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Zusammenfassung

Die Automatisierung von Fahrzeugen nimmt rasant zu, wobei das Hauptaugenmerk

auf der Verbesserung der Verkehrssicherheit liegt. Generell wird von Robotern

erwartet, dass sie sich in einer ständig verändernden Umgebung zurechtfinden.

Das Verständnis der zugrunde liegenden Ursachen für diese Veränderungen ist ein

entscheidender Faktor, um den gewünschten Automatisierungsgrad zu erreichen.

Veränderungen sind eng mit der Bewegung und den semantischen Eigenschaften

der verschiedenen Entitäten in der Umgebung verflochten. In dieser Arbeit schlagen

wir verschiedene Methoden vor um diese Eigenschaften abzuleiten und, als finales

Ziel, eines ganzheitliches Verständnis der Szene mithilfe von 3D-LiDAR-Daten zu

erlangen.

Roboter arbeiten häufig in einer nicht statischen Umgebung und teilen den Raum

mit verschiedenendynamischenObjekten. Solche zu erkennenund ihreBewegungen

vorherzusagen ist für eine sichere und effiziente Navigation notwendig. Um diese

dynamischen Eigenschaften zu verstehen, beschäftigen wir uns damit Hinweise auf

Bewegungen zu interpretieren. Für das schätzen einer Bewegung ist es notwendig

dieselben Teile der Umgebung mehr als einmal zu beobachten und eine Assoziation

zwischen den Beobachtungen herzustellen. Wir adressieren dieses Problem indem

wir einen lokalen Merkmalsdeskriptor für 3D-LiDAR-Scans vorschlagen, der unter

Verwendung eines tiefen neuronalen Faltungsnetzwerkes gelernt wurde. Ein solcher

Deskriptor ermöglicht das Auffinden vonAssoziationen zwischen Schlüsselpunkten

und ebnet den Weg für die Schätzung von Bewegungsmodellen.

In dieser Arbeit schlagen wir eine neue Methode zur Erkennung und Verfolgung

dynamischer Objekte vor. In einer iterativen Weise schätzen wir Starrkörperbewe-

gungsmodelle für verschiedene Objekte in der Szene und erkennen anschließend

dynamische Objekt ausschließlich basierend auf diesen Modellen. Zum Verfolgen

verwenden wir erneut die Bewegungsinformation, um eine Assoziation zwischen

Objekten in aufeinander folgenden Scans zu finden. Diese Methode setzt implizit

voraus, dass sich eine Szene aus einer Menge von Objekten zusammensetzt. Um

dynamische Eigenschaften auf einer feineren Ebene abzuleiten, schlagen wir eine

neue Methode zur Schätzung des dichten Starrkörperbewegungsfeldes vor. Diese

Methode basiert auf der einzigen Annahme, dass Objekte lokal starr sind und

kann beliebige unterschiedliche Bewegungen sowohl für starre als auch für nicht

starre Objekte schätzen. Um den Bewegungszustand von Punkten in einem LiDAR-

Scan abzuleiten, schlagen wir eine auf einem Hidden-Markov-Modell basierende

Methode vor, die das Bewegungsfeld als Messquelle verwendet.
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Die dynamischen Eigenschaften stehen in engem Zusammenhang mit den se-

mantischen Eigenschaften verschiedener Objekte in der Umgebung. Um diese zu

extrahieren, schlagen wir ein tiefes Faltungsnetz für die semantische Segmentierung

von 3D-LiDAR-Scans vor. Die von einem LiDAR-Scanner oder anderem Sensor

gesammelten Daten sind sequentiell, was wir mithilfe eines Bayes-Filter-Ansatzes

ausnutzen, um diese semantischen Vorhersagen zeitlich konsistent zu machen.

Der Filter nutzt die Vorhersage des Netzwerks aus den aktuellen und vorherigen

Scans, wodurch das System robust gegenüber isolierten falschen Vorhersagen des

Netzwerkes gemacht wird. Um die inhärente Beziehung zwischen Bewegung und

semantischen Eigenschaften auszunutzen, schlagen wir einen neuen Ansatz vor

der die Punkte in einem LiDAR-Scan als unbeweglich, beweglich oder dynamisch

klassifiziert. Dieser Ansatz kombiniert nahtlos die Bewegung und die erlernten

semantischen Hinweise und ermöglicht ein geeignetes Verständnis der Szene.



Abstract

There is a surge in the automation of vehicles, with the prime focus on improving

road safety. In general, robots are expected to operate in a continuously evolving

environment and understanding the underlying causes for the changes is a key

enabler to achieve the desired level of automation. The changes are intertwined

in the motion and semantic characteristics of various entities of the environment.

In this thesis, we propose different methods to infer these characteristics, with the

final objective of holistic scene understanding using 3D LiDAR data.

Robots are often operating in non-static environments, sharing the space with

various dynamic objects. For safe and efficient navigation, it is necessary to detect

such objects and furthermore predict their future state. To address these challenges,

we delve into the problem of estimating motion models, with the objective of

understanding the dynamic characteristics, solely based on the estimated motion.

To estimatemotion, it is necessary to observe the same parts of the environmentmore

than once and find an association between them. Targeting this problem, we propose

a local feature descriptor learned from 3D LiDAR scans using a deep convolutional

neural network. Having such a descriptor enables finding correspondences between

keypoints and paves the way for estimating motion models.

In this thesis, we propose a novel method for detection and tracking of dynamic

objects. In an iterative fashion, we estimate rigid motion models for various

objects in the scene and then detect dynamic objects solely based on the motion.

For tracking, we again utilize the motion information for finding an association

between objects in consecutive scans. This method implicitly assumes a scene can

be decomposed into a set of objects and to infer dynamic characteristics at a finer

granular level, we propose a novel method for estimating a dense rigid motion

field. This method relies on the sole assumption that objects are locally rigid and

is capable of estimating arbitrary different motions for both rigid and non-rigid

objects. To infer the motion state of points in a LiDAR scan, we propose a hidden

Markov model based method which uses the motion field as a measurement source.

The dynamic characteristics are closely related to the semantic properties of differ-

ent objects in the environment. To extract those, we propose a deep convolutional

neural network for semantic segmentation of 3D LiDAR scans. The data collected

by a LiDAR scanner or an other sensor is sequential, which we leverage by using

a Bayes filter approach to make these semantic predictions temporally consistent.

The filter utilizes the prediction of the network from the current and previous

scans, thereby making the system robust to isolated incorrect predictions from
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the network. To exploit the inherent relationship between motion and semantic

properties, we propose a novel approach to classify points in a LiDAR scan as

non-movable, movable or dynamic. This approach seamlessly combines the motion

and learned semantic cues, allowing proper scene understanding.
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Chapter 1

Introduction

In the last decade, the research towards self-driving cars has picked up a staggering

pace. Between the years 2014 and 2017, an investment of $80 billion [33] has

been made across different domains in this sector. This interest in self-driving

technology has garnered equal attention from automotive giants like BMW [2],

General Motors [1], and Toyota [5] and technology companies like Waymo [6] and

Apple [3]. The main objective of this technology is to make our roads safer than

ever before [7]. An estimated 37,461 fatalities due to crashes were recorded in 2016

on the United States roadways [80] and the goal is to decrease such numbers across

the globe by introducing a high level of safe and reliable automation in the way

we drive today. The extent of automation for driving a car has been divided into

five different levels [2]. Lower levels of automation (level 1 and 2) has existed for

quite some time, in the form of driving assistance like cruise control [16] or partly
automated driving like lane keeping [4]. The current focus is to achieve higher

levels of automation (level 3 and 4) where the driver is expected to take control in

rare cases, with the final goal of having a driver-less car (level 5).

Themainmodules in the pipeline of achieving this automation of a mobile robotic

system or can be defined as: perception, localization and mapping, planning, and

control. The first module focuses on understanding the environment in which the

robot is operating. The corresponding information is gathered through a variety of

sensors that a robot is endowed with. Tasks like obstacle or lane detection, semantic

segmentation, etc. are part of this module. Using this perceived knowledge a map

of the environment can be built and the next module plans a set of actions that has

to be executed. For instance, calculating a trajectory that a robot has to follow. This

trajectory is then expected to comply with certain task-specific conditions like in

the case of self-driving, the trajectory has to be obstacle free and assure that the

vehicle adheres to the speed limit and stays within the bounds of the lane, etc. The

objective of the last module is to execute the calculated plan or the trajectory. This

execution happens at the actuator level, for instance, controlling the steering angle.
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1.1 Scene Understanding

This thesis focuses on the first module i.e. perception, more concretely, we propose

different methods for 3D scene understanding, where we primarily focus on urban

outdoor environments. Scene understanding is a necessary prerequisite for a robot

to operate autonomously, and uninterrupted for long periods of time. Various

important tasks like localization, mapping, and obstacle avoidance, among many

others, heavily rely on the perception and understanding of the environment. The

objective of scene understanding is to extract meaningful compact representations

from the environment and provide the necessary cues required to complete the

above-mentioned tasks. Scene understanding becomes critical, especially when the

robot is operating in a non-static environment, which is predominantly the case. To

achieve the goal of uninterrupted autonomous operation of a robot, understanding

the evolution of the environment is obligatory. The way the environment changes

is intertwined in the motion and semantic cues, and also the time window in which

the change is observed. If the time window is infinitesimal, the majority of the

environment will be perceived unchanged and for a large timewindow, the opposite

holds true.

If an autonomous vehicle is operating in complex scenarios, such as heavy traffic

situations or crowded streets, the environment is evolving or changing at a similar

rate as typical sensors are gathering data. Navigating in a safe and efficient fashion

in such scenarios relies on a robust detection of dynamic objects and how reliably

their future state can be predicted. Detection is challenging since such objects can

belong to various semantic categories like cars, trucks, trams, bicyclists, pedestrians,

etc. and the number of objects is not known apriori. In order to predict the future

location of an object, an estimation of object’s motion is required and, the accuracy

of the estimate heavily relies on the data association between points on the object.

Finding an accurate data association is challenging, especially if the same parts

of the environment are not observed in two scans. This partial overlap is mainly

attributed to dynamic objects and the motion of the robot itself.

Another key ingredient for successful autonomous operation is accurate local-

ization of the robot and the accuracy largely depends on how well the sensor

measurements can be associated with a pre-existing map. In the case of a non-static

environment, an important challenge is to make the localization method robust

towards changes in the environment. Besides enabling safe navigation, knowledge

of dynamic objects can also improve the localization accuracy, as sensor measure-

ments corresponding to dynamic objects can simply be discarded. The accuracy can

potentially be further improved if more semantic knowledge can be incorporated

in both mapping [93] and localization [78] methods. Parts of the environment like

buildings or other man-made structures have higher chances of being useful for

localization since their location does not change as frequently as a parked vehicle. To

understand the distinction between non-movable and movable structures requires
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extraction of semantic representations of the environment.

To extract representations for scene understanding requires perception of the

environment. Currently, autonomous vehicles like self-driving cars are equipped

with an array of sensors, that can include cameras (monocular or stereo), LiDARs

(2D or 3D), RADARs, etc. Different sensors have their set of merits and demerits.

Monocular cameras are affordable and provide rich color and texture information

but do not provide any direct information about the geometrical structure of

the scene. To estimate the geometrical structure using cameras, algorithms like

structure-from-motion [105] are required. Furthermore, the perception ability

of cameras decreases in adverse weather conditions. LiDAR scanners provide

highly accurate geometrical information in the form of depth, along with surface

reflectance information. Due to highly accurate measurements, state-of-the-art

2D localization system [17] and 3D perception systems [85, 127, 128, 132] heavily

rely on LiDAR data. Similar to a camera, the accuracy of LiDAR measurements

decreases in challenging weather conditions like fog or dust. With the surge in

development in the autonomous driving sector, the cost of LiDAR scanners has

decreased significantly [76] but is still not as affordable as cameras. In contrast to

LiDARs, RADARs are affordable and also provide geometrical information, and

unlike cameras and LiDARs, they work reliably in adverse weather conditions.

Using Doppler frequency shift, location and speed of moving objects can be tracked

accurately using RADARs [19], but the inferred geometrical information is not as

accurate as LiDARs [126], and therefore it is not actively used for the task of semantic

scene understanding. Among these sensors, 3D LiDAR data is most reliable for the

task of scene understanding and therefore in this thesis, we use it as the primary

data source.

1.2 Contributions

In this thesis, we propose various novel methods for 3D scene understanding to

addressdiscussed challenges. In the following,weoutline the scientific contributions

made through these methods and in Figure 1.1, we visually illustrate the same.

Local feature descriptor for 3D LiDAR scans In Chapter 3, we propose deep convo-

lutional neural network architectures for learning a local feature descriptor together

with a metric for matching the descriptors, and for learning a descriptor to be

matched using a predefined metric. Furthermore, we tackle different problems in

the descriptor learning pipeline, namely generating local surface patches around the

keypoints and estimating ground-truth correspondences. We explore two different

representations for surface patches. The first representation quantifies the local

surface information using a 2D image and the second representation is based on

3D voxel grids. Both these representations encode depth and surface reflectance

information. For our experiments, we compare thematching accuracy of our learned
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feature descriptor with other handcrafted descriptors, feature descriptors learned

using other network architectures. We perform an experiment for aligning multiple

objects in consecutive LiDAR scans since one of the motivations for learning a

descriptor is to have accurate data association between keypoints, required for

aligning scans. To further analyze the discriminative power of different descriptors,

we visualize the descriptors in low dimensional space and report related metrics.

The learned descriptors, the dataset for learning the descriptors and the software is

made publicly available.

Detection and tracking of dynamic objects In Chapter 4, we focus on inferring

dynamic parts of the environment solely based on motion cues. We propose a novel

model-free method for detection and tracking of dynamic objects in 3D LiDAR

scans. The main contribution of this method is that it can estimate the motion

of arbitrary different objects as it does not rely on prior semantic information

about the objects. For detection, we utilize an iterative process, wherein every

iteration we estimate the most dominant rigid motion model using RANSAC and

propose a Bayesian segmentation approach to segment the points which agree with

the estimated motion model. This process is repeated until all the points have a

corresponding motion model. For tracking, we use the estimated motion model to

associate corresponding objects. We evaluate our method on a publicly available

dataset from Moosmann and Stiller [74] and compare it with their method.

Estimating dense rigid motion field Shifting our focus from object level inference

to point level, in Chapter 4, we also propose a novel method to estimate dense

motion field, called RigidFlow. The main contribution of this method is that it

can estimate arbitrary motion models in a dynamic environment and since it only

assumes objects are locally rigid it can be used for estimating themotion of non-rigid

objects. We pose it as an energyminimization problem. In contrast to our previously

discussed RANSAC-based method of detection and tracking of objects that requires

multiple iterations, we can estimate different motion models simultaneously using

this approach. We evaluate our approach on the KITTI odometry benchmark [36], a

simulated dataset [129] and a dataset collected by us, consisting of pedestrians. The

last dataset is used for evaluating motion for non-rigid bodies. We also incorporate

the learned descriptor from the previous chapter and report results for that. The

output of this method is a dense motion field and to infer the pointwise motion

state using the motion field, we propose a hidden Markov model based method.

This method classifies points in a scan as static or dynamic and we use the method

of detection and tracking on dynamic objects as a baseline for comparison.

Semantic segmentation of a 3D LiDAR scan For proper scene understanding, in-

ferring both motion and semantic information is necessary and so far we primarily

focused on the former. In Chapter 5, we focus on extracting semantic information

from the environment and combining this information with the motion cues. We
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propose a deep convolutional neural network for segmentation of the LiDAR scan

into the classes car, pedestrian or bicyclist. Our architecture is based on dense

blocks [55] and to limit the parameters we use depth separable convolutions [24].

To evaluate, we use the dataset fromWu et al. [127] and compare our architecture

with other state-of-the-art architectures [125, 127, 128]. To further analyze different

components of our architecture, we present an ablation study. In the case of

perception, the environment is often perceived through sequentially collected data

and the network predicts the segmentation mask for each scan independently. To

utilize the sequential nature of the data and make predictions temporally consistent

we propose a Bayes filter based approach. For each class, we use a binary Bayes

filter with static state, and static in this context means that the transition between

states is unlikely, which is true for semantic classes. The filtering approach, along

with current prediction from the neural network, uses the predictions from previous

scans and helps in mitigating sporadic erroneous neural network predictions. Incor-

porating information from previous scans requires data association between points

in consecutive scans and for this task we use our method of estimating pointwise

motion from the previous chapter. We evaluate our approach on sequences from

the KITTI tracking benchmark and use our neural network as the baseline method.

Combining motion and semantic cues for scene understanding To exploit the in-

herent relationship between an object’s semantic class and its motion state, in Chap-

ter 5, we also propose a hidden Markov model approach to classify points in a

LiDAR scan as non-movable, movable or dynamic. This method neatly combines the

learned semantic information with the motion cues, with the objective of a holistic

understanding of the 3D environment. The distinction between non-movable and

movable is learned by our proposed neural network architecture and our pointwise

motion method supplies the motion cues required for separating dynamic from

static. We evaluate our approach on the KITTI tracking benchmark and use our

pointwise classification method from Chapter 4 as a baseline.

Publications

For the research presented in the thesis, in the following we list the corresponding

publications.

– Ayush Dewan, Wolfram Burgard. DeepTemporalSeg: Temporally Consistent

Semantic Segmentation of 3D LiDAR Scans Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2020

– Ayush Dewan, Tim Caselitz, Wolfram Burgard. Learning a Local Feature De-

scriptor for 3D LiDAR Scans Proceedings of the IEEE/RSJ International Conference
on Robots and Systems (IROS), 2018
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– Ayush Dewan, Gabriel L. Oliveira, Wolfram Burgard. Deep Semantic Classifi-

cation for 3D LiDAR Data Proceedings of the IEEE/RSJ International Conference
on Robots and Systems (IROS), 2017

– Ayush Dewan, Tim Caselitz, Gian Diego Tipaldi, Wolfram Burgard. Rigid

Scene Flow for 3D LiDAR Scans Proceedings of the IEEE/RSJ International
Conference on Robots and Systems (IROS), 2016

– Ayush Dewan, Tim Caselitz, Gian Diego Tipaldi, Wolfram Burgard. Motion-

based Detection and Tracking in 3D LiDAR Scans Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2016

1.3 Collaborations

The scientific work presented in this thesis involves collaboration with other

researchers. Wolfram Burgard, as the thesis supervisor has contributed through

scientific discussions for all of the work. The work presented in Chapter 3 & 4

was supported by discussions with Gian Diego Tipaldi and Tim Caselitz. The

research presented in Chapter 5 is based on the conference paper with Gabriel L.

Oliveira in IROS, 2017. Gabriel’s contribution in this paper was the neural network

architecture for semantic segmentation. In Chapter 5, this architecture is replaced

by an architecture proposed by the author of this thesis.
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(a)

(b)

(c) (d)

(e)

Figure 1.1: Illustration of different contributions made in this thesis. In figure (a), we

illustrate the correspondences estimated using our descriptor learned together with metric.

In Figure (b), we show different dynamic objects (colored points in bounding boxes) detected

by our method for detection and tracking of dynamic objects. In Figure (c) & (d), we

illustrate the inferred pointwise motion state (dynamic points are shown in blue color)

using our method of estimating pointwise motion and the inferred semantic state using

our proposed deep convolutional neural network architecture, respectively. For estimating

pointwise motion, we use our proposed descriptor. The last figure shows the output of our

proposed method for combining motion and semantic cues. Non-movable, movable and

dynamic points are shown in color black, green, and blue, respectively. The points on the

wall in figure (c) that are misclassified as dynamic are correctly classified as non-movable

after incorporating the semantic information.





Chapter 2

Background

2.1 Acronyms

In the following table we list commonly used acronyms in this thesis.

Acronyms Meaning Description

LiDAR Light Detection and Ranging A Range Sensor

DCNN Deep Convolutional Neural Network A deep neural network

ReLU Rectified Linear Unit

An activation function used

for learning non-linear

decision boundaries

HMM HiddenMarkovModel A statistical Markov model

SLAM Simultaneous Localization And Mapping A procedure for making maps

RANSAC Random Sample Consensus
An iterative method

to estimate parameters

of a mathematical model

ICP Iterative Closest Point An algorithm for

scan matching

CRF Conditional Random Field A method for

statistical modeling

2.2 LiDAR

For a robot to navigate autonomously it heavily relies on various sensors to perceive

the environment in its vicinity. Most commonly used sensors for this task of

perception are cameras, LiDARs or RADARs among others. In this thesis, we use

3D LiDAR scanners as the primary sensor for solving various tasks pertaining to

3D perception.



10 Chapter 2. Background

Figure 2.1: A LiDAR scan colored according to surface reflectance values collected using a

Velodyne-64E scanner. 3D geometric information regarding different objects is captured

neatly and precisely, thereby providing an opportunity to solve various crucial 3Dperception

tasks. In the zoomed in image on the right, high intensity values (color blue) correspond

to the strong reflecting properties of the white number plate on a car and the signs on

the side of the street. Having such discriminative information is also crucial for different

perceptions tasks.

LiDAR is a light based sensor that operates by sending out laser light and then

gathering the light which is reflected by different objects in the surrounding. The

distance of an object w.r.t to the scanner is calculated bymeasuring the Time of Flight

of the laser pulse. LiDARs not only measures the distance to the objects but also the

reflected light energy from various objects. Through LiDAR scanners, precise 3D

geometrical information about the environment can be retrieved readily, making

a favorable sensor choice for solving important tasks like 3D object detection [36],

among others.

In this thesis, we have primarily used Velodyne-64E as a LiDAR scanner. This

scanner is based on Solid State Hybrid technology, involving a solid-state detector

combined with a mechanical spinning system. This particular scanner has 64 lasers

and has range upto 120m with 360° horizontal and 26.9° FOV. The output of the
scanner is around 2.2 million points per second. In Figure 2.1, we show a single

LiDAR scan collected using a Velodyne-64E as a LiDAR scanner, where the scan is

colorized using the surface reflectance value.

2.3 Feedforward Neural Networks

Feedforward neural networks are the quintessential learning models. The objective

of the network is to approximate a function that defines a mapping y = f(x; θ). The

network is a directed acyclic graph and the information flows only in one direction,

from the input x, through the intermediate computations defined by function f,
to the output y. The network is composed of set of layers, where each layer is a

collection of nodes. The first layer of the network is called the input layer, the last

layer is called the output layer and remaining intermediate layers are called the
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input layer hidden layer hidden layer output layer

Figure 2.2: An illustration of a feedforward neural network. The network has four input

nodes (green), one output node (red) and two hidden layers (blue) with 5 nodes each.

hidden layers. Figure 2.2 shows a feedforward neural network with an input layer

with four nodes, a couple of hidden layers, and an output layer with a single node.

The nodes in the hidden layers are called neurons and they function as the basic

processing unit of a neural network. A neuron works in two steps, first it calculates

a weighted sum of its input and then applies an activation function to the sum. The

weights associated with inputs to the neuron is the weight vector w. The activation

value for a single neuron i in layer l is calculated as follows:

al
i = σ(bi + wt

i x) (2.1)

where bi is the bias and σ is the activation function. The network learns a linear

or non-linear decision boundary depending on whether the activation function is

linear or non-linear. Since the flow of information is sequential, the input to a layer

l, is the output of layer l − 1. More formally, the activation for a layer l, al ∈ RL
,

where L is number of nodes in the layer, is calculated as follows:

al = σ(Wlal−1 + bl) (2.2)

where Wl
is the weight matrix and bl

is the bias vector for layer l. These collection
of weights and bias are the parameters θ learned by the network.

2.4 Convolutional Neural Network

Convolutional Neural Networks (CNN) are a type of feedforward neural networks

discussed briefly in the above section. InCNNsneurons are arranged arranged along
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multiple dimensions and the connectivity is local, in contrast to the feedforward

neural network shown in Figure 2.2, where neurons are arranged in a single

dimension and a neuron is connected to all the neurons in a previous layer. In

practice 2D CNNs are used most often. For 2D CNN, neurons are arranged along

three dimensions: height, width and depth and the different layers within the

network then transforms an input volume to an output activation volume. In this

section, we primarily focus on explaining the working of a 2D CNN, therefore the

term CNN is used for describing a 2D CNN, without loss of generality.

A typical CNN is comprised of convolutional, activation, pooling and dense layers.

A convolution layer is the building block of a CNN. It consists of multiple learnable

filters, where each filter has a small spatial resolution (height andwidth) but extends

through the full depth of the input volume. In feedforward networks, the neurons

in the layers have dense connections, i.e a neuron in layer l is connected to every

neuron in the previous layer l − 1. In contrast to that, a neuron in a convolutional

layer is connected to only a small region of the input volume. For instance, if the

input to the CNN is an RGB image, then a filter in the first convolution layer can

have dimension of 3× 3× 3, where the first two dimensions define the kernel size of

the filter and the last dimension corresponds to depth of the input volume. The size

of the kernel dictates the extent of local connectivity between a filter and the input

volume. To assure a filter can learn features across the complete spatial resolution

of the input volume, we slide the filters across the width and height of the input

volume and calculate a 2D activation map by calculating a dot product between

the values in the filter and the input volume (convolution operation). The spatial

resolution of the output volume after the convolution operation is defined by the

following formula.

wout =
win − k + 2 ∗ p

s
+ 1, (2.3)

where, win and wout are input and output width, k is the kernel size, s is the stride,
and p is the zero padding. Stride defines the amount of pixels by which a filter

moves across the input. Height of the output volume is calculated using the same

formula. In the case, where s = 1 and p = k−1
2 , the input and output volume have

same spatial resolution. The depth of the output volume is decided by the number

of filters learned in a layer.

Figure 2.3 illustrates the working of the convolution layer as described above.

The top figure, shows a filter convolving with the input data to generate a single

feature map and the bottom figure shows how multiple feature representations can

be learned within a single convolution layer. Assuming the input has dimension

h× w× cin, where h, w and cin are height, width and the number of input channels

and the size of the filter is k× k× cin, the number of parameters associated with

a convolution layer would be k × k × cin × cout + cout, where the last addition

term is because of the bias. Assuming the filter moves with stride set to 1, the

number of multiplication operations would be k× k× cin × h× w. For the case
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Figure 2.3: Working of the convolution layer. The figure on the top shows a filter of size

3× 3× 3 convolving with the input data. The spatial size of the filter are the associated

hyperparameters and the depth is same as the depth of the input data. As shown, each

filter interacts with a small part of the input volume and to generate a single feature map,

the filter slides along the spatial dimension of the input data. In order to learn multiple

features, multiple filters are used and the depth of the output is equal to the number of

filters used (bottom figure), which is also another hyperparameter related to this operation.

32x32x6 16x16x6 16x16x16 8x8x1632x32x3

convolution convolutionpooling pooling dense

Figure 2.4:An illustration of a convolutional neural network for the task of classification. The

input to the network is an RGB image, followed by a convolution layer which transforms the

input volume of dimension 32× 32× 3 into an activation volume of dimension 32× 32× 6.
The depth of the activation volume is the number of the feature maps learned by the

convolution layer. Each convolution layer is followed by a pooling layer, which reduces

the spatial dimension of the input volume without changing the depth. The last couple of

layers are dense layers, which function in the exact same way as the hidden layers of the

feedforward neural network.

illustrated in Figure 2.3, learnable parameters are 27× cout + cout and operations

are 27× 32× 32× cout. Figure 2.4 illustrates a CNN for the task of classification.

The architecture shows a standard arrangement of different commonly used layers

in CNNs.

The values for the activation map is calculated similarly to the feedforward

neural network (Eq. (2.1)), i.e. by calculating the dot product between the filter

and input volume. To make sure the network can learn non-linear decision
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boundaries, convolution layers are often followed by a layer implementing a non-

linear activation function but unlike the convolution layer this layer does not contain

learnable parameters. Themost commonly used activation functions for are rectified

linear unit (ReLU) and exponential linear unit (ELU), among few others. ReLU is

a piecewise linear function that thresholds the activation value at zero as shown

in Eq. (2.4).

σ(x) = max(0, x) (2.4)

Since ReLUs only have non-zero activation values only for positive input values,

the neurons can potentially die during training. This happens when large gradients

flows through the neuron, which causes a weight update that makes a neuron to

be not activated again. In contrast to that, ELUs have non-zero activation for both

negative and positive values as shown in Eq. (2.5) and because of this it does not

suffer from dying neuron problem but can potentially saturate for large negative

values.

σ(x) =


x if x > 0

exp(x)− 1 if x ≤ 0

 (2.5)

To reduce the spatial dimensions of the feature maps and to limit the number

of operations in a layer, it is a common practice to use pooling layers between

convolution layers. The pooling layers operate independently on each feature

map and reduces its spatial size. Similar to convolution layers, pooling layers also

operate on a small region of the input volume and have kernel size and stride as

parameters. A 2× 2 kernel with stride 2 will reduce the spatial size of the feature

map by half. Commonly used pooling layers are max pooling and average pooling.

The first one will choose the max of the four values (for a 2× 2 kernel) from a small

region in a feature map and the latter will calculate the average of the same values.

Unlike convolution layers, pooling layers do not have any learnable parameters like

weights or biases. After a series of convolution and pooling layers, the last set of

layers in a CNN are the dense layers which are also referred as fully-connected layers.
Their activation value is computed by a matrix multiplication followed by a bias

offset as shown in Eq. (2.2). Similar to convolution layers, an activation function is

used for adding non-linearity to the output of fully-connected layers.

2.4.1 Depth Separable Convolution

In the previous section and in Figure 2.3, we explained the working of convolution

layers, where a filter of small spatial dimension interacts locally with a set of input

featuremaps. In this case, even though the spatial size of the filter is small, it extends

through the entire depth of input. In order to reduce the number of operations and

the learnable parameters an alternative to standard convolution described before is



2.4. Convolutional Neural Network 15

32

32 3

1 3

1

32

32

32

3

3

3
1
1
1

32

3

32

32

3 *

Figure 2.5: Using depth separable convolution is a two step process. In the top image

we show the first step, which in involves depthwise convolution, where a separate filter is

learned for each channel of the input data. In this illustration we learn features from each

input channel independently using three different convolution filter and the depth of the

input and output is same. To learn different feature representations, in the second step, we

perform pointwise convolution on the learned feature maps from the previous steps using

cout filters of spatial dimension 1× 1× 3 .

depth separable convolution [24] [52]. Instead of interacting with the entire depth

of the input through a single filter, we perform depthwise convolution where a filter

is learned separately for each channel of the input. The top image in Figure 2.5,

illustrates this operation. Since the number of input and output channels are same

for depthwise convolution, in order to learn multiple feature representation, depthwise
convolution is followed by pointwise convolution. This is a standard convolution

described in the previous section, where the depth of the filter is same as the number

of input channels but now the spatial dimension of the filter is 1× 1. The pointwise
convolution is illustrated in the bottom image of Figure 2.5. For both standard

and depth separable (depthwise + pointwise) convolution, we transform the input

volume of dimension h×w× cin to an output volume of h×w× cout but the number

of operations and the associated learnable parameters are different. For depthwise
and pointwise convolution the number of parameters are k× k× cin and cin × cout

respectively and therefore the total parameters are k× k× cin + cin × cout, which

are signficantly lower than the parameters associated with a standard convolution

(k× k× cin× cout). Comparing the cases illustrated in Figure 2.3 and 2.5, the number

of parameters has been reduced from 27× cout to 27+ 3× cout. Similarly the number

of operations has been reduced from 32× 32× 27× cout to 32× 32× (27 + 3× cout).

