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Nomenclature

3D Three dimensional – generally refers to three dimensions of space

4D Four dimensional – 3D over time

ACC Accuracy

AJPE Average joint position error

BoW Bag of words approach

CNN Convolutional neural network

CoM Centroid of motion

CP Cerebral palsy

CPU Central processing unit

CSGM Cramped synchronized general movement

cUS Cranial ultrasound

DA Definitely abnormal

DBN Dynamic Bayes net

DTW Dynamic time warping

FMs Fidgety movements

FN False negative

FP False positive

FPS Frames per second

GMA General movement assessment

GMs General movements

GPU Graphics processing unit
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Contents

HR High risk

ICP Iterative closest point

IMU Inertial measurement unit

K-NN K-nearest neighbor

LDOF Large displacement optical flow

LOOCV Leave-one-out cross validation

MA Mildly abnormal

MRI Magnetic resonance imaging

NE Neurological examination

NO Normal optimal

NS Normal suboptimal

PMA Post menstrual age

RGB Red-green-blue – usually referring to a color image

RGB-D Red-green-blue-depth – color and depth image

SD standard deviation

SMIL Skinned Multi-Infant Linear model

SMPL Skinned Multi-Person Linear model

SVM Support vector machine

TN True negative

TNR True negative rate

TP True positive

TPR True positive rate

WCA Worst-case accuracy
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Abstract

Cerebral palsy (CP) is the most common motor disorder in children, and is caused by
injuries of the brain shortly before, during, or after birth. With traditional methods,
a reliable diagnosis of CP can generally not be made until after the first year of life
or even later. Based on the discovery that the condition of the nervous system of
young infants is reflected in the quality of their spontaneous movements, the general
movement assessment (GMA) was developed. GMA lets trained experts detect CP
in infants as young as four months. However, regular practice and re-calibration are
required, and GMA suffers from human variability. CP manifests itself in a variety
of symptoms, which complicates finding the right parameters for predicting the risk
of CP.
A cheap, automated system would allow the widespread screening of infants in
order to concentrate early intervention efforts on affected children. We divide the
system into the motion capture stage and the motion analysis stage. Although the
extraction of motion, respectively body pose, from images and videos is a very active
area of computer vision research, most of the proposed approaches focus on adults
and can not be directly transferred to infants.
In this thesis, we present multiple contributions towards an unobtrusive system for
medical motion analysis of infants. First, we propose an approach for estimating 3D
pose from depth images, speeding up the training procedure by nearly two orders of
magnitude compared to previous approaches. Second, we develop a model-based ap-
proach for markerless full-body tracking. We learn the Skinned Multi-Infant Linear
model (SMIL) from low-quality RGB-D data and accurately register it to sequences
of moving infants, capturing shape and pose while handling self-occlusions and fast
movements. We show that our method captures enough motion detail for GMA.
Third, we develop an approach towards predicting the GMA class from motion se-
quences, which is based on features of motion complexity and variation to capture
characteristics of general movements.
Our methods enable accurate tracking of infant shape and pose, and enable ap-
plications like monitoring of therapy/disease progression, tracking growth or motor
development, and detection of malnutrition. By publicly releasing the learned model
and a synthetic, but realistic data set of moving infants, we hope to foster research
focused on infants.
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Zusammenfassung

Die Zerebralparese (CP) ist die häufigste frühkindliche Bewegungsstörung und wird
durch Schädigungen des Gehirns vor, während, oder kurz nach der Geburt ver-
ursacht. Eine zuverlässige Diagnose kann mit traditionellen Untersuchungen meist
erst gestellt werden nachdem das Kind ein Jahr oder älter ist. Ausgelöst durch die
Entdeckung, dass sich der Zustand des infantilen Nervensystems in der Qualität
der Spontanbewegungen widerspiegelt, wurde das General Movement Assessment
(GMA) entwickelt. GMA erlaubt es geübten Experten Zerebralparesen schon bei
Säuglingen unter dem Alter von vier Monaten zu erkennen. Die adequate Durch-
führung von GMA erfordert jedoch kontinuierliches Training sowie regelmäßige Re-
Kalibrierung. Durch die menschliche Komponente wird GMA zwangsläufig von der
subjektiven Wahrnehmung beeinflusst. CP äußert sich in einer Vielzahl von Sym-
ptomen, was das Finden von guten Klassifikationsparametern erschwert.
Ein kostengünstiges automatisiertes System würde flächendeckende Screenings von
Säuglingen ermöglichen, um möglichst früh Therapieinterventionen auf betroffene
Kinder zu fokussieren. Solch ein System kann in die beiden Bestandteile Bewe-
gungserfassung, sowie Analyse, bzw. Klassifikation unterteilt werden. Obwohl die
Erfassung von Bewegungen, bzw. Körperposen aus Bildern und Videos ein sehr ak-
tives Forschungsfeld im Bereich Computer Vision ist, sind die meisten Methoden auf
Erwachsene ausgerichtet und können nicht direkt auf Säuglinge übertragen werden.
In dieser Dissertation präsentieren wir mehrere Beiträge zu einem automatischen
System für die medizinische Bewegungsanalyse von Säuglingen. Erstens entwickeln
wir einen Ansatz für die 3D-Posenschätzung aus Tiefenbildern, bei dem wir den Trai-
ningsprozess im Vergleich mit vorherigen Methoden um fast zwei Größenordnungen
beschleunigen können. Zweitens führen wir einen modellbasierten Ansatz für das
markerlose Ganzkörper-Tracking ein. Wir lernen das Skinned Multi-Infant Linear
model aus niedrigqualitativen RGB-D Daten und entwickeln eine Methode zur ex-
akten Registrierung von Modell mit Sequenzen von sich bewegenden Säuglingen. Mit
diesem Ansatz können wir Form und Pose erfassen und dabei Selbstverdeckungen
und schnelle Bewegungen bewältigen. Wir zeigen, dass wird damit genug Beweguns-
details für GMA erfassen. Drittens entwickeln wir eine Methode um die GMA-Klasse
anhand von den erfassten Bewegungssequenzen vorherzusagen. Dabei repräsentie-
ren Merkmale der Bewegungskomplexität und- variation die Charakteristiken der
General Movements.
Unsere Methodik bietet exaktes Tracking der Form und der Pose von Säuglingen,
was weitere Anwendungen wie z.B. die Überwachung von Therapie- oder Krank-
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heitsfortschritten, die Verfolgung der Größen- oder Motorikentwicklung, oder auch
die Erkennung von Mangelernährung ermöglicht. Durch die öffentliche Freigabe des
gelernten Modells, sowie eines synthetischen aber realistischen Datensatzes der Se-
quenzen sich bewegender Säuglinge enthält, hoffen wir den Fortschritt in diesem
Forschungsbereich zu fördern.
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1. Introduction

The diagnosis of a congenital disorder in an infant has a drastic effect on a family’s
life. In many cases, the chances of improving the outcome seem to be higher the
earlier a disorder is detected, and families can be referred to specialized institutions
[Nov+17]. This way, a head start in treatment, as well as support for the families is
provided. Not all diseases can be diagnosed at an early age, but for the most common
motor disorder in childhood, cerebral palsy (CP), a method for early detection exists.
CP is caused by damage to the brain around the time of birth and shows different
symptoms and degrees of severity. The disease causes many limitations in daily life
for affected children. The severity of CP ranges from mild forms, where patients are
able to walk without limitations, to severe cases, where patients lack any voluntary
control of movement and have a restricted ability to maintain trunk postures.
The general movement assessment (GMA), which is based on the analysis of move-
ment quality, lets trained experts predict the risk of CP at an early age. However, the
number of GMA experts is limited, and the method is prone to human variability
and requires regular training and re-calibration efforts to assure adequate assess-
ment. For this reason, the automation of such a method for infant motion analysis
would be beneficial. Key to an automated motion analysis1 system is the accurate
capture of motions in order to transform them to a machine-readable, numerical
form.

1.1. Vision-based Motion Capture and Analysis

The field of computer vision aims at extracting high-level information about a scene
from images, in our case human motion2. Computer vision influences many areas
of everyday life, and automated methods for recovering human motion from images
or videos have applications in virtual reality [Lee+02; Cha+11], robotics [Wel+17],
human-computer interaction [MA07], sports [Par+17] and many more [Moe+06].

1The term “motion analysis” is sometimes used as a synonym for action or activity recognition,
i.e., assigning a class label like “running” or “dancing” to an input sequence. In our work, we
do not aim at finding the activity class for infant movements, but to assign an output value
that describes the state of motor development, respectively the risk of affection with CP to an
infant movement sequence.

2The term “motion capture” is often used to describe marker-based motion tracking methods, as
is known from movies for animating artificial characters. In this thesis, we use “motion capture”
to describe the extraction of motion information from images with arbitrary techniques.
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Chapter 1 Introduction

In medicine, there are many use cases relying on capturing motion and/or shape
from visual data: the assessment of human motion quality [Tao+15], rehabilita-
tion using Kinect [Sin+16; Sin+17b], improving body positioning for medical scan-
ning [Sin+17a], Alzheimer disease assessment [Iar+14], measuring performance of
Parkinson’s disease patients [Kuh+17], quantification of Multiple Sclerosis progres-
sion [Kon+14], or breathing analysis [Tso+14].

In this thesis, we present methods for acquiring 3D motion from data captured by a
single low-cost RGB-D sensor. Based on the captured motions we target a method
for motion quality assessment to predict the risk of CP in infants.

1.2. Problem Statement

This work tackles the problem of quantifying the risk of CP from motion sequences.
Instead of directly predicting CP outcome, we use the general movement assessment
as an intermediate step, similar to clinical practice. Machine learning techniques
are consistently improving at making predictions from data. This data has to be
transformed to a numerical form. We regard motion in the sense of body pose over
time, i.e., body joint angles, and/or joint positions.

This leads to the second problem: acquiring body pose. State-of the art motion cap-
ture methods can not be directly transferred to infants, e.g., gold standard marker-
based Vicon systems, since the capture of motions has to be performed without
influencing the infant’s movements. We further want to estimate the positioning
and configuration of the body in 3D using a low-cost and simple sensor setup.
Therefore, we utilize RGB-D sensors, which stands for Red Green Blue-Depth and
provides color images together with a depth image, in which each pixel value repre-
sents the distance of the camera to the scene. The depth image can be transformed
to a 3D point cloud using the camera parameters.

There is no definition of how much “motion detail” is necessary for medical motion
analysis. We target high accuracy with a maximum of motion details while relying
only on unobtrusive, low-cost hardware.

In this thesis, we aim at answering the following two research questions:

• Can we capture 3D infant motion in sufficient detail for automated motion
analysis using a single RGB-D sensor?

• Can we reliably infer GMA ratings from the captured motions?

Thesis statement:

A cheap, automated system for early-detection of CP in infants is pos-
sible.
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1.3 Contributions

1.3. Contributions

We develop two methods for capturing 3D motion from RGB-D sequences at different
levels of detail, a method for learning a body model from RGB-D data, and a
method to infer the GMA class from the captured motions. The combination of
our contributions is a step towards a complete system for automated infant motion
analysis. We make the model and an RGB-D data set of moving infants available
to the public.

Body pose estimation in depth images using random ferns

We develop a method for infant pose estimation that is inspired by the commercial
body tracking of the Microsoft Kinect sensor. We predict body part labels for each
pixel of an input depth image, which lets us infer the body joint positions in 3D.
The approach used in the Kinect relies on a random decision tree classifier. Decision
trees have a computationally expensive training procedure, since each node inside
the tree depends on its predecessors. The training time therefore scales exponentially
with tree depth.
We propose the use of a simplified variant of decision trees, namely random ferns.
In ferns, the split nodes in each level of the tree are the same, which implies that
the order in which the nodes are evaluated is irrelevant. This allows for much faster
training, but at the cost of a reduced strength of the classifier. We compensate
for that by combining many simple ferns, instead of using few complex trees. We
achieve a speed up of the training procedure by nearly two orders of magnitude,
from the Kinect training taking one day on a 1000 core cluster to 9 hours on a
workstation with 32 cores. We further advance the accuracy of our approach by
adding a feature selection step before training, making it rotation invariant, and
adding kinematic constraints. However, the method shows limitations in generalizing
to poses that were not included in the training data, as well as very complex poses.
These limitations motivate the development of a more sophisticated model-based
method.

Learning and tracking infant 3D body shape from low-quality
RGB-D data

Statistical body models are generally learned from thousands of high-quality 3D
scans in predefined poses. For infants, no such repository exists, which is why we
learn an infant body model from low-quality, incomplete RGB-D data.
We create an initial infant model based on the adult Skinned Multi-Person Linear
body model (SMPL). We fit this initial model to sequences of freely moving infants.
To constrain the fitting procedure, we gather information from RGB images, depth

9



Chapter 1 Introduction

images, and background table information. We accumulate shape information over
sequences of freely moving infants, which allows us to compensate for the incom-
pleteness of data and to create one personalized infant shape per sequence. We
learn an infant-specific shape space from all personalized shapes, and a prior over
plausible poses from thousands of captured real infant poses. This constitutes our
new Skinned Multi-Linear Infant body model (SMIL).
Experiments on more than two hours of recordings, containing more than 200K
frames, show roughly 99% correct poses, and an average model to scan distance of
2.5 mm. The data contains challenging sequences with fast motion and strong self
occlusions. To show the usability for medical motion analysis, we let two experts
perform the general movement assessment on videos of our synthetic model regis-
tration results and, separately, on the corresponding RGB videos. We use a 1 to 10
scale, and define a threshold for agreement as the difference between ratings being
≤1. The first rater achieves an agreement between synthetic and real videos of over
90%, the second rater of nearly 80%. These results let us believe that our method
captures enough detail for allowing GMA.
Contrary to previous approaches for infant pose estimation, which mostly estimate
joint positions or rely on 2D data, we capture accurate 3D full-body shape and
pose, including joint positions and joint angles. We make SMIL publicly available
for research purposes.
We use SMIL to create the first realistic RGB-D data set of moving infants, which
we also make available to the public.

Towards automated GMA prediction from pose sequences

We develop a method towards predicting the GMA class from captured motion se-
quences. We assume that sequences with similar ratings contain motions that share
similar characteristics. The variety of motions that an infant generates is large,
and a typically developing infant will most probably show some movements that
share characteristics with movements of an infant with abnormal motor develop-
ment. Over the course of a sequence, the number of “good” movements is assumed
to be higher for healthy infants than that of infants with CP.
We develop features based on motion complexity and variation that capture char-
acteristics of general movements. We train a classifier to predict whether an infant
shows “definitely abnormal” movement quality, which has been shown to be a strong
indicator for a high risk of CP. We conduct several baseline experiments that show
the potential of the proposed features.
Additionally, we create a latent feature space to automatically group motion snippets
of similar characteristics. This approach, however, does not achieve satisfactory
result, which we attribute to the unconstrained nature of infant motions. A fine-
grained labeling of movements with respect to GMA characteristics could produce

10



1.4 Ethics

a representation in feature space that fully exploits the potential of the proposed
features.

1.4. Ethics

Studies presented in this thesis were approved by the ethics committee of Ludwig-
Maximilians-Universität München (LMU) under project number 454-16 and in com-
pliance with the Declaration of Helsinki. All parents were informed about the record-
ings in a personal conversation and gave written informed consent prior to the study
and could discontinue recordings or retract from the study at any time. The choice of
whether or not to participate in the study was guaranteed to not have any influence
on treatment. Complete patient data and recordings were safely stored at LMU.
For this thesis, only a subset of the data was accessed, namely RGB-D data, age
at recording, pseudonymized patient ID (for identifying multiple recordings of the
same infant) and GMA ratings. From this data, no connections to patient identities
could be made.
The recording procedure was fully integrated in the clinical examination protocol and
did not produce any significant temporal overhead for patients, doctors or clinical
staff.

1.5. Thesis Outline

In chapter 2, we give an overview of the medical background of early detection
of CP and GMA. We review existing approaches towards GMA automation and
analyze the underlying motion capture methods in detail. We discuss advantages
and disadvantages before defining requirements for an automated motion analysis
system. We present the system setup and discuss different types of RGB-D sensors
as well as data properties in chapter 3. Our approach to pose estimation from
depth images using random ferns is described in chapter 4. We identify limitations,
and propose multiple extensions to resolve them. In our second contribution, we
present methods for learning and tracking infant body shape from RGB-D sequences
(chapter 5). We describe the creation of an initial infant model, which we register
to the sequences, and how this enables us to learn an infant specific shape space and
pose prior. We show in a case study on GMA that the proposed method captures
enough motion detail for GMA. We use the learned body model for generating a data
set of synthetic moving infants for evaluation of RGB-D motion capture methods in
chapter 6. In chapter 7, we show how motion measurements can provide information
to differentiate between multiple diseases. We present a method towards predicting
the GMA class from pose sequences. To conclude, we summarize our contributions
and discuss implications for future research (chapter 8).
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2. Infant Motion Analysis
Human motion analysis is a valuable tool in medicine for a multitude of tasks, e.g.,
gait analysis [Whi96], fall risk assessment [SC+00; Per+01], or measuring Multiple
Sclerosis progression [Kur83; Fis+99]. Medical motion analysis is not only applicable
to adult patients, but can be used for the early detection of neurodevelopmental
disorders like cerebral palsy (CP) in infants at an early age [Tac+17].
In this chapter, we provide the medical backgrounds motivating this thesis. We
give an overview of causes and symptoms of CP as well as how it is diagnosed and
why early detection is important, but difficult (Sec. 2.1). We describe the general
movement assessment (GMA), which is the most reliable method for CP detection
at a young age (Sec. 2.2). This method lets trained experts evaluate the state of the
developing nervous system based on the analysis of spontaneous movements1. We
present a review of systems aiming at automating CP detection in Sec. 2.3. After
giving an overview of detection rates and types of motion features that are used
for patient classification, we discuss limitations and benefits of different approaches
(Sec. 2.4) leading to our definition of requirements for an automated system for
infant motion analysis (Sec. 2.5).

2.1. Cerebral Palsy

Cerebral palsy is the most common neurodevelopmental disorder in children, with
a prevalence of roughly 2 per 1000 live births in high-income countries [Osk+13;
Sel+16]. Higher prevalence has been reported for the United States at 3 - 4 per
1000 live births [Boy+11; Chr+14].

Definition (Rosenbaum et al. [Ros+07]):
“Cerebral palsy (CP) describes a group of permanent disorders of the de-
velopment of movement and posture, causing activity limitation, that are
attributed to non-progressive disturbances that occurred in the develop-
ing fetal or infant brain. The motor disorders of cerebral palsy are often
accompanied by disturbances of sensation, perception, cognition, com-
munication, and behavior, by epilepsy, and by secondary musculoskeletal
problems.”

1Please note that terms like “abnormal” refer to the movement quality shown by an infant, not
the infant itself.
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Chapter 2 Infant Motion Analysis

The most prominent impairments from CP are related to muscle tone, motor abilities
and musculoskeletal problems [Ros+07]. These often are not easily noticeable in the
first months of life, but become more and more apparent over time, when certain
developmental milestones are not reached at the expected age [HA10]. Depending
on the severity of CP, some children will not be able to walk, while others develop
pathological gait patterns like tip-toeing gait, which is caused by tightness of the
Achilles tendon, scissoring gait due to tightness of hip abductors, or crouching gait
(hamstring spasticity). Orthopedic surgery, medication, or external fixation may
help to improve such deformities [GS03]. Approximately 60% of CP patients can
walk either independently or with aids as adults [Him13]. However, gait abilities
decline through adulthood and the risk of falling increases [MM14].
This is in line with the description of CP being “non-progressive”, i.e., the cause
persists, but symptoms may change over time. This implicates that there is no cure
for CP, which is why therapy aims at helping patients and their families to adapt
their lives to coping with the disorder [Pal+12].
Affected children receive physical, occupational and speech therapy after a high risk
of CP has been diagnosed [Nov+17]. The intervention efforts have become more
oriented towards putting the emphasis on family life and increasing the independence
of patients instead of solely trying to improve motor skills [Dir+11].
CP is a movement disorder, but CP patients often show additional difficulties with
vision, hearing, thinking, learning, behavior and communication [Ros+07]. Al-
though people affected by CP have a higher risk of learning disorders, they have
normal intelligence [Jen+07]. However, they suffer from decreased life expectancy
[Hut06].
Different types of CP can be identified according to the area of the brain that is
damaged [Che97].

1. Spastic CP is the most common type, affecting roughly 70% of CP cases
[Sta+00], with the most prominent impairment being hypertonia and muscle
tightness (spasticity). It is caused by damages to cortical motor areas and/or
white matter.

2. Ataxic CP is induced by injuries to cerebellar structures, and leads to de-
creased muscle tone and a loss of muscle coordination and balance.

3. Dyskinetic CP is associated with damage to the basal ganglia, and causes
the inability to control muscle tone, and therefore leads to both hyper- and
hypotonia.

4. A mixture of aforementioned types is also possible.

The Gross Motor Function Classification System [Pal+97] is commonly used for
classifying the level of severity of CP. Patients are assigned to one of five classes
based on the motor abilities like standing, sitting, walking and the dependency on
mobility aids like wheelchairs.
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Table 2.1.: Prevalence of CP in Europe in 2003 according to [Sel+16], number
of affected children per 1000 live births. Different birth weight groups: normal
(>2499g), moderately low (1500g - 2499g), very low (1000g - 1499g), and ex-
tremely low birth weight (<1000g).

Birth weight Normal Moderately low Very low Extremely low Overall
Prevalence 0.89 6.2 35.9 42.4 1.77

Causes. The damage to the brain that leads to CP is mostly inflicted during
pregnancy or the first months of life [HA14]. Multiple possible causes have been
identified, but the occurrence of neither one necessarily causes CP. The risk of CP is
highly increased in the event of critical incidents during birth, like placental abrup-
tion, cord prolapse and uterine rupture [Nel08]. However, such events are uncommon
and therefore are not a main factor for CP. According to [Nel08], other causative
factors for CP include prematurity, intrauterine exposure to infection or mater-
nal fever in labor, ischemic stroke, congenital malformations, atypical intrauterine
growth, and complications of multiple gestations. Prematurity, and its connection
to low birth weight, has been identified by other researchers as an important risk
factor which increases the probability of CP by a factor of up to 40 [Sel+16] (c.f.
Tab. 2.1).

Diagnosis and early detection. Historically, the age at which CP can be reliably
identified with traditional methods, like physical examination in combination with
the medical history, ranges from 12 to 24 months [Pan08; Gor+09]. Naturally, the
more severely an infant is affected by CP, the easier and the earlier it is detected.
At young age, there are large changes in the developing brain, which may have an
effect on the outcome [Kol+13]. A diagnosis therefore has to be made with caution
[Pan08].
By waiting until CP can be diagnosed very accurately, a critical time window for
intervention during a period of brain ‘plasticity’ for maximizing functional outcomes
may be missed [Nov+17]. Within the first year of life, dendrites and synapses are
produced at a high rate. Animal studies indicate that this period offers a good
opportunity for intervention [HA14].
However, open questions remain. There has been a lack of evidence for the effect of
early intervention, and it is not clear what the best type of intervention is [Spi+15;
HA14; Her+15; Mor+16a]. It seems that different types of intervention are required
for term-born infants and infants born preterm [BHHA05] and that intervention has
a stronger effect on cognitive than on motor development [Kol+13]. The topic of
early intervention is actively researched [Hie+11; Nov+17; HA+17].
Even though the effect of intervention is uncertain, it is important to identify affected
children in order to refer them to specialized facilities where the development is
monitored and parents are informed and supported in an optimal way [Ein+97;
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Bos+13; Her+15]. Therefore, clinicians aim to detect high-risk infants as early as
possible [McI+11]. New diagnostic tools like GMA allow accurate prediction of CP
or “high risk of CP” before 6 months of age [Nov+17].

Metrics for CP detection. The predictive validity of medical diagnostic methods is
generally reported as the sensitivity and specificity. The sensitivity is the percentage
of infants who are correctly identified as being affected by CP, and the specificity is
the percentage of infants who are correctly identified as not being affected by CP.
More formally, each sample of an evaluation set belongs to one of the four classes
• True positive (TP): infant affected by CP correctly classified as affected,
• False positive (FP): healthy infant incorrectly classified as affected by CP,
• True negative (TN): healthy infant correctly classified as healthy,
• False negative (FN): infant affected by CP incorrectly classified as healthy.

Sensitivity, also called the true positive rate (TPR) can be written as

Sensitivity = TPR = TP
P = TP

TP + FN (2.1)

with P denoting the number of “positive” cases in the data set, here infants affected
by CP.
Specificity, the true negative rate (TNR), is then given as

Specificity = TNR = TN
N = TN

TN + FP (2.2)

with N denoting the number of “negative” cases in the data set, here healthy infants.
In some cases, the accuracy (ACC) is given, which is defined as

ACC = TP + TN
P + N = TP + TN

TP + TN + FP + FN (2.3)

A problem of the accuracy measure is that in most studies on CP detection, the
sets of positive and negative samples are highly imbalanced due to the small overall
number of CP cases. This is not reflected in this measure, which is why for evaluation
of CP detection, sensitivity and specificity should be preferred.

Tools for CP detection. A number of tools for the detection of CP exist, ranging
from Magnetic Resonance Imaging (MRI) of the brain, over cranial ultrasound and
neurological examinations to neuromotor assessments, like the general movement
assessment (GMA). Since the focus of our work lies on GMA, we do not discuss
details of the other methods and refer the interested reader to [HA14]. We present
the predictive validity of the different tools in Tab. 2.2.
The general movement assessment is the most accurate tool for CP detection at an
early age, with a reported sensitivity of 98% and a specificity of 91%. We give a
detailed description of GMA in the next section.
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Table 2.2.: Tools with predictive validity for detecting CP [Bos+13]. MRI: brain
magnetic resonance imaging, cUS: cranial ultrasound, NE: neurological examina-
tion (e.g., HINE [Rom+08]), GMA: general movement assessment.

MRI cUS NE GMA
Sensitivity 86%-100% 74% 88% 98%
Specificity 89%-97% 92% 87% 91%

2.2. The General Movement Assessment

Prechtl discovered that so called general movements (GMs) can serve as a window
to the young nervous system [Pre90]. The assessment of these general movements
allows to not only describe the current state of the infant but to predict with a high
probability whether or not a child will develop CP [Pre+97].

2.2.1. Motion as a Marker for Neurological Impairments

It was found that spontaneous movements are motor activities that are endogenously
generated, opposed to reflexes, which are triggered by external stimuli [Pre90]. An-
imal experiments have shown that these general movements are more prone to im-
pairments of the nervous system than reflexes [Pre90].
Prechtl [Pre90] defines general movements as
• gross movements involving the whole body,
• lasting between few seconds and one minute,
• variable sequences of arm, leg, neck and trunk movements,
• varying in intensity, force and speed, with gradual onset and end,
• mostly complex extension or flexion of arms and legs, with superimposed ro-

tations and changes in movement direction, and
• fluent, elegant movements, creating the impression of complexity and variabil-

ity.
If the quality of GMs deviates from the above definition, this is a reliable indicator
of brain dysfunction [Ein+97].
GMs are present from roughly 28 weeks post menstrual age (PMA) (fetus) until
14-18 weeks post term and change their characteristics over time [HA04]:
• Preterm GMs occur between 28 weeks and 36-38 weeks PMA, consisting of

“extremely variable movements, including many pelvic tilts and trunk move-
ments”.
• Writhing GMs are more forceful, but slower than preterm GMs and pelvis and

trunk are less involved. They occur between 36-38 and 46-52 weeks PMA.
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Table 2.3.: Classification system according to Hadders-Algra [HA+04]

Classification Complexity Variation Fluency
Normal optimal GMs +++ +++ +
Normal suboptimal GMs ++ ++ -
Mildly abnormal GMs + + -
Definitely abnormal GMs - - -

• Fidgety GMs are shown between 46-52 and 54-58 weeks PMA. They are char-
acterized by a continuous flow of small and elegant movements, involving all
parts of the body.

Abnormal GMs until 2 months post term show one or more of the following
characteristics [Pre+97; Ein+97]:

• poor repertoire GMs are characterized by monotonous movements and a lack
of movement complexity,

• cramped-synchronized GMs appear rigid, with reduced smoothness or fluency,
and a simultaneous contraction and relaxation of all limb and trunk muscles,

• chaotic GMs have mostly large amplitude or seem very abrupt, and lack flu-
ency or smoothness and occur in chaotic order.

At fidgety age (up to 20 weeks post term), general movements are classified as
abnormal if they are either absent, i.e., the infant never showed fidgety movements
(FMs) between the age of 6 and 20 weeks post term, or abnormal, when amplitude,
speed and jerkiness deviate from the range of normal FMs [Ein+97]. The method
of GMA is very reliable, and if abnormal movement patterns persist over time the
reliability increases even more [Ein+97].

Hadders-Algra proposes a different GMA classification scheme, more focused on
overall complexity and variation than on fidgety movements [HA+04; HA04]. In
their studies, they observed fidgety movements lacking fluency, but having suffi-
cient complexity and variation, which they classify as mildly abnormal GMs. They
conclude that “fluency is a feature that is easily disturbed”, which is why they do
not consider it as a criterion for abnormality. Mildly abnormal GMs are associated
with an increased risk of minor neurological dysfunction (MND), attention prob-
lems and aggressive behavior at school age [HA+04]. GMs classified as definitely
abnormal indicate a high risk of CP. Normal GMs are subdivided into normal opti-
mal GMs, showing complexity, variation and fluency, and normal suboptimal GMs,
which show less, but still sufficient complexity and variation, but lack smoothness.
An overview of the classification scheme is shown in Tab. 2.3. The intra- as well as
the inter-observer agreement of skilled observers is reported to be high [HA+04].

A recent study suggests that Prechtl’s GMA has a higher reliability than the GMA
according to Hadders-Algra [Kwo+18]. However, this review includes results for
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Hadders-Algra’s GMA from a study on the reliability of GMA in the general popu-
lation, which is reported to be much lower than in high-risk populations [Bou+10].
The studies using Prechtl’s GMA are only conducted on high-risk populations. This
has led to discussions among researchers, and the strong recommendation of consid-
ering the population when applying GMA [HAP18]. On high-risk populations, the
reliability of both GMA variants is high [HA+04; Phi+14; EP05].

2.2.2. Methodology of the General Movement Assessment

The general movement assessment is performed by a trained expert based on visual
Gestalt perception [Pre90]. Video recordings should be favored over direct observa-
tion, to avoid distraction and to have the possibility of repeated playback at different
speeds and to store the recordings for later reference [Pre90; Ein+97].

The infant should be placed in supine position and wear light clothing. It should
be in a state of active wakefulness2. GMA is not applicable during non-nutritive
sucking, hiccup, fussing, crying, or interaction with toys or parents [Ein+97].

