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Zusammenfassung
Fehler zu begehen ist menschlich. Jedoch eigene Fehler zu reflektieren und daraus zu
lernen, ist eine unschätzbar wertvolle Fähigkeit. Dabei ist das Erkennen von Fehlern oder
Irrtümern ebenso grundlegend wichtig wie die Fähigkeit Anpassungen vorzunehmen, was
in ähnlichen oder gleichen Szenarien ein Wiederholen von Fehlern verhindern könnte.
Diese Prozesse ermöglichen eine effiziente Gestaltung für zukünftige Aufgaben. Gleiches
gilt für intelligente Robotersysteme. Auch hier können fehlerhafte Ausführungen auftreten,
was bei der Zusammenarbeit mit Menschen zu einem kritischen Sicherheitsproblem führen
kann. Aus diesem Grund ist es notwendig, auftretende Fehler rechtzeitig zu erkennen,
nicht nur um das System zu stoppen, sondern auch, um aus diesen Fehlern zu lernen und
in Zukunftsszenarien nicht wieder dieselben Fehler zu begehen. Adaptive Systeme können
Fehler in Echtzeit erkennen und Anpassungen vornehmen, um ein schnelles Lernen zu
ermöglichen.

In der industriellen Fertigung wird bereits eine Vielzahl intelligenter und autonomer
Robotersysteme eingesetzt, wobei die Stichworte Künstliche Intelligenz (KI) und Industrie
4.0 immer häufiger fallen. Ein Teilaspekt dieser hochkomplexen Vernetzungsprozesse
wird auch von kollaborativen Systemen zwischen Mensch und Maschine gespielt und
Konzepte, die auf physiologischen Daten basieren, rücken in den Fokus. Hirnsignale sind
wahrscheinlich die komplexeste, aber auch die vielversprechendste Form von Kontrollsi-
gnalen. Echtzeitanalysen können die Effizienz deutlich steigern und Sicherheitssysteme in
Szenarien der direkten Zusammenarbeit unterstützen. Auch in Bereichen wie dem Gesund-
heitswesen, in denen intelligente Roboter-Assistenten zahlreiche Aufgaben übernehmen
könnten, ist eine intuitive Steuerung unerlässlich.

Lösungen auf Basis von Robotersystemen werden in der Regel nicht ausschließlich vom
Anwender gesteuert. In der Regel sind es vor allem autonome intelligente Subsysteme,
die entscheidende Schritte in einem Prozess übernehmen und nur grob durch menschliche
Hilfe gesteuert werden. Gerade in der industriellen Produktion wird dieses Kooperations-
modell häufig eingesetzt. In anderen Bereichen ist der Stand der Technik noch nicht so
weit fortgeschritten, aber zahlreiche Forschungsprojekte beschäftigen sich mit diesem
Thema. Beispielsweise verfolgen Hilfssysteme für Menschen mit motorischen Defiziten
das Ziel, den Nutzern mehr Autonomie zurückzugeben und autonome Roboterassistenten
ermöglichen lüssigkeitsaufnahme ohne weitere menschliche Hilfe. Um weiter den Prozess
des autonomen Trinkens zu optimieren, gibt es zum Beispiel Studien, die versuchen, den
Füllstand in einem Becher zu erfassen oder den Gießprozess, basierend auf maschinellen
Lerntechniken zu, erfassen. Ebenso werden ganzheitlichere Systeme entwickelt, die es
unter anderem ermöglichen, über bewusste Hirnsignale mittels eines übergeordneten
Frameworks mit einem intelligenten Roboter-Service-Assistenten zu kommunizieren.

Auch wenn diese Subsysteme an sich funktionieren, braucht es einen Benutzer, der
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diese Systeme in Gang setzt und bewusst steuert. Erfolgt die Kommunikation über Hirnsi-
gnale des Benutzers, spricht man von einem Brain Computer Interface, kurz BCI. Diese
Schnittstellen wurden zunächst vor allem für schwerstgelähmte Patienten entwickelt, aber
auch häufig in ganz anderen Bereichen wie der Unterhaltungsindustrie eingesetzt. Die
Schwierigkeit bei der Arbeit mit Hirnsignalen besteht jedoch darin, die gewünschten
Mustertypen zu erkennen und von anderen Typen zu unterscheiden. Für die praktische
Anwendung ist eine hohe Zuverlässigkeit der Detektionssysteme erforderlich. Einige
maschinelle Lerntechniken wie zum Beispiel linear discriminant analysis (LDA), support
vector machines (SVM) oder auch common spatial patterns (CSP) haben sich bei der
Klassifizierung von Hirndaten etabliert. Die Leistungen liegen jedoch nicht unbedingt in
den gewünschten und für die Praxis erforderlichen Bereichen, wie zum Beispiel bei der
Dekodierung fehlerbezogener Signale. Solche Fehlersignale können in vielerlei Hinsicht
zur Verbesserung eines BCI-Systems beitragen. Ein wichtiger Beitrag dieser Arbeit ist
die Untersuchung dieser Signaltypen und die Optimierung ihrer Klassifizierung mit ver-
schiedenen maschinellen Lerntechniken. Dabei werden unter anderem Methoden aus dem
Bereich des Deep Learning eingesetzt, die in jüngster Zeit enorme Erfolge im Bereich der
maschinellen Bildverarbeitung erzielt haben - eine Aufgabe, bei der der Mensch bisher
jedem Maschinensystem überlegen war.

Eine weitere Schwierigkeit bei der Verwendung von BCIs besteht darin, dass ein für
einen einzelnen Benutzer eingerichtetes System nicht allgemein verwendbar ist, sondern
individuell an die zerebralen Antworten jedes weiteren Benutzers angepasst wird. Signale
verschiedener Nutzer können völlig andersartig erscheinen und eine unterschiedliche
räumliche Verteilung aufweisen, weshalb es notwendig ist, das System an den jeweiligen
Nutzer anzupassen. Auch für den Fall, dass es nur von einem Benutzer verwendet wird,
kann es sein, dass dieses funktionierende System aufgrund von Nicht-Stationaritäten nach
einer gewissen Zeit neu kalibriert werden muss. Besonders hilfreich könnten hier Systeme
sein, die Informationen für eine bestimmte Aufgabe speichern und die generalisierten
Informationen für eine breite Anwendung zur Verfügung stellen können. Dies ist gera-
de dann von Vorteil, wenn nur wenige Daten zur Verfügung stehen, eine zuverlässige
Dekodierung aber dennoch erforderlich ist.

Verschiedene motorische Muster können als Steuersignale für BCIs verwendet werden,
aber auch kognitive Prozesse können diese Aufgabe erfüllen. Betrachtet man eine direk-
te Zusammenarbeit zwischen Mensch und Roboter, so kann, wie bereits erwähnt, eine
schnelle und zuverlässige Fehlererkennung zu erhöhten Sicherheitsstandards beitragen,
aber auch eine Verfeinerung der Steuerung ermöglichen. Eine komplizierte Integration
eines Befehls FEHLER über ein alternatives Steuersignal im menschlichen EEG und des-
sen Detektion sind dabei unerwünscht. Vielmehr ist ein natürliches intrinsisches Muster
erforderlich, das direkt bei der Wahrnehmung von Fehlern in den Signalen des Gehirns
erzeugt wird, ob bewusst oder unbewusst, und sofort genutzt werden kann. Eines der
am meisten erforschten Phänomene in diesem Zusammenhang ist eine negativer Ab-
fall im Potential des EEGs, der bereits in den ersten 300 ms mit dem Auftreten eines
Fehlers sichtbar ist, die error-related negity (ERN) oder error negativity (Ne). Dieses
ereignisbezogene Potential tritt auf, wenn ein Fehler beobachtet oder begangen wird,
wobei die Amplitude des Signals durch die subjektive Bedeutung sowie die subjektive
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Wahrnehmung des Fehlers moduliert wird. Darüber hinaus gibt es im Spektralbereich
nur wenige Untersuchungen, die die Komplexität der Fehlerverarbeitung über einzel-
ne Komponenten hinweg beschreiben können. Neben der Relevanz für eine optimale
Erkennung von Fehlersignalen hat die Untersuchung von Fehlerprozessen einen hohen
wissenschaftlichen Wert. Neue Erkenntnisse in diesem Bereich können zum Verständnis
der zeitlichen und räumlichen Fehlerverarbeitung beitragen und einen tieferen Einblick
in das Zusammenspiel der verschiedenen Hirnareale geben. Ebenso ist die funktionelle
Aufteilung des Gehirns bis heute nicht vollständig erklärt und verstanden.

Nicht-invasive Verfahren wie das Oberflächen-EEG, die die Spannung auf der Kopfhaut
messen, können nur Hirnsignale aufnehmen, die oberflächennah erzeugt werden und sind
daher weitgehend auf oberflächennahe kortikale Hirnareale beschränkt. Darüber hinaus
führt der Abstand zum signalgebenden Gewebe zur Überlagerung vieler verschiedener Si-
gnale. Die Aufnahmen stellen somit vielmehr die Gesamtheit der Informationen mehrerer
Hirnareale dar. Die Filterwirkung des Schädels und Artefakte durch muskuläre Aktivität
erschweren Messungen dabei zusätzlich. Im Gegensatz dazu bieten Methoden, die Si-
gnale intrakraniell aufnehmen, das heißt innerhalb des Schädels, mehrere Vorteile. Um
jedoch zuverlässige Aussagen über neurophysiologische Aktivitäten und Zusammenhänge
von Hirnarealen treffen zu können, ist eine genaue Zuordnung zum darunter liegendem
Gewebe unerlässlich. Dies kann durch Abbildung auf den Atlas eines Standardgehirns
erreicht werden, der die Bereiche des Gehirns zytoarchitektonisch, das heißt basierend
auf der zellulären Zusammensetzung des Gewebes, mit post mortem Gehirnen abbil-
det. Allerdings wird das weiche Hirngewebe während der Implantation verformt, was
den Vergleich einer individuellen Struktur mit dem allgemeinen Fall erschwert. Darüber
hinaus kann ein Standard-Gehirn nur grob allgemein formuliert werden, hat aber nicht
unbedingt Gültigkeit für jeden Punkt, der für die einzelnen Gehirne in Betracht gezogen
wird und berücksichtigt keine individuellen Eigenschaften. Gerade in Regionen, in denen
verschiedene Bereiche aneinandergrenzen, kann eine zuverlässige Zuordnung kritisch
werden.

Aus den eben aufgezeigten Problemen und Herausforderungen ergeben sich im Hinblick
auf die Fehlererkennung anhand menschlicher Hirnsignale folgenden Fragen, die in dieser
Arbeit behandelt werden:

• Kann das nicht-invasive EEG menschlicher Beobachter verwendet werden, um
fehlerhafte Ausführungen von Robotersystemen zu entschlüsseln?

• Kann die Klassifizierung von fehlerbezogenen Signalen durch den Einsatz von
convolutional neural networks (CNNs) verbessert werden? Hilft die Visualisierung
dabei, die Ergebnisse neurophysiologisch zu interpretieren?

• Ist es prinzipiell möglich, Robotertypen basierend auf dem EEG zu unterscheiden
und wie beeinflusst der Robotertyp die Fehlererkennung? Haben Kriterien wie die
Anzahl menschlicher Ähnlichkeitsmerkmale einen Einfluss auf die Ergebnisse?

• Kann die Fehlerdekodierung mit CNNs basierend auf intrakraniellen Aufzeichnun-
gen erfolgen, wenn der Benutzer selbst Fehler begeht? Hängt das Ergebnis davon
ab, wie stark der Fehler subjektiv wahrgenommen wird oder wie real er erscheint?
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• Sind CNNs in der Lage in einer Aufgabe generalisierende Informationen zu lernen,
um sie in einer anderen Aufgabe gewinnbringend einzusetzen?

• Kann das intrakranielle EEG zum Verständnis der zeitlichen und räumlichen Ver-
arbeitung von Fehlerprozessen beitragen? Gibt es Hinweise auf entscheidende
Merkmale in diesen Prozessen?

• Wie können die Schwierigkeiten bei der Zuordnung von intrakraniellen Elektro-
denkontakten zu den darunter liegenden Hirnarealen gelöst werden, wenn zum
Beispiel Verformungen durch Implantation, aber auch individuelle Eigenschaften
das Prozedere erschweren?

Zunächst kann grundsätzlich gezeigt werden, dass eine fehlerhafte Roboterausführung
einer instruierten Aufgabe basierend auf dem nicht-invasiven EEG menschlicher Beob-
achter unter Verwendung des verbreiteten Common Spatial Pattern (CSP) Algorithmus
dekodiert werden kann. Es ist ebenfalls möglich, den Typus des Roboters anhand des
EEG zu unterscheiden. Zu diesem Zweck wurden zwei Experimente konzipiert und
durchgeführt. Der visuelle Reiz entsteht dabei durch eine richtig oder falsch ausgeführte
Einschenk- oder Hebeaufgabe des Roboters, zwei grundlegende und einfache Prozesse
einer Mensch-Roboter-Zusammenarbeit. Insgesamt 18 Probanden nahmen an der passiven
Beobachtungsaufgabe teil und prüften, ob sie erkennbare Fehlermuster erzeugen, während
die Roboter die angewiesenen Aufgaben ausführten. Der daraus resultierende Daten-
satz stellt somit eine geeignete Grundlage für die Untersuchung von fehlerbezogenen
EEG-Phänomenen dar.

Unter Verwendung eines deep convolutional neural networks kann die Qualität der Fehl-
erdetektion deutlich und signifikant verbessert werden. Das bisher untersuchte Problem
der Fehlerdekodierung wird auf Seiten des Dekodierers optimiert. Das CNN schneidet
deutlich besser ab, sowohl als die vorherige CSP-Implementierung als auch als die kon-
ventionelle lineare Diskriminanzanalyse (LDA), die hier zum Vergleich verwendet wird.
Dies bestätigt den allgemeinen Trend der EEG-Analyse, auf neue Methoden wie CNNs
zurückzugreifen und erweitert ihn um den Bereich der Fehlererkennung. Die Visualisie-
rung der Ergebnisse zeigt wichtige Eigenschaften der Klassifikationsmerkmale, die für
dieses Problem in der Zeitdomäne zu liegen scheinen. Geht es um die Unterscheidung
zwischen Robotertypen, so übertreffen die CNNs ebenfalls die Analysen mit früheren
Standards. Die Ergebnisse geben erste Hinweise auf Unterschiede in der Wirkung von
Robotern auf den Menschen bezüglich der menschlichen Ähnlichkeitsskalen des Roboters.
Die Visualisierung der erlernten Klassifikationsmerkmale liefert Informationen über die
zugrundeliegenden Prozesse. Darüber hinaus wird untersucht, inwiefern die Klassifikation
von Fehlern von der Anzahl der menschenähnlichen Merkmale eines Roboters abhängt.

Des Weiteren wird eine neue Methode zur Zuordnung von intrakraniellen Elektroden-
kontakten zu Hirnarealen anhand von Magnetic Resonance Imaging (MRI) vorgestellt.
Der Algorithmus ist besonders nützlich, wenn Implantationen im subduralen Raum
zu Verformungen des Gehirns führen und eine genaue Zuordnung von Elektrodenkon-
takten zu Hirnarealen schwierig wird. Das Verfahren zielt darauf ab, die Bereiche zu
bestimmen, die zu dem von einem Elektrodenkontakt aufgezeichneten Signal beitragen
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und basiert auf der Berücksichtigung individueller Eigenschaften des Gehirns und ei-
ner Rücktransformation in die kortikalen Bereiche des Gehirns. Als Ergebnis werden
Wahrscheinlichkeiten für den möglichen Einfluss eines Hirnareals auf den entsprechen-
den Elektrodenkontakt ausgegeben. Das Verfahren wurde in eine Softwareumgebung
eingebettet, die eine benutzerfreundliche Anwendung ermöglicht. Das Softwarepaket
beinhaltet die visuell unterstützte Identifikation der Elektrodenkontakte, die automatische
Zuordnung und eine 3D-Visualisierung inklusive Virtual-Reality-Export. Insbesondere im
Bereich der klinischen Forschung ist es möglich, selbst ohne Programmierkenntnisse von
den Methoden zu profitieren und Erkenntnisse über die genaue Position der Elektroden-
kontakte zur besseren Interpretation auftretender Phänomene zu erlangen. Die Software
ist frei verfügbar und in der von Wissenschaft und Industrie weit verbeiteten Software
MATLAB eingebettet.

Neben fehlerhafter Ausführung jeglicher Effektoren können Fehler auch vom Anwender
selbst begangen werden. Es wird ein Paradigma vorgestellt, das sowohl auf motorische als
auch auf kognitive Antworten untersucht werden kann und zu einem immensen Datensatz
von intrakraniellen Aufnahmen beigetragen hat. Dazu gehören Aufnahmen von 47 Epi-
lepsiepatienten, die alle unterschiedliche Implantationen aufwiesen und damit zahlreiche
verschiedene Hirnareale abdeckten. Darüber hinaus wurde diesem Datensatz ein weiterer
Vergleichssatz hinzugefügt, der Aufzeichnungen eines weiteren Paradigmas für 15 der
47 Patienten enthält, das auch die Analyse von Fehlersignalen ermöglicht. Es werden
Analysen vorgestellt, die grundlegende Erkenntnisse über die Verarbeitung von Fehlern
im menschlichen Gehirn geben, sowohl auf temporaler als auch auf spektraler Ebene.
Darüber hinaus werden gemeinsame und damit möglicherweise allgemeine Merkmale in
der zerebralen Verarbeitung der hier untersuchten Fehler in den beiden unterschiedlichen
Paradigmen aufgedeckt. Die Ergebnisse können zur Untersuchung der Verallgemeinerung
von fehlerbezogenen Mustern für den Transfer über Paradigmen hinweg beitragen.

Basierend auf den eben vorgestellten Daten wird das Potential von CNNs zur Fehlerer-
kennung durch intrakranielles EEG nachgewiesen. Der Versuch, allgemeine fehlerbezoge-
ne Informationen auf weitere Paradigmen zu übertragen, zeigt, dass ein Vortrainieren der
CNNs zu signifikanten Verbesserungen führen kann, insbesondere bei wenig verfügbaren
Daten. Dies ebnet den Weg für das Antrainieren eines allgemeinen Fehlermusters, das für
viele verschiedene Fehlertypen geeignet ist und somit schneller und zuverlässiger erkannt
werden kann. Insbesondere in Verbindung mit BCIs kann diese Generalisierungsmethode
helfen, die große Anzahl potenziell auftretender Fehler, aber auch andere Arten von
Kontrollsignalen, zu erkennen.

Die dieser Arbeit zugrundeliegenden Experimente wurden allesamt systematisch ge-
plant, durchgeführt und sorgfältig ausgewertet. Alle vorgestellten Methoden wurden eben-
falls mit größter Sorgfalt implementiert und Ergebnisse auf statistische Relevanz überprüft
sowie anhand der Literatur gegengeprüft. Zusammenfassend stellt diese Arbeit einen wert-
vollen Beitrag dar, Fehler in einer Mensch-Roboter-Kooperation anhand menschlicher
Hirnsignale zu erkennen, wobei die entwickelten Methoden nicht zwangsläufig auf diesen
Typus von Signal beschränkt sein müssen. Neben hervorgebrachten fundamentalen Er-
kenntnissen zur fortlaufenden neurophysiologischen Erforschung von Fehlersignalen im
Speziellen, trägt die entwickelte Methode ELAS allgemein dazu bei, verlässliche Zuord-
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nung von Elektroden zu Hirnarealen und somit korrekte Interpretationen von zerebralen
Phänomenen zu garantieren.



Abstract
An industry in which processes are becoming increasingly complex and terms such as
artificial intelligence, networking and increasing digitization are becoming more an more
important, reliable automated processes and security are fundamental. In cooperation
with humans, a reliable error detection subsystem in an automated intelligent robotic
system can provide increased security and adaptivity. If this system is based on human
brain signals, it is called Brain Computer Interface (BCI). For practical applicability,
however, high decoding accuracies are required for the detection of errors, which all
implementations currently have to struggle with.

First, this thesis classifies errors committed by robots using conventional methods by
means of electroencephalography (EEG) of a human observer. Using deep convolutional
neural networks (CNNs) the performance can be significantly improved. This also applies
to the differentiation of robot types and conclusions can be drawn about the appearance of
the robot. In a second approach, the potential of the CNN architecture for error detection is
confirmed on intracranial EEG (iEEG), where errors are generated by incorrect execution
of the user himself. In order to imitate everyday situations in which little data is available
for training, information is transferred across paradigms, finetuned with successively
increasing available data and then classified. This leads to a significant improvement of
performance in the case of little data in fine tuning.

Surface EEG cannot pick up signals directly at the tissue and recordings originate
largely from the cortical areas near the surface, whereas iEEG is not limited by these
circumstances. In order to gain a deeper understanding of error processing in the brain,
the data obtained from the iEEG are examined for error-related information and the
comprehensive involvement of the different areas is revealed. The power increase turns
out to be a dominant feature of error processing.

A newly developed algorithm for the assignment of electrode contacts to brain areas is
presented to compensate for deformations during implantations and individual differences
in human brains. This algorithm is based on cortical retransformation and individual
landmarks, and uses probabilistic, cytoarchitectonically-defined maps, and improves the
assignment in the evaluation. The algorithm is also embedded in a user-friendly interface
that can be used without any programming experience.

All methods presented were implemented with great care and results were checked for
statistical significance and verified by the literature. In summary, this work represents
a valuable contribution to detection of errors in human-robot cooperations by means
of human brain signals, although the methods developed do not necessarily have to be
limited to this type of signal. In addition to the fundamental findings gained in the ongoing
neurophysiological research of error signals in particular, the developed ELAS method
contributes in general to correct interpretations of cerebral phenomena.
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Chapter 1

Introduction

Making mistakes is human. However, the ability to reflect our own mistakes and to learn
from them is one of the most valuable qualities we possess. To this, recognizing mistakes
or errors is fundamental, likewise the ability to make adjustments, that might prevent
once more a fail in recurring scenarios. These processes enable an efficient design of
approaching tasks. The same applies to intelligent robotic systems. Their application can
also lead to faulty execution, which can be a critical safety problem when collaborating
with humans. For this purpose it is necessary to recognize occurring errors in time to stop
the system, but also to learn from these errors in order not to commit the same errors again
in future scenarios. Adaptive systems can detect errors in real time and make adjustments
to enable rapid learning.

A wide range of intelligent and autonomous robot systems is already being used in
industrial manufacturing, where the keywords Artificial Intelligence (AI) and Industry
4.0 are currently attracting more and more attention. A partial aspect of this highly
complicated networking processes is also played by collaborative systems between man
and machine, and concepts based on physiological data come into focus. Brain signals are
probably the most complex but also the most promising form of control signals. Real-time
analyses can significantly increase efficiency and support safety systems in scenarios of
direct cooperation. Also for instance in fields like healthcare, where intelligent robotic
service assistants could take on numerous tasks, an intuitive control is fundamental.

Solutions based on robotic systems are usually not exclusively controlled by the user.
As a rule, it is primarily autonomous intelligent subsystems that take over decisive steps
in a process and are only roughly controlled by the addition of human help. Especially in
industrial production, this model of cooperation is often used. In other areas, the state of
the art is not yet so advanced, but numerous research projects are dealing with this topic.
Auxiliary systems for people with any motor deficits, for example, pursue the goal of
giving more autonomy back to users and, e.g., autonomous robotic assistants can enable
intake of fluids without further human care. To give further examples, in order to optimize
the process of autonomous drinking, there are also efforts to detect the fluid level in a
cup or to learn the pouring process based on machine learning techniques. More holistic
systems are developed likewise, which for example enable users to communicate with an
intelligent robotic service assistant via conscious brain signals by means of a high-level
framework.

Even if these subsystems function per se, it requires a user who deliberately controls
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and sets in motion these systems. If the communication takes place via brain signals of the
user, one speaks of a Brain Computer Interface, or BCI for short. These interfaces were
initially developed primarily for severely paralyzed patients, but are also frequently used
in completely different areas such as the entertainment industry. However, the difficulty of
working with brain signals is the recognition of desired pattern types and their distinction
from other types. For practical application a high reliability of the detection systems
is necessary. Some machine learning techniques as for example linear discriminant
analysis (LDA), support vector machines (SVM) but also common spatial patterns (CSP)
have become established methods when it comes to classifying brain data. However, the
performances are not necessarily in the desired and for practical purposes required ranges,
for instance when it comes to decoding error-related responses. Though, such error
signals can conduce to the improvement of a BCI system in many ways. An important
contribution of this thesis is the investigation of these signal types and the optimization
of the their classification using different machine learning techniques. Among other
things, methods from the field of deep learning are used, which have recently achieved
enormous success in the field of machine vision, a task in which until now humans have
been superior to any machine system. Fig. 1.1 exemplarily shows possible faulty robotic
executions in an autonomous drinking scenario.

A further difficulty with the use of BCIs is that a system established for a user is
not generally defined, but individually adapted to the responses of this user. Signals of
different users can appear completely diverse and exhibit distinct spatial distribution,
which is why it is necessary to adapt the system to the individual user. And even when
used by only one user, a functioning system may need to be recalibrated after a certain
period due to non-stationarities. Systems that can store information for a specific task
and make the generalizing part available for a broad application could be particularly
helpful here. This is also the case if only little data is available, but reliable decoding is
still needed.

Various motor patterns can be used as control signals for BCIs, but also cognitive
processes can accomplish this task. As already mentioned, if one considers a direct
cooperation between humans and robots, fast and reliable error recognition can contribute
to increased safety standards, but also allows the refinement of control. A complicated
integration of a command ”error” via another substitute control signal in the human EEG
and its detection would be undesirable. Rather, a natural intrinsic pattern is required that
is generated directly upon, conscious or unconscious, perception of errors in the signals
of the brain and can be tapped immediately. One of the most researched phenomena in
this context is a negative deflection in the EEG, already visible in the first 300 ms with the
occurrence of an error, the error-related negativity (ERN) or error negativity (Ne). This
event-related potential (ERP) occurs when observing or committing an error, where the
amplitude of the deflection is modulated by the subjective importance and perception of
the error. Beyond that, for example in the spectral domain, there are few investigations
which can describe the complexity of the processing of errors beyond single components.
Besides the relevance for an optimal detection of error signals, the investigation of error
processes has a high scientific value. New findings in this field can contribute to an
understanding of the temporal and spatial processing of error processing and give a deeper
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Figure 1.1: Erroneous robotic execution. Examples of situations where a human robot interaction might
go wrong: robotic arm LBR iiwa (LBR iiwa, KUKA Roboter GmbH, Augsburg, Germany) is unsuccessful
in executing instructed task in an autonomous drinking scenario.

insight into the interaction of the different brain areas. Similarly, the functional allocation
of the brain cannot be fully explained and understood to this day.

Non-invasive methods such as the surface EEG, which measure the voltage at the scalp,
can only pick up brain signals that are generated close to the surface and are thus largely
restricted to cortical brain areas near the surface. In addition, the distance to the signal-
generating tissue leads to the superposition of many different signals and the recordings
rather represent the entirety of the information of several areas. The filtering effect of the
intermediate skull and the artifacts from muscles also hardly simplify the task. By contrast,
methods that pick up signals intracranial, i.e. within the skull, offer several advantages.
Though, if reliable statements about neurophysiological activities and connections of
brain areas are to be made, an exact assignment to the underlying tissue is indispensable.
This can be achieved by mapping to the atlas of a standard brain, which generally maps
the areas of the brain cytoarchitectonically, i.e. based on the cellular composition of the
tissue, using post mortem brains. However, the soft cerebral tissue is deformed during
implantation, which makes the comparison of an individual structure to the general case
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more difficult. In addition, a ”standard” brain can only be roughly formulated in general
terms, but does not necessarily have validity for every point considered for the individual
brains and does not take individual characteristics into account. Especially in regions
where different areas border each other, a reliable assignment can become critical.

With regard to error detection based on human brain signals, the following questions
arise from the problems and challenges presented, and are dealt with in this thesis:

• Can the non-invasive EEG of human observers be used to decode faulty execution
of robotic systems?

• Can the classification of error-related signals be improved by using deep learning?
Does visualization help to interpret the results neurophysiologically?

• Is it in principle possible to distinguish robot types based on the EEG and how does
the type of robot affect the detection of errors? Do criteria such as the number of
human similarity characteristics have an influence on the results?

• Can error decoding take place deep learning based on intracranial recordings when
users make errors themselves? Does the performance depend on how strong the
error is subjectively perceived or how realistic it seems to be?

• Are convolutional neural networks (CNNs) able to learn generalizing information
in one task in order to use it profitably in another task?

• Can the intracranial EEG contribute to an understanding of the temporal and spatial
processing of error processes? Is there any indication of decisive features in these
processes?

• How can the difficulties in assigning intracranial electrode contacts to underlying
brain areas be solved, if for example deformations due to implantation but also
individual characteristics complicate the procedure?

1.1 Outline
The thesis is structured in the following way. First the basics of the thesis are explained in
Chap. 2. Since the work takes up numerous concepts and analysis methods of neuroscience
in addition to the main focus on computer science, it is difficult to survey both topics
in their entirety. Therefore this chapter raises a complete theoretical basis for the ideas
and applications in this work to be able to understand them. It also lists methods and
algorithms that rather would belong to the results section. However, these connections are
already dealt with in this chapter in order to guarantee the completeness of the method part
from A to Z and thus to make the theory clearer. In addition, the implemented methods
are used several times and thus only have to be derived and explained once at a central
point. However, in the following chapters it is made clear which of the methods have
been developed in the course of this thesis. Beginning with neurophysiology, the methods
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also explain the essentials of the used recording techniques, the application of BCIs and
spectral decomposition, and extensively discuss applied machine learning techniques,
concluding with the introduction of statistical testing.

The results are divided into six chapters, roughly representing each a separate study. An
overview is given in Fig. 1.2. In Chap. 3 it can basically be shown that incorrect robotic
execution of an instructed task can be decoded based on the non-invasive EEG of human
observers, making use of the conventional common spatial patterns (CSP) algorithm.
It is also possible to distinguish the type of robot based on the EEG. For this purpose
two experiments were designed and carried out. The visual stimulus is created by a
correctly or incorrectly performed pouring or lifting task by a robot, two basic and simple
processes of a human-robot collaboration. Altogether 18 subjects participated in the
passive observation task, testing whether they generate recognizable error patterns while
watching the robots perform the instructed tasks. The resulting data set thus represents a
suitable basis for the investigation of error-related EEG phenomena.

Figure 1.2: Outline of the chapter’s content. Scheme of a collaborative human-robot-interaction based on
(intracranial) brain recordings. The scene illustrates a situation with appearance of erroneous control or
faulty execution of a robotic effector.

Chap. 4 describes the obvious and significant improvement of error-decoding perfor-
mance using a deep convolutional neural network. The chapter takes up the problem
investigated so far and starts with the optimization on the part of the decoder. The CNN
performs significantly better, both as the previous CSP implementation and as the con-
ventional linear discriminant analysis (LDA) used for comparison. This confirms the
general trend of EEG analysis reverting to new methods like CNNs and extends it to the
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field of error detection. The visualization of the results reveals important properties of
the features that seem to be in the time domain in this problem. The CNNs also beat
previous standards at the level of differentiation between robot types, which is dealt with
in Chap. 5. The results give possible first indications of differences in the effect of robots
on humans, with respect to human similarity scales. Visualization of learned features
provides information about the underlying processes. In addition it is investigated to what
extent the decoding of errors depends on the number of human-like features of a robot.

In Chap. 6, a novel method for assignment of intracranial electrode contacts to brain
areas based on magnetic resonance imaging (MRI) is presented. The algorithm is espe-
cially useful when implantations in subdural space lead to deformations of the brain and
an exact assignment of electrode contacts to brain areas becomes difficult. The method
aims to determine the areas that contribute to the signal that is recorded by an electrode
contact and is based on the consideration of individual characteristics of the brain and a
retransformation to the cortical areas of the brain. As a result, probabilities for the possible
influence of an area on these electrode contacts are given. The method has been embedded
in a software environment that allows a user-friendly application. The software pack-
age includes the visual-supported identification of the electrode contacts, the automatic
assignment and the 3D visualization, including virtual reality export. Especially in the
field of clinical research it is possible to benefit from the methods without programming
knowledge and to gain knowledge about the exact position of electrode contacts for better
interpretation of occurring phenomena. The software is freely available and implemented
in MATLAB, which is widely used in science and industry.

Apart from the observation of faulty execution, errors can also be committed by the user
himself. Chap. 7 presents a paradigm that can be investigated for both motor and cognitive
brain signals, and has contributed to an immense data set of intracranial recordings. This
includes recordings of 47 epilepsy patients, who had different implantations and thus
covered numerous different brain areas. In addition, a further comparative set was added
to this data set, which contains recordings of a further paradigm for 15 of the 47 patients,
which also permits analyses of error signals. In Chap. 7 analyses are presented which
give basic insights into the processing of errors in the human brain, both on temporal and
spatial scales. In addition, the different paradigms reveal the common and thus possibly
general features in the cerebral processing of errors examined here. The results may
contribute to the investigation of generalizing error-related patterns for the transfer across
paradigms.

In Chap. 8, based on the recordings of the paradigms presented in Chap. 7, the potential
of CNNs to detect errors by intracranial EEG is shown. The attempt to transfer general
error-related information to further paradigms shows that pretraining of the CNNs can
lead to significant improvements, especially in the case of little available data. This paves
the way for the training of a general error pattern that fits many different error types and
can therefore be recognized faster and more reliably. Especially in connection with BCIs,
this generalizing method can help to detect the large number of potentially occurring
errors, but also other types of control signals.

Chap. 9 finally concludes the results and insights of this thesis, and works out further
scientific questions for future research.
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1.2 Key Contributions

This thesis provides a scientific contribution to the optimization of error detection by
means of human (intracranial) brain recordings, both in case the signals are triggered by
faulty execution of the robot as well as by errors committed by a user himself. It also
contributes to the neurophysiological understanding of error-related patterns. In detail the
key contributions are as follows:

• For the analysis of error-related responses in human EEG, while observing robot
errors, a huge data set comprising recordings of altogether 18 participants was
generated. Initial analyses with standard methods showed that these error patterns
as well as the type of robot can be decoded (Chap. 3). The resulting data set thus
represents a suitable basis for the investigation of error-related EEG phenomena.

• The novel application of convolutional neural networks in the field of error-decoding
based on human EEG shows that in this context deep CNNs perform significantly
better than previous standards (Chap. 4).

• The huge potential of CNNs compared to conventional methods can also be shown
for the differentiation of robot types by means of human EEG. The results give
possible first indications of differences in the effect of robots on human similarity
scales (Chap. 5).

• An algorithm for the assignment of intracranial electrode contacts to underlying
brain areas was co-developed and implemented. A self-designed software en-
vironment has been designed, embedding the novel algorithm, which allows a
user-friendly application. The tool includes the visual-supported identification of
the electrode contacts, an automated assignment, a 3D visualization and an export
for virtual reality application (Chap. 6).

• Based on a paradigm that can be investigated for both motor and cognitive brain
signals, an immense data set of intracranial recordings could be created, including
recordings of 47 epilepsy patients. Each participant exhibited different implanta-
tions and thus covering different brain areas. In addition, a further comparative
set was added to this data set, which contains recordings of a further paradigm
for 15 of the 47 patients, permitting analyses of error signals. Based on this data,
analyses could be performed that revealed insights of temporal and spatial features
during error-processing and that disclosed similarities in error patterns for different
paradigms but same electrode contacts (same patients) (Chap. 7).

• Studies on a transfer of error-related patterns across paradigms resulted in a sig-
nificant improvement of decoding accuracies in the case of small amounts of data.
Furthermore, the CNN shows again high accuracies for the decoding of the error-
related patterns in both cases (Chap. 8).
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1.3 Publications
This thesis is based on our previous work presented in the following peer-reviewed journal
papers and conference proceedings.

• J. Behncke, J. Hammer, A. Kalina, P. Marusič, A. Schulze-Bonhage, W. Burgard,
and T. Ball. A core system for error processing delineated by intracranial eeg.
NeuroImage, 2020. submitted.

• J. Behncke*, M. Kern*, J. Rüscher*, A. Schulze-Bonhage, and T. Ball. Probabilis-
tic neuroanatomical assignment of intracranial electrodes using the elas toolbox.
Journal of Neuroscience Methods, 2019. *These authors contributed equally.

• J. Behncke, R. T. Schirrmeister, M. Völker, J. Hammer, P. Marusič, A. Schulze-
Bonhage, W. Burgard, and T. Ball. Cross-paradigm pretraining of convolutional
networks improves intracranial eeg decoding. IEEE International Conference on
Systems, Man, and Cybernetics (SMC), 2018.

• J. Behncke, R. T. Schirrmeister, W. Burgard, and T. Ball. The role of robot design
in decoding error-related information from eeg signals of a human observer. 6th
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ROTECHNIX), 2018.

• J. Behncke, R. T. Schirrmeister, W. Burgard, and T. Ball. The signature of robot
action success in eeg signals of a human observer: Decoding and visualization using
deep convolutional neural networks. In 6th International Winter Conference on
Brain-Computer Interface, pages 1–6. IEEE, 2018.

• D. Welke*, J. Behncke*, M. Hader, R. T. Schirrmeister, A. Schönau, B. Eßmann,
O. Müller, W. Burgard, and T. Ball. Brain responses during robot-error observation.
Kognitive Systeme, 2017. *These authors contributed equally.

The following publications that are not included in this thesis but also originate from the
author’s work at the research group.

• M. Völker, J. Hammer, R. T. Schirrmeister, J. Behncke, L. D. Fiederer, A. Schulze-
Bonhage, P. Marusič, W. Burgard, and T. Ball. Intracranial error detection via deep
learning. IEEE International Conference on Systems, Man, and Cybernetics (SMC),
2018.

• F. A. Heilmeyer, R. T. Schirrmeister, L. D. Fiederer, M. Völker, J. Behncke, and
T. Ball. A framework for large-scale evaluation of deep learning for eeg. IEEE
International Conference on Systems, Man, and Cybernetics (SMC), 2018.

• M. Völker, L. D. Fiederer, S. Berberich, J. Hammer, J. Behncke, P. Kršek, M. Tomášek,
P. Marusič, P. C. Reinacher, V. A. Coenen, et al. The dynamics of error processing in
the human brain as reflected by high-gamma activity in noninvasive and intracranial
eeg. NeuroImage, 173:564–579, 2018.
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1.4 Collaborations
This thesis was realized within the projects BMI-Bot (grant by the Baden-Württem-
berg Stiftung) and Micro-Rec of the interdisciplinary cluster of excellence BrainLinks-
BrainTools and benefits from the cooperation with several other researchers. Wolfram
Burgard and Tonio Ball acted as supervisors and mentors for this thesis and contributed
with valuable ideas and feedback to the development of this thesis and the underlying
publications. Thanks to Andreas Schulze-Bonhage and Petr Marusič, there was access to
human intracranial brain data, which made parts of the subsequent analyses possible in
the first place. Further collaborations are listed below for the individual chapters:

• Chap. 3: The underlying data set, based on non-invasive EEG, was generated
cooperatively with the assistance of Marina Hader in the course of the master thesis
of Dominik Welke. The analyses originated from the fruitful discussion with Robin
Tibor Schirrmeister, whereby Andreas Schönau, Boris Eßmann and Oliver Müller
were also involved in the completion of the publication. The related publication is
[360].

• Chap. 4: For this chapter, the data set described in Chap. 3 was used. The analyses
were made possible by the support of Robin Tibor Schirrmeister, who developed
the open-source toolbox BRAINDECODE to create deep learning architectures. The
related publication is [31].

• Chap. 5: Here, too, the analyses benefited from the aforementioned data set and the
analysis methods. The related publication is [30].

• Chap. 6: The essential idea for the assignment algorithm originated from the
mental work of Tonio Ball and was developed together with Markus Kern and
Johanna Rüscher. The technique for estimating errors during co-registration was
developed together with Markus Kern. Markus Kern and Johanna Rüscher realized
the evaluation of the method. The related publication is [33].

• Chap. 7: The data for the investigation of intracranial signals were generated
together with Martin Völker but especially Jiřı́ Hammer, based on experimental
design of the aforementioned. The related publication is still in preparation [34].

• Chap. 8: In this chapter, analyses are performed upon the data set based on intracra-
nial recordings, which is described in Chap. 7. Analyses partly were made possible
due to the toolbox of Robin Tibor Schirrmeister. The related publication is [32].

The figures in the particular chapters are taken from the cited publications or are modified
versions of them. For all other pictures and figures in this thesis, either a source is quoted
or the graphic originates from the creative work of the author.
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1.5 Acronyms and Notations

Acronym Phrase

ACC anterior cingulate cortex (brain area)
ANN artifical neural networks
BCI brain computer interface
CDT car driving task (experimental paradigm)
CNN convolutional neural network
CS central sulcus
CSF cerebrospinal fluid
CSP common spatial pattern
ECoG electrocorticogram
EEG electroencephalogram
EFT ERIKSEN flanker task (experimental paradigm)
ELU exponential linear unit
ERN/Ne error-related negativity, error negativity
ERP event-related potential
ErrP error potential
FBCSP filter bank common spatial pattern
FFT fast FOURIER transform
HPA hierarchical probabilistic assignment
iEEG intracranial electroencephalogram
LDA linear dicriminant analysis
LFP local field potential
LOT lifting observation task (experimental paradigm)
LS lateral sulcus
MFC medial frontal cortex (brain area)
ML machine learning
MLP multilayer perceptron
MNS mirror neuron system
MRI magnetic resonance imaging
Pe error positivity
PFC prefrontal cortex (brain area)
POT pouring observation task (experimental paradigm)
rLDA regularized linear dicriminant analysis
SMA supplementary motor area (brain area)
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Symbol Description

x scalar value
x row vector
x = (x, y, z) vector with scalar values
X m× n matrix

||x||, ||X|| EUCLIDEAN norm of vector, matrix
|x| = ||x|| absolute value of scalar
x> column vector
X> transpose of X
X−1 inverse of X
XH adjunct of X
x+ vector, only even coefficients of x
x− vector, only odd coefficients of x
Σ covariance matrix

xi entry i of vector x
xi vector i of a set of vectors
Xi,: row vector i of matrix X

act activation function
arg minγ minimum under argument γ
corr correlation
cov covariance
log natural logarithm
netj input for neuron j
pred(j) predecessors of neuron j
var variance

x̃ FOURIER transform of x
g ∗ h convolution
dx/dy derivative
∂x/∂y partial derivative
δij KRONECKER delta
~∇ nabla operator
∆ = ~∇2 LAPLACE operator
P (X) probability distribution of random variable X
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Chapter 2

Background and Methods
This chapter addresses the theoretical background of the thesis, considering that
the applied methods primarily originate from two main disciplines, computer
science and neuroscience. Hence, it is important to understand the underlying
principles of both sides to obtain a comprehensive overview for an assessment of
the results. This chapter is not only entitled to explain the underlying concepts
and to motivate the issue of this thesis. Instead, self-implemented methods and
algorithms as well as design choices are likewise already presented. The reason
behind this structure is to introduce the multiply used machine learning algorithms
generally and only once, and moreover to present the entire theory coherently
from first to last. In the first section, Sec. 2.1, a brief overview of the brain is
given and the theory of signal generation and transport is explained. Sec. 2.2
addresses the techniques to record those signals. The following Sec. 2.3 introduces
the concepts for brain machine interfaces and the neural signals that drive their
control, particularly regarding detection of errors. Sec. 2.4 presents the utilized
methods for spectral decomposition, providing the basis for analyses in frequency
domain. The most comprehensive part of this chapter is used by the conception of
machine learning techniques, Sec. 2.5. Here, the three main decoding approaches
of this thesis are discussed and connected tools are introduced. A last section,
Sec. 2.6, motivates the use of statistics and explains the applied techniques.

