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SUMMARY
Immunodeficiencies are typically caused by loss-of-function mutations in lymphocyte-specific genes. Occa-
sionally, mutations in ubiquitous general-purpose factors, including those affecting essential components of
the DNA polymerase epsilon (POLE) holoenzyme, have cell-type-specific consequences. POLE3, one of the
four components of the POLE holoenzyme, features a histone fold domain and a unique acidic C terminus,
making it a particularly attractive candidate mediating cell type-specific activities of POLE. Mice lacking
Pole3 survive up to late embryonic stages, indicating that this subunit is dispensable for DNA replication.
The phenotypes of viable hypomorphic and neomorphic alleles are surprisingly tissue restricted and reveal
a stage-specific function of the histone fold domain of Pole3 during T and B cell development. Gradual intro-
duction of positively charged residues into the acidic C terminus leads to peripheral lymphopenia of
increasing severity. Our findings serve as a paradigm to understand the molecular basis of cell-type-specific
non-replicative functions of the ubiquitous POLE complex.
INTRODUCTION

Cell differentiation in the developing organism is orchestrated by

a complex interplay of extrinsic and cell-intrinsic factors. Lym-

phocytes of the T and B cell lineages fall into a special category,

as they are the only known cell types for which programmedDNA

rearrangements constitute an essential aspect of their matura-

tion process. Therefore, the list of recessive genetic defects

that impair lymphocyte function contains not only genes encod-

ing molecules involved in their communication with the environ-

ment, such as the IL7 receptor (Puel et al., 1998), but also genes

encoding key factors of DNA recombination and repair pro-

cesses, such as the recombination activating genes RAG1 and

RAG2 (Mombaerts et al., 1992; Schwarz et al., 1996), DNA

cross-link repair protein 1c (DCLRE1C; also known as ARTEMIS)

(Moshous et al., 2001), ligase IV (LIG4) (Grawunder et al., 1998;

O’Driscoll et al., 2001), the catalytic subunit of the DNA-depen-

dent kinase (PRKDC) (van der Burg et al., 2009; Woodbine

et al., 2013), and others.

In recent studies, immunodeficiency was found to be associ-

ated with mutations in genes encoding general-purpose factors,

such as those required for DNA replication. For instance, muta-

tions in the gene encoding the catalytic subunit of DNA polymer-

ase epsilon (POLE), POLE1, are associated with multi-organ pa-

thology, including immunodeficiency (FILS syndrome and
This is an open access article under the CC BY-N
IMAGe syndrome with variable immunodeficiency) (Logan

et al., 2018; Pachlopnik Schmid et al., 2012). A mutation in the

gene encoding the POLE2 subunit of POLE also causes com-

bined immunodeficiency (Frugoni et al., 2016). These findings

suggest the possibility that specific mutations in other compo-

nents of the POLE holoenzyme complex might also result in

lymphocyte-lineage defects and may even serve as the molecu-

lar link between ubiquitous and cell type-specific functions.

POLE is an evolutionarily conserved, four-component holoen-

zyme that synthesizes the leading strand during DNA replication

(Kunkel and Burgers, 2008). POLE1 is the catalytic subunit of the

holoenzyme, with the POLE2 subunit representing the second

essential component (Araki et al., 1991a; Jaszczur et al., 2008).

The two accessory subunits of the complex, POLE3 and

POLE4, form a heterodimer through their histone fold domains

(Li et al., 2000). They were shown to contribute to the stability

of the POLE holoenzyme, but at least in unicellular organisms,

they are not absolutely essential for growth, as depletion of the

yeast Pole3 and Pole4 homologs does not compromise DNA

replication (Araki et al., 1991b; Ohya et al., 2000). It has been

suggested that POLE3 and POLE4 may serve functions other

than participating in DNA replication; this notion is supported

by the observation that POLE3 (also known as p17) co-purifies

with proteins of the chromatin remodeling complex ACF1-ISWI

(Kukimoto et al., 2004; Poot et al., 2000). The POLE3 subunit
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Figure 1. Late Embryonic Lethality of Pole3 Deficiency

(A) Gross appearance of Pole3+/+ and Pole3�/� littermate embryos from two independent experiments at 16.5 days post-coitum (DPC) (top and bottom panels),

illustrating the small size and cranial defects (bottom, indicated by white arrowhead) of Pole3�/� embryos.

(B) Alcian blue-alizarin red staining of Pole3+/+ and Pole3�/� littermate embryos at 16.5 DPC. Note the incomplete cranial ossifications and shorter rib bones in the

Pole3�/� embryo (alizarin red, indicated by black arrowheads); fusion of vertebrae and the shorter tails of the Pole3�/� embryo are also evident (Alcian blue,

indicated by red arrowheads).

(C) Flow cytometric profiles of thymocytes of Pole3+/+ and Pole3�/� embryos at 16.5 DPC. The distribution of CD8+ SP, CD4+CD8+ (DP), and CD4�CD8� (DN)

thymocytes indicates an accumulation of DN and the loss of DP and intermediate SP (ISP) cells in the mutant (upper panels); the distribution of the DN (gdTCR�)
thymocyte populations characterized by CD44 and CD25 indicate an accumulation of DN3 cells. The percentages of cells in each gate are indicated.
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differs from the POLE4 subunit by the presence of a C-terminal

domain that is enriched for negatively charged amino acids.

This feature can be found in all vertebrate orthologs; however,

its function is unknown. We hypothesized that this protein

domain of POLE3 may link the general replicative functions of

the POLE holoenzyme to cell type-specific activities.

Here, we describe our experiments aimed at elucidating the

enigmatic functions of POLE3. We found that mice homozygous

for a null allele of Pole3 exhibit embryonic lethality only in the last

stages of gestation, clearly demonstrating that this protein is not

essential for cell division; interestingly, this phenotype is reminis-

cent of that of Pole4-deficient mice (Bellelli et al., 2018b). The

phenotypes of an allelic series of Pole3 reported herein demon-

strate that the acidic tail of the POLE3 protein is indeed involved

in mediating cell type-specific functions. Conversion of the

negative charge of the C-terminal domain into a net positive

charge results in a cell-autonomous, stage-specific block of T

and B lymphocyte differentiation in the thymus and bone

marrow, respectively, leading to severe peripheral lymphopenia.

Collectively, our work suggests a possible mechanism through

which the DNA POLE holoenzyme regulates the differentiation

of lymphoid cells.

RESULTS

Late Embryonic Lethality of Pole3 Deficiency
We took a genetic approach to investigate the physiological role

of POLE3 in the mouse. As a first step, we examined the conse-

quences of inactivating the Pole3 gene in the germline of C57BL/

6 mice. Mice homozygous for the Pole3tm1(KOMP)Vlcg null allele

(Figure S1A) died during late stages of embryogenesis around
2 Cell Reports 31, 107756, June 16, 2020
embryonic day (E) 16.5. Pole3-deficient embryos were smaller

in size than their wild-type littermates and sometimes exhibited

severe cranial defects (Figure 1A). It is possible that the late em-

bryonic lethality in mice with Pole3 and Pole4 (Bellelli et al.,

2018b) deficiencies is the result of partial functional redun-

dancies between these two accessory subunits of the POLE ho-

loenzyme, as they both share a characteristic histone fold

domain (Figure S1B). Analysis of the skeletal structures of

mutant embryos revealed delayed ossification of the rib and cra-

nial bones; the vertebrae are fused, resulting in shorter tails (Fig-

ure 1B). Of note, mice heterozygous for the mutant allele were

essentially normal (data not shown). Taken together, the com-

plete loss of Pole3 gene function leads to severe defects during

embryonic development, which eventually compromise the

viability of mutant mice. Importantly, however, our results indi-

cate that Pole3 is not absolutely essential for the DNA replication

function of the POLE holoenzyme.

Given the association of skeletal defects and immunodefi-

ciency observed in human patients harboring a hypomorphic

mutation in the gene encoding the catalytic subunit of the

POLE holoenzyme, POLE1 (Pachlopnik Schmid et al., 2012),

we examined Pole3-deficient mice for the presence of defects

in the lymphoid compartment. At E16.5, the thymi of Pole3�/�

embryos were essentially devoid of double-positive CD4+CD8+

(DP) thymocytes; themajority of cells had the cell surface pheno-

type of DN3 (CD44�CD25+) precursors (Figure 1C); heterozy-

gous mice were indistinguishable from wild-type siblings (data

not shown). These results are compatible with a block in transi-

tion from the DN3 to the DN4 (CD44�CD25�) stage during T cell

differentiation in the thymus or, alternatively, with a general

developmental delay of mutant animals. These results reinforce



Figure 2. Functional Role of the Pole3 C Terminus

(A) Schematic representations of the wild-type Pole3 protein and its variants studied here; the estimated values of the net charge of the C-terminal domains are

indicated.

(B) Alignment of predicted protein sequences of the Pole3 allelic variants. The sequence of the C-terminal domain is highlighted by lowercase characters.

Negatively charged residues are shown in purple and positively charged residues in green fonts.

(C) Total thymocyte numbers per gram of bodyweight inPole3 allelic variants at 4–8 weeks of age. Results frommale and femalemice are pooled, as there was no

difference between sexes; each data point represents one mouse.

(D) Total splenocyte numbers per gram of body weight in Pole3 allelic variants at 4–8 weeks of age.

(E–G) Absolute numbers of CD19+ B cells (E), CD4+ T cells (F), and CD8+ T cells (G) per gram of body weight in the spleen of 4- to 8-week-old Pole3 mice.

(legend continued on next page)
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the notion of a multi-organ pathology in Pole3-deficient embryos

but also demonstrate that tissues differ remarkably in their sensi-

tivity to loss of Pole3. Interestingly, lymphocyte defects in mice

were recently also described after inactivation of the gene en-

coding the fourth component of POLE, namely, Pole4; the

lymphocyte phenotype was part of a complex syndrome domi-

nated by a severe growth defect and interpreted to be the result

of higher sensitivity of specific cell types to compromised stabil-

ity of the POLE holoenzyme (Bellelli et al., 2018b). Because the

phenotype observed in Pole3 null mice described here is very

similar to that described for Pole4 null mice, we propose that

the pathology in these mutant mice is the result of (at least

partially) overlapping molecular perturbations. As mice lacking

functional Pole3 or Pole4 genes survive into late gestation,

they may substitute for each other for certain aspects of their

non-replicative activities.

Functional Role of the Pole3 C Terminus
Although the precise sequences differ, all vertebrate POLE3 pro-

teins possess an acidic C-terminal, which is encoded in exon 4

(Figure S1C). It distinguishes them from vertebrate POLE4 pro-

teins, which lack this type of C-terminal extension (Figure S1B).

This structural difference led us to hypothesize that the C termi-

nus of Pole3 has a distinct function, possibly unrelated to the

DNA replication process. To explore this possibility, we first

created a Pole3 variant (henceforth designated Pole3m1) with

an internal deletion encompassing most of exon 4 (Figure S1D;

Figures 2A and 2B). As a result, the predicted protein of the

mutant allele lacks 45 amino acids (aa), removing residues 97–

140 of this 145 aa protein encoding the two C-terminal a helices

(Figure 2B). Mice homozygous for this allele are viable, are born

at the expected Mendelian ratios (Table S1), and exhibit neither

obvious developmental defects nor postnatal growth delay (Ta-

ble S2). With respect to lymphoid development, we observed a

small but non-significant reduction in the number of thymocytes

(Figure 2C), peripheral lymphocytes in the spleen (Figures 2D–

2G), and B220+ B cells in the bone marrow (Figure 2H); the cell

numbers in Pole3+/m1 heterozygous mutant mice did not differ

from wild-types.