2.4.2 Dense Blocks

The CNN discussed above comprises of a set of layers, where input to one layer are
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Figure 2.6: An illustration of working of a dense block. The input to the block is x0, it has

four layers (H1 − H4) implemented within the composite function Hl . The growth rate i.e.

feature maps learned by each layer is set to four. In contrast to a standard CNN, where

input to a layer is the feature maps learned from the previous layer, in dense blocks the

input is feature maps learned from all the previous layers. For instance, input to H4 is

all the feature maps from x0 to x3. The last layer is the transition layer which can involve

operations like pooling.

the learned feature maps from the previous layer as shown in equation below.

xl = Hl(xl−1) (2.6)

Here, Hl(·) is a composite function of different operations like convolution, non-

linear activation among others. Amodern day CNN is comprised of large number of

layers, thereby making networks deep. These deep networks are capable of learning

complex non-linear functions but can be notorious to train because of a problem of

vanishing gradients. These networks are trained using gradient based methods and

the gradients of loss w.r.t to the weights are back-propagated from the output layer

to all the hidden layers. The magnitude of the gradients tends to get smaller as the

information flows backward in the network, thereby causing earlier layers to learn

slowly. In feedforward networks, the flow of information is from earlier layers to

subsequent layers and if the features learned by earlier layers are inaccurate, the

performance of the network is sub-optimal.

To overcome the problem of vanishing gradients, Huang et al. [54] proposed

dense blocks. In contrast to using only the output from preceding layer as input, in

dense blocks the input to a layer are the feature maps learned by all the previous

layers as shown in Eq. (2.7).

xl = Hl([x0, x1, · · · , xl−2, xl−1]) (2.7)

This connectivity pattern allows improved flow of information and enables

efficient training since each layer has direct access to gradients from the loss

function, thereby alleviating the problem of vanishing gradients. Dense blocks also

curtails learning of redundant features since each layer has access to all the feature

maps learned from previous layers, which allows proper feature reuse.
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The number of feature maps learned by each layer is called the growth rate. Each
dense block often contain multiple repetitions of the composite function Hl(·) and
different dense blocks within a CNN are separated by transition layers, which

includes operations like pooling. Figure 2.6 illustrates working of a dense block,

with growth rate and repetitions both set to four.

Different CNN architectures proposed in this thesis are based on dense blocks.

The exact details of the composite function and parameters pertaining to dense

blocks like growth rate or number of repetitions are discussed in subsequent

chapters.

2.4.3 Weight Initialization

To begin the training the process, the first step is to initialize the value of differ-

ent learnable parameters and in this thesis, for different CNNs, we use Xavier

initialization [38] as a weight initialization method.

2.4.3.1 Xavier Initialization

Weight initialization is crucial for proper training of a neural network. If the

initial value for weights are small then the signal propagating through different

neurons in consecutive layers diminishes and in the case of large initial values the

value for weights increases quickly. To avoid the signal from either diminishing or

exploding, in Xavier initialization method, value of weights are sampled using a

normal distribution with zero mean and variance
2

nin+nout
, where nin and nout are the

input and output signals for a particular neuron. This particular choice of variance

assures the variance of the input signal and the output signal are same.

2.4.4 Regularization

The models learned by different learning algorithms are often plagued by the

problem of overfitting, where the learned parameters, models the training data too

well and fails to generalize for examples which were not part of the training set. In

case a learned model overfits, the gap between the performance of the model on the

training set and the validation or the test set is significantly large. In this thesis we

use the following techniques to prevent different learned models from overfitting.

2.4.4.1 L2 Regularization

This regularization involves adding a term in the loss function to prevent learned

parameters from having large magnitude. The cost function for minimizing the

negative log likelihood in Eq. (2.13) can be modified in the following way for
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enforcing l2 regularization.

L(θ) = −
N

∑
j=1

log(P(yj | xj; θ)) +
η

2
‖θ2‖ (2.8)

The parameter η regulates penalty on the magnitude of the weights. A large value

of η will force the weights to have small values and the learned parameters will

be unable to model examples in the training set, i.e., the learned model will be

underfitting. Conversely, choosing value of η to be close to zero can cause a learned

model to potentially overfit. An optimal value of η can vary across different learning

tasks and is one of many different parameters that needs to be tuned for proper

learning of weights.

2.4.4.2 Dropout

One of the most commonly used techniques for preventing overfitting in neural

network based methods is dropout. It involves randomly ignoring the contribution

certain neurons during training. By ignoring the contribution we mean that these

randomly selected neurons are not considered during forward and backward pass.

More formally, at every training iteration each neuron is kept with probability p or

dropped with probability 1−p.
Dropout enforces regularization by controlling the co-dependency between

learning parameters, thereby allowing individual neurons to fully exploit their

learning capability. In every iteration only a sub-network of the original neural

network is used, which enables learning of multiple feature representation, thereby

enhancing the generalization capability of the neural network. Similar to l2

regularization, an optimal value of p varies across different learning task and

therefore it needs to be tuned along with other parameters.

2.4.5 Loss Functions

In this thesis, we use different loss functions for training CNNs for various tasks.

We use softmax cross-entropy for the purpose of classifying points in a LiDAR

scan, and for combined learning of a feature descriptor and metric for matching the

descriptor. We use hinge embedding loss for learning a feature descriptor which is

discriminative in Euclidean space.

2.4.5.1 Softmax Cross-Entropy Loss

Cross-entropy indicates the difference between the true distribution of labels y ∈ RC

and distribution of the predicted labels ŷ ∈ RC
as shown in Eq. (2.9). Here C

denotes the number of classes.

L(y, ŷ) = −
C

∑
i=1

yi. log ŷi (2.9)
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By minimizing the cross-entropy, we are trying to minimize the number of bits

required to encode the true distribution of labels y using the distribution of predicted

labels ŷ. For the distribution of labels y, all the probabilitymass is at the correct class,

i.e., y = [0, 0, . . . , 1, . . . , 0]. This particular representation used for the distribution

for ground-truth labels is called one-hot encoding. To estimate the distribution of

the predicted labels we use the Softmax function f(z). This function takes a real

valued vector z and normalizes it to a vector with values between zero and one that

sum to one. z is the output of the last layer of CNN and has the same dimension as

the number of classes. The softmax score for label i is calculated as following:

fi(z) =
exp(zi)

∑C
k exp(zk)

(2.10)

The loss in Eq. (2.9) is for a single training example. The loss for all the training

examples is summation of loss of individual training examples.

L(y, ŷ) = −
N

∑
j=1

C

∑
i=1

yj
i log ŷj

i (2.11)

Considering a probabilistic interpretation, the minimization of softmax cross-

entropy loss is same as maximizing the likelihood of the prediction. The likelihood

function L is given as:

L(θ) = P(y | x; θ) (2.12)

Maximizing the likelihood is equivalent to minimizing the log negative likelihood

and therefore Eq. (2.12) can be written as:

L(θ) = −
N

∑
j=1

log(P(yj | xj; θ)) (2.13)

The probability distribution P(yj | xj; θ) can be estimated using the softmax function

f(z).

P(yj | xj; θ) =
exp(z)

∑c
k exp(zk)

(2.14)

Therefore Eq. (2.13) can be written as following:

L(θ) = −
N

∑
j=1

C

∑
j=1

yj
i log(ŷj

i) (2.15)

The likelihood of an example j belonging to a class i is given by ŷj
i .
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2.4.5.2 Hinge Embedding Loss

In this thesis, we propose two different local feature descriptors. The first descriptor

is learned simultaneously with a metric for matching the descriptor and the

descriptors for corresponding keypoints that are close to each other in the learned

metric space. For this task, we use the softmax cross-entropy loss discussed above.

The second descriptor is learned using Euclidean metric i.e the descriptors for

corresponding keypoings are similar in the Euclidean space. For this task we use

the hinge embedding loss shown below.

L(d1, d2) =


‖d1 − d2‖2 if p1 = p2

max(0, c− ‖d1 − d2‖2) if p1 6= p2

 (2.16)

In the case when patches p1 and p2 belong to corresponding points, a large distance

between the learned feature descriptors d1 and d2 is penalized. For the case of

non-matching keypoints, we want distance between the descriptors to be greater

than c. The maximum loss c is incurred when distance between descriptors is zero

and if distance is greater than c, then the loss is zero.

2.5 Evaluation Metrics

To evaluate various methods proposed in this thesis we use different metrics. For

evaluating performance of object detection and classification we use Precision,

Recall and F1-score. Precision is calculated as following:

Precision =
TP

TP+ FP

(2.17)

where, TP and FP represents the number of true positives and false positives,

respectively. Recall is calculated as following:

Recall =
TP

TP+ FN

(2.18)

where, TN represents the number of true negatives. Precision and recall values

are calculated for different confidence values associated with the prediction of the

classifier. Using low confidence value as a threshold for classification, results in

large recall but low precision. Conversely a high confidence value as threshold

results in high precision and low recall. Choosing a threshold value for confidence

score is often task dependent. In order to evaluate the performance of a classifier

using a single score rather than precision or recall, a common practice is to report

F1 score, which is harmonic mean of precision and recall and it is is calculated as

following:

F1 = 2 · Precision · Recall
Precision+ Recall

(2.19)



2.5. Evaluation Metrics 21

These metrics are calculated for all the classes individually.

For evaluating semantic segmentation we use intersection over union (IoU) as a

metric and it is calculated as following:

IoU =
TP

TP+ FP+ FN

(2.20)

For the evaluating the performance of learned feature descriptors, we plot the ROC

(receiver operating characteristic) curve. This curve summarizes the performance

of a classifier by combining the true positive rate (TPR) and the false positive rate

(FPR). The TPR is calculated in the same way as recall (Eq. (2.18)) and the FPR is

calculated as following:

FPR =
FP

TN+ FP

(2.21)

Similar to precision and recall, TPR and FPR are also calculated for different values

of the confidence score of a classifier’s prediction.





Chapter 3

Learning a Feature Descriptor for 3D
LiDAR scans

Robust data association is necessary for virtually every SLAMsys-
tem andfinding corresponding points is typically a preprocessing
step for scan alignment algorithms. Traditionally, handcrafted
feature descriptors were used for these problems but recently
learned descriptors have shown to perform more robustly. In
this chapter, we focus on learning local feature descriptors for 3D
LiDAR scans. The descriptor is learned using a Convolutional
Neural Network (CNN). We discuss two methods for learning a
feature descriptor. In the first method the descriptor is learned
together with a metric for matching the descriptor and in the
second method the descriptor is learned to be discriminative
in a predefined metric. Our proposed architecture consists of
two separate sub-networks, a Siamese network for learning a
feature descriptor and a metric learning network for matching
the descriptors. We also present methods for estimating local
surface patches and obtaining ground-truth correspondences, re-
quired for learning the descriptor. In extensive experiments, we
compare our learned feature descriptor with a set of handcrafted
and learned local descriptors and report highly competitive re-
sults for multiple experiments in terms of matching accuracy and
computation time.

3.1 Introduction

For several robotics tasks, it is required to have robust data association in order

to match similar parts of the environment under different conditions. Estimating

data association is always an important step in SLAM systems [97] and methods

for lifelong visual localization [77] rely on finding corresponding points between

scenes captured in different seasons. Furthermore, knowing corresponding points

is also a requirement for scan alignment. In this thesis, one of our objectives was to
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infer motion cues from the environment, which involves detecting dynamic objects

in the environment using motion and estimating rigid motion field. A prerequisite

for these tasks is to estimate data association between keypoints in consecutive

scans and we address this problem in this chapter and propose different methods

for learning local feature descriptors for 3D LiDAR scans.

The majority of existing feature descriptors for 3D data are handcrafted [9] and

rely either on quantifying surface normals or the curvature around keypoints. In

contrast to these methods, we do not try to explicitly extract geometric information

but instead use raw scan data and learn descriptors using local shape information

and surface reflectance values, around a keypoint. In the context of learning feature

descriptors, various CNN-based methods have been proposed for learning feature

descriptors for image patches [12, 42, 130] and dense 3D surface patches [131]. All

of these methods include a two or multi-stream Siamese network for learning a

feature descriptor, which is either discriminative in a predefined [12, 130, 131] or in

a learned metric [42].

In this chapter, we propose a method to learn a feature descriptor simultaneously

with a metric for matching the descriptors, and a method for learning a descriptor

that is matched using a predefined metric. Our proposed architecture consists of

two sub-networks. A two stream Siamese network for learning a feature descriptor

and a network for learning a metric for matching the descriptors. Our feature

learning network is based on the recent dense blocks architecture [55]; for metric

learning, we use a stack of fully connected layers. In the first method, the metric

learning network is appended at the end of feature learning network and both

networks are trained together. Figure 3.1 demonstrates the matching of keypoints

using our learned feature descriptor and metric for sparse 3D LiDAR scans. For the

second method, only the feature learning network is used for training, and learned

descriptors are discriminative in Euclidean metric, rather than in a learned metric.

The input to the network is a pair of surface patches around keypoints, where

the patches capture the local surface information around keypoints. We generated

our own training data, since the data used by existing learning based methods

either consists of grayscale image patches or dense 3D surface patches and neither

of these can be used for learning a descriptor for sparse LiDAR scans. We explore

two different representations for the input surface patches. In the first case, we

represent the 3D neighborhood around a keypoint as a 2D image patch and in

the second case, we represent the same neighborhood using 3D voxels. In both

cases, we encode the depth information and surface reflectance values. The training

data is generated using the LiDAR scans in the KITTI tracking benchmark [36],

and ground-truth correspondences are obtained by tracking keypoints using our

method of estimating pointwise motion as discussed in Chapter 4.

The foremost contribution of this chapter are different methods for learning local

feature descriptors for sparse 3D LiDAR scans. The learned descriptors can either
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0.98,0.02

Figure 3.1: An illustration of keypoint matching using our learned feature descriptor.

Surface patches around the keypoints are passed through the feature learning network to

estimate feature descriptors. These descriptors are then passed through the metric learning

network to estimate a matching score. Red lines show the correspondences between the

keypoints in the two 3D LiDAR scans. Different colors in the architecture represent different

layers, which are explained in later sections.

be matched using a learned metric or a predefined metric. The learned descriptor

allows robust matching of keypoints, which is necessary for estimating motion. We

also target relevant problems in the feature learning pipeline, i.e., extracting local

surface patches and obtaining the ground-truth correspondences. In the context of

local surface patches, we explore different representations, as well.

To validate the performance of our learned feature descriptors, we evaluate the

matching accuracy (Section 3.3.1) and compare the performance withmultiple hand-

crafted feature descriptors and descriptors learnedwith different CNN architectures.

We present results for another experiment, where we align multiple objects based

on feature correspondences (Section 3.3.2). Furthermore, to highlight the difference

between using a predefined and a learned metric, we present comparative results

for our learned feature descriptor, using respective cases. Similarly, we compare

the feature descriptor, learned using 2D patches and 3D voxels, as input data. In

addition, we show that our descriptor can generalize to data from different type

of LiDAR scanners. We do this by repeating the alignment experiment but with

data from a different scanner. Finally, we present an ablation study (Section 3.3.4)

to provide insight into the role of each modality used for learning the descriptor.

To analyze the discriminative nature of a descriptor, we measure similarity between
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Figure 3.2: Illustration of keypoint tracking used to generate image patches for training.

the descriptors belonging to a set of matching and non-matching keypoint pairs

(Section 3.3.5). We then compare this analysis across different handcrafted and

learned feature descriptors.

3.2 Learning a Local Feature Descriptor

Our feature learning pipeline has three main steps. First, we extract keypoints

and track them to obtain ground-truth correspondences. Then we extract surface

patches around successfully tracked keypoints and in the last step we train the

network to learn a feature descriptor.

3.2.1 Generating Training Data

A key requirement for supervised learning is labeled training data. Since labeling

many correspondences byhand is a strenuous task, existingmethods [12, 42, 130, 131]

use 3D scene reconstruction for associating pixels corresponding to same 3D point

for obtaining ground-truth correspondences. Using datasets from these methods

is not possible, since our objective is to learn a feature descriptor for sparse 3D

LiDAR data and the datasets made available from these methods either consists of

grayscale image patches or dense 3D surface patches. Therefore, we create our own

training data.

3.2.1.1 Ground-Truth Correspondences

To obtain ground-truth correspondences, we first select the keypoints using uniform

sampling and then track those keypoints for the next five frames. For tracking,

we use our method for estimating pointwise motion. Associating keypoints over

multiple frames instead of one allows us to remove false correspondences. For
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Figure 3.3: The left image shows a voxelized cube around a keypoint and the right image

shows different channels of an extracted surface patch. Surface reflectance intensity is

showed in green and depth is shown in red.

keypoints that are successfully tracked over five frames, we extract surface patches

for all frames. Figure 3.2 shows tracking of a keypoint for five frames using our

method of estimating of the pointwise motion.

3.2.1.2 Training Patches

Learning a feature descriptor requires local surface patches around keypoints. In

the case of 2D image data, generating patches is a straightforward task, since the

data is organized in a grid structure, but for unorganized sparse 3D pointclouds

this task is non-trivial. In our approach, for a given keypoint, we use a cube with

predefined length to capture the local neighborhood by choosing points inside the

cube. We propose the following two different representations for these points:

1. We use a 2D image patch for representing points around a keypoint. The

cube around the keypoint is divided into 64× 64× 1 voxels. For every voxel

we calculate the average distance w.r.t. the keypoint and the average surface

reflectance intensity values for the points inside the voxel and store the 3D

voxel as a two channel image patch (64× 64× 2). The first modality (depth)

aims at capturing the geometry and the second (intensity) captures surface

reflectance properties. Figure 3.3 illustrates this process, where the left image

shows the voxel structure around a keypoint and the right image shows the

modalities that we use.

2. We use 3D voxels for representing local surface information. The first step

is to divide the cube into 24× 24× 24 voxels and calculate the inverse sign

distance function (ISDF) and the intensity value for each voxel. To calculate

the ISDF value, we first calculate the distance between the voxel center and the

nearest surface point. To estimate whether the voxel is inside or outside the
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2D Surface Patches

Feature 
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Metric

 Learning
Sparse LiDAR Data

Figure 3.4: An overview of our feature learning method. The local information around the

keypoints from sparse LiDAR scans is converted into surface patches. Input to the feature

learning network is a pair of matching and a pair of non-matching surface patches and

input to the metric learning network is the learned feature descriptors.

surface, we compute the angle between the normal of the nearest surface point

and its vector to the voxel center. If the angle is less than 90°, the voxel center
is outside or inside otherwise. The points outside the surface have a positive

sign and the points inside the surface have a negative sign. The intensity value

corresponding to each voxel is the intensity value of the nearest surface point.

Using 3D voxels allow us to retain more information in contrast to the first

case where a cube is being represented as a 2D image patch. Furthermore, the

3D voxel representation is denser in comparison to 2D image patches because

the depth and intensity information is also available for empty voxels.

3.2.2 Network Architecture

Figure 3.4 illustrates the process of learning a feature descriptor. The input to the

network is a pair of matching and non-matching surface patches, where the patches

could either be 2D image patches or 3D voxels, as discussed above. Our proposed

learning framework consists of a Siamese network for learning the features and

a metric learning network. Siamese networks are a popular architecture choice

for learning problems that involve finding similarity or relationships between

comparable quantities. Therefore, they are perfectly suited for our task of learning

a feature descriptor for matching keypoints. We use a two stream Siamese network,

where each stream is an identical sub-network consisting of two convolution layers

followed by two dense blocks and a bottleneck layer. All learnable parameters

within each layer are shared across both streams.

Figure 3.5a shows the details of the architecture used for learning the descriptor

from 2D image patches. For each layer, the kernel size, stride and the output feature

maps are shown in the figure. In the proposed architecture, the composite function

Hl(·) for a dense block consists of batch-normalization, a Rectified Linear Unit
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(ReLU), and a convolution layer. Within each block, the composite function is

repeated twice. The bottleneck layer is a convolution layer and the flattened output

of it is the learned feature descriptor. We use three average pooling layers: one

after the second convolution layer and one after each dense block. In the case of

learning a descriptor from 3D voxels, the architecture (Figure 3.5a) is similar to

the architecture used for 2D patches with some necessary changes. Due to the

increased dimensionality of the input data, the kernel size for convolution and

pooling operations are changed to 3× 3× 3 and 2× 2× 2 respectively. The number

of feature maps for the bottleneck layer is increased from 4 to 8. Since the spatial
size of the 3D voxel is smaller in comparison to the 2D patches (24× 24× 24 and

64× 64), the spatial size of the input tensor to bottleneck layer is also smaller

(3× 3× 3 and 8× 8). The increase in feature maps makes the sizes of the feature

descriptors learned from 2D image patches (256) and 3D voxels (216) comparable.

3.2.2.1 Simultaneous Feature Descriptor and Metric Learning

For simultaneous feature and metric learning, we append the feature learning

network with a metric learning module. This module has five fully connected

layers (fc) where every fc layer, except the last one (fc4), is followed by a ReLU. The

input to the metric learning module is the concatenation of the output of respective

Siamese network streams. The number of feature maps for every layer is shown

in Figure 3.5c. The metric learning architecture is identical for both 2D patches and

the 3D voxels except for the number of feature maps in the input layer. In case of

the 2D patches the size of input layer is 256× 2 ( Figure 3.5c) and in the other case it

is 216× 2.

We pose the task of simultaneous feature and metric learning as a binary

classification problem, where a pair of input surface patches has to be classified as

matching or non-matching. Our training set is T = {(X1
n, X2

n, Yn), n = 1, . . . , N},
where X1

n and X2
n are two sets of surface patches and Yn = {yk ∈ {1, 0}, k =

1, . . . , N} are the corresponding ground truth labels. When the input is a pair of

2D image patches, the function learned by the CNN is defined as f(x1
k, x2

k, θ) ∈
R64×64×2 → R2

, where θ are the parameters of our model and x1
k ∈ X1

n and x2
k ∈ X2

n
is a pair of 2D image patches. This function first maps a pair of image patches onto

a pair of feature descriptors and then classifies the estimated feature descriptors as

either matching or non-matching. The network learns the weights θ by minimizing

the cross-entropy (softmax) loss in Eq. (3.1) over all patch pairs, as shown in Eq. (3.2).

For the 3D voxels, the problem is exactly the same except that the function mapping

changes to f(x1
k, x2

k, θ) ∈ R24×24×24×2 → R2
.
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Figure 3.5: Different DCNN architecture for learning the feature descriptors. We use the

architectures shown in in figures (a) & (c) for simultaneously learning a feature descriptor

and a metric for matching the descriptors from 2D image patches. Similarly, we use the

architecture shown in figures (b) & (c) for learning a descriptor and a metric together from

3D voxels. In figure (d), we show The DCNN architecture used for learning a descriptor

using a pre-defined metric.
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L(y, ŷ) = − ∑
c∈{0,1}

yc log ŷc (3.1)

θ∗ = argmin
θ

1
N

N

∑
k=1

L
(
yk, f

(
x1

k, x2
k, θ
))

(3.2)

3.2.2.2 Learning a Feature Descriptor using a Predefined Metric

An alternative to learning the metric is to use a loss layer directly after the feature

learning. The most commonly used loss layers for the task of learning similarity or

dissimilarity between comparable quantities are contrastive loss [131] and hinge

embedding loss [102]. Both of these layers try to minimize the Euclidean distance

betweenmatching descriptor pairs and simultaneously increase the margin between

non-matching pairs. In our case, we use the hinge embedding (H.E.) loss.

As before, the training set is defined as T but the function learned by the CNN is

now g(xk, θ) ∈ R64×64×2 → Rd
, where xk is a surface patch around the keypoint

and d is the size of the learned descriptor. In the case of metric learning described

in Section 3.2.2.1, the network simultaneously learned a mapping from an input

surface patch to a feature descriptor and to classify whether a pair of descriptors

are matching or non-matching. Here, the network only learns a function to map an

input surface patch to a feature descriptor that is discriminative in Euclidean space.

For learning a feature descriptor using H.E. loss, we replace the bottleneck layer in

the feature learning network with a set of fully connected layers. The output of the

last layer is the learned feature descriptor. Themodified architecture for the network

used for learning from 2D image patches is shown in the Figure 3.5d. The layers

prior to the fully connected layers are exactly the same as shown in Figure 3.5a.

3.2.3 Training

Our complete network architecture has been implemented in TensorFlow [8]. Using

our patch generation method, we generated 58,710 surface patches for training.

The input to the network is a batch of surface patch pairs. The surface patches

could be either 2D image patches or 3D voxels. Each batch consists of an equal

number of matching and non-matching surface patches, as shown in Figure 3.4. For

generating surface patches for training, we used the first ten sequences of the KITTI

tracking benchmark. With these surface patches, we estimated 117,400 positive

and 704,400 negative pairs. To generate negative pairs, for every surface patch we

randomly selected surface patches corresponding to keypoints sampled from a

different sequence. Since the input to the network always consists of a negative and

positive combination, our effective training set consists of 704,400 samples. We use

the remaining sequences from the benchmark for generating surface patches that

are part of the test set.
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We use the following training procedure for learning a feature descriptor, with

and without metric. We train the network with a batch size of 32 and use the Adam

optimizer [62] with a learning rate of 1e−4
and weight decay 1e−5

. The growth rate

for dense blocks is 4. We train the network for 5 epochs and the complete training

process required around 2 hours using an NVIDIA GeForce GTX 980 graphics card.

3.3 Results

To evaluate our method, we perform multiple experiments. We first evaluate the

matching accuracy for various descriptors. We then report the average alignment

errors for objects scanned using Velodyne HDL-64E and HDL-32E LiDAR scanners.

We also report computation times for calculating and matching the descriptors.

Among handcrafted descriptors, we compare with SHOT [112], FPFH [95], and

3DSC [35]. To justify the usage of dense blocks for our task, we present results for

feature descriptors learned with the following two network architectures: [42, 46].

1. The first architecture [42] was proposed to learn a feature descriptor and a

metric for grayscale image patches. Its feature learning architecture consists

of blocks of convolution layers and ReLUs separated by max-pooling layers

and it uses a stack of fully connected layers for metric learning. This feature

learning architecture is similar to the initially proposed CNN architectures, for

instance VGG [103]. Other methods [130, 131] proposed for learning feature

descriptors have also used similar architectures. The reason we chose the

architecture from MatchNet is that it has a similar input patch size to ours

(64× 64) and also uses metric learning.

2. The second architecture that we compare with consists of residual blocks [46].

Lately, residual blocks-based architectures have also been shown to perform

well for a variety of tasks [46, 69]. We use a ResNet-8 [69] for feature learning

and keep the metric learning architecture unchanged. Figure 3.6 shows the

ResNet-8 architecture that we used.

Furthermore, we also compare with our feature learning network trained with the

hinge embedding (H.E.) loss and the feature descriptor learned using 3D voxels.

The first three comparisons present the advantages of learned feature descriptors

over the handcrafted descriptors. The next two comparisons highlight the benefits

of using dense blocks. The last two compare the performance of a learned with a

predefined metric and 2D image patches with 3D voxels.

3.3.1 Matching Accuracy

The goal of this experiment is to test the performance of different descriptors on

the pairs of surface patches from our testing set. We use 100,000 samples, half



3.3. Results 33

co
n

v,3
x
3
,1

6

6
4
x
6
4
x
2

:=

batch N
orm

      R
eLU

  conv 3x3/2

R
e
s B

lo
ck

 1

conv,1x1,16,/2 conv,1x1,24,/2
co

n
v,1

x
1
,4

conv,1x1,32,/2

batch N
orm

      R
eLU

R
e
s B

lo
ck

 3

Figure 3.6: Architecture for ResNet-8

of which are matching and the other half are non-matching. For every case we

plot a receiver operating characteristic (ROC) curve and report false-positive rate

at 95% recall (FPR95). The ROC curves are shown in Figure 3.7 and the FPR95

is reported in Table 3.1. We plotted the curve for various matching thresholds,

which in the case of metric learning is the softmax score. We used the Euclidean

distance between descriptors for the handcrafted descriptors and the descriptor

learned using H.E. loss. The error for our feature descriptor learned from 3D voxel

is the lowest and it outperforms the handcrafted descriptors and other learned

descriptors by a significant margin. This supports our initial claim that the 3D voxel

representation allows the capturing of more information of the local surface, thereby

enabling learning of a more discriminative local feature descriptor. This superior

performance comes at the cost of large computation time for feature estimation.

Our descriptor learned together with a metric that used 2D image patches was

the next best performing feature descriptor, which outperformed other descriptors

learned from same patch representation. The superior performance of learned

over handcrafted descriptors shows the advantages of learning a descriptor. These

results also justify our proposed architecture for learning a descriptor.

Comparing the descriptors with simultaneously learned and predefined metrics,

the error increases when our feature learning network is trained with H.E. loss (the

yellow curve in Figure 3.7), demonstrating the importance of metric learning. The

increase in performance due to metric learning comes at the cost of an increase

in matching time due to the computationally expensive forward pass through the

metric learning network. We discuss the matching time for different descriptors

in Section 3.3.3.
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Figure 3.7: ROC curves for different feature descriptors. Feature descriptor learned using

3D voxels outperform other descriptors. Using H.E. loss instead of metric learning leads to a

decrease in performance, whereas all handcrafted descriptors underperform in comparison

to the learned descriptors.

Table 3.1: FPR95 Error.

Method Feature Size Error(%)

SHOT [112] 352 82.56

FPFH [95] 33 10.26

3DSC [35] 1980 89.16

MatchNet [42] 4096 0.45

ResNet-8 256 0.60

Ours (H.E. Loss) 256 1.94

Ours (depth + intensity) 256 0.42

Ours (only depth) 256 0.46

Ours (only intensity) 256 0.53

Ours (3D Voxels) 216 0.15

3.3.2 Alignment

Many methods for surface or scan registration require coarse initial alignment,

especially when data is collected at a low rate (typically 10Hz for LiDAR) and the

assumption that nearest neighbor points are corresponding does not hold. In this

experiment, we align multiple objects scanned using two different LiDAR scanners.



3.3. Results 35

Table 3.2: Alignment error for the individual objects using our descriptor learned with

metric from 2D image patches

Object ID Points Keypoints te(m) re(rad)
Scans from Velodyne HDL-64E

0 1369 483 0.28 0.04

1 493 285 0.54 0.04

2 787 332 0.47 0.04

3 250 186 0.52 0.02

4 1320 383 1.55 0.24

5 970 394 1.06 0.13

6 228 129 1.48 0.10

7 199 154 1.10 0.06

8 580 395 0.73 0.02

9 564 427 0.08 0.02

10 316 233 1.22 0.04

11 1517 908 0.23 0.01

Scans from Velodyne HDL-32E

0 313 230 0.88 0.07

1 3271 1099 0.46 0.13

2 3741 1239 0.49 0.13

3 319 239 0.22 0.14

Figure 3.8: An illustration of the alignment experiment. The image on the left shows

the sparse unaligned objects and the correspondences estimated by matching our feature

descriptor. The image on the right shows the aligned pointclouds.

In Table 3.2, we report the number of objects that we used in the experiment,

number of points belonging to each object, number of keypoints and translational

and rotational alignment error for our descriptor that was learned using 2D image

patches.
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3.3.2.1 LiDAR Scans from Velodyne HDL-64E

In this experiment, we align 12 static objects extracted from consecutive LiDAR

scans from the KITTI tracking benchmark. Since all objects are static, the ground-

truth motion is the inverse sensor motion, which is provided by the benchmark.