Up to term age, duration of infant recordings should be one hour, which is reduced
by selecting the best GMs in a post-processing step [Ein+97]. After term age, infants
should be recorded for 5 - 10 minutes, with an absolute minimum of three minutes.
Experienced observers require not more than one to three minutes of recorded GMs
[EP05]. A developmental trajectory should be preferred over assessment of a single
recording [EP05].

New technologies have made it easier to record infants in a relaxed atmosphere at
home using a smartphone and have the recordings transferred electronically to the
GMA experts [Spi+16].

The advantages of GMA include its non-intrusiveness to the infant, compared to
imaging techniques like MRI. The only required equipment is a camera and a play-
back device, e.g., a smartphone. The method has shown to achieve high reliability
and validity in predicting CP. It can be learned by anyone and does not require
previous medical knowledge.

However, there are certain drawbacks. While the basic principles of GMA can be
learned in two days, it takes further practice to become skilled [HA+04]. Besides
from regular practice, a repeated re-calibration with gold-standard videos is required
to avoid bias [Ein+97]. Although GMA has shown to have high reliability, the
inter- and intra-observer agreement decreases in clinical practice [Ber+11]. GMA is
dependent on the skill of the rater, and therefore is subject to human variability. The
number of training courses is small – the official website of the General Movement
Trust3 lists five courses between November 2018 and May 2019 worldwide.

2This corresponds to Prechtl state 4 [Pre74].
3http://www.general-movements-trust.info/47/dates, accessed November 2018.
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An automated system for GMA/CP detection could contribute to widespread screen-
ing and identification of infants in need of special treatment. In 1990, Prechtl [Pre90],
referring to the technique underlying GMA, stated:

“Gestalt perception is a powerful instrument in the analysis of complex
phenomena and an instrument which cannot be replaced by automated
quantification.“

This viewpoint, however, could not keep researchers from working on methods for
the automation of early detection of CP.

2.3. Related Work – Towards Automated Detection
of Cerebral Palsy

Fueled by recent advances in computer vision, research efforts have been undertaken
towards automated motion analysis for a variety of medical purposes, e.g., for pa-
tient monitoring [Ach+16], quantifying therapy or disease progression [Kon+14], or
performance assessment [Cla+12]. In order to perform an automated quantitative
analysis of movements, these movements have to be captured and converted to a
numerical form, e.g., joint positions or angles.
We review systems aiming at the automated prediction of cerebral palsy in infants
based on the assessment of motions. Although this problem is approached in differ-
ent ways, the pipeline is similar for most systems, and can be divided into motion
capture and motion analysis (Fig. 2.1). Motion features are extracted from captured
movements, and used for training a classifier to predict the outcome. We provide
an overview of prediction accuracy reported in the reviewed systems in Tab. 2.4.
Parts of this section were published as [Hes+19a].

2.3.1. Wearable Motion Sensors

Before focusing on vision-based approaches, we review systems using wearable mo-
tion sensors to capture infant motion for CP detection. Prior to the introduction
of low-cost wireless technology, researchers investigated the use of wired motion
sensors.
Karch et al. propose an electro-magnetical tracking system, which measures positions
of electrodes attached to the infant’s limbs [Kar+08]. The setup of the system is
described in more detail in [Kar11]. The system provides a high spatial resolution,
but the capture space is very limited (16 cm × 40 cm × 40 cm). In addition, external
electro-magnetic influences, e.g., by electrical devices or wires, have to be minimized
to ensure accuracy. Four electrodes are attached to the upper limb and four to
the lower limb. Due to technical restrictions, only one body side is captured at a
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Data acquisition Motion capture Motion feature
extraction

Classification /
Prediction

Motion analysis

Figure 2.1.: Standard motion analysis pipeline. Motions are captured from the
acquired data. Motion features are extracted and used to classify or predict the
medical outcome.

time. After doing an initial calibration by performing several predefined movements
with the infant’s limbs, spontaneous movements are captured. These are mapped
to a biomechanical model to extract joint positions and angles. Based on these
measurements, the authors develop a complexity score to distinguish between a
pathological group and a control group [Kar+10]. They train a principal component
model from manually selected complex movements of five healthy infants. The
complexity score for new movements is determined by calculating the accordance
to the model. In further work, they develop a stereotypy score, which describes
movement sequences with respect to repetitiveness and self-similarity, which are
indicators for neurological deficits [Kar+12; Phi+14]. In two studies they achieve a
sensitivity of 90% and a specificity of 95 - 96% for correctly predicting CP.

The technical approach is developed in a coherent and thoughtful way. However,
the limitations of the recording system seem to be too substantial to allow its use in
standard clinical practice. Tedious setup and calibration procedure, together with
easily disturbed measuring procedure suggest the use of different sensors.

Researchers have found inertial measurement units (IMUs) to be a better choice
for measuring infant motion. IMUs measure rotational forces, angular rates and
velocities using a combination of accelerometers, gyroscopes, and sometimes mag-
netometers.

One of the first studies on using accelerometers for assessing infant motor develop-
ment was presented by Ohgi et al. [Ohg+08]. They attach a single accelerometer
to one wrist of 7 infants with brain injuries and 7 healthy infants to compare the
acceleration time series. They found that movements of infants with brain injuries
are more chaotic and disorganized.

Heinze et al. attach one wired accelerometer to each extremity to extract accelera-
tion and velocity over time [Hei+10]. Accelerometers are subject to measurement
bias/noise. When the signal is temporally integrated to obtain velocities or posi-
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Table 2.4.: Overview of automated CP detection approaches. We present the num-
ber of subjects, type of motion features used for classification, and prediction re-
sults. HR: infants at high risk of CP, CP: infants with outcome CP. Results from
multiple publications of the same first author are summarized in one row. Studies
containing only HR subjects predicted the label HR instead of CP.

Publication # infants Features Sensitivity |
specificity

Accuracy

Meinecke
[Mei+06]

22 (7 HR) 8 motion features
(lower limbs)

100% | 70% 73%

Adde
[Add+09;
Add+10;
Add+13]

82 (32 HR),
30 (13 CP),
52 (9 CP)

Centroid of motion 81.5, 85, 89% |
70, 71, 74%

-

Stahl
[Sta+12]

82 (15 CP) Frequency + motion
distance

85.3% | 95.5% 93.7%

Rahmati
[Rah+14a;
Rah+15a;
Rah+16]

78 (14 CP) 3 features from
[Mei+06], frequency

50, 92, 86% |
95, 87, 92%

87, 88, 91%

Kanemaru
[Kan+14]

145 (16 CP) Jerk index Higher jerk in-
dex in CP

-

Heinze
[Hei+10]

23 (4 CP) 32 features from
[Mei+06]

100% | 83-89% 88-92%

Karch
[Kar+12]

62 (10 CP) Stereotypy score 90% | 96% -

Philippi
[Phi+14]

67 (10 CP) Stereotypy score 90% | 95% -

Orlandi
[Orl+18]

127 (16 CP) Many motion fea-
tures

44% | 99% 92%

tions, the calculated values drift linearly for velocities or quadratically for positions
over time. This is why an additional noise reduction method is generally applied
to achieve improved accuracy. The authors refrain from calculating 3D trajectories
from the recorded data due to imprecise and unstable results. A subset of parame-
ters proposed in a different approach [Mei+06], related to acceleration and velocity,
is selected. A sensitivity of 100% at a specificity of 83% is achieved for a group of
17 healthy and 4 high risk infants. However, to increase the number of items in the
data set, multiple recordings are performed in the first five months of life for each
infant and treated these recordings as statistically independent. This way, the over-
all number of used recordings is 139 (107 healthy, 32 pathologic) for training and
70 (53 healthy, 17 pathologic) for evaluation. The percentage of correctly identified
pathological motion sequences varies between 50 and 71%, depending on the age at
the time of measurement, at 100% correctly identified healthy sequences.
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Technological progress has led to a decreasing size and cost of wearables and better
usability by the introduction of wireless sensors. Instead of aiming at the direct
prediction of CP, some researchers try to identify so called cramped-synchronized
general movements (CSGMs, cf. Sec. 2.2.1), which are a sign of abnormal motor
behavior.
Gravem et al. use lightweight wireless accelerometers, which they attach to head
and limbs of ten infants that were born preterm [Gra+12]. They evaluate three
different classifiers that were trained on manually annotated data. In the text, an
accuracy of 70 - 90%, average sensitivity of 99.2%, and average specificity of 99.6%
is reported. However, the authors provide more detailed results in a table, where the
average sensitivity is reported as ranging between 6.9% and 49.8%, and an average
specificity between 76.4% and 96.4%. We do not know how the numbers given in
the text are calculated. The percentages in the table seem more plausible, given the
imbalance of CSGMs versus other types of movements in the data set.
Singh et al. [SP10] follow a similar approach. They use a leave-one out cross-
validation scheme, and report an accuracy of 92.7% for a Support Vector Machine
classifier (SVM) and 89.8% for decision trees. However, since there are many more
“normal” movements (640K) than CSGMs (28K), and the goal is to detect CSGMs,
accuracy seems like an unsuitable metric. In the evaluation of an SVM classifier,
roughly 2K of 28K CSGMs are correctly identified (true positives), while over 26K
real CSGMs are classified as normal movements (false negatives) and over 22.5K
normal movements are falsely classified as CSGMs (false positives). From these
numbers, we calculate a sensitivity of 7% and a specificity of 96.5%. A classifier
using a Dynamic Bayes Net with a Random Forest correctly classified CSGMs in
50% of the cases (14K CSGMs), but at the same time nearly 200K normal movements
were classified as abnormal. From these numbers we compute a sensitivity of 50%
and a specificity of 70%. Additionally, an accuracy of 95% is reported for a baseline
method that always predicts the most popular class (“normal”). Given that the
proposed approaches are not able to improve over this simple baseline, the system
doesn’t seem useful for clinical applications. This further highlights the use of an
appropriate evaluation metric.
This work is extended by Fan et al. by including temporal modeling of CSGMs
[Fan+12]. On the same data set, they report 72% sensitivity and 57% specificity.
The approaches for CSGM detection seem far away from results that would make
them usable in clinical practice. One problem is the low number of CSGM occur-
rences compared to other types of movements.
Although a recent study shows that wearable sensors do not seem to affect the leg
movement frequency [Jia+18], they supposedly have a negative influence on the
infant’s state of happiness. Karch et al. report that recordings for two thirds of
participating infants had to be stopped after re-positioning the attached sensors
due to crying (and technical difficulties) [Kar+12]. Furthermore, approaches relying
on attached sensors generally suffer from practical limitations like time consuming
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human intervention for setup and calibration, and add the risk of affecting the
movements of infants. Without proper calibration, inaccurate positioning of sensors
may lead to biased results [See+14].

2.3.2. Video-based Approaches

Cameras, opposed to motion sensors, generally require no calibration, are cheap, easy
to use, and can be easily integrated into standard examinations while not influencing
infants’ movements. This makes them more suitable for use in clinical environments,
doctor’s offices or even at home. Other than sensor-based approaches, vision-based
approaches do not measure motions directly. More or less sophisticated methods are
needed to extract motion information, e.g., by estimating the pose in every image
of a video. We describe the methods for motion capture used in the current state-
of-the-art in infant motion analysis, as well as the evaluation protocols for these
methods. Our findings further support the need for a standardized, realistic, and
challenging benchmark data set.

We review approaches that process RGB (or infrared) images for the capture of
infant motion. We include methods relying on attached markers, despite posing
some of the same challenges as wearable sensors. These require human intervention
for marker attachment, calibration procedures and most of all possibly affect the
infants’ behavior or content. Still, they use computer vision for tracking the pose of
the infants. We give an overview of methods used for capturing motions from video
and the respective evaluation procedures in Tab. 2.5.

One of the first automated approaches for CP detection was presented in 2006 by
Meinecke et al. [Mei+06]. They use a Vicon system consisting of 7 infrared cameras
surrounding the infant, equipped with 20 markers. The marker positions are speci-
fied on a biomechanical model, which allows to infer the 3D positions of the markers
from the recorded images. These positions can be accurately measured at a reported
error of 2 mm for a measurement volume of 2 m3. However, the system suffers from
certain limitations. Due to the unconstrained movements of the infants close to the
underground, the markers of the upper extremities are often occluded and there-
fore invisible to the cameras. The attachment of additional markers exceeded the
system’s capabilities and therefore, motion features of upper extremities were ex-
cluded. In order to classify the risk of CP from the recorded motions, they extract
53 motion parameters and use cluster analysis to find the eight most relevant ones
for predicting CP. The system is trained using motion parameters from 4 healthy
and 4 at-risk infants. The test set consists of 14 children, who are classified with
an overall correct detection rate of 73% (sensitivity 100%, specificity 70%). The
high cost of the system, the complex setup and calibration, and the occlusion prob-
lems stand against the highly accurate tracking of joints in 3D. This seminal work
sparked research on automated CP detection, and at the same time demonstrated
the challenges associated with this task.
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Table 2.5.: Summary of motion capture methods and corresponding evaluation of
video-based approaches for medical infant motion analysis.

First author
and reference

Sensor
system

Method | tracked
limbs

Groundtruth generation | Re-
ported avg. accuracy

Meinecke
[Mei+06]

Vicon 7 IR cameras, 20
markers | head,
trunk rot., 3D joint
pos.

Vicon precision 2 mm (for mea-
suring volume 2 m3)

Adde [Add+09] RGB Difference image |
centroid of motion

No evaluation

Stahl [Sta+12] RGB Optical flow | regu-
lar grid

Manual annotation | exemplary
plot (160 frames)

Kanemaru
[Kan+13]

2D
marker
tracking

Marker tracking |
arms, shoulders,
hips, legs

No evaluation

Rahmati
[Rah+15b]

RGB Optical flow | head,
torso, arms, legs

Manual annotation (20 frames),
Freiburg-Berkeley data set (mov-
ing objects) | < 5 cm (extracted
from plot)

Machireddy
[Mac+17]

RGB +
IMUs

Marker tracking +
IMUs | 3D pos. of
limbs + chest

Human arm model on drill, with
marker and IMU | plot for visual
comparison of trajectories

Orlandi
[Orl+18]

RGB Optical flow | cen-
troid, silhouette

Manual annotation | Correlation
0.83 (high)

Disselhorst et al. [DK+12] use a similar system with the same parameters. Instead
of applying it for CP detection, they aim to quantify movements of different age
groups for infants up to 6 months.
The high cost and effort required to use the Vicon system, together with reported
problems led researchers to investigate simpler and cheaper sensor systems. A body
of work considers the use of standard 2D video cameras, which we review next.
Adde et al. propose a holistic approach [Add+09; Add+10; Add+13; Add+18] on
motion tracking. Instead of estimating locations of individual limbs, they calculate
the difference image between two consecutive frames to generate what they call a
motion image. They calculate the centroid of motion, which is the center of the
pixel positions forming the motion regions in the motion image. They construct a
“motiongram” by compressing all motion images of a sequence either horizontally
or vertically by summing over columns, respectively rows, and stacking them to give
a compact impression on how much an infant moved, and where the movements
happened. As features for classification, they use the quantity of motion, which
they define as the percentage of motion pixels in a motion image, the standard
deviation (SD) of the centroid of motion (CoM), as well as the SD of velocity and
the SD of acceleration of the centroid of motion. They perform multiple studies
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based on these features.
Instead of directly predicting CP outcome, motions are either classified as fidgety
(FM) or non-fidgety movements in 137 recordings of 82 infants, of which 27 record-
ings have absent FMs, and 110 contain observable FMs. A sensitivity of 81.5%
and a specificity of 70% is achieved. The threshold for assigning a class to an infant
recording is manually chosen after feature calculation to give the maximum accuracy
for the data set.
In a follow-up study on 30 high-risk infants of which 13 were later diagnosed with CP,
a sensitivity of 85% and specificity of 71% is reported for CP detection [Add+10].
The classification thresholds are again adapted to the data set and therefore take
different values than in previous work [Add+09]. For this reason, a generalization to
new samples for which the outcome is unknown is questionable. Splitting the data
in training and test set would have produced more meaningful results.
Another follow-up study shows that using multiple recordings of the same infant
– instead of just one – leads to an increase in prediction accuracy [Add+13]. CP
detection in 52 infants obtains a sensitivity of 89% and a specificity of 74%, but the
thresholds are adapted to the data set again. Motion feature take significantly differ-
ent values for infants at fidgety age compared to infants at writhing age [Add+18].
From the same research group, Stoen et al. [Stø+17] conduct a study on a larger
population containing 241 recordings of 150 infants at an age of 10 to 15 weeks.
Motion features are applied to distinguish between infants with normal FMs and
infants with sporadic or absent FMs. By choosing fixed values for sensitivity of 80%
and specificity of 80%, respectively 90%, they report a referral rate to GMA of 27%
at a false negative rate of 20%, respectively a referral rate of 40% at a false negative
rate of 10%.
Other researchers have used more sophisticated methods for motion extraction.
Stahl et al. use a motion tracking method based on optical flow between consec-
utive RGB frames [Sta+12]. Points on a regular grid distributed across the image
are tracked over time. To evaluate the motion tracking accuracy, five points are
manually selected from the grid as head, hands and feet, and the estimated posi-
tions are compared with manually annotated ground truth in a plot over 160 frames.
For classifying CP, motion features based on frequency, wavelet coefficients, and ab-
solute motion distance are used to train an SVM classifier based on the statistics
over the whole grid. They achieve an accuracy of 93.7 % at a sensitivity of 85.3 %
and a specificity of 95.5 % with 10-fold cross-validation on a data set containing 82
infants of which 15 are affected with CP. They report that the approach loses track
when fast motions occur and therefore re-initialize the tracking every 21 seconds.
Orlandi et al. use large displacement optical flow (LDOF) for tracking infant motion
[Orl+18]. The user is required to manually select skin regions from multiple frames,
which are used to build an appearance model for segmenting the infant from the
scene. They calculate the LDOF only inside the infant silhouette to extract ve-
locity components in both spatial directions. For evaluation of their method, they
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manually annotate 15 joint positions every 10 frames in their video and compare
the velocities of the annotated points to their estimated velocities. They report
their estimates as being comparable and highly correlated to the manual annota-
tions. For each video, 643 numerical features from literature on automated GMA
are extracted. A feature selection method identifies the nine best features to pre-
dict typical vs. atypical movements and CP. The data set consists of 127 videos.
29 recordings are classified as containing atypical GMs, and 16 of these 29 infants
were later diagnosed with CP. Their best reported results for typical vs. atypical
GM classification are achieved by an AdaBoost classifier at a sensitivity of 55%, a
specificity of 95%, and a resulting accuracy of 86%. The prediction of CP results
in a sensitivity of 44%, a specificity of 99%, and an accuracy of 92% for a Random
Forest classifier. Manual clinical GMA as a predictor of CP on their data set gives
a sensitivity of 81%, specificity of 86%, and accuracy of 85%.

Rahmati et al. evolve their approach in multiple publications. Limbs and head are
tracked in RGB videos based on shape and appearance [Rah+12]. This approach is
extended by tracking a relatively dense optical flow field over the video [Rah+14a].
There is no quantitative evaluation of the tracking accuracy, and the authors display
five, respectively eight qualitative result frames. Each point in the field produces
a trajectory over time, and similar trajectories are assigned to body parts based
on initial manual labeling. They classify 78 infants with a reported accuracy of
87% using a subset of three motion features proposed by Meinecke et al. [Mei+06].
The relatively high accuracy stems from the high number of non-CP subjects, the
sensitivity for correctly detecting an infant which is affected by CP is just 50%,
while the sensitivity is 95%. In subsequent work, they integrate prior knowledge
in the form of manual segmentation of a small number of frames into their motion
segmentation algorithm [Rah+14b; Rah+15b]. They evaluate the accuracy on 20
manually annotated frames from 10 infant sequences, reporting an F-measure of 96%
by calculating the overlap between ground truth and estimated segmentation. They
compare their tracking method to different state-of-the-art trackers on the same data
set, with their tracker showing superior results. Furthermore, they evaluate their
segmentation method on the Freiburg-Berkeley data set containing moving objects,
e.g., cats and ducks, and compare results to an optical flow method. Their method
achieves best results at an F-measure of 77%. For CP detection, they rely on features
based on motion frequency [Rah+15a; Rah+16], and achieve a maximum accuracy
of 92% for their video-based method, at a sensitivity of 77% and specificity of 95%,
using the same data set as in previous publications.

Khan et al. estimate body parts from RGB images based on deformable appearance
models, while simultaneously encoding spatial relations [Kha+18]. A manual label-
ing of images with 14 body parts is used to train the appearance models. Based on
estimated body parts, joint positions and corresponding 2D angles are calculated.
Their RGB-based approach is compared to results from our approach for 3D pose es-
timation from depth images [Hes+15], which is presented in chapter 4. They report
an average joint position error of 1.27 cm, with worst results for head (2.03 cm) and
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best for right shoulder (1.1 cm), compared to 4.1 cm of our baseline method. They
further evaluate the worst-case accuracy (WCA), which denotes the percentage of
frames for which all joint errors lie below a given threshold. For a threshold of 5
cm, they achieve a WCA of 95.8%, and 86.3% for a threshold of 3 cm, compared
to the extended version of our approach ([Hes+17a] and Sec. 4.3) at a WCA of 90%
and 85%. However, their approach is evaluated on a different data set, which makes
the comparison hard to interpret. They do not explain how they calculate 3D from
their estimated 2D joint positions in RGB images, so we can only assume they are
projecting their 2D estimates onto the depth image. An evaluation of angles calcu-
lated from the estimated joint positions with respect to ground truth annotations
results in a mean absolute error of 3 degrees. A discussion of failure cases is limited
to the statement that significant occlusions pose problems to the approach. They
suggest the use of multiple cameras to handle this scenario.
To overcome problems of tracking motion solely based on appearance, some re-
searchers have attached markers to facilitate limb tracking in 2D videos.
Kanemaru et al. use a commercial marker tracking system (Frame-DIAS) to record
2D positions of markers on arms, shoulders, hips and legs at 30 Hz using a single
camera [Kan+13]. Infants who show abrupt and synchronized movements of the
limbs together with reduced activity seem to be correlated with developmental delay
at the age of three years. In a subsequent study containing 145 infants of which 16
have outcome CP, they report a higher “jerk index”, describing the jerkiness of
movements in infants affected by CP, compared to healthy infants.
Hybrid systems using a combination of video and IMU sensors for 3D adult pose
estimation have proven to produce accurate results [Mar+16; Mar+18].
Machireddy et al. [Mac+17] present a hybrid system for infants, which combines
color-based marker tracking in video with IMU measurements. The different sensor
types are intended to compensate for each others limitations. The IMU sensors are
attached to the infant’s limbs and chest, together with colored patches. The 2D
positions of patches are tracked based on color thresholds. From the known patch
size and the camera calibration, an estimate for the 3D position of each patch is
calculated. Ground truth for evaluation of motion tracking is generated by rotating
a plywood model of a human arm using a drill, equipped with one marker and one
IMU. As result, the authors present plots of ground truth positions and estimated
positions for a circular and a spiral motion, without providing exact numbers on
accuracy. Instead of classifying CP directly, they take an intermediate step and
aim at detecting fidgety movements (FM). They use FM and non-FM annotations
from one video to train an SVM classifier with 10-fold cross-validation to distinguish
between these two classes, and report an accuracy of 84%.
To conclude, Meinecke et al. showed that gold-standard motion capture methods
for adults can not be easily applied to infants. Video-based approaches lack 3D
information, and are subject to lighting conditions and appearance. Sensors that
provide 3D information in addition to color images may resolve these problems.
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2.3.3. Approaches based on RGB-D Sensors

RGB-D stands for Red Green Blue-Depth – such devices usually have a color camera
and a sensor producing depth images, i.e., for every pixel of the image, the distance
of the camera to the scene is provided. The depth values can be transformed to 3D
coordinates using the calibration parameters of the device. Calibration needs to be
performed only once per camera, and most sensor manufacturers provide either a
method for transforming depth images to point clouds, or the calibration parameters.
In Sec. 3.2, we review depth sensing technologies and provide examples of different
sensors.

With the introduction of low-cost RGB-D sensors, motion analysis approaches started
taking advantage of depth information. The probably most well-known RGB-D cam-
era is the Microsoft Kinect, which was introduced as a gesture control device for the
gaming console XBox, but soon became widely used in research due to its affordable
price. The motion tracking provided by the Kinect SDK has been used for motion
analysis purposes [Cla+12], but does not work for infants as it was purposed for
gaming scenarios of standing humans taller than one meter. We review approaches
that aim at estimating infants’ poses from RGB-D data and turn our attention to
the respective evaluation procedures.

Most of the previously reviewed publications provided an evaluation of CP classifica-
tion accuracy. The approaches below do not exclusively focus on CP prediction, but
on methods for capturing spontaneous infant movements. A summary is displayed
in Tab. 2.6. Since motion capture is fundamental for an automated motion analysis
system, we review all of these infant-specific systems here, and provide a review of
the state of the art in general (adult) motion tracking in later chapters.

Olsen et al. transfer an approach to infants that was originally introduced for adults
[Ols+14]. It is based on the assumption that extremities have a maximum geodesic
distance to the body center. In a first step, the body center is localized by color
filtering for the infant’s clothing. Then, five points on the body which are farthest
from the center are searched, i.e., the geodesic extrema. Each of them is assigned
to one of classes head, left/right hand, left/right foot, based on the spatial location
and the orientation of the path to the body center. Intermediate body parts like
elbows, knees and chest are calculated based on fractional distances on the shortest
path from body center to extremities, resulting in 3D positions of eleven joints. For
evaluation, an unspecified number of frames is manually annotated with 3D joint
positions. Annotated joints lie in the interior of the body, while the estimated joints
lie on the body surface. Results are presented in a plot, numbers given here are read
off this plot. The average joint position error is roughly 9 cm. Highest errors occur
for hands and elbows (15 cm), lowest for body center, chest, and head (3 cm).

In subsequent work, the same authors assemble an infant body model from simplistic
shapes (cylinders, sphere, ellipsoid) and use it to track eleven underlying body joints
in depth images [Ols+15]. After determining size parameters of the body parts,
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Table 2.6.: Summary of motion capture methods and corresponding evaluation of
depth-based approaches for medical infant motion analysis. SD denotes standard
deviation.

First author and
reference

Method | tracked limbs Ground truth (GT) generation | Re-
ported avg. accuracy

Olsen [Ols+14] Geodesic distances | 11
3D joint positions

Manual annotation (number of frames
not specified) | 9 cm (extracted from plot)

Olsen [Ols+15] Model-based tracking |
11 3D joint positions

Manual annotation (number of frames
not specified) | 5 cm (SD: 3 cm) (ex-
tracted from plot)

Serrano
[Ser+16]

Model based tracking |
angles of hip, knee, and
ankle

Robot leg kicking, angle comparison for
knee and ankle, 250 frames | 2 - 2.5 degree
error

Cenci [Cen+17] Movement blobs | arms
and legs

No evaluation

Shivakumar
[Shi+17]

Optical flow + color-
based segmentation | 3D
positions of head, torso,
hands, feet

Manual annotation of 60 frames | 8.21
cm, SD: 8.75 cm

their previous method is used for finding an initial pose. Subsequently, they use
the iterative closest points algorithm to adjust the model parameters to explain
the input point cloud that is calculated from the depth image. Similar to previous
work, they evaluate the accuracy of their system with manually annotated 3D joint
positions of an unspecified number of frames. The numbers given here are extracted
from presented plots. An average joint position error of 5 cm (standard deviation
(SD) 3 cm) is achieved. Largest errors occur for right hand (7 cm) and stomach (6
cm).
Opposed to previous approaches, which rely on readily available depth sensors, Shiv-
akumar et al. introduce a stereo camera system, providing higher depth resolution
than existing sensors [Shi+17]. However, passive stereo camera systems, i.e., sys-
tems without illuminating the scene with a structured light source, have a hard
time finding correspondences for stereo matching in untextured parts of the scene.
It is questionable whether the proposed system leads to higher quality depth im-
ages than existing active stereo, structured light, or time-of-flight sensors. They
compare the estimated depth of a flat table that is covered with a textured blanket
with manual measurement and report an error of 1.5 cm between measurement and
average estimated depth at a distance to the camera of 55 cm. To locate the infant
body center, they apply a color threshold and fit an ellipse to the colored region
and track it over time. In addition to the torso center, hands, legs and head regions
are selected by the user, which are then tracked based on their color. The positions
of limbs are defined as the pixel in the corresponding limb region that is farthest
from the body center. In case of overlap of multiple limb regions, a recovery step
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distinguishes them. An optical flow method is used for estimating the motion of the
limb positions in the successive frame. An evaluation is presented on 60 manually
annotated frames from three sequences, showing an average error of 8.21 cm (SD:
8.75 cm) over all limbs.
The literature on infant motion tracking using RGB-D sensors is limited, which is
why we also review approaches that capture only a subset of body joints, or use a
different representation of body motion.
Serrano et al. limit their tracking method to lower extremities using a leg model
[Ser+16]. Their approach is semi-automatic and requires manual intervention. The
infant’s belly is manually located from the point cloud and the tracker’s view is
restricted to one leg. After the length and width of each segment of the leg model
are defined, the model parameters (angles) are optimized using robust point set
registration. They generate ground truth for 250 frames using a robotic leg that
simulates kicking movements of infants. The average angle error of the proposed
method is reported with 2.5 degrees for the knee and 2 degrees for the ankle.
Cenci et al. do not use an explicit representation of spatial changes of body parts
[Cen+17]. They detect motion by calculating the difference image between two
depth images and applying a threshold. After processing a complete sequence, they
get a map, showing the locations in which movement occurred. They perform a
clustering, and assign each of the clusters to a body part, based on the assumed
locations (upper left is assumed to be left arm, lower left to be left leg, etc.). There
is no evaluation of the correctness of assigning blobs to limb classes. One would
assume that when limbs interact with each other, or a limb is moved across the
body midline, the assignment of a point to a body part will be most probably
wrong. To model characteristics of spontaneous infant movements, they create an
encoding scheme, in which each limb can take the state “in movement” or “not in
movement”. They encode all possible states of combinations to describe each motion
sequence as a series of transition states, and calculate statistics over the different
states.

Others. Marschick et al. propose a setup combining all kinds of sensors, with the
goal to create an age-specific “fingerprint” model for different neurological conditions
of interest [Mar+17a]. They propose a recording setup comprised of two video
cameras, two RGB-D sensors, a microphone, wearable motion sensors, and a pressure
mat. They have not yet developed methods for tracking movements from the sensors,
but aim to fuse information from all modalities.

2.4. Discussion

Although promising results have been published, the problem of automated CP
detection is not solved.
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A common limitation of the reviewed studies is the low number of subjects affected
by CP, which makes it difficult to draw conclusions about the general validity. Al-
though being the most common motor disorder in childhood, CP is still a relatively
rare disease and absolute numbers are small – at most 16 CP patients are included
in the studies. The confirmed outcome is established years later, which limits the
speed of creating additional data. This leads to a delay, e.g., from the introduction
of new sensor technologies to the time infants can be evaluated regarding to CP out-
come with these new sensors. Different CP symptoms have different characteristics,
which is why results on small data sets should be taken with caution. The general-
ization of the results to the general population seems to be questionable [Bou+10],
and most studies only include high-risk subjects.