In cultured cells, the C-terminal tail of Pole3 is required for

replication-dependent nucleosome remodeling through the

interaction with the histones H3 and H4 (Bellelli et al., 2018a).

The detrimental effect of the tailless Pole3 version in this setting

contrasts with the mild effect of a similar protein mutant in vivo,

suggesting the presence of efficient compensatory mecha-

nism(s) operating during normal development but unattainable

in the in vitro situation. To circumvent this potential complication

in the phenotypic analysis of Pole3 variants in the organismal

context, we probed the function of the acidic tail of Pole3 more

directly. Specifically, we chose to change the amino acid

composition of the C terminus with the aim of generating neo-

morphic versions of Pole3, in the hope that they would be insen-

sitive to the presumptive in vivo compensation mechanism(s). To
(H) Total number of B220+ cells in the bonemarrow of adultPole3mice isolated fro

gram of body weight.

In (C)–(H), the allele tested is shown underneath the bars withmean ±SEM indicate

are indicated); each data point represents one mouse.
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this end, we generated a series of mutations in exon 4 of the

Pole3 gene using the CRISPR-Cas9 technology, three of which

are discussed here. An initial replacement modification (this

allele is henceforth referred to as Pole3m2) retains amino acid

residues 1–95 of the wild-type protein, but then appends 20 aa

residues of unrelated sequence (Figures 2A and 2B). With

respect to the overall charge of the C terminus (the relevant

part of the protein considered for this calculation is indicated in

lowercase letters in Figure 2B), the m2 modification introduces

a net charge of +3 compared with the net charge of �12 for

this domain in the wild-type protein; in this respect, it is similar

to the internal deletionmutant, which has a net charge of�2 (Fig-

ure 2A). Mice homozygous for the Pole3m2 allele were born at the

expected frequency (Table S1), with no gross developmental de-

fects, and were viable. However, with respect to lymphoid devel-

opment, a comparison ofPole3m1 andPole3m2 alleles in the state

of homozygosity revealed a more pronounced impairment of

lymphocyte development in the latter, although the magnitude

of the reduction was still only moderate (Figures 2C–2H). Collec-

tively, the results obtained with Pole3m1 and Pole3m2 alleles indi-

cate that the variant C terminus of unrelated sequence as found

in the Pole3m2 alleles may be subject to the same compensation

process as the Pole3m1 allele.

Therefore, in order to generate more effective neomorphic al-

leles, we focused on mutant proteins with greater net positive

charge of the C terminus. We examined two additional mutant

variants that resulted in net charges of +8 (Pole3m3) and +27 (Po-

le3m4), respectively (Figures 2A and 2B). In contrast to the situa-

tion of Pole3m1, Pole3m2, and Pole3m3 alleles, we found that the

homozygous constellation of Pole3m4 was associated with

severely compromised viability. At the age of 3 weeks, only

about 10% of the expected number of Pole3m4/m4 mice were

observed; by contrast, the Pole3+/+ and Pole3+/m4 genotypes

were found in a 1:2 ratio, indicating that the Pole3m4 allele is

not dominant over the wild-type allele (Table S1). The loss of Po-

le3m4/m4 homozygotes occurs during embryogenesis and/or

perinatally, although the precise time point of mutant death

was not determined. The mechanism(s) underlying this impaired

survival are unclear; the distinct genetic backgrounds afforded

by FVB and C57BL/6 mice had no effect on the survival rate.

Of note, surviving Pole3m3/m3 and Pole3m4/m4 homozygous

mutants lacked gross morphological abnormalities, except mi-

nor skeletal deformities in the Pole3m4/m4 mutant mice that

were apparent on the FVB background (Figures S2A and S2B).

With respect to the lymphoid system, mice homozygous for Po-

le3m3 and Pole3m4 alleles exhibited drastic reductions in the

numbers of thymocytes, peripheral lymphocytes, and B220+ B

cells in the bone marrow (Figures 2C–2H); in these respects,

mice heterozygous for the Pole3m3 and Pole3m4 alleles were

found to be indistinguishable from wild-type littermates (data

not shown). Because Pole3m3/m3 homozygotes occupy an inter-

mediate position in the phenotypic spectrum of Pole3C-terminal

mutants, we focused subsequent studies on the Pole3m3 allele.
mone lower limb (cells from tibia, femur, and pelvis combined) and given as per

d; wild-type and homozygousmutant animals are compared (p values of t tests
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The expression levels of the mutant Pole3 proteins could not be

determined, because all available anti-Pole3 antisera fail to spe-

cifically react with the N terminus (data not shown); however,

transcripts emanating from the mutant alleles are readily detect-

able (Figure S2C).

Stage-Specific Defects of T and B Cell Differentiation in
Pole3 C-Terminal Mutant Mice
Pole3m3/m3 mice exhibited smaller thymi and spleens than their

wild-type littermates (Figure 3A). To avoid the confounding ef-

fects of thymic involution, all mice were age matched and used

at 4–12 weeks of age; the Pole3 mutant phenotypes were still

detectable in aged mice (data not shown). We found that he-

matopoietic precursor subsets (HSCs, MPP1, MPP2, MPP3,

MPP4, and CLP) are not affected in Pole3m3/m3 mutants (Figures

S2D–S2G), indicating that the development of T and B cells is

affected at later stages of lymphoid development. The intrathy-

mic T cell development of Pole3m3/m3 is distinguished by a 50-

fold reduction in the absolute numbers of DP T cells (Figure 3B);

in contrast, the reduction of gd T cells is only about 2-fold (Fig-

ure 3C), pointing to differences in the sensitivity of ab and gd

T cell lineages to the mutant Pole3 proteins. In the mutants,

the proportion of DP thymocytes is decreased, whereas the pro-

portion of double-negative (DN) precursors is increased (Fig-

ure 3D); the accumulation of cells at the DN3 T cell stage sug-

gests a failure to efficiently proceed to the DN4 stage (Figures

3D–3F). The aberrations in intrathymic T cell differentiation are

magnified in Pole3m4/m4 homozygous mice (Figure S3). In both

Pole3m3/m3 and Pole3m4/m4 mice, high levels of apoptosis were

found in DN1, DN2, and DN3 thymocytes (an effect more pro-

nounced in the Pole3m4/m4 mutants) (Figure S4), likely contrib-

uting to the reduced cell numbers in these subsets. However,

from the DN4 stage onward, the differences in viability between

wild-type and mutant cells are less pronounced, suggesting that

the sensitivity to Pole3 mutations changes over developmental

time.

The levels of Cxcr4 expression in Pole3m3/m3 mutant thymo-

cytes are lower than those of their wild-type counterparts (Fig-

ures 3G and 3H). Of note, we observed a rapid loss of Cxcr4

expression from the DN3 to the DN4 stage (Figures 3G and

3H), during which Cxcr4 signals physiologically combine with

signals emanating from the pre-TCR to promote survival and dif-

ferentiation beyond the b-selection checkpoint (Trampont et al.,
Figure 3. Stage-Specific Defects of T Cell Differentiation in Pole3 C-Te
(A) Representative images of thymus (top) and spleen (bottom) of adult mice (7 w

(B) Total numbers of CD4+CD8+ (DP) cells in adult thymi.

(C) Total numbers of gd TCR+ T cells in adult thymi.

(D) Flow cytometric analysis of the distribution of thymocyte populations in adult m

of DN progenitor thymocytes (bottom panels), they were gated on CD4�CD8�Lin
of cells in each gate are shown.

(E) Total numbers (top panel) and frequencies (bottom panel) of thymocyte popu

(F) Cartoon illustrating the developmental stages of T cell differentiation in the thym

(G) Representative histograms of surface expression of CXCR4 in DN3 and DN4

(H) Calculation of mean fluorescence intensity (MFI) of CXCR4 cell surface signa

(I) Representative histograms of surface expression of SCA1 in DN3 and DN4 th

(J) Calculation of mean fluorescence intensity (MFI) of SCA1 cell surface signal o

In (B)–(J), mean ± SEM is indicated; wild-type and homozygousmutant animals ar

of t tests are indicated); each data point represents one mouse.
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2010). However, several lines of evidence suggest that the differ-

entiation trajectory of thymocytes as such is not impaired. The

levels of intracellular TCR-b chains in DN3 cells (Figure S5A)

and the density of TCR-b at the cell surface of DP and single-

positive (SP) thymocytes (Figures S5B and S5C) of mutant

mice are indistinguishable fromwild-type littermates. These find-

ings and evidence for rearrangement at the Tcrb locus (Fig-

ure S5D) suggest that failure of VDJ recombination per se does

not underlie the T cell differentiation defect in the mutant mice,

although we cannot exclude subtle alterations in the rearrange-

ment process. Moreover, expression of an ab TCR transgene

(Oxenius et al., 1998) failed to rescue the T cell-deficient pheno-

type of Pole3 mutant mice (Figure S5E).

In the bonemarrow of Pole3m3/m3mice, hematopoietic precur-

sor subsets exhibited increased expression levels of the he-

matopoietic marker stem cell antigen (Sca1; also known as

Ly6A/E) (Figure S5F), which appears to persist into later stages

of lymphoid differentiation (Figures 3I and 3J). This phenotype

is functionally relevant, as loss of Sca1 expression is critical for

the transition through the DN thymocyte stages (Bamezai

et al., 1995; Henderson and Bamezai, 2003). Collectively, low

Crcx4 and high Sca1 levels might synergize to impair the effi-

ciency of T cell development in Pole3m3/m3 mice.

Analysis of B cell development in the bone marrow of Pole3m3/

m3 mice indicated an almost 3-fold reduction of pre-B cell

numbers (B220+IgM�CD43�) (Figures 4A and 4B); accordingly,

the numbers of IgM+ immature and re-circulating B lymphocytes

were also reduced (Figures 4A and 4B). These data suggest an

incomplete block in the transition from the pro-B

(B220+IgM�CD43+CD24+) to the pre-B cell stage (Figure 4C),

functionally analogous to the impaired DN3/DN4 transition in

thymocytes. Mice homozygous for the Pole3m4/m4 allele ex-

hibited similar, albeit more pronounced defects of B cell devel-

opment in the bone marrow (Figures S6A and S6B). We found

that pre-B and immature B cells (but not pre-pro-, pro-, or re-

circulating B cells in the bonemarrow) exhibit significant reduced

viabilities in Pole3m3/m3 (an effect that is even more pronounced

in Pole3m4/m4) mice (Figure S4), reminiscent of the equivalent sit-

uation in thymocytes. However, under the conditions of our con-

ventional mouse house, mature peripheral B cells in Pole3m3/m3

differentiate into switched memory and germinal center B cells

(Figures S6C–S6E); accordingly, germinal centers are readily

detectable in the spleen (Figure S6F), and serum
rminal Mutant Mice
eeks of age).

ice stainedwith antibodies against CD4+ andCD8+ (top panels); for the analysis

eage marker� (B220�CD11b�CD11c�NK1.1�gdTCR�) cells. The percentages

lations in adult mice of the indicated genotypes.

us; the dotted linemarks the differentiation block observed inPole3m3/m3mice.

thymocytes.

l on intrathymic T cells.

ymocytes.

n intrathymic T cells.

e compared; in (G)–(J) heterozygous animals are also used as controls (p values



Figure 4. Stage-Specific Defects of B Cell Differentiation in Pole3 C-

Terminal Mutant Mice

(A) Gating strategy for flow cytometric analysis of B cell development in the

bone marrow of Pole3+/+ and Pole3m3/m3 mice. Cells are classified as re-

circulating B cells (B220highIgM+), immature B cells (B220+IgM+), pre-B cells

(B220+IgM�CD43+), pre-pro-B cells (B220+IgM�CD43+CD24�), and pro-B

cells (B220+IgM�CD43+CD24+). Numbers indicate percentages of cells in

each gate.

