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Zusammenfassung

Diese Arbeit behandelt die Lokalisierung von Zielen in Gebäuden mittels Schallwellen. Mit
statischen Mikrofonen an bekannten Positionen kann ein Lautsprecher durch Messen der An-
kunftszeitdifferenz (time difference of arrival, TDOA) der vom Lautsprecher ausgesendeten
Schallwellen lokalisiert werden. Die größte Herausforderung besteht darin, zu identifizieren,
welche Signale direkt vom Lautsprecher zu den Empfängern gelangen (Sichtlinie) und welche
Signale von einer Wand oder einem Hindernis reflektieren (Nicht-Sichtlinie). Das Verwech-
seln eines Signals ohne Sichtverbindung mit einem Signal mit Sichtverbindung kann zu großen
Lokalisierungsfehlern führen. Dies ist der schwerwiegendste Faktor, der die Robustheit eines
Ortungssystems beeinträchtigt.

Wir stellen mehrere Ansätze zur Lokalisierung unter gemischten Sichtlinien- und Nicht-
Sichtlinienbedingungen vor. Zunächst zeigen wir, wie man bei einer großen Anzahl von Mes-
sungen Messkombinationen verwenden und den Restfehler der Schätzungen analysieren kann,
um festzustellen, welche der gemessenen Signale solche mit Sichtverbindung sind. Unsere ex-
perimentellen Ergebnisse legen nahe, dass dieser Ansatz einen ähnlichen Fehler erzielt wie
andere Ansätze, die ein definiertes probabilistisches Bewegungsmodell für das Ziel erfordern.

In bestimmten Fällen ist die verfügbare Anzahl von Sichtliniensignalen reduziert. In diesen
Fällen muss eine zusätzliche Informationsquelle genutzt werden. Wir zeigen experimentell und
mit Simulationen, wie die von einer Inertial-Messeinheit gesammelten Informationen verwen-
det werden können, um den Effekt von Signalen ohne Sichtverbindung bei der letztendlichen
Schätzung abzuschwächen. Zu diesem Zweck wird ein auf M-Schätzung basierendes Kalman-
Filter verwendet.

Nicht-Sichtlinienmessungen als ungültige Messungen, die eliminiert werden sollten, zu be-
trachten, erfordert ein bestimmtes Maß an Überbestimmung in Form zusätzlicher Sensoren
oder zusätzlicher Sichtliniensignale. Nicht-Sichtliniensignale enthalten jedoch wertvolle Infor-
mationen über den Ort des Ziels, die zur Schätzung seiner Position verwendet werden können.
Eine Reflexion an einer Wand wirkt wie ein zusätzlicher virtueller Empfänger. Die größte Her-
ausforderung besteht dabei darin, zu wissen, welche Messungen von derselben Wand reflektiert
wurden (und somit zu demselben virtuellen Empfänger gehören). Um dies abzuschätzen, ver-
wenden wir ein Joint Probability Data Association Filter. Wir nutzen die Tatsache, dass sich der
Abstand zwischen Sender und Empfänger bei zwei aufeinander folgenden Messungen nur ge-
ringfügig ändert. Somit ist diese Abstandsänderung deutlich kleiner als die Abstandsdifferenz
zwischen den reflektierten Signalen.

Nach dem Schritt der Datenassoziation kann die Positionen des Senders und der Empfänger
geschätzt werden. Um die Variablen zu initialisieren, verwenden wir eine Fernfeld-Approximation.
Wir gehen davon aus, dass die Entfernung, die ein Sender während einer bestimmten Zeit zu-
rücklegt, deutlich kleiner ist als die Entfernung zu den Empfängern. Wir verbessern existierende
Fernfeldalgorithmen für unser spezifisches Szenario, um die Anzahl der erforderlichen Emp-
fänger zu reduzieren und eine robustere Schätzung zu erhalten. Anschließend zeigen wir mit
simulierten und experimentellen Daten die Überlegenheit unserer Fernfeldalgorithmen, wenn
sich der Sender in einer quasi-linearen Trajektorie bewegt oder das Messrauschen hoch ist.
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Unter den Nicht-Sichtlinien-Signalen sind die am Boden reflektierten Signale von besonde-
rem Interesse. Diese Reflexionen enthalten wertvolle Informationen über die Höhe des Ziels.
In dieser Arbeit geben wir eine Untergrenze für den quadratischen Mittelwertfehler an und
überprüfen experimentell, wie diese Reflexionen die Lokalisierungsgenauigkeit erheblich ver-
bessern können, wenn die Empfänger in ähnlichen Höhen platziert werden.

Bei den zuvor erwähnten Ansätzen wird ein Lautsprecher jedes Mal geortet, wenn er ein
Signal aussendet. Dies bedeutet, dass die Anzahl der Lautsprecher, die gleichzeitig lokalisiert
werden können, begrenzt ist, da sie sich ab einer gewissen Grenze gegenseitig stören oder ihre
Position erst nach einem langen Zeitraum aktualisiert wird. Durch Lokalisieren eines sich be-
wegenden Empfängers mit statischen Lautsprechern als Ankerknoten können unbegrenzt vie-
le Ziele gleichzeitig lokalisiert werden. Wir untersuchen diese Möglichkeit, indem wir einen
Algorithmus vorstellen, der die in den akustischen Signalen codierten Informationen mit der
geschätzten Position und Geschwindigkeit des Ziels verbindet, um einen Empfänger mit Ge-
schwindigkeiten von bis zu 1,8 m/s zu lokalisieren. Die experimentellen Ergebnisse zeigen, wie
der Empfänger mit einem Medianfehler von nur 5 cm lokalisiert werden kann, was bisherige
Ansätze übertrifft.
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Abstract

This thesis discusses the localization of targets inside buildings by means of acoustic waves.
Having static microphones at known positions, a speaker can be located by measuring the time
difference of arrival of the sound waves the speaker emitted. The main challenge is to identify
which signals travel directly from the speaker to the receivers (line-of-sight) and which signals
do it after bouncing to a wall or an obstacle (non-line-of-sight). Mistaking a non-line-of-sight
signal by a line-of-sight signal can lead to large localization errors. This is the most remarkable
factor which compromises the robustness of a location system.

We provide multiple approaches for localization in mixed line-of-sight and non-line-of-sight
conditions. First we show how, when a high number of measurements are available, one can
use combinations of measurements and analyze the residual error of the estimations in order to
identify which signals are in line-of-sight. Our experimental results suggest that this approach
achieves a similar error than other approaches which require a certain probabilistic motion
model for the target.

In certain occasions, the available number of line-of-sight signals is reduced. Then, one must
make use of an additional source of information. We show experimentally and with simulations
how the information gathered by an inertial measurement unit can be used for mitigating the
effect of non-line-of-sight signals in the final estimation. An M-estimation based Kalman filter
is used for this purpose.

Considering non-line-of-sight measurements as invalid measurements which should be elim-
inated requires a certain degree of overdetermination in the form of additional sensors or ad-
ditional line-of-sight signals. However, non-line-of-sight signals carry valuable information
about the location of the target that can be used for estimating its position. A reflection from
a wall acts like an additional virtual receiver. The main challenge is to know which measure-
ments were reflected by the same wall (i.e. they belong to the same virtual receiver). In order
to estimate this, we use a joint probabilistic data association filter. We exploit the fact that the
distance between a sender and a receiver changes only slightly during two consecutive mea-
surements. Then, this distance change is much smaller than the distance difference between the
reflected signals.

After the data association step, one can estimate the positions of the sender and the receivers.
In order to initialize the variables, we use a far-field approximation. We assume the distance
moved by a sender during a certain time is much smaller than the distance to the receivers. We
improve existing far-field algorithms for our specific scenario in order to reduce the number of
required receivers and provide a more robust estimation. Then, with simulated and experimental
data we show the superiority of our far-field algorithms when the sender moves in a quasi-linear
trajectory or the magnitude of the measurement noise is large.

Among the non-line-of-sight signals, the signals which are reflected at the ground are of
special interest. These reflections carry valuable information about the height of the target. In
this thesis we provide a lower bound for the root mean square error and verify experimentally
how these reflections can considerably increase the localization precision when the receivers
are placed at similar heights.
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In the previously mentioned approaches a speaker is located every time it emits a signal. This
means, the number of speakers that can be located simultaneously is limited, as at a certain point
they would interfere with each other or their position would be updated only after a large period
of time. By locating a moving receiver and having static speakers as anchor nodes one can
locate unlimited targets simultaneously. We explore this possibility by presenting an algorithm
which fuses the information encoded in the acoustic signals with the estimated position and
velocity of the target in order to locate a receiver with velocities up to 1.8 m/s. The experimental
results show how the receiver can be located with a median error of only 5 cm, outperforming
previous approaches.
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1 Introduction

Nowadays, GPS (Global Positioning System) is a well known solution for localization. The
number of applications which require it has been growing over the past years. While it is a
widely used system, it cannot be used inside buildings. Therefore, indoor localization has been
a field of research which has gained increasing attention. The number of applications for which
such systems have been envisioned is immense. Among others, guidance for visually impaired
persons, localization of persons and assets or navigation inside airports.

A large number of people use a smartphone to navigate outdoors. Then, there exists a de-
mand for an indoor location system which is capable of locating out-of-the-box smartphones,
allowing their users to navigate also inside buildings.

An indoor localization system can also play a decisive role in intralogistics. With such a sys-
tem one can track a great magnitude of assets and even optimize the efficiency of the employees.
In such a scenario the localization system is required to track multiple targets simultaneously.
In addition, the system must be affordable and require a limited energy consumption.

In applications such as navigation for visually impaired people, it is crucial to have a robust
system which is capable of locating a target with high precision and accuracy.

A solution which is capable of fulfilling the above mentioned requirements is localization
with acoustic waves. Using frequencies which are above the audible range, one can use inex-
pensive devices for localization. A speaker can be located by having multiple static receivers
attached to the ceiling. If the receivers are synchronized, one can use the time at which those
signals are received by the microphones to locate the target with time difference of arrival
(TDOA). The targets can be devices like smartphones or laptops which emit inaudible sound
signals. This allows localization with an error in the order of centimeters [1].

One can also have static speakers as anchor nodes in order to locate moving receivers. Then,
the targets receive signals emitted by the static senders and are capable of locating themselves.
By doing this, the number of targets that can be located is unlimited.

As with acoustic localization, most of the existing solutions for indoor localization rely on
static anchor nodes placed over the localization area. Then, by multiple means, one can know
how far or in which angle is the target to some of the nodes and estimate its position.

Measuring the signal strength of an electromagnetic signal (RSSI) is a simple and cheap
solution to know whether a target is close to an anchor node. However, one cannot locate a
target with high precision and accuracy.

Certain localization systems measure the angle of arrival of the electromagnetic or acoustic
waves emitted by a portable device. This can lead to an error in the order of centimeters when
the target is close to the anchor node. While this is a promising approach, it is not optimal for
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1 Introduction

places with high ceilings, as the angle variation is too small to provide a precise estimation.
Measuring the time at which electromagnetic signals are received is a challenging task, as the

light velocity is much higher than the sound velocity. Ultrawideband (UWB) systems manage
to do so by using a high bandwidth and low spectral density (e.g. [2]). The price is usually
higher than acoustic systems.

All the above mentioned systems have the issue that sometimes a target must be located in
mixed line-of-sight/non-line-of-sight conditions. This means that the target emits a signal that
might be obstructed and not received by an anchor node (see Fig. 1.1). In addition, the anchor
node might receive signals which have bounced from this target to a reflector (e.g. a wall) and
then to the anchor node (non-line-of-sight signals). Then, one has to decide which signals were
really emitted by the target and did not bounce to any reflector (line-of-sight signals). This is
a challenging task and can lead to high errors if it is not correctly done. The robustness of an
indoor localization system depends mostly on doing a correct data association.

This issue is not present in other localization solutions which use an inertial measurement
unit (IMU) carried by the target. The IMU provides information about the acceleration of
the target, which can be integrated in order to estimate its position. This has been proved to
be effective for localization, although its accumulative error makes it unusable after a certain
period of time. However, this technology can be fused with others in order to achieve a more
robust estimation. For instance, one can use an acoustic system to correct the accumulative
error of the IMU and the inertial measurement unit to improve the identification of the acoustic
line-of-sight signals.

This thesis focuses on acoustic and ultrasonic localization systems. The reason behind that
is that it is a cost effective technology which can be used in multiple scenarios. In addition,
it can be used with out-of-the-box smartphones. We make use of the flexibility which this
technology offers. One can have inexpensive unsynchronized speakers as anchor nodes or as
targets. In addition, one can have a more expensive system where the speakers and microphones
are synchronized. The emitters can send signals regularly at specific intervals or at random time
instants. All of these scenarios have a different application case and offer different challenges
when locating a target in presence of non-line-of-sight measurements. They will be further
explained in this thesis.

1.1 Non-Line-of-Sight Measurements

As mentioned above, the task of deciding which measurements are line-of-sight and non-line-
of-sight is crucial for the robustness of a localization system. Especially in systems which
rely on acoustic measurements, as acoustic signals are considerably attenuated when passing
through a material.

A high number of researchers have proposed methods to properly decide which signals are
line-of-sight, either with data processing and channel estimation or by selecting which position
is more likely according to the received measurements and the movement of the target. Both
categories of algorithms are often used together in order to improve the robustness of the sys-
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1.1 Non-Line-of-Sight Measurements

Receiver
non-line-of-sight

Receiver Receiver

line-of-sight

Speaker

Figure 1.1: In certain occasions the signal emitted by a speaker is blocked and only non-line-of-sight
signals are received. If these signals are mistaken for line-of-sight signals, the localization error
can increase dramatically.

tem. The algorithms presented in this thesis fall into the second category. We present multiple
approaches for discarding non-line-of-sight measurements in different scenarios but also for
using these measurements as additional information.

In this thesis we also show how acoustic reflections can be used to locate a target even when
the positions of the anchor nodes and the reflectors are unknown. The reflections act as virtual
anchors, providing additional information about the movement of the target. By assuming the
moved distance by the target during a certain period of time is smaller than the distance from
the target to the anchor nodes (far-field assumption) one can simplify the equations and provide
an initial estimation for other algorithms which require an initial guess in order to successfully
estimate the positions of the target and anchor nodes.

Furthermore, in this thesis we analyze how much the localization precision can be increased
by using acoustic reflections as additional information. More specifically, we focus on waves
reflected by the ground. Multiple smartphones have their speaker on the rear side, on the op-
posite site of the screen, which means the ground reflection is often received. Moreover, these
reflections contain information about the height of the target. A slight change in the height of
the target leads to a noticeable time difference between the line-of-sight measurements and the
reflected signals. This allows estimating the height of a smartphone with a much lower error
than using only line-of-sight measurements. This is because often the anchor nodes are placed
at similar heights, which impedes a proper target height estimation. This thesis shows analyti-
cally and experimentally how much improvement ground reflections provide when estimating
the position of the target in three dimensions.

3



1 Introduction

1.2 Thesis Goals and Objectives

This thesis aims to provide a robust position estimation in presence of mixed line-of-sight/non-
line-of-sight conditions. This is achieved under different scenarios:

• In certain scenarios the position of the target is updated frequently and therefore one can
assume it follows a smooth trajectory over the time. In other scenarios this is unfeasible.

• The assumed a priori knowledge varies depending on the scenario. Then, the sending
time of the signals, the positions of the anchor nodes and the positions of the reflectors
can be either known or unknown.

• One can locate a moving sender or a moving receiver.
Finally, this thesis proves that reflections can be used as additional information when locating
a moving speaker in order to reduce the localization error. It shows:

• How can reflections be used without knowing the positions of reflectors and anchor
nodes.

• How much improvement can they provide when estimating a target position in three
dimensions.

1.3 Outline of the Thesis

This thesis is organized as follows. This chapter contains an introduction to the topic and
the main contributions to the state of the art. Chapter 2 presents an overview of the related
work. Chapter 3 presents an introduction to acoustics with emphasis on soundwave propaga-
tion. Moreover, it shows the simplified mathematical models which relate the reception times of
such acoustic signals and the positions of speakers and microphones. Additionally, it provides
a description of the localization systems that will be used in this thesis.

An introduction to probabilistic localization is provided in Chapter 4. We show how a target
can be located by assuming certain motion and sensor models with Gaussian distributed error.
This is of special importance when locating a moving receiver with unsynchronized speakers
due to the reduced number of mathematical constraints. Parts of this chapter were published
in [3, 4].

Chapter 5 already introduces the problematic of identifying NLOS measurements. This chap-
ter defines the model that governs such measurements and shows how they can lead to high lo-
calization errors when a LOS model is assumed. Different algorithms are proposed to mitigate
their effect on the final position estimation. We propose a novel algorithm and compare it with
existing solutions. In addition, we show how data from an inertial measurement unit (IMU) can
be fused with the acoustic data in order to provide a reliable estimate, as we already showed
in [5].

In Chapter 6 we show how the movement of a sender leads to time differences in the receivers
which can be used to locate a target in three-dimensions without knowing where the receivers
are and using the reflections as virtual receivers. We compare this novel approach with the
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state of the art, showing its superiority when tracking a moving target in three-dimensions and
having imprecise measurements. The majority of this chapter has been published in [6].

Chapter 7 proposes the inverse approach, using the relative movement between a receiver
and multiple static speakers for localization. This approach uses the measured timestamps, the
predicted position and velocity of the target and modulated symbols in order to predict the most
likely line-of-sight measurements. Parts of this chapter were published in [3].

Acoustic reflections can be used to reduce the error when locating a target. In Chapter 8 we
analyze how much the ground reflection can improve the height estimation. Lower bounds are
found for the root mean square error (RMSE). The improvement is also shown with real-life
experiments. In addition, an algorithm to identify the ground reflections is provided. Parts of
this chapter were published in [7].

In the last chapter we provide the conclusions of this thesis and outline open problems.

1.4 Collaborations

This thesis focuses on algorithms for robust localization in mixed line-of-sight/non-line-of-
sight conditions. The other parts required for a localization system to properly locate a target
were developed and conceived either partly or completely by other researchers. More in detail:

• The localization system for tracking a smartphone using static microphones was initially
conceived by Johannes Wendeberg and Fabian Höflinger. This was the initial idea of their
spin-off Telocate GmbH. The receivers were designed and built by Fabian Höflinger.

• The localization system which aims to locate a moving receiver using unsynchronized
emitters was initially conceived by Heinrich Hippenmeyer, Fabian Höflinger, Leonhard
Reindl, Christian Schindelhauer, Alexander Traub-Ens and Johannes Wendeberg. It was
part of the industrial project eCULTS. The algorithms presented in Section 4.2, which
assume line-of-sight measurements, were developed in close collaboration with Johannes
Wendeberg. The signal modulation and demodulation was done by Alexander Traub-Ens.
Moreover, Chapter 7 shows improvements made for better line-of-sight identification
over the existing methods presented by Alexander Traub-Ens.

• The data from the inertial measurement unit used for testing the data fusion algorithm
presented in Section 5.2 was processed by Rui Zhang.

1.5 Co-authored Publications

Parts of this thesis have been already published in peer-reviewed conferences proceedings or
journals. These publications are:

• Joan Bordoy, Christian Schindelhauer, Fabian Höflinger and Leonhard Reindl. Exploit-
ing acoustic echoes for smartphone localization and microphone self-calibration. In
IEEE Transactions on Instrumentation and Measurement, Volume: 69 , Issue: 4, Pages:
1484 - 1492, 2020
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• Joan Bordoy, Rui Zhang, Fabian Höflinger, Christian Schindelhauer and Leonhard Reindl.
Robust Extended Kalman filter for NLOS mitigation and sensor data fusion. In IEEE In-
ternational Symposium on Inertial Sensors and Systems (INERTIAL), 2017

• Joan Bordoy, Johannes Wendeberg, Fabian Höfflinger, Christian Schindelhauer and Leon-
hard Reindl. Exploiting ground reflection for robust 3D smartphone localization. In
International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2016

• Joan Bordoy, Alexander Traub-Ens, Ali Sadr, Johannes Wendeberg, Fabian Höflinger,
Christian Schindelhauer and Leonhard Reindl. Bank of Kalman filters in closed-loop for
robust localization using unsynchronized beacons. In IEEE Sensors Journal, Volume:
16, Issue: 19, Pages: 7142 - 7149, 2016

• Alexander Traub-Ens, Joan Bordoy, Johannes Wendeberg, Leonhard M Reindl and Chris-
tian Schindelhauer. Data fusion of time stamps and transmitted data for unsynchronized
beacons. In IEEE Sensors Journal,Volume: 15, Issue: 10, Pages: 5946 - 5953,2015

• Alexander Traub-Ens, Joan Bordoy, Johannes Wendeberg, Christian Schindelhauer and
Leonhard M. Reindl. Unsynchronized ultrasound system for TDOA localization. In
International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2014

1.6 Notations

The following symbols and variables will be often used in this thesis:
‖ · ‖ Norm operator

| · | Absolute value operator

N (µ, σ2) Normal distribution with mean µ and variance σ2

N (ξ;µ, σ2) Normal distribution with mean µ and variance σ2 evaluated in ξ

N (a,Qt) Multivariate normal distribution with mean a and covariance Qt

U(a, b) Uniform distribution between a and b

()T Transpose operator

b·c Floor function, takes the integer which is less or equal than the value inside
the operator

0 Vector of zeros

1 Vector of ones

I Identity matrix

a · b Dot product between a and b
S Sender position vector in R2 or R3, depending on the context

M Receiver position vector in R2 or R3, depending on the context

N Number of receivers

B Number of senders
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1.6 Notations

z Measurement vector

t Sending time

I Time interval

T Reception time

c Sound velocity
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2 Related Work

In this chapter we provide an overview of publications from other authors which are relevant
to the field of localization and present important contributions to the topics that will be de-
scribed in this thesis. We also mention our own publications and how they relate to the other
approaches.

Multiple researchers have shown the possibility of locating a speaker using acoustic or ultra-
sonic measurements with an error in the order of centimeters. Some of them assume the sending
time is known (time of arrival, e.g. [8, 9]) and others assume it is unknown (time difference of
arrival, e.g. [10]).

The speaker of a smartphone can be used to emit inaudible acoustic signals [1, 11]. Liu et.
al showed how one can also locate its microphone by using static speakers [12].

By locating moving receivers instead of senders one can have unlimited targets estimating
their own position without interfering with each other. Several systems have been presented to
locate moving receivers with time difference of arrival [13–16] and time of arrival [17–19]. In
these systems the speakers are synchronized so that they can emit signals at predefined time
instants. In [20] the speakers are not synchronized. However, time-of-arrival (TOA) and angle-
of-arrival (AOA) measurements are combined to locate the target. In [4] we presented a cost
effective location system which locates receivers with TDOA and does not require synchro-
nization between senders.

Non-line-of-sight Mitigation

Various approaches have been presented for locating a target in mixed non-line-of-sight and
line-of-sight conditions. Some approaches focus on the channel and their aim is to select the
line-of-sight timestamps which will be later used for localization. Multiple researchers use the
correlation between the received signals and the emitted signal pattern. Values such as the mean
excess delay and the skewness of the correlation are used [21–24]. In some cases reflections can
cause destructive interferences, which might lead to erroneously selecting reflections as line-
of-sight measurements. In [25] and [26] the contributions of reflections in the time correlation
are iteratively eliminated.

Other approaches assume the timestamps are given and they can be either line-of-sight or
non-line-of-sight measurements. With TOA measurements, one can define a closed region
were the target is likely to be, even when there are non-line-of-sight measurements. Due to this
fact certain authors [27, 28] use constrained optimization when estimating the position of the
target. Robust regression approaches which give lower weights to unlikely measurements have
been presented in [29]. Feng Yin shows in his PhD thesis [30] how the NLOS measurement
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noise can be characterized using a Gaussian mixture or a Kernel density estimate.
When the sending time is unknown, it is more challenging to identify the non-line-of-sight

measurements, as the subspace which defines the possible location of the target is not bounded.
The only limitation is the maximum distance at which a receiver is capable of receiving a
signal. In [31] the NLOS measurements are modeled as an additive mean shifted Gaussian
distribution. Wang et. al [32] use robust optimization and a convex approximation method
which assumes the distance traveled by a reflection is limited. In [33] robust regression is
used to continuously track the sender. Concretely, an interacting multiple model is used, which
continuously switches from an only-LOS measurement model to a model which assumes LOS
and NLOS measurements. In [5] we used robust regression , fusing the data of an inertial
measurement unit, which provided additional information and improved the identification of
the line-of-sight signals.

Probabilistic Data Association

Using a recursive Bayesian estimator, one can estimate the position and velocity of the target.
By doing this, one can predict which timestamps are more likely to be line-of-sight measure-
ments and discard the non-line-of-sight measurements [29, 34].

Li and Krolik [35] present an approach which simultaneously estimates the position of the
target and the location of the walls. The data association between walls and measurements is
done with a multi-hypothesis probabilistic algorithm. They are provided with AOA and TOA
measurements.

In [6] we use a joint probabilistic data association filter to track the relative motion of the
target to the receivers. This is done by assuming the emitter sends signals at regular intervals.
The sending time is unknown. The main benefit of this approach is that the data association is
done without knowing the positions of the sender and receivers. Then, one does not need to
know the position of the receivers in order to associate the data.

In [3] we propose a probabilistic data association algorithm which selects the most likely
line-of-sight measurements depending on the predicted position and velocity of the target, the
interval at which the signals are emitted and the modulated symbols. In this case, the moving
target is a receiver and the static anchor nodes are senders. For this reason, when the target
moves the number of constraints is lower than the number of variables. Fusing multiple sources
of information one can predict the most likely line-of-sight signal of every sender. This was
initially presented in [4] by Traub-Ens et. al. However, we extended it in [3] so that the
estimated position and velocity of the target can be used for better data association.

Using Reflections as Additional Information

Dijk et. al [36] use the knowledge about the dimensions of the room as additional information
for localization. The method assumes a box-shaped room and uses a signature matching algo-
rithm, which estimates the target position by predicting which reflections will be received and at
which time instant. In [37] Dokmanic et. al show that the shape of a room can be reconstructed
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2 Related Work

using acoustic echoes. There, five microphones and one speaker are used. The positions of
the microphones and the sending time of the signals are known in advance. In [38] Kim et.
al use the knowledge of the room dimensions and the positions of static speakers in order to
predict the motion of a receiver. In [39], a floor plan is used to map ultra-wideband reflections
to virtual anchor nodes. In [40] the three-dimensional position of a speaker and microphone
is estimated without any a-priori knowledge about the room dimensions nor the positions of
the nodes. The data association is done with a random sample consensus (RANSAC) algo-
rithm and the receivers are located sequentially, using first the receivers with a high number of
measurements. Reflections are used as additional receivers in order to reduce the localization
error. Kuang et. al [41] show how UWB reflections from walls can be used to track a target
and estimate the dimensions of the room. Only one anchor node and one mobile device are
used. They use a far-field assumption. In [7] we showed that ground reflections can be used
to improve the height estimation. We also showed in [6] how the far-field assumption can be
used to locate a speaker in three dimensions using acoustic reflections as additional receivers at
unknown positions. The positions of the real and virtual receivers are estimated simultaneously
to the trajectory of the target. Then, the location system can be self-calibrated.