In conclusion, the proposed methods for infant motion tracking are rather simplistic
when compared to the state of the art in general (adult) motion tracking, which we
review in later chapters (Sec. 4.1 and Sec. 5.2). We believe the main reason to be
the small amount of (publicly) available training data. Most adult approaches rely
on large sets of manually annotated or synthetically generated data to train deep
neural networks or use other machine learning techniques.

Recording infants poses several challenges, which makes it laborious to generate
large amounts of data. The overall number of infants compared to the number of
adults is small, which makes it harder to recruit subjects. Popular adult motion
data sets contain sequences of people performing previously defined actions with
attached markers for ground truth generation, e.g., the CMU motion capture data
set [GS01], or HumanEva [Sig+09], but infants are not instructable. A different
way to approach data set creation is to leverage public sources of image or video
data, like YouTube, and annotate the desired information afterwards, similar to the
MPII Human Pose data set [And+14]. The time-consuming and tedious manual
annotation procedure can be out-sourced to crowdsourcing platforms like Amazon
Mechanical Turk4, but comes at a financial cost. A final reason why no one has yet
undertaken these efforts for infants is that general research largely focuses on adults.
The number of possible applications seems to be much higher for adults than for
infants.

The above reasons may serve as an explanation why the majority of infant motion
analysis approaches only scarcely evaluates the accuracy of underlying motion cap-
ture methods. We believe that the second step should not be taken before the first
one, i.e., each system should first demonstrate that it is capable of accurately cap-
turing movements before predicting outcome based on these captured movements.

4https://www.mturk.com
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2.5. Requirements for an Automated Motion Analysis
System

In 1997, Einspieler et al. [Ein+97] described the desired properties of a GMA as
follows:

“A quick, non-invasive, even non-intrusive and cheap method with high
reliability and high validity is, therefore, most desirable and much in
demand for early assessment of neurological deviations which lead to
cerebral palsy and developmental deficits later on.“

We believe that these requirements should hold true for automated methods, in
order for them to be widely used in clinical practice. The mentioned properties can
be assigned to the motion capture stage (quick, non-invasive/non-intrusive, cheap),
and the motion analysis stage (high reliability, high validity), cf. Fig. 2.1. Regarding
the motion capture stage, we identify the following properties for sensors:

• Quick: no additional effort is introduced by the recording system, like accu-
rately placing markers or calibrating sensors before use.
• Non-invasive/non-intrusive: nothing that could have an influence on the

infant’s state of happiness/behavior/motions shall be attached to infants, like
markers or sensors.
• Cheap: to allow widespread screening, a sensor system for hundreds of thou-

sands of Euros is prohibitive.
• 3D: In addition to the requirements stated above, we believe that the data is

required to be three-dimensional. The real world is 3D, and 2D poses can be
ambiguous. In general, reducing the number of dimensions leads to a loss of
information, and we aim at measuring motion as realistically as possible.

One could argue that wireless wearables have become small enough for not being
intrusive anymore. Still, even if the infant is not bothered by attached sensors, the
effort of (accurately) placing the sensors on multiple predefined positions on the body
remains, and has to be performed every time a recording is made. Attaching objects
to an infant, especially in a clinical setting, requires these objects to be hygienic,
which means they have to be cleaned/disinfected or replaced after each use. Infants
may be cranky, parents have questions, examinations need to be prepared, so the
time that medical staff uses to concentrate on the capture system should be kept to
a minimum.
To our knowledge, the only sensor that fulfills the four properties is an RGB-D
camera, which has been previously shown to be suitable for healthcare applica-
tions [Mor+16b]. Medical staff only has to press a record and stop button (quick).
Infants do not notice being recorded (non-invasive). Only the sensor and a con-
nected laptop / tablet are required. RGB-D sensors are available for few hundreds
of Euros/Dollars, depending on sensor type and manufacturer (cheap). With the
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Table 2.7.: Advantages and disadvantages of different sensor systems for infant
motion capture. *depends on sensor choice.

Sensor Disadvantages Advantages
Vicon Expensive, intrusive, setup ef-

fort, occlusion problems
High accuracy, high frame rate

Wearables intrusive, drift issues, setup ef-
fort

low-cost, direct motion sens-
ing, high frame rate*

RGB 2D, dependent on lighting and
appearance

low-cost, easy setup, high
frame rate*

2D marker
tracking

2D, intrusive, marker occlu-
sions, setup effort

low-cost, easy calculation of
marker positions, high frame
rate*

RGB-D limited frame rate* (30 Hz for
Kinect)

low-cost, easy setup, 3D, in-
variant to lighting and appear-
ance (depth)

camera calibration (or software that often comes with a sensor), depth images can
be transformed into metrically accurate 3D point clouds (3D).
An overview of advantages and disadvantages of different sensor types is presented
in Tab. 2.7
In this chapter, we provided a medical description of the motor disorder we aim to
automatically detect, cerebral palsy. We described clinical tools for detection of CP
with a focus on the most reliable one, which is the general movement assessment. We
reviewed approaches towards automation of CP detection, and in particular methods
for capturing infant motion. Based on an analysis of existing approaches, we defined
requirements for automated infant motion analysis systems, and concluded that
RGB-D sensors seem to be the best choice regarding the requirements.
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Based on the defined requirements in the previous chapter, we selected RGB-D
cameras as the sensor of choice. We now give an overview of the complete system
setup and the special conditions that apply to medical infant motion analysis. We
review available depth sensor types and present practical examples showing their
characteristics in the infant use-case.

3.1. Setup Constraints

We defined properties of the recording setup to be used in a clinical environment to
be low-cost, 3D, non-intrusive, easy to setup, uncomplicated to use and smoothly
integrated in standard examination protocols. We show our recording setup that is
deployed in a children’s hospital in Fig. 3.1. The Kinect sensor is securely mounted
above an examination table and connected to a laptop.
Several additional constraints are imposed on the recording protocol from the defi-
nition of how to perform the general movement assessment. The infants have to be
in a state of active wakefulness and should be recorded in supine position. External
stimulation with toys or dummies, or interaction with persons influences movements
and has to be avoided. This implies that the infant can be assumed to be the only
person in the image. At a young age, infants are unable to roll over, which means
that we do not have to deal with back views and mostly observe frontal views. In-
fants should be recorded in light clothing. In our data, we observe diapers, onesies,
tights, or no clothing at all.
Further constraints are dictated by common sense. The temperature should be
adapted to the needs of infants, and a caregiver should be nearby. Any risk of the
infant falling down from the recording area has to be eliminated.

3.2. RGB-D Sensors

3D range scanners have long been around [Bes89], but the production for consumer
mass market has brought down prices so that they have the potential of becoming
widespread for applications like infant motion analysis screenings. Different methods
for capturing depth information are used, which we will explain in the following.
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Figure 3.1.: Recording setup. RGB-D camera mounted 1 m above examination
table, facing down. Connected to laptop. Scene overlaid with infant point cloud.

3.2.1. Structured Light

Structured light sensors project a pattern onto the scene (cf. Fig. 3.2 (b)), often
using an infrared projector, and capture images of the illuminated scene at the same
time using a camera. Any non-planar objects in the scene lead to a distortion of the
pattern in the camera image. Since the pattern is known to the sensor, depth can be
inferred from the distorted pattern in the image. An overview of different patterns
and techniques for differentiating distorted projected light spots from images can be
found in [Bes89] or [Gen11].

Probably the most famous example of a structured light RGB-D sensor is the first
Microsoft Kinect sensor, in the following termed Kinect V1 (see Fig. 3.2 (a), left).
It was introduced for gesture control of video games in gaming console Microsoft
XBox 360 in 2010, and a Windows version was produced in 2011. An analysis of
underlying components can be found in [MS13].
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(a)

(b) (c)

Figure 3.2.: (a) From left to right: Kinect V1, Kinect V2, RealSense D415. (b)
Projected infra red light pattern of Kinect V1. (c) Pattern of RealSense D415.
Note the different fields of view.

The distance between points of the projected pattern naturally increases with dis-
tance to the camera, resulting in a reduction of depth density. The depth resolution
is not constant and decreases with an increase of the distance between camera and
the scene [Kho11]. Since the projector and the camera – recording the pattern – can
not be in the exact same place physically, there may be parts of the scene which are
illuminated by the projector, but remain invisible to the camera. Pixels for which
no depth values could be reconstructed are assigned a special “missing pixel” value.
Missing pixels are mostly observed at object borders, but may also be caused by
reflective surfaces.

3.2.2. Time-of-Flight

Time of Flight (ToF) sensors send out light flashes and measure the time it takes
for the light to “bounce” back from the scene, e.g., by analyzing phase shift. Using
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Table 3.1.: Depth sensor specifications. *Max. frame rate depends on resolution.

Kinect V1 Kinect V2 RealSense D415
Max. depth resolution 640 × 480 512 × 424 1280 × 720
Depth FOV (in degrees) 58.5 × 46.6 70.6 × 60 63.4 × 40.4
Max. RGB resolution 640 × 480 1920 × 1080 1920 × 1080
RGB FOV (in degrees) 62 × 48.6 84.1 × 53.8 69.4 × 42.5

Framerate 30 Hz 30 Hz Up to 90 Hz*
Type Structured light Time of Flight Active stereo

the speed of light, the distance can be inferred. This allows for a constant depth
resolution independent of distance to the camera. An independent measurement is
taken for each pixel which improves the capture of fine structures compared to the
structured light approach. More technical descriptions of the underlying principles
can be found in [Rey+11; TB14; Lef+13].
The second generation of Microsoft Kinect, which we term Kinect V2 was released
in 2013 for XBox One, and in 2014 as “Kinect for Windows” (Fig. 3.2 (a), middle).
It allowed more accurate capture of free-standing people with lower levels of noise.

3.2.3. Depth from Stereo

Using two cameras with a (fixed) baseline, depth can be inferred by triangulating
points that are visible in both images. By calculating and matching visual features
between both views, corresponding points can be identified. However, good features
for matching can only be found in parts of the scene that are textured, which is why
for untextured parts of the scene either depth estimation fails or is highly unreliable.
Active stereo sensors project a texture pattern onto the scene (Fig. 3.2 (c)), but not
for inferring depth from the deformation of the pattern in the camera image like
structured light sensors, but for texturing the scene, so that triangulation of points
on previously untextured areas becomes possible [Nis84].
This technique is applied in current Intel RealSense cameras [Kes+17]. The D400
series, including models D415 (Fig. 3.2 (a), right) and D435, has been released in
early 2018.

3.2.4. Discussion

We show a summary of sensor specifications for Kinect V1, V2 and RealSense D415
in Tab. 3.1 and recorded samples of infant heads from two different viewpoints for
each of the sensors in Fig. 3.3.
Based on the specifications, the D415 seems to be superior to Kinect V1 and V2, with
higher depth resolution and frame rate. Together with the much smaller size and no
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need for an external power source (cf. Fig. 3.2 (a)), it seemed like a big improvement
over previous sensors. In experiments, however, the depth quality does not live up
to the expectations raised by the specifications. Despite the high resolution, the
head shape in the recorded point cloud appears bumpy (Fig. 3.3 (c)), and there
is a significant amount of fluctuation between temporally subsequent frames (not
shown here). Parts of the head border are “pulled” towards the background. The
background table, which is flat in reality, is also recognized very bumpy (not shown),
and this bumpiness increases with the distance of the camera to the recorded scene.
The software accompanying the D415 is under continuous development, and many
parameters exist to influence the recording properties. We have not been able to
fix the issues by using different parameters and also experienced them with the
RealSense D435, which seems to be better suited for longer ranges and larger scenes.
The Kinect V2 seems to have a lower depth resolution than the V1, despite being its
successor. Yet, the advantage of the V2 is that for each pixel an independent measure
is performed, while in the Kinect V1, the depth image is reconstructed from the
structure of a known sparse pattern. The ToF technique works well for the intended
gaming scenario, i.e., freely standing people (far from walls or other large objects).
Nevertheless, in the infant scenario – a camera mounted above an infant lying on a
flat surface – the technical property of performing distance measurements for each
pixel becomes a drawback. When foreground (infant) and background (table) are
close to each other, light flashes sent to the border of the infant are reflected from
the infant as well as the background, leading to a distorted measurement. This
phenomenon is known as “flying pixels” [Rey+11]. The distortion does not just
affect a small number of pixels at the border, though, but rather seems to “suck”
points lying closer to the middle of the head towards the background, as can be seen
in Fig. 3.3 (b). The head shape is not round as in reality, but rather cone-shaped. It
can further be noticed that some of the noisy head pixels lie behind the table plane.
The Kinect V1, although being the oldest of the three sensors, provides measure-
ments that are visually closest to reality in the infant scenario (Fig. 3.3 (a)). A
general drawback of the V1 is depth quantization due to limited depth resolution,
which increases with distance of the camera to the scene. In our case, this effect is
negligible, since the camera is very close to the scene (< 1m). The captured head
shape is round and consistent, with small amounts of noise at the borders. Opposed
to the other sensors, there are no flying pixels, and the head is clearly disconnected
from the background. We come to the conclusion that, although other sensors have
seemingly better specifications, the Kinect V1 currently seems the best choice for the
infant use-case. However, current developments of new sensors seem very promising
[Bam+18; Kow+18].
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(a)

(b)

(c)

Figure 3.3.: Samples showing different infant heads. (a) Kinect V1, (b) Kinect V2,
(c) RealSense D415. Left: side view, right: top view.
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4. Body Pose Estimation in Depth
Images using Random Ferns

Now that requirements and sensor types have been reviewed, the next step is to
extract the 3D pose from RGB-D data. We review related work in the field of 3D
pose estimation in depth images, and present our method for pixel-wise body part
classification using random ferns. We discuss limitations of the proposed approach,
and develop methods to overcome these.

Parts of this chapter were published as [Hes+15] and [Hes+17a].

4.1. Related Work – Pose Estimation from RGB-D
Data

Human pose estimation in images is one of the key problems of computer vision
[Sig14] and has been studied since the 1980’s [LC85].

Human pose estimation from 2D RGB images has greatly benefited from the rise of
deep learning. There have been countless studies consistently advancing the state of
the art of 2D pose estimation [TS14; Tom+14; Fan+15; Car+16; New+16; Pis+16;
Ins+16; Wei+16; Cao+17; Ins+17; Pap+17; And+18], as well as approaches for 3D
pose estimation from 2D images [Ram+12; Tek+16; Zho+16; Mar+17b; Meh+17b;
Meh+17a; MN17; Pav+17; Rog+17; Sun+17; Tek+17; Tom+17; Pav+18].

To review all of them in detail is out of the scope of this work, and we will focus on
the estimation of 3D pose from depth images.

The introduction of the Microsoft Kinect sensor triggered a lot of research on pose
estimation in RGB-D or depth data. Initially presented as a gesture control device
for gaming console XBox, a body tracking algorithm was included. The underlying
pose estimation was developed by Shotton et al. [Sho+11]. Due to hardware lim-
itations and gaming requirements – on-board real-time processing with the ability
to quickly recover from tracking failures – they decided to apply random forests to
the task, which had proven their usefulness for object recognition purposes [WS06].
They chose a bottom-up approach, i.e., body parts are located first and the un-
derlying skeleton/joint positions are then induced from the body parts. Multiple
random decision trees are trained with a large number of synthetic training samples
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to provide probability distributions over body parts for each input pixel. In order
to quickly recover from tracking failures, this approach uses no temporal informa-
tion and estimates pose in single depth images. Our approach for pose estimation
in depth images has been inspired by the work of Shotton et al., which is why we
describe their approach in more detail in the next section. The final Kinect sensor
included an additional tracking component, which was never disclosed.

The initial success of the Kinect body tracking led to an increased use of random
forests for pose estimation in depth images.

Buys et al. create a system for jointly detecting bodies and estimating pose, and
include an appearance model to refine estimates [Buy+14]. Girshick et al. skip the
intermediate body part segmentation, and use Hough forests to directly regress joint
positions from depth images [Gir+11]. Jung et al. iteratively regress the direction
from the center towards each joint, using a random tree walk [Jun+15]. In subse-
quent work, votes are cast on locating all joints using the random tree walk without
identifying them, i.e., without assigning a body part label, followed by K-means
clustering on the votes. Based on these clusters, a nearest exemplar retrieval is used
to assign body part labels to the clusters [Jun+16].

Prior knowledge about body constraints has been used to advance the perfor-
mance of random forests. Previous approaches assume independence between out-
put variables, i.e., body parts or joint locations, which is why Sun et al. introduced
conditional regression forests to model dependencies between different parts of the
body and also allow the integration of prior knowledge like height or orientation of a
person [Sun+12]. Xia et al. use a cascaded regression forest to model dependencies
between body parts [Xia+18]. Taylor et al. apply a full body model to estimating the
pose, which by design incorporates kinematic constraints [Tay+12]. The generative
model-based approach is combined with a discriminative approach using random
forests to predict dense correspondences between points from the depth image and
the model surface. Pons-Moll et al. argue that this objective is not the “correct”
one, given the task, and propose to use an objective that minimizes the uncertainty
of distributions in the metric space of human body surfaces, which they call the
Metric Space Information Gain [PM+13; PM+15b]. Lallemand et al. leverage in-
formation of the performed activity in training data to achieve a better partitioning
of the pose space [Lal+13]. Park et al. rely on a two-stage random forest approach
[Par+17]. Their first forest regresses joint positions from input pixels, while their
second forest aims at verifying the “votes” from the first forest.

Although the use of random forests to predict the body part class or joint position
from depth pixels has been the dominating approach, some researchers followed a
different strategy in locating geodesic extrema for identifying body landmarks.
Plagemann et al. detect interest points based on geodesic extrema on the body sur-
face mesh, and train a classifier to assign body part labels to local patches extracted
around interest points [Pla+10]. Baak et al. rely on a similar first step, i.e., de-
tecting geodesic extrema [Baa+11]. These extrema are used as features to lookup
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the full body pose from a pre-learned database. In addition, they perform local
optimization of pose parameters of a body model initialized with the pose from the
previous frame. They fuse these two hypotheses using a voting scheme to produce
a final pose estimate. Geodesic distances are also used by Schwarz et al. [Sch+11],
but they reinforce their method by applying optical flow to distinguish self-occluding
body parts.

A different approach is to transform 3D point clouds into a voxel representation
(3D pixel) before processing. Schick and Stiefelhagen apply pictorial structures to
the task of 3D pose estimation and use a supervoxel segmentation to make the
method tractable in 3D [SS15].

More recently, convolutional neural networks (CNNs) have been applied to pose
estimation from (voxelized) depth images. Instead of using the complete depth
map as input, Haque et al. generate “glimpses” of the depth image, which are
images where a small window is displayed at full resolution, but the resolution
decreases with distance to the center [Haq+16]. This is supposed to make their
model focus on specific parts while keeping general spatial information. They convert
each glimpse into a 3D voxel grid, and learn an embedding into a viewpoint-invariant
feature space. Based on these features, they train a multi-task network to determine
the visibility of a body part and to predict body joint locations. Zimmerman et
al. predict 3D pose and hand normal vectors [Zim+18]. They extract 2D keypoints
from RGB images and generate a voxelized occupancy grid from the corresponding
depth image. The 2D estimates are then “lifted” to 3D using a CNN. Moon et
al. argue that mappings from 2D depth to 3D coordinates are highly non-linear and
complicate the task of pose estimation [Moo+18]. For this reason, they propose
a voxel-to-voxel CNN, which takes a 3D voxelized grid as input and estimates the
per-voxel likelihood for each body joint. Marin et al. base their approach on the
assumption that every pose can be represented by a linear combination of a number
of prototype 3D poses [MJ+18]. They train a CNN to predict the weights for
combining multiple prototypes to form the final 3D pose estimate.

In literature, the random forest approach has prevailed for pose estimation from
depth images. Good performance, together with simplicity and efficiency has in-
spired the development of many variants.

4.2. Random Ferns

As described in the previous section, the body tracking of the Kinect V1 has trig-
gered a whole body of work based on random forests. The initial approach for the
Kinect was introduced by Shotton et al. [Sho+11]. We briefly recap this method
because the underlying ideas are similar to the approach we present in this sec-
tion. In general, the depth image is assumed to be segmented to only contain pixels
corresponding to a human body.
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(a) (b)

Figure 4.1.: Structures of different kinds of decision trees. Colored dots depict
split nodes containing features, squares depict leaf nodes containing probability
distributions. (a) Standard binary decision tree. The decision which node will be
traversed next depends on the outcome of the current node. (b) Fern. Always
the same nodes are traversed (indicated by colors), irrespective of the outcome of
individual nodes.

4.2.1. The Pose Estimation Method Inside the Microsoft Kinect

Instead of directly estimating body pose in depth images, an intermediate represen-
tation is added, i.e., they assign a body part label to each pixel of the depth image.
From these body parts and the known joint positions, a mean shift mode finding
method is applied and a z offset is learned to push joints from the body surface
inside the body.

They chose a random forest approach for the task of pixel-wise body part labeling,
which has been successfully applied to computer vision tasks like object recogni-
tion [WS06] and can be very efficiently implemented to allow real-time performance
[Sha08]. The basic idea is to merge many weak learners into one strong learner. A
random forest consists of multiple decision trees. Each tree consists of split nodes
and leaf nodes. In each split node, the input is evaluated with respect to a feature
and a threshold, and depending on the result of this evaluation, either the left or
right branch is taken (in a binary tree). The tree is traversed until a leaf node is
reached, in which a probability distribution over output classes is stored. A sample
decision tree is depicted in Fig. 4.1 (a).

During training, a set of candidate features and thresholds is randomly sampled
for each node – hence the name random forest. This is done because a brute force
approach of testing all possible features is computationally prohibitive. The feature
candidates are evaluated w.r.t. an objective function, taking into account the balance
of left and right partitions. The best candidate is selected, and the process is
repeated until a predefined level of tree depth is reached. The number of candidates
to be evaluated grows exponentially with tree depth, which makes the training
procedure computationally expensive for deep trees.

In the approach by Shotton et al., the input to a tree is a depth pixel, the features
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are binary depth comparisons in the neighborhood of the input pixel, and the leaf
nodes store probabilities over body part classes. The objective function to evaluate
candidate features during training is the Shannon entropy. To train the classifier,
a large amount of training data is needed, which the authors generate by applying
many poses acquired by marker-based motion capture recordings to a 3D body
surface model. They divide the body model into 31 parts and render labeled depth
images from the posed model. In the leaf nodes, probability distributions over
these body part classes are accumulated from the labeled input pixels reaching the
respective leaf nodes during training. This process is repeated for a defined number
of trees, which form the forest. At test time, each input pixel traverses the trees,
and is labeled with the combined probability distributions of the reached leaf nodes
of all trees.

Three trees of depth 20 are trained using one million images and a random subset of
2000 pixels per training image. The training takes one day on a 1000 core cluster.

The body tracking that was released in the Kinect SDK is based on this approach,
and has been used for many applications like gait analysis [Sun+14] or Alzheimer’s
disease assessment [Iar+14]. However, the system is not applicable for the purpose
of tracking infants since the minimum size of tracked humans is one meter. The
system was not trained on smaller persons as the main application is the gaming
scenario.

4.2.2. Pose Estimation from Pixel-wise Body Part Predictions

The random forest approach has shown to work well on challenging data under real-
time constraints. Therefore, re-training with infant data seemed like a promising
approach. However, 1000 core clusters are not widely available, or expensive to
rent. The parallelized implementation poses many challenges, which are described
by Budiu et al. [Bud+11]. Ignoring the processing overhead, running the training
on a single core would take 1000 days, which is infeasible.

Therefore, our goal is to reduce the training time while keeping pose estimation
accuracy. We chose to rely on a random ferns body part classifier, which has been
shown to be an efficient and robust alternative to random forests [Ozu+07]. Similar
to [Sho+11], we estimate body part labels for each pixel of the input depth image.

Ferns are a simplified version of decision trees. The biggest difference is that ferns
evaluate the same feature in all split nodes of a tree level (cf. Fig. 4.1). In decision
trees, the evaluation of the candidate set for the next feature depends on the output
of all previous nodes in the tree leading to the current node. In ferns, the order of
evaluation is irrelevant, since always the same features are evaluated, irrespective
of the traversed path. The usage of ferns greatly decreases training time. However,
the reduced complexity of ferns naturally leads to a degradation of performance. To
compensate for that, we train many ferns instead of few trees.
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Texture model Apply poses Render labeled
depth images

Infant model

Figure 4.2.: Generation of synthetic training data. Infant model is textured with
colors corresponding to body parts. After different poses are applied, labeled
depth images are generated that serve as input for the fern training.

Binary Features. The task at hand is to correctly estimate the body part class
of each pixel of a depth image displaying a human. We do this by applying depth
comparisons between the current input pixel and several pixels within a predefined
neighborhood radius. We define each of these comparisons with an associated thresh-
old to be a feature. The outcome of the feature is either 1 or 0, depending on the
result of the depth comparison being greater than the threshold or not.
We use depth comparisons similar to [Sho+11], defined as

zφ(I, x) = dI(x)− dI(x+ φ · r(x)), (4.1)

where φ is the relative offset to a given pixel x in image I, dI(x) returns the depth
of x and r(x) = foc

dI(x) is a normalization factor for depth invariance, where foc is
the focal length of the depth sensor in pixels. A binary feature consists of a depth
comparison in combination with a threshold τ , and is evaluated as

fφ(I, x) =

1, if zφ(I, x) > τ ,
0, else.

(4.2)

Each binary feature for itself is not very meaningful, therefore we combine many
features to obtain an accurate estimate.

Ferns. We follow the formulation of [Ozu+07].
Let ci, i = 1, . . . , H be the set of classes and let fj, j = 1, . . . , N be the binary
features. We want to find

ĉ = arg max
ci

P (C = ci|f1, f2, . . . , fN), (4.3)

where C is a random variable representing the body part class. Applying Bayes’
formula leads to

P (C = ci|f1, f2, . . . , fN) = P (f1, f2, . . . , fN |C = ci)P (C = ci)
P (f1, f2, . . . , fN) . (4.4)
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In contrast to [Ozu+07], who assume a uniform prior P (C), we use prior probabilities
depending on the number of pixels representing each body part in the training data.
Being independent of the class, the denominator is regarded as a scaling factor and
therefore omitted.
A complete representation of the joint probability of all features requires storing and
estimating 2N entries for each class, which makes it computationally intractable for
more than a few classes. If we assume complete independence of the features, the
problem becomes trivial, but the correlation between features is ignored. Therefore,
a compromise is chosen by partitioning the set of all features into M groups of
size S = N

M
, where each group is called fern. In each fern, the joint probability is

computed. This leads to

P (f1, f2, . . . , fN |C = ci) =
M∏
k=1

P (Fm|C = ci), (4.5)

where Fm = {fσ(m,1), fσ(m,2), . . . , fσ(m,S)},m = 1, . . . , M represents the mth fern and
σ(m, j) is a random permutation function with range 1, . . . , N .
This semi-naive Bayesian approach models only some of the dependencies between
features, but can be handled easily, as we need to store and estimateM×2S param-
eters. In all our experiments we use M = 15, S = 12. Each fern can be seen as a
special kind of decision tree, with binary features as split nodes, where within each
level of the tree the same features are evaluated. The depth of the tree corresponds
to the group size S. In each leaf node, the probability distribution of all classes is
stored. The complete set of M ferns is called an ensemble of ferns.

Training data generation. We synthetically create a large amount of labeled data
for training the ferns. We use a 3D body model of an infant from MakeHuman
[Mak], an open source tool for making 3D characters. A subset of the available
body joints is selected in our experiments. The joints do not necessarily correspond
to real joints of the human body, but serve as a tool for dividing the model into
different regions. We choose 21 joints for infants: head, neck, shoulders, elbows,
hands, fingers, upper body center, body center, stomach, hips, knees, feet and toes.
A texture is applied to the model that maps each skin pixel to a color according to
the closest joint. The open source software Blender [Ble15] is used for animating
the model in many different poses, using the CMU motion capture dataset (CMU
MoCap) [GS01]. We rely on this data set because no data set containing infant
motion is available. The dataset contains a variety of poses that were captured by a
Vicon system at 120 Hz. Consecutive poses are very similar due to the high capture
rate and are omitted if the summed joint distances lie below a predefined threshold.
We generate depth images from the posed model and assign a body part label to
each pixel according to the model texture. The virtual camera viewpoint from which
the depth images are generated can be chosen arbitrarily. We use mainly frontal
views of the body as we assume the infants to be lying in supine position. The data
generation procedure is illustrated in Fig. 4.2.
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Fern Training. The algorithm for the training procedure is outlined in Algorithm 1.
The goal is to build an ensemble E consisting ofM ferns. We start by creating a fern,
given its depth S and the neighborhood radius for pixel offsets. The randomness
is introduced in the sampling of the binary features, i.e., pixel offsets within the
specified neighborhood and thresholds (as used in Eq. 4.1 and 4.2). The outcome of
the features in the fern accumulates to the descriptor Fm = (fφ1, fφ2, . . . , fφS) and
is indexed by a binary code that indicates which leaf node is reached by the input
pixel. In each leaf node, the probability distribution over all body part classes is
stored and is given by

P (Fm = k|C = ci) = nk,i + u∑
k(nk,i + u) , (4.6)

where we consider Fm to be equal to k if the binary code of the feature descriptor
equals k. Furthermore, nk,i is the entry in the histogram of descriptor Fm and is
equal to the number of pixels belonging to class i that evaluate to fern value k. The
variable u can be seen as a Dirichlet prior to avoid probabilities of zero, in case a
leaf is not reached by any input pixel, which makes the multiplicative combination
of all ferns zero. Choosing u = 1 leads to

P (Fm = k|C = ci) = nk,i + 1
Ni +K

, (4.7)

with Ni being the total number of pixels in the training data that belong to class i.

We evaluate the error that results from classifying all input pixels using the ferns
in the ensemble together with the current fern: as before, every pixel of every input
image is input to each of the ferns and the resulting probability distributions of all
ferns are multiplied. From the resulting distribution, the class with highest proba-
bility is the estimated class for the current input pixel. The estimate is compared
to the ground truth and the average error over all pixels in all images is computed.

The described steps are repeated iF times, after which the fern generating the lowest
error rate together with E is added to E. After M ferns are added to the ensemble
E, the algorithm terminates.