In Figure 3.8 we show example results: The image on the left shows the unaligned

objects and the corresponding keypoints that were matched using our feature

descriptor, learned with metric using 2D patches. The right image illustrates the

aligned pointclouds. As before, we use uniform sampling for selecting keypoints.

In Table 3.3, we report the average translational error te and rotational error re for the

motion estimated using the rawpoint correspondences and correspondences filtered

with RANSAC. The motion estimated using raw correspondences reflects more

clearly on the feature matching accuracy in comparison to filtered correspondences.

The alignment error reported for Ours (depth + intensity) method, using raw

correspondences is the average of the errors reported in Table 3.2. Among the

descriptors learned from 2D image patches, our descriptors with learned metric

and hinge embedding loss have similar performance and they outperform the other

descriptors by a significant margin. Similar to the matching accuracy experiment,

the best performing descriptor (lowest error) is our descriptor learned from 3D

voxels.

The rightmost column in Table 3.3 reports the feature matching time. The FPFH

descriptor takes the least amount of time to match but has the largest alignment

error. All of the handcrafted descriptors can be matched quickly using KD-trees in

comparison to feature descriptors learned using a metric and, therefore, they have

the lowest matching time. In this experiment, our feature descriptor learned using

Euclidean distance performs most favorably considering both alignment error and

matching time. Among the feature descriptors learned using the metric, the time

for MatchNet is the largest. This increase in time is mainly attributed to the large

descriptor size (4096 vs. 256), which results in twice as many parameters in the

metric learning network in comparison to other learned descriptors. The matching

times for ResNet-8, and our descriptor, both learned from 2D image patches and 3D

voxels is similar, since the architecture for metric learning and the feature descriptor

size are comparable.

3.3.2.2 LiDAR Scans from Velodyne HDL-32E

We repeat the alignment experiment with the scans from a 32 beam LiDAR scanner

without retraining on these scans. Like before, we align static objects and use

the sensor pose from the SLAM solution [64] as the ground-truth motion. The

purpose of this experiment is to show that our feature descriptor is not overfitting

to data collected from a single sensor but can generalize to data collected from

different sensors. Even though both sensors provide the same modalities, the
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Table 3.3: Average alignment errors for HDL-64E scans

Method

raw RANSAC

t(s)

te(m) re(rad) te(m) re(rad)
SHOT [112] 1.38±1.06 0.13±0.11 0.76±0.56 0.10±0.07 0.05

FPFH [95] 3.37±5.40 0.33±0.54 1.30±0.89 0.14±0.11 0.004
3DSC [35] 2.75±2.58 0.34±0.38 0.81±0.37 0.08±0.04 0.57

MatchNet [42] 0.88±0.47 0.08±0.06 0.93±0.77 0.07±0.05 14.78

ResNet-8 0.95±0.48 0.07±0.06 0.83±0.71 0.08±0.05 1.03

Ours (H.E. loss) 0.76±0.34 0.07±0.06 0.52±0.27 0.05±0.01 0.18

Ours (depth + intensity) 0.77±0.47 0.07±0.06 0.57±0.28 0.06±0.02 0.92

Ours (3D Voxels) 0.43±0.23 0.04±0.02 0.37±0.24 0.03±0.02 1.01

data from a Velodyne HDL-32E is sparser in comparison to data from a Velodyne

HDL-64E. Table 3.4 shows the alignment error for different cases, and our feature

descriptor with learned metric using 3D voxels outperforms the other descriptors.

This experiment demonstrates that different learned descriptors are capable of

generalizing on data from other sensors.

Table 3.4: Average alignment errors for HDL-32E scans

Method

raw RANSAC

te(m) re(rad) te(m) re(rad)
SHOT [112] 0.57±0.29 0.11±0.04 0.46±0.54 0.07±0.06
FPFH [95] 1.32±1.08 0.22±0.10 2.07±2.20 0.14±0.25
3DSC [35] 2.48±3.46 0.28±0.27 0.73±0.77 0.06±0.03

MatchNet [42] 0.97±1.01 0.13±0.08 0.88±1.24 0.14±0.11
ResNet-8 0.81±0.33 0.14±0.06 0.60±0.56 0.07±0.04

Ours (H.E. loss) 0.65±0.14 0.07±0.06 0.58±0.55 0.11±0.04
Ours (depth + intensity) 0.51±0.23 0.12±0.02 0.41±0.39 0.05±0.05

Ours (3D Voxels) 0.42±0.18 0.07±0.03 0.26±0.11 0.05±0.01

3.3.3 Computation Time

InTable 3.5 and 3.6, we report the computation time for estimating featuredescriptors

for different neighborhood and sampling radii. The neighborhood radius dictates

the extent of local information captured around a keypoint and the sampling radius

controls the number of keypoints in a scan for which descriptors are calculated.

In the first case, we estimate descriptors for the same number of points (sampling

radius of 0.4m) but for different neighborhood radii. This evaluation highlights per

feature calculation time, which only depends on the input neighborhood radius.
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In the second case, we use a fixed neighborhood radius of 3.2m while varying the

sampling radius. This evaluation focuses on changes in computation time with the

increase in number of keypoints. For each case, we report the processor details, i.e.,

whether it is a single core CPU (C), multi-core CPU (MC), or GPU (G). For learning

methods, we separately report the time required for estimating the surface patches

and for estimating the feature descriptors.

Table 3.5: Per feature computation time (in ms) for various neighborhood radii.

Method Processor

Neighborhood radius (m)

0.4 0.8 1.6 3.2 6.4

SHOT [112] MC 0.092 0.096 0.119 0.284 0.787

FPFH [95] MC 0.090 0.282 0.961 3.01 10.23

3DSC [35] C 0.148 0.440 3.21 31.19 344.10

MatchNet [42]

MC+

G

0.036+

0.139

0.037+

0.139

0.047+

0.139

0.075+

0.139

0.219+

0.139

ResNet-8

MC+

G

0.036+

0.151

0.037+

0.151

0.047+

0.151

0.075+

0.151

0.219+

0.151

Ours (H.E. loss)

MC+

G

0.036+

0.132

0.037+

0.132

0.047+

0.132

0.075+
0.132

0.219+
0.132

Ours

MC+

G

0.036+

0.133

0.037+

0.133

0.047+

0.133

0.075+

0.133

0.219+

0.133

Ours (3D Voxels)

MC+

G

5.14+

0.99

6.65+

0.99

9.04+

0.99

18.25+

0.99

42.36+

0.99

For small neighborhood radii, handcrafted descriptors have a low computation

time because different per-point operations, like estimating normals and estimating

descriptors among other different operations, are performed more efficiently for

smaller radii (fewer points). When increasing these radii (more points), these

operations are not as efficient as before even when KD-Trees are used. In the case of

the learned feature descriptors, the change in neighborhood radii only affects the

patch computation time and not the feature estimation time. For 2D image patch

computation, the voxelization of the neighborhood is independent of the number

of points in the neighborhood. The only operation dependent on the number of

points is calculating the average in depth and intensity values.

Among the descriptors learned using 2D image patches, our feature descriptor

requires the least computation time in comparison to other architectures because our

feature learning network has the fewest number of parameters. The computational

time for estimating the 3D voxels and the corresponding descriptor is largest

among learned descriptors. The 3D voxel representation requires estimating the

nearest surface point for every voxel center and this computation contributes to the

significant increase in computation time. The increase in feature computation time
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Table 3.6: Computation time (in seconds) for various sampling radii.

Method

Sampling radius (m)

3.2 1.6 0.8 0.4 0.2 0.1 0.05

SHOT [112] 0.97 0.97 1.36 2.64 6.45 12.47 24.83

FPFH [95] 27.97 28.30 27.86 31.87 40.74 55.79 85.13

3DSC [35] 8.97 35.07 99.49 355.58 1111.65 3073.30 6179.10

MatchNet [42]

0.03+

0.22

0.11+

0.33

0.28+
0.67

0.81+

1.68

3.72+

3.29

4.40+

6.25

9.17+

8.26

ResNet-8

0.03+
0.20

0.11+
0.16

0.28+

0.70

0.81+

1.68

3.72+

3.61

4.40+

6.75

9.17+

9.84

Ours (H.E. loss)

0.03+

0.33

0.11+

0.42

0.28+

0.70

0.81+
1.47

3.72+
3.01

4.40+
5.43

9.17+
7.80

Ours

0.03+

0.34

0.11+

0.43

0.28+

0.71

0.81+

1.49

3.72+

3.05

4.40+

5.52

9.17+

7.90

Ours

(3D Voxels)

5.098+

0.42

14.99+

1.57

41.70+

2.66

110.764+

6.85

271.38+

16.38

498.50+

30.52

810.23+

46.20

is mainly due to an increase in dimension of the input data, causing an increase in

the learnable parameters of the network.

With the decrease in sampling radius, the number of keypoints increases. The

reported time is the combined computation time for all the keypoints. In this case,

the better performance of learned feature descriptors is mainly attributed to the

proper utilization of parallel processing capabilities of GPUs in comparison to the

multi-core implementation of handcrafted descriptors on CPUs. In comparison to

other learned descriptors from 2D patches, the performance of our feature learning

network scales better with the increase in number of keypoints. Since our network

is smaller than others, it allows us to process larger batches of data in parallel.

Similar to before, the computation time among learned descriptors is largest for the

descriptor learned using 3D voxels for the reasons discussed above.

3.3.4 Ablation Study

To better understand the contribution of each modality, we trained two separate

networks with single channel input (depth and intensity). Table 3.1 shows the

FPR95 error for both cases. The performance of the feature descriptor learned using

depth is better than the feature descriptor learned using surface intensity values.

Comparing the two modalities, depth is more informative since it captures the

local geometrical information more reliably in comparison to the surface reflectance

values. The error for both of these cases is higher than the feature descriptor learned

using both modalities and, therefore, using them together helps in learning a more

discriminative feature descriptor.
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3.3.5 Discriminative Power

In the previous sections, we presented results for the matching and alignment

accuracy for various descriptors. These experiments implicitly evaluated the

discriminative nature of different descriptors. In this section, we analyze this

characteristic more explicitly. We measure the similarity between descriptors for

both matching and non-matching keypoints. Ideally, we would want the descriptor

to be similar formatching keypoints and to be dissimilar for non-matching keypoints,

and a large margin between similarity measure of descriptors for matching and

non-matching keypoints. Ourmethod for learning a descriptor, both simultaneously

with metric learning and using the Euclidean metric, aims to achieve a large margin

in similarity measure between these cases.

We use the same objects scanned using Velodyne HDL-64E reported in Table 3.2,

for this experiment. For each of these objects, we estimate the ground-truth

correspondences by first aligning the objects using the ground-truth motion and

then selecting the nearest neighbor between keypoints in the aligned scan and the

target scan. We report this analysis for the SHOT descriptor, which performs best

among handcrafted descriptors; our feature descriptor learned using H.E. loss, and

the feature descriptors simultaneously learned with a metric. This includes our

feature descriptor (2D patches and 3D voxels) and the descriptor learned using the

ResNet-8 and MatchNet architecture.

The similarity measure is different for the descriptors discriminative in the

Euclidean space and the descriptors discriminative in the learned metric. For

SHOT and our descriptor learned using H.E. loss, the similarity measure is the

Euclidean distance between the descriptors, where a low distance value indicates a

strong similarity and a large distance value indicates the opposite. For the other

descriptors, the similarity measure is the confidence score of two descriptors being

a match. The confidence score is the output of the metric learning network, where a

value close to one indicates similarity between the descriptors, and a value close to

zero indicates dissimilarity.

In order to visualize this similarity between descriptors, we use tSNE [118] to

project these feature descriptors from a high dimensional space to a lower dimen-

sional 3D space. tSNE is a method for estimating a low dimensional embedding

for high dimensional data, where the objective is to preserve the relative distance

between the original data in high dimensions and its low dimensional counterpart.

In Table 3.7, we report the estimated similarity between matching and non-

matching keypoints averaged over all the objects for different descriptors. Addi-

tionally, we report the ratio of the descriptor similarity between non-matching and

matching keypoints. This metric highlights themargin between them and, therefore,

the descriptor’s discriminative capability. For descriptors learned discriminative in

Euclidean space, large values for this metric indicate the desired behavior. For the

other descriptors the same behavior is characterized by small values.
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Figure 3.9: Illustration of feature descriptormatchedusing Euclideanmetric. The left column

shows the associated correspondences and the right column shows the low dimensional

projection of the feature descriptors. The top row shows results for SHOT descriptor

and the bottom row shows results for our feature descriptor learned using H.E. loss. For

both cases, the majority of the corresponding keypoints are projected close to each other.

The cases where non-matching keypoints are matched are also clearly visible. For SHOT,

descriptor keypoints 13, 14 and 15 are incorrectly associated and for the other descriptor,

keypoints 2,9 and 12 are incorrectly associated. The incorrect matching is evident in the

tSNE representation as well.

The descriptor distance between matching keypoints for our descriptor learned

using H.E. loss is lower than the distance computed for the SHOT descriptor but the

distance for non-matching keypoints is larger for SHOT. The ratio of distances for

non-matching and matching keypoints is larger for our descriptor, which strongly

indicates that it is more discriminative in Euclidean space in comparison to the

SHOT descriptor. This behavior was also observed in the other experiments, where

our feature descriptor outperformed the SHOT descriptor by a significant margin.

In Figure 3.9c and 3.9d, for one of the objects in the experiment, we show the

estimated correspondences between keypoints using our descriptor and the low

dimensional projection of the feature descriptor for the same keypoints in the source

and target scan respectively. Each keypoint is represented by a number and the same
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number is used for representing the feature descriptor in low dimensional space.

Keypoints with the same number but in different colors represent corresponding

keypoints ( ground-truth ). The Majority of the matching keypoints are projected

close to each other. The cases where non-matching keypoints are associated is also

clearly visualized, for instance the keypoints: 2,9 and 12. The relative distance

between these keypoints is small, as can be seen in the low dimensional space, which

also indicates the same. Figure 3.9a and Figure 3.9b, show the same illustration for

the SHOT descriptor.

For descriptors learned together with a metric, the similarity measure captures

both the performance of the learned descriptor and the metric learned for matching

the descriptors. Among different descriptors, the one learned using the MatchNet

architecture and our descriptor learned from 3D voxels have the largest matching

similarity score. This indicates that, on average, the descriptor learned using

this architecture is more confident in matching similar keypoints, in comparison

to the other descriptors. In the case of non-matching keypoints, the scores for

all the descriptors are comparable but the descriptor learned using ResNet-8

architecture has the lowest score by a slight margin. This suggests that on average

descriptors learned with a metric have a similar level of confidence in predicting

when the keypoints are dissimilar. The ratio of the non-matching and matching

score is also lowest for our descriptor (3D voxels). This indicates that our learned

feature descriptor is better at differentiating between matching and non-matching

keypoints in the learned metric, in comparison to the other learned descriptors

and their respective metrics. In the case of both, our descriptor learned from

2D image patches and MatchNet, some non-matching keypoints are associated

with a high confidence score, which results in a worse ratio of non-matching and

matching score. In Figure 3.10, we illustrate the associated keypoints and the low

dimensional projection of the descriptors learned using ResNet-8, MatchNet and

our architecture (3D voxels and 2D patches) respectively. All correctly matched

keypoints are grouped together in their low dimensional projection. The instances

where keypoints are incorrectly matched are also clearly visible after the projection.

Table 3.7: Discriminative Power

Method Matching Non-matching Non-matching/Matching

SHOT [112] 0.05±0.05 1.17±0.08 3.39±0.79
Ours (H.E. Loss) 0.02±0.01 1.02±0.13 7.39±2.65

ResNet-8 0.84±0.15 0.04±0.02 0.06±0.02
MatchNet 0.90±0.08 0.05±0.02 0.13±0.17

Ours (depth + intensity) 0.85±0.13 0.05±0.02 0.17±0.31
Ours (3D Voxel) 0.90±0.08 0.05±0.02 0.06±0.02
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3.4 Related Work

In this section, we briefly discuss the handcrafted feature descriptors that we use for

comparison with our method and an existing feature descriptor for sparse LiDAR

scans. We also discuss different CNN based descriptors proposed for grayscale and

dense 3D surface patches.

Several handcrafted local feature descriptors for 3D pointclouds have been pro-

posed [9] and are currently part of the PCL library [94]. The first descriptor we

compare with is the Fast Point Feature Histogram (FPFH) [95], which requires

normals as input and generalizes the mean curvature around a point using a his-

togram. Tombari et al. [112] proposed the Signatures of Histograms of Orientations

(SHOT) descriptor. Their contribution is a method for robustly estimating local

reference frames and a descriptor that quantifies local surface normal information.

The third image descriptor we compare with is 3D Shape Context (3DSC) [35].

Similar to other descriptors, it also requires surface normals as input and uses a

spherical grid around the keypoint for counting the number of points in bins along

azimuth, elevation and radial coordinates. We compare our results with these

descriptors and show the advantages of using a learned feature descriptor over the

handcrafted counterparts.

A feature descriptor designed for sparse 3D LiDAR scans was proposed by Serafin

et al. [97]. They quantify the vertical structure in the scene with 3D lines and planes

(circles) and show the efficacy of their approach by integrating these descriptors

in a SLAM system. Even though their method improves the performance of the

SLAM system, it might perform sub-optimally for environments that lack these

vertical structures. In contrast to this, our feature descriptor is not quantifying any

specific geometric structures in the environment and therefore can work in arbitrary

environments.

With the advent of CNNs, several methods have been proposed for learning

feature descriptors, but mainly for grayscale image patches. The architectures used

by these methods consist of a network for learning the descriptor, followed by

either a metric learning network for matching the descriptors or a loss layer, which

minimizes the distance between the descriptors using a predefined metric. The

architecture proposed in MatchNet [42] consists of a Siamese network for learning

the descriptor and a metric learning module. DeepCompare [130] discusses several

different architectures: Siamese, pseudo-Siamese, two-channel and central-surround

two-stream networks. The difference between Siamese and pseudo-Siamese is that

in the latter weights are shared only for selected layers instead of every layer. In

two-channel architectures, the image patches are stacked as two channels instead

of having a Siamese network. Central-surround two-stream networks consist of

four input streams, two for complete image patches and two for the central crop

of the input patches. They use a loss layer, which minimizes Euclidean distance

instead of a metric learning module and show that the central-surround two-
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stream architecture gives the best performance. MatchNet and DeepCompare are

outperformed by recently proposed PN-Net [12]. This network architecture uses

three input streams, where two streams have matching image patches and the third

stream is a non-matching image patch. Unlike MatchNet, which uses softmax loss,

they use SoftPN loss, a modified version of hinge loss [130].

A learning-based approach for 3D data was recently proposed by Zeng et al. [131].

Their approach, called 3DMatch, targets learning descriptors for dense 3D surface

patches using a Siamese network trained with contrastive l2 loss. One of the main

contributions is the proposed 3D patch representation, which uses a 3D voxel grid

of Truncated Distance Function values for representing the 3D shape. The key

difference between their work and ours is that they target dense 3D surface patches

extracted after aligning multiple scans, whereas we focus on learning descriptors

for data from a single sparse 3D LiDAR scan.

3.5 Conclusions

In this chapter, we addressed the problem of robust correspondence matching

between keypoints. We proposed twomethods for learning a local feature descriptor

for 3D LiDAR scans. The first method learns a feature descriptor and a metric for

matching the descriptors simultaneously and the latter learns a feature descriptor

that is discriminative in Euclidean space. We use an architecture based on dense

blocks for feature learning and showhowour architecture learnsmorediscriminative

feature descriptors in comparison to descriptors learned using other common

architectures. We also propose two different methods for quantifying the local

surface information around a keypoint. In the first method, the 3D neighborhood

around a keypoint is represented as a 2D image patch, and in the other method with

3D voxels. We report results on matching accuracy and alignment error. For both

cases our descriptor learned using the 3D voxel representation outperforms both

handcrafted descriptors and other learned descriptors by a significant margin. We

also report results for data collected from a different sensor and demonstrate how

our descriptor can generalize to different sources of data. Among the two proposed

methods, the feature descriptor learned together with a metric is more accurate but

the other feature descriptor is more suitable when a faster matching time is required.

Additionally, we present an ablation study to understand the importance of depth

and intensity modalities and show that using them together enables learning of a

more discriminative feature descriptor. Furthermore, we also provide an analysis

regarding the discriminative characteristics of various descriptors and show that

our learned feature descriptors are more discriminative in comparison to various

other feature descriptors.
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Figure 3.10: Illustration of feature descriptorsmatched using learnedmetric. The left column

shows the matched keypoints and the right column shows low dimenstional projection of

different descriptors. The results for feature descriptors learned using ResNet-8, MatchNet

and our proposed architecture (3D voxels and 2D surface patches) are shown in the first,

second, third and last row respectively. Keypoints that are correctly matched are grouped

together after projection for all the descriptors. Similarly, incorrectly matched keypoints are

also visible in the low dimensional projection.





Chapter 4

Motion Estimation in 3D LiDAR Scans

Robots are expected to operate autonomously in increasingly
complex scenarios, such as crowded streets or heavy traffic situa-
tions. The perception of the dynamic aspects of the environment
is crucial for safe and smart navigation and therefore is a highly
relevant precondition and a key enabler for autonomous robot
systems. In this chapter, we focus on scene understanding by
leveraging only motion cues. We tackle this problem at both
object and point level. We propose a novel model-free approach
for detecting and tracking dynamic objects in 3D LiDAR scans
obtained by a moving sensor. Our method only relies on motion
cues and does not require any prior information about the objects.
We sequentially detect multiple motions in the scene and seg-
ment objects using a Bayesian approach. For robustly tracking
objects, we utilize their estimated motion models. We present
extensive quantitative results on publicly available datasets and
show that our approach outperforms a popular method. For
understanding the dynamics of the scene at granular point level,
we propose a novel method for estimating dense rigid motion
field. We formulate the problem as an energy minimization
problem and introduce the concept of local geometric constancy
and incorporate regularization for dense smooth motion fields.
We evaluate our approach on one simulated and two real datasets.
Through evaluation, we show how our method is capable of
estimating multiple rigid motion models, a necessity if the en-
vironment is highly dynamic. Building upon this method, we
propose a HiddenMarkovModel based method for inferring the
motion state for points in a scan and present a comparison with
our method of detection and tracking of dynamic objects.



48 Chapter 4. Motion Estimation in 3D LiDAR Scans

4.1 Introduction

One of the major goals in the area of mobile robotics is to develop robot systems

that can robustly navigate to accomplish different tasks, such as surveillance and

transportation [44]. As the environment in which a robot is expected to operate

typically cannot be assumed to be static [64], it is necessary for the robot to properly

deal with the dynamic aspects of the environment. Perceiving the dynamics of

the environment is necessary for proper scene understanding because it provides

highly relevant information about the dynamic characteristics of various objects

that the robot interacts with and also allows better understanding about how the

environment might evolve in the future. For example, a self-driving car trying to

cross an intersection in heavy traffic needs to be able to detect the individual dynamic

objects in its vicinity, such as cars, bikes, trucks and pedestrians. Furthermore, it is

necessary to estimate their individual motion characteristics to be able to navigate

in a safe and efficient way.

In this chapter, we focus on 3D scene understanding solely based on motion

cues. The objective is to infer dynamic and static parts of the scene by estimating

the motion models pertaining to different dynamic entities in the environment.

Inferring the motion cues i.e., estimating the motion models offers many advantages.

It can be used for estimating the sensor motion as well as motion of multiple

dynamic objects [74]. The estimated motion then seamlessly paves the way for

desired semantic classification of a 3D scan into dynamic or static classes as well.

Furthermore, removing the dynamic objects from amap can help to more accurately

estimate the pose of a robot, and predicting the location of dynamic objects facilitates

safe and efficient motion and path planning.

We approach our problem of 3D scene understanding using motion cues from

two different perspectives. First, we address this problem at object level and

propose a method for detection and tracking of dynamic objects in outdoor urban

environments. This approach is a model free approach i.e. no prior object level

semantic knowledge is used. Our method solely relies on the assumption that

a scan can be decomposed into a set of rigid objects. Secondly, we address this

problem at the finer point level. We propose a method for estimating pointwise

motion and plug in the estimated motion in a Hidden Markov Model (HMM) based

approach to classify points in a 3D LiDAR scan as either dynamic or static. In

the first method, we assumed that objects are rigid and in the case of estimating

pointwise motion, we partially relax this assumption and assume objects are locally

rigid i.e. neighboring points are expected to have similar motion. This relaxation in

assumption enables estimation of motion of non-rigid bodies, like humans.

Our proposedmethod for detection and tracking of dynamic objects is an iterative

approach comprised of two steps. In the first step, we estimate the most dominant

motion model using RANSAC [32]. The input in this case is a set of sparse

correspondences between keypoints in two consecutive scans. In the next step, we
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use a novel Bayesian approach to segment the complete object moving according to

the estimated dominant motion. In the first iteration, the estimated motion is the

sensor motion, assuming the majority of the points in a scan are static and in the

subsequent iterations, we detect different dynamic objects by estimating different

motion models.

To estimate pointwise motion, we formulate an energyminimization problem, the

output of which is a dense rigidmotion field. In contrast to the first approach, which

required multiple iterations of RANSAC for estimating different motion models,

in this approach we estimate arbitrary motions using a single optimization run.

This method assumes local rigidity and we exploit this assumption by introducing

the concept of geometric constancy i.e. local geometry remains unchanged after

motion transformation. As we discussed in the previous chapter, a prerequisite

for estimating motion is data association between keypoints. To this end, we

introduce a method of estimating robust data association between sparse keypoints

in consecutive scans.

To infer the motion state for points in a LiDAR scan, we propose a HiddenMarkov

Model (HMM) based approach for estimating the probability of a point being static

or dynamic given the motion field and the sensor motion. Having such an approach

helps in incorporating temporal consistency in estimated motion states, thereby

reducing the number of false positives arising due to sporadic noisy measurements.

The primary contribution of this chapter is different methods for 3D scene

understanding using motion cues. We address this problem at object level and

also at a more granular point level. We propose a novel method for detection

and tracking of dynamic objects. We test our method on the dataset provided

by Moosmann and Stiller [74] and also compare ours with their approach. We

report: evaluation for the detection of dynamic objects, the error in the estimated

sensor motion and motion for one of the dynamic objects.

We also propose a novel method for estimating rigid motion field. This method is

capable of estimating arbitrary motions in the scene and works with both non-rigid

scenes and objects. We test our approach on one simulated and two real datasets.

The simulated dataset [129] consists of urban outdoor environment with multiple

dynamic objects. The first real dataset we evaluate our approach on is the KITTI

odometry benchmark [36]. Similar to the simulated dataset, this dataset only

consists of outdoor urban environments. In both of these datasets the environment

itself is non-rigid whereas each individual object is often rigid. Focusing on non-

rigid objects rather than scenes, we evaluate our approach on a second real dataset

consisting of pedestrians. For comparison, we use the Iterative Closest Point (ICP)

algorithm [70] as a baseline method. For all of the experiments we report the

alignment accuracy and for the cases where the ground-truth motion is available,

we also report the error in the estimated motion. We also present an ablation

study for a better analysis of the different features of our approach. In Chapter 3,
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we proposed a feature descriptor for estimating robust data association between

keypoints in different scans, and in this chapter we incorporate this descriptor for

estimating pointwise motion. To evaluate the estimated motion for each point we

again use the dataset fromMoosmann and Stiller [74] and compare the HMM based

approach with the method of detecting and tracking of dynamic objects.

4.2 Detection and Tracking of Dynamic Objects

Ourobjective is to detect different dynamic objects in the scenewithout incorporating

prior information about the objects. Traditionally, model-free approaches [61], [82],

[124], [129] rely on detecting dynamic objects by analyzing the perceived change of

the environment caused by motion. This change detection approach either requires

prior map [82] or an online mapping technique. In contrast to that, our approach

does not require a map, because instead of detecting changes our method focuses

on segmenting distinct objects using motion cues. We begin to reason about objects

at point level by matching corresponding keypoints in consecutive scans. This

information is used to detect different motions in the scene by sequentially using

RANSAC. Besides the motion models, RANSAC also provides an inlier set which in

our case is a subset of input corresponding keypoints. For segmenting the local

static structure and multiple dynamic objects solely based on the detected motion,

we propose a Bayesian segmentation approach which uses the inlier set as an

input seed for the segmentation. Since we estimate motion models, we can reason

about the dynamics of a detected object to efficiently track it. Tracking objects

is a challenging problem since the sensor motion and the motion of objects lead

to frequent occlusions, making data association a hard problem. Our framework

leverages the estimated motion models for associating different detected objects in

consecutive scans.

4.2.1 Framework Overview

The goal of our approach is to segment and track dynamic objects in LiDAR scans

obtained by a mobile robot. Our framework shown in Figure 4.1 consists of modules

for detecting motion, tracking the sensor and tracking dynamic objects. We define,

a LiDAR scan as a set of points:

P = {pk | pk ∈ R3, k = 1, . . . , K} (4.1)

At every time step t, the scans Pt−1, Pt, and the motion models τττt−1 ∈ SE(3) are
provided to the framework. In our notation τττt describes the motion from Pt−1 to Pt.

The points in Pt−1 are classified as either static, dynamic, or unknown, i.e.,:

Pt−1 = PS
t−1 t PD

t−1 t PU
t−1 (4.2)
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Tracking

sensor

Tracking

dynamic

Detection

Figure 4.1: Our framework consists of modules for motion detection, tracking the sensor,

and tracking dynamic objects. Point sets are indicated with P, motions models with τττ.

First, the sensor tracking module classifies a subset of points PS
t ⊂ Pt as static

and estimates the sensor motion τττS
t relative to these points. Second, the object

tracking module classifies a subset of points PD
t ⊂ (Pt \ PS

t ) as dynamic, where

PD
t = PD1

t t . . . t PDN
t consists of multiple disjoint point sets assigned to different

dynamic objects. The module also estimates motion models τττD
t = {τττD1

t , . . . , τττDN
t }

for these objects. Third, all points Pt \ (PS
t t PD

t ) not classified by the tracking

modules are provided to the detection module, which either adds them to the static

point set, creates a new dynamic object, or assigns them to the unknown set PU
t .

For the first scan all points are unknown, i.e. P1 = PU
1 .

4.2.2 Motion-based Detection

We segment dynamic objects using only motion cues. The motion of points between

two consecutive LiDAR scans is mainly caused by the motion of the sensor and

the motion of dynamic objects. We assume that the motion of these objects is

rigid. The following subsection describes how we estimate motion models for the

sensor and the dynamic objects. Subsequently, we explain the proposed Bayesian

approach which calculates the probability of a point to follow a given motion model.

Finally, we introduce our data association between consecutive scans and outline

the method for detecting multiple motions. To simplify the notation in this section

we assume without loss of generality that no points are classified already, i.e.,

Pt−1 = PU
t−1.

4.2.2.1 Motion Models

We use RANSAC to estimate motion models τττt ∈ SE(3) for the sensor and the

dynamic objects. To find initial point correspondences between the two scans,

we uniformly sample keypoints Ft−1 ⊂ Pt−1, match their SHOT descriptors [112]
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against all points in Pt, and pick the matches with minimum descriptor distance. We

use the Euclidean distance between feature descriptors as the metric for matching.

To limit the false correspondences between keypoints, we discard correspondences

with a distance greater than a threshold, which is determined by an assumedmotion

limit and the sensor frame rate. RANSAC estimates the motion model τtτtτt consented

by the majority of the remaining correspondences. We define the inlier point set

It−1 ⊂ Ft−1 as all points in Pt−1 that are part of an inlier correspondence.

