
Efficient and Smooth
Motion Planning Techniques for
Nonholonomic Wheeled Robots

Luigi Palmieri

Technische Fakultät
Albert-Ludwigs-Universität Freiburg

Dissertation zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

Betreuer: Dr. Kai O. Arras

Dissertation zur Erlangung des Doktorgrades
der Technischen Fakultät der

Albert-Ludwigs-Universität Freiburg im Breisgau

Efficient and Smooth
Motion Planning Techniques for
Nonholonomic Wheeled Robots

Luigi Palmieri

Betreuer:
Dr. Kai O. ARRAS

6. Juli 2018

Dekan: Prof. Dr. Oliver Paul
Erstgutachter: Dr. Kai O. Arras

Robert Bosch GmbH
Zweitgutachter: Prof. Dr. Wolfram Burgard

Albert-Ludwigs-Universität Freiburg
Tag der Disputation: 6. Juli 2018

4

Abstract

In the near future robots will operate in environments full of humans and work-
collaborate with them. Human environments are complex and crowded: in these
environments the fast generation of high quality robot motion is a fundamental
aspect for improving the robot’s task efficiency and its human-aware behaviors.
Driven by these needs, in this work we consider the goal of smooth and natural
real-time motion generation for nonholonomic wheeled mobile robots in com-
plex, cluttered and crowded environments.
We address this goal on different levels as follows:

• We show that by using a steer function, which exploits as much knowledge
of the nonholonomic constraints of the system as possible, single-query
sampling-based motion planners achieve both high planning efficiency and
high trajectory quality in cluttered environments.

• We propose a real-time machine learning approach for the computation of
the distance pseudo-metric for sampling-based motion planners: by using
a constant-time inference model we are able to well approximate the com-
putation of a trajectory-dependent cost function while avoiding to solve an
expensive two-point boundary value problem, thus improving the overall
performance of sampling-based motion planners.

• We present a hierarchical combination of a discrete any-angle search with
a sampling-based motion planner. Its informed sampling unit generates
states whose distribution summarizes geometric information of a smooth
any-angle path: the final trajectory generated by the sampling-based motion
planner retains the smoothness of the any-angle path.

• We introduce an informed sampling strategy that exploits learned motion
priors of flows of dynamic obstacles (i.e. pedestrians) in the form of con-
tinuous Gaussian mixture fields. An optimal sampling-based motion plan-
ner, by using this information, generates samples that allow the planner to
very efficiently generate high-quality solutions in terms of path smoothness,
path length as well as natural yet minimum control effort motion through
multi-modal representations of Gaussian mixture fields of objects’ dynam-
ics: the generated motion better adhere to the perceived and learned envir-
onment’s dynamics.

• We present a randomized approach that generates quickly a set of homo-
topically distinct and diverse K paths for a wheeled mobile robot. Generat-
ing a set of diverse paths, perhaps homotopically distinct, among static and

I

ABSTRACT

dynamic obstacles is an appealing planning strategy for wheeled mobile ro-
bots in crowded environments: in fact having a set of diverse paths allows
to qualitatively and quickly reason about multiple path hypotheses to the
goal.

• With the insights learned during the development of the methods before-
hand mentioned, we deploy a social-aware multi-hypothesis planning ar-
chitecture for wheeled mobile robot on the robot Spencer. The approach
quickly generates smooth solutions among people while respecting social
norms and being efficient in accomplishing robot-guidance tasks: the ap-
proach was deployed and intensively tested in a public crowded airport for
several dozens of kilometers.

All the contributions, introduced in this thesis, improve planning efficiency and
path quality for wheeled mobile robots in complex and crowded environments.

II

Zusammenfassung

In naher Zukunft werden sich Roboter in menschlichen Umgebungen aufhal-
ten und mit Menschen zusammen arbeiten. Eine Herausforderung stellen ins-
besondere Umgebungen dar, in denen sich sehr viele Menschen auf engem Raum
befinden und bewegen: In diesen Umgebungen ist die schnelle Generierung von
Roboterbewegungen ein grundlegender Aspekt für die Verbesserung der Effiz-
ienz des Roboters und seiner Verhaltensweisen, die den Menschen explizit ber-
ücksichtigen.

Entsprechend diesen Bedürfnissen und in Anbetracht dessen, verfolgen wir in
dieser Arbeit das Ziel, weiche und natürlich wirkende Bewegungen für nicht-
holonome, fahrende Roboter in komplexen und stark bevölkerten Umgebungen
in Echtzeit zu generieren.
Wir erreichen dieses Ziel auf verschiedenen Wegen:

• Wir zeigen, dass durch die Verwendung einer Steuerfunktion, die so viel
Wissen der nicht-holonome Einschränkungen des Systems wie möglich
ausnutzt, single-query sampling-basierte Bewegungsplaner sowohl hohe
Planungseffizienz als auch hohe Trajektorienqualität in komplexen Umge-
bungen erreichen.

• Wir schlagen einen Echtzeit-Lernansatz für die Berechnung der Distanz-
Pseudometrik für sampling-basierte Bewegungsplaner vor: Mit einem
Konstantzeit-Inferenzmodell sind wir in der Lage, die Berechnung einer
Trajektorien-abhängigen Kostenfunktion gut zu approximieren, indem
wir vermeiden, ein teures Zweipunkt-Randwertproblem zu lösen. In-
folgedessen wird die Gesamtleistung von sampling-basierten Bewegung-
splanern verbessert.

• Wir präsentieren eine hierarchische Kombination einer diskreten any-angle-
Suche mit einem sampling-basierten Bewegungsplaner. Sein informiertes
sampling erzeugt Konfigurationen, deren Wahrscheinlichkeitsverteilung
geometrische Informationen eines glatten any-angle-Wegs zusammenfasst:
Die endgültige Trajektorie, die durch den sampling-basierten Bewegungs-
planer erzeugt wird, behält die Glätte des any-angle-Wegs bei.

• Wir führen eine informierte Sampling-Strategie ein, die gelernte
Wahrnehmungspriors einer dynamischen Umgebung in Form von
kontinuierlichen Gaußschen Mixture Fields ausnutzt. Ein optimaler
sampling-basierter Bewegungsplaner erzeugt durch die Nutzung dieser

III

ZUSAMMENFASSUNG

Informationen Konfigurationen, die dem Planer eine sehr effiziente Berech-
nung von hochwertigen Lösungen in Bezug auf Wegglätte und Weglänge
erlauben. Der Planer erzeugt auch natürliche Bewegungen mit minimalem
Steuerungsaufwand durch multimodale Darstellungen von Gaußschen
Mixture Fields der Objektdynamiken: Die erzeugten Bewegungen ber-
ücksichtigen die wahrgenommene und gelernte Umgebungsdynamik
besser.

• Wir präsentieren einen randomisierten Ansatz, der schnell eine Menge
von homotopisch unterschiedlichen und vielfältigen K-Wegen für einen
mobilen Roboter mit Rädern findet. Die Erzeugung einer Reihe unter-
schiedlicher und möglicherweise homotopisch verschiedener Pfade inmit-
ten von statischen und dynamischen Hindernissen kann eine sinnvolle
Planungsstrategie für mobile Roboter in dichten Menschenmengen darstel-
len: Das Vorliegen einer gewissen Anzahl an unterschiedlichen Pfaden gest-
attet es, qualitativ und schnell verschiedene Pfadhypothesen zum Ziel zu
explorieren.

• Mit den Erkenntnissen, die bei der Entwicklung der im Vorfeld erwäh-
nten Methoden gewonnen wurden, setzen wir eine Multihypothesen-
Planungsarchitektur für mobile Roboter auf dem Roboter Spencer um, die
soziale Normen berücksichtigt. Der Ansatz wurde zu diesem Zweck in
einem stark frequentierten, öffentlichen Flughafenterminal getestet und hat
sich über mehrere Dutzend Kilometer hinweg in der Praxis erwiesen.

Alle Beiträge, die in dieser Arbeit vorgestellt wurden, verbessern Planungseffiz-
ienz und Pfadqualität für mobile Roboter in komplexen, dicht gedrängten Umge-
bungen.

IV

Ai miei genitori e fratelli,
ai miei amici vicini e lontani,

a Chiara.

V

Acknowledgements

This doctoral dissertation is the result of many collaborations and discussions
that I carried on during the PhD years with other researchers. Many of those
started with un-planned meetings during workshops, conferences and publicly
funded projects. Although its complex and hidden stratification, the world-wide
robotics scientific community offers the opportunity to study and face new inter-
esting challenges, and to meet people that are open for helping and collaborating.

I would like to thank many of them, my colleagues and friends, that have been
ready and open to discussions that contributed to this thesis. Particularly, I would
like to thank:

Timm Linder and Billy Okal that worked with me at the Social Robotics Labor-
atory and in the EU FP7 project Spencer, for all the long days (and long evenings)
spent together to push forward our research, projects and demos. Their support
was extremely beneficial especially during the integration weeks of the Spencer
project.

Andrey Rudenko, for his outstanding collaboration and his patience to run the
very last minute experiments.

Tomasz Kucner, Martin Magnusson, Rudolph Triebel for the fruitful collabora-
tions (also during the integration sessions at Schiphol airport in Amsterdam).

Armin Hornung, Felix Burget, Daniel Maier, Markus Spies (Kuderer), Chris-
toph Sprunk, Stefano de Lucia, Matthias Luber and Diego Tipaldi for their inter-
esting discussions in our laboratories in Freiburg.

Prof. Sven Koenig, an impeccable researcher and professor, for being always
ready to thoroughly discuss new ideas.

Prof. Wolfram Burgard for being a reviewer for this thesis, Prof. Moritz Diehl
and Prof. Bernhard Nebel for being members of the dissertation committee.

My PhD advisor Kai Arras, for his help during all the PhD years, for the many
interesting ideas our discussions brought, for indicating me ways to improve my
research work, for his critics and for sharing his competences.

I profoundly thank my parents, brothers and friends that cheered me up and
deeply believed in me. My sincere and mere thanks to Chiara for her understand-
ing and support during these years.

Lastly, I thankfully acknowledge that this thesis was partially supported by the
European Commission under grant agreement number FP7-ICT-600877 (SPEN-
CER).

VII

Contents

Abstract I

Zusammenfassung III

Acknowledgements VII

1 Introduction 7
1.1 Problem statement . 9
1.2 Scientific Contributions . 11
1.3 Publications . 12

1.3.1 Peer-Reviewed Journal Articles 13
1.3.2 Peer-Reviewed Conference Proceedings 13
1.3.3 Peer-Reviewed Workshop Proceedings 14

1.4 Collaborations . 14
1.5 Outline and Notation . 15

2 Foundations 17
2.1 Introduction . 17
2.2 The Configuration Space . 18
2.3 Any-Angle Path Planning on Occupancy Grids 19

2.3.1 Theta* . 20
2.4 Discrete Search Approaches with Motion Primitives 22
2.5 Sampling-based Motion Planning . 24

2.5.1 Rapidly Exploring Random Trees 25
2.5.1.1 Probabilistic completeness of RRT 27

2.5.2 Optimal Sampling-based Motion Planning 27
2.5.2.1 RRT* . 30
2.5.2.2 Further Optimal Algorithms 33

2.6 Trajectory Optimization Methods . 35
2.7 Quantify Smoothness . 37

2.7.1 Smoothness Metrics . 37
2.7.2 Behavior of the Metrics . 38

2.8 Summary . 39

3 POSQ: A Novel Extend Function for RRT* 41
3.1 Introduction . 41

1

Contents

3.2 Extend functions in Sampling-based Motion Planners 43
3.2.1 Extend or Steer Function . 43

3.2.1.1 Motion primitives 44
3.2.1.2 Solving the Two-Point Boundary Value Problem . 45

3.3 The Approach: POSQ . 46
3.3.1 Our kinematic control law . 48

3.3.1.1 Local Stability . 49
3.3.1.2 Asymptotically Convergence 49

3.3.2 Topological Property . 52
3.4 Experiments . 52

3.4.1 Metrics . 54
3.4.2 Test Environments . 54

3.5 Results and Discussion . 55
3.6 Conclusions . 57

4 Distance Pseudo-Metric Learning for RRT Motion Planners with
Constant-Time Inference 59
4.1 Introduction . 59
4.2 Related Work . 61
4.3 Our Approach . 63

4.3.1 The distance metric . 63
4.3.2 Features . 64
4.3.3 Learning . 66

4.4 Experiments and Results . 66
4.4.1 Regression and Ranking Performance 67
4.4.2 Regression and Ranking Results 68
4.4.3 Planning Performance . 68
4.4.4 Planning Performance Results 69
4.4.5 State Space Coverage . 69