(B) Total numbers of B220+ cells in each B cell stage. The numbers are

representative of whole bone marrow from the lower limbs (cells from femur,

tibia, and pelvis combined) of adult mice. Bars denote mean ± SEM; wild-type

and homozygous mutant animals are compared (p values of t tests are indi-

cated); each data point represents one mouse.
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immunoglobulin levels in Pole3m3/m3 are comparable with wild-

type levels (Figure S6G).

Collectively, the detrimental lymphocyte-specific outcomes of

Pole3m3 andPole3m4 alleles suggest thatmutant POLE3 proteins

carrying a positively charged C terminus have neomorphic prop-

erties, subverting the compensatory mechanism alleviating the

effects of Pole3m1 and Pole3m2 alleles. Although the efficiency

of B cell development is drastically reduced, mature B cells in

the mutants do not appear to be functionally impaired.

Pole3 Acts in a Cell-Autonomous and Cell Type-Specific
Manner during Lymphocyte Development
To examine the cell autonomy of the T and B cell phenotype in

Pole3m3/m3 mice, competitive whole bone marrow transplanta-

tions of allotype-tagged wild-type and mutant cells were con-

ducted (Figure 5A). To achieve equivalence of biological po-

tency, the mixtures were constructed such that they contained

the same number of hematopoietic stem cells (HSCs) (Lineage

markernegSca1highc-KithighCD150+CD34�CD48�Flk2�) in both

donor sources. The analysis of peripheral blood samples of

recipient mice in 4 week intervals revealed that the overall he-

matopoietic capacity of Pole3m3/m3 bone marrow progenitors

appeared to be inferior to that of their wild-type counterparts

(Figure 5B).

This effect is not the result of an impaired homing capacity of

Pole3m3/m3 HSCs to the bone marrow, as the number of trans-

ferred HSCs found in the bone marrow of recipient mice was

the same for both genotypes, when measured 16 h after trans-

plantation (Figures S7A and S7B). The Pole3m3/m3 mutant bone

marrow preferentially gives rise to myeloid cells compared with

wild-type progenitors (Figure 5C). The failing reconstitution of

both B and T compartments in the recipient mice (Figures 5D

and 5E) essentially recapitulates the phenotype in Pole3m3/m3

mice and provides strong support for the notion that the stromal

microenvironment in the primary lymphoid organs contributes lit-

tle, if anything, to the observed pathology. Impaired hematopoi-

etic reconstitution by Pole3m3/m3 progenitor cells is mirrored in

the composition of lymphocyte populations in primary and sec-

ondary lymphoid organs, respectively. At 16 weeks after trans-

plantation, wild-type CD45.2 and CD45.1 competitor cells

contributed equally well to T cell development in the thymus of

recipient mice, whereas Pole3m3/m3 mutant hematopoietic pro-

genitors failed to repopulate the recipients (Figure 5F). However,

whereas the contributions of Pole3m3/m3 donor cells to DN1,

DN2, and DN3 stages are about 10-fold lower than wild-type

competitors, the contribution of the Pole3m3/m3 cells to later

stages of T cell differentiation falls precipitously and is 2 orders

of magnitude lower than that of wild-type cells from the DP stage

onward (Figures 5F and S7C). Accordingly, only small numbers

of mature Pole3m3/m3-derived CD4+ and CD8+ T cells are found

in the spleen and lymph nodes (Figures 5G, 5H, and S7D). Similar

to the situation in Pole3m3/m3 mice, T cell defects were restricted

to the ab lineage, whereas gd T cell numbers were only mildly

reduced in the periphery (Figures 5G and 5H), again indicative
(C) Cartoon illustrating the developmental stages of B cell differentiation in the

bone marrow. The dotted line depicts the differentiation block observed in

Pole3m3/m3 mice. imm., immature B cells; re-circ., re-circulating B cells.
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Figure 5. Pole3 Acts in a Cell-Autonomous and Cell Type-Specific Manner during Lymphocyte Development

(A) Schematic outline of the competitive transplantation assay. Wild-type competitors exhibit the CD45.1 allotype, whereas Pole3+/+ and Pole3m3/m3 test cells are

of CD45.2 allotype. Lethally irradiated CD45.1+/CD45.2+ heterozygous mice served as recipients. The extent of peripheral blood (PB) reconstitution was serially

analyzed at 4, 8, 12, and 16 weeks after transplantation. At 16 weeks, the recipient mice were sacrificed, and lymphoid organs were analyzed for lineage

reconstitution.

(B) Frequency of donor-derived cells (CD45.1+ and CD45.2+) in peripheral blood of recipient mice.

(legend continued on next page)
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of a stronger propensity of Pole3m3/m3 progenitors to complete

the gd T cell differentiation pathway.

The pattern of B cell differentiation of Pole3m3/m3 donor cells in

wild-type recipients closely mimicked the phenotype of Pole3m3/

m3 mice, as illustrated by a drastically reduced contribution of

mutant cells to cell types emerging from pre-pro- and pro-B

cell progenitor populations in the bone marrow (Figures 5I and

S7E), resulting in reduced numbers of B cells in peripheral

lymphoid organs (Figures 5G, 5H, and S7D). Collectively, our

studies indicate that the hematopoietic phenotype observed in

Pole3m3/m3 mice is cell intrinsic.

As a result of peripheral lymphopenia, a greater fraction of Po-

le3m3/m3 T cells exhibit the surface phenotype of activated/

effector cells (CD44+CD62L�), with a corresponding reduction

of naive cells (CD44–CD62L+) (Figures 6A–6C). In vitro stimula-

tion of carboxyfluorescein succinimidyl ester (CFSE)-labeled

TCR-b+CD8+ splenocytes with a combination of anti-CD3 and

anti-CD28 antibodies showed that mutant cells were largely

similar in their response profile towild-type cells (Figure 6D), indi-

cating that Pole3m3/m3 CD8+ T cells are well capable of prolifer-

ating upon TCR-dependent activation. This observation again in-

dicates that mutant cells can attain a differentiated state and

respond to physiological proliferative stimuli.

The Pole3 Mutation Interferes with Cell Cycle
Progression during T Cell Development
POLE is one of the two major DNA replicases with a peak in activ-

ity during the S-phase of the cell cycle (Langston et al., 2014;

Navas et al., 1995). In order to examine whether and how cell di-

vision is affected in actively dividing cells of the Pole3m3/m3 geno-

type, we first turned to primary cells and analyzed the cell cycle of

adult lung fibroblasts (ALFs). No significant differences in cell cy-

cle progression were observed between wild-type and mutant

ALFs, as indicated by the analysis of EdU incorporation and

DNA content (Figures 7A and 7B). This finding strongly reinforces

the notion that, in contrast to POLE1, POLE3 is not essential for

cell proliferation.

Inhibition of cell cycle proteins selectively affects the differenti-

ation of the ab T cell lineage; to explain this phenomenon, it was

proposed that cell differentiation and proliferation may not always

exhibit an antagonistic relationship (Kreslavsky et al., 2012).

Because the phenotype of mice described here resembles this

particular constellation, we examined the cell cycle dynamics in

developing ab thymocytes of mutant Pole3 mice. For the in vivo

analysis in adult mice, EdU incorporation was determined by

flow cytometry at all stages of intrathymic T cell differentiation.

In contrast to controls, fewer Pole3m3/m3 thymocytes are in early

S-phase, and more cells are found within the fraction with high
(C) Contributions of donor cells to the myeloid cell compartment.

(D) Contributions of donor cells to the B cell compartment.

(E) Contributions of donor cells to the T cell compartment.

(F) Contributions of donor cells to the various stages of T cell development in the

(G) Contributions of donor cells to the hematopoietic compartment in the spleen

(H) Contributions of donor cells to the hematopoietic compartment in the lymph

(I) Contributions of donor cells to the various stages of B cell development in the

In (C)–(I), the ratios of CD45.2+ (wild-type or mutant) cells to CD45.1+ competitor c

mutant donors are compared (p values of t tests are indicated); each data point
levels of EdU incorporation, indicative of late S-phase cells (Fig-

ure 7C). This phenotype suggests that mutant cells progress

through the S-phase faster than their wild-type counterparts;

this phenotype is particularly pronounced within the DN3, DN4,

and DP T cell compartments (Figure 7D). Thymocytes of Pole3

mutants do not suffer increased DNA damage, as shown by the

normal levels of H2AX histone phosphorylation (Figure S7F).

Collectively, mice homozygous for mutant alleles of Pole3 exhibit

changes in cell cycle dynamics for some but not all cell types, and

these changes seem to be unrelated to the ataxia telangiectasia

and Rad3-related (ATR) kinase-pH2AX DNA damage response.

DISCUSSION

The POLE holoenzyme is essential for DNA replication. Yet not all

germline mutations in the gene encoding the catalytic subunit of

the enzyme POLE1 or the second essential component POLE2

are lethal, pointing to the presence of compensatory mecha-

nisms (Zhou et al., 2019) and additional non-replicative functions

of the holoenzyme complex. Indeed, human syndromes associ-

ated with POLE mutations were discovered that present with tis-

sue-specific aberrations, including immunodeficiency (Frugoni

et al., 2016; Logan et al., 2018; Pachlopnik Schmid et al.,

2012), although themechanism(s) by which this tissue specificity

arises from a ubiquitously required complex have remained

obscure. Here, we have addressed this problem by focusing

on possible cell-type-specific roles of one of the two small sub-

units of the complex, POLE3 and POLE4. Several features of

POLE3 suggest that this subunit as a likely candidate for a link

between replicative and non-replicative functions of the POLE

complex. First, POLE3 appears to be a component of chromatin

remodeling complexes (Kukimoto et al., 2004; Poot et al., 2000),

hinting at possible non-replicative functions. Moreover, deletion

of the C terminus of POLE3 does not interfere with the binding of

the hAFC1-SNF2H chromatin remodeling complex (Figure 7E),

suggesting that this binding is mediated by aa residues 1–100

(Kukimoto et al., 2004). In addition, POLE3 and POLE4 form het-

erodimers through interaction of their histone fold domains, in-

dependent of the other two complex components (Li et al.,

2000), andmay thus participate also in other molecular contexts.

Indeed, as the interaction sites of hAFC1-SNF2H and POLE4

overlap, it is likely that the cellular pool of POLE3 is part of func-

tionally distinct protein complexes (POLE3/hAFC1-SNF2H and

POLE3/POLE4, respectively). Finally, POLE3 possesses an

evolutionarily conserved C terminus rich in negatively charged

amino acids that is absent from POLE4 and may serve to

mediate and/or to modulate complex formation, as demon-

strated here.
thymus.

.

nodes.

bone marrow.

ells are shown. In (B)–(I), mean ± SEM is indicated; wild-type and homozygous

represents one mouse. imm., immature B cells; re-circ., re-circulating B cells.
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Figure 6. Characterization of Peripheral T Cell Subsets

(A) Gating strategy for analysis of CD8+ T cell populations in the spleen of adult mice.