So far, τττt is only related to the motion of points in It−1, which is a sparse subset

of all the points in Pt−1. Therefore, it is necessary to infer all non-inlier points

which also follow τττt. In the next subsection, we propose an approach to tackle this

problem.

4.2.2.2 Bayesian Segmentation Approach

We propose a Bayesian segmentation approach to determine the probability of each

point pk ∈ Pt−1 to follow a given motion model. By these means, we expand the

sparse subset It−1 to all points in scan Pt−1. We represent the consent of pk with

τττt as a Bernoulli distributed random variable Hk, where Hk = 1 means that pk
follows the motion model τττt. The objective of the proposed Bayesian approach is to

calculate the probability P(Hk | Pt, p̂k), where p̂k ∈ P̂t−1 is the point pk transformed

by τττt. We apply Bayes’ rule and assume independence of Hk and p̂k to calculate

this probability:

P(Hk | Pt, p̂k) =
P(Pt | Hk, p̂k)P(Hk, p̂k)

P(Pt, p̂k)
(4.3)

=
P(Pt | Hk, p̂k)P(Hk)P(p̂k)

P(Pt | p̂k)P(p̂k)
(4.4)

∝ P(Pt | Hk, p̂k)P(Hk) (4.5)

In the following subsections, we describe how we model the likelihood P(Pt |
Hk, p̂k) and the prior P(Hk) in Eq. (4.5). The proposed Bayesian approach relies on

the fact that p̂k is well aligned with points in Pt, if Hk = 1. Therefore the depth, i.e.
the distance to the sensor, of p̂k and the neighboring points in Pt should be similar.

This is also true for local geometry. Furthermore, we impose by regularization that

pk is likely to follow the same motion as points in its vicinity.

4.2.2.3 Depth

The depth of the point p is denoted z. Since the likelihood of Hk actually only

depends on the neighborhood Nk ⊂ Pt of p̂k and we assume independence between

the points pl ∈ Nk we can model the likelihood in Eq. (4.5) based on the depth
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alignment [49] as:

P(Pt | Hk, p̂k) = ∏
pl∈Nk

P(zl | Hk, ẑk) (4.6)

Similar to [82], we define Nk as the conical frustum around p̂k. It better captures

the disparity caused by misalignment in comparison to a spherical neighborhood.

To model the likelihood P(zl | Hk, ẑk), we use the beam-based sensor model

from [110]. For Hk = 1, it is a linear combination of four distributions:

P(zk | Hk = 1, ẑk) =


whit

wshort
wmax

wrand


T 

Phit
Pshort
Pmax

Prand

 (4.7)

where whit + wshort + wmax + wrand = 1 and Phit models the probability of hitting

the expected surface, Pshort of hitting an unexpected obstacle in front, Pmax of a

maximum range measurement, and Prand of an unexplainable measurement.

Phit =

{
ηN (zk; ẑk, σ2

hit) if 0 ≤ zk ≤ zmax

0 otherwise

(4.8)

Pshort =

{
ηλshorte−λshortzk if 0 ≤ zk ≤ ẑk

0 otherwise

(4.9)

Pmax =

{
1 if z = zmax

0 otherwise

(4.10)

Prand =

{
1

zmax
if 0 ≤ zk ≤ zmax

0 otherwise

(4.11)

For Hk = 0 the likelihood (4.7) changes to a mixture of three distributions:

P(zk | Hk = 0, ẑk) =

wshort
wmax

wrand

T pshort
pmax

prand

 (4.12)

where the weights are adapted and Pshort in Eq. (4.9) is cut off at the maximum

range zmax instead at the expected measurement ẑk.

4.2.2.4 Local Geometry

We measure consistency of local geometry by calculating the cosine similarity ckl
between the SHOT descriptors fk and fl :

ckl =
fk · fl

‖ fk‖‖ fl‖
(4.13)
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To incorporate this consistency measure of local geometry into the likelihood, we

change Eq. (4.6) by weighting the individual factors with ckl :

P(Pt | Hk, p̂k) = ∏
pl∈Nk

ckl P(zl | Hk, ẑk) (4.14)

4.2.2.5 Regularization

Since pk likely follows the same motion as points in its vicinity, we impose a prior

P(Hk) in Eq. (4.5). We model this prior by utilizing the information provided by

RANSAC, namely if points in the neighborhood of pk are in the inlier point set

It−1 ⊂ Ft−1 or not. The neighborhood is calculated by drawing a sphere around pk:

NF
k = {pl ∈ Ft−1 | ‖pk − pl‖ < 3σw} (4.15)

Points pk that have many inlier and few outlier points in their vicinity should

have a high prior to consent with τττt and vice versa. We realize these characteristics

by computing a weighted average:

P0(Hk) =

{
1 if pk ∈ It−1

0 otherwise

(4.16)

P(Hk) =
∑pl∈NF

k
wkl P0(Hk)

∑pl∈NF
k

wkl
(4.17)

Since, we want closer points to have a higher influence on the prior, we use a

Gaussian for the weighting:

wkl =
1√

2πσ2
w

exp−‖pk − pl‖2

2σ2
w

(4.18)

The proposed Bayesian approach is used to calculate the probability of points in

Pt−1 to follow the motion model τττt. The next subsection describes how we associate

τττt with points in the current scan Pt.

4.2.2.6 Data Association

To classify points in the current scan Pt, we need to associate them to the corre-

sponding motion models τττt. Due to sensor motion and noise, every scan consists of

varying points which are sampled from surfaces of the real structure. Therefore,

establishing point-to-point correspondences between Pt−1 and Pt is not feasible.

To realize the data association, we first identify points p∗k ∈ P∗t−1 ⊂ Pt−1 with a

probability P(Hk = 1 | Pt, p̂k) > ζ, i.e. points that have a high probability to follow

the motion model τττt. Second, we determine the union of neighborhoods N by

drawing spheres around all points p̂∗k ∈ P̂∗t−1. Third, we declare points pl ∈ Pt
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to follow the motion τττt if they lie inside N. In this way, we classify points in Pt

according to their motion and assign them to the static point set PS
t or to a point set

of a dynamic object PDi
t . We apply Euclidean clustering to handle multiple objects

following the same motion.

4.2.2.7 Multiple Motions

We use RANSAC to detect motion in the scene Section 4.2.2.1. To identify all

points in scan Pt that follow a motion model τττt, we use the Bayesian approach

(Section 4.2.2.2) and apply the data association (Section 4.2.2.6). To detect multiple

motions, we apply this pipeline sequentially. The detected τττt always stems from

the motion which is consented by the majority of points. Therefore, we remove all

these points from Pt−1 and Pt to subsequently determine the next motion model.

Since we assume that most points originate from static structure, the first τττt we

detect is the sensor motion τττS
t . We create a new dynamic object if

‖τττDi
t − τττS

t ‖F > ε (4.19)

where τττDi
t is its estimatedmotionmodel, ‖·‖F the Frobenius norm, and ε a threshold

that determines the minimum motion of an object to be considered as dynamic.

If Eq. (4.19) is false, we add points to PS
t .

4.2.3 Tracking the Sensor and Dynamic Objects

Tracking is concerned with propagating information over time, in our case from

LiDAR scan Pt−1 to Pt. This involves updating the motion models of the sensor

and the dynamic objects from τττt−1 to τττt. Furthermore, the points in Pt have to

be classified as static or assigned to a specific dynamic object. In the following

subsection, we describe how we track the motion of the sensor and of dynamic

objects.

4.2.3.1 Sensor Motion

We first update the motion model of the sensor from τττS
t−1 to τττS

t . To get an initial

estimate how static points have moved, we apply the previous motion model:

P̂S
t−1 = τττS

t−1 ∗ PS
t−1 (4.20)

Based on this estimate, we search for correspondences between all points p̂k ∈ P̂S
t−1

and points in Pt using nearest neighbor in Euclidean space. We apply RANSAC to

estimate the motion τ̂S
t̂τS
t̂τS
t and update the motion model of the sensor:

τττS
t = τ̂̂τ̂τS

t ∗ τττS
t−1 (4.21)
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To classify points in Pt as static, we first use the proposed Bayesian approach

(Section 4.2.2.2). Based on the probabilities P(Hk | Pt, p̂k), we identify points that

were static in Pt−1 but are dynamic or disappeared in Pt, i.e. have a low probability.

Points with a high probability to consent with the sensor motion τS
tτS
tτS
t are used in the

data association Section 4.2.2.6 to assign points to PS
t ⊂ Pt.

4.2.3.2 Dynamic Objects

The tracking of dynamic objects relies on a similar concepts as the sensor tracking.

However, updating the motion model of an object from τττDi
t−1 to τττDi

t is realized

differently. First, we again apply the previous motion model to get an initial

estimate where the object has moved:

P̂Di
t−1 = τττDi

t−1 ∗ PDi
t−1 (4.22)

We determine a neighborhood N ⊂ Pt as it is done in Section 4.2.2.6. This provides

a coarse prior information, where to search for correspondences, namely between

points in PDi
t−1 and N. We find correspondences by matching SHOT descriptors,

which are subsequently used by RANSAC to estimate the motion model τττDi
t . To

assign object points to PDi
t ⊂ Pt, we choose the same approach as for the sensor

tracking.

We create a tracklet for every segmented dynamic object, which is defined by its

motion model τττDi
t and point set PDi

t . Tracklets tracked for more than NT scans are

promoted as tracks. We make this distinction to avoid false positives. A track is

lost when an object is no longer in the sensors field of view or when it is entirely

occluded, i.e. PDi
t = ∅. To tackle temporary occlusions we predict a bounding box

based on the objects last observation. We recover a track when points reappear

inside the tracks bounding box.

4.2.4 Results

We evaluate our approach on two datasets made available by Moosmann and

Stiller [74]. Both scan sequencesAandBare collected in non-flat urban environments

using a Velodyne HDL-64E LiDAR sensor at 10Hz and are 38 and 50 seconds long,

respectively. The ground truth velocity of the sensorwas obtained usingDGPS/IMU

and is also available for one other car. To conduct an extensive quantitative analysis,

we manually labeled all dynamic objects apart from pedestrians and compared

the results of our approach against the Moving Object Mapping (MOM) method

presented by Moosmann and Stiller [74]. For all experiments presented in this

section, we chose ζ = 0.95, ε = 0.2, and NT = 8.
Figure 4.2 shows a snapshot of sequence B taken at t = 26.2s. Since we remove

the ground plane before we provide a scan to the framework, ground points are

not classified. It can be seen that we are able to segment and track many objects
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Figure 4.2: LiDAR scan of sequence B at t = 26.2s. The Ground truth is indicated by black

bounding boxes. Structures classified as static are shown in blue, dynamic objects in other

colors. Arrows display the translational part of the estimated motion models.

of various types, e.g. cars, trucks, and bikes. This is one major advantage of our

approach compared to model-based methods. Admittedly, our approach does not

work well for pedestrians. This is mainly for the reason that they move slowly and

our detection method only relies on motion cues. Furthermore, the assumption of

rigid body motion does not hold. Due to their comparatively small size, pedestrians

may also consist of very few points, especially if they are far away from the sensor.

Since pedestrians are not labeled in the ground truth, we ensure not to count them

as false positives in the analysis.

Table 4.1: Classification of Dynamic Objects

Method Precision Recall F1 ObjRcl

Sequence A

Ours 62.41 91.33 70.76 81.77
MOM 14.89 72.91 22.02 30.90

Sequence B

Ours 72.57 78.18 73.05 74.08

MOM 29.85 89.01 41.81 79.91

For a quantitative evaluation of our approach, we use the ground-truth bounding

boxes of the dynamic objects. For each scan we compute precision (Eq. (2.17)) and

recall (Eq. (2.18)). We average precision and recall over all scans of the sequence

and compute the F1 score (Eq. (2.19)). We also define an object recall (ObjRcl) that

measures the ratio between the number of scans in which an object is detected and

scans in which it is actually there according to the ground-truth . We average this

value over all objects. In contrast to recall, every object equally contributes to the

object recall, independent on the number of scans in which the object is present.

Table 4.1 reports results for our approach and compares them. In sequence A, we

clearly outperform MOMwhich suffers from a high number of false positives. Its
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Figure 4.3: Tracks for sequence B. Ground truth is depicted in black, estimated tracks are

colored green. Gaps in the ground truth are caused by occlusions.

different recall and object recall values are caused by the dominance of one object,

that in contrast to others, is present over the whole sequence and can be tracked.

In sequence B, our approach reaches significantly better precision with a slightly

worse recall. In both sequences we achieve better F1 scores.

Figure 4.3 illustrates the tracks estimated by our approach in comparison to the

ground truth for sequence B. We are able to segment almost all objects and track

them robustly. Since our approach requires a minimum motion to consider an

object as dynamic, we can only detect objects when they reach a certain velocity.

Our loss of recall is primarily due to the late detection of the objects 10-18 and the

few undetected objects. These cases were recorded at an intersection and include

slow moving objects either approaching or leaving the intersection. Figure 4.3 also

depicts cases where objects were temporarily occluded. Since we always recover

from occlusions if we detect the object, we claim that our approach is robust against

occlusions.

To further compare our approach, we also conduct the tracking quality experiment

presented by Moosmann and Stiller [74]. The objective of this experiment is

to estimate the absolute speed of another vehicle. Therefore, we evaluate the

estimation of the sensor motion and the relative motion between sensor and

dynamic object. Figure 4.4 shows that we can robustly track both in sequence A.

The peak in the sensor motion is caused by a corrupted LiDAR scan. In Table 4.2

we report the median, mean, standard deviation, and RMSE generated without

the outer 10%-quantiles for the sensor motion in both sequences. The table also

shows results for the dynamic objects tracking in comparison to the results reported

in [74]. It can be seen that our approach outperforms MOM. To provide a more

informative measure, we also report the RMSE for our approach.
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Table 4.2: Estimation of Sensor and Dynamic Object Motion [generated without outer

10%-quantiles]

Median Mean Std.-Dev. RMSE

Sensor Speed Error

Ours A -0.19 -0.06 ±0.57 0.57

Ours B -0.09 -0.08 ±0.26 0.30

Object Speed Error

Ours -0.34 -0.32 ±0.68 0.75

MOM -0.84 -0.69 ±1.16 -
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Figure 4.4: Speed estimation for sequence A. The ground truth for the sensor motion is

depicted in black, our estimate in green. The error in the speed estimation for the dynamic

object is colored red.

4.3 Estimating Pointwise Motion

So far we have focused on estimating motion models at object level and proposed an

approach for detection and tracking of dynamic objects. In this section, we propose

a model free approach for estimating pointwise motion for 3D LiDAR scans. In the

approach discussed above, we focused on capturing object level dynamics. Now

we focus on capturing the fine details of the environment dynamics by estimating

pointwise motion. For example, such an approach can help the robot deal with

human motion, which is typically non-rigid.

Pointwise motion has garnered a lot of attention, mainly in the computer vision

community. Various methods have been proposed for estimating 2D pointwise

motion in images using color [34]. With the recent advent of affordable depth

sensors, different methods exist for scene flow estimation using color and depth

images [50, 58, 86]. These methods cannot be directly applied to 3D pointcloud
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data due to inherent differences in the problem structure. First, the constancy

assumptions for intensity and gradients are not valid for LiDAR data. The intensity

values from LiDARs are often unreliable as they depend on the angle of inclination.

Furthermore, due to the sparse nature of LiDAR data, gradients are not informative.

Second, the concept of the neighborhood is well understood for images (fixed

size image patch), whereas a similar well defined structure does not exist for

unstructured 3D pointcloud data. Third, most of these methods assume a piecewise

linear motion (translation), which is justified if data is collected at a high frame rate

(30Hz). In cases in which data is not collected at a sufficiently high frame rate (with

a LiDAR scanner at 10Hz), this assumption cannot be justified.

To estimate pointwise motion, we propose a novel approach for estimating rigid

scene flow that addresses all of the aforementioned challenges. We formulate the

problem as an energy minimization problem. To this end, we introduce the concept

of geometric constancy, i.e. that the local structure is not deformed due to the motion,

thereby assuming the 3D structure is locally rigid. This assumption is exploited by

using local feature descriptors for matching keypoints between two scans. For this

task, we introduce a method to estimate robust data associations. In addition, we

introduce neighborhood structure for 3D pointclouds. Our approach approximates

the scene surface using triangular meshes and considers two points as neighbors, if

they are vertices of the same triangle. Lastly, we estimate the complete 6D rigid

motion, instead of linear (translational) motion only, thereby estimating dense rigid

scene flow for 3D LiDAR data.

We test our approach on both simulated and real data. For simulated data, we

use the dataset from Yoon et al. [129]. The main advantage of such datasets is that

the ground-truth poses are available for both the sensor and the dynamic objects,

with which ground-truth motion models can be calculated. For real data, we test

our approach on multiple sequences of the KITTI odometry dataset [36] and a

dataset capturing pedestrians that we collected. In the case of KITTI, we evaluate the

accuracy of the estimated motion using the ground-truth sensor motion provided

by the benchmark. This evaluation is only done for sequences without dynamic

objects, since ground-truth motion for dynamic objects is not available. For the

cases in which ground-truth motion is not available, we quantify the accuracy of

the estimated motion by measuring the alignment between scans. We compare

our approach against the ICP algorithm and also provide an exhaustive analysis of

different features of our approach through an ablation study. We also incorporate

the learned feature descriptor from Chapter 3 and present results for that. Through

experiments on simulated and KITTI dataset, we demonstrate how our method

effortlessly estimates arbitrary motion models in a non-rigid scene i.e. a scene

containing multiple dynamic objects. The experiments on pedestrian dataset reveal

that our method seamlessly adapts to the case of non-rigid objects as well.
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4.3.1 Problem Formulation

A LiDAR scan P is given by a set of 3D points as defined in Eq. (4.1). Given two

LiDAR scans Pt−1 and Pt, the objective is to find a dense rigid motion field that best

explains the motion between two scans. A rigid body transformation for a point

p ∈ R3
can be written as:

T(p) = Rp + t, (4.23)

where t ∈ R3
is the translation and R ∈ SO(3) is the rotation. Transformation

in Eq. (4.23) can be written as:

τττ =

(
R t
0 1

)
∈ SE(3). (4.24)

As τττ only has 6 degrees of freedom, we also introduce a compact representation

ςςς = (tT, qT) ∈ R6
, where t is the translation and q is the vector part of a unit

quaternion q̃.
The motion of the scene is embedded in a rigid motion field T ,

T = {τττk | τττk ∈ SE(3), k = 1, . . . , K}, (4.25)

and the objective is to find T ∗:

T ∗ = arg min
T

E(T ), (4.26)

which minimizes the energy E(T ):

E(T ) = − ln φ(T ). (4.27)

Here, φ(T ) is the function parameterizing the factor graph G = (Φ, T , E). The

graph has two node types: factor nodes φ ∈ Φ and state variables nodes τττk ∈ T .
Here, E is the set of edges connecting a pair of state variable nodes through a

factor node. Each edge defines a constraint between the state variable nodes

it is connecting with a factor node. Figure 4.6 shows two different factor graph

representations for our problem, where {φd, φs} ∈ Φ are two types of factor nodes

describing the energy potentials for the data term (purple squares) and smoothnes

term (green squares) respectively. The difference between the two factor graphs

is discussed in Section 4.3.1.1. The data term minimizes the Euclidean distance

between corresponding keypoints and the smoothnes term, spreads the estimated

motion to all the points in the scan, resulting in a dense smooth motion field.

4.3.1.1 Data Term

Our approach relies on the assumption of geometric constancy, i.e. that the local

geometric structure is not deformed due to the motion. We parametrize the local
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Figure 4.5: An illustration of keypoint matching using the proposed approach. The gray

line in the middle separates keypoints in the source scan (left) from the target scan (right).p1
is matched to three keypoints, p′1, p′2 and p′4 in the target scan (black dotted lines) and the

objective is to find the most similar keypoint among them, given a set of matched keypoints

M = {〈p3, p′3〉, 〈p5, p′5〉} shown in green color. For each pair of matched keypoints, the set

L containing Euclidean distances is built and the set that maximizes the posterior p(mi | L)
is considered similar. Among the three keypoint pairs, the maximum posterior value will

be for the pair p1 and p′1 since the Euclidean distances in their set L = {〈ls
1,3, lt

1,3〉, 〈ls
1,6, lt

1,6〉}
have the most consistent geometric relation (indicated by blue lines) in comparison to the

geometric relation for the other pairs (red lines).

geometry using a local feature descriptor. Unlike other methods [18, 50], which

make similar constancy assumptions, we do not consider the geometric structure

explicitly in the optimization, because gradients w.r.t. the geometric structure are not

well behaved due to the sparsity of LiDAR data. Instead, we exploit our constancy

assumption by matching points in the scan that have a similar local geometric

description.

4.3.1.1.1 Estimating Corresponding Keypoints To estimate pointwise motion,

our approach solely relies on the matched keypoints and therefore having robust

data association is of critical importance. In our case, we are trying to solve a partial

correspondence problem because the same set of keypoints are not observed in

both the source and target scans, due to the sensor motion and presence of dynamic

objects.

The main steps involved in finding data association between keypoints are:

keypoint detection, estimating feature descriptors for the keypoints and matching

the descriptors. For keypoint detection, we use uniform sampling [94]. After that,

we estimate the feature descriptors for the keypoints in source and target scans. A
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naiveway formatching corresponding keypoints using the descriptors is to calculate

the distance of a descriptor in the source scan to descriptors for all the keypoints

in the target scan and choose the one with the minimum distance. The results

are often inaccurate in this case for two main reasons. Firstly, a keypoint similar

to the query keypoint might not exist in the target scan because of the changes

in the environment and therefore the matched keypoint could be geometrically

different. The observed change in the environment is mainly due to the motion of

the sensor and dynamic objects. The second reason is that a matched keypoint with

a high similarity score could still be a wrong correspondence, since there are often

repeated structures in the scene, for instance, multiple similar looking poles on the

side of a street.

In the method proposed for detection and tracking of dynamic objects, we used

two heuristics to filter out false correspondences (Section 4.2.2.1). For a keypoint in

the source scan we choose a keypoint in the target scan with a minimum descriptor

distance, thereby limiting false data association when the keypoint is not observed

in the target frame. Secondly, if the distance between matched keypoints exceeds a

threshold, the correspondence was discarded.

Building upon these heuristics, we introduce an approach for estimating robust

data association between keypoints in two LiDAR scans. The objective is to find a set

of matching keypoints that results in minimum local surface distortion. Leveraging

over our assumption of local rigidity, we consider a surface to be distorted if the

rigidity constraints are violated. To achieve this objective, we first define a geometric

relation between neighboring keypoints in the source scan and then find a set of

matching keypoints in the target scan with the most similar geometric relation.

Since our definition of surface distortion is based on the assumption of rigidity, we

use the Euclidean distance between the neighboring keypoints as the geometric

relation.

Similar to [109], we implement this approach by estimating (P(Mi = 1 | L)), the
probability of a point pi in the source scan and p′j in the target scan being similar

given a set of Euclidean distances L = {〈ls
i,1, lt

j,1〉 · · · 〈ls
i,n, lt

j,n〉}: Here Mi is a Bernoulli

distributed random variable and Mi = 1 means that a pair of keypoints are similar.

To build the set L, we assume a set of matched keypoints Υ = {〈p1, p′1〉 · · · 〈pn, p′n〉}
exists and use it for defining the geometric relation. ls

i,k is the Euclidean distance

between a point pi and a keypoint pk in its local neighborhood and similarly lt
j,k is

the Euclidean distance between a point p′j and p′k, where 〈pk, p′k〉 is an element of

the set Υ.

In Eq. (4.28), we use Bayes rule to simplify the expression P(Mi | L), where P(Mi)

is the prior probability of amatched correspondence being correct, which in our case

is the feature matching score. The Eq. (4.29) shows the likelihood function, where n
is the number of keypoints used for defining the geometric relation. Similar to [109],

we also assume the measurements from different keypoints are independent and
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distribution of the error is Gaussian.

P(Mi | L) ∝ P(L | Mi)P(Mi) (4.28)

P(L | Mi) =
1

σn(2π)n/2

n

∏
k=1

exp(−
(ls

i,k − lt
j,k)

2

2σ2 ) (4.29)

Our approach consists of multiple steps:

1. Find a maximum of γ matching keypoints in a target scan for every keypoint

in the source scan and sort them according to their matching score. In this

step, we only include a pair of keypoints if their matching score is greater

than a threshold.

2. Choose a small set of matched keypoints with the highest matching score as

an initial seed and add them to the set Υ. The keypoint pairs in this set are the

final matched keypoints and will be used for defining the required geometric

relation, as discussed above.

3. To find remaining matching keypoints, we estimate the posterior value as

described in Eq. (4.28) for all the keypoints whose neighborhood contains

keypoints from the set Υ. In this step, for a given keypoint pair, we construct

the set L using the keypoints in the setΥ, where only the neighboring keypoints

from Υ are used.

4. Thematching keypoint pair with themaximum posterior value is added to the

set Υ. In the case where none of the unmatched keypoint pairs is in proximity

to the keypoint pairs in Υ, we repeat step two and add the keypoint pair with

the highest matching score, if the score is greater than a certain threshold.

Figure 4.5 illustrates the above mentioned steps. In Section 4.3.2, we show the

qualitative results and also report the quantitative results indicating the decrease in

the error of estimated motion after using this approach for keypoint matching.

4.3.1.1.2 Error Function The objective of the data term is to estimate a rigid

motion model by minimizing the Euclidean distance between the corresponding

keypoints. We propose two different factor graph representations to formulate this

optimization problem (Figure 4.6). In the first case, we define the data term error in

the following way:

ed(τττi) = τττip̃i − p̃′i. (4.30)

The data term is defined as:

φd(τττi) = exp(−‖ed(τττi)‖2). (4.31)

Here, p̃i and p̃′i are the corresponding points in consecutive scans represented in

homogeneous coordinates, τττi ∈ SE(3) is the rigid motion transformation and i ∈ Id,
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Figure 4.6: Different factor graph representations. The gray and red nodes correspond to

matched keypoints in the source and target scans respectively. The purple squares represent

the factor for the data term and green squares represent the factor for the pairwise term. For

the factor graph on left, a data term is defined for every matched keypoint and a smoothnes

term connecting a pair of neighboring keypoints in the source scan. The data term tries

to estimate a rigid motion defined in R6
by only using its own measurement (estimated

correspondence) defined in R3
. The difference in dimensionality makes the optimization

problem under-constrained. In contrast to this, in the factor graph on the right, the data

term is defined for a subset of matched keypoints called deformation variables (shown in

blue). In this case, a deformation variable incorporates multiple measurements including

its own. In the right image, the data term corresponding to τ1 will use its ownmeasurement

and the measurement for the keypoint corresponding to τ3. Using multiple measurements

makes the optimization problem well posed in comparison to the other representation.

The smoothnes term is now defined between a pair of neighboring keypoints selected as

deformation variables.

where Id is the set of indices corresponding to keypoints in Pt−1. A rigid motion

variable τττi has six DoF and for estimating the motion, we only use a single mea-

surement, which in our case is the difference between the corresponding keypoints

defined in R3
. The lower dimensionality of the measurement makes our non-linear

equation system under-constrained. The factor graph on the left in Figure 4.6

illustrates this representation, where the factor (purple square) corresponding to

the data term only connects a single pair of matched keypoints.

To improve the well-posedness of our optimization problem, we propose a second

factor graph representation. Instead of defining a data term for each keypoint, we

define a data term for a subset of keypoints and call such data terms as deformation

variables, Idv ⊂ Id. For each such keypoint, within the error function, we include

its own measurement and measurements of its neighboring keypoints, where the

set for possible neighboring keypoints is Id − Idv. The factor graph on the right

in Figure 4.6 illustrates this representation. The factor for the data term (purple

square) connects multiple corresponding keypoints rather than a single pair of

corresponding keypoints. The method to choose the neighboring keypoints is
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described in Section 4.3.1.2.

The error function for the data term for this factor graph representation is defined

as the following:

ed(τττi) = ∑
k∈Ndv

τττip̃k − p̃′k, (4.32)

where, Ndv is a set of neighboring keypoints for a given deformation variable. For

any two deformation variables, the intersection of their neighboring keypoint sets

is the empty set.

4.3.1.2 Smoothnes Term

The data term helps to estimate the motion, but is defined only for a subset of points

in a scan. Therefore, we include a smoothnes term in our energy function, to obtain

a dense, locally smooth motion field by spreading the motion from keypoints to

nearby points. The factor for the smoothnes term is represented using a green

square in Figure 4.6. They are defined between neighboring points in the scan,

irrespective of whether they are keypoints or not.

A similar smoothnes term is often included in energy minimization problems [18,

50, 86]. In the case of estimating a motion field in an image domain, the local

neighborhood is well understood. A common practice is to consider all pixels in a

small image patch as neighbors. In the case of 3D pointcloud data, the concept of

neighborhood is not as straightforward as for images. A commonly used approach

to calculate neighboring points in the case of pointclouds is to consider all the

points in a sphere around a point as neighbors. Since our method relies on the

assumption of rigidity of the local structure, it is important that the definition of

neighborhood considers the structure of the scene, which spherical neighborhood

fails to do. Instead, we construct a triangular mesh structure [71] to approximate

the surface and consider points as neighbors only if they are vertices of the same

triangle. This technique is also used for estimating neighboring keypoints of a

deformation variable discussed in the previous section.

4.3.1.2.1 Error function The error function for the smoothnes term is defined in

the following way:

es(τττi, τττ j) = ξ(τττ−1
i τττ j) (4.33)

where, τττi and τττ j are the rigid motion transformations for neighboring nodes and

ξ(·) is the mapping function from SE(3) to a compact representation in R6
. This

error term forces neighboring points to have similar motion, thereby enforcing the

local rigidity constraint, spreading the motion from keypoints to other points in the

scan and additionally making the problem well-posed. The energy potential for the

regularization term is defined as:

φs(τττi, τττ j) = exp(−‖es(τττi, τττ j)‖2) (4.34)
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In Figure 4.6, green squares connecting neighboring state variable nodes represent

φs(τττi, τττ j). In the first graph, all neighboring nodes (keypoints and non-keypoints)

can be connected through the regularization term. In the second case, a smoothnes

term is defined between all the nodes except between nodes corresponding to Idv
and nodes in the set Id − Idv. Since nodes in the second set are already connected to

Idv through the data term, connecting them again through smoothnes term will not

add any new information.

4.3.1.3 Optimization

The two factor graph representations proposed in Section 4.3.1.1 represents the

factorization of the following functions:

φ(T ) = ∏
i∈Id

φd(τττi) ∏
l∈Np

φs(τττi, τττ j), (4.35)

φ(T ) = ∏
i∈Idv

φd(τττi) ∏
l∈Np

φs(τττi, τττ j), (4.36)

where, Np = {〈1, 2〉, 〈2, 3〉, . . . , 〈i, j〉} is the set containing indices of neighboring

vertices. The only difference between Eq. (4.35) and (4.36) is that the energy for the

data term φd in Eq. (4.35) is defined for all the keypoints, in contrast to Eq. (4.36),

where it is only defined for a subset. As discussed in Section 4.3.1.2, one of the

contributions of the smoothnes term is that it enforces local rigidity constraint. To

regulate this rigidity constraint, wemodify the Eq. (4.35) by introducing a weighting

factor β as shown in Eq. (4.37). A large value of β will enforce a strong rigidity

constraint i.e. the difference between the estimated motion of neighboring points

will decrease, while a small value of β will weaken this constraint and will have

an opposite effect. In the same way, Eq. (4.36) can be modified to incorporate the

weighting factor β as well.