Self-Calibration

Usually, a moving speaker is located and multiple microphones are installed at static positions.
Knowing these positions reduces the number of unknowns and therefore provides a more reli-
able target position estimation. However, measuring them manually increases the installation
cost and requires a considerable amount of time. Automatically calibrating the microphone
positions in order to reduce the installation effort has been proved to be feasible by multi-
ple researchers. In [42] a maximum likelihood estimator is used. In [43] a direct solution is
found using matrix factorization, requiring ten receivers. In [44] an iterative algorithm is pre-
sented. Johannes Wendeberg provides multiple solutions for TDOA self-calibration in his PhD
thesis [45]. Among others, a branch-and-bound algorithm is presented which continuously di-
vides the subspace of possible solutions until the positions are found within an error bound
ε. He also shows how a far-field approximation can be used to initialize the variables of the
scenario and avoid that non-linear optimization algorithms get stuck in local minima.

Locating receivers and senders in mixed environments with line-of-sight and non-line-of-
sight is challenging due to the high number of variables and nonlinearities. However, it is often
the case in real-life environments. In [46] a self-calibration algorithm for dual-microphone
arrays is presented. Outliers are eliminated using a random sample consensus (RANSAC)
approach.

Far-Field Assumption

Some authors already used the assumption that a single or multiple senders are far from the
receivers for self-calibration. This was used in order to simplify the equations and provide
an initial estimate, which was often refined with local optimization methods such as gradient
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descent.
In [47], Thrun presents a method for locating far sound sources and microphones by using a

far-field assumption and affine geometry. He assumed that the sound sources were much farther
than the distance between the microphones. It was shown that this assumption can be used as
an initial estimate for local optimization algorithms in order to avoid local minima and reduce
the localization error.

The approach by Kuang et. al [41] locates a target with an error of around one centimeter
without knowing the anchor node positions and using multipath as additional information. The
method in [47] is used to estimate the target positions. The data association of the measurements
previously to that step is done with a semi-automatic approach.

The ellipsoid method is a method to localize a group of microphones using far sound sources
and was presented in [48] by Schindelhauer et. al and extended in [49]. The algorithm worked
under the assumption that the sender was much farther than the distance between the receivers.

Approach Assumption Data Experiments Far-field
Association algorithm

Thrun, 2005 [47] Small distance N.A. 2D Affine
between static geometry
microphones*

Schindelhauer et. al, Small distance N.A. 2D Ellipsoid
2010 [48, 49] between static method

microphones*
Kuang et. al, Small distance Semi-automatic 2D Affine
2013 [41] between target geometry

positions**
here and in Small distance JPDAF 3D Modified
Bordoy et. al, between moving version of
2020 [6] speaker positions * [47] and

[48] for 3D

* compared to speaker-microphone distance
** compared to target-anchor node distance

Table 2.1: Comparison between approaches using the far-field assumption. N.A stands for not avail-
able. [6]

Table 2.1 shows a comparison of the existing methods which use a far-field approximation
for localization. The assumption that the static microphones are close compared to the distance
between the speaker and the microphones used in [48] and [47] has the main drawback that all
the received timestamps need to be in line-of-sight. Otherwise, the sender cannot be located.
One could assume a reflection is like a virtual receiver, but then the far-field assumption would
not necessary hold anymore.
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2 Related Work

The approach which we presented in [6] assumes the sender is moving, and during a certain
period of time, its positions are closer than the distance to the receivers. Then, reflections can
be used as additional receivers, as the virtual receivers generated by the acoustic echoes will
also hold the far-field assumption, because they will be farther than the actual receivers.

A new formulation of the method in [47] was presented which requires less receivers and pro-
vides a more robust estimation when locating a moving target. In addition, the ellipsoid method
presented in [48] was modified for better performance in this scenario, using constrained opti-
mization.
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3 Acoustic Position Estimation

This chapter serves as an introduction to the task of locating a target. It describes how acoustic
signals can be used for localization and how can they be related to the position of the target.

We show how a sound signal propagates and is reflected. Of special interest is the description
of how reflection from walls can be seen as virtual senders or receivers, which will simplify
certain calculations in the following chapters.

In addition, we provide a description of the localization systems used in this thesis. Two
localization systems will be used which offer different characteristics and challenges when
locating a target in mixed line-of-sight and non-line-of-sight conditions.

3.1 Fundamentals of Acoustics

In order to locate a target using signals in the inaudible range, one needs to comprehend what
is a sound wave and how it interacts with the medium. A sound wave is a local deviation of
the local atmospheric pressure [50] over time. Then, if one uses a speaker to emit an harmonic
with angular frequency ω in the x coordinate, there will be a variation of pressure pi(t, x) that
depends on the time t and the position x. The particles will also move at a certain particle
velocity ui(t, x). The product of the particle velocity and pressure is the intensity of the sound
signal. Their variation over the x coordinate will be:

pi(t, x) = p̂ie
−j(ωt−k1x) (3.1)

ui(t, x) = p̂i
ρ1c1

ej(ωt−k1x) (3.2)

where the wave number k1 depends on the sound velocity of the medium c1:

k1 = ω/c1 (3.3)

The variable ρ1 is the equilibrium density of the material in which the sound wave propagates
and j denotes the imaginary unit.

Reflections

When a sound wave changes the material in which it travels, part of the signal is transmitted and
part is reflected. The acoustic phenomenon which plays a crucial role in indoor localization is
the reflection. As mentioned before, reflected signals can be mistaken for line-of-sight signals,
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3 Acoustic Position Estimation

which can lead to high errors in the position estimates. One can distinguish two cases: when
the sound signal hits a material with a direction perpendicular to the plane which contains the
material (normal incidence) and when it does it with a different angle (oblique incidence). We
provide a short introduction to these scenarios based on the description in [50].

Normal Incidence

In this case we assume the sound source is located just in front of a wall. The wall dimensions
are assumed to be much larger than the wavelength and the dimensions of its irregularities are
assumed to be much smaller than the wavelength of the acoustic wave. The wavelength λ at
which the sound waves travel in the experiments carried out in this thesis is between one and
two centimeters approximately, depending on the frequency f and the sound velocity in the
medium c1:

λ = 2πc1
ω

= c1
f

(3.4)

If we assume a wall is located at x = 0, there will be two new sound waves, a reflected wave:

pr(t, x) = p̂re
−j(ωt+k1x) (3.5)

ur(t, x) = − p̂r
ρ1c1

ej(ωt+k1x) (3.6)

and a transmitted wave:

pt(t, x) = p̂te
−j(ωt−k2x) (3.7)

ut(t, x) = p̂t
ρ2c2

ej(ωt−k2x) (3.8)

Here ρ2, c2 and k2 are the properties of the material in which the sound wave hits.
In order to learn how these waves are related, one must apply the boundary conditions

in x = 0:

pi(t, 0) + pr(t, 0) = pt(t, 0) (3.9)

ui(t, 0) + ur(t, 0) = ut(t, 0) (3.10)

By dividing these two equations:

ρ1c1
p̂i + p̂r
p̂i − p̂r

= ρ2c2 (3.11)

Then, one can calculate the amount of reflected pressure divided by the amount of incident
pressure, the so-called reflection coefficient, which is noted as R:

R = p̂r
p̂i

=
ρ2c2
ρ1c1
− 1

ρ2c2
ρ1c1

+ 1 (3.12)
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3.1 Fundamentals of Acoustics

One can observe how the amount of pressure which is reflected depends on the relation between
the two materials.

For a reflected sound wave by a concrete wall, the first material is air and the second material
is concrete. Then at 20 degrees Celsius the reflection coefficient is approximately 0.9999. This
means, the reflected signal by a wall will barely lose any pressure after being reflected.

Oblique Incidence

θi
θr

θt

Figure 3.1: A sound wave hitting a material with an angle θi, is reflected with an angle θr and transmit-
ted with an angle θt.

Having a wall at x = 0, the incident sound wave can hit the wall in an arbitrary angle. A
schematic about the angles involved can be seen in Fig. 3.1. Then, if one defines the angle θi as
the angle formed by the normal of the wall and the incident wave, the incident sound pressure
and particle velocity are:

pi(t, x) = p̂ie
−j(ωt−k1x cos(θi)−k1y sin(θi)) (3.13)

ui(t, x) = p̂i
ρ1c1

ej(ωt−k1x cos(θi)−k1y sin(θi)) (3.14)

which is reflected with an angle θr which is defined as the angle formed by the normal of the
wall and the reflected wave:

pr(t, x) = p̂re
−j(ωt+k1x cos(θr)−k1y sin(θr)) (3.15)

ur(t, x) = − p̂r
ρ1c1

ej(ωt+k1x cos(θr)−k1y sin(θr)) (3.16)

If one defines θt as the angle at which the wave is transmitted to the new material, the transmit-
ted sound pressure and particle velocity are:

pt(t, x) = p̂te
−j(ωt−k2x cos(θt)−k2y sin(θt)) (3.17)

ut(t, x) = p̂t
ρ2c2

ej(ωt−k2x cos(θt)−k2y sin(θt)) (3.18)

Applying the boundary conditions:

p̂ie
j(ωt−k1y cos(θi)) + p̂re

−j(ωt−k1y cos(θr)) = p̂te
−j(ωt−k2y cos(θt)) (3.19)
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3 Acoustic Position Estimation

This leads to a well-known group of equations of the Snell’s law:

θi = θr (3.20)

c2 sin(θi) = c1 sin(θt) (3.21)

Then, the incident angle is the same as the reflected one. This statement will be used during
this thesis in order to model the reflected sound waves.

The reflection coefficient depends on the incident angle:

R =
r2

cos(θt) −
r1

cos(θi)
r2

cos(θt) + r1
cos(θi)

(3.22)

where

r1 = ρ1c1 (3.23)

r2 = ρ2c2 (3.24)

The transmission angle is:

θt =

√√√√1−
(
c2
c1

)2
sin2(θi) (3.25)

We focus on the case when c1 < c2, as the sound velocity inside a wall will be always faster
than the sound velocity in air.

Looking at Eq. 3.25, one can realize that when sin(θi) is above a certain value, the reflection
coefficient is not real. The angle which sets the threshold is known as critical angle and can be
calculated as:

sin(θc) = c1
c2

(3.26)

When the incident angle θi is above θc, the reflection coefficient is:

R = ejφ (3.27)

where:

φ = 2 arctan
(
ρ1
ρ2

√
cos2(θc)
cos2(θi)

− 1
)

(3.28)

Then, the reflected sound wave will have the same sound pressure as the incident one.

Sound Velocity

During this thesis, the sound velocity c is assumed to be a known constant, which is independent
on the traveled wave path. This is a simplification, as the velocity depends on the temperature
of the medium and the properties of the medium itself. This relation can be expressed as:

c =
√
K

ρ
(3.29)

where K is the bulk modulus of elasticity, is measured in Pascals and depends on the elastic
properties of the material.
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3.1 Fundamentals of Acoustics

Propagation in Air

In air, the sound velocity can be written as:

c =

√
γRT

M
(3.30)

where γ is the adiabatic index, R is the molecular gas constant, T is the absolute temperature
and M is the molecular mass of the gas.

Temperature

The most noticeable environmental factor which changes the sound velocity is the tempera-
ture [51]. In dry air, one can rewrite Eq. 3.30 as:

c = 331.3

√
1 + θ

273.15 m/s (3.31)

where θ is the temperature in degrees Celsius.
A room has rarely the same temperature everywhere. Warm air tends to rise to the highest

parts of the room. Therefore, the sound velocity will change and the traveled trajectory by the
sound waves will no longer be a straight line (see Eq. 3.21).

In the experiments performed in this thesis the sound velocity is assumed to be 343 m/s,
which is the velocity at 20 degrees Celsius with dry air. This will be assumed to be part of the
measurement noises together with the synchronization errors and the sensor noises.

Humidity

Using Eq. 3.30, one can rewrite γ as:

γ ≈ 1.005 + 1.82H
1.005 + 1.82H − R

M

(3.32)

where H is the humidity in kg water vapor per kg dry air. The molecular weight M also
depends on the humidity.

The humidity has a limited influence in the sound velocity. The maximum difference between
the highest and the lowest sound velocities is approximately 0.6 %.

Ray Acoustics

In order to simplify the equations, one can assume that the medium in which the sound waves
propagate is homogeneous and that the magnitude of the irregularities of the reflectors are much
smaller than the wavelength. In this case, the waves are assumed to propagate in a straight line
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3 Acoustic Position Estimation

from speaker to microphone. Having a microphone M and a sender S in R3, if the emitter
sends a signal at time ts, it will be received at time Tr:

Tr = ts + 1
c
‖M− S‖ (3.33)

Here c is assumed to be constant during the traveled sound wave path.

Image Source Model

First order 

image receiver

Second order 

image receiver

Receiver

Sender Wall

Figure 3.2: Acoustic reflections can be seen as virtual receivers. Reflections which are reflected once
are first order image receivers and second reflections produce second order image receivers. [6]

The image source model [52] simplifies the reflections by considering a reflected signal by a
wall acts like a virtual sender which is placed symmetrically at the same distance on the other
side of the wall. The same can be applied for a receiver (see Fig. 3.2). Higher order reflections
are also considered by this model. Then, a virtual sender can have also a virtual sender on
another wall, which will be the second reflection. This is due to the fact that the incident angle
must be equal to the reflected angle, as shown in Eq. 3.21.

A wall plane can be defined with a normal vector n̂ and a point of the plane P. Then, a
reflection from a sender at position S will act like a sender Sv emitting at the same time:

Sv = 2(−n̂‖DT n̂‖) + S (3.34)

D = P− S (3.35)

This model is only valid for planar surfaces and does not consider effects related to the
limited dimensions of the walls. Nonetheless, this model is very effective for first and second
reflections, which are the ones that can be mistaken as line-of-sight signals and the ones of
interest in this thesis.
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3.2 Time Difference of Arrival and Time of Arrival

3.2 Time Difference of Arrival and Time of Arrival

A common scenario is when a speaker position is unknown and the receiver positions are man-
ually measured and therefore assumed to be known in advance. Then, three variables need to
be estimated in three dimensions. The available knowledge results in different kind of mathe-
matical constraints. In this section we describe four scenarios:

• Time Difference of Arrival (TDOA): In this case the sending time is assumed to be un-
known.

• Time of Arrival (TOA): The sending time is assumed to be known.
• Periodical Impulses: Here the sending time is unknown but the speaker emits signals at

regular intervals which are known in advance.
• Frequency Difference of Arrival (FDOA): The frequency shifts created due to motion are

used to estimate the position of the target.

Time Difference of Arrival

Time difference of arrival is a commonly used method for locating a sender Sk when the send-
ing time is unknown. Having N receivers, one can subtract the timestamp of a reference re-
ceiver in order to eliminate the dependence on the sending time. In order to avoid estimating
the sending time, the reception time Tk,r of a reference receiver with index r is subtracted to
the other timestamps:

Tk,i − Tk,r = 1
c
‖Mi − Sk‖ −

1
c
‖Mr − Sk‖, i ∈ [1, ..., N ] | i 6= r (3.36)

where Mi is the position of the receiver with index i. The position of the sender Sk corresponds
to its k-th emitted signal.

With two timestamps, the set of possible solutions for Sk results in an hyperbola in two di-
mensions and an hyperboloid in three dimensions. Then, having at least three receivers well
distributed in a two-dimensional space, one can estimate the position of the target in two di-
mensions. In three dimensions, one requires at least four.

It is important to note that the noise of the reference receiver has a larger effect on the final es-
timation than the noise of the other receivers. Some approaches use the receiver which receives
the first signal as reference, as it is more likely to be in line-of-sight. If all the receivers need
to have the same importance, one can use a weighted least squares approach, which balances
the noise with a weighting matrix. Another simple but computationally expensive solution is to
use all receivers as reference.

Time of Arrival

Time of arrival (TOA), is a method used when the sending time ts is known. Then, one knows
the distance to the receiver:

c(Tk,i − ts) = ‖Mi − Sk‖, i ∈ [1, ..., N ] (3.37)
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3 Acoustic Position Estimation

The set of possible solutions for Sk when having one timestamp is a circle in two dimensions
and a sphere in three dimensions. Then, having at least three receivers in two dimensions or
four in three dimensions, one can estimate the position of the target.

Periodical Impulses

In this case, one can assume the sending time is unknown, but the speaker emits signals at
regular intervals I , which are known in advance. Then, when the target is at its k-th position
Sk, a timestamp is received:

Tk,i = 1
c
‖Mi − Sk‖+ t0 + kI, i ∈ [1, ..., N ], k ∈ [1, ..., B] (3.38)

where t0 is the very first time at which the speaker emitted a signal. One can observe that, while
this starts being a time difference of arrival problem, it becomes a time of arrival problem once
the uncertainty estimating the variable t0 is reduced.

If the target is emitting signals periodically, one can predict when the next signal will be
emitted, and therefore gain more knowledge about the target position.

The number of elapsed intervals between two measurements is unknown. However, if the
interval I is much larger than the propagation time, the number of elapsed intervals between
two measurements Tk,i and Tl,i can be estimated straightforward by:

k − l =
⌊
Tk,i − Tl,i

I
+ 1

2

⌋
(3.39)

If the elapsed intervals are always subtracted, only one sending time needs to be estimated.

Frequency Difference of Arrival

Frequency Difference of Arrival (FDOA) uses the Doppler effect in order to track the target.
The Doppler effect is defined as the frequency shift caused by the relative velocity between the
receiver and the emitter. For an emitted signal with frequency f0, the detected frequency is:

f = c+ vr
c+ vs

f0 (3.40)

where vr is the relative velocity of the receiver and vs the relative velocity of the sender. In
three dimensions, the relative velocities can be written as:

vr = Vr ·
S−Mi

‖S−Mi‖
(3.41)

vs = Vs ·
S−Mi

‖S−Mi‖
(3.42)

where Vr and Vs are the velocity vectors of the receiver and sender respectively. The operator
· denotes the dot product. Usually FDOA is used when two anchor nodes are moving at known
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velocities. Then, subtracting the frequency shift of a reference anchor node with the other
nodes, one can estimate the position of the target.

While FDOA will not be used in this thesis, using periodical impulses one can also get a
notion of the relative movement of the target. If the receivers are static:

c(Tk,i − Tk−1,i − I) = ‖Mi − Sk‖ − ‖Mi − Sk−1‖ (3.43)

This difference is approximately equal to Ivs if the target moves at constant velocity and the
receiver is much farther than the distance moved by the sender. It is a discrete version of the
Doppler shift. In Chapter 6 it will be used to estimate the movement of the target.

3.3 Description of the Systems

During this thesis, two localization systems are used to test the proposed algorithms:
• A receiver localization system. In this system the target is the receiver and the anchor

nodes are the senders. The main benefit of this system is that there are unlimited number
of targets, as every receiver can calculate its position independently. Moreover, in this
system the speakers are designed to be inexpensive and to operate with a low energy
consumption [4].

• A speaker localization system. This system consists of static receivers which are de-
signed to receive signals from 18 kHz to 22 kHz, which is the maximum frequency range
that a conventional speaker is able to emit with low attenuation [1] and it is also in the
limit of the audible range. Therefore, a smartphone emitting inaudible sound signals can
be located.

In addition, a high-priced localization system with sub-millimeter accuracy and precision is
used as a reference for measuring the localization error.

Speaker Localization

This localization system is named ASSIST [1], which is the acronym for Acoustic Self-calibrating
System for Indoor Smartphone Tracking. It consists of a smartphone and stationary receivers,
which are placed in the room where the target needs to be located (see Fig. 3.3). The conven-
tional speaker of a smartphone is used to emit acoustic signals above the human audible range.
These signals are received by the static sensors and used to locate the smartphone.

The smartphone speaker emits periodical chirp signals from 18 to 22 kHz, which have been
proven to be received at a distance of 30 m [1]. In order to analyze the maximum frequency
limitation, several commercial off-the-shelf (COTS) smartphones were tested.

The emitted signal is a chirp in which the frequency increases linearly with time. The chirp
impulse is defined between 0 ≤ t ≤ T with a start frequency of f0 and an end frequency of f1.
It can be described according to the following equation:

s(t) = sin
(

2π
(
f0 + f1 − f0

2T t

)
t

)
(3.44)
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Receiver

Receiver

MoCap Camera

Figure 3.3: Sender localization system (ASSIST). The speaker of an out-of-the-box smartphone is used
as a sender. [7]

The smartphone is not synchronized with the receivers. Only the receivers share a common
time base.

The receivers use microphones constructed with a MEMS (microelectromechanical system)
to sense the signals emitted by the smartphone. The digital signals are correlated with a refer-
ence signal which is the same that has been transmitted from the smartphone, in order to find
the detection times. One could use the following equation in time domain to correlate two real
signals of size T :

pt(τ) = 1
2T + 1

T∑
t=−T

r(t)s(t+ τ) (3.45)

where r(t) is the received signal.
However, it is computationally less intensive to work in the frequency domain, as shown

in [53] by Valin et. al:

pp(τ) = IFFT
{

R(f)S∗(f)
|R(f) ◦ S∗(f)|

}
(3.46)

where IFFT{·} denotes the inverse of the fast Fourier transform. The operator ◦ is the Hadamard
product (entry-wise product) and the absolute value is taken also from every pair of values. The
complex conjugate operator is denoted by ()∗. The values of R(f) and S(f) are calculated as
follows:

R(f) = FFT{r(t)} (3.47)

S(f) = FFT{s(t)} (3.48)

where FFT{·} denotes the fast Fourier transform.
The highest correlation peaks of pp(τ) are then used to estimate the reception times of the

received signals. Then, these timestamps are used to estimate the position of the target.
This system is used in Chapter 5, Chapter 6 and Chapter 8.
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Trolley with receiver

MoCap Cameras

Reference marker

Receiver

Sender

Figure 3.4: Receiver localization system (eCULTS). Multiple reference markers are used in order to
locate the receiver with the motion capture system. [3]

Receiver Localization

This location system is part of the industrial project eCULTS, which is an acronym for energy-
autarkic Calibration-free ULtrasound Tracking System. The project was funded by the German
Federal Ministry of Education and Research (BMBF) and its main aim was to develop an indoor
localization system for intralogistics which was energy-efficient.

The system [4] is designed to be easy to install and calibrate and is required to track multiple
targets simultaneously with a high update rate. To achieve these purposes, the election was
made to track moving microphones (see Fig. 3.4). By doing this, the number of targets which
can be tracked simultaneously is unlimited. The anchor nodes were chosen to be inexpensive
speakers which did not require synchronization, in order to reduce the energy requirements.
Every target is then equipped with a microphone and is required to be capable of estimating its
own position and calibrating the system.

Each speaker emits its signals with a different time period. Then, some senders emit signals
more frequently than others, which helps distinguishing them. Additionally, the signals are
modulated with a π/4-DQPSK (Differential Quadrature Phase Shift Keying) and two OFDM
carrier frequencies and contain the identification number of the sender. The separate carrier
frequencies are at 38.8 kHz and 40.74 kHz. Every packet emitted by a sender contains four
symbols and therefore eight bits of information. Three of these bits are used for error correction.
Therefore, there are 32 possible sender ids. The details of the modulation process are out of the
scope of this dissertation. One can refer to the dissertation of Alexander Traub-Ens [54].

The algorithms used on this system will be explained in Chapter 4 and Chapter 7.
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3 Acoustic Position Estimation

Reference System

The reference system used in this thesis is a motion capture (MoCap) system with sub-millimeter
accuracy and precision (the standard deviation while standing still is 0.3 mm). This system is
a high-priced localization system that uses several cameras to track the positions of reflective
markers (see Fig. 3.4). The experiments in this thesis took place in a reduced area due to the
limited range of the motion capture system. More details about the experimental environment
can be seen in the Appendix of this thesis.

Error Calculation

In order to synchronize the result of the MoCap and the acoustic systems, both systems share
a common time base. The positions of the anchor nodes are measured with a total station
theodolite.

If the positions of the anchor nodes are known, these positions are rotated and translated
according to the MoCap measurements. If the positions of the anchor nodes are unknown and
only the sender positions are estimated (Chapter 6), then the estimated positions are translated
and rotated using the MoCap positions which are closer in time. If the positions of the anchor
nodes are estimated, then they are rotated and translated using the measured positions by a
theodolite as a reference. This is because some anchor nodes cannot be measured by MoCap,
as they are out of range.

In order to align two sets of positions we use the approach in [55]. Assuming each of the sets
has n points, we first estimate the mean:

µg = 1
n

n∑
i=1

gi µh = 1
n

n∑
i=1

hi (3.49)

where gi is the i-th reference point and hi is the i-th estimated point.
Afterwards we estimate the covariance between both set of points:

W =
n∑
i=1

(gi − µg)(hi − µh)T (3.50)

By subtracting the mean from both sets of points, one only needs to estimate the rotation. If
both set of points were equal, W would be a diagonal matrix. Therefore, one can do the singular
value decomposition (SVD) of W:

W = UDVT (3.51)

Then, D is a diagonal matrix which contains the singular values. The matrices U and V contain
the singular vectors.

If one wants to find the rotated and translated version of hi, one can calculate it as:

hi = UVT (hi − µh) + µg (3.52)

Then the error is estimated by calculating the distance between the rotated and translated esti-
mated position hi and the reference position gi.
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4 Probabilistic Localization

When locating a target one can make certain assumptions about its motion. Its maximum
velocity is often limited and it can spend large periods of time with the same velocity (e.g. a
robot moving or a person walking). This means, one can make use of previous estimations to
predict where is currently most likely to be the target. In order to do so, one needs to be able to
update the target position fast enough so that the region of likely positions becomes as small as
possible.

During this thesis, probabilistic algorithms are used for different purposes, always assuming
a target position depends on its previous one. These algorithms fulfill the Bayesian filtering
scheme, which is a probabilistic approach to recursive state estimation based on the Markov
assumption, i.e. the assumption that the current state depends only on the previous state, not on
the previous trajectory.

In this chapter, the particle filter, the unscented Kalman filter and the extended Kalman filter
are explained for better understanding of the following chapters. In addition, we show how
probabilistic methods can be used for locating a moving receiver, using the eCULTS system.
While the number of constraints is lower than the number of variables when the receiver is
moving, one can use a probabilistic motion model to track the movement of the target.