(B and C) Total numbers (B) and frequencies (C) of effector (CD44+CD62L�), central memory (CD44+CD62L+), and naive (CD44�CD62L+) CD8+ T cell populations

in the spleen of mice with the indicated genotypes.

(D) Analysis of proliferation capacity of CD8+ T cells isolated from the spleen as determined by CFSE dilution following stimulation with antibodies against CD3

and CD28. Proliferation (left panel) and division indices (right panel) are shown. Bar graphs indicate mean ± SEM; p values of pairwise comparisons by t test are

shown; each data point represents one mouse.
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In tissue culture cells, theC terminus of POLE3was shown to be

required for replication-dependent nucleosome remodeling

through the interaction with the histones H3 and H4 (Bellelli et al.,

2018a). However, unexpectedly, we observed no deleterious

phenotype in mice homozygous for the Pole3DCmutant, pointing

to the presence of a compensation mechanism, which can buffer

such ill effects in the organismal context but not in tissue culture.

A different experimental strategy was therefore required to over-

come such compensatory mechanism(s) and to be able to

examine the role of the C terminus in POLE3-containing com-

plexes other than POLE3/H3-H4. When the predominantly nega-

tively charged tail was converted to positively charged versions,

a non-redundant function of this domain for lymphocyte develop-

ment was revealed. Because deletion of the entire C terminus has

no effect on lymphocyte development, we conclude that the neo-

morphic alleles counteract the function of POLE3 in a distinct pro-

tein complex, wherein a lymphocyte stage-specific factor(s) binds

to theN-terminalhalfof theprotein (aa1–96).Becauseof the lackof

a specificPole3antibody that recognizes theN-terminal domainof

the protein, it was not possible to directly demonstrate the pres-

ence of the mutant proteins. However, the distinct phenotypes

observed inourmouse lines stronglyargue that theneomorphical-

leles give rise to appreciable amounts of mutant proteins.

The rapid progression through the S-phase in our Pole3

mutant thymocytes is in line with the observation that the

Pole3 yeast homolog (Dpb4) controls the activation of the S-

phase checkpoint under conditions of replication stress (Puddu

et al., 2011). Moreover, the fact that changes in Pole3 function

are associated with increased sensitivity to ATR kinase inhibition

(Hustedt et al., 2019) suggests that in addition to the ATR

pathway, a Pole3-dependent mode of cell cycle regulation ex-
10 Cell Reports 31, 107756, June 16, 2020
ists. Our results suggest that the latter is particularly important

in the lymphoid lineage.

Our study shows that the arrest of lymphocyte differentiation

occurs at equivalent stages during T and B cell development in

Pole3mutant mice. This suggests that the non-replicative activity

of POLE3 targets a component(s) shared by the two principal lym-

phocytes lineages, which becomes functionally critical at the DN3

stage of T cell differentiation and at the pre-B cell stage in B cell

development. From an evolutionary perspective, this suggests

that POLE3 became incorporated into the genetic network direct-

ing the differentiation of lymphocyte-like cells already in the com-

mon ancestor of vertebrates, and possibly even earlier. This func-

tional requirement was maintained at early stages of vertebrate

evolution during the time when the two principal lymphocyte line-

ages emerged and assumed their different functions in the adap-

tive immune system. The emergence of a novel interaction partner

for POLE3 may have been accompanied by subtle modifications

in the protein sequence of POLE3 itself, so that it could maintain

its replicative function while expanding the range of participation

in cell-type-specific protein complexes.

In summary, we have identified the POLE3 subunit of the POLE

holoenzyme as a multi-functional protein that connects the repli-

cative function of the POLE holoenzyme and a non-replicative

activity in lymphocytes. We anticipate that more immunodefi-

ciency syndromes will be discovered that can be linked to

such non-canonical functions of large protein complexes.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:



Figure 7. The Pole3 Mutation Interferes with Cell Cycle Progression during T Cell Development

(A) Representative cell cycle profiles of adult lung fibroblasts (ALFs) isolated fromPole3+/+ andPole3m3/m3mice. EdU intensity increaseswith progression through

the S-phase of the cell cycle (left panels). The cell cycle stages are characterized by their EdU incorporation and DNA content profiles (right panels): G0/G1 phase

(EdU-negative, 2n DNA content), S phase (EdU-positive, 2n to 4n DNA content), and G2/M phase (EdU-negative, 4n DNA content).

(B) Quantification of cell cycle profiles of ALFs is shown. Bar graphs indicate mean ± SEM.

(C) Representative histograms of EdU incorporation of indicated thymocyte populations in adult mice of the indicated genotypes.

(D) Quantification of cell cycle stages for the indicated stages of thymocytes. Bar graphs indicate mean ± SEM. Significance levels as determined by t test are

indicated: *p < 0.05 and **p < 0.002.

(E) Schematic representation of interaction surfaces of POLE3 proteins. The N-terminal region of the protein (1–100 aa) was shown to interact with the human

nucleosome sliding complex hACF1-SNF2H and with POLE4. The C-terminal domain (96–145 aa) was shown to interact with a complex composed of histones

H3-H4 in tissue culture cells but is dispensable for lymphocyte development in vivo. Lymphocyte-specific protein interactions of Pole3 are abolished when the

negative charge of the C terminus is converted to a positive charge.
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Antibodies

CD4 APC Cy7 Clone GK1.5 Biolegend Cat#100414

CD8a PE Clone 53-6.7 eBioscience Cat#12-0081-85

CD44 APC Clone IM7 eBioscience Cat#17-0441-81

CD25 PE Cy7 Clone PC61 BD Biosciences Cat#552880

B220 (CD45R) FITC Clone RA3-6B2 Biolegend Cat#103206

TCR gd FITC Clone eBioGL3 eBioscience Cat#11-5711-82

NK1.1 FITC Clone PK136 Biolegend Cat#108706

CD11c FITC Clone HL3 BD Biosciences Cat#557400

CD11b (Mac1) FITC Clone M1/70 BD Biosciences Cat#557396

CD4 PE Dazzle Clone GK1.5 Biolegend Cat#100455

CD8a BV421 Clone 53-6.7 Biolegend Cat#100738

TCR gd PerCP Cy5.5 Clone GL3 Biolegend Cat#118118

B220 (CD45R) PE Clone RA3-6B2 Biolegend Cat#103208

NK1.1 PE Clone PK136 eBioscience Cat#12-5941-83

CD11c PE Clone N418 eBioscience Cat#12-0114-82

CD11b (Mac1) PE Clone M1/70 BD Biosciences Cat#553311

TCR-b PE Clone H57-597 eBioscience Cat#12-5961-83

CXCR4 (CD184) PE Clone L276F12 Biolegend Cat#146506

CD44 PE Clone IM7 BD Biosciences Cat#553134

CD25 Alexa Fluor� 647 Clone PC61 Biolegend Cat#102020

Sca1 (Ly-6A/E) PE Cy7 Clone D7 Biolegend Cat#108113

IgM FITC Clone II/41 BD Biosciences Cat#553437

BP-1 (Ly51) PE Clone 6C3 Thermo Fischer Cat#12-5891-83

CD43 APC Clone S7 BD Biosciences Cat#560663

B220 (CD45R) PE Cy7 Clone RA3-6B2 eBioscience Cat#25-0452-82

CD24 eFluor� 450 Clone M1/69 eBioscience Cat#48-0242-82

IgM PE Clone II/41 eBioscience Cat#12-5790-81

CD3 PerCP Cy5.5 Clone 145-2C11 Biolegend Cat#100328

CD3 PE Clone 145-2C11 Biolegend Cat#100308

Fas (CD95) APC Clone SA367H8 Biolegend Cat#152603

GL7 BV421 Clone GL7 BD Biosciences Cat#562967

IgM eFluor� 450 Clone II/41 eBioscience Cat#48-5790-82

IgD Alexa Fluor� 647 Clone 11-26c.2a Biolegend Cat#405707

GL7 Alexa Fluor� 488 Clone GL7 Biolegend Cat#144612

B220 (CD45R) Alexa Fluor� 647 Clone

RA3-6B2

BD Biosciences Cat#557683

CD169 (Siglec-1) BV421 Clone 3D6.112 Biolegend Cat#142421

CD25 BV605 Clone PC61 Biolegend Cat#102035

CD8a PE Clone 53-6.7 Cy7 eBioscience Cat#25-0081-82

CD4 PE Dazzle Clone GK1.5 Biolegend Cat#100455

TCRb BV421 Clone H57-597 Biolegend Cat#109229

CD62L Alexa Fluor� 700 Clone MEL-14 Biolegend 104426
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CD44 APC Clone IM7 eBioscience Cat#17-0441-81

CD19 PE Clone eBio1D3 eBioscience Cat#12-0193-83

CD3e FITC Clone 145-2C11 Biolegend Cat#100306

Gr1 (Ly-6G/Ly-6C) FITC Clone RB6-8C5 Biolegend Cat#108406

TER-119 FITC Clone TER-119 eBioscience Cat#11-5921-81

Sca1 (Ly-6A/E) APC Clone D7 eBioscience Cat#17-5981-81

Ckit (CD117) BV421 Clone 2B8 Biolegend Cat#105827

Flk2 (CD135) PE Clone A2F10.1 BD Biosciences Cat#561068

CD34 Alexa Fluor� 700 Clone RAM34 eBioscience Cat#56-0341-82

CD150 (SLAM) BV605 Clone TC15-12F12.2 Biolegend Cat#115927

CD48 APC Cy7 Clone HM48-1 Biolegend Cat#103431

IL-7Ra PE Dazzle Clone A7R34 Biolegend Cat#135031

Flk2 (CD135) PerCP efluor710 Clone A2F10 eBioscience Cat#46-1351-80

CD45.1 PE Clone A20 eBioscience Cat#12-0453-83

CD45.2 BV421 Clone 104 Biolegend Cat#109831

CD3e APC Clone 145-2C11 Thermo Fischer Cat#17-0031-82

CD48 PerCP efluor710 Clone HM48-1 eBioscience Cat#46-0481-82

CD150 (SLAM) PE Dazzle Clone TC15-

12F12.2

Biolegend Cat#115935

CD45.2 Alexa Fluor� 700 Clone 104 Biolegend Cat#109822

CD45.1 APC Cy7 Clone A20 Biolegend Cat#110716

CD4 PE Cy7 Clone GK1.5 Biolegend Cat#100422

CD43 PE Clone S7 BD Biosciences Cat#553271

Gr1 (Ly-6G/Ly-6C) PE Clone RB6-8C5 Biolegend Cat#108408

gH2AX (phospho-Ser139) mouse

monoclonal antibody (clone JBW301)

Millipore Cat#05-636, RRID:AB_309864

Pan-actin rabbit polyclonal antibody Sigma Cat#A2066, RRID:AB_476693

Goat anti-rabbit Immunoglobulins/ HRP Agilent Dako Cat#P0448,

Goat anti-mouse Immunoglobulins/ HRP Agilent Dako Cat#P0447

Chemicals, Peptides, and Recombinant Proteins

30,6’-dihydroxy-3-oxo-spiro
[isobenzofuran-1(3H),9’-[9H]xanthene]-5-

carboxylic acid, 2,5-dioxo-1-pyrrolidinyl

ester (CFSE)