4.5 Conclusions . 70

5 Theta*-RRT: Any-angle Path Biasing for RRT Nonholonomic Motion
Planning 75
5.1 Introduction . 76
5.2 Sampling Measure . 77
5.3 Related Work . 78
5.4 Combining Any-Angle Search with RRT 79

5.4.1 Geodesic Distance for Nonholonomic Wheeled Robots . . . 79
5.4.2 Our Technique: Theta*-RRT 80

5.5 Experimental Setup . 84
5.5.1 Nonholonomic Systems . 85
5.5.2 Environments . 86

2

Contents

5.5.3 Performance Metrics . 87
5.5.4 Theta*-RRT Parameters . 88

5.6 Experimental Results . 89
5.7 Probabilistic Completeness of Theta*-RRT 91
5.8 Conclusions . 93

6 Kinodynamic Motion Planning on Gaussian Mixture Fields 95
6.1 Introduction . 95
6.2 Related work . 97
6.3 The CLiFF-Map Model . 98
6.4 Our Approach . 99

6.4.1 Extended Upstream Criterion 100
6.4.2 CLiFF-RRT* . 100
6.4.3 Steer Function: Augmented POSQ 103
6.4.4 Algorithm Properties . 104

6.5 Experiments . 105
6.5.1 Environments . 105
6.5.2 Metrics . 105

6.6 Results And Discussion . 107
6.7 Conclusion . 108

7 A Fast Random Walk Approach to Find Diverse Paths for Robot
Navigation 111
7.1 Introduction . 112
7.2 Related Work . 113
7.3 A Random Walk Approach to Find Diverse Paths 114

7.3.1 Homotopy Classes . 115
7.3.2 Navigation Graph . 116
7.3.3 Randomized Homotopy Classes Finder (RHCF) 117
7.3.4 Probabilistic Completeness of RHCF 118

7.4 Experimental Setup . 120
7.4.1 Simulated Environments . 120
7.4.2 Voronoi Diagram . 120
7.4.3 Performance Metrics . 121
7.4.4 RHCF Parameters . 124
7.4.5 Voss’s Algorithm . 125
7.4.6 Kuderer’s Algorithm . 125

7.5 Results and Discussion . 125
7.5.1 Empirical Results . 126
7.5.2 Application to Social Navigation 129

7.6 Conclusions . 131

3

Contents

8 A Socially-Aware Motion Planner for Highly Crowded Environments 133
8.1 Introduction . 133
8.2 The SPENCER Project . 134

8.2.1 The Demo Environment And Its Challenges 136
8.2.2 The Spencer Robot And Its Hardware 140
8.2.3 Software Architecture Of The Spencer Robot 140

8.3 Socially-Aware Motion Planner: Combining Efficiency and Social
Norms . 142
8.3.1 The Architecture . 143
8.3.2 Modeling The Environment With Cost Maps 144
8.3.3 Planning with Multi-Hypothesis 145

8.3.3.1 Deciding From The Hypotheses 147
8.3.4 Socially-Aware Elastic Band 151

8.3.4.1 Following The Path Hypothesis 151
8.3.4.2 Adapting The Path To The Dynamic Environment 151
8.3.4.3 Socially-Aware Motion Generation 154

8.4 Final Demo At Schiphol . 156
8.5 Conclusions . 160

9 Conclusions 161
9.1 Summary . 161
9.2 Discussion . 163
9.3 Recommendations For Future Work 164

Appendices 169

A Notions on Nonholonomic systems 171
A.1 Nonholonomic control systems . 171

A.1.1 Controllability and Reachable Sets 171
A.1.2 Reachability . 173

A.1.2.1 Sub-Riemannian distance and ball 173
A.1.2.2 Regular and singular points 173
A.1.2.3 Privileged coordinates 173
A.1.2.4 Ball-box theorem . 174

A.2 Topological property . 174
A.2.1 Sufficient condition to respect the Topological Property . . . 175

B Dynamic POSQ 177
B.1 The Control Law . 177

C Robot Platforms 181
C.1 Spencer . 181

4

Contents

C.2 Daryl . 182

List of Figures 185

List of Tables 189

List of Algorithms 191

Bibliography 193

5

CHAPTER 1

Introduction

"Considerate la vostra semenza:
fatti non foste a viver come bruti,
ma per seguir virtute e canoscenza"

Dante Alighieri,
Divina Commedia, Inferno,

Canto XXVI vv. 18-20

Robotics is "a broad, interdisciplinary subject that involves various facets
of sensing and manipulation, as well as thinking that integrates sensing with
action", writes Michael Brady in the preface of its book "Robotics Science" (Brady,
1989). Although it is not yet clear if it is a science on its own, several researchers
state that robotics is a new scientific field: Bajcsy (Bajcsy, 2007) writes that
robotics is a science because "it has to address, develop theoretical foundation of
interactive complex physical and dynamic systems". Moreover on February 5th
2008, the Handbook of Robotics (Siciliano and Khatib, 2007) won the Association
of American Publishers PROSE Award for Excellence in Physical Sciences &
Mathematics, a first international recognition of robotics as a new scientific field.
The robotics research community is growing year after year: in the last decades
several new scientific journals and conferences having as main topic robotics
have appeared. Thanks to the effort of this community, in the last decades
we have seen an exponential increase of robots deployed in a huge variety of
scenarios, to cope with and solve problems that the human beings alone could
not (e.g. industrial manipulators, space robotics, rescue operations, underwater
robotics etc., see Fig. 1.1).

A typical robotic architecture is made of several different sub-systems that
are interconnected and work together to allow the robot platform to accomplish
a desired task by sensing and acting in its environment. Several robotic architec-
tures have been introduced in the literature, e.g. the sub-sumption architecture
of Brooks (Brooks, 1986) and Sense-Plan-Act of the robot Shakey (Nilsson, 1969).
The Sense-Plan-Act paradigm, is still a valid abstraction for several current
robotic architectures. It considers the robotic system divided in three main
sub-systems: perception, decision making, motion control and execution (see
Fig. 1.2).

7

CHAPTER 1. INTRODUCTION

Figure 1.1: Example robot applications. Left: Curiosity is a Mars rover created
by the NASA who drove autonomously on Mars 14.14 km as of 8
September 2016. Center: The Rolling Justin robot an advanced mo-
bile dual-arm system developed by DLR. Right: ICub robot designed
by the Italian Institute of Technology, a robot that has not only manip-
ulation capabilities but it is able to express emotions by using its facial
expressions.

The perception components work together with the sensors to provide all the
needed information to describe the current robot pose and the environment sur-
rounding the robot; some notable applications belonging to this area are simul-
taneous localization and mapping, object detection and tracking. For example, a
robot manipulator that wants to pick up an object in human environments, needs
to know or to infer the object position and to track humans movements and avoid
them by inferring their future motion.

The decision making component, composed typically of a task and a motion
planning system, is the unit that reasons about the assigned task and the inform-
ation provided by the perception components, to generate actions, paths or tra-
jectories that the motion control system will execute.

The motion controller transforms the desired actions or plans in the actual com-
mands that the robot actuators can execute. The controller makes sure that the
desired plan is accurately executed by not damaging the robotic mechanical sys-
tem.

Path and motion planning is a fundamental line of research in robotics but also in
many other scientific communities (e.g. AI, computer graphics, automatic control
systems, computational biology, gaming). The robot motion planning problem
can be stated as follow. Given a description of the obstacles in the environment,
a start and a goal pose and a notion of the robot properties (geometry, kinematic
and dynamic constraints of the robot platform) a motion planner generates a set
of actions (controls) that will move the robot from the start to the goal while

8

1.1. PROBLEM STATEMENT

Perception Decision
Making

Control
System

Robot
Actuators

EnvironmentSensors

Figure 1.2: A simple Sense-Plan-Act architecture that exemplifies how typically
the robot units are connected and work together.

avoiding the obstacles.
If the problem is solved considering only geometric constraints, then we refer

to it as path planning or piano movers’ problem (Schwartz and Sharir, 1983). In
general with the term motion planning we refer to a more complex problem that
aims to find the controls needed to move the robot from the start to the goal
pose by considering the kinematic and dynamic constraints of the platform, this
problem is called also kinodynamic motion planning, term introduced by Donald
et al. (1993). Nonholonomic motion planning, firstly presented by Laumond (1987),
addresses the problem of finding a trajectory and associated controls to steer a
wheeled mobile robot from an initial position to the desired goal by respecting
the nonholonomic constraints of the platform: differently by manipulators, many
wheeled mobile robots have nonholonomic constraints, e.g. the dimension m of
the control space is smaller than the dimension n of the state space, therefore hav-
ing part of the state space that the robot control system cannot access directly (e.g
a differential drive robot cannot move sideways). Several approaches, partially
detailed in Chapter 2, have been introduced to solve these problems, each with
properties and limits.

1.1 Problem statement

In the not too far future many robotic systems will live-work among humans
and collaborate with them: e.g. self-driving cars, service robots, robot guides in
public spaces or companies, consumer robots, assistive robot manipulators for
goods production and many others. The fast generation of high quality motion,
the overall goal of this thesis, is a key aspect particularly in these environments
where the planner deals with several new and interesting challenges (see Fig. 1.3).
Often an environment with humans is said to be a dynamic environment: in each

9

CHAPTER 1. INTRODUCTION

Figure 1.3: Example nonholonomic motion planning problems. Left: An envir-
onment with static obstacles (in grey), where a differential drive robot
needs to find a path that goes to the goal region (in green). Right:
A differential drive robot (Spencer) needs to find efficiently a smooth
path in a very crowded environment (i.e. a crowded airport).

time step obstacles and humans in the scenario change their configurations. For
robots navigating in dynamic and complex environments, a motion planner is re-
quired to be efficient and to generate smooth robot movements (Kruse et al., 2013).
Planning efficiency allows the robot to be fast enough to avoid a collision and to
quickly accomplish its task. Motion smoothness helps to generate natural behavi-
ors for a robot navigating among humans; Kruse et al. (2013) write: "one aspect of
natural motion is smoothness. This refers to both the geometry of the path taken
as well as the velocity profile". In fact, humans that work with robots expect the
latter to generate motion that are smooth and understandable (or legible, Dragan
et al. (2013); Kruse et al. (2013)). If robot motion are smooth enough a human op-
erator could easily infer the robot intentions and moreover he could also socially
accept the robot.
Kruse et al. (2013) also describe the contradiction between efficiency and smooth-
ness in the context of human-aware navigation: "In HRI, the assumption is that
the shortest or most energy efficient path is not necessarily the most desirable.
Instead in HRI the intention is to find a path that is also sufficiently safe, comfort-
able, natural, legible, etc. to persons in the area". We hypothesize that in crowded
dynamic environments for a wheeled mobile robot, the planner is expected to be-
have naturally by balancing efficiency with social-awareness and by reasoning about
several possible hypotheses to reach the goal. Knowing multiple ways to the goal is
a much richer information than a single path to the goal, the robot could quickly
reason about which route to take to better accomplish its task. As matter of fact,
a too social-aware robot motion planner may cause erratic and not legible robotic
behaviors: e.g the robot could be trapped by a crowd and its efficiency may dra-
matically drop.

10

1.2. SCIENTIFIC CONTRIBUTIONS

Moreover, in human dynamic environments, motion planners’ results are highly
related to the information provided by perception: often those inputs, although
not being very accurate, include a lot of information that could be exploited by
the planner to generate motion that better adhere to what the perception components
observed and learned in the environment. A planner could read and exploit not
only the estimated obstacle positions but also covariances or general patterns
of obstacles and humans motion in the environment. We hypothesize that in
crowded, cluttered and complex environments, perception priors that encode
usual crowd or pedestrian flows behaviors are very beneficial to help a motion
planner to quickly compute a smooth path.
Following these insights and hypotheses, this thesis proposes several motion
planning techniques to answer the following questions:

• How can we improve the efficiency of state-of-the-art motion planners for
nonholonomic wheeled mobile robots in difficult and complex environ-
ments, such as of large size and full of obstacles?

• How can we exploit place-dependent learned motion priors of flows of dy-
namic obstacles (i.e. pedestrians), specifically multi-modal Gaussian mix-
tures models, into kino-dynamic sampling-based motion planners?

• How can we quickly produce several and accurate path hypotheses in dy-
namic environments with several humans?

• How can we balance smoothness and efficiency during the generation of
motion in very crowded environments?