During this chapter, we formulate the sensor and motion models when the measurements
are assumed to be in line-of-sight and with Gaussian distributed noise. Further improvements
for mixed line-of-sight and non-line-of-sight measurements will be introduced in the following
chapters.

4.1 Recursive Bayesian Estimation

The recursive Bayesian estimation model assumes that there is a hidden Markov process, which
contains the variables that need to be estimated. Each of these states leads to a measurement
vector. Then, at the time instant t, there is a hidden state xt, which contains the variables that
need to be estimated and a measured vector zt.

These dynamic systems are assumed to be governed by two models:
• The measurement model zt = h(xt), which relates the state xt and the measurement zt.
• The motion model, which predicts a state given a previous state xt = f(xt−1)

These algorithms intent to find the probability distribution of the a posterior probability p(xt|z1:t):

p(xt|z1:t) = p(z1:t|xt)p(xt|z1:t−1)
p(zt|z1:t−1) (4.1)
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4 Probabilistic Localization

The value of p(zt|z1:t−1) is modeled as a constant. The other two terms are:
• The term p(xt|z1:t−1) corresponds to the prediction step. This step uses the known

motion model to predict the next state given the previous one:

p(xt|z1:t−1) =
∫
p(xt|xt−1)p(xt−1|z1:t−1) dxt−1 (4.2)

• The term p(z1:t|xt) is the likelihood of the state xt given the measurements z1:t, this
corresponds to the correction step and uses the measurement model to transform the
variables from the state space to the measurement space.

Kalman Filter

The Kalman filter [56] is a simple solution for Bayesian recursive state estimation, when the
motion and measurement model which govern the system are linear and have additive Gaussian
noise. The motion and measurement model are described as follows:

zt = Hxt + wt (4.3)

xt = Axt−1 + But + vt (4.4)

vt ∼ N (0,Qt) (4.5)

wt ∼ N (0,Rt) (4.6)

The variable ut is a control vector. The matrices A and B depend on the chosen motion model.
The matrix H depends on the sensor model.

The Kalman filter finds the optimal state when the variances Qt and Rt are perfectly known,
the noise is white and the models perfectly match the real behavior of the system.

During the prediction step, a new state mean x̂t and covariance P̂t are predicted using the
motion model:

x̂t = Axt−1 + But
P̂t = APt−1AT + Qt

During the correction step, the measurement vector is used to correct the predictions and find
the optimal state mean xt and variance Pt.

The covariance of the predicted measurement can be estimated as:

St = HP̂tHT + Rt (4.7)

The Kalman filter minimizes the mean-squared error. In order to do so, it uses a so-called
Kalman gain matrix Kt, which finds the optimal weight of the measurements:

Kt = P̂tHTS−1
t (4.8)
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4.1 Recursive Bayesian Estimation

Then, the state at time t and its covariance are:

xt = x̂t + K (zt −Hx̂)
Pt = (I−KtH) P̂t

The main advantages of the Kalman filter are its simplicity and its low computational power
requirements. These factors make it suitable for scenarios where the number of measurements
is elevated or where there are multiple hypotheses which need to be examined in a limited
amount of time. These situations will be further explained in the following chapters.

Extended Kalman Filter

The extended Kalman filter is a modification of the Kalman filter for non-linear systems. When
the functions h(xt) and f(xt−1) are not linear, they are substituted by their Jacobian matrix.
Then, the matrices H and A of the linear Kalman filter are substituted by the partial derivatives
of the non linear functions, which are denoted as Ht and At. This linearizes the functions
around the evaluation points. The main drawbacks of this approach are that it can diverge when
the initial estimations are far from the actual real value and that the Jacobian matrices need to
be recomputed every time the sensor model or motion model are changed.

Unscented Kalman Filter

The unscented Kalman filter [57] uses the so-called sigma points for linearization. These points
are spread around the mean depending on the variance of the estimations and evaluated using
the nonlinear functions. Then, it provides a better representation of the non-linearities than the
extended Kalman filter. For our implementation we follow the description in [58].

The previous state mean xt−1 and variance Pt−1 are used to generate a set of 2L sigma
points, where L is the dimension of the state vector:

ηxt−1 =



µTt−1(
xt−1 +

√
(L+ λ)Pt−1,[1]

)T
...(

xt−1 +
√

(L+ λ)Pt−1,[L]
)T(

xt−1 −
√

(L+ λ)Pt−1,[1]
)T

...(
xt−1 −

√
(L+ λ)Pt−1,[L]

)T



T

(4.9)

where P•,[`] denotes the `-th column of P•. The scaling parameter

λ = α2(L+ ρ)− L (4.10)
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4 Probabilistic Localization

determines how far the sigma points are from the mean, where α and ρ are tuning parameters
of the filter.

The sigma points matrix has a dimension of L×(2L+1). Each row has 2L+1 sigma points.
The sigma points of the previous state and the process noise are passed to a function g, which
is the motion model, to predict the new state:

ηxt = g(ut,ηxt−1) (4.11)

After that, the Gaussian statistics of the new points are computed by

x̂t =
2L∑
l=0

wm(l)ηxl,t (4.12)

P̂t =
2L∑
l=0

wc(l) (ηxl,t − x̂t) (ηxl,t − x̂t)T + Qt (4.13)

where

wm(0) = λ

L+ λ

wc(0) = λ

L+ λ
+ (1− α2 + β)

wm(l) = wc(l) = 1
2(L+ λ) (1 ≤ l ≤ 2L)

The parameter β is a tuning parameter of the filter which has to be set depending on the a priori
knowledge of the state probability distribution.

In the correction step, the Gaussian statistics of the observations at the sigma points and the
predicted state are calculated to correct the measurement. Using the nonlinear sensor model
h(xt):

zt =
2L∑
l=0

wm(l)h(ηxl,t)

St =
2L∑
l=0

wc(l) (h(ηxl,t)− zt) (h(ηxl,t)− zt)T + Rt (4.14)

In this step also the cross-covariance between the predicted state and the predicted measurement
is calculated:

Σx,z =
2L∑
l=0

wc(l) (ηxl,t − x̂t) (h(ηxl,t)− zt)T (4.15)

Finally, the mean and the covariance of the state are updated by

Kt = Σx,zS−1
t (4.16)

xt = x̂t + Kt(zt − zt) (4.17)

Pt = P̂t −KtStKT
t (4.18)
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4.2 Application Case: Moving Receiver

Particle Filter

The particle filter, also known as Monte Carlo localization [59] uses a set of np particles
to represent the probability distribution p(xt | z1:t,u1:t). This is the probability of a cer-
tain state given the measurements and control vectors up to the time instant t. Each particle
(x[h]
t , w

[h]
t ), (1 ≤ h ≤ np) represents an hypothesis and has an importance weight associated

to it w[h]
t and a state vector x[h]

t which contains an hypothesis for the state variables.
In the prediction step, every particle predicts its next state by using the motion model. Having

a state x[h]
t−1 and a control variable ut, the next state is predicted using the assumed probability

distribution of the motion model p(x[h]
t | ut,x

[h]
t−1).

In the correction step, the measurement zt is used to update the weight,w[h]
t ∝ w

[h]
t−1 p(zt | x

[h]
t ),

of each particle. Therefore the likelihood of the state hypothesis is computed using the sensor
model and zt.

In the resampling step new particles are created and old particles are eliminated. A total of
np particles are drawn. Particles with low weights are less likely to disappear than particles
with higher weights, which propagate into new particles.

In our implementation, the resampling step is executed if the effective number of parti-
cles neff, is smaller than the number of np

2 particles, as shown in [60], where

neff =
( np∑
h=1

(
w

[h]
t

)2)−1

(4.19)

4.2 Application Case: Moving Receiver

As stated in the previous chapter, locating a receiver has multiple benefits. The number of
targets that can be located simultaneously is unlimited, due to the fact that the receivers do
not interfere with each other. In addition, every receiver can estimate its own position without
requiring a central unit. This increases the privacy of the users. The main drawback is that
when a receiver moves, every signal from a static sender is received at a different position
(see Fig. 4.1).

With only one timestamp per position and no further knowledge one cannot estimate the
position of the target, since the system of equations is undetermined. However, one can use
probabilistic methods in order to predict the target movement and correct the predictions with
the received measurements.

Probabilistic methods can be used to estimate the variables depending on the measurements
and the previous estimation. Nonetheless, the variables need to be initialized when their un-
certainty is still too large. Especially when the system starts, as the position of the target and
the time offsets between senders are unknown. Therefore, we propose a calibration phase [4],
which detects when the target is standing at different positions and uses the timestamps received
during that time to estimate the variables of the system. By doing this, the system of equations
is overdetermined.
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4 Probabilistic Localization

After the variables have been initialized, our implementation estimates the changes of such
variables over the time in the tracking phase [4, 61]. We study how the particle filter and the
unscented Kalman filter (UKF) perform in this phase.

measu
remen

t 2

(movin
g)

measurement 3(standing)
measurement 1(standing)

Figure 4.1: Schematic of the under-determined equation system. If the receiver moves continuously
in a two-dimensional space, for every new measurement there is two new variables only for its
position. Three if it moves in three dimensions. [4]

Problem Formulation

A receiver moves continuously in a three-dimensional space. The localization scenario consists
of B stationary senders which are placed at positions Sj (1 ≤ j ≤ B) in a three-dimensional
Euclidean space. Every sender emits discrete signals at regular points in time at a fixed inter-
val Ij . The interval may differ from sender to sender. The sending time of the kj-th signal at
sender position Sj is then described by

tkjj = t0j + kjIj , (kj > 0) (4.20)

The senders are assumed to be unsynchronized, i.e the intervals Ij and the initial send time t0j
varies from sender to sender. Consequently, there is an unknown time offset which relates to
the send time between the senders y and j :

δyj = t0,y − t0,j = (tkyy − kyIy)− (tkjj − kjIj) (4.21)

Since the offsets are transitive, only B − 1 offsets need to be estimated relative to one sender.
Considering the case where the receiver is continuously moving, signals are received at dif-

ferent positions. This results in the following hyperbolic equation in which two signals, origi-
nating from two different senders Sy and Sj , are received at the positions Mkyy and Mkjj :

1
c

(‖Mkyy − Sy‖ − ‖Mkjj − Sj‖) = ∆tyj + δyj (4.22)
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4.2 Application Case: Moving Receiver

where ∆tyj represents the unsynchronized time difference of arrival of the two signals origi-
nated by Sy and Sj , which may be calculated based on the reception times and the intervals as

∆tij = (Tkyy − Tkjj)− (kyIy − kjIj) (4.23)

where Tkyy and Tkjj are the reception times.
The length of the intervals Iy, Ij can be easily computed by receiving two or more successive

signals k1, k2, k1 6= k2, emitted by the same sender while it is temporarily stationary:

Iy = 1
k1 − k2

(Tk1y − Tk2y) (4.24)

Ij = 1
k1 − k2

(Tk1j − Tk2j) (4.25)

We also assume the height of the target is known in advance. Assuming the sender positions and
the intervals are also known, still exists 2n+(B−1) unknown variables after n received signals.
Consequently, the equation system is under-determined and cannot be solved without further
information or assumptions on the scenario. Therefore, it is required either to know the initial
values of the variables and model their changes (tracking phase) or to make special assumptions
on the scenario (calibration phase).

Stop-and-go Motion

When recursive state estimation algorithms lack information and are not capable of tracking the
position of a moving receiver, we assume it stops in Ns different positions Hi, then we have
time to receive Br signals per receiver position (stop-and-go motion). Doing this, it is only
required to estimate one receiver position for every Br received signals, which reduces notably
the uncertainty and makes possible an uniquely determined system of equations (cf. Fig. 4.1).

Being Hi the receiver position when the u-th signal from the sender one is received and Hp

the receiver position when the v-th signal from the sender j is received, we obtain a system of
hyperbolic equations of the form:

fu,v = ‖Hi − S1‖ − ‖Hp − Sj‖ − c(Tu,k1 − Tv,kj
) + ∆t1j (4.26)

where 2 ≤ j ≤ B and 1 ≤ p, i ≤ Ns. The unsynchronized time difference of arrival between
two signals, originated by the sender 1 and the sender j, is represented with ∆t1j :

∆t1j = c(k1I1 − kjIj + δj) . (4.27)

If one signal is received per sender, the system of equations has NsB independent equations,
which has to be higher or equal than the number of variables:

NsB ≥ 2Ns︸︷︷︸
Receiver

+ B︸︷︷︸
Offsets

(4.28)
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4 Probabilistic Localization

which means the system of equations can be solved if the number of standing still positions Ns

is higher or equal than:

Ns ≥
B

B − 2 (4.29)

Then, the minimum number of static receiver positions is two.
One can detect that the receiver is not moving by ensuring that the time difference between

two measurements of the same sender is a multiple of the interval plus a certain error due to the
measurement noise.

ρj,t = |(Tkjj − T(k−a)jj)− aIj | (4.30)

If the receiver is standing during a intervals ρj,t will be close to zero for a high number of
senders j and received intervals.

Calibration Phase

Assuming the stop-and-go motion and having a number of standing positions and senders ful-
filling Eq. 4.29, the system of hyperbolic equations can be solved with local optimization algo-
rithms. We use both the gradient descent and the Gauss-Newton method, the two are first-order
methods that use the derivative of the system of hyperbolic error equations.

Once the timestamps corresponding with the time when the receiver is standing are selected,
one must find the variables which minimize the error function in Eq. 4.26. For simplicity and
better understanding we assume that there are G selected signals from every sender. Then, the
Eq. 4.26 results in a quadratic objective which can be formulated as follows:

G∑
u=1

(B−1)G∑
v=1

arg min
H1:Ns ,δ2:B

(fu,v)2 . (4.31)

which in vector notation is proportional to w = 1
2bTb with b = (f1,1, ..., fG,(B−1)G)T .

We calculate the direction of the steepest ascent:

Ow = O
(1

2bTb
)

= DTb (4.32)

where Q is the Jacobian matrix:

D =



∂f1,1
∂H1

. . .
∂fG,(B−1)G

∂H1
...

. . .
...

∂f1,1
∂Hq

. . .
∂fG,(B−1)G

∂Hq

1
c
∂f1,1
∂δ2

. . . 1
c

∂fG,(B−1)G

∂δ2
...

. . .
...

1
c
∂f1,1
∂δB

. . . 1
c

∂fG,(B−1)G

∂δB



T

(4.33)
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The partial derivative with respect to a vector is defined as the derivative with respect to each
of its components:

∂fu,v
∂Hi

=
(
∂fu,v
∂Hi,x

,
∂fu,v
∂Hi,y

)T
(4.34)

The partial derivative with respect to δj can be calculated as follows:

∂fu,v
∂δj

= c (4.35)

When the compared timestamps correspond to the same receiver position (Hi = Hp) the partial
derivative with respect to the receiver position is:

∂fu,v
∂Hi

= ∂fu,v
∂Hp

= Hi − S1
‖Hi − S1‖

− Hp − Sj
‖Hp − Sj‖

(4.36)

In all other cases the partial derivatives are:

∂fu,v
∂Hi

= Hi − S1
‖Hi − S1‖

(4.37)

∂fu,v
∂Hp

= − Hp − Sj
‖Hp − Sj‖

(4.38)

(4.39)

All the variables which need to be estimated are components of the state vector m:

m = (HT
1 , ...,HT

q , cδ
T
2 , ..., cδ

T
B)T (4.40)

Every iteration the state vector is updated using D and b. The methods used are:
The gradient descent method: In every iteration step l the Gradient Descent method updates

the state vector in direction of the steepest descent. The adaptive factor γ sets the step width.

m̂ = γOw = γDTb (4.41)

ml+1 = ml − m̂ (4.42)

(4.43)

The Gauss-Newton algorithm: Instead of relying on an adaptive factor γ it calculates the step
size using the inverse (QTQ)−1 for every iteration:

m = (DTD)−1(DTb) (4.44)

The Gauss-Newton Algorithm is faster, nevertheless it is very prone to divergence when
applied to initial positions which are far from the true values. However, it can be used when the
Gradient Descent error function has become steady to reduce notably the number of iterations.
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4 Probabilistic Localization

Tracking Phase

During the tracking phase we use recursive state estimation algorithms. We test the perfor-
mance of a particle filter and an unscented Kalman filter.

In our case the state vector contains the position of the receiver Mt and the receiver veloc-
ity Vt. Moreover, in order to estimate the reception time, the offsets relative to one sender
(δ12, ..., δ1B) and its sending time tk11 are also estimated. Without loss of generality is de-
fined δj = δ1j where δ1 = 0. In conclusion, the state vector is formulated as follows:

xt =
(
MT

t ,VT
t , tk11, δ2, ..., δB

)T (4.45)

Sensor Model

The measurement is estimated by the following sensor model, which relates the predicted mea-
surement ẑkj

and the state vector:

ẑkj
= 1
c
‖Mt − Sj‖+ (tk11 + δj) (4.46)

In the UKF, this is the nonlinear function h(xt) in Eq. 4.14.
In the particle filter, this sensor model uses the measurement zj to compute the probability

that the observed measurement matches the current belief. Based on a known sender posi-
tions Sj and the estimated values Mt, tk11, and δj , a hypothesis of the observation is calculated
by

dtj = 1
c
‖Mt − Sj‖+ (tk11 + δj) (4.47)

Using this hypothesis dtj the likelihood of a measurement is calculated by

p(zj | xt) = N
(
zj , dtj , σ

2
sensor

)
(4.48)

where σ2
sensor is the variance of the sensor noise.

Motion Model

As explained before, the motion model predicts how a state will change over the time. In this
case, the position is predicted according to the predicted velocity of the target. After the system
has been initialized, the slight changes of the time offsets δij need to be estimated as well. This
changes appear due to the clock drift of the senders.

In order to calculate the offset between Si and Sj with respect to the sending times t0i, t0j
we use the equation

δij = (kiIi + t0i)− (kjIj + t0j) + ζ (4.49)

the variable ζ depends on the assumed noise of such prediction. In the particle filter, we use a
uniform distribution

ζ ∼ U(−tdist, tdist) (4.50)
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The unscented Kalman filter only allows Gaussian distributions. Therefore, in this case ζ is a
normal distribution with variance σ2

ζ .
As the offsets are transitive, we settle to estimate m − 1 offsets. Without loss of generality

we estimate only the offset relative to sender j = 1 and define δi = δ1i, where δ1 = 0.
Also the sending time of one sender must be estimated, as in TDOA only relative distances

are measured. To propagate the estimated sending time of the latest received signal of sender i
we use the latest estimated sending time and the interval length:

tkii = t(ki−1)i + Ii + ν (4.51)

In the particle filter ν is defined as a uniformly distributed noise:

ν ∼ U(−tdist, tdist) (4.52)

In the UKF it is a normal distribution with variance σ2
ν . As the send times tkii are all relative

we estimate only tk11.
The reason uniform distributions are used is because after experimentation, in the eCULTS

system one can observe that the time shifts are more similar to a uniform distribution than a
normal distribution. The error is limited but it is spaced almost equally around the mean.

The control command represents just the time which has passed since the last computation.
For the movement, and therefore the next estimated position of the receiver, we use a con-
stant velocity model. This model assumes that the receiver moves with constant velocity, while
changes in the velocity are undetermined, which is modeled by Gaussian noise with a covari-
ance matrix ΣV . In this model, the position and velocity of the receiver are updated according
to the following equations:

Mt+1 = Mt + htVt

Vt+1 = Vt + ζt ζt ∼ N (0,ΣV ) (4.53)

where ht = Tkii − Tkjj > 0 is the elapsed time between two estimations. In this case, the
current reception time from sender i and the previous signal, which was emitted by sender j.

4.3 Experimental Results

In order to check the feasibility of the proposed application scenario and analyze the error
achieved we do a real experiment with the motion capture system as reference. The ultrasound
system is the eCULTS system. For this experiment, four static senders are used. One sender
has a height of 2 m and the other three senders have a height of 3.4 m.

In order to find the offset between the senders, we stand still in five different positions. The
local optimization algorithms are constantly updated in order to simulate a real-time system
and analyze the number of required timestamps to initialize the system. Fig. 4.2 shows the
median error of the estimated standing positions for every received timestamp. The error is
reduced from 2.286 m with two standing positions to 0.041 m with three standing positions.
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4 Probabilistic Localization

Having more than three standing positions reduces only slightly the median error (0.028 m
with four and 0.030 m with five). Therefore, two standing positions would not be sufficient
for initialization. This is due to the fact that with two standing positions there are the same
number of constraints than variables. This increases the error, as the result depends highly on
the assumed height of the target. Moreover, the geometry of the standing positions also plays
a role. With three positions one can have more noticeable distance changes in all directions,
which reduces the error. This is related with the dilution of precision that will be discussed in
Chapter 8.
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Figure 4.2: The local optimization algorithm estimates the positions where the receiver is standing H1,
H2, H3, H4 and H5. This graph shows the median error between the estimated and the real
positions. Note that every time that there is a new standing position, the error is suddenly increased
due to the fact that there is a reduced number of timestamps for that position, which increases the
effect of the noise. Subsequently, as the number of timestamps increases the error is reduced again.
Median errors above 3 m are not shown in this figure. [3]

Once the offsets have been estimated, one can track the moving target. The receiver is placed
on a trolley and moved by a person with an arbitrary trajectory (see Fig.4.3), stopping only at
the start and end position. In this experiment the target moves at low velocity (maximum
velocity 0.6 m/s). At this velocity, the position only changes slightly between two consecutive
measurements. When the target moves faster, the data association becomes challenging. This
will be studied in Chapter 7. We use the unscented Kalman filter and the particle filter in order to
compare their performance. The particle filter uses 10 000 particles. In order to have a proper
comparison of both algorithms we evaluate the error for different values of assumed process
noise and measurement noise. The result can be seen in Fig. 4.4 for the UKF and Fig. 4.5 for the
particle filter. Note that while underestimating the measurement noise drastically increases the
error in the particle filter, this fact has less effect in the UKF. On the other hand, overestimating
the process noise variance, has less effect in the particle filter than in the UKF. Choosing the
parameters which minimize the median error, the particle filter achieves a median error of
0.040 m with a standard deviation of 0.050 m. The minimum median error of the UKF is
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Figure 4.3: Real and estimated trajectory by the unscented Kalman filter and the particle filter with a
target moving at a maximum velocity of 0.6 m/s. [3]

0.039 m with a standard deviation of 0.055 m. Therefore, they have a similar performance.
The estimated trajectories can be seen in Fig. 4.3.

Figure 4.4: Median error achieved by the unscented Kalman filter with different parameters for the
trajectory in Fig. 4.3. The measurement noise is plotted in log scale. Note that if the noise is
underestimated the error increases drastically whereas if it is overestimated the error increases
slower. The minimum error is 0.039 m. [3]

In the particle filter, if the measurement noise is underestimated, p(zj | xt) does not properly
represent the likelihood of a measurement given a state. Therefore, the weights of the particles
are reduced and the resampling step is executed often without succeeding in correctly finding
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4 Probabilistic Localization

Figure 4.5: Median error achieved by the particle filter with different parameters for the trajectory in
Fig. 4.3. The measurement noise is plotted in log scale. While the election of the process noise
covariance is not critical, the measurement noise covariance has more effect on the final result than
in the UKF (see Fig. 4.4). The minimum error is 0.040 m. [3]

the most likely particles. On the other hand, the motion model is only used to propagate the
states, which has less influence in the final estimation.

In the UKF, underestimating the measurement noise or overestimating the process noise have
a similar effect, which is to rely more on the correction step and less on predictions. This can
be easily observed when calculating the Kalman gain in the UKF. If one looks at Eq. 4.18 one
can realize that the Kalman gain will be larger when the assumed measurement noise decreases
or when the assumed process noise increases. When the Kalman gain is larger, the UKF trusts
more the measurement and less the predictions.

The error distribution (Fig.4.6) for the experiment in Fig. 4.3 shows an error lower than
10 cm for 85% of the timestamps in both algorithms. Then, both algorithms achieve similar
performance when the parameters are properly chosen.

As a conclusion, we have observed how, while the system of equations is undetermined, the
trajectory of the target can be estimated with a median error of around four centimeters making
use of an unscented Kalman filter or a particle filter. This is because the small changes of
the variables during consecutive measurements can be modeled using a probabilistic motion
model. Moreover, it is interesting to observe how the particle filter and the UKF are capable of
achieving similar results even though the particle filter requires more computational power. In
Chapter 7 we will propose an algorithm which allows this system to locate the sender at higher
velocities by improving the data association of the timestamps.
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Figure 4.6: Error cumulative distribution of the unscented Kalman filter and the particle filter. Both
filters achieve an error lower than 10 cm for 85% of the timestamps. The median error of the
particle filter is 0.040 m with a standard deviation of 0.050 m. The minimum median error of the
unscented Kalman filter is 0.039 m with a standard deviation of 0.055 m. [3]
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5 Detection and Discarding of Reflections

In the previous chapter we have assumed the received signals are in line-of-sight. This is often
not true in real scenarios. Then, one cannot assume a normally distributed measurement noise.
This chapter shows two strategies for overcoming this by discarding or giving lower weights to
non-line-of-sight measurements.

Having a target emitting ultrasound signals, a reflection can be seen as a measurement which
does not fit the line-of-sight sensor model. If a sender S emits a signal at a time t0, the reception
time Ti will depend on the distance that the sound needs to travel to reach the receiver Mi. If
the signal is reflected, this distance will increase and therefore the reception time will be larger
than expected. This can be modeled as follows:

Ti = 1
c
‖Mi − S‖+ t0 + ni + bi, 1 ≤ i ≤ N (5.1)

where ni is modeled as a Gaussian process with zero mean and standard deviation σn and bi
is a value greater than zero that depends on the position of the sender and the reflections. In
literature, this has been modeled in different ways, such as a uniform distribution [28] or an
exponential distribution [22, 62].

The aim of the algorithms presented in this chapter is to mitigate the effect of the reflections
by identifying and discarding the measurements which are not likely to be in line-of-sight.
When t0 is known and ni is neglected, the subspace of possible positions is bounded. This
means, if a receiver at position Mi measures a distance c(Ti − t0), the target must be inside
of a sphere of radius c(Ti − t0) and center Mi. This is because a reflection will always arrive
later than a line-of-sight signal. When t0 is unknown, the subspace of possible solutions is not
bounded. However, it is a common scenario, as synchronizing a speaker and a microphone
increases the cost of the senders and is not always feasible. In this chapter we explore two
solutions for identifying non-line-of-sight measurements when the sending time is unknown:

• A combinatorial approach, which uses combinations of receivers in order to identify
which are the line-of-sight measurements. This approach can be used without making any
assumptions about the movement of the target. One can imagine a real-life application
where a high number of senders need to be localized and they only emit sound signals
when the position is demanded.

