, with Counters, Farmland, Jumpbot
and Sailing producing better coverage with higadd and hrqadd achieving higher
coverage in PlantWatering and Satellite.

In Table 6.26 we compare the interval relaxed planing graph based higFF con-
figurations to those using the repetition relaxed priority queue approach based
approach hrqFF. With few exceptions (e.g. the Jumpbot domain), using the
repetition relaxation pays off and hrqFF increases coverage by 9.2%. This sudden
advantage of the repetition relaxed approaches does not come surprisingly. Dur-
ing the progression phase, the repetition relaxation attributes the cost of one
repetition to an interval that can be reached by applying the action arbitrarily
often. For hrqmax and hrqadd, this repetitive use of actions is not compensated for.
In contrast, hrqFF extracts an interval relaxed plan and explicates the required
number of repetitions, compensating the biggest disadvantage of the repetition
relaxed approach over the interval relaxation.

The quality score that relates coverage to plan cost highlights the importance
of evening out the aggregation of several action to one step in the repetition
relaxation again. The quality of hmax, shown in Table 6.27, is better for the
interval relaxed planning graph approaches higmax, with an average increase of
coverage by 3.1%. Similarly, for hadd, quality increases by 2.3% if we use higadd,
as seen in Table 6.28. Quite in contrast are the quality results for hFF which are
shown in Table 6.29. With the extraction of an interval relaxed plan, hrqFF has
the advantage of being able to account for the repeated application of action
without impairing the estimated cost. On average, the quality of hrqFF based



6.2. NUMERIC PLANNING EXPERIMENTS 99

Coverage hmax Ehig
max 1Ehig

max Lhig
max 1Lhig

max Ehrq
max 1Ehrq

max Lhrq
max 1Lhrq

max

block-grouping (192) 11 11 11 11 8 8 7 7
counters-0 (34) 3 3 3 3 2 2 2 2
counters-inv (11) 2 2 2 2 2 2 2 2
counters-rnd (33) 8 8 9 8 6 6 6 6
depots (22) 5 5 5 5 5 5 5 5
driverlog (20) 13 13 14 12 10 13 10 12
driverlog-hard (20) 12 13 12 12 10 13 10 12
farmland (30) 20 20 20 20 10 10 10 10
geo-rovers (21) 0 0 0 0 0 0 0 0
hydraulic-bw (562) 541 541 541 541 541 541 541 541
jumpbot (20) 15 19 15 19 0 0 0 0
plant-watering (51) 0 0 0 0 11 11 11 11
rovers (20) 0 1 0 1 3 5 3 4
sailing (45) 12 12 12 12 3 3 3 3
satellite (20) 1 0 1 0 2 3 2 3
satellite-hard (20) 9 10 10 10 14 20 20 20
settlers (20) 0 0 0 0 0 1 0 1
sokoban (325) 31 32 59 59 24 24 28 26
umt2 (15) 0 0 0 0 0 0 0 0
zenotravel (20) 11 8 11 8 10 8 10 8
Sum (1 521) 694 698 725 723 661 675 670 673

Sum hig
max: 2 840 Sum hrq

max: 2 679

Table 6.24: Coverage of interval relaxation + planning graph (higmax) compared
to repetition relaxation + priority queue (hrqmax).

Coverage hadd Ehig
add 1Ehig

add Lhig
add 1Lhig

add Ehrq
add 1Ehrq

add Lhrq
add 1Lhrq

add
block-grouping (192) 15 15 15 15 17 19 17 19
counters-0 (34) 5 5 4 4 2 2 3 3
counters-inv (11) 4 4 4 4 2 2 2 2
counters-rnd (33) 13 13 13 13 6 6 6 6
depots (22) 7 7 7 7 9 7 10 7
driverlog (20) 15 17 15 17 16 18 16 19
driverlog-hard (20) 14 16 14 17 15 17 15 18
farmland (50) 18 17 17 17 10 10 10 10
geo-rovers (21) 1 1 1 1 0 0 1 1
hydraulic-bw (562) 541 541 541 541 541 541 541 541
jumpbot (20) 18 19 17 19 0 0 0 0
plant-watering (51) 0 0 0 0 15 15 15 15
rovers (20) 0 5 0 6 3 9 3 9
sailing (45) 37 37 36 36 6 6 6 5
satellite (20) 2 3 2 5 5 11 4 13
satellite-hard (20) 9 15 10 15 15 20 20 20
settlers (20) 0 3 0 3 0 4 0 4
sokoban (325) 67 67 70 70 68 70 70 70
umt2 (15) 0 0 0 0 0 0 0 0
zenotravel (20) 15 20 16 20 15 20 16 20

Sum (1 521) 781 805 782 810 745 777 755 782

Sum hig
add: 3 178 Sum hrq

add: 3 059

Table 6.25: Coverage of interval relaxation + planning graph (higadd) compared
to repetition relaxation + priority queue (hrqadd).



100 CHAPTER 6. EXPERIMENTS

Coverage hFF Ehig
FF 1Ehig

FF Lhig
FF 1Lhig

FF Ehrq
FF 1Ehrq

FF Lhrq
FF 1Lhrq

FF
block-grouping (192) 17 14 14 14 25 25 25 25
counters-0 (34) 7 7 7 7 6 6 5 5
counters-inv (11) 3 3 3 3 5 5 5 5
counters-rnd (33) 12 10 10 10 20 20 21 21
depots (22) 10 9 10 9 10 9 11 9
driverlog (20) 13 20 15 20 15 20 15 20
driverlog-hard (20) 15 19 15 19 15 20 15 20
farmland (50) 19 19 18 19 25 25 27 22
geo-rovers (21) 0 0 1 1 4 3 5 5
hydraulic-bw (562) 541 541 541 541 541 541 541 541
jumpbot (20) 13 17 15 17 8 10 14 10
plant-watering (51) 0 0 0 0 15 15 15 15
rovers (20) 1 6 2 2 4 15 4 13
sailing (45) 15 15 14 14 17 17 18 18
satellite (20) 2 4 2 8 7 16 8 16
satellite-hard (20) 10 15 20 20 15 20 20 20
settlers (20) 0 5 0 5 3 10 1 13
sokoban (325) 57 58 69 69 67 68 70 67
umt2 (15) 0 0 0 0 0 0 0 1
zenotravel (20) 15 20 14 20 14 20 17 20
Sum (1 521) 750 782 770 798 816 865 837 866

Sum hig
FF: 3 100 Sum hrq

FF: 3 384

Table 6.26: Coverage of interval relaxation + planning graph (higFF) compared
to repetition relaxation + priority queue (hrqFF).

Quality hmax Ehig
max 1Ehig

max Lhig
max 1Lhig

max Ehrq
max 1Ehrq

max Lhrq
max 1Lhrq

max

block-grouping (192) 10.79 10.79 10.79 10.79 8.00 8.00 7.00 7.00
counters-0 (34) 3.00 3.00 3.00 3.00 2.00 2.00 2.00 2.00
counters-inv (11) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
counters-rnd (33) 7.79 7.79 8.34 7.63 6.00 6.00 6.00 6.00
depots (22) 4.40 2.92 4.18 2.84 4.42 2.92 4.21 2.84
driverlog (20) 11.36 10.36 10.72 8.84 8.56 10.36 7.89 8.84
driverlog-hard (20) 0.05 0.05 0.04 0.04 0.05 0.05 0.04 0.04
farmland (50) 19.80 19.84 19.70 19.71 10.00 10.00 10.00 10.00
geo-rovers (21) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
hydraulic-bw (562) 497.55 497.55 494.59 494.59 497.55 497.55 494.59 494.59
jumpbot (20) 12.64 16.24 12.15 16.35 0.00 0.00 0.00 0.00
plant-watering (51) 0.00 0.00 0.00 0.00 11.00 11.00 11.00 11.00
rovers (20) 0.00 1.00 0.00 1.00 3.00 5.00 3.00 4.00
sailing (45) 10.07 10.07 10.06 10.06 3.00 3.00 3.00 3.00
satellite (20) 0.39 0.00 0.39 0.00 1.24 2.15 1.38 2.20
satellite-hard (20) 9.00 10.00 10.00 10.00 14.00 20.00 20.00 20.00
settlers (20) 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00
sokoban (325) 18.73 19.31 38.94 38.70 22.37 22.28 26.84 24.93
umt2 (15) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
zenotravel (20) 6.04 5.23 4.99 5.25 5.24 5.23 4.77 5.25
Sum (1 521) 613.61 616.15 629.89 630.82 598.43 608.54 603.71 604.70

Sum hig
max: 2 490.47 Sum hrq

max: 2 415.38

Table 6.27: Quality of interval relaxation + planning graph (higmax) compared to
repetition relaxation + priority queue (hrqmax).



