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Abstract

Automated machine learning emerged as a new research field inside of machine
learning that tries to progressively automate different steps of common machine
learning pipelines which are traditionally executed by humans. One of its core tasks
is the automated search for the right hyperparameters of a given machine learning
algorithm which in practice is often essential to achieve good performance. Compared
to other optimization problems, hyperparameter optimization is usually particularly
expensive, since in each iteration, it requires to train and validate the underlying
algorithm. One of the most successful approaches for hyperparameter optimization is
Bayesian optimization. At its core, Bayesian optimization fits a probabilistic model
of the objective function, which together with an additional acquisition function is
used to guide the search towards the global optimum.

In this thesis we present several extensions to standard Bayesian optimization
to improve its performance for hyperparameter optimization problems. First, we
introduce a new probabilistic model based on Bayesian neural networks, that allows
to model the performance of hyperparameter configurations across different tasks
and thereby scales much better with the number of data points and dimensions
than Gaussian processes which are traditionally used inside Bayesian optimization.
In hyperparameter optimization, often approximations, so-called fidelities, of the
objective function are available which are much cheaper to evaluate. We present
two new Bayesian optimization methods that can leverage such fidelities, such as
learning curves or dataset subsets, to improve the overall search process in terms
of wall-clock time by orders of magnitude. Furthermore, based on our proposed
Bayesian neural network model, we present a new neural network architecture
which models the learning curve of iterative machine learning methods, such as
neural networks. Finally, due to the high computational cost of hyperparameter
optimization, thorough benchmarking and evaluation of new developed methods is
often prohibitively expensive. We show that one can approximate continuous and
discrete benchmarks by surrogate benchmarks that capture the characteristics of the
original benchmark but take only milliseconds to evaluate. This allows us to perform
a rigorous analysis and comparison of various different hyperparameter optimization
methods from the literature.






Zusammenfassung

Innerhalb des maschinellen Lernens ist automatisiertes, maschinelles Lernen ein
neues Forschungsgebiet. Dabei wird schrittweise versucht, verschiedene Komponenten
gelaufiger Pipelines, welche normalerweise von Menschen ausgefithrt werden, zu
automatisieren.

Ein Hauptaufgabengebiet des automatisierten, maschinellen Lernens besteht in
der Suche nach den richtigen Hyperparametern eines Lernalgorithmus’, was oft
ausschlaggebend fiir eine gute Performanz in der Praxis ist. Allerdings ist die Hy-
perparameteroptimierung im Vergleich zu anderen Optimierungsproblemen oft sehr
zeitaufwendig, da in jeder Iteration der zugrundeliegende Algorithmus trainiert und
evaluiert werden muss. Einer der erfolgreichsten Ansétze fiir dieses Problem ist die
Bayes’sche Optimierung. Thr Hauptbestandteil ist ein probabilistisches Modell der
Zielfunktion, welches zusammen mit einer Hilfsfunktion die Suche nach dem globalen
Optimum steuert.

Diese Arbeit beschéftigt sich mit verschiedenen Erweiterungen der Bayes’schen
Hyperparameteroptimierung, mit dem Ziel, diese effizienter zu gestalten. Zunéchst
wird ein probabilistisches Modell vorgestellt, welches, basierend auf einem Bayes’schen
neuronalen Netzwerkes, die Performanz von Hyperparameterkonfigurationen iiber
verschiedene Aufgabenstellungen hinweg vorhersagt. Das Modell skaliert dabei besser
in der Anzahl der Datenpunkten und Dimensionen als vergleichsweise Gaussprozesse,
welche traditionell fiir Bayes’schen Optimierung verwendet werden.

Zudem sind fiir die verschiedenen Problemstellungen der Hyperparameteroptimierung
Approximationen der Zielfunktion, so genannte Fidelities, verfiigbar. Diese sind zwar
meist ungenau, konnen zugleich aber sehr viel giinstiger ausgewertet werden. Diese
Arbeit stellt zwei neue Bayes’sche Optimierungsmethoden vor, die diese Fidelities,
wie zum Beispiel Lernkurven oder Untermengen des Trainingdatensatzes, nutzen
kénnen, um den Optimierungsprozess zu beschleunigen.

Des Weiteren wird, aufbauend auf den oben genannten Bayes’schen neuronalen Netz-
werken, eine neue Netzwerkarchitektur zum Modellieren von Lernkurven iterativer,
maschineller Lernalgorithmen, wie zum Beispiel neuronaler Netzwerke, vorgestellt.

Wie bereits erwahnt, ist mit der Hyperparameteroptimierung meistens ein hoher
Zeitaufwand verbunden. Dies erschwert héufig das griindliche Vergleichen und Evalu-
ieren verschiedener Methoden in der Praxis. Diese Arbeit zeigt, dass kontinuierliche
und diskrete Benchmarks durch Surrogatebenchmarks approximiert werden kénnen.
Einzelne Funktionsevaluierungen werden dabei in Millisekunden durchgefiihrt, die



Charakteristiken der Originalbenchmarks jedoch beibehalten. Eine tiefergehende Ana-
lyse sowie der Vergleich vieler verschiedener Hyperparameteroptimierungsmethoden
aus der Literatur, konnte somit in dieser Arbeit durchgefithrt werden.
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1. Introduction

With the help of an ever-increasing compute power and the availability of larger
dataset, machine learning has achieved great success in recent years. On a vari-
ety of applications, such as image classification (Krizhevsky et al., 2012)), speech
recognition (Mikolov et al., [2010]), game play (Silver et al. 2016) or machine trans-
lation (Sutskever et al., 2014)) it surpassed the state-of-the-art by a considerable
margin. This success in turn led to more and more software packages, such as
scikit-learn (Pedregosa et al., 2011) or keras (Chollet et al., 2015)), that aim to enable
even novice users to apply and tinker with cutting edge methods, making it easier
than ever to apply machine learning in the wild.

In practice each machine learning method comes with a set of hyperparameters
that either control the capacities or the training of the underlying statistical model.
Common examples are the number of units in each layer of a neural network or the
regularization parameter of support vector machines. Setting these hyperparameters
somewhat correctly is essential and often makes the difference between state-of-the-art
performance or mediocre performance (Feurer and Hutter, |2018). For example, Melis
et al.| (2018) were able to outperform complex state-of-the-art methods for language
modelling benchmarks by simply optimizing the hyperparameters of a standard
LSTM (Hochreiter and Schmidhuber; [1997) network. [Henderson et al.| (2018]) showed
that hyperparameters play a crucial role in benchmarking reinforcement learning
algorithms and need to be set carefully to allow for a fair comparison to baseline
methods.

Unfortunately, manually finding the right hyperparameters is usually a tedious task
which is often based on a long process of trial-and-error. In order to automate
this part of the machine learning pipeline, recent approaches in automated machine
learning cast the search of the right hyperparameters as an optimization problem (see
Feurer and Hutter| (2018)) for an overview). In contrast to the internal optimization
problem that many methods, for example neural networks, need to solve, gradient
information is not available, or at least not easily obtainable. Additionally, due to the
intrinsic randomness of most machine learning methods, the objective function can
only be observed with noise. Moreover, what makes hyperparameter optimization
particularly challenging is that single function evaluations require to train and
validate a machine learning algorithm and hence can take several hours or even days.
With the increasing demand for computational resources of contemporary machine
learning models, this poses a major challenge not only in applying hyperparameter
optimization but also to develop and benchmark new methods.

13



Chapter 1 Introduction

One of the most popular approaches for hyperparameter optimization is Bayesian
optimization (Jones et al., [1998; |Mockus et al., [1978; |Shahriari et al., 2016). At its
core, Bayesian hyperparameter optimization maintains a probabilistic model of the
validation error of a machine learning method with respect to its hyperparameters.
Based on a utility or acquisition function, in each iteration, it selects a new hyperpa-
rameter configuration which is then used to train and validate the machine learning
method to obtain its performance.

Because of its probabilistic model, Bayesian optimization is a powerful and flexible
framework for hyperparameter optimization problems. In this thesis, we present
several extensions that make Bayesian optimization more efficient, in particular for
expensive optimization problems.

1.1. Contributions

Bayesian optimization (Jones et all |1998) as a means for automated hyperparameter
optimization is an active research field which offers great practical potential (Shahriari
et al..2016). In this thesis we present several contributions to advance the state-of-the
art in this field:

Bayesian neural networks: We present in Chapter [3] a flexible and powerful
probabilistic model based on Bayesian neural networks that can be used inside
Bayesian optimization. While this has been explored by others before (e. g. [Snoek
et al. (2015))), our model contains a full Bayesian treatment of the neural network
weights and hence allows to more faithfully represent the epistemic uncertainty of
the model. On a more practical note, it can be adapted for modelling learning
curves of iterative machine learning methods as we show in Chapter 5] It also
plays a crucial role for our generative meta-model to benchmark hyperparameter
optimization methods presented in Chapter [§|

Multi-fidelity optimization: Hyperparameter optimization is often prohibitively
expensive. One major contribution of this thesis is to speed up the whole optimization
process by exploiting cheap but approximate fidelities of the objective functions.
Chapter [4] presents a new Bayesian optimization variant, called Fabolas, that is able
to reason across datasets to achieve 10 to 1000 fold speedups of standard Bayesian
optimization. In Chapter [5| we present a probabilistic model that allows to model
learning curves, a fidelity often used for iterative machine learning methods. Finally,
in Chapter [6] we introduce BOHB, which, by combining Bayesian optimization with
Hyperband, is able to handle arbitrary fidelities as long as they correlate with the
objective function. Furthermore, BOHB is easy to parallelize and more flexible with
respect to the configuration space than Gaussian process based methods, such as
Fabolas.

Hyperparameter optimization benchmarks: The high computational demands
of hyperparameter optimization often block researchers from systematically runing
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rigorous comparisons in order to draw statistically significant conclusions. Besides
that, obtaining challenging benchmarks is often hard since meaningful datasets are
usually scarce. We present in Chapter [7]a set of discrete tabular benchmarks that are
based on an exhaustive search of the hyperparameters of a feed forward neural network.
These benchmarks allow us to perform cheap table lookups instead of training the
neural networks every time we want to evaluate the objective function. For continuous
benchmarks we describe in Chapter |8 a generative meta-model across tasks that,
once trained on data generated offline, allows to sample an arbitrary amount of new
optimization tasks. Based on this generative model, another key contribution of this
thesis is an exhaustive empirical evaluation of different hyperparameter optimization
methods from the literature.

1.2. Publications

Most of this thesis has already been published as conference or journal papers. In
the following, we present all publications that are parts of this thesis chronologically:

e Bayesian optimization with robust Bayesian neural networks
J. T. Springenberg and A. Klein and S. Falkner and F. Hutter
Proceedings of the 29th International Conference on Advances in Neural Infor-
mation Processing Systems (2016)

e Fast Bayesian optimization of machine learning hyperparameters on large
datasets
A. Klein and S. Falkner and S. Bartels and P. Hennig and F. Hutter
Proceedings of the 20th International Conference on Artificial Intelligence and
Statistics (2017)

e Learning curve prediction with Bayesian neural networks
A. Klein and S. Falkner and J. T. Springenberg and F. Hutter
International Conference on Learning Representations (2017)

e Fast Bayesian hyperparameter optimization on large datasets
A. Klein and S. Falkner and S. Bartels and P. Hennig and F. Hutter
Electronic Journal of Statistics (2017)

e RoBO: A Flexible and Robust Bayesian Optimization Framework in Python
A. Klein and S. Falkner and N. Mansur and F. Hutter
NIPS 2017 Bayesian Optimization Workshop (2017)

e BOHB: Robust and efficient hyperparameter optimization at scale
S. Falkner and A. Klein and F. Hutter
Proceedings of the 35th International Conference on Machine Learning (2018)

e Tabular Benchmarks for Joint Architecture and Hyperparameter Optimization
A. Klein and F. Hutter
arXiv:1905.04970 [cs.LG] (2019)
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e Meta-Surrogate Benchmarking for Hyperparameter Optimization

A. Klein and Z. Dai and F. Hutter and N. Lawrence and J. Gonzalez
arXiv:1905.12982 [cs.LG]| (2019)

I was also involved in the following publications which, however, were out of the
scope of this thesis:

e Efficient and robust automated machine learning

M. Feurer and A. Klein and K. Eggensperger and J. Springenberg and M.
Blum and F. Hutter

Proceedings of the 28th International Conference on Advances in Neural Infor-
mation Processing Systems

Towards automatically-tuned neural networks
H. Mendoza and A. Klein and M. Feurer and J. T. Springenberg and F. Hutter
Workshop on Automatic Machine Learning

The sacred infrastructure for computational research
K. Greff and A. Klein and M. Chovanec and F. Hutter and J. Schmidhuber
Proceedings of the 16th Python in Science Conference

Uncertainty estimates and multi-hypotheses networks for optical flow

E. llg and O. Cicek and S. Galesso and A. Klein and O. Makansi and F.
Hutter and T. Brox

Proceedings of the European Conference on Computer Vision

NAS-Bench-101: Towards Reproducible Neural Architecture Search

C. Ying* and A. Klein* and E. Real and E. Christiansen and K. Murphy and
F. Hutter

Proceedings of the 36th International Conference on Machine Learning (2019)
* contributed equally

1.3. Collaborations

Major parts of this thesis result from fruitful collaborations with other researchers.
More specifically:

16

e Chapter [3} The original idea and implementation of using scale adaption for

stochastic gradient Hamiltonian Monte-Carlo to more robust Bayesian neural
networks came from Tobias Springenberg. He also conducted the empirical
evaluation of Bohamiann for the multi-task, the reinforcement learning and
the parallel settings. The deployment of the Bayesian neural network in
Bayesian optimization and implementing it in the python framework RoBO
was conducted by me. I also implemented the baseline methods, such as
GP-BO, MTBO and DNGO and performed the comparisons on the synthetic
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benchmarks. Stefan Falkner advised on questions about Markov Chain Monte
Carlo sampling and its convergence. The whole project was supervised by
Frank Hutter.

e Chapter [4} I served as the lead author of the corresponding paper and was
responsible for the implementation and evaluation of the proposed method.
Frank Hutter had the initial idea to develop a method that can reason across
dataset subsets. Stefan Falkner helped as advisor and implemented the multi-
task kernel, the basis function kernel and Hyperband. He also conducted
the experiments for the heteroscedastic noise induced by using subsets of the
training data. Frank Hutter and Philipp Hennig served as supervisor for this
paper. Simon Bartels and Philipp Hennig improved the idea of the basis
function kernel to model the performance and cost with respect to the datasets
size. Fabolas originated from the joint master project of Simon Bartels and me
proposed and supervised by Frank Hutter.

e Chapter o} The proposed method is a follow-up to the work by [Domhan et al.
(2015). T developed and implemented the proposed method and conducted
most experiments. Stefan Falkner and Tobias Springenberg helped with the
Bayesian neural network part. Frank Hutter supervised the project.

e Chapter [0} Stefan Falkner implemented the software architecture with the
core functionality for Hyperband and BOHB and performed the analysis of
BOHB'’s hyperparameters on the surrogate benchmarks. I implemented the
sampling strategy for BOHB, created the surrogate benchmarks, implemented
some of the baseline methods (Fabolas, LC-Net, BO-GP) and conducted
the experiments for the Bayesian neural network and reinforcement learning
experiments. Frank Hutter proposed to combine Hyperband and Bayesian
optimization and supervised the project.

e Chapter [7} T generated and analyzed the data and conducted the benchmark
comparison of the various hyperparameter optimization methods. The general
idea of using tabular benchmarks as replacement for expensive neural archi-
tecture search problems was originally from Frank Hutter and Kevin Murphy,
which eventually resulted in another paper (see |Ying et al.| (2019)).

e Chapter [8} This project was mainly developed during my internship at Amazon
Research Cambridge. It was the result of a very fruitful discussion between
me, Zhenwen Dai and Javier Gonzales. At an early stage of the project, Zhen-
wen Dai developed and implemented a multi-task model based on Gaussian
processes. I was in charge of implementing the method with Bayesian neural
networks and executing the experiments. Frank Hutter helped with developing
the statistical tests and accumulating statistics of the performance of hyperpa-
rameter optimization methods across tasks. Neil Lawrence and Frank Hutter
helped in later stages with writing the paper. During the whole time Javier
Gonzales supervised the project.

e RoBO: Most of the methods developed in this thesis were implemented in the

17
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python framework RoBO (Klein et al.; 2017b)). Frank Hutter originally had the
idea of an open-source framework for Bayesian optimization. I implemented
most of the core parts and served as a leading developer. Stefan Falkner
implemented the original Hyperband code and parts of the Gaussian process
implementation. Numair Mansur helped with writing the documentation and
setting up the integrated unit tests.



2. Background and Related Work

The goal of this chapter is to provide a solid background for the remaining chapters
and to give a broad overview of the relevant literature of this thesis. We first give an
introduction into hyperparameter optimization and its related fields in Section [2.1]
In Section we describe Bayesian optimization which represents the underlying
framework for many of the proposed methods in this thesis. Finally, in Section
we present related work in obtaining uncertainty estimates for deep neural networks.

2.1. Hyperparameter Optimization

Hyperparameter optimization has been studied by many other researches before,
and various different fields have developed their own approaches to tackle it. In
this chapter we first present a formal definition of the hyperparameter optimization
problem (see Section [2.1.1)). Afterwards, we give in Section an overview of
the literature that approaches this optimization problem from different angles. In
Section [2.1.3] of this chapter we discuss other research fields in machine learning that
are related to hyperparameter optimization.

2.1.1. Problem Definition

Given a machine learning method A with hyperparameters A € A, we are interested
in optimizing its generalization performance on some dataset D. The input space A
is the so-called configuration space and might consist of mixed continuous, integer
or categorical hyperparameters. Furthermore, individual hyperparameters can be
conditional dependent on each other which means that hyperparameter \; € X is
only active if A; € A is set to a specific value. For example, the number of units
in the second layer of a fully connected neural network is only relevant if the total
number of layers is larger or equal than two.

We follow the formulation by Thornton et al,| (2013)) and define the hyperparameter

optimization problem as follows:

A* € arg min E(Dtmm,Dw”dND) [E(A, Dtraina Dvalid)} (21)
A€A

where £ measures the validation error of A on the validation data D,.;q after it has
been trained on the training data D, with hyperparameters A. We refer to £ as
the objective function.
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In practice the expectation in Equation cannot be solved in closed-form and is
often approximated by either k-fold cross-validation, random data splits or one single
train and validation split (Feurer and Hutter, 2018). If A does not only contain
the hyperparameters but also the choice of algorithm A from a set of algorithms
A € {Ay,...Ax} C A, Equation is also referred as the combined algorithm
selection and hyperparameter (CASH) problem (Thornton et al., 2013).

2.1.2. Literature Overview

In this section we present an overview of the literature on automated hyperparameter
optimization (Feurer and Hutter] 2018). We first discuss model-free methods, such as
random search or evolutionary algorithms that do not model the objective function
directly. Secondly, we describe model-based methods, such as Bayesian optimization,
to which the work presented in this thesis also belongs to. Finally we look at methods
that do not treat hyperparameter optimization as a gradient-free optimization
problem but rather try to approximate the gradients of the validation error of a
machine learning method with respect to its hyperparameters such that standard
gradient descent techniques can be applied.

2.1.2.1. Model-free Methods

Arguably, the simplest solution to optimize the hyperparameters of any kind of ma-
chine learning algorithm is grid search, which first discretizes the configuration space
based on a fixed sized grid and then evaluates each hyperparameter configuration of
this grid. Even though grid search is trivial to implement and can easily be parallized,
it has two major disadvantages (Bergstra and Bengio, 2012)): It is unlikely to find
the global optimum particularly in continuous spaces and more importantly, due to
the curse of dimensionality grid search relatively quickly becomes infeasible if the
number of dimensions increases.

Instead of evaluating a predefined set, random search (Bergstra and Bengio, 2012)
samples each hyperparameter configuration at random from a predefined distribution.
Most commonly used are uniform distributions but any other type of parametric
distribution is possible. Random search is conceptually equally simple as grid search
but in the case where only a small subset of the hyperparameters effect the final
performance, called the low-effective dimensionality, it is usually much more efficient
(Bergstra and Bengio, 2012). Compared to the model-based or gradient-based
approaches described in the next sections, random search is guaranteed to find
the global optimum without making any assumptions on the objective function, if
the number of function evaluations approaches infinity and each hyperparameter
configuration in the configuration space has a non-zero probability mass.

More recently, Li et al.| (2017) developed Hyperband which augments random search
with the bandit strategy successive halving (Jamieson and Talwalkar] 2016)) to dynam-
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ically allocate resource to a set of randomly drawn hyperparameter configurations by
exploiting cheap-to-evaluate approximation of the objective function, called fidelities.
We describe Hyperband and successive halving in more detail in Section [6.1] It
can be shown that the worst-case performance of Hyperband in the limit of infinite
function evaluations is only a constant slower than random search.

To guide the search during optimization, population based search algorithms maintain
a population of data points in the input space. Individual elements of this population
are mutated to explore the search space whereas for exploitation only the well-
performing elements are kept in the population. Since population based methods do
not require any gradient information they can be easily applied to the hyperparameter
optimization setting. For instance, Loshchilov and Hutter| (2016]) used the popular
evolutionary algorithm CMA-ES (Hansen, 2006]) to optimize the hyperparameters
of neural networks and achieved comparable results to model-based methods such
as Bayesian optimization. Jaderberg et al.| (2017) sample a population of random
hyperparameter configurations for neural networks and adapt them during the
training by either randomly perturbing single hyperparameters or exploiting other
well-performing settings in the population. A major advantage of these methods
is that they can adapt single hyperparameters online during training which is not
trivial with model-based approaches.

2.1.2.2. Model-based Methods

In order to exploit the gained knowledge from previous function evaluations, model-
based approaches maintain a model of the objective function internally to guide the
search towards the global optimum. If a probabilistic model is used, these types of
methods are also commonly referred to as Bayesian optimization (Jones et al., [1998;
Shahriari et al.| [2016)). Based on this probabilistic model Bayesian optimization
uses an acquisition function to select points in the input space that automatically
trade off exploration and exploitation of the objective function. Since Bayesian
optimization represents the core framework used in this thesis, we present a more
detailed introduction in Chapter [2.2]

Compared to model-free methods, using a probabilistic model allows to exploit
additional sources of information. Swersky et al. (2013) augmented standard Bayesian
optimization by an additional task variable to allow to warm-start the optimization
process from previously optimized tasks with the same input domain. Instead of just
using a predefined task variable, Feurer et al. (2015b)) defined a set of meta-features
that capture similarities between optimization tasks, and, hence, does not require
to obtain any observations on the new task before it can measure correlation to
previous tasks. |Springenberg et al. (2016) (see also Chapter [3) presented a Bayesian
neural network model that learns an embedding of tasks during optimization.

Often so-called fidelities of the objective function are available, which are approxi-
mations that are much cheaper to evaluate. Kandasamy et al. (2016]) developed a
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multi-fidelity Bayesian optimization strategy, that, given a set of independent fideli-
ties, achieves a theoretical lower regret than non-fidelity methods. In follow up work,
Kandasamy et al.| (2017) extend it to continuous fidelities. For iterative machine
learning methods Swersky et al.| (2014) augmented the default model in Bayesian
optimization by also modelling learning curves such that it can automatically decide
to continue or to stop the evaluation of hyperparameter configurations. |Klein et al.
(2017a) developed Fabolas (see Chapter |4]) which treats the training dataset size a
continuous fidelity to speed up the optimization process. Instead of a fidelity scenario
which assumes that the quality of the fidelities increases with the evaluation cost,
and , hence, induces an order between fidelities, Poloczek et al.| (2017) extended
Bayesian optimization to multi-source scenario where sources can be correlated but
do not necessarily have an implicit order.

2.1.2.3. Gradient-Based Methods

Recently, an alternative view on hyperparameter optimization has been established
that, for specific machine learning algorithms, tries to compute the gradient of
the validation error with respect to its hyperparameters, the so-called hypergradi-
ents (Maclaurin et al., 2015). In order to compute these hypergradients |[Franceschi
et al. (2017)) studied the reverse and forward mode for automated differentiation,
which trade off space vs time requirements. Particularly for adapting the learning
rate of neural networks, Baydin et al.| (2018)) revisited an old idea by |Almeida et al.
(1999) which approximates the gradient of the learning rate. [Liu et al.| (2019) used a
continuous relaxation to optimize discrete architecture choices of neural networks.

A major advantage of gradient-based methods is that they allow to adjust certain
hyperparameters, such as the learning rate on the fly which cannot easily be done
with model-based methods that cast hyperparameter optimization as a gradient-free
optimization problem. Furthermore, they usually scale much better with the number
of hyperparameters than their model-based counterparts.

One caveat of gradient-based hyperparameter optimization methods is that they
are only applicable for differentiable loss functions. However, popular loss functions,
such as accuracy or BLEU scores, are non-differentiable, and hence, surrogate loss
function such as the cross-entropy loss need to be optimized instead. Moreover,
hypergradients are only computable for continuous hyperparameters and only for
certain discrete hyperparameters relaxations exist that allow for an optimization.

2.1.3. Connection to Other Research Fields

Automated machine learning (AutoML) (Hutter et al) 2018) is a new research
field that tries to automate different parts of machine learning pipelines that are
traditionally executed by humans. Since in practice hyperparameters are often tuned
manually, hyperparameter optimization can be considered as a subfield of AutoML
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and is often an integral component of the most practical AutoML system (Feurer
et al} 2015a; [Thornton et al., |2013). For instance Thornton et al.| (2013) build the
automated machine learning tool Auto-Weka which internally uses the random forest
based Bayesian optimization method SMAC (Hutter et al., [2011)) to optimize the
choice of algorithm and its hyperparameters based on the machine learning methods
implemented in the Weka (Hall et all [2009) library. In a follow-up work, Feurer
et al.| (2015a)) build auto-sklearn which also uses SMAC but is implemented around
the popular python machine learning framework sklearn (Pedregosa et al., 2011])

Algorithm configuration (Hutter et al., 2009) tries to automatically find the right
parameters and design choices for any kind of algorithm, usually across a set of
problem instances. It mostly, but not exclusively, focuses on hard-combinatorial
problems,; such as for instance SAT or TSP where singe instances corresponds to
single SAT clauses or TSP graphs, respectively. In algorithm configuration one
usually tries to optimize the runtime of the algorithm rather than a validation score.
Hyperparameter optimization can be seen as algorithm configuration on a single
instance that represents the underlying dataset.

More recently, neural architecture search (Zoph and Le, 2017; Real et al., |2017)) (for
an overview see Elsken et al. (2018)) emerged which solely focus on hyperparameters
that define the architecture of the neural network and hence can be considered as
a specialized form of hyperparameter optimization. Thereby, the most methods
optimize other hyperparameters that effect the training of the neural network, such as
the learning rate or regularization parameters in second post-hoc step. Compared to
hyperparameter optimization, architectures cannot easily be described by a numerical
vector, but are usually encoded as a directed acyclic graph. While most work either
use reinforcement learning (Zoph and Le| 2017 [Zoph et al., [2018)) or evolutionary
algorithms (Real et al.; 2017, [2019; Elsken et al.; 2019) since they can easily be adapted
to handle these structured space, |Kandasamy et al. (2018) defined a new kernel
based on a optimal transport program to make Bayesian optimization applicable
on neural architecture search tasks. Moreover, recent work (Pham et al 2018; |Liu
et al., [2019)) uses weight sharing between architectures to reduce the computation
burden which has not been done for hyperparameter optimization yet.

Meta-learning (Vanschoren, 2018)), also often referred to learning-to-learn, tries
to improve the learning of machine learning algorithms on new tasks in terms
of speed and generalization performance by exploiting knowledge accumulated on
previously seen tasks. As we show in Chapter [3| meta-learning can be combined
with hyperparameter optimization to speed up the optimization procedure (Swersky
et al.l 2013; [Feurer et al., 2015b; Springenberg et al., 2016 by reusing information
of previously conducted optimization runs on similar problems. To go even one step
further, Chen et al.| (2017)) learned an entire algorithm for gradient-free optimization
problem that mimics Bayesian optimization but amortizes its computational overhead.

At last, hyperparameter optimization is often treated as a “black-box“ optimization
problem, since it does not assume any gradient information, it is strongly related
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to literature on general derivative-free optimization (Conn et al.. |[2009). The most
notable difference though, compared to other common derivative-free optimization
problems, is that hyperparameter optimization assumes single function evaluations to
be extremely expensive (Shahriari et al.,[2016)) (e. g. multiple hours or even days) and
hence a larger additional overhead from the optimizer of a few seconds or minutes is
acceptable if a better sample efficiency is achieved.