2.1 Neurophysiology
Generally speaking, neurophysiology outlines the science of the nervous system. In the
following, the underlying principles will be exposed in a top down manner. The most
fundamental description divides the nervous system into the central and the peripheral
nervous system. At this, the peripheral nervous system comprises all nerves that are
not covered by the central nervous system (brain and spinal cord), and spins a dense
net throughout the entire body. The central nervous system embodies the central human
processing unit. It is responsible for the retention and processing of information that is
incorporated from the exterior by the sensory organs. It also subserves the control and
adjustment of internal organs and the coordination of the entire motoric capacities. After
a short introduction of the brains structure, the nerve cells or neurons are characterized
and the signal transport is described.
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2.1.1 The Brain

Roughly, the brain can be subdivided into four main areas, see Fig. 2.1. The cerebellum is
responsible for motor coordination, taking care of balance and fine tuning movements.
Due to its vicinity to the spinal cord, it processes direct sensory, acoustic and visual
information. Likewise, parts of learning processes are ascribed to the cerebellum. Among
others, the diencephalon comprises the thalamus and the hypothalamus, and is preceding
the telencephalon according to sensory and motor signals. Furthermore, it makes decisions
about the prioritization of certain signals, while the hypothalamus controls a variety of
body internal processes. In contrast, the brain stem (truncus cerebri) controls fundamental
functions like respiration, blood pressure or reflexes. Abstract brain-teasers are processed
by the cerebrum or telencephalon, comprising among others the cerebral cortex. The
cerebral cortex constitutes approximately a fifth of the cells of the entire brain and has
developed during evolution the most. It plays an essential role in the derivation of electrical
signals on the scalp, generating signals from important functional centres. For example,
projections of the visual pathways lead to the visual cortex in the occipital lobe. The
auditory cortex in the upper regions of the temporal lobe serves to process acoustic signals
and provides the necessities for hearing and speech. Associative areas in the anterior
part of the frontal lobe are assigned to memory, higher thinking and cognitive processes.
Control of movement is accomplished by the motor cortex, while the parietal lobe handles
the somatosensory processes and e.g. ensures for the capability to calculate. Several
functions, especially high-level cognitive tasks, are not always easy to locate and can
vary among individuals. The method of mapping motor-sensory cortex functions was
discovered when electrical stimulation led to the illusion of touch or movement [263].
Recapitulating, the general task of all areas is to process the huge mass of information
given by the cells.

Figure 2.1: Sketch of the brain. The four main parts of the brain are formed by the telencephalon, the
diencephalon, the cerebellum and the truncus cerebri.
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The cells of the nervous system can be subdivided into two different types: glia cells
and nerve cells or neurons, respectively. Glia cells build the supporting structure for the
nerve cells and care for electrical insulation by enveloping them. In addition, they support
by providing transport of substances, care for fluid exchange and accomplish homeostasis.
The nerve cell is the structural and functional basic unit of the nervous system and will be
regarded more closely in the following, supported by the theory given in [183].

2.1.2 Signal Generation and Transport
The neurons structure is depicted in Fig. 2.2, where the fundamental information pro-
cessing takes place. Incoming signals, such as from preceding neurons, are received by
specific transition points, called synapses. Besides, the particular informative parts are
weighted at this step, before the dendrites collect all the information and transfer it to the
cell body or soma. Inside the soma the weighted information parts are added up. As soon
as the aggregated signal exceeds a certain threshold, the neuron generates an electrical
signal which is passed to succeeding neurons. The output signal, formally known as
action potential, arises from the origin hill of the axon, the so-called axon hillock, where
the activation takes place. The electrical insulated axon fulfills the function of transferring
the action potential to adjacent units.

In Fig. 2.2C the underlying biological model of a neuron is described by a simple
mathematical approach [185]. Here, the single xi stand for the input signal at the synapses.
At these neuronal connections the inputs are weighted by the wi and transferred by the
dendrite. The soma finally adds up the weighted inputs:∑

i

wixi. (2.1)

The weighted sum is compared with a certain threshold, here represented by the heaviside
step function, and passed as output y to succeeding neurons.

y = Θ
(∑

i

wixi

)
. (2.2)

Hereafter, the transport of the electrical signal will be examined according to the
cellular ion balance. The information processing is hereby supported by the specific
properties of the passive semipermeable membrane of the neuron. If the neuron is not
excited, the membrane takes over a state of electrostatic balance between intracellular and
extracellular space. The interior of the cell contains a high concentration of potassium
ions (K+), whereas exterior the sodium ions (Na+) predominate. During resting state
the different charges make for a basic voltage across the membrane of approximately
Vr = −70mV , called resting potential, which is always considered according to the
exterior. The equilibrium of 6= 0mV is explained in the following.

The magic of these circumstances rests in the membrane itself. By reason of ion
channels in the membrane, the cell membrane is selectively permeable. The ion channels
that are active in resting state are highly permeable to K+ ions, but significantly less
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Figure 2.2: Schematic description of a neuron and its underlying processes. A Top: charges at the
membrane in case of a resting state. During resting state the charges maintain in an equilibrium of −70mV .
Bottom: when stimulated by an excitatory postsynaptic potential (EPSP), the ion channels in the membrane
change their permeability resulting in an Na+ flux into the interior of the cell, what increases the potential
across the membrane. Inspired by [329] B Sketch of a neuron. The arrows indicate the direction of the
signal propagation. C Mathematical model inspired by the biological neuron [185]. The input of a preceding
neuron is weighted at the synapse. The dendrites translate the weighted signals to the soma, where it is
added up. At the axon hillock, the output signal is initiated by the activation Θ as soon as a certain threshold
is exceeded. The axon propagates the output to succeeding neurons. D Sketch of a pyramidal cell, which
only appears in the cerebral cortex. It can be characterized by its pyramid-like body and the long dendrites.
The pyramidal cells provide the largest contribution to the potential on the scalp.

permeable to Na+ ions. Thus, the concentration gradient leads to an outward K+ ion flux,
while the electrical gradient that emerges from the remaining negative charges counteracts.
By contrast, due to the low interior Na+ concentration and the electrical gradient, the
exterior Na+ ions tend to diffuse into the interior, but inhibited by the ion channels.
Furthermore, the active membrane pump (the protein adenosine triphosphate, ATP) acts
against the flux of ions. This Na+ −K+ pump holds down the Na+ concentration inside
the cell, while keeping up the K+ concentration. An equilibrium is established at the just
mentioned resting potential. If the neuron is excited by preceding neurons, the potential
at the membrane increases significantly. As soon as the potential exceeds a value of
roughly V = −55mV , the membrane becomes considerably more permeable for Na+

than for K+ ions. The explosive change, also referred to as depolarization, generates a
sharp increase of the membrane potential leading to a voltage peak of about V = 40mV ,
called action potential. Incidentally, the state reverts the relations and the repolarisation
begins. Because of the inertia of the channels the system subsequently occupies the state
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of hyperpolarization, being a little less negative than the potential during resting state.
Ultimately, after a total refractory period of less than 2ms, resting state takes over. In
this way, the stream of information takes place across the cell. By means of the axon, the
neuron can stimulate or inhibit adjacent neurons by generating either an exciting or an
inhibiting postsynaptic potential (EPSP or IPSP) at the according synapses. This potential
can persist for more than 10ms and consequently admit a large temporal and spatial
summation.

According to the NERNST equation, which is derived from thermodynamic principles,
the equilibrium potential Eχ can be calculated for any ion χ:

Eχ =
RT

zχF
log

[χ]o
[χ]i

, (2.3)

where R is the gas constant, T the temperature given in Kelvin, zχ the valence of the ion
χ and F the FARADAY constant. [χ]o and [χ]i define the concentrations of the ion inside
and outside the cell. The NERNST equation can be regarded as a first approximation of the
description of the resting potential over the cell membrane. Until now, the contribution
of chloride (Cl−) has not been mentioned for convenience. However, the equilibrium
potential of chloride ECl also biases the membrane potential Vm, defined as the difference
between the potential Vi inside the cell and outside the cell Vo, and is therefore considered
in the GOLDMAN equation [144]. This equation describes the membrane potential in
dependence on ionic permeability and concentration:

Vm = Vi − Vo (2.4)

=
RT

F
log

(
PK [K+]o + PNa[Na

+]o + PCl[Cl
−]i

PK [K+]i + PNa[Na+]i + PCl[Cl−]o

)
. (2.5)

Here, Pχ denotes the permeability of ion χ. The GOLDMAN equation is defined in a
stationary state, what means that the sum of all ion fluxes

∑
χ Iχ equals zero. When

the state changes, for example when the permeability for K+ ions is exceptionally high
(PK � PNa and PK � PCl), the GOLDMAN equation reduces to the NERNST equation:

Vm ∼=
RT

F
log

[K+]o
[K+]i

. (2.6)

Consider that zK = +1. An equivalent circuit model of the resting membrane can be used
to calculate the ion flux Iχ [183]. Here, the electrogenic influence of the Na+-K+ pump
can be neglected. According to the model, going from inside to the outside for example
across the K+ branch, the total potential difference can be determined as:

Vm = EK +
IK
GK

. (2.7)

Here, the K+ cell conductance of the membrane is defined as the product between
number of resting state K+ channels and conductance of an individual K+ channel gK ,
GK = NKgK . Hence, the ion flux for K+ can be described as:

IK = GK(Vm − EK). (2.8)
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The point current source model or standard model is a technique to derive the local field
potential (LFP, see section 2.2) from networks of neurons and is widely applied to model
extracellular potentials [96, 267, 278, 284]. It is a rather simple approach which assumes
that the LFP is generated by transmembrane currents and the neurons are embedded in an
ohmic or perfectly resisting medium. Furthermore, the electric potential can be considered
to be generated by point current sources and exhibiting a spherical symmetry. Then, the
potential V (r) at any position r in space is calculated by

V (r) =
1

4πσ

Ib
||r− rb||

, (2.9)

where rb defines the position of the current source b and σ the electrical conductivity of
the extracellular medium. As a matter of fact, V (r) is solution of the LAPLACE equation,
∆V = 0. In electrostatics, electrical potentials in an uncharged space suffice the LAPLACE

equation. Assuming several point current sources, the potential at r can be computed as
the linear superposition of all point current sources,

V (r) =
1

4πσ

∑
b

Ib
||r− rb||

. (2.10)

Finally, when the potential at a certain position is described as a time-dependent, discrete
and finite signal, it assumes the form of a matrix:

V ∈ Re×t, (2.11)

with t discrete time steps and the activity at a number of e different positions, which
will be later considered as electrodes (electrode contacts) or channels. At this, electrode
describes the physical sensor whereas channel refers rather to the signal recorded by an
electrode.

2.2 Recording Techniques
Due to the electrical activities of the neurons, an electrical field is generated, inducing
local compensation currents inside the dendrites and the extracellular areas [19]. The
excitation of neurons is similarly accompanied by a magnetic field that is perpendicular
to the electrical field. Albeit, the fields of a single neuron are extremely weak and
measurements only succeed if neural tissue is hit directly by a sensor. The commonly
called single unit activity (SUA) can be measured with the help of microelectrodes [54].
On larger scales such a measurement is not possible any more, but synchronization of
electrical activity of adjacent neurons can be summarized as the local field potential (LFP)
[67, 247]. Both with non-invasive (electroencephalography) and invasive (intracranial
electroencephalography) measurement methods these effects can now be recorded. Here,
the technologies can differ in their temporal and spatial resolution. Hereafter, the methods
are described which were used to gather the extensive set of data.
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2.2.1 Electroencephalography

Electroencephalography (EEG) is a non-invasive methods, recording changes of electrical
potentials between electrodes on the scalp. In 1929 Hans Berger was the first to apply
this method to acquire access to human brain activity [35]. Rapidly, it showed that
physiological states could be reflected by reference to this method.

When a brain region is engaged in a certain task, a cluster of organized neurons, showing
similar or synchronized activity, takes action. The large number of simultaneously working
neurons generates an electrical dipole in the substructures of the brain. This dipole can be
measured on the scalp as a scalp potential, depending on size, location and orientation
of the dipole. There, due to conducting properties of the different transmigrated layers
(see Fig. 2.3), the measurable signal is strongly attenuated by a factor of about 1000.
Thereby, the layers, for instance the brain, the cerebrospinal fluid (CSF), the bone or the
skin, appear like a low-pass filter. While intracranial measurement methods tap voltages
of approximately ±200mV , the voltages at the surface merely amount to about ±30µV .
Besides, it is difficult to make an assumption about the exact position of the origin of the
signal, what makes the measurement considerably more difficult that intracranial [22].
Moreover, the projection of the neuronal dipole onto the scalp describes a highly complex
mathematical problem, also known as the EEG forward problem [19]. A huge challenge
in creating EEG recordings is the prevention or reduction of artifacts that are not caused
by neural activity. Typical artifacts in EEG include muscle activity, eye movements, eye
blinks or electrical stray signals from exterior sources. Contrary to their disadvantages,
EEG recordings exhibit remarkable temporal resolution.

Figure 2.3: Generation of EEG signals. Left: the neurons propagate the electrical signals to the cortex,
where the cerebrospinal fluid (CSF), the skull and the scalp have to be transmitted. At the scalp, the voltage
can be measured by the EEG electrode. Right: schematical description of the pyramidal cells at the cortical
surface, generating dipoles by the propagation of the electrical signals. Synchronous activity of several
neighbouring neurons generate the local field potential (LFP). Inspired by [1].
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Basically, the commonly called pyramidal cells contribute to the potential at the scalp,
see Fig. 2.2D and Fig. 2.3. These cortical neurons are orthogonally oriented towards the
cortical surface and are apparent most notably because of their pyramid-shaped cell body
together with the long dendrites. The pyramidal cells can be found anywhere located in
the cortex, belonging to the gray matter, but showing a predominant consistent orientation:
while the axon lies in the direction of deeper layers, the long dendrites are oriented towards
the surface. Because of their distance to the cortical surface, electrical fields that are
generated by neurons laying in vicinity to the sulci are more difficult to detect, hence, the
pyramidal cells close to the gyri constitute the substantial part of the signals, recorded by
the EEG.

EEG usually is recorded unipolar, whereby the voltage of the channels is tapped against
the voltage of one or several reference electrodes. To obtain reproducible results the
electrodes are placed according to a certain scheme, such as the standard 64-channel
montage in Fig. 2.4. For reasons of clarity this montage was used in Fig. 2.4 to convey
a rough impression of the arrangement of electrodes. The measurements that underlie
this thesis made use of a wet-gel 128-channel WAVEGUARD EEG cap (ANT NEURO,
Enschede, Netherlands), persisting of sintered Ag/AgCl electrode elements. The data was
recorded using a sampling rate of 5 kHz (AC, 1250-Hz antialiasing low-pass filter). As a
reference, the electrode Cz was selected, whereas the ground was located between AFz
and Fz. Here, he naming of the electrodes vaguely reflects the electrodes distribution
over the cortex, where they can roughly be assigned to the different lobes, see Fig. 2.4.
The non-invasive measurement setup was optimized for high-frequency responses. To
reduce disturbing electromagnetic signals, the recordings were located inside a cabin,
serving as a FARADAY cage, which was equipped with an active electromagnetic shielding
(“MRSHIELD” - CFW Trading Ltd, Heiden, Switzerland). The information exchange with
exterior components and processing devices was done via fiber optic cables to sustain the
shielding. Moreover, all electrical devices inside the cabin were supplied by DC batteries.
Beside the electromagnetic shielding, the cabin also provided a good muting against
sounds and vibration that might disturbed the participant during the measurements.

Figure 2.4: Illustration of the cortical areas. A Subdivision of the cortex into frontal, parietal, temporal
and occipital lobe. B Schematic standard 64-channels montage over underlying lobar allocation, with colors
matching the lobar color code from A. Inspired by [1].
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2.2.2 Intracranial Electroencephalography
The method of intracranial electroencephalography (iEEG), including the electrocor-
ticogram (ECoG) [177, 335] and the stereoelectroencephalography (stereo EEG or SEEG)
[82, 326], has a notable latter history than the EEG. But, recordings gathered by intracra-
nial methods exhibit a substantially higher signal quality. Here, the voltage is tapped
directly at the tissue, in case of ECoG directly on the cortex, and does not have to transmit
CSF, skull and skin. Moreover, there is no occurrence of noise sources like muscular
activity, that have to be considered for EEG. Intracranial recordings have a higher spa-
tial resolution and exhibit a higher signal-to-noise ratio than non-invasive recordings
[181, 205, 283]. Another advantage of the invasive method is the more accurate assign-
ment to underlying brain areas due to the direct contact. Various studies not only address
the mapping of the brain, but also investigate possibilities to assign electrode contacts
to the underlying brain areas and push the methods into the direction of more and more
accurate assignments. Here, electrode contact refers to an individual sensor that records
the signals of one channel. The assignment technique described in Chap. 6 as well as the
corresponding ELAS 1 interface for assignment of intracranial electrodes, which has been
developed as part of this thesis, make an important contribution to this aspire.

The advantages of invasive methods are not in the least to be counterbalanced to
the circumstances, risks and complications of their application, since the electrodes
operatively have to be positioned. This thesis benefits of the extraordinary possibility to
work with patients from the epilepsy center in Freiburg, Germany, as well as the epilepsy
center of the Motol University Hospital in Prague, Czech Republic, who gave their
voluntary and informed consent for contribution. Patients that are received in such centers,
generally have many seizures but do not respond to medication with anti-epileptica. In
such cases, a resection of tissue that trigger the seizures can be considered, resulting in
a lower intensity and quantity of seizures. And yet, the positioning of the implantation
exclusively complies with the medical outcome of the epilepsy and does not necessarily
cover areas, that would be optimal for a special application controlled via brain signals.
Nonetheless, the information gathered in the course of a paradigm are versatile and of
inestimable scientific value. Within the scope of the implantation period the patients
kindly participated in the experiments, that indeed did not benefit the group of epilepsy
patients, but rather a broad spectrum of people with other disorders or deficits.

The electrodes which were used in this thesis can distinguished as follows. Electrodes
used for ECoG exhibit a two-dimensional arrangement which is directly placed on the
cortex. This can be in form of a grid, describing a n ×m array of electrode, or a strip,
whereby the electrodes are placed in row. Equally, depth electrodes have been applied,
showing a considerably less complicated implantation by being minimally invasive embed-
ded. They are directly introduced into the subsurface tissue and can investigate brain areas
that lie in deeper structures. The acquired intracranial EEG signals at the epilepsy center
in Freiburg were recorded by means of a COMPUMEDICS amplifier (Singen, Germany) at
a sampling frequency of 2 kHz, meanwhile the epilepsy center of the Motol University
Hospital in Prague made use of the SCHWARZER EPAS amplifier (Munich, Germany) and

1https://github.com/joosbehncke/elas
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the NICOLET EEG C-series amplifier (Pleasanton, USA), recording at a sampling rate of
512Hz. The used depth electrodes were composed of platinum-iridium contacts (DIXI
MEDICAL, Lyon, France and AD-TECH, Racine, WI, USA).

2.3 Brain Computer Interface

Generally, a brain computer interface (BCI) can be defined as an interface, that enables a
human to control a machine without using the peripheral nervous system, and therefore
establishes a direct communication path between the brain and an external effector. First
reference in a scientific context dates from the work of Vidal in the early 1970s [348, 349].
Here, the interface is meant as an extension and moreover shall restore humans, for
instance with restricted motor abilities, to a certain extent with more autonomy. Beside the
control of limbs [39, 369] or robots [309], BCIs are also investigated and applied in com-
munication [39, 115, 317], environmental control [129], leisure and information [249],
rehabilitation training [271, 272] and mobility [68, 211]. At this, the implementation
of the control signals reaches from detection of direct imagined movements (low-level
control right up to the control by a set of control signals (high-level control) that represen-
tatively stand for a selection inside a menu. The underlying ideas is that each thought is
accompanied by a spatio-temporal pattern. Then, the BCI has the task to read the brain
signals and find exactly these patterns to categorize them. The triggered signals patterns
for the executions are not inevitably equal for the same person, even less when distinct
individuals fulfill the task. Thus, it is necessary to learn a more or less general pattern that
enables a recognition of different orders. The learning techniques can be summarized as
machine learning and are treated explicitly in Sec. 2.5. A schematic description of a BCI
system is shown in Fig. 2.5.

2.3.1 Neural Control Signals

There are several types of signals that can be extracted from the human brain recordings
to control a device. The two following paragraphs will give a short introduction of two
groups of control signals that were analyzed in this thesis. For further control signals and
a more detailed description see [368].

Event-Related Potentials

Event-related potentials (ERPs) denote a transient signal pattern that is provoked according
to the appearance of an event or stimulus [220]. The stimulus can appear in various kinds:
visual [179, 316], auditory [90], tactile [141] or electrical [262], whereas the amplitude
of the response typically covers ranges of 1− 20µV , appearing approximately < 500ms.
The response is phase- and time-locked to the event and distinct samples show pretty
much the same temporal course for reoccurring events. Usually, several time-locked
responses are recorded and averaged, to determine a good estimate for the underlying
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Figure 2.5: Concept of a Brain Computer Interface. The user performs a mental task with the intention to
initiate a certain execution. The brain recordings are pre-processed before features are extracted and patterns
are classified. The decoding results feed either a planner for a robotic effector or any other application, or
both of it. Likewise, the user gets a feedback about the results of the classification.

pattern. By this means, activity that is non event-related can be averaged out and the
signal-to-noise ratio increases.

Early components of the event-related potential are assigned to physical processing
of the signal [276], while later components are rather connected to cognitive processes,
like attention [162] or expectation [354]. Based in intracranial data the ERP could be
connected to linguistic syntax processing [300] or heart cycle-related effects [187]. In
addition to it, it could be shown that ERPs serve as outstanding control signals for BCIs
[45, 115, 200].

Oscillatory Activity

In general, the brain exhibits oscillations without any external influence. Prominent
appearances are for example the increase of δ-activity (0.5− 4Hz) during deep sleep or
the typical α-activity (8 − 12Hz) during states of consciousness and relaxation [246],
which is strongest when the eyes are closed. Modulations of the µ rhythm, also lying in
the α band, is connected to the level of relaxation of the motor system. The power of
the µ rhythm, likewise of the β-activity (12− 30Hz), is decreased during observation
[17], execution or imagination [269] of motor activities. This phenomenon is called
event-related desynchronization (ERD) [269] and is used for BCI applications, such as
spellers [42]. Surprisingly the desynchronization also appears up to 2 s before voluntary,
self-initiated movements [18, 268]. Furthermore, there are several cognitive and sensory
processes that can be associated with oscillatory power of different frequency bands.
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Alertness [182], memory encoding [180, 192], perception [224, 306, 333], work load
[136, 165] or attention [29, 157, 193] are just some of the examples. Typically, the power
spectrum of the brain recordings appears in a characteristic 1/f shape [264], while several
peaks indicate the mentioned changes in particular frequency bands [66]. Tab. 2.1 gives
an overview of frequency bands and associated rhythms.

Table 2.1: Frequency bands and typical activities [329]

band frequencies activity

δ 0.5− 4Hz increase during deep sleep
θ 4− 8Hz increase during light sleep
α 8− 12Hz increase during state of relaxation; µ rhythm
β 12− 30Hz decrease during motor activities
γ > 30Hz increase during high-level tasks

2.3.2 Online Brain Computer Interface
So far, many of the cited scientific papers on the subject of BCI especially discuss the
post-hoc analysis of data, that is without the direct intent to implement an applicable BCI.
Basically, the objective of extracting control signals and typecasting them as useful for
BCI applications is followed. The brain signals can be recorded under ideal conditions
and the requirements in a laboratory significantly simplify the experiments. However,
in an online BCI the task is to implement a real-time control, what renders an elaborate
pre-processing and decoding impossible. Similarly, when it comes to real-life applications,
many facilities that suppress disturbing signals and deliver a widely noiseless signal are
inapplicable. The challenge persists in developing a robust and reliable system under
the aggravated conditions. Preferably, the system should work adaptive and improve
the performance with each repetition. For such a system a real-time error recognition
framework is fundamental. It allows a fastest possible correction or standstill in case of
occurring errors and progressive adaption to an optimal process. In the following, the
neuronal basics for the error processing and the according pattern will be explained.

2.3.3 Error-related Patterns
For cooperative scenarios involving both robots and humans, especially when both are
sharing the same workspace, a safe and smooth human-robot interaction is required. For
example when robot behaviour disagrees with the user’s intention, a system has to ensure
the humans safety and that the user’s commands are executed correctly. Autonomous and
intelligent robotic systems constitute a great possibility to e.g. extend human activities
or replace lost abilities, but still are vulnerable for malfunction of several components of
the collaborative system. While it would be optimal to prevent such robot errors entirely,
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this is unlikely to become feasible soon. Thus, detection of robot errors and correction of
their consequences remains a relevant problem. Furthermore, for an adaptive movement
control, the system has to be called attention to faulty realizations of a task. The awareness
of errors is essential for learning, thus, it builds the base for refining motor skills and
adaptive behaviour. Especially when it comes to online implementations this can play
a fundamental role. Overall, a proper error detection system can lead to substantial
improvements in the performance of an (online) BCI system.

Error-related potentials (ErrP) constitute a central brain pattern, that is connected
to the processing of erroneous process, either observed or executed. The ErrP forms a
component of the ERP that reliably gives a signal during the first 300ms after a response.
Since the work of Falkenstein et al. [113] and Gehring et al. [133], numerous research has
been done on the field of error-related potentials. Immediately after the response a sharp
negative deflection in fronto-central scalp regions can be measured, called error-related
negativity (ERN) [133] or error negativity (Ne) [113]. The deflection holds for period of
about (50− 100ms) and is suggested to be a direct correlation with behaviour adaption
following the error-related responses [330]. In addition, the amplitude of the deflection is
modulated by both the subjective importance of the error and the subjective perception of
it [365]. Likewise the amplitude seems to be the larger the less an error indeed appears
[7, 8, 152]. Dependent on the set task the ERN/Ne component is followed by a positive
deflection with centro-parietal expansion. The positive deflection is called error positivity
(Pe) and is recognizable up to 400ms after the response. It exhibits an early, sharp
propagation in frontal regions, which translates to parietal regions as time goes by. The
subsequent, blurred Pe is modulated by conscious error perception and can be connected
to the user’s awareness of errors [364].

The dorsal part of the anterior cingulate cortex (ACC), the anterior insular cortex (AIC),
the prefrontal cortex (PFC) as well as the pre-supplementary motor area (preSMA) are
involved in the cerebral error processing [27, 56]. However, it is not entirely understood
which parts of the error processing are realized by the the different areas. In recent
times, intracranial measurements give a deeper insight into the operating principles
of deeper cerebral structures, such as action monitoring or error processing [27, 351].
Beside the conventional error-related patterns, changes of the spectral power in high-γ
band (≈ 50 − 200Hz) could serve as a hint to cortical error processing. Compared to
conventional scalp EEG, intracranial EEG shows the potential to reveal fundamental
structures of cerebral error-related processes and provides the possibility to realize direct
neurophysiological examinations in determining areas of error processing, particularly if
those can merely be covered by the scalp EEG with difficulties. The knowledge about the
temporal propagation of error processing could give early indication to erroneous actions
and therefore would be a suitable control signal for early detection in BCI applications.
Likewise in this context, the spatial coverage of the intracranial EEG clearly becomes
noticeable. Here, research with non-invasive EEG can support, where for instance
erroneous events of a preparatory attention peak could be proven around 100ms prior to
the event [257] or where increased activity in α band could be observed about 20 s before
a visual target was missed [253]. In summary it can be said that error-related signal allow
a fast and direct recognition of errors and indeed qualify for real-time application.
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Basically, the information of the error-related signals can be basically utilized for two
different implementation types in BCI applications. Considering a first implementation,
a certain command is transmitted to an effector or robot, but performed erroneously.
A classical example is the spilling of liquid in a pouring task [31]. In such cases the
system is installed to recognize the error, to correct it and to optimally avoid such an
error in subsequent attempts. Ultimately, the error detection serves as a training for
adaptive behaviour, also accounting for erroneous decoding of a command. Indeed, BCI
applications are still error-prone [285] and actual performances are far from practical
application, first of all when it comes to implementations where safety of e.g. the
user is a fundamental requirement for the application. Nonetheless, there are already
several studies that could improve the performance of a BCI by implementing an error
detection system. For example in a P300 speller [318], during observation of robot action
[173] or in a motor task based on intracranial data [111, 232], the applications could be
improved considerably. A second implementation comprises the prevention of errors
at an early point in time. Here, the idea is to use the brain data to predict whether an
error could possibly occur, for instance caused by lack of attention. Most notably, sectors
like the motor industry are interested in such applications and scientific interest in the
topic of EEG-based early detection of tiredness during car driving becomes remarkable
[4, 170, 356]. Likewise in aviation, scientific work is benefiting from error detection, for
instance for the application in flight simulators [216].

2.4 Spectral Decomposition
Not exclusively time series of voltages can be utilized to describe electroencephalographic
data, but also oscillatory components play a significant role in the characterization of
information processing inside the brain, see 2.3.1. To determine the impact of these
components on our thinking and acting, the informative characteristics of the oscillations
have to be extracted and the spectral representation investigated. The underlying idea of
spectral decomposition is that the signal itself expresses a superposition of a spectrum
of frequencies and according phases. In other words, a signal can be composed by
a combination of finite number of frequency components. Thus, frequency analysis
describes the dynamic properties of an oscillating system by separating the signal into the
individual frequency components and analyzing them apart. Many different approaches
are able to manage the issue, whereof the analysis based on the FOURIER transform
probably represents the most popular and widespread method of all, by far. In the
following, the FOURIER analysis will be introduced, while afterwards a more elaborate
method, the multitaper method, will be established. The multitaper method plays a central
role in the spectral analysis in this thesis.
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2.4.1 FOURIER Transform

A quite popular tool in signal analysis is the FOURIER transform, or continuous FOURIER

transform, a mathematical description from the FOURIER analysis. The transformation
defines a mathematical rule to decompose a continuous, aperiodic signal into a continuous
spectrum of frequencies. Let x(t) ∈ L1(R2) be an integrable function, for convenience in
a two-dimensional space, then, the FOURIER transform is defined by

Fwt{x(t)} = x̃(w) =
1√
2π

∫ ∞
−∞

x(t) e−iwtdt, (2.12)

where L1 describes the LEBESGUE space of onefold integrable functions and i the imag-
inary unit. The normalization constant is not equally defined in literature and depends
on the problem-specific conventions. Here, for a two-dimensional space, it is defined as
1/
√

2π so that the inverse transform analogously can be described as

F−1
wt {x̃(w)} = x(t) =

1√
2π

∫ ∞
−∞

x̃(w) eiwtdw. (2.13)

If we now assume discrete, equidistant values of the function, for example time steps, the
discrete FOURIER transform (DFT) can be applied, which decomposes the discrete signal
into a discrete, mirrored spectrum of frequencies. Thus, the transform for a complex
vector x = (x0, x1, ..., xN−1) ∈ CN with N elements can be regarded as:

x̃k =
N−1∑
j=0

xj e−2πi jk
N , (2.14)

for k = 0, ..., N − 1. This means that for each frequency component the contribution of
each single data point to this component is to be determined. The sum gives an estimate of
how strong the frequency component is represented in the signal. The inverse transform
can be written as

xj =
1

N

N−1∑
k=0

x̃k e2πi jk
N . (2.15)

The DFT is a linear operation and can also be written as a matrix multiplication, x̃ = Fx,
where F is a unitary N × N matrix. In physics, this implies that the transformation
preserves energy and that the inverse transformation exists and is defined as the adjunct
matrix, F−1 = FH . Generally, to speed up the calculation of the transform, the fast
FOURIER transform (FFT) is used, which provides an algorithm that needs substantially
less calculation steps for the determination of the FOURIER coefficients as in the direct
implementation. According to the algorithm of Cooley and Tukey [81] the coefficients
can be written separately for even (x+

j = x2j) and odd (x−j = x2j+1) indices, and for the



28 CHAPTER 2. BACKGROUND AND METHODS

transform follows:

x̃k =
n−1∑
j=0

x2j e−2πi
(2jk)
2n +

n−1∑
j=0

x2j+1 e−2πi
(2j+1)k

2n (2.16)

=
n−1∑
j=0

x+
j e−2πi jk

n + e−πi
k
n

n−1∑
j=0

x−j e−2πi jk
n (2.17)

=

{
x̃+
k + e−πi

k
n x̃−k if k < n

x̃+
k−n − e−πi

k−n
n x̃−k−n if k ≥ n

, (2.18)

with n = N/2. The direct implementation of the defined FFT halves the calculation time
and can be expressed in form of a recursive algorithm, see Alg. 1. The fast FOURIER

transforms in this thesis are almost entirely calculated with an extension of the built-in
MATLAB function fft, based on implementations of Frigo and Johnson [125].

Algorithm 1 recursive FFT code
Require: input x with N elements

1: if N=1 then
2: return x
3: else
4: x̃+ = fft

(
N
2
, (x0, x2, ..., xN−2)

)
5: x̃− = fft

(
N
2
, (x1, x3, ..., xN−1)

)
6: for k = 0, ..., N

2
− 1 do

7: x̃k = x̃+
k + e−πi

k
n x̃−k

8: x̃k+N/2 = x̃+
k − e−πi

k
n x̃−k

9: end for
10: return x̃
11: end if

2.4.2 Multitaper Method
Despite the ubiquitous application of the nonparametric FOURIER transform its implemen-
tation involves certain limitations [16]. The assumption, that the FOURIER coefficients in
a spectral decomposition constitute a reliable representation of amplitude and phase of a
frequency component, is not necessarily given. The power spectral density, determined by
the FOURIER transform, rather represents a biased estimate of the true spectral composi-
tion. Moreover, the resulting periodogram exhibits a high variance. These drawbacks can
be addressed by using the multitaper method [16, 332], proposed by Thompson in 1982.
At this, the method of tapering handles the trade-off between broadband and narrowband
bias of spectral estimates in an efficient manner [41]. As well, the utilization of numerous
tapers takes care of a reduction of the variance. The underlying idea was initially pro-
posed by Bartlett [24] and Welch [359]. The multitaper method makes use of multiple

https://de.mathworks.com/help/matlab/ref/fft.html
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reciprocal orthogonal tapers that build a local basis of eigenvectors in frequency space
for finite data pieces [265]. As a consequence they provide a statistically independent
estimate of the underlying spectrum. The tapers are convoluted with the argument of the
FOURIER integral, see Eq. (2.12), whereas the final estimated spectrum is determined by
averaging over all individual tapered spectra. Originally, Thompson suggested to choose
the so-called slepian sequences or discrete prolate spheroidal sequences (DPSS) [315] as
tapers.

Given a vector x = (x0, x1, ..., xN−1), a stochastic time-discrete process withN discrete
time steps is assumed, without any loss of generality. Then, the direct multitaper spectral
estimate SMT (k) is defined by

SMT (k) =
1

M

M∑
m=1

|x̃k,m|2. (2.19)

The SMT (k) calculates the average over individual tapered spectral estimates x̃k,m for
frequency k and taper m, which can be described as

x̃k,m =
N−1∑
j=0

hjm xj e−2πi jk
N . (2.20)

The taper hjm represents the mth discrete prolate spheroidal sequence for data point
j. Generally, an adaptive and more sophisticated method is used, where the individual
tapers are weighted to prevent an increase of broadband leakage in tapers of higher orders
[265]. Nevertheless, multitaper methods are not as extensively used as it could possibly
be [16]. Still, conventional methods are preferred and widely used e.g. in the spectral
decomposition of human brain signals. However, the multitaper method has entered
several fields and already has been applied in multiple papers where brain data is analyzed
[49, 235, 279]. In this thesis, when spectral decompositions refer to multitaper methods,
an extended version of the built-in MATLAB function pmtm is applied, employing the
adaptive weighted tapers.

2.4.3 The Spectrogram

In neuroscience, the spectrogram is a typical tool for the analysis of effects that are
reflected in (human) brain signals. The idea is to determine the contribution of a certain
frequency (range) to the signal recorded by an electrode at a certain moment. For this
purpose, the spectral decomposition is calculated for a sliding time window that is each
time assigned to a particular point in time. To work out event-related information, the
results are often compared to a predefined baseline that contains no information according
to an event and are color coded by the relative power of each frequency and point in time.
The results of such an analysis type is shown in Fig. 2.6.

https://de.mathworks.com/help/signal/ref/pmtm.html
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Figure 2.6: Spectrogram of the signal of an exemplary human intracranial electrode contact. Accord-
ing to a certain event (t = 0 s) the spectral decomposition was calculated for frequencies < 200Hz and a
sliding time window of 0.05 s. The relative power values are determined according to an event-independent
baseline.

2.5 Machine Learning

Since the classical antiquity, humans chase the desire of creating intelligent machines,
machines that are able to generate thoughts and have the ability to act autonomously. The
fundamental property to fulfill such tasks is the ability to learn. With the invention of
programmable computers this quest had a concrete object to apply the earlier formed
theories. Machine learning (ML) describes the artificial generation of knowledge based
on experience [6, 104]. Generally speaking, an implemented system has to learn certain
attributes by studying a set of examples to be able to generalize on not yet experienced
situations or objects. During the learning phase, patterns and regularities are stored to
build a knowledge base for further examples. Since the the beginning of machine learning
around 1950, the field has grown immense and meanwhile has an intangible impact on our
everyday life. Fig. 2.7 shows schematically how a machine learning algorithm generally
proceeds. Hereby, the implementations of their framework can differ in the composition
of operators. Fig. 2.7A separates feature selection and classification, as it is done e.g. in
the Common Spatial Pattern algorithm, see paragraph 2.5.2. In contrast artificial neural
networks, that will be discussed later, learn both stages at the same time, see Fig. 2.7B.

Computers enable to store and process big amounts of data locally, but also from
distant servers. Many types of problems, especially when they can be formulated based
on precise mathematical rules and required large computational resource, computers
have no difficulties in solving the problem while humans have trouble dealing with it.
But as soon as it comes to recognition tasks of e.g. speech or visual inputs, humans
intuitively and easily handle the problem. In contrast, it is difficult to find mathematical
definitions that can help computers to learn those capabilities. Deep learning methods,
whose architectures are inspired and borrowed from human neural processing, can be used
to solve problems that can not be formulated explicitly. Their structure is formed by many
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Figure 2.7: General machine learning approach. A To train the model, the input is analyzed for features
and then passed to the classifier, which distinguishes between classes. Here, feature extraction and classifi-
cation are separated. B Machine learning approach where the classifier is performing feature extraction and
classification jointly, like e.g. in artificial neural networks. Inspired by https://www.xenonstack.com.

consecutive modules, called layers, motivating the naming deep learning. Convolutional
Neural Networks (CNNs) form a prominent interpretation of the deep learning methods
[40, 145, 304] and build an essential tool for the analysis in this thesis . Nowadays, an
incredible amount of general and personal information is stored everyday and can give an
detailed insight into behaviour and patterns of all kinds of things. Tab. 2.2 shows a rather
bold comparison of a brains and a computers properties.

Table 2.2: A (lame) Comparison of Brain and Computer [376]

Brain Computer

# arithmetic units ≈ 1011 ≈ 109

type of arithmetic units neurons transistors
type of calculation massively parallel generally serial
data retention associative address-based
switching time ≈ 10−3s ≈ 10−9s
theoretical switching processes ≈ 1013 1

s
≈ 1018 1

s

actual switching processes ≈ 1012 1
s

≈ 1010 1
s

In this thesis three different classification implementations are realized, namely regu-
larized Discriminant Analysis (rLDA), the Filter Bank Common Spatial Pattern (FBCSP)
and the deep Convolutional Neural Network (deep CNN). Firstly, in this section the

https://www.xenonstack.com/blog/log-analytics-deep-machine-learning-ai/
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two more conventional and common used techniques for decoding of brain signals are
described. Linear Discriminant Analysis (subsection 2.5.1), often applied in form of a
regularized Linear Discriminant Analysis, is a linear transformation technique to reduce
dimensions in a problem and to allow an easier separation of classes in order to avoid
overfitting. The idea of the Common Spatial Pattern (CSP) algorithm (e.g. [198, 270]) is
the decomposition of a set of signals, followed by a transformation into a pseudo-signal
space formed by additive subcomponents of the original space, maximizing the differ-
ences in variance. Combined with frequency filtering, [14] could generate a more efficient
way to solve the problem of frequency band specifity. The idea of the Common Spatial
Pattern will be described in subsection 2.5.2, including the FBCSP approach. In the next
subsection 2.5.3 Convolutional Neural Networks are introduced, whereas this method is
quite novel referred to the examination of EEG. The basic concepts of transfer learning
and regularization complete the section.

The derivations of methods and algorithms in this section are kept quite general accord-
ing to data type, whereas the data itself is specified to be human brain recordings. The
data sets are considered to be derived from healthy subjects or patients (suffering from
epilepsy), which will be all in all called participants hereafter. For the human (intracranial)
EEG recordings a rather general generative model is assumed,

X = V + ζ. (2.21)

X ∈ Re×t represents the raw, unprocessed brain recordings of e electrodes or channels,
and t discrete time steps per trial. V ∈ Re×t is the underlying activity at the e channels
(derived in section 2.1, see Eq. (2.11)), while ζ ∈ Re×t considers any kind of disturbing
signals, be it signals originating from the sensors or correlated noise caused e.g. by
artifacts. Only X is considered to be observable and further builds the base for the
preprocessed data X. The processed set X serves as input for the classifiers f .