• An approach using robust regression, which weights the measurements according to
their likelihood. While robust regression has been used before for localization by other
researchers [33, 63–65], we discuss its limitations and propose an approach for sensor
data fusion with an inertial measurement unit (IMU).

All of the approaches in this chapter have in common that they use, in one way or the other,
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5.1 Combinatorial Approach

the residual error of the position estimations to detect non-fitting measurements. Under the
assumption that there are more constraints than variables, the residual error is the remaining
error after the variables have been estimated. This chapter serves also as an introduction to the
peculiarities of the NLOS measurements and the challenges which need to be faced to identify
them.

5.1 Combinatorial Approach

A common approach is to calculate the residual error in order to identify erroneous measure-
ments. Having an estimation of the sender position Se and an estimated sending time t0,e, the
residual error ri of a measurement Ti is:

ri = Ti −
(1
c
‖Mi − Se‖+ t0,e

)
, i ∈ [1, ..., N ] (5.2)

Then, if the number of constraints is larger than the number of variables, one can use the values
of |ri| as a measure of how precise is the estimation.

The first naive approach that one could think of is trying combinations of measurements in
order to identify which measurements are reflections and which measurements are line-of-sight.
Then, having N timestamps, it is possible to try all combinations of b receivers

(N
b

)
. For every

combination, a position is estimated using time difference of arrival. Then, for every candidate
position, one can count the number of timestamps which have a low residual error |ri|.

A timestamp Ti would be considered to be valid if:∣∣∣∣Ti − 1
c
‖Mi − Se‖ − t0,e + ni

∣∣∣∣ = 0 (5.3)

Then, knowing the distribution of ni one could set a threshold which would identify some large
measurements which are not likely to be caused by ni.

This approach, while simple, presents some inconveniences. The first one is that a wall
reflection acts like a virtual sender, which also fulfills Eq. 5.3 for a certain number of receivers.
In certain cases, this can be solved by ensuring that bi has to be greater than zero. If one has an
estimation Se, estimated with a subset of receivers, one needs to ensure that:

c(Ti − t0,e + ni) > ‖Mi − Se‖ ∀i ∈ [1, . . . , N ] (5.4)

where t0,e is the estimated sending time. In other words, one needs to ensure that the timestamps
which are considered non-line-of-sight measurements arrive later than if they were in line-of-
sight, as they have traveled larger paths.

Another interesting observation, is that the maximum time difference between two line-of-
sight signals is limited by the distance between the receivers. Then, having two receivers i
and j:

|Ti − Tj + ni + nj | 6
1
c
‖Mi −Mj‖ (5.5)
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5 Detection and Discarding of Reflections

This inequality can be used to reduce the number of combinations that need to be computed
and therefore reduce the requirement of computational power.

There are other factors that should be considered to ensure the measurements are in line-of-
sight. Using Eq. 5.3 for all measurements would mean that the residual errors are independent.
This is not the case. Even if the measurement noise for the different receivers is independent,
the residual errors are certainly not independent, because the noise has been affected by the
position estimation. Then, depending on how the receivers and the sender are distributed in
space, one of the measurements can have more influence in the position estimation than others.
If all receivers but one are placed in such manner that they do not allow a proper localization
in certain coordinates, the result will be highly dependent on the receiver which is properly
placed. Therefore, its residual error will be low even though it can drastically change the
position estimation.

In the following subsections we introduce three metrics which are widely used in regression
analysis [66, 67] which consider this fact: leverage matrix, studentized residuals and Cook’s
distance.

Hat Matrix

As commented before, the noise of the residual errors is not independent. Therefore, one needs
to consider how the measurement noise is affected by the position estimation.

If H is a linear matrix which relates the measurement vector z and the estimations x, one
can minimize the squared error:

arg min
x

(Hx− z)T (Hx− z) (5.6)

Then, the least squares estimation will be:

x = (HTH)−1HT z (5.7)

In order to calculate the residual error, one needs to transform again the estimated vector x
to the measurement state:

ẑ = H(HTH)−1HT z (5.8)

Then, ẑ is the measurement that would be received if the variables in the vector x were esti-
mated without any error. In other words, ẑ would be equal to z if there would be no noise.
The residual error e can be calculated as the difference between these values and the measured
ones:

e = ẑ− z (5.9)

The variance of the residuals is:

E[(e− E[e])(e− E[e])T ] = σn
(
IN×N −H(HTH)−1HT )

= σn
(
IN×N − Lv

) (5.10)
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where IN×N is a N ×N identity matrix. The matrix Lv is the so-called hat matrix or leverage
matrix:

Lv = H(HTH)−1HT (5.11)

The diagonal elements of this matrix lii are the leverage values. Then, looking at the value lii
one knows how large is the contribution of the measurement i into the final estimation. By
looking at the equations, one can also see how the measurements which have more influence in
the final estimation will also have lower residual error. This means, not only they can change
drastically the positions, but they will have low residual errors too. Therefore, it is likely that
they will not be detected using Eq. 5.3.

For the moment we have assumed that H is a linear matrix. However, our sensor model is
not linear. One can overcome this issue by linearizing the equations using the Jacobian matrix.
Then, one can estimate a position with non-linear optimization and evaluate the Jacobian matrix
in that point. By doing this, one can gather knowledge about which measurements had more
influence in the estimation.

In Fig. 5.1 one can see an example. For simplicity and clarity in the figure, we consider time
of arrival measurements in two dimensions. In the figure, one can observe how while three
receivers are aligned and cannot properly estimate the y coordinate, the other two receivers are
better distributed. In this case, if the receiver with leverage 0.85 would measure a reflection, it
would have a greater impact in the final estimate than if the receivers were better distributed.
Moreover, it would have lower residual error. One can observe this also by looking at the
geometry of the TOA measurements. If the receiver with leverage 0.85 changes slightly its
measurement, the estimated target position will move in the y direction. On the other hand,
if another measurement changes, the residual error will be higher, as the estimated position
cannot change without contradicting other measurements.

Studentized Residuals

The studentized residuals compare the expected standard deviation of the measurements and
the residual error. The studentized residual si of the i-th observation is:

si = ei

σ̂n
√

1− lii
(5.12)

where ei is the i-th component of the residual vector e. The residual vector can be calculated
using a position estimated with non-linear optimization. The variable σ̂n is the estimated noise
standard deviation. A common approach to estimate it is:

σ̂n =

√√√√ 1
N − p

N∑
i=1

e2
i (5.13)

where p is the number of dimensions which are estimated.
These residuals compare the estimated standard deviation of the residuals and their actual

values. Then, these values contain more information about whether a measurement is valid or
not than just using ei.
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Figure 5.1: Values of the hat matrix corresponding to the TOA measurements showed by the black
circles. One can observe how some measurements have more importance in the final estimation
than others. In this case, the receiver with the value 0.85 is the one which carries the most amount
of information about the position of the target in the y coordinate.

Cook’s Distance

While the studentized residuals are already a useful manner of detecting NLOS measurements,
there are some cases where a measurement with a small studentized residual ri can change dras-
tically the position [68]. Therefore, a metric which is more convenient is the Cook’s distance,
which measures how much an estimation changes by a single measurement.

Concretely, the Cook’s distance Di measures the squared distance between the estimation
including the measurement i, which we note as x̂ and the estimation without the measurement
i, which we note as x̂(−i):

Di = (x̂− x̂(−i))T (x̂− x̂(−i))
(p+ 1)σ̂n2 (5.14)

The denominator normalizes this distance using the noise variance and the number of estimated
variables p, in order to have always a comparable value.

One can rewrite Di in a way that it is not necessary to explicitly estimate x̂(−i):

Di = e2
i

(p+ 1)
lii

(1− lii)2 (5.15)

Then, the distance Di is a metric of how much an estimation changed by using the measure-
ment Ti. Ideally, a single measurement should not change drastically the position estimated
by the other receivers. If it does, it is likely that it is a non-line-of-sight measurement. It can
also happen that the receivers and sender are poorly distributed in space. In this case, a sin-
gle measurement can also change drastically the final measurement estimation. However, if
this happens, one cannot be sure that it is a line-of-sight measurement either, as the position
estimation depends mostly on a single measurement.
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Proposed Algorithm

We propose an algorithm which uses combinations of three receivers in order to detect the line-
of-sight measurements. In [69] a closed-form solution is presented for locating a target in three
dimensions using four satellites and TDOA measurements. In our case, we assume the height is
approximately known, therefore only three receivers are required (two TDOA measurements).
We follow a similar approach to find the closed-form solution.

In order to reduce the number of operations required, we compare the TDOA measurements
with the maximum TDOA allowed by their distance (Eq. 5.5) to identify invalid combinations.

Afterwards, if a remaining combination leads to one or two solutions, the leverage matrix
is calculated (Eq. 5.11) using the Jacobian matrix. In order to identify which receivers lead to
this same position, we extend this matrix using the other receivers. For example, if we want
to know whether the timestamp received by the microphone i would lead to approximately
the same position Se than the timestamps received by the receivers 1, 2 and 3, we extend the
Jacobian matrix:

H =


x−x2
R2
− x−x1

R1
y−y2
R2
− y−y1

R1
x−x3
R3
− x−x1

R1
y−y3
R3
− y−y1

R1
x−xi
Ri
− x−x1

R1
y−yi
Ri
− y−y1

R1

 (5.16)

being Ri the distance from the sender Se to the receiver i:

Ri = ‖Mi − Se‖ (5.17)

Having H one can calculate the leverage matrix Lv and the Cook’s distance Di for all four
measurements. If all Cook’s distances are below a certain threshold, the receiver i is considered
to have a measurement which is in the same situation as the receivers 1,2 and 3. They are either
all line-of-sight or non-line-of-sight. In order to remove virtual senders from the set of possible
solutions, Eq. 5.4 is used, which ensures that bi is positive.

The algorithm follows the following steps:
1. Consider all possible combinations of 3 receivers. The number of combinations is:(

N

3

)
= N !

3!(N − 3)! = N(N − 1)(N − 2)
6 (5.18)

2. If one of the time differences does not fullfil Eq. 5.5, go to the next combination, if not,
compute the position using the closed-form algorithm.

3. If there is one or two solutions, use Eq. 5.4 to remove virtual senders from the possible
position estimations. If none of the solutions fulfills Eq. 5.4, go to the next combination.

4. Extend the Jacobian matrix using a receiver which was not used in the combination
(Eq. 5.16).

5. Calculate the Cook’s distance
6. Repeat steps 4 and 5 until all receivers have been used.
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7. Count the number of receivers with a low maximum Cook’s distance. As the Cook’s dis-
tance follows an F distribution, one can select a threshold according to the requirements
of probability and the number of measurements and variables.

8. From all possible candidates, select the one which has the greatest number of timestamps
with low Cook’s distance and re-estimate the position using all the line-of-sight signals.

The algorithm used for estimating the final position is the Levenberg–Marquardt algorithm.
This algorithm interpolates between the gradient descent and the Gauss-Newton algorithm.
The reason to re-estimate the final position is that the estimations with only three receivers will
have a higher error than the estimation using all the line-of-sight signals.

5.2 Robust Regression

The least-squares solution in Eq. 5.7 is optimal only if the error is Gaussian. The solution x
which minimizes this equation can be then highly affected by non-Gaussian errors. Then, a
better solution is to minimize a weighted version of the measurements, where W is a diagonal
matrix with weights wi in its diagonal.

arg min
x

(Hx− z)TW(Hx− z) (5.19)

If we define a vector of errors r = Hx− z:

arg min
x

rTWr (5.20)

Then, x can be estimated as:
x = (HTWH)−1HTWz (5.21)

This provides a more robust estimation against measurements which are non Gaussian, espe-
cially for heavy-tailed distributions.

There are multiple possibilities for calculating the weights. We make use of the hyperbolic
tangent weighting function.

Hyperbolic Tangent Weighting Function

Huber [70] introduced the M-Estimators, which minimize a function ρ(ri) instead of the squares:

arg min
x

N∑
i=1

ρ(ri) (5.22)

where ri is the i-th component of r. Then, setting the partial derivatives with respect to the state
x to zero would give the result. However, the derivative of ρ is not always linear. Therefore,
one can define the derivative of the function ρ as

ρ′(ri) = riw(ri) (5.23)
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There are multiple approaches to calculate the weights depending on ri. In [5] we use the
hyperbolic tangent function proposed by Hambel et. al [71]. This is because it rejects measure-
ments which are extremely large and it has been proven to perform well in TDOA localization
before [33]. The weights are defined as:


w(ri) = 1 |ri| ≤ a

w(ri) = d·tanh
(

d(b−ri)
2

)
ri

a < |ri| ≤ b
w(ri) = 0 |ri| > b

(5.24)

where a and b are the clipping points and d is defined in order to have a continuous function.
The value of a and b depends on the knowledge of the noise. A common approach is to take
a=1.4826MAD

θ and b=4a, where MAD=median(|r − median(r)|)) and θ is a tuning parameter.
In Fig. 5.2 one can see a graphical representation of the weighting function.

0

1

w
(r
i)

a-a b-b

Figure 5.2: Hyperbolic tangent weighting function (see Eq. 5.24).

As we have shown during this thesis, the measurement model is not linear. Therefore, one
cannot use such estimators with a linear matrix H. One can linearize the measurement model
using a Jacobian matrix. However, the linearization is only valid for points which are close to
the actual values of x. Nonetheless, one can rewrite the extended Kalman filter as a robust re-
gression problem. Then, one has a prediction, which is assumed to be close to the actual values
of x. Moreover, the probabilistic motion model provides information about the measurements
which must be given low weights.

Robust Extended Kalman Filter

The extended Kalman filter (EKF) assumes Gaussian noise. However, it can be formulated in
the form of weighted least squares [65]. Using the notation of Section 4.1, the equations of the

47



5 Detection and Discarding of Reflections

Kalman filter can be reformulated as follows:

xt = (NTWtNt)−1NT
t WtYt (5.25)

Nt = V−1
t

[
I

Ht

]
(5.26)

Yt = V−1
t

[
x̂t
ẑt

]
(5.27)

ẑt = zt − h(x̂t) + Htx̂t (5.28)

where Wt is a diagonal matrix which contains the different weights. The matrix VtVT
t is given

by:

VtVT
t =

[
P̂t 0
0 Rt

]
(5.29)

Then, Vt can be calculated using the Cholesky decomposition. The weight j at the iteration k
is calculated using Eq. 5.24, where:

w(ri) = w(|yj − nTj xk−1|), j ∈ [1, ..., N + p] (5.30)

the variable yj is the j-th element of Yt and nj is the j-th row of Nt. The variable p represents
the number of components of the state vector xt. Every iteration, the weights can be computed
using Eq. 5.24.

Data Fusion

While the robust extended Kalman filter (REKF) has been used in the past to mitigate NLOS
measurements, this filter runs under the assumption that during a certain time, enough LOS
timestamps will be received to locate the target. However, in reality often this is not the case.
In certain situations, a target moves to a region which is not well covered by the receivers
and the received signals are only NLOS. The robust extended Kalman filter would use the
predicted velocity to estimate the positions of the target, which would eventually diverge from
the real position. Moreover, in certain scenarios, the speaker might point to a wall and the
estimated position will be a virtual sender, and all measurements will have a low residual error.
However, it will not be the actual position of the target (see Fig. 5.3). In order to avoid this,
other information needs to be used. IMU data can be fused with the TDOA measurements in
order to overcome this issue.

In [5] we propose to use a REKF for fusing the data from the acoustic localization system
with an inertial measurement unit (IMU). An IMU is inside most of the commercial smart-
phones in the market. It provides information about the smartphone acceleration, rotation and
surrounding magnetic field. IMUs have been used by many researchers as a standalone solu-
tion for localization. However, as their estimations do not have any reference fixed in space,
their error is accumulative. Moreover, the magnetic field is not a reliable source of information
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Receiver Receiver

Figure 5.3: In certain situations, a person might block the line-of-sight signals and multiple reflections
from one wall might be received. In the case shown in this figure, the measurements from both
receivers would have a low residual error for the virtual sender position. If the only signals received
by the microphones are the reflected by this wall, the estimated position would have a high error
and never be detected using the residual error of the TDOA estimations.

indoors. Therefore, we propose to fuse the IMU data with the acoustic data with robust regres-
sion. By doing this, the REKF gives lower weights to unlikely measurements and can be used
to correct the accumulative error of the IMU when it deviates from the estimated trajectory
using the acoustic measurements.

Motion and Sensor Models

The state of the filter xt contains the position St and the velocity Vt of the target in R2. We
use the following acceleration model:[

St
Vt

]
= A

[
St−1
Vt−1

]
+ GΦt−1 Φt−1 ∼ N (0,Q) (5.31)

where

A =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 G =


∆t2

2 0
0 ∆t2

2
∆t 0
0 ∆t

 (5.32)

where ∆t is the elapsed time between two estimations.
Then, the motion model is used to predict the next state x̂t and its covariance matrix P−t :

x̂t = Axt−1 (5.33)

P−t = APt−1AT + GQGT (5.34)
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5 Detection and Discarding of Reflections

When fusing the data, the measurement model contains the TDOA measurements and the IMU
measurements. The measurements from the IMU are used to estimate the position of the target
St. We remove the effect of the gravity and extract the x and y components of the acceler-
ation by combining the acceleration and the angular rate. Afterwards, a zero-velocity update
approach [72] is used to estimate the position of the target. The measurement vector then, con-
tains the TDOA measurements zTDOA and the estimated position using the IMU data ŜIMU .
If one does not use the IMU data, the measurement vector zFUS would contain only zTDOA:

zFUS =
[
zTDOA
ŜIMU

]
(5.35)

The i-th component of the TDOA measurement is modeled as:

zTDOA,i = 1
c
‖St −Mi‖ −

1
c
‖St −Mref‖ (5.36)

This can be rewritten in vector notation as:

zTDOA = g(xt) + ρt ρt ∼ N (0,Rm) (5.37)

Being Tt the Jacobian matrix of the TDOA measurements, the matrix Ht which relates the
measurements and the state, can be written as:

Ht =
[
Tt

Ot

]
(5.38)

where Ot is:

Ot =
[
1 0 0 0
0 1 0 0

]
(5.39)

Then, the REKF can be used with these motion and sensor models.

5.3 Experimental Results

In order to test the behavior of the proposed algorithms we use the ASSIST localization system
to locate a moving sender. Some wooden walls and furniture are placed in the localization
environment in order to increase the number of reflections.

Comparison of NLOS Mitigation Algorithms

First we do an experiment without IMU. In order to compare the performance of the differ-
ent algorithms presented in this chapter we test them with an extensive dataset, consisting of
128 337 samples, more than 213 minutes of TDOA measurements under different NLOS con-
ditions and velocities of the target. More details about the experimental environment can be
seen in the Appendix of this thesis.
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5.3 Experimental Results

We compare the robust extended Kalman filter, the EKF, the proposed combinatorial algo-
rithm and the result of using nonlinear least squares with random initialization and all available
measurements. The result can be seen in Fig. 5.4. One can observe how the combinatorial
algorithm clearly outperforms the other algorithms. This is because no geometrical constraints
are used in the other algorithms. This means that the REKF, EKF and the nonlinear optimiza-
tion approach do not use Eq. 5.5 to discard measurements which have a time difference larger
than the maximum allowed by the distance between receivers. Therefore, in multiple occasions
the REKF is not capable of locating the target with a reduced error, as the number of non-
Gaussian measurements is too elevated. This shows the importance of finding problem-specific
constraints which can discard unlikely measurements.
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Figure 5.4: Cumulative distributions of the different algorithms for mitigating NLOS measurements.
The probability for errors above 2.5 m is not shown. In this case no geometrical constraints are
imposed over the measurements. The cumulative distribution using Eq. 5.5 can be seen in Fig. 5.5.

When deleting the measurements which have a larger TDOA than the one allowed by their
geometrical distance (Eq. 5.5), the REKF provides the most robust estimation, as it can be
seen in Fig. 5.5. One can observe how the proposed combinatorial algorithm has a higher
error than the other algorithms when the target is in line-of-sight. This is because some of
the timestamps are erroneously discarded and therefore the error is larger than using all line-
of-sight measurements. However, when looking at the 98 percentile one can observe how it
provides a similar result as the REKF. On the other hand, nonlinear least squares has an error
above 2 m for 0.82% of the positions. It is more affected by the NLOS measurements than
the others, as it assumes no motion model and it does not use any method for detecting those
measurements. The EKF performs better due to its motion model, which does not allow large
accelerations.

If one considers one meter as the maximum allowed error, the combinatorial error would not
succeed in 0.08% (97 positions) of the cases. The REKF provides a similar result, it would
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(a) Cumulative distributions of the different algorithms for mitigating NLOS measurements. The
probability for errors above 2.5 m is not shown. One can observe how generally the combinatorial
algorithm has a higher error, although it performs better under NLOS conditions than the EKF or
the nonlinear least squares approach. This can be seen more clearly in the figure below.
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(b) Closer look to the highest probabilities of the cumulative distribution. In these estimated
positions one can observe how the REKF and the combinatorial algorithm are capable of reducing
the number of errors above 0.4 m. It is interesting to observe how the combinatorial approach
leads to a considerable improvement compared to the nonlinear least squares approach, although
no assumptions over the movement of the target are made.

Figure 5.5: Cumulative distribution of the localization error when the measurements which have a larger
TDOA than the one allowed by their geometrical distance (Eq. 5.5) have been eliminated.
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not succeed in 0.09% of the cases (113 positions). The EKF achieves a worse performance
than the previous ones, it does not succeed in 0.14% of the cases (177 positions). While the
EKF achieves a worse performance than the others, it still proves to be a feasible and simple
solution for localization when the number of NLOS measurements is reduced. The worst re-
sult is clearly achieved by the nonlinear least squares estimator, with 1.00% (1277 positions).
Then, using nonlinear least squares with all valid data is not a feasible solution for localization.
Algorithms such as the combinatorial approach are then necessary for locating a target when
no assumptions about the movement of the target can be made.

We have seen how, assuming a certain motion model, and using robust regression, a target
can be located in mixed line-of-sight/non-line-of-sight measurements. When no assumption
about the movement of the target is made, it is also possible to locate a target with the same
level of robustness. However, the price to pay is the required computational power.

Data Fusion

In the previous experiments one can observe how even using NLOS mitigation algorithms, there
are estimations which have a high error due to the NLOS measurements. This is because if there
are only a limited number of received measurements, the TDOA hyperboloids can intersect in
one point with low error. One can think of a speaker pointing to a wall in a way that only the
reflections from the wall are received by the speakers. In such case, the reflections are seen
as a virtual sender, which behaves like a real sender, and cannot be identified. A method to
overcome this challenge is to use another source of information, such as the IMU.

In order to prove the feasibility of fusing IMU data and acoustic measurements we proceed
with a simulation and a real-world experiment. We provide a proof of concept of how the
inertial measurement unit can be used to reduce the localization error in situations where the
previously mentioned algorithms are not capable of doing it.

It should be noted that after a certain time, the IMU would become unusable if it is not
re-aligned to the acoustic coordinate system. However, we show how the estimated positions
remain accurate even when the IMU starts to drift. One could notice the IMU is drifting by
looking at the weighting of the measurements and re-align it again trying to increase those
weights. This is out of the scope of this dissertation. The aim of these experiments is to show
the feasibility of using IMU when the TDOA measurements are not enough to correctly identify
the NLOS measurements.

First we test the algorithm with synthetic data, assuming there are 10 receivers available. The
sound measurements have a Gaussian noise of 0.3 ms. Furthermore, 40% of the measurements
of the receivers are NLOS measurements. The NLOS measurements are simulated by adding
a uniformly distributed error from 3 ms to 13 ms. The IMU data is simulated by assuming a
constant angle error. We test the REKF and the EKF fusing the IMU data and the timestamps.
In addition, we test the REKF using only the timestamps. The estimated and real positions can
be seen in Fig. 5.6. The resulting error is shown in Table 5.1. One can see how the REKF with
data fusion achieves a lower error than the other alternatives.

In order to test the proposed approach in a real scenario, we use the ASSIST system and
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5 Detection and Discarding of Reflections

Algorithm Mean Error (m) Std. (m)
REKF with data fusion 0.13 0.08
REKF without data fusion 0.16 0.11
EKF with data fusion 0.38 0.20

Table 5.1: Error with simulated data. [5]
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Figure 5.6: Real and estimated positions of a target using synthetic data. In this simulation, 40% of the
measurements are NLOS. The REKF which fuses the data from the receivers and the IMU achieves
the lowest error: 0.13 m of mean error and 0.08 m of standard deviation. [5]

the built-in smartphone IMU. The target is located in an area with a high number of obstacles.
The result can be seen in Fig. 5.7. The mean error achieved using a REKF without sensor data
fusion is 0.19 m and the standard deviation is 0.19 m. The best result is achieved by the REKF
with sensor data fusion: 0.16 m mean error and 0.14 m standard deviation. The cumulative
distribution of the error can be seen in Fig. 5.8. One can see how fusing the IMU data, there are
no positions with errors above 0.61 m. Without the IMU, there are noticeable position errors up
to 1.31 m.

In conclusion, the presented combinatorial approach and the REKF prove to be capable of
reducing the impact of NLOS measurements in the final estimations. However, in certain cases,
such as when only reflections from a wall are received, they are not capable of locating the target
with a reduced error. For these special situations, one needs an additional source of information.
Fusing the IMU data and the timestamps proves to be a feasible solution. In the next chapters
we show how emitting signals at regular intervals, the movement of the target can be used for
data association. In addition, we show how reflections can be seen as an additional source of
information and do not need to be discarded.
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Figure 5.7: Real and estimated positions of a smartphone emitting inaudible sound signals. The signals
are detected by static receivers. The REKF which fuses the data from the receivers and the IMU
achieves the lowest error: 0.16 m of mean error and 0.14 m of standard deviation. [5]

Error (m)
0 0.2 0.4 0.6 0.8 1 1.2 1.4

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
REKF with data fusion
REKF without data fusion

Figure 5.8: Cumulative distribution function for the real experiment in Fig. 5.7. Fusing the IMU
data, the error is below 0.37 m for 90% of the measurements. Without the IMU data, the error is
below 0.42 m for 90% of the measurements. Moreover, fusing the IMU data, the maximum error
is reduced from 1.31 m to 0.61 m. [5]
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6 Using Sender Movement for Identification

In the previous chapter we have seen how the time of arrival (TOA) and time difference of
arrival (TDOA) equations can be used to estimate the position of a target and reject non-line-of-
sight measurements. However, in certain occasions, one requires another source of information,
as the reflections can act like a virtual sender which cannot be distinguished from a real sender.
In this chapter we use the relative movement of the sender to the static receivers to estimate the
target positions and the positions of the receivers. By doing this, the reflections can be modeled
as additional virtual receivers which help finding the positions of the target. Then, the target is
located regardless of whether the received signals are reflections or line-of-sight signals.