6.2. NUMERIC PLANNING EXPERIMENTS 101

Quality hadd Ehig
add 1Ehig

add Lhig
add 1Lhig

add Ehrq
add 1Ehrq

add Lhrq
add 1Lhrq

add
block-grouping (192) 14.83 14.83 14.71 14.71 13.63 15.07 13.16 14.38
counters-0 (34) 4.92 4.92 4.00 4.00 2.00 2.00 2.75 2.75
counters-inv (11) 3.73 3.73 3.73 3.73 2.00 2.00 2.00 2.00
counters-rnd (33) 12.46 12.46 12.46 12.46 5.17 5.17 4.96 4.96
depots (22) 4.06 3.73 4.03 3.21 7.90 3.82 8.26 3.65
driverlog (20) 8.53 11.24 7.19 9.63 9.67 12.24 8.28 11.31
driverlog-hard (20) 0.04 1.04 0.03 0.57 0.04 1.04 0.04 1.25
farmland (50) 17.68 16.68 16.68 16.74 9.89 9.89 9.79 9.79
geo-rovers (21) 1.00 1.00 0.85 0.85 0.00 0.00 1.00 0.99
hydraulic-bw (562) 476.01 476.01 474.85 474.85 476.01 476.01 474.85 474.85
jumpbot (20) 15.73 16.84 14.01 15.96 0.00 0.00 0.00 0.00
plant-watering (51) 0.00 0.00 0.00 0.00 13.06 13.06 11.59 11.59
rovers (20) 0.00 5.00 0.00 5.00 3.00 7.00 3.00 6.00
sailing (45) 35.10 35.10 33.61 33.61 4.50 4.50 4.42 3.52
satellite (20) 0.65 1.11 0.48 2.23 3.14 7.73 2.21 8.63
satellite-hard (20) 9.00 15.00 10.00 15.00 15.00 20.00 20.00 20.00
settlers (20) 0.00 2.96 0.00 2.98 0.00 3.73 0.00 3.73
sokoban (325) 37.27 37.19 43.81 44.67 57.19 60.95 64.43 64.72
umt2 (15) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
zenotravel (20) 7.21 8.91 5.42 8.63 7.11 8.90 5.22 8.46

Sum (1 521) 648.23 667.78 645.86 668.85 629.31 653.11 635.97 652.58

Sum hig
add: 2 630.72 Sum hrq

add: 2 570.97

Table 6.28: Quality of interval relaxation + planning graph (higadd) compared to
repetition relaxation + priority queue (hrqadd).

Quality hFF Ehig
FF 1Ehig

FF Lhig
FF 1Lhig

FF Ehrq
FF 1Ehrq

FF Lhrq
FF 1Lhrq

FF
block-grouping (192) 16.32 13.46 11.93 12.22 23.63 23.69 21.68 20.97
counters-0 (34) 6.96 6.99 6.93 6.98 5.73 5.70 4.52 4.51
counters-inv (11) 2.77 2.96 2.63 2.75 4.65 4.65 3.70 3.70
counters-rnd (33) 11.46 9.45 8.80 8.88 18.45 18.45 15.98 15.98
depots (22) 8.66 4.47 8.35 3.95 6.86 4.60 6.36 4.11
driverlog (20) 9.04 15.13 9.02 12.45 10.75 15.82 10.71 12.24
driverlog-hard (20) 0.05 1.83 0.04 1.34 0.06 2.79 0.05 1.96
farmland (50) 14.76 15.17 15.73 16.62 22.76 23.32 24.84 21.06
geo-rovers (21) 0.00 0.00 0.91 0.92 2.95 2.29 3.16 2.85
hydraulic-bw (562) 483.69 483.69 436.94 436.94 487.39 487.39 462.47 462.47
jumpbot (20) 9.47 13.39 10.44 13.23 6.58 7.29 9.89 6.55
plant-watering (51) 0.00 0.00 0.00 0.00 7.89 7.97 5.04 5.02
rovers (20) 1.00 3.00 2.00 2.00 4.00 13.64 4.00 11.47
sailing (45) 14.29 14.29 12.92 12.92 14.32 14.32 12.42 12.42
satellite (20) 0.67 1.72 0.41 4.18 4.70 10.45 8.00 11.46
satellite-hard (20) 10.00 15.00 20.00 20.00 15.00 20.00 20.00 20.00
settlers (20) 0.00 4.92 0.00 4.70 2.89 9.52 0.98 12.53
sokoban (325) 35.64 36.13 45.57 49.22 52.42 50.89 58.27 55.62
umt2 (15) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
zenotravel (20) 12.22 14.39 10.64 16.19 10.25 11.32 13.46 11.91

Sum (1 521) 637.00 655.98 603.25 625.47 701.27 734.11 685.53 697.84

Sum hig
FF: 2 521.70 Sum hrq

FF: 2 818.75

Table 6.29: Quality of interval relaxation + planning graph (higFF) compared to
repetition relaxation + priority queue (hrqFF).



102 CHAPTER 6. EXPERIMENTS

Summary interval+graph repetition+queue
Cost - Sum 15.316 M 17.223 M
Coverage - Sum 9118 9122
Quality - Sum 7642.90 7805.10

Table 6.30: Comparison of interval relaxation + planning graph (higFF) and rep-
etition relaxation + priority queue (hrqFF).

G

Figure 6.14: Jumpbot scenario 14 (islands 4), step trace of LhigFF (ruby) and
LhrqFF (emerald)



6.2. NUMERIC PLANNING EXPERIMENTS 103

relaxations increases by 11.8% as compared to higFF. The results are summarized
in Table 6.30 and show that the repetition relaxed priority queue approach
outperforms the interval relaxed planing graph variants even by aggregating all
heuristics. Nevertheless, the repetition relaxed priority queue based approach
should only be favored when the heuristic is able to extract an interval relaxed
plan.

Ultimately, we also visualized the behavior of different relaxation approaches
in the Jumpbot domain as shown exemplarily in Figure 6.14. Initially, the
robot is located at the bottom of the lower island facing west. The goal region
is indicated by a green square on the upper island. We recorded the x and y
position of the robot during search which allows us to plot the visited states.
Finally, large circles show the step positions of the robot in the final plan. The
step trace produced by the LhigFF heuristic is depicted in (ruby) whereas the
LhrqFF heuristic is depicted in (emerald). We can see that both configurations
spent time in different parts of the search space. The relatively long plans
demonstrate that we use a greedy best first search.

6.2.4 Comparison to Other Relaxation-Based Planners

In order to asses our implementation of the relaxation heuristics in relation to the
state of the art, we compared NFD to Metric FF [Hof03] and two configurations

of ENHSP: subgoaling with redundant constraints ĥraddhbd+ [SHT16] and hAIBR

[SHTR16].

In a first experiment, we compared the plan cost of the three heuristics
to the configuration 1EhrqFF, NFD with hFF computed on a state progression
generated by a repetition relaxed and priority queue based approach with eager
evaluation of search nodes and a unit cost task transformation. Plan costs can
only be compared if all planning algorithms solve the same instances and thus,
we show the results in a scatter plot again. We clamped costs at 120 and treat
plans of higher cost as unsolvable. Again, we aggregated domains with several
variants such as Counters.

Figure 6.15 depicts the plan costs of pairwise compared instances from 1EhrqFF

to Metric FF (abbreviated MhFF in the figure). Overall, We can see that both
planners have complementary strengths. For easier instances of easier domains,
most marks are close to the diagonal, whereas for harder domains, there is
usually one planner producing a significantly better plan than the other, up to
the extreme that one planner can solve certain domains that the other cannot.
MhFF finds shorter plans for Sailing and Counters and can find plans for
Depots where 1EhrqFF cannot. On the other hand, NFD achieves better plan
costs for PlantWatering and can solve many instances in domains where
Metric FF can only solve the easiest instances.

A similar picture emerges in the comparison of 1EhrqFF to ENHSP with the
hAIBR heuristic which is depicted in Figure 6.16. Here, hAIBR is particularly
strong in PlantWatering whereas 1EhrqFF finds shorter plans for Sokoban.
Again, there are many marks at the top or to the right indicating that there
are many domains where one algorithm can only solve only the easier instances
while the other algorithm can also find plans for harder instances.