It is assumed that for each participant a single data set of brain recordings is given.
The data sets are considered to be cut into time segments according to an event, whereas
those segments are called samples or trials. The data set per participant is defined
as Di = {(X1,i, l1,i), ..., (XNi,i, lNi,i)}, where Ni denotes the total number of trials for
participant i, and lj,i the class label of trial j and participant i, referring to one of the
classes ck, with k as the number of classes. In this thesis decoding will be performed to
distinguish either between robot type, or between erroneous and correct conditions of a
task e.g. cj ∈ C = {c1 = ”erroneous”, c2 = ”correct”}

The parametric classifiers f are designed to project from the electrode space to the space
of classes, assigning labels to the individual trials, depending on the set of parameters θ,

f(Xj,θ) : Re×t → C. (2.22)

It is assumed that the mathematically defined classifiers f perform the feature selection as
well as fulfill the function of a classifier.
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2.5.1 Linear Discriminant Analysis

Linear discriminant analysis is a supervised linear transform technique to discriminate
multiple classes or reduce dimensions. The problem was initially described by Fischer
in 1936 [123] as a two dimensional problem and later extended to multiple dimensions
by Rao in 1948 [287]. Hereby the goal is to project data onto a lower-dimensional space
where classes are better separable, meaning a maximal distance of class means while
keeping the within class variance minimal, see Fig. 2.8. Formally, the transformation is
performed from an n dimensional to a k dimensional space with k ≤ n−1, but maintaining
the information discriminating the classes. The dimensionality reduction helps to reduce
computational costs and furthermore can be helpful to avoid overfitting (see subsection
2.5.3) by minimizing the error in parameter estimation (curse of dimensionality). The
question arises of how a suitable subspace can be found. The determined eigenvectors
give an answer to this question, where the length of the vector (eigenvalue) defines how
informative the vectors are, with values close to 0 showing less informative entity. An
eigenvector refers to a certain transformation and doesn’t change its direction after the
transformation. If the determined eigenvectors exhibit a similar magnitude, it is be an
indicator that the data is already projected on a suitable feature space.

Figure 2.8: Exemplaric projections of a 3D classification problem. The three-dimensional distributions
of the classes are projected onto a two-dimensional subspace, according to the hyperplane normals W1

and W2. LDA searches for an optimal projection to maximize the distance between the distributions and
to minimize the within-class variance. In this case, the projection onto the hyperplane defined by W1

represents a rather poor decision for a projection to distinguish the classes. In contrast, the second projection
yields in a good separation of classes while keeping the variances minimal. Inspired by [104].
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Generally, LDA requires GAUSSIAN distributed data, statistically independent features
and identical covariance matrices for each class. Furthermore, it assumes that the class
distribution is known. However, although the required distribution as well as a joint
covariance matrix is not ensured, LDA often can achieve good classification results, e.g.,
in face and object recognition tasks [104, 217].

As already indicated, the idea behind the linear discriminant analysis is to maximize the
difference between the classes (distance between the class means) while minimizing the
variance within the classes. Suppose that X ∈ Re×t represents a sample of preprocessed
brain signals and Ξi the space of all samples labeled with class index i, then

Mi =
1

ni

∑
X∈Ξi

X (2.23)

describes the mean of class i with ni elements and

M =
1

N

N∑
j=1

Xj =
1

N

k∑
i=1

niMi (2.24)

the total mean over all k classes with the total number of trials N =
∑

i ni. We need to
find a projection

X̂j = WXj (2.25)

for trials j that helps us to discriminate the classes as good as possible. This problem can
be addressed by maximizing FISHER’s criterion

J (W) =

∑k
i=1

∑
X∈Ξi

(M̂i − M̂)2∑k
i=1 Ŝi

(2.26)

where M̂ = WM is the projection of the total mean and Ŝi =
∑

X∈Ξi
(X̂−M̂i)

2 the scatter
of class i after the projection. We can now define the scatter matrix in the native electrode
space for each class:

Si =
∑
X∈Ξi

(X−Mi)(X−Mi)
> (2.27)

what leads us to the within-class scatter matrix

Sw = S1 + ...+ Sk. (2.28)

The numerator of FISHER’s criterion Eq. (2.26) quantifies the distance between the class
means and can be transformed as follows

k∑
i=1

∑
X∈Ξi

(M̂i − M̂)2 =
k∑
i=1

ni(W>Mi −W>M)2 (2.29)

=
k∑
i=1

W>(Mi −M)(Mi −M)>W (2.30)

= W>SbW (2.31)
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whereas

Sb =
k∑
i=1

ni(Mi −M)(Mi −M)>. (2.32)

defines the between-class scatter matrix. We are now interested in the projection W
that maximizes the between scatter and at the same time minimizes the within scatter
of the classes. A measure for the spread of scatter matrices, or covariance matrices, is
the determinant, which is a product of the eigenvalues. Here, the eigenvalues reflect the
variance along his eigenvector. We can now reformulate FISHER’s criterion in form of the
RAYLEIGH coefficient

J (W) =
|W>SbW|
|W>SwW|

. (2.33)

Eq. (2.33) can be solved as a generalized eigenvalue problem, assuming Sw to be non-
singular:

SbW = λSwW. (2.34)

Here, λ denotes the eigenvalue(s). Based on the derived matrix W, the data can be
projected on the according hyperplane of the original data space and separated into
different classes. The LDA classification can be broke down into the steps defined in
Alg. 2.

Algorithm 2 LDA classification
Require: input X

1: Sw, Sb ← compute scatter matrices
2: v, λ← compute eigenvectors and according eigenvalues
3: sort the v by decreasing λ
4: select k vectors with largest λ
5: for all Xj ∈ Re×t do
6: X̂j ← compute projected data
7: end for
8: discriminate classes on hyperplane

2.5.2 Spatial Filtering: the Common Spatial Pattern
Common Spatial Pattern is an algorithm to construct optimal spatial filters to maximize
variances and e.g. discriminate several classes. Thereby, multivariate signals are separated
into additive subcomponents. For instance, it is highly efficient in spatial filtering for the
detection of localized neural rhythmic activity, Event-Related Synchronization and Event-
Related Desynchronization, which is elicited by performed and imagined motor activity
[42]. Hence, spatial CSP filtering admits inference from motor action to the underlying
regions that drive the motor action. For the functionality of the CSP algorithm, an
oscillatory process is required. Furthermore, the implementation assumes that frequency
band and time window of the wanted effect are known. The band-passed signal is expected
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to be jointly GAUSSIAN and the source activity constellation is expected to differ between
classes.

Common Spatial Pattern is the approach to find a linear transform of signals that makes
them more discriminative by minimize the correlation between the signals or classes,
respectively. This is expected to yield in a better classification. Again, assuming X as
input signal, a linear transform or projection can be defined,

X̂ = V>X, (2.35)

where V ∈ Re×e represents the mixing matrix that projects the data from the electrode
space onto a so-called surrogate electrode space, e being the number of channels. The
column vectors vj ∈ Re of this projection matrix are called (spatial) filters and create the
surrogate electrodes out of the original input channels. However, the rows of the mixing
matrix V determine the influence of the according channel on the newly created surrogate
electrode. Moreover, the matrix A = (V−1)> ∈ Re×e is the demixing matrix, whereas its
column vectors aj ∈ Re are referred to as (spatial) patterns [43].

Assuming that the data is centered and scaled, the estimates of the covariances can be
written as

Σi =
1

||ξi||
∑
j∈ξi

XjX>j (2.36)

with ξi (i ∈ C) as the vector of indices of the according trials pertaining to class i. For
two classes the purpose is to maximize the covariance of the spatially filtered signal for
one class, while minimizing it for the other one, which once more can be reformulated as
a maximization problem of the RAYLEIGH coefficient

J (W) =
|V>Σ1V|
|V>Σ2V|

. (2.37)

As in Eq. (2.34), the simultaneous diagonalization of the two covariance matrices can be
solved as a generalized eigenvalue problem, assuming Σ2 to be non-singular:

Σ1V = λΣ2V (2.38)

Often, this can be found in an alternative formulation, when discriminating activity for
one class and common activity for both classes Σ1 + Σ2

Σ1V = λ(Σ1 + Σ2)V. (2.39)

As a consequence of this procedure, large positive eigenvalues correspond to a large
response for one of the classes, while large negative values correspond to another class.
Therefore one should consider filters from both sides of the eigenvalue spectrum. Now,
based on the eigenvalues a feature selection can be performed, e.g. taking the m best
filters [43, 286]. Commonly, merely a small amount of spatially filtered signals is
used as features [286]. There are several ways to make decisions on the filters, e.g.
taking the mutual information into account by calculating the Mutual Information based
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Best Individual Feature (MIBIF). An overview of different approaches is given in [14].
However, in this thesis the selection of the 3 first and the 3 last filters for decoding the
recorded signals is consequently used. Generally speaking, after the selection of the filters,
the according rows of the projected signals, X̂m,:, m ∈ Φ, form the feature vector

Zm = log
var(X̂m)∑
i∈Φ var(X̂i)

, (2.40)

which serves as in input to the classifier. Here Φ represents the index space of selected
filters. To approximate normal distribution the resulting ratio is log-transformed.

Filter Bank Common Spatial Pattern

The efficiency of the CSP algorithm is strongly dependent on its operational frequency
band. Unfiltered data or unsuitable processing yields in low performances. However, the
frequency band is participant-specific and broad band or manual selection can either lead
to bad classification or can be annoying. To address this issues, several ideas have led to
an improved handling of the CSP algorithm. For example the Common Spatio-Spectral
Pattern (CSSP) optimizes filters using a one time-delayed sample [212] and finds an
improvement in the Common Sparse Spectral Spatial Pattern (CSSSP) [102]. Another
idea, the Sub-Band Common Spatial Pattern (SBCSP), addresses the fundamental problem
by decomposing the data into several sub-bands, calculating a score for each of the spatial
filters and fusing the score after the classification. A final classification discriminates
the different sub-band scores. However, the algorithm used in this thesis is based on the
generation of a filterbank. The Filter Bank Common Spatial Pattern was built following
the theory of [14].

Fig. 2.9 shows the architecture of the FBCSP algorithm that is used in this thesis.
Here, the preprocessed data is separated into 35 different, non-overlapping frequency
bands between 0.5Hz and 144Hz, based on a previously defined filter bank. The
bandwidth of power modulations in EEG appears lower for small frequencies than it is
for higher frequencies [66]. To consider this concept and to obtain an optimal spectral
coverage, in the used implementation a bandwidth of 2Hz is applied to frequencies
up to 30Hz, while choosing a bandwidth of 6Hz for higher frequencies (> 30Hz).
Each of the frequency bands passes the spatial CSP filtering and delivers several spatial
filters. In general, only a well-defined selection of spatial filters is sufficient to yield good
performances, whereas too much filters often result in overfitting [14, 75]. Therefore,
a predefined algorithm or selection rule subsequently selects the features which will be
applied to the data. As already mentioned, in this thesis the first and last three filters are
consequently selected (highest discriminative properties), resulting in six spatial filters that
are entering into the classification. The rLDA classifier finally cares for the categorization.
Similar implementations [14, 43, 303] show that this architecture is suitable for decoding
patterns in physiological EEG. Furthermore, the filter bank common spatial pattern is
a standard method in EEG classification like e.g. motor decoding. This encourages
the implementation of this method in this thesis for decoding and also strengthens the
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Figure 2.9: Filter Bank Common Spatial Pattern architecture. The architecture in this thesis is built
according to the recommendations in [14]. The brain signals are filtered into different frequency bands. The
CSP algorithm extracts the spatial filters per band, sorted by variance. The decision on the features is made
either by an algorithm or a decision rule. In this thesis, the final classification is performed by an rLDA unit.

utilization as a baseline for the evaluation of deep CNN performances. The FBCSP
algorithm implemented in this thesis is described in the following Alg. 3.

Algorithm 3 FBCSP classification
Require: input X

1: compute band pass of X
2: for all classes ci do
3: Σi ← compute class-wise covariance matrix
4: end for
5: v, λ← compute eigenvectors and according eigenvalues
6: select filters vj
7: for all selected filters vj do
8: calculate spatial filtering of band-passed X
9: end for

10: form feature vector
11: perform rLDA classification

2.5.3 Artificial Neural Networks
Inspired by biological models, artificial neural networks (ANNs) commenced their path
in the early 1940s, nearly at the same time when programmable electronic computer
were invented. The underlying idea was to imitate the information processing of natural
neurons, connecting nerve cells in the brain and the spinal cord. 1943 McCulloch and Pitts
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described a first neuron-based neurological network and proved its capability to solve
logical and arithmetical functions [229]. Quickly, they discovered that those networks
could be used for recognition of (spatial) patterns. After pioneering work of Minsky and
Rosenblatt first neurocomputers where designed and implemented. Not until detailed
analysis of the perceptron showed that important problems could not be solved [234], the
triumphal march of artificial neural networks was stopped for the time being. Thanks to
propelling work of e.g. Kohonen [195, 196, 197], Werbos [363] and Hopfield [168] the
research area experienced a revival in the 1970s and early 1980s. Since then this field has
developed incredibly fast and problems that were not linearly separable could be solved
by means of multilayer perceptrons, trained by the backpropagation algorithm. Most of
all in the last decade, artificial neural networks won a huge popularity and dominated in
several pattern recognition contests.

ANNs are an arrangements of many interconnecting neurons, exchanging informa-
tion, whereas their connections inhibit certain numeric values called weights that are
adapted during learning processes. A greater ”parallel” arrangement of neurons is called
layer. Convolutional neural networks are a particular implementation of artificial neural
networks, using discrete convolutions to form the input for succeeding layers. Neurons
only receive input from preceding layers, what makes them feedforward networks. In
particular, convolutional neural networks were directly inspired by first discoveries on the
visual system [171]. According to Hubel and Wiesel, basic visual features like oriented
edges elicited a response in neurons in the primary visual cortex. So-called complex cells
obtained more spatial invariance by pooling over inputs from several simple cells, which
responded to preferential orientations at small, spatially localized receptive fields. The
increasing spatial invariance reached by feedforward connections and the selectivity to spe-
cific patterns made for the design of convolutional neural networks. In 1983, Fukushima
introduced the neuronal model neucognitron, an artificial visual system that was able
to recognize handwritten symbols or patterns, respectively [127]. Yann LeCun, who is
considered to be the father of CNNs, credits the root of his work to the neucognitron
[207].

The following subsection shall give a brief introduction to the theoretical background of
artificial neural networks, starting with the concepts of the perceptron, the loss function and
multilayer perceptrons. Then, before introducing the theory of CNNs, an essential learning
algorithm called backpropagation is described, building the base for the supervised
learning used for analysis in this thesis.

The Perceptron

Artificial neural networks are based on interconnection of several neurons. One of the
most simple representation of such a network is called perceptron and was introduced
in 1958 by Rosenblatt [293]. It is one of the basic concepts for artificial neural networks
and builds the fundamental processing unit by handling with diverse inputs. Each input
xj ∈ R, j = 1, ..., d is connected to an according weight wj , where w0 defines the bias of
system, see Fig. 2.10. For the most simple case the output is a weighted aggregate of the
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inputs,

y =
d∑
i=1

wjxj + wo = w>x. (2.41)

This equation describes a hyperplane in two-dimensional space and therefore divides the
space into two parts, what can be used to discriminate classes. If we want the perceptron

Figure 2.10: The perceptron. The input units xj , j = 1, ..., d are weighted by the according weights wj ,
where w0 stand for the bias. y is given by the summed and weighted inputs. The output of the perceptron is
compared to e.g. a step function.

to discriminate classes, we can check the output of the function and compare it to some
well defined threshold ϑ. Suppose that the classes are linear distinguishable, we can e.g.
define the classifier

f(y) =

{
c1 if y > ϑ

c2 else
(2.42)

that assigns the input to a certain class according to the relation of the output y and the
threshold ϑ. If we now consider that there is more than one output, m > 1, we can
calculate the individual projections by

yi = w>i x, (2.43)

whereas the set of outputs is defined by

y = Wx. (2.44)

W ∈ Rm×d represents the weight matrix and the rows stand for the weight vectors of the
m perceptrons. Then, the largest output defines the underlying class,

f(y) = ci |i, yi=maxk yk . (2.45)

Up to now, our consideration releases the results of the classification as information
about the class, not about the probability. Thus, the output of the last layer is usually
given after applying the softmax function [57], converting the output into a categorical
probability distribution. In this approach, the normalized exponential of the weighted
sums is calculated

pi =
eyi∑
k eyk

, (2.46)
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which can be used for various multiclass classification tasks. Given predefined weights
W and a threshold ϑ, training a perceptron would be accomplished be applying an input
vector x to the network, calculating the output p and optimizing the weights according
to some criterion function L(W,p) that is minimized if the weights are optimal and the
probabilities map the targets as good as possible. For training step n+ 1 the weights are
adjusted the following way:

W(n+ 1) = W(n)− η(n)~∇L(W,p). (2.47)

η is a positive scalar that defines the size of the adjustment steps and is called learning
rate. Hereby, the criterion function estimates the goodness of the weight choices by
comparing the (softmax) output of the perceptron with the class target value t. Hence, we
can formulate the perceptron training for an input set χ = {(x1, l1), ..., (xd, ld)} with d
elements in algorithmic form, using stochastic gradient descent, see Alg. 4.

Algorithm 4 perceptron training with stochastic gradient descent
1: initialize W, η, threshold ϑ
2: while |η~∇L| ≥ ϑ do
3: for (xi, li) ∈ χ do
4: y←Wx
5: p← ey/

∑
k eyk

6: W←W− η~∇L
7: end for
8: end while
9: return W

The Loss Function

The previously introduced criterion function often appears in form of a loss function
and is part of the statistical decision problem. According to the decisions made by the
classifier for the elements of the data set, the loss function assigns a well defined score
that originates from the difference of output y or probability p, respectively, and target t.
Both output and target are valuation of the decision on the same underlying set of events.
Based on the score, the parameters of the classification process can be adapted, leading
to an optimization in discriminating classes. It is not obvious to make a decision on a
specific loss function related to an existing classification problem. At this point, some of
the most popular functions will be introduced.

The 0-1 loss ascribes decisions drastically, punishing wrong decisions equally while
punishing correct decisions not at all,

L =

{
0 if y = t
1 else.

(2.48)
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The quadratic loss function is a more resilient version of a criterion function. Its symmetric
construction ensures that errors to both sides of the target are scored equally. This
technique is often used in regression analysis and can be formulated using a constant b,

L = b(t− p)2. (2.49)

Other approaches are based on the natural logarithm of the decisions, so is the negative
log likelihood loss, evaluating the calculated probability of classifier:

L = − log p. (2.50)

The cross entropy loss originates from information theory and provides a measure of
difference between two probability distributions. In our case this is to evaluate the quality
of our classifying model. The following equation shows the formulation in case of discrete
values, while the second equality holds for two classes:

L = −
∑
i

ti log pi = −t1 log p1 − (1− t1) log p2. (2.51)

The Multilayer Perceptron

The problem of linear separability, for example in the often cited XOR-problem, shows the
limited applicability of singlelayer perceptrons. They are not able to estimate non-linear
discriminants and can only approximate linear functions of the input. This constraint
does not hold for feedforward networks with at least three layers, one input and ouput
layer each and an additional layer. In such an architecture, non-linear discriminants
can be implemented, enabling the user to approximate nonlinear functions of the input.
Networks with multiple layers of perceptrons are called multilayer perceptrons (MLPs),
where layers that are not input or output layers are called hidden layers. Fig. 2.11 shows

Figure 2.11: Structure of a multilayer perceptron. The weights wij establish a weighted connection
between the input neurons xi and the neurons zj . The zj , yk, ... represent the neurons of the hidden layers,
whereby each neuron receives a linear combination of preceding neurons. The activation function transforms
the linear combination before passing it to succeeding neurons.

a schematic arrangement of an MLP with several hidden layers. Each neuron is fed by
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a linear combination of preceding neurons. To model the relative firing frequency of
the action potential in the cell, the processed input of each neuron is converted by the
so-called activation-function. Among others this is typically accomplished by the use
of a logistic function, a rectified linear unit (ReLU) [243] or an exponential linear unit
(ELU) [78]. Activation functions can implement non-linear features to the network and
therefore build an essential module. Complicated, non-linear relations between input and
target can hereby be learned. In general those functions have to be differentiable, as the
learning algorithms used here are based on gradients (see paragraph Backpropagation).
In the following the set of all neurons j for which a connection j → k exists will be
called pred(k). Given the activation aj = act(netj), the input netk for neuron yk can be
calculated as

netk = v>k a =
J∑
j=1

vjk act(netj) (2.52)

with preceding neurons zj (see Fig. 2.11) having an input netj , k ∈ pred(k). Please
note that here and in the following considerations the zj, yk, ... stand just for the names
of the neurons, whereas the netj, netk, ... are defined as the sums of the weighted inputs.
Furthermore, connections can also hop over one or more layers, what is called a shortcut.
However, this shall not be further explained in detail. Alg. 5 drafts the code for the
forward pass of an MLP.

Algorithm 5 forward pass of MLP
Require: input x, MLP, topological naming and indexing of neurons

1: for input neurons i do
2: ai ← xi
3: end for
4: for hidden and output neurons i in topologocial order do
5: neti ←

∑
j∈pred(i) wijaj + wi0

6: ai ← act(neti)
7: end for
8: for output neurons i do
9: y← (a1, ..., ai)

10: end for
11: return y

Backpropagation - Training the MLP

Training a MLP is similar to the training of a single perceptron, but in contrast the output
is non-linear. The idea is to optimize the output according to the target by propagating
stepwise from the output back to the input. This can be done by adapting the weights and
minimizing the error or criterion function, respectively. Thus, for a given set of training
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data D = {(x1, l1), ..., (xN , lN)} we have to minimize

L =
N∑
i=1

L(W; xi, li). (2.53)

Now, the influence of the individual weights on the criterion has to be determined

Figure 2.12: Schematic overview of a single neuron. The summed and weighted predecessor inputs for
neuron yj are defined as netj . The netj are passed to the activation function before contributing to the
input for preceding neurons.

and optimized. In Fig. 2.12 a single artificial neuron and its predecessors is shown
schematically. To minimize the error, we have to calculate the partial derivative of the
criterion function and use the chain rule. For weight wkl in the simplified example in
Fig. 2.12 we get

∂L
∂wkl

=
N∑
i=1

∂L(W; xi, li)
∂wkl

(2.54)

=
N∑
i=1

∂L(W; xi, li)
∂al

∂al
∂wkl

(2.55)

=
N∑
i=1

∂L(W; xi, li)
∂al

∂al
∂netl

∂netl
∂wkl

. (2.56)

This reversed learning method is called backpropagation [61, 186, 363] and is widely
used to train artificial neural networks. Furthermore, it could be shown that for the input
the algorithm can lead to useful internal representations in deeper layers, building the base
for deep learning [297]. Backpropagation belongs to the group of supervised learning
algorithms. Based on this method, we can propagate through a deeper and more complex
network and minimize the errors for each single pattern by adapting the weights. The idea
is schematically shown in Alg. 6.
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Algorithm 6 MLP learning
1: initialize W, minimization approach
2: while error diverges do
3: for (xi, li) ∈ D do
4: apply xi, generate output
5: calculate all ∂L(xi)/∂wkl
6: end for
7: calculate all ∂L(D)/∂wkl
8: update weights
9: end while

The Convolutional Neural Network

Convolutional neural networks are a special type of feedforward neural networks [145,
209, 304], designed for the processing of grid-like topology data, e.g. time series or
image data with pixels or voxels. Thus, the architecture partially exhibits 2D or 3D
assemblies of neurons, see Fig. 2.13B. CNNs are especially useful if the input has an
intrinsic hierarchical structure, as e.g. images are built of basic components like edge
and lines that form simple shapes that again are combined to form more complex objects
and so forth. Besides the networks are able to learn non-linear features, whereas the
lower level features are combined to higher level features. The activity of a neuron is
computed by discrete convolutions, before serving later for succeeding layers as an input.
The input is convoluted with a comparatively small convolution matrix or tensor called
filter kernel, see Fig. 2.13A. As a consequence not every output unit interacts with every
input unit, known as sparse connectivity. The information transfer is realized according
to the receptive field in biological models, which is defined by the set of sensory receptors
that translates information to one single neuron. This corresponds to the expression
pred(k) for MLPs, being the set of predecessors (neurons) that contribute to the input
for a neuron k. The weights for the neurons of one layer are identical, as a certain filter
kernel is applied to each local information carrier, or receptive field. This concept is
called parameter sharing or tied weights. Another property of CNNs is its equivariance
to translations. Fig. 2.13A depicts an example of two receptive fields being convoluted
by a filter kernel and mapped onto an output feature space. Hereby, the kernel sweeps
the positions of the input step by step, where the stepsize ≥ 1 is called stride. Thus, it
can appear that neighbouring neurons are partly activated by a same subset of preceding
neurons. A common method also adds zeros at the edges of the input to allow the kernel
to sweep a larger area. This is referred to as zero padding, but shall not be deepened
incidentally.

Basically, best CNN architectures are built on a basic structure of layers (blocks) based
a convolutional layer, followed by an activation and a pooling layer. Containing at least of
one convolutional layer, which will be examined more precise in this paragraph, usual
networks are a stack of several of the so-called blocks. The use of multiple filters per
convolution results in an increase in some of the dimensions. The pooling layer (in
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Figure 2.13: Basic function of a convolutional neural networks. A Exemplary description of convolution
of a 2D grid, using a 3 × 3 kernel without zero padding and a stride of 1. The convolution of the green
square with the filter kernel delivers a scalar value. B Structure of a typical CNN. Per convolutional layer,
the network exhibits several filters to extract different features, resulting in an increase in some of the
dimensions. The pooling layer is represented by the subsampling. The output is given after the fully
connected (dense) layer. Inspired by [310]

Fig. 2.13B referred to as subsampling) has the function to discard dispensable information
and to reduce computation costs, as e.g. the exact positions of patterns in grid-like
structures is often not that important. The pooling layer assigns local information to a
single score, e.g. by an average or a max operator. Beyond the space-saving property, it
allows to build deeper networks, solving more complex tasks. Incidentally, it helps to
work against overfitting, which will be explained later in this paragraph. Regularly one
or more fully connected layers complete the CNN architecture. The number of output
neurons corresponds to the number of distinguishable classes and therefore gives an
output for each class. The output can either be given as a probability for each class or as a
one hot vector, which gives a binary value for each class whether it was selected or not for
classification. For sufficient convolutional layers the CNN is called deep convolutional
neural network and is considered as a part of deep learning.

The basic mathematical operation behind the CNN is the convolution. For two functions
g(x), h(x) the convolution (g ∗ h)(x) : Rn → C is defined as

(g ∗ h)(x) =

∫
Rn

g(τ)h(x− τ)dτ. (2.57)

Descriptively, the hereby defined convolution averages function g, weighted by function
h, for a continuous set of drifts between the two functions. In case of convolutional
neural networks the first argument g of the convolution is represented by the input, while
the second argument h can be described by the filter kernel. In our case the data is not
continuous but it is available in discrete values e.g. the pixels of an image or the discrete
time steps of an EEG channel. So if we now assume that our functions g, h : D→ C are
defined on top of an discrete space D, the convolution becomes

(g ∗ h)(x) =
∑
m∈D

g(m)h(x−m). (2.58)
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At last, if the convolution is to be applied simultaneously on more than one dimension,
the kernel can also be chosen to have multiple dimension, e.g. for two dimensions:

(g ∗ h)(x1, x2) =
∑
m

∑
n

g(m,n)h(x1 −m,x2 − n) (2.59)

=
∑
m

∑
n

g(x1 −m,x2 − n)h(m,n). (2.60)

The last equation holds because convolution is commutative, defining the convolution
(h ∗ g)(x1, x2) by flipping the kernel. Many ANN libraries make use of the cross-
correlation, but call it convolution. It is similarly defined, but without flipping the kernel:

(g ∗ h)(x1, x2) =
∑
n

g(x1 +m,x2 + n)h(m,n). (2.61)

However, the methods in this thesis are built on top of PYTORCH, where the cross-
correlation (Eq. (2.61)) is used to implement the convolutional layers for the CNNs. The
contribution of the convolutional layers is to detect local patterns of the provided input
and to map them onto a feature map [209]. The convolution of each receptive field of the
input generates the translated information for a succeeding neuron, whereby the number
of succeeding neurons per filter usually decreases, Fig. 2.13B. The succeeding map stores
the information about the position of certain features (defined by the filter) and how strong
the features are represented in this area. To generate layers containing comprehensive
features, the input is applied to several different filter kernels, which defines the depth of
the volume of output feature maps. Hence, the convolution of layer k for feature map i is
given by

Yk
i = Bk

i +
∑
j

Yk−1
j Kk

i,j, (2.62)

where Bk
i denotes the bias matrix of layer k and Kk

i,j the filter kernel that connects feature
map j in layer k − 1 with feature map i in layer k. This concept leads to the fact that
images are classified in the same way as in the visual system, going from simple features
like edges to more complex structures [208].

In this thesis, the CNN decoding is based on the algorithms provided in the BRAINDE-
CODE toolbox, an open-source deep learning toolbox for decoding of raw time-domain
EEG. The toolbox was built according to the theory in [303] and includes several models
of CNN implementations. This thesis reverts to the model DEEP4NET2, which constitutes
the deep learning delegate provided by the toolbox and is applied using trial-wise training.
The models architecture with the thesis-specific parameters is schematically shown in
Fig. 2.14. In short, the model’s framework is formed by 4 convolutional blocks and a final
linear classification. The network is provided with a two-dimensional input consisting of
discrete time steps and channels. Initially, the first block stepwise executes a temporal
convolution and a spatial filtering over all channels, what already serves as a regular-
ization (see paragraph 2.5.5), without an activation in between. This generates maps of

2https://github.com/robintibor/braindecode/blob/master/braindecode/models/deep4.py
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Figure 2.14: Deep convolutional neural network architecture as used in this thesis. The basic structure
consists of four blocks, containing convolution, an activation and a max pooling each. The first block
contains two convolutional layers, performing subsequently a temporal convolution followed by a linear
activation and a spatial convolution followed by an exponential linear unit. The classification is done by the
final dense layer, discriminating between two classes. The light green rectangles are the layers inputs while
the dark green rectangles represent the filter kernels. Consider that some of the parameters in this specific
scheme model depend on the given input. The number of time points and channels varied for different
paradigms and analyses. In this example, the samples consisted of 246 time points and 64 channels.
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informative units composed of filtered time scraps and channels, which later enter the
first max pooling layer. Remember that the measurable physics behind the EEG signals
is an overlay of electrical fields of locally generated dipoles, predominantly from the
cortical layers [251]. This fact suggests a decomposition of the recorded signals by using
spatial filters, as already applied in other successful approaches (see paragraph 2.5.2). In
addition, the informative properties of the EEG range over several temporal scales and
exhibit local and global temporal modulations. Based on this considerations, the network
is conceived to learn at first the spatial filters that care for a decomposition, meanwhile
temporal hierarchies are learned in deeper structures of the network. The later blocks
consist of an apposition of convolutional layer, an activation by a ELU (f(x) = x, ∀x > 0
and f(x) = ex − 1, ∀x < 0) and finally a max-pooling subsampling. After the last block,
a dense softmax classification layer provides the output.

The model is designed to enable the learning of a broad spectrum of features. Moreover
a general structure helps to find optimal solutions for different types of control signals
and allows a fast adjustment by new methods and extensions. For regularization reasons
among others, the network made use of batch normalization and performed a dropout
for all convolutional layers but the first, with a probability of 0.5 (see below). The
backward computation of the gradients in the utilized CNNs was based on the output of
the categorical cross-entropy loss and optimized using adam [190].

Overfitting is a noticeable problem that often occurs in machine learning when a model
is trained to classify unseen data. The term designates the fact that a learned model
describes a particular set of data too exact e.g when containing to much explanatory
variables. Assume that a model learns to classify patterns according to irrelevant features,
for example the exposure of photographs. As a consequence, the model doesn’t serve
to classify unseen data. Overfitting can make itself noticeable e.g. when the error on
the training data over trained epochs further decreases while the error on the test data
increases, indicating that there was too much training. Several techniques can help to
counteract overfitting. Common provisions make use of the fact that more training data
can prevent overfitting, therefore data augmentation can be helpful. But also on the side of
the model a number of modifications can lead to a solution. A use of a well-generalizing
architecture, regularization (see subsection 2.5.5) or a reduction of architecture complexity
are popular examples to address this problem. The implementation in this thesis also
refers to another method called dropout which regulates the models specialization [320].
Hereby, random activations are thrown away with a certain probability, so that the model
has to learn these activations once more and doesn’t get too fitted. It is advisable to
gradually increase the dropout with the depth of the network, because otherwise less
information gets translated to the later layers and information gets lost.



50 CHAPTER 2. BACKGROUND AND METHODS

Covariate shift denotes a change in the underlying distribution of a functions domain,
e.g. the input of an artificial neural network [312]. Thus, due to the change in the
distribution, the model is no longer able to generalize on unseen data. Imagine a model
that has learned to classify the gender of persons based on passport photos, but e.g was
only fed with female samples exhibiting black hair and male samples exhibiting blond
hair. Then, the model might have difficulties in generalizing on a larger variety of hair
color. A change of the distribution can also appear on the level of internal nodes and is
called internal covariate shift. With an increasing number of layers in a neural network
this effect becomes more severe, since the output of one layer gets translated as an input
for the next layer. Batch normalization is an approach to address this issue and was
implemented in the employed networks in this thesis. A batch refers to the number of
training samples that are transferred through the network in one iteration. In a nutshell,
in the procedure the output of an activation layer is normalized by subtracting the batch
mean and dividing by the batch standard deviation. Now, mean and variance stay the
same, the values become more stable and the covariate shift can be reduced; for details
see [172]. As a nice side effect, batch normalization accelerates the computation time and
has a slight regularization effect, thus, it also helps to avoid overfitting.

2.5.4 Transfer Learning
The general idea of machine learning is the right prediction of unknown instances, based
on the learned features of a set of already seen instances. This can also be referred to as
generalization. During the learning process the quest is to minimize the training error,
but as an overall goal the error on the unknown instances, the generalization error, has
to be made small. Until now the derivations were based on the assumption that training
data and test data originate from the same distribution P . Transfer learning refers to
classification tasks where the training instances arise from a distribution P (X) but the
instances to be predicted are drawn from a different distribution P (Y ). Examples for a
setting where distributions are distinct can easily be derived from computer vision. A
model can be trained to distinguish between certain types of cats, but then also be applied
to a task discriminating several types of flowers. It can not be assumed that the generated
samples are drawn from a common distribution. But a fundamental assumption for the
functioning of a transfer of knowledge is that some factors, that explain the variety in
P (X), are relevant for the variety given in P (Y ). This can be low-level characteristics
that describe the general appearance of the data. So the aim is to utilize data with a certain
distribution P (X) to extract information that might be beneficial for predicting on data
with a second distribution P (Y ). Especially when few data is given, transfer learning can
help to increase performances of the used models. Lately, transfer learning methods have
gained increased entry into deep learning [101, 130, 373].

For now, machine learning competitions are rejoicing a grand popularity in computer
science, likewise using deep learning for transfer learning. A remarkable insight gained
from a transfer learning competition [231] is the fact that the learning curve of new
categories get much better if the architecture deploys deep representation. For those
representations, fewer samples are needed to reach an asymptotic behaviour of the gener-
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alization performance [145]. There are different approaches to implement the underlying
ideas of transfer learning. Just to name two (extreme) appearances in this context, zero-
shot and one-shot learning make use of either no or only one sample for re-training a
model after the transfer before using it for classification. Other approaches use more
samples to fine-tune the model.

2.5.5 Regularization

As repeatedly mentioned before, the objective of machine learning approaches is the
generalization of learned features on an unknown set of data. Strategies to minimize
test errors are called regularization, providing a large base for research in the field of
machine learning. It is a method to solve ill-posed problems or prevent overfitting by an
intended algorithm modification. In general the features are kept, but the influence of
the parameters is controlled. One approach is to limit the capacity of models by adding
a parameter norm penalty Ω(θ) to the objective (or loss) function L, resulting in the
regularized objective function

L̃(θ; X, y) = L(θ; X, y) + αΩ(θ). (2.63)

Hereby, α ∈ [0,∞) is a hyperparameter weighting the penalty term Ω, where 0 means no
regularization and high values for α mean high regularization. The minimization of the
regularized objective function decreases the actual objective L.

Ridge regression, also known as TIKHONOV or L2 regularization, uses one of the most
simple and common parameter norm penalties, the weight decay. The regularization term
Ω(θ) = 1/2||W||2 is thereby added to the objective function to ease the weights W closer
to the origin. If we assume no bias term (θ = W), the regularized objective function
becomes

L̃(θ; X, y) = L(θ; X, y) +
α

2
W>W. (2.64)

In several cases, e.g. when applying LDA or CSP, it is inevitable to estimate the class
means and the class-wise covariance matrices. If only a small number of observations is
available, compared to the number of variables, this might become an essential problem
regarding the estimate of the empirical covariance matrix. In this case, the empirical
covariance matrix can be modified based on a shrinkage parameter γ ∈ [0, 1] to generate
a well estimated matrix. Introducing this regularization term, the empirical covariance
matrix Σ can be reformulated:

Σ̃(γ) = (1− γ)Σ + γνI. (2.65)

Hereby, ν is a scaling parameter, representing the average eigenvalue of Σ, and I the
identity matrix. The hyperparameter γ regulates the shrinkage of the covariance towards a
spherical covariance, whereas γ = 0 illustrates the case with no regularization. There are
time-consuming ways to optimize γ via cross-validation [124], while other approaches
find an optimal hyperparameter using an analytical path [210]. In this formulation, large
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sample-to-sample variances are penalized with higher shrinkage values. By minimizing
the expected mean squared error the estimate of the covariance matrix is determined,

γ∗ = arg min
γ

E

[∑
i,j

(Σ̃i,j(γ)−Σi,j)
2

]
(2.66)

=

∑
i,j

[
var(Σi,j)− cov(Σi,j, νIi,j)

]∑
i,j E[(Σi,j − νIi,j)2]

. (2.67)

2.5.6 Visualization

In addition to striving for the best possible performance, it is enormously important to
understand what and how the algorithms learn. Assuming that numerous features are
intended to provide information on whether a patient has pathological medical findings
or not. Then it would be useful to understand which of these features, e.g., collected by
medical tests, can lead to the determination of a disease. For example random forests or
linear support vector machines show the importance of single features and the decision
of the system is explainable. This does not necessarily apply to neural networks in this
form and one of the most common criticisms is that there is no satisfactory explanation of
their decision-making behaviour and the importance of individual features. Therefore it is
essential, especially in medicine for example, to make further progress in understanding
deep neural networks. There are a number of approaches that try to visualize intermediate
results and learned properties. Zeiler and Fergus underline the importance of this question
by the example of images and demonstrate how much one can learn from it about the
functioning of CNNs [375]. However, for EEG data there are hardly any efforts. In this
work the approach of Schirrmeister et al. is used to extract information about the learned
features [303]. Here, the correlation of changes in network predictions with perturbation
changes in input spectral amplitudes are used to obtain information about what the deep
networks learned from the data.

Training trials are transformed into frequency domain using the FOURIER transforma-
tion (see Eq. (2.12) and Alg. 1) and randomly perturbed by adding GAUSSIAN noise G,
while keeping the phases steady. The GAUSSIAN noise exhibits a zero mean and unit
variance, so the probability density function of a GAUSSIAN random variable z can be
defined as

pG(z) =
1√
2π

e−
z2

2 . (2.68)

The perturbed signals are then retransformed to time domain using the inverse FOURIER

transformation. Both, the unperturbed and the inverse-FOURIER transformed signals are
used to feed the network. The output of the network before the softmax activation is
extracted and the difference of the predictions for the perturbed (pr2) and original network
(pr1) signal are correlated with the perturbation itself, resulting in the input-perturbation
network-prediction correlation map

M = corr(G, pr2− pr1). (2.69)
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In some situation, an investigation of the time domain signal may be advantageous. Then,
the perturbations can be applied to the time domain voltage signal as well. Again, the
network output changes are correlated with the GAUSSIAN perturbation of the signal.

2.6 Statistics

Whenever a systematical connection between empirical evidence (or experience) and a
theoretical structure has to be established, there is no way around statistics. Originating
from the Latin word statisticum (concerning the state), statistics initially described the
teaching of data concerning the state, but nowadays denotes the more general field of
collecting and evaluating data. The subdomain inductive statistics deduces from a random
sample properties of a basic population. In this section two focal areas are described,
which later will be used for the evaluations in this thesis.

2.6.1 Statistical Testing

Particularly in basic research, statistical testing is an absolutely essential procedure. With
the collection of empirical data it has to be decided whether the actual evidence is based
on scientific regularities or rather originates from random processes. Statistical hypothesis
testing addresses this interrogation, which is however not always simple and straight
forward [334]. In general, the null hypothesis is established, assuming that there is no
underlying systematic effect. Based on the distribution of raised data it can be deduced
how probable the null hypothesis is, what is regularly quantified by the p-value. The
p-value states the probability to get the generated test statistic (or a more extreme one), if
the null hypothesis is true. The p-value is compared to a previously defined significance
level and if the probability falls below this level, the null hypothesis is rejected. In this
case, the alternative hypothesis is accepted and the observed effects are called significant.

Basically, there are several methods to test a statistical hypothesis, depending on the
sample, the distribution of the sample and the parameter that is going to be examined
[103, 358]. Without going too much into detail, in this thesis only an assessable amount
of tests is used. The binomial sign test is a nonparametric test [164] for one or two
paired samples with an extent n (MATLAB: signtest). For two samples X, Y the null
hypothesis assumes that P (X < Y ) = P (X > Y ) = 0.5, while the test checks the
sign of the difference of the two samples. It is a version of a binomial test, but not as
strong as e.g. the Wilcoxon test or the Wilcoxon ranksum test [367]. The WILCOXON

test (MATLAB: signrank) or WILCOXON signed-rank test checks whether the expectation
value µ of a sample can be reconciled with a given desired value µo. Likewise as for
the sign test, the WILCOXON test requires that the random variable is continuously
distributed, but additionally demands a symmetric distribution. However, the WILCOXON

ranksum test (MATLAB: ranksum) or MANN-WHITNEY U-test can handle two samples
exhibiting distinct extent and also demands a continuous distribution. The test validates
the accordance of the expectation values of the two samples (µ1 = µ2?).

https://de.mathworks.com/help/stats/signtest.html
https://de.mathworks.com/help/stats/signrank.html
https://de.mathworks.com/help/stats/ranksum.html
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For testing significance of the decoding accuracies on the level of participants, in
this thesis a random permutation test [122, 275] was applied. The random permutation
test assists in situation where an underlying distribution cannot be deduced. A vector
c consisting of the true distribution of class labels is compared to n = 106 vectors of
randomly shuffled labels to generate a realistic distribution of possible outcomes of the
classification. Often it appears that the number of trials per class is highly unbalanced.
The problem arising from the imbalance can be solved by defining the label matches per
vector separately for each class, then averaging over classes and comparing the outcome
to the decoded accuracy to estimate the p-value relating to the underlying distribution,

p =
1

n

n∑
i=1

∑
j∈Ψ

δij. (2.70)

Here, Ψ denotes the subspace of permutations for which the average matches over classes
are greater or equal than the decoding accuracy. A schematic implementation of the
random permutation test is given in Alg. 7.