From body parts to joint positions. After passing the ensemble of ferns, each pixel
of the body is assigned to a body part class. We filter out assumingly incorrectly
labeled pixels by creating connected clusters in the depth image from equally labeled
pixels and ignoring all pixels not belonging to the largest cluster of their respective
body part class. We infer the joint positions by calculating the mean of the remaining
cluster of each body part. A drawback of this method is that the joints lie close to
the body surface, which does not resemble a real human skeleton. The incorporation
of a procedure for locating joint positions in a way that they conform to a human
body with respect to bone sizes and locations would probably improve accuracy.
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Algorithm 1 Fern training procedure
Input: M : predefined size of fern ensemble

iF : number of iterations per fern
S: depth of fern
R: size of neighborhood radius
I: labeled depth images

Output: ensemble of ferns E

1: Initialize:
2-D Array Histogram of size (#leaf nodes (2S))× (#classes) with all zeros
Fbest = NULL
Errmin =∞

2: for i = 0 to M do
3: for j = 0 to iF do
4: F := CreateRandomFern(S,R)
5: for all images im ∈ I do
6: for all pixels p in im do
7: k := GetLeafNodeIndex(F, p)
8: Set Histogram[k][GetLabel(p)] += 1
9: end for
10: end for
11: Err := EvaluateTrainingError(E ⋃F )
12: if Err < Errmin then
13: Fbest = F

Errmin = Err
14: end if
15: j += 1
16: end for
17: E = E

⋃
Fbest

18: i += 1
19: end for
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Table 4.1.: Average error in mm per joint/body part over all sequences of PDT13
dataset.

Joint/body part Head Neck Stomach HipC HipL HipR
Avg. error 96 70 77 80 95 101
Joint/body part KneeL KneeR FootL FootR ToesL ToesR
Avg. error 114 116 113 125 154 172
Joint/body part ShoulderL ShoulderR ElbowL ElbowR HandL HandR
Avg. error 97 90 166 146 248 332

Table 4.2.: Average joint positions error in mm per sequence for PDT13 dataset.
The column containing M1-3 and F1-2 specifies the subject, the row containing
D1-D4 the sequence.

Kinect SDK Our approach
D1 D2 D3 D4 D1 D2 D3 D4

M1 59 86 138 160 92 129 153 228
M2 38 67 81 183 70 119 117 220
M3 43 85 87 133 69 134 124 154
F1 54 98 112 187 88 142 178 178
F2 36 58 79 130 53 99 105 154
Mean 96 130

4.2.3. Evaluation

We evaluate our method on a public pose estimation data set containing data from
adults in order to compare it to the Kinect SDK. To show the usefulness of the
system for the proposed application we also evaluate it on manually annotated
recordings of an infant consisting of more than 1000 depth images. As a measure of
accuracy we use the average distance between estimated joints and ground truth in
all experiments. We further evaluate the method on our newly created MINI-RGBD
data set (chapter 6). An overview of data sets that are used for evaluation can be
found in Tab.A.1. We experimentally determined the parameters for training the
ferns to find a good tradeoff between speed and accuracy.

Results - PDT13 dataset. We evaluate our system on the publicly available Per-
sonalized Depth Tracker Dataset (PDT13) [Hel+13a]. It offers Kinect depth record-
ings of 5 different adults, each performing 4 movement sequences of increasing dif-
ficulty. Ground truth joint positions were generated based on measurements of a
full-body laser scanner.
We have trained our system using 735 K labeled depth images. We set the number of
fernsM to 15, the depth of each fern S to 12, the number of iterations per fern iF to
32, and the neighborhood radius for pixel offsets R to 80 cm. The complete training
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Table 4.3.: Average error in mm per joint/body part in infant recording FernSeq1.
Average over all joints: 41 mm.

Joint/body part Head Neck Body center HipL HipR
Avg. error 37 20 30 12 33
Joint/body part KneeL KneeR FootL FootR ShoulderL
Avg. error 49 45 30 28 73
Joint/body part ShoulderR ElbowL ElbowR HandL HandR
Avg. error 27 20 24 149 44

takes about 9 hours on a 32 core workstation and the body part classification runs
in real-time on a desktop PC.

As the underlying skeleton differs from ours, we apply a calibration step to remove
the constant offset from our estimation to the ground truth. We take our estimate
of an “easy” pose (e.g., T-pose, with extended arms and legs) once for each subject
and calculate the offset to the ground truth. We add that offset to all our estimates
for all sequences of that subject.

Tab. 4.2 shows a comparison with the Kinect SDK, indicating the average joint
position error (AJPE) per sequence. We compare our results with those of the
Kinect SDK, as both approaches are constructed in a similar manner opposed to
the approach of [Hel+13a], who use a more complex model fitting process. The
reader is referred to the original work for their results. Our approach performs
slightly worse than the Kinect SDK, and the average joint error over all sequences
is higher than that of the Kinect SDK, with 130 mm compared to 96 mm. However,
it should be noted that the Kinect SDK uses an undisclosed tracking component,
whereas our approach does not leverage temporal information.

In Tab. 4.1 the average error over all sequences is given for each joint/body part.
Our system lacks accuracy when it is confronted with challenging limb poses and
body rotations leading to occlusions, which results in the increased distance error.

Results - FernSeq1 infant recording. Infants at the age of 3 months are sized
around 60 cm in average. We generate 180 K synthetic depth images using a body
model of appropriate size as described in Sec. 4.2.2. We train an ensemble of ferns
containing 15 ferns of depth 13 and set the pixel offset neighborhood radius to 20
cm.

We annotated a Kinect V2 recording of an infant of size 60 cm containing 1082
frames. The background of the depth image is removed prior to the pose estimation,
so that it only contains the infant. It is lying on the back at a distance of 90 cm to
the camera. Fig. 4.3 (a) displays the annotations to illustrate the bodily movements
observed in the recording. While the body center remains in a steady position,
movements of both arms and legs are observed. The infant in the recording is
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(a) (b)

(c) (d) (e)

Figure 4.3.: (a) Annotations of joints illustrating infant movements in sequence
FernSeq1. (b) Ground truth body part labels. (c) Body part classification sample
on infant data. Estimated left shoulder and knee regions are too big, possibly due
to the diaper not being present in the training data. (d) Filtering removes wrong
classifications. (e) Estimated joint positions.

wearing a diaper, which makes the hips and thighs look much wider than those of
the ground truth model.
Fig. 4.3 depicts an illustrative sample of the pose estimation. We show the ground
truth body part labels, the estimate and the filtered estimate of body part labels in
Fig. 4.3 (b), (c) and (d). It can be observed that the body regions are found in the
correct positions and the filtering removes wrong classifications. The size of some
regions differs from the ground truth, e.g., the left shoulder, the hips and the knees.
The estimated joint positions are displayed in Fig. 4.3 (e).
Tab. 4.3 lists the average distance error per joint. The left hand shows the largest
average error of 149 mm, followed by the left shoulder with 73 mm. Fig. 4.5 displays
the joint distance error per frame for all joints. The error for the left hand jumps
between up to 40 cm and less than 5 cm distance to ground truth.
There are two main reasons for the failure cases of the left hand. If the infant
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(a) (b)

Figure 4.4.: Sample of body part estimation with high error for hand from
FernSeq1. (a) Before filtering. (b) After filtering. Filtering removes correctly
labeled hand as there is a bigger region at the knee with the same label. Left
hand is colored in light green, left fingers in red.

pulls up the knee sideways, the filtering sometimes removes the correctly detected
hand because there is a bigger region labeled ’hand’ on the knee (see Fig. 4.4). This
problem occurs in frames 0 to 100 and frames 830 to 1082. As soon as the size
of the wrongly detected body part exceeds the size of the correctly detected part,
the joint is positioned at the wrong location, resulting in a jump of the distance
error. The training data does not contain such poses which may be a reason for
the misclassification. The second problem we encounter occurs if the infant puts the
hand very close to the body, which is the case in frames 190 to 350. The hand merges
with the body, and the predicted hand is positioned on the knee. The system shows
a steady and accurate performance with the distance error of the vast majority of
joints hardly exceeding 5 cm. The overall average joint position error is 41 mm.

Results - MINI-RGBD data set. We evaluate our approach on the synthetic data
set we created, and which is detailed in chapter 6. It consists of 12 sequences of
moving infants, each containing 1000 RGB and depth frames, with ground truth 3D
joint positions. The sequences are numbered in their order of difficulty, with lower
numbers assigned to sequences that are considered easier.
In addition to the previously used average joint position error (AJPE), we want to
evaluate overall correctness of pose estimation. We use the PCKh metric [And+14],
which is commonly used for the evaluation of pose estimation approaches [Cao+17;
Wei+16; Haq+16; Sci+17]. PCKh stands for the percentage of correctly identified
keypoints w.r.t. the head segment length. An estimated keypoint is considered
correct if its distance to the ground truth is less than 50% of the head segment
length (PCKh), e.g., the distance between neck joint and head joint. The model
with which the MINI-RGBD data set was created has a very short head segment
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Figure 4.5.: Joint distance error per frame for all joints in infant sequence
FernSeq1.

(head joint to neck joint, cf. Fig. 6.2, (c) and (f)), which is why we present results
using the full head segment length (PCKh 1.0), as well as two times the head segment
length (PCKh 2.0) as thresholds. Average 3D head segment length over all sequences
is 2.64 cm. The head segment length for each sequence is calculated from the ground
truth joint positions in an additional T-pose frame, containing the shaped model in
a pose with extended arms and legs. We calculate the PCKh values for each joint for
each sequence, and average numbers over all sequences, respectively over all joints.
To account for differences in skeletons between our approach and the model, we
calculate joint offsets for neck, shoulders, hips, and knees from the T-pose frame
(Sec. 6.3), and add these offsets to the estimated joint positions in every frame.
We present results for the PCKh measure in Fig. 4.6 and Fig. 4.7, and AJPE in
Fig. 4.8 and Fig. 4.9.
It can be observed that the torso joints are located with much higher accuracy than
limbs. The PCKh results show that most torso classes achieve well over 80% of
PCKh 2.0, with spine, chest, nect and head even approaching 100% (Fig. 4.6). The
more strict PCKh 1.0 measure leads to a degradation mostly between 15 and 20%
compared to PCKh 2.0. A similar trend can be observed for the evaluation per
sequence (Fig. 4.7).
The discrepancy is especially obvious in the AJPE per joint (Fig. 4.8), with an AJPE
of 2 to 3 cm for torso joints, and between 4 and 10 cm for limb joints. The average
AJPE over all joints and sequences is 4.66 cm. Best results per sequence are obtained
on sequence 2, with a PCKh 2.0 of close to 100% and an AJPE of less than 2 cm,
and worst results on sequence 12, with a PCKh 2.0 of just 40% and an AJPE of
nearly 10 cm (Fig. 4.7 and Fig. 4.9).
In general, we observe good results for easy, frontal poses, but with more challenging

54



4.2 Random Ferns

Figure 4.6.: Results for 3D pose estimation based on random ferns. Percentage of
correct keypoints in relation to head segment length (PCKh) per joint as boxplot.
Cyan diamonds depict the mean value.

poses including self occlusions, performance severely degrades. Next, we examine
the reasons for these limitations.
Due to the lack of infant motion capture data sets, we used poses from the CMU
MoCap data set, which contains adults performing a variety of everyday actions.
However, the repertoire of poses shown by lying infants differs widely from those in
the training set, and the method does not seem to generalize well to unseen poses.
Additionally, when hands move close to the body, the estimates for the hand region
pixels change to torso classes.
The approach is not rotation invariant, i.e., if the infant rotates around the vertical
body axis in the image, and with that rotates out of the range of training samples,
the classification performance degrades.
Kinematic constraints are not enforced, which is why impossible body part config-
urations (e.g., hand cluster at knee, without connection to other arm clusters) are
not penalized.
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Figure 4.7.: Results for 3D pose estimation based on random ferns. PCKh per
sequence. Cyan diamonds depict the mean value.

Figure 4.8.: Results for 3D pose estimation based on random ferns. Average joint
position error (AJPE) per joint. Cyan diamonds depict the mean value.

56



4.2 Random Ferns

Figure 4.9.: Results for 3D pose estimation based on random ferns. Average joint
position error (AJPE) per sequence. Cyan diamonds depict the mean value.

57



Chapter 4 Body Pose Estimation in Depth Images using Random Ferns

4.3. Random Fern Extensions

We propose multiple extensions to the random ferns approach, which are motivated
by the previously identified limitations.

4.3.1. Multi-view Ferns

Infants at a suitable age for GMA generally are not able to turn. In order to use
the approach for older children or adults who are able to walk and turn around, we
examine the use of view-dependent ensembles of ferns.
We train three ensembles of ferns using data from different views: front (-45 to +45
degrees body rotation), left (-135 to -45 degrees) and right (45 to 135 degrees). The
training data is produced to simulate an older child, using a human body model of
size 130 cm.
We experimentally determined the following parameters: the depth of the ferns is
12, we use 15 ferns per ensemble and run 64 iterations per fern. The neighborhood
radius is set to 40 cm. Each fern is trained with 60K synthetic depth images.
For evaluation, we manually annotated a sparse subset of frames from a short se-
quence FernMultiView of a child walking from left to right and back. The recording
is manually divided into different sections (frontal, left, right, back) according to
the side the child turns towards the camera.
Fig. 4.10 shows how the specialized ferns outperform the others in frames in which
the child is seen from the corresponding view. Not every frame of the sequence is an-
notated, which is why the front/back view is skipped sometimes when turning from
left to right (and back). For each section, the respective specialized fern ensemble
shows an average joint distance error of 5 to 10 cm, compared to distances of 15 to
25 cm for the others. These preliminary results support the assumption that many
specialized classifiers can improve the overall accuracy over one very general classi-
fier. Our system allows fast training and therefore can generate different classifiers
quickly to suit varying requirements. We plan to further explore the specialization
of fern ensembles to specific tasks.

4.3.2. Training Data Generation

Evaluations in Sec. 4.2.3 showed failure cases for incorrectly classified body parts,
e.g., knee pixels classified as hand. We show how more suitable training data can
lead to an enhancement of classification quality.
The poses used in the training from the previous section are taken from the CMU
MoCap database, which contains adults performing everyday activities. They are
mapped to a synthetic body model of an infant. However, these poses are not
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Figure 4.10.: Average joint distance error for three ferns, trained for different view-
points, for sequence FernMultiView. Sections Front, Left, Right, Back were man-
ually annotated for a subset of frames of a longer recording, which is why the
labels change directly from left to right and back.

typical for infants and their specific motions. This bias in training data will severly
decrease the classification accuracy of the ferns. As it is unfeasible to record a
large amount of motion capture data from infants performing different poses, we
have synthetically generated a wide range of what we consider baby-like poses. We
determine angle ranges for the extremities which seem to represent infant poses
realistically by visual inspection. We generate 30K poses by randomly combining
angles within these ranges. We pick small random angles between 10 and -10 degrees
for joints that do not belong to extremities. We generate labeled depth images from
three different frontal viewpoints for each of the poses. To ensure that the training
data is not biased towards either side, we mirror the generated data, resulting in an
overall number of 180K training images.

4.3.3. Feature Selection

The inspection of trained ferns reveals that binary depth comparison features are
included in the ferns for which pixel offsets φ or depth thresholds τ take values
that lead to an evaluation of all training pixels to exclusively one side (all 0 or all
1). Leaf nodes which are on the wrong side of that particular feature will never be
traversed during training, and therefore do not contribute to classification. Simply
removing features would reduce memory requirements, but to improve classification,
replacement by new (better) features is necessary. Replacing features in an existing
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fern enforces recalculation of probability distributions in all leaf nodes, due to the
property of ferns that each feature influences all leaf nodes. Therefore, our choice
is to filter out redundant features before training to keep training times low and
to avoid re-processing. We randomly generate a large set of features and evaluate
them on the training data once using the information gain measure (Fig. 4.11). Only
features with information gain above a user-specified threshold are added to a set
from which features are drawn randomly during training. The information gain
measure is often used for evaluating candidate features in training random decision
trees (e.g., [Sho+11]). It is defined by

ig(θ) =
∑

d∈{L,R}

|Sd(θ)|
|S|

I(Sd(θ)), (4.8)

where θ = (φ, τ) represents the feature parameters, with pixel offsets φ = (φx, φy)
and depth threshold τ . S is the set of all training pixels, which is divided into two
subsets SL and SR according to the split induced by θ. I is the Shannon entropy of
the distribution of body part classes corresponding to pixels in S:

I(S) = −
∑
c

p(c|S) log p(c|S), (4.9)

where p(c|S) is the normalized distribution of the set of body part classes c(u) for
all u ∈ S. We normalize ig, so that larger values represent more meaningful features
and lower values less meaningful features.

4.3.4. Kinematic Chain Constraints

In certain scenarios we find misclassified regions, e.g., estimated hand regions on
the knees, which are easily identifiable for humans using prior knowledge about the
human body.
However, random ferns independently classify each pixel w.r.t. the classified outcome
of neighboring pixel classes. For this reason, we incorporate prior information about
the connections of human body parts in a post-processing step. On the depth image
labeled with body part estimates, we build a kinematic tree, starting from the root
node at the body center. Connected pixels belonging to the same body part form
a cluster. We search the shortest path to the root node for each cluster. The
path length is determined by how many cluster borders are passed. Connections to
clusters that do not obey the kinematic chain constraints are penalized by additional
path cost. If the path is not equal to the expected path according to the kinematic
chain of the skeleton, that cluster is considered a misclassification. Pixel probabilities
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(a) (b)

Figure 4.11.: Randomly generated feature set, evaluated on infant training data.
Gaussian σ = 20 cm for pixel offsets φ. Depth thresholds τ range from -20 cm to
+20 cm. Pixel offsets are plotted on x (red) and y (green) axis, depth threshold
on z (blue) axis. Color represents information gain, green depicts large gain (more
meaningful), black small gain (less meaningful). The red dot denotes the input
pixel to which the offsets are related. (a) 5000 randomly sampled features. View
on XY-axes. (b) Same as (a), view on XZ-axes.

are multiplied by a reweighting factor based on the last correct neighbor in direction
of the root node. The pixel labels are then updated with the most probable body
part class from the reweighted probabilities. This way we get an estimate that
conforms to the kinematic chain.

4.3.5. Rotation Invariance

The binary depth features used in the ferns are not invariant to rotations. Instead of
trying to capture all possible variations of rotation in the training data to make the
ferns rotation invariant, we train on upright positions with limited range of rotation.

In our settings, the infants are always filmed from above, so that the main body
axis is displayed vertically in the camera image. If the main axis strongly diverges
from being vertical, the prediction will be distorted. To solve this issue, we use the
pixels of estimated body parts that belong to the trunk from the previous frame as
input for principal component analysis. We rotate the feature offsets to conform to
the axes we get from the first two eigenvectors of PCA. This way the classification
is performed as if an upright body was given as input. An example is displayed in
Fig. 4.12.
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(a) (b) (c)

Figure 4.12.: (a) Prediction without PCA rotation correction. (b) Prediction with
PCA rotation correction. (c) Estimated head rotation and pixel-wise body part
labels. Pink dots depict eye positions, white line the viewing direction.

4.3.6. Head Rotation

Body joint positions do not include information about rotations around longitudinal
axes, e.g., head rotation. Since the head rotation seems to be of interest for medical
assessment, we calculate it based on the eye positions, which we detect in the RGB
image and project to the depth image.

We use a convolutional neural network from C++ library dlib [Kin09; Kin15] to
detect the infants’ face in each 2D RGB image. We use a shape predictor [KS14]
from the same library to find 68 facial landmarks in the detected face region, from
which we extract the centers of the eyes. We project the 2D eye coordinates from
the registered RGB images to the 3D point cloud constructed from the depth image.
For calculating the head rotation angle, we first create a plane that is defined by
the head joint and the main body axis, and is perpendicular to the table plane. The
head rotation is then given as the angle between this plane and the line through the
center between the eyes and the detected head joint position. And example showing
the eye positions and the “viewing direction” is given in Fig. 4.12 (c).

4.3.7. Evaluation

Manual annotation of ground truth 3D joint positions is a cumbersome, yet inac-
curate process. For this reason, we fit a 3D body model, SMPLB (prel.)1 to the
recorded sequences and visually verify the plausibility and accuracy of results and
consider them ground truth for our evaluation. A fixed offset is added to all predicted
joint positions to account for differences between the model used for generating the

1This was a preliminary version of the initial body model SMPLB from Sec. 5.3, since at the time
of writing the final SMIL model, cf. chapter 5, was still work in progress.
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Table 4.4.: Average joint position error (and standard deviation) in cm over all
three sequences of FernSeq2. Random ferns denotes the approach from Sec. 4.2,
Ferns extension uses the new training set (Sec. 4.3.2) and applies rotation cor-
rection (Sec. 4.3.5). RWF denotes kinematic chain reweighting and filtering
(Sec. 4.3.4), and FS the feature selection method (Sec. 4.3.3).

Method Without RWF With RWF
Random ferns 1.782 (3.103) 1.382 (1.459)
Ferns extension 1.212 (0.931) 1.224 (0.897)

Ferns extension + FS 1.236 (1.121) 1.222 (0.852)

ground truth and the model for training the ferns. We compare our methods to the
baseline fern approach from Sec. 4.2.3 on three recordings, which we denote as data
set FernSeq2. Two of them are taken from longer sequences and contain 500 frames
where the infants are most active. The third sequence consists of 4500 frames. One
of the short sequences was recorded with a Kinect V2, the others with Kinect V1.
The background is removed prior to evaluation so that only pixels are contained
that are part of the infant.

Error metrics. Pose estimation approaches are mostly evaluated by indicating the
average joint position error (AJPE). For the task of motion analysis, though, more
strict evaluation measures are needed. Therefore, we use the worst-case accuracy
(WCA) as proposed in [Tay+12], which is the percentage of frames in which all
joints lie within a certain threshold distance from the ground truth. Additionally,
we introduce a measure that we call the jitter accuracy (JA) in order to quantify
the smoothness of joint predictions. Joint estimates that are “jumping” around
the ground truth at a fixed distance will have a constant joint position error, but
most probably would harm the motion analysis stage. We calculate the difference
of predicted joint position deviation relative to ground truth in consecutive frames
(jitter error), which we define by

jei,j = ‖(xi,j − gti,j)− (xi−1,j − gti−1,j)‖, (4.10)

where i ∈ {2, . . . , N} is the frame number, j the joint index, xi,j the predicted
position of joint j in frame i, gti,j the ground truth position of joint j in frame i and
‖ · ‖ the Euclidean norm. The jitter accuracy is the percentage of frames in which
the jitter error of all joints is smaller than a certain threshold.

Results. We compare the proposed methods to the baseline approach (Sec. 4.2.3).
All classifiers are trained using the same number of ferns (15), fern depth (13) and
pixel offset neighborhood radius (20 cm). PCA rotation correction is applied with
all methods. Ours stands for the proposed approach, trained on the new training
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Figure 4.13.: Evaluation results for FernSeq2. (a) Worst-case accuracy. (b) Jitter
accuracy. Average over all sequences.
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Figure 4.14.: Comparison of estimated and ground truth knee angles on 2600
frames from the longest sequence of FernSeq2. (a) Left knee angles. (b) Right
knee angles.

set, FS indicates that the feature selection step was used prior to training, RWF
means that reweighting and filtering is applied.

Results of the evaluation are displayed in Tab. 4.4, and Fig. 4.13. Worst-case accu-
racy is improved by roughly 10% (maxdist ≥ 3cm) over the baseline if the proposed
reweighting and filtering step is applied. AJPE is reduced by 0.4 cm, while the jitter
accuracy remains at a similar level.

When training the approach using our new baby-like poses (Ours), accuracy in-
creases between 10 and 20% (maxdist ≥ 3cm) compared to [Hes+15], while reduc-
ing AJPE by more than 0.5 cm. Standard deviation of AJPE is reduced marginally
by applying RWF to Ours, while the average error slightly increases. From our
experiments, we find the explanation that RWF fixes large misplacements of body
parts, e.g., knee classified as hand - hence the improvement over [Hes+15], but due
to the fact that class labels of body part patches are changed, predicted positions
seem to shift too far sometimes. The feature selection step does not lead to a big
improvement in accuracy (Ours vs. Ours (FS)). If there are no redundant features
included in training without feature selection, there will be no benefit from this step.
We still believe feature selection to be a valid enhancement, because it will prevent
the inclusion of redundant features independent of the amount of randomness used
during training.
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Figure 4.15.: MINI-RGBD results for 3D pose estimation based on random ferns
and extensions. Percentage of correct keypoints in relation to head segment length
(PCKh) per joint. Cyan diamonds depict the mean value.

Angle comparison. In Fig. 4.14, we illustrate how our system captures movement
information like joint angles accurately by comparing it to angles calculated from
ground truth joint positions. Results are presented for left and right knee for 2600
frames of the longest sequence of FernSeq2. Although the angle values do not match
the peak levels exactly, we observe that the estimated angles reflect the ground truth
very well. Doctors will be able to get a first impression of the movement quality by
one glance on the plotted angles. It will, e.g., be clearly visible if there is an absence
of motion on one side of the body.

Evaluation on MINI-RGBD data set. Similar to the baseline ferns approach, we
evaluate the extended approach on the MINI-RGBD data set using the same metrics.
We present results in Fig. 4.15 and Fig. 4.16. Mean average precision – i.e., average
PCKh over all joints and sequences – for PCKh 1.0 is 64.2%, and 91.0% for PCKh
2.0.
Very high PCKh 2.0 rates are achieved for torso and head body parts, while lowest
rates are obtained for joints related to extremities (Fig. 4.15). PCKh 1.0 rates differ
a lot from PCKh 2.0 for elbows, hands, and feet. We observe that the estimated
hand and foot regions are often too large, leading to the hand joints lying more
in the direction of the elbow, respectively the foot joints in direction of the knees.
With an expansion of the threshold for correctness (PCKh 2.0) these displacements
are accepted as correct, leading to large jumps from around 30% (PCKh 1.0) to 70
- 80% (PCKh 2.0).
The average joint position error (AJPE) over all sequences and joints is 2.86 cm,
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Figure 4.16.: MINI-RGBD results for 3D pose estimation based on random ferns
and extensions. PCKh per sequence. Cyan diamonds depict the mean value.

compared to 4.66 cm of the baseline. Joint position errors are largest for the ex-
tremities, at an average distance to ground truth of up to 5 cm (Fig. 4.17 (a)).

If the estimate for a joint was missing in a frame – no pixel was labeled with that
joint’s label – we ignored this joint for the calculation of AJPE, i.e., we only divided
the sum of joint errors by the number of actually estimated joints. The number of
frames with missing estimates, denoted by joint (in 12K frames, average for left and
right sides): neck 37, elbows 12, hands 62, fingers 156, feet 79, toes 607, all others 0.
For the calculation of PCKh metric, missing joints were considered as lying outside
the correctness threshold.

The evaluated approach shows high accuracy when arms and legs are moving beside
the body, but the accuracy decreases, especially for hands and feet, when limbs move
close to or in front of the body. This becomes extremely visible in sequence 9, where
the infant moves the left arm to the right side of the body multiple times, leading to
the highest overall AJPE of 4.7 cm (Fig. 4.18). Best AJPE results are achieved for
sequence 2, at 1.46 cm, which is close to results of the evaluation of three recordings
above. The varying accuracy for different sequences shows the levels of difficulty
and the variance of motion patterns included in the data set.

Altogether, we observe that the proposed extensions outperform the baseline by a
large margin on multiple error metrics.

4.4. Discussion and Limitations

We proposed a method for estimating 3D body joint positions in depth images. The
training time is reduced by nearly two orders of magnitude compared to a similar
approach used in commercial applications.
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Figure 4.17.: MINI-RGBD results for 3D pose estimation based on random ferns
and extensions. Average joint position error (AJPE) per joint. Cyan diamonds
depict the mean value.

However, several limitations exist. We observe a degradation of accuracy in the pres-
ence of occlusions, or if hands are moved close to the body. Our approach, similar
to [Sho+11], processes one image at a time and does not take into account temporal
information (except in our rotation invariance extension where the estimate of the
previous frame is considered). On the upside, working on single images prevents
the method from getting stuck in local minima. Yet, it does not necessarily pro-
vide smooth and consistent estimates for consecutive frames, and by incorporating
a tracking procedure, the handling of failure cases and overall accuracy could be
improved.
The system was trained either on adult poses that differ from infant poses, or on
solely synthetic poses by manually defining angle ranges and sampling inside these
ranges. These most certainly do not include all possible valid body configurations
an infant can produce. With the model-based method we will present in the next
chapter, it would be possible to generate larger amounts of training data, as de-
scribed in chapter 6. At the time of writing, we have not yet generated a training
set large enough to re-train the random ferns approach.
We only use RGB information when detecting the eyes for capturing head rotation.
Instead, the RGB information, which is complementary to depth, could be used
to further improve accuracy, e.g., by learning appearance models of different body
parts as in [Buy+14].
A general drawback of the proposed approach is that the estimated joint positions
do not capture body part rotations. It is unclear how important these rotations are
for medical assessment, but what is clear is that information is lost.
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Figure 4.18.: MINI-RGBD results for 3D pose estimation based on random ferns
and extensions. AJPE per sequence. Cyan diamonds depict the mean value.
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5. Learning and Tracking the 3D
Body Shape of Freely Moving
Infants from RGB-D sequences

In the previous chapter, we discussed a fast and easy to train approach for pose
estimation from depth images. We identified several limitations, which motivates
the development of a more advanced method in this chapter.
The general movement assessment judges the movement quality from a holistic view
of movement complexity and variation of all parts of the body. Following this
concept, a 3D body model seems like a good choice for representing motion, as it
allows reasoning about the complete body surface as well as the underlying skeleton.
Researchers have shown that it is possible to accurately register body models to point
cloud data (e.g., generated from depth images). Parameters related to motion, like
joint angles and positions, can be easily extracted from such registrations.
In this chapter, we will detail our approach to model-based estimation of infant
shape and pose from RGB-D data. First, we establish our notion of the term body
model, before we give an overview of methods for data-driven body model creation
and how they have been used for capturing motion. Because of the fact that no
realistic infant body model exists, we propose a method to learn an infant-specific
model. Opposed to learned adult models – which generally leverage large data sets
of high-quality 3D scans – no such repository exists for infants, which is why we
learn our model from low-quality, incomplete RGB-D data. Finally, we show in
our experiments that the learned model captures sufficient motion detail for infant
motion analysis (GMA).

5.1. Statistical Human Body Models

When using the term “body model”, we refer to a surface representation of the
body. Such model is parameterized with the shape, giving information about the
joint locations, and the pose, defining the angles between the limbs. Statistical body
models are learned from data, opposed to artist-created models, which generally are
not able to achieve the same level of realism.
Human body models are commonly represented as a set of body parts, connected by
a kinematic chain. A change in position/rotation of a body part results in a change
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of position of “children” body parts. Usually, pose is described by a vector of joint
angles. To summarize, the model is a mapping from shape and pose parameters to
vertices.