Cayman Chemicals Cat#16802

Recombinant Cas9 Protein PNA Bio Inc Cat#CP01

a-GalCer Loaded CD1 tetramer PE ProImmune Cat#E001-2X

Critical Commercial Assays

Click-iT EdU Flow Cytometry Assay, Alexa

Fluor 488 dye

Thermo Fisher Cat#C10337

FoxP3/Transcription staining buffer set eBioscience Cat#00-5523-00

Superscript II Reverse Transcription Thermo Fischer Cat#18064022

IgM Mouse Uncoated ELISA Kit Thermo Fischer Cat#88-50470

IgG (Total) Mouse Uncoated ELISA Kit Thermo Fischer Cat#88-50400

IgG1 Mouse Uncoated ELISA Kit Thermo Fischer Cat#88-50410

IgG2b Mouse Uncoated ELISA Kit Thermo Fischer Cat#88-50430

IgG2c Mouse Uncoated ELISA Kit Thermo Fischer Cat#88-50670-22

Annexin V Apoptosis Detection Kit FITC Thermo Fisher Cat#88-8005-72

Experimental Models: Cell Lines

Pole3tm1(KOMP)Vlcg ESC line, Clone 12086A-

F4

KOMP Repository UC Davis Strain ID: C57BL/6- Pole3 tm1(KOMP)Vlcg,

Design ID: 12086

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Pole3m1, Pole3

ENSMUSG00000028394, cDNA c.289-

420del, protein p.K97_E140del

this paper N/A

Pole3m2, Pole3

ENSMUSG00000028394, cDNA c.288-

418del, protein p.K97GfsX117

this paper N/A

Pole3m3, Pole3

ENSMUSG00000028394, cDNA

c.294delinsTA, protein p.K100EfsX129

this paper N/A

Pole3m4, Pole3

ENSMUSG00000028394, cDNA C.297-

298insCG, protein p.K100RfsX144

this paper N/A

Pole3 knockout, Pole3

ENSMUSG00000028394

this paper, Pole3tm1(KOMP)Vlcg ESC line from

KOMP Repository UC Davis

N/A

Oligonucleotides

guide RNA sequences (sgRNA) and DNA

repair template for CRISPR-Cas9

mutagenesis

this paper, see Table S3 for sequences N/A

Genotyping primers for Pole3 mutants and

TCRtg

this paper, see Table S4 for sequences N/A

RT-PCR Primers this paper, see Table S5 for sequences N/A

Recombinant DNA

DR274 (guide RNA expression vector) (Hwang et al., 2013) Addgene plasmid Cat#42250

Software and Algorithms

FlowJo version 10 FlowJo https://www.flowjo.com/solutions/flowjo/

downloads

Photoshop CC Adobe https://www.adobe.com

Illustrator Adobe https://www.adobe.com

BD FACSDiva 8.0.1 BD Biosciences https://www.bdbiosciences.com/us/

instruments/clinical/software/

flow-cytometry-acquisition/

bd-facsdiva-software/

facsdiva-software-v-803-win-7-32-bit-os/

p/659523

Prism 8 GraphPad https://www.graphpad.com/

scientific-software/prism/

Article
ll

OPEN ACCESS
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Thomas

Boehm (boehm@ie-freiburg.mpg.de).

Materials Availability
All unique reagents generated in this study are available from the lead Contact with a completed Materials Transfer Agreement.

Mouse lines generated in this study are available from the Lead Contact with a completed Materials Transfer Agreement.

Data and Code Availability
The published article includes all datasets generated or analyzed during this study.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
ES cells carrying a deletion cassette replacing most of the Pole3 coding sequence were obtained from the KOMP repository and

were injected into host blastocysts to generate Pole3�/� mice under the C57BL/6 genetic background using standard protocols.

Pole3 C-terminal domain mutants (Pole3m1, Pole3m2, Pole3m3, Pole3m4 mutants) were generated by CRISPR-Cas9 technology

using recombinant Cas9, sgRNAs and, in one experiment, a sequence-specific single-stranded repair oligonucleotide (listed in

Table S3) targeting the last exon of the murine Pole3 gene, according to standard methods. The deletion in exon 4 was gener-

ated by co-injection of two sgRNAs; owing to the presence of a long string of glutamic acid residues in the wild-type protein

(Figure 2B) and the similarity of triplets encoding glutamic acid on the one hand (GAA and GAG), and lysine (AAA and AAG) on

the other, the imperfect repair processes after Cas9-mediated double-strand breaks generated a variety of mutant alleles by

small insertions/deletions, some of which were selected for further study (see Table S3). Pole3 C-terminal domain mutants

were generated on the FVB genetic background and were either kept on that background or were backcrossed to the

C57BL/6 strain. Mice expressing a MHC Class II restricted TCR recognizing Lymphocytic Choriomeningitis Virus (LCMV)

derived epitope were previously described (Oxenius et al., 1998).

The primers used for mouse genotyping are listed in Table S4. For all experimental procedures, comparisons were made

with same-strain littermates in order to exclude strain-specific variations. All mice were kept in the animal facility of the Max

Planck Institute of Immunobiology and Epigenetics under conventional housing conditions. All animal experiments were per-

formed in accordance with the relevant guidelines and regulations, approved by the review committee of the Max Planck

Institute of Immunobiology and Epigenetics and the Regierungspräsidium Freiburg, Germany (license AZ 35-9185.81/G-

15/35).

METHOD DETAILS

CRISPR-Cas9 mediated gene editing in the mouse
For gene editing a single guide RNA (sgRNA) approximately 21 nucleotides long was designed complementary to a target site in the

genome and was cloned in a pDR274 vector containing a T7 promoter for in vitro transcription (sgRNAs listed on Table S3). 15 ng/ml

transcribed sgRNA together with 50 ng/ml recombinant Cas9 protein and 5 mM of sequence specific single stranded repair oligo (in

case of knock-in gene editing) were mixed together in injection buffer (20 mM Tris Hcl pH 7.5, 0.3 mMEDTA in nuclease free ddH2O).

Themixturewas injected intomouse blastocysts and thosewere transferred into pseudo-pregnant recipientmice; the procedurewas

carried out in the Transgenic Mouse Core Facility of the MPI-IE. Upon obtaining founder mice (F0), the desired mutations were iden-

tified by genotyping.

Alcian Blue/Alizarin Red staining
Skeletal structures of embryos were revealed by Alcian Blue-Alizarin Red staining (Rigueur and Lyons, 2014). In brief, embryos were

collected at 16.5 days post coitum (dpc) and extra-embryonic membranes were removed. After washing in PBS, the embryos were

briefly immersed in hot tap water (65�C) and the eyes, skin and internal organs were removed. They were fixed overnight in 95%

ethanol at room temperature and then placed in acetone overnight at room temperature to dissolve excess fat. For cartilage staining,

the embryos were incubated for 24h in Alcian Blue stain (0.03% Alcian Blue [w/v], 80% EtOH, 20% glacial acetic acid) at room tem-

perature and then destained in two changes of 70% ethanol (4 hours in total), followed by incubation in 95% ethanol overnight. After

pre-clearing the embryos with 1% KOH for 1 h, they were immersed in Alizarin Red solution (0.005% Alizarin Red [w/v] in 1% [w/v]

KOH) for 4h at room temperature. The embryos were cleared for 24h-36h at 4�C in 50% glycerol, 0.5% (w/v) KOH solution and then

transferred to 80%glycerol (in ddH2O) for long-term storage. Pictures were taken using a LeicaMZ FLII stereomicroscope on a trans-

mitted light base.

Flow cytometry and cell sorting
Phenotyping of lymphocyte populations was performed by flow cytometry after preparation of single cell suspensions from

lymphoid organs and staining using antibodies listed in Table S6. Single cell suspension of thymus, spleen and lymph nodes

were prepared in FACS buffer (2% FBS, 1 mM EDTA, 1% penicillin- streptomycin, in PBS) by tissue homogenization with a

syringe plunger against a 40 mm cell strainer. For preparation of cell suspensions from bone marrow, femur, tibia and pelvis

were flushed with FACS buffer using a 10 mL syringe and a 26 gauge-needle and then passed through 40 mm cell strainer

to obtain single cell suspensions. To achieve red blood cell lysis, the cell suspensions were treated with ACK lysis buffer

(0.15M NH4Cl, 10mM KHCO3, 0.1mM EDTA in H2O, pH 7.2-7.4), washed and resuspended in FACS buffer. For intracellular

staining the cells were first stained with a fixable viability dye prior to surface antibody staining. After cell surface staining

the cells were fixed and permeabilized using the FoxP3/Transcription staining buffer set (eBioscience) according to manu-

facturer’s protocol followed by intracellular antibody staining. Data were collected on an LSRFortesa and/or LSRII apparatus

(BD Biosciences) and were analyzed with FlowJo software version 10; cell sorting was done using a FACSAria instrument

(BD Biosciences).
Cell Reports 31, 107756, June 16, 2020 e4
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Annexin V apoptosis detection in developing lymphocytes
The Annexin V (FITC) apoptosis detection Kit (eBioscience) was used for detection of apoptotic cells during development of T and B

lymphocytes. Cell suspensions prepared from thymus and bone marrow were first labeled with a viability dye (Fixable viability dye

eFluor 780, eBioscience) according tomanufacturer’s instructions. Then the cells were stainedwith surface antibodies (listed in Table

S6) in FACS buffer (2%FBS, 1mMEDTA, 1%penicillin- streptomycin, in PBS). After washing with 1X-diluted Binding Buffer (in dH2O)

they were resuspended again in 1X Binding Buffer and incubated with FITC-conjugated Annexin V for 15 minutes at room temper-

ature. The cells were finally washed with 1X Binding Buffer and analyzed by flow cytometry.

Semiquantitative RT-PCR
Total RNA was extracted frommouse tissue-derived cells using TriReagent (Sigma Aldrich) following the manufacturer’s recommended

protocol. To remove genomicDNA, RNApreparationswere treatedwith 1UofRQ1RNase-freeDNase (Promega) permgof total RNA in a

reactioncontaining1XRQ1RNase-freeDNaseReactionbuffer. Themixturewas incubatedat37�Cfor30minutes.Asecond roundofRNA

extraction using TriReagentwas performed to remove theDNase from the sample. The quantity and quality of theRNAwere assessedby

Nanodrop concentration measurement and agarose gel electrophoresis (1.5% agarose gel). For cDNA synthesis the Superscript II

Reverse Transcriptase (Thermo Fischer) and oligo(dT1-3) primers were used according to manufacturer’s recommended protocol. The

obtained cDNA was serially diluted for PCR reactions with Pole3 and phosphoribosyl transferase (Hprt) housekeeping gene primers.