Algorithm 7 random permutation test
Require: input c

1: for n permutations do
2: c̄← randomly permute labels of c
3: µi,µj , ...← classwise mean of label matches
4: µ̂← mean of classwise means
5: end for
6: compute p
7: return p

2.6.2 Evaluation Metrics
To judge the quality of an algorithm there are numerous different metrics. The evaluations
in this thesis are based on the accuracy, which gives a measure of how many of the trials
have been classified correctly. For binary classification the accuracy is formally defined as

ACC =
TP + TN

P +N
, (2.71)

where TP represents the number of true positives, TN the number of true negatives, P
and N the total number of positives and negatives, respectively. There are situation where
the number of trials per class is highly unbalanced, e.g. P >> N . In such cases the
accuracy tends to approximate to 1, independent of the classifiers performance. In such a
case it makes sense to use the balanced accuracy,

BACC =
TP

2P
+
TN

2N
. (2.72)



Chapter 3

Brain Responses During Robot-Error
Observation

Brain-controlled robots are a promising new type of assistive device for severely
impaired persons. Little is however known about how to optimize the interaction
of humans and brain-controlled robots. Information about the human’s perceived
correctness of robot performance might provide a useful teaching signal for adap-
tive control algorithms and thus help enhancing robot control. This chapter
interrogates the fundamental question whether watching robots perform erroneous
vs. correct action elicits differential brain responses that can be decoded from
single trials of electroencephalographic (EEG) recordings, and whether brain
activity during human-robot interaction is modulated by the robot’s visual sim-
ilarity to a human. To address these topics, two different paradigms have been
designed. In a first experiment, participants watched a robot arm pour liquid into
a cup. The robot performed the action either erroneously or correctly, i.e. it either
spilled some liquid or not. In a second experiment, participants observed two
different types of robots, humanoid and non-humanoid, lifting a ball. The robots
either managed to lift the ball or not. High-resolution EEG during the observation
tasks in both experiments was recorded to train a Filter Bank Common Spatial
Pattern (FBCSP) pipeline on the multivariate EEG signal and decode for the
correctness of the observed action, and for the type of the observed robot. The
findings show that it was possible to decode both correctness and robot type for
the majority of participants significantly, although often just slightly, above chance
level. Furthermore, the findings suggest that non-invasive recordings of brain
responses elicited when observing robots indeed contain decodable information
about the correctness of the robot’s action and the type of observed robot. This
chapter also indicates that, given the relatively low decoding accuracies of this
study, further improvements analysis and decoding techniques or the utilization
of intracranial measurements of neuronal activity will be necessary for practical
applications.

Autonomous technical systems are increasingly accessing our everyday life: The industry
has been using robots for construction and assembly for years, autonomous cars are under
development, and first robots especially designed for private users or social interaction
(e.g., NAO (TM), Aldebaran Robotics, Paris, France or PARO Therapeutic Robot (TM),
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Intelligent System Co., Japan) already entered the open market. There is no reason to
assume that this trend should lose momentum: Especially healthcare is a very promising
field for robotic development with possible applications including robot-assisted surgery,
motor analysis, rehabilitation, mental, cognitive and social therapy as well as robot-based
patient monitoring systems. Numerous approaches in science try to develop intelligent
systems for these purposes, for example when autonomous robotic assistants enable intake
of fluids [305]. Besides the process of optimizing the intelligent autonomous drinking
[98, 99, 100], there are also more holistic systems, which for example enable a user to
communicate with an intelligent robotic service assistant via conscious brain signals
by means of a high-level framework [62]. In short, robotic devices are among the key
effectors in present and future applications of Brain Computer Interface (BCI) systems
[374]. Relying on learning algorithms, BCIs allow controlling the behavior of external
devices, such as computers or exoskeletons [48, 126].

There has been more than a decade of research on human-robot interaction (see [146] for
a review), mostly in the fields of robotics and psychology, during which great importance
has been assigned to the question of how to make interaction with robots most intuitive
and natural for the human user [89]. Literature on human-robot interaction identifies,
among others, two important issues to be addressed in order to enhance a natural user
experience: One question is how to enable robots to read human signals, both for control
[245] and to detect errors in their own performance [218]. The second point is to assess the
influence of a robot’s appearance and/or behavior on the user’s cooperation and feelings
towards the robot [25].

This chapter addresses both of these issues from the perspective of neuroscience, which
is so far only weakly represented in the research on human-robot interaction. On the one
hand, the idea was to investigate which brain signals can be detected and thus be read by
a robot (aided with machine learning techniques) to optimize robot behavior. On the other
hand, the influence of the robot’s visual similarity to a human on such error-related brain
activity was investigated. For this purpose, two experiments were conducted, in which
participants watched different kinds of robots perform correct and erroneous actions.
This chapter lays the foundation for further work in this thesis. Hence, it investigates
and verifies whether the decoding of error-related brain signals is possible in principle,
especially with regard to collaborative human-robot interaction, and also present the
current situation in the literature.

3.1 System and Experimental Design

The series of experiments used in this chapter was designed in such a way that participants
more or less passively fulfilled a task and only had to react for attention tasks. The aim
was to measure signals caused by observation of faulty execution. In both experiments,
participants observed a set of short videos. The videos were presented repeatedly in
randomized order.
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3.1.1 Observation Tasks
Pouring Observation Task (POT)

In the Pouring Observation Task (POT), participants were shown videos of a robotic arm
(LBR iiwa, KUKA Roboter GmbH, Augsburg, Germany) pouring orange juice from a
non-transparent container into a cup, see Fig. 3.1A. There were two classes of videos:
The juice was either correctly poured into the cup, or incorrectly spilled over the table.
Movement of the robotic arm and position of the cup were the same for all videos and
conditions. Different outcomes were accomplished by varying the amount of juice in the
container. The participants were thus unable to predict the outcome of the pouring action
before it started. There were ten different video stimuli (five correct, five incorrect) of a
7.6 s length, with a frame rate of 30 fps (frames per second). The orange juice became
first visible between 2.6 s and 3.23 s after the start of the video.

Figure 3.1: Visual stimuli, showing a correct and an incorrect condition. A In the first set a robotic arm
performed a pouring task, either hitting or missing the vessel. B In a second set either a humanoid robots
(NAO) or a non-humanoid robot (NoHu) performed a grasping task, either managing or failing to lift a ball
from the ground. Slide mount by pixelio.

Lifting Observation Task (LOT)

Two different robots, either a small humanoid (NAO - Aldebaran Robotics, Paris, France)
or a non-humanoid (custom-built, referred to as NoHu), approached a ball and tried to
grab and lift it. In non-erroneous trials, the robots managed to grab and lift the ball and in
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erroneous trials, they failed to do so (Fig. 3.1B). The videos were invariant concerning
starting position of the robot, initial position of the ball, and visual properties of the
surrounding. To generate clips showing the robots approaching from left and right, the
existing ones were vertically flipped. There were 40 different video stimuli each of a
7 s duration, also with a frame rate of 30 fps (ten for each of the four conditions NAO -
correct, NoHu - correct, NAO - incorrect, NoHu – incorrect; 5 of each set of 10 videos with
the robot approaching from the left and 5 from the right, respectively). This experiment
will be referred to as Lifting Observation Task (LOT).

General Paradigm

Before the video stimuli were presented, participants fixed their gaze on a white fixation
cross on gray background for baseline recording (3 s in the POT, 2 s in the LOT). Then,
the video was initiated (7.6 s in the POT, 7 s in the LOT). In the lifting observation task,
1 s of post-baseline activity was recorded to exclude preceding motor artifacts generated
by answering the attention task (see Fig. 3.2). Up to 10 s of time between trials followed,
allowing the participants to move, blink, swallow and answer a simple attention control
question (Action correct? – Yes/No). The fixation cross was shown on top of the video
display in the area of the main events of interest: For the pouring observation task, this
was the area of the cup in the lower right part of the screen and for the lifting observation
task, it was the initial place of the ball in the center of the screen. The control question
was displayed at the same position. It was answered by pressing a key on a keypad-
controller. Respective keys for answers ”yes” and ”no” were switched every 40 trials.
After self-paced answering of the control question, the subsequent trial was initiated.
The experiment was conducted in sessions of 30 trials in the pouring observation task
and of 40 trials in lifting observation task, respectively. Trigger pulses containing an
unambiguous ID were generated with the onset of video presentation and recorded via the
EEG amplifiers. An additional optical trigger for post-hoc reconstruction in combination
with a photo diode was embedded in the video.

Figure 3.2: Timing structure of the experiments. Each trial consisted of a 2 s fixation period, video
stimulus of ∼ 7 s and an attention control task. Altogether ≥ 720/800 trials per participant.
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In the pouring observation task, at least 720 trials per participant (360 trials per condi-
tion, 72 trials per video) were recorded. In participants 1 to 3, the number of trials per
class was unbalanced (60% correct to 40% incorrect). Therefore, a weighing-mechanism
was included in the analysis (see below). In the lifting observation task, at least 800 trials
per participant (200 trials per condition, 20 trials per video) were recorded. For each
participant, the experiment including preparation and pauses lasted about between 5 to 6
hours for the POT and between 5 to 7 hours for the LOT.

3.1.2 Participants

The participants were included in the study upon their informed written consent. All were
healthy adults, either students or PhD students (22 to 31 years old). In the first experiment
(POT), 6 participants (6 male) took part; one participant was excluded due to insufficient
number of trials. In the second experiment (LOT), a total of 12 participants took part (6
female); one participant was excluded due to insufficient number of trials. The study was
approved by the Ethics Committee of the University Medical Center Freiburg.

3.1.3 Data Acquisition

Experiments were conducted in an electromagnetically shielded cabin (”mrShield” – CFW
Trading Ltd., Heiden, Switzerland). All electric devices in the cabin were powered by
DC batteries. Information between inside and outside of the cabin was exchanged only
via fiber-optic cables. High-precision EEG amplifiers with a 24-bit digital resolution and
low noise (NeurOne - Mega Electronics Ltd., Kuopio, Finland) were used to record EEG
from 128 scalp positions according to the five percent electrode-layout (Waveguard 128 -
ANT Neuro, Netherlands). The gel-filled electrodes were prepared to reach impedances
below 5 kΩ if possible. Sampling rate was 5 kHz; electrode Cz was used as reference,
the ground was located between AFz- and Fz-position.

Besides, electrooculograms (EOGs), electrocardiograms (ECGs) and electromyograms
(EMGs) of arms and legs of the participants were recorded and additionally an infra-red
eye-tracker to monitor eye movements (EyeLink 1000+ - SR Research Ltd., Canada) was
used. Eye-tracking data and EOG was used to inspect whether participants looked at the
stimuli. EMG was to verify that participants remained still, though ECG recordings were
only used for analyses that do not contribute to this thesis.

3.2 Pre-Processing, Classifier Design and Statistics

Data was down-sampled to 500Hz, and then high-pass filtered with a cut-off frequency
of 0.5Hz using a stable 4th order Butterworth filter. Noisy channels were determined by
visual inspection first and post hoc by using an automatic cleaning algorithm optimized to
detect muscle-artifacts based upon the variance of the signal (BBCI-Toolbox [44]). To
identify noisy trials, data were analyzed in intervals corresponding to decoding intervals
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plus a preceding 500ms and the trials were rejected if the difference between the maxi-
mum and minimum value exceeded 600µV . Rejected trials were only excluded from the
training sets but kept in the test sets of the cross-validation (see below). Then, common-
average re-referencing was performed and trials were cut according to the decoding
intervals described below.

A Filter Bank Common Spatial Pattern (FBCSP) algorithm was implemented as de-
scribed in Subsec. 2.5.2 (see Fig. 2.9 and Alg. 3). The data was bandpass-filtered in
35 non-overlaying frequency bands between 0.5Hz and 144Hz. Between 0.5Hz and
30Hz a filter with a bandwidth of 2Hz was applied and between 30Hz and 144Hz with
a bandwidth of 6Hz, since band power modulations in low frequencies typically occur
in narrower bands than in high frequencies Buzsáki and Draguhn [66]. CSP analysis
was then performed on each of these frequency bands in a 10-fold cross-validation: The
feature selection was set to choose the first 3 and the last 3 filters ordered according to
their eigenvalues, i.e. the most discriminative six filters (see [43] for more details on
this heuristic), to maximize between-class variance in the training set. These spatial
filters were then applied on the trial data. The logarithm of the variance of the resulting
signal was used as features. Then, as a first step, rLDA classifiers (see Subsec. 2.5.1),
were trained on the training features and evaluated on the test features, which resulted
in frequency-resolved decoding accuracies. In a second step, the stored features from
either all frequency-bands or two different subsets (all frequency bands below 20Hz, and
all frequency bands above 60Hz) were taken together to train FBCSP classifiers (in a
10-fold cross-validation analogous to the above). To account for unbalanced numbers
of trials in the different classes, the mean over decoding accuracies per class was used
instead of the overall decoding accuracy.

For the first experiment (POT), binary FBCSP for the classes correct vs. incorrect was
performed in the decoding intervals 0− 7.6 s (full interval) and 3.3− 7.5 s (late interval)
relative to the start of the video display. In addition, the interval from −0.5 to 3 s relative
to the point in time when the liquid first became visible was extracted. This interval
(intermediate interval) differed depending on the video displayed and accounted for the
fact that the frame where liquid first become visible varied among the stimuli; liquid in
incorrect trials appeared between 0.4 to 0.6 s earlier than in correct trials. For the second
paradigm (LOT), binary FBCSP for the classes NAO vs. NoHu as well as for the classes
correct vs. incorrect was performed in the intervals 0− 7 s (full interval), 5.1− 6.9 s (late
interval) and 4− 7 s (intermediate interval), relative to the start of the video display, to
cover the different phases of the stimuli. P-values for FBCSP decoding accuracies for
each participant were estimated by a permutation test (Alg. 7), as described in Sec. 2.6.

3.3 FBCSP Filters and Activation Patterns
Fig. 3.3 exemplarily shows both filter and corresponding activation patterns calculated
for CSP decoding in the pouring observation task (Fig. 3.3A), the error condition in the
lifting observation task (Fig. 3.3B) and the robot condition in the lifting observation task
(Fig. 3.3C). The visualization shows the filters and patterns of participant 1 of the pouring
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Figure 3.3: Exemplary CSP-filters and activation patterns. A Error condition in the pouring observation
task, B the error condition in the lifting observation task, and C the robot-type condition in the lifting
observation task.

observation task and of participant 2 of the lifting observation task, which reached the
highest decoding accuracies among all frequency bands below 20Hz. Here, filters depict
the vectors vj of channels, represented as a columns of the mixing matrix V ∈ Re×e and
e being the number of channels, that perfor the linear transformation from the electrode
onto the surrogate electrode space (for details see Subsec. 2.5.2). This projection ensures
that the signals are distinguished in the best possible way with regard to variance, see
Eq. (2.37). The activation patterns visualize the vectors aj , which represent the column
vectors of the demixing matrix A = (V−1)> ∈ Re×e. The visualization makes clear
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how the presumed signal sources project onto the head surface, which, according to
theory, serves to validate neurophysiological associations and underlying processes. In
Fig. 3.3, the sign of the vectors is irrelevant and simply illustrates the contrast between the
behavior of the filter with respect to a channel and the contrast in the activation patterns,
respectively.

The filters show a rather disorganized distribution over the scalp, but resulting in clear
activation patterns. For the selected participants, the depicted activation patterns suggest
bipolar, sometimes multipolar, generators. The generators are separated differently by
sagittal and coronary axes as well as by transverse axes. Besides, within a condition some
of the activation patterns practically seem to be quite the negative of others.

3.4 Decoding Errors and Robot Type

To obtain pretty much the distribution of the information content over the whole frequency
range, in a first step decoding was performed on 35 frequency bands using the CSP
algorithm. For the pouring observation task, the results of the decoding after applying the
filters is shown in Fig. 3.4.

Figure 3.4: Frequency-resolved CSP-decoding results in the pouring observation task. Accuracies
of 35 frequency bands in the range between 0.5− 144Hz for 5 participants, using the decoding interval
3.3− 7.5 s relative to video stimulus onset.

Fig. 3.4 shows mean CSP decoding accuracies in the pouring observation task of all
35 frequency bands in the range between 0.5− 144Hz for participants 1 to 5 (decoding
interval 3.3− 7.5 s relative to video stimulus onset). Decoding accuracies were mainly
above chance, and especially in participants 1 to 4 the accuracies were generally higher
for frequency ranges below 20Hz. This trend with respect to frequency ranges was also
found in the other decoding intervals and somewhat weaker for the lifting observation
task.Participant 1 also showed above-average decoding accuracies in frequency bands
beyond 60Hz. Maximal decoding accuracies reached up to around 75 % in participants 1
and 5. To yield high efficiencies be selecting an optimal operational frequency band, the
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FBCSP algorithm was used. Fig. 3.5 compares decoding accuracies of the FBCSP imple-
mentaion for different frequency ranges, broadband from 0.5 to 144Hz, low frequencies
from 0.5− 19Hz and high-gamma from 61− 144Hz.

Figure 3.5: FBCSP decoding results for three different frequency ranges. A Pouring observation task
(POT) for the interval 3.3− 7.5 s. B Error condition of the lifting observation task (LOT) for the interval
4− 7 s. C Robot condition of the lifting observation task (LOT) for the interval: 0− 7 s. Significance is
indicated by asterisks, * p < 0.05 ** p < 0.01.

Fig. 3.5A shows the results for participants 1 to 5, decoding errors in the pouring
observation task. The presented results originate from the decoding interval which yielded
the highest mean decoding accuracies, in this case represented by the interval 3.3− 7.5 s.
The results show mainly significant decoding accuracies clearly above chance level.
Furthermore, decoding on the high-gamma frequencies obviously can not compete with
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performances reached by decoding with broadband and low-frequency ranges, the low-
frequency band performs best overall. Fig. 3.5B and C compare FBCSP classifiers over
the different frequency ranges for participants 1 to 11 for the lifting observation task.
Again, results originating from the decoding intervals which yielded the highest mean
decoding accuracies are displayed. For the error condition the interval 4−7 s was selected
and for the robot condition the interval 0− 7 s. Here, the performances are not that good
as for the pouring observation task. For the error condition accuracies exceed chance
level, partly significant, and show values up to ∼ 60 %. The decoding on the robot type
slightly performs better, yielding accuracies up to ∼ 70 %.

Mean decoding accuracies over all participants for the different frequency ranges and
decoding intervals can be found in Tab. 3.1. For the different paradigms and condition,
the upper part of the table contains decoding accuracies extracted from the best decoding
interval in each case (POT-error: late interval 3.3− 7.5 s; LOT-error: intermediate interval
4 − 7 s; LOT-robot: full interval 0 − 7 s). It becomes clear that decoding happens to
be most efficient if only low frequencies enter the FBCSP algorithm. The lower part of
Tab. 3.1 shows the decoding results of FBCSP for frequencies < 20Hz. In this case,
no clear rule seems to be found and the performance of the respective intervals for the
recognition of the conditions varies individually.

Table 3.1: Mean FBCSP accuracies for different frequency ranges using the best performing interval (top)
and mean FBCSP accuracies for different decoding intervals for frequencies < 20Hz (bottom)

POT error LOT error LOT robot

0.5-144 Hz (60.2 ± 5.3) % (52.6 ± 1.9) % (54.2 ± 4.3) %
< 20 Hz (62.1 ± 5.7) % (53.2 ± 2.7) % (56.7 ± 5.8) %
> 60 Hz (54.0 ± 5.3) % (49.6 ± 1.4) % (49.4 ± 2.0) %

full interval (55.2 ± 3.6) % (51.1 ± 3.2) % (56.7 ± 5.8) %
late interval (62.1 ± 5.7) % (53.0 ± 2.5) % (53.4 ± 3.2) %

intermediate interval (58.0 ± 5.3) % (53.2 ± 2.7) % (56.4 ± 4.3) %

3.5 Discussion
The findings show that both conditions investigated in the present study were decodable
from the recorded EEG signals: observation of erroneous vs. correct robot actions in the
POT and, although at very low accuracies and not in all participants, also in the LOT, as
well as humanoid vs. non-humanoid robot type in the LOT. FBCSP decoding accuracies
varied in a range from around chance level to around 70 % (Fig. 3.5), Tab. 3.1). The fact
that erroneous vs. correct robot action can be decoded from human brain activity is in
line with prior findings by [176]. Taken together, the results indicate that observation of
erroneous vs. correct robot action and observed robot type are encoded in human brain
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activity and that related brain signals can be detected, at least in some circumstances, in
the non-invasively recorded EEG.

In contrast to promisingly high error decoding accuracies in the POT, the accuracies
for the broadband and low-frequency components of the error condition of the LOT were
mostly little above chance level (Fig. 3.5). This renders a generalizing of the results
difficult and suggests that an unknown factor may have played a role. For example,
one possible explanation could be that errors in the POT were indirectly decoded by
differences in the visual properties of the stimuli during correct and incorrect trials, which
were more prominent in the POT. However, differences in visual properties were also
present in the LOT. As a matter of fact, they are an inevitable consequence of errors
in everyday settings as investigated in the present study. Another explanation could be
that different error types may elicit different affective responses, which in this case were
possibly more pronounced in the POT (liquid spilling) than in the LOT (unsuccessful
ball lifting). Follow-up studies will be necessary to further investigate these observations
and generally the factors modulating robot-error recognition by humans as well as the
underlying neurophysiology.

Besides, the results indicate an effect of the EEG frequencies used for decoding. FBCSP
taking into account only frequencies below 20Hz yielded generally higher decoding
accuracies than broadband or high-frequency components (Tab. 3.1). This is in line with
previous studies which suggested an involvement of the mirror neuron system (MNS,
[291]) and motor system, manifested in mu- and beta-band modulations [194, 252], as well
as frequency power modulations in response to erroneous action execution mainly found
in lower frequency bands such as delta, theta, alpha and beta [69, 199, 347, 372]. High
frequency-components in the gamma range were previously also proposed to be related
to error processing [69, 350]. Yet, in this study, FBCSP using frequency components
of the high-gamma range (> 60Hz) yielded comparatively low decoding accuracies.
This effect, however, seemed to be participant-dependent (see Fig. 3.4), reminiscent of
inter-participant variability of movement-related high-gamma EEG responses as they have
previously been observed [21, 93]. Further investigations are necessary to elucidate the
role of different EEG frequency bands, including gamma, and of their dynamics in the
context of robot-error observation.

The results also indicate a possible effect of the time intervals used for decoding. De-
coding for correctness in both experiments, intervals starting after the stimulus condition
had become evident to the observer (late and intermediate intervals) appeared to yield the
best results (Tab. 3.1). This suggests that the timespan preceding the error, which was
designed to contain minimal visual differences, was indeed uninformative for decoding.
In contrast, decoding for the robot type in the LOT, the full video interval yielded the
best overall decoding results, while the shorter intervals resulted in lower accuracies,
consistent with the fact that the robot type difference was present throughout the trials.

Robots were investigated during naturalistic tasks, namely liquid pouring and object
grabbing. These tasks were designed to approximate application scenarios of autonomous
or semi-autonomous robots under high-level control or surveillance via brain-computer
interfacing. An important consequence of these naturalistic conditions is that the exact
time point of error events is less clearly defined than in other experimental paradigms that
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have previously been used to elicit error-related brain responses (e.g., in forced choice
visual discrimination tasks, such as the Erikson flanker task) or to investigate low-level
BCI control. Some of these paradigms are able to yield much higher decoding accuracies
than observed here (up to 91 % for single-trial classification; see [261]). Yet, with
respect to future prospects of robotics and shared-control BCI applications, unpredictable,
asynchronous errors are an important, complementary topic. Another, related perspective
would be the detection and evaluation of action consequences that are not objectively right
or wrong, but rather depend on the intention of the user (for example, picking up an apple
vs. picking up a piece of chocolate).

The achieved accuracies in all experiments are not as high as would be required
for improving BCI-applications. Chavarriaga et al. [74] suggest 80 % accuracy as a
benchmark for decoding of error-related potentials that has been shown to be sufficient to
improve information transfer rate in most BCI applications. Improvement of decoding
accuracy in the experimental paradigm could be reached by resorting to other types of
electrophysiological recordings: Even though a highly optimized EEG setup was used,
intracranial recordings can be expected to provide more reliable error-related signals if
recorded from informative brain areas. Despite the low accuracies reached here, non-
invasive studies as in the present study combined with source localization approaches may
be useful for guiding such studies and selecting the most promising target areas involved
in the perception and cognitive evaluation of robot action.

The future will bring many major developments in the fields of robotics and shared-
control BCIs: With growing relevance of robots in everyday life, new types of interaction
between humans and machines will evolve. The current practice of surveying robots (e.g.,
[89]) could profit by elaborated, empirically supported theories. In this context, it may be
fruitful to join efforts across scientific disciplines and, for example, include concepts and
theories from philosophical action theory into empirical studies, as previously proposed
by [331]. Action theory conceptualizes human agency by analyzing agency-related
phenomena like intention and planning (for an overview see [254]). A central topic of the
emerging interdisciplinary field of action science [277] is the integration of philosophical
concepts with related empirical findings, e.g., from the field of neuroscience [64, 151, 256],
into a comprehensive theory. In the past years, so-called shared agency among cooperating
human agents [55, 256, 345, 346] became a focus of interdisciplinary studies in this area
[362] and very recent experimental work investigated shared agency during human-robot
cooperation [120, 163, 323] as well as the agentive properties of robots in general [188].
Such collaboration across disciplines has already proven successful in the field of action
theory, where the application of concepts from philosophy to the field of intelligent
systems has led to the development of belief-desire-intention architectures [135].
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3.6 Related Work

Error-Related Brain Responses

Prior research found that human brain activity is modulated by both performed and
observed erroneous action in other humans. When humans observe other humans commit-
ting errors or when they err themselves, their brains show a specific activation pattern in
response to these errors (see [371] for a review).

With respect to the time domain of human electroencephalography (EEG) signals, there
are well-documented event-related potential components (ERPs), which are linked to
the processing of errors (mainly investigated in erroneous motor-execution): the error-
related negativity (ERN), consisting of a negative deflection (Ne) and sometimes followed
by a positive deflection (Pe). While the Pe seems to appear exclusively in conscious
error processing [248], the Ne can be measured when participants do not report to have
committed an error and a small negativity often even appears in correct trials [347]. Ne
and Pe do not share the same scalp distribution: The Ne is maximal over frontocentral
areas while the Pe is usually recorded with a parietal maximum [114].

In the frequency domain of EEG signals, several studies demonstrated frequency-
specific power modulations in response to erroneous action-execution in different motor
tasks: Effects were mainly found in lower frequency bands, such as delta (< 4Hz), theta
(4−8Hz) [199, 372], alpha (8−12Hz) [69], and beta (12−30Hz) bands [347]. Carp and
Compton [69] also suggested error-related spectral power changes in frequencies higher
than 30Hz. In recent EEG studies, our group found first evidence for modulations in the
high-gamma range (50− 150Hz) related to erroneous execution of the ERIKSEN flanker
motor task [350, 351], a response inhibition test. Koelewijn et al. [194] demonstrated
an effect of the correctness of observed human actions on beta power-modulation over
sensorimotor areas: This effect, however, was weaker in the observation settings than in a
corresponding execution task.

In the context of BCIs for directly controlled prostheses, Milekovic et al. [232] used
electrocorticographic recordings obtained while participants where engaged in a simple
videogame, for which they controlled a cursor with an analogue joystick. The experi-
menters were able to detect execution errors (i.e. when motor commands resulted in an
unexpected movement) and outcome errors (i.e. when participants failed to reach the
intended goal) from the neural activity in real-time significantly above chance level.

[176] used EEG-measured error-related potentials in order to teach neuroprosthetics
suitable behaviors in scenarios of varying complexity. In three experiments, participants
were asked to monitor a device as it tried to reach a goal, that only the participant was
aware of, and assess whether the actions of the device were incorrect or correct (i.e.,
whether the actions brought the device closer to the intended goal or further away). In a
first experiment, participants observed a cursor on a screen as it moved either right or left
in order to reach the target. In a second experiment, a simulated virtual robotic arm, that
could perform four different actions (moving left, right, up or down) to reach the target,
was displayed on a screen. For a third experiment, the simulated robotic arm was replaced
by a real robotic arm. All experiments were divided into a training phase, during which the
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classifier that should detect the error-related potentials was built, and an online operation
phase, during which the decoded information on correctness of the device’s action was
used as a reward for a reinforcement learning algorithm. Iturrate et al. [176] were able to
show that in 11 out of 12 participants, classification performance was significantly above
chance level and that the user-controlled device reached the goal significantly more often
as compared to a device following a random control policy. These findings demonstrate
that error-related potentials are an adequate reward signal for reinforcement learning
algorithms with the purpose of neuroprosthetics control.

Following the same line of research, [299] investigated the role of EEG-measured
error-related potentials for robot control during an object selection task in four conditions.
In the online closed-loop condition, participants observed the robot perform binary object
selection. If the EEG classifier detected an error-related potential, the robot’s behavior
was corrected, which in turn was immediately observed by the participant. In the offline
closed-loop condition, the EEG classifier was trained using the data from all closed-loop
trials of each participant. In the offline open-loop condition, participants observed the
robot perform object selection correctly or incorrectly and no feedback was given to the
robot. In the fourth condition, secondary errors, which occur in response to real-time
misclassification (i.e., when the EEG signals are misclassified leading to incorrect robot
behavior), were additionally considered in the online closed-loop condition. Performance
in the online closed-loop condition was around chance level and on average above in the
offline closed-loop and the offline open-loop condition. Interestingly, [299] found that
taking into consideration secondary errors improved performance significantly.

Brain Responses During Observation of Correct Human and Robot Actions

One of the most striking findings in recent neuroscience was the discovery of mirror
neurons: [292] observed that certain neurons in the macaque brain fire both when the
monkey performs an action and when it observes the same action performed by an
experimenter. These cells were termed mirror neurons. The mirror neurons distributed
across various brain regions together form the MNS. Findings from neurophysiological
and brain-imaging studies indicate that a MNS also exists in the human brain, possibly
even spatially more extended than in monkeys, and that the MNS is reliably activated
when humans observe other humans perform meaningful actions [239, 291].

Until now, there are very few published neurophysiological experiments on the per-
ception of robotic action by a human observer. If it was processed similar to human
movement, the human MNS should be involved during the observation of robot action. An
EEG study by [252] suggests that the human MNS is indeed not selective for biological
movement but can also be activated by robotic movement: Observation of a grasping
action (target-directed and non-target-directed) performed by a robotic arm lead to sup-
pression of mu-band activity (8 − 13Hz) in left and right sensorimotor cortex (scalp
positions C3 and C4), which has been linked to MNS activity. The study also found a
significant hemispherical effect, as mu-band suppression was stronger on electrode C3
(left) than on C4 (right). Mu-band suppression also occurred when observing human
motion. There was no significant difference in the strength of mu-band suppression during
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human vs. robot motion observation [252]. Bates et al. [28] and Oberman et al. [252]
suggested that the MNS is involved in the error-observation-related brain responses.

Humanoid Robots

So far there is hardly any research that directly compares the perception of humanoid
robots to the perception of non-humanoid robots, with respect to the underlying brain
responses. Many previous studies focused on how humanoid robots are perceived by
humans with respect to facial features. Disalvo et al. [97] found that the presence
of certain features in a robot’s face, such as eyes, nose and mouth, the dimensions of
the robot’s head as well as the total number of facial features play a key role for the
perceived humanness of a robot. Assuming the findings on facial features of robots can be
transferred to general body features of robots, it appears likely that the higher the number
of individual humanoid body features of a robot, the more humanoid it is perceived as a
whole.

Observation Task

Based upon the findings by [252] and [344], the hypothesis was stated that watching a
robot perform erroneous compared to correct action differentially modulates the observer’s
brain activity: Given that watching other humans performing erroneous actions triggers
an automatic cognitive evaluation reflected in an error-related brain response [344] and
that observation of robot movement is processed similar to the observation of human
movement [252], it can be assumed that watching robots commit errors also elicits error-
related brain responses. Information about the perceived correctness of robot performance
decoded from the EEG seems to provide a useful teaching signal for adaptive control
algorithms in order to optimize robot control, in particular for so-called shared-control
BCIs. Based on the results by [97], who were able to show that the number of humanlike
features in a robot affects the perceived humanness of a robot, this chapter should give
information about whether this degree of perceived humanness would also be reflected in
the brain responses that occur when observing a robot perform an action (both for actions
where the robot commits an error and where it did not).

3.7 Conclusion
In this chapter, two experiments were presented that were designed to investigate the
possibility to decode erroneous action from robots performances and whether the number
of humanlike features in a robot affects the perceived humanness of a robot. In a first
experiment, participants watched a robot arm pour liquid from a non-transparent container
into a cup. The robot performed the action either incorrectly or correctly, i.e. it either
spilled some liquid or not. In a second experiment, a 2x2 factorial design was employed.
Participants observed two different kinds of robots, a humanoid and a non-humanoid,
grabbing and lifting a ball. Similar to the first experiment, each of the robots was either
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successful at the action, i.e. managed to lift the ball, or not. The approach was to decode
the correctness of observed robot actions from the EEG signals recorded during the two
different passive observation tasks and for the second experiment, additionally, the aim
was to decode the type of the observed robot from the EEG signal.

Decoding was implemented using the common spatial pattern (CSP) approach for
feature extraction, as applied to multi-channel EEG data by Müller-Gerking et al. in 1999
for decoding motor tasks [240]. Regularized linear discriminant analysis (rLDA) was
used a classifier on these features. Since the the original studies, CSP has continuously
been adapted and become a standard method in EEG classification tasks, especially for
motor behavior or motor imagery [43]. To validate the reliability of CSP decoding results,
the spatial filters and corresponding activation patterns computed by the CSP algorithm
were assessed.

As described above, previous studies have focused on brain responses during observa-
tion of correct and incorrect actions in humans but only few studies investigated the brain
responses to watching robot action. So far, brain responses to perception of correct and
incorrect robot performance and with different types of robots have never been assessed in
previous experiments. Hence, the present study aimed to add to this field by investigating
these aspects of robot observation.

The findings presented in the present chapter indicate that it is possible to decode
the correctness of at least some kinds of observed robotic actions as well as the type of
observed robot from non-invasively recorded human EEG. These findings add to relevant
topics in the research on human-robot interaction, such as enabling robotic systems to
read human signals or the influence of a robot’s appearance and/or behavior on the user’s
perception of the robot.

Accessing error recognition in robot performance might be helpful for EEG-based
BCIs; the observation tasks in this study were designed to approximate future application
scenarios of autonomous or semi-autonomous robots under high-level control or surveil-
lance via brain-computer interfacing (self-feeding, go-and-fetch tasks). There are several
perspectives for follow-up investigations which derive from the present study, and which
could be addressed with similar methods. Given that the achieved accuracies are likely
not yet sufficient for practical applications, it would be helpful if alternative machine
learning approaches such as artificial neural networks reached higher decoding accuracies.
Another question to be addressed in the future would be which kind of robot errors are
generally suitable for decoding of the user’s perceived correctness and how they differ
from non-decodable errors. Closely related to this, would be the investigation of how
visual, affective, and movement-related brain systems are involved in the generation of
the differential responses to robot action.



Chapter 4

Decoding and Visualization Using Deep
Convolutional Neural Networks

The importance of robotic assistive devices grows in our work and everyday life.
Cooperative scenarios involving both robots and humans require safe human-
robot interaction. One important aspect here is the management of robot errors,
including fast and accurate online robot-error detection and correction. Analy-
sis of brain signals from a human interacting with a robot may help identifying
robot errors, but accuracies of such analyses have still substantial space for
improvement. This chapter evaluates whether a novel framework based on deep
convolutional neural networks (deep CNNs) could improve the accuracy of decod-
ing robot errors from the EEG of a human observer, both during an object lifting
and a pouring task. It can be shown that deep CNNs reached significantly higher
accuracies than both regularized Linear Discriminant Analysis (rLDA) and filter
bank common spatial patterns (FBCSP) combined with rLDA (see Chap. 3), both
widely used EEG classifiers. Deep CNNs reached mean accuracies of (75± 9) %,
rLDA (65 ± 10) % and FBCSP + rLDA (63 ± 6) % for decoding of erroneous
versus correct trials. Visualization of the time-domain EEG features learned by the
CNNs to decode errors revealed spatiotemporal patterns that reflected differences
between the two experimental paradigms. Across participants, CNN decoding
accuracies were significantly correlated with those obtained with rLDA, but not
CSP, indicating that in the present context CNNs behaved more ”rLDA-like” (but
consistently better), while in a previous decoding study with another task but the
same CNN architecture, it was found to behave more ”CSP-like”. The findings
thus provide further support for the assumption that deep CNNs are a versatile
addition to the existing toolbox of EEG decoding techniques, and the steps how
CNN EEG decoding performance could be further optimized are discussed.

Chap. 3 has shown that it is possible to detect errors when observing robots, based
on human brain signals. However, the performances seem to be far from practical
applicability. There are now several approaches to get this problem under control. For
example, the so far used paradigms do not seem to give an exact time, a discrete event, for
the occurrence of the error and it is therefore difficult to define an optimal time interval,
since the perception of the error can also be very subjective. An experiment that gives
time-discrete errors, such as the ERIKSEN flanker task [110], could help here.
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Especially for analyses based on surface EEG, the improvement of any process is
target-oriented and an optimization of the signal quality can lead to features having a
clearer characteristic and thus also a better decoding effect. Another approach would be
the use of intracranial measurement data. Here, the brain signal is decisively stronger and
artifacts, caused by any kind of movement, hardly need to be considered. In addition,
the measurement is carried out directly at the tissue, which makes it possible to measure
the signals directly in the respective brain areas and keeps the potentially unwanted
overlapping of several different signals to a minimum.

However, this chapter is about improving the decoding on the classifier side. The
problem is addressed by applying deep learning to a naturalistic decoding task where
participants observed a robot performing different assistive actions either successfully
or failing to do so. In EEG research, architectures including deep convolutional neural
networks (CNNs) have recently been used to explore their applicability in brain-signal
decoding [303, 328], but not yet to robot-error decoding from EEG.

4.1 System and Experimental Design
As a follow-up to the previous chapter, the analyses in this study are based on the same
data set. Just to mention the fundamental aspects, in both paradigms participants had to
observe robot fulfilling instructed tasks, either managing or failing their mission. The
visual stimulus was presented in form of short video clips, which were repeatedly played
in a randomized order. The videos for different conditions were as invariant as possible
concerning starting position of the robot, initial position of the ball/glass, robot movement
and visual properties of the surrounding. To the participants the task was more or less
passive, as they only had to observe the execution by the robot, only acting actively when
it came to the attention tasks. In this chapter, the two paradigms will be referred to as
follows:

• Pouring Observation Task (POT), see Fig. 3.1A

• Lifting Observation Task (LOT), see Fig. 3.1B

Further setup details are described in Sec. 3.1, while the timing structure of the experiments
can be seen in Fig. 3.2. Sec. 3.1 also provides information about the participants and the
EEG acquisition. In the LOT an extra condition was implemented additionally, where in
10% of the trials the participants were instructed to press a button if and exactly when
they perceived a robot error. This allowed an estimation of the approximate time point of
error perception.

4.2 Pre-processing, Classifier Design and Statistics
Since this chapter targets the comparison of different algorithms, an equal mutual pre-
processing would be desirable. However, it would make no sense to change the working
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concepts of the FBCSP implementation. The CNN is practically designed to learn a broad
spectrum of features and generally is intended for the use in real-life applications, what
justifies the exclusion of some pre-processing steps. Moreover, this change rather tends
to make the CNN worse off. The recorded EEG data were re-referenced to a common
average (CAR) and resampled to 250Hz. To compute exponential moving means and
variances for the CNNs, an electrode-wise exponential moving standardization with a
decay factor of 0.999 was applied [303], while the rLDA implementation reached higher
accuracies without the standardization. Based on predefined decoding intervals, the data
was cut into trials according to the stimulus onset. Data analyses employing rLDA (see
Subsec. 2.5.1 and Alg. 2) and deep CNNs (see Subsec. 2.5.3 and Fig. 2.14) are based on
python implementations. Pre-processing and implementation of the FBCSP algorithm is
discussed in detail in Subsec. 2.5.2, but the cleaning was slightly improved in comparison
to Chap. 3. According to the results in Chap. 3 only frequencies < 20Hz contributed
in decoding the errors in the FBCSP implementation. All underlying architectures are
described in Sec. 2.5, training and classification was only done within each participant.
Thereby, the architecture of the rLDA classifier complies with the theory of [124] and is
leant on the realization of [44], for the shrinkage regularization the LedoitWolf estimator
[210] was used, see Eq. (2.66) in Subsec. 2.5.5.

Significance for individual decoding results was estimated using a permutation test,
see Alg. 7. Mean differences of accuracies between decoding methods were evaluated
by WILCOXON signed-rank tests. Significance of correlation coefficients was evaluated
by randomizing the order of one of the input vectors of the correlation. The number
of guesses that resulted in higher coefficients than the true correlation coefficient was
compared to the total number of guesses.

4.3 Comparison of Decoding Performance
In this chapter, three different decoding algorithms (CNNs, rLDA and a combination
of FBCSP and rLDA) were implemented and the outcome of the error decoding was
compared. The decoding intervals 3.3 − 7.5 s (POT) and 4 − 7 s (LOT) were selected
according to the results in chapter Chap. 3. Additionally, for the POT the data between
2.5−5 s was analyzed, since this seemed as an intuitive interval in which the error became
obvious. As described before, in the LOT paradigm an extra condition was integrated to
serve as an error perception feedback. If an error occurred, the participants had to press a
button as soon as they became aware of it. This extra condition comprised both correct
and erroneous trails, and was only used for the analysis of the error perception feedback,
not for later analyses. In average, the participants became aware of the error at around
(5.4 ± 0.5) s. The interval was then selected as the 5-fractile range of the button press
moments of all participants, resulting in the decoding interval 4.8− 6.3 s, see Fig. 4.1.