2.2. Bayesian Optimization

Bayesian optimization (Mockus et al., [1978; \Jones et al., [1998)) is a framework for
model-based optimization of gradient-free optimization problems. It is designed for
functions that are particularly expensive to evaluate such that only few samples can
be collected. Over the years, Bayesian optimization has been successfully applied
on a variety of applications, such as robotics (Calandra et al., [2014])), environmental
monitoring (Marchant and Ramos|, 2012), sensor set selection (Garnett et al., [2010)),
reinforcement learning (Brochu et al., 2010)), drug discovery (Gomez-Bombarelli
et al., 2018) or gene design (Gonzalez et al., [2014). However, maybe its biggest
success story is the hyperparameter optimization of machine learning methods. For
instance, Snoek et al.| (2012) used Gaussian process based Bayesian optimization to
optimize the hyperparameters of a convolutional neural networks and improve at
that point state-of-the-art performance on the CIFAR-10 benchmark. Melis et al.
(2018)) used the Bayesian optimization based hyperparameter tuner Vizier (Golovin
et all [2017) to achieve state-of-the-art performance on language modelling tasks.
Auto-sklearn [Feurer et al.| (2015a) won the first AutoML challenge (Sun-Hosoya
et al., 2018)) by using Bayesian optimization to search for the right algorithm and
hyperparameters in the sklearn framework (Pedregosa et al., [2011). With the help
of Bayesian optimization, |Chen et al. (2018) substantially improved the famous
AlphaGo system which defeated top human Go players.

In this chapter we give a brief introduction into Bayesian optimization by first describ-
ing its general concept and then its two core components: the probabilistic model
(Section and the acquisition function (Section [2.2.3). More comprehensive
tutorials are presented by Brochu et al.| (2010), Frazier| (2018) and [Shahriari et al.
(2016)).

2.2.1. The Main Loop

Given a black-box function f : X — R, Bayesian optimization aims to find points
in the input space x, € argmin,x f(x) that globally minimize f. The input
or configuration space X can be an arbitrary space with continuous and discrete
parameters, but is usually defined as a compact set X C R? of the real space.
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The general idea of Bayesian optimization is to define a prior distribution p(f) -
usually referred to as the model - over the objective function f which is updated to a
posterior distribution p(f | D) if data D is observed. The intuition behind p(f | D)
is that it captures our current belief of f based on the knowledge that we obtained
through previous evaluations. As we are going to see in the next section, popular
choices for the model of the objective function p(f) are Gaussian processes (Snoek
et al.; [2012) or random forests (Hutter et al. 2011)). We also discuss how Bayesian
neural networks (Snoek et al., 2015; Springenberg et al., [2016)) can be applied in
Chapter

The second important component is the so-called acquisition function a,sp) : X — R
that quantifies the utility of evaluating the objective function at any « € X in the
input space and thereby trades off exploration and exploitation. For a new query
point one can use any numerical optimization technique to select the point that
maximizes the acquisition function and, if the model provides gradient information,
one can even use off-the-shelf gradient-based optimization methods. Importantly,
the acquisition function is solely based on the model and, hence, compared to the
actual objective function, cheap-to-evaluate.

With these two ingredients, Bayesian optimization iterates the following steps (Jones
et al], [1998; Mockus et all, [1978) (see also Figure[2.1]for a visualization and Algorithm
for pseudo code) after observing some initial design D; = {(x1,41), ..., (@, y:)} :

1. update the probabilistic model p(f | D;) and acquisition function a,(p,) with
the data D; = (x;,y;);=1..+ that has been observed so far

2. find the most promising candidate x; by maximizing the acquisition function
ap(fpy) ()

3. evaluate the noisy objective function y;. 1 ~ f(@sy1) + N(0,0?) and add the
resulting data point (@11, y:11) to the set of observations D;

Algorithm 1 Bayesian optimization

1: Initialize data Dy using an initial design.

2: fort=1,2,... do

Fit probabilistic model p(f | D;_1) for f(x) on data D;_;

4 Choose x;41 € arg max a(p,) ()

5: Evaluate y; ~ f(x;) +N(0,0?%), and augment the data: D; = Dy U{(x, y¢)}
6

7

@

Estimate incumbent &,
: end for

To allow for an anytime comparison, in each iteration ¢, we maintain an estimate
&;, dubbed the incumbent, of the global optimizer «,. The most robust choice to
select &; in the case of low noise that we typically see hyperparameter optimization
is to simply pick the point with the lowest observed function value: min{y;,...y;}.
Alternatively, one could also optimize the posterior mean of p(f | D;) which is
particularly appealing in the case of high noise but strongly hinges on a robust model,
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Figure 2.1.: Visualization of the core steps of Bayesian optimization: (a) the true
unknown objective function and some initial observations ; (b) a Gaussian process
trained on the observed data to model p(f | D) (solid blue line denotes the mean
and the shaded area one, two and three times the standard deviation), the expected
improvement acquisition function (green solid line) and its maximizer (vertical red
dashed line) ; (c) the updated model after we evaluated the objective function at
the maximizer of the acquisition function.

which might be brittle especially in the beginning of the search when not a sufficient
amount of data points has been observed yet.

2.2.2. Common Probabilistic Models

As described above one of the core components of Bayesian optimization is the
probabilistic model of the objective function. In general, every method that, given a
test data point, provides a predictive distribution could be used as such as model. In
this section we look at the two most commonly used methods: Gaussian processes
and random forests.

2.2.2.1. Gaussian Processes

Gaussian processes (GP) are probably the most popular choice for p(f), thanks to
their descriptive power and analytic tractability (e.g. |[Rasmussen and Williams, 2006).
Formally, a GP is a collection of random variables, such that every finite subset
of them follows a multivariate normal distribution. A GP is solely defined by a
mean function m (often set to m(x) = 0 Va € X), and a positive definite covariance
function, called kernel k(x, z’) which measures the similarity between two points
in the input space. Given some observations D, = (x;,v;);=1... = (X,y) with a
joint Gaussian likelihood p(y | X, f(X)), the posterior p(f | D;) follows another GP,
whose mean and covariance functions have also a tractable and analytic form.

The most frequently used kernel is the squared exponential or radial basis function
(RBF) kernel:

o ]2
krpr(x, ') = vexp (M) . (2.2)
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Here, the covariance amplitude v and the lengthscale A are free parameters, i.e.
hyperparameters of the GP.

More popular for applications in AutoML though is the stationary and twice-
differentiable Matérn 5/2 kernel (Matérn, 1960), in its Automatic Relevance De-
termination form (MacKay and Neal, [1994):

Fntaternss (2, ) = v (1 + VBdx(@, @) + 533 (w, @) ) e VID =), (2.3)

where dy(x, ') = (x — 2')" diag(A)(x — «’) is the Mahalanobis distance.

In contrast to the RBF kernel, it makes less restrictive smoothness assumptions,
which can be helpful in the optimization setting (Snoek et al., [2012) (see Figure
for a visualization of both kernels).

An additional hyperparameter of the GP model is the overall noise 0,,,;s. Which is
added to the diagonal of the covariance matrix in order to handle noisy observations.
For clarity: These GP hyperparameters are internal hyperparameters of the Bayesian
optimizer, as opposed to those of the target machine learning algorithm to be tuned.
All hyperparameters & = {\, v, 00isc } are determined by maximizing the marginal
log-likelihood distribution of the Gaussian process (Rasmussen and Williams, 2006;
Snoek et al., 2012):

py | X, &) = N(ylm,Ex, + dnoisel) (2.4)

However, since just using a single maximum a-posterior estimate of the marginal
likelihood might be sensitive to local optima, |Snoek et al.| (2012) argued for a
Bayesian treatment of the GP’s hyperparameters. They propose to use the integrated
acquisition function:

anirio (@) = [ ansp @€ | D) (2.5)

which can approximated by a Monte-Carlo approach by sampling different ¢ from
the marginal likelihood in Equation with Markov-Chain Monte-Carlo sampling
algorithms.

2.2.2.2. Random Forests

Alternatively to Gaussian processes, random forests (Breimann, 2001) have been
proposed as a probabilistic model for Bayesian optimization (Hutter et al. 2011]).
A random forest consists of a set of T regression trees where each tree splits the
input space into disjoint regions Sy, ... Syp_1 with L being the number of leafs in
each tree. A regression tree is build recursively by splitting the training data at
each node based on a splitting criterion that decides whether the current data point
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Figure 2.2.: Difference between the RBF and Matérn3/2 kernel: (a) the kernel
function k(x,x’) with &’ = 0 and varying x. Function samples drawn from

p(f | D) based on the function shown in Figure 2.1] with (b) a RBF kernel and (c)
a Matérn?/2 kernel for the GP.

goes to the left or the right subtree until a leaf is reached. Instead of storing the
datapoints in the leafs directly, a regression tree usually stores only a constant ¢
in a leaf [ such as, for example, the mean of the training datapoints that fall into
this leaf. The mean prediction for a new unseen test datapoint is then computed by:
fi(x) =XF ¢ - I(x € S;) with T as the indicator function that returns 1 if & € S;
and 0 otherwise.

To increase the diversity of the regression trees such that the ensemble becomes more
robust, random forest usually induce an additional source of randomness. For that
different strategies exist, such as subsampling the training data for each tree with
replacement, called bagging or randomly selecting the splitting criterion (Breimann),
2001]).

During test time, the mean prediction of the random forest for a new test datapoint
is simply the average of the T" individual tree predictions:

= ; ; fir(x) (2.6)

For the predictive variance, [Hutter et al.| (2014b) suggested to additionally store the
empirical variance 67(x) of the training data in each leaf and, based on the law of

total variance, compute:
( Z z) + jii (x)) — p() (2.7)

Compared to Gaussian processes, random forests seem to work better in higher
dimensional discrete spaces (Eggensperger et al. [2013). Furthermore, training a
random forest scales in O(NlogN) with N as the number of training data points
whereas Gaussian processes scale cubically, i.e. O(N?). However, random forests
achieve less smooth uncertainty estimates than Gaussian processes (see Figure
for a visual comparison) which is crucial in an active learning scenario, such as
Bayesian optimization since otherwise the acquisition function becomes more difficult
to optimize.
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Figure 2.3.: A visual comparison of the two popular models for Bayesian optimiza-
tion: Gaussian process (a) and random forest (b). As one can see, the Gaussian
process achieves smoother and more reliable uncertainty estimates, i.e. the uncer-
tainty increases away from data. However, random forests scale more gracefully
with the number of datapoints and tend to work better in high-dimensional discrete
spaces.

2.2.3. Acquisition Functions

The role of the acquisition function is to balance between exploration in regions of
the input space where our model is uncertain and exploitation in the good regions of
the space where our model assumes the global optimum. Among the most popular
acquisition functions are:

Thompson Sampling (TS): a well-known strategy from the multi-armed bandit
literature. Given a function sample from our model f ~ p(f | D;) it computes:

ag(sfmt)(w) = f(x)

However, while TS is conceptually very simple it requires further approximations if
p(f | D) is implemented as a Gaussian process (see for example Hernandez-Lobato|

et 1] (2011)).

Upper Confidence Bound (UCB) (Srinivas et al., 2010)[} which, inspired from
the well-known Bandit policy, computes:

ap iy (®) = p(x) + Bio(x)

Here, pu(x) and o(x) are the mean and standard deviation of p(f | D) provided by
our model and the parameter [3; controls the exploration / exploitation trade-off.
Given some assumptions on the objective function and adapting [3; over time t one
can proof sublinear regret bounds (Srinivas et al., 2010]) for UCB.

LUCB assumes that the objective function is maximized. We can easily adapt it to our setting by
simply maximizing the negative lower bound instead: —(u(x) — fio(x))

29



Chapter 2 Background and Related Work

Probability of Improvement (PI) (Jones et al., [1998): computes the probability
of improving over the currently best observed function value y, € min{yo,...,y:}:

ayispp () = 2(v())

where v(x) = y*;(‘;()x) and @ is the CDF of a standard normal distribution

Expected Improvement (EI) (Mockus et al., |1978) is arguably the most often
used acquisition function

aElpy (@) = Eyfmax(y, — f(),0)]. (2.8)

If we assume the predictive distribution of p(f | D) to be Gaussian we can compute
the above expectation in closed form ag = o(x)(y(x)P(y(x))) + ¢(v(x)). Here
v(x) = 242 and & is the CDF and ¢ is the PDF of a standard normal distribution.

o(x)

All acquisition functions above share the same characteristic that they try to collect
points with low function values. In contrast, information-theoretic acquisition
functions, such as Entropy Search (ES) (Hennig and Schuler, 2012; [Villemonteix:
et al., 2008) and Predictive Entropy Search (PES) (Hernandez-Lobato et al., 2014))
model the probability of the minimum and search for points that reduce the entropy
of this distribution. That allows to evaluate in regions of the input space where the
optimum is unlikely to be located but still additional information about it can be
gained. This is useful in the multi-fidelity setting as we are going to see in Chapter [4]
where we also give a more detailed description of entropy search developed by [Hennig
and Schuler| (2012)) (see Section [4.1)).

2.3. Uncertainty in Deep Learning

A fundamental aspect of any sequential decision making application, such as for
example Bayesian optimization, is to trade off exploration of the environment and
exploiting what presumably works best at the current time step. A key requirement
for any machine learning method used to tackle this dilemma, is to obtain reliable
uncertainty estimates of its own prediction. While some methods, such as Gaus-
sian processes, naturally provide predictive uncertainties, capturing the intrinsic
uncertainty of a neural network requires additional work.

In this Section we give a brief overview of different approaches to obtain uncertainty
estimates with neural networks. We first explain how uncertainty can be decomposed
in two parts which capture different sources of variability. Afterwards we describe
Bayesian deep learning methods, which, based on Bayes Theorem, try to approximate
the posterior distribution of the weights after data has been observed. Instead of
using a Bayesian treatment of the parameters, we also look at methods that use a
more frequentist perspective to obtain uncertainty estimates.
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2.3.1. Decomposing Uncertainty

In general uncertainty of a probabilistic model can be classified as aleatoric or
epistemic (Kiureghian and Ditlevsen, 2009). Uncertainty is referred to aleatoric
if it describes the variability inherent to observations, such as for example the
noise of sensory inputs, and does not diminish with an increasing number of data
points. On the other hand, epistemic uncertainty represents a lack of knowledge
of the probabilistic model, which implies, that it becomes smaller with more data.
Epistemic uncertainty can be seen as the uncertainty within a model, for example
the uncertainty of the parameters of a neural network.

Kendall and Gal (2017) studied the effect of aleatoric and epistemic uncertainty
for computer vision tasks, such as image segmentation and depth regression. They
showed that modelling aleatoric uncertainty helps in large data regimes as well as
real time applications where epistemic uncertainty either becomes negligible or too
expensive to model. However, epistemic uncertainty helps especially for safety-critical
applications to identify data points too far away from the training data.

Depeweg et al.| (2018) showed that decomposing the prediction distribution into an
aleatoric and epistemic component allows to locate more informative points in an
active learning scenario. This is particularly useful when the observation noise of the
objective function is rather complex, for example heteroscedastic or bimodal, and
cannot be described by a Gaussian.

2.3.2. Bayesian Deep Learning

Bayesian deep learning (Neal, [1996|) uses a Bayesian treatment of the parameters
of neural networks, rather than a maximum likelihood approach, which allows to
approximate the predictive distribution for unseen test points. Therefore, a prior
distribution is assign to all parameters in the neural network such that, combined
with the likelihood of the training data, the posterior distribution can be computed.
Unfortunately, due to the non-linearities of the activation functions, exact inference
of the posterior distribution is analytically intractable and, hence, needs additional
approximations. The rest of this section discusses two popular frameworks for
Bayesian inference of neural networks, Markov-Chain Monte Carlo and variational
inference.

2.3.2.1. Markov Chain Monte Carlo Methods

Markov Chain Monte Carlo (MCMC) represents a powerful framework for approxi-
mate inference which can also be used for Bayesian deep learning (Neal, [1996)). In
one of the earliest works on Bayesian deep learning, Neal (1996) used Hamiltonian
Monte Carlo to sample from the posterior distribution of the weights. While this
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was for a long time considered the gold standard for Bayesian neural networks, it
requires the full batch gradient and cannot handle stochastic gradients.

More recently, Welling and Teh (2011)) introduced stochastic gradient Langevin
dynamics (SGLD) which can be applied to the stochastic mini-batch setting of
contemporary neural networks. Welling and Teh| (2011]) showed that by appropriately
decaying the step size, SGLD samples asymptotically from the true posterior. While
SGLD is simple and easy to implement, its mixing rate, i.e. the time it requires
to approach the true distribution, is slow. This can be attributed to the fact that
parameters often change on a different scale. As cure |Ahn et al.| (2012) proposed to
use the Fisher information matrix as a preconditioner to scale the gradient in order
to improve the efficiency of SGLD. |Chen et al.| (2014) adapted Hamiltonian Monte
Carlo to the stochastic gradient setting, which in practice, due to its additional
momentum, often achieves a faster mixing rate than SGLD. More recently, Mandt
et al.| (2017)) showed that standard stochastic gradient descent with a fixed learning
rate performs Bayesian inference and simulates a Markov chain where the stationary
distribution minimized the Kullback-Leibler divergence to the posterior.

While MCMC are asymptotically unbiased (with appropriated step sizes see (Na-
gapetyan et al.; 2017)) and in practice often lead to reliable uncertainty estimate
(see also Chapter , they require to store and evaluate many weight samples during
test time which becomes infeasible with larger neural network architectures.

2.3.2.2. Variational Inference

Variational inference methods (Murphy, 2013) aim to minimize the discrepancy
between the true posterior distribution and an analytical tractable distribution
and thereby cast Bayesian inference as an optimization problem. Compared to
MCMC methods, variational inference methods usually increase the number of
parameters that need to be stored during inference time by only a small constant
factor. Additionally, they can make use of recent advances developed for stochastic
gradient descent techniques to converge faster than their MCMC counterparts.

In early work, Hinton and van Camp) (1993)) introduced an information-theoretic loss
function motivated by the minimum description length principle to perform variational
inference for neural networks. In follow up work, |Graves (2011) applied Gaussian
mean-field variational inference to deep neural networks. Later, [Blundell et al. (2015))
showed how to obtain unbiased gradients of the expected lower bound of the marginal
log-likelihood with help of the reparameterization trick (Kingma and Welling, 2014).
Gal and Ghahramani| (2016) demonstrated that using dropout (Srivastava et al.,
2014) during test time corresponds to variational inference and allows to easily obtain
uncertainty estimates. In follow up work, (Gal et al.| (2017) applied this technique in an
active learning setting, where in each iteration, based on the uncertainty estimate of a
convolutional neural network, the task is to decide which data points should be labeled
by a human. Hernandez-Lobato and Adams| (2015) used expectation propagation
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to perform variational inference and improved upon previous methods (Graves,
2011)). Khan et al. (2018) developed a new natural gradient method that performs
variational inference and can be easily implemented in popular optimizers, such as
Adam (Kingma and Bay, 2015) by simply perturbing the weights during optimization.
To increase the robustness of variational inference, Wu et al.| (2019) proposed a
deterministic method to model the uncertainty of the activations of each layer in
a neural network. Also, instead of using fixed predefined parameters for the priors,
they use an empirical Bayes (Robbins| [1956) procedure to automatically determine
the prior variances of the parameters.

2.3.3. Ensemble-based Methods

Instead of using Bayesian inference, which often makes additional assumptions about
the posterior, a simpler way to obtain uncertainty estimates is to compute the
empirical mean and variance of the predictions of an ensemble (Murphy, 2013)
of neural networks. However, ensemble-based methods usually do not come with
the strong theoretical support as Bayesian deep learning methods. For example,
Lakshminarayanan et al.| (2017) demonstrated that one can easily obtain an ensemble
by training multiple neural networks which only differ in the seed of the random
number generator. These ensembles often achieve better uncertainty estimates than
more sophisticated Bayesian neural network techniques and, since they do not try
to approximate any distribution, they are much simpler to implement and scale
better to deeper neural network architectures. Furthermore, Lakshminarayanan et al.
(2017)) showed that the uncertainty estimates can be further improved when each
individual neural network models a predictive distribution, i.e the network outputs a
mean and variance and is trained by minimizing the negative log-likelihood, instead
of just using the empirical variance of the networks’ predictions.

Instead of learning multiple neural networks independently, Huang et al.| (2017)
trained a single neural networks and ensembles the weights at several local optima
along the optimization trajectory. In order to converge to different local optima,
Huang et al.| (2017) used stochastic gradient with restarts as proposed by |Loshchilov
and Hutter| (2017)). Ilg et al.| (2018) showed that such snapshot ensembles obtain
a performance for optical flow tasks which is comparable to ensembles based on
bootstrapping or different random initializations. However, note that, compared
to the most MCMC methods, there are no theoretical guarantees that stochastic
gradient descent with restarts asymptotically approximates the targets distribution.

Ensemble-based approaches showed also competitive performance in sequential
decision making settings. For example, for contextual bandit problems, [Riquelme
et al. (2018) investigated and benchmarked different approaches to obtain uncertainty
estimates for neural networks in order to apply Thompson Sampling, which is one
of the most successful approach to tackle the exploration-exploitation dilemma
(see also Section which describes how Thompson Sampling can be used in
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the context of Bayesian optimization). Notably, they showed that ensemble based
methods combined with Thompson sampling are on-par with Bayesian deep learning
methods that performed well in the supervised case but tend to underperform in
sequential decision making scenario. For reinforcement learning problems, (Osband
et al.| (2016) proposed bootstrapped neural networks to enable better exploration in
deep Q-learning (DQN) (Mnih et al.| 2015) in order to improve the performance in
Atari games.
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3. Bayesian optimization with
Bayesian neural networks

Arguably, the most popular method to model the posterior distribution p(f | D)
for Bayesian optimization (BO) are Gaussian processes (Shahriari et al., 2016]).
Due to their mathematical elegance, they provide smooth and reliable uncertainty
estimates (Rasmussen and Williams, 2006) which are essential to trade-off exploration
and exploitation in BO. However, Gaussian processes scale cubically with the number
of data points and hence are not efficient in regimes where many observations are
available, such as for instance in the multi-task setting where we warm-start the
optimization process by reusing previously collected data on similar datasets.

In this chapter we will explore Bayesian neural networks (Neal, 1996]) as a model for
BO. The key idea of Bayesian neural networks is to use a Bayesian treatment of the
parameter of a neural network in order to obtain sensible uncertainty estimates while
keeping the efficient scaling with respect to the number of datapoints. In Section
we give a general model definition for using Bayesian neural networks in the single
as well as multi-task setting of BO.

There are different ways to obtain Bayesian neural networks, however, for BO it is
essential that we obtain reliable uncertainties and that our model is robust enough
such that it does not open up another internal hyperparameter optimization problem.
In Section we compare different existing methods and show that stochastic
gradient Hamiltonian Monte-Carlo obtains well-calibrated uncertainty estimates. We
present a robust version of stochastic gradient Hamiltonian Monte-Carlo (Chen et al.|
2014) in Section that automatically adapts its own hyperparameters and show in
Section that it improves upon the standard version. Finally, using our method
— that we dub Bayesian Optimization with Hamiltonian Monte Carlo Artificial
Neural Networks (BOHamiANN) — we demonstrate in Section state-of-the-art
performance for a wide range of optimization tasks such as synthetic objective
functions from the literature as well as multi-task hyperparameter optimization
problems.
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3.1. Model Definition for Single and Multi-Task
Optimization

As described in Section [2.2] given a function f : X — R defined over some con-
figuration space & € X where each function evaluation yields a noisy observation
y ~ N(f(x),0c%,), Bayesian optimization aims to find * € arg mingcx f().

In the more generalized case of multi-task Bayesian optimization (Swersky et al.|
2013)), there are K related black-box functions, F = {fi,..., fx}, each with the same
domain X, and the goal is to find * € arg mingex fi(x), for a given t[] In this case,
the initial design is augmented with previous evaluations on the related functions.
That is, D = Dy U --- U Dy with D; = {(z',4}),... (", y")}, where y/ = fi(x9)
and n points have already been evaluated for function f;. BO then requires a joint
probabilistic model p(f | D) across the K functions, which can be used to transfer
knowledge from the related tasks to the target task ¢ (and thus reduce the required
number of function evaluations on t).

Formally, using the assumption that the observed function values — conditioned on
x — are normally distributed (with unknown mean and variance) we can first define
our probabilistic function model as

p(ft(w) | mve) :N(f<w>t;9,u)7902)7 (31)

where 6 = [0, 0,2]7, f (x,t;0,) is the output of a parametric neural network model
with parameters ¢, and where we assume a homoscedastic noise model.ﬂ A single-
task model can trivially be obtained from this definition:

Single-task model. In the single-task setting we simply model the function mean
f (x,t;6,) = h(x;0,) as the output of a neural network, where i denotes the network
output.

Multi-task model. For the multi-task model we use a slightly adapted network
architecture. As additional input, the network is provided with a task-specific
embedding vector. That is, we have f(x,t; 6,) =h ([a:, A Gh) , where h(+), again,
denotes the output of the neural network (here with parameters 6;,) and v is the
t-th row of an embedding matrix ¢ € RE*L (we choose L = 5 for our experiments).
This embedding matrix is learned alongside all other parameters. Additionally, if
information about the dataset (such as data-set size etc.) is available it can be
appended to this embedding vector. The full vector of the network parameters then
becomes 6, = [0, vec(¢))], where vec(-) denotes vectorization. Instead of using a
learned embedding we could have chosen to represent the tasks through a one-out-of
K encoding vector, which functionally would be equivalent but would induce a large

!The standard single-task case is recovered when K =t = 1.

2We note that, if required, we could model heteroscedastic functions by defining the observation
noise variance 6,2 as a deterministic function of « (e.g. as the second output of the neural
network).
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number of additional learned parameters for large K. With these definitions, the
joint probability of the model parameters and the observed data is then

K |Dgl

p(D,0) = p(0,)p(0s2) [T TT N (Wil f (', k;0,.), 0,2), (3.2)

k=1 1i=1

where p(6,,) and p(6,2) are priors on the network parameters and on the variance,
respectively.

For BO, we need to be able to compute the acquisition function at given candidate
points . This relies on the predictive posterior p(fi(x) | , D) (marginalized over
the model parameters #). Unfortunately, for our choice of modeling f; with a neural
network, evaluating this posterior exactly is intractable. Let us, for now, assume
we can generate samples from the posterior for the model parameters given the
data; we will show how to do this with stochastic gradient Hamiltonian Monte Carlo

(SGHMCO) in Section [3.4]

We can then use these samples 6° ~ p(f | D) to approximate the predictive posterior
p(fi(z)|z, D) as

M

p(fula) | @, D) = [ p(fa) | 2,000 | D)~ S p(fla) | 2,00, (33

i=1

Using the same samples 6° ~ p(0 | D), we make a Gaussian approximation to this
predictive distribution to obtain mean and variance to compute the acquisition
functions described in Section 2.2.3t

p(h(@)ID) = 123 e, 1:6)).
: o (3.4)
o (f@)ID) = 32 3 (F(@,:6,) — n(fi(@)ID)) + .

@
Il
—

Notably, we can compute partial derivatives of these acquisition functions (with
respect to @) via backpropagation through all functions f(x,t; 9;) This allows for a
gradient-based maximization of the acquisition function.

3.2. Related Work

The ability to combine the flexibility and scalability of (deep) neural networks with
properly-calibrated uncertainty estimates would be very useful in many contexts.
Consequently, there are many approaches for this problem, including early work on
(non-scalable) Hamiltonian Monte Carlo (Neal, [1996)), recent work on variational
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inference methods (Graves, [2011; Blundell et al.l 2015) and expectation propagation
(Hernandez-Lobato and Adams, [2015), re-interpretations of dropout as approximate
inference (Gal and Ghahramani, 2016; Kingma et al.| 2015)), as well as stochastic
gradient MCMC methods based on Hamiltonian Monte Carlo (Chen et al., 2014]))
and stochastic gradient Langevin MCMC (Welling and Teh, 2011)).

While any of these methods could, in principle, be used for BO, we found most of
them to result in suboptimal uncertainty estimates. Our preliminary experiments
(see Section suggest that they often conservatively estimate the uncertainty for
points far away from the training data, particularly when based on little training
data. This is problematic for BO, which crucially relies on well-calibrated uncertainty
estimates based on few function evaluations. One family of methods that consistently
resulted in good uncertainty estimates in our tests were Hamiltonian Monte Carlo
(HMC) methods, which we will thus use throughout this Chapter. Concretely, we
will build on the scalable stochastic MCMC method from |Chen et al.| (2014).

Using neural networks as underlying model for Bayesian optimization has been
explored by others before. [Snoek et al.| (2015) proposed DNGO which uses a simple
feed forward network to learn basis functions for Bayesian linear regression. Compared
to Gaussian processes, Bayesian linear regression scales cubically with the number
of input dimension. However, DNGO uses a point estimate of the weights and, in
comparison to our method, does not allow to capture the epistemic uncertainty of
the whole neural network.