Immunoblotting
For use inwestern blotting, wholemouse tissuewas homogenized and lysed for 15-30min at 4�C in RIPA lysis buffer (Millipore, Cat#20-

188) [50 mM tris-HCl (pH 7.4), 150 mM NaCl, 1x EDTA, 1% NP40, 0,25% sodium deoxycholate] supplemented with 0,1% Sodium do-

decyl sulfate, protease inhibitor cocktail (Roche, Cat#11836170001) and 1% of each phosphatase inhibitor cocktail 2 and 3 (Sigma,

Cat#P5726 and Cat#P0044). Lysates were centrifuged at 18,000xg for 10min and the supernatant was transferred to a fresh tube prior

to snap freezing. Protein lysates were denatured at 95�C in 1X loading buffer (2% SDSw/w, 2mMDTT, 4%Glycine, 0.01% bromophe-

nol bluew/w, 0.04MTris pH6.8, 3%b-mercaptoethanol). SDS–polyacrylamidegel electrophoresis (SDS-PAGE) of heat-denaturedpro-

tein samples was performed using the NuPAGE SDS-PAGE Gel System and 12% NuPAGE Bis-Tris Precast Gels with MES/SDS

running buffer (Thermo Fischer). Blotting to Immuno-Blot PVDF membrane (Biorad) in transfer buffer (25mM Tris, 192mM Glycine,

20% MeOH v/v) was performed for 40 min at 100V using a Mini Trans-Blot Cell Module (Biorad). Membranes were blocked using

5%Bovine Serum Albumin and developed with the following antibodies at dilutions recommended by the manufacturer: anti-phospho

Histone H2AX (Ser139), and anti-pan-actin. Membranes were probed with goat a-rabbit-HRP secondary or goat a-mouse-HRP sec-

ondary antibodies. A chemiluminescent system was used for imaging western blots using ECL Prime Western Blotting Detection Re-

agents (GE Healthcare) or SuperSignal WestFemto (Thermo Fischer); CX-BL+ X-ray film (AGFA Healthcare) was used for documenta-

tion. Contrast and brightness were adjusted for total images using Adobe Photoshop CS6.

ELISA Immunoassay for serum Immunoglobulins
Serum immunoglobulin levels of mice were measured by enzyme-linked immunosorbent assay (ELISA) according to manufacturer’s

instructions (Invitrogen). Serum was prepared from mouse whole blood and was pre-diluted to be used for ELISA assays. The levels

of each immunoglobulin class were expressed as arbitrary unit (AU) per mL serum. These values were interpolated from a standard

curve. This curve was generated from a serial dilution of purified mouse immunoglobulin isotype control. One AU corresponds to the

OD values obtained with 1 mg purified isotype control upon serial dilution.

Immunofluorescence staining of frozen spleen sections
For spleen immunofluorescence staining, frozen spleen sections (8 mm) were prepared with a cryostat on Superfrost Plus 253 753

1 mm microscopy slides (Thermo Fischer). After drying for 20 minutes at room temperature, the sections were surrounded with pap

pen and left to dry. The slides were washed for 1 min in PBS and blocked in 1%BSA, 0,2% Tween in PBS for 1 h. The spleen sections

were stained with the following fluorescently labeled antibodies at 4�C in a humid chamber in the dark overnight: GL7 Alexa Fluor�
488, CD169 BV421 and B220 Alexa Fluor� 647. The slides were washed three times with PBS and briefly with ddH20. Dried slides

were mounted with Fluoromount G (Thermo Fischer). Imaging was done using a LSM780 (Zeiss) microscope and images were pro-

cessed using Imaris 9.5.1 software (Bitplane). Tiled Immunofluorescent images were stitched together using Zen software (Zeiss).

Contrast, brightness and color saturation were adjusted across the entire images using Adobe Photoshop CS6.

Adult Lung Fibroblast (ALF) isolation and short-term in vitro culture
For ALF isolation, lungs from euthanized mice were harvested and finely minced with scissors. The lung fragments were digested in

1 mL of digest media (0.2 mg/mL collagenase, 0.2 mg/mL dispase and 2.5 mg/mL DNaseI in RPMI 1640, supplemented with 2% FBS

and 1 U/mL penicillin- 1 mg/mL streptomycin) for 1h at 37�C. Digestion was stopped by adding 5 mM EDTA, the cells were filtered

through a 70 mM cell strainer and washed with RPMI 1640 supplemented with 2% FBS (Pan-Biotech) and 1 U/mL penicillin- 1 mg/mL

streptomycin. Cell suspension was pelleted and resuspended in DMEM (Dulbeccós modified Eaglés medium) supplemented with

10% FBS and 1 U/mL penicillin- 1 mg/mL streptomycin. The cells were plated in T75 flasks (passage 0) and incubated at 37�C
with 5% CO2. At 70% confluence, the cells were trypsinized, counted and replated on 12-well plates for EdU labeling.
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EdU staining and cell cycle analysis
For in vivo cell cycle analysis of thymocytes, mice received a single intra-peritoneal injection of EdU (5-ethynyl-2’-deoxyuridine)

diluted in PBS at a dose of 50 mg/kg body weight. After 16h of EdU exposure, the mice were sacrificed and single cell suspensions

of thymus were prepared. Single cell suspensions of EdU labeled cells were processed using the Click-iT EdU FlowCytometry Assay

(Thermo Fisher) according to themanufacturers protocol. Briefly, the cells werewashedwith 1%BSA in PBS and stainedwith surface

antibodies (listed in Table S6) at 4�C. The cells were washed again and fixed in Click-iT fixative for 15 min, washed once and then

permeabilized in saponin-based permeabilization and wash reagent for 15 min. The Click-iT reaction cocktail was added to the cells

for additional 30 min incubation. The cells were finally washed and analyzed by flow cytometry. All steps after the cell surface anti-

body staining were carried out at room temperature.

For in vitro cell cycle analysis of adult lung fibroblasts (ALFs), isolated ALFs (passage 1) were labeled with 20 mM EdU. After 2h

incubation, single cells were harvested by trypsinization and were processed as previously described according to the Click-iT

EdU Flow Cytometry Assay. After the Click-iT reaction, the cells were counterstained for DNA content by Hoechst 33258 (1 mg/

mL) (Thermo Fischer) and analyzed by flow cytometry.

CFSE cell proliferation assay of sorted CD8+ T cell populations
To analyze the proliferative response of CD8+ T cells upon TCR-dependent stimulation, splenic cell suspensions were prepared in

37�C pre-warmed PBS at a concentration of 50 3 106 cells/mL and labeled with CFSE (Cayman Chemicals) at a concentration of

2.5 mM for 10 min at 37�C in the dark. CFSE labeling was stopped by addition of 9 volumes of ice-cold T cell media (10% FBS,

1 mM non-essential amino acids, 1mM sodium pyruvate, 10 mM HEPES, 10 U/mL penicillin-10 mg/mL streptomycin, 0.1 mM b-mer-

captoethanol in RPMI 1640 with L-glutamine). The cells were washed and stained with surface antibodies (listed in Table S6) for cell

sorting of CD8+ T cell splenic populations according to the gating strategy shown in Figure 6A. Sorted cells were washed in T cell

media and were seeded in straight bottom 96-well plates that were coated overnight at 4�C with 1 mg/ml anti-CD3 and anti-CD28

antibodies. After 42h of incubation at 37�C with 5% CO2, dead cells were labeled with Propidium Iodide (0.08 mg/mL) (Thermo

Fischer) and CFSE dye dilution was analyzed by flow cytometry. The division index and proliferation index were calculated using

the FlowJo version 10 proliferation tool. The division index depicts the average number of cell divisions completed by a cell of the

original population (including undivided cells), while the proliferation index represents the number of cell divisions divided by the num-

ber of cells that completed at least one cell division.

Competitive bone marrow reconstitution
Bone marrow (BM) cell suspensions from CD45.2 Pole3+/+, CD45.2 Pole3m3/m3, and CD45.1 wild-type mice (7-12 weeks of age) were

prepared and an aliquot was stained with surface antibodies (listed in Table S6) for flow cytometric determination of HSCs. Two bone

marrow cell suspensions of the desired donors, each containing 50 HSCs, were combined from the required sources before transplan-

tation.ThemixturesofCD45.1andCD45.2bonemarrowcellswere resuspended in100mLPBSand transplanted into lethally irradiated (a

total of 9.5Gydelivered in twodosesof 5Gyand4.5Gy, separatedbya3h interval) CD45.1/2heterozygote recipientmice (7-12weeksof

age) by tail vein injection. Peripheral bloodwas obtained from the recipientmice at 4, 8, 12 and 16weeks after transplantation. Following

redbloodcell lysis, thecontributionsofCD45.2+donorderivedcells to theTcell (CD3+),Bcell (B220+) andmyeloid (CD11b/Gr1+) lineages

were assessed by flow cytometry (see antibodies in Table S6). At 16 weeks after transplantation, the mice were sacrificed and BM,

thymus, spleen and lymph nodes were collected for flow cytometric analysis using the antibodies listed in Table S6.

Analysis of TCRb rearrangements
To determine the presence of TCRb rearrangements, thymocyte suspensions were sorted into CD8+ SP, CD4+ SP and DP popula-

tions (using surface antibodies listed in Table S6), resuspended in 1x lysis buffer (10 mM Tris-HCl [pH 8.3], 50mM KCl, 0.01 mg/ml

gelatin, 0.045%Nonidet P-40, 0.045%Tween20) including 0.1 mg/ml Proteinase K andwere incubated at 55�C for 1h to overnight and

finally at 95�C for 10 min to inactivate the protease. TCRb rearrangements were determined following a previously described method

(Kawamoto et al., 2000). In brief, cell lysates were directly used as templates for PCR amplification using the following primers: Db2,

50-GCACCTGTGGGGAAGAAACT-30; Jb2.6, 50-TGAGAGCTGTCTCCTACTATCGATT30. The PCR products were loaded on a 1.2%

agarose gel and after electrophoresis were stained with GelRed for documentation.

Image processing
Uneven light on image background and shadows were removed in Photoshop CC for photos of mouse embryos. For mouse skeletal

images (Alcian Blue- Alizarin Red staining), focused z stack imaging consisting of multiple segmented tiles was performed in Photo-

shop CC to capture the embryo in its entirety.

QUANTIFICATION AND STATISTICAL ANALYSIS

Graphs were generated and analyzed using the GraphPad Prism software. The data are shown as mean ± s.e.m. Statistical signif-

icance was determined by unpaired two tailed t tests. P values of pairwise comparisons and number of animals (n) are depicted in

each graph. Statistical details of experiments can be found in the figure legends.
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Figure S1. Characterization of Pole3 alleles, Related to Figures 1, 2.  
(A) Schematic representation of the mouse Pole3 locus and the targeting 
replacement vector. The deletion cassette containing β-galactosidase and 
neomycin coding sequences replaces a genomic sequence of 1,056 bp 
spanning the entire encoding sequence of Pole3.  
(B) Schematic representation of the predicted domains of mouse Pole3 and 
Pole4 proteins. 
(C) Alignment of vertebrate POLE3 protein sequences using the EMBL-EBI 
Clustal Omega sequence alignment tool. Fully conserved residues are 
indicated by asterisk, residues with highly similar chemical properties are 
indicated by a colon, and those with related properties are denoted with a 
period. Genbank accession numbers: Human, NP_001265184; mouse, 
NP_067473; dog, XP_855374; cat, XP_003995820; chicken, NP_001020525, 
zebrafish, NP_957095.  
(D) Relationship of the predicted secondary structures (α-helices) of mouse 
Pole3 protein (top) to the exon/intron structure of the Pole3 gene (bottom) with 
exons represented as squared boxes and introns as connecting lines. The 
color-coding indicates the contribution of exons to each structural motif of the 
Pole3 protein; numbers represent amino acid residues.  
 