Tab. 4.1 shows the mean decoding accuracies of the error classification for the different
time intervals and the respective paradigms and for all classification methods. Comparing
the performances of the different methods, apparently one difference is striking: for
both paradigm and time intervals, the CNNs clearly yielded the highest mean decoding
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Figure 4.1: Analysis of participants button press according to error appearance. (Left) Evaluation of
average moment of error awareness of around (5.4± 0.5) s. (Right) 5-fractile range of the overall button
press time for all participants.

accuracies and beats both of the other implementations. Also the rLDA manages to
perform in three of the four decoding interval better than the FBCSP.

Table 4.1: Comparison of mean decoding accuracies

paradigm interval CNN rLDA FBCSP

POT 2.5-5s (78.2 ± 8.4) % (67.5 ± 8.5) % (60.1 ± 3.7) %
POT 3.3-7.5s (71.9 ± 7.6) % (63.0 ± 9.3) % (67.1 ± 5.4) %
LOT 4.8-6.3s (59.6 ± 6.4) % (58.1 ± 6.6) % (52.4 ± 2.8) %
LOT 4-7s (64.6 ± 6.1) % (58.5 ± 8.2) % (53.1 ± 2.5) %

Fig. 4.2 shows the pairwise comparison of the error decoding accuracies obtained in
the individual participants for all three classification methods. Here, one panel comprises
the accuracies for both decoding intervals of one paradigm. As already indicated by the
average performances, the dominance of the CNN likewise becomes clear on the level
of participants. Fig. 4.2A demonstrates that in the POT the CNN decoding accuracies
significantly exceeded those of the other two decoding methods for each single participant,
and on the group level was significantly better compared to both rLDA and FBCSP. There
was no significant difference between the two latter methods in POT on the group level,
however, there were significant differences between rLDA and CSP on the individual
level which were almost always in favor of rLDA (Fig. 4.2A, bottom panel).

In the LOT, comparing CNNs to rLDA, significant differences were also nearly in all
cases in favor of the CNNs. In contrast to POT, in part of the participants there was no
significant performance difference detectable, and there was also no significant difference
on the group level. Compared to FBCSP, CNNs were however again significantly better
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Figure 4.2: Pairwise comparison of decoding performance. A Decoding accuracies of CNN vs rLDA vs
FBCSP for the pouring observation task. B Decoding accuracies of CNN vs rLDA vs FBCSP for the lifting
observation task.

in nearly all individual participants and also on the group level. In the LOT (but not in the
POT), rLDA significantly outperformed FBCSP.

To quantify the relationship between the methods, the linear correlation between
decoding accuracies over participants was calculated pairwise for the different methods.
Fig. 4.3 shows the correlation for the comparison of the CNN and the rLDA performances
for POT and LOT error decoding. Particularly for the error decoding in POT, there was a
highly significant linear correlation. There was no significant correlation with FBCSP
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performance. The comparison of all methods with one another is summarized in Tab. 4.2.
The correlations of CNN with FBCSP and rLDA with FBCSP behave in a similar way.

Figure 4.3: Correlation of CNN and rLDA results for both paradigms.

Table 4.2: Linear correlation coefficients & p-values

paradigm CNN/rLDA CNN/FBCSP rLDA/FBCSP

POT 0.913 (< 0.001) 0.292 (0.213) 0.375 (0.152)
LOT 0.512 (0.004) 0.277 (0.095) 0.162 (0.223)

4.4 Visualization of Error-related Correlations
To make the behaviour of the CNN more understandable, the visualization method
described in Subsec. 2.5.6 was applied. Firstly, the correlation of changes in CNN
predictions with perturbation changes in input spectral amplitudes was used to obtain
information about what the deep CNNs learned from the data. Training trials were
transformed into frequency domain using the FOURIER transformation and randomly
perturbed by adding GAUSSIAN noise (µ = 0, σ = 1), while keeping the phases steady.
Both, the unperturbed and the inverse-FOURIER transformed signals were used to feed
the deep CNN. The output of the CNN before the softmax activation was extracted for
30 iterations and the difference of the perturbed and original CNN predictions were
correlated with the perturbation itself, see Eq. (2.69), resulting in spatial correlation maps.
Secondly, perturbations to the time domain voltage signal were also applied. Again, the
perturbation was correlated with the CNN output changes. The algorithm covering both
implementations is described in Alg. 8, the maps Mt for the time domain visualization are
shown in Fig. 4.4.
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Algorithm 8 input-perturbation network-prediction correlation map Mt/f calculation

Require: data set D, GAUSSIAN probability density pG with mean µ and std σ
1: for all trials Xi ∈ D do
2: Gt,i ← GAUSSIAN noise (Xi, µ, σ, pG)
3: Xdist,i ← Xi + Gt,i

4: X̃i ← FFT(Xi)
5: Gf,i ← GAUSSIAN noise (X̃i, µ, σ, pG)
6: X̃dist,i ← X̃i + Gf,i

7: X′dist,i ← inverseFFT(X̃dist,i)
8: end for
9: for j = 1 to number of iterations do

10: prj ← CNN output of X after softmax activation
11: prj,t ← CNN output of Xdist after softmax activation
12: prj,f ← CNN output of X′dist after softmax activation
13: Mj,t ← corr(Gt, prj,t − prj)
14: Mj,f ← corr(Gf , prj,f − prj)
15: end for
16: Mt ← iteration mean of Mj,t

17: Mf ← iteration mean of Mj,f

18: return Mf ,Mt

In this study, the focus lies on the visualization results in the time domain, as rLDA
trained on the time-domain EEG signals outperformed FBCSP. The latter is designed
to exploit band-specific spectral power differences, however, the CNN behaved more
rLDA-like (Fig. 4.3 and Tab. 4.2) and in the LOT experiment FBCSP decoding was at
chance level. This suggests that in the present decoding problems, band-specific spectral
power differences did not play the dominant role as a source of decodable information.
Accordingly, frequency-resolved CNN visualizations (not shown) were rather noisy-
looking. In Fig. 4.4A, the averaged time-resolved input-perturbation network-prediction
correlation maps for voltage features of the two decoding classes in the error decoding
of the POT paradigm are shown. Video frames shown below the maps were selected
according to the specific point in time of each map. The patterns of the correct and error
classes showed two times windows with high correlation, first around 3.1 s and then again
around 3.7 s (time relative to the onset of the video stimuli). In both instants the network
appears to learn a similar occipitally-pronounced EEG pattern. The comparison of maps
from both conditions expectedly shows opposite patterns. The occipital predominance
of correlation effects in these time windows would suggests that the participants’ brains
differentially processed visual aspects distinguishing correct and incorrect robot action as
presented in the stimuli. As a first step to investigate which visual features carried the
error-specific information, the L1 distance between temporally corresponding frames in
both conditions was calculated, as well as between the frame-wise change (black curves
in Fig. 4.4A and B). At least with these simple features, there was no obvious relation
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between the time course of changes in them and the time points where the EEG was
most informative for CNN error decoding. Analogous visualizations for error decoding in
the LOT experiment showed spatially more widespread effects (Fig. 4.4B). Temporally,
however, these effects had a remarkable sharp onset at approximately 4.6 s, around
the time when success versus failure became first evident, but long before the obvious
consequences of error versus success became visible (ball being lifted from the ground or
not). Again, there was no obvious time relation to the two low-level measures of image
similarity (Fig. 4.4B, bottom panel).

Figure 4.4: Time-resolved voltage feature input-perturbation network-prediction correlation maps.
A Error decoding in the POT, averaged over 30 iterations and all POT participants (top). Time-resolved
normalized L1 distance ∆norm between (1) video frames for both conditions (bottom, black) and of (2)
sequential pairs of video frames for both conditions (bottom, red). B Visualizations for LOT error decoding,
all conventions as in A.



4.5. RELATED WORK 79

4.5 Related Work
Essentially, the related work in this chapter is based on that of the previous Chap. 3. The
main focus lies on the detection of robot errors by reference to brain signals of human
observers. Assistive robotic solutions in health care and in non-medical applications
depend on a proper error detection and error management. In the last years, several
studies investigated decoding of robot errors from brain signals of a human observer
[176, 299, 360]. Error-related potentials recorded with EEG have been used, e.g., to
teach neuroprosthetics suitable behaviors in scenarios of varying complexity [176] or to
investigate their role for robot control during an object selection task [299].

Accuracies however leave space for improvements, which would be desirable to op-
timize the practical usefulness of error-related brain signals. The preceding chapter
confirms this lack of practical and daily life applicability, which encourages the need
to optimize decoding or to find better technical solutions to address the problem. In
image recognition, deep neural networks in particular have contributed to boosting per-
formances and enabling machine vision in real time. Several implementation could
demonstrate best classifications on, e.g., the NORB and CIFAR-10 dataset [77] or the
PASCAL VOC dataset [142]. Above all, Krizhevsky et al. were able to convince with their
groundbreaking success at the ImageNet 2012 clasification benchmark [202]. Especially
Convolutional Neural Networks have proven their potential. However, for this kind of
method the classification on human brain data is quite new territory and first experiments
transfer their qualities into this field [13, 73, 158, 288, 303].

4.6 Conclusion
The tricky issue of low decoding classification performances according to error detection
is addressed by applying deep learning to a naturalistic decoding task where participants
observed a robot performing different assistive actions either successfully or failing to
do so. In EEG research, architectures including deep CNNs have recently been used to
explore their applicability in brain-signal decoding [303, 328], but not yet to robot-error
decoding from EEG.

The findings of the present study can be seen from two sides: first, decoding the success
of robot action from brain signals is a problem with potential practical relevance and,
hence, has been investigated in a number of previous studies [176, 299, 360]. More
specifically, improving the decoding accuracy in this context is a topic with practical
relevance, particularly under complex, real-life-like conditions. Thus the video stimuli
was designed to mimic such conditions. Second, CNNs are still relatively new in EEG
decoding, and the findings from the present decoding problems also contribute some
new facts to the growing methodological literature on this topic. The results show that,
compared with 2 other widely-used classifiers, the deep CNNs performed consistently
better. The same CNN as applied here yielded mean accuracies of 93% for classification
of 4 different movements in [303] and 85% in discriminating normal and pathological
EEG in [302], and was in all cases at least as good or significantly better than the baseline
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comparison methods.
In the present study mean accuracies of (75± 9) % (POT) and (62± 7) % (LOT) for

error decoding were yielded. In a previous study, using a combination of rLDA and
reinforcement learning, decoding of actions that participants evaluated as either erroneous
or correct [176] resulted in a mean EEG decoding accuracy of 75%. For one of the
paradigms (POT) a similar mean accuracy was reached here. In some of the participants,
accuracies were above 90%, but overall still better accuracies are needed. Among other
recent advances in the field of deep learning research, automatic hyperparameter opti-
mization and architecture search, including recurrent and residual network architectures,
data augmentation, using 3D convolutions, or increasing the amount of training data all
have the potential to further increase CNN performance. CNNs were systematically better
but in their accuracies over participants linearly correlated with those of the rLDA, but
not with those of the FBCSP (Fig. 4.3). So in the present examples the CNNs behaved
”rLDA-like”. Interestingly, in a previous study where the same CNN architecture and
training strategy as here was used for movement decoding from EEG, accuracies over
participants were highly correlated with those of FBCSP [303], and it was shown that
CNNs indeed used frequency-specific spectral power changes (rLDA was not evaluated
there). This points to the possibility that CNNs might become more ”CSP-like” or more
”rLDA-like” (or even more similar to other decoding methods) depending on what features
are informative in the EEG signal.

The results as discussed so far indicated an important role of time-domain EEG sig-
nal changes for the decodability of errors in the tasks, thus for their visualization the
perturbation-based technique as described in [303] for spectral changes to time-domain
voltage features was adapted. Resulting maps confirmed that the CNNs learned to use
time-domain EEG responses to distinguish between classes. Maps also indicated that
specific time windows and scalp regions were informative, with different patterns in the
two tasks (Fig. 4.4). Particularly for errors in the pouring task (POT), perturbation maps
pointed to the occipital/visual areas as important sources of information learned by the
CNNs. This kind of decoding could be practically helpful in situations where robot errors
would be visually distinct, such as in the example of liquid spilling to a table. Further it
would be interesting to investigate in how far the decodability of such differential visual
input depends on its subjective interpretation as an error. Maps visualizing which EEG
signals CNNs learned to decode errors in the lifting task (LOT) showed a spatially more
widespread pattern, but also with a relatively sharp onset around the time when failure and
success became first evident from the stimuli (Fig. 4.4B). Speculatively, observation of
the reaching-grasping-lifting task might activate the human mirror neuron system (MNS)
[156, 239, 291, 292]. The human MNS involves widespread frontal and parietal regions
as involved in the maps in Fig. 4.4B. The engagement of the MNS might be modulated by
the degree of humanoid appearance of the robot. Thus as a next step, differences related
to the two robot types (more and less humanoid) used in the reaching-grasping-lifting
experiment could be analyzed.



Chapter 5

The Role of Robot Design in Decoding
Error-related Information

For utilization of robotic assistive devices in everyday life, means for detection
and processing of erroneous robot actions are a focal aspect in the development
of collaborative systems, especially when controlled via brain signals. Though,
the variety of possible scenarios and the diversity of used robotic systems pose a
challenge for error decoding from recordings of brain signals such as via EEG. For
example, it is unclear whether humanoid appearances of robotic assistants have an
influence on the performance. In this chapter, a paradigm, in which two different
robots executed the same task both in an erroneous and a correct manner, is used
to differentiate robot types. The error-related EEG signals of human observers
indicate that the performance of the error decoding is independent of robot design.
However, it can be shown that it was possible to identify which robot performed
the instructed task by means of the EEG signals. This chapter demonstrate that
deep convolutional neural networks (deep CNNs) could reach significantly higher
accuracies than both regularized Linear Discriminanat Analysis (rLDA) and
filter bank common spatial patterns (FBCSP) combined with rLDA. The findings
indicate that decoding information about robot action success from the EEG,
particularly when using deep neural networks, may be an applicable approach for
a broad range of robot designs.

The role of robot design in the decodability of error-related information has rarely been
investigated, although robots come in a broad range of different designs. Beside specifying
properties like mobility or autonomy, a robot can be classified regarding its grade of being
humanoid. For example, in scenarios in which humans and robots collaborate, this
characteristic may have an influence on the human’s perception of the robots behaviour.
In a comparison between a human and a robotic agent performing several movement
tasks, an activation of the human mirror neuron system (MNS) [292] could be shown
[131]. Already in Chap. 3 it was discussed how the observation of robots affects the
human MNS in general, and that it is not selectively activated on biological movements
and thus provides comparable signals for robot movements [252]. In fact, there was no
significant difference in mu-band suppression when observing human movements and
robot movements. Besides, [28] and [252] suggested that the MNS is involved in the
error-observation-related brain responses.
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The previous chapter showed that deep CNNs significantly improved the decoding of
robot errors from the EEG of a human observer. The methods are also used in this chapter
to make the distinction between robot types even more efficient, and are compared to
the results from rLDA and FBCSP+rLDA classification. Also, the question of whether
decoding errors depends on the design of the robot, and thus on the human perception, will
be clarified by means of the networks. In particular, the robot types in this chapter differ
in their general similarity to humans and therefore the number of human-like features.

5.1 System and Experimental Design
In this chapter, only recordings from the lifting observation task (LOT) were used, where
participants were instructed to observe two robots performing a naturalistic task either
in a correct or an erroneous manner. Details about system, experimental design and
participants can be found in Chap. 3, the timing structure of the experiments is depicted in
Fig. 3.2. However, this chapter concentrates on the differences in the brain recordings of
human observers according to the robot type, see Fig. 5.1, not the error-related information.
In the analyses, trials exhibiting erroneous action for both robot types were coupled for
decoding, as well as correct action for both robot types. In this way, it could be ensured
that no error-related information from the stimulus falsified the results.

Figure 5.1: Visual stimuli showing different robot types during lifting task. For both conditions, correct
and incorrect, there were stimuli with two different robot types. Both robots try to approach, grasp and lift
the ball, either managing or failing to lift a ball from the ground. Slide mount by pixelio.
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5.2 Pre-Processing, Classifier Design and Statistics

The recorded EEG signals were re-referenced to a common average reference (CAR) and
resampled to 250Hz. An electrode-wise exponential moving standardization was applied
to normalize the data by exponential moving means and variances. Then, according to
stimulus onset and predefined decoding intervals the data were cut into trials and used as
classification features. The design of the deep CNN was the same as used for classification
in Chap. 4 and is described in Subsec. 2.5.3 (see also Fig. 2.14). The data were split
into two sets, 80 % were used for training while the remaining 20 % served as a test set.
For the rLDA the pre-processing was similar except the fact that no standardization was
implemented, resulting in higher accuracies than with standardization. Exactly as in
Chap. 4, the rLDA algorithm comprised a shrinkage parameter estimation, based on the
LedoitWolf estimator [210], see Eq. (2.66). The results of the FBCSP algorithm were
calculated using the implementation of Chap. 3, but with a slightly improved cleaning,
and are described in Subsec. 2.5.2, see also Fig. 2.9 and Alg. 3. According to the results
in Chap. 3 the best performing frequency range < 20Hz contributed in decoding the
errors in the FBCSP implementation. Relative to the video onset, two decoding intervals
were selected. A long decoding interval of 0− 7 s covered the full length of the video,
while a late interval of 4 − 7 s was selected since it was covering the actual process of
grasping and lifting the ball. For both intervals decoding performances were calculated
using the CNN, the rLDA and the FBCSP+rLDA implementation.

For the decoding results on the level of participants, a permutation test was applied,
see Alg. 7, while group significances (e.g. differences between decoding methods)
were estimated by means of the single trials and using a sign test. For the correlation
coefficients, significance was tested by randomizing the order of one of the input vectors
of the correlation. Guesses that exhibited higher coefficients than the true correlation
coefficient were counted and contrasted to the total number of guesses. In this way, the
significance of the correlation could be estimated.

5.3 Decoding Errors of Different Robot Types

Firstly, the influence of robot design on the performance in an error-decoding scenario
was investigated. Therefore, the trials were sorted by robot type and the decoding analysis
of erroneous vs. correct trials was performed separately on the two data sets. In this
case, only the deep CNN implementation was used for error detection. Fig. 5.2 shows
the outcome of this analysis, showing the distribution of the accuracies for both robot
conditions for all participants. Even though the decoding of trials presenting the NoHu
robot executing the task showed a broader range, there was no significant difference
between the two conditions (sign test, p = 1). The CNNs achieved median accuracies
of (64.8 ± 6.8) % for the NAO condition and (64.0 ± 8.7) % for the NoHu condition,
yielding almost the same performance taking the errors into account.
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Figure 5.2: Robot-related error decoding. Accuracies for error decoding using only stimuli with one type
of robot each.

5.4 Distinction Between Robot Types
Three different decoding methods were used for classification, CNNs, rLDA and FBCSP+rLDA.
For each participant, decoding accuracies were determined for both decoding intervals
which were defined according to the video onset. An overview of mean decoding accura-
cies is given in Tab. 5.1. The results indicate that a distinction between the two kinds of
robots was decodable with all of the applied techniques. Furthermore, for both decoding
intervals the deep CNN architecture performed consistently and significantly better (sign
test, p < 0.01).

Table 5.1: Mean accuracies for different decoding intervals

0 - 7s 4 - 7s

CNN (78.3 ± 8.1) % (73.8 ± 7.5) %
rLDA (68.3 ± 8.0) % (64.7 ± 7.4) %

FBCSP (55.7 ± 4.5) % (56.8 ± 3.9) %

Fig. 5.3A shows the pairwise comparison of performances for the different classifiers,
including the results of the analysis gained with both of the decoding intervals. Signif-
icance is indicated by blue color while the red squares represent the mean accuracies,
the diagonal indicates equal performance. For each single participant, the decoding
accuracies gained by the deep CNN implementation significantly exceeded those of the
other methods, i.e., compared to rLDA and FBCSP, the CNN performed significantly
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better on the group level. Clearer as in the previous chapter for distinction of robot types,
the rLDA performances on the level of participants exceeded those of the FBCSP, except
for one participant, almost exclusively significant with p < 0.01.

Figure 5.3: Pairwise comparison of decoding performance and correlation of these. A Decoding
accuracies of CNN vs rLDA vs FBCSP for distinction between the two robots. B Pairwise linear regression
of the participants performances.

To gain a measure of the relationship between the decoding results of the different
decoding techniques, the pairwise linear correlation between decoding accuracies over
subjects was calculated. Again, the idea was to figure out whether the net behave more
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like an rLDA algorithm, learning the temporal features or rather basing the decision on
spectral features. Fig. 5.3B shows the correlation for all pairs; the dotted line represents
the result of the linear regression. The coefficient of determination R2 indicates a highly
significant linear relationship between deep CNN and rLDA performances, but also for
both of the other combinations a significant (p < 0.05) correlation can be found.

5.5 Visualization of Correlations Related to Robot Type
The visualization used in this chapter was applied as described in Subsec. 2.5.6, see also
Alg. 8, visualizing EEG features that the deep CNN learned from the data when used
to distinguish between the different robot designs. To this aim, the correlation between
changes of the predictions made by the CNN and perturbation changes in time domain
voltage amplitudes were calculated. By adding GAUSSIAN noise, training trials were
randomly perturbed. After that, the perturbed signal and the unperturbed signal were both
fed into the deep CNN. The two outputs were extracted before the softmax activation, and
their difference was correlated with the perturbation itself. The results are visualized in
a channel-resolved manner, see Fig. 5.4. The decision to use time domain signals as an
input for the perturbations instead of spectral amplitudes was made according to the fact
of lower decoding performances of the CSP algorithm, which relies on spectral features.
This circumstances suggest that spectral information was likely not that prominent in the
underlying decoding problem. The correlations shall indicate at which moment changes
in certain channels might contribute to the classifiers decision causally.

In Fig. 5.4 the (participant- and iteration-) averaged time-resolved input-perturbation
network-prediction correlation maps for voltage features of the robot type decoding are
shown. The maps are depicted from 2− 6 s, whereby each map illustrates the correlation
of a 0.2 s time bin. For each bin, the two maps (NAO and NoHu) are shown together
with their corresponding video frame. As expected, pairs of maps for the two different
conditions exhibit opposed correlations. Fig. 5.4 is divided into a section were the robots
approach the ball (top) and a section were the robots try to lift the ball (bottom). At the
bottom of each section, the time-resolved normalized L1 distance ∆norm of sequential
pairs of video frames for both conditions is illustrated.

The perturbation maps in Fig. 5.4 exhibit increasing, prominent correlation patterns for
signals around 3.2 s and 5.0 s according to video onset. At the first time point, the effects
show spatially more widespread correlations with a remarkable, centered peak in frontal
areas accompanied by an occipital symmetric effect. The later time window around 5.0 s
shows similar but less symmetric patterns in occipital regions, and a more pronounced
frontal peak. The occipital effects for both time points might indicate different cerebral
processing of the visual characteristics in the robots execution of the programmed task.

As a first step, to examine visual features which might have led to differences in brain
signals for the two robot conditions, the time-resolved normalized L1 distance ∆norm

was calculated. The corresponding curve in Fig. 5.4 indicates a rather small difference
between sequential frames and a steady difference between the two conditions, as the
curve varies only little but with consistently high values. Furthermore, with this method
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no obvious correlation between the time course of visual changes and informative features
extracted by the perturbation analysis can be suggested.

Figure 5.4: Time-resolved voltage feature input-perturbation network-prediction correlation maps.
Robot type decoding, averaged over participants and 30 iterations, and corresponding video frames (top
rows). Time-resolved normalized L1 distance of sequential pairs of video frames for both conditions
(bottom row).

5.6 Related Work
Error-related brain activity has the potential to support the management and implementa-
tion of BCI systems in various scenarios. Error detection systems have been embedded
to improve real life tasks, e.g., to detect and correct erroneous actions performed by an
assistive robot online, using primary and secondary error-related potentials (ErrPs) [299].
Other approaches benefit from ErrPs to extract incorrect maneuvers in a real-world driving
task [377] or use error-related negativity (ERN) to correct erroneous actions in object
moving tasks [261]. In addition, error-related brain signals have been utilized to teach



88
CHAPTER 5. THE ROLE OF ROBOT DESIGN IN DECODING ERROR-RELATED

INFORMATION

neuroprosthetics appropriate behaviour in situations with changing complexity [176]. The
previous chapter particularly addresses this topic in more detail.

In cooperation between humans and robots, the question of how the robot is perceived
by humans and how this affects the behaviour of a collaborator can play an important
role. However, there has been little research into this so far, especially with regard to
the distinction between humanoid and non-humanoid robots. Some studies have already
dealt with how robots are perceived by humans in terms of facial features. It was shown,
for example, that the appearance of certain features in the face of a robot, such as eyes,
nose and mouth, the dimensions of the robot’s head as well as the total number of facial
features, plays a major role in how human-like it is perceived [97]. According to these
results, the effect triggered by humanoid features can be generalized to the whole body.
In Chap. 3 the distinction between robot types has already been investigated by means of
the FBCSP algorithm. The results show that it is possible to decode the type of observed
robot from human surface EEG, and contribute to the understanding of how and whether
the appearance and/or behaviour of a robot affects the perception of the user.

In the last chapter it has been shown that deep CNNs significantly improved the
decoding of robot errors from the EEG of a human observer. However, the role of
robot design in the decodability of error-related information in this scenario has rarely
been investigated, although robots come in a broad range of different designs. Beside
specifying properties like mobility or autonomy, a robot can be classified regarding its
grade of being humanoid. Especially when collaborative interactions with humans take
place, this characteristic may have an influence on the human’s perception of the robots
behaviour. In a comparison between a human and a robotic agent performing several
movement tasks, an activation of the human mirror neuron system [292] could be shown
[131].

5.7 Conclusion
The potential of error detection for practical BCI applications has recently led to several
studies in EEG research, e.g. [176, 261, 299, 377]. However, aspects of robot design has
not been part of investigations on error-related brain signals so far. In this chapter, this
aspect was examined and it could be shown that at least the two different robot designs
used in the current study did not have any significant negative impact on the performance
of error decoding, indicating that in principle error decoding is applicable to various robot
types.

The distinction between robot types based on the participants brain-signals yielded
in mean accuracies of (78.3 ± 8.1) % for the CNN, (68.3 ± 8.0) % for the rLDA and
(55.7 ± 4.5) % for FBCSP implementation when decoding on the whole time-window
covered by the video stimulus. Hence, the robot type indeed could be classified on the
basis of the EEG data and certainly improved compared to Chap. 3. Moreover, the CNN
implementation could reach systematically better results than the two other methods.
Deep CNNs have already entered the field of EEG research and proven their applicability
[328], but not yet for distinction of robot types. Overall, the accuracies reached here are
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however still far from the requirements for practical application. E.g. intracranial signals
or further improved non-invasive methods will be necessary to reach better performance.

The pairwise comparison of the participants decoding results for the different methods
showed a significant linear correlation for all cases. Particularly the behaviour of CNN
und rLDA accuracies were apparent: the net appears to act more ”rLDA-like” for the given
problem, in line with the assumption that time-domain features were mainly informative.

For the visualization, the time-domain EEG signal changes were correlated with decod-
ing results determined after a GAUSSIAN perturbation. Based on the correlation maps as
shown in Fig. 5.4 it appears that the CNN learns time-domain information to distinguish
between classes, as specific time windows reveal more pronounced effects than others.
Thus, a prominent focus of the distribution of informative signals lies on occipital brain
regions. This might reflect the difference in the processing of the visual input for the two
robot types. Visualizations also show a distinct medio-frontal peak. This effect appeared
around the same time when the robot approached to the target and grasped it. It is possible
that in this cases the mirror neuron system might get activated [156, 239, 291, 292], which
involves widespread frontal and parietal regions. According to this, the different robot
types could have lead to a differential activation of this system.





Chapter 6

ELAS: a Toolbox for Assignment and
3-D Visualization

Intracranial electroencephalography (iEEG) plays an important role in pre-
neurosurgical epilepsy diagnostics and is increasingly used in neuroscientific
research. However, the individual position of the electrode contacts varies greatly
between patients, which makes group analyses particularly difficult and thus re-
stricts the interpretation of the iEEG results. In general, an assignment procedure
is required that enables the neuroanatomical information of the underlying brain
areas to be obtained for each individual electrode contact. Such a neuroanatomi-
cal atlas system is already successfully used for analysis of neuroimaging data,
it enables the probabilistic assignment of individual voxels in the MNI space to
cytoarchitectonically defined brain areas. But until now, it was unclear if and how
exactly this probabilistic atlas can be utilized in the growing field of iEEG studies.
This chapter presents the electrode assignment algorithm ELAS for iEEG electrode
contacts, implemented in a MATLAB-based open source interface, that allows
a hierarchical probabilistic assignment (HPA) of individual electrode contacts
to cytoarchitectonically-defined brain areas. Beside a cortical projection, the
here presented ELAS consists of two major steps: (I) a pre-assignment to the
cerebral lobes (frontal, parietal, occipital or temporal) based on the position of
the individual electrode contacts with respect to the anatomical landmarks and
(II) a following probabilistic assignment to cytoarchitectonically-defined brain
areas based on lobe-specific probability maps of the SPM Anatomy Toolbox. This
assignment procedure is so far the first approach that combines both individual
macro-anatomical and cytoarchitectonic probabilistic information, yielding in rel-
evant improvements to anatomical assignments in iEEG. To evaluate the method,
ECoG data obtained in 14 epilepsy patients with a total of 781 intracranial elec-
trode contacts from a wide range of cortical areas was analyzed. Assignment was
possible in 81.8 % of the electrode contacts and due to integration of information
of individual anatomical landmarks derived from the patients’ MRIs, the ELAS ap-
proach avoided incorrect assignments in approximately 8 % of electrode contacts.
The presented hierarchical probabilistic assignment is freely available in the open
source toolbox ELAS, including a 3D visualization of the assignment results and
an object wavefront OBJ file export for use in virtual reality setups.
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In Chap. 3, the problem of error detection based on human brain signals was already
examined in detail and it became apparent that the performances achieved there by far
do not provide what is desired for a successful human-robot cooperation. The question
was also discussed to what extent the design of the robot influences human perception
and whether the differentiation between different robot types is possible in principle.
Likewise the differentiation of robots could be done by the algorithm inserting the brain
signals of a human observer, but here, too, the accuracy was rather moderate. In the
following chapters, the problem of efficiency was addressed on the decoders side, in order
to significantly improve the performances by means of convolutional neural networks. In
both cases, this was successful and the network, which had been kept relatively general so
far, could be brought even closer to the problem by fine tuning in future.

In addition to the possibility of adjusting the decoder, an enhancement of the signal
quality can also contribute in improving the decoding. One possibility is to work with
data that originates from invasive recordings and therefore provides a much better signal
quality. Also, these types of data are not so burdened by artifacts and paradigms can often
be performed without restricting the participant’s mobility. In some circumstances, the
latter can lead to the participant becoming more involved in the task and thus the signals
are clearer defined, e.g. [343]. However, invasive measurements are not an option for
everyday, realistic scenarios and therefore do not fall within the scope of applicability.
Experiments with invasive methods can though identify general peculiarities of e.g. error-
related brain signals and the error processing can be better understood. In addition,
implanted electrodes can be used to make precise statements about which areas of the
brain are involved in the processing of error processes, when and how.

This chapter deals with the basic problem of assigning electrode contacts to specific
brain areas. Only through precise allocation the areas involved in processes can be isolated
and reliable answers to where, when and how can be provided. The new approach pre-
sented in this chapter uses a probabilistic but general model of assigning MNI (Montreal
Neurological Institute) coordinates to possible areas. This method extends the model for
use on individual brains on the basis of anatomical landmarks and, in addition, reverses
the displacement of ECoG electrode contacts due to deformation during the implantation
with respect to the standard maps by cortical projection.

The method presented is embedded in the user-friendly MATLAB-based toolbox ELAS1

(electrode assignment) and is intended to enable intuitive use, especially for users, for
example from the medical field, without any programming experience. The results can be
visualized directly within the interface in 3D together with individually selectable brain
areas on a semitransparent standard brain. An export for use in virtual reality is also
included in the software package. Localization of iEEG electrodes is already covered by
several approaches (e.g. BioImage Suite [260] or FieldTrip [255]) and can be individually
combined with the method. In that way, the toolbox ELAS provides a complete processing
from magnetic resonance imaging (MRI) data right up to the visualization of electrode
contacts and (assigned) anatomical areas.

1https://github.com/joosbehncke/elas
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6.1 Methods

First, the developed methods for the assignment of intracranial electrode contacts will
be presented and explained before the method is validated in the later sections. This
analysis was restricted to ECoG electrodes, without loss of generality. The general process
from imaging techniques like MRI to visualization in 3D or virtual reality is described in
Fig. 6.1, including all individual processing steps. The dotted area represents the essential
contribution of the ELAS interface, whereby other intermediate steps, such as image
processing in SPM, can also be processed directly and in parallel inside the toolbox.

Figure 6.1: Flowchart of the ELAS electrode assignment and visualization procedure. The normalized
pre- and post-implant MRIs serve as an input and basis for the electrode marking. The procedure can be
started at any intermediate step, assumed that the required intermediate results already exist. The ELAS
toolbox provides the possibility to label electrodes according to imported MNI (Montreal Neurological
Institute) coordinates. In a second step, the electrode contacts are assigned to cytoarchitectonically defined
brain areas. Finally, the results can be visualized, exported as a MATLAB file and/or transformed into
wavefront OBJ files for visualization in virtual reality.
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6.1.1 Patients and Implantations

The iEEG-adapted hierarchical probabilistic assignment (HPA) technique was evaluated
in a sample of 14 epilepsy patients who underwent ECoG electrode implantation for
presurgical evaluation (Tab. 6.1). All electrodes had a 4mm diameter, with an exposed
area of a 2.3mm diameter. For further information on the implanted subdural electrodes,
see Tab. 6.1. Written informed consent was obtained for all patients, stating that the
electrophysiological data might also be used for scientific purposes. For P1-P10, positions
of a total of 687 subdural grid electrode contacts over brain areas of the lateral convexity
were analyzed. For P2, as well as P11-P14, positions of a total of 94 subdural strip
electrode contacts overlapping with occipital brain areas were analyzed.

Table 6.1: Meta data for P1 to P14

Age Sex Subdural electrodes
Inter-
contact
distance

Contact
material

P1 40 m 64-contact grid L fronto-parietal 10 mm steel
P2 41 f 64-contact grid L fronto-lateral

1*4-contact interh. strip L parieto-
occipital

10 mm steel

P3 49 f 64-contact grid L fronto-parietal 10 mm steel
P4 15 f 64-contact grid R fronto-parietal 10 mm steel
P5 38 f 64-contact grid L fronto-parieto-temporal 10 mm steel
P6 41 f 64-contact grid L fronto-parieto-temporal 10 mm steel
P7 25 m 64-contact grid L frontal 10 mm steel
P8 45 f 112-contact grid L fronto-parieto-temporal 7.1 mm platinum
P9 27 m 64-contact grid L frontal 10 mm steel
P10 21 f 64-contact grid L fronto-parieto-temporal 10 mm steel
P11 14 f 2*6-contact strips occipito-polar

2*6-contact strips temporo-basal
10 mm steel

P12 33 m 1*6-contact interh. strips R parieto-occipital 10 mm steel
P13 28 f 1*4- & 1*6-contact interh. strips L parieto-

occipital
3*4- & 1*6-contact strips L occipito-basal
2*4-contact strips L occipito-polar

10 mm steel

P14 48 m 1*6- & 1*4-contact strips L occipito-basal
2*4-contact strips left occipito-polar
1*6-contact strip L temporo-basal

10 mm steel
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6.1.2 Normalization of the Post-operative MRI

A post-operative T1-weighted magnetization-prepared rapid-acquisition gradient-echo
(MPRAGE) data set was acquired for each patient 1-2 days after implantation in a
1.5T magnetic resonance imaging scanner (Vision, Siemens, Erlangen, Germany) with
an isotropic image resolution of 1mm, which was sufficient for identification of the
individual electrode contacts.

Previous studies applied a range of techniques for normalizing intracranial electrode
contacts to MNI space, such as based on MRI-CT coregistration [46, 105, 161] or utilizing
post-implantation MRI data [201, 370]. Here, post-implantation MR images, which
were normalized to the MNI space using combined affine and non-linear basis-function-
based normalization for modeling local distortion in SPM12, were also used. Spatial
normalization of patients’ data is a topic of research in itself [52, 91, 184, 308, 339],
but was not in the focus of this chapter. The normalization procedure was verified by
visual comparison of the normalized images with the MNI template and observed good
normalization accuracy in the post-operative MRI data analyzed in the present study (see
Fig. 6.2A).

After the visual inspection of the normalized post-operative MRI, error of normalization
was calculated in the following way: the normalized post-operative MRIs including
electrode contacts and the respective artifacts was compared to the normalized pre-
operative MRIs (without implanted electrodes) of the very same patients (Fig. 6.2B).
Since the normalization procedure in SPM12 is optimized for MRIs without artifacts, as
they occur in post-operative MRIs due to the implanted electrode contacts, the normalized
pre-operative MRI were used as a ground truth for the respective patient. Thus, differences
in the spatial location of individual voxels between the normalized pre- and post-operative
MRIs were assumed to be errors in normalization of the post-operative MRI. In the
following paragraph, it is described how the individual voxels of the post-operative MRI
that are assumed to be the counterpart of the respective voxel of the pre-operative MRI
were detected.

In a first step, for each reference voxel of the pre-operative MRI of a specific patient
a reference cuboid with 5 voxels edge length was defined, with the reference voxel in
the center of the cuboid (Fig. 6.2B left column). Then, the respective post-operative
MR image of the very same patient was used to extract the search cuboids, also with 5
voxels edge length, from the same position in MNI space as the reference cuboid, but
also shifted in 1-voxel steps up to 5 voxels in each spatial direction (Fig. 6.2B right
column). For each of the resulting 1331 (11× 11× 11) “search-cuboids”, the respective
vector of grey values (125 values; 5× 5× 5 voxels) was used to calculate the correlation
coefficient (SPEARMAN’s correlation) to the respective grey values of the reference cuboid
of the pre-operative MRI. The search cuboid with the highest correlation to the reference
cuboid gives a good estimate of the true MNI coordinates of the respective voxel in the
pre-operative MRI.

The maximum correlation values, i.e., the correlation values between the cuboids of
the pre-operative MRI and the best-fit cuboids of the post-operative MRI are shown
exemplarily for a section of the brain of Patient 14 (Fig. 6.2C). In this example, it can be
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Figure 6.2: Volumetric normalization of post-operative MRI data and analysis of the error in normal-
ization. A Horizontal slice of normalized MRI of P4 and of the T1 template used for normalization. Yellow
box encompasses the normalized brain and the T1 template at the same position, showing a good spatial
correspondence of the anterior/posterior as well as of the lateral extent of the brain in the normalized image
to the template image. B A sector (41× 41× 41 voxels) of the normalized pre-operative MRI and the same
sector, i.e., with the same MNI coordinates, of the normalized post-operative MRI is shown exemplarily
for P14. In the lower corner of the pre-operative MRI sector, one reference voxel (red) and the respective
reference cuboid (5× 5× 5 voxels) is shown exemplarily. In the same corner of the post-operative MRI
sector, the respective search voxel (green) and the search cuboid, which was shifted in one-voxel steps from
−5 to +5 voxels in each spatial direction, is shown. The search cuboid (of the post-operative MRI) with the
highest correlation to the reference cuboid (of the pe-operative MRI) was used to estimate the ground truth
with regard to the position of the respective search voxel. C Correlation values of the search cuboid with
the highest correlation to the reference cuboid are shown color-encoded for all voxels of the MRI sector. D
Standard deviation of the mean of all correlation values of each reference cuboid are shown color-encoded
for all voxels of the MRI sector. E 3D distance between the original position and the “true position” of all
voxels of the MRI sector is shown color-encoded. F 3D distance as in e), but voxels with a correlation value
smaller than 0.8 and/or a standard deviation smaller than 0.3 are masked

seen that high correlation values are present in regions of the brain with high contrast,
e.g., nearby sulci, while only low correlation values were observed within homogeneous
(in term of color) regions, e.g., within white matter. The standard deviation of the mean
of all 1331 correlations was calculated for each reference voxel (Fig. 6.2D) to investigate
the width of the respective distribution. Comparable to the maximum correlation 3D-map,
the 3D-map of the standard deviation shows higher values for regions of the brain with
high contrast while lower values were observed within homogeneous (in terms of color)
regions.

Then the distance between the reference cuboid and the search cuboid with the best
fit (highest correlation) was used to determine the 3D distance between the reference
voxel of the pre-operative MRI and the respective search voxel of the post-operative MRI
(see Fig. 6.2B; bottom right). The resulting 3D distances are shown color encoded for
the same section of the brain of Patient 14 (Fig. 6.2E). Since low maximum correlation
values (< 0.8) point to low similarities between the pre- and post-operative MRI and low
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standard deviation values point to small differences between all tested search cuboids to a
specific reference cuboid, resulting 3D distance of these best fits are debatable. Thus, also
the 3D distance 3D map were calculated where voxels with low maximum correlation
values (< 0.8) or low standard deviation values (< 0.3) were disregarded. For each patient
investigated, the averaged (median) correlation values, averaged standard deviation values
and the averaged 3D distance with and without masking unreliable values are shown in
Tab. 6.2. The MNI-normalized MRI data sets were used for localization of both the ECoG
electrodes and the central sulci (CS) and lateral sulci (LS), see below.