3.3. Obtaining Well Calibrated Uncertainty Estimates

As mentioned in the related work section above, there exists a large body of work
on Bayesian methods for neural networks. In preliminary experiments, we tried
several of these methods to determine which algorithm was capable of providing
well calibrated uncertainty estimates. All approximate inference methods we looked
at (except for the MCMC variants) exhibited one of two problems (including the
variational inference method from Blundell et al.| (2015), the method from |Gal and
Ghahramani (2016) as well as the expectation propagation based approach from
Hernandez-Lobato and Adams| (2015))): either they did severely underfit the data, or
they poorly predicted the uncertainty in regions far from observed data points. The
latter behaviour is exemplified in Figure where we regressed the sinc function
from 20 observations with a three layer neural network (50 tanh units each). In
contrast, a fit of the same data with stochastic gradient Hamiltonian Monte-Carlo
(SGHMC) (Chen et al., |2014)) more faithfully represents model uncertainty as depicted
in Figure (bottom right). Based on this observation we decided to use SGHMC
to approximate the posterior of our model. However, in its standard version it is
quite sensitive to its hyperparameters in particular to the step length. We present a
more robust version of SGHMC that automatically adjust its hyperparameters in
the next section.
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Figure 3.1.: Four fits of the sinc function from 20 data-points. On the top-left the
regression task was solved using a re-implementation of the Bayes by Backprop
(BBB) approach from Blundell et al.| (2015). Note that, even though we were
able to reproduce the toy regression example described in [Blundell et al., (2015))
with an third party open-source implementation, we were not able to find a better
fit for this task even after tuning hyperparameters. On the top-right we used a
re-implementation of the Dropout MC approach from |Gal and Ghahramani (2016)
and in the bottom-left the original implementation of probabilistic Backpropaga-
tion (Hernandez-Lobato and Adams| 2015). On the bottom-right is a fit using
SGHMC (Chen et al., 2014). As it can be observed all variational inference meth-
ods are overly confident in large regions of the input space or poorly extrapolate
away from data. Note that this function has no observation noise.

3.4. Robust Stochastic Gradient Hamiltonian
Monte-Carlo via Scale Adaptation

In this section, we show how to use stochastic gradient Hamiltonian Monte Carlo (Chen
et al.| (SGHMC) to sample from the model defined by Equation We first
summarize the general formalism behind SGHMC and then derive a robust variant
suitable for BO.
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3.4.1. Stochastic Gradient Hamiltonian Monte-Carlo

Hamiltonian Monte-Carlo (Neal, |1996) (HMC) introduces a set of auxiliary variables,
7, and samples from the joint distribution

(0,7 | D) x exp <—U(9) _ ;TTM—IT> , (3.5)

with U(0) = —logp(D,#) by simulating a fictitious physical system described by
a set of differential equations, called Hamilton’s equations. In this system, the
negative log-likelihood U(f) plays the role of a potential energy, r corresponds to
the momentum of the system, and M represents the (arbitrary) mass matrix (Duane
et al., |1987).

Classically, the dynamics for § and r depend on the gradient VU (6) whose evaluation
is too expensive for our purposes, since it would involve evaluating the model on
all data-points. By introducing a user-defined friction matrix C, Chen et al.| (2014))
showed how Hamiltonian dynamics can be modified to sample from the correct
distribution if only a noisy estimate VU (0), e.g. computed from a mini-batch, is
available. In particular their discretized system of equations reads

A =My, Ar = —eVU(0) — eCM ™7 + N(0,2(C — B)e),  (3.6)

where, in a suggestive notation, we write N(0,X) representing the addition of a
sample from a multivariate Gaussian with zero mean and covariance matrix >.
Besides the estimate for the noise of the gradient evaluation B, and an undefined
step length €, all that is required for simulating the dynamics in Equation is a
mechanism for computing gradients of the log likelihood (and thus of our model) on
small subsets (or batches) of the data. This makes SGHMC particularly appealing
when working with large models and data-sets. Furthermore, Equation can be
seen as an MCMC analogue to stochastic gradient descent (with momentum) (Chen
et al., 2014). Following these update equations, the distribution of (6, r) is the one
in Equation [3.5] and 6 is guaranteed to be distributed according to p(6 | D).

3.4.2. Scale Adapted Stochastic Gradient Hamiltonian
Monte-Carlo

Like many Monte Carlo methods, SGHMC does not come without caveats, most
importantly the correct setting of the user-defined quantities: the friction term C,
the estimate of the gradient noise B, the mass matrix M, the number of MCMC
steps, and — most importantly — the step-size €. We found the friction term and the
step-size to be highly model and data-set dependent, which is unacceptable for BO,
where we require robust estimates across many different functions F with as few
parameter choices as possible.
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A closer look at Equation shows why the step-size crucially impacts the robust-
ness of SGHMC. For the popular choice M = I, the change in the momentum is
proportional to the gradient. If the gradient elements are on vastly different scales
(and potentially correlated), then the update effectively assigns unequal importance
to changes in different parameters of the model. This, in turn, can lead to slow
exploration of the target density. To correct for unequal parameter scales (and respect
their correlation), we would ideally like to use M as a pre-conditioner, reflecting the
metric underlying the model’s parameters. This would lead to a stochastic gradient
analogue of Riemann Manifold Hamiltonian Monte Carlo (Girolami and Calder{
head, |2011)), which has been studied before by Ma et al.| (2015)) and results in an
algorithm called generalized stochastic gradient Riemann Hamiltonian Monte Carlo
(gSGRHMC). Unfortunately, gSGRHMC requires the computation (and storage)
of the full Fisher information matrix of U and its gradient, which is prohibitively
expensive for our purposes.

As a pragmatic approach, we consider a pre-conditioning scheme increasing SGHMCs
robustness with respect to € and C, while avoiding the costly computations of
gSGRHMC. We want to note that recently — and directly related to our approach —
adaptive pre-conditioning using ideas from SGD methods has been combined with
stochastic gradient Langevin dynamics in Li et al. (2016) and to derive a hybrid
between SGD optimization and HMC sampling in |Chen et al.| (2016]), these however
either come with additional hyperparameters that need to be set or do not guarantee
unbiased sampling. The rest of this section shows how all remaining parameters in
our method are determined automatically.

Choosing M. For the mass matrix, we take inspiration from the connection between
SGHMC and SGD. Specifically, the literature (Tieleman and Hinton, 2012} Duchi
et al.,[2011)) shows how normalizing the gradient by its magnitude (estimated over the
whole dataset) improves the robustness of SGD. To perform the analogous operation
in SGHMC, we propose to adapt the mass matrix during the burn-in phase. We
set M~! = diag (‘79_1/ 2), where Vj is an estimate of the (element-wise) uncentered

variance of the gradient: V ~ E[(VU(6))2]. We estimate Vj using an exponential
moving average during the burn-in phase which yields the update equation:

AVy = =7 Wy +77'V(U(0))?, (3.7)

where 7 is a free parameter vector specifying the exponential averaging windows.
Note all multiplications above are element-wise and 7 is a vector with the same
dimensionality as 6.

Automatically choosing 7. To avoid adding 7 as a new hyperparameter — that we
would have to tune — we automatically determine its value. For this purpose, we
use an adaptive estimate previously derived for adaptive learning rate procedures
for SGD (Schaul et al.; 2013). We maintain an additional smoothed estimate of the
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gradient gy &~ VU () and consider the element-wise ratio 9%/V, between the squared
estimated gradient and the gradient variance. This ratio will be large if the estimated
gradient is large compared to the noise — in which case we can use a small averaging
window — and it will be small if the noise is large compared to the average gradient —
in which case we want a larger averaging window. We formalize these desiderata by
simultaneously updating Equation

At = —g2V ' r 41, and Agg = —7lgg + 77IVU(H). (3.8)

Estimating B. While the above procedure removes the need to hand-tune M~
(and will stabilize the method for different C and €), we have not yet defined an
estimate for B. Ideally, B should be the estimate of the empirical Fisher information
matrix that, as discussed above, is too expensive to compute. We therefore resort
to a diagonal approximation yielding B = %6‘79 which is readily available from

Equation [3.7

Scale adapted update equations. Finally, we can combine all parameter estimates
to formulate our automatically scale adapted SGHMC method. Following (Chen et al.
(2014), we introduce the variable substitution v = eM™'r = 6‘7971/27' which leads us
to the dynamical equations

A =v, (3.9)
Av = —2V, PVU(0) — eV, PCv+ N (O, 263V, 2oV, 2 E4I> , (3.10)

using the quantities estimated in Equations [3.7 and during the burn-in phase,
and then fixing the choices for all parameters. Note that the approximation of B
cancels with the square of our estimate of M~!. In practice, we choose C = (1,
i.e. the same independent noise for each element of #. In this case, Equations
and constrain the choices of C' and e, as we need them to fulfill the relation
min(V, ')C > e. For the remainder of the paper, we fix ¢ = 1072 (a robust choice
in our experience) and chose C' such that we have 6‘79_1/ *C = 0.05I (intuitively this
corresponds to a constant decay in momentum of 0.05 per time step) potentially
increasing it to satisfy the mentioned constraint at the end of the burn-in phase.

We want to emphasize that our estimation/adaptation of the parameters only changes
the HMC procedure during the burn-in phase. After it, when actual samples are
recorded, all parameters stay fixed. In particular, this entails that as long as our
choice of € and C satisfies min(V; )C' > ¢, our method samples from the correct
distribution. Our choices are compatible with the constraints on the free parameters
of the original SGHMC (Chen et al 2014). We also note that the scale adaptation
technique is agnostic to the parametric form of the density we aim to sample from.
As such, it could thus potentially also simplify SGHMC sampling for models beyond
those considered in this paper.
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3.5 Experiments on the Effects of Scale Adaptation

SGHMC Adaptive-SGHMC

lIJ 2 3 2
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Figure 3.2.: The sampling trajectories for SGHMC (left) and our scale-adapted
SGHMC (right). See text for the details about the energy landscape. The red
points indicate samples drawn during the burn-in phase where as the black points
represent samples draw during the sampling phase. Both methods start with the
same step length, but our method can adapt and thus explores the full distribution.

3.5. Experiments on the Effects of Scale Adaptation

Before we evaluate how well our method works in Bayesian optimization, we first
study the effects of our scale-adapted version of stochastic gradient Hamiltonian
Monte-Carlo. In the first experiments, we present a simple two dimensional case
where we can visualize the full MCMC trajectory. Afterwards, in the second set of
experiments we investigate the performance of Bayesian neural networks on some
standard regression benchmarks.

3.5.1. Toy Function

To visualize the effect of our scale adaption we consider the Gaussian mixture model
example by |Welling and Teh| (2011)) which is defined as:

1 1
€T; ~ 5/\/(90,0’2) + 5./\[(90 + 91,0’i)

We generated 100 data points from the model with 6y = 0, §; = 1 and o2 = 2.
During the sampling, we kept o2 fix and sampled different values for 6y and 0; with
standard SGHMC and our scale-adapted version. We ran both methods with a step
length of € = 1072 and batch size of 10 for 10000 steps where we used the first 100
steps as burn-in. Figure shows the trajectory for both samplers. One can see that
the step length for SGHMC is too small to make sufficient progress and it gets stuck
in one mode of the distribution. Even though our methods starts with the same step
length as SGHMC, it can adapt such that it captures the full distribution eventually.
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Chapter 3 Bayesian optimization with Bayesian neural networks

3.5.2. Regression Datasets

To test the efficacy of our novel scale adaptation technique for neural networks
we performed an evaluation on five common UCI regression datasets (Lichman),
2013)). The neural network architecture consisted of one fully-connected layer with
50 units and tanh activation functions followed by a linear output layer. For each
dataset we picked a 90% training split and 10% test split randomly as described by
Hernandez-Lobato and Adams| (2015). We compare standard SGHMC with different
step lengths to our scale adaption with a fixed steps length of 1072. Both methods
were evaluated for 15000 steps where the first 1000 steps are treated as burn-in.

Table|3.1| shows the log-likelihood and Table 3.2 the root mean-squared-error averaged
over 50 independent runs for SGHMC with and without our scale adaption. For each
run we sampled a new training and test split. The comparison shows that SGHMC
requires different step lengths for different datasets and our adaption works as well
or better than SGHMC with the best step length.

Table 3.1.: Log likelihood for UCI regression datasets.

Method / Dataset Boston-Housing Concrete Yacht Wine Power-Plant
SGHMC 10~ -444.87 £ 145.27 -442.20 + 77.25 -475.58 £ 199.29 -425.61 & 56.01 -39.36 + 7.75
SGHMC 10~° -79.53 & 41.20  -80.19 £+ 12.13  -94.61 £+ 29.65  -80.69 £ 10.28 -12.35 £ 0.74
SGHMC 10~4 -6.71 £+ 2.29 -4.84 £+ 0.39 -9.70 £ 2.60 -1.73 £ 0.28  -7.37 £0.99
SGHMC 10~3 -8.03 + 3.27 -5.88 + 1.64 -4.44 + 1.31 -3.83 £ 1.86 nan + nan

adaptive SGHMC  -6.34 £ 2.40 -5.18 £ 0.70 -2.32 £+ 1.36 -9.09 £1.66 -3.17 + 0.14

Table 3.2.: Root mean squared error for UCI regression datasets.

Method / Dataset Boston-Housing Concrete Yacht Wine Power-Plant
SGHMC 10~ 8.92 + 1.52 16.35 + 1.47 14.56 £ 2.78  0.79 &+ 0.05 6.00 + 0.52
SGHMC 10~° 4.88 + 1.07 9.92 + 0.66 9.10 + 1.67 0.64 + 0.04 444 +0.14
SGHMC 10~4 4.44 + 0.84 8.23 + 0.56 8.45 + 1.26 0.64 & 0.05 508.53 & 369.37
SGHMC 10~3 545.12 4+ 640.04 216.14 + 491.04 19.22 £+ 17.74 35.56 + 64.34 nan + nan

adaptive SGHMC 3.24 £+ 0.64 6.22 + 0.56 0.93 £ 0.31 0.63 + 0.04 4.21 £+ 0.18

3.6. Bayesian Optimization Experiments

We now show BO experiments for BOHamiANN. Unless noted otherwise, we used
a three layer neural network with 50 units and tanh activation functions for all
experiments. Since we are iteratively collecting more data we adapted the number of
burnin steps over time by a constant factor of 100 times the number of data points.
To obtain samples from the posterior we used a constant chain length of 10000 steps
with thinning such that we only kept every 100th sample. For the priors we let
p(0,) = N(0,07) be normally distributed and we chose a log-normal prior p(62) .
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3.6 Bayesian Optimization Experiments

Since other BO methods, such as random forests, do not provide gradients, we used
the gradient-free method differential evolution (Storn and Price, [1997)) to optimize
the acquisition function.

3.6.1. Synthetic Objective Functions

As a first experiment we compare BOHamiANN to BO with random forests and
Gaussian processes as probabilistic models as well as random search on a set of
8 different synthetic functions from the global optimization literature. For each
method we report the mean (solid line) regret to the global optimum and the standard
error of the mean (shaded areas) of 50 independent runs. All optimizers achieve
acceptable performance, but GP based methods were found to perform best on these
low-dimensional benchmarks and we thus take them as a point of reference. Overall,
on the 8 benchmarks BOHamiANN matched the performance of GP based BO on
2, performed better on 2 and performed worse on 4, indicating that even in the
low-data regime Bayesian neural networks (BNNs) are a feasible model class for BO.
See Figure for three example benchmarks. A detailed listing of all the results is
given in Section in the supplementary material.

Additionally, we compare to our re-implementation of the recently proposed DNGO
method (Snoek et al., 2015)), which uses features extracted from a maximum likelihood
fit of a neural network as the basis for a Bayesian linear regression fit (and was also
proposed as a replacement of GPs for scalable BO). For the benchmark tasks we
found BOHamiANN to perform consistently better and being slightly more robust
to different architecture choices.

Branin Hartmann-3 Hartmann-6

e
g
S R S
l\ —a
0-GP
O-R
050,

regret
regret

150 175 200 25 50 7 1 25 150 175 200 25 50 7 125 150 175 200

75 100 %5 3 0 12 3 3
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Figure 3.3.: Evaluation on common benchmark problems with different dimension-
ality. Immediate mean regret of various optimizers averaged over 50 runs on the
Branin (left), Hartmann3 (middle) and Hartmann6 (right) function (shaded areas
represent the standard error of the mean). For DNGO and BOHamiANN, we
denote the layer sizes for the (3 layer) networks in parenthesis.

3.6.2. Multi-Task Hyperparameter Optimization

Next, we consider the hyperparameter optimization of the popular gradient-boosting
method XGBoost (Chen and Guestrin, 2016) over a range of different regression
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Chapter 3 Bayesian optimization with Bayesian neural networks

problems. Concretely, we consider a set of 10 different regression datasets downloaded
from the UCI repository (Lichman, [2013). The definition of the configuration space
for XGBoost is given in Table in the supplementary material (see Section .
All hyperparameters are treated as continuous parameters, where integer parameters,
such as the number of estimators, are rounded before we pass them to XGBoost.

We compare BOHamiANN to Gaussian process based BO (GP-BO) and random
search (RS). Additionally we also include the multi-task version of BOHamiANN
(MT-Bohamiann) as well as the multi-task BO (MT-BO) procedure from Swersky et al.
(2013). MT-BO is based on Gaussian processes and infers the Cholesky decomposition
to model the correlations across tasks with the other GP hyperparameters. For
BOHamiANN, we use an embedding matrix, which gets a one-hot encoded task
variable as input and maps to a L = 5 dimensional feature vector. Both multi-task
methods are warm-started from 10 random configurations evaluated on a randomly
picked dataset out of the other 9 remaining datasets. We performed 30 independent
runs of each method and report the mean and the standard error of the mean for 3
benchmarks in Figure [3.4] and for all benchmarks in Section in the supplement
material.

First of all one can see that BOHamiANN works consistently better than GP-BO and
RS on these type of benchmarks. Furthermore, using previously acquired knowledge
always helped to speed up the optimization process with the Wine dataset being
the only exception. We attribute this to the different scale of the function values
compared to the auxiliary datasets (Parkinson Telemonitoring).
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Figure 3.4.: Comparison of Bohamiann to Gaussian process based Bayesian op-
timization (GP-BO) and random search (RS). Additionally, we also include the
multi-task variant of the two Bayesian optimization methods (denoted as MT-
Bohamiann and MT-BO respectively).

3.7. Chapter Conclusion

We proposed BOHamiANN] a scalable and flexible Bayesian optimization method
based on Bayesian neural networks. It natively supports multi-task optimization, and
scales to high dimensions and many function evaluations. At its heart lies Bayesian
inference for neural networks via stochastic gradient Hamiltonian Monte Carlo, and
we improved the robustness thereof by means of a scale adaptation technique.
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3.7 Chapter Conclusion

Due to their efficient scaling Bayesian neural networks are a natural candidate for
multi-fidelity modelling such as learning curves which can be considered as a fidelity
of the asymptotic performance of hyperparameter configurations. In Chapter [5] we
will show how our model can be adapted to model the learning curves of iterative
machine learning algorithms with respect to their hyperparameters. Besides that,
we use BOHamiANN in Chapter [§| to learn a genrative meta-model across tasks.
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4. Bayesian Optimization on large
Datasets

As we have seen in the previous two chapters, Bayesian optimization is an efficient
method for hyperparameter optimization. In its traditional setting, the loss of a
machine learning algorithm with hyperparameters & € X is treated as the “black-box”
problem of finding argmin_ y f(x), where the only mode of interaction with the
objective f is to evaluate it for inputs & € X. If individual evaluations of f on
the entire dataset require days or weeks, only very few evaluations are possible,
limiting the quality of the best found value. Human experts instead often study
performance on subsets of the data first, to become familiar with its characteristics
before gradually increasing the subset size (Bottou, |2012)). This approach can still
outperform contemporary Bayesian optimization methods.

Motivated by the experts’ strategy, here we leverage dataset size as an additional
degree of freedom enriching the representation of the optimization problem. We treat
the size of a randomly subsampled dataset Ny, as an additional input to the blackbox
function, and allow the optimizer to actively choose it at each function evaluation.
This allows Bayesian optimization to mimic and improve upon human experts when
exploring the hyperparameter space. In the end, Ny, is not a hyperparameter itself,
but the goal remains a good performance on the full dataset, i.e. Ny, = N.

While in this chapter we focus on hyperparameter optimization for large datasets,
in principle, our method could also be applied to other scenarios where cheap but
potentially biased and noisy approximations of the actual objective function are
available, such as, for instance, in the work by |Kandasamy et al.| (2016, which
introduces a Bayesian optimization variant that can optimize expensive functions by
exploiting cheaper fidelities. Our method’s only assumption is that one can define a
proper basis function to describe the similarity between the objective function and its
approximations. Another interesting application would be to likelihood-free inference,
where Bayesian optimization has been successfully applied before (Gutmann and
Corander, 2016)).

Hyperparameter optimization for large datasets has been explored by other authors
before. Our approach is similar to Multi-Task Bayesian optimization by Swersky
et al|(2013), where knowledge is transferred between a finite number of correlated
tasks. If these tasks represent manually-chosen subset-sizes, this method also tries to
find the best configuration for the full dataset by evaluating smaller, cheaper subsets.
However, the discrete nature of tasks in that approach requires evaluations on the
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Chapter 4 Bayesian Optimization on large Datasets

entire dataset to learn the necessary correlations. Instead, our approach exploits
the regularity of performance across dataset size, enabling generalization to the full
dataset without evaluating it directly.

Other approaches for hyperparameter optimization on large datasets include work by
Nickson et al.| (2014), who estimated a configuration’s performance on a large dataset
by evaluating several training runs on small, random subsets of fixed, manually-chosen
sizes. [Krueger et al| (2015) showed that, in practical applications, small subsets can
suffice to estimate a configuration’s quality, and proposed a cross-validation scheme
that sequentially tests a fixed set of configurations on a growing subset of the data,
discarding poorly-performing configurations early.

Li et al| (2017) proposed a multi-arm bandit strategy, called Hyperband, which
dynamically allocates more and more resources to randomly sampled configurations
based on their performance on subsets of the data. Hyperband assures that only
well-performing configurations are trained on the full dataset while discarding bad
ones early. Despite its simplicity, in their experiments the method was able to
outperform well-established Bayesian optimization algorithms.

The remainder of the chapter is structured as follow: We first review Entropy
Search (Hennig and Schuler, 2012)) on which our method is based in Section
In Section we show that subsets of the training data are often sufficient to
reason about the performance of a hyperparameter configuration. In Section
we then present previous approaches such as Multi-task Bayesian optimization and
Hyperband. In Section [.4] we introduce our new Bayesian optimization method
FaBoLAS for hyperparameter optimization on large datasets. In each iteration,
FABOLAS chooses the configuration @ and dataset size Ny, predicted to yield most
information about the loss-minimizing configuration on the full dataset per unit time
spent. Finally, in Section [4.5] a broad range of experiments with support vector
machines and convolutional deep neural networks show that FABOLAS often identifies
good hyperparameter settings 10 to 100 times faster than state-of-the-art Bayesian
optimization methods acting on the full dataset, as well as Hyperband.

4.1. Entropy Search

Entropy Search (Hennig and Schuler| 2012; [Villemonteix et al., 2008) is a more recent
acquisition function that selects evaluation points based on the predicted information
gain about the optimum, rather than aiming to evaluate near the optimum. At the
heart of ES lies the probability distribution puyin(x | D) := p(x € argmin,, x f(z') |
D), the belief about the function’s minimum given the prior on f and observations D.
Given p(f), the probability that a point is the minimum is defined with suggestive
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4.1 Entropy Search

notation as

Pmin(x|D) = p(x € argmin f(x')| D)
x'eX

= [p(1D) T] Ol (@) ~ f (@) df 4.1)
FeX
THx
where O is the Heaviside step function. The product in this equation is over an
infinite domain (yet well-defined if p(f|D) is sufficiently regular). In practice, it
has to be represented in a finite form. We follow the approach of Hennig and
Schuler| (2012), who approximate p(f|D) by a finite-dimensional Gaussian over an
irregular grid of points 1, ..., 7z, which are designed heuristically to provide good
interpolation resolution on py;,. Like Hennig and Schuler| (2012), we sample these so
called representer points using Expected Improvement (see Section . This step
reduces pnin to a discrete distribution, and turns the infinite product in Equation
into a finite one. That distribution itself is still analytically intractable, but an
analytically tractable (in particular, differentiable) approximation gmi(7;) of good
empirical quality can be computed using Ezxpectation Propagation (EP) (Minka)
2001), of computational cost O(Z*). EP does not only yield pui,, but also the
gradient with respect to means and covariances of the model at the representer
points allowing efficient computations after an expensive initial calculation of these
quantities. This particular application of EP (dubbed EPMGP) to Gaussian integrals
was introduced by |Cunningham et al. (2011) where all the details can be found.

The information gain at x is then measured by the expected Kullback-Leibler diver-
gence (relative entropy) between puin(- | DU {(x,y)}) and the uniform distribution
u(x), with expectations taken over the measurement y to be obtained at @:

pmin(w, | D,)
u(z')
where D' = D U {(x,y)}. The primary numerical challenge in this framework is the

computation of pyin(- | P') and the integral above. Due to the intractability, several
approximations have to be made.

ags(x) := Eyyja,p) [/pmin(wl | D') - log dz'| (4.2)

Algorithm 2] provides pseudocode for our implementation of Entropy Search. Lines
1-12 precompute various quantities that are needed for evaluating the acquisition
function, which is optimized in line 13. Specifically, after sampling K hyperparameter
settings from the marginal loglikelihood for the GP using MCMC (line 1), for every
hyperparameter setting 6;, the algorithm

fits a GP (line 4),

e samples representer points with respect to ag; (line 5),

stores the representer points and their logarithmic EI values (lines 6 and 7),

computes p and X for the joint predictive distribution at the representer points
(line 8),
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e computes Py, given p and 3, using EPMGP (line 9),

e draws random points from a normal distribution centered at 0 and unit variance
(line 10) for the innovation in Algorithm [4] and stores them (line 11) for later
usage.

Algorithm 2 Selection of next point by Entropy Search

Require: D, = (z;,Y;)j=1..n
1: Sample K instantiations of the GP hyperparameters ® = [6y,...,0k] w.r.t.
marginal likelihood

2 Prin < [, Q< [, R+ [,U <+ ||

3: fori=1... K do

4: Fit GP model M® on D,, with hyperparameter 6,

5: (r1,ap1(m)) ..., (rz,ap1(rz)) ~ apr(z|M®) > Sample Z representer points

6: Rli]«7y,...,7z > Store representer points R € RE*ZxD

7. Ul < agi(r1),...,ag1(rz) > Store EI values of the representer points
U e RKXZ

8: Let p,Y be the mean and covariance matrix at 7, ..., rz based on M®

9:  Pminli] < computePmin (u,Y) > Probability of each 7y,..., 7z to be the
minimum.

10: Forp=1,...,P: w, ~ N(0,I7) > Stochastic change to hallucinate P values
at representer points

11: Qi] « [w1,...,wp| > Store stochastic change for the innovations
= RKXZXP

12: end for

13: T4 < arg max, .y InformationGain(x, D, R, U, 2, ©)

14: return x,

Given these quantities, Algorithm [3| then computes the ES acquisition function from
Equation (4.2
For each hyperparameter 8; of the GP, it then carries out the following steps:

e train a model M® on the data D by computing the Cholesky decomposition

(line 3)

e based on this model M® compute the mean and the variance for the test
point & and the mean and covariance for the representer points 7y, ..., 7z (line
4 and 5)

e For each of the P stochastic change vectors w, sampled in Algorithm 1 (line
10) and stored in Q[i, 7, ],

— fantasize the change Ap, AY of the current posterior p(f|D) (line 7) with
Algorithm

— estimate the py,;, distribution of this updated posterior (line 8)

52



4.1 Entropy Search

— compute the relative change in entropy (line 9)
e take the expectation over p(y|x, D) of Equation (3) (line 10)

e marginalize the acquisition function agg(x) over all hyperparameters © (line
13)

Algorithm 3 InformationGain
Require: z,D,R,U,(),©

1: a(a:) ~—0

2: fori=1,... K do > Marginalization over ©

3: Let M® be the trained model on D with hyperparameters 6;

4: Let 1, 0% be the predictive mean and variance at « based on M®

5: Let @, Y be the mean and covariance matrix at 7, ..., r, based on M®

6: for j =0,... P do > Averages over all hallucinated values.

7: Ap, AY < Innovations(x, M@ R[i,:,:],02 Q[i,5,:]) > Change in the
posterior believe at rq,...,ry if we would evaluate at x

8: Gmin < computePmin (pu + Ap, 3 + AY) > New Pmin of the updated
posterior

10: a(x) < a(x) + 5dH

11: end for

12: end for

13: return a(x)

This algorithm in turns makes use of Algorithm [4 to compute the innovations, which

e computes the change in the mean Ap by first computing the correlation X(x, )
of & and the representer points 7y, ..., rz and multiplying it with the Cholesky
decomposition of the k(x, x) and the vector w € €. Note that this change is
stochastic (line 1).

e computes the change of the covariance (line 2) which is deterministic

Algorithm 4 Innovations

. . 2
Require: x, M,r{,...,rz,0° w

1 Ap(z) =X(x,7) - 0% Clo? + 02, Jw > Y(x, ') denotes the correlation
between & and &’ based on M

2. AY(z) = X(x,r) -0 - Xz, 7)T

3: return Ap(x), AX(x)

Despite the conceptual and computational complexity of ES, it offers a well-defined
concept for information gained from function evaluations, which can be meaningfully
traded off against other quantities, such as the evaluations’ cost.
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4.2. Reasoning Across Dataset Subsets

The runtime of machine learning algorithms usually scales polynomially with the num-
ber of data points Ny, i.e. O(NS,) for some positive o. While the computational
cost of training grows, the loss of machine learning methods usually decreases with
the number of training samples. The computational cost is often largely independent
of the hyperparameter values, but the loss depends crucially on them (which is the
reason we want to optimize them in the first place).