 



	

 
 
 



	

Figure S2. Abnormal tail structure of Pole3m4/m4 mice, Related to Figure 
2. 
(A, B) Tails of adult Pole3m3/m3 (A) and Pole3m4/m4 (B) mice. Tail kinks in 
Pole3m4/m4 mice are indicated with white arrowheads. 
(C) RT-PCR analysis of Pole3 (upper panel) and Hprt (lower panel) 
expression using RNA extracted from thymi of wild-type and Pole3m3/m3 mice. 
(D) Gating strategy for phenotypic analysis of the hematopoietic progenitor 
populations HSC, MPP1, MPP2, MPP3 and MPP4. 
(E) Gating strategy for phenotypic analysis of the CLP population. 
(F, G) Frequency of hematopoietic progenitor populations (F) and the CLP 
population (G) in the bone marrow in adult mice of the indicated genotypes. 
Bar graphs indicate means±SEM. Significance levels as determined by t-test 
are indicated; each data point represents one mouse.  Abbreviations, LT long-
term; ST short term; HSC hematopoietic stem cell; MPP multipotent 
progenitor, CLP common lymphoid progenitor.  
 
  



	

 
 

 
 
 
  



	

Figure S3. Characterization of T cell development in adult mice carrying 
the Pole3m4 allele, Related to Figure 3.   
(A) Representative images of thymi and spleens taken at 5 weeks of age.  
(B) Total numbers of CD4+CD8+ double-positive thymocytes.  
(C) Total cell numbers of γδ TCR+ T cells in the thymus.  
(D) Flow cytometric profiles of adult thymocytes.  
(E) Thymocyte populations in adult mice of the indicated genotypes; absolute 
numbers are shown at the top, proportions are indicated at the bottom. Bar 
graphs indicate means±SEM. Significance levels as determined by t-test are 
indicated; each data point represents one mouse. 
 
  



	

 
 
 
 
 
 
 
 



	

Figure S4. Apoptosis in Pole3 mutant lymphocytes, Related to Figures 3 
and 4.   
(A) Gating strategy for the detection of apoptotic cells in differentiating 
lymphocyte populations. 
(B, C) Frequency of live, early apoptotic, late apoptotic and necrotic cells in 
thymocyte populations in (B) in Pole3m3 (upper panel) and Pole3m4 (lower 
panel) adult mice and in differentiating B cell populations (C) in the bone 
marrow of Pole3m3 (upper panel) and Pole3m4 (lower panel) adult mice. Bar 
graphs indicate means±SEM. Significance levels as determined by t-test are 
indicated where P<0.05. 



	

 
  



	

Figure S5. Characterization of the TCRβ status in adult Pole3m3/m3 mice, 
Related to Figure 6.   
(A) Intracellular TCRβ protein levels of DN3 thymocytes. 
(B) Surface levels of TCRβ of DP thymocytes.  
(C) Surface levels of TCRβ of single positive CD4+ CD8+ thymocytes. In (A-
C), numbers indicate the percentages of cells in the indicated gates. 
Abbreviations, IC, intracellular; EC, extracellular. 
(D) D-J rearrangements of the Tcrb2 gene in purified CD4+CD8+ double-
positive thymocytes (left panel) as examined by PCR. Whole thymocytes and 
total bone marrow cells of a wild-type mouse were used as positive and 
negative controls, respectively (right panel). (E) Total thymocyte numbers per 
gram of body weight in adult Pole3m3/m3 mutant mice in the presence or 
absence of an αβTCR transgene (Tg). Bar graphs indicate means±SEM. 
Significance levels as determined by t-test are indicated; each data point 
represents one mouse. 
(F) Representative flow cytometry plots indicating the increased expression 
levels of Sca1+ on cells within the Lin–c-kit+ cell population of the bone 
marrow of Pole3m3/m3 mice. Numbers indicate percentages of cells in each 
gate.  
 



	

 
  



	

Figure S6. Characterization of the adult B cell compartment in Pole3m3/m3 
and Pole3m4/m4 mice, Related to Figure 4. 
(A) Gating strategy applied for flow cytometric analysis of developmental B 
cell stages in the bone marrow of Pole3m4 mice on the FVB genetic 
background. Numbers indicate percentage of cells in the respective gates.  
(B) Total numbers of B220+ cells in each B cell stage of bone marrow taken 
from the lower limbs (combined cells of femur, tibia and pelvis). Abbreviations, 
imm. immature, re-circ. re-circulating.  
(C, D) Gating strategy for flow cytometric analysis of germinal center B cells 
(C) and switched memory B cells (D) in the spleen of Pole3m3/m3 mice. 
Numbers indicate percentages of cells in each gate.  
(E) Proportion of germinal center B cells and switched memory B cells within 
the B220+ cell compartment of the spleen. Abbreviations, GC germinal center, 
sw. switched. 
(F) Immunofluorescence staining of spleen sections from Pole3m3 mice. 
Distribution of germinal centers (GL7+, violet) within B cell follicles (B220+, 
cyan). CD169+ macrophages (yellow) mark the boundaries of the B cell 
follicles. Scale bar (upper panel) 100 μm, (lower panel) 20 μm.  
(G) Serum concentrations of IgM (upper left), total IgG (upper, right) and IgG 
subclasses IgG1 (bottom, left), IgG2b (bottom, middle) and IgG2c (bottom, 
right) as arbitrary units (AU) per mL serum. Bar graphs indicate means±SEM. 
Significance levels as determined by t-test are indicated; each data point 
represents one mouse. 
 



	

 
  



	

Figure S7. Potency of hematopoietic cells of Pole3m3/m3 mice, Related to 
Figure 5.   
(A) Presence of Pole3m3/m3 mutant hematopoietic progenitors in the bone 
marrow of recipient mice, 16 hours after transplantation. The gating strategy 
identifying the LSK populations (Lin–;Sca1high;c-kithigh) in CD45.2-expressing 
mutant and CD45.1-expressing wild-type competitor cells. Numbers indicate 
percentages of cells in the respective gates.  
(B) Frequencies of wild-type and mutant CD45.2+ donor cells within the LSK 
and HSC (LSK+CD150+CD48-Flk2-) fractions in female and male recipient 
mice, as determined 16 hours after transplantation. Bar graphs indicate 
means±SEM. Significance levels as determined by t-test are indicated; each 
data point represents one mouse.  
(C-E) Total numbers of CD45.2+ donor cells of the indicated genotypes in the 
thymus (C), spleen (D), and bone marrow (E) of recipient cells. Bar graphs 
indicate means±SEM. Significance levels as determined by t-test are 
indicated; each data point represents one mouse.    
(F) Similar levels of phosphorylated (Ser139) H2AX histone in the thymus of 
Pole3m3/m3 and control mice as shown by western blot.  
 
  



	

Table S1. Genotype distribution at 3 weeks of age, related to Figure 2. 
 +/+ +/m m/m 

Pole3 m1 
13 23 17 

Pole3 m2 
23 37 23 

Pole3 m3 
120 259 107 

Pole3 m4 
135 252 16 

 
Genotype distribution of Pole3 allelic variants at 3 weeks of age. The 
Pole3m4/m4 is significantly underrepresented at this age; all other distributions 
conform to the expected Mendelian ratios. 
 
 
 
 
 
Table S2. Body weight at 4-6 weeks of age, related to Figure 2.  

 +/+ +/m m/m 

Pole3 m1 
23.475±0.78 

n=4 
n.d. 20.52±1.93 

n=5 

Pole3 m2 
20.65±1.46 

n=8 
n.d. 20.1±1.39 

n=11 

Pole3 m3 
18.75±0.58 

n=8 
20.96±2.36 

n=2 
17.33±0.92 

n=9 

Pole3 m4 
20.98±0.91 

n=9 
19.78±0.67 

n=7 
16.01±1.23 

n=8 * 
 
Summary of body weights at 4-6 weeks of age (means±SEM; number of 
animals in each group is indicated). The weight of the Pole3m4/m4 mice is 
significantly reduced (P=0.00493; t-test). 
 
 
 
 
 
Table S3. guide RNA sequences (sgRNA) and DNA repair template for 
CRISPR-Cas9 mutagenesis, related to STAR Methods.  

sgRNAs Target sequence (5´>3´)* 
Single-stranded DNA repair 
template 

sgRNA #1:  
Pole3m1, Pole3m2  TACAGGCGGGAGCAGAA  

sgRNA #2:  
Pole3m1, Pole3m2  

ACGACCAGAACGAAGAG
G  

sgRNA #3:  
Pole3m3, Pole3m4  

CGGGAGCAGAAAGGCAA
G 

CGGTTTGTCTAATTAAACCATAATAT
CCTGCTTCCTTACAGCGTACAGGC
AGGAACAGAAGGGCAAGAAGGAGG
CTTCGGAGCAAAAGAAGAAGGACA
AAGACAAAAAGGA 

 
 
 
 
 



	

Table S4. Genotyping primers, related to STAR Methods. 

Target  
Forward primer (5´>3´) 
Reverse primer (5´>3´) 

Amplicon size 
(bp) 

Sequencing 
Primer (5’>3’) 

Mouse    
Pole3 
knockout  

GCAGCCTCTGTTCCACATACACTTCA 
CTTTAGTGCTTCTGTGACTTGGAACA 493  

Pole3 wild-
type allele  

GTGTGTTCATCTCCACTCTCCTCGC 
ACCTGCTCCAGAATGTGTGACAACT 255  

Pole3m1, 
Pole3m2 

alleles 

TGCTCATCAGTATCAGTGCC 
CGGTTTCTGTAACTCAGATGC 

517 (wt) 
385 (m1)  
356 (m2) 

 

Pole3 
wildtype 
allele  

TGCTCATCAGTATCAGTGCC 
TTCTGGTCGTCCTCGTCCAG 305  

Pole3m3, 
Pole3m4 
alleles 

CACCTGTGCCTCGGTTTGTC 
CATGTCTCAGGATCTCAGGG 

277 (wt) 
278 (m3) 
279 (m4) 

CATGTCTCAGGATCTCA
GGG 

TCRtg 
 

CTGAGGCTGATCCATTACTC 
TAACACGAGGAGCCGAGTGCCT 216  

 
 
 
 
 
Table S5. RT-PCR Primers, related to STAR Methods. 