In this chapter we assume the traveled distance by the sender between two emitted signals is
much smaller than the distances to the receivers. By doing this, one can simplify the equations.
Moreover, one can associate the measurements by keeping track of the small motions of the
target.

When a speaker is emitting periodical signals, one can observe a Doppler shift, as we have
explained in previous chapters. This means that the signals are received sooner or later than
expected depending on the relative velocity between the speaker and the microphone. Then,
every receiver and echo can be considered independently, as they have a different relative ve-
locity and are received at a different time instant. Consequently, every microphone can keep
track of the small time differences due to the Doppler effect and distinguish them.

In the first section we present a probability data association filter which runs independently
on every receiver and estimates the probability of a certain timestamp belonging to the same
sender or echo. Afterwards, the data associations from different receivers need to be combined.
This is achieved by assuming the movement of the target during a certain time is much lower
than the distance to the receivers (far-field assumption).

6.1 Localization of a Moving Sender

In order to obtain more information about the target than just the TDOA measurements, we con-
figure the speaker to emit chirp impulses at regular intervals I . By knowing this time interval,
one can estimate the relative motion of the target to the receivers, as explained in Chapter 3.

Then, when the sender is at the position Sk, it emits its k-th signal. The signal is received by
the receiver i at position Mi at time Tk,i:

Tk,i = 1
c
‖Mi − Sk‖+ t0 + kI (6.1)

where t0 is the time at which the first signal was emitted. After one interval, a signal will be
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6.2 Joint Probabilistic Data Association Filter

received at time Tk+1,i:

Tk+1,i = 1
c
‖Mi − Sk+1‖+ t0 + (k + 1)I (6.2)

Then, one can already observe that the time difference will be I plus the relative movement
from the target to the receiver. If the interval is known and the relative movement is small, one
can keep track of such movements in order to know which timestamps come from the same
reflector.

Then, having a target moving at velocity v, the difference between two measurements of the
receiver i is:

Tk,i − Tl,i = 1
c
‖Mi − (Sl + v(k − l)I)‖ − 1

c
‖Mi − Sl‖+ I(k − l) (6.3)

Therefore, subtracting the elapsed intervals I(k − l), the relative movement vr between the
receiver i and the sender Sl can be estimated:

vr = c(Tk,i − Tl,i − I(k − l))
I(k − l) = ‖Mi − (Sl + v(k − l)I)‖ − ‖Mi − Sl‖

I(k − l) (6.4)

The velocity vr and sending time t0 will depend on the traveled path by the sound wave.
Then, reflections from different walls will lead to different values. Moreover, the line-of-sight
signals will have a lower t0 than the sound reflections (see Fig. 6.1).
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Figure 6.1: Schematic of the relative movement of a target (green) and a reflection (blue). The relative
movement observed by the receiver (vr) is different than the one reflected to a wall (blue).

6.2 Joint Probabilistic Data Association Filter

Wall reflections can be seen as virtual receivers. Then, every receiver will observe a different
velocity vr and sending time t0 from the sender. By keeping track of the velocity vr, one can
aggregate the timestamps which belong to the same receiver. Every one of these aggregations
is a track.

In order to keep track of the relative movement to every receiver, in [6] we implemented a
Joint Probabilistic Data Association Filter (JPDAF) following the description in [73]. Every
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6 Using Sender Movement for Identification

physical receiver is independent and has its own JPDAF, tracking its multiple virtual receivers.
Then, at the time k, every track predicts a state x̂tk that corresponds to a different virtual or real
receiver, where t is the track number.

Being Θk−1 a set of hypotheses, and Θk−1
p(h) the parent hypothesis of Θk

h , one can denote the
resulting hypothesis at time k as:

Θk
h = {Θk−1

p(h), θh(k)} (6.5)

where θh(k) is a measurement-to-track association for the set of received measurements Zk.
Using Bayes’ theorem we can calculate the probability of the hypothesis Θk

h given the set of
measurements Zk:

P (Θk
h|Zk) =

P (Θk−1
p(h), θh(k), Zk, Zk−1)
P (Zk, Zk−1)

= P (Zk|Θk−1
p(h), θh(k), Zk−1)P (θh(k)|Θk−1

p(h), Z
k−1)

P (Θk−1
p(h)|Z

k−1)
P (Zk|Zk−1)

(6.6)

The JPDAF considers only the data association probabilities at a certain time window k. Then,
the probability that a measurement j belongs to a certain track t can be formulated as the sum
of the hypothesis probabilities where the measurement j is assigned to the track t:

βtj =
∑
θ∈Θk

jt

P (θ|Zk) (6.7)

where Θk
jt are all the hypotheses in which the measurement j is associated to the track t.

The JPDAF fulfills the Markov assumption, therefore, association probabilities at the in-
stant k are calculated only relative to the previous hypothesis θ(k − 1). The probability of the
hypothesis Θk

h given the set of measurements Zk is:

P (Θk
h|Zk) = 1

λ
P (Zk|θh(k), θ(k − 1), Zk−1)P (θh(k)|θ(k − 1), Zk−1) (6.8)

where λ is a normalizing constant.
The term P (θh(k)|θ(k − 1), Zk−1) can be modeled as a constant. Then:

P (Zk|θh(k), θ(k − 1), Zk−1) = P (Zk|θh(k)) =
Nk∏
j=1

P (zj |θh(k)) (6.9)

and:

P (zj |θh(k)) =
{
PF , if zj outside validation gate
PDP (zj |x̂tk) , if zj inside validation gate

(6.10)

where PD is the detection probability, PF the false alarm probability, and Nk is the number
of timestamps available during the time interval k. A validation gate is defined such that only
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measurements whose likelihood is above a certain threshold are used for updating the tracks.
With Eq. 6.7, Eq. 6.8, and Eq. 6.9:

βtj = 1
λ

∑
θ∈Θk

jt

Nk∏
j=1

P (zj |θ) (6.11)

These association probabilities are used to weight the different measurements for each track.
Each track is estimated using a Kalman filter, which is modified to consider the probabilities of
each measurement belonging to it.

Kalman Joint Probabilistic Data Asociation Filter

The duration of every time window k corresponds to one time interval I . During this time,
every microphone (or virtual microphone) is expected to receive either one or no timestamps.
The state of the filter xtk of the track t contains the reception time τt and the relative velocity
vtr,k of the target during this specific time interval. Being ∆t the elapsed time between two
estimations, the acceleration model is:[

τ tk
vtr,k

]
= A

[
τ tk−1
vtr,k−1

]
+ GΦt

k−1, Φt
k−1 ∼ N (0, Q) (6.12)

where

A =
[
1 ∆t
0 1

]
(6.13)

G =
[

(∆t)2

2
∆t

]
(6.14)

Then, the motion model is used to predict the next state x̂tk and its covariance matrix P̂t
k:

x̂tk = Axtk−1 (6.15)

P̂t
k = APt

k−1AT + GQGT (6.16)

The sensor model predicts the measurement ztk as follows:

ztk = τ tk + ρtk, ρtk ∼ N (0, Rm) (6.17)

Therefore, in matrix notation:
H =

[
1 0

]
(6.18)

The innovation vector is the difference between the predicted state and the measurement:

νtj = zj −Hx̂tk (6.19)
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and the covariance is:
Λtk = HP̂t

kHT +Rm (6.20)

The Eq. 6.10 of the JPDAF can now be estimated by evaluating a normal distribution with
zero mean and covariance Λtk, due to the fact that its value is proportional to the probability
P (zj |x̂tk):

P (zj |x̂tk) ∝ N (νtj ; 0, Λtk) (6.21)

Only values with a high likelihoodN (νtj ; 0, Λtk) are used for estimation. With such nmeasure-
ments, a new weighted innovation νt is calculated depending on the association probabilities
of the track:

νt =
n∑
j=1

βtjν
t
j (6.22)

Then, instead of using a single innovation vector like the traditional Kalman filter, multiple
innovation vectors are weighted according to their likelihood. The sensor model is used to
correct the predicted state as follows:

Kt
k = P̂t

kHT (Λtk)−1 (6.23)

xtk = x̂tk + Kt
k

(
νt
)

(6.24)

The covariance matrix Pt
k is calculated as:

Pt
k = β

tP̂t
k +

(
1− βt

) (
I−Kt

kH
)

P̂t
k + Kt

kPνt(Kt
k)T (6.25)

where:

β
t = 1−

n∑
j=1

βtj (6.26)

Pνt =
n∑
j=1

βtjν
t
jν
tT

j − νtνt
T

(6.27)

The probability of not having a measurement which belongs to t is then calculated by βt. If this
value is one, the covariance of the state will be the predicted one, and the measurement model
will not be considered. On the other hand, when this value is close to zero, the covariance is
similar to a standard Kalman filter, with the addition of the estimated covariance of the weighted
innovations.

When the covariance of a track becomes too large, the track is eliminated, as it is not anymore
capable of finding the timestamps which belong to it. This will happen when a receiver does not
receive any timestamp from a sender during a certain period of time. Then, the next received
timestamp cannot be predicted reliably, as the target can be far from the position at which it
was before. New tracks are continuously created with the unassociated timestamps.
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6.3 Far-Field Assumption

Now, we assume the knowledge of the data association between timestamps and receivers,
which can be either virtual or real. The positions of these receivers are assumed to be un-
known. One could try to estimate the position of the target and the receivers with non-linear
optimization, in a similar way as it has been done in previous chapters. If the number of con-
straints (measurements) is higher than the number of variables, the algorithm could succeed
to find all the variables. However, estimating these variables is a challenging task even with
highly overdetermined systems of equations, as the estimation is prone to local minima. This
has been proved by multiple researchers [45, 47]. Moreover, as the target moves, the receivers
which are in range change. This leads to tracks being created and eliminated. Then, one does
not know which tracks belong actually to the same receiver. One only has a limited number of
timestamps per receiver.

In order to overcome these issues, we use a far-field assumption, which simplifies the equa-
tions and provides an initial estimation for non-linear optimization algorithms [47]. Then,
assuming the movement of the target during a short period of time is much smaller than the
distance to the receivers, one can locate the target with a reduced number of timestamps per
receiver. This fits our purpose. First, the number of timestamps per receiver is limited, which
means the target did not move large distances. Moreover, the receivers are usually placed at the
ceiling, at large distances from the sender. In addition, the reflections come after the line-of-
sight signals, which means the distance to the virtual receivers will be even higher.

If we assume a target is moving from a certain point A to B during one time interval I with
speed v, the movement of the target is assumed to be much lower than the distance from the
sender to the receiver:

c(Tl,i − Tk,i − (l − k)I) ≈ (l − k)vI cos(ϕ) (6.28)

where ϕ is the angle formed by the pointsA, B and the microphone position, beingA the angle
vertex. This assumption simplifies the equations and is a common situation in many real-life
scenarios where the receivers are mounted at a very high altitude compared to the distance
moved by the target during a few hundred milliseconds.

Ellipsoid Method

In one dimension, the movement needs to be coherent. Then, if a target moves towards the
receiver i, and away from the receiver j, the velocity vector needs to have the opposite sign (see
Fig. 6.2). In three dimensions, this becomes more complicated to visualize. However, using
the far-field assumption, one can use the observed change of distances by the receivers during
four sender positions to describe an ellipsoid [48]. If the target is moving in a two-dimensional
scenario, an ellipse is described.

From now on, in order to simplify the explanation, we assume the elapsed intervals have
been already subtracted from the reception times Tt,i.
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Figure 6.2: In one dimension, two receivers in opposite sides should observe the same relative velocity
but with opposite sign. In two dimensions, an ellipse can be defined using multiple receivers. In
three dimensions, an ellipsoid. [6]

Two Dimensions

Consider the target moves to three positions which form a triangle 4S1S2S3 in R2, where
d1 = ‖S1 − S2‖ and d2 = ‖S2 − S3‖ denote the distances, and α denotes the angle ∠S1S2S3

between the line segments S1S2 and S2S3

In the positions S1 S2 and S3, a signal is sent and is received by a certain receiver Mi at
times Ti,1, Ti,2, and Ti,3, that yield the time differences:

τ1 = Ti,2 − Ti,1
τ2 = Ti,2 − Ti,3

(6.29)

We define γi = γ1 + α/2 = γ2 − α/2 as the angle between Mi and the bisection of S1S2
and S2S3, as can be seen in Fig. 6.3. Then:

xi = c(Ti,2 − Ti,1) = d1 cos(γ1) = d1 cos(γi − α/2)
yi = c(Ti,2 − Ti,3) = d2 cos(γ2) = d2 cos(γi + α/2)

(6.30)

Then, γi points to the receiver and α defines the moved angle by the target.

Figure 6.3: The target moves to the positions S1, S2 and S3. The received timestamps by every receiver
form an ellipse that depends on α, d1 and d2. Figure adapted from [74].

Every receiver, virtual or real, will generate a point with coordinates xi and yi. The points
of all the receivers form an ellipse in the form ax2 + by2 + cxy = 1. The relation between
the three coefficients a, b, c, and the parameters d1, d2, and α, which uniquely determine the
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6.3 Far-Field Assumption

triangle of senders4S1S2S3 is:

d1 = 2

√
b

4ab− c2 (6.31)

d2 = 2
√

a

4ab− c2 (6.32)

cos(α) = −c
2
√
ab

(6.33)

Then, without knowing where the receivers are, one can find the parameters a, b and c in order
to know how the target moved and at which angle were the receivers. Only three receivers are
required.

It is quite common that a target is moving with a linear movement during three consecutive
measurements. In this case, the ellipse degenerates in a line:

xi = d1 cos(γi)
yi = d2 cos(γi)

(6.34)

Then, the slope m of the line will be

m = d2
d1

(6.35)

Then, linear movements will lead to lines. Also movements which are quasi-linear will lead to
long ellipses. In these cases it is more challenging to estimate the parameters of the ellipse.

Three Dimensions

A target moving to four positions S1, S2, S3 and S4 describes an ellipsoid. The angles are
defined as in Fig. 6.4. The distances from the point S1 to the points S2, S3 and S4 are defined
as dB , dC and dD, respectively. The angles γB ,γC ,γD are the angles between the point S1, the
receiver M and the points S2, S3 and S4 respectively. The point S1 is the angle vertex. Then,
having:

xi = dB cos(γB)
yi = dC cos(γC)
zi = dD cos(γD)

(6.36)

the ellipsoid is in the form of:

(ax)2 + (bx+ cy)2 + (dx+ ey + fz)2 = 1 (6.37)
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6 Using Sender Movement for Identification

where:

a = 1
dB

b = − cos(φC)
dB sin(φC)

c = 1
dC sin(φC) e = cos(λD)

dC sin(φC) sin(λD)

f = 1
dD sin(φD) sin(λD) d = − cos(φD)

dBsin(φD)sin(λD)−

cos(φC) cos(λD)
dB sin(φC) sin(λD)

In order to fit the ellipsoid to the data we use constrained optimization. This was not necessary
in [48], as the microphones and speakers were assumed to be well distributed in the three-
dimensional space. In our approach [6], the sender can move in a quasi-linear trajectory and
the receivers do not need to be perfectly distributed over the three-dimensional space.

S4

S3 M

S2

S1

λD

φD

φC

Figure 6.4: The target moves to the positions S1, S2, S3 and S4 sending a signal in each of that
positions. The signals are received by the microphone M. Using the timestamps of multiple
receivers, an ellipsoid is defined. [6]

Least-squares optimization can erroneously result in another shape such as an hyperboloid or
a paraboloid. In order to avoid this, we use the constraint presented by Li and Griffiths in [75].
Having an ellipsoid such as

ax2 + by2 + cz2 + 2dxy + 2exz + 2fyz + 2gx+ 2hy + 2iz = 1 (6.38)
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6.3 Far-Field Assumption

then:

j = a+ b+ c (6.39)

k = ab+ bc+ ac− f2 − e2 − d2 (6.40)

4k − j2 > 0 (6.41)

The algorithm used is interior point optimization. This algorithm optimizes the squared error
function with an additional logarithmic barrier function which approaches to infinity when the
estimation does not meet the constraints.

Affine Geometry

One can express the far-field assumption as a function of the projection of the velocity vector
over the vector defined by the sender and the receiver positions:

c(Tk,i − Tk−1,i) ≈ vI · Mi − Sk−1
‖Mi − Sk−1‖

(6.42)

where v is the velocity vector and · denotes the dot product. Having a reference position S0
which is assumed to be at the origin of the coordinate system, the time difference between the
timestamp received at that position and the timestamp received at the position Sk is:

Tk,i − T0,i = 1
c

(
Sk ·

Mi

‖Mi‖

)
(6.43)

Having N receivers and B sender positions, we define a measurement matrix L:

L =


T1,0 − T0,0 . . . T1,N−1 − T0,N−1
T2,0 − T0,0 . . . T2,N−1 − T0,N−1

...
. . .

...
TB−1,0 − T0,0 . . . TB−1,N−1 − T0,N−1

 (6.44)

The matrix L can be expressed as the multiplication of two matrices XΩ:

L =

 S1
...

SB−1

 [ M0
‖M0‖ . . .

MN−1
‖MN−1‖

]
(6.45)

Then, by doing a singular value decomposition of L the result is UVWT . The three greater
eigenvalues correspond to the three dimensions of the senders and receivers. The other eigen-
values would be zero in an ideal case, but this is often not true due to the noise and violations
of the far-field assumption. The matrix X can be then estimated by UV and the matrix Ω
by WT . In both cases, only the dimensions corresponding to the three larger eigenvalues are
taken. Nonetheless, the matrix X is not euclidean, as no constraints have been imposed to it. In
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6 Using Sender Movement for Identification

the original approach [47], an auxiliary matrix C is used, which minimizes the error between
the estimation and the euclidean version of it. Then, the euclidean version of X is found by
UVC−1 and the euclidean version of Ω as CW. In [47] they present it in two dimensions.
The equivalent in three dimensions would be a 3 × 3 matrix, which would mean estimating
nine variables, requiring at least nine timestamps per position. If the matrix is assumed to be
symmetric, then six timestamps are required. One has to realize that this means at least six re-
ceivers are needed for estimating such values. Moreover, it is a nonlinear optimization problem
which can get stuck in local minima.

In [6] we proceed with a different strategy to recover the euclidean constraints. We know that
Mi
‖Mi‖ is a normalized vector. Therefore, first we take the dimensions corresponding to the three
largest eigenvalues of W and normalize the columns of the estimated 3 × N matrix, getting
Ωn. Afterwards, we know that:

L = XnΩn (6.46)

Then, in order to find Xn we use the pseudo-inverse:

Xn = LΩn
T (ΩnΩn

T )−1 (6.47)

The number of variables must be lower or equal than the number of constraints. In a three
dimensional space:

BN ≥ 3(B − 1) + 3N (6.48)

which simplifies to:

N ≥ 3B − 3
B − 3 (6.49)

Then, the minimum number of receivers is four, two less than using the matrix C.
While using the auxiliary matrix C aims to find the optimum rotation and translation using

nonlinear optimization, the presented approach finds a sub-optimal euclidean version of Ω, by
normalizing its columns. This requires less receivers and does not rely on nonlinear optimiza-
tion. Moreover, this approach allows the receivers to be affected by different sources of error,
whereas with the matrix C all receivers are normalized in the same manner. This is important
in acoustics, as sound can experience different measurement noises on different receivers de-
pending on the traveled path (e.g. due to different temperatures at which the sound travels, or
whether there is a reflection involved). Moreover, as we show in the Appendix of this thesis,
the error generated by assuming far-field will be different for every receiver, as it depends on
how the sender moves relative to them and how far they are.

To summarize, the ellipsoid method uses the equality FTLTLF = 1, where F contains the
parameters of the ellipsoid, which contain information about the movement of the target. This
is done for four sender positions using constrained least squares. On the other hand, the affine
geometry approach aims to find the solution to L = XΩ, where X has the sender positions
and Ω the unitary vectors corresponding to the receivers.
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6.4 Simulations and Experiments

6.4 Simulations and Experiments

First, we do a simulation to compare the performance of the different algorithms here exposed.
The sender is assumed to move to the following points (x,y,z): (0,0,0), (ε,0,0), (0,ε,0) and
(0,0,ε), where ε is equal to 0.3 m (see Fig. 6.5). Nine receivers are randomly placed at the same
distance from the origin, four meters.
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Figure 6.5: Simulated positions of the target for evenly distributed positions in the three-dimensional
space. The achieved errors can be seen in Fig. 6.6.

In order to test how resilient are the different algorithms to noise, Gaussian noise is added
to the measurements. The median error achieved by every algorithm in presence of different
magnitudes of error can be seen in Fig. 6.6. Every point is the median of 1000 estimations.
One can observe how the new method using affine geometry is more resilient to noise, although
it performs worse than the others when the standard deviation of the noise is below 0.07 ms.
When the noise is greater than this value, the algorithms get stuck in local minima estimating
the matrix C or do not succeed estimating the ellipsoid parameters. On the other hand, when
the noise is below this value, one can find the optimal matrices which provide a lower error
than normalizing Ω. Another interesting observation is that the traditional affine geometry
method and the ellipsoid method obtain a similar result. This is due to the fact that the sender
is perfectly distributed in the three-dimensional space, which facilitates the task of fitting an
ellipsoid to the data. In addition, one can see how these methods can be used as an initial
estimate for a local optimization algorithm, such as gradient descent.

In order to see the effect of the distribution of sender positions in the final estimation, we
perform another simulation with a more realistic sender movement (see Fig. 6.7). The result
can be seen in Fig. 6.8. As expected, the ellipsoid method is the method which is more affected
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Figure 6.6: Median error of the presented algorithms when a target is moving in four positions aligned
to the x, y and z axis. One can observe how the ellipsoid method and the method presented by
Thrun [47] present similar performance, as the ellipsoid generated is well spread around the three
coordinates. Moreover, one can observe how the methods presented in this chapter present an
improvement when the standard deviation of the measurement noise is above 0.1 ms. [6]

by the quasi-linear movement. It is interesting to observe also how in this case normalizing Ω
provides the best result even with a noise standard deviation below 0.05 ms.
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Figure 6.7: Simulated positions of the target for quasi-linear movements. The positions of the target
are not well distributed in the three-dimensional space, which means the movement in certain
dimensions can be masked by the noise. The achieved errors can be seen in Fig. 6.8.

In order to test the localization error in a real environment, we use the ASSIST system. In
total 12 receivers are used, above a surface of approximately 15 m × 11 m. Nine receivers
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Figure 6.8: Error for the simulated positions in Fig. 6.7. One can observe how the ellipsoid method
presents the worse performance, as the long-thin ellipsoids generated by the movement of the
target are not properly estimated. This is because a small change in the estimated points of the
ellipsoid can lead to a high change in the estimated ellipsoid parameters.

are at 4.9 m height and three of them at 3.4 m height. In addition, we use the motion capture
system as a reference. The microphone positions are precisely measured using a total station
theodolite. The estimated positions are rotated and translated to the same coordinate system as
the reference system. The motion capture system and therefore the estimated positions cover
only a section of the hall surface. The localization area has tables and wooden walls which
emulate a real environment. More details about the experimental environment can be seen in
the Appendix of this thesis.

First we test the capability of the proposed approach to find the target in three dimensions
using only four receivers, as with the standard method using the auxiliary matrix C was not
possible. The result can be seen in Fig. 6.9. The error has a mean of 0.20 m and a standard
deviation of 0.10 m in two dimensions and a mean of 0.31 m and standard deviation of 0.14 m in
three dimensions. In this experiment, groups of 30 samples are aligned to the same coordinate
system by using samples that belong to more than one block. Due to this fact, certain parts of
the trajectory have higher error than others.

In order to test the capability of the proposed approach to track a target in a large trajectory
we use a block of 80 positions and seven receivers. The result can be seen in Fig. 6.10. The
comparison of the estimation errors can be seen in Table 6.1. It can be seen that normalizing Ω
results in a lower error than using the auxiliary matrix C.

For a better comparison of the methods presented in this chapter, we use the algorithms with
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Figure 6.9: Estimated positions using only four receivers and groups of 30 samples. The localization
error has a mean of 0.31 m and a standard deviation of 0.14 m in three dimensions. [6]

Median Error Standard Median Error Standard
in 3D (m) Deviation in (m) in 2D (m) Deviation in 2D(m)

Normalizing Ω 0.12 0.08 0.09 0.07
No 1.31 0.38 1.31 0.39
Normalization
Using 0.36 0.19 0.35 0.19
Matrix C

Table 6.1: Comparison of the localization errors when estimating 80 sender positions and using the
measurements of seven receivers. [6]

2894 groups of four timestamps. The cumulative distribution function when the target moved
at least one centimeter can be seen in Fig. 6.11. The median movement d1 + d2 + d3 is 0.71 m.
The proposed changes in this chapter prove to be effective. Using constrained optimization for
the ellipsoid method improves the result and normalizing the matrix Ω has lower error than
using the matrix C.

Using affine geometry the error is lower than using the ellipsoid method, as fitting an ellipsoid
to the data when the target is moving in a line or the receivers are not well distributed is a
challenging task. The ellipsoid method is, however, an elegant method to display the movement
of the target and can achieve a low error when the receivers are well distributed and the sender
positions are not in a line. In Fig. 6.12 the estimated ellipsoid for a sender moving in three
dimensions is shown. The mean error of the eleven points with the ellipsoid is 0.12 m and the
standard deviation is 0.10 m. The estimated sender positions had a mean error of 0.17 m and
the distance moved was estimated with only 0.01 m error.
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Figure 6.10: Estimated positions using a block of 80 sender positions and seven receivers. Normalizing
Ω the lowest error is achieved. [6]
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Figure 6.11: Cumulative distribution function of error of the different algorithms estimating the sender
position in three dimensions. [6]

Another experiment is done in order test the capability of the presented affine geometry
method to estimate the receiver positions. For this experiment we assume the sending times
are known. If this is not the case, one would only know the angles at which the receivers
are. One could then make use of other sender positions in other regions of the localization
area or could make use of the knowledge of the height of the receivers. If the heights of the
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6 Using Sender Movement for Identification

Figure 6.12: One can see how a speaker moving to four positions generates an ellipsoid in three dimen-
sions. The mean error of the eleven points with the ellipsoid is 0.12 m and the standard deviation
is 0.10 m. [6]

receivers are known, the estimated angles would intersect in one point with the plane located
at the height of the receiver. The sending times used in this experiment are estimated using the
reference positions provided by the motion capture system. The result can be seen in Fig. 6.13
and Fig. 6.14. One can see how the target positions are estimated with a median error of 0.04 m
and standard deviation 0.02 m. Using the knowledge of the sending time, one can observe how
two of the receivers used are actually virtual receivers. They are clearly second reflections from
the ceiling and the ground. We suspect the reason why the first reflections are not present is
because the receivers are placed on metal bars which block the signals which come from the
ceiling. However, they are strong reflections, as the speaker was pointing upwards. The error
in the position of the virtual receivers is 1.69 m and 2.68 m. The height error is 0.98 m and
0.75 m. The positions of the LOS receivers are estimated with a median error of 0.62 m in
two dimensions and 0.88 m in three dimensions. The standard deviation is 0.24 m and 0.17 m
respectively. Regarding the angle error, the angle to the LOS receivers is estimated with a
median error of 3.55◦ and the angle to the virtual receivers with a median error of 5.78◦.