5.1.1. Basics of Parametric Models

In this section, we give an overview of the creation of a posed and shaped body
mesh from model parameters.
We follow the formulation of Pons-Moll and Rosenhahn [PMR11], and Murray
[Mur94].
[PMR11] discuss possible choices of parameters and define desirable properties of a
model parameterization for human motion as follows:
• Pose configurations are represented with the minimum number of parameters.
• Human motion constraints, such as articulated motion, are naturally described.
• Singularities can be avoided during optimization.
• Easy computation of derivatives of segment positions and orientations w.r.t. the

parameters.
• Simple rules for concatenating motions.

We examine the axis-angle representation for mapping a vector of pose parameters
(joint angles) to an output mesh, given a body model with underlying kinematic
chain. Different representations like Euler angles and quaternions are discussed in
[PMR11], but violate one or more of the desirable properties, which is why we focus
on the axis-angle representation.
The human body has different kinds of rotational joints. For some of them it is
necessary to define a fixed axis around which rotations are possible, e.g., the knee.
For notational simplicity, we assume rigid body segments, i.e., the distance between
any two points of a body segment remains constant. A compact way to represent
this axis-angle representation with three parameters is to define the rotation around
a unit length axis vector ω by an angle θ as θω.
In order to calculate the movements of connected body segments with the axis-angle
representation we need to apply some transformations.
We can create a rotation matrix R that defines the rotation of θ around ω by using
the exponential form

R = exp(θω̂), (5.1)

with ω̂ ∈ so(3) being a skew symmetric matrix constructed from ω with so(3)
denoting the set of skew symmetric matrices that hold for {A ∈ R3×3|A = −AT}
[Mur94].
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The skew symmetric matrix θω̂ for ω = (ω1, ω2, ω3) is calculated as

θω̂ = θ

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 (5.2)

The multiplication of the matrix ω̂ with a point p is equivalent to the cross product
of the vector ω with p.
The exponential of θω̂ can be calculated using the Rodriguez formula:

exp(θω̂) = I + ω̂ sin(θ) + ω̂2(1− cos(θ)). (5.3)

The advantage is that only the square of ω̂, as well as sine and cosine of real numbers
have to be computed. The construction of a rotation matrix from angle and axis
by using simple operations is a favorable property and promotes the use of the
axis-angle representation.
In the next step, the formulation will be extended to represent rotation and trans-
lation, i.e., the exponential map for rigid body motions. A twist ξ = (υ, ω) contains
translation parameters υ = (υ1, υ2, υ3) and rotation parameters ω as above. The
translation is along the axis of rotation, starting at the location of the axis.
The exponential of any rigid motion G ∈ R4×4 is given by

G(θ, ξ) = exp(θξ̂). (5.4)

θξ̂, a 4× 4 matrix, is called the twist action [PMR11] and is a generalization of 5.2.
The twist action can be constructed from the twist coordinates θξ ∈ R6 as

θξ̂ = θ


0 −ω3 ω2 υ1
ω3 0 −ω1 υ2
−ω2 ω1 0 υ3

0 0 0 0

 , (5.5)

and its exponential is given as

exp(θξ̂) =
(

exp(θω̂) (I − (exp(θω̂)(ω × υ + ωωTυθ)
01×3 1

)
, (5.6)

with exp(θω̂) as before.

Forward kinematics. Finally, we can transform a point on a body segment from
body coordinates pb to world (spatial) coordinates ps by applying joint rotations
along the kinematic chain towards the body segment. This is achieved by concate-
nating the transformation matrices of joints in the kinematic chain.
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The point in spatial coordinates can then be calculated as

p̄s = Gsbp̄b, (5.7)

with p̄ denoting point p in homogeneous coordinates, i.e., p̄ = [p, 0].
The transformation between spatial and body frames is given by

Gsb(Θ) = eξ̂1θ1eξ̂2θ2 · · · eξ̂nθnGsb(0), (5.8)

where Θ = (θ1, θ2, . . . , θn)T is the joint angle vector, and ξ are constant twists in the
reference configuration, which is the zero pose. Gsb(0) is usually chosen to be the
identity.
The formulation considering purely rigid body parts leads to discontinuities and
artifacts close to joints when the joint angles deviate from zero. The standard
solution for resolving these discontinuities and to smooth shape at body joints is
called linear blend skinning (LBS) . LBS assigns vertices to multiple body parts and
using a weighted linear combination of the influence of these parts.
Eq. 5.7 is then transformed to

p̄s =
K∑
k=1

wkGsbp̄b, (5.9)

with K denoting the number of joints, and wk the weight of joint k for point p̄b.
LBS solves the problem of discontinuity, but often does not lead to visually realistic
results. Multiple methods have been proposed to improve realism, e.g., the SMPL
model – which we review in the next section – applies corrective blend shapes.
After laying the mathematical foundations of how joint angle transformations are
applied to model vertices, we describe the specific body model on which our approach
in Sec. 5.3 is based.

5.1.2. Properties of the Skinned Multi-Person Linear Body
Model

The Skinned Multi-Person Linear model (SMPL) is a statistical body model that
was learned from thousands of high quality 3D scans [Lop+15]. It consists of 6890
vertices and produces a watertight body mesh from pose and shape parameters.
It has a mean template shape T̄ , and the zero pose (all pose parameters equal to
zero) is the so called T-pose, with fully extended arms and legs. The body shape
is decomposed into person-specific shape and pose-dependent shape, i.e., non-rigid
body deformations caused by pose.
The blend shapes describe these shape deformations, and are modeled as a vector of
offsets from the model vertices in rest pose. Person-specific shape is represented by
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a linear function Bs in which each orthonormal principal component of 3D shape
displacements Sn is multiplied by the corresponding shape parameter βn.

Bs(β;S) =
|β|∑
n=1

βnSn (5.10)

with S = [S1, . . . , S|β|], and β denoting the full set of shape parameters.
The pose parameters θ are expressed in axis-angle representation and contain one
value per degree of freedom of the K body joints, plus three parameters for the
orientation of the root joint. With K = 23, this results in 23 ∗ 3 + 3 = 72 pose
parameters. The pose-dependent blend shapes BP are defined as

BP (θ;P) =
9K∑
n=1

(Rn(θ)−Rn(θ∗))Pn, (5.11)

where R(θ) : R|θ| 7→ R9K , is a function that maps pose parameters to a vector of
concatenated rotation matrices, and Rn denotes the nth element of R. θ∗ denotes
the rest pose, and P = [P1, · · · , P9K ] vertex offsets similar to S.
The blend shapes BS and BP are added to the mean template in zero pose T̄ :

TP (β, θ) = T̄ +BS(β) +BP (θ) (5.12)

This results in a mesh, still in rest pose, containing the pose-dependent shape de-
formations as well as the identity-dependent shape information. This mesh is then
posed with a standard blend skinning function W (cf. Sec. 5.1.1). The final model
is then

M(β, θ) = W (TP (β, θ), J(β), θ,W). (5.13)

with J(β) denoting a function to predict joint positions, and the blend weights
W which encode the effect of different joints on each vertex in calculation of the
skinning function.
By changing shape parameters, a weighted combination of shape blend shapes (ver-
tex offsets) is added to the mean template vertices to produce a new shape. By
changing pose parameters, body parts are rotated according to angle values (from
pose parameters) using a standard blend skinning function (e.g., linear blend skin-
ning), and corrective pose blend shapes (again, vertex offsets) are added to the model
vertices to account for the pose-dependent soft-tissue deformations and errors caused
by the skinning function.
The training of SMPL is conducted separately for pose and shape parameters. The
data sets for training contain meshes that have been aligned to high-quality 3D
scans. The shape data set consists of 3800 subjects in roughly the same pose from the
CAESAR data set [Rob+02], and the pose data set contains nearly 1800 registrations
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of 40 subjects in different poses. The model parameters are trained to minimize the
distance between model and registrations.
The shape space, spanned by the shape parameters, consists of the mean shape and
the principal shape directions. To perform principal component analysis (PCA) for
extracting on a set of body meshes, these need to be in the same pose to ensure
a separate modeling of shape and pose. This is achieved by first estimating the
pose of a given subject mesh, and then to normalize the pose, i.e., transforming it
to the zero pose. In section Sec. 5.3.6, we follow the same approach to learn our
infant-specific shape space.
We further learn a prior on the plausible poses for our infant model. Such pose
prior aims to describe the valid range of joint angles. Angle limits depend on
pose, which is why learning them from a large set of different poses should be
preferred over the calculation of joint limits in a fixed pose [AB15]. A pose prior is
often used to constrain the estimation of human pose from images. Our prior Ppose
consists of mean µ and covariance matrix Σ, and determines the validity of given
pose parameters θ by calculating the Mahalanobis distance

d(Ppose, θ) =
√

(θ − µ)TΣ−1(θ − µ). (5.14)

This section has described the mathematical foundations of how a body model is
transformed with respect to pose and shape parameters. In the next section, we
review the literature on the creation of body models, as well as their application to
pose and shape estimation from (depth) images.

5.2. Related Work – Shape and Pose Estimation
using Body Models

First, we give an overview of methods for the data-driven creation of human body
models. Then, we show how body models are used in literature for capturing human
pose and shape.

Model creation. Statistical parametric models of the human body surface are
usually based on the Morphable Model idea [BV99], stating that a single surface
representation can morph and explain the different samples in a population. These
models can be intuitively viewed as a mathematical function taking shape and pose
parameters as input and returning a surface mesh as output.
One option to create such model is to have an artist sculpt a body mesh together with
a manual definition of possible deformations. This approach often lacks realness, as
it is impossible to include all details and dependencies of real human shape and
pose. Therefore, the preferred solution has been to learn the statistics of human
bodies from data.
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The shape space and the pose prior, i.e., the range of most plausible poses, are
learned by registering the single surface representation, i.e., a template surface, to
real-world data. The shape space and the pose prior allow a compact representation
of the human body surface describing the geometry of the human body surface of
an observed population in a low-dimensional space.

Existing models have been learned from different real-world data. For example, to
model the variation of faces, De-Carlo et al. [DeC+98] learn a model from a cohort
of anthropometric measurements. Blanz and Vetter, use dense geometry and color
data to learn their face model [BV99]. Allen et al. use the CAESAR dataset to
create the space of human body shapes by using the geometry information as well as
sparse landmarks identified on the bodies [All+03]. Similarly, Seo and Magnenat-
Thalmann learn a shape space from high quality range data [SMT03]. Angelov
et al. propose SCAPE, a statistical body model learned from high quality scan
data, which does not only contain the shape space, but also accounts for the pose
dependent deformations, i.e., the surface deformations that a body undergoes when
different poses are taken [Ang+05]. SCAPE and all successive statistical models of
the human body surface [Has+09; Hir+12; FB12; Che+13; ZB15; Lop+15; Pis+17]
or their soft tissue dynamics [PM+15a; Lop+15; Kim+17] have been learned from
a relatively large number of high quality range scans of adult subjects. Adults, in
contrast to infants, are typically cooperative and can be instructed to strike specific
poses during scanning.

Animal shape modeling methods face a similar difficulty as ours: live animals are
generally difficult to instruct and their motions make them difficult to scan. Thus,
they provide a source of inspiration to create models without a large cohort of high
quality scans. Cashman and Fitzgibbon learn a deformable model of dolphins by
using manually annotated 2D images [CF13]. Kanazawa et al. learn the deformations
and the stiffness of the parts of a 3D mesh template of an animal from manually
annotated 2D images [Kan+16]. In [Kan+18b], they learn category-specific textured
3D meshes from collections of 2D images. To create the animal model SMAL, Zuffi
et al. circumvent the difficulty to instruct and scan real animals by using a small
dataset of high quality scans of toy figurines [Zuf+17]. The SMAL model can be
fit to new animals using a set of multi-view images with landmarks and silhouette
annotations.

Capturing motion using a body model. The existing body models have proven
to be successful in capturing the pose and shape of a subject from different types of
input data. Registration aims at explaining the observation (input data) with the
model by minimizing an objective function that measures the difference between
the two. Often, this includes the distance between model and data points, but also
additional terms like prior probabilities on pose and shape to avoid the model to
deform unnaturally to explain the data. Once a model is registered to the input
data, one can obtain the desired motion information from the registration. As the
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joint locations depend on the shape, the closer the estimated body shape is to the
actual subject’s shape, the better, i.e., more accurate, the tracking of motions will
be.

Shape and pose estimation from RGB-D. RGB-D data provides information
about the scene in 3D, thus allowing to infer 3D shape information and to resolve
ambiguities that occur in RGB images, i.e., different poses producing the same
image.

Researchers have used different models for different use cases. Rather simplistic
models are used for a maximum of processing speed, personalized avatars are used
for realistic appearance, and general generative models for less constrained scenarios.

In models that are composed of simplistic shapes, shape estimation refers to
changes of size or diameter of the shapes instead of estimating realistic human
shapes. Such adaptations contribute to a better description of input data by the
model surface.

Knoop et al. apply an articulated cylinder model with elastic band joints to perform
close to real-time motion capture from depth data [Kno+06]. They include infor-
mation about 2D points detected on the human body to constrain the 3D fitting
process, similar to our method for initialization (Sec. 5.3.4).

Ganapathi et al. assemble a model from 3D capsules, and adapt their overall scale
to input data. Their iterative closest point method incorporates free-space and
self-intersection constraints and runs in real time [Gan+12].

One such simplistic model has been created for infants, consisting of basic shapes like
cylinders [Ols+15]. This model is aligned to RGB-D data by minimizing the distance
between model and data without further constraints like a pose prior. Opposed to
ours, this method only capture joint positions and not rotations of body parts due
to the uniform shapes of which the model is assembled.

The generative model fitting approach has been combined with discriminative
methods to leverage the advantages of either one.

Instead of applying global optimization with a generative model, a body part detec-
tor creates a good initial guess, so that the optimization only needs to be applied
locally to achieve accurate results.

[Baa+13] have created a pose data base using a commercial marker-based motion
capture system. Their discriminative tracker extract sparse depth features, i.e.,
geodesic extrema, which are used to find the best match in the pose data base.
Both, this candidate match, and a candidate generated from the previous frame, are
locally optimized to fit the data. The resulting pose hypotheses are fused in a voting
scheme to give the final result. This real-time approach uses a fixed size model and
scales input data to match the model size.
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Mode detailed parametric body models generally model the space of human bodies
without clothing or hair. Some approaches propose to overcome the discrepancy
between such a shape space and the real world by creating personalized avatars
from the input data and then registering them to the dynamic sequences by keeping
the personalized shape fixed. In this context, we can distinguish between i) creating
a personalized mesh, possibly created from one or more scans, and attaching it to
a generic template that can be reposed, and ii) fitting a parametric model to one
or multiple scans to describe the subject’s shape, which will then lie in the model’s
shape space. The former may give more detailed and more realistic looking results by
including a texture map, as well as hair and clothing shape. The dynamics of these
parts, however, are not included in the model. The latter approach is applicable in
more general scenarios, e.g., where subjects can not take predefined poses and no
prior information about the subject is given.

The limitation of a single monocular camera producing incomplete data is overcome
by fusing multiple RGB-D scans of a person into a single reference frame to produce
something more similar to a full 3D scan. This creates an additional step and usually
requires cooperative subjects to take predefined poses, which makes it unfeasible for
infants.

Creating personalized models from RGB-D. The creation of personalized models
is performed by capturing the detailed shape and appearance and then binding it
to a generic template. This personalized template can then be posed according
to the kinematic chain of the underlying template. Tong et al. register multiple
partial Kinect scans to form a complete body mesh that can be animated and
posed [Ton+12]. Cui et al. create textured 3D meshes by registering Kinect scans
of subjects rotating 360 degrees in a static T-pose [Cui+13]. Zhang et al. merge
multiple Kinect fusion scans in different poses from different viewpoints and create
personalized dynamic models based on a generic template model [Zha+14]. Shapiro
et al. create a personalized avatar from 4 static scans at 90 degree intervals. The
surface is bound to a skeleton, which can be animated with new poses [Sha+14].
Perbet et al. estimate body shapes under clothing from depth images by constraining
the model to lie inside the 3D point cloud [Per+14].

Fitting personalized models to RGB-D data. Instead of a fixed model, Helten et
al. create a personalized template by fitting a (simplified) parametric body model
(SCAPE) to two Kinect scans, front and back [Hel+13a]. They adapt the pose
data base of [Baa+13] to the shape of their template, and perform the same track-
ing procedure with the personalized template. The objective function minimizes
the distances between 3D point cloud and model surface. Subsequent work shows
that an increase in accuracy can be achieved by integrating IMU measurements
[Hel+13b]. Qammaz et al. rely on the method by [Sha+14] to create personalized
models, which they fit to new RGB-D sequences [Qam+18]. Similar to our initial-
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ization stage (Sec. 5.3.4), they leverage estimated 2D joint positions to constrain the
3D model fitting. Since they obtain a personalized shape, they keep the shape fixed
and optimize their objective function w.r.t. pose parameters. Ye et al. [Ye+12] use
a laser scanner to create high quality personalized models of subjects in the scene.
However, they lift constraints that are applied in other approaches, by allowing
multiple subjects to interact with each other, and tolerating multiple moving (hand-
held) cameras. They leverage information from three Kinects for optimizing an
energy function taking into account geometric correspondences, scene segmentation
and image correspondences. The detailed geometry and appearance in combina-
tion with multiple camera views allows them to capture challenging interactions of
multiple people. The high-quality laser scanning, however, limits the general appli-
cability. Zheng et al. [Zhe+14] create personalized avatars based on RGB-D data
from 4 cameras. They re-train a SCAPE model with an expanded human pose
database to enlarge the tracking space of SCAPE. They develop a correspondence
estimation method based on articulated ICP for tracking motion sequences.

Fitting generic parametric body models to RGB-D data. To avoid the prelim-
inary step of personalized shape creation, other methods use generic body models
to capture pose. Weiss et al. describe a method for fitting a body model, SCAPE,
to four static RGB-D scans from different viewpoints [Wei+11]. They fit a ground
plane to the scene and use the plane information to refine the model position for in-
tialization. They overcome the problem of incomplete data by using multiple views
of the subject in roughly the same pose to extract full body shape information. In
their objective function, they minimize the silhouette distance and the depth dis-
tance. They fit their model to arbitrary new poses and assume a coarse initial pose
estimate. They report a processing time of 65 mins per body. Ye and Yang introduce
a method for real-time shape and pose tracking from depth [YY14]. They register an
articulated deformation model to point clouds within a probabilistic framework. Yu
et al. introduce an approach for real-time reconstruction of non-rigid surface motion
from RGB-D data using skeleton information to regularize the shape deformations
[Yu+17]. They extend this approach by combining a parametric body model to rep-
resent the inner body shape with a freely deformable outer surface layer capturing
surface details [Yu+18].
Bogo et al. [Bog+15] fit a multi-resolution body model to Kinect sequences. This
work is the closest to ours, which is why we give a brief summary and identify simi-
larities and differences. Bogo et al. aim at creating highly realistic textured avatars
from RGB-D sequences. Shape, pose and appearance of freely moving humans are
captured using a parametric body model, which is learned from 1800 high-quality
3D scans of 60 adults. Shape information is accumulated over each sequence in a
“fusion cloud” which allows to create detailed personalized shapes. The captured
subjects wear tight clothing and take a predefined pose at the beginning of each
sequence, as is common in scanning scenarios. The body model is used at different
resolutions in a coarse-to-fine manner to increasingly capture more details. A dis-
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placement map represents fine details that lie beyond the resolution of the model
mesh. The model contains a head-specific shape space for retrieving high-resolution
face appearance.

In our work, we also capture shape and pose of sequences containing unconstrained
movements. To create a personalized shape, we also merge all temporal information
into fusion clouds. In the gradient-based optimization, some of our energy terms
are similar to the ones from [Bog+15]. In contrast to their work, an initial infant
body model is not available and we must create it. We adapt an existing adult
body model to a different domain, namely infants, to be used as an initial model
for registering our infant sequences. The fact that infants lie in supine position in
our scenario presents two different constraints. First, it means that very few backs
are visible and we have to deal with large areas of missing data in our fusion clouds.
Second, as infants are in contact with the background, i.e., the examination table,
we can not rely on a background shot to segment the relevant point cloud. When
the infants move, they wrinkle the towel they are lying on with their hands and feet.
However, we can take advantage of the planar geometry to fit a plane to the table
data to segment it. Moreover, we can (and do) use the fitted plane as a geometric
constraint, as we know the back of the infants can not be inside the examination
table. Also, in contrast to Bogo et al. [Bog+15], we can not rely on predefined poses
for initialization since the infants are too young to strike poses on demand. We
contribute a new automatic method for choosing the best poses for initialization.
Moreover, the clothing in our setting is not constrained: we have to deal with diapers,
onesies and tights. In particular, diapers pose a challenge since their shape largely
deviates from the human body. We handle the unconstrained cloth condition by
segmenting the points corresponding to clothes, and by introducing different energy
terms for clothing and skin parts. Finally, in our work we do not use the appearance
of the surface, but rather use the RGB information to extract 2D landmark estimates
to have individual constraints on the face and hand rotations.

Many more model-based methods have been proposed for estimating 3D body
shape and pose from different data types, namely RGB images [Gua+09; Has+10;
Bog+16; Las+17; Zuf+18; All+17; All+18; Kan+18a; Var+18; Tun+17], multi-
view RGB images [Sto+11; Str+12b; Str+12a; Liu+13; Hua+13; Hua+17; Elh+15;
Elh+17; Rho+18], sparse marker positions [Lop+14], 3D scans [All+03; Hir+11;
Hir+12; Bog+14; Rom+17; Hua+18; PM+17; Zha+17; Wuh+14], and 4D se-
quences (3D over time) [Bog+17].

Adults and infant bodies differ in scale and proportions, which is why simply scaling
an adult body model to infant size will not yield satisfying results, as can be viewed
in Fig. 5.1.

81



Chapter 5 Learning and Tracking the 3D Body Shape of Infants

(a) (b)

Figure 5.1.: (a) Keep it SMPL [Bog+16]. Result of fitting an adult body model to
2D landmarks of an infant image. (b) Keep it SMIL. Result of fitting our learned
infant model to the same image.

5.3. Learning a 3D Infant Body Model from Low
Quality RGB-D Data

Parts of this section were published as [Hes+18] and the extended version [Hes+19b].

In the previous section, we have reviewed methods for the creation of human body
models, and approaches for using a body model to estimate pose (and shape) of
humans from video/depth data.

In order to apply such methods to infant data, we need to create an infant body
model. We have discussed the reasons for the non-existence of a data set of high
quality infant 3D scans in Sec. 2.4, which is the reason why we can not rely on
standard techniques for model creation. Therefore, we present a new method for
learning a statistical Skinned Multi-Infant Linear body model (SMIL) from RGB-D
data of freely moving infants. This means that we want to learn the space of possible
shape deformations of infant bodies as well as the range of possible poses.

Learning a body model from data is a chicken-and-egg problem. We need a model to
register the data to a common topology, and we need registrations to learn a model.
Since no infant body model is available, we first create an initial infant model by
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Figure 5.2.: Skinned Multi-Infant Linear model creation pipeline. We create an
initial infant model based on SMPL. We perform background and clothing seg-
mentation of the recorded sequences in a preprocessing step, and estimate body,
face, and hand landmarks in RGB images. We register the initial model, SMPLB,
to the RGB-D data, and create one personalized shape for each sequence, captur-
ing infant shape details outside the SMPL shape space. We learn a new infant
specific shape space by performing PCA on all personalized shapes, and a prior
on plausible poses from a sampled subset of all poses. Together with the mean
of all shapes as base template, this forms the Skinned Multi-Infant Linear model,
SMIL.

adapting the adult model SMPL [Lop+15] (see Sec. 5.1.2). We then register this
initial model to RGB-D sequences of moving infants (Sec. 5.3.3). To mitigate the
incompleteness of data due to the monocular setup, we accumulate shape informa-
tion from each sequence into one personalized shape (Sec. 5.3.5). Finally, we learn a
new infant shape space from all personalized shapes, as well as a new prior on plau-
sible infant poses from our registrations (Sec. 5.3.6). An overview of the complete
learning pipeline is given in Fig. 5.2.

5.3.1. Data Acquisition and Preprocessing

There are multiple reasons why no public repository of infant 3D scans exists. Pro-
tection of privacy of infants is more strict as compared to adults. The high cost of
3D scanners prevents them from being widespread. Creating a scanning environ-
ment that takes into consideration the special care required by infants, like warmth
and hygiene, requires additional effort. The rapid growth of infants limits the time
frame and the population of possible scanning subjects. Finally, infants can not be
instructed to strike poses on demand, which is usually required in standard body
scanning protocols. RGB-D sensors offer a cheap and lightweight solution for scan-
ning infants, only requiring the sensor and a connected laptop. The data used to
learn SMIL was obtained by setting up recording stations at a children’s hospital
where infants and parents regularly visit for examinations. The acquisition proto-
col was integrated in the doctors medical routine in order to minimize overhead.
In an ongoing study, we are collecting more RGB-D data by taking advantage of
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the lightweight recording setup: we capture the infant’s motions at their homes to
minimize stress and effort for both infants and parents.

Preprocessing. We transform depth images to 3D point clouds using the camera
calibration. To segment the infant from the scene, we fit a plane to the background
table of the 3D point cloud using RANSAC [FB81] and remove all points close to or
below the table plane and apply a simple cluster-based filtering. Further processing
steps operate on this segmented cloud, in which only points belonging to the infant
remain. Plane-based segmentation is not always perfect, e.g., in case of a wrinkled
towel very close to the infant body some noise may remain. However, the registration
methods have shown to be robust to this kind of outliers. The estimated table plane
will be reused for constraining the infants’ backs in the registration stage (Sec. 5.3.3).

In order to avoid diapers and clothing wrinkles in the infant shape space, we segment
the input point clouds into clothing and skin using the color information by adapting
the method from Pons-Moll et al. [PM+17]. We start by registering the initial model
to one scan and perform an unsupervised k-means clustering to obtain the dominant
modes. We manually define the clothing type to be: naked, diaper, onesie long,
onesie short or tights. This determines the number of modes and the cloth prior.
The dominant modes allow to create probabilities for each 3D point to be labeled as
cloth or skin. We transfer the points’ probabilities to the model vertices, and solve a
minimization problem on a Markov random field defined by the model topology. We
transfer the result of the model vertices to the original point cloud, and we obtain
a clean segmentation of the points belonging to clothing (or diaper) and the ones
belonging to the skin. An example of the segmentation result can be seen in the
Data acquisition and preprocessing box of Fig. 5.2. To avoid registering all scans
twice, i.e., a first rough registration to segment the sequence and a second to obtain
the final registration, we transfer the clothing labels from the registration at frame
t− 1 to the point cloud at frame t. In practice this works well, since changes of the
clothed body parts in consecutive frames are relatively small.

The scanned infants can not take a predefined pose to facilitate an initial estimate
of model parameters. However, existing approaches on 2D pose estimation from
RGB images (for adults) have achieved impressive results. Most interestingly, ex-
periments show that applying these methods to images of infants produces accurate
estimates [Hes+19a], cf. Sec. 6.4. In order to choose a “good” candidate frame to
initialize the model parameters (see Sec. 5.3.4), we leverage the 2D body landmarks
together with their confidence values. From the RGB images we extract body pose
[Cao+17] as well as face [Wei+16] and hand [Sim+17] landmarks. We experimen-
tally verify that they provide key information on head and hand rotations to the
registration process which is complementary to the noisy point clouds.
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5.3.2. Initial Model

We manually create an initial model, which we denote as SMPLB, by adapting
SMPL [Lop+15] to infants.
We manually create an infant mesh using makeHuman [Mak] – an open source
software for creating 3D characters – which we need to register to SMPL in order
to transfer its topology. Directly registering SMPL to the infant mesh fails due to
differences in size and proportions. We make use of the fact that meshes exported
from makeHuman share the same topology, independent of shape parameters. We
register SMPL to an adult makeHuman mesh, and describe makeHuman vertices as
linear combinations of SMPL vertices. This allows us to apply this mapping to the
infant mesh and transfer it to the SMPL topology. We then replace the SMPL base
template geometry with the geometry of the created infant mesh.
We further scale the SMPL pose blend shapes, which correct skinning artifacts
and pose-dependent shape deformations, to infant size. We keep the SMPL joint
regressor untouched, since it has shown to work well for infants in our experiments.
SMPL pose priors, i.e., prior probabilities of plausible poses, are learned from data
of adults in upright positions, and therefore can not be directly transferred to lying
infants. We manually adjust them based on observations from our experiments.
Without adjusting these priors, the model tries to explain shape deformations with
pose parameters.

5.3.3. Registration of a Body Model with a 3D Point Cloud

We register the initial model to the segmented point cloud using gradient-based
optimization. The main energy being optimized w.r.t. shape β and pose θ parameters
is

E(β, θ) = Edata + Elm + Etable + Esm + Esc + Eβ + Eθ, (5.15)

where the weight factors λterm, with term ∈ {data, lm, table, sm, sc, β, θ}, which are
associated with Eterm are omitted for compactness. In the following, we explain each
term of the energy in detail.

Data term. The data term Edata consists of two different terms:

Edata = λm2sEm2s + Es2m. (5.16)

Em2s accounts for the distance of the visible model vertices to the scan points. Es2m
accounts for the distance of the scan points to the model surface and
Em2s can be written as

Em2s(M,P ) =
∑

m∈vis(M)
ρ(min

v∈P
||(m, v)||), (5.17)
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(a) (b)

Figure 5.3.: (a) Original RGB image. (b) Weights used for weighted PCA. White
points have a high weight (value of 3), red point have a low weight (value of 1).
The smooth transition is computed using the skin weights W .

where M denotes the model surface and P the scan points. ||(m, v)|| is the Eu-
clidean distance between each visible model point and its closest scan point, and ρ
is the robust Geman-McClure function [GemanMcClure1987]. In the preprocess-
ing stage, P is segmented into the scan points belonging to the skin (Pskin) and the
ones belonging to clothing (Pcloth). The function vis(M) is a function that returns
the visible model vertices of M . The visibility is computed using the Kinect V1
camera calibration and the OpenDR renderer [LB14].
Es2m consists of two terms,

Es2m = λskinEskin + λclothEcloth. (5.18)
Eskin enforces the skin points to be close to the model mesh and Ecloth enforces the
cloth points to be outside the model mesh. The skin term can be written as

Eskin(M,Pskin,W ) =
∑

v∈Pskin

Wvρ(dist(v,M)), (5.19)

where dist(v,M) gives the minimal distance of vertex v to the model mesh surface
M , and Wv are the skin weights associated with v, which are computed using the
method in [Zha+17]. These are used to avoid learning clothing wrinkles in the shape
space (cf. Sec. 5.3.6). We assign low weights to clothing points and high weights to
skin points with smooth transition weights in between to avoid discontinuities at
the clothing borders. Fig. 5.3 displays a sample RGB image and the corresponding
skin weights.
The cloth term is divided into two more terms, depending on cloth points lying
inside or outside the model mesh:

Ecloth = Eoutside + Einside, (5.20)
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with Eoutside applying a Geman-McClure penalty to cloth points lying outside the
body. This is to keep the model from trying to match clothing points that are far
away from the body. At the same time, nearby points are closely matched.