For an intuition on how performance changes with dataset size, we evaluated a grid
of 400 configurations of a support vector machine (SVM) on subsets of the MNIST
dataset (LeCun et al 2001) ; MNIST has N = 50000 data points and we evaluated
relative subset sizes s := Nouwr/N € {1/512, 1/256, 1/128, ..., /1, /2, 1},

Figure |4.1] visualizes the validation error (top) and training time (bottom) of these
configurations on s = 1/128, /16, 1/4, and 1. Evidently, just 1/12s8 of the dataset is
quite representative and sufficient to locate a reasonable configuration. Additionally,
there are no deceiving local optima on smaller subsets. The training time, however
increases substantially with the number of datapoints, single configurations take only
a few seconds to train on s = 1/128 but can take up to a few hours on the full dataset.
Based on these observations, we expect that relatively small fractions of the dataset
yield representative performances and therefore vary our relative size parameter s on
a logarithmic scale.

4.3. Previous Work

Making use of dataset subsets to seed up hyperparameter optimization has been
investigated by others before. In this Section we will present two approaches that
are similar to ours, namely Multi Task Bayesian Optimization and Hyperband.

4.3.1. Multi-Task Bayesian Optimization

The Multi-Task Bayesian optimization (MTBO) method by Swersky et al.| (2013)
refers to a general framework for optimizing in the presents of different, but correlated
tasks. Given a set of such tasks T = {1,...,T}, the objective function f : X xT — R
corresponds to evaluating a given & € X on one of the tasks ¢t € T. The relation
between points in X x T is modeled via a GP using a product kernel:

kMT((CC, t), (a:’, t/)) = kT(t, t/) : k5/2<.’13, CC/) . (43)

The kernel kr is represented implicitly by the Cholesky decomposition of k(T,T)
whose entries are sampled via MCMC together with the other hyperparameters
of the GP. By considering the distribution over the optimum on the target task
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Figure 4.1.: Validation error (top row) and training time (bottom row) of a grid
of 400 SVM configurations (20 settings of each of the regularization parameter
C' and kernel parameter -, both on a log-scale in [—10,10]) for subsets of the
MNIST dataset (LeCun et al., 2001) of various sizes Ngu. Small subsets are quite
representative: The validation error of bad configuration (yellow) remains constant
at around 0.9, whereas the region of good configurations (blue) does not change
drastically with s. Both hyperparameters also have an influence on the training
time, even though it is less dramatic than the influence of the dataset size.

(2

te € T, ppin(x | D) := p(x € argming x f(x',t = t,) | D), and computing any
information w.r.t. it, [Swersky et al.| (2013) use the information gain per unit cost as
their acquisition functiorﬂ:

1 pt*. (m/| /)
L / (g | D) log PEn @ L) gl g
c(m,t) p(y|z,t,D) [ pmln(:B | ) og u(w’) T ( )

amMT (.’B, t) L=
where D' = DU {(x,t,y)}. The expectation represents the information gain on
the target task averaged over the possible outcomes of f(x,t) based on the current
model. If the cost ¢(x,t) of a configuration @ on task ¢ is not known a priori it can
be modelled the same way as the objective function.

This model supports machine learning hyperparameter optimization for large datasets
by using discrete dataset sizes as tasks. |Swersky et al. (2013) indeed studied this

n fact, [Swersky et al.| (2013) deviated slightly from this formula (which follows the ES approach
of Hennig and Schuler| (2012)) by considering the difference in information gains in ps; (z | D)
and p'*, (z | DU {(z,y)}). They stated this to work better in practice, but we did not find
evidence for this in our experiments and thus, for consistency, use the variant presented here
throughout.
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approach for the special case of T = {0, 1}, representing a small and a large dataset;
this will be a baseline in our experiments.

4.3.2. Hyperband

Hyperband (Li et al., [2017)) is a multi-arm bandit strategy based on random search.
It was developed concurrently with our method, and, similar to it, makes uses of the
principle that hyperparameter configurations performing poorly on subsets of the
data are very likely to also perform poorly on the full datasets.

In each iteration 7, Hyperband samples n; configurations randomly and uses successive
halving (Jamieson and Talwalkar, |2016) to discard hyperparameter configurations
after evaluating them on subsets of the data. Hyperband iteratively calls successive
halving with different tradeoffs between breadth (i.e., number of configurations)
and depth (i.e., subset size), such that each iteration takes roughly the same time.
Hyperband returns its first suggested hyperparameter setting after its first run of
successive halving.

4.4. Fabolas

Here, we introduce our new approach for FAst Bayesian Optimization on LArge data
Sets (FABOLAS). While traditional Bayesian hyperparameter optimizers model the
loss of machine learning algorithms on a given dataset as a blackbox function f to be
minimized, FABOLAS models loss and computational cost across dataset size and uses
these models to carry out Bayesian optimization with an extra degree of freedom.
The blackbox function f : X x R — R now takes another input representing the data
subset size; we will use relative sizes s = Ny, /N € [0, 1], with s = 1 representing
the entire dataset. While the eventual goal is to minimize the loss f(x,s = 1) for
the entire dataset, evaluating f for smaller s is usually cheaper, and the function
values obtained correlate across s. Unfortunately, this correlation structure is initially
unknown, so the challenge is to design a strategy that trades off the cost of function
evaluations against the benefit of learning about the scaling behavior of f and,
ultimately, about which configurations work best on the full dataset. Following the
nomenclature of [Williams et al.| (2000), we call s € [0, 1] an environmental variable
that can be changed freely during optimization, but that is set to s = 1 (i.e., the
entire dataset size), at evaluation time.

We propose a principled rule for the automatic selection of the next (x, s) pair to
evaluate. In a nutshell, where standard Bayesian optimization would always run
configurations on the full dataset, we use ES to reason about, how much can be
learned about performance on the full dataset from an evaluation at any s. In doing
so, FABOLAS automatically determines the amount of data necessary to (usefully)
extrapolate to the full dataset.
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Figure 4.2.: Kernel values across different s with quadratic basis functions to model
the objective function (left) and linear basis function to model the cost (right).

4.4.1. Modelling Loss and Computational Cost

To transfer the insights from the illustrative example in Section f.2]into a formal model
for the loss and cost across subset sizes, we extend the GP model by an additional
input dimension, namely s € [0, 1]. This allows the surrogate to extrapolate to the
full data set at s = 1 without necessarily evaluating there. We chose a factorized
kernel, consisting of the standard stationary kernel over hyperparameters, multiplied
with a finite-rank (“degenerate”) covariance function in s:

E((@.9), @,5) = ko (@) - (67() - Sy - 0(5)) (15)

Since any choice of the basis function ¢ yields a positive semi-definite covariance
function, this provides a flexible language for prior knowledge relating to s. We
use the same form of kernel to model the loss f and cost ¢, respectively, but with
different basis functions ¢ and ¢. .

The loss of a machine learning algorithms usually decreases with more training data.
We incorporate this behavior by choosing ¢(s) = (1, (1 —s)?)” to enforce monotonic
predictions with an extremum at s = 1. This kernel choice is equivalent to Bayesian
linear regression with these basis functions and Gaussian priors on the weights.

To model computational cost ¢, we note that the complexity usually grows with
relative dataset size s. To fit polynomial complexity O(s*) for arbitrary « and
simultaneously enforce positive predictions, we model the log-cost and use ¢.(s) =
(1,s)T. As above, this amounts to Bayesian linear regression with shown basis
functions.

Figure [£.2] shows some examples of our basis functions. Figure [4.3] visualizes the
scaling of loss and cost with s for some random SVM configurations from Section
4.2l

4.4.2. Algorithm Description

FABOLAS starts with an initial design, described in more detail in Section [4.4.3] Af-
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Figure 4.3.: Gaussian process model prediction (solid line) and the actual values
(dashed) for the objective function (left) and the cost function (right) based on a
dot product of our Bayesian linear regression kernel and a Matern kernel.

terwards, at the beginning of each iteration it fits GPs for loss and computational cost
across dataset sizes s using the kernel from Eq. [£.5] Then, capturing the distribution
of the optimum for s = 1 using pi;}(x | D) := p(x € argming .y f(a',s = 1) | D), it
selects the maximizer of the following acquisition function to trade off information
gain versus cost:

D/
on(ns) s B0 [P | D) - log MG d] (46)
! ’ o (Q’J ) S) + Coverhead 7 '

where D' = DU{(z, s,y)}. Algorithm[f|shows pseudocode for FABOLAS. Additionally,
we provide an open-source implementation at: https://github.com/automl/RoBO.

Algorithm 5 Fast BO for Large Datasets (FABOLAS)

1: Initialize data Dy using an initial design.

2: fort=1,2,... do

3: Fit GP models for f(z,s) and c(x, s) on data D;_,

4: Choose (x;, s;) by maximizing the acquisition function in Equation .

5: Evaluate y; ~ f(xs,s:) + N(0,02), also measuring cost z; ~ c(xy,s;) +
N(0,0?), and augment the data: D; = Dy U { (@, S¢, Y, 2¢) }

6: Choose incumbent &; based on the predicted loss at s = 1 of all
{x1, 2, ..., 24}

7: end for

Our proposed acquisition function resembles the one used by MTBO (Eq. , with
two differences: First, MTBO’s discrete tasks ¢ are replaced by a continuous dataset
size s (allowing to learn correlations without evaluations at s = 1, and to choose the
appropriate subset size automatically). Second, the prediction of computational cost
is augmented by the overhead of the Bayesian optimization method. This inclusion
of the reasoning overhead is important to appropriately reflect the information gain
per unit time spent: it does not matter whether the time is spent with a function
evaluation or with reasoning about which evaluation to perform. In practice, due to
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cubic scaling in the number of data points of GPs and the computational complexity
of approximating p5=! the additional overhead of FABOLAS is within the order of
minutes, such that differences in computational cost in the order of seconds become
negligible in comparison [

Being an anytime algorithm, FABOLAS keeps track of its incumbent at each time step.
To select a configuration that performs well on the full dataset, it predicts the loss
of all evaluated configurations at s = 1 using the GP model and picks the minimizer.
We found this to work more robustly than globally minimizing the posterior mean,
or similar approaches.

4.4.3. Initial Design

It is common in Bayesian optimization to start with an initial design of points chosen
at random or from a Latin hypercube design to allow for reasonable GP models as
starting points. To fully leverage the speedups we can obtain from evaluating small
datasets, we bias this selection towards points with small (cheap) datasets in order
to improve the prediction for dependencies on s: We draw k random points in X
(k = 10 in our experiments) and evaluate them on different subsets of the data (for
instance on the support vector machine experiments we used s € {1/64,1/32,1/16,1/3}).
This provides information on scaling behavior, and, assuming that costs increase
linearly or superlinearly with s, these k function evaluations cost less than % function
evaluations on the full dataset. This is important as the cost of the initial design, of
course, counts towards FABOLAS’ runtime.

4.4.4. Implementation Details

The presentation of FABOLAS above omits some details that impact the performance
of our method. As it has become standard in Bayesian optimization (Snoek et al.|
2012), we use Markov-Chain Monte Carlo (MCMC) integration to marginalize over
the GPs hyperparameters (we use the emcee package (Foreman-Mackey et al. [2013)).
To accelerate the optimization, we use hyper-priors to emphasize meaningful values
for the parameters, chiefly adopting the choices of the SPEARMINT toolbox (Snoek
et al., |2012)): a uniform prior between [—10, 2] for all length scales A in log space, a
lognormal prior (y, = 0, 02 = 1) for the covariance amplitude 6, and a horseshoe
prior with length scale of 0.1 for the noise variance o2.

We used the original formulation of ES by Hennig and Schuler| (2012)) rather than the
recent reformulation of PES by Hernandez-Lobato et al.| (2014). The main reason

2The same is true for standard ES and MTBO, but was never exploited as no emphasis was put
on the total wall clock time spent for the hyperparameter optimization. We want to emphasize
that we express budgets in terms of wall clock time (not function evaluations) since this is
natural in most practical applications.
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for this is that the latter prohibits non-stationary kernels due to its use of Bochner’s
theorem for a spectral approximation. PES could in principle be extended to work
for our particular choice of kernels (using an Eigen-expansion, from which we could
sample features); since this would complicate making modifications to our kernel, we
leave it as an avenue for future work, but note that in any case it may only further
improve our method. To maximize the acquisition function we used the blackbox
optimizer DIRECT (Jones|, 2001]).

4.4.5. Heteroscedastic Noise

When making the subset size a parameter, we shuffle the data before an evaluation to
prevent bias incurred by repeatedly using the same subset. This shuffling introduces
additional noise which could be particularly high for small subsets. To investigate
this, we again used the SVM grid of 400 configurations from the Section [4.2] We
repeated each run with a given subset size K = 10 times using different subsets, and
estimate the observation noise variance at each point as:

K
Ugbs m]’ Z Yk mjvsz Mi,j)Qv (47)

where j1; j = K~ S8 yi(x;, s;). The red points in Figure show the mean and
standard deviation of o2 (x;, s;) over all configurations for all s; values considered.
As expected, the noise decreases with an increasing s, to a point where o2, is zero
for s = 1.

In contrast to this heteroscedastic noise intrinsic to the random subsampling, the
commonly used noise hyperparameter o2 of a GP (call it 02 ) is fixed and typically
estimated using MCMC sampling. To compare these two noise values, for each fixed
size s, we also trained a GP to predict losses and plotted its estimates o2 as blue
markers in Figure [£.4] To obtain a good estimate of the GP’s hyperparameters, we
used a relatively long MCMC chain compared to the ones used during Bayesian
optimization. Figure clearly shows that the estimated variance o2 is always
larger than the observatlon noise 02,,. This might indicate a certain misfit between
the true objective and the space of functions the GP can model (Sollich, 2001)).
Consequently, we believe the heteroscedastic noise from subsampling the data to
often be negligible compared to the noise estimated by the MCMC sampling.

4.5. Experiments

For our empirical evaluation of FABOLAS, we compared it to standard Bayesian
optimization (using EI and ES as acquisition functions), MTBO, and Hyperband. For
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Figure 4.4.: Evaluating a configurations on a shuffled subset of the data induces
an additional noise, 02, that depends on the dataset size s. The noise parameter
o2 p estimated by MCMC sampling for fixed dataset sizes.

each method, we tracked wall clock time (counting both optimization overhead and
the cost of function evaluations, including the initial design), storing the incumbent
returned after every iteration. In an offline validation step, we then trained models
with all incumbents on the full dataset and measured their test error. To obtain
error bars, we performed 10 independent runs of each method with different seeds
(except on the grid experiment, where we could afford 30 runs per method) and
plot mean and standard deviation for all experiments. Each optimization trajectory
starts after all of its runs have evaluated at least one configuration f

We implemented Hyperband following |Li et al. (2017) using the recommended
setting for the parameter n = 3 that controls the intermediate subset sizes. For
each experiment, we adjusted the budget allocated to each Hyperband iteration
to allow the same minimum dataset size as for FABOLAS: 100 datapoints for the
support vector machine benchmarks and the maximum batch size for the neural
network benchmarks. We also followed the prescribed incumbent estimation after

3This way we avoid assigning a performance to unfinished runs, but we loose information about
the runtime distribution across independent runs.
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Figure 4.5.: Evaluation on SVM grid on MNIST. (Left) Test performance over time
for variants of MTBO with different dataset sizes for the auxiliary task. (Right)
Baseline comparison of test performance of the methods’ selected incumbents over
time. We only plot means to avoid clutter.

each iteration as the configuration with the best performance on the full dataset size.

4.5.1. Support Vector Machine Surrogate

First, we considered a benchmark allowing the comparison of the various Bayesian
optimization methods on ground truth: we trained a random forest surrogate
(Eggensperger et al., 2015) on our SVM grid on MNIST (described in Section
, for which we had performed all function evaluations beforehand.

We used this benchmark to adjust the number of data points for MTBQO’s auxiliary
task. Figure (left) evaluates MTBO variants with a single auxiliary task with a
relative size of 1/, 1/16, /32, and /512, respectively. We found that the smaller the
auxiliary task, the faster MTBO improved initially, but the slower it converged to
the optimum. In the plot, MTBO with an auxiliary task of relative size s = /512 did
not achieve the same performance as the other variants in the end. Given the global
structure of the error surface (see Figure and the super-linear scaling of the SVM,
we chose a very conservative auxiliary task with s = 1/4 for the remaining experiments.
This value worked consistently in our experience, although the convergence to the
best solution in some of the later benchmarks was still rather slow.

At first glance, one might expect many tasks (e.g., with a task for each s value
above) to work best, but quite the opposite is true. In preliminary experiments, we
evaluated MTBO with up to 3 auxiliary tasks (s = 1/4, 1/32, and 1/512), but found
performance to strongly degrade with a growing number of tasks. We suspect that
the (@) kernel parameters that have to be learned for the discrete task kernel for
|T'| tasks are the main reason. If the MCMC sampling is too short, the correlations
are not appropriately reflected, especially in early iterations; and an adjusted longer
sampling creates a large computational overhead that dominates wall-clock time. We
consistently obtained the best performance with only one auxiliary task.
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Figure 4.6.: SVM hyperparameter optimization on the datasets MNIST (left), vehicle
(middle) and covertype (right). At each time, the plots show test performance
of the methods’ respective incumbents. FABOLAS can find good configurations
between 10 and 1000 times faster than the other methods, but the is not always
the fastest to find the true optimum.

We can now proceed to compare the different methods on this benchmark. The right
panel of Figure [4.5 shows results using EI, ES, random search, Hyperband, MTBO
and FABOLAS. El and ES performed equally well and found the best configuration
(which yields an error of 0.014, or 1.4%) after around 10° seconds, roughly three
times faster than random search. Hyperband outperformed EI and ES by roughly
one order of magnitude. MTBO achieves good performance faster, requiring only
around 2 x 10 seconds to find close-to-optimal solutions. FABOLAS was roughly
another order of magnitude faster than MTBO in finding good configurations, and
found close-to-optimal solutions at the same time.

4.5.2. Support Vector Machines

For a more realistic scenario, we optimized the same SVM hyperparameters (see
Table without a surrogate on MNIST and two other prominent UCI datasets
(gathered from OpenML (Vanschoren et al. 2014)), vehicle registration (Siebert),
1987)) and forest cover types (Blackard and Dean, 1999) with more than 50000 data
points. Training SVMs on these datasets can take several hours, and Figure [4.6]shows
that FABOLAS found good configurations for them between 10 and 1000 times faster
than the other methods. On the other hand, both FABOLAS and MTBO sometimes
converged more slowly to the true optimum after their initial improvement. This
could be a consequence of the GP model and the respective assumptions about the
correlation across dataset sizes. Hyperband constitutes a very competitive optimizer
on these benchmarks; the super-linear complexity of the SVM and lower cost of good
configurations allow Hyperband to recommend its first incumbent faster than the
BO methods operating on the full data set.
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Table 4.1.: Hyperparameters for all support vector machine tasks.

Hyperparameter lower bound upper bound log
Regularization C e 10 eld X
Kernel parameter ~y e 10 el? X

4.5.3. Convolutional Neural Networks

Convolutional neural networks (CNNs) have shown superior performance on a
variety of computer vision and speech recognition benchmarks, but finding good
hyperparameter settings remains challenging, and almost no theoretical guarantees
exist. Tuning CNNs for modern, large datasets is often infeasible via standard
Bayesian optimization; in fact, this motivated the development of FABOLAS.

We experimented with hyperparameter optimization for CNNs on two well-established
object recognition datasets, namely CIFAR10 (Krizhevsky, 2009) and SVHN (Net-
zer et al.) 2011). We used the same setup for both datasets (a CNN with three
convolutional layers, with batch normalization (loffe and Szegedy, 2015) in each
layer, optimized using Adam (Kingma and Ba, [2015)). We considered a total of five
hyperparameters: the initial learning rate, the batch size and the number of units in
each layer (see Table [£.2).

Table 4.2.: Hyperparameters for the convolutional neural network task.

Hyperparameter lower bound upper bound log
Initial learning rate 1076 10° X
Batch size 32 512

# units layer 1 24 28 X
# units layer 2 24 28 X
# units layer 3 24 28 X

For CIFAR10, we used 40000 images for training, 10000 to estimate validation error,
and the standard 10000 hold-out images to estimate the final test performance of
incumbents. For SVHN, we used 6000 of the 73257 training images to estimate
validation error, the rest for training, and the standard 26032 images for testing.

The results in Figure [£.7]show that—compared to the SVM tasks—FABOLAS’ speedup
was smaller because CNNs scale linearly in the number of datapoints. Nevertheless, it
found good configurations about 10 times faster than vanilla Bayesian optimization.
For the same reason of linear scaling, Hyperband was substantially slower than
vanilla Bayesian optimization to make a recommendation, but it did find good
hyperparameter settings when given enough time.
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Figure 4.7.: Test performance of a convolutional neural network on CIFAR10 (left)
and SVHN (right).

4.6. Chapter Conclusion

We presented FABOLAS, a new Bayesian optimization method based on Entropy
Search that mimics human experts in evaluating algorithms on subsets of the data to
quickly gather information about good hyperparameter settings. FABOLAS extends
the standard way of modelling the objective function by treating the dataset size
as an additional continuous input variable. This allows the incorporation of strong
prior information. It models the time it takes to evaluate a configuration and aims to
evaluate points that yield—per time spent—the most information about the globally
best hyperparameters for the full dataset. In various hyperparameter optimization
experiments using support vector machines and deep neural networks, FABOLAS
often found good configurations 10 to 100 times faster than the related approach of
Multi-Task Bayesian optimization, Hyperband and standard Bayesian optimization.
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5. Probabilistic Prediction of
Learning Curves

As we have seen in the last chapter, one can tremendously speed up the optimization
procedure by exploiting cheap-to-evaluate fidelities of the objective function, such as
subsets of the training data. In this chapter, we will have a look at another fidelity
that many machine learning algorithms exhibit: learning curves, i.e. the loss of
iterative machine learning such as neural networks over time or epochs. Compared to
using dataset subset as fidelities, learning curves automatically lead to substantially
more data points, which makes it challenging for models that struggle with large
datasets such as Gaussian process. Therefore, in this chapter we describe a general
framework to model learning curves of iterative machine learning methods based on
the Bayesian neural networks described in Chapter [3] We first show in Section [5.1] the
approach by Domhan et al. (2015)) (dubbed LC-Extrapolation) which uses parametric
functions to model individual learning curves. Afterwards in Sections [5.2] and [5.3] we
discuss a more general joint model across time steps and hyperparameters that can
exploit similarities between hyperparameter configurations and predict for unobserved
learning curves. Finally, we present an empirical comparison to other methods in

Section [5.4]

5.1. Learning Curve Prediction with Basis Functions

An intuitive model for learning curves proposed by Domhan et al.| (2015)) uses a set
of k different parametric functions ¢;(0;,t) € {¢1(01,1), ..., ox(0k, )} to extrapolate
learning curves (yi,...,y,) from the first n time steps. Each parametric function
¢; depends on a time step t € [1,T] and on a parameter vector ;. The individual
functions are combined into a single model by a weighted linear combination

F(t16, ) szqﬁl t,6;) (5.1)
where © = (01, ...,0) denotes the combined vector of all parameters 6, ..., 0,
and W = (wy, ..., wy) is the concatenated vector of the respective weights of each

function. Assuming observation noise around the true but unknown value f(t),
i.e., assuming y, ~ N (f(t|6,1), 0%), Domhan et al| (2015) define a prior for all
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parameters P(é, w,0?) and use a gradlent free MCMC method (Foreman-Mackey
et al., 2013)) to obtain S samples, (@1, wh,0%),.. (@s, Ws,0%), from the posterior

—

P(O,,0% | y1....yn) < P(y1, ... yn | ©,15,0%)P(6,15,0?) (5.2)

using the likelihood

Py, ..., yn | ©,0, 07 HNyt, f(t| ©,1@),07). (5.3)

t=1
These samples then yield probabilistic extrapolations of the learning curve for future
time steps m, with mean and variance predictions

~ L

s
Um = Elym|y1, - .. 3" f(m| ©,,,), and
s=1

O)

) (5.4)

s
var(gm) ~ — me|657ws) Im)* +>_ 0.

s=1

For our experiments, we use the original implementation by [Domhan et al.[ (2015)
with one modification: the original code included a term in the likelihood that
enforced the prediction at ¢ = T to be strictly greater than the last value of that
particular curve. This biases the estimation to never underestimate the accuracy at
the asymptote. We found that in some of our benchmarks, this led to instabilities,
especially with very noisy learning curves. Removing it cured that problem, and we
did not observe any performance degradation on any of the other benchmarks.

The ability to include arbitrary parametric functions makes this model very flex-
ible, and Domhan et al| (2015) used it successfully to terminate evaluations of
poorly-performing hyperparameters early for various different architectures of neural
networks (thereby speeding up Bayesian optimization by a factor of two). However,
the model’s major disadvantage is that it does not use previously evaluated hyper-
parameters at all and therefore can only make useful predictions after observing a
substantial initial fraction of the learning curve.

5.2. Learning Curve Prediction with Bayesian Neural
Networks

In practice, similar hyperparameter configurations often lead to similar learning
curves, and modelling this dependence would allow predicting learning curves for new
configurations without the need to observe their initial performance. Swersky et al.
(2014) followed this approach based on an approximate Gaussian process model. Their
Freeze-Thaw method showed promising results for finding good hyperparameters of
iterative machine learning algorithms using learning curve prediction to allocate most
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resources for well-performing configurations during the optimization. The method
introduces a special covariance function corresponding to exponentially decaying
functions to model the learning curves. This results in an analytically tractable
model, but using different functions to account for cases where the learning curves
do not converge exponentially is not trivial.

Here, we formulate the problem using Bayesian neural networks. We aim to model
the validation accuracy g(x,t) of a configuration £ € X C R? at time step ¢ € (0, 1]
based on noisy observations y(x, t) ~ N (g(z,t),0?). For each configuration  trained
for T, time steps, we obtain T, data points for our model; denoting the combined
data by D = {(x1,t1,y11)), (T1,t2, ¥12), - - - (0, s, Yn1, )} We can then write the
joint probability of the data D and the network weights W as
|D| Tz,
P(D,W) = P(W)P(o*) [T TT N (yis; §(zi,t; | W), 0%). (5.5)
i=1j=1
where §(x;,t;|WV) is the prediction of a neural network. It is intractable to compute
the posterior weight distribution p(W | D), but we can use MCMC to sample it,
in particular stochastic gradient MCMC methods, such as SGLD (Welling and
Teh|, [2011)) or SGHMC (Chen et all, [2014) (see also Chapter [3). Given M samples

W1, ...,WM_ we can then obtain the mean and variance of the predictive distribution
p(glx.t, D) as
1 ¥ :
(.t | D) = 7> (.t | W), and
, " 2 (5.6)
0,1 | D) = > (9.t | W) — .t | D))" + o7

@
Il
—

respectively. Here, o2

< is an additional trainable parameter of the network ¢ that
models the observation noise. We will write the above equations shorthand as fi(x, t)
and cﬁ(w,t). This is similar to Egs. and exactly the model that we used for
(blackbox) Bayesian optimization with Bayesian neural networks in Chapter [3} the
only difference is in the input to the model: here, there is a data point for every time
step of the curve, whereas in Chapter |3| we only used a single data point per curve

(for its final time step).

5.3. New Basis Function Layer for Learning Curve
Prediction

We now combine Bayesian neural networks with parametric functions (see Figure
for some examples and Sectionin the supplement material for a formal description)
to incorporate more knowledge about learning curves into the network itself. Instead
of obtaining the parameters O and @ by sampling from the posterior, we use a
Bayesian neural network to learn several mappings simultaneously:
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vapor _pressure log-func hill-3

|
o(x,t)

Figure 5.1.: Example functions generated with our k = 5 basis functions (formulas
are given in Section in the appendix). For each function, we drew 50 different
parameters @ uniformly at random in the output domain of the hidden layer(s)
of our model. This illustrates the type of functions used to model the learning
curves.

1. flso: X — R, the asymptotic value of the learning curve

2. 0: X - RE , the parameters of a parametric function model (see Figure
for some example curves from our basis functions)

3. w: X — R*, the corresponding weights for each function in the model
4. 0% € RT, the observational noise

With these quantities, we can compute the likelihood in Equation [5.3] which allows
training the network.

Phrased differently, we use a neural network to predict the model parameters O and
weights « of our parametric functions, yielding the following form for our network’s
mean predictions:

G t; | W) = f(t; | O, W), (i, W)). (5.7)

A schematic of this is shown in Figure [5.2] For training, we will use the stochastic
gradient Hamiltonian Monte-Carlo with scale adaption as described in Section [3.4}

5.4. Experiments

We now empirically evaluate the predictive performance of Bayesian neural networks,
with and without our special learning curve layer. For both networks, we used a
3-layer architecture with tanh activations and 50 units per layer.

As baselines, we compare to other approaches suitable for this task. Besides the
aforementioned work by Domhan et al.| (2015), we also compare against random
forests (Breimann, [2001)) with empirical variance estimates (Hutter et al., 2014b)), a
Gaussian process (GP) using the learning curve kernel from [Swersky et al.| (2014)),
and the simple heuristic of using the last seen value (LastSeenValue) of each learning
curve for extrapolation. The last model has been successfully used by |Li et al. (2017)
despite its simplicity.

70



5.4 Experiments

(=it Siws ) (22)

() G ()

basis
function
layer

hidden layer(s)

ééé& 6

Figure 5.2.: Our neural network architecture to model learning curves. A common
hidden layer is used to simultaneously model fi,, the parameters © of the basis
functions, their respective weights @, and the noise o2.