φ(T ) = ∏
i∈Id

φd(τττi) ∏
l∈Np

β · φs(τττi, τττ j). (4.37)

The error for both data and regularization terms is quadratic and the problem is

of sparse non-linear least square form. Using Eq. (4.31), (4.34) and (4.37), for the

first factor graph representation, we can simplify Eq. (4.27) as:

E(T ) = ∑
i∈Id

‖ed(τττi)‖2 + ∑
l∈Np

β · ‖es(τττi, τττ j)‖2. (4.38)

Similarly for the second factor graph representation we can simplify Eq. (4.27) as:

E(T ) = ∑
i∈Idv

‖ed(τττi)‖2 + ∑
l∈Np

β · ‖es(τττi, τττ j)‖2. (4.39)
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To solve this, we use graph optimization. A general framework for graph opti-

mization involves constructing the graph i.e. defining the parameters associated

with each node and the constraints between the nodes. Section 4.3.1.1 discusses the

construction of the proposed graphs used for optimization. In general for graph

optimization, a vector error function eij(x) is defined for a pair of nodes in the graph

and the constraint between nodes i and j is the difference between the expected

measurement ẑ(xi, xj) and the observed measurement zij.

eij(x) = ẑ(xi, xj)− zij, (4.40)

where, x is the parameter block associated with each node. In our case, the

parameter block is comprised of the motion τττ. For the data term (Eq. (4.30) and

(4.32)), eij is defined in R3
, the observed measurement is the corresponding point

p′ and the expected measurement is the location of the keypoint p after being

transformed by τττ. For smoothnes term (Eq. (4.33)), eij is defined in R6
, the observed

measurement is an identity matrix and the expected measurement is difference

between τττ for a pair of neighboring nodes.

The error is calculated in a non-Euclidean manifold space [40] and there-

fore Eq. (4.40) can be reformulated as:

eij(x) = ẑ(xi, xj)	 zij, (4.41)

where, the difference in the non-Euclidean space is computed using the 	 operator.

The error minimization function can be formulated as,

x∗ = arg min ∑
ij

eij(x)TΣ−1
ij eij(x), (4.42)

where, Σij and Σ−1
ij are covariance and information matrix respectively, and x∗ is

the optimal parameter configuration, which satisfies the constraints between the

nodes. When Σij = I, Eq. (4.42) has same formulation as Eq. (4.38) and Eq. (4.39)

because in all the cases the objective is to minimize the sum of squared error.

The numerical solution of Eq. (4.42) can be calculated using second-order opti-

mization algorithms like Gauss-Newton or Levenberg-Marquardt by approximating

the error function by its first order Taylor expansion around the current initial guess

x̆,
eij(x̆+ ∆x) ' eij(x̆) + Jij∆x, (4.43)

where the jacobian J is defined as:

Jij =
∂eij(x̆+ ∆x)

∂∆x

∣∣∣∣
∆x=0

. (4.44)

The Jacobians corresponding to all the constraints can be stacked together in a

matrix form and the minimization problem can be efficiently solved by solving this
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system of linear equations:

H∆x∗ = −b, (4.45)

where, H = ΣijJT
ijΣ
−1
ij Jij is the Hessian matrix of the system and b = ΣijJT

ijΣ
−1
ij eij.

To obtain the solution, increments ∆x∗ are added to the initial guess,

x∗ = x̆+ ∆x∗. (4.46)

For the derivation of Eq. (4.45) and an elaborate explanation for different operations

regarding optimization on a manifold, please consult [40] and [63].

We use the Levenberg-Marquardt algorithm to find an estimate that minimizes

the energy. Since the regularization term only connects neighboring points, the

problem can be decomposed into multiple independent sub-problems, which can

be solved efficiently in parallel.

The correspondences we estimate are plagued by outliers, which have a strong

negative impact on the estimate. To tackle outliers, we use a saturated robust kernel

ρ,

ρ(x2) =


x2

2 , if x2 ≤ c2

c2

2 , if x2 > c2

 , (4.47)

where, x2
is the squared error and c is the kernel size. We use a robust kernel only

for the error in the data term and rewrite Eq. (4.38) as:

E(T ) = ∑
i∈Id

ρ(‖ed(τττi)‖2) + ∑
l∈Np

β · ‖es(τττi, τττ j)‖2
(4.48)

The robust kernel is also used for the second factor graph representation and

incorporating it for Eq. (4.39) is as discussed above. Since the initial error is large,

we perform two steps of optimization. First, we optimize without a robust kernel to

reduce the error and then perform another optimization run with the robust kernel

to minimize the effect of outliers.

As we use sequential data, the motion transformations can also be expected to be

temporally smooth. We do not include a term for temporal smoothing explicitly

in our energy minimization function, but we initialize the estimate for a vertex

in the graph with the estimates from previous scans. Points with known motion

are transformed into the frame of reference of the next scan. We perform data

association between the transformed points and the points in the next scan on the

basis of Euclidean distance and propagate the estimated motion. Since we do not

have data association for each point, we still perform two steps of optimization to

make sure that state variable nodes without good initial estimates are not treated as

outliers due to a large initial error.
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4.3.2 Results

We evaluate our approach on three different datasets. The first one is a simulated

dataset from Yoon et al. [129], where the simulation environment is an urban

outdoor scenario with multiple dynamic objects. The dataset consists of two

different sequences and the ground-truth poses for the sensor and dynamic objects

are available. Since the environment contains multiple dynamic objects, the scene

is non-rigid and thus provides us an opportunity to highlight the advantages of our

approach. The next dataset we use is the KITTI odometry benchmark and it is also

based on urban outdoor scenarios. We evaluate our approach on five sequences

from the benchmark. Estimating the ground-truth motion for each point or for

every moving object is labor intensive and non-trivial, but if the scene only contains

static structure, the motion of each point is the inverse sensor motion. Therefore,

to evaluate the accuracy of the estimated motion, among the five sequences, we

choose three sequences (3, 5 and 6) comprising only of static structure, while the

remaining sequences contains multiple dynamic objects. These urban outdoor

environment datasets (simulated and real) mainly comprise of non-rigid scenes but

objects like vehicles are rigid. Focusing on non-rigid objects, we also evaluate our

method on a dataset with pedestrians. The dataset contains multiple sequences

with different body movements and the objective of this experiment is to highlight

that our method is capable of capturing fine dynamic details and can estimate

motion of non-rigid bodies as well.

For quantitative evaluation of the accuracy of the estimated motion, we report the

average error in translation and rotation motion, and the alignment accuracy. The

error for the estimated motion is only reported for the cases where the ground-truth

motion is available. This is true for the simulated dataset and the three sequences

from the KITTI dataset. For measuring alignment accuracy, we use the crispness
score Cs [48] [100] as a metric. This score is defined as following:

Cs =
1
n

n

∑
k=1

G(p′k − p̂k, 2Σ), (4.49)

where, G(µ, Σ) is a Gaussian with mean µ and covariance Σ, p̂k is the nearest

point in the point set Pt to the transformed point p′k from the point set Pt−1 and n is

the number of points. The crispness score defines the compactness of two point

sets by measuring the kernel correlation [113] between the two point sets and in

this case, we use a Gaussian kernel. We have scaled the scores between 0 and 1,

and a score close to 1 indicates that the two point sets are aligned. For qualitative

evaluation, we show the estimated motion field after subtracting the sensor motion.

The color wheel in Figure 4.7 illustrates our representation of the motion field. The

magnitude and the direction of the estimated motion are represented by saturation

and hue values respectively. With an increase in magnitude, the saturation value

increases from the center to the circumference of the color wheel. The blue and red
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lines indicate the positive z and x directions respectively.

For all the datasets, we compare our method with the Iterative Closest Point

(ICP) algorithm, where our method uses the second factor graph representation

(Section 4.3.1.1), and the method for estimating robust correspondences (Sec-

tion 4.3.1.1.1), giving higher importance to the smoothnes term by choosing

β = 1000 (Section 4.3.1.3). As a part, of an ablation study, we also present a

comparison between the two proposed factor graph representations and report

results to analyze the affect of our method for estimating robust correspondences

between the keypoints and the weighting factor between the data and smoothnes

term. For comparing the two representations, we replace the second factor graph

representation with the first (fg1), while keeping the other choices the same. To

validate our method of estimating corresponding keypoints, we report results for

an experiment where we do not filter correspondences causing surface distortion

(w/o c.f), but select the correspondences with the highest matching score. We also

report results for an experiment where both data and smoothnes terms have equal

weights (β = 1). For both these experiments, we use the second factor graph (fg2)

representation. For all of these experiments, we use the SHOT local feature descrip-

tor [112] for matching keypoints. We also report results for an experiment where

we replace the SHOT descriptor with our learned feature descriptor from Chapter 3

for matching keypoints in two consecutive scans.

We employ the g2o toolkit [63] for optimization. For all of the experiments, we

remove all of the ground points in a preprocessing step. In the case of experiments

using the KITTI odometry dataset and the simulated dataset, we chose c2 = 0.05 as

kernel size (Section 4.3.1.3) and for the dataset with pedestrians we chose c2 = 0.01.
This choice depends on the maximum error that can be tolerated. The difference in

value of c2
between the two datasets is mainly attributed to the difference in the

maximum possible motion between consecutive scans, which in turn affects the

maximum error. Datasets comprising of urban outdoor environments consist of

vehicles moving at speeds significantly higher than the speed at which different

body parts are moved in the case of the dataset with pedestrians.

4.3.2.1 KITTI Odometry Dataset

In Table 4.3, 4.4 and 4.5, we report the error in translation and rotation motion, and

the alignment accuracy, respectively. Figure 4.8 illustrates the estimated motion

field for our method. The colorization of the pointcloud is as per to the color wheel

in Figure 4.7. The color of the dynamic objects moving in opposite directions are

opposite in the color wheel as well, which indicates themotion is estimated correctly

for these objects and similarly static structures like walls on the sides have black

color, which indicates the magnitude of their estimated motion after subtracting

the sensor motion is close to zero.

The objective of this experiment is to evaluate the accuracy of the estimated
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Figure 4.7: The color wheel indicating the magnitude (saturation) and the direction (hue)

for the translational motion. Motion with low magnitude is closer to the center of the wheel

and motion with large magnitude is closer to the circumference of the circle. The z and x
direction of the motion is represented by the blue and red lines respectively.

motion and we use ICP algorithm as a baseline for comparison. Considering the

error in translation motion (Table 4.3), among the three sequences, for the first

sequence (seq. 3), our method outperforms ICP, for the second sequence (seq. 5),

performance for ICP is slightly better and for the last sequence, ICP significantly

outperforms our method. The increase in the error for the last sequence is mainly

because points in this sequence are on average farther away in comparison to the

other sequences. With the increase in distance, the data gets sparser, which in-turn

affects the quality of the estimated correspondences resulting in a decrease in the

accuracy of the estimated motion. These results show that our proposed method is

capable of achieving accuracy similar to ICP, with the limitation where the error

increases in the case when pointclouds are sparse. This scenario with only static

structure is not a proper use case for our approach, since the main contribution of

our approach is the capability of estimating multiple motion models. In these cases,

the motion between scans can be explained solely by the sensor motion and for

estimating that a method like ICP should suffice.

Comparing the different factor graph representations, the one where only a subset

of keypoints are used, attains lower motion error (both translation and rotation) in

comparison to the case where all keypoints are used. This shows that defining data

term only for a subset of keypoints makes our non-linear system of equations less

under-constrained, thereby improving well-posedness of the optimization problem

in comparison to the first factor graph representation. Figure 4.10 compares the

motion field estimated after using both representations.

Our proposed approach for estimating correspondences between keypoints also

contributes towards reducing the error. The measurement for motion solely relies

on the estimated correspondences and, therefore, having a method that discards

possible false correspondences by selecting a set of correspondences that minimizes

the surface distortion helps in estimating motion accurately. Figure 4.11 illustrates
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Figure 4.8: Visualization of the motion field estimated by our method. Points are colorized

according to the color wheel (Figure 4.7). Points belonging to the static structures like

walls, have a color similar to the center of the color wheel (black), which indicates that after

subtracting the sensor motion, the estimated motion is close to zero. The two dynamic

objects (purple color) are moving in the same direction and have similar hue value and the

third dynamic object (green color) is moving in the opposite direction. These colors are

opposite in the color wheel and also along the circumference, thereby illustrating that both

the direction and magnitude of the motion is correctly estimated.

the filtering of false correspondences between the keypoints and the decrease in the

error of the estimated motion through visualization of the motion field.

A largerweight for the error contributed by smoothnes term also helps in reducing

the error in motion because this forces nearby points to have similar motion, which

also improves the well-posedness of our optimization problem and makes the

estimated motion more accurate. Figure 4.12 illustrates the comparison of the

motion field when both the data and smoothnes terms are weighted equally and

the case when the error contributed by the smoothnes term has higher importance.

In Figure 4.9a, 4.9b & 4.9c, we show the distribution of the motion error for

our approach, for different sequences. For all of the sequences, the error for the

majority of the scans is centered around the mean reported in Table 4.3 & 4.4 with

some outliers. The largest range in error is for the sequence 6 (Figure 4.9c). The

explanation for large error for this sequence mentioned before also explains this

large range.

Figure 4.13 illustrates a pair of LiDAR scans aligned using our proposed method.

Comparing the alignment accuracy (Table 4.5), our method outperforms ICP for

all the cases. The interesting cases are sequences 4 and 12 because they contain

multiple dynamic objects. In contrast to sequences 3, 5 and 6, these sequences are a

proper use case of our approach. The large difference in accuracy for sequences
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Table 4.3: Translation error for KITTI odometry (meters)

ICP fg1 w/o c.f β = 1 Ours

Seq. 3 0.172±0.126 0.169±0.092 0.131±0.062 0.150±0.077 0.121±0.067
Seq. 5 0.126±0.083 0.192±0.078 0.150±0.064 0.173±0.073 0.137±0.062
Seq. 6 0.103±0.065 0.409±0.111 0.389±0.132 0.390±0.121 0.321±0.114

Table 4.4: Rotation error for KITTI odometry (radians)

ICP fg1 w/o c.f β = 1 Ours

Seq. 3 0.010±0.011 0.023±0.013 0.023±0.014 0.028±0.016 0.021±0.015
Seq. 5 0.012±0.017 0.029±0.015 0.028±0.017 0.032±0.017 0.024±0.017
Seq. 6 0.010±0.022 0.04±0.02 0.052±0.023 0.052±0.031 0.041±0.031

with dynamic objects, highlights the contribution of our proposed approach.

Comparing the two factor graph representations, in contrast to the error in

motion, the improvement in the estimated motion due to the second factor graph

representation and the weighting of the smoothnes term is not apparent in the

alignment accuracy. Consecutive scans can be aligned accurately by using either the

first factor graph representation or by equally weighting the data and the smoothnes

term even though the estimated motion has a larger error in comparison to other

methods. This is primarily because our system of equations is under-constrained

and, in this case, many solutions are possible and, therefore, the objective of reducing

the Euclidean distance between the corresponding keypoints (data term) can be

achieved by different solutions. For all of the cases, alignment accuracy decreases

when the correspondences between the keypoints are not filtered out using our

proposed method. As mentioned before, the matched keypoints are the only source

of measurements for estimating the motion and therefore having a small set of false

measurements affects both the motion error and the alignment accuracy.

4.3.2.2 Simulated Dataset

For the next set of experiments, we use a simulated dataset, comprised of two

sequences (Town 1 and 2). Similar to KITTI, this dataset only consists of urban

outdoor scenes. Figure 4.14 illustrates a simulated LiDAR scan. The scanner used in

the simulation has the same number of channels as the scanner used in the KITTI

dataset. The most noticeable difference between the simulated and the real data is

the rendering of the movable objects. The shape of these objects only consists of

planar structures, which makes matching of keypoints a challenging problem due

to presence of limited distinctive shape features.

For evaluating this dataset, we repeat the evaluation done for the KITTI dataset.

The main motivation of using this dataset is the availability of the ground-truth
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(a) Distribution of error in the estimated motion for Seq. 3.
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(b) Distribution of error in the estimated motion for Seq. 5.
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(c) Distribution of error in the estimated motion for Seq. 6.

Figure 4.9

position for movable objects, which in this case is vehicles. We split the evaluation

of error in motion into two cases. The first evaluation is for non-movable objects

like buildings or vegetation. The motion observed for points belonging to this class

is solely because of the sensor motion. We evaluate the accuracy of the estimated

motion for this case by comparing the estimated motion with the odometry. The

benchmark does not provide the ground-truth odometry but instead the ground-

truth sensor position, and we estimate the sensor egomotion by calculating the
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Figure 4.10: Comparison of the estimated motion field between two factor graph represen-

tations. On the left is the motion field for the first factor graph representation and on the

right is the motion field for the second representation. The colorization of the pointcloud is

as per the color wheel. For the first representation, the points on the wall on the left have

large motion after subtracting the sensor motion from the estimated motion, in comparison

to the second representation. This illustrates that by using the second graph representation,

motion can be estimated more accurately.

Figure 4.11: Figures in the top row show the estimated feature correspondences prior to

using our descriptor matching approach (left) and after using our approach (right). The

purple ellipses show the false correspondences that are removed after using our method.

Figures in the bottom row shows the estimated motion field for these respective cases. The

error in the estimated motion is higher when our feature matching approach is not used

(bottom-left) but the error significantly decreases after using our feature matching approach

(bottom-right).
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Figure 4.12: Figure on the left shows the estimated motion field when the same weights

(β = 1) are used for the data and the smoothnes term and the figure on the right shows

the motion field after a large weight (β = 1000) is used for the smoothnes term. In the

case of same weights, the points on the wall on the left have large motion after subtracting

the sensor motion from the estimated motion, in comparison to the case when the error

contributed by the smoothnes term is weighted more.

Figure 4.13: Figure on the top-left shows two consecutive misaligned pointclouds and

the figure on the top-right shows the aligned pointclouds after using our method. The

bottom-left figure shows a zoomed in view of the misalignedwall, which is correctly aligned

by our method (bottom-right).
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Table 4.5: Alignment accuracy for KITTI odometry

ICP fg1 w/o c.f β = 1 Ours

Seq. 3 0.888±0.011 0.934±0.020 0.927±0.023 0.929±0.022 0.931±0.022
Seq. 4 0.754±0.044 0.901±0.046 0.880±0.059 0.894±0.050 0.896±0.049
Seq. 5 0.905±0.030 0.938±0.016 0.931±0.020 0.933±0.020 0.935±0.018
Seq. 6 0.868±0.025 0.894±0.020 0.873±0.032 0.881±0.030 0.887±0.028
Seq. 12 0.630±0.076 0.843±0.078 0.802±0.095 0.840±0.073 0.847±0.069

Figure 4.14: An illustration of a simulated LiDAR scan. Similar to the scanner used in the

KITTI dataset, the simulated scanner also has 64 channels. In comparison to the real dataset,

the noise level in the measurements for simulated data is very limited. The main difference

between the real and this simulated dataset is the rendering of the movable objects, which

in this case is vehicles (zoomed image). The shape of the objects is only comprised of planar

structures and has limited distinctive shape properties.

difference in the positions. In Table 4.6 and 4.7, we report the motion error for the

sensor motion. The next evaluation is for movable objects. For the majority of the

scans, movable objects have non-zero motion i.e. they are dynamic but for some

cases they are static as well. Similar to the first evaluation, we compare the estimated

motion for these objects with the difference of the ground-truth position of movable

objects in the consecutive scans. In Table 4.8 and 4.9, we report the motion error

for the movable objects. In Table 4.10, we report the alignment accuracy for the

complete scan i.e. for both movable and non-movable objects together.

Figure 4.15 illustrates the estimated motion field for one of the scans. Similar to

results on the KITTI dataset (Figure 4.8), our method is able to estimate the sensor

motion (black points) and motion for different dynamic objects (points in green and

purple color). Comparing the error in sensor motion, the lowest error in motion

for the Town 1 sequence is achieved by our method and for the other sequence,

the lowest error is for ICP. The difference in the error between sequences for ICP

is because the sensor is often static in the sequence Town 2.. In such cases, the

non-occluded parts of the scene have perfect data association (nearest neighbor

for ICP) due to limited noise in the simulated data. This is also observed for our
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Figure 4.15: Visualization of the estimated motion field for a simulated LiDAR scan. Like

other qualitative evaluations, points are colorized as per the color wheel. Static structures,

like walls, have colors similar to the center of the color wheel, which indicates that after

subtracting the sensor motion, the estimated motion is close to zero. The two dynamic

objects behind the scanner (green color) are moving in the opposite direction to the cars

moving in the direction of the sensor (purple color). These colors are opposite in the

color wheel and also along the circumference, which illustrates that both the direction and

magnitude of the motion is estimated correctly.

method, where for all the cases the error is lower for the Town 2 sequence. Similar

to the evaluation on KITTI dataset, the error increases after using the first factor

graph representation, not filtering the correspondences and equally weighting the

smoothnes and the data term. The explanation for this is the same as mentioned

in Section 4.3.2.1.

Even though the relative error between different cases for the real and simulated

data is similar, the standard deviation in the case of simulated dataset is either

larger or comparable to the mean, indicating that the distribution of error is not

unimodal. Figure 4.16a and 4.16b shows the histogram for the translation and the

rotation error of sensor motion for Town 1 and 2 sequence respectively. For both

sequences, the first distribution of error is around zero. This is the case where

the sensor is not moving and the data association for non-movable points that

are not occluded by movable objects is perfect. As mentioned before, the perfect

data association is possible because of limited noise in the simulated data. The

next distribution is around the mean reported in Table 4.6. The error for the large

majority of the scans are part of these two distributions, while the errors for the few

remaining scans are sparsely distributed across the complete range of error.

In comparison to the error in sensor motion, error for movable objects is larger

(Table 4.8 and 4.9). This is an expected result because ourmethod relies on estimating
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motion through correspondences between keypoints, which in turn requires a large

overlap between points in two consecutive scans. Even in the case of a moving

sensor or occlusions due to dynamic objects, the overlap of the static structure in

consecutive scans is large enough to estimate the motion accurately. In contrast to

that, the overlap for movable objects is often limited because such objects are smaller

in size in comparison to the static structure and therefore the overlap decreases,

especially for the cases when both the sensor and the object have non-zero motion.

For both sequences, the error for our method is lower than for ICP. This is

expected, since the objective of ICP is to estimate a single motion model. This result

again reiterates our initial claim that our method can seamlessly estimate multiple

motion models. Similar to the results reported before, the use of the first factor

graph representation, not filtering the correspondences and identically weighting

the data and the smoothnes term deteriorates the accuracy of the estimated motion.

The standard deviation for the error in case of movable objects is either larger or

comparable to the reportedmean, similar to the case of sensormotion. In Figure 4.17a

and 4.17b, we show the distribution of error for movable objects for both sequences.

The range of error is larger in comparison to the error for sensormotion (Figure 4.16a

and 4.16b), which supports our initial claim that sensor motion can be estimated

more accurately in comparison to the movable objects for aforementioned reasons.

The error (both in translation and rotation) for the majority of the scans is around

the reported mean, while large error in a few scans pushes the range of error, which

results in a large standard deviation.

In the case of alignment accuracy (Table 4.10), our method outperforms ICP. The

alignment for static and movable objects are estimated together and due to presence

of dynamic movable objects, the accuracy for ICP is lower. The highest accuracy is

achieved by using the first factor graph representation, which is marginally better

than the second representation. We reported similar results for KITTI as well and

explained the reason for this behavior (Section 4.3.2.1). The same explanation holds

for this case as well.

Through the evaluation on the simulated dataset, we show that our method is

able to estimate the sensor motion and motion of multiple objects accurately. Our

method overcomes the limitation of a method like ICP, which only estimates a single

rigid motion model, whereas our method estimates multiple rigid motion models

and this characteristic makes our method useful in the case where the environment

is non-rigid.

Table 4.6: Translation error for sensor motion (meters)

ICP fg1 w/o c.f β = 1 Ours

Town 1 0.122±0.195 0.158±0.225 0.145±0.243 0.146±0.208 0.111±0.179
Town 2 0.044±0.063 0.134±0.162 0.109±0.130 0.125±0.154 0.105±0.129
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Table 4.7: Rotation error for sensor motion (radians)

ICP fg1 w/o c.f β = 1 Ours

Town 1 0.002±0.003 0.012±0.014 0.010±0.013 0.012±0.015 0.007±0.012
Town 2 0.001±0.003 0.012±0.015 0.013±0.017 0.015±0.022 0.011±0.019

Table 4.8: Translation error for movable objects (meters)

ICP fg1 w/o c.f β = 1 Ours

Town 1 0.409±0.419 0.313±0.629 0.284±0.406 0.285±0.485 0.259±0.475
Town 2 0.289±0.280 0.254±0.316 0.196±0.189 0.220±0.276 0.193±0.229

Table 4.9: Rotation error for movable objects (radians)

ICP fg1 w/o c.f β = 1 Ours

Town 1 0.006±0.011 0.028±0.061 0.043±0.093 0.040±0.109 0.029±0.084
Town 2 0.005±0.009 0.026±0.034 0.031±0.046 0.035±0.066 0.028±0.056

Table 4.10: Alignment accuracy for the simulated Dataset

ICP fg1 w/o c.f β = 1 Ours

Town 1 0.925±0.075 0.972±0.040 0.961±0.057 0.970±0.035 0.969±0.040
Town 2 0.930±0.069 0.968±0.042 0.960±0.052 0.965±0.045 0.964±0.045

4.3.2.3 Non-rigid Objects

The foremost contribution of our method is that it can seamlessly estimate multiple

motion models. We illustrated the advantage of this feature in the previous section,

where we showed results for sequences with multiple dynamic objects. In that

case, even though objects like vehicles or bicyclists were rigid, the whole scene was

non-rigid due to dynamic objects. In this section, we focus on non-rigid objects

rather than non-rigid scenes. We collected a dataset with four different kinds of

human motion: bending forward, bending sidewards, moving arms upwards and

moving arms backwards. Figure 4.18 shows the input scans and the alignment

results for ICP and our method. Unlike ICP, our method is able to estimate different

motions and align consecutive scans for all of the cases.

In Table 4.11, we report the alignment accuracy for all of the cases. Similar to

before, we use the crispness score as ametric for the alignment accuracy and compare

our method with ICP, and report results for the cases where false correspondences

between the keypoints are not filtered and the weighting for the smoothnes and

data term is identical. For all of the cases, the accuracy of our method is higher

than ICP. The performance of two factor graph representation is similar and the

reason for this is same as discussed in Section 4.3.2.1. Having same weight for data
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(a) Distribution of error for sensor motion in Town 1 sequence.
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(b) Distribution of error for sensor motion in Town 2 sequence.

Figure 4.16

and smoothnes term results in a significant decrease in accuracy. In the case of

non-rigid objects, the smoothnes term is of critical importance to estimate motion

that is only locally rigid and therefore equally weighting data and smoothnes term

deteriorates the performance. Filtering out correspondences also results in a slight

decrease in accuracy for a few cases.

Table 4.11: Alignment accuracy for non-rigid objects

ICP fg1 w/o c.f β = 1 Ours

Moving arm

upwards

0.937±0.043 0.983±0.006 0.980±0.008 0.924±0.040 0.981±0.006

Moving arm

backwards

0.933±0.045 0.984±0.008 0.986±0.004 0.920±0.048 0.987±0.004

Bending

sidewards

0.946±0.022 0.972±0.002 0.969±0.005 0.881±0.067 0.970±0.005

Bending

forward

0.857±0.067 0.930±0.029 0.937±0.025 0.802±0.011 0.936±0.026
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(a) Distribution of error in motion for movable objects in Town 1 sequence.
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(b) Distribution of error in motion for movable objects in Town 2 sequence.

Figure 4.17

4.3.2.4 Learned Feature Descriptors

Table 4.12: Translation error for handcrafted and learned descriptors (meters)

SHOT Descriptor w/o metric Descriptor w/ metric

Seq. 3 0.121±0.067 0.114±0.057 0.113±0.051
Seq. 5 0.137±0.062 0.127±0.053 0.129±0.048
Seq. 6 0.321±0.114 0.322±0.113 0.301±0.105

For the results reported so far, we used the SHOT descriptor for finding cor-

responding keypoints between consecutive scans. In Chapter 3, we proposed a

method for learning local feature descriptors for the same task ofmatching keypoints

between scans. In this section, we compare the motion error and the alignment

accuracy after replacing the SHOT descriptor with the learned descriptors. Among

the learned descriptors, we show results for the descriptors learned with and

without metric from 2D image patches.

In Table 4.12, 4.13 and 4.14 we report the error in translation and rotation

motion, and the alignment accuracy respectively. For all of the cases, using learned
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.18:Alignment of non-rigid bodies for body bending upwards (a)-(c), body bending

sidewards (d)-(f), arm moving backwards (g)-(i) and arm moving upwards (j)-(l).The first

column shows the input scans. The points in scan Pt are shown in red, scan Pt−1 is shown

in gray, and the scans transformed by estimated motion model are shown in green. The

results for ICP are illustrated in the second column and the results for our method are

shown in the last column. In all cases, different parts of the body have different motion, and

our method seamlessly estimates various locally rigid motion models to align consecutive

scans, whereas ICP only estimates a single motion model and fails to align the scans.
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Table 4.13: Rotation error for handcrafted and learned descriptors (radians)

SHOT Descriptor w/o metric Descriptor w/ metric

Seq. 3 0.021±0.015 0.019±0.013 0.017±0.011
Seq. 5 0.024±0.017 0.023±0.015 0.021±0.014
Seq. 6 0.041±0.031 0.04±0.02 0.035±0.021

Table 4.14: Alignment accuracy for handcrafted and learned descriptors

SHOT Descriptor w/o metric Descriptor w/ metric

Seq. 3 0.931±0.022 0.938±0.017 0.939±0.016
Seq. 4 0.896±0.049 0.902±0.046 0.905±0.042
Seq. 5 0.935±0.018 0.940±0.015 0.941±0.014
Seq. 6 0.887±0.028 0.901±0.020 0.905±0.021
Seq. 12 0.847±0.069 0.847±0.076 0.854±0.070

descriptors helps in reducing the error in the estimated motion. This reiterates

the results reported in Table 3.3 from Chapter 3, where the error in alignment was

lower for the learned descriptors. Comparing the alignment accuracy, for all of the

cases the learned descriptor outperforms the SHOT descriptor. Among learned

descriptors perform comparably, the descriptor learned with metric performs better

for most cases.

4.4 Semantic Classification using Pointwise motion

In Section 4.3, we proposed a novel method for estimating pointwise motion and

through extensive evaluation; we showed that our method is capable of estimating

multiple rigidmotionmodels. Having suchmotion cues can potentially aid semantic

scene understanding, more specifically, it can help to infer the motion state of 3D

LiDAR points i.e. whether a point in a scan is static or dynamic. In Section 4.2.2, we

targeted the same problem and proposed a method for detection and tracking of

dynamic objects solely through motion cues. This method assumed that a scan can

be decomposed into a set of rigid objects, which can be iteratively detected using

the estimated motion models. The largest rigid object detected using this method is

considered static and the objects detected subsequently are considered dynamic.

Now we focus on estimating the pointwise motion state for each point rather

than detecting dynamic objects. Building upon our method of estimating pointwise

motion, we propose a HiddenMarkovModel (HMM) based approach for estimating

motion state for points in a 3D LiDAR scan. For a point pt
in a scan at time t,

we define a random binary state variable Xt = {s, d}, where s and d are the

two possible values for X representing the two motion states, static and dynamic
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respectively. The objective is to estimate the belief of the current state.