1.2 Scientific Contributions

To answer the aforementioned questions, this thesis introduces several contribu-
tions to the field of path and motion planning by leveraging different methods
from machine learning, artificial intelligence and control theory. With the goal
of smooth and natural real-time motion generations for robots in human envir-
onments, we propose several methods that increase planning efficiency and path
smoothness of different motion planners. More specifically this work presents
(see also Fig. 1.4):

• In Chapter 3, a novel stabilizer for wheeled mobile robots which in com-
bination with sampling based motion planners (used herein as extend func-
tion) was shown to produce smoother paths in less time with smaller trees
than a set of state-of-the-art baseline methods. Moreover combined with
an optimal-sampling based motion planner, the approach produces the

11

CHAPTER 1. INTRODUCTION

shortest paths and achieves the lowest cost solutions when given more plan-
ning time.

• In Chapter 4, an on-line machine learning approach to compute the distance
pseudo-metric for nonholonomic sampling based-motion planners. The ap-
proach is shown to be faster in planning time by several factors respect to
several baselines at negligible loss of path quality.

• In Chapter 5, a hierarchical combination of (discrete) any-angle search with
(continuous) sampling-based motion planning for nonholonomic wheeled
mobile robots, specifically we consider the case of a differential drive ro-
bot and a high-dimensional truck-and-trailer system. The approach, that
is probabilistically complete, finds smooth and shorter trajectories signific-
antly faster than four baseline planners without loss of smoothness.

• In Chapter 6, a motion planning approach for wheeled mobile robots un-
der kinodynamic constraints that exploits learned perception priors of dy-
namic environments in the form of continuous Gaussian multi-modal mix-
ture fields. The approach, which is asymptotically optimal, generates very
efficiently high-quality solutions in terms of path smoothness, path length
as well as natural yet minimum control effort motion through multi-modal
representations of Gaussian mixture fields.

• In Chapter 7, an efficient randomized approach based on weighted random
walks, that finds K diverse path hypotheses on the Voronoi diagram of the
environment, where each path represents a distinct homotopy class. The
approach is significantly faster at finding paths of higher diversity in dis-
tinct homotopy classes than two state-of-the-art methods.

• In Chapter 8, a social-aware and efficient motion planner for nonholo-
nomic wheeled mobile robots in very crowded environment. The planning
system was developed for the EU-funded project SPENCER and extens-
ively tested at the very crowded Schiphol Amsterdam Airport on 47 km of
fully autonomous operation. The planner by means of a multi-hypothesis
reasoning balances efficiency with social-awareness and generates locally
legible motion that safely and smartly reacts to the dynamics of the envir-
onment.

1.3 Publications

Algorithms and ideas of this thesis have been published in peer-reviewed inter-
national journals, conference and workshop proceedings. Here a list that presents
them in chronological order:

12

1.3. PUBLICATIONS

S

G

S

G

S

G

E cient and Smooth

Motion Planning

Flow-Aware

Motion Planning

Multi-Hypothesis

Motion Planning

Multi-Hypothesis

Socially-Aware Motion Planning

in Crowded Environments

Figure 1.4: Overview of the thesis contributions. Left: in Chapters 3, 4 and 5, we
describe several approaches to efficiently generate smooth movements
for wheeled mobile robots (in red an example of smooth path con-
necting goal and start points, respectively G and S, the green-dashed
curve represents a non-smooth path). Middle-Left: in Chapter 6, we
introduce a method to generate smooth paths considering learned mo-
tion priors of pedestrian flows in the form of continuous Gaussian
multi-modal mixture fields (arrows show an example of these fields).
Middle-Right: in Chapter 7, we propose a method to quickly com-
pute several path hypotheses to the goal lying in different homotopy
classes (paths with different colors are connecting the start position
to the goal one). Right: considering the insights learned from the de-
veloped techniques presented in Chapters 3-7, in Chapter 8 we illus-
trate a multi-hypothesis socially-aware and efficient motion planner
for nonholonomic wheeled mobile robots navigating at high speed in
densely crowded environments. In the figure the robot Spencer, suc-
cessfully deployed at Schiphol Amsterdam Airport, can choose from
two possible path hypotheses (red and green curves).

1.3.1 Peer-Reviewed Journal Articles

• A Fast Random Walk Approach To Find Diverse Paths for Robot Naviga-
tion by Palmieri L., Rudenko A. and Arras, K. O.; 2017 IEEE Robotics and
Automation Letters;

1.3.2 Peer-Reviewed Conference Proceedings

• Kinodynamic Motion Planning on Gaussian Mixture Fields by Palmieri L.,
Kucner T.P., Magnusson M., Lilienthal A.J. and Arras K.O., 2017, Interna-
tional Conference on Robotics and Automation, Singapore;

• RRT-Based Nonholonomic Motion Planning Using Any-Angle Path Biasing
by Palmieri L., Koenig S. and Arras K. O., 2016, International Conference on

13

CHAPTER 1. INTRODUCTION

Robotics and Automation, Stockholm, Sweden;

• SPENCER: A Socially Aware Service Robot for Passenger Guidance and
Help in Busy Airports by Triebel R., Arras K. O., Alami R., Beyer L., Breuers
S., Chatila R., Chetouani M., Cremers D., Evers V., Fiore M., Hung H., Islas
Ramirez O., Joosse M., Khambhaita H., Kucner T., Leibe B., Lilienthal A.,
Linder T., Lohse M., Magnusson M., Okal B., Palmieri L., Rafi U., van Rooij
M., Zhang L., 2015, Field and Service Robotics (FSR), Toronto, Canada;

• Distance Metric Learning for RRT-Based Motion Planning with Constant-
Time Inference by Palmieri L., Arras K. O., 2015, International Conference on
Robotics and Automation, Seattle, USA

• A Novel RRT Extend Function for Efficient and Smooth Mobile Robot Mo-
tion Planning by Palmieri L., Arras K. O., 2014, International Conference on
Intelligent Robots and Systems, Chicago, USA;

1.3.3 Peer-Reviewed Workshop Proceedings
• RRT-Based Nonholonomic Motion Planning Using Any-Angle Path Biasing

by Palmieri L., Koenig S. and Arras, K. O.; 2016 Symposium on Combinatorial
Search, Tarrytown, NY, USA;

• A Fast Randomized Method to Find Homotopy Classes for Socially-Aware
Navigation by Palmieri, L.; Rudenko, A.; Arras, K.O.; 2015 Proc. of Work-
shop on Assistance and Service Robotics in a Human Environment, International
Conference on Intelligent Robots and Systems, Hamburg, Germany;

• Distance Metric Learning for RRT-Based Motion Planning for Wheeled Mo-
bile Robots by Palmieri L. and Arras, K.O.; 2014, Proc. of Machine Learning
in Planning and Control of Robot Motion Workshop, International Conference on
Intelligent Robots and Systems, Chicago, USA;

• Efficient and Smooth RRT Motion Planning Using a Novel Extend Function
for Wheeled Mobile Robots by Palmieri L., Arras K. O., 2014, Proc. of the
2nd Workshop on Planning and Robotics, International Conference on Automated
Planning and Scheduling, Portsmouth, USA.

1.4 Collaborations

Partly this work is the result of fruitful collaborations and discussions with other
researchers. Several discussions and exchanges with Christoph Sprunk on mo-
tion planning techniques and with Ciro Natale and Alessandro Astolfi on control

14

1.5. OUTLINE AND NOTATION

theory topics contributed to the development of the method proposed in Chapter
3. Thanks to useful suggestions on machine learning techniques with Frank Hut-
ter and Rudolph Triebel, we could achieve the interesting results related to the
learned distance pseudo-metric described in Chapter 4. Chapter 5 on the com-
bination of any-angle search with sampling-based motion planners was realized
with the precious help of Sven Koenig. Chapter 6 that introduces a sampling-
based motion planner on off-line learned continuous Gaussian multi-modal mix-
ture fields was a joint work with Tomasz Kucner, Martin Magnusson and Achim
J. Lilienthal. The work on the homotopy classes generation detailed in Chapter7
has been carried on together with Andrey Rudenko and received valuable sug-
gestions by Markus Kuderer. The social-aware motion planner for the SPENCER
robot platform detailed in Chapter 8, was developed and improved thanks to the
many helpful suggestions of the colleagues of the SPENCER project consortium.

The thesis has been supervised by Kai O. Arras, who contributed to many ideas
hereinafter described.

1.5 Outline and Notation

The thesis is divided into nine chapters. This initial chapter (Chapter 1) gives a
brief introduction on the motion planning problems that the thesis deals with.
Chapter 2 details fundamental motion planning knowledge on which this thesis
is built on. Chapter 3 describes a novel steer function for sampling-based motion
planners, instead Chapter 4 details the machine learning approach to quickly in-
fer the distance pseudo-metric in sampling-based motion planners. In Chapter
5 we talk about a new algorithm that combines any-angle search with sampling-
based motion planners. In Chapter 6 we describe a new sampling-based motion
planning algorithm that plans by exploiting perception-priors of multi-modal dy-
namic flows. In Chapter 7 we introduce a randomized planner for the fast gener-
ation of a set of K diverse paths lying into different homotopy classes. Chapter 8
describes a social-aware multi-hypothesis planning architecture for wheeled mo-
bile robot that quickly generates smooth solutions among people while respecting
social norms and being efficient in accomplishing robot-guidance tasks. Chapter
9 concludes the thesis with a summary and several recommendations for future
work. Appendix A details several notions on nonholonomic systems used in the
thesis. Through this work we adopt the notation detailed in Tab.1.1.

15

CHAPTER 1. INTRODUCTION

Table 1.1: Notation

X ,Y , . . . , Sets
|X | , Cardinality of the set X

α, β, a, b, . . . , Scalars
α, β, a, b, . . . , Vectors

A, B, C, . . . , Matrices
Aij , Entry of matrix A at row i and column j
‖x‖ , l2 norm of vector x
|α| , Absolute value of α

N (µµµ, ΣΣΣ) , Normal distribution with mean µµµ and covariance matrix ΣΣΣ
p(X) , Probability of the random variable X

p(X|Y) , Conditional probability of the random variable X given Y

Motion planning notation

p , Motion planning problem
x , Robot configuration or state
C , Set of robot states or configurations
Cfree , Set of free-collision robot states or configurations
Cobs , Set of robot states or configurations in collisions with

obstacles
Cgoal , Set of goal states or configuration
U , Set of available controls
u , Controls

xstart , Initial robot state or configuration
xgoal , Goal robot state or configuration

τ , Tree structure of states or configurations
xstart , Initial robot state or configuration

σ , Trajectory of states or configurations
S , Set of grid vertices
si , Node i of the grid set S

ALG , An algorithm

16

CHAPTER 2

Foundations

"Books are not made to be believed, but
to be subjected to inquiry. When we
consider a book, we mustn’t ask
ourselves what it says but what it
means."

Umberto Eco,
The Name of the Rose

This chapter presents the foundations for the techniques introduced in this
thesis. We summarize algorithms for path planning on grids, for the compu-
tation of trajectories with sampling-based motion planners that satisfy kin-
ematic and dynamic constraints as well as the most common optimization
methods for trajectory generation.

2.1 Introduction

Motion planning is a fundamental research topic in robotics. Several different
approaches have been presented to solve the path planning and/or motion plan-
ning problem (Latombe, 1991; Choset, 2005; LaValle, 2006). As mentioned in the
previous chapter, the term path planning refers to the problem of finding a path
that brings the robot from an initial position to the goal by knowing only the
geometric properties of the robot and of the environment. With the term motion
planning or trajectory generation, we refer to the problem of finding, in a continu-
ous space, a path and the controls to steer a robot system from an initial state to
the goal, constrained not only on geometric information but also on the kinody-
namic constraints of the system.
Hereinafter we collect and describe recent path and motion planning techniques
that are used to generate smooth solutions.
The chapter is structured as follows: the descriptions of the configuration space
in Section 2.2 and of the any-angle path finding algorithms in Section 2.3 are fol-
lowed by a brief discussion of discrete search algorithms with motion primitives

17

CHAPTER 2. FOUNDATIONS

x
S

x
G

Figure 2.1: Configuration space example. The dark regions represent the obstacle
space Cobst, in white the free space C f ree. A path (dark line) connects
in C f ree the start and goal configurations xS and xG

in Section 2.4. Feasible and optimal sampling-based motion planners are intro-
duced in Section 2.5. In Section 2.6 we detail some of the most known optimiza-
tion techniques for trajectory generation used in robotics. Section 2.7 presents
several metrics used to quantify smoothness in the remaining chapters of the
thesis.