5.4.1. Datasets

For our empirical evaluation, we generated the following four datasets of learning
curves (see Figure for some examples), in each case sampling hyperparameter
configurations at random from the hyperparameter spaces detailed in Table in
the appendix (see also Section for some characteristic of these datasets):

e CNN: We sampled 256 configurations of 5 different hyperparameters of a
3-layer convolutional neural network (CNN) and trained each of them for 40
epochs on the CIFAR10 (Krizhevsky, [2009)) benchmark.

e FCNet: We sampled 4096 configurations of 10 hyperparameters of a 2-layer
feed forward neural network (FCNet) on MNIST (LeCun et al., [2001), with
batch normalization, dropout and ReLLU activation functions, annealing the
learning rate over time according to a power function. We trained the neural
network for 100 epochs.

e LR: We sampled 1024 configurations of the 4 hyperparameters of logistic
regression (LR) and also trained it for 100 epochs on MNIST.

e VAE: We sampled 1024 configurations of the 4 hyperparameters of a variational
auto-encoder (VAE) (Kingma and Welling, 2014)). We trained the VAE on
MNIST, optimizing the approximation of the lower bound for 300 epochs.
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Figure 5.3.: Random learning curves from our 4 datasets. Even though all learning

curve follow a similar pattern, based on the underlying model they differ in certain
characteristics such as noise or steepness.

5.4.2. Predicting Asymptotic Values of Partially Observed
Curves

We first study the problem of predicting the asymptotic values of partially-observed
learning curves tackled by Domhan et al.| (2015). The LC-Extrapolation method
by Domhan et al.| (2015), the GP, and the last seen value work on individual learning
curves and do not allow to model performance across hyperparameter configurations.
Thus, we trained them separately on individual partial learning curves. The other
models, including our Bayesian neural networks, on the other hand, can use training
data from different hyperparameter configurations. Here, we used training data with
the same number of epochs for every partial learning CU_I‘VGEI

The left panel of Figure visualizes the extrapolation task, showing a learning
curve from the CNN dataset and the prediction of the various models trained only
using the first 16 of 40 epochs of the learning curve. The right panel shows the
corresponding predictive distributions obtained with these models. LastSeenValue
does not yield a distribution and uncertainties are not defined.

For a more quantitative evaluation, we used all models to predict the asymptotic

'We note that when used inside Bayesian optimization, we would have access to a mix of fully-
converged and partially-converged learning curves as training data, and could therefore expect
better extrapolation performance.
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Figure 5.4.: Qualitative comparison of the different models. The left panel shows
the mean predictions of different methods on the CNN benchmark. All models
observed the validation error of the first 12 epochs of the true learning curve
(black). On the right, the posterior distributions over the value at 40 epochs is
plotted.

value of all learning curves, evaluating predictions based on observing only the
beginning of learning curves. Figure shows the mean squared error between the
true asymptotic value and the models’ predictions (left) and the median log-likelihood
of the true value given each model as a function of how much of the learning curves
has been observed. Due to the intrinsic randomness of most of the methods, we
report for each method the average and standard deviation (vertical bars) over 100
independent runs. We notice several patterns:

1. Throughout, our specialized network architecture performs better than the
standard Bayesian neural networks.

2. If no uncertainties are required, LastSeenValue is a competitive baseline. This
is because many configurations approach their final performance quite quickly.

3. The GP uncertainty predictions are very competitive, leading to high log-
likelihood values but the asymptotic mean predictions are worse than for
LC-Net or LastSeenValue especially for short learning curves. We assume
that the prior assumption of an exponential function is not flexible enough in
practice.

4. Unsurprisingly, the random forest’s mean predictions match the quality of
LastSeenValue since they do not extrapolate. However, its empirical uncertainty
estimates are dramatically worse than LC-Net or GPs

5. LC-Extrapolation poor performance in early stages where only a small amount
of datapoints have been observed, can be attributed to a few outliers which
cause an high mean square error. LCNet seems to suffer less under these
outliers, since it can exploit knowledge from other learning curves.

6. Local models (i.e. LC-Extrapolation and GPs) for single curves start outper-
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forming global models for almost complete learning curves in terms of mean
square error but struggle if only a few data points are given. Global models,
like our BNN approach, on the other hand, are trained on many configurations
and need to generalize across these, yielding somewhat worse performance in
later stages but obtain better prediction in earlier stages.

5.4.3. Predicting Unobserved Learning Curves

As mentioned before, training a joint model across hyperparameters and time steps
allows us to make predictions for completely unobserved learning curves of new
configurations. To estimate how well Bayesian neural networks perform in this task,
we used the datasets from Section and split all of them into 16 folds, allowing us
to perform cross-validation of the predictive performance. For each fold, we trained
all models on the full learning curves in the training set and let them predict the full
held-out learning curves.

We compare the two neural networks architectures from Section and with
a random forest baseline. Figure |5.6| shows for each dataset the predicted mean
value versus the true values, colored by the log-likelihood based on the model’s
predictive distribution. Note, to avoid clutter we only plot a random subset of 5000
points out of the prediction for all 16 folds. We make two observations: firstly, both
neural network architectures lead to reasonable mean predictions and log-likelihoods.
Compared to the previous experiments our additional learning curve layer only helps
marginally which is to be expected, since a sufficient amount of data is available and
prior information becomes less important. Secondly, the random forest performed
consistently worse both in terms of mean prediction as well as log-likelihood, which
we assume is due to its limited representational power.

5.4.4. LC-Net with Hyperband

In this section, we show how our model can be used to improve hyperparameter
optimization of iterative machine learning algorithms. For this, we extended the
multi-armed bandit strategy Hyperband (Li et al., 2017)), which in each iteration
i first samples N; hyperparameter configurations C' = {x;, ..., @y, } and then uses
successive halving (Jamieson and Talwalkar, [2016) to iteratively discard poorly-
performing configurations from C. While the original Hyperband method samples
configurations C' from a uniform distribution over hyperparameter configurations,
our extension instead samples them based on our model, with all other parts re-
maining unchanged. More precisely, we use Thompson sampling (see Section
by first sampling a weight vector W ~ P(D,W) from our Bayesian neural net-
work and using a stochastic local search to select a hyperparameter configuration
x, € argmax,x §(x,t = 1| W). Note, Hyperband evaluates hyperparameter con-
figurations on different budges ¢, but since we are interested in finding the best
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right show the median log-likelihood based on the predictive mean and variance
of the asymptotic value. Note that LastSeenValue does not provide a predictive
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Figure 5.6.: On the horizontal axis, we plot the true value and on the vertical axis
the predicted mean value. Each point is colored by its log-likelihood (the brighter
the higher). To reduce clutter we plot only a subset of 5000 randomly chosen
points out of all predictions from the 16 fold cross-validation.

configuration on the full budget ¢t = 1, we perform Thompson sampling only on the
full budget. It has been shown (Hernandez-Lobato et al. 2017) that each weight
sample from the Bayesian neural network can be interpreted as a function sample
f ~p(f| D) and that it can be trivially adapted to the parallel setting by simply

using a different weight sample every time a new hyperparameter configuration is
queried.

For a thorough empirical evaluation and to reduce computational requirements we
used the tabular benchmark from Chapter [7] After each iteration we report the final
performance of the best observed configuration so far, along with the wall clock time
that would have been needed for optimizing the true objective function.

Figure shows the immediate regret on the HPO-Bench-Protein and HPO-Bench-
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Figure 5.7.: Comparison of Hyperband, Hyperband with our model, and standard
Bayesian optimization with Bayesian neural networks to model the objective
function on the HPO-Bench benchmarks described in Chapter [7} Hyperband finds
a good configuration faster than standard Bayesian optimization, but it approaches
the global optimum quicker when extended with our model.

Slice benchmark as a function of wall-clock time, for three optimizers: Hyperband,
our model-based extension of Hyperband, as well as standard Bayesian optimization
with Bayesian neural networks (see Chapter |3)). For the other benchmarks see
Section [B.4] in the supplemental material. Standard Bayesian optimization does
not make use of learning curves and thus needs to evaluate each configuration for
the full amount of epochs. In accordance with results by [Li et al| (2017), in this
experiment Hyperband found a configuration with good performance faster than
standard Bayesian optimization, but its random sampling did not suffice to quickly
approach the best configuration; given enough time Bayesian optimization performed
better. However, extended by our model, Hyperband approaches the global optimum
much faster.

5.5. Chapter Conclusion

We studied Bayesian neural networks for modelling the learning curves of iterative
machine learning methods, such as stochastic gradient descent for convolutional
neural networks. Based on the parametric learning curve models of Domhan et al.
(2015), we also developed a specialized neural network architecture with a learning
curve layer that improves learning curve predictions. In future work, we aim to study
recurrent neural networks for predicting learning curves and will extend Bayesian
optimization methods with Bayesian neural networks based on our learning curve
models.
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6. Combining Bayesian Optimization
with Hyperband

We have seen in the previous chapters that, while the objective function f: X — R
is typically expensive to evaluate (since it requires training a machine learning
model with the specified hyperparameters), in most applications it is possible to
define cheap-to-evaluate approximate versions f(-,b), called a fidelity of f(-) that
are parameterized by a so-called budget b € [bpin, bimaz|. With the maximum budget
b = bpaz, we have f(-, bpas) = f(), whereas with b < bpae, f(-,b) is only an
approximation of f(-) whose quality typically increases with b. Common examples
for different fidelities are the number of iterations for an iterative algorithm (see
Chapter [p]), the number of data points used (see Chapter [)), the number of steps in
an MCMC chain, and the number of trials in deep reinforcement learning.

Hyperband (Li et al. [2017), even though often outperformed by multi-fidelity
Bayesian optimization methods (see Chapter [4)) showed still a robust performance and
more importantly, it makes less parametric assumptions about the relation between
fidelities than its model-based counterparts. However, one major disadvantage of
Hyperband it that randomly samples hyperparameter configuration and, hence, it
often takes much longer to approach the global optimum than methods that maintain
a model of the objective function. In this section we investigate a principal way
to combine Bayesian optimization with Hyperband to get the best of two worlds:
efficient anytime performance and superior final performance.

We first describe the Bayesian optimization method TPE (Bergstra et al., [2011) and
Hyperband in more detail (Section (6.1 and and then show how to combine them
in our new method BOHB (short for Bayesian optimization and Hyperband), as
well as how to effectively parallelize the resulting system (Section @ Our extensive
empirical evaluation (Section demonstrates that our method combines the best
aspects of Bayesian optimization and Hyperband: it often finds good solutions over
an order of magnitude faster than Bayesian optimization and converges to the best
solutions orders of magnitudes faster than Hyperband.

In this work, we focus only on combining Hyperband and Bayesian optimization,
but we would like to mention that methods improving BO are potentially applicable
to BOHB as well, such as meta learning (Swersky et al., 2013} Feurer et al., [2015b}
Poloczek et al., 2016} [Springenberg et al.| 2016)), active ensembling to combine models
found during the optimization (Lévesque et al., 2016)), and using multiple fidelities
(Swersky et al., |2013; Kandasamy et al., 2017). The data gathered by BOHB on
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different budgets could also be used to quantify the importance of hyperparameters
(Hutter et al., 2014a; Biedenkapp et al., 2017 |Golovin et al., 2017; van Rijn and
Hutter, 2018]). We leave these for future work.

6.1. Hyperband

Hyperband (HB) (Li et al.,2017) is a multi-armed bandit strategy for hyperparameter
optimization that takes advantage of these different budgets b by repeatedly calling
SuccessiveHalving (SH) (Jamieson and Talwalkar, 2016)) to identify the best out of n
randomly sampled configurations. It balances very aggressive evaluations with many
configurations on the smallest budget, and very conservative runs that are directly
evaluated on by,,,. The exact procedure for this trade-off is shown in Algorithm [6]
(with pseudocode for SH shown in Section in the appendix). Line 1 computes the
geometrically spaced budget € [bimin, bmaz]. The number of configurations sampled in
line 3 is chosen such that every SH run requires the same total budget. SH internally
evaluates configurations on a given budget, ranks them by their performance, and
continues the top n~! (usually the best-performing third) on a budget 1 times larger.
This is repeated until the maximum budget is reached. In practice, HB works very
well and typically outperforms random search and Bayesian optimization methods
operating on the full function evaluation budget quite easily for small to medium
total budgets. However, its convergence to the global optimum is limited by its
reliance on randomly-drawn configurations, and with large budgets its advantage
over random search typically diminishes.

6.2. Tree Parzen Estimator

The Tree Parzen Estimator (TPE) (Bergstra et al., 2011) is a Bayesian optimization
method that uses a kernel density estimator to model the densities

l(x) =ply < alx, D)

9(x) = p(y > alz, D) (6.1)

over the input configuration space instead of modeling the objective function f
directly by p(f|D) (see Chapter [2.2)). To select a new candidate @, to evaluate,
it maximizes the ratio U#)/g(); Bergstra et al. (2011)) showed that this is equivalent
to maximizing EI in Equation 2.8} Due to the nature of kernel density estimators,
TPE easily supports mixed continuous and discrete spaces, and model construction
scales linearly in the number of data points (in contrast to the cubic-time Gaussian
processes (GPs) predominant in the BO literature(see Chapter [2.2))).
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Algorithm 6 Pseudocode for Hyperband using SuccessiveHalving (SH) as a subrou-
tine.

Require: budgets b,,;, and b4z, 1

Smaz = Llogn MJ

bm in

. for s € {smazs Smaz — 1,...,0} do

sample n = [2maztl . ] configurations

run SH on them with ™% - b,,,, as initial budget
end for

QU Wy

6.3. Model-Based Hyperband

We now introduce our new practical HPO method, which we dub BOHB since it
combines Bayesian optimization (BO) and Hyperband (HB).

6.3.1. Algorithm Description

BOHB relies on HB to determine how many configurations to evaluate with which
budget, but it replaces the random selection of configurations at the beginning of each
HB iteration by a model-based search. Once the desired number of configurations
for the iteration is reached, the standard successive halving procedure is carried
out using these configurations. We keep track of the performance of all function
evaluations g(z, b) + € of configurations & on all budgets b to use as a basis for our
models in later iterations.

We follow HB’s way of choosing the budgets and continue to use SH, but we replace
the random sampling by a BO component to guide the search. We construct a model
and use BO to select a new configuration, based on the configurations evaluated so
far. In the remainder of this section, we will explain this procedure summarized by
the pseudocode in Algorithm [7]

The BO part of BOHB closely resembles TPE, with one major difference: we opted
for a single multidimensional KDE compared to the hierarchy of one-dimensional
KDEs used in TPE in order to better handle interaction effects in the input space.
To fit useful KDEs (in line 4 of Algorithm , we require a minimum number of
data points N,,;,; this is set to d + 1 for our experiments, where d is the number
of hyperparameters. To build a model as early as possible, we do not wait until
N, = |Dy|, the number of observations for budget b, is large enough to satisfy
q - Ny > Npin. Instead, after initializing with N,,;, + 2 random configurations (line
3), we choose the

Ny = max(Npin, ¢ - Np)

(6.2)
Ny = max(Npin, Ny — Noy)

best and worst configurations, respectively, to model the two densities. This ensures
that both models have enough datapoints and have the least overlap when only a
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limited number of observations is available. We used the KDE implementation from
statsmodels (Seabold and Perktold, [2010)), estimating the KDE’s bandwidth with the
default estimation procedure (Scott’s rule of thumb), which is efficient and performed
well in our experience. Details on our KDE are given in Section in the appendix.

As the optimization progresses, more configurations are evaluated on bigger budgets.
Given that the goal is to optimize on the largest budget, BOHB always uses the model
for the largest budget for which enough observations are available (line 2). This
enables it to overcome wrong conclusions drawn on smaller budgets by eventually
relying on results with the highest fidelity only.

To optimize EI (lines 5-6), we sample N points from !'(x), which is the same KDE as
[(x) but with all bandwidths multiplied by a factor b,, to encourage more exploration
around the promising configurations. We observed that this improves convergence
especially in the late stages of the optimization, when the model on the biggest
budget is queried frequently but updated rarely.

In order to keep the theoretical guarantees of HB, we also sample a constant fraction
p of the configurations uniformly at random (line 1). Besides global exploration,
this guarantees that after m - (spa, + 1) SH runs, our method has (on average)
evaluated p-m - (Syqar + 1) random configurations on by,q,. As every SH run consumes
a budget of at most (Spaz + 1) * bas, in the same time random search evaluates
(p™! - (Symae + 1))-times as many configuration on the largest budget. This means,
that in the worst case (when the lower fidelities are misleading), BOHB is at most
this factor times slower than RS, but it is still guaranteed to converge eventually.
The same argument holds for HB, but in practice both HB and BOHB substantially
outperform RS in our experiments.

No optimizer is free of hyperparameters itself, and their effects have to be studied
carefully. We therefore include a detailed empirical analysis of BOHB’s hyperparam-
eters in Section in the appendix that shows each hyperparameter’s effect when

Algorithm 7 Pseudocode for sampling in BOHB

Require: observations D, fraction of random runs p, percentile g, number of samples
N, minimum number of points N,,;, to build a model, and bandwidth factor b,
if rand() < p then
return random configuration
end if
b= arg max {Db . |Db| > Nmm + 2}
if b =0 then
return random configuration
end if
fit KDEs according to Egs. [6.1] and
draw N, samples according to I'(x) (see text) return sample with highest ratio

l(z)/g(z)
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all others are fixed to their default values (these are also listed there). We find that
BOHB is quite insensitive to its hyperparameters, with the default working robustly
across different scenarios.

6.3.2. Parallelization

Modern optimizers must be able to take advantage of parallel resources effectively
and efficiently. BOHB achieves that by inheriting properties from both TPE and HB.
The parallelism in TPE is achieved by limiting the number of samples to optimize EI,
purposefully not optimizing it fully to obtain diversity. This ensures that consecutive
suggestions by the model are diverse enough to yield near-linear speedups when
evaluated in parallel. On the other hand, HB can be parallelized by (a) starting
different iterations at the same time (a parallel for loop in Alg. [6]), and (b) evaluating
configurations concurrently within each SH run.

Our parallelization strategy of BOHB is as follows. We start with the first SH run
that sequential HB would perform (the most aggressive one, starting from the lowest
budget), sampling configurations with the strategy outlined in Algorithm [7| until
either (a) all workers are busy, or (b) enough configurations have been sampled for
this SH run. In case (a), we simply wait for a worker to free up and then sample
a new configuration. In case (b), we start the next SH run in parallel, sampling
the configurations to run for it also according to Algorithm ; observations D (and
therefore the resulting models) are shared across all SH runs. BOHB is an anytime
algorithm that at each point in time keeps track of the configuration that achieved
the best validation performance; it can also be given a maximum budget of SH runs.

We note that SH has also been parallelized in independent work by |Li et al.| (2018).
Next to parallelizing SH runs (by filling the next free worker with the ready-to-be-
executed run with the largest budget), that work mentioned that HB can trivially
be parallelized by running its SH runs in parallel. In contrast to this approach of
parallelizing HB by having separate pools of workers for each SH run, we rather join
all workers into a single pool, and whenever a worker becomes available preferentially
execute waiting runs with smaller budgets. New SH runs are only started when the
SH runs currently executed are not waiting for a worker to free up. This strategy
(a) allows us to achieve better speedups by using all workers in the most aggressive
(and often most effective) bracket first, and (b) also takes full advantage of models
built on smaller budgets. Figure demonstrates that our method of parallelization
can effectively exploit many parallel workers.

6.4. Experiments

We now comprehensively evaluate BOHB’s empirical performance in a wide range of
tasks, including a high-dimensional toy function, as well as optimizing the hyperpa-
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Figure 6.1.: Performance of our method with different number of parallel workers
on the letter surrogate benchmark (see Sec. for 128 iterations. The speedup
for two and four workers is close to linear, for more workers it becomes sublinear.
For example, the speedup to achieve a regret of 1072 for one vs. 32 workers is ca.
2000s/130s =~ 15. We plot the mean and twice the standard error of the mean
over 128 runs.

rameters of support vector machines, feed-forward neural networks, Bayesian neural
networks, deep reinforcement learning agents and convolutional neural networks.
Code for BOHB and our benchmarks is publicly available at
https://github.com/automl/HpBandSter

To compare against TPE, we used the Hyperopt package (Bergstra et al.,|2011)), and
for all GP-BO methods we used the RoBO python package (Klein et al., 2017Db). In
all experiments we set 7 = 3 for HB and BOHB as recommended by |Li et al.| (2017)).
If not stated otherwise, for all methods we report the mean performance and the
standard error of the mean of the best observed configuration so far (incumbent) at
a given budget.

6.4.1. Artificial Toy Function: Stochastic Counting Ones

In this experiment we investigated BOHB’s behavior in high-dimensional mixed
continuous / categorical configuration spaces. Since GP-BO methods tend to not work
well on such configuration spaces (Eggensperger et al. [2013) we do not include them
in this experiment. However, we do use SMAC (Hutter et al.| 2011)), since its random
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forest is known to perform well in high-dimensional categorical spaces (Eggensperger
et al., 2013).

Given a set of N, categorical variables z; € {0, 1} and N,,,; continuous variables
z; € [0,1], we defined a variant of the counting ones problem as follows: We sum
the values of all categoricals x; and add the sample means of Bernoulli distributions
with parameters x; given by the continuous variables. The number of samples used
to estimate the mean represents the budget. Figure [6.2| shows the result of 512
independent runs of various optimizers in a 16-dimensional space with N.q; = Neont =
8 parameters. We plot the normalized immediate regret of the noise free function,
ie. |f(xine) —d|/d where d = Nogt + Neonr and @, is the incumbent at a specific
time step.

Random search worked very poorly on this benchmark and was quickly dominated
by SMAC and TPE. Even though HB worked better in the beginning, SMAC and
TPE clearly outperformed it after having obtained a sufficiently informative model.
BOHB worked as well as HB in the beginning and then quickly started to perform
better.

We obtained similar results for other dimensionalities (see Figures 8 and 9 in the
supplementary material), but the picture is not always as clear. In higher dimensions,
SMAC seems to outperform TPE, hinting at the limitations of TPE’s KDE compared
to SMAC’s random forest. As BOHB still evaluates configurations on small budgets
even in late stages of the optimization, convergence can be slowed down compared
to SMAC and TPE. A formal description of the problem, the budgets, and a more
detailed discussion of the results can be found in Section [C.7]in the appendix.

6.4.2. Comprehensive Experiments on Surrogate Benchmarks

For the next experiments we constructed a set of surrogate benchmarks based on
offline data following [Eggensperger et al. (2015)). Optimizing a surrogate instead
of the real objective function is substantially cheaper, which allows us to afford
many independent runs for each optimizer and to draw statistically more meaningful
conclusions. A more detailed discussion of how we generated these surrogates can
be found in Section in the supplementary material. To better compare the
convergence towards the true optimum, we again computed the immediate regret of
the incumbent.

6.4.2.1. Support Vector Machine on MNIST

To compare against GP-BO, we used the support vector machine on MNIST surrogate
from [Klein et al.| (2017a)) (described in Section [4.5.1]). This surrogate imitates the
hyperparameter optimization of a support vector machine with a RBF kernel with
two hyperparameters: the regularization parameter C' and the kernel parameter
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Figure 6.2.: Results for the counting ones problem in 16 dimensional space with
8 categorical and 8 continuous hyperparameters. In higher dimensional spaces
RS-based methods need exponentially more samples to find good solutions.

~. The budget is given by the number of training datapoints, where the minimum
budget is 1/512 of the training data and the maximum budget is the full training data.
For further details, see Section

Figure compares BOHB to various BO methods, such as Fabolas (Klein et al.|
2017a)), multi-task Bayesian optimization (MTBO) (Swersky et al., [2013)), GP-BO

with expected improvement (Snoek et al., 2012; [Klein et al. [2017b), RS and HB. We
follow the evaluation protocol of [Klein et al| (2017a)) and plot the performance of each
configuration when retrained using the full dataset. Both BOHB and HB identified the
best configuration within their first iterations, making them competitive to Fabolas
and MTBO. We note that this is despite the fact that GP-BO methods usually work
particularly well on such low-dimensional continuous problems (Eggensperger et al.

2013).

6.4.2.2. Feed-forward Neural Networks on OpenML Datasets

We optimized six hyperparameters that control the training procedure (initial learn-
ing rate, batch size, dropout, exponential decay factor for learning rate) and the
architecture (number of layers, units per layer) of a feed forward neural network for
six different datasets gathered from OpenML (Vanschoren et al., 2014)): Adult

1996), Higgs (Baldi et al. 2014), Letter (Frey and Slate| [1991)),
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Figure 6.3.: Comparison on the SVM on MNIST surrogates as described in

(2017a). BOHB and HB work comparably to Fabolas on this benchmark
outperforming MTBO and GP-BO.

MNIST (LeCun et al., [2001), Optdigits (Lichman| 2013), and Poker (Cattral et al.,
2002). A detailed description of all hyperparameter ranges and training budgets can

be found in Section in the appendix.

We ran random search (RS), TPE, HB, GP-BO, Hyperband with LC-Net (HB-LCNet,
see Klein et al. (2017c) and Section [5)) and BOHB on all six datasets and summarize
the results for one of them in Figure 6.4, Figures for the other datasets are shown in
Appendix E.

We note that HB initially performed much better than the vanilla BO methods and
achieved a roughly three-fold speedup over RS. However, for large enough budgets
TPE and GP-BO caught up in all cases, and in the end found better configurations
than HB and RS. HB and BOHB started out identically, but BOHB achieved the
same final performance as HB 100 times faster, while at the same time yielding a
final result that was better than that of the other BO methods. All model-based
methods substantially outperformed RS at the end of their budget, whereas HB
approached the same performance. Interestingly, the speedups that TPE and GP-BO
achieved over RS are comparable to the speedups that BOHB achieved over HB.
Finally, HB-LCNet performed somewhat better than HB alone, but consistently
worse than BOHB, even when tuning HB-LCNet. We only compare to HB-LCNet on
this benchmark, since it is the only one that includes full learning curves (for which
the parametric functions in HB-LCNet were designed). Also, HB-LCNet requires
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Figure 6.4.: Optimizing six hyperparameter of a feed-forward neural network on
featurized datasets; results are based on surrogate benchmarks. Results for the
other 5 datasets are qualitatively similar and are shown in Figure [C.2] in the
supplementary material.

access to performance values for all budgets, which we do not obtain when, e.g.,
using data subset sizes as a budget, and we thus expect HB-LCNet to perform poorly
in the other cases.

6.4.3. Bayesian Neural Networks

For this experiment we optimized the hyperparameters and the architecture of a
two-layer fully connected Bayesian neural network trained with Markov Chain Monte-
Carlo (MCMC) sampling. We used stochastic gradient Hamiltonian Monte-Carlo
sampling (SGHMC) (Chen et al., [2014]) with scale adaption (Springenberg et al.)
as described in Chapter [3| to sample the parameter vector of the network. Note
that to the best of our knowledge, this is the first application of hyperparameter
optimization for Bayesian neural networks.

As tunable hyperparameters, we exposed the step length, the length of the burn-in
period, the number of units in each layer, and the decay parameter of the momentum
variable. A detailed description of the configuration space can be found in Section [C.9]
in the appendix. We used the Bayesian neural network implementation provided in
the RoBO python package (Klein et al., [2017b) as described by [Springenberg et al.|

(2016).
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Figure 6.5.: Optimization of 5 hyperparameters of a Bayesian neural network
trained with SGHMC. BOHB quickly outperforms both TPE and HB.

We considered two UCI (Lichman|, 2013)) regression datasets, Boston housing and
protein structure as described by Hernandez-Lobato and Adams (2015) and report
the negative log-likelihood of the validation data. For BOHB and HB, we set the
minimum budget to 500 MCMC steps and the maximum budget to 10000 steps.
RS and TPE evaluated each configuration on the maximum budget. For each
hyperparameter optimization method, we performed 50 independent runs to obtain
statistically significant results.

As Figure [6.5] shows, HB initially performed better than TPE, but TPE caught up
given enough time. BOHB converged faster than both HB and TPE and even found
a better configuration than the baselines on the Boston housing dataset.

6.4.4. Reinforcement Learning

Next, we optimized eight hyperparameters of proximal policy optimization (PPO)
(Schulman et al.; [2017)) to learn the cartpole swing-up task. For PPO, we used the
implementation from the TensorForce framework developed by [Schaarschmidt et al.|
and we used the implementation from OpenAl Gym (Brockman et al., [2016)
for the cartpole environment. The configuration space for this experiment can be
found in Section in the appendix.

To find a configuration that not only converges quickly but also works robustly, for
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Figure 6.6.: Hyperparameter optimization of 8 hyperparameters of PPO on the
cartpole task. BOHB starts as well as HB but converges to a much better
configuration.

each function evaluation we ran a configuration for nine individual trials with a
different seed for the random number generator. We returned the average number of
episodes until PPO has converged to the optimum, defining convergence to mean
that the reinforcement learning agent achieved the highest possible reward for 20
consecutive episodes. For each hyperparameter configuration we stopped training
after the agent has either converged or ran for a maximum of 3000 episodes. The
minimum budget for BOHB and HB was one trial and the maximum budget were
nine trials, and all other methods used a fixed number of nine trials. As in the
previous benchmark, for each hyperparameter optimization method we performed 50
independent runs.