Bel(Xt) = P(Xt | τττ1:t), (4.50)

where, the current belief Bel(Xt) depends on the the motion measurements τττ1:t
.

In Eq. (4.51), we show the simplification of Eq. (4.50) using the Bayes rule and the

Markov assumption. Since X is a discrete random variable, Eq. (4.51) can rewritten

as Eq. (4.52).

Bel(Xt) = ηP(τττt | Xt)
∫

P(Xt | Xt−1)Bel(Xt−1)dXt−1
(4.51)

Bel(Xt) = ηP(τττt | Xt) ∑
Xt−1={s,d}

P(Xt | Xt−1)Bel(Xt−1) (4.52)

The likelihood of themeasurementτττt
given the state is defined in Eq. (4.53), where τ̂ττt

is the expected measurement, which in this case is the odometry. A large likelihood

value indicates a point being static, since the estimated motion is similar to the

odometry and a small likelihood value indicates the opposite. In order to propagate

the belief between consecutive scans, we use the estimated motion for finding dense

pointwise data association. Points in a scan at time t are aligned with points in scan

t + 1 using the estimated motion and then data association is performed by finding

the nearest neighbor using the Euclidean distance.

P(τττt | Xt) = N (τττt; τ̂ττt, Σ) (4.53)

A key advantage of ourmethod is that the inference of themotion state is not solely

dependent on the current measurement but also on the previous belief. This makes

our method robust towards spurious sporadic incorrect motion measurements and

makes the inference temporally consistent.

4.4.1 Results

We test our approach on the dataset from Moosmann and Stiller [74], that we used

before to evaluate our method on detection and tracking of dynamic objects, and

now, in order to compare the performance of both methods. To validate our claim

that our method enables temporally consistent inference, we report results for the

case where inference is solely based on the current measurement, which in this

case is the likelihood term described in Eq. (4.53). For evaluation, we report the

intersection over union (IoU), and pointwise precision and recall.

The semantic classification method proposed in the previous section relies on the

pointwisemotion for estimating themotion state of points in a scan. In Section 4.3.2.4,

we showed how learned descriptors from Chapter 3 enable estimation of accurate

motion in comparison to a handcrafted descriptor. For estimating the motion

state, we thus use the pointwise motion estimated using the descriptor learned
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without metric, since matching of this descriptor requires low computational time

in comparison the descriptor learned with a metric. We also report results for the

pointwise motion estimated using the SHOT descriptor.

In Figure 4.19, we illustrate the estimated motion state for points in a scan from

sequence B. In Table 4.15, for sequence A, we report results for our method of

detection and tracking (D & T) of dynamic objects, the method where the inference

is based on the likelihood of the measurement, and our method based on HMM.

For the latter two, we report results for both SHOT and our learned descriptor.

In Table 4.15, we report the same results for Sequence B.

Comparing the IoU for the static class for sequence A, the performance for all

the methods are comparable. Results are better for HMM in comparison to the

method where inference is solely based on the likelihood term. These results

justify our initial claim that our method based on HMM makes the inference

temporally consistent. Comparing descriptors, the performance is marginally better

for SHOT descriptor. This is mainly due to the low recall in the case of learned

descriptor. For sequence B, the HMM based method performs better than the other

methods. Similar to sequence A, between descriptors, the performance is slightly

better for the SHOT descriptor. Figure 4.20 illustrates a visual comparison for a

sequence of three scans, between the method where inference is only based on

the likelihood values and method based on HMM. By combining the prior belief

with the correct measurement, our method is able to overcome isolated erroneous

motion measurements.

For the dynamic class, the detection and tracking method outperforms our

method based on HMM. Even though our method has either better or comparable

recall, it is plagued by false positives, which is reflected in the low IoU and precision

values. In the detection and tracking method, we used the concept of trackelets to

combat the false positive detections, but a similar approach for pointwise tracking

is not feasible. The majority of the false positives are for points that are far from the

sensor and in these cases the estimated feature descriptors are not reliable enough

for correct data association. This effect is further exaggerated by the fact that the

number of dynamic points are significantly lower compared to the static points and,

therefore, a small number of misclassified static points could severely impact the

classification of dynamic points. In the case of Sequence A, only 10% of the static

points are misclassified as dynamic, which results in a low precision value of 40.6%
for dynamic points. A similar pattern is observed for sequence B as well.

Comparing our HMMbasedmethodwith inference solely relying on likelihood, a

consistent improvement is achieved for both sequences for the dynamic class. In the

case of the likelihoodmethod, the IoU is marginally better for the learned descriptor

across sequences, with both higher precision and recall values and comparable for

HMM based method. In the case of sequence B for the learned descriptor, recall

decreases drastically for the HMM based method. This is mainly due to the fact
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Figure 4.19: An illustration of the estimated motion state for points in a 3D LiDAR scan.

Points classified as static are shown in black and dynamic points in blue color. Static points

that are misclassified as dynamic are shown in red.

Table 4.15: Results for sequence A

Method

IoU Precision Recall

static dynamic static dynamic static dynamic

D & T 88.4 57.3 99.3 71.2 88.9 75.2

Likelihood (SHOT desc.) 86.1 30.1 97.3 34.2 88.1 71.9

Likelihood (learned desc.) 84.4 32.4 98.0 35.0 85.9 81.2
HMM (SHOT desc.) 88.6 37.4 98.2 41.0 90.0 81.2
HMM (learned desc.) 87.4 36.8 97.9 40.6 89.1 80.0

that the sequence starts at an intersection with a large number of static vehicles and

which switch their state to dynamic later in the sequence. The transition of states is

faster in the case of likelihood method in comparison to the HMM based method.

Using the proposed HMM based method, we are able to classify dynamic points

correctly, but also incorrectly classify small percentage of static points as dynamic.

In Section 5.4, we revisit the problem of semantic classification of a LiDAR scan,

where we combine these motion measurements with the learned semantic cues and

address the issue of high false positive rate.

4.5 Related Work

The problem of detecting and tracking multiple moving objects has been studied

actively for decades [13], [14]. Proposed methods to solve this problem can be

broadly subdivided into model-free [61], [82], [124] and model-based [81], [106],
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(a) (b) (c)

(d) (e) (f)

Figure 4.20: A visual comparison of the estimated motion state, solely based on likelihood

(top) and our method based on HMM (bottom) for a sequence of three scans. The points in

red are false positives for the dynamic class i.e. static points that are incorrectly classified

as dynamic. Part of a wall (top left) is correctly classified as static for the first scan (a),

misclassified as dynamic in the next scan (b) and then correctly classified again (c). For

the HMM based method, the same part of the wall is correctly classified for of all the three

scans. Using the belief from the previous scan, our HMM based method is able to overcome

erroneous motion measurement, making temporally consistent predictions.

Table 4.16: Results for sequence B

Method

IoU Precision Recall

static dynamic static dynamic static dynamic

D & T 82.5 53.8 98.6 75.6 83.4 65.1

Likelihood (SHOT desc.) 85.6 31.0 96.2 37.0 88.6 65.8

Likelihood (learned desc.) 84.1 32.8 96.6 37.4 86.6 72.7
HMM (SHOT desc.) 89.2 36.3 96.5 46.2 92.5 63.0

HMM (learned desc.) 88.4 36.5 95.8 46.3 91.9 63.4
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[98] approaches.

In model-based approaches, objects are detected on the basis of known model

information. These approaches are preferred when the object to be detected is

known and therefore can be modeled a priori. In [81], an approach for detection and

tracking of cars is presented. For people, Spinello et al. [106] proposed a learning

based approach. They subdivide a human structure into multiple layers based on

height and then learn a classifier for each layer. Similarly, Shackleton et al. [98]

outline another method for detecting and tracking people. The main disadvantage

of model-based approaches is that they do not generalize to objects of different

categories, whereas a model-free approach allows detection of generic objects. The

advantage of model-based approach is that this semantic knowledge can be seen as

prior knowledge about the motion state of objects in a scan. Points belonging to a

vehicle have a higher chance of being dynamic in comparison to the points on a

building. In the next chapter, we revisit this idea of using the semantic knowledge

for estimating the motion state of points in a LiDAR scan.

Model-free methods are mainly based on motion cues and enable detection and

tracking of objects of arbitrary shape and size. Since these approaches require

motion information, they are unable to detect objects that can potentially move but

are static in the current observation. Model-free approaches are generally based

on building a static map of the scene and using this map information for detecting

dynamic objects. Pomerleau et al. [82] make a visibility assumption that the scene

behind the object is observed, if an object moves. To leverage over this information,

they compare an incoming scan with a global map and detect dynamic objects.

Since they only use depth as cue for change detection, their method might fail if the

motion between scans is small.

Kaestner et al.[61] propose a generative Bayesian approach for detecting dynamic

objects. For tracking, they use an approach based on the Kalman filter. They show

results for a static sensor but as mentioned by Pomerleau et al. [82] there is no

straightforward extension of their approach to a moving sensor. Recently, Wang

et al. [124] proposed a model-free approach for detection and tracking in 2D LiDAR

data. Using a joint state representation, they estimate the state of the sensor, a local

static map, and the state of the dynamic object. Every incoming scan is associated

with a local static map and with dynamic objects. For tracking, they use a constant

velocity motion model. While we have similar objectives, a comparison to our

method is infeasible, since our approach works on 3D instead of 2D LiDAR data.

Azim andAycard[10] represent the environment using an octree-based occupancy

grid and determine inconsistencies between the map and incoming scans to detect

dynamic objects. In contrast, we do not build a map, but similar to [124] we only

store local static information. For tracking, they use Global Nearest Neighbor for

associating tracks between consecutive frames. Tipaldi and Ramos [111] outline an

approach for detecting and estimating motion using CRF for 2D LiDAR data. Van
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De Ven et al. [117] extended their approach by integrating the CRF based method

with scan matching using a graphical model.

Moosmann and Stiller [74] use a segmentation method based on local convexity

for detecting object hypotheses. They combine ICP and a Kalman filter for tracking

and a classification method for managing tracks. Unlike them, we do not use a

shape prior for detection but rely only on motion information. We compare our

approach with their method and show superior performance.

The problem of estimating motion flow has been studied intensively in the past

but primarily in the computer vision community. The different developed methods

can be distinguished according to the dimension of themotion field. Optical flow [34]

describes 2D translation motion in image plane, sceneflow [50, 58, 120] describes 3D

translation motion, and the rigid scene flow [79, 86] describes the rigid motion.

Fortun et al. [34] provides extensive literature review for optical flow. Building

on optical flow, Vedula et al. [120] introduced the term scene flow. They included

first order approximations of the depth map to estimate 3D flow. Herbst et al. [50]

extended the approach presented by Brox et al. [18] and include a depth constraint to

estimate scene flow. Jaimez et al. [58] introduced a real time, primal-dual algorithm

based method to estimate scene flow for RGB-D data. However, these methods

make assumptions that for reasons discussed in Section 4.3 are not valid for our

case.

For estimating dense semi-rigid flow for RGB-D data, Quiroga et al. [86] solved

an energy minimization problem, using TV regularization to estimate piecewise

smooth motion. Vogel et al. [122] proposed a method to estimate the 3D motion

and structure using RGB-D data. The main contribution of their work is using

local rigid regularization instead of variational regularization. Newcombe et al. [79]

proposed a method for dense SLAM using RGB-D scans, where they reconstruct

deforming surfaces and simultaneously estimate dense volumetric 6D motion field.

These methods show commendable results but they use color and depth images,

while our approach relies on sparse depth data, therefore a direct comparison is

infeasible.

The methods discussed so far show results mainly for indoor scenes. For outdoor

environments, Menze and Geiger [73] proposed a method for object scene flow

using images. They oversegment the scene into super pixels and using CRF jointly

estimate rigid motion and an association between super pixels and objects. Even

though their assumption about rigid structure of the outdoor environment is not

invalid but our assumption of local rigidity enables our method to estimate motion

of a non-rigid object (in case of humans), making our method more robust towards

changes in the environment.

Our assumption of local rigidity allows for deformation of surfaces. Addressing

this problem, Haehnel et al. [41] proposed an approach extending ICP for reg-

istering deformable surfaces for sparse LiDAR data. Similar to us they perform
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pointwise estimation, allowing for smooth deformation of the surface. The main

difference between our method and their method is that we estimate feature based

correspondences, while they use nearest neighbors for data association. The as-

sumption of nearest neighbors breaks if two surfaces are far from each other, for

instance, when a dynamic object moves in the direction opposite to the direction

of sensor motion. Our feature based method is immune to these cases and can

estimate large motion. For registering deformable 3D surfaces, Dragomir Anguelov

et al. [27] extended the approach by Haehnel et al. [41] by introducing the concept

of correlated correspondences, where they estimate pointwise deformation and

correspondence. Our approach adjusts to the cases of non-rigid objects but in this

paper we are not concentrating on registering deformable dense 3D surfaces but

instead estimating pointwise motion for sparse LiDAR data, therefore a comparison

with the work of Dragomir Anguelov et al. and the approach of Cosmo et al. [25] is

beyond the scope of this thesis.

More recently, different methods for estimating motion flow for images [57], [31]

andpointclouds [15] usingdeep learninghave beenproposed. Unlike thesemethods,

which employ end-to-end learning techniques, we incorporated a learned descriptor

to leverage the superior performance for deep learning methods. Even though in

this thesis we did not focus on end-to-end learning techniques for estimating the

motion, such an approach can be seen as a favorable possible future extension of

our work.

4.6 Conclusions

In this chapter, we focused on the problem of scene understanding solely using

motion cues. We tackle this problem at object level and also at finer point level.

Firstly, we propose a novel approach to detect and track dynamic objects. We detect

motions between consecutive scans by sequentially using RANSAC and propose a

Bayesian approach to segment and trackmultiple objects. Ourmethod ismodel-free,

i.e. it does not require any prior information about the objects. We evaluate our

approach on two publicly available data sequences and compare it with an existing

method. For both sequences, our approach achieves a better F1 score. Furthermore,

we track the speed of the sensor and of another object with a higher accuracy. For

understanding the finer dynamic details about the environment, we propose a

novel method for estimating the rigid scene flow for 3D LiDAR data. We introduce

the concept of geometric constancy and use spatial smoothing to estimate dense

rigid motion flow. Since our method solely relies on the data association between

keypoints for estimating motion, we also introduce a method for estimating robust

data association. We test our approach on one simulated and two real datasets and

use ICP as a baseline method. Through exhaustive evaluation, we show how our

method is capable of estimating multiple rigid motion models, which is necessary
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in a scenario where either the scene or the object is non-rigid. Even though our

method overcomes the limitation of a method like ICP, which estimates a single

rigid motion model, the accuracy of the estimated motion for our method decreases

in the cases where the data is sparse. We also present an ablation study where

we analyze the contribution of different features of our approach. Building upon

the pointwise motion, we present an HMM based approach for estimating the

motion state for points in a scan. Such an approach makes the inference temporally

consistent and also robust towards sporadic noisy measurements. We justify this

claim through both qualitative and quantitative evaluation. We also compare the

HMM based approach with our approach of detection and tracking of dynamic

objects. The latter approach is more precise when compared to the HMM based

approach and we address this issue in the next chapter.
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Chapter 5

Scene Understanding using Motion and
Semantic Cues

Robots are expected to operate autonomously for long periods
of time in dynamic and changing environments. Understanding
the underlying dynamic and semantic characteristics causing
the changes, is a key enabler for achieving this goal. In this
chapter, we focus on garnering the semantic knowledge about the
environment and combining this knowledge with motion cues to
understand the 3Denvironment. Wepropose aDCNNto segment
points in a LiDAR scan into the classes car, pedestrian or bicyclist.
This architecture is based on dense blocks and efficiently utilizes
depth separable convolutions to limit the number of parameters
while still maintaining state-of-the-art performance. Tomake the
predictions from the DCNN temporally consistent, we propose
a Bayes filter based method. This method uses the predictions
from the neural network to recursively estimate the current se-
mantic state of a point in a scan. This recursive estimation uses
the knowledge gained from previous scans, thereby making the
predictions temporally consistent and robust towards isolated
erroneous predictions. Combining the motion cues from the
previous chapters and the learned semantic cues, we propose a
novel HMM based method for pointwise semantic classification
of a 3D LiDAR scan into three classes: non-movable, movable or
dynamic. We concentrate on understanding these specific seman-
tics because they characterize important information required
for an autonomous system. We compare our proposed DCNN
with other architectures and report a remarkable improvement
over state-of-the-art methods. For the Bayes filter and HMM
based methods, we show results for the entire KITTI tracking
benchmark. Using the Bayes filter method, we consistently im-
prove the neural network predictions across multiple sequences
in the benchmark. Through our evaluation of the HMM based
method, we show how combining the semantic and motion cues
can significantly improve the classification of dynamic points.
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5.1 Introduction

One of the vital goals in mobile robotics is to develop a system that is aware of

the dynamics of the environment. As the environment changes over time, the

system should be able to understand this evolution and then act accordingly to

deal with these changes. So far, we have primarily focused on improving our

understanding of the environment from the perspective of motion. In Chapter 3,

we proposed a method for learning local feature descriptors with the objective of

estimating robust correspondences between keypoints. In Chapter 4, we proposed a

method for detecting and tracking of dynamic objects and a method for estimating

pointwise motion. Both of these methods heavily relied on data associations

between keypoints for estimating the motion models. For 3D scene understanding

using motion cues, in Section 4.4, we proposed a Hidden Markov Model based

approach for inferring the motion state of each point using the estimated pointwise

motion.

In this chapter, we shift our focus on inferring semantic cues and leverage both

semantic and motion cues for the understanding of the environment. Different

methods targeting the problem of semantic understanding, have primarily focused

on either object detection [67, 85, 89, 90, 132] or semantic segmentation [11, 20, 59,

68, 92, 127, 128] and some methods have focused on both [47]. In the case of object

detection, the objective is to localize the location of an object, estimate the bounding

box coordinates encompassing the targeted object and also infer the semantic class

to which the object belongs. Having such information allows the estimating of the

number of instances of objects belonging to a semantic category and can potentially

aid the tracking of objects [96, 99], obstacle avoidance and safe navigation [29].

The objective of semantic segmentation is to have a dense prediction i.e. inferring

the semantic category either pixel or point wise. Having such a dense prediction

can help us understand the fine details about the environment. Segmentation can

also be used as a preprocessing step for object detection [37], and for robust visual

localization [78, 87] among many other applications.

In this chapter, we propose a novelDeep ConvolutionalNeuralNetwork (DCNN)

architecture for classifying points in a 3D LiDAR scan into the following semantic

categories: car, pedestrian or bicyclist. Recently, deep neural network based methods

have lead to breakthroughs in several vision tasks, such as classification [45, 54, 104],

detection [67, 85, 89, 90, 132] and segmentation [11, 20, 59, 68, 92, 114, 115, 116,

127, 128]. The majority of these methods are based on camera images [11, 20,

45, 54, 67, 68, 89, 90, 92, 104] and few methods have focused on using 3D LiDAR

scans [85, 127, 128, 132]. In Chapter 3, we proposed a dense blocks based DCNN for

learning local feature descriptors and now we use it again for the task of semantic

segmentation. Our proposed architecture is inspired by a fully convolutional dense

blocks based DCNNproposed by Jégou et al. [59], but with some vital modifications.

To reduce the number of parameters, we replace the standard convolution layers
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with depth separable convolution layers for dense blocks in the decoder. This

allows us to reduce the number of parameters by a significant amount while still

having competitive performance. To down-sample the feature maps, they proposed

a transition down block comprising of a composite function implementing different

operations. We replace this block with a single max-pooling operation and show

that instead of a composite function, this single operation is sufficient.

The input to our proposed architecture is a 2D image, which is generated after

projecting the 3D LiDAR scan onto a spherical plane. This image has multiple

channels that encode separate modalities. The resolution of the image after the

projection is skewed i.e. the height of the image is smaller than the width, since

the vertical field-of-view of the scanner is lower than the horizontal field-of-view.

This characteristic is critical because an important operation within a DCNN is

down-sampling of feature maps and the rate of down-sampling is crucial for our

case because of the small height of the image. Different methods proposed for

semantic segmentation of a 3D LiDAR scan using 2D images have proposed to

down-sample the feature maps only along the width dimension [127] or using

dilated convolutions [125]. We propose to down-sample the feature maps 4× along

both spatial dimensions. This helps us to utilize the benefits of down-sampling the

feature maps (Section 2.4) while limiting the loss in information.

Standard DCNN architectures treat each example independently and do not use

any previous or prior information. The data is rarely not sequential , especially

in the case of perception in robotics. To leverage over this sequential nature of

information, we propose a Bayes filter approach for making our segmentation

results temporally consistent. Similar to the objective of our Hidden Markov Model

based approach ( Section 4.4) for inferring the motion state, our current objective is

also to make our inference robust towards sporadic erroneous DCNN predictions.

To enable such temporally consistent inference, dense data association between

points in consecutive scans is required and to this end we extend our method of

estimating pointwise motion to pointwise tracking, as discussed in Section 4.4.

Different deep learning methods like Recurrent Neural Network (RNN) [39] or

Long Short Time Memory (LSTM) [51] exist for processing sequential data with the

same objective of having temporally consistent prediction but in this thesis we do

not explore such methods.

Combining the motion cues with the learned semantic cues, in this chapter we

also propose a novel method for classifying points in a scan into the following

three classes: non-movable, movable or dynamic. Using the semantic cues, we can

distinguish non-movable structures, like buildings, from movable structures, like

vehicles, pedestrians, among others. In contrast to the semantic cues, the motion

cues can help in separating the dynamic parts of the scene from the static. Since

both of these cues entail different and complimentary information, combining them

allows a better understanding of the environment.
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Combined knowledge of these classes highlights the underlying dynamics of

the environment and enables the robot to tackle different challenges pertaining to

navigation in a non-static or changing environment. The distinction between these

classes lies mainly in the time window within which change in the environment is

observed. For instance, pose or state of a dynamic object changes in consecutive

scans and therefore has non-zero motion within this time window. A movable

object, for e.g. a parked vehicle, has zero motion between consecutive scans but

is expected to change its location in few hours or days. Among the three classes,

non-movable parts of the environment are unexpected to remain unchanged for

longest period of time.

Considering navigation, knowledge of these classes is critical because it can

potentially allow uninterrupted navigation for longer periods of time. For example,

points classified as dynamic or movable can either be filtered out during mapping

or, as shown by Ruchti and Burgard [93], this information can also be incorporated

within the mapping framework. Points classified as non-movable can be used for

both efficient localization and mapping. In the case of localization, non-movable

points have higher chances of being re-observed and therefore can be easily matched

against a known or a mapped environment. Similarly, knowledge of this class can

help in avoiding frequent mapping runs of a changing environment. In the case of

robust mapping and localization, knowledge of non-movable points is essential, but

for safe and robust path planning, knowing which objects in the scene are dynamic

is critically important. Separating movable objects from dynamic is also necessary,

as it can aid in understanding different semantics of the environment. For instance,

knowledge of parked vehicles can be seen as a necessary precursor for detecting

parking spots and similarly knowing which movable objects are dynamic can be

used for distinguishing between the bike lane from a sidewalk, among other things.

To infer the desired semantic classes, we propose an HMM based approach.

This approach is similar to the HMM based approach we proposed in Chapter 4

but instead of inferring only the motion state (static or dynamic), we now focus

on inferring the motion and the semantic state together. We gain the semantic

knowledge, using the proposed DCNN for semantic segmentation and the Bayes

filter approach for making the prediction from the neural network temporally

consistent. This knowledge is then incorporated within the HMM along with the

motion cues. Using an HMM allows us to seamlessly integrate the motion and

the semantic cues together. Furthermore, within this approach we incorporate the

previous measurements, which allows us to properly utilize the sequential nature

of the input data.

Other methods [30, 88, 121] for similar semantic classification have been mainly

proposed for RGB images. For LiDAR data, separate methods exist for both object

detection [22, 23, 28, 65], semantic segmentation [127, 128] and for distinguishing

between static and dynamic objects in the scene [74, 82]. In the context of combining
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the motion and the semantic cues, Vaquero et al. proposed a deep learning based

method for estimating the vehicle motion only using 3D LiDAR scans. The main

difference between our approach and their approach is that they are focusing on

estimating the motion model, while we are focusing on inferring the motion state

(dynamic vs static).

The contributions of this chapter include a DCNN for semantic segmentation of

LiDAR scans into the classes: car, pedestrian or bicyclist. We compare our DCNN

with state-of-the-art DCNNs [125, 127, 128] proposed to solve the same task. To

justify different architecture design choices and gain further insight towards them,

we also present an ablation study. This study includes a comparison with the

architecture from Jégou et al. [59], analyzing the contribution of depth separable

convolutions and understanding the effect of different down-sampling choices. Our

next contribution is a Bayes filter approach for making the predictions of the neural

network temporally consistent. We evaluate our approach on the entire KITTI

tracking benchmark and use our proposed neural network as a baseline method.

The last contribution is a method for semantic classification of a LiDAR scan

for learning the distinction between non-movable, movable and dynamic parts of the
scene. To highlight the importance of integrating the semantic knowledge for the

inference of the motion state, we report a comparison with our approach proposed

in Section 4.4. The KITTI tracking dataset only provides ground-truth annotation

for different objects and the associated tracking ID, but not the ground-truth motion

state, i.e. whether an object is static or dynamic. To evaluate the inferred motion

state, we extended the existing ground-truth annotation by adding the information

regarding the motion state. The details regarding the method for estimating

the ground-truth annotation of the motion state are discussed in Section 5.4.2.

5.2 Semantic Segmentation of a 3D LiDAR Scan

In Figure 5.1, we illustrate the complete framework for semantic segmentation of a

LiDAR scan. The first step is to project the scan onto different 2D images with each

such image encoding a specific modality. These images are then stacked together

and are passed through our proposed DCNN for semantic segmentation. The

segmentation mask predicted by the DCNN is then projected back to the LiDAR

scan to infer pointwise semantic labels. The different steps within our framework

are described in detail in the following sections.

5.2.1 Generating training data

We use the data from the KITTI benchmark for our task of semantic segmentation

of 3D LiDAR scans. For LiDAR scans, the benchmark does not include this task, but

only object detection and therefore the dataset only provides the ground-truth 3D

bounding box annotation for the objects belonging to different semantic categories.
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Figure 5.1: Our proposed semantic segmentation framework. In the first step, we project a

LiDAR scan onto multiple 2D images and encode a specific modality in each image. These

images are then stacked together, fed into the proposed CNN architecture, and the output

is the predicted segmentation mask (bottom left). The segmentation information is then

projected back to the scan to infer the semantic labels for each point in the scan.

Unlike the case for 2D images, the 3D bounding boxes belonging to different objects

do not overlap and therefore all the points within a bounding box have the same

label. Using this cue we obtain the pointwise annotation required for the task of

semantic segmentation from the available object level ground-truth annotation.

One of the primary challenges pertaining to different learning based methods

using 3D data is the decision regarding the data representation [108]. Unlike 2D

images, which are organized in a grid structure, 3D data is often unorganized and

sparse, thereby making the problem of data representation non-trivial. Different

commonly used representations are 3D points [83, 84], voxel grid representa-

tion [72, 91, 132], using LiDAR measurements (range and angles) for generating

2D images [125, 127, 128] and rendering a 3D scene from multiple viewpoints and

projecting it onto 2D planes [60, 107]. Depending on the task, different representa-

tions are favored. Voxel grid representation or rendering multiple view points are

favored in the case of object detection or classification [60, 107] [91, 132]. 3D points

have been successfully used for object classification and detection, and semantic

segmentation [83, 84, 85] and 2D images have been used for semantic segmenta-

tion [125, 127, 128] and object detection as well [23, 65]. Methods learning from a

group of 3D points have primarily shown results for small indoor environments

where the environment is perceived using a RGB-D sensor. In contrast to that, we

are focusing on using LiDAR scanners for segmenting urban outdoor environments.

These environments are generally larger compared to a room in an office or in a

house. Also, the data from commonly used LiDAR scanners is sparser, especially for

far away points (points farther than∼30m) in comparison to the data from RGB-D

sensors.

For segmenting LiDAR scans, we use 2D images generated from LiDAR measure-
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ments. The two key advantages of using such representation is that large outdoor

environments are represented in a dense and compact fashion and secondly, differ-

ent learning methods proposed for 2D images are applicable for this representation

as well. In comparison to other 3D representations, like voxel grid or 3D points, a

shortcoming for using such 2D representations for learning a 3D environment is

that the neighborhood information is lost, since far away points can be neighboring

pixels in the image.

For different experiments, we use the dataset fromWu et al. [127] and our own

dataset created from the KITTI tracking sequence. The first dataset is also created

from the KITTI benchmark but from the raw sequences. Since the KITTI benchmark

only provides ground-truth annotation for objects in front of the camera, only the

3D points in the front of the camera are projected on a sphere for generating the 2D

image. To calculate the pixel location for points in a scan, for each 3D point (in front

of the camera) p, we first calculate the azimuth θ and polar φ angle as following:

θ = arctan(

√
x2 + y2

z
), (5.1)

φ = arctan(
y
x
), (5.2)

and then calculate the pixel coordinate θ̃, φ̃ as following:

θ̃ =
θ

∆θ
, (5.3)

φ̃ =
φ

∆φ
, (5.4)

where ∆θ and ∆φ are the angle resolutions. The height of the image is identical

to the number of channels of the LiDAR scanner. The LiDAR scanner used in the

KITTI benchmark has 64 channels (Velodyne HDL-64E) and therefore the height of

the image is 64. The width of the image is dictated by the angle resolution ∆θ. In

the dataset by Wu et al. [127], the 2D images have 64×512×5 resolution. The last
dimension corresponds to the number of channels in the image. The first channel

encodes the range value r =
√

x2 + y2 + z2
, the second channel encodes surface

reflectance values and the last three channels encode the 3D coordinates (x, y and z)
for a point p. For our dataset generated from the KITTI tracking benchmark, we use

the implementation from Moosmann and Stiller [74] for generating the 2D images

of 64×324×5 resolution. We use the first dataset to evaluate the performance of our

proposed DCNN for the task of semantic segmentation. We use the scans from the

KITTI tracking benchmark to evaluate the performance of our proposed Bayes filter

framework. Figure 5.2 illustrates the individual channels of the 2D image generated

from a 3D LiDAR scan. This is an illustration for a scan from the KITTI tracking

sequence. Each individual channel encodes different information, which can be

readily extracted from the raw pointcloud data.
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Figure 5.2: An illustration of the input data used of semantic segmentation. Figure on the

left shows an example LiDAR scan from the KITTI tracking sequence and on the right

we show the individual channels for the 2D images generated from this scan. The top

image shows the encoding of the range values, the image below that shows the encoding of

the surface reflectance values and the bottom three images shows the encoding of the 3D

coordinate information (x, y and z) respectively. Each of these images have a single channel

and are colorized for the sake of visualization.