2.2 The Configuration Space

Typically path and motion planning techniques consider the robot to be part
of the configuration space (Lozano-Pérez, 1983): a configuration is a complete
specification of the robot state relative to a fixed coordinate frame, usually a
configuration is a vector x of positions and orientations. The configuration
space, C-space, is the space of all the possible configurations that a robot can
have: it is separated in two open subset C f ree and Cobst, respectively, the free
configuration space (where the robot configuration is not in collision) and the
obstacle configuration space (where the robot configuration is in collision with
obstacles). Usually the topology of the configuration space is not that of the
Cartesian space: e.g for a wheeled mobile robot that is described as a 2D rigid
body with configuration x = (x, y, θ) where x, y ∈ R and θ ∈ [0, 2π), the
configuration space is the manifold C = R2 × S1 (with S1 the 1-dimensional
sphere in R2); for a robot manipulator with 6 revolute joints the configuration

18

2.3. ANY-ANGLE PATH PLANNING ON OCCUPANCY GRIDS

space is a 6-dimensional torus C = T6. In the configuration space, the motion
planning problem can be defined as the task of finding a path from a start
configuration xS to a goal one xG that lies entirely in C f ree (see Fig. 2.1). Usually
problems where also the kinematics and dynamics of the system are included,
may be solved considering not only the configuration space but also the phase
space: in here any problem with dynamics may be expressed with velocity
constraints, projecting them in an additional dimension, on an augmented state
space (LaValle, 2006).

2.3 Any-Angle Path Planning on Occupancy Grids

Different combinatorial techniques and representations have been introduced in
the robotics and artificial intelligence communities to efficiently solve the prob-
lem of finding short paths with a few heading-changes in 2D environments. Com-
mon representations of a 2D workspace are visibility graphs and occupancy
grids: in both techniques discrete search techniques are applied on learned (gen-
erated) graphs.

Visibility graphs (Lozano-Pérez and Wesley, 1979) are constructed consider-
ing obstacles as known polygonal shapes. The graphs contain the start and goal
positions and all the obstacle corners as vertices. Each vertex is connected to
an other vertex (forming an edge) only if it has line-of-sight to the other vertex.
Standard search algorithm (Dijkstra (Dijkstra, 1959) or A* (Hart et al., 1968)) are
then applied on the graph to generate a path. Although path planning on visib-
ility graphs generates the true shortest path, the generation of a visibility graph
is slow and scales superlinearly: in (de Berg et al., 2008) an algorithm with com-
plexity O(n2 log n) is presented for a set of obstacles with n vertices.

Occupancy grids are a common way to represent the Cartesian space (work-
space) for path planning in robotics and artificial intelligence applications. The
environment is represented by a tessellation that presents cells blocked by
obstacles (or by a not-traversable terrain area) and by unblocked cells (or tiles).
A graph is implicitly encoded in the different grid representations (e.g. 4-way
tiles, 8-way tiles, hexes). Path planning on grids is faster than planning on vis-
ibility graphs (less time is required to build the graph and its number of edges
grows only linearly in the number of cells) but it generates solutions with unex-
pected heading changes (Yap, 2002). To overcome the latter limitation, recently
a new class of algorithms called any-angle path planning (Nash et al., 2007) has
been introduced: they do not constrain the paths to grid edges, thus generating
solutions with less heading changes. Moreover they are more efficient than path
planning algorithms on visibility graphs (as shown in Daniel et al. (2010)). Theta*
(described in Sec.2.3.1) is the first any-angle algorithm for grids introduced in the

19

CHAPTER 2. FOUNDATIONS

community: other solutions exist in literature an interested reader could refer to
the following works: Nash et al. (2010), Nash et al. (2009), Daniel et al. (2010)
Harabor and Grastien (2013).

For path planning on grids, a path planner can be:

Definition 1. Resolution complete:
A path planner is said to be resolution complete, if given the current grid resolution it
is guaranteed to find a path from the start node to the goal node.

Definition 2. Resolution correct:
A path planner is resolution correct, if given the current grid resolution it is guaranteed
to find only unblocked paths from the start node to the goal node.

Definition 3. Resolution optimal:
A path planner is resolution optimal, if given the current grid resolution it is guaran-
teed to find the optimal path from the start node to the goal node.

Next we describe Theta*: as we will show in Chapter 5 any-angle paths gener-
ated by Theta* are beneficial to inform the search in high dimensional spaces and
to quickly generate smooth trajectories for such spaces.

2.3.1 Theta*
Theta* is a resolution correct and complete any-angle path planning algorithm,
its paths are only slightly longer than true shortest paths. Although Theta* is
not guaranteed to find the true shortest paths, that is it is not optimal, Daniel
et al. (2010) show that the Basic variant of Theta* generally finds shorter and
more realistic looking paths than Field D* (Ferguson and Stentz, 2007), A* with
Post smoothing (Botea et al., 2004) and A* on grids. Theta* offers three important
properties:

• efficiency, it has a good trade-off between computation times and path
lengths;

• simplicity, it is relatively simple to implement;

• generality, it works on every graph embedded in 2D or 3D Euclidean Space.

The basic version of Theta*, reported in Alg. 1-2, maintains two values for every
node s of the grid S: the cost-to-come g(s) and the parent parent(s). Theta*, as
in A*, makes use of an admissible heuristic h to focus its search and it maintains
two global data structure: the open list, that contains the list of the vertices to
be expanded and the closed list which contains vertices already expanded, thus
ensuring that each vertex is expanded only once. The key difference between
Theta* and A* on grids is that the parent of a vertex can be any vertex that has line

20

2.3. ANY-ANGLE PATH PLANNING ON OCCUPANCY GRIDS

Algorithm 1 Basic Theta*
1: function Basic Theta*(sstart , sgoal)
2: g(sstart) := 0
3: parent(sstart) := sstart
4: open := ∅
5: open.Insert(sstart, g(sstart) + h(sstart))
6: closed := ∅
7: while open 6= ∅ do
8: s := open.Pop()
9: if s = sgoal then

10: return P
11: end if
12: closed := closed ∪ {s}
13: for all s′ ∈ succ(s) do
14: if s′ /∈ closed then
15: if s′ /∈ open then
16: g(s′) := ∞
17: parent(s′) := NULL
18: end if
19: UpdateVertex(s, s′)
20: end if
21: end for
22: end while
23: return failure

S S

Figure 2.2: Comparison of Theta* and A*. Left: The grid path of A* (in red) is
constrained to grid edges and part of a different homotopy class. It is
longer and has more heading changes. Right: The any-angle path of
Theta* (in red) is not constrained to grid edges.

of sight with the current one (see UpdateVertex(s, s′) function in Alg.2), instead in
the case of A* the parent of a vertex has to be a neighbor of the vertex, see Fig. 2.2
for a comparison between A* and Theta*. The result of Theta* is a discrete set P
of M cells s, P = {s0, s1, . . . , sM−1}, that goes from the start cell sstart = s0 to the

21

CHAPTER 2. FOUNDATIONS

Algorithm 2 UpdateVertex(s, s′)
1: function UpdateVertex(s, s′)
2: if lineofsight(parent(s), s′) then
3: if g(parent(s)) + c(parent(s), s′) < g(s′) then
4: g(s′) := g(parent(s)) + c(parent(s), s′)
5: parent(s′) := parent(s)
6: if s′ ∈ open then
7: open.Remove(s′)
8: end if
9: open.Insert(s′, g(s′) + h(s′))

10: end if
11: else
12: if g(s) + c(s, s′) < g(s′) then
13: g(s′) := g(s) + c(s, s′)
14: parent(s′) := s
15: if s′ ∈ open then
16: open.Remove(s′)
17: end if
18: open.Insert(s′, g(s′) + h(s′)
19: end if
20: end if

goal one sgoal = sM−1, respectively the cells where the start and the goal poses of
the robot are mapped to.

2.4 Discrete Search Approaches with Motion
Primitives

Combinatorial planning methods that build a roadmap by exhaustively search
over the entire configuration space, work well in general for simple problems
as described before, but they scale very poorly with the dimensionality of the
problem: for example for a system of dimension d and considering a basic cubic
lattices with the same discretization (number of lattice points) k per side, the total
number of samples is kd. Moreover grid based approaches, like A* and Theta*
generate only a geometrically feasible or optimal path in the workspace (i.e. a
concatenation of Euclidean straight paths).

Discrete search has been used also for differentially constrained systems (e.g.
cars and differential drive robots (Likhachev and Ferguson, 2009; Pivtoraiko and
Kelly, 2005)) and high dimensional systems (e.g manipulators (Cohen et al., 2014,
2010)). As for grid search in a 2D environment for a point robot, planning also
in this case is applied on a graph that describes the configuration space. The

22

2.4. DISCRETE SEARCH APPROACHES WITH MOTION PRIMITIVES

Figure 2.3: Example of a state lattice composed by a set of motion primitives (in
blue) departing from an initial robot pose (in black). In red the states
belonging to the graph where the planning is performed.

configuration space is discretized into a state lattice, which represents a regular
sampling of the state space. In the graph each pair of states is connected if and
only if a kinematically feasible action (e.g. motion primitive) can move the system
(i.e. robot) from the first configuration to the second one. The graph vertices
represent a set of all reachable states of the system computed given a defined
resolution.

The state lattices can be computed in two different ways (Pivtoraiko et al., 2009;
Likhachev and Ferguson, 2009):

• forward: where a set of motion primitives is precomputed off-line and then
forward integrated for the state lattice generation, the set of primitives
defines then the sampling of the configuration space;

• inverse: in this case a desired configuration sampling is defined to assure
some geometric properties (e.g dispersion and discrepancy (LaValle et al.,
2004)) and then boundary value problem solvers can be used to generate
feasible motion from one state to an other.

As in the case of classical grid search also for these planners the properties of
resolution completeness, correctness and optimality apply. Once the state lattice has

23

CHAPTER 2. FOUNDATIONS

been built, see example in Fig. 2.3 standard search algorithms can be applied to
solve the planning problem (e.g A*, Dijkstra).

These methods although being very efficient, they usually generate not smooth
solutions and need a further smoothing step (e.g. as in Dolgov et al. (2010)).

2.5 Sampling-based Motion Planning

Path and trajectory planning for high dimensional configuration spaces and for
systems with particular kinematic and dynamic constraints is in general a more
difficult problem to solve compared to pure geometric path planning on grids.
In the last decades many new methods called sampling-based motion planners (e.g.
Probabilistic RoadMaps (Kavraki et al., 1996), Rapidly exploring Random Trees
(LaValle and Kuffner, 1999) and several other methods) based on the random ex-
ploration of the configuration space have been introduced to cope with the afore-
mentioned problems. These methods aim to build/find a graph structure (e.g.
roadmap, tree) by exploring the high dimensional configuration space while ful-
filling the system constraints, by randomly sampling configurations and checking
if different obstacle-free open subspaces can be connected.
In general, sampling-based motion planners are classified into two categories:
multi-query and single-query planners. Probabilistic roadmaps belong to the multi-
query class: firstly a graph is built beforehand to represent the connectivity of the
configuration space; in query phase, given a start and a goal state, which are ad-
ded to the graph, a standard discrete search algorithm (e.g. A*) is applied on the
graph to generate a path. The same graph may be used for different pairs of start
and goal poses. RRTs techniques are single-query planners: given a start and a
goal, they build a graph structure (e.g. tree) that connects the start to the goal.
For each new pair of start and goal states, a new graph needs to be built. in RRT,
there is no need of applying any search method on the generated graph to find a
path, but simply a backtracking from the node that reached the goal area to the
start node.
Sampling-based motion planners offer less strict properties than combinatorial
ones, e.g. a sampling-based motion planner is said to be probabilistically complete
instead of complete.

Definition 4. Probabilistic completeness:
A sampling-based motion planner is said to be probabilistically complete if the prob-
ability that an existing solution is found converges to 1 as the number of iterations grows
to infinity.

Differently from discrete search approaches that are resolution complete al-
gorithms, sampling-based motion planners that are probabilistically complete

24

2.5. SAMPLING-BASED MOTION PLANNING

cannot tell us that a problem does not have a solution. Instead the former in-
form us when a solution is not found at the given resolution.

2.5.1 Rapidly Exploring Random Trees

Let C ⊂ Rd be the state space and U ⊂ Rm the control space, both bounded
connected open sets (d > 0, m > 0). Given a set C ∈ Rd and a scalar l ≥ 0,
a trajectory (or path) in C is a continuous function σσσ : [0, l] → C, where l may
indicate the trajectory (or path) length or a time instant. The set of all trajectories
(or paths) in C with nonzero length is denoted by ΣC . A dynamical system can be
described by a set of differential equation as

ẋ(t) = f (x(t), u(t)) + g(x(t)) x(0) = x0 (2.1)

where x(t) ∈ C, u(t) ∈ U , for all t, x0 ∈ C and f is a function describing the
kinematics of the system and g its drift.