Figure [6.6] shows that HB and BOHB worked equally well in the beginning, but
BOHB converged to better configurations in the end. Apparently, the budget for
this benchmark was not sufficient for TPE to find the same configuration.

6.4.5. Convolutional Neural Networks on CIFAR-10

For a final evaluation, we optimized the hyperparameters of a medium-sized residual
network (depth 20 and basewidth of 64; roughly 8.5M parameters) with Shake-Shake
(Gastaldi, [2017) and Cutout (DeVries and Taylor} [2017) regularization. To perform
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hyperparameter optimization, we split off 5000 training images as a validation set.
As hyperparameters, we optimized learning rate, momentum, weight decay, and
batch size.

We ran BOHB with budgets of 22, 66, 200, and 600 epochs, using 19 parallel workers.
Each worker used 2 NVIDIA TI 1080 GPUs for parallel training, which resulted
in runs with the longest budget taking approximately 7 hours (on 2 GPUs). The
complete BOHB run of 16 iterations required a total of 33 GPU days (corresponding
to a cost of less than 3 full function evaluations on each of the 19 workers) and
achieved a test error of 2.78% =+ 0.09% (which is better than the error Gastaldi
(2017) obtained with a slightly larger network). While we note that the performance
numbers from different papers are not directly comparable due to the use of different
optimization and regularization approaches, it is still instructive to compare this
result to others in the literature. Our result is better than that of last year’s state-
of-the-art neural architecture search by reinforcement learning (3.65% (Zoph and
Lel 2017))) and the recent paper on liu-eccv18 neural architecture search (3.41% (Liu
et al., 2018)), but it does not quite reach the state-of-the-art performance of 2.4% and
2.1% reported in recent arXiv papers on reinforcement learning (Zoph et al., 2018))
and evolutionary search (Real et al.; [2019). However, since these approaches used
60 to 95 times more compute resources (2000 and 3150 GPU days, respectively!),
as well as networks with 3-4 times more parameters, we believe that our results are
a strong indication of the practical usefulness of BOHB for resource-constrained
optimization.

6.5. Chapter Conclusions

We introduced BOHB, a simple yet effective method for hyperparameter optimization
satisfying the desiderata outlined above: it is robust, flexible, scalable (to both high
dimensions and parallel resources), and achieves both strong anytime performance
and strong final performance. We thoroughly evaluated its performance on a diverse
set of benchmarks and demonstrated its improved performance compared to a wide
range of other state-of-the-art approaches. Our easy-to-use open-source implemen-
tation (available under https://github.com/automl/HpBandSter) should allow the
community to effectively use our method on new problems. To further improve
BOHB, we will consider an automatic adaptation of the budgets used to alleviate
the problem of misspecification by the user while maintaining the versatility and
robustness of the current version.
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7. Tabular Benchmarks for
Hyperparameter Optimization

Due to the high computational demands executing a rigorous comparison between
hyperparameter optimization (HPO) methods is often cumbersome. The goal of this
Chapter is to facilitate a better empirical evaluation of HPO methods by providing
benchmarks that are cheap to evaluate, but still represent realistic use cases. We
believe these benchmarks provide an easy and efficient way to conduct reproducible
experiments for neural hyperparameter search.

Our benchmarks consist of a large grid of configurations of a feed forward neural
network (see Section on four different regression datasets including architectural
hyperparameters and hyperparameters concerning the training pipeline. We first
performed an in-depth analysis of the data to gain a better understanding of the
properties of the optimization problem, as well as of the importance of different types
of hyperparameters (see Section and . Then, in Section we compared
various different state-of-the-art methods from the hyperparameter optimization
literature on these benchmarks.

7.1. Setup

We use 4 popular UCI (Lichman, 2013) datasets for regression: protein struc-
ture (Ranal, 2013)), slice localization (Graf et al., [2011)), naval propulsion (Coraddu
et al., 2014)) and parkinsons telemonitoring (Tsanas et al. |2010). We call them HPO-
Bench-Protein, HPO-Bench-Slice, HPO-Bench-Naval and HPO-Bench-Parkinson,
respectively. For each dataset we used 60% for training, 20% for validation and
20% for testing (see Table for an overview) and removed features that were
constant over the entire dataset. Afterwards, all features and targets values were
normalized by subtracting the mean and dividing by the variance of the training data.
These datasets do not require deeper neural network architectures which means we
can train them on CPUs rather than GPUs and hence we can afford to run many
configurations.

As the base architecture, we used a two layer feed forward neural network followed
by a linear output layer on top. The configuration space (denoted in Table [7.2))
only includes a modest number of 4 architectural choice (number of units and
activation functions for both layers) and 5 hyperparameters (dropout rates per layer,
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Table 7.1.: Dataset splits

Dataset # training datapoints  # validation datapoints  # test datapoints # features
HPO-Bench-Protein 27438 9146 9146 9
HPO-Bench-Slice 32100 10700 10700 385
HPO-Bench-Naval 7160 2388 2388 15
HPO-Bench-Parkinson 3525 1175 1175 20

batch size, initial learning rate and learning rate schedule) in order to allow for an
exhaustive evaluation of all the 62208 configurations resulting from discretizing the
hyperparameters as in Table [7.2] We encode numerical hyperparameters as ordinals
and all other hyperparameters as categoricals. Each network was trained with
Adam (Kingma and Bal,[2015)) for 100 epochs, optimizing the mean squared error. We
repeated the training of each configuration 4 independent times with a different seed
for the random number generator and recorded for each run the training / validation
/ test accuracy, training time and the number of trainable parameters. We provide
full learning curves (i. e. validation and training error for each epoch) as an additional
fidelity that can be used to benchmark multi-fidelity algorithms with the number of
epochs as the budget. The dataset, as well as the code to reproduce the experiments,
are publicly available at https://github.com/automl/nas_benchmarks.

Table 7.2.: Configuration space of the fully connected neural network

Hyperparameters Choices
Initial LR {.0005,.001,.005, .01,.05, .1}
Batch Size (8,16, 32, 64}

LR Schedule {cosine, fix}
Activation/Layer 1 {relu, tanh}
Activation/Layer 2 {relu, tanh}

Layer 1 Size {16,32, 64,128, 256, 512}

Layer 2 Size {16, 32,64, 128,256,512}

Dropout/Layer 1 {0.0,0.3,0.6}
Dropout/Layer 2 {0.0,0.3,0.6}

7.2. Dataset Statistics

We now analyze the properties of these datasets. First, for each dataset we computed
the empirical cumulative distribution function (ECDF) of the test, validation and
training error after 100 epochs and the total training time. For each metric, we
averaged over the 4 repetitions. Additionally we computed the ECDF for the number
of trainable parameters of each neural network architecture. To avoid clutter, we show
here only the results for the HPO-Bench-Protein which we found to be consistent
with the other datasets and present all results in Section in the supplemental
material.

One can see in Figure that the mean-squared-error (MSE) for training, validation
and test is spread over an order of magnitude or more. On one side only a small
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subset of configurations achieve a final MSE lower than 0.3 and on the other many
outliers exist that achieve errors orders of magnitude above the average. Furthermore,
due to the changing number of parameters, also the training time varies dramatically
across configurations.
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Figure 7.1.: The empirical cumulative distribution (ECDF) of the average
train/valid/test error after 100 epochs of training (upper left), the number of
parameters (upper right), the training runtime (lower left) and the noise for differ-
ent number of epochs (lower right) computed on HPO-NAS-bench-Protein. See
Section in the supplemental material for the ECDF plots of all datasets.

Figure [7.1] bottom right shows the empirical cumulative distribution of the noise,
defined as the standard deviation between the 4 repetitions for different number of
epochs. We can see that the noise is heteroscedastic. That is, different configurations
come with a different noise level. As expected, the noise decreases with an increasing
number of epochs.

For many multi-fidelity hyperparameter optimization methods, such as Hyperband (Li
et al., 2017) or BOHB (Falkner et al., 2018a)), it is essential that the ranking of
configurations on smaller budgets to higher budgets is preserved. In Figures we
visualize the Spearman rank correlation between the performance of all hyperparam-
eter configurations across different number of epochs and the highest budget of 100
epochs. Since every hyperparameter optimization method needs to mainly focus on
the top performing configurations, we also show the correlation for only the top 1%,
10%, 20%, and 50% of all configurations. As expected the correlation to the highest
budget increases with increasing budgets. If only top-performing configurations are
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considered, the correlation decreases, since their final performances are closer to each
other.
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Figure 7.2.: The Spearman rank correlation between different number of epochs to
the highest budget of 100 epochs for the HPO-Bench-Protein when we consider all
configurations or only the top 1%, 10%, 20%, and 50% of all configurations based
on their average test error. Results for other datasets are presented in Section
in the supplemental material.

7.3. Hyperparameter Importance

We now analyze how the different hyperparameters affect the final performance, first
globally with help of the functional ANOVA (Sobol, |1993; Hutter et al., |2014al) and
then from a more local point of view. Finally, we show how the top performing
hyperparameter configurations correlate across the different datasets. As in the
previous section, we show here only the results for HPO-Bench-Protein and for all
other dataset in Section in the supplemental material.

7.3.1. Functional ANOVA

To analyze the importance of hyperparameters, assessing the change of the final error
with respect to changing a single hyperparameter at a time, we used the fANOVA
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tool by [Hutter et al. (2014a)). It quantifies the importance of a hyperparameter by
marginalizing the error obtained by setting it to a specific value over all possible
values of all other hyperparameters. The importance of a hyperparameter is then the
variation in error that is explained by this hyperparameter. In default setting this
tool fits a random forest model on the observed function values in order to compute
the marginal predictions. However, since we already evaluated the full configuration
space, we do not even need to use a model and can compute the required integrals
directly.

As can be seen in Figure (upper right), on average across the entire configuration
space, the initial learning rate obtained the highest importance value. However, the
importance of individual hyperparameters is very small due to a few outliers with
very high errors, which only happen for a few combinations of several hyperparameter
values. We also computed the importance values of hyperparameter configuration
pairs (see Figure lower right for the ten most important pairs), which obtain
slightly higher values. This indicates that there are higher order interaction effects
between hyperparameters. Unfortunately, computing higher than second order
interaction effect is computational infeasible.

A better estimate of hyperparameter importance in a region of the configuration
space with reasonable performance can be obtained by only using the best performing
configuration for the fANOVA. Figure (left) shows the results of this procedure
with the 1 percentile and Figure (middle) with the 10 percentile of all configuration.
This shows that in this more interesting part of the configuration space, other
hyperparameters also become important.

7.3.2. Local Neighbourhood

While the fANOVA takes the whole configuration space into account, we now focus
on a more local view around the best configuration (incumbent) to see how robust it
is against small perturbations. We show in Table the change in performance if we
flip single hyperparameters of the incumbent while keeping all other hyperparameters
fixed. Additionally, we also show in the rightmost column the relative change y’“?j%y*
between the error of the incumbent gy, and the new observed error y,,e.-

Interestingly, the highest drop in performance occurs by changing the activation
function of the first and the second layer from relu to tanh. This is despite the fact
that tanh is a much more common activation function for regression than relu. In
contrast, increasing the batch size only has a marginal effect on the performance.

7.3.3. Ranking across Datasets

We now analyse hyperparameter configurations across the four different datasets. In
Table 7.4 we can see that the best configuration in terms of average test error changes
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Figure 7.3.: Top row: Importance of the different hyperparameter based on the
fANOVA for: (left) only the top 1% ; (middle) top 10% ; (right) all configurations.
Bottom row: most important hyperparameter pairs with (left) only the top 1% ;
(middle) top 10% ; (right) all configurations.

only slightly across datasets. For some hyperparameters, such as the learning rate,
a certain value, 0.0005 in this case, can be used for all all datasets whereas other
hyperparameters, for example the activation functions, need to be set differently.

To see how the performance of all hyperparameter configurations correlates across
datasets, we computed for every configuration on every dataset its rank in terms
of final average test performance. Figure [7.4 shows the Spearman rank correlation
between the different datasets if we consider the first percentile (left), the 10th
percentile (middle) or all configurations (right). The correlation decreases if we only
consider the best-performing configurations, which implies that it does not suffice
to reuse a good configuration from a different datasets to achieve top performance
on a new dataset. Nevertheless, the correlation for all configurations is high which
indicates that multi-task methods could be able to exploit previously collected data.

7.4. Comparison

In this section we use the generated benchmarks to evaluate different HPO methods.
To mimic the randomness that comes with evaluating a configuration, in each function
evaluation we randomly sample one of the four performance values. To obtain a
realistic estimate of the wall-clock time required for each optimizer, we accumulated
the stored runtime of each configuration the optimizer evaluated. We do not take the
additional overhead of the optimizer into account since it is negligible compared to
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Table 7.3.: Performance change if single hyperparameters of the incumbent (average
test error 0.2153) are flipped.

Hyperparameter Change Test Error | Relative Change
Batch Size 8 — 16 0.2163 0.0042
Initial LR 0.0005 — 0.001 0.2169 0.0072

Layer 2 Size 512 — 256 0.2203 0.0231
Layer 1 512 — 256 0.2216 0.0288
Dropout/Layer 2 0.3 — 0.6 0.2257 0.0478
LR Schedule cosine — const 0.2269 0.0534
Dropout/Layer 2 0.3 — 0.0 0.2280 0.0587
Dropout/Layer 1 0.0 —0.3 0.2307 0.0711
Activation/Layer 2 | relu — tanh 0.2875 0.3351
Activation/Layer 1 | relu — tanh 0.3012 0.3987
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Figure 7.4.: Correlation of the ranks for (left) top-1% / (middle) top-10% and all
hyperparameter configurations across all four datasets.

Table 7.4.: Best configurations in terms of average test error for each dataset

HPO-Bench-Protein  HPO-Bench-Slice HPO-Bench-Naval HPO-Bench-Parkinson

Hyperparameters
Initial LR 0.0005 0.0005 0.0005 0.0005
Batch Size 8 32 8 8
LR Schedule cosine cosine cosine cosine
Activation/Layer 1 relu relu tanh tanh
Activation/Layer 2 relu tanh relu relu
Layer 1 Size 512 512 128 128
Layer 2 Size 512 512 512 512
Dropout/Layer 1 0.0 0.0 0.0 0.0
Dropout/Layer 2 0.3 0.0 0.0 0.0

the training time of the neural network. After each function evaluation we estimate
the incumbent as the configuration with the lowest observed error and compute the
regret between the incumbent and the globally best configuration in terms of test
error. We performed 500 independent runs of each method and report the median

and the 25th and 75th quantiles.
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7.4.1. Performance over Time

We compared the following HPO methods from the literature (see Figure :
random search (Bergstra and Bengio|, 2012), SMAC (Hutter et al), 2011)[7, Tree
Parzen Estimator (TPE) (Bergstra et al., 2011)@ Bohamiann (Springenberg et al.
2016)E] (see also Chapter , Regularized Evolution (Real et al., [2019), Hyperband
(HB) (Li et al};[2017) and BOHB (Falkner et al},[2018al)"| (see also Chapter|d]). Inspired
by the recent success of reinforcement learning for neural architecture search (Zoph
and Le, [2017)), we also include a similar reinforcement learning strategy (RL), which
however does not use an LSTM as controller but instead uses REINFORCE (Williams,
1992) to optimize the probability of each categorical variable directly (Ying et al.,
2019). Each method that operates on the full budget of 100 epochs was allowed to
perform 500 function evaluations. For BOHB and HB we set the minimum budget to
3 epochs, the maximum budget to 100,  to 3 and the number of successive halving
iterations to 125 (which leads to roughly the same amount of function evaluation
time as the other methods). More details about the meta-parameters of the different

optimizers are described in Appendix [D.3|

Figure [7.5] left show the performance over time for all methods. Results for the other
datasets can be found in Appendix [D.3] We can make the following observations:

e As expected, Bayesian optimization methods, i.e. SMAC, TPE and Bohamiann
worked as well as RS in the beginning but started to perform superior once they
obtained a meaningful model. Interestingly, while all Bayesian optimization
methods start improving at roughly the same time, they converge to different
optima, which we attribute to their different internal models.

e The same holds for BOHB, which is in the beginning as good as HB but starts
outperforming it as soon as it obtains a meaningful model.

e HB achieved a reasonable performance relatively quickly but only slightly
improves over simple RS eventually.

e RE needed more time than Bayesian optimization methods to outperform
RS; however, it often achieved the best final performance, since, compared to
Bayesian optimization methods, it does not suffer from any model missmatch.

e RL requires even more time to improve upon RS than RE or Bayesian opti-
mization and seems to be too sample inefficient for these tasks.

'We used SMAC3 from https://github.com/automl/SMAC3

2We used Hyperopt from https://github.com/hyperopt/hyperopt

3We used the implementation from [Klein et al.  (2017b)

4For both HB and BOHB we used the implementation from https://github.com/automl/
HpBandSter
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Figure 7.5.: Left: Comparison of various HPO methods on the HPO-Bench-
Protein datasets. For each method, we plot the median and the 25th and 75th
quantiles (shaded area) of the test regret of the incumbent (determined based
on the validation performance) across 500 independent runs. Right: Empirical
cumulative distribution of the final performance over all runs of each methods
after 10° seconds.

7.4.2. Robustness

Besides achieving good performance, we argue that robustness plays an important role
in practice for HPO methods. Figure shows the empirical cumulative distribution
of the test regret for the final incumbent after 10° seconds for HPO-Bench-Protein
across all 500 runs of each method.

While RE achieves a lower mean test regret than TPE it seems to be less robust with
respect to its internal randomness. Interestingly, while all methods have non-zero
probability to achieve a final test regret of 1073 within 10° seconds, only Bohamiann,
RE and TPE are able to achieve this regret in more than 60% of the cases. Also
none of the methods is able to converge consistently to the same final regret.

7.5. Chapter Conclusions

We presented new tabular benchmarks for neural architecture and hyperparameter
search that are cheap to evaluate but still recover the original optimization problem,
enabling us to rigorously compare various methods from the literature. Based on the
data we generated for these benchmarks, we had a closer look at the difficulty of the
optimization problem and the importance of different hyperparameters.

In future work, we will generate more of these benchmarks for other architectures
and datasets. Ultimately, we hope that such benchmarks will help the community to
easily reproduce experiments and evaluate new developed methods without spending
enormous compute resources.
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8. Meta-Surrogate Benchmarking for
Hyperparameter Optimization

Despite recent progress (see e.g. the review by [Feurer and Hutter (2018)), during
the phases of developing and evaluating new HPO methods one frequently faces the
following problems:

e Evaluating the objective function is often expensive in terms of wall-clock time;
e.g., the evaluation of a single hyperparameter configuration may take several
hours or days. This renders extensive HPO or repeated runs of HPO methods
computationally infeasible.

e Even though repositories of datasets such as OpenML (Vanschoren et al.| [2014])
provide thousands of datasets, a large fraction cannot meaningfully be used
for HPO since they are too small or too easy (in the sense that even simple
methods achieve top performance). Hence, useful available datasets are scarce,
making it hard to produce a comprehensive evaluation of how well a HPO
method will generalize across tasks.

Due to these two problems researchers can only carry out a limit number of com-
parisons within a reasonable computational budget. This delays the progress of
the field as statistically significant conclusions about the performance of different
HPO methods may not be possible to draw. See Figure for an illustrative
experiment of the HPO of XGBoost (Chen and Guestrin), 2016). It is well known
that Bayesian optimization with Gaussian processes (BO-GP) (Shahriari et al., [2016)
outperforms naive random search (RS) in terms of number of function evaluations
on most HPO problems. While we show clear evidence for this in Appendix
on a larger set of datasets, this conclusion cannot be reached when optimizing on
the three "unlucky" picked datasets in Figure 8.1} Surprisingly, the community has
not paid much attention to this issue of proper benchmarking, which is a key step
required to generate new scientific knowledge but also to foster reproducibility.

In this Chapter we present a generative meta-model that, conditioned on off-line
generated data, allows to sample an unlimited number of new tasks that share
properties with the original ones. There are several advantages to this approach.
First, the new problem instances are inexpensive to evaluate as they are generated
with a parameteric form, which drastically reduces the resources needed to compare
HPO methods, bounded only by the optimizer’s computational overhead. See Figure
for an example. Second, there is no limit in the number of tasks that can be
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Figure 8.1.: Common pitfalls in the evaluation of HPO methods: we compare two
different HPO methods for optimizing the hyperparameters of XGBoost on three
UCI regression datasets (see Appendix B for more datasets). The small number
of tasks makes it hard to draw any conclusions, since the ranking between the
methods varies between the tasks. Furthermore, a full run might take several
hours which makes it prohibitively expensive to average across a large number of
runs.

generated, which helps to draw statistically more reliable conclusions. Third, the
shape and properties of the tasks are not predefined but learned using a few real tasks
of an HPO problem. While the global properties of the initial tasks are preserved in
the samples, the generative model allows the exploration of instances with diverse
local properties making comparisons more robust and reliable (see Appendix for
some example tasks).

In light of the recent call for more reproducibility, we are convinced that our meta-
surrogate benchmarks enable more reproducible research in AutoML: First of all, these
cheap-to-evaluate surrogate benchmarks allows researches to reproduce experiments
or perform many repeats of their own experiments without relying on tremendous
computational resources. Second, based on our-proposed method, we provide a
more thorough benchmarking protocol that reduces the risk of extensively tuning
an optimization method on single tasks. Third, surrogate benchmarks in general
are less dependent on hardware and technical details, such as complicated training
routines or preprocessing strategies.

8.1. Related Work

The use of meta-models that learn across tasks has been investigated by others before.
To warm-start HPO on new tasks from previously optimized tasks, Swersky et al.
(2013)) extended Bayesian optimization to the multi-task setting by using a Gaussian
process that also models the correlation between tasks. Instead of a Gaussian process,
Springenberg et al| (2016 used a Bayesian neural network inside multi-task Bayesian
optimization which learns an embedding of tasks during optimization. Similarly
Perrone et al.| (2018) used Bayesian linear regression, where the basis functions are
learned by a neural network, to warm-start the optimization from previous tasks.
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Figure 8.2.: The three blue bars on the left show the total wall-clock time of
executing 20 independent runs of GP-BO, RS and Bohamiann (see Section
with 100 function evaluation for the HPO of a feed forward neural network on
MNIST. The orange bars show the same for optimizing a tasks sampled from
our proposed meta-model, where benchmarking is orders of magnitude cheaper in
terms of wall-clock time than the original benchmarks, thereby the computational

time is almost exclusively spend for the optimizer overhead (hence the larger bars
for GP-BO and Bohamiann compared to RS).

Feurer et al.| (2015b) used a set of dataset statistics as meta-features to measure the
similarity between tasks, such that hyperparameter configurations that were superior
on previously optimized similar tasks can be evaluated during the initial design
before the actual optimization procedure starts. This technique is also applied inside
the auto-sklearn framework (Feurer et all [2015a). In a similar vein [Fusi et al,| (2018)
proposed to use a probabilistic matrix factorization approach to exploit knowledge
gathered on previously seen tasks. ivan Rijn and Hutter| (2018) evaluated random
hyperparameter configurations on a large range of tasks to learn priors for a support
vector machine, random forest and Adaboost. The idea of using a latent variable to
represent correlation among multiple outputs of Gaussian process has been exploited
by Dai et al| (2017).

In the context of benchmarking HPO methods, HPOlib (Eggensperger et al.l 2013)
is a benchmarking library that provides a fixed and rather small set of problems
that have been used to compare several Bayesian optimization tools. In earlier
work, Eggensperger et al.| (2015) also used surrogates to speed up the empirical
benchmarking of HPO methods. Similar to our work, these surrogates are trained
on data generated in an off-line step. Afterwards, function evaluations require only
prediction of the surrogate model instead of actually running the benchmark. However,
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these surrogates only mimic one particular task and do not allow for generating new
tasks as presented in this work. Recently, tabular benchmarks were introduced for
neural architecture search (Ying et al., 2019) and hyperparameter optimization (Klein
and Hutter, [2019)), which first perform an exhaustive search of a discrete benchmark
problem to store all results in a database and then replace expensive function
evaluations by efficient table lookups. While this does not introduce any bias due
to a model (see Section for a more detailed discussion), tabular benchmarks are
only applicable for problems with few, discrete hyperparameters. Related to our
work, but for benchmarking general blackbox optimization methods, is the COCO
platform (Hansen et al. 2016b)). However, compared to our approach, it is based on
handcrafted synthetic functions that do not resemble real world HPO problems.

8.2. Benchmarking HPO methods with Generative
Models

We now describe the generative meta-model to create HPO tasks. First we give
a formal definition of benchmarking HPO methods across tasks sampled from a
unknown distribution and then describe how we can approximate this distribution
by our new proposed meta-model.

8.2.1. Problem Definition

We denote t1,...,ty to be a set of related objectives/tasks with the same input
domain X. We assume that each ¢; for i = 1,... M, is an instantiation of an unknown
distribution of tasks ¢; ~ p(t). Every task ¢ has an associated objective function
fi: X € R — R where x € X represents a hyperparameter configuration and we

assume that we can observe f; only through noise: y; ~ N (fi(x), 0?).

Let us denote by r(«, t) the performance of an optimization method « on a task ¢; for
instance, a common example for r is the regret of the best observed solution (called
incumbent). To compare two different methods a4 and apg, the standard practice
is to compare r(aa,t;) with r(ap,t;) on a set of hand-picked tasks t; € {to,...tx}.
However, to draw statistically more significant conclusions, we would ideally like to
integrate over all tasks:

Spo(@) = [ rla,p(b)at (8.1)

Unfortunately, the above integral is intractable as p(t) is unknown. The main
contribution of this paper is to approximate p(t) with a generative meta-model

p(t | D) based on some off-line generated data D = {{(mm,ym)}nNzl}T . This

enables us to sample an arbitrary amount of tasks t; ~ p(¢ | D) in order to perform
a Monte-Carlo approximation of Equation [8.1]
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8.2.2. Meta-Model for Task Generation

In order to reason across tasks, we define a probabilistic encoder p(h, | D) that learns
a latent representation hy € R? of a task t.

More precisely, we use Bayesian GP-LVM (Titsias and Lawrence, 2010) which
assumes that the target values that belong to the task ¢, stacked into a vector
Y = (Yu1, - - -, Y ) follow the generative process:

vy =gh)+e, g~GP0,k), e~ N(0,0?), (8.2)

where k is the covariance function of the GP. By assuming that the latent variable
h; has an uninformative prior h; ~ A(0,I), the latent embedding of each task
is inferred as the posterior distribution p(h; | D). The exact formulation of the
posterior distribution is intractable, but following the variational inference presented
in (Titsias and Lawrence| (2010), we can estimate a variational posterior distribution
q(hy) = N(my, %) = p(h; | D) for each task t.

Similar to Multi-Task Bayesian Optimization (Swersky et al., [2013; [Springenberg
et al., 2016)), we define a probabilistic model for the objective function p(y; | , h;)
across tasks which gets as an additional input a task embedding based on our
independently trained probabilistic encoder. Following (Springenberg et al., 2016),
we use a Bayesian neural network with M weight vectors {61, ...,0,} to model

p(y: |z, hy, D) = /p(yt | z,h;, 0)p(0 | D)dO =~ *ZP Y | =, hy, 6;). (8.3)

1=1
where 0; ~ p(f | D) is sampled from the posterior of the neural network weights.
By approximating p(y; | «,hy) = /\/’(u(w,ht),a2(w,ht)> to be Gaussian, we can

compute the predictive mean and variance by (Springenberg et al., 2016):

1

M(w’ht) (wvht | 01)

M: HM:

M
1 . 2
o?(x,hy) = 1 - ( (z,hy | 6;) — ,u(:c,ht)) + azi,

@
Il
—

where fi(x, h; | 8;) and &5 are the output of a single neural network with parameters
Hﬂ. To get a set of Welghts {04, ...,0)}, we use stochastic gradient Hamiltonian
Monte-Carlo (Chen et al. 2014)) to sample 6; ~ p(8,D) from:

1 1

n

with N = |D| and H the number of samples we draw from the latent space hy; ~ ¢(hy).

I'Note that we model an homoscedastic noise, because of that, 3 does not depend on the input
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Figure 8.3.: Latent space representations of two different problem classes. Left:
Representation of eleven pairs of datasets generated by partitioning eleven datasets
from the fully connected networks benchmark detailed in Section [8.3.1 Pairs of
tasks are represented with the same colour. The mean of the task are represented
with different markers. The ellipses represent 4 standard deviations around the
mean of the tasks. Right: Latent space learned for a model where the input tasks
are generated by training a support vector machine on subsets of a target dataset
(approximated by a random forest surrogate from [Klein et al.| (2017a))). One can
see that our probabilistic encoder learns a meaningful embedding of different tasks.

8.2.3. Sampling New Tasks

In order to generate a new task t, ~ p(t | D), we need the associated objective
function f;, in a parameteric from such that we can evaluate it later on any « € X.

Given the meta-model above, we perform the following steps: (i) we sample a new
latent task vector hy, ~ g(hy); (ii) given h;, we pick a random 6; from the set of
weights {6,...0)} of our Bayesian neural network and set the new task to be

fe.(®) = (@, hy, | 6;).

Note that using f;, () makes our new task unrealisticly smooth. Instead, we can
emulate the typical noise appearing in HPO benchmarks by returning y,, () ~

N (/fb(a:, hy, | 6;), 631,), which can be done at an insignificant cost.