5.2.2 Network Architecture

For the task of semantic segmentation, we propose a novel fully convolutional

DCNN architecture called DBLiDARNet. Our architecture is based on dense blocks

(Section 2.4.2) and is shown in Figure 5.3. Similar to other DCNN architectures

proposed for the task of semantic segmentation [59, 68, 92], our network is also

comprised of an encoder for learning the features required for the task while

down-sampling the feature map size, and a decoder to up-sample the feature maps

so that the last hidden layer has the same spatial resolution as the input image. In

the encoder, we have two convolution layers (conv_0 and conv_1), three dense blocks

(db_0, db_1 and db_2) and two max-pooling layers to down-sample the feature

maps 4× in comparison to the spatial resolution of the input image. In the decoder,

we use two up-convolution layers to up-sample the feature maps and use two more

dense blocks with depth separable convolution layers (Section 2.4.1). To limit the

number of learnable parameters in the decoder, similar to the architecture proposed

by Jégou et al. [59], in our proposed architecture the input to the up-convolution

layers is the feature maps learned by the dense block prior to the up-convolution

layer instead of all of the features maps learned until that point. For instance,

the input to the layer up_conv_0 is only the feature maps learned by the dense

block db_2. To recapture the information lost during up-sampling, we use skip

connections to concatenate feature maps from the encoder to the output of the

up-convolution layers.
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Figure 5.3: Our proposed architecture for semantic segmentation. In the encoder, we have

two convolution layers (conv_0 and conv_1), two max-pooling layers and three dense blocks

(db_0, db_1 and db_2). In the decoder, we use two up-convolution layers to up-sample the

feature maps, two dense blocks (db_3, db_4) with depth separable convolution and one

convolution layer (conv_2). We also use skip connection to concatenate feature maps from

the encoder, in order to recapture the details lost due to up-sampling.

As already mentioned, the height of the input image is the same as the number of

channels in the LiDAR scanner. In comparison to the data captured from standard

RGB cameras, where the height and the width of the image are similar, in our

the case the height (64) is 8× smaller than the width (512) of the image. To limit

the number of operations within different layers, make the architecture memory

efficient and increase the receptive field, a common practice is to down-sample the

feature maps, where the down-sampling rate varies from 16× to 32×, depending
on the task.

For the task of semantic segmentation where dense pixel wise prediction is

required, a large down-sampling rate can lead to a decrease in performance [21].

Since the height of our input image is 64, reducing the feature map size 16 or 8×
will result in a feature map with a height dimension as 8 or 4, thereby resulting in

a significant loss of information. Therefore, to arrest the information lost due to

down-sampling operation, we only reduce the feature map size 4×. Other methods

that are learning from images of same resolution have proposed down-sampling

the feature maps 8× ([127, 128]) but only along the width dimension, keeping the

height dimension unchanged or down-sampling 4× and using dilated convolutions

in the last layers of the encoder [125]. In the ablation study, we report results for a

network where we down-sample 8× along both spatial dimensions to justify our

decision of down-sampling 4×. We also train a network where we down-sample

only 4× but only along the width dimension, to compare with the down-sampling

method proposed in [127, 128].

The complete details regarding the dimensions of each layer or block and different

associated hyper-parameters is reported in Table 5.1. The kernel size of the filter

for all the convolution and up-convolution layers except conv_2 is 3× 3. In the
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Table 5.1: Architecture

Layer name Dimension (H×W×C) Repetition Depth separable

conv_0 64× 512× 48 - No

conv_1 64× 512× 48 - No

db_0 64× 512× 144 6 No

db_1 32× 256× 272 8 No

db_2 16× 128× 432 10 No

db_3 16× 128× 240 15 No

up_conv_0 32× 256× 240 - No

db_4 32× 256× 128 8 Yes

up_conv_1 64× 512× 128 - No

db_5 64× 512× 96 6 Yes

conv_2 64× 512× 4 - No

last layer, we use a filter of size 1× 1 to reduce the number of feature maps to

the number of classes. The stride for each convolution layer is set to 1 and the

stride for up-convolution layer is set to 2. For all dense blocks, the growth rate
parameter (Section 2.4.2) is set to 16. The number of features learned within a dense

block is growth rate times the repetition, where repetition is the number of times the

composite function within a block is repeated. As mentioned before, the input to

an up-convolution layer is only the number of feature maps learned in the previous

dense block and therefore the output of the db_3 only contains the feature maps

learned within the block (16×15), in contrast to the output of db_2, which consists

of feature maps learned within the block (16×10) concatenated with the number

of input feature maps (272). We also use a skip connection as shown in Figure 5.3.

The input to the dense blocks in the decoder (db_4 and db_5) is concatenation of

the feature maps learned by the previous up-convolution layer and the output of

the dense block (in the encoder) with the same spatial resolution. In this case, the

input to db_4 is the output of up_conv_0 concatenated with the output of db_1.

5.2.3 Loss Function

We formulate our problem of semantic segmentation as a multi-class segmentation

problem. We define a set of training images Γ = (Xn, Yn), n = 1, . . . , N, where

Xn = {xk, k = 1, . . . , |Xn|} is a set of pixels in an example input image and Yn =

{yk = {0, 1, 2, 3}, k = 1, . . . , |Yn|} is the corresponding ground-truth segmentation

mask image, where different values of yk correspond to background, car, pedestrian
and bicyclist classes respectively. The function learned by our proposed neural

network is f(Xn, θ) ∈ RH×W×C → RH×W×Ck , where Ck corresponds to the number

of classes and θ are the parameters learned by the network. The network learns

these parameters by minimizing the cross-entropy (softmax) loss (Section 2.4.5.1)
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in Eq. (5.5),

L(y, ŷ) = − ∑
c∈{0,1,2,3}

yc log ŷc (5.5)

θ∗ = argmin
θ

1
N × |Yn|

N

∑
n=1

|Yn|

∑
l=1

L
(

yl
n, ŷl

n

)
, (5.6)

where, yl
k ∈ R4

is one-hot encoding of a pixel l in the image Yn and ŷl
n ∈ R4

is the

predicted softmax probabilities (Eq. (2.10)) for the same pixel l.

5.2.4 Training

Our complete network architecture is implemented in TensorFlow [8]. We use the

dataset provided by Wu et al. [127], consisting of 8057 images for training and 2791

images for testing. As mentioned before, the dimension of the image is 64× 512× 5,
where 5 channels include depth, intensity and 3D coordinate information. We

train the network with a batch size of 2 and use the Adam optimizer [62] with a

learning rate of 1e−4
and weight decay of 5e−4

. Among the three classes, the point

measurements from cars is significantly more than the measurements from either

pedestrians or bicyclists, mainly because of the inherent difference in the size of the

geometrical structure. This leads to the problem of class imbalancing, where some

classes in the training data overwhelm the classes that are under represented. To

tackle this, we use a weight balancing technique and assign larger weights to points

belonging to the class pedestrian and bicyclist in comparison to points belonging to

the class cars and background.

5.2.5 Results

To evaluate our proposed DCNN, we use the test set from the dataset provided by

Wu et al. [127]. We report class wise IoU and compare our results with two DCNN

proposed by Wu et al. ([127],[128]) and the network architecture proposed by Wang

et al. [125]. The first architecture proposed by Wu et al. [127] is based on the

SqueezeNet [56] architecture. They use fire modules, which first involve squeezing

the featuremaps using 1× 1 filters and then expanding these squeezed featuremaps

in parallel using filters of size 1× 1 and 3× 3 and concatenating their outputs at the

end. Using three max-pool layers they down-sample the feature maps only along

the width dimension and to up-sample the feature maps they again use firemodules

in the decoder. The last layer of their neural network architecture is a recurrent

CRF and the complete architecture is trained end-to-end. They further improve this

architecture in [128] by using a binary mask as an additional input channel. This

mask indicates existence of a LiDARmeasurement corresponding to a pixel location.

Along this they also introduce a novel context aggregation module to limit the error
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introduced by missing LiDAR measurements and furthermore in order to tackle

the class imbalancing problem they use focal loss [66] for training their DCNN. The

last method we compare with is the DCNN proposed by Wang et al. [125]. Similar

to the neural network architectures proposed by Wu et al. [127], their network

architecture is also based on SqueezeNet. They also Squeeze Excitation blocks [53]

after the initial firemodules and at the end of the encoder they use an enlargement
layer, which is based on the Atrous Spatial Pyramid Pooling [21].

In Figure 5.4, we show qualitative semantic segmentation results. Our proposed

DCNN is able to segment objects of different classes successfully (top row) and

is able to tackle cases where an object is heavily occluded (middle row). We also

illustrate a case where our method sometimes over segments a bicyclist into classes

pedestrian and bicyclist. This primarily happens because a person is part of both

classes, in one case a person is walking and in the other case a person is riding a

bicycle.

In Table 5.2, we report the class wise IoU and mean IoU for different methods.

Our proposed DCNN outperforms the existing state-of-the art DCNNs proposed

for the same task and has a better IoU for all of the three classes. In the case of

pedestrian, the increase in IoU is around 70%, for the class bicyclist the increase is
around 17%, with an overall increase in mean IoU of 16%. These results indicate

a remarkable improvement over the existing DCNNs proposed to solve the same

task. Comparing the runtime, our DCNN has the largest runtime but considering

that scan rate for LiDAR scanners is around 10Hz, our method still provides real

time performance.

Comparing the inter class performance, the highest IoU is achieved for the class

car, whereas the performance for pedestrian and bicyclist are comparable. A similar

trend is evident for other methods as well. This difference in performance has three

main reasons, firstly the number of instances of pedestrian and bicyclist is lesser in
comparison to car. Secondly, the object in both these classes has a smaller size in

comparison to cars and therefore the number of points sampled from their surface

is significantly lower in comparison to points sampled from the surface of cars. Due

to these reasons, these two classes are under represented, and as mentioned before,

we use weight balancing in order to have a large penalty for misclassifying points

in these classes. To understand the contribution of this weight balancing, in our

ablation study we report results for a model trained w/o weight balancing. The

last reason is the over segmentation of points on a bicyclist into classes bicyclist and
pedestrian as shown in Figure 5.4. This misclassification is not a common occurrence

but still hampers the overall performance.

5.2.5.1 Ablation Study

In this ablation study, we justify the network design choices thet we mentioned

in Section 5.2.2. We first discuss the differences between our dense blocks based
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Figure 5.4:An illustration of the semantic segmentation results. In the left column, we show

the ground-truth segmentation masks where points belonging to the class car, pedestrian or

bicyclist are show in color green, orange and blue respectively. In the middle column, we

show the predicted segmentation masks with the same color scheme as the ground-truth

masks. To clearly visualize the differences between the ground-truth and predicted masks,

in the last we show the correctly segmented points in green color and the misclassified

points in color red. The top row illustrates the case where our proposed DCNN is able to

successfully segment objects of different classes. The middle row shows a hard case, where

a pedestrian is walking behind the cars and is heavily occluded and our method is still able

to correctly segment the pedestrian. The bottom row illustrates a case where our method

under performs. In some cases, bicyclists are over segmented into the classes bicyclist and
pedestrian due to presence of a person in both classes.

Table 5.2: A comparison with other DCNNs proposed for semantic segmentation of a

LiDAR scan. For each method, we report class wise and mean IoU

Method Car Pedestrian Bicyclist meanIoU t [ms]

SqueezeSeg [127] 60.9 22.8 26.4 36.7 8.7
SqueezeSeg w/ CRF [127] 64.6 21.8 25.1 37.1 13.5

PointSeg [125] 67.4 19.2 32.7 39.7 12

PointSeg w/ RANSAC [125] 67.3 23.9 38.7 43.3 14

SqueezeSegV2 [128] 73.2 27.8 33.6 44.8 -

DBLiDARNet (Ours) 75.1 47.4 45.4 56.0 40
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Table 5.3: Results for ablation study. For each method we report class wise and mean IoU.

Method Car Pedestrian Bicyclist meanIoU t [ms]

100 Layer Tiramisu [59] 74.2 48.7 43.7 55.5 41

TD block [59] 72.2 48.3 41.2 53.9 43

Down-sample 8× 74.1 43.8 39.7 52.5 43

Down-sample width 4× 74.7 45.0 38.6 52.8 66

db_3 depth separable 74.2 49.2 36.8 53.4 41

db_3 + db_2 depth separable 73.6 41.2 33.2 49.3 40
W/o weight balance 72.4 40.9 35.1 49.5 41

DBLiDARNet 75.1 47.4 45.4 56.0 41

fully convolutional network and the architecture proposed by Jégou et al. [59].

1. Their architecture consists of transition-down block for down-sampling the

feature maps. This block implements a composite function comprising of

batch normalization, ReLU activation, convolution layer (1× 1), dropout and
max-pooling. We replace this transition-down block with a max-pooling layer.

This decision is based on our empirical findings, which showed that replacing

this block, which contains learnable parameters by a max-pooling layer, helps

in reducing the parameters while maintaining similar performance.

2. As already mentioned and shown in Figure 5.3, we use depth separable

convolution layers instead of convolution layers for dense blocks in the decoder.

This again helps in reducing the learnable parameters significantly without

reducing the performance. The number of parameters for our proposed

network is 2.8M and their architecture is 3.6M. This large difference between

the parameters is mainly attributed to depth separable convolution.

The architecture proposed by Jégou et al. [59] consists of five transition down

blocks for down-sampling the feature maps 32×. They, therefore, use five up-

convolution layers in the decoder along with the same number of dense blocks.

Such a high down-sampling rate will result in significant loss of information for

reasons discussed before (Section 5.2.2). Therefore, in our implementation of their

architecture we only use two transition down blocks instead of five. In Table 5.3 we

report both classwise andmean IoU for their architecture and also for amodelwhere

we use our architecture but replace the max-pool layers with transition down (TD)

blocks. Our proposed architecture outperforms their architecture marginally while

using fewer parameters. Using transition down blocks instead of a max-pooling

layer leads to a slight decrease in performance as well. These results clearly indicate

that our proposed changes help in reducing the parameters while improving the

performance.
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We trained two different models in order to compare the different down-sampling

strategies. For the first model, we down-sample 8× instead of 4× and for the

second model we down-sample 4× but only along the width dimension while

keeping the height unchanged, similar to [127]. As reported in Table 5.3, for the

first model (down-sample 8×), the IoU for the class car remains comparable but

a decrease in performance is observed for the other classes. In comparison to

cars, pedestrians and bicyclists are smaller and therefore a large down-sampling

rate adversely affects these classes in comparison to other classes. For the second

model, similar to the first, a noticeable decrease in performance is observed for

both pedestrian and bicyclist classes. Even though a large down-sampling rate can

hamper the performance, especially for the task of semantic segmentation, it is still

required for increasing the receptive field as well as making the model efficient

considering both the memory and computational requirements. Our proposed

strategy of down-sampling the feature maps 4× allows us to exploit the advantages

of such operations without losing the crucial information necessary for predicting

accurate segmentation masks.

Depth separable convolution is an ingenious way of reducing parameters, but

excessively using it can potentially decrease performance. To justify this, we train

two models, using a depth separable convolution in the last dense block of the

encoder (db_3) and then in last two dense blocks together (db_3 + db_2). This

decreases the number of parameters from 2.8M (DBLiDARNet) to 1.9M and 1.4M

respectively. In both cases the performance decreases, especially for the second case

wherein the decrease is substantial.

To limit the detrimental impact of class imbalancing on the overall performance,

we use weight balancing. In the loss function, the contributions made by the under

represented classes are multiplied by a large weight, thereby incurring a large

penalty if points from these classes are incorrectly classified. The lowest weight

is assigned to the background class, while weights in increasing order are assigned

to classes car, pedestrian and bicyclist respectively. To analyze the impact of weight

balancing, we trained a model where we did not use balancing and report results for

this in Table 5.3. The decrease in performance is evident for all the classes, where

the most under represented class suffers the most with performance decreasing for

the class bicyclist by 22% and for class pedestrian by 5%. These results highlight the

necessity of using the weight balancing technique.

5.3 Object Bayes Filter

In Section 5.2, we proposed a novel DCNN architecture for semantic segmentation

of a LiDAR scan into different categories. The output of the network is the predicted

softmax probabilities of a point in a scan belonging to different categories. Since

this prediction is performed independently for different scans, in this section we
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introduce a novel Bayes Filter approach tomake our pointwise prediction temporally

consistent. This approach assumes the scans are sequential with significant overlap

and the objective is to leverage over the sequential nature of this information and

make our prediction robust to isolated erroneous predictions from the neural

network.

The output of the neural network is category wise softmax probability for each

point and now we estimate the category wise belief for each point using a binary

Bayes filter with static state. For each point, we use three separate binary Bayes

filters to estimate the belief for each class independently. In Section 4.4, we proposed

an HMM based approach for classifying points in a scan as static and dynamic

with the same objective of making the predictions temporally consistent. In that

approach, we considered transition between the states since objects can switch

their state from static to dynamic and vice-versa. In contrast to that, for the case

of semantic segmentation, the semantic state of a point is static, i.e. it remains the

same over time and therefore the current belief only depends on the measurements,

which in this case is the neural network output.

To estimate the belief for a class c, for a point pt
in a scan at time t , we first define

a binary random state variable Ot
c = {0, 1}, where Ot

c = 1 indicates that the point

belongs to the class c and Ot
c = 0 indicates the opposite. Without loss of generality,

from now on, we would write Bel(Ot
c = 1) as Bel(Ot

c) and Bel(Ot
c = 0) as Bel(¬Ot

c).

The current belief Bel(Ot
c) depends only on the predictions of the neural network,

ξ1:t
c , for the class c as shown in Eq. (5.7).

Bel(Ot
c) = P(Ot

c | ξ1:t
c ), (5.7)

where, ξ1:t
c are softmax scores for the class c. We define such binary random

variables for each class and estimate the belief for each class independently.

Using Bayes rule andMarkov assumption, we can rewrite the Eq. (5.7) as following:

P(Ot
c | ξ1:t

c ) =
P(ξt

c | Ot
c)P(Ot

c | ξ1:t−1)

P(ξt | ξ1:t−1)
. (5.8)

Using Bayes rule for the term P(ξt
c | Ot

c), Eq. (5.8) can be modified as following:

P(Ot
c | ξ1:t

c ) =
P(Ot

c | ξt
c)P(ξt

c)P(Ot
c | ξ1:t−1)

P(Ot
c)P(ξt | ξ1:t−1)

. (5.9)

Similarly, P(¬Ot
c | ξ1:t

c ) can be written as:

P(¬Ot
c | ξ1:t

c ) =
P(¬Ot

c | ξt
c)P(ξt

c)P(¬Ot
c | ξ1:t−1)

P(¬Ot
c)P(ξt | ξ1:t−1)

. (5.10)

We now introduce the log odds notation, where odds of an event x is defined



112 Chapter 5. Scene Understanding using Motion and Semantic Cues

in Eq. (5.11) and the log odds are defined in Eq. (5.12)

p(x)
¬p(x)

=
p(x)

1− p(x)
, (5.11)

l(x) = log

p(x)
1− p(x)

. (5.12)

The odds for a point pt
having the semantic class c can be estimated by divid-

ing Eq. (5.9) by Eq. (5.10). The odds is defined in Eq. (5.13) and the log odds are

defined in Eq. (5.15),

P(Ot
c | ξ1:t

c )

P(¬Ot
c | ξ1:t

c )
=

P(Ot
c | ξt

c)

P(¬Ot
c | ξt

c)

P(Ot
c | ξ1:t−1)

¬P(Ot
c | ξ1:t−1)

P(¬Ot
c)

P(Ot
c)

, (5.13)

=
P(Ot

c | ξt
c)

1− P(Ot
c | ξt

c)

P(Ot
c | ξ1:t−1)

1− P(Ot
c | ξ1:t−1)

1− P(Ot
c)

P(Ot
c)

, (5.14)

lt(Ot
c) = log

P(Ot
c | ξt

c)

1− P(Ot
c | ξt

c)
+ lt−1(Oc)− l0(Oc), (5.15)

where, the current measurement is defined as following:

P(Ot
c | ξt

c) = ξt
c. (5.16)

In Eq. (5.15), lt(Ot
c) are the log odds for the belief at time t, the first term on

the right side in Eq. (5.15) are the log odds for the current measurement, lt−1(Oc)

are the log odds for the previous belief and l0(Oc) are the log odds for the initial

belief. Through this formulation, our inference not only depends on the current

measurement (P(Ot
c | ξt

c)), but also on the previous measurements, incorporated

through the recursive term lt−1(Oc). To enable this recursive behavior, data

association between points in consecutive scans is required and for this we use our

method of estimating pointwise motion as proposed in Chapter 4. For inferring the

motion state using HMM (Section 4.4), we performed data association by aligning

scans using the estimated motion and choosing the nearest point on the basis of

Euclidean distance as the corresponding point. For this case, we follow the exact

same approach for associating points in consecutive scans. As mentioned before,

we estimate lt(Ot
c) for each class separately and for the inference we choose the class

with the largest odds.

5.3.1 Results

To evaluate our proposed Bayes filter approach, we use the KITTI tracking bench-

mark. The benchmark contain 20 sequences and to evaluate our approach on all of

the sequences, we split the sequences into two different sets. We train our network

on both sets separately and use the other set for testing i.e. we train a model on

the first set and test the learned model on the second set and then train on the
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Table 5.4: Splitting of sequences in KITTI tracking benchmark

Seq. ID # of scans Cars Pedestrians Bicyclists

Set 1

0 153 528 21 153

4 313 908 65 60

5 296 1307 0 139

6 269 661 0 0

8 388 1334 0 0

9 802 3135 29 0

10 293 673 30 14

11 372 3579 197 0.0

19 1058 1411 6595 306

Set 2

2 229 1127 177 75

3 143 38 0 0

7 799 2488 67 0

12 77 142 64 42

13 339 123 1096 237

14 105 523 120 0

15 375 899 751 537

16 208 832 2019 271

17 144 0 776 100

18 338 1413 0 0

20 836 6244 0 0

second set and test on the first set. While splitting the sequences we assure the

number of scans and the instances of the different classes have similar distribution.

In Table 5.4, we report the number of scans in each sequence and the number of

instances of each class in a given sequence. Among the three classes, the number of

instances of class bicyclist is the minimum and instances of class car in large numbers

is consistently prevalent across sequences. As mentioned before, the number of

point measurements from the surface of pedestrians and bicyclists is significantly

less in comparison to the measurements from cars. Therefore, due to the limited

instances and smaller size, segmenting these classes is challenging.

For training the network, we use our proposed network with the exact same

parameters as discussed in Section 5.2.4, with one difference. In this case, the

input resolution of the images are 64× 324× 5, in comparison to 64× 512× 5. For
evaluating the proposed Bayes filter method, we use our network as the baseline

method and report comparison with the segmentation results from the network.

In Chapter 4, we proposed a method for estimating pointwise motion, which is used
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in the proposed Bayes filter approach for the task of estimating data association

between points in two consecutive scans. This data association is required for

estimating the state of a point in a recursive fashion. Our method of estimating

pointwise motion relies on the correspondences between sparse set of keypoints,

and in Section 4.3.2.4, we compared the accuracy of the estimated motion, where

we used our proposed learned feature descriptor in Chapter 3 and a handcrafted

descriptor, for estimating the motion. Across different metrics, the motion estimated

using our learned descriptor was more accurate.

To learn this feature descriptor, we used the first ten sequences of the KITTI

trackingbenchmark (Section 3.2.3), where surfacepatches around randomly sampled

keypoints were part of the training set. Using the same learned feature descriptor

for estimating pointwise motion on the same ten sequences makes the performance

biased towards the learneddescriptor, even thougha largeoverlapbetween randomly

sampled keypoints that were part of the training set and the keypoints used for

the estimating motion is unlikely. To compare the performance between the

learned and the handcrafted descriptor, we show results for both cases. A superior

performance for the learned descriptor is expected on the first ten sequences for

the aforementioned reasons but for the remaining sequences, this comparison is

unbiased.

In Figure 5.5, we illustrate the differences in the segmentation results for a

sequence of six consecutive scans. In the top two rows, we show results for our

proposed neural network and in the bottom two rows we show results for our

proposed Bayes filter approach. In the case of the neural network, the points on a

car are correctly classified in the first scan but in the next few scans, points on the

same car are misclassified as background. For the same scans, our proposed Bayes

filter is able to consistently classify points on the car correctly. These results clearly

illustrate that our Bayes filter approach successfully leverages over the sequential

nature of the input data to correct the segmentation, therebymaking our predictions

temporally consistent. For these results, the pointwise motion required for data

association was estimated using the learned descriptor and the scans are from

a sequence that was not used for generating the training data for learning the

descriptor.

In Table 5.5, we report class wise IoU for different sequences, for both our DCNN

and the Bayes filter approach (handcrafted and learned descriptors). In the cases

where no instances of a class is observed, we do not report results as well (Indicated

by a dash sign). Analyzing the neural network predictions, ourDCNN is consistently

able to segment cars in comparison to the other classes. Since the LiDAR scanner

is mounted on a vehicle, it shares the same space where other vehicles operate, in

comparison to pedestrians or bicyclists, which are either walking or biking on a

sidewalk or a bike lane. This also explains why the instances of cars outnumbers

pedestrians or bicyclists by a significant margin. In the cases of pedestrians, a
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.5: Illustration of semantic segmentation with the object Bayes filter. In the top two

rows ((a)-(f)), we show the output of our proposed DCNN for six consecutive scans. In the

top left image, the points on a car (top left) are correctly classified, but in subsequent scans,

the points on the same car are first partially ((b)-(c)) and then completely ((d)) misclassified

as background. In the bottom two rows, we show the output of our proposed binary Bayes

filter for the same six consecutive scans. For all of the six scans, the points on the same

car are correctly classified. These results clearly illustrate that our proposed Bayed filter

method is able to successfully mitigate the sporadic erroneous predictions from the neural

network.
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high IoU is achieved for the cases where pedestrians are in close proximity of the

vehicle collecting the sensor data, for instance on a crowded small street or at an

intersection. For some sequences, the IoU for the class bicyclist is zero. In these

cases, the majority of times these objects are either far from the sensor or occluded

and in rare cases they are misclassified as pedestrians. In the case of LiDAR data,

with the increase in distance the data gets sparser and especially in the case of

bicyclists or pedestrians, the surface is smaller in comparison to cars and therefore

there are not enough point measurements to a make an accurate prediction.

Comparing the DCNN results with the Bayes filter approach, across different

sequences and classes, an improvement in IoU is consistently observed after using

the Bayes filter approach. This improvement is achieved irrespective of whether

learned or handcrafted descriptor is used. For most cases the improvement in IoU

is around 4% to 9% but an improvement of 27% is achieved for class pedestrian
in sequence 2 and a staggering improvement of 51% is achieved for class bicyclist
in sequence 4. For a couple of isolated cases, a decrease in IoU is observed after

using the filter approach. The implicit assumption of our Bayes filter approach

is that the predictions from DCNN is seldom wrong and for these cases, the

filter uses previous knowledge to correct those predictions. In the rare cases

where this assumption is violated, the information accumulated by the filter spurs

from incorrect measurements and therefore the filter approach needs multiple

correct predictions from DCNN to improve its knowledge in comparison to a single

prediction needed by DCNN. For instance, in the sequence 0, points on a bicyclist

were labeled as pedestrian often, causing the Bayes filter to accumulate the incorrect

predictions.

Analyzing the impact of the feature descriptor used for estimating pointwise

motion on the final segmentation results, we now compare the performance of

our learned descriptor with the handcrafted one. In the case of the handcrafted

descriptor, we use SHOT, which among themultiple handcrafted descriptors that we

analyzed in Chapter 3, showed the most encouraging performance. For the learned

descriptor, we use our descriptor learned without metric. As shown in Chapter 3,

this descriptor offered the right balance between the computation time complexity

and performance. These descriptors are used for estimating motion for aligning

a pair of consecutive scans, and aligned scans are then used for estimating data

association required for our Bayes filter approach. The performance is either

comparable or attaining a marginal improvement after using the learned descriptor.

Focusing on the sequences that were not used for learning the descriptor (10-20),

a consistent and noticeable improvement is evident, especially for the classes

pedestrian and bicyclist. As shown in Table 4.14 in Chapter 4, the improvement in

alignment accuracy is marginal after using the learned descriptor and therefore

similar improvement is expected for this case as well.

Through these qualitative and quantitative results, we show the importance of
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our proposed static binary Bayes filter approach. We exploit the sequential nature of

the input data, making our predictions temporally consistent and report a persistent

improvement in IoU across different sequences and classes. A further improvement

is attained after incorporating our learned descriptor in our method for estimating

data association between points in consecutive scans.

5.4 Combining Motion and Semantic Cues

In Figure 5.6, we illustrate the framework of our proposed method of classifying

points in a 3D LiDAR scan into the classes non-movable,movable or dynamic. The input
to our method is a pair of consecutive LiDAR scans, where the first scan is input to

the DCNN architecture thet we proposed for semantic segmentation in Section 5.2.2.

The output of the DCNN, is the confidence score of a point belonging to an object

semantic category (cars, pedestrians or bicyclist), which we collectively call the

objectness score. Both scans are inputs to our method of estimating pointwise

motion proposed in Section 4.3. The output of this method is a dense motion field,

which we then compare with the odometry to estimate the dynamicty score, i.e. the

confidence score of point being either dynamic or static. The pointwise objectness

and dynamicity score is input to the HMM based method that we propose in this

section and the output of this method is the classification of a LiDAR scan into the

desired classes.

In Section 4.4, we proposed an HMM based approach for inferring the motion

state of points in a 3D LiDAR scan. We now extend that approach for inferring the

motion and the semantic states together for points in a LiDAR scan. For a point pt

in a scan at time t, we define a random state variable Xt = {n, m, d}, where n, m and

d are the possible values for X representing the states: non-movable, movable and

dynamic respectively. The objective is to estimate the belief of the current state.

Bel(Xt) = P(Xt | τττ1:t, γ1:t), (5.17)

where, the current belief Bel(Xt) depends on the motion measurements τττ1:t
and

object measurements γ1:t
. In Section 5.3, we proposed a binary state Bayes filter with

static state for accumulating the neural network predictions ξ1:t
c with the objective of

having temporally consistent inference of the semantic states and the variable O1:t
c

represents the output of this binary Bayes filter. The object measurements are the

output of this Bayes filter. In Eq. (5.18), we show the simplification of Eq. (5.17) using

the Bayes rule and the Markov assumption. Since the motion (τττ) and the semantic

cues (ξc and Oc) are independent, we can further simplify Eq. (5.18) as Eq. (5.19).

Since X is a discrete random variable, Eq. (5.19) can be rewritten as Eq. (5.20).
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Rigid ow HMM

Objectness Score

Figure 5.6: An illustration of the framework of the proposed method for semantic classi-

fication of a LiDAR scan into classes non-movable, movable or dynamic. The input to our

method is a pair of consecutive LiDAR scans. The first scan is the input to our proposed

DCNN the output of which is the pointwise objectness score. This score indicates the

confidence measure of a point being non-movable or movable. Both scans are input to our

method of estimating pointwise motion from Chapter 4 and, using this motion, we estimate

the dynamicity score. This score indicates the confidence measure of a point being dynamic

or static. The pointwise objectness and dynamicity score is input to our proposed HMM

based method, which combines the two scores to classify points in the first scan into the

classes non-movable, movable and dynamic.