Table 6.2: Comparison of pre- and post-implantation MRIs

Average
maximal
correlation

Average std
of maximal
correlation

Average
distance
pre-post

Average distance
pre-post (corr>0.8
& std<0.3)

P1 0.823 0.327 3.000 2.450
P2 0.680 0.266 4.123 3.606
P3 0.790 0.312 3.606 2.828
P4 0.804 0.317 3.317 3.140
P5 0.781 0.311 4.123 3.317
P6 0.680 0.232 3.000 2.236
P7 0.822 0.322 3.740 3.162
P8 0.680 0.266 4.123 3.606
P9 0.806 0.323 3.162 2.450
P10 0.815 0.327 4.359 4.123
P11 0.692 0.270 5.385 5.196
P12 0.657 0.233 4.243 3.601
P13 0.790 0.310 3.742 3.606
P14 0.782 0.303 4.123 3.317

6.1.3 Localization in MRI Data Sets

The positions of the ECoG electrode contacts in the normalized post-implantation MRI
data sets were determined, which were further processed using custom programs im-
plemented in MATLAB. The centers of electrode artifacts were identified and marked
using views of horizontal, coronal, and sagittal MRI slices (Fig. 6.3A, B). This procedure
allowed obtaining MNI coordinates of all electrode contacts (Fig. 6.3E). The course of
the individual central and lateral sulcus was also determined in the same MRI data sets
(Fig. 6.3E, yellow dots). These sulci were used as anatomical landmarks that indicate the
borders between the frontal, parietal and temporal lobes in the first step of the hierarchical
probabilistic assignment (see below).
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Figure 6.3: Hierarchical probabilistic assignment. The cerebellum was removed to allow assignment
of occipito-basal electrodes (examples from P11). A and B: Horizontal and sagittal views of an electrode
void artifact in a post-implantation MRI. Yellow crosshairs: center of one void artifact. C Cortical projection
using orthogonal vectors (red) on the cortical hull. D Median-sagittal slice of the Colin standard brain (red)
with the cerebellum removed (grey). E Electrode positions (white stars) in MNI space and with respect to
the central sulcus visualized in yellow. F Operating principle of the HPA (BA: BRODMANN Area, all other
abbreviations as in the SPM Anatomy Toolbox v2.2c). According to anatomical landmarks derived from
the individual post-implantation MRI, the electrodes are assigned to lobes or lobar poolings. According to
the performed assignment, exclusive MPMs are generated that are subsequently used for the probabilistic
assignment.

6.1.4 Assignment Procedures
The iEEG electrode assignment method presented here is a modified version of the
probabilistic assignment (PA) method of SPM for iEEG. In contrast to this standard
PA the hierarchical method uses anatomical landmarks, which are higher in the assign-
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ment hierarchy than the probabilistic maps and is therefore a hierarchical probabilistic
assignment. Note that whenever PA or standard PA is mentioned, this includes both the
standard assignment method according to SPM Anatomy Toolbox but including preceding
cortical projection, which is a specially developed method here, see below. This is done
to investigate the influence of the addition of hierarchy to the method. Fig. 6.3 gives an
overview of the main steps of the electrode assignment procedure ELAS that is presented
in this chapter. The decisive steps of this method are explained in detail in the following
section:

Step 1, individual pre-assignment: Since the anatomical landmarks central sulcus
(CS) and lateral sulcus (LS) are definite boundaries for the adjacent anatomical areas,
the here presented assignment method ELAS was designed with the aim of using the
information on the exact individual course of the lateral sulcus and the central sulcus hier-
archically first. Both sulci are derived from the individual normalized post-implantation
MRI data (Fig. 6.3E) and enable the lobar allocation of the electrode contacts according
its position relative to the individual CS and LS (Fig. 6.3F), whereby for regions posterior
to the LS the horizontal ramus is used as a landmark [242].

According to this lobar pre-assignment, specifically composed individual probability
maps (IPMs) are then used to complete the hierarchically organized probabilistic assign-
ment. In Fig. 6.4 an IPM is shown exemplary for two areas: Area 1 (Fig. 6.4A) and
area IPC (Fig. 6.4B) are used to calculate an IPM (Fig. 6.4C) that contains both areas.
These IPMs contain only the areas of the brain that come into question for the respective
lobe. An IPM based on a combination of parietal, temporal and occipital areas is used
if electrode contacts are located posterior to the posterior end of the horizontal ramus.
All areas without contact to the outer cortical surface are also excluded when subdural
implanted ECoG electrode contacts should be assigned.

Electrode contacts positioned directly on the CS or the LS likely cover several distinct
areas located in both banks of these sulci, e.g., Area 4 and Area 3a in case of the CS
[378], but can still be assigned to the most probable area. For each electrode contact the
probabilities of all areas in question are still available and thus, allow the probability for
each individual electrode contact to be estimated for each area in question.

Step 2, cortical projection: ECoG electrodes are implanted in the subdural space
directly on the cortical surface, while the probabilistic anatomical information refers to the
brain itself. To take this into account, positions of the electrode contacts are projected onto
the cortical surface, which will be described hereafter. Generally, the mesh shrinkwrap.m
MATLAB function [357] was used to generate a smooth cortical hull. The cerebellum was
removed before generation of the hull, as ECoG strips could also be implanted on the
posterior basal surface of the brain, between the cortex and the cerebellum (Fig. 6.3D).
The average side length of triangles of the final hull is 0.726mm. On this surface, a
patch with a 5mm radius around each electrode position is determined. This radius is
chosen due to the expected error associated with electrode localization after implantation,
which lies in the range of 5mm [238, 273, 370]. This 5mm fits also very well with
the results regarding the differences in the spatial location between the normalized pre-
and post-operative MRIs (see Tab. 6.2). Vectors orthogonal to the surface of the hull are
determined at all hull vertices within the 5mm-radius patch (∼ 103 vertices, Fig. 6.3C).
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Figure 6.4: Probabilistic cytoarchitectonic assignment of ECoG electrodes. A Cytoarchitectonic
probability map of Area 1 visualized on a standard brain. Probability of each individual voxel to be located
in Area 1 is color-coded. B Cytoarchitectonic probability map of the parietal area IPC (PF); conventions as
in (A). C The resulting map, derived from the probability information presented under (A) and (B), shows
at which positions these areas are more likely > 50 %than other areas. Orange: Area 1; blue: IPC (PF). The
cyan box indicates the region magnified in the following panel D. D To assign ECoG electrode contacts
using the IPMs, a method is described based on surface orthogonals (red) of a smoothed 3D cortical hull
(black) fitted through the ECoG electrode positions (yellow). This allows the definition of cortical voxels
beneath the individual electrode contacts (magenta) and assignment of electrodes to the most likely brain
areas according to the IPMs.

The intersections of these orthogonal vectors with the cortical surface are used to assign
electrode contacts to the outer brain surface of the lateral convexity (Fig. 6.4D). However,
search along the surface normal is restricted to a maximal depth of 10mm, as the hull
surface was within this distance in all patients investigated.

6.1.5 Application Examples

High-Gamma Mapping

For a detailed description of the time-frequency analysis methods used for topographic
high-gamma mapping (Fig. 6.6D-F), see [296]). Summarized, time-resolved spectral
magnitude was calculated using a multitaper method [266]. Trial-averaged magnitude
changes in the gamma frequency range (60 − 400Hz for P3; 60 − 128Hz for P1;
dependent on respective sampling rate) were computed for a time window comprising the
first 500ms after the start of a movement or speech production. Spectra were calculated
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relative to the baseline activity of the first 200ms in the pre-event period, i.e., 1 s or 2 s
before the onset of speech production or movement, respectively. Saccade-related spectral
magnitude changes (Fig. 6.9) were calculated using the same multitaper method with a
100ms sliding window, 20ms time steps and 5 SLEPIAN tapers. Spectra were calculated
relative to baseline activity between 250 and 50ms before saccade onset.

Electrical Stimulation Mapping

In one patient (P2), the hierarchically organized probabilistic electrode assignments are
compared to location and extent of functional areas as identified during electrical stimu-
lation mapping (ESM). Data of one patient was used in order to exemplify the potential
use of individual macro-anatomical information and probabilistic cytoarchitectonic infor-
mation to investigate cortical reorganization. ESM was performed in a clinical context
in order to delineate eloquent cortices prior to resection of epileptogenic foci. The ESM
procedure is described in [296].

6.2 ELAS Toolbox
The ELAS toolbox is an open source graphical user interface (GUI) developed in MATLAB
and comprises the methodology utilized and described in this chapter. ELAS is built on
SPM12 (Statistical Parametric Mapping, October 2014) and the SPM Anatomy Toolbox,
with SPM being initialized parallel to the toolbox directly after its function call. The
installation of SPM and SPM Anatomy Toolbox is required for the functionality of the
ELAS algorithm. If needed, the SPM Anatomy Toolbox can be started separately inside
the GUI and utilized simultaneously. The ELAS toolbox is compatible with any version
of the SPM Anatomy Toolbox, including possible future updates.

The main emphasis of the open source package ELAS lies on the hierarchical prob-
abilistic assignment of iEEG electrodes, especially subdural ECoG electrodes, to the
underlying brain areas in MNI (Montreal Neurological Institute) space as well as their
visualization. The ELAS toolbox provides the export of a header file in MATLAB format,
containing all information about the individual electrode contacts and their neuroanatom-
ical assignment. Furthermore, ELAS enables a three-dimensional visualization of the
electrodes and relevant brain areas, mapped on the ICBM152 standard brain [228], as
well as an individual export of all mentioned objects as a wavefront OBJ file for the use
in virtual reality. The interface is designed for an intuitive use by providing online help
for each step of the assignment procedure. Beginning with the normalization of pre- and
post-implant MRI, the workflow of the entire procedure is depicted in Fig. 6.1.

The process can be started at each individual step of the workflow, if the intermediate
results of the prior step are available. SPM is used for co-registration, normalization
and segmentation of the images, which serve as a basis for the marking of the individual
electrode contacts and sulci. After importing the MNI coordinates into ELAS, the toolbox
provides an interface to label the electrode contacts and to perform a lobar pre-assignment
(see Fig. 6.1 and Fig. 6.5A). Latter information is used for the (hierarchical) probabilis-
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tic assignment according to the cytoarchitectonically defined brain areas from the SPM
Anatomy Toolbox. For the assignment of ECoG electrodes, the novel hierarchical proba-
bilistic algorithm is utilized, whereas for SEEG electrodes the conventional probabilistic
algorithm without projection is applied.

Figure 6.5: Visualization in ELAS. A Interface for labeling of intracranial electrodes. B The standard
brain, the cytoarchitectonically defined brain areas, and the electrode contacts can be visualized in 3D.

Basically, the MNI coordinates of the electrode contacts and the marked anatomical
landmarks are needed for the first step of the computation. They are used to perform the
lobar pre-assignment, that ensures an area assignment based on the brain’s individual
characteristics. The matrix of MNI coordinates C and the lobar pre-assignment are
then utilized to feed the HPA algorithm, shown in Alg. 9. After the cortical projection
of an electrode contact, surface normals of all hull vertices, lying within a distance
d < dmax = 5mm to the cortical projection, are calculated. Then, the most probable
areas are determined according to areas in the closest vicinity of the surface normals
and according to the individually computed probability maps IPMs. The IPMs contain
coordinate wise possible areas and the according probabilities. For each electrode contact
i the algorithm outputs the probable areas Ai that might be recorded by the electrode
contact as well as the according probabilities pi.

The visualization makes use of the ICBM152 standard brain and enables a display of
preselected areas jointly with different electrode groups. The preselection of areas can
be limited to either all most probable areas of a patient, all cortical areas or the entire set
of areas provided by the SPM Anatomy Toolbox. Inside the three-dimensional, rotatable
display, each of the preselected areas and electrode groups can be turned on and off
interactively (see Fig. 6.5B). In the visualization mode, the shown electrode contacts are
based on the real MNI coordinates, not on the projected ones. Furthermore, the brain
template as well as the brain areas and the electrode contacts can be individually exported
as a wavefront OBJ file and used in virtual reality setups. The exported objects then rely
on the (smoothed) surface extraction of each selected object.
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Algorithm 9 hierarchical probabilistic assignment algorithm
Require: electrode contact coordinates C, lobar pre-assignment of Ci, cortical vertices

F, maximal distance dmax
1: for all electrode contacts do
2: request lobar pre-assignment for contact i
3: M← compute individual probability map (IPM)
4: V0 ← vertex Fm closest to coordinate Ci

5: V← all vertices Vn ∈ F | d(Vn,V0) < dmax
6: for all vertices Vj do
7: n← compute surface normal on cortical hull towards center of brain
8: if n hits any area inM then
9: Wj ← coordinate of area strike closest to Vj

10: end if
11: end for
12: W← vector of area coordinates
13: for all Wk ∈W do
14: Bk ← area names of Wk according toM
15: Qk ← probabilities of coordinate Wk to lay in areas Bk
16: end for
17: Ai ← vector of unique areas in B for electrode contact i
18: pi ← probabilities of unique areas, mean of Q over all Wk

19: end for
20: return A,p

6.3 Assignment of ECoG Electrodes I

In this section, the results are described concerning the assignment of ECoG electrodes
to some of the major areas of interest in ECoG studies on the outer surface of the
frontal, parietal, temporal and occipital lobes. In the following section, as an application
examples it is shown how probabilistic assignments can improve the interpretation of
ECoG responses during hand movements, speech production and saccadic eye movements.
Finally, results of a case study on cortical reorganization are presented as a further
application example of probabilistic analysis of electrode locations.

In the large majority of cases (> 80 % of all 687 grid electrode positions on the lateral
convexity), the hierarchical probabilistic assignment to a brain area on the outer surface
of the frontal, parietal, and temporal lobes was possible. The remaining approximately
20 % of electrodes were either in regions not yet included in the probabilistic atlas (ap-
proximately 12 %) or directly above the CS or the LS (approximately 8 %), hence making
their assignment to one particular area problematic. Thus, although current probabilistic
maps are not yet available for the entire cortex, a hierarchically organized probabilistic
assignment is suitable to provide a neuroanatomical framework for the interpretation of
ECoG responses. Especially electrode contacts located over the sensorimotor areas of the
lateral convexity can already be successfully assigned with the approach (Fig. 6.6).
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Figure 6.6: Standard PA (A) and hierarchical PA (B) results for a 64-contact ECoG grid (P3). Black
dots: electrode contacts; black lines: borders between areas; blue: frontal areas; yellow: parietal areas; red:
temporal areas; grey: areas not covered by the currently-available probability maps. TC: temporal cortex;
all remaining abbreviations as in the SPM Anatomy Toolbox v1.8. Grey and olive lines: central sulcus (CS)
and lateral sulcus (LS) derived from individual post-implantation MRI data and used in the hierarchical PA
of ELAS (B). C High-gamma (60− 400Hz) brain responses during speech production of P3. Black dots:
significant responses (see [296] for further details). Grey and olive lines: CS and LS derived from individual
structural MRI as in B; purple line: fronto-parietal border resulting from standard PA (i.e., only using
probabilistic atlas information but not the individual course of the CS and LS). Cyan star: electrode with
significant response located pre-central in the individual MRI, but post-central according to the standard PA.
White squares: electrodes with significant response located on the CS in the individual MRI, but pre- or
post-central according to the standard PA. D as (C) for contralateral arm movements (data as in [296]). The
individual MRI (insert) clearly shows a postcentral position of the electrode marked by the white star in the
activity map, in conflict to a precentral assignment according to the standard PA.

The influence of anatomical information in the form of the major sulci CS and LS was
investigated, obtained from individual post-implantation MRI data, on the accuracy of the
anatomical mapping. To this end, the hierarchically organized probabilistic assignment
with ELAS was performed where the course of the CS and LS to pre-assign electrode
contacts to the frontal, parietal, or temporal lobes was used and the results were compared
to the ones of the standard probabilistic assignment (PA) procedure from SPM. For
instance, an electrode contact was wrongly assigned to the postcentral region with the
standard probabilistic assignment (Fig. 6.6A), but was clearly located precentral and
consequently assigned to the precentral region Area 6 by using the ELAS approach
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(Fig. 6.6B). At this electrode contact, speech production-related gamma band responses
were recorded (Fig. 6.6C). Similar examples for arm movements are shown in Fig. 6.6D,
respectively. In the latter case, two electrode contacts located in the frontal lobe were
wrongly assigned to the parietal cortex with standard PA. The post-implantation MRI of
this patient clearly showed that these electrodes were positioned on the precentral hand
knob, which indicates the hand motor cortex [325] and consequently they were correctly
assigned to the motor cortex with the ELAS method.

In Fig. 6.7 the results of a systematic analysis of the impact of the inclusion of individual
macro-anatomical landmarks of the ELAS approach on lobe assignments for all 687
electrode contacts on the outer surface of the frontal, parietal, and temporal lobes are
shown. Compared to standard PA, with the ELAS method more electrode contacts were
assigned to the frontal lobe, while fewer electrodes were assigned to the parietal lobe
(Fig. 6.7A). Approximately 10 % of electrodes differed in their lobe assignment when
using the ELAS method instead of standard PA. These results indicate that inclusion
of individual anatomical information is important for the correct lobe assignment of a
substantial portion of ECoG electrode contacts. Fig. 6.7B illustrates the direction of
changes in lobe assignments when using ELAS instead of standard PA. Such changes
most frequently happened between the frontal and parietal lobes, followed by changes
between parietal and temporal lobes, while only a few electrodes changed assignments
from frontal to temporal lobes and vice versa.

Figure 6.7: Impact of hierarchy. A Impact of of the inclusion of individual macro-anatomical landmarks
of the ELAS approach on lobe assignment. Using standard PA, some contacts are not assigned to any lobe,
as the probabilistic atlas (cf. [107]) is not yet complete. With the ELAS approach, all contacts could be
assigned to a lobe based on the position of the CS and LS in the individual MRIs, except for those located
directly on the CS or LS. B Direction of lobe assignment changes between lobes for both assignment
methods are shown.

Results so far indicate that the presented hierarchically organized probabilistic assign-
ment ELAS can be applied to typical ECoG grids above the sensorimotor cortex and may
provide useful information for the interpretation of brain responses in this region. The
electrode assignment approach for iEEG differs to the standard probabilistic assignment
method for functional imaging data in two decisive steps: first, the inclusion of individual
anatomical information and second, a projection onto the cortical surface as ECoG elec-
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trodes are implanted outside the brain directly on the surface of the cortex. The impact of
these two additional components on the anatomical assignment of iEEG electrode contacts
was analyzed (Fig. 6.8). To this end, the results of the ELAS method were compared to
the results of standard PA method and with a direct probabilistic assignment (dPA), that
corresponds to the standard PA method without using the cortical projection.

Figure 6.8: Results of HPA, PA and dPA of 687 grid electrodes. Abbreviations for areas as in the SPM
Anatomy Toolbox.

Differences between ELAS and standard PA were particularly evident close to the CS
and LS, such as in area 1, area 6, IPC (PF), OP1 and OP4. In all of these areas, the total
number of electrode assignments was higher for standard PA compared to ELAS, owing
to the fact that with ELAS a total of 37 and 19 electrode contacts were lying directly
on the CS and LS, respectively. A large percentage of electrode contacts (51.4 %) was
not assigned to any cortical area when using the dPA method (compared to 18.2 % using
ELAS and 17.6 % using standard PA), due to the fact that they were located outside of
the brain. This example demonstrates that the cortical projection is a crucial step in the
application of probabilistic assignments to ECoG data.

6.4 Normalization of Post-operative MRI

To validate the accuracy of the normalization to MNI space of the post-operative MRIs
(with electrode artifacts), the spatial difference was compared to the corresponding images
of normalized pre-operative MRIs (without implanted electrodes), see Fig. 6.2B. The
normalization tools from SPM12 are best suited for the normalization of MRIs without
implanted electrodes, thus the mismatch between these two kinds of normalized MRIs is
defined as inaccuracy of the normalization of post-operative MRIs. Since the coordinates
of the electrode contacts are taken from the post-operative MRIs, the inaccuracy of the
normalized post-operative MRI is consequently also a localization error of the electrode
contacts.
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The averaged (median) correlation values, standard deviation values and 3D distance
with and without masking unreliable values (corrcoeff< 0.8; std< 0.3) are shown in
Table 6.2. The average 3D-distance between pre- and post-operative MRI is between 3
and 5mm (mean over patients: ≈ 3.9) and lower (≈ 3.3) when unreliable values were
disregarded. It should be noted that the highest localization errors were observed in the
direction perpendicular to the cortex surface, which should be automatically leveled out
by the cortical projection of the electrode contacts.

6.5 Assignment of ECoG Electrodes II
So far, the assignment of ECoG electrodes on the outer surface of the frontal, parietal,
and temporal lobes was described. Recordings in these regions have been utilized in
a large number of previous ECoG studies, such as on motor and sensory processing
[84, 85, 187, 214, 296, 340]. Recordings from occipital regions, however, have also been
utilized in previous ECoG studies, particularly on visual processing in occipital brain
areas [149, 206, 230, 241]. Probability maps of early visual areas are also available in
the SPM Anatomy Toolbox, which makes the electrode assignment approach of electrode
contacts to these visual areas an interesting tool for ECoG research related to visual
processing. The HPA method was used in five patients with implanted strip electrodes
over the occipital cortex. In Fig. 6.9 the results of the HPA method on two electrode strips
of P11 is shown with electrode contacts assigned to the early visual areas V1-V4.

Figure 6.9: Assignment of an occipital subdural strip electrode to visual areas and time-frequency
spectra of saccade-related brain activity (P11). A Surface extent of MPMs of areas 17, 18, hoC3v (V3)
and hoC4v (V4) are shown on a standard brain surface. Electrode positions of two occipital subdural
strips are marked as dots in the same color as the corresponding probabilistically-defined areas. White
dots show electrode positions not assigned to any area. B Same as (A) but for two occipito-basal electrode
strips. The viewing angle used in (A) and (B) is illustrated in the insert (bottom). Middle panels: Average
time-frequency spectra of brain activity recorded at electrodes illustrated in (A) and (B) during saccades.
Relative magnitudes were averaged over all recordings of electrode contacts located in the respective area.
Using the probabilistic method HPA, saccade-related responses are shown for each of the areas V1-V3.
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Saccade-related brain responses were used to show the usefulness of these probabilistic
assignments. The saccade-related activity pattern averaged over electrodes of each
visual area (V1-V3) consisted of an onset-related magnitude decrease in high-gamma
frequencies, followed by an increase in magnitude (also see [340]). The comparison
between visual areas enabled by the probabilistic assignment of individual electrode
contacts revealed differential regional patterns, e.g., while the high-gamma decrease at
saccade onset was most pronounced in area V3, the subsequent increase in magnitude
was most prominent in V2.

6.6 Investigating Cortical Reorganization

Both conventional non-probabilistic and probabilistic brain atlases refer to the anatomy
of the healthy brain, while ECoG is recorded from patients, mostly in the context of the
pre-surgical evaluation of epilepsy. This fact must be considered in the interpretation
of the resulting assignments (see Conclusion), as epilepsy can lead to reorganization of
functional brain areas [2, 76, 203, 322]. Fig. 6.10 exemplifies for P2 how comparison
between electrical stimulation mapping (ESM) results and the HPA method can be used
to analyze potential consequences of such cortical reorganization. Here, an unusually
large upper-extremity motor representation was revealed by the ESM. By comparing these
ESM findings with the HPA results, it became evident that the ESM-defined motor area
clearly extended into the prefrontal cortex, possibly due to reorganization induced by a
focal cortical dysplasia in the superior premotor area (shaded area in Fig. 6.10).

Figure 6.10: Functional brain regions revealed by ESM and electrode assignments to cytoarchitectonic
areas using HPA (P2). For convenience, some areas are labeled with abbreviations (7A: SPL(7A), 7PC:
SPL(7PC), PGa: IPC(PGa), BA 2: Area 2 and PFop: IPC(PFop)). Hand and leg symbols indicate
ESM effects. Frontal areas are illustrated in red, parietal areas in blue and the temporal areas in green;
abbreviations as in Fig. 6.8. HPA assignment clearly showed that sensorimotor responses extended into
the prefrontal cortex, possibly due to reorganization induced by a focal cortical dysplasia in the superior
premotor region (shaded area).
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6.7 Related Work

Intracranial electroencephalography (iEEG) including Electrocorticography (ECoG) and
stereo EEG (SEEG) plays an increasingly important role for exploration of human brain
function. ECoG provides detailed information about cortical activity with good spatial
and very high temporal resolution [109]. Such data have been used to study cortical
function with respect to motor [47, 84, 233, 296], visual [121, 204, 227], language
[53, 72, 95, 213, 314, 336], auditory [59, 85] and also viscerosensory [187] processing.
Of late, such data are analyzed in the context of social cognitive neuroscience, and they
also provide a potential control signal for brain-machine interfaces [20, 215, 274, 301].
Many current iEEG studies use atlas-based neuroanatomical assignment to interpret the
position of electrode contacts. Atlas-based neuroanatomical assignments are used to map
the individual electrode contacts onto cortical areas that are associated with specific tasks,
such as primary motor cortex, premotor cortex, auditory cortex, BROCA’s area, etc., and
thus to establish a neuroanatomical context of the iEEG results.

Several methods have been recently proposed for atlas-based neuroanatomical localiza-
tion and conventional assignment of iEEG electrodes [46, 88, 148, 155, 161, 233, 370].
They combine structural imaging data (X-rays, intraoperative photography, pre- and/or
post-implantation magnetic resonance imaging (MRI), computed tomography (CT)) and
standard brain atlases, such as the TALAIRACH atlas [327]. Other studies have reported on
techniques to visualize iEEG electrodes relative to the individual cortical anatomy derived
from pre- or post-implantation imaging data [51, 105, 150, 201, 223, 238, 273, 307, 324,
361]. However, a shortcoming of standard brain atlases, such as the TALAIRACH atlas,
is that they do not provide information on the variability in the position and extent of
cytoarchitectonically-defined brain areas between individuals [11]. This shortcoming
cannot be resolved by techniques that visualize iEEG electrodes relative to the individual
cortical anatomy, as the position and extent of cytoarchitectonically-defined brain areas
varies relative to the available macroscopic cortical landmarks within the cortical lobes
[9, 10, 378].

A probabilistic neuroanatomical atlas system has been developed to address these
issues [107]. This system has already been highly successful in the area of functional
neuroimaging, particularly in assigning functional MRI (fMRI) peak coordinates to
cytoarchitectonically-defined brain areas. It relies on the histological processing and the
resulting microanatomical definition of cortical areas in 10 human post-mortem brains.
Up to the present day, this analysis has been completed for a large set of brain regions
(Fig. 6.3), including the primary motor cortex [138], somatosensory areas 3a, 3b, 2, and 1
[139, 140, 147], BROCA’s region [10, 12], the auditory cortex [237, 282], the premotor
cortex [137], the parietal operculum [106] and visual areas [11, 225, 295]. Such cytoarchi-
tectonic maps of individual areas can be combined in a maximum probability map (MPM),
a non-overlapping representation of probabilistically- defined areas (Fig. 6.4C)[108].
Probabilistic maps and MPMs are freely available in the SPM Anatomy Toolbox [107].
Despite the success of these methods in the field of functional neuroimaging, it is currently
unclear how they can be utilized in the growing field of iEEG studies.
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6.8 Conclusion

This chapter introduces the novel open source MATLAB toolbox ELAS for assignment
of intracranial electrodes, making use of cytoarchitectonically-defined brain areas as
well as individual macro-anatomical landmarks. The included visualization tool allows
for flexibly generating 3D displays of electrode contacts with respect to the relevant
neuroanatomy. It is described how probabilistic neuroanatomical assignment procedures
that were previously developed for analysis of neuroimaging data can be adapted to iEEG.
The results show that the iEEG-adapted probabilistic assignment can be successfully
used with recordings from a wide range of cortical areas in the frontal, temporal, parietal,
and occipital lobe. More than 80 % of the several hundred individual electrode positions
analyzed on the lateral cerebral convexity could be probabilistically assigned to the re-
spective underlying brain area. Probabilistic neuroanatomical assignment has several
advantages over conventional, non-probabilistic methods: First, it allows assignment to
cytoarchitectonically-defined brain areas that are not reliably delineated by macroanatom-
ical landmarks of the cortex [9, 10, 378]. Second, it takes into account the inter-individual
variability of position and extent of these areas [107]. Thus, the advantages of probabilistic
assignment as previously used in neuroimaging studies are adapted for iEEG research.
Still, not all electrode contacts were successfully assigned with PA and HPA to cytoar-
chitectonically defined brain areas for the following reasons: First, electrode contacts
positioned directly above the CS or the LS (e.g., see Fig. 6.6) were not probabilistically
assigned, as in these cases electrode contacts are expected to record brain signals from
both banks of the sulci. However, the probabilisitc information is still available, taking
areas from both banks of the sulci into account. Second, not the whole lateral convexity
is mapped in the currently available probabilistic atlas system (e.g., see Fig. 6.3F and
Fig. 6.8). New areas, however, are constantly added to the atlas and thus, the number of
unassigned electrode contacts will gradually decrease over time.

The question of how structural information derived from individual post-implantation
MRI data could be combined with the probabilistic information was investigated and
whether this approach further improved the reliability of the outcomes. To combine indi-
vidual structural and general probabilistic information, a hierarchical procedure has been
designed, where in the first step, electrode contacts were pre-assigned to cerebral lobes
based on their position relative to the LS and CS in the respective post-operative MRIs
and in the second step, probabilistic information was used for within-lobe assignments
(cf. Fig. 6.4, Fig. 6.3). The CS is the borders between the frontal and parietal lobe,
the LS the border between the fronto-parietal lobes and the temporal lobe, respectively
[87, 366, 378]. Importantly, both the position of electrode contacts and the position of
the LS and CS were determined in the same MRI data set. Thus, the effects of normal-
ization inaccuracies could be avoided since the electrode positions relative to the sulci
obtained in this manner are generally considered as ground truth. HPA avoided wrong
lobar assignments in approximately 10 %, compared to standard PA (Fig. 6.6, Fig. 6.7)
and also affected the assignments to individual cortical areas in the vicinity of the LS and
CS (Fig. 6.8), reflecting the well-known high inter-individual variability of major sulci
[378]. It can be concluded that inclusion of individual structural information is feasible
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and further improves the neuroanatomical assignment in iEEG.
A general limitation of atlas-based localization of iEEG electrode contacts is that the

available atlases represent the healthy brain, while iEEG is measured in neurological
patients, mostly in epilepsy patients. Epilepsy may be secondary to a brain tumor or a
focal cortical dysplasia (FCD, [38, 58, 116, 117, 118, 294]) with pronounced pathological
changes of cortical anatomy. Therefore, it is important to keep in mind that atlas-based
localization, both conventional and probabilistic ones, can only provide information about
the brain structures that can be expected at a given location in standard anatomical space in
the healthy brain. It is noteworthy, however, that this limitation does not apply to the lobar
assignments in HPA as described in the present study, since here the individual patient’s
MRI brain morphology is used. It is also noteworthy that application of a neuroanatomical
framework, derived from the healthy brain, to iEEG data from epilepsy patients is not nec-
essarily just a limiting factor, but also opens up possibilities to investigate reorganization
of cortical function (Fig. 6.10). Both lesional and non-lesional epilepsy can lead to reor-
ganization of functional areas [2, 76, 203, 322]. Lesion-related reorganization has been
investigated previously, combining anatomical and functional MRI with cytoarchitectonic
probabilistic maps [321]. Along the same lines, here findings of the electrical stimulation
mapping (ESM) in a patient with an unusually large ESM-defined motor area are shown,
similar to previous reports [203, 226, 322, 340]. A combination of ESM findings and HPA
showed that ESM motor responses were with a high probability located in the prefrontal
cortex (and a low probability of being located in the premotor cortex; Fig. 6.10).

Atlas-based localization requires normalization to the atlas space [290], in this case
the MNI space. Previous studies applied a range of techniques for normalizing iEEG
electrodes to MNI space, such as based on MRI-CT coregistration [105, 161] or utilizing
post-implantation MRI data [201, 370] as in the present study. Spatial normalization of
patients’ post-operative MRI is a topic of research in itself [52, 91, 184, 308, 339] but it
was not in the focus of the present study. However, by using the normalized pre-operative
MRI as ground truth spatial localization errors of the electrode contacts from the post-
operative MRIs between 2 and 5mm were observed, which is in line with results from
previous related studies [238, 273, 370]. This indicates that if atlas-based anatomical
analysis of iEEG data in general, and probabilistic methods in particular, would find a
more widespread use in iEEG research, this would also spur further interest in optimizing
the spatial normalization of structural imaging data, particularly of post-operative MRIs.

In summary, this chapter demonstrates how probabilistic assignment procedures that
were previously developed for analysis of neuroimaging data can be adapted to the iEEG
and used for the neuroanatomical interpretation of iEEG recordings. With the continuous
extension of the available probabilistic atlas system by new areas, the applicability of
probabilistic maps will further increase. Thus, the here presented probabilistic anatomical
assignment method might be a valuable addition to iEEG research. The results in the
following chapter profit, among other things, from the methods of the Toolbox. The
classification into specific areas comes from the hierarchical probabilistic assignment and
is used as a basis for the neurophysiological interpretations. The ELAS toolbox is freely
available under GITHUB (https://github.com/joosbehncke/elas) for non-commercial and
academic use and comes with a detailed documentation for installation and application.

https://github.com/joosbehncke/elas




Chapter 7

Spectral attributes of Neural
Error-related Patterns in iEEG

The recognition and processing of errors forms the basis for all human learning
processes and has been the subject of neuroscience for some time. The complex
relationships and interactions in the human brain are difficult to decipher and
the question of origin and dynamics of the underlying signal keeps this area
in suspense. Both temporal and spectral responses play a decisive role in this
process. This chapter compares spectral error-related brain activity of participants
performing both an ERIKSEN flanker task and a car driving task, and benefits from
measurements with intracranial electrode contacts. The 1552 electrode contacts
exhibit comprehensive coverage of a wide range of brain areas and thus provide
a global insight into brain areas involved in error-processing. It turns out that
simultaneously activated regions lie mainly in frontocortical areas, but also in
the anterior cingulate cortex (ACC), and several so far not to error-processing
related areas exhibited a spectral response. Furthermore, a power increase in
high gamma band (HGB) could be demonstrated, and in addition spawning the
error-related power increase as a dominant feature.

The first chapters dealt with the question of whether and how errors or robot types
can be detected by means of human EEG. Based on convolutional neural networks a
framework could be implemented, which tops conventional methods used for comparison.
The convolutional neural network was generally formulated and proved that it can learn
different features, such as temporal characteristics (Chap. 4 and Chap. 5) or features based
on spectral responses [303]. Beside the possibility to improve the decoder, the signal can
also be optimized. One approach would be to use invasive measurements, as it will be
discussed in the following chapters. Beside the neurophysiological basics (this chapter)
also the decoding will be in the foreground (Chap. 8). In Chap. 6 a new method for
assigning electrode contacts was introduced, completed by an intuitive toolbox interface
for non-programming users. The aim of this method is to optimize the assignment of
electrode contacts especially to brain areas for ECoG electrodes in subdural space and
to include the individual characteristics of the brain, based on anatomical landmarks,
in the calculation. The method was used to interpret the data underlying this chapter.
For the development of an understanding of cerebral processes, the most exact possible
assignment to the involved areas is essential.
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As already mentioned, many studies are mainly based on results of non-invasive
measurements. However, these allow above all the investigation of the near-surface
regions. For a holistic understanding of the generation and transmission of signals as well
as the network interaction of different areas, a global view of the problem is indispensable
and intracranial measurement is a key to deeper insights into the underlying processes. In
addition, the question arises to what extent the modality of the stimulus influences the
spectral activity of error-related signals.

To eliminate these problems, data based on intracranial recordings was analyzed for
their spectral responses. The unique opportunity existed to collect data from 15 epilepsy
patients who gave their voluntary and informed consent to participate in two different
paradigms. The generated data set comprises recordings of a total of 1552 electrode
contacts for two different paradigms. Both paradigms aim for the incorrect execution of a
task instructed to the participant, but differ in their proximity to everyday situations. In
order to obtain a comprehensive overview, the results were not only evaluated for each
paradigm isolated, but also put in relation to each other, and checked for their spatial
significance. The study shows that spectral error processing also seems to be apparent in
higher frequency bands up to around 115Hz and that the error-related power increase turns
out to be a dominant feature. This could also be manifested as similarities for different
modalities of an error stimulus. Furthermore, the broad coverage of electrode contacts
revealed the multitude of areas that contribute to error-processing and subprocesses. As a
result of the investigation of spatial distribution of the simultaneously contributing areas
for both paradigms, predominantly frontocortical regions but also the anterior cingulate
cortex (ACC) exhibited significant activity.

7.1 System and Experimental Design

To create the considerable set of intracranial EEG (iEEG) recordings, in which error-
related brain activity is accessible, two different paradigms were designed. This time,
the focus of the paradigm’s concepts rather lay on erroneous performance of the user
himself than on the observation of faulty execution of an instructed task by a robotic
effector. Thereby, intracranial methods allow tasks in which movements and muscular
artifacts don’t affect the quality of the data, as the signals are extracted directly from
the brain’s tissue. This enables a more active contribution of the participants in the task
and a higher grade of empathy referred to occurring errors. In a first paradigm, a flanker
task is supposed to elicit error signals under strictly experimental conditions, while in
a second paradigm a car game-like environment simulated a more real-life situation.
Each participant took part in both experimental paradigms, what led to the exceptional
possibility to compare two paradigms in iEEG. In general this is quite difficult, as different
patients exhibit distinct implantations covering diverse brain areas. The paradigms are
depicted in Fig. 7.1.
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Figure 7.1: Two different paradigms to elicit error-related responses. A A schematic sketch of the
paradigm using an ERIKSEN flanker task, adapted from [133]. B Modified screen shot of the car driving
task, in which the participant has to collect rewards and avoid collisions with obstacles (here represented by
fruits and vegetables) while keeping the car on the road.

7.1.1 ERIKSEN flanker task (EFT)

This task was designed according to [110]. The participants had to respond to the middle
character (either R or L) of a set of letters, acting under time pressure. The audiovisual
feedback was given according to a right or a wrong button press, or a reaction slower than
a predefined time limit (see Fig. 7.1A). The time limit was set individually to the mean
reaction time of a training phase. For details see [351]. An error was defined as a wrong
button press, while a right button press was cited as correct. What is called an event in the
following, however, is the time of the feedback that was given after about 2 s regarding
the button press. In order to avoid the influence of the cerebral response to the button
press on the feedback response, the feedback was given with that delay.

7.1.2 Car driving task (CDT)

The second paradigm consisted of a car driving task in which participants were instructed
to stay on a road while avoiding certain obstacles (e.g. bombs) punished with a nega-
tive score and collecting beneficial objects (e.g. coins) rewarded with plus points (see
Fig. 7.1B). As the speed of the game was fixed, the participant’s goal consisted of achiev-
ing a highest possible score when reaching the finish line. In this task, an error event was
traced when an obstacle was hit; when a beneficial object was hit, the event was declared
correct.

7.1.3 Participants and Data Acquisition

In this experiment the data was raised from intracranial recordings, based on intracranial
EEG. The group of voluntary participants was exclusively formed by patients suffering
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from epilepsy. Altogether 47 participants fulfilled the car driving task of which 15 also
accomplished the ERIKSEN flanker task, each having different implantation and number of
electrode contacts. The recordings of these 15 participants (7 female) were employed for
the analyses and comparisons of this study, comprising altogether 1552 electrode contacts.
All participants provided their informed consent for the study, which was approved by the
local ethics committee. Furthermore, the experiments were accomplished under clinical
supervision in the epilepsy center in Freiburg, Germany, as well as in the epilepsy center
of the Motol University Hospital in Prague, Czech Republic. At the epilepsy center in
Freiburg the signals were recorded with the COMPUMEDICS amplifier (Singen, Germany)
at a sampling frequency of 2 kHz, while the epilepsy center of the Motol University
Hospital in Prague made use of the SCHWARZER EPAS amplifier (Munich, Germany) and
the NICOLET EEG C-series amplifier (Pleasanton, USA), recording at a sampling rate of
512Hz. A more detailed description of the underlying methods and used hardware for
the inquiry of the intracranial brain data can be found in subsection 2.2.2.

7.2 Pre-processing & Statistics
According to unique trigger pulses, generated during each experiment, the acquired data
were aligned to the event-related meta information. The aligned data were re-referenced
to a common average and high-pass filtered using a 3rd order Butterworth filter with
a lower cutoff frequency of 0.1Hz. Following, the recorded event stamps determined
the different trials and the data were cut and re-sampled to 250Hz. Previous to the
analysis in frequency domain, spectral decomposition of the trials was performed by
reference to the multitaper method, see Sec. 2.4 and Eq. (2.19). Hereby, a window
size of 0.5 s and a step size of 0.05 s was chosen. In order to test the significance of
correlations, a permutation test was applied, see section 2.6 and Alg. 7. In any other
case, e.g. when referring to the significance of an activity, a WILCOXON ranksum test
(MATLAB: ranksum) over trials was used. For both methods the significance level was
set to α = 0.01. Assignment to anatomical areas was accomplished using the methods
according to Chap. 6, also described in [33]. Subsequent in this study, recordings will be
parsed for temporal development of activity. Hereafter, t = 0 s represents the moment of
the error-related event and temporal placement of any activity will always refer to this
event.

7.3 Error-related Activity in iEEG
To investigate the influence of error-related action on the recorded brain signals, time-
frequency analysis was performed for each participant and both paradigms. Fig. 7.2A
shows the responses to the committed mistakes in the time-frequency domain for both
paradigms, depicted for two exemplary electrode contacts I4 in the Insular Cortex and
S15 in the Postcentral Gyrus. The color code represents the log of the relative power
(erroneous vs. correct action) and can be seen for a frequency range up to 200Hz.

https://de.mathworks.com/help/stats/ranksum.html
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For this exemplary participant P1, the patterns shortly after the appearance of an error
(t = 0 s) exhibit a remarkable similarity for some electrode contacts (here as an example
represented by contact I4), while others showed observable responses for only one (e.g.
S15) or none of the two paradigms.

Figure 7.2: Error-related activity of intracranial electrode contacts for an exemplary participant P1.
A Time-frequency analysis (see Sec. 2.4) for both paradigms (CDT: left, EFT: right) and for two selected
electrode contacts where either (1) similar frequency modulation across several bands can be seen in both
paradigms (top: I4, R Insular Cortex) or (2) characteristic activity is only observable in one paradigm
(bottom: S15, R Postcentral Gyrus). t = 0 s marks the appearance of an error. B Mean time course of the
logarithm of the relative power of frequency range 115− 130Hz (blue line: CDT, red line: EFT). Standard
error of the mean is represented in light coloured areas. The contacts are arranged as in A. C Correlation
of frequency band dependent power time course of both curves, CDT and EFT. The color value of a bin
is obtained by correlation with regard to a certain time offset τ of the two curves, white bins indicate no
significance (p < 0.01). The contacts are arranged as in A. D Position of the exemplary electrode contacts
according to the ICBM152 standard brain [228].