Definition 5. Feasible Motion Planning problem p:
The algorithm ALG solves a feasible kinematic motion planning problem p if given an
obstacle space Cobs ⊂ C, a free space Cfree = C \ Cobs, an initial state xstart ∈ Cfree and a
goal region Cgoal ⊂ Cfree, it finds the controls u(t) ∈ U with domain [0, T], T > 0, such
that the unique feasible trajectory σσσ(t) that satisfies equation (2.1), is in the free space
Cfree ⊆ C and goes from xstart to a goal xgoal ∈ Cgoal.

The RRT (LaValle and Kuffner, 1999) algorithm is a popular algorithm for plan-
ning under differential nonholonomic constraints for solving a feasible motion
planning problem. For more details on nonholonomic systems and constraints
refer to Appendix A.
The RRT procedure is outlined in Algorithm 3. The algorithm builds a tree τ that
grows towards unexplored regions of the free space Cfree. At each iteration n a
new configuration xrand is sampled and possibly connected to the current τ. To
connect xrand to τ, firstly the algorithm looks for the nearest neighbor xnear in τ,
then it extends τ from xnear towards xrand by using an extend (or steer) function,
and it adds the new branch (xnew, σσσnew, ubest) if and only if the extension is colli-
sion free. The algorithm stops once a branch arrives into the goal region Cgoal, see
Fig. 2.4 and Fig. 2.5.
The RRT functions reported in Algorithm 3 are as follows:

• Sampling(C): by using a predefined sampling distribution p(C) a config-
uration xrand is generated from C (different kind of sampling distributions
can be used). Many variants of RRT require the distribution to be independ-
ent and identically distributed. Different sampling distributions may lead
to different planning performance, see Chapter 5.

25

CHAPTER 2. FOUNDATIONS

Algorithm 3 Rapidly-exploring Random Tree (RRT)
1: function RRT(xstart , xgoal)
2: τ.AddNode(xstart)
3: while n ≤ MAX_ITERATIONS do
4: xrand ⇐ Sampling(C)
5: xnear ⇐ NearestSearch(τ, xrand)
6: if InCollision(xnear) then
7: continue
8: end if
9: xnew, ubest, σσσnew ⇐ Extend(xnear, xrand)

10: if InCollision(σσσnew) then
11: continue
12: end if
13: τ.AddNode(xnew)
14: τ.AddEdge(xnear, xnew, σσσnew, ubest)
15: if xnew ∈ Cgoal then
16: return ExtractTrajectory(xnew)
17: end if
18: n⇐ n + 1
19: end while
20: return failure

• NearestSearch(τ, xrand): according to a defined distance metric, e.g. Eu-
clidean distance, path length or control effort, a vertex xnear is selected from
the tree τ. The use of a metric that encodes more information on the kin-
ematic or dynamic system used for the planning, improves the final quality
of the solution. In Chapter 4, we give more details on this routine.

• Extend(xnear, xrand): this function extends the tree τ from the nearest vertex
xnear towards xrand by returning the new branch, the associated controls and
the last state of the branch (σσσnew, ubest, xnew). Originally (for more details
the reader is referred to LaValle and Kuffner (1999)) the extend function (or
steer function) has been introduced as function that simply uses forward
propagation of a chosen control u (randomly generated or selected as the
best among a discrete set) for a given time ∆t. Differently one can use tech-
niques that fully solve the two-points boundary value problem (2P-BVP)
for the generation of a trajectory that exactly connects xnear to xrand, as it is
in the case of PRM where a local planner was used instead of random con-
trol propagations. The use of random control propagations, and thus RRT
as presented by LaValle and Kuffner (1999), allows to solve kinodynamic
motion planning problems for which a steer function that fully solve the
2P-BVP is not available. Chapter3 gives more insights on this approach and

26

2.5. SAMPLING-BASED MOTION PLANNING

shows how the use of 2P-BVPs leads to better planning performance and
path quality than random control propagations.

• InCollision(.): it checks if the argument (the trajectory σσσnew or a state
xnear) is in collision, i.e. σσσnew ∈ Cobs or xnear ∈ Cobs. Several different ap-
proaches can be used to check for collisions (e.g. GJK-EPA Gilbert et al.
(1988)), the overall planning efficiency is highly related to the collision
checker performance. In this thesis we do not focus on enhancing this com-
ponent.

An interested reader can refer to Şucan and Kavraki (2010) for further details
on the implementation of those functions and their variants.
Planning efficiency and path quality in RRT are strictly related to its sub-routines:
sampling distribution, distance metric, extend function. In this work we are go-
ing to carefully study their impact on the algorithm performance and propose
new methods to improve them.

2.5.1.1 Probabilistic completeness of RRT

RRT is probabilistically complete for geometric path planning in Rn, n ∈ N+,
where the sampling distribution is uniform, the distance metric is Euclidean dis-
tance and the extend function is a simple straight-line connection.

Probabilistic completeness is well established for systems with geometric con-
straints (Ladd and Kavraki, 2004) and kinodynamic systems under some strong
assumptions, that is: forward simulations (LaValle and Kuffner Jr, 2001) with ran-
dom controls and propagation time, uniform sampling and optimal steering (Hsu
et al., 2002; Frazzoli et al., 2001) and holonomic systems with state-space based
interpolation (Caron et al., 2014).

A recent research (Kunz and Stilman, 2014) gave more insights on the prob-
abilistic properties of the kinodynamic version of the algorithm: its probabilistic
completeness is highly related to the type of extend function used, more specific-
ally Kunz at al. showed that RRTs with fixed propagation time and best-input
extension are not probabilistically complete.

2.5.2 Optimal Sampling-based Motion Planning
RRT solves a feasible motion planning problem: it finds a solution without con-
sidering or improving its quality. Optimal planners aim to find a higher quality
solution (where the quality depends on the criteria-cost defined). Let C ∈ Rd be
the state space and U ∈ Rm the control space (both bounded connected open sets,
d > 0, m > 0), a dynamic system can be described by the differential equation

ẋ(t) = f (x(t), u(t)) + g(x(t)) x(0) = x0 (2.2)

27

CHAPTER 2. FOUNDATIONS

Figure 2.4: Example of an iteration in RRT. The RRT tree τ is drawn in blue, the
goal region Cgoal in a green circle, the initial robot configuration xstart in
black. Top left: firstly a configuration xrand (red cross) is sampled. Top
right: the nearest vertex (in this case in Euclidean sense) is selected
(the violet dot) from the tree. Bottom left: the tree is extended (in
green the new branch σσσnew) and checked for collisions. Bottom right:
If no collisions are detected the new branch is finally added to the tree.

with x(t) ∈ C, u(t) ∈ U , f describing the system’s kinematic constraints and g its
drift.

Definition 6. Asymptotically-Optimal Motion Planning Problem popt :
Given an obstacle space Cobs ∈C, a free space Cfree ∈C \ Cobs, a start state xstart ∈Cfree, a
goal state xgoal∈Cgoal ⊂ Cfree and a cost function Cσσσ : ΣC → R ≥ 0, an asymptotically-
optimal algorithm ALG, as the number of its iterations grows to infinity, will find a

28

2.5. SAMPLING-BASED MOTION PLANNING

Figure 2.5: Example of an RRT tree grown by using a set of predefined controls
(motion primitives). The RRT tree τ is drawn in blue, the goal region
Cgoal in a green circle, the initial robot configuration xstart in black. The
final path is colored in purple

collision free minimum cost solution σσσ∗ALG ∈ Cfree

lim
n→∞

σσσ∗ALG = arg min
σσσ∈ΣC

Cσσσ(σσσ) (2.3)

Recently, optimal variants of the most common sampling based motion plan-
ners (RRG, PRM*, RRT*) were introduced by Karaman and Frazzoli (2010b,
2011). In (Karaman and Frazzoli, 2010a, 2013) the same authors extended their
algorithms to take into account the kinematic and dynamic constraints of holo-
nomic and nonholonomic systems. The algorithms are based on the representa-
tion of the state space in random geometric graphs (Penrose, 2003).

Random geometric graphs are undirected graphs with vertices placed ran-
domly in a space (according to defined probability distributions) and edges ad-
ded to connect points that are close to each other (according to a particular cri-
terion). Different probability distributions and connection methods between ver-
tices define different random geometric graphs with distinct properties. Many
optimal sampling-based algorithms are based on random r-disc graph, see an
example in Fig 2.6.

Definition 7. Random r-disc graph:
A random r-disc graph Gdisc(n, r) in Rd (d > 0), is a graph of n > 0 nodes
(X1, . . . , Xn), which are independent and uniformly distributed random variables in
(0, 1)d and are pairwise connected if the Euclidean distance between two vertices is lower
than a given radius r > 0.

29

CHAPTER 2. FOUNDATIONS

Figure 2.6: Example of random geometric r-disc graph with 100 nodes, with the
radius respecting the connectivity property.

An important property of those type of random geometric graphs is their con-
nectivity: a graph is connected when there is a path between every pair of ver-
tices.

Definition 8. Connectivity of a random r-disc graph:
The graph Gdisc(n, r) is connected almost surely if the connection radius r holds the fol-
lowing relation: ζd rd > log(n)/n, with ζd being the volume of the unit ball in d
dimensions.

Based on the properties of random geometric graphs, Karaman and Frazzoli
introduced RRT*, PRM* and RRG algorithms. RRT* is the optimal variant of RRT,
its tree is reshaped according to a given cost function.

2.5.2.1 RRT*

RRT* (Karaman and Frazzoli, 2011) grows its tree towards the entire state space.
Differently from RRT, RRT* modifies its tree according to a given cost function.
At each iteration, the tree is rewired locally in a way to prefer locally optimal ex-
tensions. The algorithm was proven to be asymptotically optimal: as the number
of iterations goes to infinity, the algorithm will find the trajectory with the lowest
cost. The RRT* rewiring procedure allows the algorithm to find asymptotically
for each state in the state space the best trajectory that connects this state to the

30

2.5. SAMPLING-BASED MOTION PLANNING

Algorithm 4 RRT*
1: function RRT*(xstart , xgoal)
2: τ.AddNode(xstart)
3: g(xstart)⇐ 0
4: n⇐ 1
5: while n ≤ MAX_ITERATIONS do
6: xrand ⇐ Sampling(C)
7: xnear ⇐ NearestSearch(τ, xrand)
8: unew, σσσnew, xnew ⇐ Steer(xnear, xrand)
9: if InCollision(σσσnew) then

10: continue
11: end if
12: τ.AddNode(xnew)
13: τ.AddEdge(xnear, xnew, σσσnew, unew)
14: g(xnew)⇐ g(xnear) + Cost(xnear, xnew)
15: τ⇐ Rewire(τ, xnew, xnear)
16: if xnew ∈ Cgoal then
17: σσσresult = ExtractTrajectory(xnew)
18: end if
19: n⇐ n + 1
20: end while
21: return failure

starting state.
The RRT* procedure is outlined in Alg.4-5. The algorithm builds a tree τ that
grows towards unexplored regions of the free space Cfree. At each iteration n a
new configuration xrand is sampled and possibly connected to the current τ. To
connect xrand to τ, firstly the algorithm looks for the nearest neighbor xnear in τ,
then it extends τ from xnear towards xrand by using a steer function, and it adds the
new branch (xnew, σσσnew, ubest) if and only if the extension is collision free. Once the
new branch has been generated, then the tree τ is rewired in two steps, see Alg 5
and Fig 2.7: firstly the new vertex xnew is re-connected to a better (in terms of cost)
parent by checking all the vertices in a neighborhood Xnear of xnew (Lines 5-14);
secondly this new connection (with the new parent) is checked if it can further
improve the cost-to-come of a vertex xj lying in a neighborhood of xnew by asso-
ciating to xj as new parent the state xnew, if this is true the new parent vertex xnew
is connected to the vertex xj (Lines 16-26). The algorithm stops once a branch
arrives into the goal region Cgoal.
RRT* shares many functions with RRT, here we detail only the ones specific for
RRT*:

• g(x): each vertex in the tree τ keeps its cost-to-come g, the cost to arrive to
the vertex x from xstart through τ.