Bel(Xt) = P(τττt, γt | Xt)
∫

P(Xt | Xt−1)Bel(Xt−1)dXt−1, (5.18)

= P(τττt | Xt)P(γt | Xt)
∫

P(Xt | Xt−1)Bel(Xt−1)dXt−1, (5.19)

= P(τττt | Xt)P(γt | Xt) ∑
Xt−1={m,n,d}

P(Xt | Xt−1)Bel(Xt−1). (5.20)

Here, P(τττt | Xt), which we call the dynamicity score, is defined in the exact same

way as in Eq. (5.21) in Chapter 4,

P(τττt | Xt) = N (τττt; τ̂ττt, Σ), (5.21)

where, τ̂ττt
is the odometry and Σ is the covariance. In Section 5.3, we the used
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log-odds formulation for estimating the current belief of Ot
c as following:

Bel(Ot
c) = P(Ot

c | ξ1:t
c ), (5.22)

lt(Oc) = log

P(Ot
c | ξt

c)

1− P(Ot
c | ξt

c)
+ lt−1(Oc)− l0(Oc), (5.23)

where, P(Ot
c | ξt

c) is defined as following:

P(Ot
c | ξt

c) = ξt
c. (5.24)

This belief was defined separately for each class c. In the current formulation, our

objective is to distinguish non-movable (background) from movable (car, pedestrian
or bicyclist). Therefore, we introduce a binary random variable Ot = {0, 1}, where

Ot = 1 indicates that a point is movable i.e. it belongs to one of the object classes

and Ot = 0 indicates that a point is non-movable. For estimating Bel(Ot), we choose

the maximum value from beliefs of different classes.

The likelihood of the object measurements is defined as following:

P(γt | Xt) ∝


Bel(¬Ot) if Xt = n

Bel(Ot) if Xt = m

s · Bel(Ot) if Xt = d

(5.25)

As the neural network is trained to predict the non-movable (background) and
movable (car, pedestrian or bicyclist) classes the first two cases in Eq. (5.25) are

straightforward. For the case of dynamic objects, we scale the prediction of the

movable class by a factor s ∈ [0, 1]. This scaling factor approximates the ratio of

number of dynamic objects in the scene to the number of movable objects. This

ratio is environment dependent, for instance, on a highway, the value of s will be

close to 1, since most of movable objects will be dynamic. For our experiments,

through empirical evaluation, we chose the value of s = 0.8.

5.4.1 Dynamic Log-Odds

In the previous section, we proposed anHMMbased approach for classifying points

in a LiDAR scan into the classes non-movable, movable or dynamic. The current belief
was dependent on the current motion measurements and the semantic information

accumulated by the static binary Bayes filter proposed in Section 5.3. In Section 5.3.1,

we showed the necessity of such a filtering approach, where for multiple sequences

a consistent improvement was achieved. In this section, we explore the option of

using a binary Bayes filter with static state for motion measurements. As mentioned

in Section 5.3, the static binary Bayes filter relies on the staticworld assumption i.e.

the state of a random variable is expected to remain unchanged for long periods of

time. This assumption is completely satisfied in the case of semantic cues, since the
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transition between the semantic categories is highly unlikely. In the case of motion

measurements indicating towards the motion state of an object i.e. whether an

object is static or dynamic, this assumption is violated when the state switches from

static to dynamic or vice-versa. Since the number of times that the state switches

is often less when compared to the times that the state remains the same, in this

section we introduce a binary random state variable Dt = {0, 1}, where Dt = 1
indicates a point pt

in a scan at time t is dynamic and Dt = 0 indicates the opposite.

The current belief Bel(Dt) depends only on the motion measurements τττ1:t
as

shown in Eq. (5.26).

Bel(Dt) = P(Dt | τττ1:t), (5.26)

where, τττ1:t
is the estimated pointwise motion. Following the detailed derivation

of the binary state Bayes filter in Section 5.3, a similar log-odds formulation for

estimating the Bel(Dt) is shown in Eq. (5.27).

lt(D) = log

P(Dt | τττt)

1− P(Dt | τττt)
+ lt−1(D)− l0(D). (5.27)

To estimate P(Dt | τττt) we use the Bayes rule like following:

P(Dt | τττt) =
P(τττt | Dt)P(Dt)

P(τττt | Dt)P(Dt) + P(τττt | ¬Dt)P(¬Dt)
, (5.28)

where, P(τττt | Dt) is the likelihood of the measurement which is estimated using

the Eq. (5.21) and P(Dt) is the prior.

The log-odds value for a particular state increases as more measurements sup-

porting that state are observed. For instance, the log-odds value of a point being

dynamicwill increase continuously, if the estimated motion of a point is significantly

different than the odometry for multiple scans. For increasing the log-odds value for

the opposite state i.e. to switch the state, again, multiple measurements suggesting

the opposite will be required. Due to this, the switching of states in this formulation

is a slow process and to overcome this we use a threshold for a possible maximum

and minimum log-odds value. This threshold enables our method to switch states

faster than the original formulation but also makes our method robust to isolated

erroneous measurements.

The dynamic log-odds formulation is incorporated within the original HMM

model by modifying Eq. (5.17) in the following way.

Bel(Xt) = P(Xt | γ1:t, ζ1:t), (5.29)

where, ζ1:t
is the output of the Bayes filter proposed above. Similar to before, using

the Bayes rule, the Markov assumption and assuming independence between the

variables associated with the motion and the semantic measurements, Eq. (5.29)

can be simplified as follows:
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Bel(Xt) = P(γt, ζt | Xt)
∫

P(Xt | Xt−1)Bel(Xt−1)dXt−1, (5.30)

= P(γt | Xt)P(ζt | Xt)
∫

P(Xt | Xt−1)Bel(Xt−1)dXt−1, (5.31)

= P(γt | Xt)P(ζt | Xt) ∑
Xt−1={m,n,d}

P(Xt | Xt−1)Bel(Xt−1), (5.32)

where, P(ζt | Xt) is estimated as following:

P(ζt | Xt) ∝


Bel(¬Dt) if Xt = n

Bel(¬Dt) if Xt = m

Bel(Dt) if Xt = d

(5.33)

For the state Xt = d, we use the current belief Bel(Dt) and for the other states,

where the object is expected to be static, we use Bel(¬Dt).

5.4.2 Results

To evaluate our proposed approach, we use the sequences from the KITTI tracking

benchmark. In Section 4.4, we proposed amethod for classifying points in a scan into

the classes static and dynamic. Using that method, we were able to classify majority

of dynamic parts of the environment correctly (high recall) but our method also

misclassified a small set of static points as dynamic, resulting in low precision and

IoU. By combining the motion and semantic cues in this chapter, we aim to reduce

the misclassification of static points and therefore use our method from Section 4.4

as a baseline for comparison. We proposed two different ways of using the motion

measurements, i.e. to use the dynamicity score from the current scan (Eq. (5.17))

or the dynamic log-odds value (Eq. (5.33)) and we report the comparison between

these cases.

In Chapter 4, we proposed a method for estimating pointwise motion, which is

used for two different tasks in our method of semantic classification proposed in

this chapter. Firstly, it provides the motion cues, i.e. the dynamicity score, where the

estimated motion is part of the likelihood term (Eq. (5.21)) indicating the likelihood

of a point being dynamic and secondly, it is used for providing the dense data

association between points in consecutive scans. This data association is required for

estimating the state of a point in a recursive fashion. We report classification results

for both descriptors. The performance on the first ten sequences is expected to be in

the favor of the learned feature descriptor for the reasons mentioned in Section 5.3.1

and, similar to before, the comparison is unbiased for the remaining sequences. In

this comparison, we use the dynamic log-odds value as a source of motion cues

instead of the dynamicity score.
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In this chapter, we proposed a novel method for classifying points in a LiDAR

scan into the classes non-movable,movable or dynamic. The KITTI tracking benchmark

provides a ground-truth 3D bounding box for objects of different categories, which

can be collectively labeled as movable. To get pointwise ground-truth labels, we use

the same approach as discussed in Section 5.3.1, where all of the points inside the

bounding box are given the same label as the bounding box.

The benchmark only provides the ground-truth semantic category not the ground-

truth motion state i.e. whether an object is dynamic or static. Hand labeling all of the

objects in the entire benchmark is an exhausting task and therefore we developed a

method for augmenting the labels provided by the benchmark with the ground-

truth motion state. Our method relies on the ground-truth odometry provided by

the benchmark along with the ground-truth tracking ID. Using the ground-truth

odometry Ot+1
t , we project points Pk

t for an object k in the scan at time t to the scan

at time t + 1. We then calculate the IoU between the projected points P̂k
t+1 and the

ground-truth object, Pk
t+1. A high IoU value indicates that objects in consecutive

scans can be aligned using the odometry and therefore they are static and a low

value indicates the opposite. This method provides an initial set of ground-truth

labels, which are then further refined by human intervention. Since our method

implicitly relies on the assumption that the motion of a dynamic object is large

enough to cause a mismatch after projecting the points using the odometry, only

movable objects like cars and bicyclists can be labeled reliably. Therefore, only

points belonging to an object labeled as car and bicyclist by the benchmark are labeled

movable. The KITTI tracking benchmark also provides ground-truth bounding box

annotation for other movable object categories, like tram or truck, among others.

Due to the limited number of instances of these objects, they are not evaluated on the

benchmark, and in our evaluation, we also ignore objects of these categories. The

remaining points, i.e. points not belonging to any object for which the benchmark

provides annotation is considered non-movable or static.

Among different sequences in the benchmark, we report results only for the

sequences that consists of ground-truth dynamic objects, since evaluation for different
movable objects is already presented in Section 5.3.1. In sequence 20 of the benchmark,

objects are moving at a slow speed and are regularly switching states between

static and dynamic and, therefore, estimating a reliable ground-truth label using our

method is non-trivial. Therefore, we ignore this sequence for evaluation due to the

lack of reliable ground-truth labels.

In Figure 5.7, we illustrate the semantic classification of a LiDAR scan into the

classes non-movable (black),movable (green) and dynamic (blue). In Figure 5.7a & 5.7b,

we illustrate the objectness and the dynamicity score, respectively, which are then

combined together in our proposed method to estimate the desired classification,

illustrated in Figure 5.7c. In Table 5.6, we report class wise IoU for our method

proposed in Section 4.4, where we classified points in a scan into the classes static
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(a) Objectness score (b) Dynamicity score

(c) Semantic classification of a 3D LiDAR scan

Figure 5.7: An illustration of the semantic classification of a LiDAR scan from the KITTI

tracking benchmark, using the proposedmethod. In figure (a), we show the objectness score,

which is the output of our proposed DCNN. The blue color indicates a high confidence value

and the red color indicates the opposite. In figure (b), we illustrate the dynamicity score,

which is estimated by comparing the pointwise motion with the odometry measurements.

Similar to the objectness score, a high confidence value is indicated by the color blue and a

low value is indicated by the color red. In figure (c), is the output of our method, where

points in a LiDAR scan are classified into the the classes non-movable (black), movable (green)
or dynamic (blue). Points with high objectness and dynamicity score are correctly classified

as dynamic and points with high objectness but low dynamicity score are correctly classified

as movable. Points belonging to non-movable structurs that have a high dynamicity score

are correctly labeled as non-movable, thereby illustrating the importance of combining

motion and semantic information.
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and dynamic, using only the motion cues and our method proposed in this chapter,

where we combine learned semantic cues with themotion cues to classify points into

the classes non-movable, movable or dynamic. For the latter method, we compare the

performance between the two sources of motion cues i.e. the dynamicity score and

the dynamic log-odds formulation and also between the learned and handcrafted

descriptors. For the descriptor comparison, we use the log-odds formulation. For

the same set of experiments, we also report the class wise precision and recall

in Table 5.7 & 5.8 respectively. For all of these experiments, only the parts of a LiDAR

scan that overlaps with the field-of-view of the camera is used for the evaluation.

The results of our method proposed in Section 4.4 for the KITTI tracking bench-

mark is similar to the results reported for dataset from Moosmann and Stiller

in Section 4.4.1. For the majority of the sequences in the benchmark, dynamic

points are correctly classified (high recall) but the precision and IoU is low due to

the misclassification of static points as dynamic. For 13 out of 18 sequences, the

IoU for the static class is greater than 85%, which shows only a small fraction of

static points are misclassified. Since the number of dynamic points are significantly

lower than the number of static points, this small fraction leads to a significantly

low precision and IoU for the dynamic class. For the sequence with low static

IoU (lower than 85%), the estimated motion for the points used for evaluation is

erroneous. Our method of estimating motion is a feature based method and tends

to perform sub-optimally when feature correspondences are plagued with large

number of outliers. This mainly happens when a scan contains repeated structures,

for instance, a thin metal railing dividing the road lanes or when scan points are far

away and the data gets sparser.

One of the main objectives of combining the semantic and motion cues is to

limit the misclassification of non-movable structures like metal railings or building

walls as dynamic. As reported in Table 5.6, the IoU for dynamic class is consistently

improved after incorporating the learned semantic cues. This improvement ismainly

attributed to increased precision (Table 5.7) in classification of dynamic points, as

misclassification of non-movable structures significantly decreases. Comparing the

recall values, for majority of the sequences, the performance is either improved or

remained comparable after incorporating the semantic information. In Figure 5.8,

for a single scan, we compare the classification results for our method proposed

in Section 4.4 and our method (dynamic log-odds) proposed in this chapter. These

quantitative and qualitative results clearly highlight the advantages of combining

semantic and motion cues, as a consistent noticeable improvement is achieved

for all the sequences, except one. For the first sequence, the IoU decreases after

incorporating the semantic cues. In this sequence, a bicyclist is misclassified as

a pedestrian for majority of the scans and since we ignore pedestrians in this

evaluation due to lack of reliable ground-truth labels, the bicyclist is not classified

dynamic. In Chapter 5 similar results were reported for the same sequence. After
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using our proposed Bayes filter approach for making predictions of the neural

network temporally consistent, the IoU for the class bicyclist decreased (Table 5.5).

The results from this sequence highlight an advantage of model-free approaches

that we proposed in Chapter 4. Using such approaches, arbitrary different dynamic

objects can be correctly classified.

For the classes dynamic and movable, a higher IoU is consistently achieved when

we use dynamic log-odds as motion cues instead of dynamicity score, whereas for

non-movable class, the performance is comparable. This increase in IoU is again

mainly attributed to improved precision, as shown in Table 5.7. For dynamic

class, across all of the sequences, a better IoU is achieved after using the log-odds

formulation. Similarly for movable class, the performance improves for the majority

of the sequences after using the dynamic log-odds formulation. In Figure 5.9,

we compare results for a sequence of four consecutive scans for both methods.

These quantitative and qualitative results clearly illustrate that using the log-odds

formulation to combine information from previous scans, makes our method robust

to isolated erroneous measurements. Comparing the recall values, using dynamicty

score results in a better performance for majority of the sequences. This is mainly

due to a key characteristic of static binary Bayes filter, which is the assumption that

state of a variable remains unchanged for longer periods of time. To enable swift

switch in states, we use a threshold for maximum and minimum log-odds value,

but using such filtering approach reduces the necessary flexibility required for

switching states. The decrease in IoU formovable class for sequence 8 is also because

of this. A movable object is misclassified as dynamic due to erroneous motion and

when the motion is correctly estimated, the state switches to movable faster for the
dynamicity score in comparison to the log-odds formulation.

For all of the above discussed experiments, we used our learned feature descriptor

proposed in Chapter 3, for estimating data association between sparse keypoints,

required for estimating the motion. As already discussed before, for the first ten

sequences (0-9), the performance is expected to be in favor of the learned descriptor

because keypoints used for learning the descriptor were randomly sampled from

these sequences. Even though a large overlap between randomly sampled keypoints

used for estimating the motion and the keypoints used for training the descriptor

is unlikely, for this comparison, we primarily focus on the evaluation of the 9

sequences from sequence number 10 to 19. For non-movable class, the performance

for both descriptors are comparable. Comparing the IoU of movable class, for 3 out

of 8 sequences (no movable object in sequence 12), results are better for the SHOT

descriptor and for the remaining sequences, the learned feature descriptor either

performs better or the results are comparable. For sequence 10, an improvement of

78% is achieved after using the learned descriptor. This sequence contains a single

movable object that is misclassified as dynamic, in the case when SHOT descriptor

is used for estimating the motion. This misclassification is reflected in the reported
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(a) Objectness score (b) Dynamicity score

Figure 5.8: In Section 4.4, we proposed a HMM based method for inferring the motion state

of points in a scan, solely based on motion cues. The image on the left shows the output of

that method, where points on the wall on the right are incorrectly classified as dynamic. On

the right, we show the output of our method proposed in this chapter. By combining the

learned semantic cues with the motion cues, points on the wall are correctly classified as

non-movable.

recall values. For sequence 16, SHOTdescriptor performs significantly better (+33%).

The sequence contains a couple of heavily occluded movable objects and for one

such object estimated motion is erroneous when our learned descriptor is used. The

low recall values reflect this case as well. Comparing the IoU for dynamic class, for

2 out of 9 sequences, performance is better for the SHOT descriptor, and for the

remaining 7 sequences, performance of our learned descriptor is either better or

comparable. For sequences 13 and 14, an improvement of over 70% is achieved after

using the learned descriptor. For both sequences, themotion estimation is erroneous

after using the SHOT descriptor, causing movable objects to be misclassified as

dynamic and thereby resulting in low precision.

For some isolated cases our method performs poorly. In sequence 3, movable

points are not detected. The majority of movable objects in the sequence are

dynamic, which are correctly classified. The remaining movable objects are far away

and for most scans they are not segmented by the DCNN and in the rare cases when

they are segmented, they are classified as dynamic due to lack of enough keypoint

correspondences, resulting in incorrect motion estimation. The classification of

dynamic points for sequence 12 is low across different methods. This sequence

contains a dynamic car and a bicyclist. Among these two objects, bicyclist is not

segmented by the DCNN and therefore it is not classified as dynamic. The car is

segmented by the DCNN but is classified as static for most scans, partially due

to its slow speed while turning. For the last part of the sequence, it is correctly

classified as dynamic, which is reflected in non-zero IoU value for the case of

dynamicity score. In the case of log-odds, the transition between the states is slower

and therefore the car is always misclassified as dynamic.
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Figure 5.9: In the top row, we show classification results for four consecutive scans, where

our proposed method used the motion measurement from the current scan (Section 5.4). A

parked car is correctly classified as non-movable in the first scan (top left image) but incorrectly

classified as dynamic in the next two scans due to erroneous motion measurements. In the

bottom row, we show classification results for the same four consecutive scans. In this case,

we use the proposed dynamic log-odds formulation (Section 5.4.1) and the parked vehicle

is now correctly classified as non-movable. These results clearly support our initial claim that

having such a formulation makes our method robust to isolated erroneous measurements.

5.5 Related Work

One of the main focus of this chapter was semantic segmentation of a 3D LiDAR

scan. With the advent of deep neural networks, a significant progress has beenmade

towards solving a variety of tasks, including the task of semantic segmentation.

Regarding 2D images, a plethora of research has been done in last few years [11, 20,

59, 68, 92], pushing the boundary of state-of-the-art results to the limit. A similar

progress has not been in the field of semantic segmentation of 3D pointcloud data

due to inherent differences in the two data modalities. In the case of 2D images, the

input data to the network is fixed but in the case of 3D data, multiple representations

are possible (Section 5.2). Regarding the current task, the most commonly used

representation are either a collection of 3D points or projecting the pointcloud

on a 2D image. For the first representation, the PointNet architecture proposed

by Qi et al. [83] is a popular choice for learning from unordered pointcloud. They

propose to use a multi layer perceptron, for learning features from individual points

and then use a symmetric function to combine features learned from points, as a

global representation. A symmetric function is necessary in this case, in order to

make the learned representation invariant to the permutations of the input point

set. For the task of classification, the learned global representation is sufficient but

for segmentation they propose to combine the global representation with learned

local features. Extending PointNet, they proposed PointNet++ [84]. The extension

include hierarchical learning, where a set of points (centroids) are sampled from the

input point set and then points in the neighborhood of the centroids are grouped

together, which is then followed by the PointNet architecture. The grouping of
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points in the metric space, enable learning of local contextual information. They

have shown results primarily on indoor sequence for the data collected from RGB-D

sensors. In our case, we use a LiDAR scanner for segmentation of urban outdoor

environments. The data from LiDAR scanner is sparser in comparison to the RGB-D

sensor and the outdoor environment is more spread out in comparison to confined

indoor spaces.
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In our case, we use the second representation i.e. projecting the 3D LiDAR scan

on to a 2D image. As mentioned before, this allows us to represent a LiDAR scan in

a compact fashion and furthermore the advancements made in the field of semantic

segmentation using 2D images can be used as well.

Focusing on the task of semantic segmentation using 2D images, one of the initial

architectures was proposed by Long et al. [68]. They proposed an encoder-decoder

style, fully convolutional network (FCN) architecture and other architectures since

then have followed the same paradigm. In the presented ablation study, we showed

that reducing the spatial resolution of the featuremaps size using pooling operations

leads to loss of information (Down-sample 8× in Table 5.3) but such operation is

necessary for increasing the receptive field (Down-sample width 4× in Table 5.3).

Targeting this problem, Chen et al. [20] proposed using Atrous convolution to

increase the receptive field without requiring the lossy pooling operations. One

of the methods [125] we compare with, uses the Atrous convolution for the same

reasons. We compare our proposed architecture, with the architecture proposed

in [127], [128] [125]. All of these architecture are based on SqueezeNet architecture

proposed in [56]. A detailed explanation of different characteristics of each of these

architectures is mentioned in Section 5.2.5.

Someof the nondeep learningbasedmethods for semantic segmentation of LiDAR

data are [26, 75, 123]. Moosmann et al. [75], proposed a method for segmenting a

3D LiDAR scan based on the notion that objects are locally convex. Wang et al. [123]

proposed a method of segmenting a LiDAR scan into the same classes as us. Their

method involves decomposing a scan into a set of segments using a graph-based

segmentation method. For each such segment, they extract a feature vector, which is

then classified using Euclidean minimum spanning tree algorithm. Dohan et al. [26]

proposed a hierarchical approach for segmenting a LiDAR scan into multiple classes.

Their method involves removing structural elements like roads, curbs etc. and then

clustering the remaining points into smaller such segments. Similar to [123], these

segments are represented by a handcrafted descriptor. They propose a probabilistic

approach to estimate the probability of a segment belonging to a particular semantic

class and the probability of two nearby segments having the same class. Since our

proposed approach is based on a DCNN, we only report comparison with similar

approaches.

Besides, semantic segmentation of a LiDAR scan, in this chapter we also focus on

inferring the semantic and motion states together. Methods focusing on the same

problem have been proposed but primarily for images [30, 43, 88, 101, 121]. Reddy

et al. [88] proposed a dense CRF based method, where they combine semantic,

geometric and motion constraints for joint pixel-wise semantic and motion labeling.

Similar to them Fan et al. [30] proposed a neural network based method, where

they combine motion cues with learned semantic cues. For motion segmentation,

they use a stereo camera and leverage over disparity information and combine this
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with semantic segmentation mask, using a dense CRF. More recently proposed

methods, focus on end-to-end learning. Siam et al. [101] proposed a method of

object detection and motion segmentation. Input to their method is a RGB image

and a corresponding motion flow image. Features learned from each of these

modalities are combined together to predict the bounding box coordinates for the

detection and the motion segmentation mask. Similar to [101], Haque et al. [43] also

use RGB image and a motion flow image, to jointly infer the semantic and motion

states together. Unlike the other methods, which uses a motion flow image as

input data, Vertens et al. [121], focus on learning the motion flow and the semantics

together and then combining them for motion segmentation.

5.6 Conclusions

In this chapter, we concentrated on learning the semantic knowledge of the 3D

environment and combining this knowledgewith themotion cues for understanding

the environment. We proposed a DCNN to segment points in a 3D LiDAR scan

into multiple semantic categories. Our proposed architecture is based on dense

blocks and uses depth separable convolution to reduce the parameters while still

maintaining competitive performance. It significantly outperforms state-of-the-art

neural network architectures, with an average improvement of around 16% across

different classes. In the presented ablation study, we justify our architecture choices.

The neural network predicts the segmentation mask for each scan independently

and to make these predictions temporally consistent, we proposed a Bayes filter

method. Through extensive evaluation on the KITTI tracking benchmark, we report

a consistent improvement across classes and sequences. These results clearly show

the need of such an approach, especially when the input data is sequential, which

is rarely not true in the case of robotic perception. Motion and semantic cues entail

necessary and complementary information and to leverage this, we propose a HMM

based method for combining these cues. This method classifies points in a scan into

classes: non-movable, movable or dynamic. In the previous chapter, our method of

semantic classification was plagued by misclassification of non-movable structure

as dynamic. In this chapter, we overcome this shortcoming and show a significant

improvement in precision of classification of dynamic points. Both the Bayes filter

and HMMmethods, require accurate pointwise motion for different tasks. We show

how our learned descriptor from Chapter 3 enables accurate estimation of motion,

thereby further improving the classification performance.



Chapter 6

Conclusion

In this thesis, we proposed different novel methods for scene understanding using

3D LiDAR data. Targeting automation of vehicles on roads, we primarily focused

on the understanding of urban outdoor environments. For the proposed methods,

we describe various theoretical contributions, report qualitative and quantitative

results through extensive experimental evaluation and discuss related works.

The environment inwhich a robot is operating evolves regularly and this evolution

is closely related to its motion and semantic characteristics. In the first part of the

thesis, we focus on motion characteristics. A key requirement for estimating motion

is finding the association between the same structures of the environment. To this

end, we proposed a local feature descriptor learned from 3D LiDAR scans. To learn

the descriptor, we proposed a 2D image and a 3D voxel based representation for the

local surface patches and two DCNN architectures. Using the first architecture, the

descriptor and the metric for matching the descriptors are learned simultaneously,

and for the latter, the descriptor is learned using the Euclidean metric. For different

experiments, we reported superior performance of our learned descriptors in

comparison to commonly used handcrafted descriptors and descriptors learned

from different architectures. To gain further insight, we also presented an analysis

of the discriminative power of various descriptors.

To understand the dynamic characteristics of various objects in the environment,

we proposed a method for detection and tracking of dynamic objects, and a

method for estimating dense rigid motion field. The first method assumes that an

environment is a collection of rigid objects, and we estimate motion for these objects

in an iterative fashion using RANSAC. To associate points in a scan to an estimated

motion model, we proposed a Bayesian segmentation approach. Assuming the

majority of the structure in the environment is static, the firstmotionmodel describes

the sensor motion and using the subsequent motion models we detect various

dynamic objects. For tracking, we use the motion model for data association. This

method allows us to detect and track various arbitrary different objects belonging

to various semantic categories. We evaluated our approach on a publicly available

dataset and substantially outperformed a popular method.

In contrast to the assumption that an environment is a collection of rigid bodies,

our proposed novel method for estimating dense rigid motion field relies on
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the assumption that objects are locally rigid. To estimate the motion field we

used graph based optimization techniques. To build the graph, we used a factor

graph representation. Through two different factor nodes, the graph defines the

connection between the corresponding keypoints in consecutive scans and the

neighboring points in the first scan. To realize these connections, we proposed a

method for estimating robust data association between keypoints and a method for

estimating neighboring points. We also proposed two factor graph representations.

In the first representation, the first factor only uses the measurement from a

single pair of associated keypoints. In the latter representation, multiple pairs of

corresponding keypoints are used. We evaluate our approach on publicly available

real and simulated datasets consisting of urban outdoor environments and a dataset

containing pedestrians collected by us. For all the experiments we used ICP

algorithm as the baseline method. Through extensive analysis, we showed how our

method estimates motion models of various dynamic objects and seamlessly adapts

to the case of non-rigid bodies. Among different representations, the second factor

graph representation performs better. We also incorporated our learned descriptor

and reported results for that.

Having a dense motion field paves the way for scene understanding. To this

end, we proposed a HMM based method for inferring the motion state of points

in a 3D LiDAR scan. Having such a formulation, allows us to neatly incorporate

the motion field and furthermore enable temporally consistent predictions. As

a baseline, we use our method of detection and tracking dynamic objects. Even

though this method successfully classifies dynamic points but misclassified parts

of the static structure as dynamic, resulting in a high false positive rate.

In the second part of the thesis, we shifted our focus from motion to semantic

characteristics. We proposed a DCNN architecture for semantic segmentation of

LiDAR scan into the classes car, pedestrian or bicyclist. Our architecture is based on

dense blocks and uses depth separable convolution for arresting the parameters.

We substantially outperform state-of-the-art methods, while maintaining real time

performance. To make the neural network predictions temporally consistent, we

proposed a Bayes filter method. This method recursively estimates the semantic

state of point using the current prediction and the prediction from previous scans.

This recursive estimation requires data association between points in a scan, and to

this end, we use our method of estimating the motion field for solving this task.

Through extensive experiments, we showed how this method helps in mitigating

isolated erroneous predictions from the network and consistently improves the

performance across different classes.

In the last part of the thesis, we proposed a HMM based method for classifying

points in a 3D LiDAR scan into classes non-movable,movable or dynamic. This method

neatly combines the learned semantic cues with motion cues and allows temporally

consistent predictions. Our HMM based method for estimating pointwise motion
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states suffered from a high false positive rate and we showed by incorporating the

semantic information this rate can be reduced substantially.

In summary, in this thesis, we proposed various novel methods to address

various challenges pertaining to scene understanding. We primarily focused on

non-static environmental conditions. We proposed different methods to infer

dynamic characteristics of the environment, a method for semantic segmentation

and a method to understand the environment by exploiting the complex interplay

between motion and semantic cues.

Future Work

In this thesis we used 3D LiDAR as the only data source for scene understanding.

However, robots are often equipped with variety of sensors and using multiple

sensors can potentially improve the robustness of the system. LiDARs provide

precise depth information and in contrast to that RGB cameras provide rich color

information. In this thesis, we used DCNNs for learning a local feature descriptor

and for the task of semantic segmentation. For both tasks, we used modalities

that can be readily extracted from 3D LiDAR data and we think augmenting these

modalaties with color information can further improve the performance.

With the advent of deep learning a variety of perception tasks can be solved

using learning based methods. In our method of detection and tracking dynamic

objects, for trackingweused estimatedmotionmodels for association. An interesting

extension could be learning a global representation for detected dynamic objects and

use the representation for association along with the motion cues. Recently Behl

et al. [15] proposed an end-to-end supervised learning method for estimating

pointwise motion. This method can be seen as an alternative to our proposed

method of estimating pointwise motion. An interesting research avenue would be

to solve this problem in a semi-supervised or unsupervised fashion. In our method,

the corresponding keypoints provided the cues required for estimating motion.

Similarly, the corresponding keypoints could potentially provide (weak) supervision

for estimating motion in a learning based method. Having such a formulation

would require focusing towards novel loss functions and ingenious architecture

design choices. Another possible extension would be to incorporate semantic

information and exploit the relation between semantic and motion characteristics

by jointly learning representations for these tasks.

We proposed a HMM based method for inferring pointwise motion state and

classifying points in a LiDAR scan into different classes. The first method uses

estimated motion and the odometry to separate static parts of the environment

from dynamic. The main shortcoming of this approach was high false positive rate

and we addressed this by incorporating semantic information. An alternative to

such an approach would be to jointly learn representations to estimate odometry
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and motion together, with the final objective of inferring motion state. The main

advantage of such an approach would be that the uncertainty in the estimation

of individual quantities are combined implicitly, that can potentially improve the

performance. Similarly for the second method, along with odometry and motion

models, representations for semantics can be learned together. Such an approach

would offer above mentioned advantages as well.

To summarize, a possible extension of different methods presented in this thesis

would be learning basedmethods. The current DCNNs have pushed the boundaries

of the state-of-the-art performance for variety of tasks, especially those related

to perception. They are capable of learning complex representations to jointly

solve related tasks and neatly exploit inter-task dependencies. If representations

are learned separately, uncertainty estimation becomes crucial and therefore we

think methods such as Bayesian deep learning could be another promising research

direction. Another challenge that would have to be addressed is choosing a

favorable representation of the 3D data, especially for joint learning since different

representations are favored for different tasks.
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