Finally, a comparison of plan costs of NFD with the 1EhrqFF heuristic to

ENHSP with the ĥraddhbd+ heuristic is depicted in Figure 6.17. There is no domain



104 CHAPTER 6. EXPERIMENTS

Figure 6.15: Plan cost comparison 1EhrqFF to Metric-hFF.

where one heuristic produces significantly better plans than the other. Sokoban
instances are more or less uniformly scattered around the diagonal, and in par-
ticular, we observe complementary coverage with one of the combinations only
solving the easier instances of the domain.

The pairwise comparisons of the different algorithms already indicate that
the planning algorithms have complementary strengths. This is also supported
by the coverage results shown in Table 6.31. Metric FF achieves a very high
coverage on Counters and Depots, ENHSP can solve particularly many in-
stances in Farmland, GeoRovers, PlantWatering, Sailing and Sokoban
and NFD achieves a noteworthy coverage at Jumpbot, Satellite and Set-
tlers.

The pairwise comparisons of plan cost indicate that there are only few in-
stances where one planner can find a good plan whereas the other algorithm
finds a plan of with significantly higher cost. Basically, the algorithms either
find plans of similar quality, or, one algorithm can find a solution while the other
cannot. As such, it comes at no surprise that the algorithmic quality, shown in
Table 6.32 does not differ significantly from the coverage table.

We did not address the heterogeneity of the number of instances per domain
of our benchmark suite yet. BlockGrouping, HydraulicBlocksWorld
and Sokoban have significantly more instances which deteriorates the results
to the performance of algorithmic configurations in these domains. In order to
mitigate for the effect, we aggregated domains with several variants and nor-
malized the quality scores from Table 6.32 by dividing the result by the number
of instances of each domain. As such, an algorithm can achieve up to 1 point
in combined quality over all domains, if can solve every instance and returns



6.2. NUMERIC PLANNING EXPERIMENTS 105

Figure 6.16: Plan cost comparison 1EhrqFF to hAIBR.

Figure 6.17: Plan cost comparison 1EhrqFF to ĥraddhbd+.



106 CHAPTER 6. EXPERIMENTS

Coverage
M-FF ENHSP NFD

hFF hAIBR ĥradd
hbd+ Ehrq

FF 1Ehrq
FF 1Lhrq

FF 1Lhig
FF 1Lhig

add

block-grouping (192) 22 157 152 25 25 25 14 15
counters-0 (34) 8 3 6 6 6 5 7 4
counters-inv (11) 5 2 5 5 5 5 3 4
counters-rnd (33) 24 10 21 20 20 21 10 13
depots (22) 20 – – 10 9 9 9 7
driverlog (20) 17 – – 15 20 20 20 17
driverlog-hard (20) 17 – – 15 20 20 19 17
farmland (50) 9 11 50 25 25 22 19 17
geo-rovers (21) – 7 18 4 3 5 1 1
hydraulic-bw (562) – – – 541 541 541 541 541
jumpbot (20) – 3 2 8 10 10 17 19
plant-watering (51) 22 17 51 15 15 15 – –
rovers (20) 12 – – 4 15 13 2 6
sailing (45) 18 11 41 17 17 18 14 36
satellite (20) 11 1 8 7 16 16 8 5
satellite-hard (20) 15 11 20 15 20 20 20 15
settlers (20) 9 – – 3 10 13 5 3
sokoban (325) – 47 100 67 68 67 69 70
umt2 (15) – – – – – 1 – –
zenotravel (20) 20 – – 14 20 20 20 20
Sum (1 521) 229 280 474 816 865 866 798 810

Table 6.31: Coverage comparison of Metric FF, ENHSP and NFD.

Quality
M-FF ENHSP NFD

hFF hAIBR ĥradd
hbd+ Ehrq

FF 1Ehrq
FF 1Lhrq

FF 1Lhig
FF 1Lhig

add

block-grouping (192) 18.96 145.23 152.00 23.63 23.69 20.97 12.22 14.71
counters-0 (34) 8.00 3.00 5.80 5.73 5.70 4.51 6.98 4.00
counters-inv (11) 4.76 2.00 4.95 4.65 4.65 3.70 2.75 3.73
counters-rnd (33) 22.84 9.36 19.58 18.45 18.45 15.98 8.88 12.46
depots (22) 17.16 – – 6.86 4.60 4.11 3.95 3.21
driverlog (20) 11.96 – – 10.75 15.82 12.24 12.45 9.63
driverlog-hard (20) 17.00 – – 0.06 2.79 1.96 1.34 0.57
farmland (50) 8.26 11.00 50.00 22.76 23.32 21.06 16.62 16.74
geo-rovers (21) – 6.74 16.96 2.95 2.29 2.85 0.92 0.85
hydraulic-bw (562) – – – 487.39 487.39 462.47 436.94 474.85
jumpbot (20) – 3.00 0.57 6.58 7.29 6.55 13.23 15.96
plant-watering (51) 12.61 12.25 43.09 7.89 7.97 5.02 – –
rovers (20) 11.00 – – 4.00 13.64 11.47 2.00 5.00
sailing (45) 16.81 10.32 37.03 14.32 14.32 12.42 12.92 33.61
satellite (20) 6.98 1.00 4.74 4.70 10.45 11.46 4.18 2.23
satellite-hard (20) 0.00 11.00 20.00 15.00 20.00 20.00 20.00 15.00
settlers (20) 8.72 – – 2.89 9.52 12.53 4.70 2.98
sokoban (325) – 36.81 77.07 52.42 50.89 55.62 49.22 44.67
umt2 (15) – – – – – 1.00 – –
zenotravel (20) 13.87 – – 10.25 11.32 11.91 16.19 8.63
Sum (1 521) 178.95 251.71 431.78 701.27 734.11 697.84 625.47 668.85

Table 6.32: Quality comparison of Metric FF, ENHSP and NFD.



6.3. AGILE EARTH OBSERVATION: AN APPLICATION 107

Quality Normalized
M-FF ENHSP NFD

hFF hAIBR ĥradd
hbd+ Ehrq

FF 1Ehrq
FF 1Lhrq

FF 1Lhig
FF 1Lhig

add

block-grouping (192) 0.099 0.756 0.792 0.123 0.123 0.109 0.064 0.077
counters (78) 0.456 0.184 0.389 0.370 0.369 0.310 0.239 0.259
depots (22) 0.780 0.000 0.000 0.312 0.209 0.187 0.180 0.146
driverlog (40) 0.724 0.000 0.000 0.270 0.465 0.355 0.345 0.255
farmland (50) 0.165 0.220 1.000 0.455 0.466 0.421 0.332 0.335
geo-rovers (21) 0.000 0.321 0.808 0.140 0.109 0.136 0.044 0.040
hydraulic-bw (562) 0.000 0.000 0.000 0.867 0.867 0.823 0.777 0.845
jumpbot (20) 0.000 0.150 0.029 0.329 0.365 0.328 0.662 0.798
plant-watering (51) 0.247 0.240 0.845 0.155 0.156 0.098 0.000 0.000
rovers (20) 0.550 0.000 0.000 0.200 0.682 0.574 0.100 0.250
sailing (45) 0.374 0.229 0.823 0.318 0.318 0.276 0.287 0.747
satellite (40) 0.175 0.300 0.619 0.493 0.761 0.787 0.605 0.000
settlers (20) 0.436 0.000 0.000 0.145 0.476 0.627 0.235 0.149
sokoban (325) 0.000 0.113 0.237 0.161 0.157 0.171 0.151 0.137
umt2 (15) 0.000 0.000 0.000 0.000 0.000 0.067 0.000 0.000
zenotravel (20) 0.694 0.000 0.000 0.513 0.566 0.596 0.810 0.432

Sum (16) domains 4.699 2.514 5.540 4.850 6.090 5.863 4.829 4.469

Table 6.33: Quality comparison of Metric FF, ENHSP and NFD, normalized.

the best known plan for that instance as well. The normalized quality score is
found in Table 6.33. Notably, the ENHSP ĥraddhbd+ heuristic achieves this perfect
score for the Farmland domain. With this normalized quality table, we can
assess the performance of the different planners and the different configurations
much more fairly. Overall, The eagerly evaluated 1EhrqFF heuristic using a repe-
tition relaxed priority queue approach on a unit cost transformed task achieves
the highest trade-off between coverage and plan quality of 6.09 from 16 possible
quality points, a score mostly achieved by having the highest coverage among the
algorithms. Nevertheless, we can see that all presented configurations perform
best or are tied for best performance in at least one domain. Metric FF can only
solve problems that can be compiled to linear tasks. As such MhFF cannot find
solutions for nonlinear problems such as GeoRovers or Jumpbot. Whereas
the hFF heuristic used by Metric FF is similar to higFF in spirit, differences in the
generation of the relaxed state progression, a different search algorithm and a
different implementation result in a planner with different strengths. ENHSP,
particularly with the subgoaling heuristic ĥraddhbd+ achieves very high coverage on
many domains and given that it lacks solving some of the domains because of
parsing errors, it usually outperform NFD based relaxation heuristics. NFD
proved to be able to solve instances in every domain, even in UMT2, a domain
that was intended to pose a challenge for handcrafted planners at the IPC 2002.
Many domains feature traps for relaxation heuristics or relaxation challenge such
as the cyclic resource transfer problem where resources can be generated in the
heuristic when resources are transferred from one location to the other. Never-
theless, the hFF based relaxation heuristic allow for basic guidance, computable
in polynomial time, also in domains that include non-linear effects.