Target  
Forward primer (5´>3´) 
Reverse primer (5´>3´) Amplicon size (bp) 

Pole3  GAAGCTCTAGAAGCGTACAGG 
CCTACTCTCTCCATTCAGTTG 195 

Hprt  GATTATGGACAGGACTGAAAG 
CAAGGGCATATCCAACAACAAACT 450 

 
  



	

Table S6. Fluorescently labeled antibodies, related to STAR Methods. 
Antigen/Staining 
Reagent Clone Conjugate Source Identifier 
Thymocyte stage analysis, related to Figures 1C, 3B-3F, and Figure S3 
CD4  GK1.5 APC Cy7 Biolegend 100414 
CD8a 53-6.7 PE eBioscience 12-0081-85 
CD44 IM7 APC eBioscience 17-0441-81 
CD25 PC61 PE Cy7 BD Biosciences 552880 
B220 (CD45R) RA3-6B2 FITC Biolegend 103206 
TCR γδ eBioGL3 FITC eBioscience 11-5711-82 
NK1.1 PK136 FITC Biolegend 108706 
CD11c HL3 FITC BD Biosciences 557400 
CD11b (Mac1) M1/70 FITC BD Biosciences 557396 
Annexin V detection in thymocytes, related to Figure S4A-S4B 
CD4  GK1.5 PE Dazzle Biolegend 100455 
CD8a 53-6.7 BV421 Biolegend 100738 
CD44 IM7 APC eBioscience 17-0441-81 
CD25 PC61 PE Cy7 BD Biosciences 552880 
TCR γδ GL3 PerCP Cy5.5 Biolegend 118118 
B220 (CD45R) RA3-6B2 PE Biolegend 103208 
NK1.1 PK136 PE eBioscience 12-5941-83 
CD11c N418 PE eBioscience 12-0114-82 
CD11b (Mac1) M1/70 PE BD Biosciences 553311 
Thymocyte stages TCR-β, related to Figure S5A-S5C 
CD4  GK1.5 APC Cy7 Biolegend 100414 
CD8a 53-6.7 BV421 Biolegend 100738 
CD44 IM7 APC eBioscience 17-0441-81 
CD25 PC61 PE Cy7 BD Biosciences 552880 
B220 (CD45R) RA3-6B2 FITC Biolegend 103206 
NK1.1 PK136 FITC Biolegend 108706 
CD11c HL3 FITC BD Biosciences 557400 
CD11b (Mac1) M1/70 FITC BD Biosciences 557396 
TCR γδ GL3 PerCP Cy5.5 Biolegend 118118 
TCR-β  H57-597 PE eBioscience 12-5961-83 
Thymocyte stages CXCR4, related to Figure 3G-3H 
CD4  GK1.5 APC Cy7 Biolegend 100414 
CD8a 53-6.7 BV421 Biolegend 100738 
CD44 IM7 APC eBioscience 17-0441-81 
CD25 PC61 PE Cy7 BD Biosciences 552880 
B220 (CD45R) RA3-6B2 FITC Biolegend 103206 
NK1.1 PK136 FITC Biolegend 108706 
CD11c HL3 FITC BD Biosciences 557400 
CD11b (Mac1) M1/70 FITC BD Biosciences 557396 
TCR γδ GL3 PerCP Cy5.5 Biolegend 118118 
CXCR4 (CD184) L276F12 PE Biolegend 146506 
Thymocyte stages SCA1, related to Figure 3I-3J 
CD4  GK1.5 APC Cy7 Biolegend 100414 
CD8a 53-6.7 BV421 Biolegend 100738 
CD44 IM7 PE BD Biosciences 553134 
CD25 PC61 Alexa Fluor 647 Biolegend 102020 
B220 (CD45R) RA3-6B2 FITC Biolegend 103206 
NK1.1 PK136 FITC Biolegend 108706 
CD11c HL3 FITC BD Biosciences 557400 
CD11b (Mac1) M1/70 FITC BD Biosciences 557396 
TCR γδ GL3 PerCP Cy5.5 Biolegend 118118 
Sca1 (Ly-6A/E) D7 PE Cy7 Biolegend 108113 
Thymocyte stages sort, related to Figure S5D 
CD4  GK1.5 APC Cy7 Biolegend 100414 
CD8a 53-6.7 BV421 Biolegend 100738 
CD44 IM7 PE BD Biosciences 553134 
CD25 PC61 Alexa Fluor 647 Biolegend 102020 
B220 (CD45R) RA3-6B2 FITC Biolegend 103206 
TCR γδ eBioGL3 FITC eBioscience 11-5711-82 
NK1.1 PK136 FITC Biolegend 108706 



	

CD11c HL3 FITC BD Biosciences 557400 
CD11b (Mac1) M1/70 FITC BD Biosciences 557396 
B cell stage analysis, related to Figure 2H, Figure 4, and Figure S6A-S6B 
IgM II/41 FITC BD Biosciences 553437 
BP-1 (Ly51) 6C3 PE Thermo Fischer 12-5891-83 
CD43 S7 APC BD Biosciences 560663 
B220 (CD45R) RA3-6B2 PE Cy7 eBioscience 25-0452-82 
CD24 M1/69 eFluor® 450 eBioscience 48-0242-82 
Annexin V detection in B cells in the bone marrow, related to FigureS S4A, and S4C 
IgM II/41 PE eBioscience 12-5790-81 
CD43 S7 APC BD Biosciences 560663 
B220 (CD45R) RA3-6B2 PE Cy7 eBioscience 25-0452-82 
CD24 M1/69 eF450 eBioscience 48-0242-82 
CD3 145-2C11 PerCP Cy5.5 Biolegend 100328 
Germinal center B cells in the spleen, related to Figure S4C, and S4E 
CD3 145-2C11 PE Biolegend 100308 
B220 (CD45R) RA3-6B2 FITC Biolegend 103206 
Fas (CD95) SA367H8 APC Biolegend 152603 
GL7 GL7 BV421 BD Biosciences 562967 
Switched memory B cells in the spleen, related to Figure S4D, and S4E 
CD3 145-2C11 PE Biolegend 100308 
B220 (CD45R) RA3-6B2 FITC Biolegend 103206 
IgM II/41 eFluor® 450 eBioscience 48-5790-82 
IgD 11-26c.2a Alexa Fluor® 647 Biolegend 405707 
Germinal centers in spleen sections, related to Figure S4F 
GL7 GL7 Alexa Fluor488 Biolegend 144612 
B220 (CD45R)  RA3-6B2 Alexa Fluor® 647 BD Biosciences 557683 
CD169 (Siglec-1) 3D6.112 BV421 Biolegend 142421 
Peripheral lymphocyte analysis, related to Figure 3C, and S3C 
CD4  GK1.5 APC Cy7 Biolegend 100414 
CD8a 53-6.7 BV421 Biolegend 100738 
TCR γδ GL3 PerCP Cy5.5 Biolegend 118118 
B220 (CD45R) RA3-6B2 FITC Biolegend 103206 
CD11c HL3 FITC BD Biosciences 557400 
CD11b (Mac1) M1/70 FITC BD Biosciences 557396 
CD3e 145-2C11 APC Thermo Fischer 17-0031-82 
α-GalCer Loaded CD1 
tetramer  PE ProImmune E001-2X 

EdU incorporation in Thymus, related to Figure 7C-7D 
CD4 GK1.5 APC Cy7 Biolegend 100414 
CD8a 53-6.7 BV421 Biolegend 100738 
CD44 IM7 APC eBioscience 17-0441-81 
CD25 PC61 BV605 Biolegend 102035 
Peripheral lymphocyte analysis, related to Figure 2C-2G, and 6 
CD8a 53-6.7 PE Cy7 eBioscience 25-0081-82 
CD4 GK1.5 PE Dazzle Biolegend 100455 
TCRβ H57-597 BV421 Biolegend 109229 
CD62L MEL-14 Alexa Fluor® 700 Biolegend 104426 
CD44 IM7 APC eBioscience 17-0441-81 
CD19 eBio1D3 PE eBioscience 12-0193-83 
HSC-MPP phenotyping, related to Figure S2D, and S2F 
CD3e  145-2C11 FITC Biolegend 100306 
B220 (CD45R) RA3-6B2 FITC Biolegend 103206 
CD11b (Mac1) M1/70 FITC BD Biosciences 557396 
Gr1 (Ly-6G/Ly-6C) RB6-8C5 FITC Biolegend 108406 
TER-119 TER-119 FITC eBioscience 11-5921-81 
Sca1 (Ly-6A/E) D7 APC eBioscience 17-5981-81 
Ckit (CD117) 2B8 BV421 Biolegend 105827 
Flk2 (CD135) A2F10.1 PE BD Biosciences 561068 
CD34 RAM34 Alexa Fluor® 700 eBioscience 56-0341-82 
CD150 (SLAM) TC15-12F12.2 BV605 Biolegend 115927 
CD48 HM48-1 APC Cy7 Biolegend 103431 
CLP phenotyping, related to Figure S2E, and S2G 
CD3e  145-2C11 FITC Biolegend 100306 



	

B220 (CD45R) RA3-6B2 FITC Biolegend 103206 
CD11b (Mac1) M1/70 FITC BD Biosciences 557396 
Gr1 (Ly-6G/Ly-6C) RB6-8C5 FITC Biolegend 108406 
TER-119 TER-119 FITC eBioscience 11-5921-81 
Sca1 (Ly-6A/E) D7 APC eBioscience 17-5981-81 
Ckit (CD117) 2B8 BV421 Biolegend 105827 
IL-7Ra A7R34 PE Dazzle Biolegend 135031 
Flk2 (CD135) A2F10 PerCP efluor710 eBioscience 46-1351-80 
Peripheral blood reconstitution, related to Figure 5A-5E 
CD45.1 A20 PE eBioscience 12-0453-83 
CD45.2 104 BV421 Biolegend 109831 
CD11b (Mac1) M1/70 FITC BD Biosciences 557396 
Gr1 (Ly-6G/Ly-6C) RB6-8C5 FITC Biolegend 108406 
CD3e 145-2C11 APC Thermo Fischer 17-0031-82 
B220 (CD45R) RA3-6B2 PE Cy7 eBioscience 25-0452-82 
HSC engraftment analysis, related to Figure S7A-S7B 
CD3e  145-2C11 FITC Biolegend 100306 
B220 (CD45R) RA3-6B2 FITC Biolegend 103206 
CD11b (Mac1) M1/70 FITC BD Biosciences 557396 
Gr1 (Ly-6G/Ly-6C) RB6-8C5 FITC Biolegend 108406 
Ter119 TER-119 FITC eBioscience 11-5921-81 
Sca1 (Ly-6A/E) D7 PE Cy7 Biolegend 108113 
CD48 HM48-1 PerCP efluor710 eBioscience 46-0481-82 
CD150 (SLAM) TC15-12F12.2 PE Dazzle Biolegend 115935 
Flk2 (CD135) A2F10.1 PE BD Biosciences 561068 
CD45.2 104 Alexa Fluor 700 Biolegend 109822 
CD45.1 A20 APC Cy7 Biolegend 110716 
Thymocyte engraftment analysis, related to Figure 5F, and S7C 
CD4 GK1.5 PE Cy7 Biolegend 100422 
CD8 53-6.7 BV421 Biolegend 100738 
CD44 IM7 PE BD Biosciences 553134 
CD25 PC61 BV605 Biolegend 102035 
TCR γδ GL3 PerCP Cy5.5 Biolegend 118118 
B220 (CD45R) RA3-6B2 FITC Biolegend 103206 
NK1.1 PK136 FITC Biolegend 108706 
CD11c HL3 FITC BD Biosciences 557400 
CD11b (Mac1) M1/70 FITC BD Biosciences 557396 
CD45.2 104 Alexa Fluor 700 Biolegend 109822 
CD45.1 A20 APC Cy7 Biolegend 110716 
Analysis of B cell engraftment in the bone marrow, related to Figure 5I, and S7E 
IgM II/41 FITC BD Biosciences 553437 
CD43 S7 PE BD Biosciences 553271 
B220 (CD45R) RA3-6B2 PE Cy7 eBioscience 25-0452-82 
CD24 M1/69 eF450 eBioscience 48-0242-82 
CD45.2 104 Alexa Fluor 700 Biolegend 109822 
CD45.1 A20 APC Cy7 Biolegend 110716 
Analysis of engraftment of peripheral leukocytes, related to Figure 5G-5H, and S7D 
CD4 GK1.5 PE Cy7 Biolegend 100422 
CD8 53-6.7 BV421 Biolegend 100738 
B220 (CD45R) RA3-6B2 FITC Biolegend 103206 
TCR γδ GL3 PerCP Cy5.5 Biolegend 118118 
CD11b (Mac1) M1/70 PE BD Biosciences 553311 
Gr1 (Ly-6G/Ly-6C) RB6-8C5 PE Biolegend 108408 
CD45.2 104 Alexa Fluor 700 Biolegend 109822 
CD45.1 A20 APC Cy7 Biolegend 110716 
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