In order to extract a measure for resemblance of the frequency responses for the
different paradigms, the time course of previously defined frequency bands were averaged
over the band and compared pairwise, see Fig. 7.2B. This made a comparison on the level
of frequency bands available. At this, the standard error of the mean was calculated based
on bootstrapping methods [236]. These methods are used if the theoretical distribution of
underlying statistics is unknown. Moreover, the extracted time courses for the different
paradigms were correlated for several time offsets defined by the variable τ . The results
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for the two electrode contacts can be seen in Fig. 7.2C. Again, the similarity in I4
becomes obvious and especially above 12Hz the time courses show a comprehensive
high correlation around the error event. However, the two signals of S15 exhibit rather
poor similarities, what reflects the gained impression of the spectrograms in Fig. 7.2A
quite well. White bins indicate that the power didn’t show significance for both of the
paradigms (WILCOXON ranksum test, p < 0.01). The spatial distribution of all electrode
contacts of participant P1 over the ICBM152 standard brain [228] for 3 different views is
illustrated in Fig. 7.2D. The exemplary electrode contacts from Fig. 7.2A-C are marked
as a green triangle (I4) and a blue square (S15).

7.4 Common Error-related Spectral Patterns
To obtain a more profound insight into the distribution of common patterns inside the
spectra, the spatial information of the data was analyzed on the basis of each time-
frequency bin. For each bin, the vector over all channels was correlated for the two data
sets. Again, the correlation was not only performed for simultaneous data points but
also for shifted values obtained by the time offset τ . An example of the results of the
analysis for participant P1 is illustrated in Fig. 7.3A. White areas indicate values with
no significance (p < 0.01), which was determined by the means of a permutation test,
permuting the channel vector randomly for 1000 times and correlating each of the result to
the true distribution of channels. This elucidates how often the correlation of the random
channel compilation exceeds the correlation for the real data. Especially for no offset
and small offsets a strong correlation in lower frequency bands is distinct during the
first 500ms after the event. The statistical values for all participants enter the analysis
that leads to Fig. 7.3B. Here, the sum over the participants of all statistical significances
is calculated for each time-frequency bin and applied in color code. Likewise in this
comprising visualization a comprehensive correlation for frequencies up to 80Hz is
obvious for small time offsets, beginning with the appearance of an error.

The temporal trend of the significant time courses during an interval of −0.5 to 1 s was
investigated per band and channel, evaluating whether a similar significant increase or
decrease is present in both paradigms, see Fig. 7.4. A significant increase or decrease
occurred when, within a running time window of 20ms, the absolute value of the average
power exceeded the standard deviation of the total interval of −0.5 to 1 s. Besides, the
analysis of this section is accomplished to give an impression of how the trends for the
two paradigms relate to each other. Channel by channel and band by band this information
is broken down for an exemplary participant in Fig. 7.4A. Red positions inside the grid
indicate an increase and a decrease for both data sets, dark orange points to a common
increase and light orange points to a common decrease. In case of no common trends,
the yellow coloration stands for a situation where the paradigms exhibit an opposing
trend, purple stands for an increase or decrease in only one of the sets and white for no
significance (WILCOXON ranksum test, p < 0.01).

In addition, the way of presentation provides information about the spatial distribution
as well as about the frequency bands that are affected by error-related trends. Similarly
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Figure 7.3: Spatial time-frequency similarities between CDT and EFT. A Correlation of significant
time-frequency bins of all channels between CDT and EFT for an exemplary participant P1. White bins
indicate no significance (p < 0.01). The correlation of the different depictions are calculated with regard to
a certain time offset τ between CDT and EFT data. B Sum over significant time-frequency bins over all
participants. Significance is determined by values extracted from A. The sum of the different depictions is
calculated with regard to a certain time offset τ between CDT and EFT data. A & B: t = 0 s marks the
appearance of an error.

to the results presented in Fig. 7.3, the significant channels show salience in the lower
frequency bands below 80Hz. Fig. 7.4B gives a visualization of this information on
the level of participants. For each participant and condition the appearances of trends
were summed up over all channels (Fig. 7.4A, right) and entered color coded into the
according plot (black box in condition increase both of Fig. 7.4B). The illustration reveals
the dominance of similar increase over similar decrease of both paradigms. Thereby, the
values per condition are normalized by the maximal number of counts over all participants
and conditions, to obtain a more relative view on the results. This has the advantage
that one can judge how relatively strong the effects are with the respective conditions.
Furthermore, the comparison of number of significant effects per participant becomes
more obvious. Hereby, the information about the averaged significant activity per channel
is suppressed though. While for the other conditions activity can be mainly observed for
lower frequencies, increase can be found quite comprehensively, but particularly between
55 and 130Hz.

So far, the results particularly indicate one similarity in the appearances elicited by
the two paradigms: a power increase over several frequency bands. Fig. 7.5 puts the
results into the focus of the spectral distribution of significant trends. For each of the
13 frequency bands, the total number of appearances of significant power increases over
all electrode contacts is gathered for each paradigm. For means of comparison, the total
numbers are normalized by the highest representative within each condition. Obviously,
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Figure 7.4: Significant increase and decrease of the relative power. A Significant trend of the time
course of the logarithmic relative power for an exemplary participant, per frequency band and channel. Red
indicates decrease and increase in both paradigms, dark orange increase in both, light orange decrease in
both, yellow an increase in one but a decrease in the other paradigm, purple increase or decrease in only one
paradigm and white indicates no significant trend. Right: Sum of significant appearances over all channels.
B Normalized sum over channels of significant appearances per frequency band and participant. The Values
per depiction are normalized by the maximal number of counts over all participants and conditions.

both paradigms elicit error-related power increase in delta (< 4Hz), theta (4 − 8Hz)
and alpha band (8 − 12Hz). While in gamma range around 55 − 130Hz a moderate
activity can be registered for the EFT recordings, the signals gained in the CDT paradigm
show highest activities. By contrast, error-related increase in beta band (12 − 30Hz),
low-gamma band (30−45Hz) and the higher gamma bands (> 130Hz) is rather sparsely
represented. The question arises when the occurrence of a power increase can be observed
according to a committed error.

In order to not only investigate the distribution of frequencies but to consider the
temporal aspect, the results were examined with regard to the appearance of the power
increases related to the moment of the error-related event, confirming the already observed
characteristics. Fig. 7.6 shows both the temporal breakdown to frequency band and
condition, and the aggregated appearances over all bands per condition. At this, the
condition CDT (Fig. 7.6, left column) refers to all occurred significant power increases
(all participants and channels) in the recordings of the car driving task, EFT (Fig. 7.6,
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Figure 7.5: Normalized significant power increase. For both paradigms, CDT and EFT, the total number
of appearances of significant power increases is depicted. The values are normalized by the maximal
occurring value within each condition.

middle column) refers to ones of ERIKSEN flanker task recordings and both (Fig. 7.6,
right column) describes the phenomena of coincident significant power increases in both
paradigms for the same channel and frequency band. The maximal appearing number
of increasing trends per condition is in each case represented by the maximal value of
the orange highlighted panel (maxCDT : 190, maxEFT : 71, maxboth : 27). To allow a
comparison per condition across frequency bands, the light blue values are normalized
by the maximum of the condition maxi. On the other hand, the normalization by the
maximum within a panel enables the examination of the time course per frequency
band and condition. Those values are kept in dark blue. The lowest row in Fig. 7.6
shows the sum of the respective discrete bars, belonging to a certain time bin, over all
frequency bands for one condition, normalized by the maximal value of the aggregates
(maxCDT : 1772, maxEFT : 403, maxboth : 171).

A global time-wise consideration of the results of the analyses for the different
paradigms especially points to an appearance of increasing trends of the power in the
lower frequency bands delta (< 4Hz) and theta (4 − 8Hz). Likewise, for condition
CDT this effect can be observed in middle gamma bands (55 − 130Hz), whereas for
EFT the activity in those frequency ranges appears comparatively smaller. This relation is
also reflected by the examination of the common activity in both paradigms (see Fig. 7.6,
right column). For CDT the wanted activities in alpha (8− 12Hz), beta (12− 30Hz)
and low-gamma (30− 45Hz) band are comparatively moderate, which likewise can be
increasingly seen for EFT. The appearance of significant power increase for CDT can
be observed predominantly with begin of an event and is strongest represented right up
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to approximately 0.5 s. For frequencies > 12Hz this is also apparent for EFT, while
here activity before and during the event can be increasingly observed for frequencies
< 12Hz. In both conditions, a drop of the appearance of increases right before the event
around 0.1 s becomes evident. For the case of simultaneous activity in both paradigms
the temporal distribution is more focused and exhibits highest activity in the range of
0− 0.25 s. Taken as a whole, the observations likewise can be deduced from the sum over
all frequency bands, see lowest row in Fig. 7.6.

Figure 7.6: Temporal distribution of significant power increase for distinct frequency bands. Nor-
malized sum (over participants and channels) of significant increases per band and condition CDT (left),
EFT (middle) and both (right). Dark blue values are normalized by the maximal value within each panel,
light blue values are normalized by the maximal value of all frequency bands within each condition (CDT:
190, EFT: 71, both: 27). The occurring of the maximal value per condition is designated by the orange
background, the red frame marks the overall maximum. Bottom: depicted is the sum over participants,
channels and frequency bands, normalized by the individual maximum (CDT: 1772, EFT: 403, both: 171).
t = 0 s marks the appearance of an error.
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7.5 Spatial Distribution of Error-related Power Increase

Aside from information about the temporal behaviour of error-related power changes, the
spatial distribution of the activity over the brain constitutes an informative detail. Here
again, the analysis addresses the error-related information concerning only increase in
frequency band power. The results are concluded in Fig. 7.7, presenting brain areas with
the significant increase for each paradigm or both simultaneously.

Figure 7.7: Spatial distribution of significant power increase for all participants. A-C Significant power
increase in frequency-band-channel bins per area, in relation to the total amount of electrode contacts in
this area, for the CDT (A), the EFT (B) and for the case that in both paradigms a significant power increase
was observed in the equal frequency band and channel at the same time (C). A shows areas exhibiting
proportions > 16 %, B areas exhibiting proportions > 5.7 % and C areas exhibiting proportions > 2.6 %.
D Point clouds of areas listed in A-C, exhibiting equal color code as in A-C. E Spatial distribution of all
electrode contacts over the ICBM152 standard brain.
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Fig. 7.7A-C present in each case the eight areas with highest relative numbers of
significant increase appearance for CDT (A), EFT (B) and both paradigms (C). The
percentage is given relatively to the total number of electrode contacts that were located
in this areas. The analysis was performed for 13 frequency bands, thus, a significant
increase could have been observed in each band per electrode contact. As a consequence,
the maximal amount of 100% is reached as soon as for every electrode contact in a
certain area all 13 bands show a significant power increase in the interval of interest,
Nmax,A = 13×NA, where NA is the total number of electrode contacts in area A. The
percentage displayed in Fig. 7.7A-C is then calculated by

Nrel,A = 100 ∗Nincr,A/Nmax,A, (7.1)

whereNincr,A represents the total number of increase appearances in a certain brain areaA.
Here, Fig. 7.7A shows areas exceeding proportions> 16 %, B areas exceeding proportions
> 5.7 % and C areas exceeding proportions > 2.6 %. Fig. 7.7D gives an overview of all
areas listed in Fig. 7.7A-C for three different views. The colors of the different areas
match the colors that represent distinct areas in Fig. 7.7A-C. Finally, Fig. 7.7E shows the
spatial distribution of all channels over the brain (view angels equal to Fig. 7.7D), whereby
the different conditions are color coded. The priority lies on cases where an electrode
contact exposed increase in equal bands for both paradigms, coloring the location in
yellow. Locations of electrode contact with an increase for CDT are colored in red, those
with an increase for EFT are colored in blue, while contacts with no significant increase
at all are displayed in grey. The depiction reveals an extensive coverage of the brain,
with exception of occipital and parietal regions of the right hemisphere and around the
occipital pole of the left hemisphere, due to implantation sites.

Tab. 7.1 gives an overview of all assigned areas that showed any significant increase in
the frequency response for any of the conditions, according to the error-related stimulus.
For columns CDT, EFT and both, the value indicates the number of channel-frequency-
band pairs that exhibited a significant increase. As already mentioned, NA represents
the total number of electrode contacts in area A. Nrel gives the respective average of the
relative power increase appearance over CDT and EFT,

Nrel = 100 ∗
(
Nincr,CDT +Nincr,EFT

2 ∗Nmax

)
. (7.2)

Bold printed areas are those appearing in Fig. 7.7A-C and Fig. 7.7D.Nrel represents an
indicator for the occurrence of effects in relation to the total number of electrode contacts
in a certain area. However, the values must be taken with caution especially for small
numbers of electrode contacts. For small numbers, outliers carry more weight and values
such as Nrel = 19.2 for the Middle Occipital Gyrus are more difficult to class.
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Table 7.1: Overview of significant power increases per area during the error-related task

Area CDT EFT both NA Nrel
all 2022 486 240 1315

Amygdala 4 1 0 15 1.3
Angular Gyrus 15 1 0 11 5.6
Anterior Cingulate Cortex 49 19 13 25 10.5
Cuneus 13 0 0 8 6.3
Fusiform Gyrus 44 0 0 70 2.4
Hippocampus 44 5 1 79 2.4
IFG (p. Opercularis) 58 27 21 27 12.1
IFG (p. Orbitalis) 28 8 1 37 3.7
IFG (p. Triangularis) 79 23 13 42 9.3
Inferior Occipital Gyrus 0 9 0 6 5.8
Inferior Parietal Lobule 8 4 0 9 5.1
Inferior Temporal Gyrus 53 4 0 96 2.3
Insula Lobe 263 54 37 106 11.5
Lingual Gyrus 7 3 0 13 3.0
Medial Temporal Pole 44 6 0 31 6.2
Mid Orbital Gyrus 8 0 0 8 3.8
Middle Cingulate Cortex 7 2 0 6 5.8
Middle Frontal Gyrus 138 53 28 69 10.6
Middle Occipital Gyrus 6 4 1 2 19.2
Middle Orbital Gyrus 53 6 5 17 13.3
Middle Temporal Gyrus 219 10 5 191 4.6
ParaHippocampal Gyrus 26 11 3 59 2.4
Postcentral Gyrus 97 50 16 64 8.8
Posterior Cingulate Cortex 3 1 0 8 1.9
Posterior-Medial Frontal Cortex 4 2 2 2 11.5
Precentral Gyrus 201 103 52 65 18.0
Precuneus 11 1 0 12 3.8
Rectal Gyrus 4 2 0 8 2.9
Rolandic Operculum 40 11 0 46 4.3
Superior Frontal Gyrus 5 3 1 4 7.7
Superior Medial Gyrus 6 1 0 3 9.0
Superior Orbital Gyrus 42 6 3 20 9.2
Superior Temporal Gyrus 255 9 7 80 12.7
Supramarginal Gyrus 168 38 29 50 15.8
Temporal Pole 20 9 2 26 4.3
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7.6 Related Work
In order to understand human error recognition and processing, neuroscientists have
addressed the questions of where and when, but principally how the error-related infor-
mation is generated and subsequently transmitted in the brain. Previous studies revealed
that human brain activity is modulated by both observation and commission of erroneous
action. In both cases the brain signals exhibit specific activation patterns. Falkenstein
et al. [113] and also Gehring et al. [133] observed a negative deflection approximately
50 − 100ms after an erroneous event, representing a component of the event-related
potentials (ERP). The deflection is known as error-related negativity (ERN) or error
negativity (Ne), and in the following is simply referred to as ERN/Ne. The appearance
of the ERN/Ne is independent of the modality of the stimulus [114] or the modality the
response [166]. Furthermore, a positive deflection can be shown, the error positivity (Pe)
[113]. This positive deflection appears somewhat later as its negative counterpart and is
recognizable up to 500ms after the erroneous event.

Still, the dynamics of the error processing and the functional hierarchy are not consis-
tently defined. The most general interpretation connects the ERN/Ne with the reflection of
a comparative process, contrasting a deliberately correct or intentional action to an actual,
possibly erroneous action [113, 133]. In another theory the ERN/Ne is described as a
reinforcement learning signal that is transmitted to the ACC [167]. According to this idea,
the ACC merely receives a signal from the basal ganglia that evaluates action but does not
mirror the error itself. The transmitted signal is then used to adapt the response selection
process, which reflects the activity of the error processing system. However, the ERN can
also be interpreted as a mirror of the evaluation of emotional and motivational importance
of an error [63, 132, 258]. Yeung et al. [371] state the theory that ERN rather reflects
conflict monitoring than an explicit signal that directly informs about the occurrence of
an error, representing the continuous evaluation of the response conflict. In addition,
investigations of the medial prefrontal cortex (mPFC) have led to a model that reinterprets
the error-related effects as learning and outcome-prediction processes [5].

Initial research relates error-related activity to time-courses of the voltage recorded
by scalp EEG [113, 133], but also spectral components have gained increasing attention.
Spectral analyses of noninvasive EEG recordings, for example, have shown that the
error-related activity partly originates from increased phase-locking of frontal midline
theta activity [221, 222]. Further, synchronizations in theta band likely leads to network
communication of action monitoring and cognitive control network interaction [71]. Apart
from theta activity, error-related increase of delta activity could be observed [199, 372].
Here, Yordanova et al. [372] indicate that one of the processes reflected by the ERN/Ne
represents the error-specific activity of the delta band. An overview of previous studies on
spectral activity in error-related human EEG and iEEG recordings is given in Tab. 7.2.

Apart from the research into the nature of error-related signals, numerous studies
have dealt with the question of which brain areas are involved in the processing of these
signals. For example, the ERN/Ne seems to reflect the activity of the ACC [92], exhibiting
a frontocentral distribution symmetric to the midline axis. Based on dipole models,
source reconstructions have placed the neural source of the error signal in the medial
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Table 7.2: Selection of previous studies about error-related spectral activity in EEG and iEEG. According
choices of frequency band ranges are given due to deviations in literature

Publication Signals Spectral activity Paradigm

Yordanova et al.,
2004 [372]

64 EEG
channels

Delta (1.5-3.5 Hz) power in-
crease for ERN/Ne and theta
(4-8 Hz) power increase for er-
roneous motor response

Four-choice reaction
task, 14 subjects, 4
excluded due to low
error rate.

Kolev et al.,
2005 [199]

64 EEG
channels

Delta (1.5-3.5 Hz) power in-
crease and phase locking for
ERN/Ne. Error-related theta (4-
7 Hz) power increase in young
subjects.

Four-choice reaction
task, 10 young subjects
(22.5 ± 1.5 years), 11
old subjects (58.3± 2.1
years).

Trujillo et al.,
2007 [337]

25 EEG
channels

Theta (4-7 Hz) power increase
from -150 ms to 400 ms accord-
ing to button press.

ERIKSEN flanker task,
21 subjects.

Cohen et al.,
2008 [79]

12 iEEG
channels,
28 iEEG
channels

Error-related theta (4-8 Hz)
power increase and beta (15-30
Hz) power suppression.

Modified flanker task, 2
epilepsy patients.

Carp et al.,
2009 [69]

8 EEG
channels

Absence of post-error alpha (10-
14 Hz) power, compared to cor-
rect trials

Stroop task, 81 sub-
jects.

Bastin et al.,
2017 [27]

total
559 iEEG
channels

Broadband gamma (50-150 Hz)
activity increase due to erroneous
action.

Stop-signal task, 6
epilepsy patients.

Völker et al.,
2018 [351]

128 EEG
channels

Error-related response in low-
frequency bands (<50 Hz) and
high gamma (>50 Hz).

ERIKSEN flanker task,
35 subjects (4 rejected)

total
690 iEEG
channels

Error-related response in low-
frequency bands (<50 Hz)
and high gamma (>50 Hz),
followed by decrease in high
gamma

ERIKSEN flanker task.
9 epilepsy patients.

frontal cortex (MFC), which might suggest an origin in the ACC [63, 311] or in the
supplementary motor areas (SMA) [50, 92, 134, 166]. The assumption that the ACC
plays a fundamental role in this is supported by results obtained with functional magnetic
resonance imaging (fMRI), verifying error-related activity in the ACC [70]. Likewise
in the medial frontal cortex [298], the pre-supplementary motor area [342] or in the
prefrontal cortex (PFC) [244] activity regarding processing of errors and error-monitoring
could be observed, while signals from the anterior insula might serve as an input for
error-monitoring [154, 319] and are related to error-awareness [191, 341].

To a large extent, however, previous studies are based on the work with non-invasive
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methods, which allow above all the investigation of the near-surface regions. For a
holistic understanding of the generation and transmission of signals as well as the network
interaction of different areas, a global view of the problem is indispensable and intracranial
measurement is a key to deeper insights into the underlying processes. Furthermore, high
gamma band (50− 200Hz) power modulations are more difficult to detect with surface
EEG than with intracranial EEG, and it requires highly optimized data acquisition to
be able to detect effects in a meaningful way [351]. But it is precisely in this area that
activity seems to open up fundamental neural networks on both spatial and temporal
scales [60, 84, 86]. In addition, the question arises to what extent the modality of the
stimulus influences the spectral activity of error-related signals.

7.7 Conclusion

Error-related Activity in Intracranial Electrode Contacts

Spectral analyses concerning the committing of errors for two different paradigms re-
vealed similarities in the spectral response patterns, partly in single frequency bands but
also area-wide over several bands, see Fig. 7.2. The statistical evidence of these patterns
was confirmed by correlation of the power time series of the respective bands for the two
paradigms. Further similarities also manifested themselves in spectral patterns of spatial
arrangements, see Fig. 7.3. For both paradigms, these similarities were simultaneously
shown predominantly around the range of occurrence of an error-related event and ex-
tended over a broad spectrum of frequencies, predominantly and most strongly, however,
in the frequencies < 80Hz.

Common Error-related Spectral Patterns

Looking at the power time series trends common to both paradigms for the respective
electrode contacts and frequency bands, the dominance of increase over decrease becomes
apparent (Fig. 7.4B). This connection is also already mentioned by Völker et al. [351],
where among other things increase and decrease in the high-gamma band were observed
for EEG and iEEG recordings. In the present study, a simultaneous increase in both
paradigms can be observed in all frequency ranges, but this is most evident between 55Hz
and 130Hz. This temporal positive trend of power thus seems to reveal a comparatively
high conspicuity with regard to the similarities of the two stimuli.

Depending on where the respective electrode contact is located in the brain, the two
paradigms have in common an increase in power. On the other hand, a decrease in
power is not so predominant, neither in the simultaneous consideration of both paradigms
(Fig. 7.4B) nor in the separate analysis for the individual paradigms. Within the condition
decrease it is noticeable, however, that for both paradigms activity is most frequently
observed in the low frequencies (< 30Hz). So far, this effect has hardly been investigated
but at least mentioned in some studies, e.g. [337]. However, this study focuses on the
time and error related increases in spectral power.
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The increase in power with the occurrence of the event was examined more closely,
see Fig. 7.6. Looking at the individual frequency bands for each paradigm, the temporal
occurrence of the increases shows a comparatively broad distribution around the event,
especially in delta, theta and parts of high gamma (55Hz − 115Hz) band, whereas
the occurrence in the higher frequencies is not as strong for the EFT, see also Fig. 7.5.
Previous studies of error processing correlates show that an error commission is reflected
by an increase in power in the delta [36, 37, 372] and theta [221, 222, 337] band. However,
the current results are in line with Kolev et al. [199, 289], among others, that rather suggest
both an error-related power increase in delta and theta. Theta is suggested to reflect more
general response monitoring while delta represent an error-specific subcomponent [372].
Here the representative bands which show response to error-related events are extended
by the high-gamma band, which was also recently described by Völker et al. [351]. In
particular, the late components of high-gamma activity could indicate processes such as
behavioral adaptation and motor learning, which follow the recognition of errors over time.
Alpha and beta show comparatively lower, but nevertheless obvious activity regarding
the error commission. In previous studies, however, a suppression of the activity in alpha
[69] and beta [79] regarding error-related events is reported. A drop in power could also
be observed here, but this remains to be investigated. For low-gamma (30− 45Hz) and
frequencies > 115Hz increases are comparatively little to extremely rare represented,
but still present in isolated cases.

When comparing the two paradigms, it becomes clear that the CDT is experiencing far
more activity than the EFT (Fig. 7.6). This could be explained by the fact that different
errors are perceived individually and the response is modulated both by subjective error
significance [343] and by conscious error perception [364]. The activity in EFT seems to
start earlier (especially for < 12Hz), even before the event, starting around −0.25 s. The
occurrence of activity just before the error is not uncommon [114] and the easier the error
is to detect, the earlier the activity on the error is noticed. In addition, the participants
fulfilling the EFT have often already noticed the error before, namely with the button press.
This leads on the one hand to the fact that the error may no longer be evaluated so strongly
and on the other hand to a kind of awareness of the upcoming error feedback [280, 281].
Likewise, this effect was already seen for lower high-gamma power in pre- and postcentral
gyri, supramarginal gyri and insular cortex [351], indicating a pre-activation to the error.

One of the innovations of this study is the comparison of intracranial, error-specific
spectral responses in human brain recordings of different paradigms. Especially with
regard to the generalization of response patterns across different error types, the analysis
of simultaneous activity provides information about similarities. At the frequency band
level, simultaneous modulation for both paradigms shows comprehensive activity in the
low frequencies (< 30Hz) and in high-gamma (70− 100Hz), which is rather moderate
for gamma between 30 and 70Hz. The temporal occurrence of the spectral responses is
mainly concentrated in the range of about 0− 0.25 s.
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Spatial Distribution of Error-related Power Increase

Reorganization and phase-resetting of oscillatory brain activity according to the stimulus
happen to occur in several brain regions and at different times. At first glance, activity
seems to occur comprehensively, see Fig. 7.7F, but this does not reflect the actual strength
and abundance of the activity. The ACC in particular is frequently mentioned when it
comes to the processes involved in error processing [27, 56, 355] and is supposed to handle
reinforcement learning signals [167]. Further areas like the orbitofrontal cortex [338],
the prefrontal cortex including the medial frontal cortex [27, 56, 79], the supplementary
motor area [27, 50, 56] and the supramarginal gyrus [56] are reported to contribute in the
error-monitoring network, while signals from the anterior insula serve as in input to this
network [154, 319] and represent error awareness [191, 341].

In this study, there is a large overlap with the areas given in the literature and in addition
the set of involved areas is extended (see Fig. 7.7A-D and Tab. 7.1). Also here the multi-
layeredness of the underlying processes is confirmed. However, as already mentioned,
especially the values of areas with a low number of electrodes in Tab. 7.1 should be
treated with caution. The number of areas showing activity reveals the complexity of
error processing in the human brain, in which many upstream and downstream processes,
such as error detection, error evaluation, adjustment behavior or transfer to memory, play
leading roles. Moreover, error processing does not simply seem to exist per se, but also to
result in a series of physiological changes [83, 152, 153]. Further analyses can provide
information here and also the investigation of the temporal occurrence can contribute
enormously.

The high participation of occipital areas in EFT is conspicuous. This suggests that in
this paradigm the visual processing played a greater role than in the CDT. In contrast, for
electrode contacts in the orbitofrontal cortex, the response for the CDT was much more
frequent, see also Tab. 7.1. It seems that in the more real-life game the immersion and
thus the emotionality concerning the performance of the task is greater than in the more
experimental task of the EFT, which can lead to activity in orbitofrontal regions among
others [119, 128].

The number of common significant activity in both paradigms is relatively low and
not that prevalent as for the single paradigm analysis, see Fig. 7.7E. However, a clear
preference for frontocortical regions cannot be disregarded here, which can be derived
from Fig. 7.7C and Fig. 7.7D. It is possible that these regions are involved in a general
processing of the error-related signals, while other areas tend to respond to the individual-
ities of the stimuli. The often mentioned ACC is also present for the simultaneous activity
in both paradigms, what supports this thesis.

Outlook

In the rarely investigated field of intracranial, error-related spectral responses, the study
confirms previous results and comes to new conclusions. Non-cortical regions such
as hippocampus or insula cortex, which are difficult to measure by surface EEG, can
hardly be measured by non-invasive methods [250]. Also, cortical processes are far more
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complex than what can be derived by surface EEG [351]. The broadness of the study thus
contributes to knowledge gains for regions that could hardly be and have hardly been
investigated with regard to error processing.

The remarkable data set generated in this study includes measurements of 47 different
patients who completed the car driving task, of which 15 additionally performed the
ERIKSEN flanker task. This enormous set of intracranial recordings can be used to study
motor and cognitive signals, such as here to analyze error-related responses. In this study,
error-related responses of two paradigms were investigated and correlated. Common
peculiarities and patterns have been worked out and their cerebral distribution investigated.

The essential addition to previous discoveries is the extension of spectral error process-
ing to higher frequency bands, especially as a common feature for different stimuli. The
error-related power increase of the different frequency bands appears to be a dominant
feature in the processing. In addition, the broad coverage of the implanted electrode con-
tacts has contributed to the collection of areas involved in error processing and confirmed
the present status. This can extend the understanding of error processing in the brain,
among other things. The common areas for both paradigms refer, apart from the ACC, to
predominantly frontocortical regions.

It would be interesting to investigate an extended temporal development of error-related
spectral increase over space, broken down to frequency bands. Likewise the decrease
was left out, because it was comparatively rare represented. Nevertheless, a decrease of
the power with the error-related event could be observed as well and can give additional
information about the temporal development of the signal via the brain. Thus further
analyses can contribute to a model of the propagation of an error signal in the brain and
the relevant areas. In addition, the results of temporal and spatial distribution of the signal
may contribute to the recognition of when and where decoding can be useful. This is
especially advantageous when no exact time has been determined and an error is to be
decoded from a continuous signal.





Chapter 8

Cross-paradigm Pretraining of
Convolutional Neural Networks

When it comes to the classification of brain signals in real-life applications, the
training and the prediction data are often described by different distributions.
Furthermore, diverse data sets, e.g., recorded from various subjects or tasks, can
even exhibit distinct feature spaces. The fact that data that have to be classified
are often only available in small amounts reinforces the need for techniques to
generalize learned information, as performances of brain-computer interfaces
(BCIs) are enhanced by increasing quantity of available data. In this chapter,
transfer learning is applied to a framework based on deep convolutional neural
networks (deep CNNs) to prove the transferability of learned patterns in error-
related brain signals across different tasks. The experiments described in this
chapter demonstrate the usefulness of transfer learning, especially improving
performances when only little data can be used to distinguish between erroneous
and correct realization of a task. This effect could be delimited from a transfer
of merely general brain signal characteristics, underlining the transfer of error-
specific information. Furthermore, similar patterns in time-frequency analyses in
identical channels could be extracted, leading to selective high signal correlations
between the two different paradigms. Classification on the intracranial data
yields in median accuracies up to (81.5± 9.5) %. Decoding on only 10% of the
data without pretraining reaches performances of (54.8± 3.6) %, compared to
(65.0± 0.8) % with pretraining.

Chap. 3 to Chap. 5 have addressed the improvement of the decoder for error-related
responses of a human observer. The recordings were obtained non-invasively, which has
both advantages and disadvantages (a more detailed discussion can be found in Sec. 2.2).
However, in this chapter the insights gained so far are applied to intracranial data. The
methods from Chap. 6 were used to assign the electrode contacts to the underlying areas.
Yet, this information was initially omitted from the analyses. Similarly, the insights gained
in Chap. 7 were not included in the approaches of this chapter, which, however, forms a
promising basis for future analyses. This shall be discussed at a later point in time.

Furthermore, this chapter examines the relationship between pretraining of a CNN and
the performances achieved. The underlying idea is to transfer information the CNN learns
to another classification task. Specifically, the network will be trained with the trials of
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one paradigm in order to evaluate the influence on the decoding of another paradigm. In
this study it is a prerequisite that the paradigms aim at similar cerebral responses, which
can then be transferred.

In situations where little data is available, classifying different conditions is not nec-
essarily successful. If one imagines an everyday scenario, then a possible application
should be applied as quickly as possible and not have to go through an elaborate calibra-
tion procedure. A classifier that already ”knows” the problem and already has a certain
information advantage would therefore be desirable. The aim of the underlying analyses
in this study is to contribute in this vision, and it is to be investigated in principle whether
such a transfer is possible.

In this chapter, the impact of transfer learning in intracranial brain recordings across
two different error tasks is determined. The paradigms may differ slightly in their
way to elicit errors, but basically target the same reaction of perceiving self-caused
mistakes in instructed tasks. The classification performances are analyzed separately
for both data sets and are compared to those gained by algorithms including transfer
learning implantations. It becomes apparent that under conditions with few available data,
pretraining and subsequent transfer can improve decoding in error-related classifications
tasks.

8.1 System and Experimental Design

The data on which the analyses of this chapter are based correspond to those of the
previous chapter Chap. 7. In order to recall the most important facts, the two paradigms
are summarized briefly. The paradigms consisted of an active task, which the participant
had to fulfill under pressure with the aid of a laptop. Likewise both paradigms aimed
at provoking faulty executions of the participants, but differed in their modality. An
ERIKSEN flanker task had a much more experimental design, while a car driving task
allowed more proximity to lifelike situations. In this chapter, the two paradigms will be
referred to as follows:

• ERIKSEN Flanker Task (EFT), see Fig. 7.1A

• Car Driving Task (CDT), see Fig. 7.1B

More detailed information can be found in chapter Chap. 7, where Sec. 7.1 provides
additional information about patients and data acquisition. Likewise, in Sec. 2.2 the
different recording techniques of the EEG and the iEEG are distinguished against each
other and advantages and disadvantages, including complications of the different methods,
are discussed. Above all, it should be mentioned that the participants in the measurements
in this chapter were patients suffering from drug-resistant epilepsy. More about this in
Sec. 2.2.
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8.2 Pre-processing, Decoding & Statistics

As already mentioned, the data were obtained by intracranial recordings collected in
experiments with 15 patients suffering from epilepsy, who gave their informed consent.
According to unique trigger pulses, generated during each experiment, the acquired data
were aligned to the event-related meta information. The aligned data were re-sampled
to 250Hz and re-referenced to a common average, subsequently an electrode-wise
exponential moving standardization [303] with decay factor 0.999 was applied. The data
were cut into trials and divided into test and training set according to the specific decoding
intervals. For classification, the Deep4Net model of the CNN described in Subsec. 2.5.3
was used, see also Fig. 2.14. The CNN made use of batch normalization and dropout,
exponential linear unit (ELUs) served as activation functions for the different layers. The
backward computation of the gradients was based on the output of the categorical cross-
entropy loss and optimized using adam [190]. Further details of the basic implementation
and decisions according to design of the network are discussed in Subsec. 2.5.3.

A random permutation test [275] was applied to determine significances per participant,
see Alg. 7. A vector consisting of the true distribution of class labels was compared
to n = 106 vectors of randomly shuffled labels to generate a realistic distribution of
possible outcomes of the classification. It appeared that the numbers of trials per class
were highly unbalanced for all participants. To overcome this problem when creating
batches during the training, a class balanced batch size iterator related the samples per
batch with the inverse relation to the distribution of the actual trials. For the significance,
the imbalance was solved by defining the label matches per vector separately for each
class, then averaging over classes and comparing the outcome to the decoded accuracy
to estimate the p-value relating to the underlying distribution. Significance was tested
for each participant and set of decoding parameters. Single sets exceeding a value of
p = 0.05 were disregarded in further analysis and did not contribute to final results. The
significances of the group differences in Fig. 8.3 were determined on the level of trials,
using a sign test [164].

8.3 Decodability of Error-related Signals

For the two data sets, the deep CNN was used to determine the two-class decodability
of perceived erroneous/correct events in intracranial human brain recordings. Here and
in the following, the available data were split into two sets with a proportion of 80 % for
training and 20 % for testing. For each participant, the decoding accuracy was calculated
for different intuitive decoding intervals, which are defined according to the appearance
of an event. Fig. 8.1 shows the comparison of the single accuracies for different intervals
in blue symbols contrasted for the two data sets and depicts in addition the median
accuracy over all participants per interval in form of filled red symbols. In this illustration,
only participants are considered who showed significant classification results for both
paradigms. The classification yielded in median performances of (78.2±7.5) % for the car
driving task and (79.4± 9.7) % for the ERIKSEN flanker task using the decoding interval
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Figure 8.1: Single participant deep CNN accuracies contrasted for the two paradigms and different
decoding intervals. Median accuracies per interval are depicted by filled red symbols.

−0.5 to 1 s, (79.5 ± 10.3) % and (80.5 ± 10.8) % for the interval −0.25 to 0.75 s and
finally (74.3± 7.3) % and (72.9± 10.9) % for the interval 0 to 1 s. Here, the time points
refer to the occurring event. For both tasks, the interval −0.25 to 0.75 s outperformed
the others and was therefore used predominantly for the later implementations to transfer
learned features. Tab. 8.1 gives an overview of decoding on various intervals and different
number of training epochs.

Table 8.1: Median accuracies for different decoding intervals

CDT

epochs -0.5 - 1s -0.25 - 0.75s 0 - 1s

10 (72.1 ± 3.3) % (67.6 ± 3.1) % (71.3 ± 6.3) %
50 (72.9 ± 2.2) % (73.4 ± 5.0) % (73.4 ± 1.9) %
200 (75.4 ± 3.1) % (76.9 ± 2.2) % (74.0 ± 2.0) %

EFT

epochs -0.5 - 1s -0.25 - 0.75s 0 - 1s

10 (73.7 ± 4.2) % (82.1 ± 7.9) % (73.0 ± 6.4) %
50 (70.3 ± 5.6) % (78.5 ± 6.0) % (70.3 ± 5.6) %
200 (81.2 ± 11.1) % (81.5 ± 9.5) % (73.6 ± 9.5) %
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8.4 Responses in the Frequency Domain
The single data sets in the frequency domain were investigated using a multitaper method
to estimate the power spectral density, see Eq. (2.19). Optical inspection and comparison
of time-frequency spectra for identical electrodes but different tasks revealed obvious
similarities for several electrodes. Fig. 8.2A depicts one example where a resemblance is
unambiguous, showing the response for error vs correct in electrode I2 located in the right
insular cortex. The dotted line marks the onset of the event. Nevertheless, other electrodes
did not show any effects, or effects could only be seen strongly for one of the tasks, as
illustrated in Fig. 8.2C. A global overview of all electrodes for this exemplary participant
is given in Fig. 8.2B. The blue and green markers refer to the electrodes selected for
figures 8.2A and 8.2C.

Figure 8.2: Responses in the frequency domain: A Trial-averaged time-frequency spectra for electrode
I2 located in R insular cortex, for error vs correct in CDT (top) and EFT (bottom). B Saggital (top) and
coronal (bottom) view of the implanted electrodes for an exemplary participant, plotted on the ICBM152
brain [228]. C Trial-averaged time-frequency spectra for electrode S16 located in R postcentral gyrus, for
error vs correct in CDT (top) and EFT (bottom). D Normalized sum over significant channels per frequency
band and participant, itemized into decrease and increase.

Moreover, the behaviour of frequency-band power time-series of significant channels
was analyzed. Decrease and increase of the power were tagged for both paradigms, CDT
and EFT, and compared among themselves, to get an estimation of similarities in temporal
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developments of the frequency power. Fig. 8.2D illustrates the outcome of this type of
analysis, dividing the figure into four conditions of overlapping tags for the two paradigms.
The color code in each panel refers to the sum of significant channels, normalized to
the number of channels per participant and to the maximal value of significant channels,
exhibiting the specific tag indicated by the panel title. The individual color values are
broken down to frequency band and participant. Significant decrease for both paradigms
as well as a significant increase in the lower frequency bands (< 30Hz) can be seen in the
data for most of the participants. However, for all participants an increase in the gamma
band is prominent, covering the bands from 55Hz to 130Hz, as already discussed in
Chap. 7. For some of the participants the manifestation is present in more channels than
for others, according to the specific implantation and the adjacent brain area.

8.5 Compilation of Different Transfer Approaches
Initially the output of three different transfer approaches was examined, choosing a
small number of post-training epochs compared to the number of epochs (n = 200) in
the pretraining with the first data set. An assembly of the results is given in Tab. 8.2,
showing the median accuracy over the participants. Errors were estimated by selecting
the interquartile range of the bootstrapped samples per interval and technique. For each of
the three implementations, the network was pretrained on a given data set Di, while a then
unknown set Dj was used for testing or fine tuning, respectively. The whole data were
processed in a way that the feature space remained the same for the two sets. Therefore
an adjustment of the input layer was not necessary.

Table 8.2: Median accuracies for different transfer approaches

fine tuning on DCDT (network pretrained on DEFT )

layers epochs -0.5 - 1s -0.25 - 0.75s 0 - 1s

all 0 (50.5 ± 1.1) % (49.3 ± 0.7) % (48.8 ± 2.0) %
all 10 (67.5 ± 1.4) % (66.8 ± 10.2) % (69.8 ± 3.3) %
last 50 (61.3 ± 2.9) % (63.0 ± 1.5) % (63.0 ± 5.8) %

fine tuning on DEFT (network pretrained on DCDT )

layers epochs -0.5 - 1s -0.25 - 0.75s 0 - 1s

all 0 (54.0 ± 4.9) % (57.5 ± 6.7) % (54.2 ± 3.6) %
all 10 (73.4 ± 7.9) % (72.1 ± 7.9) % (76.8 ± 13.5) %
last 50 (66.7 ± 4.0) % (68.9 ± 2.9) % (59.5 ± 6.6) %

The first approach consisted of the pretraining and subsequently classification on the
second unseen set Dj based on the predefined weights without fine tuning. Generalizing
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from EFT to CDT, the deep CNN was not able to predict the true classes of the tasks
and presented poor performances around chance. For the transfer from the CDT to the
EFT data set accuracies were slightly better, exceeding chance level and showing a peak
performance of (57.5± 6.7) % for the interval −0.25 to 0.75 s.

Secondly, the pretrained network was fine tuned by training on a then unknown data
set Dj for n = 10 epochs with a smaller learning rate. Here indeed the network learns
informative features and obtains accuracies around 70 % for both of the paradigms.
However, comparison with the performances given in Tab. 8.1 indicates that there is no
enhancement when using the pretraining. To the contrary, the accuracies do not yield the
high values obtained by training directly on the classification data set training for n = 10
epochs.

The third implementation was inspired by techniques from computer vision, where
networks are pretrained by a huge training set and only a few last layers are trained again
by a smaller set of similar data to fine tune the weights in the deeper layers. This idea
was captured and all layers after pretraining were frozen and only the weights of the last
classification layer were adjusted. In both data sets performances yielded accuracies of
60 % and higher, but not reaching the values obtained when fine tuning the whole network,
even with less epochs.