6.3 Agile Earth Observation: an Application

In this section we will discuss an application example of a numeric planning
problem: the agile Earth observation scenario that was first presented at the



108 CHAPTER 6. EXPERIMENTS

“Planning in Continuous Domains” workshop at the International Conference
on Automated Planning and Scheduling 2013 [AL13] on which this section is
based upon.

Agile Earth observation satellites are satellites orbiting Earth with the pur-
pose to gather information of the Earth’s surface by slewing the satellite toward
regions of interest, straight stripes referred to as patches, during the flyover.
Constraints arise not only from dynamical and kinematic aspects of the satel-
lite and its sensors. Regions of interest change over time and bad weather can
conceal important observation targets. This results in a constant need to re-plan
the satellite’s tasks and raises the desire to automatize this planning process. A
task in the context of an Earth observation mission is to select and to schedule
a sequence of observation patches. Determining the sequence of patches is a
rather simple discrete planning problem for current automated planning sys-
tems. For satellites carrying firmly fixed heavy instruments, the satellite has
to be agile and slew towards the patch that has to be scanned. Complex nu-
merical calculations have to be performed to determine such slew maneuvers.
The feasibility of the discrete plan tightly depends on the continuous aspects
since it has to consider the satellite’s orbital motion, its attitude and angular
rate as well as its torque capability in realistic scenarios. Instrument alignment
and required scan velocity pose additional constraints. The feasibility of slews
between two successive scans depends on the satellite’s attitude, angular rate
and position and is varying in time. Any decision to scan a certain patch at a
certain position in orbit may affect the feasibility of future scan maneuvers.

Testing slew maneuver feasibility goes beyond the capabilities of current
state-of-the-art planning systems including NFD. However, it is possible to de-
couple the deterministic planning task, form the numeric calculations which
makes Earth observation an appealing task for modular planning systems e.g.
Temporal Fast Downward with Modules (TFD/M) [DEK+09]. As the planning
problem is sequential in nature (there is only one satellite), the agile Earth ob-
servation scenario is a motivation for future planning systems that incorporate
external semantic attachments into more informed sequential planning system
such as NFD.

6.3.1 Temporal Fast Downward with Modules

The TFD planning system [EMR09] that we introduced in Section 5.3 is a tem-
poral and numeric planning system. The modules extension TFD/M [DEK+09]
allows to access “semantic attachments”, modules that outsource the numerical
calculations from the propositional planning level. During the planning process,
external modules are called. These modules process the required computations
and return the result to the planning process. The interface for “semantic at-
tachments” in PDDL allows the addition of three types of modules to the plan-
ning domain: conditionchecker modules, cost modules and effect modules.
Conditionchecker modules evaluate to propositional variables and occur in the
precondition of a planning action. Similarly, cost modules represent numeric
variables. Even though the name suggests they can only be used to compute
action costs they can appear in numeric expressions of an action precondition
as well. Finally, effect modules modify a set of variables in the planner state.
The modified variables can be either propositional or numeric variables.

TFD/M interleaves the causal planning problem “what to do” with the nu-



6.3. AGILE EARTH OBSERVATION: AN APPLICATION 109

merical task “how to achieve it”. Neither a top-down nor a bottom-up ap-
proach can satisfy the interdependency between low level calculations and high
level plan structure, and we therefore rely on an interleaved approach. A clas-
sical top-down decomposition of the planning task solves the problem on an
abstract symbolic domain, and then refines that symbolic plan. In the case of
Earth observation the planner would first schedule the sequence of patches to be
scanned, while the maneuvers to follow this sequence would then be calculated
in a refinement step. The drawback of a top-down approach is that high-level
solutions can be incorrect or pose contingencies for low-level planners. Even if
the maneuvers are feasible, the resulting plan is unlikely to be good. The oppo-
site approach, a bottom-up decomposition, precomputes all refined solutions,
so that a higher level symbolic planner can then draw on the lower level plans.
While the resulting plans are usually optimal, precomputing all low level solu-
tions requires excessive memory and run-time. In continuous settings there are
infinitely many low level plans. In the Earth observation scenario, all possible
maneuvers would have to be precomputed which is intractable even for coarse
discretizations. The semantic attachments of TFD evaluate the decomposition
of a symbolic action on demand and can thus involve the interdependency be-
tween high level symbolic actions and low level numeric calculations.

6.3.2 Planning the Earth Observation Task

Figure 6.18: Earth observation scenario with subtrack of the satellite and ob-
servation sites to be scanned (left) and planning problem obtained after prepro-
cessing (right).

In order to solve Earth observation problems with TFD/M, the continuous
world has to be discretized. Our general framework is a three step process.
At first, we precompile the real world problem into a planning task, at second
solve this planning task with TFD/M and finally verify the planned results
with a physics simulator. The preprocessing step reduces some of the numerical
complexity from the planning problem. We consider the subtrack obtained by
projecting the satellite perpendicular to the earth surface and peel off a stripe
of the Earth’s surface following the subtrack. The width of the peeled off stripe
includes all patches that are within the satellite’s visual range determined by
its maximal angular deflection. For an example, consider the Earth observation
scenario depicted on the left in Figure 6.18. The ground track of the satellite is
depicted by a green line. The patches to be scanned are depicted in red. Some
of the patches in north west Africa are out of range of the satellite’s sensors.



110 CHAPTER 6. EXPERIMENTS

The planning problem that arises after preprocessing is depicted on the right in
Figure 6.18. The green patches on the right correspond to the red observation
sites in the scenario on the left. In the planning problem we omit Earth’s
curvature and treat the surface of the precompiled problem as long plane with
a satellite flying over it on an orbit depicted in olive green (cf. Figure 6.18).

If the problem horizon entails multiple satellite orbits, the same patch can
be visible from different orbit positions. This results in multiple instances of
the same patch in the precompiled stripe, usually in different orientation. To
distinguish such patches, we use the term observation site for a site on Earth
that has to be scanned, and use patch for a concrete instance observed from the
current orbit.

Scanning patches corresponds to achieving soft goals because it is not al-
ways possible to scan all patches in the planning problem. Following Keyder
and Geffner [KG09] we introduce an action to ignore an observation site, which
results in a high penalty cost. By modifying the penalty for ignoring a patch,
the observation sites can be given different priorities. The goal of the plan-
ning problem is to deal with all observation sites, which can be done by either
scanning a patch, or by actively ignoring it. While scanning occurs at a cost
depending on the optimization criterion of the planning problem (e.g. avail-
able time or energy consumption) ignoring an observation site occurs at a much
larger penalty cost.

6.3.3 Discretization

To model the Earth observation scenario, each state of the Earth observation
planning problem describes a snapshot of the continuous world. Usually, the
satellite has just scanned a patch and the numeric state variables describe the
attitude and rate of the satellite in this position with line of sight toward the
end of the patch. Discrete planning decisions are made between these snapshot
states. The available actions at such a state are to either scan or to ignore one
of the remaining patches. While ignoring a patch results in a discrete successor
state that differs to the previous one only in propositional variables, determining
the successor snapshot state of the planner after applying a scan action is not
obvious. As the world is continuous, deciding for the next patch to scan could
result in infinitely many possible successor states, since it is possible to scan a
patch from different positions in the orbit. To commit to one discrete successor
state after deciding for a patch to scan, we make the assumption that it is always
best to scan a patch as soon as possible. This assumption leaves a wider scope
for future actions and implies that it is more important to scan many patches
than to scan them with a good image quality which is usually obtained when
the angular deflection of the satellite’s line of sight is minimal.