31

CHAPTER 2. FOUNDATIONS

Algorithm 5 Rewire(τ, xnew, xnear)
1: function Rewire(τ, xnew, xnear)
2: xmin ⇐ xnear
3: g(xmin)⇐ g(xnew)
4: Xnear ⇐ NearVertices(τ, xnew, |τ|)
5: for ∀ xi ∈ Xnear do
6: ui, σσσi, xi ⇐ Steer(xi, xnew)
7: if σσσi ∈ Cobs then
8: continue
9: end if

10: ci = g(xi) + Cost(xi, xnew)
11: if ci < g(xmin) then
12: xmin ⇐ xi, σσσmin ⇐ σσσi, umin ⇐ ui
13: end if
14: end for
15: τ.AddEdge(xmin, xnew, σσσmin, umin)
16: for ∀ xj ∈ Xnear do
17: uj, σσσj, xj ⇐ Steer(xnew, xj)
18: if σσσj ∈ Cobs then
19: continue
20: end if
21: cj = g(xnew) + Cost(xnew, xj)
22: if cj < g(xj) then
23: xparent ⇐ Parent(xj)
24: τ.RemoveEdge(xparent, xj)
25: τ.AddEdge(xnew, xj, σσσj, uj)
26: end if
27: end for
28: return τ

• Cost(xi, xj): it computes the cost of the trajectory connecting xi to xj. The
cost needs to be defined as a monotonic, additive and Lipschitz continuous
function (Karaman and Frazzoli, 2011).

• NearVertices(τ, xnew, |τ|): a set of vertices Xnear near to the vertex xnew
is selected from the tree τ. The nearness is based on the number of ver-
tices |τ| in τ and the type of dynamic systems. For generic kinodynamic
systems (Karaman and Frazzoli, 2010a), the vertices are selected if they are
in the ball of volume γRRT∗(log(|τ|)/ |τ|) 1

d (d being the dimension of C).
For systems with nonholonomic constraints (Karaman and Frazzoli, 2013),
this procedure returns the set of vertices lying into a weighted box of size
γRRT∗(log(|τ|)/ |τ|) 1

D (where D is the Hausdorff dimension of the distribu-
tion generated by the dynamics), the choice of the weighted box is related to

32

2.5. SAMPLING-BASED MOTION PLANNING

the study of reachability for nonholonomic systems ((Krener, 1974), (Mont-
gomery, 2006), see App. A).

• Steer(xi, xj): this function connects the states xi to xj by returning a
new trajectory, the associated controls and the last state of the trajectory
(σσσnew, ubest, xnew). In RRT* the steer function fully solves the two-points
boundary value problem (2P-BVP) for the generation of a trajectory that
exactly connects xnear to xrand. In case of generic dynamic systems the steer
function is requested to be optimal (Karaman and Frazzoli, 2010a), in case
of nonholonomic system the steer function has to satisfy the topological
property (Karaman and Frazzoli, 2013; Sekhavat and Laumond, 1998), see
App. A.2.

RRT* is asymptotically optimal with γRRT∗ > (2(1 + 1
d))

1
d (µ(Cfree)/ ζd)

1
d , with d

being the dimensionality of C and ζd the volume of unit ball (or box in the case
of nonholonomic systems) in a space of dimension d.

2.5.2.2 Further Optimal Algorithms

Recently, several novel asymptotically optimal sampling-based algorithms be-
side of RRT* have been introduced: FMT* (Janson et al., 2015), RRTX (Otte and
Frazzoli, 2016), RRT] (Arslan and Tsiotras, 2013), Informed RRT* (Gammell et al.,
2014), BIT* (Gammell et al., 2015). All of them build (implicitly) a random geo-
metric graph and propose different methods to extrapolate a path/trajectory from
it. As pointed out by Arslan (2015), all these methods solve the motion planning
problem using dynamic programming (DP) principles over a random geometric
graph: the same principles can be seen in standard discrete graph search meth-
ods as well including A*, Dijkstra, LPA* (Koenig et al., 2004), D* Lite (Koenig
and Likhachev, 2002). The Fast Marching Tree algorithm (FMT*) performs a lazy
dynamic programming recursion on a batch of random samples to grow a tree
that moves outward in cost-to-come space. RRT] and RRTX are using relaxa-
tion methods to prioritize and select the best vertex to expand during each tree
rewiring. RRTX, an asymptotically optimal sampling-based motion planner for
real-time navigation in dynamic environments, was shown to handle dynamic
environments by properly propagating the cost over the tree, by inducing (each
time an obstacle appear or disappear) a graph rewiring cascade that quickly up-
dates the graph and repairs its shortest-path-to-goal subtree. Informed RRT* is
highly based on RRT*: it behaves like RRT* until a first solution is found, then it
starts to sample from an ellipsoid that most likely will contain a better solution
(in terms of path length) than the existing one. BIT* (Batch Informed Trees) is an
algorithm that by using admissible heuristics and by reusing information gained
during the previous steps of the algorithm like in LPA*, guides the growth of

33

CHAPTER 2. FOUNDATIONS

Figure 2.7: Example of an iteration in the rewire procedure of RRT* with straight-
line steer function solving the shortest-path problem. The RRT* tree
τ is drawn in blue, the goal region Cgoal in a green circle, the initial
robot state xstart in black. Top left: initially in the rewiring procedure
the best parent xmin of the current new state xnew (which is the red
cross), is chosen among several neighboring nodes xi ∈ Xnear (in green)
in the tree. Top right: the best parent vertex xmin (magenta dot) is
selected from the tree and the new state xnew (red cross) is connected to
it, while removing its connection to its previous parent. Bottom left:
subsequently the algorithm checks if other tree vertices can benefit
from the new added configuration, several nodes (the yellow dots) in
the tree are checked if the new added configuration (the red cross) can
be connected (attempted connections are in magenta). Bottom right:
If a new connection has lower cost than the previous existing one, the
new one is kept and the tree changed its shape.

34

2.6. TRAJECTORY OPTIMIZATION METHODS

the tree towards promising areas of the state space. This algorithm performs an
ordered search on batches of samples: each batch is generated in promising areas
(as in Informed RRT*) where possibly an improvement to the current solution can
be found.

Moreover, very recently a set of different algorithms try to de-randomize
sampling-based motion planners (Janson et al., 2018; LaValle et al., 2004): the key
idea is to recognize the relationship between classical grid search with sampling-
based motion planners. In the latter, one could use as sampling distribution,
deterministic sampling sequences that guarantee optimality and completeness in
a deterministic way (Janson et al., 2018).

The methods introduced later in the thesis can be applied not only to RRT and
RRT* but also to the other detailed optimal sampling based motion planners.

2.6 Trajectory Optimization Methods

In the last decade, many trajectory optimization approaches to path and traject-
ory planning have been introduced in robotics, partly taking inspiration from
other scientific communities such as control theory, machine learning where those
methods are well understood.
One of the first path optimizers in robotics is the elastic band approach (Quinlan
and Khatib, 1993). The elastic band is a dynamic path optimization algorithm
that adapts locally (optimizes) an initial plan based on the obstacles’ positions
and on the environmental changes. The algorithm applies a gradient descent on
the elastic force field generated by the obstacles, which is used to compute the dis-
placements to apply to the bubbles composing the elastic band. The elastic strips
approach (Brock and Khatib, 2002) extends the elastic band approach by further
improving its performances for high dimensional systems. This is achieved by
operating in the workspace (while the elastic band approach works in the config-
uration space). Also in this approach a gradient descent is applied to compute
and modify the trajectory on-the-fly.
CHOMP (Zucker et al., 2013) is a gradient descent method for trajectory optim-
ization, based on the computation of a covariant gradient that guides the optim-
ization of a functional, defined in the trajectory space, that sums up a smoothing
cost (this related to the square of the velocity) and to the obstacle signed distance
field. The authors showed that the algorithm is fast (given fast kinematic and col-
lision evaluations) and generates very smooth solutions, where for smoothness
the authors mean smooth variations in acceleration.

Differently from the above mentioned approaches Lamiraux et al. (Lamiraux
et al., 2004) introduced a path optimization method for nonholonomic systems.
The method modifies the path by pushing it away from the obstacles and mean-
while satisfying the nonholonomic constraints: the initial path is deformed by

35

CHAPTER 2. FOUNDATIONS

S

G

S

G

Figure 2.8: Example solutions using CHOMP to generate a purely geometric path
in a 2D environment for a given pair of start and goal points (marked
with S and G). Left: CHOMP generates a smooth solution (in green)
if the environment has few constraints. The initial path is given (in
red). For this simple environment CHOMP does not get stuck in local
optima. Right: The algorithm is initialized with a path (in red stars)
that goes through the obstacles (black regions); it generates a solution
(in blue) that does not avoid the obstacles.

perturbing the input functions defined along the path.
Splines are a natural representation for smooth motion, in that the velocity pro-
file is straightforward and fast to compute based on its control points. Lau et al.
(2009) define and solve the motion planning problem for a wheeled mobile ro-
bot using quintic Bézier spline. The method uses a modified version of RPROP
(Riedmiller and Braun, 1993) (i.e a first-order optimization method) to solve the
optimization problem.
Several other approaches use second-order Newton optimization methods which
are more robust than gradient descent for trajectory optimization. To this cat-
egory belong different works, that frame the problem as a non-linear constrained
optimization method (for a more detailed review see (Toussaint, 2016), (Diehl
et al., 2009), (Nocedal and Wright, 2006)).
Hereinafter we will introduce example algorithms that belong to this class. It-
erative LQG (iLQG (Todorov and Li, 2005)) which linearizes the dynamics and
generates a quadratic cost function about a given feasible initial trajectory and
then uses LQR to compute a control policy. This approach was successfully used
to generate locally optimal trajectories for robots with many degrees of freedom.
The Iterated LQR Smoothing (van den Berg, 2014), introduce a fast-converging
iterative procedure to compute a locally-optimal feedback control policy for sys-
tems with non-linear dynamics and non-quadratic cost, where in each iteration
the minimum cost trajectory for the linear-quadratic control problem is computed

36

2.7. QUANTIFY SMOOTHNESS

by exploiting a backward and a forward pass as in Kalman smoothing.
TrajOpt (Schulman et al., 2014) is based on Sequential Quadratic Programming
(SQP) which formulates the constrained optimal motion planning problem in
each iteration as a convex optimization problem, by linearizing the non-linear
system on the current iteration point. The method was shown to efficiently com-
pute smooth solutions for high-dimensional systems, although it suffers of con-
vergence problems for system with high non-linearities due to linearization is-
sues.
Fig. 2.8 shows known limits (as also described by Schulman et al. (2014)) of tra-
jectory optimization methods (in this example we use CHOMP). Often in com-
plex environments if initialized with a path that goes through obstacles, this kind
of algorithms may get stuck in infeasible regions and cannot generate a solution
(Fig. 2.8-right). Also, as reported by the authors of several optimization methods
described above, when given a better initial path this class of algorithms may of-
ten get stuck in a local optima, which is a feasible solution but does not improve
much the given initial path (or trajectory).

These methods, which are local search approaches, are not well-suited to solve
the global motion planning problem as in the case of sampling-based motion
planners: often they suffer from local minima due to the high degree of non-
linearity and non-convexity of the objective function.

2.7 Quantify Smoothness

Smoothness, although being an intuitive concept, is less straightforward to meas-
ure precisely. Usually one can guess that smooth movements are composed of a
few of submovements, which do not show high accelerations in the their joins.
Unsmooth movements can be due to a loss of continuity between the submove-
ments, providing shaking movements to the entire robot structure.

2.7.1 Smoothness Metrics

Balasubramanian et al. (2012) survey a number of metrics to quantify movement
smoothness, in the thesis we adopt some of the measures presented by the cited
authors that are relevant in our context.
We firstly introduce smoothness metrics related to the velocity and the acceler-
ation of the robot movements. Let vmax be the maximum magnitude of the ro-
bot velocity vector v (nominal feedforward commands (De Luca et al., 2001)),
ṽ = v(t)

vmax
the normalized velocity, and [t1, t2] the time interval over which the

movement is performed.

1. ηnmaJ , the average of the mean absolute jerk normalized by vmax, for which

37

CHAPTER 2. FOUNDATIONS

Exp. ηnmaJ ηspal R ηpm

line-arc -0.0024 -0.0022 0.0011 1
line-arc-line -0.0049 -0.0033 0.0023 2
sine wave -0.0032 -0.0029 0.0023 8

Table 2.1: Smoothness metrics - Example Paths Results

the best value is zero:

ηnmaJ = −
1

vmax(t2 − t1)

∫ t2

t1

∣∣∣∣d2v
dt2

∣∣∣∣ dt,

2. average of the speed arc length ηspal, for which the best value is zero

ηspal = −ln

∫ t2

t1

√(
1

t2 − t1

)2

+

(
dṽ
dt

)2

dt

 ,

3. average number of peaks ηpm

ηpm = −|Vpeaks|,

with Vpeaks = {v(t) : dv
dt = 0, d2v

dt2 < 0} being the set of local velocity maxima.

Secondly we detail a metric that is better suited for measuring geometric trajectory
smoothness and thus human-perceived smoothness (namely how sharp the turns
are): roughness R, defined as the square of the change in curvature κ of the robot,
integrated along the trajectory and normalized by the trajectory length L,

R =
∫ tl

t0

∣∣∣∣ 1L dκ

dt

∣∣∣∣2 dt.