Eoutside(M,Pcloth,W ) =
∑

v∈Pcloth

δout
v Wvρ(dist(v,M)), (5.21)

with δout
v an indicator function, yielding 1 if v lies outside the model mesh, else 0.

The term Einside is used to push the model inside the cloth points. We apply a
quadratic penalty to cloth points lying inside the body mesh, since clothing is not
supposed to penetrate the body at all.

Einside(M,Pcloth,W ) =
∑

v∈Pcloth

δin
v Wvdist(v,M)2, (5.22)

with δin an indicator function, returning 1 if v lies inside the model mesh, else 0.
Only using Einside would favor shrinking the model too much.

Landmark term. Due to the low quality of data, depth only methods can not
reliably capture details like head or hand rotations. However, we can estimate 2D
landmark positions from the RGB images and use them as additional constraints
in the optimization energy. Body landmarks [Cao+17] are used for initialization
(Sec. 5.3.4), whereas face [Wei+16] and hand [Sim+17] landmarks are used in the
registration energy of every frame. In the cases where the face detection [Wei+16]
fails, mostly profile faces, we use the ears and eyes information from the body pose
estimation method [Cao+17]. These help to guide the head rotation in these extreme
cases.
The landmark term Elm is similar to Eq. 2 from [Bog+16], where the distances
between the 2D landmarks estimated from RGB and the corresponding projections
of the 3D model landmarks are measured. Instead of using the body joints, we
only use the estimated 2D face landmarks (nose, eyes outlines, mouth outline and
ears) as well as the hand landmarks (knuckles). We note the set of all markers
as L. The 3D model points corresponding to the above landmarks were manually
selected through visual inspection. They are projected into the image domain using
the camera calibration matrix in order to compute the final 2D distances to the
estimated landmarks.
The landmark term is then

Elm = λlm
∑
l∈L

clρ(lM − lest), (5.23)

where cl denotes the confidence of an estimated landmark 2D location lest, and lM is
the projected model landmark location. All confidences from the different methods
are in the interval [0, 1], making them comparable in terms of magnitudes.
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Table term. The recorded infants are too young to roll over, which is why the
back is rarely seen by the camera. However, the table on which the infants lie, lets
us infer shape information of the back. We assume that the body can not be inside
the table, and that a large part of the back will be in contact with it. The table
energy has two terms: Ein prevents the model verticesM from penetrating the table,
i.e., behind the estimated table plane, by applying a quadratic error term on points
lying inside the table. Eclose acts as a gravity term, by pulling the model vertices
M in the close neighborhood of the table towards the table, by applying a robust
Geman-McClure penalty function to the model points that are close to the table.
We write the table energy term as

Etable = λinEin + λcloseEclose, (5.24)

with

Ein(M) =
∑
x∈M

δin
x (x)dist(x,Π)2, (5.25)

and

Eclose(M) =
∑
x∈M

δclose
x (x)ρ(dist(x,Π)), (5.26)

where the table plane is denoted as Π. δin
x is an indicator function, returning 1 if x

lies inside the table (behind the estimated table plane), or 0 otherwise and δclose
x is

an indicator function, returning 1 if x is close to the table (distance less than 3 cm)
and faces away from the camera, or 0 otherwise.
To account for soft tissue deformations of the back, which are not modeled, we allow
the model to virtually penetrate the table. We effectively enforce this by translating
the table plane by 0.5 cm, i.e., pushing the virtual table back.
The weight of the table term needs to be balanced with the data term to avoid a
domination of the gravity term, keeping the body in contact with the table while
the data term suggests otherwise.

Other terms. Depth data contains noise, especially around the borders. To avoid
jitter in the model caused by that noise, we add a temporal pose smoothness term. It
avoids important changes in pose unless one of the other terms has strong evidence.
The temporal pose smoothness term Esm is the same as in Eq. 21 in [Rom+17] and
penalizes large differences between the current pose θ and the pose from the last
processed frame θ′. The penalty for model self intersections Esc and the shape prior
term Eβ are the same as in Eq. 6 and Eq. 7 in [Bog+16] respectively. Bending
the model in unnatural ways might decrease the data term error, which is why the
pose prior term keeps the pose parameters in a realistic range. The SMIL pose
prior consists of mean and covariance that were learned from 37 K sample poses.
Eθ penalizes the squared Mahalanobis distance between θ and the pose prior, as
described in [Bog+15].
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Optimization. To compute the registrations of a sequence, we start by estimating
an initial shape using 5 frames. In this first step, we optimize for the shape and
pose parameters, β and θ, as well as the global translation t. The average shape
parameters from these 5 frames will be kept fixed and used later on as a shape
regularizer. Experiments showed that otherwise the shape excessively deforms in
order to explain occlusions in the optimization process.

With the initial shape fixed, we compute the poses for all frames in the sequence, i.e.,
we optimize the following energy w.r.t. pose parameters θ and the global translation
t:

E(θ, t) = Edata + Elm + Etable + Esm + Esc + Eθ. (5.27)

Notice that this energy is equal to Eq. 5.15 without the shape term Ebeta, as shape
is kept fixed. We denote Sf the computed posed shape at frame f .

In the last step, we compute the registration meshes Rf and allow the model vertices
v ∈ Rf to freely deform to best explain the input data. We optimize w.r.t. v the
energy

E(v) = Edata + Elm + Etable + Ecpl, (5.28)

where Ecpl is used to keep the registration edges close to the edges of the initial
shape. We use a similar energy term as Eq. 8 in [Bog+15]:

Ecpl(Rf , Sf ) = λcpl
∑
e∈V ′
||(AR)e − (AS)e||2F , (5.29)

where V ′ denotes the edges in the model mesh. AR and AS are edge vectors of the
triangles of Rf and Sf , and e indexes the edges. The results of these optimizations
are the final registrations.

All energies are minimized using a gradient-based dogleg minimization method
[NW06] with OpenDR [LB14] and Chumpy [Lop]. We display registration samples
in Fig. 5.4.

5.3.4. Initializing the Registration Process

In order to find the global minimum, the optimization needs a good initial estimate.
In adult settings, subjects are usually asked to take an easy pose, e.g., T-pose
(extended arms and legs), at the start of the recording. Infants are not able to
strike poses on demand, which is why we can not rely on a predefined pose.

We automatically find an initialization frame containing an “easy” pose by relying
on 2D landmark estimates acquired in the preprocessing stage. We make the as-
sumption that a body segment is most visible if it has maximum 2D length over the

89



Chapter 5 Learning and Tracking the 3D Body Shape of Infants

Figure 5.4.: SMIL Registration result samples. From left to right: RGB, point
cloud, point cloud (other view), point cloud with registered SMIL, rendered
registration.

complete sequence. Perspective projection would decrease 2D body segment length
and therefore visibility. The initialization frame is chosen as

finit = argmaxf
∑
s∈S

len(s, f)c(s, f), (5.30)

where S is the set of body segments, len(s, f) is the 2D length of the segment s in
frame f , and c(s, f) is the estimated confidence of joints belonging to s in frame f .
For finit, we optimize a simplified version of Eq. 5.15, i.e., the initialization energy

Einit = λj2dEj2d + λθEθ + λaEa + λβEβ + λs2mEs2m (5.31)

where Ej2d is similar to Elm with landmarks being 2D body joint positions. Eθ is a
pose prior with high weight λθ, Ea(θ) = ∑

i exp(θi) is an angle limit term for knees
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and elbows and Eβ is a shape prior. Its minimum provides a coarse estimation of
shape and pose which is refined afterwards. In contrast to [Bog+16], we omit the
self intersection term, and add a scan-to-mesh distance term Es2m, containing 3D
information, while [Bog+16] solely relies on 2D information.

5.3.5. Creation of Personalized Shapes

To capture the subject specific shape details, we create one personalized shape from
each sequence, which we do not restrict to the shape space of the model. We unpose
a randomly selected subset of 1000 frames per sequence. The process of unposing
changes the model pose to a normalized pose (T-pose) in order to remove variance
related to body articulation. For each scan point, we calculate the offset normal to
the closest model point. After unposing the model, we add these offsets to create
the unposed point cloud for each of the 1000 frames. Since the recorded infants lie
on their backs most of the time, the unposed clouds have missing areas on the back
side. To take advantage of the table constraint in each frame and sparsly fill the
missing areas, we add virtual points, i.e., points from model vertices that belong to
faces oriented away from the camera, to the unposed cloud. We retain the clothing
segmentation labels for all unposed scan points. We call the union of all unposed
point clouds including virtual points the fusion cloud.

To compute the personalized shape, we uniformly random sample one million points
from the fusion cloud and proceed in two stages. First, we optimize E = Edata + Eβ

w.r.t. the shape parameters β, and keep the pose θ fixed in the zero pose of the
model. We obtain an initial shape estimate that lies in the shape space of the initial
model SMPLB. Second, we allow the model vertices to deviate from the shape space,
but tie them to the shape from the first stage with a coupling term. We optimize
E = Edata + Ecpl w.r.t. the vertices.

The clothing segmentation is also transformed to the unposed cloud and therefore,
the fusion cloud is labeled into clothing and skin parts. These are used in the data
term to enforce the clothing points to lie ouside the model surface and to avoid
learning clothing artifacts in the shape space.

5.3.6. Learning the Skinned Multi-Infant Linear Model Shape
Space and Pose Prior

We compute the new infant shape space by doing weighted principal component
analysis on personalized shapes of all sequences. Despite including the clothing
segmentation in the creation of personalized shapes, clothing deformations can not
be completely removed and diapers typically tend to produce body shapes with an
over-long trunk. The recorded sequences contain infants wearing long-arm onesies,
short-arm onesies, tights, diapers and infants without clothing. These different
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sc 1 sc 2 sc 3

sc 1 sc 2 sc 3

Figure 5.5.: First three shape principal components (sc). Top: SMIL, -2 to +2
standard deviations. Bottom: SMPLB, -0.5 to +0.5 standard deviations. The
first components in the infant shape (SMIL sc 2 and 3) carry variation in trunk
size/length, while the first components of SMPLB show trunk variation mainly in
the belly growing or shrinking.

clothing types cover different parts of the body. As we want the shape space to
be close to the real infant shape without clothing artifacts, we use low weights
for clothing points and high weights for skin points in the PCA. The weights we
use to train the model are: 3 for the scan points labeled as skin (Pskin), 1 for the
scan points labeled as clothing (Pcloth), and we compute smooth transition weights
for the scan points near the cloth boundaries using the skin weights W computed
using the method in [Zha+17]. Fig. 5.3 displays the weights used for the weighted
PCA on a sample frame. We use the EMPCA algorithm1 computing weighted PCA
with an iterative expectation-maximization approach. We retain the first 20 shape
components. We display the first 3 shape components for SMIL and for SMPLB in
Fig. 5.5.

We create a pose data set by looping over all poses of all sequences and only add
poses to the set if the dissimilarity to any pose in the set is larger than a threshold.
The final set contains 47K poses and is used to learn the new pose prior. As the
pose prior can not extrapolate and penalize illegal poses, e.g., unnatural bending of
knees, we manually add penalties to avoid such poses.

The final SMIL model is composed of the shape space, the pose prior, and the base
template, which is the mean of all personalized shapes.

1https://github.com/jakevdp/wpca
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5.4 Evaluation

5.3.7. Manual Intervention

In our method we use manual intervention three times: i) to decide which type
of clothing the infant is wearing (see Sec. 5.3.1); ii) to generate the initial model
SMPLB (see Sec. 5.3.2) and iii) to define illegal poses in the pose prior. The illegal
poses are only defined once and the initial model is no longer used once SMIL is
learned. However, given a new sequence, one still needs to manually define the
type of clothing: short onesie, long onesie, tights, naked or diapers. Each cloth
type defines the corresponding number of color modes and priors to be used. While
this is the only remaining manual step in our method, we believe that a classifier
predicting the clothing type from RGB images could be learned, making our method
fully automatic.

5.3.8. Registration Objective Function Weights

The values of the weights in the energy functions were empirically adjusted to keep
the different terms balanced.
For optimization of the main energy w.r.t. shape and pose parameters (Eq. 5.15)
and the modified energy w.r.t. pose parameters (Eq. 5.27) we use the weight values:
λskin = 800, λcloth = 300, λm2s = 400, λlm = 1, λtable = 10000, λsm = 800, λsc = 1,
λβ = 1 and λθ = 0.15.
For optimization of the energy w.r.t. the model vertices (Eq. 5.28) we use the weight
values: λskin = 1000, λcloth = 500, λm2s = 1000, λlm = 0.03, λtable = 10000 and
λcpl = 1.
For the creation of the personalized shape (Sec. 5.3.5), we use weight values: λskin =
100, λcloth = 100 λβ = 0.5 and λcpl = 0.4.
Finally, for the initialization energy (Eq. 5.31), we use: λj2d = 6, λθ = 10, λa = 30,
λβ = 1000, λs2m = 30000.
We keep the chosen weights constant for all experiments.

5.4. Evaluation

As elaborated in the introduction, gathering high quality 3D scans of infants is
highly unpractical, which is why we quantitatively evaluate SMIL and our initial
model SMPLB on the 37 acquired RGB-D sequences of infants. We record the
infants using a Microsoft Kinect V1, which is mounted 1 meter above an examination
table, facing downwards. All parents gave written informed consent in participating
in this study, which was approved by the ethics committee of Ludwig Maximilian
University Munich (LMU). The infants lie in supine position for three to five minutes
without external stimulation, i.e., there is no interaction with caregivers or toys. The
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Figure 5.6.: Average scan-to-mesh error Es2m in mm w.r.t. the number of shape
parameters for the two models registered to all fusion scans.

recorded infants are between 9 and 18 weeks of corrected age (post term), and their
size range is 42 to 59 cm, with an average of 53.5 cm. They wear different types of
clothing: none, diaper, onesie shortarm/longarm, or tights. All sequences together
sum up to roughly 200K frames, and have an overall duration of over two hours. We
evaluate SMIL with a 9-fold cross-validation, using 33 sequences for training and 4
for testing and we distribute different clothing styles across all sets. We measure
the distance Es2m (cf. Eq. 5.18) of the scan to the model mesh by computing the
Euclidean distance of each scan point to the mesh surface. For evaluation, we
consider all scan points to be labeled as skin, which reduces Eq. 5.18 to Eq. 5.19.
Note that we do not use the Geman-McClure function ρ here, as we are interested
in the actual Euclidean distances.

To compare the SMPLB
2 shape space to the SMIL shape space, we register both

models to each of the 37 fusion scans, using different numbers of shape components.
Results are displayed in Fig. 5.6. We plot average error heatmaps for using the
first 1, 3, 5 and all 20 shape components for the registrations (Fig. 5.7). We observe
lower error for SMIL for smaller numbers of shape parameters, and a nearly identical
error when using all 20 parameters. The small difference between SMPLB and SMIL
poses the question if there is a significant difference between the two at all. A visual
comparison of the registration with all 20 shape components shows that SMPLB
shapes display more adult-like features, like a more pronounced waisting, a more
“muscular” chest and shoulder region, as well as a smaller (fore)head area. We show
some examples in Fig. 5.8.

2Note: SMPLB is not the SMPL model [Lop+15], but our initial infant model, registered to the
data using our method.
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1 sc 3 sc 5 sc 20 sc

1 sc 3 sc 5 sc 20 sc

Figure 5.7.: Average error heatmaps for SMIL and SMPLB on fusion clouds for
different numbers of shape components (sc). Top: SMIL. Bottom: SMPLB. Blue
means 0 mm, red means ≥ 10 mm.

To evaluate how well the computed personalized shapes and poses explain the input
sequences, we calculate Es2m for all 200K frames. SMIL achieves an average scan-
to-mesh distance of 2.51 mm (SD 0.21 mm), SMPLB has an average Es2m of 2.67
mm (SD 0.22 mm). This is in the range of Bogo et al. [Bog+15], who report an
average error between 2.45mm (static scans) and 3.23 mm (arbitrary motions) on
adults, captured with a Kinect V2.
Due to the lack of ground truth data for evaluation of infant pose correctness, we
perform a manual inspection of all sequences to reveal pose errors. We distinguish
between “unnatural poses” and “failure cases”. Unnatural poses contain errors in
pose, like implausible rotations of a leg (cf. Fig. 5.9 top row), while the overall
registration is plausible, i.e., the 3D joint positions are still at roughly the correct
position. Failure cases denote situations in which the optimization gets stuck in a
local minimum with a clearly wrong pose, i.e., one model body part registered to
a scan part which it does not belong to (cf. Fig. 5.9 bottom row). We count 16
unnatural leg/foot rotations lasting 41 seconds (= 0.54% of roughly 2 hours) and
18 failure cases (in 7 sequences) lasting 49 seconds (= 0.66% of roughly 2 hours).
To evaluate how well SMIL generalizes to older infants, we register the model to
25 sequences of infants at the age between 21 and 36 weeks, at an average of 26
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(a) (b)

(c) (d)

Figure 5.8.: Visual comparison of four SMPLB (left sides) and SMIL (right sides)
registration samples with all 20 shape components. Most visually significant dif-
ferences occur at waist, chest, shoulders and head.

weeks. The resulting average scan to mesh distance is 2.83 mm (SD: 0.31 mm).
With increasing age, infants learn to perform directed movements, like touching
their hands, face, or feet, as displayed in Fig. 5.10. This makes motion capture even
more challenging, as standard marker-based methods would not be recommended
because of the risk of infants grabbing (and possibly swallowing) markers.

Failure cases. The most common failure is a mixup of feet, i.e., left foot of the
model registered to the right foot of the scan and vice versa. Despite our energy
having the interpenetration penalty Esc, we observe a few cases where the legs
interpenetrate, as in the bottom row in Fig. 5.9. The registration of all sequences is
time consuming (between 10 and 30 seconds per frame), so rerunning the full 200K
registrations many times to optimize the parameters is not feasible. The energy
term weights are manually selected in order to balance the different terms, and by
visually inspecting the results of some sequences. Further manual adjustment of
the Esc weight could fix these rare cases. In the example in the top row of Fig. 5.9,
the right knee is twisted in an unnatural way after the right foot was completely
occluded. When the foot is visible again, the pose recovers (knee twisted for 5-6
seconds). Similar to the first failure case, a higher weight on the pose prior would
prevent such cases, but finding the perfect weight which completely forbids all illegal
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Figure 5.9.: Pose errors. Top: registration result takes an unnatural pose. Bottom:
Failure case sample. Right model leg is registered to left scan leg, and vice versa.
From left to right: RGB image, 3D point cloud (rotated for improved visibility),
overlay of point cloud and registration result, registration result, rendered result
from same viewpoint as RGB image.

poses while allowing all legal poses would require a significant engineering effort.

There is no definition of how much detail or accuracy in capturing motions is nec-
essary for medical motion analysis. We argue that SMIL captures sufficient detail
if expert’s GM ratings of original RGB videos are the same as on rendered SMIL
alignment sequences of the same recording.

5.5. General Movement Assessment Case Study

We conduct a case study on GMA to show that SMIL captures enough information
to allow medical assessment. Three trained and certified GMA-experts perform
GMA in different videos. We use five stimuli: i) the original RGB videos (denoted
by Vrgb, cf. Fig. 5.4 left), and ii) the synthetic alignment videos (Vreg, cf. Fig. 5.4
right). For the next three stimuli we use the acquired poses of infants, but we
animate a body with a different shape, namely iii) a randomly selected shape of
another infant (Vother), iv) an extreme shape producing a very thick and large baby
(Vlarge), and v) the mean shape (Vmean). We exclude three of the 37 sequences,
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(a) (b) (c) (d)

Figure 5.10.: Older infant in very challenging pose. (a) RGB image, (b) 3D point
cloud (rotated for improved visibility), (c) overlay of point cloud and SMIL reg-
istration result, (d) rendered SMIL registration result.
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Figure 5.11.: Results of GMA case study. Percentage of ratings of synthetic se-
quences, generated using SMIL, that agree with the reference ratings R1Vrgb (left)
and R2Vrgb (right), respectively. V{reg,other,large,mean} denotes different stimuli.

as two are too short and one has non-nutritive sucking, making it non suitable for
GMA. As the number of videos to rate is high (34*5), for iv) and v) we only use 50%
of the sequences, resulting in 136 videos. To avoid recognition of infants from RGB
videos leading to any scoring bias, we let experts first rate all randomly shuffled
synthetic videos, and then all original RGB videos. Instead of having the experts
classify motion quality into one of standard GMA classes definitely abnormal (DA),
mildly abnormal (MA), normal suboptimal (NS), and normal optimal (NO) [HA04],
we augment these four classes with a one to ten scale in order to make a more fine
grained evaluation possible. Scores 1-3 correspond to DA, 4-5 to MA, 6-7 to NS,
and 8-10 to NO. We consider two ratings with an absolute difference ≤ 1 to agree,
and otherwise to disagree.
Rater R1 is a long-time GMA teacher and has worked on GMA for over 25 years, R2
has 15 years experience in GMA, and R3 was certified one year ago, but lacks clinical
routine in GMA. Average of GMA ratings (and standard deviation) for R1 is 4.7
(1.4), for R2 4.0 (1.9), and for R3 4.9 (2.3). The agreement on original RGB ratings
Vrgb between R3 and the more experienced raters is lower than 50%, while R1 and
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R2 agree on 65% of the ratings. R3 is the treating physician of the infants in the data
set. Therefore, it is very probable that he is biased towards the medical history of
infants since he recognizes them from the RGB videos. The synthetic videos could
to overcome this bias, but results do not show a significant agreement between R3’s
and the other expert’s ratings of synthetic sequences. We (and R3 himself) explain
the poor results with R3’s lack of experience and regular training in GMA. The low
agreement further stresses that GMA is challenging and its automation important.
Due to the high rater variability we further focus on ratings of experienced raters R1
and R2. In Fig. 5.11, we present rating differences between synthetic and reference
sequences. Each rater is compared to her own Vrgb ratings as a reference. R1Vreg
ratings agree on 91% of the reference ratings, whereas R2 achieves an agreement
rate of 79%. The agreement decreases more (R2) or less (R1) when the motions are
presented with a different body shape. By extending the agreement threshold to
≤ 2, the percentages of all sequences become very similar.

In our case-study, we observe that R1’s and R2’s ratings only agree on ≈ 65% of
the original RGB videos Vrgb although both are very experienced. In Fig. 5.12 we
present the histogram of signed differences between the ratings of all raters. In the
first row, we show the differences between R1 and R2. We can see that the peak
of what looks like a normal distribution is centered at one instead of zero. Our
interpretation is that R2 has the same tendency as R1, but R2’s ratings are shifted
by 1. The comparison of the more experienced raters with R3 shows a more diffuse
distribution of differences, indicating that R3’s ratings are more inconsistent.

We further analyze the signed distances between the ratings of the original RGB
videos Vrgb and the different synthetic sequences of R2. Interestingly, we observe
that Vreg, Vother and Vmean have in general healthier ratings, whereas Vlarge have less
healthy ratings, as shown in Fig. 5.14.

5.6. Discussion

Why does it work? Even though each RGB-D frame is a partial observation of the
shape, the motions in the different frames of a sequence reveal previously hidden
body parts. Moreover, even though the backs of the infants are rarely visible,
we can still faithfully infer where the infants’ backs are by taking into account
the background table constrains. This lets us accumulate shape information over
sequences. In addition, we leverage 2D pose estimation from RGB in two ways:
i) it allows us to add landmark constraints to guide the model where depth only
approaches fail and ii) allows us to find a good initialization frame and circumvent
the need of predefined poses.

Why has it not been done before? Most previous work has been done on adults, who
can be instructed and 3D scanned much more easily. Recording infants poses more
challenges (see Sec. 5.3.1). As our setup only relies on a low-cost RGB-D camera and
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Figure 5.12.: Histogram of the signed differences between R2 and R3 for the orig-
inal RGB videos Vrgb.

a laptop, we can capture infants with a great flexibility, for instance at a children’s
hospital that parents and children are visiting anyway. The creation of an initial
model was not straightforward. Thanks to the flexibility of the SMPL model, we
were able to adapt it to infants and get a starting point for capturing real infant
shapes.

Conclusion. We contribute a method for learning a body model from RGB-D data
of freely moving infants. We show that our learned Skinned Multi-Infant Linear
model factorizes pose and shape and achieves metric accuracy of 2.5 mm. We
further applied the model to the task of medical infant motion analysis. Two expert
GMA raters achieve a scoring agreement of 91%, respectively 79%, when comparing
the assessment of movement quality from standard RGB video and from rendered
SMIL registration results of the same sequence. Our method is a step towards a fully
automated system for GMA, to help early-detect neurodevelopmental disorders like
cerebral palsy.

Limitations and Future Work. The model can neither produce single finger/toe
movements, nor facial expressions. We plan to add this functionality, in a way
similar to [Rom+17] and [Li+17]. The question will be whether or not the adult
finger movements and adult facial expressions can be simply transferred to the infant
model, or if we will have to learn them from infant data.
In our registration results, we found few cases of unusual neck twists. The SMIL
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Figure 5.13.: Histograms of signed differences between R1’s ratings of Vrgb and
R1’s ratings of Vreg, Vother, Vmean and Vlarge. The differences are clearly centered
around zero and show no significant bias.

neck seems to be longer than the average infant neck, which is why it is sometimes
twisted to achieve a compression to match the pose in the data. These cases are
mostly when the infant rotates the head to the side, which in general differs from
the (automatically selected) initialization poses, which are mostly frontal. Since
we calculate the shape for each sequence on the first 5 frames starting from the
initialization frame, it may have not picked up enough information for side views.
The model then tries to explain the head shape in the scan, which possibly deviates
from the calculated shape, by adjusting the neck pose parameters.
Infant clothing, especially diapers, largely deviates from the body, and SMIL does
not explicitly model clothing. When fitting the model to clothed infant data, it
deforms to explain the clothing. Our clothing term dampens the effect, but can not
completely prevent it. It may be necessary to learn a model of clothing, possibly
by recording the same infants with and without clothing, in order to infer the real
body shape from the clothed shape.
SMIL was learned from data of infants up to 4 months of age, since this is the relevant
age for GMA. From our experiments, we observe that the infant model seems to
generalize to older infants, but at some point, the difference in body proportions
will become too apparent. Nonetheless, the proposed model and methods can be
used to learn models of older infants step by step, to finally close the gap between
the infant model and existing adult models.
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Figure 5.14.: Histograms of signed differences between R2’s ratings of Vrgb and
R2’s ratings of Vreg, Vother, Vmean and Vlarge. Ratings for Vlarge are less “healthy”,
while ratings for the other shapes are more “healthy”. The different shapes seem
to influence R2’s ratings.

A different issue with older infants is that they start to turn into prone position.
When they turn their back towards the camera, arms and hands are often used
to support the body, and are therefore hidden below the body. This makes them
invisible to the camera and therefore impossible to track. One could try to guess
the position/configuration from prior knowledge about plausible positions. However,
our focus in this thesis lies on the general movement assessment, which is only valid
for analyzing spontaneous, i.e., non-directed, movements. These are generally shown
until the age of roughly four months, at which infants usually are not able to turn
yet.
We believe that our methods are applicable for tracking older children, who are
turning and/or crawling, with an adapted version of the model. In that case, a
change of setup, i.e., a change of camera position or the use of multiple cameras,
may be necessary to resolve complete and enduring occlusions of limbs.
Our plane-based segmentation method assumes a constrained setup, with a single
infant lying on a flat surface, which generally can be easily constructed in doctor’s
offices. If the scene becomes more cluttered, or a person interacts with the infant,
the simple segmentation approach may not be sufficient and one may have to rely
on more sophisticated methods for segmentation, e.g., [He+17]. The combination
of RGB and depth information should simplify the task.
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The method does not run in real-time. Some applications, like monitoring patients
for seizure detection, require processing the incoming data in real-time in order to
raise an alarm in case of emergency. For motion analysis, the real-time constraint
is not essential. Although a low run-time is always desirable, we put the focus on
quality of registration and not on speed.
Although failure cases are very rate, they still exist, and may harm the automated
prediction of GMA scores. Since one can not guarantee these failures to be com-
pletely eliminated, we will strive to detect and preferably correct them, e.g., like
[Ari+18a].
In this work we have not learned pose-dependent shape deformations for infants, and
we reused the scaled down pose blend shapes of SMPL. While these provide sufficient
numerical accuracy, we will learn infant pose blend shapes to further increase the
realism of SMIL.
We have not used deep learning for estimating pose (and shape), although it revo-
lutionized many areas of computer vision and consistently improves state of the art
results. However, deep neural networks require large sets of training data. With the
creation of SMIL it has become possible to create large sets of synthetic data from
real poses and real shapes. It is possible to animate each shape with all captured
poses to increase the amount of data, or to sample from the shape space, or to in-
terpolate poses, etc. This will allow us to train deep neural networks with realistic
infant data in the future.
In the next chapter, we describe the creation of a realistic data set using SMIL for
the evaluation of infant motion tracking.
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6. Moving INfants In RGB-D
(MINI-RGBD) Data Set

In Sec. 2.4, we identified a lack of evaluation in the literature on infant motion
capture methods, which we trace back to the non-existence of public infant data
sets. The SMIL model described in the previous chapter allows us to create realistic
RGB-D data with accurate ground truth joint positions. In this chapter, we describe
the methods to generate the data set and provide baseline experiments. This method
could be applied at a larger scale to generate enough training data for deep learning
approaches.
Parts of this chapter were published as [Hes+19a].
An RGB-D data set for the evaluation of infant pose estimation approaches needs
to fulfill several requirements. It has to cover (i) realistic infant movements, (ii)
realistic texture, (iii) realistic shapes, and (iv) precise ground truth, while (v) not
violating privacy. Our presented data set fulfills all of these requirements.
The data set creation procedure can be divided into two stages (see Fig. 6.1). First,
we capture the shape and pose of infants using SMIL, and map the captured real
infant movements to newly generated realistic textured infant shapes. Second, we
render realistic RGB and depth images from the created movement sequences, and
generate accurate 2D and 3D ground truth joint positions (Sec. 6.2). Two samples are
displayed in Fig. 6.2, and an overview of all sequences can be found in Appendix B.
The capturing of shape and pose is achieved by registering SMIL to 12 RGB-D
sequences of moving infants.