In order to determine the earliest orbit position for scanning a certain patch,
we first look at the extreme positions and omit the constraints posed from other
patches. Then we will propose a method based on interval nesting to determine
the earliest possible orbit position to start scanning the selected patch. At first
we consider the case, where the patch to scan is far away from the satellite’s
current orbit position. The earliest possible approach configuration of a satellite
is obtained by deflecting the satellite as far possible. The maximal deflection is
limited by the maximal angle under which the sensor can operate.

An example is illustrated in Figure 6.19. The subtrack of the satellite is



6.3. AGILE EARTH OBSERVATION: AN APPLICATION 111

x−

αmax

> αmax

tscan · vorb

αmax

< αmax

tscan · vorb
x+

x−

Figure 6.19: Satellite states to determine the earliest possible position to scan
the patch

depicted by the dashed line. The left satellite in the left graphic depicts the state
of the satellite at the earliest orbit position x− to scan the patch. There, the
satellite is deflected with the maximal angle αmax towards the patch. However,
the attitude dynamic constraints of the satellite could be violated by scanning
the patch starting form x−. A scan maneuver starting at x− would end at the
infeasible state depicted by the right satellite on the left in Figure 6.19, where
the deflection exceeds αmax. Instead, we can determine a different earliest orbit
position where the satellite is at its maximal deflection αmax pointed towards
the end of the patch as depicted by the right satellite in Figure 6.19 on the right.
The orbit position x+, depicted by the left satellite in the right of Figure 6.19 is
then obtained from regressing this orbit position by the time needed for scanning
the patch tscan and the orbital velocity vorb. Depending on the scanning speed
and the orientation of the patch relative to the satellite’s subtrack position,
either x− or x+ can be the critical earliest possible orbit position to scan the
patch. The satellite state sfirst is then the state where the satellite is at x− if
the maneuver is feasible and at x+ otherwise.

The last possible orbit position to scan the patch can be computed by min-
imizing over the latest attitude under which the satellite can start or end a
scan analogously and the resulting state is denoted by slast. All feasible scan
maneuvers are in the interval between the orbit positions at sfirst and slast. In
real planning problems with multiple patches it is not likely that all patches can
be scanned as early as sfirst. Instead, scanning a patch should start as soon as
possible from the satellite’s current state. Unfortunately, neither the satellite’s
orbit position nor its attitude after executing this best slew maneuver are known
in advance. The principal problem of finding the earliest orbit position to start
the next scan builds a non-linear equation system for which no closed form so-
lutions methods are known to us1. We therefore approximate the satellite state
with the help of interval nesting.

The flow chart in Figure 6.20 illustrates the mathematical calculations needed
inside a scan planning operator, which approximates the earliest orbit position

1This is one of the reasons for implementing the problem in TFD/M instead of NFD.



112 CHAPTER 6. EXPERIMENTS

determine sfirst

maneuver
possible?

return ma-
neuver

determine slast
maneuver
possible?

max
nesting?

determine smid

maneuver
possible?

determine send Scan infeasible

yes

maneuver
to sfirst

no
slow := sfirst

sup := slast

yes

noyes

maneuver
to sup

no

yes

sup := smid

no

slow :=
smid

Figure 6.20: Inside a scan-patch planning operator. Green boxes can be cal-
culated by Function 1 while green diamonds are calculated by Function 2.



6.3. AGILE EARTH OBSERVATION: AN APPLICATION 113

to scan the patch as well as the corresponding slew maneuver. Two types of
mathematical calculations have to be performed frequently in an Earth obser-
vation planning task:

Function 1 (State from Orbit Position). Determine the satellite’s state (at-
titude and angular rates) from a given orbit position when pointing towards
a patch, with angular rates satisfying the vectorial velocity for scanning the
patch.

Function 2 (Maneuver). Determine the feasibility of a maneuver given two
satellite states.

The green boxes in the flow chart in Figure 6.20 are all instances of Function 1
while the green diamonds can be calculated with Function 2. We are interested
in the earliest orbit position to start scanning the next patch, the approach state,
given a current state where the satellite is pointing towards the end of another
patch that it just finished scanning. The orbit position after an optimal slew
maneuver from the current state of the satellite to the best approach state lies
in the interval between the orbit position at sfirst and slast. If a maneuver from
the current satellite state scurrent to the earliest possible scan configuration
sfirst is possible, we can return it immediately. After scanning the patch the
satellite adopts state send, with an orbit position depending on orbital velocity
and the scanning time, both of which are given in the domain description. The
deliberations made for sfirst and depicted in Figure 6.19 ensure that send is valid.
If the maneuver from scurrent to sfirst is infeasible, it is used as lower bound slow
of an interval nesting, and slast is calculated as latest possible orbit position
to scan the patch. If the maneuver to slast is infeasible, the patch can not be
scanned at all. Otherwise, the satellite’s state of a time optimal maneuver is
found between the unreachable lower bound slow and the reachable but not time
optimal upper bound satellite state sup = slast. Unless the maximal nesting
depth is exceeded, we determine the satellite state smid in the middle of the
boundaries with the help of Function 1, and check if the maneuver from the
current satellite configuration to the middle configuration is feasible with the
help of Function 2. If the maneuver is feasible, a better upper bound has been
found, while the smid is used as lower bound if the time slew time is exceeded.

In our implementation we limit the depth of the interval nesting to 10 which
offers a good trade-off between run-time (less than 1ms) of the operation and
precision (approximately 10m deviation). We note that more sophisticated in-
terval nesting methods to determine the orbit position of the most promising
middle configuration could be used.

While we calculate the satellite’s attitude and angular rates send after scan-
ning, we do not check if the maneuver from sup to send is feasible. However, the
assumption that such a maneuver exists is justified to the best of our knowledge.

As mentioned earlier, the extension of the PDDL planning language allows
planning operators to contain three types of modules: conditionchecker mod-
ules, cost modules and effect modules. In our implementation, scanning a
patch is decoupled into two actions approach-patch and scan-patch. This
is mostly done for technical reasons, since it is easier to determine the satel-
lite state after each operator execution during planning which makes it easier
to verify the feasibility of the plan during post processing. Within these two
operations, we use five modules, which all calculate parts of the flow chart of



114 CHAPTER 6. EXPERIMENTS

Figure 6.20. To avoid the recalculation of the same function, a database stores
all calculations performed by Function 1 and Function 2. The time intensive
interval nesting is therefore only computed once for each configuration.

The modules executed by the approach-patch operator all follow the flow
chart diagram (Figure 6.20). A conditionchecker-module tests, whether ap-
proaching a patch is possible, a cost-module determines the maneuver time to
approach the patch, and finally an effect-module modifies the planning state
and sets the planning variables of the satellite to sup. The modules used in the
scan-patch operator are a rather simple cost module that calculates the time
needed for scanning. An effect module sets the planner state of the variables
concerning the satellite to send. Additionally the planning operator sets the
corresponding observation site dealt variable to true.

The physical foundations of the slew feasibility given the satellite attitude
dynamics is discussed in more detail in the original paper [AL13].

6.3.4 Experimental Results

Figure 6.21: Earth observation scenario with subtrack of the satellite and ob-
servation sites to be scanned. The magenta colored arrows depict the line of
sight of the instrument during the slew maneuver.

To test the feasibility of our approach, we implemented the precompiled
planning problem from Figure 6.18 in PDDL and solved it with TFD/M. Fig-
ure 6.21 shows a visualization of the intermediate states of the satellite extracted
from the resulting plan. The satellite’s attitude is depicted by the current body
fixed frame in blue black and magenta.

The satellite slews towards the first patch to scan it at its earliest possible
state. The start of the scan maneuver of all other patches is constrained by the
attitude of the satellite after scanning the previous patch, so all other maneuvers
have to be calculated by interval nesting.

The resulting plan happens to be optimal for the tested planning instance
given our assumptions and the satellite parameters used. The leftmost patch
cannot be scanned because the satellite’s state to start the scan maneuver is
infeasible. In additional experiments we investigated the influence of increasing
the maximal angular rates of the satellite in the planning problem. In this case
the slew maneuver from the last patch to the ignored rightmost patch becomes
feasible. With more angular scope also the first patch is in range and TFD/M
finds a plan scanning six of the patches.



6.3. AGILE EARTH OBSERVATION: AN APPLICATION 115

Although our approach is promising and seems to work well in practice,
optimality cannot be guaranteed, even regarding the inaccuracies of the model
such as plain Earth surface, circular orbits, etc. The interval nesting approach is
only iterated to a certain depth so that each scan action is started at a minimally
later orbit position than theoretically possible. Now it is easy to construct a
problem that will not be solved optimally by our approach by adding a new
patch that is reachable by a slew maneuver from the orbit position after scanning
the previous patch from the theoretical earliest orbit position but not from the
orbit position found by interval nesting. Completeness can be achieved with
the trivial plan, but in scenarios where all patches could be scanned it is not
guaranteed that TFD/M will unnecessarily ignore some observation sites with
the analogous argument as for optimality.