In conclusion, the presented modifications of existing methods prove to achieve better results
for three dimensional acoustic localization than the state-of-the-art, especially when the sender
positions are not well distributed in the three-dimensional space. In the case of affine geometry,
the presented approach requires two receivers less than the state of the art, locating a target with
a mean error of 0.31 m and a standard deviation of 0.14 m.

The ellipsoid method is the method which performs worse when the target positions are not
well distributed. Using constrained optimization the error is reduced, although it is still higher
than the other approaches. This is because, as explained in [75], the constraint used in this
chapter does not include a subset of ellipsoids which are long-thin or compressed. An algorithm
to consider also this subset is presented in [75] which could be used to achieve better results.
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Figure 6.13: Real and estimated sender and receiver positions. The positions of the LOS receivers are
estimated with 0.62 m median error in two dimensions. The result in three dimensions is shown in
Fig. 6.14. [6]
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Figure 6.14: Real and estimated sender and receiver positions. The positions of the LOS receivers are
estimated with 0.88 m median error in three dimensions. One can see how there are two virtual
receivers due to the echoes from the ground and the ceiling. The result in two dimensions is shown
in Fig. 6.13. Figure adapted from [6].
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In Chapter 4 we have shown how a moving receiver can be located using static speakers. This
has the benefit that the number of targets that can be tracked is unlimited, as they can estimate
their own position independently of the other users. The main drawback is that, when the
target is moving, only one timestamp is received per position, which is less than the number of
constraints required to estimate a position using TDOA or TOA. Having only one timestamp
per position, it is challenging to know whether the timestamp is a reflection or a line-of-sight
signal. In order to do so, we exploit the movement of the target to predict the most likely line-
of-sight signals, similar as it is done in the previous chapter. However, in this case every target
position corresponds to an emitted signal by a different sender (see Fig. 7.1). Therefore, one
can only measure the relative velocity of the target to a certain sender every time that it emits a
signal. In order to predict the relative movement of the target and do a proper data association,
one needs to fuse data from different senders.

In this scenario there is an added challenge which is how to identify which signal comes
from which sender. Multiple senders are emitting signals and one needs to know which signal
comes from which emitter and whether they are line-of-sight signals. The approach presented in
this chapter fuses the identification that is provided by every sender and the predicted position
and velocity of the target. Every speaker encodes an id and emits signals with a different
time period. Then, fusing this information and the estimated velocity of the target one can
decide which timestamps belong to which emitter and whether they are line-of-sight signals or
reflections (see Fig 7.2).

In this chapter we extend the system presented in Chapter 4 so that the system can be robust
in mixed line-of-sight/non-line-of-sight environments and is capable of locating a target moving
at higher velocities.

7.1 Problem Formulation

A receiver moves continuously in a three-dimensional space and B static senders are installed
on the ceiling. The height of the receiver and the position of the senders are assumed to be
known. Additionally, we assume the time offset between the senders has been already initial-
ized with the stop-and-go motion explained in Chapter 4.

Moreover, as explained in Chapter 3 and 4, the senders emit signals with different time
intervals. In addition, every sender has a unique ID, which is modulated using a π/4-DQPSK
modulation. This means one symbol is equivalent to two bits of data. Every signal emitted by
a sender contains four symbols and therefore a total of eight bits. Three of them are used for
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Figure 7.1: When a speaker is moving, the relative movement to an anchor in range can be measured
every time the target sends a signal (left figure). On the other hand, when a receiver is moving,
the relative motion to an anchor node can only be measured when the anchor emits a signal (right
figure). In this chapter we focus on the second case. We show how the position and velocity
estimated using the measurements from one sender can be used to predict the next timestamp from
another sender.
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Figure 7.2: In this chapter the estimated position and velocity of the target are used to estimate the most
reliable timestamps and IDs. In [76] and in Chapter 4 the interval diversity and the received sym-
bols are used to identify the senders, independently from the position and velocity estimations. [3]
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error correction, which means there are 32 possible identification numbers.
Fusing the different time intervals Ij (1 ≤ j ≤ B) with the symbol information has been

proven to be more effective than just using the symbol information [77]. However, as we have
seen in the previous chapters, when a target moves, the observed time period by the receiver is
different than when it is standing.

In [77], a FDOA value is calculated with the information of the current timestamp n for the
ID number j, the latest received timestamp kj − 1 and the time interval Ij as follows:

τFDOA, n (j) = Tkjj − T(k−1)jj
− Ij (7.1)

This value is assumed to be zero if the received timestamps Tkjj and T(k−1)jj
come from the

same sender j. Therefore, it is using the information about the known interval Ij to guess from
which sender the timestamps have been emitted. However, note that this value will be zero only
if the receiver is not moving or if the current position of the target Mt is exactly the same as it
was in T(k−1)jj

. If the target moved, the value of τFDOA, n (j) will be:

τFDOA, n (j) = 1
c
‖Mt − Sj‖ −

1
c
‖M(k−1)jj − Sj‖ (7.2)

where M(k−1)jj is the latest position with a measurement of sender j. Therefore, the movement
of the target can lead to a wrong identification of the sender and can also deteriorate the LOS
signal selection, especially when the target is moving at high velocities. For instance, if the
receiver moves towards the sender, Eq. 7.1 would be zero for a later reception time than the
actual one. Then, a reflection would be easily mistaken for a line-of-sight signal, as it would
arrive later.

As mentioned in Chapter 4, the position and velocity of the moving receiver can be tracked
with an unscented Kalman filter. Then, using this information one can have a better prediction
of the next timestamp emitted by the sender j than just using Eq. 7.1.

In [3] we use the latest estimated velocity Vt−1 and estimated position Mt−1 by the un-
scented Kalman filter to predict the position of the target M̂t in the current time instant:

M̂t = Mt−1 + htVt−1 (7.3)

Note that Mt−1 can be estimated with the timestamp of another sender (see Fig. 7.1). This
means that, as the receiver is assumed to receive constantly signals from different senders, the
position and velocity estimates are updated frequently enough so that the current position of
the receiver M̂t can be predicted reliably.

Then, instead of using Eq. 7.1 we propose to use:

τFDOA, n (j) = Tkjj − T(k−1)jj
− Ij −

(1
c
‖M̂t − Sj‖ −

1
c
‖M(k−1)jj − Sj‖

)
(7.4)

At the risk of abusing the notation, in this case M(k−1)jj refers to an estimation and not the
actual position of the target. This estimation is done by the unscented Kalman filter.
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7.2 Data Fusion

The FDOA value is a real number τFDOA, n ∈ R and the received symbols are in the symbol
space S =

{
x ∈ R4 : ‖x‖∞ < π

}
. Hence, before fusing the data, the FDOA values are mapped

by a function fmap : R → S into the symbol space. Then the mapped timestamps and the
symbols can be fused. This procedure was already defined in [77]. We reproduce it here for a
better understanding of the algorithm.

The timestamps are mapped into the symbol space by the function fmap : R→ S. The time
intervals Im are defined as:

Im = τmin +mτd (7.5)

wherem is the id of the sender. The values of τmin and τd are constant and can be set depending
on how often the target needs to be located.

The FDOA value τFDOA, n estimated using Eq. 7.4 is normalized using the difference be-
tween two intervals:

rTS = τFDOA, n
τd

(7.6)

Then, the value of rTS will be zero if the sender j has the id m. However, if it is close to one
it will mean that the sender is likely to have the id m + 1 and if it is close to -1 is likely to be
m− 1. This can be used to map τFDOA, n to the symbol space:

sTS = fmap (m, rTS) = sm + |rTS| ·
{

sm−1 − sm rTS < 0
sm+1 − sm else

(7.7)

The vector sTS points to the direction of the nearest ID. The ID is always taken modulo 32
(ID=-1 is ID=31 and ID=32 is ID=0) and the subtraction is phase corrected by

φ =


φ− 2π φ > π

φ+ 2π φ < −π
φ else

(7.8)

7.2 Data Fusion

We propose an approach [3] where the position and velocity estimated by the unscented Kalman
filter are used to predict the most likely line-of-sight signal emitted by every sender. Then, we
have B Kalman filters, each one predicting the next line-of-sight timestamp of every sender.
The received timestamps which are closer to the predictions are used to estimate the position
and velocity of the target, which are used again to predict the next timestamps (see Fig. 7.3).
Every sender has a Kalman filter with a state vector xn = [Te sDF]T which contains the time
Te ∈ R and the fused ID symbols sDF ∈ S. The time Te is the estimated reception time and
the symbols contain the ID of the sender. Note that we are not estimating the relative velocity
of the target in the Kalman filters, as it was done in the previous chapter. The reason is that
we are using the predicted position and velocity from the UKF to do so, as it is updated more
frequently (see Fig. 7.1).
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Predicted timestamps
and associated ids

Estimated position and 
velocity of the target and 
associated uncertainties

Timestamps

Measurements

Figure 7.3: Each Kalman filter of the bank of Kalman filters tracks a signal of an specific sender. Using
the predicted timestamps, the LOS signals are selected and forwarded to the Unscented Kalman
filter, which estimates the position and velocity of the target. These estimations are used to predict
the next LOS signals. [3]

One can predict the next timestamp that will be received T̂e,n using Eq. 7.4 as:

T̂e,n = Te,n−1 + Ij +
(1
c
‖M̂t − Sj‖ −

1
c
‖M(k−1)jj − Sj‖

)
(7.9)

where Te,n−1 is the previously estimated reception time. Note that the position of the target
M(k−1)jj has been estimated already by the UKF and the current position M̂t can be estimated
using the current estimate of the UKF:

M̂t = Mt−1 + htVt−1 (7.10)

where ht is the elapsed time between this estimation and the previous one. Then, one can
rewrite the predicted time T̂e,n as a function of two UKF estimates:

T̂e,n = Te,n−1 + Ij + gt(χt−1) + ft(χj) (7.11)

being χt−1 the latest state estimated by the unscented Kalman filter and χj the latest estimated
UKF state with the sender j. The function gt can be written as:

gt(χt−1) =
(1
c
‖Mt−1 + htVt−1 − Sj‖

)
(7.12)

The function ft can be written as:

ft(χj) = −1
c
‖M(k−1)jj − Sj‖ (7.13)
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7.2 Data Fusion

Then, the process model can be formulated in matrix notation:

x̂n = Axn−1 + Bun +


gt(χt−1) + ft(χj)

0
0
0
0

 (7.14)

The first row, which is the estimated reception time, is propagated with the estimated UKF
states and the control vector un. The next four rows of the state, which contain the symbol
information, are predicted without any changes. More in detail, the matrix A represents the
transition model and is set to an identity matrix A = I5. The matrix B represents the control
input model, which is also set to an identity matrix B = I5, with the control vector u =
[Ij 0 0 0 0]T. Then, the next timestamp is assumed to be received after one interval Ij plus the
corrections due to the movement of the target, which are done using the UKF estimations.

As we are using the estimations from the UKF we need to consider the uncertainty of these
variables. The functions gt and ft are not linear, one needs to linearize them in order to propa-
gate the uncertainty of the variables χt−1 and χj to the uncertainty of x̂n. We linearize them
by using the Jacobian matrix, as it is done in the extended Kalman filter. Then, every column
will have the derivative of the function Eq. 7.12 with respect to a variable of the UKF state. As
gt is only used for estimating T̂e,n and not the symbols, the latest four rows of the matrix will
contain zeros:

Jt−1 =



∂gt

∂Mt−1
∂gt

∂Vt−1
∂gt

∂tk11
∂gt

∂δ2
. . . ∂gt

∂δm

0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0

 (7.15)

The derivative with respect to the offsets δj and sending time tk11 is zero. The derivative with
respect to the receiver position Mt−1 and velocity Vt−1 are:

∂gt
∂Mt−1

= Mt−1 + htVt−1 − Sj
‖Mt−1 + htVt−1 − Sj‖

(7.16)

∂gt
∂Vt−1

=ht
Mt−1 + htVt−1 − Sj
‖Mt−1 + htVt−1 − Sj‖

(7.17)

Now we need to find a matrix which relates χj and x̂n, as Eq. 7.13 is also not linear. The
Jacobian matrix of ft has the same structure of Eq. 7.15:

Dj =



∂ft

∂Mj

∂ft

∂Vj

∂ft

∂tk11
∂ft

∂δ2
. . . ∂ft

∂δm

0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0

 (7.18)
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7 Using Receiver Movement for Identification

The derivative with respect to the offsets δj and sending time tk11 is also zero. The derivative
with respect to the velocity Vj is also zero. The derivative with respect to the position Mj is

∂ft
∂Mj

= − Mj − Sj
‖Mj − Sj‖

(7.19)

Then, one can write the covariance of the predicted state x̂n using the matrices Jt−1 and Dj :

E[(x̂n − E[x̂n])(x̂n − E[x̂n])T ] = APn−1AT + Jt−1Σt−1JTt−1 + DjΣjDT
j (7.20)

where Σt−1 is the covariance matrix of xt−1, Σj is the covariance matrix of χj and Pn−1
is the covariance matrix of the state xn−1. One comes to this result if all cross correlations
between the variables xn−1, χj and xt−1 are zero. The Kalman filters fulfill the Markov as-
sumption. This means a state depends only on its previous state. Therefore, χj and xt−1 are
clearly uncorrelated, as they are not consecutive states. The variables xt−1 and xn−1 are also
uncorrelated, as they correspond to different time instants. The predicted symbols and time in
xn−1 are actually used to select the most likely LOS measurement from the sender j in order
to estimate χj . Therefore, they are correlated. However, if one would want to consider it one
would have to consider other data associations at that time step, which would mean building
a data association tree that would soon become untreatable due to the number of possibilities.
Therefore, we consider only the data associations in one time step and assume the previous data
associations were correct.

The measurement vector consists of the measured timestamp τ , the measured symbols sMS ∈
S and the mapped symbols sTS ∈ S

z = [τ sMS sTS]T . (7.21)

Here the mapped symbols depend also on the movement of the target, which is estimated by
the unscented Kalman filter. We can rewrite Eq. 7.7 as:

sTS = fmap (m, rTS) = sm + rTS ·Ψ (7.22)

where Ψ depends on the symbol distances.

sTS := fmap (m, rTS) = sm + Ψ
Tkjj − T(k−1)jj

− Ij −
(
gt(χt−1) + ft(χj)

)
τd

(7.23)

The covariance of the measurement vector is denoted by Rm:

Rm = E[(z− E[z])(z− E[z]T ] =

 σ2
n 0 0
0 RMS 0
0 0 RTS

 (7.24)

The variance of the measured timestamp σ2
n and the covariance of the measured symbols RMS

depend on the measurement noises. Using Eq. 7.22 one can observe how the covariance of the
mapped symbols depends on the measured noise and the UKF uncertainty:

RTS = 1
τ2
d

(
2σ2

nΨΨT + ΨJt−1Σt−1JTt−1ΨT + ΨDjΣjDT
j ΨT ) (7.25)
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7.2 Data Fusion

The fusion of the symbols is described by the observation model

H =


1 0 · · · 0
0 I4
...
0 I4

 =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


(7.26)

Therefore, the upper identity matrix I4 maps the fused symbols sDF to the measured sMS and
the lower identity matrix maps the fused symbols sDF to the mapped symbols sMS.

Then, the Kalman filter for a certain sender j is implemented as follows:

x̂n = Axn−1 + Bun + gt(χt−1) + ft(χj) (7.27)

P̂n = APn−1AT + Jt−1Σt−1JTt−1 + DjΣjDT
j (7.28)

Sn = HP̂nHT + Rm (7.29)

Kn = P̂nHTS−1
n (7.30)

xn = x̂n + K (zn −Hx̂) (7.31)

Pn = (I−KnH) P̂n (7.32)

Then, the UKF predictions are used two times. The first time to predict the next timestamp and
the second time to create a mapped symbol which contains information about the sender ID, as
it depends on the interval Ij .

Each tracker for the ID number j consists of one Kalman-Filter, which tracks the symbols
and fuses the data. In order to estimate which timestamp belongs to which sender and whether
they are in LOS, we select all the measurements which are closer than a certain threshold δ to
the predicted timestamp T̂e,n. Among those timestamps, the best one is selected by calculating
the angle error between the symbols:

φError = ‖ŝDF − sMS‖1 + ‖ŝDF − sTS‖1
2 (7.33)

where ‖·‖1 is the `1 norm. The timestamp which has the lowest error φError is used as a
measurement for the unscented Kalman filter. The ID is estimated with the estimated symbols
ŝDF . If the lowest angle error φError associated to a timestamp is above a certain threshold
φMAX it is considered invalid. If it is below the threshold, it is forwarded to the unscented
Kalman filter in order to estimate the state at time t.

Note that in this case we are not considering other Kalman filters when selecting the most
likely timestamps. We are also not using the covariances of the states for data association.
The reason behind this is that in this system there is only one Kalman filter per real sender.
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7 Using Receiver Movement for Identification

Reflections are not tracked in order to reduce the computational requirements of the receiver.
This is because the amount of data that need to be processed is higher than in the ASSIST
system. Moreover, in this localization system all the computational effort relies on the moving
receiver. In the ASSIST system used in the previous chapter, every receiver and a central unit
share the computational load.

As no reflections are tracked in this system, the Kalman filter of every sender is responsible
of finding the most likely line-of-sight signal according to the symbol error and the timestamp.

7.3 Experimental Results

In order to test the presented approach, we do an experiment with the eCULTS localization
system. The MoCap system is used as the reference system. As the approach in Chapter 4
proves to have a reduced error at low velocity, in this new experiment we move at different
velocities, from 0.1 m/s to 1.8 m/s (see Fig. 7.4). Five static senders are used for locating the
receiver. The positions of the senders can be seen in the Appendix of this thesis.
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Figure 7.4: Real and estimated velocities for a target moving within the track defined in Fig. 7.5.
One can observe how the presented approach is capable of tracking the target velocity whereas the
previous approach starts diverging when the target moves above 1 m/s. Note that in order to locate
the target using the approach in [77] one needs to allow higher angle errors φError, which leads to
an increase of wrong data associations.

The target is tracked with a median error of 0.061 m and a standard deviation of 0.064 m.
The estimated positions can be seen in Fig. 7.5. The estimated and the real velocity can be seen
in Fig. 7.4. There can be synchronization errors between the estimated velocity and the real
velocity, due to different delays in the reception of the data. In these figures one can observe
how using the estimated velocity by the UKF for data association allows tracking the target at
high velocities. On the other hand, the approach presented in [77] is incapable of predicting
the correct LOS measurements at velocities above 1 m/s. Therefore, wrong data associations

82



7.3 Experimental Results

are done and the error is increased. These figures show the result using the UKF velocity and
φMAX=2.3 rad versus the result not using the UKF velocity and φMAX=3 rad. The threshold
φMAX needs to be increased, as the high velocities lead to high angles errors if Eq. 7.1 is
used. In Table 7.1 one can observe how increasing φMAX the number of estimated positions
is higher but it allows also more erroneous data associations. The case where Eq. 7.1 is used
and φMAX=2.3 rad has the highest error. This is because there were no estimations during
9.56 s, as the angle error was above the threshold. This led to the algorithm divergence and
not being capable of converging to the correct solution. In these experiments no additional
NLOS mitigation algorithms were used when estimating the positions. This is because the aim
of these experiments was to directly show the effect of wrong data associations on the position
estimations.

Median Error (m) Standard Number of Positions
Deviation (m) per Second

φMAX=2.3 rad, 0.061 0.064 7.85
using UKF velocity
φMAX=2.3 rad, 0.115 2.554 4.61
not using UKF velocity
φMAX=3 rad, 0.063 0.082 10.10
using UKF velocity
φMAX=3 rad, 0.088 0.253 5.35
not using UKF velocity

Table 7.1: Comparison of localization errors and number of estimated positions.
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Figure 7.5: Estimated positions using the bank of Kalman filters in closed-loop with the UKF compared
with the previous existing approach. The target was moving at velocities from 0.1 m/s to 1.8 m/s
(see Fig. 7.4). When the UKF velocity is not used, the median error is 0.088 m and the standard
deviation 0.253 m. On the other hand, the proposed approach proves to be capable of tracking the
target with a median error of 0.061 m and a standard deviation of 0.064 m.
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7 Using Receiver Movement for Identification

Then, in Chapter 4 the receiver was tracked with 0.039 m median error and 0.055 m standard
deviation. The target was moving at a maximum velocity of 0.6 m/s. In this chapter we show
how the target can be located with 0.061 m error and 0.064 m standard deviation when the target
is moving at a maximum velocity of 1.8 m/s. Then, even though the target is moving much
faster, a similar error is achieved. The error is slightly higher due to the fact that the distance
between measurements is higher and therefore the uncertainty is increased. Looking at Fig. 7.5
one can realize that some consecutive positions are more than 0.20 m apart. As the system of
equations is underdetermined, the error depends on how well the motion model can predict the
trajectory of the target. If the target moves large distances between two measurements, the error
is increased.

In the Appendix of this thesis we show how the timestamps of an specific sender are associ-
ated for the trajectory in Fig. 7.5.
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8 Using Ground Reflections to Reduce the
Localization Error

In Chapter 6, we have seen how acoustic reflections can be used for locating a sender. However,
it remains unclear whether they improve or deteriorate the localization estimation. Therefore, it
remains an open question whether they should be eliminated or used as additional information.
Reflections can be less accurate than line-of-sight signals, due to the simplified image model.
It is also due to the fact that they travel larger paths than the line-of-sight signals that they
are more vulnerable to temperature gradients and scattering. However, in certain cases, they
can considerably reduce the localization error. This is the case for ground reflections, which
can be used to estimate the height of the target. Most of the location systems do not estimate
the height of the target or they do it with less precision than the other coordinates. This is
because of the dilution of precision (DOP). Usually the receivers are not well distributed in
the three-dimensional localization space. The receivers are often placed at similar heights,
which deteriorates the height estimation. One could place the anchor nodes at different heights.
However, this would increase the installation effort. Moreover, if some receivers were installed
at low heights, the line-of-sight signals would be easily blocked by furniture or other obstacles.
Using the ground reflection, the receivers can be mounted on the ceiling without increasing the
error in the height estimation, as it will be proved in the following sections.

8.1 Cramer-Rao Lower Bound and Dilution of Precision

In order to study the effect of using ground reflections in scenarios where the receivers are
placed at similar heights, we analyze the error in the height estimation. We are interested in
finding out whether ground reflections can actually reduce the localization error. In order to
do so, consider we have an estimation of the position of the target x̂ in R3. We assume our
estimator is unbiased. Therefore, the mean of our estimation x̂ is the actual position of the
target x:

E [x̂] = x (8.1)

As our estimator is assumed to be unbiased, the position errors that we observe come from the
variance of our estimation. Then, if the variance of the z component of x is large, the position
estimations will have an imprecise height estimate. We are interested in finding the covariance
matrix of x̂:

E
[
(x̂− E[x̂])(x̂− E[x̂])T

]
= E

[
(x̂− x)(x̂− x)T

]
(8.2)
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8 Using Ground Reflections to Reduce the Localization Error

This covariance depends on the estimator that is used. However, one can make use of the
Cramer-Rao bound, which provides a lower bound for the covariance of an unbiased estimator:

E
[
(x− x̂)(x− x̂)T

]
≥ J−1 (8.3)

where J is the Fisher information matrix.

J = E
[(

∂

∂x log p(z|x)
)(

∂

∂x log p(z|x)
)T]

(8.4)

Assuming the noise sources are Gaussian and independent, the probability of a certain mea-
surement vector z given x is:

p(z|x) = 1√
‖2πRt‖

exp
(
−1

2(z− h(x))TR−1
t (z− h(x))

)
(8.5)

where h(x) is the function which relates the position and the measurements. This depends
on the measurement model used. It can be, for instance, time of arrival or time difference of
arrival, as explained in Chapter 3. The matrix Rt is the noise covariance matrix. Then, if we
define H as the Jacobian matrix of h:

E
[
(x− x̂)(x− x̂)T

]
≥ (HTR−1

t H)−1 (8.6)

When all the measurements are assumed to be affected by the same measurement covari-
ance σ2

n:
E
[
(x− x̂)(x− x̂)T

]
≥ σ2

nΣp
−1 (8.7)

where Σp = HTH.
The Cramer-Rao lower bound can also be interpreted as the minimum achievable root mean

square error (RMSE) by an unbiased estimator [30]. The RMSE is used often in literature as a
quality measure for the position estimations. If the estimation x̂ has components x̂,ŷ and ẑ, the
RMSE is calculated as follows:

RMSE(x̂) =
√
E [(x̂− xT )2 + (ŷ − yT )2 + (ẑ − zT )2] =

√
Tr{E [(x− x̂)(x− x̂)T ]}

(8.8)
where xT ,yT and zT are the components of the true position. One can then rewrite the Cramer-
Rao lower bound as a lower bound for the RMSE:

RMSE(x̂) ≥
√

Tr{σ2
nΣp

−1} (8.9)

This can be related with the dilution of precision (DOP) which is commonly used in localization
to measure the influence of the geometrical distribution of anchor nodes in the final localization
error. Then, depending on the geometry, a certain Gaussian noise with standard deviation σn
can have a different effect on the final position estimation. The dilution of precision in x, y and
z is defined as 1

σn

√
Tr{σ2

nΣp
−1}. Then:

RMSE(x̂) ≥ σnDOP (8.10)
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Then, the dilution of precision is a measure of the achievable RMSE of the estimations given
that all measurements are affected by an identical noise distribution.

One can focus on certain components of the position. Then, the two-dimensional dilution
of precision measures the achievable RMSE in the x and y coordinates. It can be measured as√
σ2

x+σ2
y

σn
, where:

(HTR−1
t H)−1 =

(
σ2
x σxy

σxy σ2
y

)
(8.11)

If the target is located in three dimensions, the vertical dilution of precision is a measure of
the achievable RMSE in the z coordinate. It is defined as σz

σn
, where:

(HTR−1
t H)−1 =

 σ2
x σxy σxz

σxy σ2
y σyz

σxz σyz σ2
z

 (8.12)

The three-dimensional dilution of precision is measured as
√
σ2

x+σ2
y+σ2

z

σn
.