6.1. Extracting the Body Texture from RGB-D
Sequences

We follow the protocol from Sec. 5.3.3 to register SMIL to point clouds created from
RGB-D sequences, which we also denote as scans.
We extend the previous method by generating one texture for each sequence, similar
to [Bog+15] and [Bog+14]. We create a texture map by finding closest points from
textured point cloud and registered model mesh, as well as a corresponding normal
map for each frame. We merge 300 randomly selected texture maps from each
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Figure 6.1.: Overview of data set creation pipeline. SMIL body model [Hes+18]
is aligned to real infant RGB-D data. Subsets of shapes and textures are used
for generating realistic, privacy preserving infant bodies. We animate the new
“synthetic infants” with real movements (poses) from the registration stage. We
render RGB and depth images, and create ground truth 2D and 3D joint positions
to complete our new data set.

sequence by averaging texture maps that are weighted according to their normal
maps, with higher weights for points with normals directed towards the camera.

Infants tend to lie on their backs without turning, which is why the merged texture
maps have blank areas depending on the amount of movement in the sequence. We
fill the missing areas by expanding the borders of existing body areas. To preserve
the privacy of the infants we do not use textures from single sequences, but generate
average textures from subsets of all textures. The resulting texture maps (sample
displayed in Fig. 6.3 (a)) are manually post-processed by smoothing borders and
visually enhancing areas of the texture for which the filling did not create satisfying
results. We also create average shapes from subsets of shapes from the registration
stage to create a variety of realistic body shapes, as shown in Fig. 6.3 (b).

6.2. Rendering RGB and Depth Images with Ground
Truth Body Joint Positions

For each of the 12 sequences, we randomly select one of the average shapes and one of
the average textures. We map the pose parameters of the sequence, obtained in the
registration stage, to the new shape, and animate textured 3D meshes of realistic,
yet artificial infants. Based on plane parameters extracted from the background
table of the real sequences, we add a plane to simulate the background. We texture
the plane with one of various background images (e.g., examination table, crib,
changing table) to account for background variation. We use OpenDR [LB14] to
render RGB and depth images from the meshes and backgrounds. We select 1000
consecutive frames from each sequence where the infant is the most active. The
rendered depth image is overly smooth, which is why we add random noise of up to
±0.5 cm to simulate noise levels of depth sensors. We use camera parameters similar
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(a) (b) (c)

(d) (e) (f)

Figure 6.2.: Two samples from MINI-RGBD data set. (a) and (d): RGB image.
(b) and (e): point cloud created from depth image. (c) and (f): ground truth
skeleton. Viewpoint for (b), (c), (e), and (f) is slightly rotated to side.

to Microsoft Kinect V1, which is the most frequently used sensor in approaches in
Sec. 2.3.3, at a resolution of 640 * 480, at 30 frames per second. The distance of
the table to the camera is roughly 90 cm for all sequences. The 3D joint positions
are directly regressed from the model vertices (see Fig. 6.2 (c) and (f)). To provide
2D ground truth, we project the 3D joints to 2D using the camera calibration. For
completeness, we add depth values for each joint. To simplify data set usage, we
provide a segmentation mask discriminating between foreground and background.

6.3. Data Set Summary

We generate 12 sequences, each with different shape, texture, movements, and back-
ground, and provide 2D and 3D ground truth joint positions, as well as foreground
segmentation masks. Movements are chosen to be representative of infants in the
first six months of life, and we divide the sequences into different levels of diffi-
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(a) (b)

(c) (d)

Figure 6.3.: (a) Sample of generated texture. (b) Generated shapes in T-pose. (c)
Plotted joint positions from an “easy” sequence. Hand positions shown in light
and dark green. Foot positions in red and blue. (d) Hand and foot positions for
a “difficult” sequence. Color coding as in (c).

culty (see Fig. 6.3 (c) and (d) for examples): (i) easy: lying on back, moving arms
and legs, mostly besides body, without crossing (sequences 1-4), (ii) medium: slight
turning, limbs interact and are moved in front of the body, legs cross (sequences
5-9), and (iii) difficult: turning to sides, grabbing legs, touching face, directing all
limbs towards camera simultaneously (sequences 10-12).

Different approaches utilize different body representations with different underlying
skeletons. To properly compare these approaches, we add one frame in T-pose
(extended arms and legs, cf. Fig. 6.3 (b)) for each sequence to calculate initial offsets
between estimation and ground truth that can be used to correct for skeleton offsets.

The limitations of the underlying SMIL model include finger motions, facial expres-
sions and hair. These are not represented by the model, which is why the hand is
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fixed as a fist, and the face has a neutral expression.

6.4. Baseline Evaluation

We provide baseline evaluation for 2D pose estimation from the RGB part of our
MINI-RGBD data set. The evaluation of 3D pose estimation from the RGB-D data
can be found in Sec. 4.2.3 and Sec. 4.3.7.

2D Pose Estimation in RGB Images. We use a state-of-the-art adult RGB pose
estimation system from OpenPose library1 [Cao+17; Ope] as baseline for evaluation
of the RGB part of the data set. To account for differences in skeletons between
OpenPose and SMIL, we calculate joint offsets for neck, shoulders, hips, and knees
from the T-pose frame (Sec. 6.3), and add these offsets to the estimated joint posi-
tions in every frame.

Error metrics. We apply the PCKh error metric from [And+14], which is com-
monly used for the evaluation of pose estimation approaches [Cao+17; Wei+16;
Haq+16; Sci+17]. It denotes the percentage of correct keypoints with the threshold
for correctness being defined as 50% of the head segment length. The SMIL model
has a very short head segment (head joint to neck joint, cf. Fig. 6.2, (c) and (f)),
which is why we present results using the full head segment length (PCKh 1.0), as
well as two times the head segment length (PCKh 2.0) as thresholds. The head
segment length for each sequence is calculated from the ground truth joint positions
in the T-pose frame. Average 2D head segment length over all sequences is 11.6
pixels. We calculate the PCKh values for each joint for each sequence, and average
numbers over all sequences, respectively over all joints.
OpenPose estimates 15 joint positions (nose, neck, shoulders, elbow, hands, hips,
knees, feet) that we map to corresponding SMIL joints. Unlike SMIL, OpenPose
estimates the nose position instead of head position. We add the model vertex of
the tip of the nose as additional joint instead of using SMIL head joint.

Results. We display average PCKh per joint in Fig. 6.4 (a), and average PCKh per
sequence in Fig. 6.4 (b). The mean average precision, i.e., the average PCKh over
all joints and sequences, for PCKh 1.0 is 88.1% and 94.5% for PCKh 2.0. PCKh
rates are very consistent over most body parts, with a slight decrease of PCKh 1.0
for lower limb joints, especially knees. Results for some body joints (e.g., nose, neck,
shoulders, Fig. 6.4 (a)) as well as for some sequences (1, 2, 3, 6, 7, 11, Fig. 6.4 (b))
are close to perfect (according to the error metric). We observe largest errors when
the limbs are directed towards the camera.

1https://github.com/CMU-Perceptual-Computing-Lab/openpose
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OpenPose has reportedly obtained impressive results on pose estimation of adults
[Cao+17], and confirms these on our synthetic infant data set. Being trained on real
images of unconstrained scenes, the results further validate the high level of realism
of our data set, but also show how challenging the data is, and that there is still
room for improvement, e.g., sequences 9, 10, 12.
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(a)

(b)

Figure 6.4.: RGB evaluation. Results for 2D pose estimation from OpenPose li-
brary. (a) Percentage of correct keypoints in relation to head segment length
(PCKh) per joint. For PCKh 1.0 a keypoint is considered correct if the distance
to ground truth is smaller than one time the head segment length, and for PCKh
2.0 if the distance is smaller than twice the head segment length. (b) PCKh per
sequence. Cyan colored diamonds depict the mean value.
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7. Towards Automated Medical
Motion Analysis

In computer vision literature, the term motion analysis often is used as a synonym
for recognizing an activity class from videos [Moe+06; Ye+13]. In our context,
motion analysis refers to assigning a label or number that is representative of a
medical assessment to a movement sequence, e.g., CP vs. no CP, or a GMA rating
from one to ten.

Generally, an intermediate step between capturing motions and training a classi-
fier/regressor is the calculation of motion features on which the training is based.

Extracting features from motion sequences for motion analysis can be approached
in different ways.

• Human interpretable measurements: These include measurements like joint
angles, velocities, or range of motion. These can be easily understood by
humans, and statistics over these measurements can describe and summarize
motion sequences.

• Features that aim to resemble relevant motion properties: These features rely
on observations of specific phenomena and the assumption that these are med-
ically relevant. Features previously used are, e.g., a stereotypy score [Kar+12],
jerk index [Kan+14], or frequency analysis [Rah+15a].

• Learned features: Machine learning techniques can be used for embedding a
sequence of captured motions in a latent space to separate different kinds of
motions. These features are hard to interpret since they are automatically
learned. The learning is guided by an objective function, which e.g. tries to
group similar motion patterns close to each other in the latent space and to
separate dissimilar patterns.

In the next section, we show how human interpretable motion parameters can be
used to distinguish between different diseases. These parameters may provide quan-
titative information for doctors to back up a diagnosis or to measure progress over
time. Researchers have tried using such parameters for CP detection, with varying
success. One of the problems in CP detection is that it can have very diverse symp-
toms and different levels of severity. A parameter that seems valid for detecting CP
in one infant may not work for another.
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7.1. Human-interpretable Motion Parameters

Parts of this section were published as [Hes+17b].
We calculate motion parameters in this section from the body poses captured with
the method we described in Sec. 4.3. The benefit of motion parameters introduced in
this section is two-fold. First, the parameters provide objective measurements and
can serve as an assistive tool for neurological examination. Second, they describe
movement characteristics with the capacity of highlighting possible impairments and
can therefore automatically detect infants in need of further examination.

7.1.1. Measurement-based Motion Parameters

The parameters are chosen to describe range, variability and symmetry of motion of
arbitrary body parts. We conduct a preliminary study to show that captured mea-
surements can provide helpful information to distinguish between different disease
patterns. We measure values that depend on single body joints:
• velocity
• acceleration
• distance traveled
• distance to the table
• volume covered: volume of convex hull of joint positions of all frames
• percentage of frames in which motion is present (velocity > threshold)

Parameters related to head rotation are:
• number of head rotations
• percentage of frames in which the head is rotated towards the left/right side
• mean and standard deviation of head rotation angles

Measurements depending on multiple joints are:
• angles
• ratio between parameter values for left/right body side
• percentage of frames in which hands/feet/left side/right side/all extremities

move together
We calculate motion parameters based on the above measurements. The parameter
for traveled distance of an extremity d_trextr is the sum of Euclidean distances
between joint positions in consecutive frames per minute:

d_trextr = 1
t

n∑
i=2
||xi − xi−1||, (7.1)
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where extr denotes the extremity, t is the duration of the recording, xi the 3D joint
position in frame i, and n the number of frames in the recording. || · || denotes the
Euclidean norm. The parameter describing the change in distance to the table of
an extremity d_tableextr is defined by

d_tableextr = 1
t

n∑
i=2
||dist(xi , tp)− dist(xi−1 , tp)||, (7.2)

with dist(xi , tp) specifying the distance of the joint position of the extremity to
the table plane in frame i. The ratio ratio_lr(par) of a parameter par denotes
the proportion of parameter values for joints of the left body side, compared to
parameter values of the right side. This describes the factor by which the parameter
value for one body side is larger than the value for the other side. A value of one
implies symmetry of parameters for both body sides.

ratio_lr(par) = max(par(l), par(r))
min(par(l), par(r)) , (7.3)

where par(s) specifies the summed values of parameter par for left l and right r
body side.

7.1.2. Clinical Study for Evaluation of Motion Parameters

We present 6 sequences of 5 infants, lying in supine position without external stim-
ulation. All of them were awake and in a cooperative mood at the time of record-
ing. Ethical approval (Ludwig-Maximilians-Universität Munich) and parents’ writ-
ten consent was obtained prior to recording. A subset of 9 parameters is selected
from the full parameter set (Sec. 7.1), and evaluated on the recorded sequences
(Fig. 7.1, Fig. 7.2, and Fig. 7.3).
Definitely healthy patient (DH_1) is a former preterm infant, born at 35+4
weeks of gestational age (WGA). At the time of recording, the patient is 14 weeks
of corrected age. The patient shows head and trunk position close to midline,
visually exploring the environment with normal head movements to both sides. All
limbs move independently from each other and there are no stereotypical movement
patterns. Fidgety movements are observed, representing age-corrected adequate
gross motor development (RGB video - data not presented). Fig. 7.1 (DH_1) shows
comparable spontaneous activity of left and right upper and lower extremities with
ratios close to 1. Head rotation intensity and frequency is unremarkable (Fig. 7.2).
The amount of movement is higher in lower than in upper limb (Fig. 7.3).
High Risk patient 1a (HR_1a) is a former preterm infant, born at 25+2 WGA.
At the time of recording the patient is 12 weeks of corrected age. Head and trunk
are in midline position with a slight rotational predominance to the right. No sig-
nificant symptoms of abnormal gross motor development besides a mild positional
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Figure 7.1.: Evaluation of motion parameters. Ratios between body joints for
left and right body side for parameters distance to table (ratio_lr(d_table)), dis-
tance traveled (ratio_lr(d_tr)), and volume covered (ratio_lr(volume_covered)).
DH_1 denotes a sequence of a definitely healthy infant, recordings HR_1a
and HR_1b stem from the same infant from a high-risk population at differ-
ent ages. DA_1-3 denotes recordings of infants with definitely abnormal motor
development.

asymmetry of head rotation towards the right side are observed in RGB video (not
presented). Fig. 7.1 (HR_1a) displays no significant lateralization of spontaneous
arm or leg movements. Head rotational parameters are without remarkable differ-
ences (Fig. 7.2), and a high amount of motion in all limbs represents a very active
baby (Fig. 7.3).

High Risk patient 1b (HR_1b) is the same patient as HR_1a, but at follow-up
4 weeks later. The previous preference of head rotation to the right has decreased
to almost midline (RGB video - not presented). Fig. 7.1 (HR_1b) displays a mild
lateralization of volume covered by spontaneous movements comparing left and right
sides. Head movements have increased (Fig. 7.2), while limb movements have de-
creased compared to the prior analysis, with again predominance of the lower limbs,
representing a less active infant (Fig. 7.3).

Patient 1 with definitely abnormal motor development (DA_1) is a term-
born infant, who is 14 weeks of age at the time of recording and has an obvious
cognitive impairment. A neurological examination resulted in diagnosis of a genetic
syndrome including muscle weakness and muscular hypotonia. The infant shows an
apparent lack of head rotation which is caused by the weakness of neck muscles and
lack of interest in the environment (Fig. 7.2, DA_1). The head cannot be held in
the truncal plane, leading to spontaneous positioning to the left (RGB video - not
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Figure 7.2.: Evaluation of motion parameters. Head rotation parameters per
recording. Standard deviation of angles in degrees, number of head rotations
per minute. DH_1 denotes a sequence of a definitely healthy infant, recordings
HR_1a and HR_1b stem from the same infant from a high-risk population at
different ages. DA_1-3 denotes recordings of infants with definitely abnormal
motor development.
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Figure 7.3.: Evaluation of motion parameters. Percentage of frames in which mo-
tion is present, indicated for each of the extremities. DH_1 denotes a sequence
of a definitely healthy infant, recordings HR_1a and HR_1b stem from the same
infant from a high-risk population at different ages. DA_1-3 denotes recordings
of infants with definitely abnormal motor development.
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presented). The asymmetrical tonic neck reflex limits the mobility, especially of the
right arm, and causes a large difference in volume covered by left and right body
side (Fig. 7.1). Weakness is predominantly present in the head, neck, and arms,
while the legs are able to lift off the ground much easier, with again asymmetric
distribution (Fig. 7.3).

Patient 2 with definitely abnormal motor development (DA_2) is a term
born infant with generalized hypotonia due to a genetic syndrome, who is 34 weeks
of age at the time of recording. The most obvious impairment is muscle hypotonia,
but the infant has a good (age-adequate) mental state. Similar to DA_1, there is a
significant lateralization in spontaneous movements of the upper limbs (Fig. 7.1). In
contrast to DA_1, head movement is much better, as neck strength is sufficient to
rotate the head, and the patient is interested in visually exploring the environment
(Fig. 7.2). A predominance of motions of the lower limbs and the left body side is
indicated in Fig. 7.3, but with a remarkably reduced amount of motion compared to
DA_1.

Patient 3 with definitely abnormal motor development (DA_3) is a former
preterm infant, born at 23+4 WGA. At the time of recording, the patient is 13 weeks
of corrected age. Cranial MRI demonstrated intracranial hemorrhage III◦ on both
ventricles, as well as signs of bilateral periventricular white matter lesions, leading
to the diagnosis of bilateral spastic cerebral palsy. The muscle tone is generally
increased on both upper and lower limbs. Head control is reduced, but possible,
while the trunk is hypotonic. The patient is not able to open his hands actively and
shows significantly reduced spontaneous, and stereotypical, generalized movement
patterns of the upper and lower limbs (RGB video - not presented). Although there
is hardly any spontaneous activity of the patient (Fig. 7.3), there are no significant
differences in movement distance and volume covered when comparing left and right
upper limb (Fig. 7.1). Head rotations are within normal ranges (Fig. 7.2).

7.1.3. Discussion

The motion parameters in this section may provide helpful information to backup
doctors’ observations with measurements. The number of subjects is too small to
derive general assumptions, or to consider training a classifier on such diverse data.
We showed that measured motions can visualize differences between diseases, but
also provide quantitative measures, that could be used to track the development of
patients over time.

As of today, clinical assessments have been designed with human observational skills
in mind. Now that a method is available to reliably measure motion over time,
assessments relying on such measurements could be developed.
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7.2. Towards Automated General Movement
Assessment

Medical knowledge allows doctors to define parameters that are relevant for diag-
nosing or classifying a disease. Classical medical assessments judge the execution
of different predefined tasks. These tasks are defined in a way that an observer can
either classify the performance in a repeatable manner, e.g., the Movement Assess-
ment Battery for Children – second edition [Hen+07], or that the time duration to
complete the given task can be used as performance measure, e.g., the Timed Up and
Go test [PR91]. A good assessment provides general applicability, repeatable results,
and strives for invariance to human perception. The advantage of such assessments
is the option of comparing the results to a healthy population as a reference.
We have described the general movement assessment in detail in Sec. 2.2, but briefly
recap the most important properties that will be relevant in this section. GMA is
performed up to the age of four months, before infants start using directed move-
ments. Infants can not follow instructions, which eliminates the option to use pre-
defined tasks. Instead, GMA assumes that, when the infant is in an active, wakeful
state, the brain continuously generates seemingly random movements. The gen-
erated patterns show less variation, i.e., the infant has a smaller repertoire of
movements, and complexity if there is an impairment of the brain [HA04]. GMA
assesses the quality of spontaneous infant movements with respect to these two
properties that aim to describe the relevant features for visual Gestalt perception.
The movement quality of a recording is assigned to one of the classes1 definitely ab-
normal (DA), mildly abnormal (MA), normal suboptimal (NS), or normal optimal
(NS). The class DA is associated with a high risk of CP [HA04].
In this section, we present a method using a motion sequence to predict if an infant
shows definitely abnormal motion quality and therefore has a high risk of CP. To
achieve this, we divide motion sequences into small snippets of motion words, which
we embed in a learned feature space. The feature space groups motion words based
on similarity of motion and GMA rating. This allows us to evaluate the quality of
motion words from a new sequence based on their location in feature space. The
statistics of all motion words of a sequence enable us to calculate complexity and
repertoire features to classify the sequence as either DA or not-DA.

7.2.1. Related Work – Automated General Movement
Assessment

Researchers have translated these subjective descriptions of movement quality into
mathematical formulations [Mei+06; Kar11]. They define motion features similar to

1Over the course of this thesis, we have used the terms “GMA rating” and “GMA class” relatively
interchangeably. In this section, we will use the term “GMA rating” to refer to a 1-10 scale,
and the term “GMA class” to refer to one of the classes DA, MA, NO, NS.
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the description of GMA in literature, e.g., spatial distribution of limb movements,
activity of joints, and limb velocities and accelerations. However, experimental
results for this type of measurement could not be reproduced with different data
sets [Kar11].
[Kar+12; Kan+14; Rah+16] introduce higher-level features, like stereotypy, jerki-
ness of motions, and movement frequency analysis. As discussed in Sec. 2.4, promis-
ing results have been achieved but none of the approaches has prevailed as the valid
and reliable method for CP detection. What is common in all presented studies is the
small number of infants who are affected by CP. The maximum number in a single
study is 16, with the maximum number of healthy subjects being 127 [Orl+18]. A
classifier trained on such a small number of samples only has limited general validity.
More literature on automated CP detection is discussed in Sec. 2.3 in detail.
Most studies analyze motion sequences that are captured before the infants’ age of
four months, but aim to predict the CP outcome at the age of two years, when a
reliable diagnosis can be established. GMA has proven to be the most reliable tool
for detection of CP at a young age. The developing brain undergoes large changes
in the first two years of life, which includes the possibility of “outgrowing” problems
that were caused at an early age [NE82]. The diagnosis at two years may also be
influenced by pathologies that were developed after GM age. For this reason, we do
not predict the CP outcome (at two years age) from sequences that are recorded at
two to four months age. We want to assess the state of the infant at the time of
recording, and therefore predict the GMA classification.
A very recent preprint2 targets to identify infants with abnormal GM quality from
four body-worn accelerometer signals [Gao+19]. Similar to our approach, they split
motion sequences into smaller snippets and use a “weak labeling” approach by as-
signing each snippet the label of the full sequence, which can be abnormal (AN),
neutral or typically developing (TD). For the creation of snippets, they use a sliding
window with a duration of one second without overlap. A nearest neighbor method
determines the GMA rating label for each snippet of a new sequence, and the labels
are accumulated. Neutral movements are considered to be irrelevant and therefore
ignored. The numbers of abnormal and typically developing snippets are aggregated
in a score, which determines the class label of a sequence based on an experimentally
specified threshold.
The data set includes 21 typically developing infants and 13 infants with perinatal
stroke, showing abnormal motor development, who have been recorded multiple
times over the range of six months. The initial set contains 95 TD and 60 AN
sequences, of which some are removed due to recording issues. Some very long
sequences are split into multiple shorter ones, and the final data set consists of 161
samples. A sensitivity of 70% and a specificity of 87% is reported using (random)
10-fold cross validation.

2This paper was uploaded shortly before submission of this thesis, which is why it is not analyzed
in more detail in Sec. 2.3.1.
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Two issues remain: i) Due to random splitting of the data set in the cross validation
evaluation it is very probable that samples from the same sequence (long sequences
that have been split) appear in both training and test set. ii) It is unclear if infants
have subject-specific movement repertoires during the first six months of life. Due
to the comparatively high number of recordings in relation to infants in the data
set, it is inevitable that each infant in a test sequence is also included in the training
set, however at a different age. If subject-specific motions are consistent over time,
this may bias results.

7.2.2. Choice of General Movement Assessment Variant

There are two variants of GMA with slightly different scoring properties (cf. Sec. 2.2.1).
Prechtl’s GMA sets focus on presence, absence or abnormality of GMs, especially in
“fidgety” age [Pre+97]. In addition, the occurence of cramped-synchronized GMs is
a marker of abnormal movement quality.
Hadders-Algra proposes a more general and continuous scale of movement quality
[HA04]. Depending on the complexity, variation and, to a lesser degree, fluency of
movements (cf. Tab. 2.3), a recording is assigned to one of four motion quality classes,
which can be augmented with a one to ten scale for finer granularity. The lowest
class, definitely abnormal (DA), hints at a high risk of CP. For infants assigned to one
of the other classes no clear prediction can be made, although mildly abnormal (MA)
movement quality is associated with a higher risk for minor neurological dysfunction
[HA+04]. For this reason, a further division into high/low CP risk can be made by
evaluating DA (1-3) versus the remaining classes MA, NS, and NO (4-10), which we
denote as DA vs. not-DA. We additionally examine how well a classifier can divide
abnormal (DA, MA) from normal (NS, NO) motion quality, which is indicated by
DA+MA vs. NS+NO.
We apply GMA according to Hadders-Algra, since the more continuous nature of
GMA ratings helps to achieve a more fine-grained differentiation of movement qual-
ity. In order to classify certain types of GMs similar to Prechtl’s GMA, we would
need to identify beginning and end of each GM in all sequences. Unfortunately, the
annotation of a large number of sequence requires huge effort by GMA experts and,
to our knowledge, no such data set is available.

7.2.3. Classifying Sequences using a Learned “Motion Word”
Feature Space

Deep learning approaches have shown tremendous success in predicting labels for
given input data, e.g., identifying objects in images [Rus+15]. However, the use of
such methods for automated CP detection/GMA has been reported to be unsuccess-
ful [Kar11; Gao+19], which has been attributed to the diversity of motions inside a
given sequence in combination with very few samples per GMA class.
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Instead of analyzing all frames of a motion sequence at once, we intend to find a
more fine-grained representation of a sequence that is characteristic of GMA.

Bag of “Motion Words”. The task of activity/action recognition shows several
similarities to our problem – it aims to assign a class label to a motion sequence,
e.g., “walking” or “jumping”. Recently, Aristidou et al. introduced a method for
activity classification [Ari+18b], which is based on the Bag-of-Words (BoW) idea
[Wit+99]. Initially developed for compression and indexing of text documents as
well as images, the concept can be transferred to motions sequences. In our case, a
word is represented by a set of body joint angle values. We divide a motion sequence
into motion words, which are small, continuous snippets of predefined duration.
The size of a motion word is defined as #joints × duration.
The BoW approach creates a dictionary from a corpus of documents. A document
is represented by the histogram of words it contains. Frequently occurring words
are less discriminative than rarely occurring words, which is why the histogram
is re-scaled with term frequency - inverse document frequency (tf-idf) weighting,
which is proportional to the word frequency in the motion sequence and inversely
proportional to the frequency in the corpus of training words.
The term frequency is given as

tf (t, d) = ft,d∑
t′∈d ft′,d

, (7.4)

with t denoting the term, i.e., the current word, d the current document, and ft,d
the frequency of t in d.
The inverse document frequency is defined as

idf (t,D) = log N

1 + |{d ∈ D : t ∈ d}| , (7.5)

where D denotes the set of all documents, N = |D| the number of all documents,
and |{d ∈ D : t ∈ d}| the number of documents in which t occurs. To avoid division
by zero, 1 is added to the denominator.
The tf-idf weighting is calculated as

tfidf (t, d,D) = tf (t, d) · idf (t,D). (7.6)

Aristidou et al. apply the method to the task of activity recognition with the underly-
ing assumption that similar activities contain similar motions that appear frequently
[Ari+18b]. Each motion sequence is represented by a motion signature that allows
to distinguish different activity classes. Motion words of a sequence are embedded in
a learned feature space with a triplet loss CNN. Each triplet contains an anchor, a
positive sample that is similar to the anchor, and a negative sample that is dissimilar
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to	anchor

"Negative":
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Figure 7.4.: A triplet of motion words is formed by selecting “positive” and “neg-
ative” samples for an anchor word. Positives are similar to the anchor, negatives
are dissimilar. A CNN is trained with a triplet loss to create a feature space in
which positives are close to the anchor and negatives are far away. This way,
motion words with similar characteristics can be grouped.

to the anchor, as visualized in Fig. 7.4. The CNN learns to place the anchor words
close to positives and far from negatives, i.e., random samples from other sequences.
The similarity between motion words is calculated with the dynamic time warping
(DTW) measure [M0̈7]. The CNN takes a motion word as input and generates a
vector of predefined size, which is usually smaller than the size of the motion word.
K-means clustering of motion word embeddings produces a dictionary of size k, and
each cluster is represented by a motion motif, which is defined as the cluster center.
These motifs represent the most common and discriminative words. The motion
signature of a new sequence is generated by assigning its motion words to motion
motifs and creating a tf-idf-weighted histogram of word occurrences. A K-Nearest
Neighbor classifier using the Earth Mover’s Distance as a motion signature similarity
measure predicts the class label of a new sequence [Ari+18b].

Learning features that represent GMA properties. Activities are defined by mo-
tions, and the motions are similar for different persons performing the same activity.
The task of estimating the GMA class from motion sequences is different. Spon-
taneous movements of infant are not directed, and follow no recognizable pattern.
GMA is not defined by certain movements, but rather by complexity and variation
[HA04]. Complexity refers to the spatial variation over a sequence – high complex-
ity is described as “frequent changes in direction of the participating body parts”.
Variation denotes temporal variation – across time, the infant produces continuously
new movement patterns. A limited repertoire of movements hints at an impaired
brain.
Therefore, we use the BoW approach not to create motion signatures per sequence,
but rather to build a dictionary of motion words along with their characteristics. In
an ideal feature space for GMA, two properties for motion words are satisfied:
i) Words that are close to each other are similar. This implies that the occurrence
of two close words does not “increase” the observed motion repertoire, whereas the
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occurrence of two distant words does. This property requires a good measure for
similarity. Dynamic time warping has been shown to be successful [M0̈7], but it has
been reported that a learned feature space can separate different types of motion
sequences better than original DTW while reducing the time to compute similarities
by up to 80% [Ari+18b].

ii) Nearby words share the same level of complexity. This means that the neighbor-
hood of a word can be used to determine its level of motion complexity. To satisfy
this property, a large set of annotations of motion word complexity are required. No
such data set exists, and the annotation involves immense effort by trained experts.
To overcome the lack of data, we make use of what Gao et al. call “weak labeling”
[Gao+19]. We label all motion words with the GMA rating of the sequence they
belong to. We make the assumption that sequences contain motion words that are
characteristic of the associated rating, but at the same time contain motion words
that will also occur in sequences with different ratings. The number of good motion
words is expected to be higher in highly rated sequences than in sequences with low
ratings, and vice versa. Therefore, we propose to find words that are most similar
to the input word, together with their label. We expect the accumulated labels to
reveal information about the GMA class of the input sequence.

Training a CNN with triplet loss. Similar to [Ari+18b], we train a CNN with
triplet loss to learn a feature space with the goal of capturing the complexity and
repertoire properties we defined above. Positive words in a triplet are chosen from
the same sequence as the anchor and are either temporally close (without over-
lap) or have a small DTW distance, which is why we denote this type of triplet as
tripseq. The restriction to the same sequence is applied, because the calculation
of pairwise DTW similarities for all words of all sequences is computationally in-
tractable. A sample for two motion words with a small DTW distance can be found
in Appendix C. Negative words are chosen randomly from the rest of the data set.
For each anchor, nine triplets are formed, with four temporally close positives and
five positives based on the corresponding DTW distance.