6.3.5 Conclusion

We have presented an agile Earth observation task and an automated planning
system capable of solving it. Preliminary experiments show the feasibility of
our approach.

The automated planning system TFD/M can be successfully applied to our
Earth observation scenario. Nevertheless, it would be beneficial if the planning
system would have a better handling of numeric variables internally. As mod-
eled, the Earth observation problem does not involve temporal concurrency, and
the planning problem is even serialized artificially with the help of propositional
idle variables. While numerical variables are required for the Earth observa-
tion scenario, the temporal aspect of TFD is not. An extension of NFD that
outsources numeric calculations that go beyond the arithmetic base operations
to semantic attachments would be even better suited for the Earth observation
problem at hand.



Chapter 7

Conclusion

In this thesis, we discussed relaxation heuristics to approach numeric planning
problems. We identified interval based relaxations to be best suitable for gen-
eralizing the concept of the delete relaxation to numeric planning, namely that
facts that are achieved once remain achieved.

We introduced two relaxations for numeric planning, both utilizing inter-
val algebra: the interval relaxation and the repetition relaxation. We used the
repetition relaxation as a means to prove that the interval relaxed plan exis-
tence problem can be decided in polynomial time for acyclic dependency tasks,
tasks where the expression assigned to a variable by a numeric effect does not
depend on the affected variable. The repetition relaxation accounts for the
repeated application of actions in one step. We showed that the values that
become reachable by applying a numeric action arbitrary often can be com-
puted efficiently by analyzing the behavior of its effects. This makes actions
in the repetition relaxation pseudo-idempotent so that the repetition relaxation
becomes useful to be used in heuristics on its own.

In order to compute heuristics efficiently in numeric planning, we have to
restrict the number of facts that we consider by generating a relaxed state
progression sequence. Given such a progression structure, we can apply the
relaxation heuristics from classical planning in a similar fashion. We presented
two approaches to generate a relaxed state progression sequence, one based on
the concept of a planning graph and the other based on priority queues. We
discussed additional requirements to ensure that the state progression sequence
can be generated efficiently and we overcome the problem of cycles in the plan-
ning task by relaxing the values of cyclic variables even further. We identified
the combination of the interval relaxation with the planning graph based pro-
gression approach and the repetition relaxation with the priority queue based
progression approach as most promising candidates.

We implemented these heuristics in the NFD planning system, a numeric
planner based on Fast Downward that has been developed over the course of
the doctoral process. Afterwards, we compared various configurations of our
heuristics in terms of plan cost, coverage and algorithmic quality. The priority
queue based state progression approach combined with a repetition relaxation
is particularly useful in combination with the hFF heuristic. Explicating the
number of repetitions that is actually needed exploits the full potential of the
strengths of a repetition relaxation and compensates for its weakness. However,

116



117

for hmax and hadd that determine the estimates progressively, the more tradi-
tional planning graph based state progression approach yields better results.

Finally, we compared our approach to other state-of-the-are planning sys-
tems. Besides having the highest overall quality score, our NFD planner was the
only planning systems that could solve at least one instance in every domain
proving that the approach is not only applicable to a wide range of numeric
planning problems, but also that it offers basic guidance even in problems that
pose traps for relaxation heuristics. However, the experiments also revealed
that other approaches can achieve a significantly larger coverage in some of the
domains and have complementary strengths.

The relaxation heuristics are a first step toward solving numeric planning
problems more efficiently. Other approaches that look promising include linear
programs which are not only a very obvious tool to solve linear planning tasks,
but could also be used to approximate non-linear dependencies. Furthermore,
our discourse into Earth observation planning revealed that many real world
problems are too complex to tackle inside a planning system. A hybrid planner
with an interface to an external solver, analogously to TFD/M for temporal
planning, would certainly increase the applicability of NFD in particular and
numeric planning in general.



List of Figures

2.1 A numeric plan with instantaneous actions modifying two state
variables v0 and v1 with a sequence of actions 〈a0, a1, a2〉. . . . . 5

3.1 Left: a planning task with 4 actions, right: the corresponding
dependency graph which is acyclic. . . . . . . . . . . . . . . . . . 30

3.2 The target value q = 2 lies in the gap of [2, 3]÷ [−0.5, 0.2] . . . . 33

4.1 An exemplary relaxed state progression sequence. . . . . . . . . . 44
4.2 A relaxed numeric planning graph with five variables v0 to v4 and

the progression of applying the three actions a0 to a2 in parallel. 46
4.3 Priority queue based state sequence. The fact v1 7→ (−∞,−2] is

dequeued from the priority queue and triggers actions a2 and a5. 49
4.4 Enqueue and dequeue times of variables for n = 3. . . . . . . . . 51
4.5 State sequence where a generalized marking is beneficial. . . . . . 54
4.6 Relaxed state progression sequence where some actions are marked

in green and the target value explication used in hFF. . . . . . . 58

6.1 Scenario description of an exemplary Jumpbot instance. . . . . . 69
6.2 Comparison of interval relaxation + planning graph based higFF

with lazy and eager evaluation in a original cost setting. . . . . . 77
6.3 Comparison of interval relaxation + planning graph based 1higFF

with lazy and eager evaluation in a unit cost setting. . . . . . . . 77
6.4 Comparison of repetition relaxation + priority queue based hrqFF

with lazy and eager evaluation in a original cost setting. . . . . . 78
6.5 Comparison of repetition relaxation + priority queue based 1hrqFF

with lazy and eager evaluation in a unit cost setting. . . . . . . . 78
6.6 Comparison of unit cost transformed task to tasks with regular

cost on an eager interval relaxation + planning graph based EhigFF

setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.7 Comparison of unit cost transformed task to tasks with regular

cost on an lazy interval relaxation + planning graph based LhigFF

setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.8 Comparison of unit cost transformed task to tasks with regu-

lar cost on an eager repetition relaxation + priority queue based
EhrqFF setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.9 Comparison of unit cost transformed task to tasks with regu-
lar cost on an eager repetition relaxation + priority queue based
LhrqFF setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

118



LIST OF FIGURES 119

6.10 Comparison of eager EhigFF to EhrqFF in a original cost setting. . . 93

6.11 Comparison of eager 1EhigFF to 1EhrqFF in a unit cost setting. . . . 97

6.12 Comparison of eager LhigFF to LhrqFF in a original cost setting. . . 97

6.13 Comparison of eager 1LhigFF to 1LhrqFF in a unit cost setting. . . . 98

6.14 Jumpbot scenario 14 (islands 4), step trace of LhigFF (ruby) and
LhrqFF (emerald) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.15 Plan cost comparison 1EhrqFF to Metric-hFF. . . . . . . . . . . . . 104
6.16 Plan cost comparison 1EhrqFF to hAIBR. . . . . . . . . . . . . . . . 105

6.17 Plan cost comparison 1EhrqFF to ĥraddhbd+. . . . . . . . . . . . . . . . 105
6.18 Earth observation scenario with subtrack of the satellite and ob-

servation sites to be scanned (left) and planning problem obtained
after preprocessing (right). . . . . . . . . . . . . . . . . . . . . . . 109

6.19 Satellite states to determine the earliest possible position to scan
the patch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.20 Inside a scan-patch planning operator. Green boxes can be cal-
culated by Function 1 while green diamonds are calculated by
Function 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.21 Earth observation scenario with subtrack of the satellite and ob-
servation sites to be scanned. The magenta colored arrows depict
the line of sight of the instrument during the slew maneuver. . . 114



List of Tables

3.1 Partial behaviors for numeric effects . . . . . . . . . . . . . . . . 20

3.2 Partial behaviors for multiplication and division. Unchanged
bounds are marked in black, idempotent bounds in green and
non-idempotent bounds in red. . . . . . . . . . . . . . . . . . . . 25

3.3 Progression of the state s#
k (v) for applying an action k times

whose effect multiplies v by ξ = −v+1
2 . . . . . . . . . . . . . . . . 28

6.1 Plan costs of eager evaluation (E) compared to lazy evaluation
(L) with variants of hmax. . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Costs of eager evaluation (E) compared to lazy evaluation (L)
with different variants of hadd. . . . . . . . . . . . . . . . . . . . 75

6.3 Plan costs of eager evaluation (E) compared to lazy evaluation
(L) with different variants of hFF. . . . . . . . . . . . . . . . . . . 76