8.3. Profet

We now present our probabilistic data-efficient experimentation tool, called PROFET,
a benchmarking suite for HPO methods. The following section describes first
how we collected the data to train our meta-model based on three typical HPO
problems classes. We then explain how we generated 7' = 1000 different tasks for
each problem class from our meta-model. As described above, we provide a noisy
and noiseless version of each task. Last, we discuss two ways that are commonly
used in the literature to assess and aggregate the performance of HPO methods
across tasks. To reproduce our experiments as well as benchmarking and developing
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new HPO methods, an open-source implementation of PROFET is available here:
https://github.com/aaronkl/emukit.

8.3.1. Data Collection

We consider three different HPO problems, two for classification and one for regres-
sion, with varying dimensions D. For classification we considered a support vector
machine (SVM) with D = 2 hyperparameters and a feed forward neural network
(FC-Net) with D = 6 hyperparameters on 16 OpenML (Vanschoren et al., |2014)
tasks each. We used gradient boosting (XGBoost)E] with D = 8 hyperparameters
for regression on 11 different UCI datasets (Lichman| 2013)). For further details
about the datasets and the configuration spaces see Appendix [E.I] To make sure
that our meta-model learns a descriptive representation we need a solid coverage
over the whole input space. For that we drew 100D pseudo randomly generated
configurations from a Sobol grid (Sobol, 1967)).

Details of our meta-model are described in Appendix [E.6, We show some qualitative
examples of our probabilistic encoder in Section [8.4.1] We can also apply the
same machinery to model the cost in terms of computation time for evaluating a
hyperparameter configuration to use time rather than function evaluations as budget.
This enables future work to benchmark or develop HPO methods that explicitly
take the cost into account (e.g. ElperSec by [Snoek et al. (2012)).

8.3.2. Performance Assessment

To assess the performance of a HPO method aggregate over tasks, we consider two
different ways commonly used in the literature. First, we measure the runtime
r(a,t, Yarger) that a HPO method o needs to find a configuration that achieves
a performance that is equal or lower than a certain target value y,ger On task ¢
(Hansen et al| [2016a)). Here we define runtime either in terms of function evaluations
or estimated wall-clock time predicted by our meta-model. Using a fixed target
approach allows us to make quantitative statements, such as: method A is, on average,
twice as fast than method B. See |Hansen et al. (2016a)) for a more detailed discussion.
We average across target values with a different complexity by evaluating the Sobol
grid from above on each generated task. We use the corresponding function values
as targets, which, with the same argument as described in Section [8.3.1] provides a
good coverage of the error surface. To aggregate the runtime we use the empirical
cumulative distribution function (ECDF) (Moré and Wild, 2009), which, intuitively,
shows for each budget on the x-axis the fraction of solved tasks and target pairs on
the y-axis (see Figure |8.5|left for an example).

2We used the implementation from |Chen and Guestrin| (2016)
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Another common way to compare different HPO methods is to compute the average
ranking score in every iteration and for every task (Bardenet et al., |2013]). We
follow the procedure described by |Feurer et al. (2015b) and compute the average
ranking score as follows: assuming we run K different HPO methods M times
for each task, we draw a bootstrap sample of 1000 runs out of the K possible
combinations. For each of these samples, we compute the average fractional ranking
(ties are broken by the average of the ordinal ranks) after each iteration. At the end,
all the assigned ranks are further averaged over all tasks. Note that averaged ranks
are a relative performance measurement and can worsen for one method if another
method improves (see Figure right for an example).

8.4. Experiments

In this section we present: (i) some qualitative insights of our meta-model by showing
how it is able to coherently represent a sets of tasks in its latent space, (ii) an
illustration of why PROFET helps to obtain statistically meaningful results and (iii)
a comparison of various methods from the literature on our new benchmark suite. In
particular, we show results for the following state-of-the-art Bayesian optimization
(BO) methods for HPO as well as two popular evolutionary algorithms for general
continuous black-box optimization:

e BO with Gaussian processes (BO-GP) (Jones et al., [1998)). We used expected
improvement as acquisition function and marginalize over the Gaussian process’
hyperparameters as described by [Snoek et al.| (2012]).

e SMAC (Hutter et al., 2011): which is a variant of BO that uses random forests
to model the objective function and stochastic local search to optimize expected
improvement.

We use the implementation from https://github.com/automl/SMAC3.

e The BO method TPE by Bergstra et al.| (2011)) which models the density of
good and bad configurations in the input space with a kernel density estimators.
We used the implementation provided from the Hyperopt package (Komer
et al., |2014)

e BO with Bayesian neural networks (BOHAMIANN) as described by [Sprin{
genberg et al.| (2016). To avoid introducing any bias, we used a different
architecture with less parameters (3 layers, 50 units in each) than we used for
our meta-model (see Section [8.2).

e Differential Evolution (DE) (Storn and Price, 1997) (we used our own imple-
mentation) with rand1 strategy for the mutation operators and a population
size of 10.

e Covariance Matrix Adaption Evolution Strategy (CMA-ES) by Hansen (2006))
where we used the implementation from https://github.com/CMA-ES /pycma
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8.4 Experiments

e Random Search (RS) (Bergstra and Bengio, [2012) which samples configurations
uniformly at random.

For BO-GP, BOHAMIANN and RS we used the implementation provided by the
RoBO package (Klein et al., 2017b)). We provide more details for every method in

Appendix [E.5]

8.4.1. Tasks Representation in the Latent Space

We demonstrate the interpretability of the learned latent representations of tasks
in two examples. For the first experiment we used the fully connected network
benchmark described in Section [8.3.1l To visualize that our meta-model learns a
meaningful latent space, we doubled 11 out of the 18 original tasks to train the model
by splitting each one of them randomly in two of the same size. Thereby, we guarantee
that there are pairs of tasks that are similar to each other. In Figure (left), each
color represents the partition of the original task and each ellipse represents the
mean and four times the standard deviation of the latent task representations. One
can see that the closest neighbour of each task is the other task that belongs to the
same original task.

The second experiment targets multi-fidelity experiments that arise when a machine
learning model needs to be trained on a very large dataset and approximate versions of
the target objective are generated by considering subsamples of different sizes. For this
experiment we used the SVM surrogate for different dataset subsets from Klein et al.
(2017a)). The surrogate consists of a random forest trained on a grid of hyperparameter
configurations of a SVM evaluated on different subsets of the training data. In par-
ticular, we defined the following subsets: {1/512,1/256,1/128, /64, 1/32,1/16,1/8,1/4,1/2, 1}
as tasks and sampled 100 configurations per task to train our meta-model. Note that
we only provide the observed targets and not the subset size to our model. Figure|8.3
(right) shows the latent space of the trained meta-model: the latent representation
of the model captures that similar data subsets are also close in the latent space. In
particular, the first latent dimension hy coherently captures the sample size, which is
learned using exclusively the correlation between the datasets and with no further
information about their size.

8.4.2. Benchmarking with PROFET

Comparing HPO methods using a small number of instances affects our ability to
properly perform statistical tests. To illustrate this we consider a distribution of
tasks that are variations of the Forrester function f(z) = ((ax — 2)?)sin(Bz — 4) for
parameters o and 3. We generated 1000 tasks by uniformly sampling random « and
£ in [0, 1] and compared six HPO methods: RS, DE, TPE, SMAC, BOHAMIANN
and BO-GP (we left CMA-ES out because the python version does not support
1-dimensional optimization problems).
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Figure 8.4.: Heatmaps of the p-values of the pairwise comparisons across the
methods in the three scenarios using a Mann-Whitney U test. Small p-values
should be interpreted as the test finding evidence that the method in the column
improves the method in the row. Using tasks from our meta-model instead lead to
results that are very close to using the large set of original tasks from the original
distribution. Left: results with 1000 real tasks. Middle: subset of only 9 reals
tasks. Right: results with 1000 tasks generated from our meta-model.

Figure (left) shows the p-values of all pairwise comparisons with the null hypothesis
‘Method oiumn achieves a higher error after 50 function evaluations averaged over 20
runs than Method,.,,” for the Mann-Whitney U test. Squares in the figure with a
p-value smaller than 0.05 are comparisons in which with a 95% confidence we have
evidence to show that the method in the column is better that the method in the row
(we have evidence to reject the null hypothesis). To reproduce a realistic setting where
one has access to only a small set of tasks, we picked 9 out of the 1000 tasks randomly.
Now, in order to acquire a comparable number of samples to perform a statistical
test, we performed 2220 runs of each method on every task, and then computed
the average of groups of 20 runs, such that we obtained 999 samples per method to
compute the statistical test. One can see in Figure (middle), that although the
results are statistically significant, they are misleading: for example, BOHAMIANN
is dominating all other methods (except BO-GP), whereas it is significantly worse
than all other methods if we consider all 1000 tasks.

To solve this issue and obtain more information from the same limited number
of a subset of 9 tasks, we use PROFET. We first train the meta-model on the
same 9 selected tasks and then use it to generate 1000 new surrogate tasks (see
Appendix for a visualization). Next, we use these tasks to run the comparison
of the HPO methods. Results are shown in Figure (right). The heatmap of
statistical comparisons reaches very similar conclusions to those obtained with the
original 1000 tasks, contrary to what happened when we did the comparisons with
9 tasks only (i.e. p-values are closer to the original ones). We conclude that using
samples from the meta-model (generated based on a subset of tasks) allows us to
draw conclusion that are more in line with experiments on the full dataset of tasks
than running directly on the subset of tasks.
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Figure 8.5.: Comparison of various HPO methods on 1000 tasks of the noiseless
SVM benchmark. See Appendix D for the results on all benchmark problems. Left:
the ECDF for the runtime. Right: the ranking of each method averaged across all
tasks.

8.4.3. Comparing State-of-the-art HPO Methods

We conducted 20 independent runs for each method on each task of all three problem
classes described in Section [8.3.1] with a different random seed. Each method had a
budget of 200 function evaluations per task, except for BO-GP and BOHAMIANN,
where, due to their computational overhead, we were only able to perform 100
function evaluations. Note that conducting this kind of comparison on the original
benchmarks would have been prohibitively expensive. In Figure 8.5 we show the
ECDF curves and the average ranking for the noiseless version of the SVM benchmark.
The results for all other benchmarks are shown in Appendix We can make the
following observations:

e Given enough budget, all methods are able to outperform RS. BO approaches
can exploit their internal model such that they start to outperform RS earlier
than evolutionary algorithms (DE, CMA-ES). Thereby, more sophisticated
models, such as Gaussian processes or Bayesian neural networks are more
sample efficient than somewhat simpler methods, e. g. random forests or kernel
density estimators.

e The performance of BO methods that model the objective function (BO-GP,
BOHAMIANN, SMAC) instead of just the distribution of the input space
(TPE) decays if we evaluate the function through noise. Also evolutionary
algorithms struggle with noise.

e Standard BO (BO-GP) works superior on these benchmarks but its performance
decays rapidly with the number of dimensions.

e Runner-up is BOHAMIANN which works slightly worse than BO-GP but seems
to suffer less under noisy function values. Note that this result can only be
achieved by using PROFET as we could not have evaluated with and without
noise on the original datasets.
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e Given a sufficient budget, DE starts to outperform CMA-ES as well as BO with
simpler (and cheaper) models of the objective function (SMAC, TPE), making
it a competitive baseline particularly for higher dimensional benchmarks.

8.5. Chapter Conclusions and Future Work

We presented PROFET, a new tool for benchmarking HPO algorithms. The key
idea is to use a generative meta-model, trained on offline generated data, to produce
new tasks, possibly perturbed by noise. The new tasks retain the properties of the
original one but can be evaluated inexpensively, which represents a major advance
to speed up comparisons of HPO methods. In a battery of experiments we have
illustrated the representation power of PROFET and its utility when comparing HPO
methods in families of problems where only a few tasks are available. While in this
work we have focused on HPO methods, the same idea can be generalized to other
optimization problems.

Besides these strong benefits, there are certain drawbacks of our proposed method
that we would like to explicitly mention. First, since we encode new tasks based
on a machine learning model, our approach is based on the assumptions that come
with this surrogate model. Second, while we show in Section empirical evidence
that conclusions based on our proposed method are virtually identical to the one
based on the original tasks, there are no theoretical guarantees that results translate
one-to-one to the original benchmarks. Nevertheless, we believe that PROFET sets
the ground for further research in this direction to provide much more realistic
use-cases than commonly used synthetic functions, e.g. Branin, such that future
work on HPO can rapidly perform reliable experiments during development and
only execute the final evaluation on expensive real benchmarks. Ultimately, we think
this is an important step towards more reproducibility, which is paramount in such
an empirical-driven field as AutoML.

A possible extension of PROFET would be to consider multi-fidelity benchmarks (Klein
et al., [2017a; [Kandasamy et al., 2017 Klein et al.l 2017c) where cheap, but approxi-
mate fidelities of the objective function are available, e. g. learning curves or dataset
subsets. Furthermore, since PROFET also provides gradient information it could
serve as a training distribution for learning-to-learn approaches (Chen et al.| 2017}
Volpp et al.| 2019).
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9. Conclusions

In this thesis we presented several advancements for Bayesian hyperparameter
optimization in the Chapters 3| [4 [l [6] and [§). Additionally, we provided as
background material an overview on hyperparameter optimization in Chapter
and Bayesian optimization in Chapter [2.2] In the next Section we sumimarize
and discuss the central findings of this thesis. Afterwards we provide in Section
an outlook into potential future work.

9.1. Summary and Discussion

We first looked in Chapter [3|at Bayesian Neural Networks as a probabilistic model for
Bayesian optimization . Important requirements for a model in any active learning
setting, such as Bayesian optimization, are robustness in terms of the model’s own
hyperparameters as well as reliable uncertainty estimates. For that we proposed
an adaptive scaling version of stochastic gradient Hamiltonian Monte-Carlo that
automatically adapts the preconditioning of the gradients during the burn-in phase of
sampling. Furthermore, we presented a flexible neural network architecture for single
and multi-task optimization problems which can be applied to continuous and discrete
configuration spaces. The resulting Bayesian optimization method BOHamiANN
performed on-par with Gaussian process based Bayesian optimization methods on
continuous hyperparameter optimization problems and better than random forest
based methods on discrete problems.

In Chapters [4], [f and [6] we looked at different ways to exploit fidelities of the objective
function to speed up the optimization process. First, we presented the Gaussian
process based method Fabolas in Chapter |4 which showed superior performance to
standard Bayesian optimization on low-dimensional continuous spaces where our
fidelity of the objective function represents the training dataset size. While Fabolas
could be potentially also used for other fidelities, one would need to define suitable
basis functions that describe the change in performance and cost with respect to this
fidelity. Besides that, it suffers under the same problem as the most other Gaussian
process based methods, i.e. scaling with the number of datapoints and the number
of dimensions.

Inspired by the strong performance of Bayesian neural networks observed in Chapter
we developed LC-Net (Chapter [5)), a neural network architecture that, given a
hyperparameter configuration, predicts the parameters of a set of basis functions
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to describe learning curves. LC-Net showed strong performance in predicting the
final performance of hyperparameter configurations when only the first few points of
the learning curve have been observed. However, similar to Fabolas, LC-Net makes
parametric assumptions about the fidelity and hence can not necessarily be applied
to new fidelities out-of-the-box.

The third multi-fidelity methods we proposed is BOHB (Chapter @ which is a
combination of Hyperband and Bayesian optimization. It uses successive halving to
reason across fidelities and hence it is applicable to any fidelity setting as long as
smaller budgets are sufficiently representative for the next higher budget. BOHB
keeps the strong performance of Hyperband at the beginning of the optimization
process but converges to the usually better final performance of Bayesian optimization,
instead, like Hyperband, falling back to random search. Importantly, BOHB can
efficiently use parallel resources and thereby achieves an almost linear speed up with
the number of workers, which is not trivial with, for example, Gaussian process based
methods.

To make benchmarking of hyperparameter optimization methods more efficient, we
present tabular benchmarks in Chapter [7| that mimic the discrete hyperparameter
optimization of feed forward neural networks but are much cheaper since single
function evaluation consist only in table lookups. At last, we proposed profet a
generative meta-model for hyperparameter optimization tasks in Chapter [§ Profet
allows to generate an arbitrary amount of functions from the same underlying
distribution. These surrogate models resemble common hyperparameter optimization
problems but take only milliseconds to evaluate. Based on Profet we conducted
an exhaustive empirical evaluation of several state-of-the-art blackbox optimization
methods.

9.2. Future Work

In this thesis we established new ways to make Bayesian optimization more efficient
for automated hyperparameter optimization. But, of course, many questions remain
unsolved and we hope that future work will address them to push the current state-
of-the-art even further. In the following, we will outline a few potential ideas which
we think might be worth to be explored.

Multi-fidelity Bayesian optimization:

e In this thesis we mostly focused on learning curves or datasets subsets, but of
course many other potential fidelities exist. For example, on image classification
benchmarks such as Imagenet one could treat the image resolutions as fidelity,
since smaller resolutions lead to less units in the neural networks and are hence
faster to train. Another potential fidelity could be the neural network size
itself.
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For instance, current neural architecture search methods, such as DARTS (Liu
et al. [2019), conduct the actual search on neural networks with a reduced
amount of units and increase them for the final evaluation. While in the case
of DARTS these are manually specified, future work could cast this as fidelity
and try to automatically increase the network size if more information about
the error landscape is obtained.

e As described above for the most machine learning algorithms usually multiple
fidelities are available. Potential future work could try to exploit multiple
fidelities at the same time to gain further improvements. However, care needs
to be taken with the modelling which we assume is not trivial and might come
with an increased amount of noise of the objective function

e As we have seen in Chapter [3| warm-starting the optimization procedure can
lead to faster improvements. Interesting future work could combine this multi-
task setting with a multi-fidelity setting. Also here, correct modelling is key
and might be challenging due to the complexity of the problem.

Surrogate Benchmarking

e A natural next step for meta-surrogate benchmarking of hyperparameter op-
timization described in Chapter [§]is to extend it to the multi-fidelity setting.
A straightforward way would be to use the machinery presented in Chapter [4]
and Chapter [5] to obtain a robust meta-model.

e Recently, Chen et al.| (2017)) proposed a meta-learning approach to learn new
blackbox optimization methods. These learning-to-learn methods require a
large amount of tasks as training distribution. Profet might be particularly
appealing for these kind of methods since it not only provides an arbitrary
amount of tasks, every task is encoded as a neural network and hence also
allows to compute gradients which is essential for learning-to-learn methods
that cast the search for new optimizers as a supervised learning problem.

General Hyperparameter Optimization

e Recently, a new subfield in AutoML emerged, called neural architecture search
that tries to automatically design neural architectures (Elsken et al., 2018]).
So far, work in this field concentrates only on choices of the architecture and
keeps other hyperparameters that control the training, such as learning rates or
regularization parameters fix (Zoph and Le, 2017; Real et al., [2017). Obviously,
both, architecture and hyperparameters, are strongly connected and future
work could try to optimize them jointly. Also, some work in neural-architecture
search (Liu et al.; 2019; Pham et al.| [2018)) uses a shared set of weights between
architectures which drastically improves the computational efficiency. While it
might not be trivial, due to the non-stationary function values, future work in
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hyperparameter optimization could also try to exploit shared weights to gain
additional speed ups.

A current limitation of hyperparameter optimization is that during a function
evaluation hyperparameters are fixed. However, certain hyperparameters, such
as for instance the learning rate might need to be adapted during training.
Recent work by [Jaderberg et al.| (2017) maintains a population of configurations
and mutates poorly performing configurations to improve performance. Those
mutations are performed randomly and, with the same argument for Bayesian
optimization, potential future work could use a probabilistic model to guide
the search more informatively.



A. Supplementary Material to
Chapter 3

A.1. Synthetic Functions

Figure shows the comparison between Bayesian optimization with Gaussian
processes (BO-GP), random forests (BO-RF), random search, DNGO (Snoek et al.,
2015)) and our proposed methods Bohamiann on 8 different synthetic functions from
the literature. For Bohamiann and DNGO we used two different feed forward neural
networks architectures with 3 layers and either 50 or 10 units in each layer (denoted
in parentheses). All Bayesian optimization methods used expected improvement as
acquisition function and we used differential evolution (Storn and Price| [1997)) to
optimize it. We sampled 2 points uniformly at random as initial design before we
started the Bayesian optimization process. Every method had for each run on each
benchmark a total budget of 200 function evaluations and we report the mean and
the standard error of the mean over 50 independent runs of each method. See main
text for an analysis of the results.

A.2. XGBoost

We optimized the 8 hyperparameters (denoted in Table of XGBoost on 10
different UCI regression datasets. In Figure we show the results for random
search (RS), Bayesian optimization with Gaussian processes (BO-GP), Bohamiann,
Bohamiann with warmstarting from 50 points of another datasets (MT-Bohamainn)
and Multi-task Bayesian optimization (MTBO) (Swersky et al., 2013), which warm-
starts from the same points, for all datasets. Each method had for every datasets a
budget of 30 function evaluation and we report the mean and standard error of the
mean across 30 runs of each method. See main text for an discussion of the results.
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Name Range log scale
learning rate (10761071 v
gamma [0, 2] -
L1 regularization [107°,10°] v
L2 regularization [1075,10%] v
number of estimators  [10, 500] -
subsampling [0.1,1] -
max. depth [1,15] -
min. child weight [0, 20] -

Table A.1l.: Hyper-parameter configuration space of the gradient tree boosting

(XGBoost) benchmark.
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Figure A.1.: Comparison of Bayesian optimization with different models: Gaussian
processes (BO-GP), random forests (BO-RF), Bohamiann, DNGO and random
search(RS). We used two different architectures for Bohamiann and DNGO (3

layers 50 units and 3 layers 10 units)
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Figure A.2.: Comparison of random search (RS), Gaussian process based Bayesian

124ptimization (BO-GP), Bohamiann, multi-task Bayesian optimization (MT-BO)
and multi-task Bohamiann (MT-Bohamiann) where both started from the same
50 random points of a randomly chosen other dataset.



B. Supplementary Material to
Chapter 5

B.1. Experimental Setup — Details

Table shows the hyperparameters of our 4 benchmarks described in Section
and their ranges.

B.2. Description of the Basis Functions

To reduce complexity, we used a subset of the basis function from [Domhan et al.
(2015) which we found to be sufficient for learning curve prediction. We adapted
these functions to model the residual between the asymptotic value 3., and we scaled
the parameters © to be in [0, 1]. Table shows the exact equations we used.

B.3. Dataset Characteristics

Figure shows the distributions over runtimes for all random configurations of
different benchmarks. As it can be seen there is a high variance of the runtime
between different configurations for all benchmarks and some configurations need
order of magnitudes longer than others.

Figure shows the empirical cumulative distribution of the asymptotic performance
of random configurations. These plots give an intuition about the difficulty of a
benchmark as they show how many random configurations one has to sample in
order to achieve a good performance.

B.4. Optimization on Tabular Benchmarks

We used the four tabular benchmarks described in Chapter [7]to compared Hyperband
against Hyperband augmented with our model. Hyperparameter configurations from
our model are selected based on Thompson sampling, were we interpret as single
weight vector as a function sampled from our probabilistic model over the objective
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‘ Name Range log scale

batch size [32,512] -

number of units layer 1~ [24,217] v

CNN number of units layer 2 [2,210] v
number of units layer 3 [24,217] v

learning rate [107¢,107°] v

initial learning rate [107¢,10°] v

L, regularization [1078,107] v

batch size [32,512] -

g [_3a _1] -

K [0, 1] -

FONet momentum 0.3,0.999] i
number units 1 [25,127] v

number units 2 [25,212] v

dropout rate layer 1 [0.0,0.99] -

dropout rate layer 2 [0.0,0.99] -

learning rate [107¢,10°] v

Ly [0.0,1.0] -

LR batch size (20, 2000] -
dropout rate on inputs  [0.0,0.75] -

L 1,3] ]

number of hidden units  [32,2048] -

VAE batch size [16,512] -
z dimension 2, 200] -

Table B.1.: Hyperparameter configuration space of the four different iterative
methods. For the FCNet we decayed the learning rate by a qgecay = (1 + 7 *t)™"
and also sampled different values for v and k.

function. We used an simple stochastic local search method, which starting from a
random configuration, evaluates the one step neighborhood and jumps to neighbor
with the highest acquisition value until it either converged or hit a maximum number
of 10 steps. After each round of successive halving, we return the current best
observed configuration and its asymptotic performance. As additional baseline we
use Bayesian optimization with Bayesian neural networks as probabilistic model and
expected improvement as acquisition function as described in Chapter [3] For each
method we performed 500 independent runs and report the mean and the standard
error of the mean across all these runs. Figure shows that our specialized neural
network architecture helps to speed up the convergence of Hyperband and often
finds a better final performance. The only exception if the Parkinson Telemonitoring
benchmark, where it helps to find better configurations faster than Hyperband, but
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Name Formula

vapor pressure | ¢(t,a,b,c) = exp[—a — b10-t71 — ¢/10- log(t)] — exp [a + ¥/10]

log function o(t,a,b,c) =10 c+9/21log(b - t)

hill-3 6(t,a,b,¢) = a- [(f1000)" + 1]_1

Table B.2.: The formulas of our 5 basis functions. We assume that for all basis
functions a, b, ¢ € [0, 1].

eventually converges to a worse final performance.
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Figure B.1.: Distributions over runtimes for different random configurations for the
CNN, FCNet, LR and VAE benchmark described in Section [5.4.1] One can see
that all distributions are long tailed and that especially on the FCNet benchmark
some configuration need order of magnitudes longer than others.
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C. Supplementary Material to
Chapter 6

C.1. Comparison to Other Work on Bayesian
Optimization and Hyperband

Here we discuss the differences between our method and the related approaches
of Bertrand et al. (2017) and |Wang et al.| (2018) in more detail. We note that
these works are independent and concurrent; our work extends our preliminary short
workshop papers at NIPS 2017 (Falkner et al., 2017) and ICLR 2018 (Falkner et al.,
2018b).

While the general idea of combining Hyperband and Bayesian optimization by
Bertrand et al.| (2017) is the same as in our work, they use a Gaussian process
for modeling the performance. The budget is modeled like any other dimension
of the search space, without any special treatment. Based on our experience with
Fabolas (Klein et al., |2017a)), we expect that the squared exponential kernel might
not extrapolate well, which would hinder performance. Also, the small evaluation
provided by Bertrand et al. (2017)) does not allow strong conclusions about the
performance of their method.

Wang et al| (2018) also independently combined TPE and Hyperband, but in a
slightly different way than we did. In their method, TPE is used as a subroutine
in every iteration of Hyperband. In particular, a new model is built from scratch
at the beginning of every SuccessiveHalving run (Algorithm 3, line 8 in |Wang et al.
(2018)). This means that in later iterations of the algorithm, the model does not
benefit from any of the evaluations in previous iterations. In contrast, BOHB collects
all evaluations on all budgets and uses the largest budget with enough evaluations
(admittedly a heuristic, but we would argue a reasonable one) as a base for future
evaluations. This way, BOHB aggregates more knowledge into its models for the
different budgets as the optimization progresses. We believe this to be a crucial part
of the strong performance of our method. Empirically, Wang et al.| (2018) did not
achieve the consistent and large speedups across a wide range of applications BOHB
achieved in our experiments.
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C.2. Successive Halving

SuccessiveHalving is a simple heuristic to allocate more resources to promising
candidates. For completeness, we provide pseudo code for it in Algorithm [§] It is
initialized with a set of configurations, a minimum and maximum budget, and a
scaling parameter 7. In the first stage all configurations are evaluated on the smallest
budget (line 3). The losses are then sorted and only the best 1/n configurations
are kept in the set C' (line 4). For the following stage, the budget is increased
by a factor of n (line 5). This is repeated until the maximum budget for a single
configuration is reached (line 2). Within Hyperband, the budgets are chosen such
that all SuccessiveHalving executions require a similar total budget.

Algorithm 8 Pseudocode for SuccessiveHalving used by Hyperband as a subroutine.

Require: initial budget by, maximum budget b,,.., set of n configurations C' =
{Cl, Co, ... Cn}
: b = bo
while b §~bmm do
L={f(c,b):ceC}
C = topk(C, L, [|C|/n)]
b=mn-0b
end while

C.3. Details on the Kernel Density Estimator

We used the MultivariateKDE from the statsmodels package [Seabold and Perktold
(2010), which constructs a factorized kernel, with a one-dimensional kernel for each
dimension. Note that using this product of 1-d kernels differs from the original TPE,
which uses a pdf that is the product of 1-d pdfs. Figure visualizes the differences
for two small problems. For the continuous parameters a Gaussian kernel is used,
whereas the Aitchison-Aitken kernel is the default for categorical parameters. We
used Scott’s rule for efficient bandwidth estimation, as preliminary experiments with
maximum-likelihood based bandwidth selection did not yield better performance but
caused a significant overhead.

C.4. Performance of All Methods on All Surrogates

Figure shows the performance of all methods we evaluated on all our surrogate
benchmarks. Random search is clearly the worst optimizer across all datasets when
the budget is large enough for GP-BO and TPE to leverage their model. Hyperband
and the two methods based on it (HB-LCNet) and BOHB improve much more
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quickly due to the smaller budgets used. On all surrogate benchmarks, BOHB
starts to outperform HB after the first couple of iterations (sometimes even earlier,
e.g., on dataset letter). The same dataset also shows that traditional BO methods
can still have an advantage for very large budgets, since in these late stages of the
optimization process the low fidelity evaluations of BOHB can cause a constant
overhead without any gain.