2.7.2 Behavior of the Metrics

We report here a few basic path examples where we study the metrics’ behavior:
line and arc, line - arc - line, sine wave, see Fig. 2.7.2. Table 2.1 reports the results for
the basic paths. ηnmaJ and ηspal, together with the number of peaks ηpm increase
in the cases where there are more changes in velocities (e.g. slowing down or
increasing the velocity in sine wave and line-arc-line). Roughness R is higher in
paths with more turns or discontinuities (e.g. sine wave and line-arc-line).

38

2.8. SUMMARY

Figure 2.9: Three basic paths where to test the smoothness metrics, namely start-
ing from the upper-left to bottom-centered figure: line-arc, line-arc-
line, sine wave. The green stars represent the start points while the
red ones are the goals: note that start and goal points overlap in the
line-arc-line path.

2.8 Summary

In this chapter we briefly described state-of-the-art motion planning algorithms.
A lot of progress has been in done in the recent years to improve the solution
quality of those algorithms. The before described classes of algorithms offer dif-
ferent properties, characteristics that an expert user should be aware of to decide
which planner to use depending on the contexts (or scenarios, environments)
which mainly define the motion planning requirements. For example, instead of
grid-based approaches, sampling based motion planners are the natural choice
for systems with particular nonholonomic constraints and very complex cost-
functions. For such kind of problems optimization methods (which are faster)
may suffer a lot of linearization issues and local optima.

Hereinafter we will focus our attention on motion planners that solve the global

39

CHAPTER 2. FOUNDATIONS

motion planning problem and propose many new techniques to further improve
their efficiency and path quality, only in Chapter 8 we will use also a local search
planner (or optimization method) to locally adapt an initial global path.

40

CHAPTER 3

POSQ: A Novel Extend Function for
RRT*

"Keep the gradient!"

Bruno Siciliano
Robotics and Automation

Magazine, March 2008

With the intention of generating smooth and real-time robot motion in
complex environments, in this chapter we introduce a novel RRT and RRT*
extend function for wheeled mobile robots. The approach efficiently gener-
ates smooth and feasible paths that connect any pairs of states by computing
closed-loop forward simulations based on the kinematic model of the robot. We
extend the control law of an existing discontinuous state feedback controller
to make it usable as an RRT extend function and prove that all relevant sta-
bility properties are retained. We study the properties of the new approach as
extend function for RRT and RRT* and compare it systematically to a spline-
based approach and a large and small set of motion primitives. The results
show that our approach generally produces smoother paths to the goal in less
time with smaller trees. For RRT*, the approach produces also the shortest
paths and achieves the lowest cost solutions when given more planning time.

3.1 Introduction

Planning with rapidly-exploring random trees (RRT) (LaValle and Kuffner, 1999)
has become a popular approach to robot motion planning. RRT planners are
single-query sampling-based planners that grow a tree of configurations to even-
tually cover the entire state space. A probabilistically optimal RRT variant named
RRT* has been introduced by Karaman and Frazzoli (2010b). RRT* trees grow
based on the notion of a cost: under the assumptions given in (Karaman and
Frazzoli, 2011) the solution converges to the optimum as the number of samples
approaches infinity.

41

CHAPTER 3. POSQ: A NOVEL EXTEND FUNCTION FOR RRT*

For robots with kinematic or kinodynamic constraints, the extend function, the
function that grows the tree by finding collision-free trajectories towards new
sampled configurations, becomes a key component. Its task is to connect any pair
of states under differential constraints which represents by itself a local planning
problem also referred to as the two-point boundary value problem (2P-BVP). As de-
scribed in Chapter 2, originally the extend function (or steer function) has been
introduced, by LaValle and Kuffner (1999), as function that simply uses forward
propagation of a chosen control u (randomly generated or selected as the best
among a discrete set) for a given time ∆t. Differently one can use techniques that
fully solve the two-points boundary value problem (2P-BVP) for the generation of
a trajectory that exactly connects xnear to xrand, as it is in the case of PRM (Kavraki
et al. (1996)) where a local planner was used instead of random control propaga-
tions. The use of random control propagations, and thus RRT as presented by
LaValle and Kuffner (1999), allows to solve kinodynamic motion planning prob-
lems for which a steer function that fully solve the 2P-BVP is not available. We
anticipate that using a steer function that fully solve the 2P-BVP, leads to better
planning performance and path quality.

Here, we consider the motion planning problem for nonholonomic wheeled ro-
bots in the configuration space C = R2×S1 with the goal of particularly smooth
and natural real-time motion generation for robots in human environments. To
this end, we propose a new extend function for RRT and RRT* which enables the
planner to efficiently generate smooth paths. The contribution of this chapter,
presented in (Palmieri and Arras, 2014a), is as follows:

• We propose an extend function based on closed-loop predictions for a non-
holonomic wheeled mobile robot. It efficiently solves the 2P-BVP by ex-
ponentially converging to the goal state from any start state. We extend
the control law of the original approach by Astolfi (1999) with a term that
leads to quasi-constant path velocities along local path concatenations – a
key ability for RRT extend functions. We also prove the relevant stability
properties under our modification.

• We systematically compare our approach to two alternative extend func-
tions, namely motion primitives (two sets of different size) and splines. The
experiments demonstrate that our approach outperforms both methods in
many relevant metrics: smoother paths and shorter planning time (with
RRT), shorter paths (with RRT*), and significantly smaller trees (both). We
also find that our method can benefit most from the incremental path im-
provement ability of RRT* resulting in the lowest cost solutions when given
more planning time.

• To the best of our knowledge, we present the first systematic study of the
impact of different extend functions on RRT and RRT* performance and

42

3.2. EXTEND FUNCTIONS IN SAMPLING-BASED MOTION PLANNERS

path quality. Its necessity is corroborated by the significant variations of
key metrics only caused by the use of different extend functions.

The chapter is structured as follows. The next Section reviews the related work
and typical extend functions. In Section 3.3 we describe our approach which is
then experimentally evaluated in Section 3.4. We discuss the results in Section
3.5, and Section 3.6 concludes the chapter.

3.2 Extend functions in Sampling-based Motion
Planners

We briefly describe the motion planning problem under differential constraints
and different extend functions. Let C ⊂ Rd be the configuration space and
U ⊂ Rm the control space, both bounded connected open sets. A nonholonomic
wheeled mobile robot can be described by a differential equation as

ẋ(t) = f (x(t), u(t)) + g(x(t)) x(0) = x0 (3.1)

where x(t) ∈ C, u(t) ∈ U , for all t, x0 ∈ C, f describes the kinematics of the sys-
tem and g its drift. The RRT algorithm, outlined in Algorithm 3, solves a feasible
kinematic motion planning problem p: given an obstacle space Cobs ⊂ C, a free
space Cfree = C \ Cobs, an initial state xstart ∈ Cfree and a goal region Cgoal ⊂ Cfree,
find a control u(t) ∈ U with domain [0, T], T > 0, such that the unique trajectory
σσσ satisfies equation (3.1), is in the free space Cfree ⊆ C and goes from xstart to a goal
xgoal ∈ Cgoal.
RRT*, see Alg. 4, instead asymptotically solves an optimal motion planning prob-
lem (see Sec.2.5.2.1): as the number of its iterations grows to infinity, it will find a
collision free minimum cost solution σσσ∗ALG ∈ Cfree

lim
n→∞

σσσ∗ALG = arg min
σσσ∈ΣC

Cσσσ(σσσ) (3.2)

RRT and RRT* use an extend function to grow their trees.

3.2.1 Extend or Steer Function
The purpose of the extend (or steer) function is to connect new states to the tree:
using the notation of Chapter 2, it grows a branch from xnear toward xrand. The
terminal state of the new branch, xnew, may differ from xrand depending on the
extend function used (largely if motion primitives are used). xnew is then added
to the tree τ together with the intermediate points of the new local path and the
selected u. The expansion fails if a collision along the path occurs.
We will now review previously used extend functions: motion primitives (LaValle

43

CHAPTER 3. POSQ: A NOVEL EXTEND FUNCTION FOR RRT*

2 4 6 8 10 12 14

0

0.5

1

 v

2 4 6 8 10 12 14

−2

0

2

Jerk

t[s]

Figure 3.1: Left: Example RRT tree (in blue) and path (in ruby) generated using
motion primitives. Right: Example velocity and jerk profiles gener-
ated by using the motion primitives approach. The profiles show how
the concatenation of primitives leads to discontinuous movements.

and Kuffner, 1999; Frazzoli et al., 2005; Kalisiak and van de Panne, 2006, 2007)
detailed in Sec.3.2.1.1, and steer functions described in Sec.3.2.1.2 (Perez et al.,
2012; Webb and van den Berg, 2013; Hwan J et al., 2011; Yang et al., 2014; Kuwata
et al., 2009; Park, 2016).

3.2.1.1 Motion primitives

Motion primitives have originally been proposed for RRT-based planning under
differential constraints. LaValle and Kuffner (1999) implement the extend func-
tion as a forward simulation of a set of predefined discretized controls, so called
motion primitives. The approach satisfies the constraints, is efficient to compute
and easy to implement: the tree is extended with the primitive that is found to
come closest to the new sampled configuration xrand. Given an initial state x0, an
integration time ∆t, an integration time step ts and a input ui from a discrete set
of controls U = {u1, .., um}, a trajectory xi(t) is generated by integrating Eq. (3.1)

xi(t) =
∫ ∆t

0
f (xi(t), ui(t)) + g(x(t)) dt + x0, i = 1, ..., m. (3.3)

All the controls in U are checked, and the one that brings the expansion closest
to xrand according to some distance metric, is stored together with the associated
local trajectory that will be added to the tree τ. To minimize the time needed
to extend the tree, the motion primitives can be precomputed off-line. Although
being used very often, it was recently showed by Kunz and Stilman (2014) that
RRTs with fixed time integration and best-input extension are not probabilistic-
ally complete. Other ways to generate forward simulations (a.k.a motion prim-
itives) exist: fixed integration time and random input, variable integration time

44

3.2. EXTEND FUNCTIONS IN SAMPLING-BASED MOTION PLANNERS

and best control input, variable integration time and random control input (Kunz
and Stilman (2014)). According to Kunz and Stilman (2014), using the latter two
approaches as extend function has not been proved to be probabilistically com-
plete.

Motion primitives have several shortcomings, as this Chapter will show: they
do not fully solve the two-point boundary value problem as, in the case of a
wheeled mobile robot, the orientation of xrand is ignored, the extension of the tree
even by the closest motion primitive may still be far-off from xrand. Moreover
the concatenation of primitives may lead to sequences of discontinuous inputs
and trajectories with several heading discontinuities (see also Fig. 3.1). A first
attempt to improve the smoothness and continuity of motion primitives con-
catenations was introduced by Frazzoli et al. (2005) who proposes a finite-state
machine called a Maneuver Automaton to allow a correct concatenation of mo-
tion primitives to complex motion trajectories. The method still suffers of a sub-
optimality gap induced by reducing feasible paths to the sequential combination
of predefined motion primitives.

3.2.1.2 Solving the Two-Point Boundary Value Problem

An alternative method for extending the tree is to employ a full-fetched local
planner that generates trajectories σσσ ∈ Cfree and the corresponding continuous
controls u(t). This local planner also known as steer function, is called each time
that RRT or RRT* attempt to connect two vertices. This approach is used to a
great degree in RRT*, see Chapter 2. Next we detail some recent steer functions
proposed for RRT and RRT*, namely optimal controllers (Perez et al., 2012; Webb
and van den Berg, 2013), shooting methods (Hwan J et al., 2011), splines (Yang et al.,
2014), and closed-loop controllers (Kuwata et al., 2009; Park, 2016):

• optimal controllers: Perez et al. (2012) use an optimal infinite-horizon LQR
controller to connect pairs of states. The method linearizes the domain dy-
namics locally, which is interesting from an efficiency point of view, but will
in general not reach the target state exactly. Webb and van den Berg (2013)
use a finite-horizon optimal controller as local planner. They can optimize
a certain class of cost functions to trade off between time and control effort.
Although optimal control techniques may produce high-quality solutions
to the two-point boundary value problem, they typically suffer from high
computational costs and numerical issues that can make them unsuitable
for motion planning in real-time.

• shooting methods: Hwan J et al. (2011) use a so called shooting method to
numerically solve the two-point boundary value problem to obtain an ex-
tend function for RRT*. The method allows for time-optimal maneuvers of
a high-speed off-road vehicle. As with optimal control techniques, shooting

45

CHAPTER 3. POSQ: A NOVEL EXTEND FUNCTION FOR RRT*

methods may have issues with numerical stability and computational costs
for our application.