6.4 Coverage of eager evaluation (E) compared to lazy evaluation (L)
with different variants of hmax. . . . . . . . . . . . . . . . . . . . 79

6.5 Coverage of eager evaluation (E) compared to lazy evaluation (L)
with different variants of hadd. . . . . . . . . . . . . . . . . . . . 79

6.6 Coverage of eager evaluation (E) compared to lazy evaluation (L)
with different variants of hFF. . . . . . . . . . . . . . . . . . . . . 80

6.7 Quality of eager evaluation (E) compared to lazy evaluation (L)
with different variants of hmax. . . . . . . . . . . . . . . . . . . . 80

6.8 Quality of eager evaluation (E) compared to lazy evaluation (L)
with different variants of hadd. . . . . . . . . . . . . . . . . . . . 81

6.9 Quality of eager evaluation (E) compared to lazy evaluation (L)
with different variants of hFF. . . . . . . . . . . . . . . . . . . . . 81

6.10 Summary comparison of eager evaluation (E) and lazy evaluation
(L). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.11 Plan costs of unit cost (1) compared to regular cost (no additional
indication) with different variants of hmax. . . . . . . . . . . . . . 84

6.12 Plan costs of unit cost (1) compared to regular cost (no additional
indication) with different variants of hadd. . . . . . . . . . . . . . 85

6.13 Plan costs of unit cost (1) compared to regular cost (no additional
indication) with different variants of hFF. . . . . . . . . . . . . . 86

6.14 Coverage of unit cost (1) compared to regular cost (no additional
indication) with different variants of hmax. . . . . . . . . . . . . . 89

6.15 Coverage of unit cost (1) compared to regular cost (no additional
indication) with different variants of hadd. . . . . . . . . . . . . . 89

120



LIST OF TABLES 121

6.16 Coverage of unit cost (1) compared to regular cost (no additional
indication) with different variants of hFF. . . . . . . . . . . . . . 90

6.17 Quality of unit cost (1) compared to regular cost (no additional
indication) with different variants of hmax. . . . . . . . . . . . . . 90

6.18 Quality of unit cost (1) compared to regular cost (no additional
indication) with different variants of hadd. . . . . . . . . . . . . . 91

6.19 Quality of unit cost (1) compared to regular cost (no additional
indication) with different variants of hFF. . . . . . . . . . . . . . 91

6.20 Comparison summary of unit cost and regular cost. . . . . . . . . 92
6.21 Plan costs of interval relaxation + planning graph (higmax) com-

pared to repetition relaxation + priority queue (hrqmax). . . . . . . 94
6.22 Plan costs of interval relaxation + planning graph (higadd) com-

pared to repetition relaxation + priority queue (hrqadd). . . . . . . 95

6.23 Plan costs of interval relaxation + planning graph (higFF) com-
pared to repetition relaxation + priority queue (hrqFF). . . . . . . 96

6.24 Coverage of interval relaxation + planning graph (higmax) com-
pared to repetition relaxation + priority queue (hrqmax). . . . . . . 99

6.25 Coverage of interval relaxation + planning graph (higadd) compared
to repetition relaxation + priority queue (hrqadd). . . . . . . . . . . 99

6.26 Coverage of interval relaxation + planning graph (higFF) compared
to repetition relaxation + priority queue (hrqFF). . . . . . . . . . . 100

6.27 Quality of interval relaxation + planning graph (higmax) compared
to repetition relaxation + priority queue (hrqmax). . . . . . . . . . 100

6.28 Quality of interval relaxation + planning graph (higadd) compared
to repetition relaxation + priority queue (hrqadd). . . . . . . . . . . 101

6.29 Quality of interval relaxation + planning graph (higFF) compared
to repetition relaxation + priority queue (hrqFF). . . . . . . . . . . 101

6.30 Comparison of interval relaxation + planning graph (higFF) and
repetition relaxation + priority queue (hrqFF). . . . . . . . . . . . . 102

6.31 Coverage comparison of Metric FF, ENHSP and NFD. . . . . . . 106
6.32 Quality comparison of Metric FF, ENHSP and NFD. . . . . . . . 106
6.33 Quality comparison of Metric FF, ENHSP and NFD, normalized. 107



Bibliography

[AL13] Johannes Aldinger and Johannes Löhr. “Planning for Agile Earth
Observation Satellites.” In: Proceedings of the ICAPS-2013 Work-
shop on Planning in Continuous Domains (PCD 2013). 2013,
pp. 9–17.

[AL16] Johannes Aldinger and Johannes Löhr. The Jumpbot Domain for
Numeric Planning. Tech. rep. 279. University of Freiburg, Apr.
2016.

[AMG15a] Johannes Aldinger, Robert Mattmüller, and Moritz Göbelbecker.
“Complexity Issues of Interval Relaxed Numeric Planning”. In:
Proceedings of the ICAPS-2015 Workshop on Heuristics and
Search for Domain-independent Planning (HSDIP 2015). 2015,
pp. 4–12.

[AMG15b] Johannes Aldinger, Robert Mattmüller, and Moritz Göbelbecker.
“Complexity of Interval Relaxed Numeric Planning”. In: Pro-
ceedings of the 38th German Conference on Artificial Intelligence
(KI 2015). Ed. by Steffen Hölldobler, Markus Krötzsch, Rafael
Peñaloza, and Sebastian Rudolph. Vol. 9324. LNAI. Springer-
Verlag, 2015, pp. 19–31.

[AN17a] Johannes Aldinger and Bernhard Nebel. Addendum to ‘Interval
Based Relaxation Heuristics for Numeric Planning with Action
Costs’. Tech. rep. 280. University of Freiburg, Oct. 2017.

[AN17b] Johannes Aldinger and Bernhard Nebel. “Extended Abstract: In-
terval Based Relaxation Heuristics for Numeric Planning with Ac-
tion Costs”. In: Proceedings of the 10th International Symposium
on Combinatorial Search (SoCS 2017). 2017, pp. 155–156.

[AN17c] Johannes Aldinger and Bernhard Nebel. “Interval Based Relax-
ation Heuristics for Numeric Planning with Action Costs”. In: Pro-
ceedings of the 40th German Conference on Artificial Intelligence
(KI 2017). Ed. by Gabriele Kern-Isberner, Johannes Fürnkranz,
and Matthias Thimm. Vol. 10505. LNAI. Springer-Verlag, 2017,
pp. 15–28.

[BAV15] Miquel Bofill, Joan Espasa Arxer, and Mateu Villaret. “The
RANTANPLAN Planner: System Description”. In: Proceedings of
the ICAPS-15 Workshop on Constraint Satisfaction Techniques
for Planning and Scheduling Problems (COPLAPS 2015). 2015,
pp. 1–10.

122



BIBLIOGRAPHY 123

[BFK+17] Felix Burget, Lukas D.J. Fiederer, Daniel Kuhner, Martin Völker,
Johannes Aldinger, Robin T. Schirrmeister, Chau Do, Joschka
Boedecker, Bernhard Nebel, Tonio Ball, and Wolfram Burgard.
“Acting Thoughts: Towards a Mobile Robotic Service Assistant for
Users with Limited Communication Skills”. In: Proceedings of the
European Conference on Robotics (ECMR 2017). 2017, pp. 385–
390.

[BG01] Blai Bonet and Héctor Geffner. “Planning as Heuristic Search”.
In: Artificial Intelligence 129.1–2 (2001), pp. 5–33.

[BG99] Blai Bonet and Héctor Geffner. “Planning as Heuristic Search:
New Results”. In: Proceedings of the 5th European Conference on
Planning (ECP 1999). 1999, pp. 360–372.

[BLG97] Blai Bonet, Gábor Loerincs, and Héctor Geffner. “A Robust and
Fast Action Selection Mechanism for Planning”. In: Proceedings of
the 14th National Conference on Artificial Intelligence and 9th In-
novative Applications of Artificial Intelligence Conference (AAAI
1997/ IAAI 1997). July 1997, pp. 27–31.

[BN93] C. Bäckström and Bernhard Nebel. “Complexity results for SAS+

planning”. In: Proceedings of the 13th International Joint Confer-
ence on Artificial Intelligence (IJCAI 1993). 1993, pp. 1430–1435.

[Byl94] Tom Bylander. “The Computational Complexity of Proposi-
tional STRIPS Planning”. In: Artificial Intelligence 69.1–2 (1994),
pp. 165–204.

[CCFL13] Amanda Coles, Andrew Coles, Maria Fox, and Derek Long. “A Hy-
brid LP-RPG Heuristic for Modelling Numeric Ressource Flows in
Planning”. In: Journal of Artificial Intelligence Research (JAIR)
46 (2013), pp. 343–412.