An inspection of the learned feature space reveals that the CNN learns to closely
cluster motion words of the same sequence. However, it fails to cluster motion
words from different sequences that have the same rating, solely based on motion
similarity. We visualize the distribution of a subset of all motion word embeddings in
the learned feature space in Fig. 7.5 by projecting it to a two-dimensional space using
t-SNE [MH08]. The color of the motion word embeddings denotes the corresponding
sequence ID. Comparing the training samples (top left) and test samples (top right)
shows that many small groups of the same color are formed3, with less pronounced
clustering in the test samples. The middle column shows the union of training and
test samples. We color the embedded motion words according to their ratings in

3The number of sequences is higher than the number of easily distinguishable colors, which results
in few sequences sharing the same color.
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Figure 7.5.: Visualization of a subset of motion words embedded in the feature
space that was learned using triplet loss tripseq similar to [Ari+18b] with posi-
tives exclusively from the same sequence. The embeddings are projected to two
dimensions using t-SNE [MH08]. Motion words with the same color share the
same label. Left: Training samples only. Middle: Training and test samples.
Right: Test samples only. Top: Color relates to sequence ID (multiple sequences
may share the same color). One can observe many small clusters of words of the
same sequence and therefore of the same GMA rating. Bottom: Color relates to
GMA rating. From dark red (lowest rating) to dark green (highest rating). There
is no obvious structuring of ratings inside the feature space.

the bottom row of Fig. 7.5. In the training samples (bottom left), small clusters of
similar ratings exist, but when comparing them to the sequence based coloring it
becomes obvious that the grouping of ratings seems to be due to the fact that all
words of a sequence share the same label. The concept of clustering based on motion
similarity does not suffice to induce an ordering of ratings in feature space. Since
we are dealing with unconstrained motions, the probability of two motion words
being very similar and therefore ending up in the same location in the feature space
is small. The property of sequence “affiliation” dominates over inter-sequence word
similarity.

In order to promote a closer placement of motion words with similar ratings from
different sequences, we aim to relax this property. We create a new type of triplets
by adding randomly selected words from sequences with similar GMA ratings as
positives, and randomly selected words from sequences with different ratings as
negatives. We call this type of triplet tripGMA. For each anchor word, we add five
new triplets, but at the same time reduce the number of temporally close positives
from the same sequence, to soften the sharp boundaries of sequence clusters. We
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Figure 7.6.: Visualization of a subset of motion words embedded in the feature
space that was learned using our new triplet loss tripGMA with added positives
from different sequences with similar ratings, and negatives from sequences with
different ratings. The embeddings are projected to two dimensions using t-SNE
[MH08]. Motion words with the same color share the same label. Left: Training
samples only. Middle: Training and test samples. Right: Test samples only.
Top: Color relates to sequence ID (multiple sequences may share the same color).
The sequence-based clustering appears less organized in both training and test
set.Bottom: Color relates to GMA rating. From dark red (lowest rating) to dark
green (highest rating). The CNN has placed training samples according to their
rating. The ordering in the test set is less pronounced.

visualize in Fig. 7.6 training and test sample embeddings, colored either by sequence
ID or GMA rating.
In the training samples (top left), the sequence-based clusters are still visible. The
rating-based coloring (lower left) shows a clear separation of different ratings. Green
samples on the left depict high ratings, red samples on the right denote low ratings.
The structure in the test samples is less obvious. This may be in line with our
assumption that any sequences may contain movements of differing quality, and
that the overall statistics matter, i.e., highly rated sequences contain more “good”
words, and sequences with low ratings contain more “bad” words. An experimental
evaluation is necessary to determine if the CNN has learned to group motion words
that are similar and are annotated with the same rating label, or if the focus on
separation of ratings is too strong and dominating the similarity-based grouping.
The triplets serve as input for a CNN that is based on the inception model [Sze+15]
and the FaceNet architecture [Sch+15]4. After training, we project the samples into

4We adapt an implementation from https://github.com/krasserm/face-recognition.
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Figure 7.7.: Overview of the computation of complexity and repertoire features.
A CNN learns a feature space of motion words from the training set. Training
words are projected to the feature space with their GMA rating labels (shown
as red, green and black). K-Means clustering divides the space into a discrete
dictionary and associates a GMA label with each cluster (here k = 12). Words
wtest,i with unknown GMA label (blue) of a test sequence are projected to the
feature space, and the dictionary cluster determines the label of the input word.
All word labels of the test sequence are accumulated in a “complexity” histogram.
Additionally, a “histogram of repetitiveness” is created from the shown repertoire
of motion words in the sequence. These two normalized histograms serve as input
to an SVM classifier that assigns a GMA class label to the input sequence.

the new feature space. We perform k-Means clustering on the embedded samples
to transform our feature space into a discrete motion word dictionary. Additionally,
each cluster is assigned with a GMA rating. This label is determined by finding the
rating with the highest normalized frequency among the words inside the cluster.

Creating features to represent complexity and movement repertoire. By em-
bedding a new motion word in the feature space, we can not only assign a word ID
from the dictionary to the new word, but also a GMA rating. The word IDs over all
words of a sequence provide a representation of the repertoire of infant movements,
and the accumulated GMA labels serve as a measure for motion complexity.
We provide an overview of our method and the computation of complexity and
repertoire features in Fig. 7.7. First, we project all training words to the learned
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feature space together with their GMA rating labels. We apply k-Means clustering
to divide the space into a discrete dictionary, and associate the dominant GMA label
with each cluster. Words with unknown GMA label of a test sequence are projected
to the feature space, and we determine the word ID and the GMA class label for
the input word from the dictionary. All GMA word labels of the test sequence are
accumulated in a complexity histogram. The histogram of repetitiveness is created
from the shown repertoire of motion words in the sequence. It contains statistics
of word repetitions. Additionally, the ratio of the relative repertoire size, i.e., the
number of distinct words in relation to the number of words in the sequence, is
included. These two normalized feature vectors serve as input to an SVM classifier
for assigning a GMA class label to the input sequence.

[Ari+18b] use a motion sequence signature for classification, which is represented
by a normalized histogram of dictionary word IDs. Our data set is small and, due
to the unconstrained nature of infant motions, very diverse. We need a rather large
vocabulary to pick up fine grained movements, which results in a large and sparsely
populated motion signature. The motion signature approach seems to be more
suited for tasks in which a few, discriminant motion words occur repeatedly for each
class one wants to distinguish.

7.2.4. Experiments

Data. We recorded 124 sequences of 120 different infants with a Microsoft Kinect
V1 (107 sequences) and a Kinect V2 (17 sequences). Four infants in the data set
have been recorded twice at different ages. When splitting the data into training
and test set, we ensure that sequences of the same infant are only included in either
training or testing set. As described in Sec. 3.2.4, the Kinect V2 recordings are
subject to strong noise, which distorts the body shape and is probably caused by
the close proximity of foreground and background. For this reason, we excluded
these sequences during learning the SMIL model (Sec. 5.3), since we wanted to use
only realistic shapes for training. Even though the shapes of the registered model
may look unrealistic, we are able to correctly capture the motion from the noisy
sequences and include them in our experiments.

All sequences have been rated according to the GMA variant of Hadders-Algra. The
rater who performed the GM assessment for our data set is Mijna Hadders-Algra,
who is the most experienced rater for her variant of GMA worldwide. She has been
teaching GMA in courses for decades, and has defined the gold-standard videos with
ratings that are used for re-calibration and practice. For this reason, we consider
the GMA ratings of our sequences to be highly reliable.

As noted previously, the overall number of infants affected by CP/showing abnormal
motor development is small, which is why our data set is very unbalanced w.r.t. the
number of sequences per class/rating as can be seen in Fig. 7.8. The vast majority
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Figure 7.8.: Left: Distribution of GMA ratings/classes of 124 sequences in our
data set. Left: GMA ratings from 1-10. Right: GMA classes. The vast majority
has a rating in the range of mildly abnormal (scores 4-5) and normal suboptimal
movement quality (6-7). The data set contains 18 infants in definitely abnormal
class (1-3), who are considered to have a high risk of CP.

(101 recordings) are rated either as mildly abnormal (ratings 4-5) or normal subop-
timal (6-7). The data set contains 18 infants labeled with the definitely abnormal
class (1-3) who are considered to have a high risk of CP.
We capture motions from RGB-D sequences using the SMIL model, as described in
Sec. 5.3. This gives us 72 angle values (3 global rotation angles + 23 joints * 3 degrees
of freedom) for each frame of the sequence. As discussed in Sec. 5.6, SMIL does not
capture fingers or toes, which is why we exclude the associated joints, together with
one degree of freedom of one of the spine joints, which has been held fixed during
the registration process. We further exclude the global rotation, since our focus is
motion and not global positioning, which leaves us with 56 joint angles per frame.
We divide the motion sequence into overlapping motion words of 32 frames length
using a step size of 4 to reduce computational complexity. The overlap ensures that
the DTW finds good matches, since we cannot assume that similar motions start
at the beginning of a motion word. This results in motion words of size 56 × 32.
Motion sequences may contain sections in which the infant does not move. These are
irrelevant for GMA, since only the quality of motions is of interest, not the quantity.
For this reason, we filter out words with an insignificant amount of motion. Our
complete data set contains 112K motion words.
As evaluation metric, we provide sensitivity and specificity values for all experiments
(cf. Sec. 2.1).
We design several baseline experiments to compare our approach, but also to analyze
the proposed features for evaluation of infant motion. The baselines are related
to either complexity or repertoire features, but do not include the training of a
feature space. Similar motion words are identified by the Euclidean distance or
dynamic time warping, and the entropy is used as an additional measure for motion
complexity.

Baseline – complexity – k-nearest neighbor rating labels (B-kNN). We use a
k-nearest neighbor approach to find for each input motion word the GMA rating
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Figure 7.9.: Distribution of GMA ratings (x-axis) of motion word nearest neigh-
bors with respect to GMA class of input sequence (y-axis), mean over all sequences
per class. Colored fields illustrate the values of normalized histogram bins, rang-
ing from high (dark red over orange to yellow) to low (dark blue). The maximum
(red) seems to shift to the right with improving movement quality (from DA in
top row to NO in bottom row).

label of the closest word in joint angle space (w.r.t. euclidean distance). The rating
labels are accumulated in a histogram of size 10 and weighted with tf-idf. These
feature vectors will serve as input for classification. The B-kNN complexity features
are computed in the same manner as in our approach (cf. Fig. 7.7).

In order to explore the correlation between feature vectors of different GMA classes,
we split the set of all feature vectors in groups, according to the GMA class label of
each sample. We calculate the mean values inside each group w.r.t the histogram
bins. The results in Fig. 7.9 support the assumption that abnormal motion sequences
contain more movements from sequences with low ratings, and “normal” sequences
a higher rate from sequences with better ratings. The classes definitely abnormal
and mildly abnormal show relatively similar characteristics.

Baselines – complexity – entropy per joint (B-ENT). The entropy is a measure
for uncertainty, and variants of entropy have been successfully applied to gait anal-
ysis as a measure of motion complexity [Cos+03]. One of our goals is to measure
complexity, which is why we investigate the entropy of the motion sequences of our
data set. We evaluate three different variants. We compute the entropy per joint
over the full sequence (B-ENTfull) and use this feature vector as input to the SVM
classifier. The second and third variant split the sequence into motion words of size
16 (B-ENT16 ), respectively 32 (B-ENT32 ), and calculate the entropy over all joints
of each motion word. These values are accumulated in a histogram, i.e., the number
of entropy values inside pre-specified ranges, and averaged over all joints.
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Baselines – repertoire – dynamic time warping similarity (B-DTW). As noted
above, it is not tractable to compute DTW distances between all motion words
of the data set, and we only calculate the DTW similarity between words of the
same sequence. We are lacking a similarity measure against other sequences and
therefore can not collect rating labels from other sequences’ words to accumulate
in a histogram as in the complexity feature of our method. Instead, we use the
computed intra-sequence DTW distances to calculate a measure for the motion
repertoire. For each motion word of a sequence, we add the index of the closest
word – according to DTW distance – to a list. We count the number of occurrences
of each word index in the list and create a normalized histogram over these counts,
which are input to an SVM. The B-DTW repertoire features are computed as in our
approach (cf. Fig. 7.7).

Classification. In order to calculate meaningful evaluation results, the data set
must be divided into training and test set. We visualize the training procedures
with the data set splitting strategies in Fig. 7.10.

To handle the limited amount of training data, we perform leave-one-out cross vali-
dation (LOOCV) to repeatedly train the system on all but one samples, and test on
the remaining sample. This implies a repetition of the training procedure n times
with n being the number of samples in the data set. Training our CNN takes several
hours, which is why the LOOCV scheme is too time-demanding. We split the data
DALL into two subsets TrainCNN and TestCNN and use TrainCNN to train our feature
space.

For the dictionary training with k-Means clustering, we apply LOOCV on TestCNN ,
which is denoted by Dk−Means. We project motion words of all training sequences
Traink−Means, but also those of TrainCNN , to the feature space. This is necessary
to provide enough training data to create a meaningful dictionary. We “look up”
the words of the remaining sequence in Testk−Means in the dictionary and calculate
repertoire and complexity features. Despite having a different dictionary for each
test sequence, the computed features have the same reference, since our features rely
on the motion word statistics and not on word IDs, which are related to a specific
dictionary. Then, we switch the roles of TrainCNN and TestCNN and repeat the
procedure until we have generated features for all sequences of the data set DALL,
to produce DSVM .

We use the repertoire features, the complexity features, and a combination of both
to train a support vector machine (SVM) classifier5 on DSVM with LOOCV. Before
training, we perform a normalization of the data, which is also applied to the test
data. We train the SVM to perform two different binary classifications, namely

5We use an SVM from the Python package sklearn https://scikit-learn.org/stable/
modules/svm.html, with a radial basis kernel, and apply data balancing to account for dif-
ferent numbers of samples per class.
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Table 7.1.: Results. We present sensitivity and specificity for baseline methods B-
kNN (complexity) with k ∈{1, 5}, entropy histograms B-ENT (complexity), and
B-DTW (repertoire). The number of frames defining the duration of motion words
is denoted as 16 and 32 – full means that the entropy histogram is calculated
over the complete sequence. Oursseq denotes our approach with triplet loss tripseq,
and OursGMA with triplet loss tripGMA. We specify the different types of features
used for classification as “(comp.)” for the complexity features and “(rep.)” for
the repertoire features. “(both)” represents a combination of both types. Ours is
always trained with a word length of 32.

DA vs. not-DA DA+MA vs. NS+NO
Sensitivity Specificity Sensitivity Specificity

B-1NN16 50% 57% 79% 68%
B-1NN32 39% 58% 78% 64%
B-5NN16 39% 58% 74% 70%
B-5NN32 44% 53% 75% 68%
B-ENT16 83% 75% 64% 66%
B-ENT32 67% 68% 53% 68%
B-ENTfull 56% 69% 74% 70%
B-DTW16 83% 75% 60% 55%
B-DTW32 78% 69% 76% 64%

Oursseq (comp.) 33% 64% 68% 70%
Oursseq (rep.) 67% 43% 44% 59%
Oursseq (both) 39% 65% 65% 68%

OursGMA (comp.) 56% 68% 64% 75%
OursGMA (rep.) 39% 73% 35% 75%
OursGMA (both) 39% 76% 64% 75%

“DA versus not-DA”, and “DA+MA versus NS+NO”, i.e., abnormal vs. normal.
The sensitivity and specificity are calculated over all samples.

Evaluation results. An overview of all results is displayed in Tab. 7.1.
We evaluate both types of triplet loss for our proposed method with complexity and
repertoire features as well as a combination of both. Oursseq denotes the triplet loss
tripseq, which is equal to [Ari+18b], and OursGMA denotes our proposed triplet loss
based on rating-similarity.
Oursseq obtains poor sensitivity rates. We observe the best results for a classifica-
tion of DA+MA vs. NS+NO at a sensitivity of 68% and a specificity of 70% with
our complexity features. This is within the range of our baseline method results.
For the medically more relevant discrimination between classes DA and not-DA, the
results are far behind the baselines.
OursGMA shows an improved specificity ranging between 68% and 76%, which is
among the best values of all evaluated methods. The sensitivity, however, is among
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the worst results for DA vs. not-DA, lying between 39% and 56%. This is far from
being useful in clinical practice. The classification of DA+MA vs. NS+NO achieves
higher sensitivity of up to 64%, which is 15% less than the best baseline approach
(B-1NN16 ).
An inspection of the different features in Ours does not show an obvious trend.
Oursseq (rep.) has the highest sensitivity among Ours for DA vs. not-DA, but drops
by 23% for DA+MA vs. NS+NO, while the specificity shifts in the opposite direction.
The combination of both features mostly does not change results significantly. The
biggest difference is a decrease of sensitivity by 17% from OursGMA (comp.) to
OursGMA (both).
Comparing Oursseq to OursGMA reveals no considerable differences in results, except
for the specificity being higher for OursGMA.
An analysis of the baseline methods shows diverse results. We evaluateB-kNN with
word lengths of 16 and 32 frames, and k ∈ {1, 5}. The different parameters show
relatively little influence on the results, with sensitivity in the range of 39-50% and
specificity of 53-57% for classification DA vs. not-DA. When classifying DA+MA
vs. NS+NP, the sensitivity improves to a maximum of 79%, and a specificity of
around 70%.
The entropy baseline B-ENT achieves best results for a word length of 16 frames,
at 83% sensitivity and 75% specificity for DA vs. not-DA, but decreases to 64%
sensitivity and 66% specificity for DA+MA vs. NS+NO. For this classification task,
the entropy over the full sequence obtains slightly better results at 74% sensitivity
and a specificity of 70%.
The dynamic time warping repertoire baselineB-DTW with word length 16 achieves
the same results as B-ENT16 , with slightly worse predictions for a word length of
32. Overall, results for baselines are slightly better when using a word length of 16
instead of 32.
The combination of baseline features does not lead to an improvement of results.
B-ENT is the only baseline that does not rely on our proposed complexity and
repertoire features. Our results indicate that B-ENT correlates with GM quality,
especially DA vs. not-DA, and that shorter words seem to achieve better results.
The other baselines rely on our proposed complexity (B-kNN) and repertoire (B-
DTW) features (cf. Fig. 7.7). Their evaluation provides insights into the performance
of the features using simple measures for similarity of motion words. The complexity
feature better distinguishes between abnormal (DA+MA) and normal (NS+NO)
movement quality compared to separating DA from not-DA. B-DTW obtains best
results for classifying DA vs. not-DA, with sensitivity and specificity in the range of
[Add+09; Add+10; Add+13; Gao+19]. This indicates that our proposed features
capture characteristics of GMA. The foundation of both baselines is the identification
of similar motion words, either by finding nearest neighbors in joint angle space, or
by calculating the dynamic time warping distance. The target of our proposed
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method is the development of a learned representation of similarity that is more
relevant to GMA than the similarity measures used in the baseline methods.

We attribute the poor outcome of Oursseq to the focus on sequence-based clustering
in the creation of the feature space, as explained previously (cf. Sec. 7.2.3), not to
the proposed features.

OursGMA, on the other hand, shows a distribution of ratings in the feature space
that is desired, i.e., embeddings are positioned according to their rating (cf. Fig. 7.6).
Nevertheless, the results do not show the anticipated improvement.

7.2.5. Discussion

The most pressing question is: Why did our approach not succeed?

The answer is: We did not manage to create a feature space that projects input
motion words into a neighborhood of similar motion words with similar ratings.

The initial triplet loss tripseq contains positives solely from the same sequence as the
anchor, and all negatives are selected randomly from other sequences. This induces
a grouping of words of the same sequence, as observed in Fig. 7.5. A connection
across sequences is only established if the motion words have highly similar values
and are thus projected to the same location in the feature space. In scenarios with
clearly defined activities this works due to the repeated intra-class motion patterns.
As shown in our experiments, it does not work for unconstrained infant motions.

Our adjustment of the initial triplet formation to OursGMA leads to a smooth ar-
rangement of training samples according to their labels (cf. Fig. 7.6). However, the
information where to place an input sample with unknown label can only originate
from the joint angles of the motion word. An appropriate placement is impossi-
ble if the CNN is trained to organize the words according to their rating, without
sufficiently considering the actual similarity of motions.

With the current labeling method, many motion word labels will be incorrect due to
the diversity inherent in spontaneous infant movements. One label for all motion
words of a sequence is not enough, because these incorrectly labeled samples have
the same influence on CNN training as correctly labeled samples. We believe that
our approach can benefit from more fine-grained labeling. An ideal labeling consists
of a large number of motions that are characteristic of a each GMA rating. This
involves the laborious process of manual annotation and requires GMA experts.

The second question is: Why is our approach still useful?

Our baseline approaches show that the proposed complexity and repertoire features
capture characteristics of general movements.

Training a CNN to embed features in a latent space with respect to specific prop-
erties has been successfully applied to motion sequences [Ari+18b]. The authors
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demonstrate that the learned feature space better distinguishes fine-grained move-
ments and creates a superior grouping of similar motions compared to DTW. If we
can transfer these feature space properties to the domain of unconstrained infant
movements our features will show their full potential.
In future work, we will target the collection of motion annotations by GMA experts
to provide more precise labels for guiding the feature space creation.
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Figure 7.10.: Training procedure. For training the feature space, we split the train-
ing data DALL in two sets, and train the CNN with one set TrainCNN . To compute
the repertoire and complexity features, we use a leave-one-out cross validation
strategy (LOOCV) on the test set TestCNN == Dk−Means, but also project motion
words from TrainCNN to the feature space to train a dictionary using k-Means.
Then, we look up the motion words for the remaining sample in Testk−Means in the
dictionary to create the feature vector. We repeat this until feature vectors for all
samples in Dk−Means are created. Then we switch TrainCNN and TestCNN and re-
peat the training procedure until we have computed feature vectors for all samples
in DALL to produce DSVM . We apply LOOCV and train an SVM on TrainSVM ,
which we use to predict the label of the sample in TestSVM . We accumulate the
sensitivity and specificity for all samples.
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8. Conclusion

In this final section of the thesis, we summarize our findings and discuss which future
directions of research are opened up by our work.

8.1. Summary

In this thesis, we addressed the problem of automated infant motion analysis for
early detection of cerebral palsy.
We extensively reviewed the literature on automated infant motion analysis, with
particular focus on motion capture methods. This let us single out RGB-D sensors
as the best choice as being the foundation of a low-cost, unintrusive, easy to use,
and automated motion analysis system. Additionally, we found that the state of
the art in infant motion capture is far behind the state of the art in general adult
motion capture.
In our first effort to reduce this gap, we adapted a highly successful approach for
pose estimation – used in the Kinect for XBox device – to infants and reduced
the computational cost of the training procedure by a large margin. We identified
limitations and proposed several extensions and showed how these contribute to a
significant improvement of pose estimation accuracy.
However, we expect medical applications to require the highest precision possible,
which is why we investigated more advanced methods for estimation of full body
pose and shape instead of predicting only joint positions.
The accurate capture of adult shape and pose from RGB-D has been demonstrated
by fitting a human body model to the data. For infants, no such body model existed.
Opposed to standard practice in adult model creation, no set of high-quality 3D scans
of infants in predefined poses is available. We introduced a method for learning
an infant body model from low-quality, incomplete RGB-D data of freely moving
infants. We publicly released the learned model to boost research on infant motion
and shape analysis. We further provided a method for registering the model to the
data for accurately capturing shape and pose of infants. Our experiments showed
that this model carries enough information for letting experts perform accurate
GMA ratings on synthetic model sequences of moving infants.
The literature review revealed a lack of evaluation of infant motion tracking ap-
proaches, which we believe is caused by the non-existence of a public infant data
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set. We used our model to create a realistic synthetic RGB-D data set, which we
made publicly available.
To complete the motion analysis pipeline, we first showed how human-interpretable
measurements can help to distinguish between different diseases and provide quan-
titative measurements of infant motion. Finally, we used tracked poses for learning
to predict the GMA class from pose sequences. We partition sequences into smaller
motion words, and learn a feature space to group motion words that share charac-
teristics. To classify a new sequence we analyze the statistics of the neighborhood of
its motion words in feature space. Our proposed complexity and repertoire features
displayed the capability of extracting relevant characteristics of general movements.
The learned feature space, however, requires a better measure for motion word sim-
ilarity. The formulation could be guided by manual annotations of motions that are
representative of different GMA classes.
Our main contribution, the SMIL model, can be seen as a new tool to be used in
many ways. One could imagine applications for medical purposes, ergonomics, or
animation. It could be used not only for learning about impaired children, but lead
to a better understanding of the development of motor skills by making movements
measurable.
An automation of GMA allows widespread screening of children without the need for
expensive hardware or setup effort. This could be especially useful in countries/areas
with limited medical resources like equipment or trained experts. The described
lightweight setup would allow medical workers to visit families at home, e.g., as is
done in rural India for measuring children at risk of malnutrition [Sah+15].

8.2. Answers to Research Questions

In the beginning of this thesis, we have stated the following research questions.
Can we capture 3D infant motion in sufficient detail for automated motion
analysis using a single RGB-D sensor?
We show that this is possible. Results for motion tracking using our learned model
show roughly 99% correct poses in over 2 hours of moving infant recordings. Two
experienced experts performed GMA on rendered SMIL sequences and had an agree-
ment of roughly 90% and 80% with RGB ratings, with agreement being a rating
difference ≤1 on a 1-10 scale.
Can we reliably infer GMA ratings from captured motions? We have
showed that our proposed features can distinguish abnormal from normal movement
quality to a certain extent. However, the sensitivity and specificity are not (yet) high
enough to be relied upon in clinical practice. We are nevertheless convinced that our
method can be adapted to create better representations of general movements, e.g.
by the integration of GMA expert knowledge using manual annotations of relevant
motions.
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8.3. Future Work

Our proposed model-based method for capturing motion from RGB-D sequences
can be extended to older children. Instead of the need to create an initial model
for registering data of children, SMIL could be used. Different age groups to which
the model generalizes well could be defined to successively train models for each age
group based on the model from the previous one.

For capturing motions of older children, the method will need to handle poses that
include turning, crawling, and walking. This challenge includes finding a trade-
off between the camera being close to the subject to capture it in detail and the
limited recording area of a camera in which a child can move before the camera
loses track. A setup with multiple RGB-D sensors could solve this issue. However,
there is a possibility of sensors disturbing each other, e.g., if projected patterns of
multiple sensors overlap. Additionally, the advantage of having a simple, easy-to-use
setup may be void if there is a need to calibrate a multi-camera setup prior to each
use. Another possible solution is to use handheld cameras – these, however, may
introduce motion blur and make it harder to fit a model to a point cloud that moves
a lot within the camera coordinate system in successive frames.

A very active line of research for adult data is the estimate of 3D shape and pose from
2D RGB images. Many of the proposed approaches rely on the SMPL model, and
since SMIL and SMPL share the same topology, these approaches should be easily
transferable to infants. In the past, clinical institutions have recorded data sets for
motion analysis like GMA using standard video cameras, since depth cameras were
unavailable or unaffordable, or the possibilities of depth cameras were not realized.
This data could be enhanced by lifting it to 3D to take full advantage of new methods
for 3D motion analysis.

To make the model look more realistic, but also to capture more fine-grained de-
tails, an extension of SMIL to include facial expressions and finger movements is
an obvious direction for future work. Making the interaction of infants/children
with objects measurable may not only be relevant for medical assessment, but could
also give new insights in the development of motor functions. In this context, the
combination of RGB/RGB-D with other sensor types like haptic devices could be
of interest.

Pressure sensor mats, which are often used for gait analysis, could complement
vision-based systems. Learning to infer sensor measurements of one sensor type
from the other, i.e., predicting foot pressure from body pose or vice versa, may
increase the diagnostic value of each of the sensors.

Our proposed model makes it possible to quantify therapy or disease progression for
diseases that affect motor abilities, e.g., spinal muscular atrophy (SMA). A universal
parameter for distinguishing between normal and abnormal motor development for
different age groups would be clinically relevant.
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Besides motion, shape can be a marker of medical impairments. The body shape
can provide information about malnutrition, e.g., in areas of the world where there is
no widespread medical care. The lightweight system of an RGB-D capture system
could enable medical workers to make reliable measurements at people’s homes.
This would allow to track shape development for identifying the best treatment on
the one hand, and for monitoring the effect of therapy.
For the task of automated GMA, we aim to further improve results by applying a
more fine-grained labeling of motion words instead of using one label for all words
of a sequence. This requires GMA experts to manually identify motion words they
consider to be relevant for the classification of a sequence, e.g., complex motions are
representative of high motion quality.
The main contribution of this thesis is a new means of tracking infants, and we are
excited to see how this is going to enable researchers to discover new applications
and use-cases in the future.
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A. Overview of data sets and body
models

We present tables containing the data sets we use for evaluation in Tab.A.1, and
the different body models in Tab.A.2.

Table A.1.: Evaluation data sets used in different chapters.

Data set Chapter Approach # seq # frames Ground truth Info
PDT Sec. 4.2.3 Ferns 20 27K Marker-based

MoCap
Adults,
Kinect V1

FernSeq1 Sec. 4.2.3 Ferns 1 1082 Manual annota-
tion

Kinect V2

MINI-RGBD Sec. 4.2.3,
Sec. 4.3

Ferns 12 12K SMIL Synthetic

FernMultiView Sec. 4.3 Ferns
extension

1 72 Manual annota-
tion

Kinect V2

FernSeq2 Sec. 4.3 Ferns
extension

3 5500 SMPLB (prel.) Kinect V1
+ V2

SMILTrain Sec. 5.4 SMIL 37 200K Manual inspec-
tion

Kinect V1

Table A.2.: Models and usages.

Model Usage Chapters
makeHuman Training data generation Sec. 4.2.2, Sec. 4.3.2
SMPL Adult model, foundation of SMIL Sec. 5.1.2
SMPLB (prel.) Evaluation: Ground truth generation Sec. 4.3
SMIL Motion capture + evaluation data generation Sec. 5.4
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B. MINI-RGBD sequences

Figure B.1.: Sequence 1, level: easy, samples from every 50 frames.
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MINI-RGBD sequences

Figure B.2.: Sequence 2, level: easy, samples from every 50 frames.
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MINI-RGBD sequences

Figure B.3.: Sequence 3, level: easy, samples from every 50 frames.
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MINI-RGBD sequences

Figure B.4.: Sequence 4, level: easy, samples from every 50 frames.
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MINI-RGBD sequences

Figure B.5.: Sequence 5, level: medium, samples from every 50 frames.
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MINI-RGBD sequences

Figure B.6.: Sequence 6, level: medium, samples from every 50 frames.
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MINI-RGBD sequences

Figure B.7.: Sequence 7, level: medium, samples from every 50 frames.
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MINI-RGBD sequences

Figure B.8.: Sequence 8, level: medium, samples from every 50 frames.
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MINI-RGBD sequences

Figure B.9.: Sequence 9, level: medium, samples from every 50 frames.
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MINI-RGBD sequences

Figure B.10.: Sequence 10, level: difficult, samples from every 50 frames.
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MINI-RGBD sequences

Figure B.11.: Sequence 11, level: difficult, samples from every 50 frames.
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MINI-RGBD sequences

Figure B.12.: Sequence 12, level: difficult, samples from every 50 frames.
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C. Motion word samples

Figure C.1.: Top: Motion word sample with duration of 32 frames. Bottom: Best
matching motion word, i.e., word with lowest dynamic time warping distance to
input sample, from the same sequence.
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