8.2 Time of Arrival

Having a certain number of receiversN ≥ 4, the height of the target can be estimated using time
of arrival (TOA). However, in certain scenarios, the changes in height might produce changes
in time which are below the noise level. The effects of the positions of the anchor nodes in
the quality of the localization have been previously studied for different measurement models
such as TOA or TDOA [78, 79]. We focus on the effect of the ground reflections on the vertical
dilution of precision.

In general case for distance measurements, the matrix H is:

H =


Sx−Mx,1

R1

Sy−My,1
R1

Sz−Mz,1
R1

...
...

...
Sx−Mx,N

Rn

Sy−My,N

Rn

Sz−Mz,N

RN

 (8.13)

being Ri the distance from the target S to the receiver i:

Ri = ‖Mi − S‖ (8.14)

The receiver position Mi has the components Mx,i, My,i and Mz,i. The target position S has
the components Sx, Sy and Sz .

The matrix H can be rewritten using unit vectors u that go from the sender to the receiver
position:

ui =
(
ui,x, ui,y, ui,z

)T =
(
Sx −Mx,i

Ri
,
Sy −My,i

Ri
,
Sz −Mz,i

Ri

)T
(8.15)
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Then:

H =

u1,x u1,y u1,z
...

...
...

uN,x uN,y uN,z

 (8.16)

We define a matrix A such that:
A = HTR−1H (8.17)

When the target and receivers are in R2, the matrix A is a 2×2 matrix and the dilution of
precision in two dimensions DOP2D is:

DOP2
2D = 1

σ2
n

A1,1 +A2,2
A1,1A2,2 −A2

1,2
(8.18)

Spirito [80] did an extensive study about the dilution of precision in two dimensions. He proved
that the denominator can be simplified as follows:

A1,1A2,2 −A2
1,2 =

N∑
i=1

N∑
j=1

ui,xuj,y~k · (ui × uj)σ−2
i σ−2

j (8.19)

A1,1A2,2 −A2
1,2 =

N∑
i=1

N∑
j>i

(sin2(θi,j))σ−2
i σ−2

j (8.20)

where θi,j is the angle between the receiver i , and the receiver j when the sender is the vertex
of the angle.

Then,

DOP2
2D = 1

σ2
n

∑N
i=1 u

2
i,xσ

−2
i + u2

i,yσ
−2
i∑N

i=1
∑N
j>i(‖ui,xy‖2‖uj,xy‖2 sin2(θi,j))σ−2

i σ−2
j

(8.21)

If all receivers are affected by the same noise distribution:

DOP2
2D = N∑N

i=1
∑
j∈(1,...,N),j>i(sin2(θi,j)))

(8.22)

One can already notice how this term does not directly depend on how far the receivers are,
only in which angle are they observed by the sender. While two-dimensional localization is
out of the scope of this chapter, this term will be important to understand the role that the
two-dimensional DOP plays in the height estimation.

We are interested in the vertical dilution of precision, which is measured as
√
σ2

z

σn
. In other

words, it is the component in the third column, third row of the matrix 1
σn

(HTR−1
t H)−1. This

can be written as:

σ2
nVDOP2 = det(A1:2,1:2)

det(A) (8.23)

where A1:2,1:2 indicates the 2 × 2 sub matrix of A which corresponds to the two-dimensional
coordinates of A. This is an interesting result, as one can see how the numerator of this fraction
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is related to the dilution of precision in two dimensions, only that here it is the projection in
two dimensions of the three-dimensional space. The variable σn represents the noise standard
deviation which is used to normalize the VDOP. In our case, we assume the noise depends on
the receiver, as reflections might be less accurate than line-of-sight signals. From now on, we
define Mi,k as the coordinate i of the vector Mk, and we define Si as the coordinate i from the
vector S. By doing this, the value in the row i and the column j of the matrix A is defined as:

Ai,j =
N∑
k=1

(
Si −Mi,k

σ2
kRk

)(
Sj −Mj,k

σ2
kRk

)
(8.24)

Then:

VDOP = 1
σn

√√√√ A1,1A2,2 −A2
1,2

A3,3(A1,1A2,2 −A2
1,2)−A1,1A2

2,3 −A2,2A2
1,3 + 2A1,3A2,3A1,2

(8.25)

Using Eq. 8.24, we know that:

A1,1A2,2 −A2
1,2 =

N∑
i=1

u2
i,x

(
N∑
i=1

u2
i,y

)
−
(

N∑
i=1

ui,xui,y

)2

σ−2
i (8.26)

which can be rewritten as:

A1,1A2,2 −A2
1,2 =

N∑
i=1

N∑
j>i

(u2
i,xu

2
j,y + u2

j,xu
2
i,y − 2ui,xui,yuj,xuj,y)σ−2

i σ−2
j (8.27)

which can be compacted as:

A1,1A2,2 −A2
1,2 =

N∑
i=1

N∑
j>i

(ui,xuj,y − ui,yuj,x)2σ−2
i σ−2

j (8.28)

A1,1A2,2 −A2
1,2 =

N∑
i=1

N∑
j>i

(‖ui,xy‖2‖uj,xy‖2 sin2(θi,j))σ−2
i σ−2

j (8.29)

where θi,j is the angle between the projection of the receivers i and j in two dimensions. The
projection of the sender position in two dimensions is the angle vertex. The variable ui,xy is
the projection of the unit vector ui in two dimensions. In [80] they assumed a two-dimensional
scenario. Then the norm of the unit vectors is one, which simplifies the equation and results in
Eq. 8.22. In this case, one can clearly see that the determinant of the first two components is
actually the sum of the areas of the parallelograms formed by the projection of the unit vectors
in two dimensions:

A1,1A2,2 −A2
1,2 =

N∑
i=1

N∑
j>i

Area2
p(ui,xy,uj,xy)σ−2

i σ−2
j (8.30)
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8 Using Ground Reflections to Reduce the Localization Error

where Areap(a,b) denotes the area of a parallelogram with edges a and b. Then:

VDOP2 = 1
σ2
n

∑N
i=1

∑N
j>i Area2

p(ui,xy,uj,xy)
det(HTR−1

t H)
(8.31)

where:

det(HTR−1
t H) =

N∑
i=1

u2
i,zσ
−2
i

N∑
i=1

N∑
j>i

Area2
p(ui,xy,uj,xy)σ−2

i σ−2
j −

N∑
i=1

u2
i,xσ

−2
i

(
N∑
i=1

ui,yui,zσ
−2
i

)2

−

N∑
i=1

u2
i,yσ
−2
i

(
N∑
i=1

ui,xui,zσ
−2
i

)2

+ 2
(

N∑
i=1

ui,xui,yσ
−2
i

N∑
i=1

ui,xui,zσ
−2
i

N∑
i=1

ui,yui,zσ
−2
i

)
(8.32)

In order to understand Eq. 8.32 and why ground reflections can lead to a low error in the
height estimation, in the following sections we analyze the VDOP for different cases.

Special Case: Three Receivers

The TOA measurements of three receivers lead to two solutions. However, in certain cases, one
of the solutions can be eliminated using information about the environment. For example, if one
knows where the ground is located and what is the range of heights at which the target can be,
one can often eliminate one of the solutions due to its unfeasible height. Moreover, the VDOP
in this special case can be represented geometrically, which allows a better comprehension of
the terms that are involved on its calculation.

As commented before, the vertical dilution of precision can be calculated as:

VDOP2 =
A1,1A2,2 −A2

1,2
det(HTH) (8.33)

when the standard deviation of the noise is the same for all receivers. The matrix HTH is
a so-called Gramian matrix, which means its determinant is the square of the volume of the
parallelotope with edges the columns of H. The columns of H do not have any geometrical
meaning. However, every row corresponds to a different receiver and can be viewed as a unit
vector with center the position of the target. This is crucial when the matrix is symmetric, as
the determinant remains the same when a symmetric matrix is transposed. The matrix H is
symmetric when the number of receivers is three. In this case, the determinant of the Gramian
matrix is equal to the volume of the parallelepiped with edges the three unit vectors. This
was already used in [81] with pseudo-range measurements to study the dilution of precision
of the GPS. In our case, the vertical dilution of precision is related to the area formed by the
projections of the unit vectors in two dimensions and the three-dimensional volume generated
by them.
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8.2 Time of Arrival

Assuming the noise is Gaussian with standard deviation σn, and having three receivers with
unit vectors u,v and w, the VDOP can be rewritten as:

VDOP2 = sin2(θu,v)‖uxy‖2‖vxy‖2 + sin2(θu,w)‖uxy‖2‖wxy‖2 + sin2(θw,v)‖wxy‖2‖vxy‖2

(‖u · (v×w)‖)2

(8.34)
This can be seen geometrically as:

VDOP2 =
Area2

p(uxy,vxy) + Area2
p(uxy,wxy) + Area2

p(wxy,vxy)
(Volp(u,v,w))2 (8.35)

The volume of the parallepiped formed by the vectors a,b and c is denoted as Volp(a,b, c). As
we are looking at a minimal case (three receivers) one cannot have one ground reflection for ev-
ery line-of-sight measurement. However, Eq. 8.35 provides a useful geometrical representation
of the VDOP. In Fig. 8.1 one can observe how a ground reflection can be useful when the line-
of-sight receivers have a reduced z component in their unit vectors. In this case, the area of the
two-dimensional projections is reduced and the volume of the parallepiped is increased. Then,
the value of the numerator is increased and the value of the denominator is reduced. Therefore,
ground reflections can improve the result by increasing the absolute value of the unit vectors in
the z coordinate.

Special case: Equally Distributed Receivers in x and y

If the sender observes that the receivers are equally distributed in the x and y axis, and they are
installed at the same height, we know that:

N∑
i=1

ui,xui,z =
N∑
i=1

ui,yui,z (8.36)

This does not mean that the speaker has to be in the middle of the receivers. An example of
this scenario is when the unit vectors in two dimensions are mirrored over the line y = x. This
allows a high number of configurations, simplifies the equations and results in a VDOP which
can be easily comprehended.

Then:

det(HTR−1
t H) =

N∑
i=1

u2
i,zσ
−2
i

N∑
i=1

N∑
j>i

Area2
p(ui,xy,uj,xy)σ−2

i σ−2
j −

(
N∑
i=1

ui,xui,zσ
−2
i

)2( N∑
i=1

u2
i,xσ

−2
i +

N∑
i=1

u2
i,yσ
−2
i − 2

(
N∑
i=1

ui,xui,yσ
−2
i

)) (8.37)

For further simplification, we assume the standard deviation of the noise is the same for all
receivers:

VDOP2 = ∑N
i=1

∑N
j>i Area2

p(ui,xy,uj,xy)∑N
i=1 u

2
i,z

(∑N
i=1

∑N
j>i Area2

p(ui,xy,uj,xy)
)
− (
∑N
i=1 ui,xui,z)2(∑N

i=1(ui,x − ui,y)2) (8.38)
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8 Using Ground Reflections to Reduce the Localization Error

(a) Using a ground reflection, the squared volume of the parallepiped is 0.30, while the sum of the squared area of
the two-dimensional projections (in red) is 1.67. Then, using Eq 8.35, the VDOP is 2.35. The dilution of precision
in x and y is 1.48.

(b) Using only line-of-sight measurements, the squared volume of the parallepiped is 0.03, whereas the squared
area of the two-dimensional projections (in red) is 1.93. Then, using Eq 8.35, the VDOP is 8.57. The dilution of
precision in x and y is 2.02.

Figure 8.1: Geometrical representation of the vertical dilution of precision, when the target is located
with three receivers and time of arrival measurements. The receivers are at 2.5 m height, and
the target at 1.5 m height. The first figure shows the result when one of the three measurements
is a ground reflection. The second figure shows the result when the three receivers are line-of-
sight. One can see how the volume of the parallepiped is considerably increased, while the two-
dimensional projection is similar in both cases. This reduces the virtual dilution of precision, as
seen in Eq 8.35. Then, in this case, having a ground reflection would considerably improve the
height estimation.
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8.2 Time of Arrival

It is very clear from this equation, why the ground reflection can highly improve the height
estimation. First, the unit vector in the z component ui,z will be increased, as the reflection
always comes from a larger distance in z than the LOS signal. Second, the unit vector in z of
the ground reflection will have the opposite sign than the LOS signal, which will reduce the
component

∑N
i=1 ui,xui,z .

Special case: Sender in the Center of the Receivers

In this case, we assume a pair number of receivers are placed at the same height and equally
distributed in the x and y coordinates. Then, the sender is placed in the center of the receivers.
If this happens, the terms

∑N
i=1 ui,xui,z and

∑N
i=1 ui,yui,z are close to zero. As a result of this,

the vertical dilution of precision depends only on the z component of the unit vectors. This
leads to the same result as it would be if the sender position in x and y was perfectly known in
advance.

If a signal is in line-of-sight signal, the z component of its unit vector is:

u∗i,z = (Sz − zr)
R∗i

(8.39)

where R∗i is the distance from the sender to the receiver. For the ground reflection we define
another unit vector u′i whose z component is:

u′i,z = (Sz + zr)
R′i

(8.40)

whereR′i is the distance from the virtual sender to the receiver. For simplification, from now on
we assume the received signals have nl ground reflections and the same number of line-of-sight
signals.

σnVDOPLOS = 1√∑nl
i=1 σ

−2
i,n (u∗i,z)2

= 1√∑nl
i=1 σ

−2
i,n

(
z−zi
R∗i

)2
(8.41)

Assuming all LOS receivers have the same noise standard deviation σn and the coordinate zi is
the same for all the receivers (zr):

VDOPLOS = 1

|Sz − zr|
√∑nl

i=1

(
1
R∗i

)2
(8.42)

Now we introduce the ground reflection. We assume all the reflections have an additive
Gaussian noise with variance σ2

r and all the line-of-sight measurements have an additive Gaus-
sian noise with variance σ2

n. Note that the approximation of a virtual receiver will be true only
if there is a ground reflection (Sz , zr > 0). Then, if we add the ground reflections of every
receiver:

VDOPW/GROUND = 1√
(Sz − zr)2∑nl

i=1

(
1
R∗i

)2
+ (σn

σr
)2(Sz + zr)2∑nl

i=1

(
1
R′i

)2 (8.43)

93



8 Using Ground Reflections to Reduce the Localization Error

Then:

VDOPLOS

VDOPW/GROUND
=

√√√√√√1 +
(σn
σr

)2(Sz + zr)2∑nl
i=1

(
1
R′i

)2

(Sz − zr)2∑nl
i=1

(
1
R∗i

)2 =

√√√√1 +
(σn
σr

)2∑nl
i=1(u′z,i)2∑nl

i=1(u∗z,i)2

(8.44)
It is interesting to observe how the major improvement in this case comes from the change

in the unit vector in the z coordinate, as we showed in [7]. Here the ground reflection does not
improve the height estimation by having a good distribution of receivers, it improves it because
of having additional receivers which are farther in the z coordinate than the actual receivers.
This is because in this case there is no ambiguity in the other components.

Special Case: Receivers Much Higher Than the Sender

If zr � Sz , then, u∗i,z ≈ −u′i,z . Using the ground reflection:

(VDOPW/GROUND)2 ≈ 1
σ2
n

1∑nl
i=1(u∗i,z)2σ−2

i,n +
∑nl
i=1 u

′2
i,zσ
−2
i,r

(8.45)

We observe how even when the speaker has a low height, the ground reflection removes the
dependence from the coordinates x and y. The resulting VDOP is the same than when these
variables are known in advance or the sender is in the middle of the receivers, as it has been
shown in Eq. 8.41 and Eq. 8.44.

Special Case: Receivers and Sender at the Same Height

If Sz = zr, then:

u∗i,z = 0 ∀i ∈ [1, . . . , nl] (8.46)

u′i,z = (2zr)
R′i

∀i ∈ [1, . . . , nl] (8.47)

In this case, without the ground reflection it is not possible to estimate the height of the target:

VDOPLOS =∞ (8.48)

with ground reflections the height can be estimated:

(VDOPW/GROUND)2 = 1
σ2
n

∑N
i=1

∑N
j>i Area2

p(ui,xy,uj,xy)σ−2
i σ−2

j

det(HTR−1
t H)

(8.49)
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and

det(HTR−1
t H) =

nl∑
i=1

u′
2
i,zσ
−2
i,r

N∑
i=1

N∑
j>i

Area2
p(ui,xy,uj,xy)σ−2

i σ−2
j −(

nl∑
i=1

(u∗i,x)2σ−2
i,n +

nl∑
i=1

u′
2
i,xσ

−2
i,r

)(
nl∑
i=1

u′i,yu
′
i,zσ
−2
i,r

)2

−

(
nl∑
i=1

(u∗i,y)2σ−2
i,n +

nl∑
i=1

u′2i,yσ
−2
i,r

)(
nl∑
i=1

u′i,xu
′
i,zσ
−2
i,r

)2

+

2
(
nl∑
i=1

u∗i,xu
∗
i,yσ
−2
i,n +

nl∑
i=1

u′i,xu
′
i,yσ
−2
i,r

)
nl∑
i=1

u′i,xu
′
i,zσ
−2
i,r

nl∑
i=1

u′i,yu
′
i,zσ
−2
i,r

(8.50)

where u′i,x and u′i,y are the x and y components of the unit vector to the virtual receiver i. We
see the big impact that the ground reflection has when the sender has a similar height as the
receivers. Without the ground reflection, it is not possible to estimate the height reliably. With
the ground reflections, the result depends on the distribution of the receivers in two dimensions
and on how far the speaker is from the ground. If the speaker and the receivers are close to the
ground, (u′i,z)2 is close to zero and therefore the VDOP is increased. This is because then the
virtual receivers, the real receivers and the sender have all approximately the same height.

8.3 Time Difference of Arrival

When using time difference of arrival, the matrix H is:

H =


Sx−Mx,1

R1
− Sx−Mx,ref

Rref

Sy−My,1
R1

− Sy−My,ref

Rref

Sz−Mz,1
R1

− Sz−Mz,ref

Rref

...
...

...
Sx−Mx,N−1

Rn
− Sx−Mx,ref

Rref

Sy−My,N−1
RN−1

− Sy−My,ref

Rref

Sz−Mz,N−1
RN−1

− Sz−Mz,ref

Rref


(8.51)

This can be rewritten using unit vectors that go from the sender to the receiver position:

H =

 u1,x − uref,x u1,y − uref,y u1,z − uref,z
...

...
...

uN−1,x − uref,x uN−1,y − uref,y uN−1,z − uref,z

 (8.52)

For simplicity, we define the auxiliary vector wi = ui − uref . Then:

H =

 w1,x w1,y w1,z
...

...
...

wN−1,x wN−1,y wN−1,z

 (8.53)

When using hyperbolic multilateration, two timestamps are used for every measurement, which
means the noise between multiple measurements is correlated. As shown in [82], one can define
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8 Using Ground Reflections to Reduce the Localization Error

a matrix D as:

D =


−1 1 0 · · · 0
−1 0 1 · · · 0

...
...

. . .
...

...
−1 0 0 · · · 1

 (8.54)

The first column corresponds to the reference receiver. The other N − 1 columns correspond
to the other receivers. Then the (N − 1) × (N − 1) noise matrix of the TDOA measurements
will be:

RTD = DRtDT (8.55)

where Rt is a N ×N matrix which contains the noise covariance of all N receivers. Then, the
matrix A will be calculated as follows:

A = (HTR−1
TDH) (8.56)

which complicates its evaluation. However, it is interesting to observe how now the determinant
det(A) depends on the vector w instead of u. This means, if the z component of the unit
vectors is similar for all receivers, the third column of H will be close to zero. If the third
column is close to zero, changes in the height of the target will lead to small changes in the
measurements and therefore a high dilution of precision.

In the following sections we analyze the VDOP for two extreme cases: when the sender is
at the same height than the receivers and when the sender is at a much lower height than the
receivers.

Special Case: Receivers and Sender at the Same Height

If all receivers are at the same height zr and Sz = zr, then:

wi,z = 0 ∀i ∈ [1, . . . , N − 1] (8.57)

assuming only line-of-sight signals are received.
As H has a column of zeros, the matrix A is singular. This is because the third column and

the third row of A contain only zeros. Therefore, the determinant is zero and the matrix is not
invertible. This means without the ground reflection it is not possible to estimate the height of
the target:

VDOPLOS =∞ (8.58)

whereas with ground reflections the height can be estimated.

Special Case: Receivers Much Higher Than the Sender

From the TOA case we know that if zr � Sz , then u∗i,z ≈ −u′i,z . In order to simplify the
equations, it is important to note that using pseudo-range measurements the vertical dilution
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of precision is exactly the same as using time difference of arrival [83]. Pseudo-range mea-
surements are defined in a way such that one estimates the variables x, y, z and an additional
variable d0 which contains the sending time. Then, a measurement mi from the receiver i
would be:

mi = ‖Mi − S‖+ d0 (8.59)

Then, we can reformulate A as:

A = (HT
prR−1

t Hpr) (8.60)

where:

Hpr =


Sx−Mx,1

R1

Sy−My,1
R1

1 Sz−Mz,1
R1

...
...

...
Sx−Mx,N

RN

Sy−My,N

RN
1 Sz−Mz,N

RN

 (8.61)

One can observe how now we have a similar matrix as in the TOA case, but with an additional
column which contains the derivative with respect to the distance offset d0 corresponding to the
estimated sending time. Then we can define:

A =


Axx Axy Axd0 Axz
Axy Ayy Ayd0 Ayz
Axd0 Ayd0 Ad0d0 Azd0

Axz Ayz Azd0 Azz

 (8.62)

We know that:

Axz =
N∑
k=1

(
Sx −Mx,k

σ2
kRk

)(
uk,z
σ2
k

)
(8.63)

Then, as the LOS signals will have a component uk,z with the opposite sign and the same
value as their corresponding ground reflection, this value will be close to zero (Axz ≈ 0) if the
noise standard deviation is the same for all measurements. The same can be applied for the y
component (Ayz ≈ 0). Regarding the distance offset d0:

Azd0 =
N∑
k=1

(
uk,z
σ2
k

)
(8.64)

which will be also close to zero if all measurements have an identical noise distribution and we
receive the corresponding ground reflection of every line-of-sight signal.

In a similar way as we have seen in Eq. 8.23:

σ2
nVDOP2 = det(A1:3,1:3)

det(A) (8.65)

As the fourth column and fourth row of A will contain only zeros except for the component
Azz , one can simplify the equation above as:

(σnVDOPW/GROUND)2 ≈ 1
Azz

(8.66)
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which is equivalent to:

(VDOPW/GROUND)2 ≈ 1∑N
i=1(ui,z)2

(8.67)

Then, in this scenario, the VDOP using ground reflections is the same as using TOA when the
noise distribution is the same for all measurements. It is the same as it would be if the variables
Sx, Sy and d0 were perfectly known in advance.

We can conclude that in the two extreme cases for the height of the target the ground reflec-
tion presents a considerable improvement in the VDOP, as seen in Table 8.1.

Sz � zr Sz ≈ zr
VDOP using ground reflections Same as knowing Sx, Sy and d0 in advance ≤ ∞
VDOP not using ground reflections ≤ ∞ ∞

Table 8.1: Comparison of the VDOP in the extreme cases for the height of the sender Sz . We con-
sider the receivers are placed at the same height zr and all measurements have an identical noise
distribution.

8.4 Exploiting Ground Reflection

We have seen how ground reflections can be used to increase the precision of the height estima-
tion. However, one needs to identify which signals are ground reflections in order to use them
as additional information. In this section we provide a simple solution [7] for identifying the
ground reflections from a smartphone with limited computational power and without relying
on position estimations.

The ground can be modeled as an infinite plane. This plane can be defined with a normal
vector n̂ and a point of the plane P .

Having a sender at position S, the ground will produce the same measurement as a virtual
sender Sv (see Fig. 8.2). Its position depends on the plane and the sender position:

Sv = 2(−n̂‖DT n̂‖) + S (8.68)

D = P− S (8.69)

Then, a microphone at position Mi will receive the line-of-sight signal TL,i and the reflection
from the ground Tr,i:

TL,i = 1
c
‖S−Mi‖+ ts

Tr,i = 1
c
‖Sv −Mi‖+ ts

(8.70)

where ts is the sending time. In order to simplify the equations, we define:

TL,i = TL,i − ts
T r,i = Tr,i − ts

(8.71)
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P

n̂
S

MiMj

Sv

Figure 8.2: Schematic of the ground reflection. The speaker at position S emits a sound signal. The
line-of-sight signal and the reflection from the ground are received by the receivers Mi and Mj . [7]

Having more than one receiver, one can calculate the difference of two squares. In the case of
the line of sight signals:

T
2
L,i − T

2
L,j = ‖Mi‖2 − ‖Mj‖2 − 2ST (Mi −Mj)

c2 (8.72)

The relation between the ground reflections is:

T
2
r,i − T

2
r,j = ‖Mi‖2 − ‖Mj‖2 − 2(2(−n̂‖Dn̂‖) + S)T (Mi −Mj)

c2 (8.73)

If the normal vector of the plane is perpendicular to the vector Mi −Mj , then the product
(n̂‖Dn̂‖)T (Mi −Mj) is zero:

T
2
r,i − T

2
r,j = ‖Mi‖2 − ‖Mj‖2 − 2ST (Mi −Mj)

c2 (8.74)

Then, the timestamps of the ground reflection and the timestamps of the line of sight signals
are related as follows:

T
2
r,i − T

2
r,j = T

2
L,i − T

2
L,j (8.75)

This means, if the receivers are in a plane parallel to the ground, the sending time can be
estimated using only the information of the received timestamps:

(Tr,i − ts)2 − (Tr,j − ts)2 = (TL,i − ts)2 − (TL,j − ts)2 (8.76)

Then, isolating the variable ts:

ts =
T 2
r,i − T 2

r,j − T 2
L,i + T 2

L,j

−2TL,i + 2TL,j − 2Tr,j + 2Tr,i
(8.77)

LOS and Ground Reflection Detection by RANSAC

Random sample consensus [84] is a recursive method which has been widely used for detecting
samples which fulfill a certain model, eliminating the outliers and finding the inliers. In our

99



8 Using Ground Reflections to Reduce the Localization Error

approach [7] we use it in order to identify the LOS signals and the reflections from the ground,
eliminating reflections from walls and objects.