C.5. Performance of Parallel Runs

Figure shows the performance of BOHB when run in parallel on all our surrogate
benchmarks. The speed-ups are quite consistent, and almost linear for a small number
of workers (2-8). For more workers, more random configurations are evaluated in
parallel before the first model is built, which degrades performance. But even for 32
workers, linear speedups are possible (see, e.g., dataset letter, for reaching a regret
of 2 x 1073).

We note that in order to carry out this evaluation of parallel performance, we actually
simulated the parallel optimization by making each worker wait for the given budget
before returning the corresponding performance value of our surrogate benchmark.
(The case of one worker is an exception, where we can simply reconstruct the
trajectory because all configurations are evaluated serially.) By using this approach
in connection with threads, each evaluation of a parallel algorithm still only used
1 CPU, but the run actually ran in real time. For this reason, we decided to not
evaluate all possible numbers of workers for dataset poker, for which each run with
less than 16 workers would have taken more than a day, and we do not expect any
different behavior compared to the other datasets.

C.6. Evaluating the Hyperparameters of BOHB

In this section, we evaluate the importance of the individual hyperparameters of
BOHB, namely the number of samples used to optimize the acquisition function
(Figure , the fraction of purely random configuration p (Figure , the scaling
parameter 7 (Figure , and the bandwidth factor used to encourage exploration
(Figure [C.7).

Additionally, we want to discuss the importance of 1, b, and b, already present
in HB. The parameter 7 controls how aggressively SH cuts down the budget and the
number of configurations evaluated. Like HB [Li et al. (2017)), BOHB is also quite
insensitive to this choice in a reasonable range. For our experiments, we use the

same default value (n = 3) for HB and BOHB.

More important for the optimization are b,,;, and b,,.., which are problem specific
and inputs to both HB and BOHB. While the maximum budget is often naturally
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defined, or is constrained by compute resources, the situation for the minimum
budget is often different. To get substantial speedups, an evaluation with a budget
of b, should contain some information about the quality of a configuration with
larger budgets; for example, when subsampling the data, the smallest subset should
not be one datum, but rather enough points to fit a meaningful model. This requires
knowledge about the benchmark and the algorithm being optimized.

C.7. Stochastic Counting Ones

We now formally define the stochastic variant of the counting ones function we
use and present the results for different dimensions. The objective function to be
minimized can be written as

€ Xcat € Xcont

where B, is the Bernoulli distribution with parameter p, and E, denotes the expecta-
tion estimated using b independent draws from the distribution.

The problem consists of a deterministic discrete part (the standard counting ones
problem), and a stochastic component whose noise is controlled by the budget b.
To keep the noise consistent across different dimensions, we chose the budgets such
that the total number of samples used remains constant. Specifically, we picked
binin = 576/d and by,q, = 93312/d where d = Negy + Neont. For Negy = Neony = 4 this
results in a minimum of 144 and a maximum of 11664 samples for each Bernoulli
distribution. BOHB and HB evaluated between these budgets, where as TPE and
SMAC operated always with the maximum budget.

This function has some noteworthy properties:

1. By design, we know the best value, —d, and worst value, 0. For easier compari-
son between different numbers of dimensions, we plot the normalized regret,
which in our case is (f(x) + d)/d.

2. The optimum x = [1]? is at the boundary of the search space. This could be
problematic for both the random forests in SMAC, and the KDEs in TPE and
BOHB.

Figure shows the mean performance of all applicable methods in d = 8, 16,
32 and 64 dimensions for a budget of 4000 full function evaluations. The median
performances are shown in Figure

We draw the following conclusions from the results:

1. Despite its simple definition, this problem is quite challenging for the methods
we applied to it. RS and HB both suffer from the fact that drawing config-
urations at random performs quite poorly in this space. The model-based

132
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approaches SMAC and TPE performed substantially better, especially with
large budgets. We would like to mention that SMAC and TPE treated the
problem as a blackbox optimization problem; the results for SMAC could likely
be improved further by treating individual samples as “instances” and using
SMAC’s intensification mechanism to reject poor configurations based on few
samples and evaluate promising configurations with more samples.

2. BOHB struggles to converge for the eight dimensional example. The most
probable reason is the number of samples required to build a model, which
was set to 9 here. This led to a consistently slow convergence of BOHB. The
median plots (Figure show that there is quite some variability in BOHB’s
performance for this dimensionality. We attribute this at least in part to the
small number of samples used to build the initial model; combined with the
poor performance of random configurations, this leads to unstable performance.

3. Given a large enough budget, BOHB’s evaluations on small budgets lead to
a constant overhead over only using the more reliable evaluations on larger
budgets. This slows down convergence.

4. Since the optimization problem is perfectly separable (there are no interaction
effects between any dimensions), we expect TPE’s univariate KDE to perform
better than BOHB’s multivariate one, which might also explain the relatively
slow convergence compared to TPE towards the end of the trajectories.

C.8. Feed Forward Network Surrogates

C.8.1. Constructing the Surrogates

To build a surrogate, we sampled 10000 random configurations for each dataset,
trained them for 50 epochs, and recorded their classification error after each epoch,
along with their total training time. We fitted two independent random forests that
predict these two quantities as a function of the hyperparameter configuration used.
This enabled us to predict the classification error as a function of time with sufficient
accuracy. As almost all networks converged within the 50 epochs, we extend the
curves by the last obtained value if the budget would allow for more epochs.

The surrogates enable cheap benchmarking, allowing us to run each algorithm 256
times. Since evaluating a configuration with the random forest is inexpensive, we
used a global optimizer (differential evolution) to find the true optimum. We allowed
the optimizer 10000 iterations which should be sufficient to find the true optimum.

Besides these positive aspects of benchmarking with surrogates, there are also some
drawbacks that we want to mention explicitly:

e There is no guarantee that the surrogate actually reflects the important prop-
erties of the true benchmark.
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Table C.1.: The hyperparameters and architecture choices for the fully connected
networks.

Hyperparameter Range Log-transform
batch size [23, 28] yes
dropout rate 0,0.5] 1no
initial learning rate [1076,1072] yes
exponential decay factor | [—0.185,0] no
# hidden layers {1,2,3,4,5} no
# units per layer [24, 28] yes

e The presented results show the optimized classification error on the validation
set used during training. There is no test performance that could indicate
overfitting.

e Training with stochastic gradient descent is an inherently noisy process, i.e.
two evaluations of the same configuration can result in different performances.
This is not at all reflected by our surrogates, making them a potentially easier
to optimize than the true benchmark they are based on.

e By fixing the budgets (see below) and having deterministic surrogates, the global
minima might be the result of some small fluctuations in the classification error
in the surrogates’ training data. That means that the surrogate’s minimizer
might not be the true minimizer of the real benchmark.

None of these downsides necessarily have substantial implications for comparing
different optimizers; they simply show that the surrogate benchmarks are not perfect
models for the real benchmark they mimic. Nevertheless, we believe that, especially
for development of novel algorithms, the positive aspects outweigh the negative ones.

C.8.2. Determining the Budgets

To choose the largest budget for training, we looked at the best configuration as
predicted by the surrogate and its training time. We chose the closest power of 3
(because we also used n = 3 for HB and BOHB) to achieve that performance. We
chose the smallest budget for HB such that most configurations had finished at least
one epoch. Table lists the budgets used for all datasets.

C.9. Bayesian Neural Networks

We optimized the hyperparameters described in Table for a Bayesian neural
network trained with SGHMC on two UCI regression datasets: Boston Housing and
Protein Structure. The budget for this benchmark was the number of steps for the
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Table C.2.: The budgets used by HB and BOHB; random search and TPE only
used the last budget

Dataset | Budgets in seconds for HB and BOHB
Adult 9, 27, 81, 243

Higgs 9, 27, 81, 243

Letter 3,9, 27, 81

Poker 81, 243, 729, 2187

Table C.3.: The hyperparameters for the Bayesian neural network task.

Hyperparameter Range Log-transform
# units layer 1 24, 2] yes
# units layer 2 [24,29] yes
step length [1076,1071] yes
burn in [0, .8] 1no
momentum decay [0,1] 1no

MCMC sampler. We set the minimum budget to 500 steps and the maximum budget
to 10000 steps. After sampling 100 parameter vectors, we computed the log-likelihood
on the validation dataset by averaging the predictive mean and variances of the
individual models. The performance of all methods for both datasets is shown in

Figure |C.10]

C.10. Reinforcement Learning

Table shows the hyperparameters we optimized for the PPO Cartpole task.
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Table C.4.: The hyperparameters for the PPO Cartpole task.

Hyperparameter Range Log-transform
# units layer 1 [23,27] yes
# units layer 2 [23,27] yes
batch size [23, 28] yes
learning rate [1077,1071] yes
discount 0, 1] no
likelihood ratio clipping 0, 1] no
entropy regularization 0,1] 1no

Ground Truth Factorized KDE KDE with product kernel

Ground Truth Factorized KDE KDE with product kernel

Figure C.1.: Visualization of the two different KDE approaches. The left column
shows the true distribution (blue shaded area) from which 16 samples (orange
crosses) were drawn. The middle column shows how a KDE that factorizes the
PDF (as in TPE) models the density. The right column demonstrates how the
KDE used in BOHB handles the data by factorizing the kernels instead of the
PDF. The top row is a single two dimensional Gaussian probability with a strong
correlation between the variables. The example in the bottom row is a mixture of
two such Gaussians.
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Figure C.2.: Mean performance on the surrogates for all six datasets. As uncer-

tainties, we show the standard error of the mean based on 512 runs (except for
GP-BO, which has only 50 runs).
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numbers of workers n. As uncertainties, we show the standard error of the mean
based on 128 runs. Because we simulated them in real time to capture the true
behavior, poker is too expensive to evaluate with less than 16 workers within a
day.
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D.1. Dataset Statistics

We now show the empirical cumulative distribution (ECDF) of all four datasets for:
the mean squared error for training, validation and test (Figure [D.1]), the number
of parameters (Figure , the measured wall-clock time for training (Figure
and the noise, defined as standard deviation between the individual trials of each
configuration (Figure [D.4). Note that we computed the ECDF of the mean squared
error and the runtime based on the average over the four trials.

Figure shows the Spearman rank correlation between the performance of a
hyperparameter configuration after training for the final budget of 100 epochs and
its performance after training for the corresponding number of epochs on the x-axis.
We also show the correlation if only the top 1%, 10%, 25% and 50% configurations
are taken into account.

ECDF
ECDF
ECDF

ECDF

T itz A T T TR TR 0 0
MSE MSE MSE MSE

Figure D.1.: The empirical cumulative distribution (ECDF) of the average
train/valid /test error after 100 epochs of training, computed on HPO-Bench-
Protein (left), HPO-Bench-Slice (left middle), HPO-Bench-Naval (right middle)
and HPO-Bench-Parkinson (right).

D.2. Hyperparameter Importance

Figure [D.6| [D.7], [D.§ and [D.9] show the importance values based on the fANOVA
tool for the top 1% , top 10% and all configurations as well as the most important
pair-wise plots for HPO-Bench-Naval, HPO-Bench-Parkinson, HPO-Bench-Protein
and HPO-Bench-Slice, respectively. Table [D.1], [D.2] [D.3| and [D.4] show the local
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ECDF
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Figure D.2.: The empirical cumulative distribution (ECDF) of the number of pa-
rameters, computed on HPO-Bench-Protein (left), HPO-Bench-Slice (left middle),
HPO-Bench-Naval (right middle) and HPO-Bench-Parkinson (right).
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Figure D.3.: The empirical cumulative distribution (ECDF) of the training runtime,
computed on HPO-Bench-Protein (left), HPO-Bench-Slice (left middle), HPO-
Bench-Naval (right middle) and HPO-Bench-Parkinson (right).

|
ECDF
ECDF

ECDF

Figure D.4.: The empirical cumulative distribution (ECDF) of the noise across the
4 repeated training processes for each configuration, computed on HPO-Bench-
Protein (left), HPO-Bench-Slice (left middle), HPO-Bench-Naval (right middle)
and HPO-Bench-Parkinson (right).

number of epochs number of epochs number of epochs number of epochs

Figure D.5.: The Spearman rank correlation between different number of epochs
for the HPO-Bench-Protein (left), HPO-Bench-Slice (left middle), HPO-Bench-
Naval (right middle) and HPO-Bench-Parkinson (right) when we consider all
configurations or only the top 1%, 10%, 20%, and 50% of all configurations based
on their test error.

neighbourhood for HPO-Bench-Naval, HPO-Bench-Parkinson, HPO-Bench-Protein
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Figure D.6.: HPOBench-Naval. Top row: Importance of the different hyperparam-
eter based on the fANOVA for: (left) only the top 1% ; (middle) top 10% ; (right)
all configurations. Bottom row: most important hyperparameter pairs with (left)
only the top 1% ; (middle) top 10% ; (right) all configurations.
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and HPO-Bench-Slice.

D.3. Comparison HPOBench

We now present a more detail discussion on how we set the metaparameters of the
individual optimizer for our comparison. Code to reproduce the experiments is
available at https://github.com/automl/nas_benchmarks.

Random Search (RS): We sample hyperparameter configurations from a uniform
distribution over all possible hyperparameter configurations.

Hyperband: We set the n = 3 which means that in each successive halving step
only a third of the configurations are promoted to the next step. The minimum
budget is set to 4 epochs and the maximum budget to 100 epochs of training.

BOHB: As for Hyperband we set 7 = 3 and keep the same minimum and maximum
budgets. The minimum possible bandwidth for the KDE is set to 0.3 to prevent that
the probability mass collapses to a single value. The bandwidth factor is set to 3,
the number of samples to optimize the acquisition function is 64, and the fraction of
random configurations is set to /3 which are the default values for BOHB.

TPE: We used all predefined metaparameter values from the Hyperopt package.

SMAC: We set the maximum number of allowed function evaluations per configura-
tion to 4. The number of trees for the random forest was set to 10 and the fraction of
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Figure D.7.: HPOBench-Parkinson. Top row: Importance of the different hyperpa-
rameter based on the fANOVA for: (left) only the top 1% ; (middle) top 10% ;
(right) all configurations. Bottom row: most important hyperparameter pairs with
(left) only the top 1% ; (middle) top 10% ; (right) all configurations.

random configurations was set to 1/3 which are also the default values in the SMAC3
package.

Regularized Evolution (RE): To mutate architectures, we first sample uniformly
at random a hyperparameter and then sample a new value from the set of all possible
values except the current one. RE has two main hyperparameters, the population
size and the tournament size, which we set to 100 and 10, respectively.

Reinforcement Learning (RL): Starting from a uniform distribution over the
values of each hyperparameter, we used REINFORCE to optimize the probability
values directly (see also Ying et al| (2019). After performing a grid search, we set
the learning rate for REINFORCE to 0.1 and used an exponential moving average
as baseline for the reward function with a momentum of 0.9.

Bohamiann: We used a 3 layer fully connected neural network with 50 units and
tanh activation functions in each layer. We set the step length for the adaptive
SGHMC sampler (Springenberg et al. [2016)) to 0.01 and the batch size to 8. Starting
from a chain length of 20000 steps, the number of burn-in steps was linearly increased
by a factor of 10 times the number of observed function values. To optimize the
acquisition function, we used a simple local search method, that, starting from a
random configuration, evaluates the one-step neighborhood and then jumps to the
neighbor with the highest acquisition value until it either reaches the maximum
number of steps or converges to a local optimum.

Figure shows the comparison and the robustness of all considered hyperpa-
rameter optimization methods on the four tabular benchmarks. We performed 500
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Figure D.8.: HPOBench-Protein. Top row: Importance of the different hyperpa-
rameter based on the fANOVA for: (left) only the top 1% ; (middle) top 10% ;
(right) all configurations. Bottom row: most important hyperparameter pairs with
(left) only the top 1% ; (middle) top 10% ; (right) all configurations.

independent runs for each method and report the mean and the standard error of
the mean across all runs. For a detailed analysis of the results see the main text.
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Figure D.9.: HPOBench-Slice. Top row: Importance of the different hyperparameter
based on the fANOVA for: (left) only the top 1% ; (middle) top 10% ; (right)
all configurations. Bottom row: most important hyperparameter pairs with (left)
only the top 1% ; (middle) top 10% ; (right) all configurations.

Table D.1.: HPO-Bench-Naval: Performance change if single hyperparameters of
the incumbent (average test error 0.000029) are flipped.

Hyperparameter Change Test Error | Relative Change

Layer 1 Size 128 — 256 0.0000 0.1331
Initial LR 0.0005 — 0.001 0.0000 0.1751
Layer 1 Size 128 — 64 0.0000 0.2196
Layer 2 Size 512 — 256 0.0000 0.4929
Batch Size 8 — 16 0.0000 0.5048
Activation/Layer 1 | tanh — relu 0.0000 0.6933
Activation/Layer 2 | relu — tanh 0.0002 4.9685
Dropout/Layer 2 0.0 —0.3 0.0004 11.1872
Dropout/Layer 1 0.0—0.3 0.0010 34.3490

LR Schedule cosine — const 0.0063 217.0092
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Table D.2.: HPO-Bench-Parkinson: Performance change if single hyperparameters
of the incumbent (average test error 0.004239) are flipped.

Hyperparameter Change Test Error | Relative Change
Layer 1 Size 512 — 256 0.0051 0.2142
Layer 2 Size 512 — 256 0.0054 0.2740

Batch Size 16 — 32 0.0059 0.3962
Dropout/Layer 1 0.0 —0.3 0.0081 0.9012
Batch Size 16 — 8 0.0085 1.0068
Activation/Layer 1 | tanh — relu 0.0106 1.5100
Initial LR 0.005 — 0.001 0.0111 1.6268
Activation/Layer 2 | tanh — relu 0.0178 3.1980
Initial LR 0.005 — 0.01 0.0189 3.4530

Dropout/Layer 2 0.0—0.3 0.0216 4.0912
LR Schedule cosine — const 0.1407 32.1805

Table D.3.: HPO-Bench-Protein: Performance change if single hyperparameters of
the incumbent (average test error 0.2153) are flipped.

Hyperparameter Change Test Error | Relative Change
Batch Size 8 — 16 0.2163 0.0042
Initial LR 0.0005 — 0.001 0.2169 0.0072

Layer 2 Size 512 — 256 0.2203 0.0231
Layer 1 Size 512 — 256 0.2216 0.0288
Dropout/Layer 2 0.3 — 0.6 0.2257 0.0478
LR Schedule cosine — const 0.2269 0.0534
Dropout/Layer 2 0.3 — 0.0 0.2280 0.0587
Dropout/Layer 1 0.0 —0.3 0.2307 0.0711
Activation/Layer 2 | relu — tanh 0.2875 0.3351
Activation/Layer 1 | relu — tanh 0.3012 0.3987

Table D.4.: HPO-Bench-Slice: Performance change if single hyperparameters of
the incumbent (average test error 0.000144) are flipped.

Hyperparameter Change Test Error | Relative Change
Layer 1 Size 512 — 256 0.0002 0.0831
Batch Size 32 — 64 0.0002 0.2014
Dropout/Layer 1 0.0 — 0.3 0.0002 0.2514
Layer 2 Size 512 — 256 0.0002 0.2535
Batch Size 32 — 16 0.0002 0.3087
Activation/Layer 1 | relu — tanh 0.0002 0.3383
Activation/Layer 2 | tanh — relu 0.0002 0.6326
Initial LR 0.0005 — 0.001 0.0003 0.7668
Dropout/Layer 2 0.0 —0.3 0.0006 3.3757
LR Schedule cosine — const 0.0007 4.0016
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Figure D.10.: Left column: Comparison of various HPO methods on all the
datasets. For each method, we plot the median and the 25th and 75th quantiles of
the test regret of the incumbent (determined based on the validation performance)
across H00 independent runs. Right column: The empirical cumulative distribution
of the final regret over all runs after 10° seconds for HPO-Bench-Protein, 3 x 10°
seconds for HPO-Bench-Slice, 6 x 10* for HPO-Bench-Naval and 3 x 10* seconds
for HPO-Bench-Parkinson.
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E.1. Meta Benchmarks

In Table we list all OpenML dataset that we used to generate the Meta-SVM
and Meta-FCNet benchmarks and in Table [E.2] the UCI datasets that we used for the
Meta-XGBoost benchmark. The ranges of the hyperparameters for all benchmarks
are given in Table [E.3] Figure shows the empirical cumulative distribution over

the observed target values based on the Sobol grid for all tasks.

Name ‘ OpenML Task ID ‘ number of features ‘ number of datapoints
kr-vs-kp 3 37 3196
covertype 2118 95 110393

letter 236 17 20000

higgs 75101 29 98050
optdigits 258 65 5620
electricity 336 9 45312

magic telescope 75112 12 19020

nomao 146595 119 34465

gas-drift 146590 129 13910
mfeat-pixel 250 241 2000
car 251 7 1728
churn 167079 101 1212
dna 167202 181 3186
vehicle small 283 19 846
vehicle 75191 101 98528
MNIST 3573 785 50000

Table E.1.: OpenML dataset we used for the FC-Net and SVM classification

benchmarks
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‘ Name ‘ number of features ‘ number of datapoints ‘

boston housing 13 506
concrete 9 1030
parkinsons telemonitoring 26 5875
combined cycle power plant 4 9568
energy 8 768

naval propulsion 16 11934

protein structure 9 45730
yacht-hydrodynamics 7 308
winequality-red 12 4898

slice localization 386 53500

Table E.2.: UCI regression dataset we used for the XGBoost benchmark. All dataset
can be found at |https://archive.ics.uci.edu/ml/datasets.html|

‘ Name Range log scale
SVM | C [e710, e10] v
v [6_10, 610] v
FC-Net | learning rate [107¢,1071] v
batch size 8, 128] v
units layer 1 (16, 512] v
units layer 2 (16, 512] v
drop. rate 11 [0.0,0.99] -
drop. rate 12 [0.0,0.99] -
XGBoost | learning rate [107¢,1071] v
gamma [0, 2] -
L1 regularization [107°,107] v
L2 regularization (105,107 v
number of estimators  [10, 500] -
subsampling [0.1,1] -
max. depth [1,15] -
min. child weight [0, 20] -

Table E.3.: Hyper-parameter configuration space of the support vector machine
(SVM), fully connected neural network (FC-Net) and the gradient tree boosting
(XGBoost) benchmark.
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E.2 Comparison Random Search vs. Bayesian Optimization on XGBoost

XGBoost

CDE
CDF
CDF

) ) 02 0 0 ) 0 15
validation error validation error validation error

Figure E.1.: The empirical cumulative distribution plots of all observed target
values for all tasks.

E.2. Comparison Random Search vs. Bayesian
Optimization on XGBoost

For completeness we show in Figure the comparison of random search (RS) and
Bayesian optimization with Gaussian processes (BO-GP) on several UCI regression
datasets. Out of the 10 datasets, GP-BO perform better than RS on 10, worse on
one, and ties on 2 and hence performs overall better than RS which is inline with
the results obtained from out meta-model. However, if we would look only on the
first three datasets: Boston-Housing, PowerPlant and Concrete it would be much
harder to draw strong conclusions.

E.3. Details about the Forrester Benchmark

Figure shows the original 9 tasks (left), their representation on the latent space of
the model (middle) and an example of 10 new generated task (right), that resemble
the original ones.

E.4. Samples for the Meta-SVM Benchmark

In Figure and Figure we show additional randomly sampled function sampled
with and without noise. One can see that, while the general characteristics of the
original objective function, i.e. bowl shaped around the lower right corner, remains,
the local structure changes across samples.

E.5. Comparison of HPO Methods

We now described the specific detail of each optimizer in turn.
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Random search (RS) Bergstra and Bengio| (2012) We defined a uniform distribution
over the input space and in each iteration randomly sampled a datapoint from this
distribution.

Differential Evolution (DE) (Storn and Price| 1997) maintains a population of
data points and generates new candidate points by mutation random points from
the population. We defined the probability for mutation and crossover to be 0.5.
The population size was 10 and we sampled new candidate points based on the
'rand /1 /bin’ strategy.

Tree Parzen Estimator (TPE) (Bergstra et al 2011)) is a Bayesian optimization
method that uses kernel density estimators (KDE) to model the probability of ’good’
points in the input space that achieve a function value that is lower than a certain
value and ’bad’ points that achieve a function value than a certain value. TPE
computes the acquisition as the ration between the likelihood of the two KDE which
is equivalent to expected improvement. We used the default provided by the hyperopt
(https://github.com/hyperopt/hyperopt) package.

SMAC (Hutter et all 2011) is also a Bayesian optimization methods that uses
random forests to model the objective function and stochastic local search to optimize
the acquisition function. We followed the default of SMAC and set the number of
trees for the random forest to 10.

CMA-ES (Hansen, 2006]) is an evolutionary strategy that models a population
as a multivariate normal distribution. We used the open source pycma package
(https://github.com/CMA-ES/pycma). We set the initial standard deviation to 0.6.

Gaussian Process based Bayesian optimization (BO-GP) as described by |Snoek
et al. (2012)). We used expected improvement as acquisition function and an adapted
random search strategy, which given a maximum number of allowed points N = 500
samples first 70% uniformly at random and the rest from a Gaussian with a fixed
variance around the best observed point. While other methods such as gradient
ascent techniques or continuous global optimization methods could also be used,
we found this to work faster and more robustly. We marginalized the acquisition
function over the Gaussian process hyperparameters (Snoek et al., [2012) and used
the emcee package (http://dfm.io/emcee/current/)) to sample hyperparameter
configuration from the marginal log-likelihood. We used a Matern 52 kernel for the
Gaussian process.

BOHAMIANN (Springenberg et al., 2016)) uses a Bayesian neural network inside
Bayesian optimization where the weights are sampled based on stochastic gradient
Hamiltonian Monte-Carlo (Chen et al., [2014). We use a step length of 1E-2 for the
MCMC sampler and increased the number of burnin step by a factor of 100 times
the number of observed data points. In each iteration we sampled 100 weight vectors
over 10000 MCMC steps. We used the same random search method to optimize the
acquisition function as for BO-GP.

All methods started from a uniformly sampled point and we estimated the incumbent
after each function evaluation as the point with the lowest observed function value.
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E.6 Details of the Meta-Model

In Figure and Table we show the aggregated results based on the runtime and
the ranking for all methods on all three benchmarks. We also show in Figure the
p-values of the Mann-Whitney U test between all methods. For a detailed analysis
of the results see Section 5.3 in the main paper.

Benchmark RS DE TPE SMAC BOHAMIANN CMAES BO-GP
Meta-SVM (noiseless) 52.19 74.37 79.64  73.77 90.33 73.69 98.88
Meta-SVM (noise) 56.64 77.29 76.44 78.56 89.80 76.27 88.70
Meta-FCNet (noiseless) 45.71 77.99 7873  72.71 82.50 56.31 84.71
Meta-FCNet (noise) 33.66 49.88 46.84 43.09 57.28 37.41 56.04
Meta-XGBoost (noiseless) 41.59 80.35 71.02  84.95 94.01 7717 94.69
Meta-XGBoost (noise) 41.71  80.05 71.05  85.34 94.23 77.15 94.87
Meta-SVM (noiseless) 5.89 4.47 4.50 4.64 2.75 4.52 1.22
Meta-SVM (noise) 5.72 4.13 4.42 4.11 2.62 4.17 2.84
Meta-FCNet (noiseless) 5.67 3.70 3.72 4.09 2.90 5.14 2.79
Meta-FCNet (noise) 4.92 3.74 3.95 4.26 3.21 4.66 3.27
Meta-XGBoost (noiseless)  6.15 4.11 4.95 3.78 2.40 4.57 2.03
Meta-XGBoost (noise) 6.15 4.12 4.96 3.76 2.39 4.58 2.02

Table E.4.: Top: Each element of the table show the averaged runtime after 100
function evaluations for each method-benchmark pair. Bottom: Same but for the
ranking of the methods.

E.6. Details of the Meta-Model

The neural network architecture for our meta-model consisted of 3 fully connected
layers with 500 units each and tanh activation functions. The step length for the
MCMC sampler was set to 1E — 2 and we used the first 50000 steps as burn-in.
For the probabilistic encoder, we used Bayesian GP—LVMEI(TitSias and Lawrence,
2010) with a Matern52 kernel to learn a () = 5 dimensional latent space for the task
description.

'We used the implementation from |GPy| (2012)
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E.6 Details of the Meta-Model
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Figure E.3.: Visualizing the concept of our meta-model on the one-dimensional
Forrester function. Left: 9 different tasks (solid lines) coming from the same
distribution. Middle: We use a probabilistic encoder to learn a two-dimensional
latent space for the task embedding. Right: Given our encoder and the multi-task

model we can generate new task (dashed lines) that, based on the collected data,
resemble the original tasks.
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Figure E.4.: Noisy samples from our meta-model for the SVM benchmark
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Figure E.5.: Noiseless samples from our meta-model for the SVM benchmark
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Figure E.6.: Comparison of various different methods on all three HPO problems.

166rom above to below 2-dimensional support vector machine, 6-dimensional feed-
forward neural network and 8-dimensional gradient boosting. The two columns
on the left show the ECDF and ranking for the noiseless version of each HPO
problem (same for the noisy version).
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