[CFLS08] Andrew Coles, Maria Fox, Derek Long, and Amanda Smith. “A
Hybrid Relaxed Planning Graph-LP Heuristic for Numeric Plan-
ning Domains”. In: Proceedings of the 20th International Con-
ference on Automated Planning and Search (ICAPS 2008). 2008,
pp. 52–59.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms. MIT Press, 2009.

[DEK+09] Christian Dornhege, Patrick Eyerich, Thomas Keller, Sebastian
Trüg, Michael Brenner, and Bernhard Nebel. “Semantic Attach-
ments for Domain-independent Planning Systems”. In: Proceedings
of the 19th International Conference on Automated Planning and
Scheduling (ICAPS 2009). 2009.

[Dij59] Edsger W. Dijkstra. “A Note on Two Problems in Connexion with
Graphs”. In: Numerische Mathematik 1.1 (1959), pp. 269–271.

[Ede04] Stefan Edelkamp. “Generalizing the Relaxed Planning Heuristic
to Non-Linear Tasks”. In: Proceedings of the 27th German Con-
ference on Artificial Intelligence (KI 2004). Springer-Verlag, 2004.

[EH01] Stefan Edelkamp and Malte Helmert. “The Model Checking Inte-
grated Planning System MIPS”. In: AI Magazine (2001), pp. 67–
71.



124 BIBLIOGRAPHY

[EMR09] Patrick Eyerich, Robert Mattmüller, and Gabriele Röger. “Using
the Context-enhanced Additive Heuristic for Temporal and Nu-
meric Planning”. In: Proceedings of the 19th International Con-
ference on Automated Planning and Scheduling (ICAPS 2009).
AAAI Press, Sept. 2009, pp. 130–137.

[FG15] Guillem Francès and Hector Geffner. “Modeling and Computation
in Planning: Better Heuristics from More Expressive Languages”.
In: Proceedings of the 25th International Conference on Automated
Planning and Scheduling (ICAPS 2015). 2015.

[FL03] Maria Fox and Derek Long. “PDDL2.1 : An Extension to PDDL
for Expressing Temporal Planning Domains”. In: Journal of Arti-
ficial Intelligence Research (JAIR) 20 (2003), pp. 61–124.

[FN71] Richard E. Fikes and Nils J. Nilsson. “STRIPS: A New Approach
to the Application of Theorem Proving to Problem Solving”. In:
Artificial Intelligence 2.3–4 (1971), pp. 189–208.

[Gol91] David Goldberg. “What Every Computer Scientist Should Know
About Floating Point Arithmetic”. In: ACM Computing Surveys
23.1 (1991), pp. 5–48.

[GS02] Alfonso Gerevini and Ivan Serina. “LPG: A Planner Based on Lo-
cal Search for Planning Graphs with Action Costs”. In: Proceed-
ings of the 6th International Conference on Artificial Intelligence
Planning and Scheduling (AIPS 2002). 2002.

[Hel02] Malte Helmert. “Decidability and Undecidability Results for Plan-
ning with Numerical State Variables”. In: Proceedings of the 6th
International Conference on Artificial Intelligence Planning and
Scheduling (AIPS 2002). 2002, pp. 303–312.

[Hel06] Malte Helmert. “The Fast Downward Planning System”. In: Jour-
nal of Artificial Intelligence Research (JAIR) 26 (2006), pp. 191–
246.

[HN01] Jörg Hoffmann and Bernhard Nebel. “The FF Planning System:
Fast Plan Generation Through Heuristic Search”. In: Journal of
Artificial Intelligence Research 14 (2001), pp. 253–302.

[HNR68] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. “A Formal
Basis for the Heuristic Determination of Minimum Cost Paths”.
In: IEEE Transactions on Systems Science and Cybernetics 4.2
(1968), pp. 100–107.

[Hof03] Jörg Hoffmann. “The Metric-FF Planning System: Translating ‘Ig-
noring Delete Lists’ to Numeric State Variables”. In: Journal of
Artificial Intelligence Research (JAIR) 20 (2003), pp. 291–341.

[KAB+18] Daniel Kuhner, Johannes Aldinger, Felix Burget, Mara Göbel-
becker, Wolfram Burgard, and Bernhard Nebel. “Closed-Loop
Robot Task Planning Based on Referring Expressions”. In: Pro-
ceedings of the 2018 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS 2018). 2018.



BIBLIOGRAPHY 125

[KFB+18] Daniel Kuhner, Lukas Fiederer, Felix Burget, Martin Völker, Jo-
hannes Aldinger, Robin Schirrmeister, Chau Do, Wolfram Bur-
gard, and Bernhard Nebel. “A Deep Learning Framework for BCI
Control of a Robotic Service Assistant using Intelligent Goal For-
mulation”. In: Journal of Robots and Autonomous Systems (RAS)
(2018), to appear.

[KG09] Emil Keyder and Héctor Geffner. “Soft Goals can be Compiled
Away”. In: Journal of Artificial Intelligence Research (JAIR) 36
(2009), pp. 547–556.

[KS92] Henry Kautz and Bart Selman. “Planning as Satisfiability”. In:
Proceedings of the 10th European Conference on Artificial Intelli-
gence (ECAI 1992). Wiley, 1992, pp. 359–363.

[LAWW13] Johannes Löhr, Johannes Aldinger, Stefan Winkler, and Georg
Willich. “Automated Planning for Earth Observation Spacecraft
under Attitude Dynamical Constraints”. In: Jahrbuch der Deut-
schen Gesellschaft für Luft- und Raumfahrt (DGLR2013). 2013.

[LEKN12] Johannes Löhr, Patrick Eyerich, Thomas Keller, and Bernhard
Nebel. “A Planning Based Framework for Controlling Hybrid Sys-
tems”. In: Proceedings of the 22nd International Conference on
Automated Planning and Scheduling (ICAPS 2012). 2012.

[LF03] Derek Long and Maria Fox. “An Overview and Analysis of the Re-
sults of the 3rd International Planning Competition”. In: Journal
of Artificial Intelligence Research (JAIR) 20 (2003), pp. 1–59.

[McD00] Drew McDermott. “The 1998 AI Planning Systems Competition”.
In: AI Magazine 21 (2000), pp. 35–55.

[MGH+98] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock,
Ashwin Ram, Manuela Veloso, Daniel Weld, and David Wilkins.
PDDL - The Planning Domain Definition Language. Tech. rep.
CVC TR-98-003. Yale University, Center for Computational Vision
and Control, 1998.

[MKC09] Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud. In-
troduction to Interval Analysis. Society for Industrial and Applied
Mathematics, 2009.

[Nil80] Nils J. Nilsson. Principles of Artificial Intelligence. Springer, 1980.

[RH13] Gabriele Röger and Malte Helmert. Engineering a Heuristic Search
Planner. http : / / icaps13 . icaps - conference . org / wp -

content/uploads/2013/06/helmert-roger.pdf. ICAPS 2013
Tutorial. 2013.

[SHT16] Enrico Scala, Patrik Haslum, and Sylvie Thiébaux. “Heuristics
for Numeric Planning via Subgoaling”. In: Proceedings of the 25th
International Joint Conference on Artificial Intelligence (IJCAI
2016). 2016, pp. 655–663.

[SHTR16] Enrico Scala, Patrik Haslum, Sylvie Thiébaux, and Miquel
Ramı́rez. “Interval-Based Relaxation for General Numeric Plan-
ning”. In: Proceedings of the 22nd European Conference on Arti-
ficial Intelligence (ECAI 2016). 2016, pp. 655–663.



126 BIBLIOGRAPHY

[SPSH17] Jendrik Seipp, Florian Pommerening, Silvan Sievers, and Malte
Helmert. Downward Lab. 2017. doi: 10.5281/zenodo.790461.
url: https://doi.org/10.5281/zenodo.790461.

[SRHT16] Enrico Scala, Miquel Ramı́rez, Patrik Haslum, and Sylvie
Thiébaux. “Numeric Planning with Disjunctive Global Con-
straints via SMT”. In: Proceedings of the 26th International Con-
ference on Automated Planning and Scheduling (ICAPS 2016).
2016.

[Tar72] Robert Tarjan. “Depth-First Search and Linear Graph Algo-
rithms”. In: SIAM Journal on Computing (1972), pp. 146–160.

[You31] Rosalind Cecily Young. “The Algebra of Many-valued Quantities”.
In: Mathematische Annalen 104 (1931), pp. 260–290.