First, one has to realize that the sending time is independent of the smartphone position and
the receivers. The Eq. 8.77 can be used to determine which samples are outliers for a certain
sender position. However, if the sender emits signals at regular intervals I , multiple sender
positions can be used to estimate the sending time. The reception times are:

TL,i,k = 1
c
‖S−Mi‖+ t0 + kI

Tr,i,k = 1
c
‖Sv −Mi‖+ t0 + kI

(8.78)

If the interval I is much larger than the propagation time, the number of elapsed intervals k
can be estimated, as explained in previous chapters. Then, we subtract the elapsed intervals to
every received timestamp:

TL,i = TL,i,k − kI
Tr,i = Tr,i,k − kI

(8.79)

One can use Eq. 8.77 to estimate t0, which has to be the same for all sender positions. The
procedure of the RANSAC method is:

1. Select four timestamps TL,i, Tr,i, TL,j , Tr,j
2. Subtract elapsed intervals kI from all of them
3. Estimate sending time t0 using Eq. 8.77
4. If t0 is close in time to a previously estimated sending time, add the timestamps to its

pile, otherwise create a new pile
5. Repeat the previous steps for all the possible combinations of timestamps
6. Choose the t0 pile with most inliers and output the median of the estimated t0 as the

sending time for localization.

Position Estimation

Once the timestamps from N receivers are selected, the position of the sender S can be esti-
mated with non linear least squares algorithms by minimizing:

N∑
i=1

arg min
S

(
(fi)2 + (f ′i)2) (8.80)

where

fi = ‖Mi − S‖+ c(t0 − TL,i) (8.81)

and

f ′i = ‖M′
i − S‖+ c(t0 − Tr,i) (8.82)

where M′
i is the position of the receiver i with inverted height (the virtual receiver). The

algorithms used to minimize the error function are gradient descent and Gauss-Newton.
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8.5 Experimental Results

Real experiments were done to prove the feasibility of the proposed approach and observe how
much improvement can the ground reflection provide in reality. The ASSIST system was used.
A total number of nine receivers were mounted on the ceiling at a median height of 4.84 m.
Due to the irregularities of the construction, the height was not exactly the same for all of the
receivers. The maximum height was 4.879 m and the minimum height was 4.824 m.

Static Sender

First of all, we placed a smartphone at six positions with different heights (1.39 m and 2.12 m).
The aim of this first experiment was to show experimentally whether the ground reflections can
increase the precision of the height estimations, as predicted with the Cramer-Rao lower bound.
Therefore, in this first experiment the reference positions were used to find the most likely
ground reflections and line-of-sight signals. The algorithm to detect the ground reflections was
not used for this experiment. We estimated the positions of the target using ground reflections
and not using them. The resulting root mean square error for the height estimation can be seen
in Fig. 8.3.
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Figure 8.3: Cramer-Rao lower bound for the root mean square error compared with the actual error
estimating the height of the sender using TDOA. One can observe how using the ground reflections,
the error estimating the height of the target is drastically reduced. A median of 621 points are used
per sender position.

The resulting errors are compared with the Cramer-Rao lower bound. A median of 621
estimated positions were used for every position of the sender. Using ground reflections the
lower bound is drastically reduced and consequently the measured localization error is reduced
too. The standard deviation of the noise is assumed to be 0.044 ms. Nonetheless, the actual
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8 Using Ground Reflections to Reduce the Localization Error

noise was not normally distributed. Especially since it presented a heavy tail due to errors in
the detection of the timestamps and in the synchronization. However, a Gaussian distribution is
a best-case scenario which allows us to estimate a lower bound for the error. More information
about the estimation of the standard deviation can be seen in the Appendix of this thesis.

In order to test the proposed approach for detecting ground reflections another experiment
was done with the smartphone standing still in four positions with two different heights (1.39 m
and 2.12 m), resulting in eight different positions. A total number of 395 positions were esti-
mated, approximately 50 estimated positions per real position. A picture of the experimental
set-up can be seen in Fig. 8.4. The timestamps selected by the RANSAC method were used
for estimating the positions using TDOA, TOA with ground reflections and TOA with only
line-of-sight signals (see Fig. 8.5). The sending time used for TOA is the one estimated by the
RANSAC method. The height estimation is clearly improved by using the ground reflections
(see Fig. 8.6). With TOA, the maximum RMSE using ground reflections is 0.17 m whereas the
maximum RMSE without them is 1.52 m.

Figure 8.4: A smartphone was placed at eight different positions. Four of them with a height of 1.39 m
and four of them with a height of 2.12 m. [7]

One can also calculate the median error and the standard deviation. Using the ground reflec-
tions, the height estimation has a median error of 0.042 m and a standard deviation of 0.017 m.
Not using the ground reflections, with TOA the median error is 0.249 and the standard devia-
tion 0.131. The greatest error is achieved using TDOA: 0.572 m median error and a standard
deviation of 0.270 m.

Moving Sender

Another group of experiments were done in order to test the capability of the presented ap-
proach of estimating the target position in a more realistic scenario. To do this, a person was
holding a smartphone while walking and standing still at different positions. The person was
moving the smartphone up and down to different heights. The motion capture system was used
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Figure 8.5: The blue dots show the raw timestamps received by a certain receiver with a sender standing
still. The RANSAC method selects the timestamps which fulfill Eq. 8.77. The selected timestamps
are the line-of-sight signal and the ground reflection. [7]
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Figure 8.6: Root mean square error in the height estimation using TDOA, TOA and TOA with ground
reflection as virtual receivers. The height estimation is improved in all the points by using the
ground reflections. The maximum RMSE using ground reflections is 0.17 m. The sending time is
estimated using the RANSAC method.

as a ground-truth.
First we analyze again the error in the height estimation. In Fig. 8.7 one can see the cumu-

lative error distribution when the sending time is estimated with RANSAC. Using the ground
reflections, the error estimating the height is considerably reduced. When using ground reflec-
tions and the estimated sending time, the median error is 0.022 m, which is the same as using
time difference of arrival. However, when no reflections are used, the estimated sending time
provides a better height estimation (0.141 m median error) than using time difference of arrival
(0.289 m median error). This can be easily explained by looking at the virtual dilution of pre-
cision of the estimated positions (Fig. 8.8). One can see how, when the ground reflections are
used, the dilution of precision in the z coordinate is very similar for TOA and TDOA. Then,
using an estimation of the sending time has a reduced impact on the final estimation error.
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8 Using Ground Reflections to Reduce the Localization Error

The cumulative distribution when the real sending time is known can be seen in Fig. 8.9. In
this case, the error is slightly reduced when using TOA. When no ground reflections are used,
knowing the sending time improves drastically the height estimation.

By looking at the VDOP figure (Fig. 8.8) one can clearly observe how using ground re-
flections reduces drastically the VDOP. The maximum VDOP using them is 1.17, using time
difference of arrival. The maximum VDOP without using the ground reflections and using
TOA measurements, is 4.86, when the target is at 2.98 m height. Using TDOA measurements
the maximum is at 23.72.
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Figure 8.7: Cumulative distribution of the height estimation error when the sending time is estimated by
the presented approach. Using ground reflections and the estimated sending time, the median error
is 0.022 m, which is the same as using time difference of arrival. When no reflections are used, the
estimated sending time provides a better height estimation (0.141 m median error) than using time
difference of arrival (0.289 m median error).

In Table 8.2 one can see the median error of the different algorithms. The best result is
achieved when using the real sending time and ground reflections.

TOA with reflections and using known sending time 0.014 m
TOA with reflections and using estimated sending time 0.022 m
TDOA with reflections 0.022 m
TOA without reflections and using known sending time 0.098 m
TOA without reflections and using estimated sending time 0.141 m
TDOA without reflections 0.289 m

Table 8.2: Comparison of the height median error.

When the sending time was estimated by the presented approach, the resulting positions can
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Figure 8.8: We can observe how the vertical dilution of precision is considerably reduced using ground
reflections as additional information. This happens for different target heights. The maximum
VDOP using ground reflections is 1.17, which allows a precise height estimation.
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Figure 8.9: Cumulative distribution of the height estimation error when the sending time is estimated
using the MoCap data.

be seen in Fig. 8.10. One can observe how the target is not continuously tracked, as the ground
reflections are not always present. The error of these estimations in two dimensions can be
seen in the cumulative distribution in Fig. 8.10. In this case, the sending time is estimated
using the presented approach. One can observe how the ground reflections do not improve the
final estimation in two dimensions. This, while it can be seen as unexpected or surprising, it

105



8 Using Ground Reflections to Reduce the Localization Error

can be explained. When the sending time is estimated and the ground reflections are not used,
the error in the sending time is mitigated by changing the estimated z coordinate. Then, if the
estimated sending time is lower than the real one, the estimation will decrease (erroneously)
the target height to fit the equations. When reflections are used, the height is constrained by the
reflections, which do not allow this. It is also worth mentioning that the estimated sending time
provides a lower localization error than just using TDOA. This is because in this case the DOP
difference is higher between TOA and TDOA (see Fig. 8.12).
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(a) Cumulative distribution of the two-dimensional
error.

-0.5 0 0.5 1 1.5 2 2.5 3

x (m)

-4.5

-4

-3.5

-3

-2.5

-2

y
 (

m
)

Motion Capture

Estimation Using Ground Reflection

Estimation Not Using Ground Reflection

TDOA Using Ground Reflection

TDOA Not Using Ground Reflection

(b) Estimated two-dimensional positions.

Figure 8.10: Experimental result in two dimensions using the estimated sending time. In this case, when
using TOA, the ground reflection slightly increases the error. This is because when no reflection
is used, the estimated height can correct errors in the sending time, by giving a wrong height
estimation (see Fig 8.7). When reflections are used, the position of the target has more constraints.

Using the sending time calculated with the Mocap data, the ground reflections provide an
improvement on the two-dimensional error (see Fig. 8.11). The median error is 0.047 m with
ground reflections and 0.091 m without ground reflections.

The dilution of precision in two dimensions can be seen in Fig. 8.12. One can see how the
dilution of precision in two dimensions is also reduced when using ground reflections. It is
interesting to observe how using TDOA without ground reflections the dilution of precision is
much higher than with the other alternatives. An example can be seen in Fig. 8.13. In this
position, the DOP in two dimensions has its maximum (28.17). The figure shows how three
hyperboloids do not intersect clearly in one point and a small error in the measurements can
change dramatically the estimated position.

In two dimensions, for most of the positions, knowing the sending time leads to a higher
improvement than the ground reflections, as using TOA without reflections provides a lower
DOP than using TDOA and ground reflections. It is also worth mentioning that using the
ground reflections the dilution of precision in the coordinates x and y is higher than in the
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Figure 8.11: Using the sending time estimated using the ground-truth data. In this case, using ground
reflections also improves the two-dimensional estimations.
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Figure 8.12: Two-dimensional dilution of precision. One can see how the ground reflections also im-
prove the two-dimensional estimation. This is because the ambiguity in the z coordinate can in-
crease the error in the other dimensions (see Fig. 8.13).

coordinate z. The lowest DOP is achieved by using TOA and ground reflections. The median
VDOP is then 0.60 whereas the median DOP in x and y is 1.30.

In conclusion, we have seen how using the ground reflections one can considerably reduce
the error estimating the height of the target. This is consistent with the lower bounds found in
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Figure 8.13: It is revealing to look at the case when the TDOA dilution of precision is maximum. We can
observe how the intersection between the three hyperboloids can change drastically by changing
slightly the measurements. It is interesting to observe how assuming a wrong height would lead to
a wrong xy position, as the intersection between the two dimensional hyperbolas would move in
the x direction.

the previous sections. The proposed method for finding the ground reflections and line-of-sight
signals proves to be capable of doing the data association. The estimated sending time by the
method, while it has a certain error, provides a lower three-dimensional error than just using
TDOA.
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9 Conclusions and Outlook

With this work we have contributed to the field of indoor localization. We have presented
multiple approaches for localization in mixed line-of-sight and non-line-of-sight conditions
which work under different assumptions and constraints. In addition, we have shown how
acoustic reflections can be used as an additional source of information for locating the target.

9.1 Conclusions

In Chapter 5 we have described how NLOS measurements can be detected by using the resid-
ual errors. We have proposed a novel combinatorial algorithm which does not assume any
particular motion of the target. The price to pay is the computational time required to use mul-
tiple combinations of receivers. Another algorithm which obtains similar results is the robust
extended Kalman filter. Then, one can use a probabilistic motion model in order to identify
measurements which are not likely to be in line-of-sight. In both cases, we show how these
algorithms present a limitation, they cannot identify when all the received signals come from
the same wall. We also show how this issue can be overcome by fusing the data from an inertial
measurement unit.

In Chapter 6 we have shown how when a sender is emitting signals at regular intervals, one
can measure the relative movement of the speaker to the receivers. By tracking the small mo-
tions with a joint probability data association filter, signals that come directly from the speaker
or are reflected by the same reflector can be grouped. Then, one does not need to discard non-
line-of-sight signals, as reflectors can be treated as virtual receivers. Nonetheless, the groups
of timestamps can have a reduced number of samples. Therefore, we propose to use a far-field
approximation approach in order to estimate the position of the target and the receivers. This
simplifies the equations and provides an initial solution for non-linear optimization algorithms,
which would otherwise be likely to result in a local minima. Two algorithms are presented and
tested with experimental and simulated data. The first one uses affine geometry, which is robust
against violations of the far-field assumption. However, it requires a normalization in order to
recover the euclidean structure. We propose a normalization which proves to be more robust
to noise than the state-of-the-art. The second algorithm uses the ellipsoid method. We propose
a constrained version of it. This method does not require normalization, although it performs
worse when the positions of the target are not well distributed over the three-dimensional space.
However, we show how its performance can be improved by using constrained optimization.

In Chapter 7, a moving receiver is located with static senders. By locating receivers instead
of senders one can potentially locate unlimited targets. However, as the sound signals are
received at different positions, this leads to an undetermined system of equations. In order
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to overcome this issue, one can assume a probabilistic motion model. As there is no over-
determination, it is challenging to eliminate NLOS measurements or use them as additional
information. Therefore, we propose a method which uses the estimated position and velocity to
predict the time instants at which the signals will be received. This is fused with the modulated
symbols in order to provide a robust localization at velocities up to 1.8 m/s.

Together with the line-of-sight signals there is often a reflection from the ground. These
reflections can reduce the localization error, as they provide valuable information about the
height of the target. In Chapter 8 we have shown that the reflection from the ground can
considerably reduce the error in the height estimation. We have shown analytically how the
lower bound of the RMSE is reduced. Moreover, we have shown experimentally how one can
estimate the height of the target with only 0.014 m median error.

Table 9.1 shows a comparison of the presented algorithms in this thesis. One can observe
how they have different requirements and capabilities. It is also worth noticing that multiple
algorithms can be combined. For instance, one could locate a moving receiver and use robust
regression when estimating the position of the target. One could also use the combinatorial
algorithm and exploit the ground reflection once it is detected.

Algorithm Motion A Priori Knowledge Potential Number Reflections as
Model of Targets Additional Information

Combinatorial Algorithm None Position of the Receivers Limited No (Discarded)
Exploting Ground None Position of the Receivers, Limited Yes (Ground Reflection)
Reflection Interval Length
Robust Regression (REKF) Probabilistic Position of the Receivers Limited No (Lower Weights)
Receiver Movement Probabilistic Position, IDs and Interval Unlimited No (Discarded)
for Identification of the Senders, Modulation
Sender Movement Probabilistic, Interval Length Limited Yes (Virtual Receivers)
for Identification Far-Field

Table 9.1: Comparison of the algorithms for localization in mixed line-of-sight and non-line-of-sight
conditions.

9.2 Outlook

While we have shown how to locate a target in mixed line-of-sight and non-line-of-sight con-
ditions under different scenarios, there is room for improvement.

When locating a moving sender, one could integrate the presented approach in Chapter 6 into
an algorithm which would continuously estimate the position of the target and the receivers,
using groups of sender positions.

The ellipsoid method can be improved by using constraints which contain all long-thin and
compressed ellipsoids. Iterative solutions such as the presented in [75] can be used. In addition,
one could find a formulation for more than four sender positions. With these two improvements,
the ellipsoid method could potentially provide a lower localization error than using affine ge-
ometry. This is because it does not lose the euclidean constraints when estimating the variables.
Therefore, it could provide the optimal solution and at the same time be robust against noise
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and quasi-linear movements.
When locating a receiver, one could detect when the receiver is standing still and use such

positions to increase the robustness of the system, as then the number of constraints would
be larger than the number of variables. One could also use an IMU to estimate the trajectory
between two received timestamps when the target is moving.

The results in Chapter 5 suggest that the data of an inertial measurement can be used to
facilitate the data association. Its cumulative error would need to be corrected using acoustic
measurements. A tightly-coupled fusion should be implemented which is capable of correcting
the errors from the inertial measurement unit and identify the non-line-of-sight measurements.

In Chapter 8, we suggest a more detailed analysis about the improvement provided by other
acoustic reflections. Signals which are reflected by the ceiling or the walls can increase the
localization precision in certain scenarios. For example, a rectangular room can provide virtual
receivers which are well distributed over the x and y dimensions.

Overall during this thesis we have provided novel approaches for localization in presence
of non-line-of-sight measurements which will hopefully inspire new research in the field. In
addition, the results presented in this thesis suggest that using acoustic reflections as additional
information for localization is promising and merits more research attention.
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A Appendix

Receiver Localization

In order to locate a moving receiver in Chapter 7, five senders were used. The positions of the
receivers and the actual trajectory of the target can be seen in Fig. A.1. Four of the senders were
placed at a height of 3.4 m and one of them at a height of 2.02 m. Every sender emitted a signal
with a different period of emission. The median of the periods of emission Ij was 0.301 s.
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Figure A.1: Static senders and trajectory of the moving receiver. The height of the senders was 3.4 m
except for the receiver in the bottom middle, which had a height of 2.02 m.

In Chapter 7 we showed how fusing the estimated velocity and position of the receiver and
the detected symbol one can predict which are the line-of-sight signals of every sender. In
Fig. A.2 one can observe how the proposed algorithm detects the timestamps which correspond
to the estimated position and velocity of the target. One can also observe how using only the
angle error of the symbols is not enough for a proper localization, as the line-of-sight signals
of the sender do not always have the lowest angle error. It is also interesting to observe how
the approach in [77] cannot keep track of the large time differences between the line-of-sight
signals produced by the high velocity of the target. This is because the approach in [77] does
not use the estimated position and velocity of the target to predict the line-of-sight signals.
Therefore, it predicts that the timestamps will be received after one interval Ii, which is only
true when the target is standing. The angle error is calculated as the euclidean norm of the
vector which contains the angle difference between the measured four symbols sMS and the
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actual four symbols sGT which contain the identification of the sender:

φRXError = ‖sGT − sMS‖ (A.1)

0 10 20 30 40 50 60
Time (s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T
k 

i-k
I i

(s
)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5Received Timestamps
Selected LOS timestamps 

(a) Detected line-of-sight signals of the sender i us-
ing the estimated position and velocity of the target
as additional information.
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(b) Detected line-of-sight signals of the sender i as-
suming two consecutive LOS signals are received
after an interval Ii.

Figure A.2: Selected line-of-sight signals of a receiver moving in the trajectory of Fig. A.1. The points
with the same Tki − kIi value correspond to a receiver standing still. This is why the algorithm
used on the right figure tends to detect signals with a similar Tki−kIi value, whereas the algorithm
used in the left figure is capable of tracking time differences caused by the movement of the target.

Sender Localization

The experiments carried out in this thesis for locating an acoustic sender were done with the
experimental setup in Fig. A.3. Twelve receivers were used, three of them with a height of
approximately 3.40 m and nine of them with a height of approximately 4.84 m. In Chapter 8
only the receivers with larger height were used. This is because of the assumption that the
receivers are placed at a similar height. The zone where the motion capture system is capable
of locating is limited. Therefore, in order to be able to have a reference system, the experiments
were done in that area.

120



-10 -8 -6 -4 -2 0 2 4 6 8

x (m)

-6

-4

-2

0

2

4

6

8

y
 (

m
)

Receivers

Motion Capture

Coverage

Figure A.3: Position of the receivers used for locating a sender in this thesis. The motion capture system
had a limited coverage area. Therefore, the experiments were done in that area. The area marked
with a rectangle is an approximation of the maximum range of the system. The three receivers
at the top of the picture had a height of approximately 3.40 m whereas the others had a height of
approximately 4.84 m.

Joint Probability Data Association Filter

As explained in Chapter 6, a joint probability data association filter (JPDAF) can be used to
keep track of the relative movement of the sender to the receivers. This is because the move-
ment of the target between two consecutive measurements is limited. In order to show the
performance of such a data association algorithm, we record the timestamps of two different
senders separately and we put the measurements together without any information about the
sender which produced them. Moreover, we add a time offset to the measurements generated
by one of the senders to simulate that the emitted signals by both senders are received at similar
times, which makes the data association more challenging. The aim is to use JPDAF to identify
which sender generated each signal. The result can be seen in Fig. A.4. One can observe how
the estimated relative velocity of the target is used for predicting the next timestamp of every
sender.

It is also interesting to observe how the covariance of the state increases when no measure-
ments are received. By limiting the maximum covariance of the state one can limit the maxi-
mum amount of time that a track can be without data before being eliminated. In this example,
one can see how near the second 25 there are no measurements for one of the senders during
approximately 0.9 s. In this case, one could have eliminated the track and created a new one
when the next measurement was received. A person with normal walking speed (1 m/s) would
have resulted in a maximum time difference of 2.6 ms. Depending on the maximum velocity
of the target and the number of measurements to be associated, the maximum covariance can
be set differently. This explains why the tracks might have a limited number of measurements.

As every track can have a limited number of measurements, the elapsed time and therefore
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Figure A.4: Associated timestamps of two senders using a JPDAF. Two tracks estimate the relative
velocity of the senders and every measurement is associated to the most likely track. The line of
every track represents two standard deviations of the state. One can observe how the covariance of
the state increases when no measurements are received. It also increases when a measurement is
far from the predicted relative velocity. This happens when the target accelerates or the error in the
measurements is large.

the movement of the target during that time is limited compared to the distances to the re-
ceivers. This allows the possibility of using a far-field assumption for initializing the non-linear
optimization algorithms which would otherwise be likely to get stuck in a local minima.

Far-Field Assumption

In Chapter 6 we show how the far-field assumption can be used for locating a sender and
estimating the position of the receivers. Then, the question arises of when does this assumption
hold. In order to answer this, one can derive analytically the error of this assumption [85].

For simplification and without loss of generality we assume the sender St and the receivers
are located in a two-dimensional scenario. A schematic can be seen in Fig. A.5.

Having a sender St and a receiver Mi in R2, the distance di,t between them is:

di,t =
√

(Sx,t −Mi,x)2 + (Sy,t −Mi,y)2 (A.2)

For simplicity we define the coordinate system in such a way that the previous position of the
sender St−1 is in x = 0 and y = 0 and it moved in the y direction at velocity v. Then, after a
certain time ∆t, we know that Mi,y = di,t−1cos(ϕ), Sy,t = (∆t)v and Sx,t = 0, where ϕ is
the angle between the velocity vector and the vector formed by Mi and St−1. Then:

di,t =
√

((∆t)v)2 − 2(∆t)vdi,t−1 cos(ϕ) + d2
i,t−1 (A.3)
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Figure A.5: Schematic of the far-field assumption. A sender moves from St−1 to St. The distance
moved is assumed to be much lower than the distance to the receiver Mi.

Using the binomial theorem, one can approximate this as:

di,t = di,t−1 − (∆t)v cos(ϕ) + ((∆t)v)2

2di,t−1
sin2(ϕ) + ... (A.4)

Then:

di,t − di,t−1 ≈ −(∆t)v cos(ϕ) + ((∆t)v)2

2di,t−1
sin2(ϕ) (A.5)

One can observe how this is the sum of the far-field assumption and the far-field approximation
error. Higher order terms can also increase the approximation error. However, we neglect them
and focus on:

εf = ((∆t)v)2

2di,t−1
sin2(ϕ) (A.6)

which has its maximum when the velocity vector is perpendicular to the receiver direction.
This is an interesting result, as it shows that the far-field assumption error will not have the
same effect on all the receivers, it will vary depending on how they are located relative to
the velocity vector of the sender. Therefore, the proposed normalization method in Chapter 6
increases the robustness against violations of the far-field assumption, as it does not normalize
all receivers with the same C matrix.

The maximum of the error term εf is:

((∆t)v)2

2di,t−1
(A.7)

In Fig. A.6 we show an example of the error caused by assuming far-field when a sender moved
0.1 m and was located at a distance of 1 m from the receiver. This would be equivalent to how
much would have moved a person walking at normal speed (1 m/s) during one time interval of
0.1 ms. In order to observe only the error produced by assuming a far-field, no measurement
noise was added to this simulation. One can observe that even when the receiver is at only
ten times the distance moved by the sender, the maximum error is only 5% of the maximum
distance difference. One can also observe how the term εf is the most noticeable term of the
far-field assumption error.
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Figure A.6: Far-field assumption errors for two sender positions located at 1 m distance from the re-
ceiver. The distance between the sender positions is 0.1 m. One can observe how the error of
assuming a far-field has its minimum when the target moves in the direction of the receiver and its
maximum when it moves perpendicularly to it, as seen in Eq. A.6.

Ground Reflections

In Chapter 8 we present the Cramer-Rao lower bound for locating a sender using ground re-
flections. In order to do so one needs to know the standard deviation of the measurement noise,
which is assumed to be Gaussian distributed. For this reason, we estimated the error of 6878
line-of-sight measurements and 2738 non-line-of-sight measurements. The speaker was located
at six positions with a height of 1.39 m and 2.12 m. The error of every measurement was esti-
mated by subtracting the elapsed intervals from the received timestamps. The deviation from
the median value was considered to be the error. This means, it does not include systematic
errors which are clearly non-Gaussian such as the ones produced by assuming a wrong sound
velocity.

In Fig. A.7 one can observe the histogram of the measurement errors for line-of-sight signals
and ground reflections. The error is still not Gaussian distributed. Among other reasons, the
error presents a heavy tail due to synchronization errors and systematic errors in the detection of
the correct reception time. However, as we are interested in a lower bound for the localization
error, the Gaussian assumption can be used. This is then a best-case scenario and provides
us with the minimum achievable error using ground reflections and not using them. In the
presented histograms one cannot observe a remarkable difference between the error in the line-
of-sight signals and in the non-line-of-sight signals. This means, the reflected signals and the
line-of-sight signals deviate from the expected time intervals in a similar manner.
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(a) Histogram of the error of the line-of-sight signals us-
ing 6878 samples.
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Figure A.7: Histogram of the error in the received timestamps when locating a sender standing still at
six different positions.
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