8.6 Performance Dependency on the Amount of Data
Again, the network was pretrained on a given data set Di to implement the weights. To
draw a comparison between conditions with only few data and situations where more data
are available, the second data set Dj was selected and the amount of data used for fine
tuning was gradually increased from 10 % to 100 % of the available training data (80 %
of the entire data), once more employing a smaller learning rate as in the pretraining.
Median accuracies and the underlying distributions are presented in Fig. 8.3A (top) for
Dj = DCDT and Fig. 8.3B (top) for Dj = DEFT . The boxes depict the interquartile range,
the whiskers extend to the most extreme data points and outliers are drawn as asterisks.
The plots at the bottom of each panel reveal the distribution of the intra-participant
difference between the two compared decoding accuracies. E.g. to obtain the values for
Fig. 8.3A the difference ACCtransf − ACC was calculated for each participant, where
ACCtransf corresponds to the accuracy gained with pretraining while ACC corresponds
to the accuracy achieved without pretraining. For decoding on DCDT , Fig. 8.3A, there is
no big difference between the two conditions. Even with less data for the final training, the
pretraining cannot enhance the performance. In contrast, in Fig. 8.3B the pretraining on
DCDT has the effect that for a decreasing amount of data the performance gradually gets
better, exhibiting significant differences of median accuracies up to 10 % for a fraction
of 10 % of the training data. The distribution of the intra-participant differences for
the smaller amount of used data confirm this trend. Median accuracies yielded with
pretraining are consistently better than in cases when only the training on the unseen set
was performed. Due to the relatively small number of participants, significance was tested
on the level of single trials.



140
CHAPTER 8. CROSS-PARADIGM PRETRAINING OF CONVOLUTIONAL NEURAL

NETWORKS

Figure 8.3: Contrast of median accuracies for vanishing data. Accuracies obtained by stepwise reduction
of available training data DCDT , comparing (a) the training only on DCDT to (b) pretraining on DEFT and
then fine tuning on DCDT (A, top) and vice versa for DEFT (B, top). C (top) pretraining on DCDT and
fine tuning on DEFT compared to pretraining on DCDT∗ with shuffled labels and fine tuning on DEFT .
A-C (bottom) Accuracy distribution of intra participant difference, e.g. ACCtransf −ACCCDT for A. *
indicates significance of the difference with p < 0.05.

A last comparison claims to test whether the distinction between the two cases originates
from a transfer of more general features of the brain signals and not the true underlying
conditions. Therefore, the performed transfer was contrasted to the decoding results
of pretraining on DCDT with randomly shuffled labels and then fine tuned on DEFT .
Hereby the network wasn’t able to learn the features of the two conditions. Indeed the
results show that the decoding using unshuffled labels during the pretraining performs
clearly better for decreasing data, as illustrated in 8.3C. The lower plot again shows
the distribution of the intra-participant difference, where the values were determined
by ACCtransf − ACCshuffle. Here, too, differences for the fewer data exhibit positive
median values and distributions mainly over zero.
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8.7 Related Work
After revolutionizing fields like computer vision, deep learning methods have also recently
been used to improve classification in applications based on brain computer interfaces
(BCIs) [219]. A deep belief network model was used to distinguish motor imagery tasks
[13], outperforming support vector machines (SVM) [73], or to extract features of EEG
signals [288]. Other approaches to decode EEG data e.g. used deep convolutional neural
networks for feature extraction and visualization [158], or built a recurrent convolutional
neural network architecture to model cognitive events from EEG data [26], applying
multi-dimensional features. Likewise for intracranial EEG data, deep neural networks
supported classification of epileptic signals [3, 15, 169].

However, performances of deep learning methods are strongly dependent on the amount
of available data. Furthermore, the different methods are mostly restricted to certain con-
ditions when it comes to the design of the data. Assumptions like equal underlying
distributions or feature spaces may pertain in classical image recognition tasks, but are
mostly not satisfied for real-world applications based on human brain signals. Intra- and
inter-individual varieties cause conditions where performances of exactly the same classi-
fier change daily. Also quite similar tasks can exhibit completely different efficiencies
in distinguishing classes. In fields such as computer vision, deep learning methods have
been enhanced by approaches for transfer learning [259, 313], especially when only small
data are given to train a network. Models, pretrained upon extensive databases [94],
built the foundation for significant enhancements for example in object categorization
or image segmentation [112, 143, 159]. The networks seem to learn the fundamental
constitution of the training data to utilize the information for classification in other similar
sets. Real-life applications subsist in smooth and fast handling, therefore long training
periods are unwanted and collecting substantial real-time data goes beyond the constraints
of useful application.

Recently, transfer learning techniques have found their way into the context of BCI
implementations [178]. Different approaches are applied e.g. to solve a transfer between
different types of error-related potentials [189] using a linear support vector machine or
to find a way to deal with deviation in latencies [175] or signal variations [174] in brain
controlled interfaces, based on linear discriminant analysis (LDA) [45]. Implementations
reverting to deep CNNs already have generalized non-invasive error-related recordings
across subjects, without fine tuning the network again [353]. However, there is still
little utilization and transfer learning across different error decoding tasks for intracranial
human brain data in combination with deep CNNs has not yet been investigated.

8.8 Conclusion
In this chapter, two different issues were analyzed. First, the proof of decodability of
error-related signals in the underlying intracranial brain recordings was brought to the
fore. This was tested for two paradigms, differing by their affinity to real-life application.
Error decoding has been investigated several times using EEG data e.g. when observing
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and controlling robots [31, 176, 299], see also Chap. 3 to Chap. 5, or in real interaction
simulations [65], but not yet on the basis of intracranial recordings. Here, accuracies
up to (79.5 ± 10.3) % were obtained for the car driving task and (80.5 ± 10.8) % for
the ERIKSEN flanker task. The quite high performances reinforce the use of these data
for approaches reverting to transfer approaches. However, the high errors show non-
negligible differences of the results, which certainly should be treated with caution.
Different patients were equipped with differing implantations, which in turn covered
different brain areas. Thus, it cannot be excluded that more or less informative channels
were given in the varying data sets, leading necessarily to diverse decoding performances.
Because of the different implantations, it was abstained from an inter-subject transfer. The
previous chapter analyzed the coverage in detail and gave hints on the contributing areas
regarding the error processing. This information may used in future approaches based on
intracranial recordings to select more informative features and discard the ones that carry
no information about error processes.

The second aspect concerned the similarity of the data sets gained by the different
paradigms and their transferability. Time-frequency spectra of same channels revealed
striking similarities for some of the channels. More precise examinations of frequency-
band dependent time-series of the power spectral density uncovered an extensive in-
crease of significant channels in the gamma band between 55Hz and 130Hz, as already
indicated in [351] and in Chap. 7. Likewise, the results indicate a similarity in the
characteristics of the data for the two distinct paradigms.

A comparison of several transfer approaches for the whole extent of data but a lower
number of epochs did not lead to improvement of the decoding. When the network was
trained directly with the objective data set exclusively, higher accuracies were yielded
compared to pretraining the network. As already shown by [353] on EEG data, a direct
transfer without further fine tuning did not succeed.

In many cases, acquiring intracranial data is hardly possible and raised data sets are
often not extensive. This study illustrates a significant improvement of decoding for
decreasing amounts of data when the network is pretrained by a similar set. Interchanging
the two data sets led to no enhancements, which might be explained by the fact that in
this case the pretraining was performed on the set comprising only few trials and therefor
possibly made the generalities of the conditions not sufficiently or hardly learnable.
Instead the question arises whether, for a transfer, the relation of the amount of data used
for pre- and post-training plays a determining role for the applicability of this technique.
Certainly, a degree of similarity between the data sets has to be given, also with respect to
the manifestation of the two conditions, which could be shown here by randomization of
labels.

Several interesting questions and approaches can be deduced from these results. E.g. a
network might be trained on an extensive set of non-invasive data to learn problem-specific
characteristics, which subsequently can be fine tuned by a small intracranial data set. Here,
a change of network architecture can make a transfer possible, assuming data in different
feature spaces. Likewise, data augmentation can contribute to advance classification in
rather small data sets.



Chapter 9

Conclusions

9.1 Summary

In the context of this thesis, new concepts for control signals to drive and optimize brain
computer interfaces were worked out, that might come into application when humans
collaborate with intelligent robotic systems. Based on the analysis of invasive and non-
invasive recordings, different machine learning approaches were compared and applied
for the detection of both observed and committed errors using human brain signals. In
order to advance the basic understanding of error processing in the human brain, the
extensive data sets were tested for neurophysiological patterns and correlations, using
paradigms of different modalities. For these two paradigms, the transfer of error-related
information across paradigms was also tested using deep convolutional neural networks
and the dependence on the amount of data available was examined. The last essential part
of the thesis was the development and application of an algorithm for the assignment of
electrode contacts to brain areas, which considers individual characteristics and is based
on spatial retransformation. This approach was realized within a user-friendly software,
which has further functions besides the basic application. For each of the proposed
approaches, the necessary theoretical foundations were created, experiments were carried
out and the connection to related literature was established.

First, the fundamental question was examined whether errors made by robotic systems
and observed by a human user can in principle be decoded from human EEG. For
this purpose, a large data set based on non-invasive EEG measurements was generated,
describing phenomena while healthy participants observed faulty performance of pouring
and lifting tasks by robots. These possible scenes from a human-robot collaboration
were deliberately selected as tasks in order to mimic such collaborative situations. In
order to suppress any interference signals, the experiments were carried out inside an
active-shielding FARADAY cage and all electrical components were decoupled from the
electricity grid. Also, muscular and saccadic artifacts were largely absent. The decoding
was realized using a conventional filter bank common spatial patterns (FBCSP) algorithm
for EEG. It turned out that this algorithm was able to distinguish the erroneous from
correct execution as well as the type of robots. Before, neither the error detection when
observing robots nor the differentiation of robot types on the basis of EEG could have
been shown. The fact that the events ”error” and ”robot type” did not occur discretely
over time but were rather of a continuous nature made the classification process more
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difficult, but also underlines the value of the results achieved.
In a further step, an attempt was made to improve the performance of the decoding. If

humans and robots work closely together, the reliability of the automated safety systems
is extremely important and the recognition of signals is decisive. In addition to the
conventional regularized linear discriminant analysis (rLDA), a deep convolutional neural
network (CNN) was installed, which has already proven its strength in other disciplines
but is still relatively new in the field of EEG decoding. In this problem with highly
practical relevance, the performance on the decoder side can be significantly improved, if
the classifier is based on a CNN, compared to rLDA and FBCSP results. The CNN thus
revealed its potential for a more efficient implementation of error detection systems. The
learned features were visualized to provide information about the relevance of different
features for the performance of the decoding. Both visualizations and correlations of
the different methods across participants indicated that the network for these processes
seemed to use more time-related information for its decisions, and the visualizations
could provide information about the cortical distribution of the signals. The CNNs also
performed significantly better than the comparison methods in distinguishing between
robot types. In this case, the decisions also appear to have been made on features in
the time domain, with the visualizations providing hints to the visual processing of the
different stimuli.

In addition to measurements based on non-invasive EEG, it is also possible to make
recordings directly at the tissue of the brain. However, implantations lead to deformations
of the soft tissue and the assignment of electrode contacts to brain areas based on image
data is extremely difficult, especially in the cortical regions. The individual characteristics
that differ from patient to patient also make this assignment more difficult. A new
assignment algorithm is presented which solves this problem. The method makes use
of individual landmarks in order to be able to select or exclude brain areas, and uses
a cortical retransformation to compensate for the deformations of the tissue. The final
output of the probabilities for the participation of an area to the electrode contact signal is
calculated based on existing probabilistic, cytoarchitectonically-defined maps. A software
environment allows a user-friendly application of the underlying methods and provides
a 3D visualization of the results. Especially for users without programming experience,
the tool allows an application of the algorithms required especially in the clinical field.
The evaluation of the method showed that the consideration of individual anatomical
landmarks prevented in about 8− 10 % of the cases false lobar assignment and improved
the overall neuroanatomical assignment in iEEG.

The question was investigated how the previously non-invasively shown phenomena
of error-related brain responses behave in the case of measurements with intracranial
EEG, especially if these errors were caused by the user himself. For this purpose, two
data sets were generated which provoked both errors in the execution by the participating
epilepsy patients, but whose modalities differed in their proximity to everyday life. With
a total number of 1552 electrode contacts in different positions, the data set showed a
comprehensive coverage of the brains areas. The further investigation of error-related
brain signals could provide a broad spectrum of information regarding error processing in
the brain and the generated data set provides the basis for extensive neurophysiological
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investigations in this area. In addition, the error-related power increase of the different
frequency bands turned out to be a dominant feature in the processing. Another advantage
of the study was the fact that all patients participated in both paradigms and thus it could
be revealed which of the discovered characteristics were common. Besides, it appeared
that simultaneously activated regions lie mainly in frontocortical areas, but also in the
anterior cingulate cortex, and several so far not to error-processing related areas exhibited
a spectral response.

Based on the comprehensive set of intracranial recordings, the errors committed by
users could be decoded for both paradigms, using the CNN architecture. It should be
mentioned that there was neither a selection of patients nor electrode contacts, which
in principle did not protect of little or no information in numerous channels. A look
at the time-frequency spectra revealed some astonishing similarities between different
paradigms but the same electrode contacts. This finding motivated an approach that
transfers information across paradigms and uses it for further classification. Based on a
CNN architecture, the network was pretrained using the data of one paradigm and then
classified on the second data set with successively increasing availability of data. The
method achieved significant improvements for small amounts of available data and can
be applied in numerous context, e.g., when transferring knowledge to detection of errors
committed by intelligent robotic effectors.

In the scope of this thesis, solutions and answers to the following questions could be
developed:

• Can the non-invasive EEG of human observers be used to decode faulty execution
of robotic systems?

• Can the classification of error-related signals be improved by using deep learning?
Does visualization help to interpret the results neurophysiologically?

• Is it in principle possible to distinguish robot types based on the EEG and how does
the type of robot affect the detection of errors? Do criteria such as the number of
human similarity characteristics have an influence on the results?

• Can error decoding based on intracranial recordings take place with deep learning
when users make errors themselves? Does the performance depend on how strong
the error is subjectively perceived or how realistic it seems to be?

• Are convolutional neural networks (CNNs) able to learn generalizing information
in one task in order to use it profitably in another task?

• Can the intracranial EEG contribute to an understanding of the temporal and spatial
processing of error processes? Is there any indication of decisive features in these
processes?

• How can the difficulties in assigning intracranial electrode contacts to underlying
brain areas be solved, if for example deformations due to implantation but also
individual characteristics complicate the procedure?
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Based on the solutions developed, we believe that this work makes a valuable contribu-
tion to the detection of error-related signals in the human brain, although the findings do
not necessarily have to be limited to this signal type. The work also makes fundamental
contributions to the ongoing neurophysiological examination of error signals in particular.
The newly developed method ELAS ensures reliable assignment of electrode contact to
brain areas and thus correct interpretation of phenomena that are examined on the basis of
intracranial recordings.

9.2 Outlook
This thesis has made important contributions to error detection using human brain signals.
In addition, it has been shown that CNNs are a promising candidate to realize reliable
detection systems in future applications beyond pure research. The studies on which this
thesis is based on have been specifically designed to come close to future scenarios in
which autonomous robots support via BCI users, as for instance self-feeding or go-and-
fetch tasks. Even if the performances could be significantly improved, though, accuracies
are still far from practical applicability. However, there are recent advances in deep
learning research that have the potential to further improve CNNs, such as automatic
hyperparameter optimization and architecture search, including recurrent and residual
network architectures, data augmentation, using 3D convolutions, or increasing the amount
of training data. Furthermore, in this thesis, when decoding on invasive recordings, it
is refrained from profitably using findings from neurophysiological investigations for
decoding. Appropriate feature selection could lead to further improvements, especially
in the case of iEEG. There are also other promising approaches, such as RIEMANNIAN

geometry [23, 80] for decoding on non-invasive EEG, which find other ways to extract
classifying features from available data. Overall it particularly would be exciting to verify
classification results and further comparisons for online applications.

In an everyday BCI scenario, a system should be designed to be as user-friendly as
possible. However, brain signals exhibit individual characteristics and a calibration is
needed for new users. CNNs may require a large amount of data, which would result
in an undesired long calibration phase. Generalization of relevant features could help
here. In this thesis, it could be shown that the approach of generalization can lead to
improvements in decoding for little data, but the potential is far from exhausted and
numerous other possible applications have to be examined. Several interesting questions
and approaches can be deduced from the results in this thesis. E.g. a network might be
trained on an extensive set of non-invasive data to learn problem-specific characteristics,
which subsequently can be fine tuned by a small intracranial data set. In cases of different
feature spaces, a change of network architecture can make a transfer possible. In addition,
the results raise the question of whether the relation of the amount of data used for
pretraining plays a determining role for the applicability of this technique. The common
peculiarities and patterns of error processing that have been worked out for different
paradigms could also provide information about the nature of the generalizing features.

In addition to the practical application of the error-related insights, further findings



9.2. OUTLOOK 147

can also contribute to a better understanding of error processing, but also of the general
functioning of our brain. For decoding on non-invasive data, the visualization of learned
features showed activity in occipital visual areas, for example. Here the findings could
be taken up and investigated to what extent the decodability of different visual inputs
depends on the subjective interpretation as actual error. Closely related to this, would
be the investigation of how visual, affective, and movement-related brain systems are
involved in the generation of the differential responses to robot action. The insights gained
in this thesis give first clues and leave room for further investigations of the data, but also
in the field in general. A possible approach would be to create a model of the temporal
development of an error signal and its propagation via the brain. This relationship can be
investigated separately for the different frequency bands. There are also other features
besides the error-related power increase that could be investigated, but have been omitted
here. Information about the temporal and spatial course of the signal could be helpful if
the exact time of a signal to be decoded is not known. Ultimately, the question can be
asked to what extent the signals from error observation and those from committing errors
show similarities. This question could not be covered in the context of this thesis.

According to faulty robotic execution, another question to be addressed in the future
would be which kind of errors are generally suitable for decoding of the user’s perceived
correctness and how they differ from non-decodable errors. Though, when working with
robots, there are other aspects besides efficiency of error detection that can be considered.
For example, subtle questions can be examined about how different robot types affect
human users, e.g. regarding a sense of security, which might correlate to its degree of
humanoid appearance. It could be demonstrated that the appearance of a robot type can
be distinguished by the brain signals of a human observer. In the case of the observation
of two robots, the visualization of the features discriminating the robot type showed
activations in areas attributed to the human mirror neuron system. The engagement of the
mirror neuron system might be modulated by the degree of humanoid appearance of the
robot. More in-depth investigations of this correlation on the optical differences between
robot types with respect to human similarity could provide interesting insights.

The developed interface ELAS is based on maps which are continuously updated and
supplemented. These updates ensure that the mapping is always up to date and ELAS
can contribute to a better understanding of investigated cerebral phenomena. It is also
noteworthy that application of a neuroanatomical framework, that has been derived from
the healthy brain, to iEEG data from epilepsy patients is not necessarily just a limiting
factor, but also opens up possibilities to investigate reorganization of cortical function.
Overall, the evaluation of the novel method indicates that if atlas-based anatomical
analysis of iEEG data in general, and probabilistic methods in particular, would find a
more widespread use in iEEG research, this would also spur further interest in optimizing
the spatial normalization of structural imaging data, particularly of post-operative MRIs.
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membrane. Inspired by [329] B Sketch of a neuron. The arrows indicate
the direction of the signal propagation. C Mathematical model inspired by
the biological neuron [185]. The input of a preceding neuron is weighted
at the synapse. The dendrites translate the weighted signals to the soma,
where it is added up. At the axon hillock, the output signal is initiated
by the activation Θ as soon as a certain threshold is exceeded. The axon
propagates the output to succeeding neurons. D Sketch of a pyramidal
cell, which only appears in the cerebral cortex. It can be characterized by
its pyramid-like body and the long dendrites. The pyramidal cells provide
the largest contribution to the potential on the scalp. . . . . . . . . . . . 16

2.3 Generation of EEG signals. Left: the neurons propagate the electrical
signals to the cortex, where the cerebrospinal fluid (CSF), the skull and
the scalp have to be transmitted. At the scalp, the voltage can be measured
by the EEG electrode. Right: schematical description of the pyramidal
cells at the cortical surface, generating dipoles by the propagation of the
electrical signals. Synchronous activity of several neighbouring neurons
generate the local field potential (LFP). Inspired by [1]. . . . . . . . . . 19
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2.4 Illustration of the cortical areas. A Subdivision of the cortex into
frontal, parietal, temporal and occipital lobe. B Schematic standard 64-
channels montage over underlying lobar allocation, with colors matching
the lobar color code from A. Inspired by [1]. . . . . . . . . . . . . . . . 20

2.5 Concept of a Brain Computer Interface. The user performs a mental
task with the intention to initiate a certain execution. The brain recordings
are pre-processed before features are extracted and patterns are classified.
The decoding results feed either a planner for a robotic effector or any
other application, or both of it. Likewise, the user gets a feedback about
the results of the classification. . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Spectrogram of the signal of an exemplary human intracranial elec-
trode contact. According to a certain event (t = 0 s) the spectral de-
composition was calculated for frequencies < 200Hz and a sliding time
window of 0.05 s. The relative power values are determined according to
an event-independent baseline. . . . . . . . . . . . . . . . . . . . . . . 30

2.7 General machine learning approach. A To train the model, the input is
analyzed for features and then passed to the classifier, which distinguishes
between classes. Here, feature extraction and classification are separated.
B Machine learning approach where the classifier is performing feature
extraction and classification jointly, like e.g. in artificial neural networks.
Inspired by https://www.xenonstack.com. . . . . . . . . . . . . . . . . . 31

2.8 Exemplaric projections of a 3D classification problem. The three-
dimensional distributions of the classes are projected onto a two-dimensional
subspace, according to the hyperplane normals W1 and W2. LDA searches
for an optimal projection to maximize the distance between the distribu-
tions and to minimize the within-class variance. In this case, the projection
onto the hyperplane defined by W1 represents a rather poor decision for
a projection to distinguish the classes. In contrast, the second projec-
tion yields in a good separation of classes while keeping the variances
minimal. Inspired by [104]. . . . . . . . . . . . . . . . . . . . . . . . . 33

2.9 Filter Bank Common Spatial Pattern architecture. The architecture in
this thesis is built according to the recommendations in [14]. The brain
signals are filtered into different frequency bands. The CSP algorithm
extracts the spatial filters per band, sorted by variance. The decision on
the features is made either by an algorithm or a decision rule. In this
thesis, the final classification is performed by an rLDA unit. . . . . . . . 38

2.10 The perceptron. The input units xj, j = 1, ..., d are weighted by the
according weights wj , where w0 stand for the bias. y is given by the
summed and weighted inputs. The output of the perceptron is compared
to e.g. a step function. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

https://www.xenonstack.com/blog/log-analytics-deep-machine-learning-ai/
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2.11 Structure of a multilayer perceptron. The weights wij establish a
weighted connection between the input neurons xi and the neurons zj .
The zj, yk, ... represent the neurons of the hidden layers, whereby each
neuron receives a linear combination of preceding neurons. The activation
function transforms the linear combination before passing it to succeeding
neurons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.12 Schematic overview of a single neuron. The summed and weighted
predecessor inputs for neuron yj are defined as netj . The netj are passed
to the activation function before contributing to the input for preceding
neurons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.13 Basic function of a convolutional neural networks. A Exemplary
description of convolution of a 2D grid, using a 3× 3 kernel without zero
padding and a stride of 1. The convolution of the green square with the
filter kernel delivers a scalar value. B Structure of a typical CNN. Per
convolutional layer, the network exhibits several filters to extract different
features, resulting in an increase in some of the dimensions. The pooling
layer is represented by the subsampling. The output is given after the
fully connected (dense) layer. Inspired by [310] . . . . . . . . . . . . . 46

2.14 Deep convolutional neural network architecture as used in this thesis.
The basic structure consists of four blocks, containing convolution, an
activation and a max pooling each. The first block contains two convolu-
tional layers, performing subsequently a temporal convolution followed
by a linear activation and a spatial convolution followed by an exponential
linear unit. The classification is done by the final dense layer, discriminat-
ing between two classes. The light green rectangles are the layers inputs
while the dark green rectangles represent the filter kernels. Consider
that some of the parameters in this specific scheme model depend on the
given input. The number of time points and channels varied for different
paradigms and analyses. In this example, the samples consisted of 246
time points and 64 channels. . . . . . . . . . . . . . . . . . . . . . . . 48

3.1 Visual stimuli, showing a correct and an incorrect condition. A In the
first set a robotic arm performed a pouring task, either hitting or missing
the vessel. B In a second set either a humanoid robots (NAO) or a non-
humanoid robot (NoHu) performed a grasping task, either managing or
failing to lift a ball from the ground. Slide mount by pixelio. . . . . . . 57

3.2 Timing structure of the experiments. Each trial consisted of a 2 s
fixation period, video stimulus of ∼ 7 s and an attention control task.
Altogether ≥ 720/800 trials per participant. . . . . . . . . . . . . . . . 58

3.3 Exemplary CSP-filters and activation patterns. A Error condition in the
pouring observation task, B the error condition in the lifting observation
task, and C the robot-type condition in the lifting observation task. . . . 61
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3.4 Frequency-resolved CSP-decoding results in the pouring observation
task. Accuracies of 35 frequency bands in the range between 0.5−144Hz
for 5 participants, using the decoding interval 3.3− 7.5 s relative to video
stimulus onset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 FBCSP decoding results for three different frequency ranges. A
Pouring observation task (POT) for the interval 3.3 − 7.5 s. B Error
condition of the lifting observation task (LOT) for the interval 4 − 7 s.
C Robot condition of the lifting observation task (LOT) for the interval:
0− 7 s. Significance is indicated by asterisks, * p < 0.05 ** p < 0.01. . 63

4.1 Analysis of participants button press according to error appearance.
(Left) Evaluation of average moment of error awareness of around (5.4±
0.5) s. (Right) 5-fractile range of the overall button press time for all
participants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Pairwise comparison of decoding performance. A Decoding accuracies
of CNN vs rLDA vs FBCSP for the pouring observation task. B Decoding
accuracies of CNN vs rLDA vs FBCSP for the lifting observation task. . 75

4.3 Correlation of CNN and rLDA results for both paradigms. . . . . . 76

4.4 Time-resolved voltage feature input-perturbation network-prediction
correlation maps. A Error decoding in the POT, averaged over 30
iterations and all POT participants (top). Time-resolved normalized L1
distance ∆norm between (1) video frames for both conditions (bottom,
black) and of (2) sequential pairs of video frames for both conditions
(bottom, red). B Visualizations for LOT error decoding, all conventions
as in A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1 Visual stimuli showing different robot types during lifting task. For
both conditions, correct and incorrect, there were stimuli with two differ-
ent robot types. Both robots try to approach, grasp and lift the ball, either
managing or failing to lift a ball from the ground. Slide mount by pixelio. 82

5.2 Robot-related error decoding. Accuracies for error decoding using only
stimuli with one type of robot each. . . . . . . . . . . . . . . . . . . . 84

5.3 Pairwise comparison of decoding performance and correlation of
these. A Decoding accuracies of CNN vs rLDA vs FBCSP for distinction
between the two robots. B Pairwise linear regression of the participants
performances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4 Time-resolved voltage feature input-perturbation network-prediction
correlation maps. Robot type decoding, averaged over participants and
30 iterations, and corresponding video frames (top rows). Time-resolved
normalized L1 distance of sequential pairs of video frames for both
conditions (bottom row). . . . . . . . . . . . . . . . . . . . . . . . . . 87



LIST OF FIGURES 153

6.1 Flowchart of the ELAS electrode assignment and visualization proce-
dure. The normalized pre- and post-implant MRIs serve as an input and
basis for the electrode marking. The procedure can be started at any inter-
mediate step, assumed that the required intermediate results already exist.
The ELAS toolbox provides the possibility to label electrodes according to
imported MNI (Montreal Neurological Institute) coordinates. In a second
step, the electrode contacts are assigned to cytoarchitectonically defined
brain areas. Finally, the results can be visualized, exported as a MATLAB
file and/or transformed into wavefront OBJ files for visualization in virtual
reality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Volumetric normalization of post-operative MRI data and analysis of
the error in normalization. A Horizontal slice of normalized MRI of P4
and of the T1 template used for normalization. Yellow box encompasses
the normalized brain and the T1 template at the same position, showing
a good spatial correspondence of the anterior/posterior as well as of the
lateral extent of the brain in the normalized image to the template image.
B A sector (41×41×41 voxels) of the normalized pre-operative MRI and
the same sector, i.e., with the same MNI coordinates, of the normalized
post-operative MRI is shown exemplarily for P14. In the lower corner of
the pre-operative MRI sector, one reference voxel (red) and the respective
reference cuboid (5× 5× 5 voxels) is shown exemplarily. In the same
corner of the post-operative MRI sector, the respective search voxel
(green) and the search cuboid, which was shifted in one-voxel steps from
−5 to +5 voxels in each spatial direction, is shown. The search cuboid
(of the post-operative MRI) with the highest correlation to the reference
cuboid (of the pe-operative MRI) was used to estimate the ground truth
with regard to the position of the respective search voxel. C Correlation
values of the search cuboid with the highest correlation to the reference
cuboid are shown color-encoded for all voxels of the MRI sector. D
Standard deviation of the mean of all correlation values of each reference
cuboid are shown color-encoded for all voxels of the MRI sector. E
3D distance between the original position and the “true position” of all
voxels of the MRI sector is shown color-encoded. F 3D distance as in
e), but voxels with a correlation value smaller than 0.8 and/or a standard
deviation smaller than 0.3 are masked . . . . . . . . . . . . . . . . . . 96
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6.3 Hierarchical probabilistic assignment. The cerebellum was removed
to allow assignment of occipito-basal electrodes (examples from P11).
A and B: Horizontal and sagittal views of an electrode void artifact in a
post-implantation MRI. Yellow crosshairs: center of one void artifact. C
Cortical projection using orthogonal vectors (red) on the cortical hull. D
Median-sagittal slice of the Colin standard brain (red) with the cerebellum
removed (grey). E Electrode positions (white stars) in MNI space and with
respect to the central sulcus visualized in yellow. F Operating principle
of the HPA (BA: BRODMANN Area, all other abbreviations as in the SPM
Anatomy Toolbox v2.2c). According to anatomical landmarks derived
from the individual post-implantation MRI, the electrodes are assigned to
lobes or lobar poolings. According to the performed assignment, exclusive
MPMs are generated that are subsequently used for the probabilistic
assignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4 Probabilistic cytoarchitectonic assignment of ECoG electrodes. A
Cytoarchitectonic probability map of Area 1 visualized on a standard
brain. Probability of each individual voxel to be located in Area 1 is
color-coded. B Cytoarchitectonic probability map of the parietal area
IPC (PF); conventions as in (A). C The resulting map, derived from the
probability information presented under (A) and (B), shows at which
positions these areas are more likely > 50 %than other areas. Orange:
Area 1; blue: IPC (PF). The cyan box indicates the region magnified
in the following panel D. D To assign ECoG electrode contacts using
the IPMs, a method is described based on surface orthogonals (red) of
a smoothed 3D cortical hull (black) fitted through the ECoG electrode
positions (yellow). This allows the definition of cortical voxels beneath
the individual electrode contacts (magenta) and assignment of electrodes
to the most likely brain areas according to the IPMs. . . . . . . . . . . . 100

6.5 Visualization in ELAS. A Interface for labeling of intracranial electrodes.
B The standard brain, the cytoarchitectonically defined brain areas, and
the electrode contacts can be visualized in 3D. . . . . . . . . . . . . . . 102
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6.6 Standard PA (A) and hierarchical PA (B) results for a 64-contact
ECoG grid (P3). Black dots: electrode contacts; black lines: borders
between areas; blue: frontal areas; yellow: parietal areas; red: temporal
areas; grey: areas not covered by the currently-available probability maps.
TC: temporal cortex; all remaining abbreviations as in the SPM Anatomy
Toolbox v1.8. Grey and olive lines: central sulcus (CS) and lateral sulcus
(LS) derived from individual post-implantation MRI data and used in the
hierarchical PA of ELAS (B). C High-gamma (60 − 400Hz) brain re-
sponses during speech production of P3. Black dots: significant responses
(see [296] for further details). Grey and olive lines: CS and LS derived
from individual structural MRI as in B; purple line: fronto-parietal border
resulting from standard PA (i.e., only using probabilistic atlas information
but not the individual course of the CS and LS). Cyan star: electrode
with significant response located pre-central in the individual MRI, but
post-central according to the standard PA. White squares: electrodes with
significant response located on the CS in the individual MRI, but pre-
or post-central according to the standard PA. D as (C) for contralateral
arm movements (data as in [296]). The individual MRI (insert) clearly
shows a postcentral position of the electrode marked by the white star in
the activity map, in conflict to a precentral assignment according to the
standard PA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.7 Impact of hierarchy. A Impact of of the inclusion of individual macro-
anatomical landmarks of the ELAS approach on lobe assignment. Using
standard PA, some contacts are not assigned to any lobe, as the proba-
bilistic atlas (cf. [107]) is not yet complete. With the ELAS approach, all
contacts could be assigned to a lobe based on the position of the CS and
LS in the individual MRIs, except for those located directly on the CS
or LS. B Direction of lobe assignment changes between lobes for both
assignment methods are shown. . . . . . . . . . . . . . . . . . . . . . . 105

6.8 Results of HPA, PA and dPA of 687 grid electrodes. Abbreviations for
areas as in the SPM Anatomy Toolbox. . . . . . . . . . . . . . . . . . . 106
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6.9 Assignment of an occipital subdural strip electrode to visual areas
and time-frequency spectra of saccade-related brain activity (P11).
A Surface extent of MPMs of areas 17, 18, hoC3v (V3) and hoC4v
(V4) are shown on a standard brain surface. Electrode positions of two
occipital subdural strips are marked as dots in the same color as the
corresponding probabilistically-defined areas. White dots show electrode
positions not assigned to any area. B Same as (A) but for two occipito-
basal electrode strips. The viewing angle used in (A) and (B) is illustrated
in the insert (bottom). Middle panels: Average time-frequency spectra
of brain activity recorded at electrodes illustrated in (A) and (B) during
saccades. Relative magnitudes were averaged over all recordings of
electrode contacts located in the respective area. Using the probabilistic
method HPA, saccade-related responses are shown for each of the areas
V1-V3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.10 Functional brain regions revealed by ESM and electrode assignments
to cytoarchitectonic areas using HPA (P2). For convenience, some
areas are labeled with abbreviations (7A: SPL(7A), 7PC: SPL(7PC), PGa:
IPC(PGa), BA 2: Area 2 and PFop: IPC(PFop)). Hand and leg symbols
indicate ESM effects. Frontal areas are illustrated in red, parietal areas in
blue and the temporal areas in green; abbreviations as in Fig. 6.8. HPA
assignment clearly showed that sensorimotor responses extended into
the prefrontal cortex, possibly due to reorganization induced by a focal
cortical dysplasia in the superior premotor region (shaded area). . . . . 108

7.1 Two different paradigms to elicit error-related responses. A A schematic
sketch of the paradigm using an ERIKSEN flanker task, adapted from
[133]. B Modified screen shot of the car driving task, in which the par-
ticipant has to collect rewards and avoid collisions with obstacles (here
represented by fruits and vegetables) while keeping the car on the road. 115
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7.2 Error-related activity of intracranial electrode contacts for an ex-
emplary participant P1. A Time-frequency analysis (see Sec. 2.4) for
both paradigms (CDT: left, EFT: right) and for two selected electrode
contacts where either (1) similar frequency modulation across several
bands can be seen in both paradigms (top: I4, R Insular Cortex) or (2)
characteristic activity is only observable in one paradigm (bottom: S15,
R Postcentral Gyrus). t = 0 s marks the appearance of an error. B Mean
time course of the logarithm of the relative power of frequency range
115−130Hz (blue line: CDT, red line: EFT). Standard error of the mean
is represented in light coloured areas. The contacts are arranged as in A.
C Correlation of frequency band dependent power time course of both
curves, CDT and EFT. The color value of a bin is obtained by correlation
with regard to a certain time offset τ of the two curves, white bins indicate
no significance (p < 0.01). The contacts are arranged as in A. D Position
of the exemplary electrode contacts according to the ICBM152 standard
brain [228]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.3 Spatial time-frequency similarities between CDT and EFT. A Correla-
tion of significant time-frequency bins of all channels between CDT and
EFT for an exemplary participant P1. White bins indicate no significance
(p < 0.01). The correlation of the different depictions are calculated with
regard to a certain time offset τ between CDT and EFT data. B Sum over
significant time-frequency bins over all participants. Significance is de-
termined by values extracted from A. The sum of the different depictions
is calculated with regard to a certain time offset τ between CDT and EFT
data. A & B: t = 0 s marks the appearance of an error. . . . . . . . . . 119

7.4 Significant increase and decrease of the relative power. A Significant
trend of the time course of the logarithmic relative power for an exemplary
participant, per frequency band and channel. Red indicates decrease and
increase in both paradigms, dark orange increase in both, light orange
decrease in both, yellow an increase in one but a decrease in the other
paradigm, purple increase or decrease in only one paradigm and white
indicates no significant trend. Right: Sum of significant appearances
over all channels. B Normalized sum over channels of significant appear-
ances per frequency band and participant. The Values per depiction are
normalized by the maximal number of counts over all participants and
conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.5 Normalized significant power increase. For both paradigms, CDT and
EFT, the total number of appearances of significant power increases is
depicted. The values are normalized by the maximal occurring value
within each condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
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7.6 Temporal distribution of significant power increase for distinct fre-
quency bands. Normalized sum (over participants and channels) of
significant increases per band and condition CDT (left), EFT (middle)
and both (right). Dark blue values are normalized by the maximal value
within each panel, light blue values are normalized by the maximal value
of all frequency bands within each condition (CDT: 190, EFT: 71, both:
27). The occurring of the maximal value per condition is designated
by the orange background, the red frame marks the overall maximum.
Bottom: depicted is the sum over participants, channels and frequency
bands, normalized by the individual maximum (CDT: 1772, EFT: 403,
both: 171). t = 0 s marks the appearance of an error. . . . . . . . . . . 122

7.7 Spatial distribution of significant power increase for all participants.
A-C Significant power increase in frequency-band-channel bins per area,
in relation to the total amount of electrode contacts in this area, for the
CDT (A), the EFT (B) and for the case that in both paradigms a significant
power increase was observed in the equal frequency band and channel
at the same time (C). A shows areas exhibiting proportions > 16 %, B
areas exhibiting proportions > 5.7 % and C areas exhibiting proportions
> 2.6 %. D Point clouds of areas listed in A-C, exhibiting equal color
code as in A-C. E Spatial distribution of all electrode contacts over the
ICBM152 standard brain. . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.1 Single participant deep CNN accuracies contrasted for the two paradigms
and different decoding intervals. Median accuracies per interval are
depicted by filled red symbols. . . . . . . . . . . . . . . . . . . . . . . 136

8.2 Responses in the frequency domain: A Trial-averaged time-frequency
spectra for electrode I2 located in R insular cortex, for error vs correct
in CDT (top) and EFT (bottom). B Saggital (top) and coronal (bottom)
view of the implanted electrodes for an exemplary participant, plotted on
the ICBM152 brain [228]. C Trial-averaged time-frequency spectra for
electrode S16 located in R postcentral gyrus, for error vs correct in CDT
(top) and EFT (bottom). D Normalized sum over significant channels per
frequency band and participant, itemized into decrease and increase. . . 137

8.3 Contrast of median accuracies for vanishing data. Accuracies obtained
by stepwise reduction of available training data DCDT , comparing (a) the
training only on DCDT to (b) pretraining on DEFT and then fine tuning
on DCDT (A, top) and vice versa for DEFT (B, top). C (top) pretraining
on DCDT and fine tuning on DEFT compared to pretraining on DCDT∗
with shuffled labels and fine tuning on DEFT . A-C (bottom) Accuracy
distribution of intra participant difference, e.g. ACCtransf − ACCCDT
for A. * indicates significance of the difference with p < 0.05. . . . . . 140
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Bonhage, W. Burgard, and T. Ball. Cross-paradigm pretraining of convolutional
networks improves intracranial eeg decoding. IEEE International Conference on
Systems, Man, and Cybernetics (SMC), 2018.
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[305] S. Schröer, I. Killmann, B. Frank, M. Völker, L. Fiederer, T. Ball, and W. Burgard.
An autonomous robotic assistant for drinking. In Robotics and Automation (ICRA),
2015 IEEE International Conference on, pages 6482–6487. IEEE, 2015.

[306] R. Schubert, S. Haufe, F. Blankenburg, A. Villringer, and G. Curio. Now you’ll feel
it, now you won’t: Eeg rhythms predict the effectiveness of perceptual masking.
Journal of cognitive neuroscience, 21(12):2407–2419, 2009.

[307] A. Schulze-Bonhage, H. J. Huppertz, R. M. Comeau, J. B. Honegger, J. M. Spreer,
and J. K. Zentner. Visualization of subdural strip and grid electrodes using curvilin-
ear reformatting of 3d mr imaging data sets. American journal of neuroradiology,
23(3):400–403, 2002.

[308] M. L. Seghier, A. Ramlackhansingh, J. Crinion, A. P. Leff, and C. J. Price. Le-
sion identification using unified segmentation-normalisation models and fuzzy
clustering. Neuroimage, 41(4):1253–1266, 2008.

[309] F. Sepulveda. Brain-actuated control of robot navigation. In Advances in Robot
Navigation. InTech, 2011.

[310] P. Sermanet and Y. LeCun. Traffic sign recognition with multi-scale convolutional
networks. In IJCNN, pages 2809–2813, 2011.

[311] A. Shenhav, M. M. Botvinick, and J. D. Cohen. The expected value of control: an
integrative theory of anterior cingulate cortex function. Neuron, 79(2):217–240,
2013.

[312] H. Shimodaira. Improving predictive inference under covariate shift by weighting
the log-likelihood function. Journal of statistical planning and inference, 90(2):
227–244, 2000.

[313] H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and
R. M. Summers. Deep convolutional neural networks for computer-aided detection:
Cnn architectures, dataset characteristics and transfer learning. IEEE transactions
on medical imaging, 35(5):1285–1298, 2016.

[314] A. Sinai, C. W. Bowers, C. M. Crainiceanu, D. Boatman, B. Gordon, R. P. Lesser,
F. A. Lenz, and N. E. Crone. Electrocorticographic high gamma activity versus
electrical cortical stimulation mapping of naming. Brain, 128(7):1556–1570, 2005.

[315] D. Slepian and H. O. Pollak. Prolate spheroidal wave functions, fourier analysis
and uncertainty—i. Bell System Technical Journal, 40(1):43–63, 1961.

[316] R. Spehlmann. The averaged electrical responses to diffuse and to patterned light in
the human. Electroencephalography and clinical neurophysiology, 19(6):560–569,
1965.



BIBLIOGRAPHY 189

[317] W. Speier, C. Arnold, and N. Pouratian. Integrating language models into classifiers
for bci communication: a review. Journal of neural engineering, 13(3):031002,
2016.
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