• splines: In a recent work, Yang et al. (2014) use splines as RRT extend
function. The authors take cubic Bézier splines that guarantee curvature
continuity of paths and are able to satisfy upper-bounded curvature con-
straints. With our goal of smooth and natural motion generation, we con-
sider splines to be a potentially interesting approach and include a spline-
based extend function into our experimental comparison. However, in-
stead of cubic Bézier splines which are limited to curves with continuous
curvature, we will use η3 splines, introduced by Piazzi et al. (2007) that pro-
duce curves with a continuous derivative of the curvature, therefore gener-
ating even smoother paths than cubic Bézier splines.

• closed loop-predictions: Kuwata et al. (2009) introduce closed-loop RRT (CL-
RRT), a modified RRT for real-time local lane following with a car using an
extend function based on a closed-loop model. Given a sampled control
input, the method runs a forward simulation using the vehicle and con-
troller models to predict and then evaluate extend trajectories. Park (2016)
presents an approach to extend the RRT* tree for a differential drive ro-
bot. The method introduces a control-Lyapunov function to select and steer
the robot between two poses during the RRT* iterations. Our approach
resembles this method: although their method produces qualitatively in-
teresting results, it is not compared to existing approaches in quantitative
experiments as we do for our approach in the remaining part of the chapter.

3.3 The Approach: POSQ

In our approach instead of using motion primitives, we aim to connect two states
during the RRT-RRT* search by fully solving the 2P-BVP. In place of using splines,
shooting methods or optimal controllers, which generally require more compu-
tational effort or carry limitations due to linearization (as detailed in Sec. 3.2.1.2),
we propose an extend function that computes closed-loop forward simulations
based on the kinematic model of a nonholonomic wheeled mobile robot.

Our approach generates the trajectory σσσ and controls u(t), t ∈ [0, T], T > 0,
that connect any given pair of 2D poses. Thus, it solves the two-point boundary
value problem for such kinematic systems, see Fig. 3.2. The tree is grown in the
configuration space R2 × S1 where each configuration x consists of the Cartesian
position of the wheeled mobile robot and its orientation, i.e. (x, y, θ). The ap-
proach, originally proposed by Astolfi (1999), solves the problem of exponential
stabilization of the kinematic and dynamic model of the wheeled mobile robot.

46

3.3. THE APPROACH: POSQ

Figure 3.2: Paths of the controller when steering the robot from the center to the
poses on the circle

It is not an optimal controller but has provable local and global stability, a light-
weight implementation, and generates cusp-free trajectories. For extend func-
tions, optimality may be less relevant than efficiency, smoothness and the ability
to fully solve the two-point boundary value problem. This is particularly true
for RRT* for nonholonomic dynamical systems (Karaman and Frazzoli, 2013), see
Chapter 2.
We briefly summarize the original approach (Astolfi, 1999) and describe our ex-
tension in the next subsection.
Let ρ be the Euclidean distance between the initial pose and the goal pose (xnear
and xrand in an RRT notation), φ the angle between the x-axis of the robot refer-
ence frame {XR} and the x-axis of the goal pose frame {XG}, α the angle between
the y-axis of the robot reference frame and the vector Z connecting the robot with
the goal position, v the translational and ω the angular robot velocity (Fig. 3.3).
Then, the method makes a Cartesian-to-polar coordinate transform to describe
the kinematics using the open loop model

ρ̇ = − cos α v,

α̇ =
sin α

ρ
v−ω,

φ̇ = −ω.

(3.4)

and the feedback law
v = Kρρ,

ω = Kαα + Kφφ.
(3.5)

47

CHAPTER 3. POSQ: A NOVEL EXTEND FUNCTION FOR RRT*

Z
Yg

Xg

XR

YR

α

θ

φ
xnear

xrand

ρω v

Figure 3.3: Notation and robot to goal relations

As Astolfi (1999) shows, this feedback law guarantees smooth trajectories without
cusps.

3.3.1 Our kinematic control law

The original approach, however, generates trajectories of decaying forward ve-
locity bringing the robot to a stop at each goal. The concatenation of such local
paths would result in final paths of unnatural and slow movements. Thus, we
modify the feedback law so as to have quasi constant forward velocity at a desired
maximum value across multiple expansions. We will prove that this modification
retains local stability and that the robot’s heading converges asymptotically to the
desired equilibrium point.
Considering the open loop model in Eq. (3.4) obtained by the polar coordinate
transform, we define the non-linear feedback law

v = Kρ tanh(Kvρ),
ω = Kαα + Kφφ .

(3.6)

In case ρ = 0 and the robot’s heading differs from the one requested, a turn on
the spot is performed to align the robot’s heading to latter. In the case start and
goal poses to connect are the same, our steer function returns directly the start
pose. Substituting the control law (3.6) into the open loop model we obtain the

48

3.3. THE APPROACH: POSQ

following closed loop model

ρ̇ = −Kρ cos α tanh(Kvρ),

α̇ = Kρ
sin α

ρ
tanh(Kvρ)− Kαα− Kφφ,

φ̇ = −Kαα− Kφφ .

(3.7)

We now describe the conditions for which local stability holds and prove heading
convergence.

3.3.1.1 Local Stability

We can locally approximate the closed loop model (3.7) by

ρ̇ = −KρKvρ,
α̇ = −(Kα − KρKv)α− Kφφ,
φ̇ = −Kαα− Kφφ.

Proposition 1 (Local Stability). The local approximation of system in Eq.3.7 is locally
exponentially stable if and only if the eigenvalues of the matrix describing the linear
approximation of the model have all negative real parts. For that, we need to have

Kv > 0 (3.8)
Kρ > 0
Kφ < 0

Kα + Kφ − KρKv > 0 .

Proposition 2 (Trapping Region). Considering the closed loop model (3.7), assume
α(0) ∈ D1 =]− π

2 , π
2], and φ(t) ∈]nπ, nπ] for all t. Then, if

Kα + 2nKφ −
2
π

KρKv > 0

holds one has α(t) ∈ D1 =]− π
2 , π

2] for all t > 0 which means that the robot trajectory
will always stay in this region: we have defined a trapping region. Thus, together with
the condition KρKv > 0, the robot will move monotonically towards the origin.

3.3.1.2 Asymptotically Convergence

We want the robot to move towards to goal xrand but notice in (3.7) that the
goal position (the origin) can not be reached because ρ is a singularity point.
Thus, we define an arbitrarily small number to which ρ converges, ρ → ε, with
ε > 0, ρ > ε.

49

CHAPTER 3. POSQ: A NOVEL EXTEND FUNCTION FOR RRT*

Let us focus on the following reduced subsystem which describes how the ori-
entation evolves

α̇ = −Kαα− Kφφ + Kρ sin α
tanh(Kvρ)

ρ
,

φ̇ = Kαα− Kφφ .
(3.9)

Given that ρ̇ is strictly negative, we want to find the conditions for which the
above vector field has a unique equilibrium point (α = 0, φ = 0) to which all tra-
jectories converge asymptotically for all ρ > ε. This is equivalent to minimizing
the orientation error as well as stopping the robot at xnew, ε meters away from
xrand.

Proposition 3. The system in Eq.3.9 converges asymptotically to the origin.

Proof. If we consider the candidate Lyapunov function

V(α, φ) = (−Kαα + Kφφ)2 + 2 KφKρ (cos α − 1) tanh(Kvρ), (3.10)

we can show that

V̇(α, φ) = 2 KφKρα sin α tanh(Kvρ)

[
Kφ + Kα − Kρ

sin α

α
tanh(Kvρ)

]
. (3.11)

Given that condition (3.8) holds, V is positive and V̇ is non-positive in all S2 ={
(α, φ) ∈ R2 | α ∈]− π

2 , π
2], φ ∈ (−2π, 2π]

}
, so the state of the system converges

asymptotically to the origin according to the LaSalle invariance principle.
It exists a positively invariant set

M =

{
(α, φ) ∈ S2| V ≤ 9

4
k2

φπ2 − 2KφKρ

}
,

such that M ⊂ S2, and S1 ⊆ M where

S1 =
{
(α, φ) ∈ R2 | α ∈]− π

2
,

π

2
], φ ∈ (−π, π]

}
.

M contains only the equilibrium point (α = 0, φ = 0). Thus, all trajectories
starting in S1 and contained in S2 converge asymptotically to the origin according
to the Poincare-Bendixson Theorem.

Notice that in the algorithm, we are not solving asymptotically the stabilization
problem like in the original approach (Astolfi, 1999). The new control law allows
us, during expansion of the tree from xnear towards xrand, to minimize the error
in orientation and stop when the local trajectory is close enough to the goal xrand.
A γ > 0 threshold can be defined as minimum Euclidean distance that stops the

50

3.3. THE APPROACH: POSQ

xnear(k)

xrand(k)

xnew(k)

xnear(k)

xrand(k)

xnear(k)

xrand(k)

xnear(k+1)

xrand(k+1)

xnew(k+1)

Figure 3.4: A simple two-step expansion example. With k being the time index of
successive extensions, the proposed controller extends the tree from
xnear(k) to xrand(k) until the local trajectory enters the disk of radius γ
at xnew(k). The procedure is repeated for k + 1.

0 2 4 6 8 10 12
0

0.5

1

1.5

V [m/s]

t [s]
0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

POSQ: V [m/s]

t [s]

Figure 3.5: Translational robot velocity in [m/s] with the original control law from
(Astolfi, 1999) (left) and our control law (right) across the concaten-
ation of two extensions. For the same two goal poses the new law
allows for much faster movements.

expansion towards xrand. It is guaranteed that the terminal state xnew is not further
away from xrand than γ, which thus becomes a tunable error bound. Threshold γ
can be seen as the radius of a circle centred at xrand, see Fig. 3.4. In practice, γ is
chosen to be a few centimeters.

The new control law does not remove the velocity decay toward the goal but
makes it significantly sharper. So sharp, that even small values for γ cause the de-
cay to disappear and allow for quasi-constant forward velocities along the previ-
ously explained extension procedure. See Fig. 3.5 for a comparison. The method
is named POSQ as it acts like a pose controller. In App.B, we further detail a con-
trol law for a dynamic version of the differential drive system described by polar
coordinates.

51

CHAPTER 3. POSQ: A NOVEL EXTEND FUNCTION FOR RRT*

3.3.2 Topological Property

A key aspect for a steer function in RRT* is the fulfillment of the topological prop-
erty (Sekhavat and Laumond, 1998), see App.A.2.
The POSQ steer function stabilizes the unicycle model, which is small-time locally
controllable and locally accessible. The dimension of the involutive closure of the
distribution associated to the unicycle system is equal to the degrees of the uni-
cycle system (see Laumond et al. (1998)), so it satisfies the Chow Theorem and
the Box-Ball Theorem (Montgomery, 2006). Let us define a metric dmax between
any two paths σσσ1(t) and σσσ2(t), with t ∈ [0, 1]:

dmax = max
t=[0 1]

d (σσσ1(t), σσσ2(t)) (3.12)

where d is an Euclidean metric on the configuration space C. Our control law sat-
isfies the topological property, it is able to connect two configurations whatever
the distance between the initial and goal configuration is. Given that the con-
ditions for local stability (Eq.3.8) and asymptotically convergences (Prop.3), the
sufficient conditions of the topological property (see App.A.2) are satisfied:

• POSQ is continuous w.r.t. the topology associated with dmax;

• the path generated by POSQ with the start xstart and goal xgoal poses being
the same is reduced to the start pose xstart.

Notice that the second condition is obviously a necessary condition. We perform
planning considering as sampling space the entire free space, the Lie Hull of the
distribution generated by the unicycle model spans the tangent space at every
point of the space C, so the the maximal integral manifold of the dynamics is
equal to the entire space C (see Laumond et al. (1998)).

3.4 Experiments

In the experiments, we evaluate the new extend function and compare it to two
alternative methods, namely motion primitives (two sets of different size) and
splines. We quantify the impact of our steer function and of the two baselines
on planning performance in terms of time, tree size and path quality in three
different simulated environments. We use both RRT and RRT* as planning al-
gorithms. Regarding our steer function, we use only the kinematic control law,
because the dynamic version (detailed in App.B), although being still smooth,
results in slightly more expensive planning time. The POSQ parameters are
Kρ = 1, Kφ = −1, Kα = 6, Kv = 3.8, γ = 0.15 (in case of RRT* experiments
γ = 0.05). The two sets of motion primitives Usmall with 10 controls and Ularge

52

3.4. EXPERIMENTS

0 0.1 0.2 0.3 0.4 0.5 0.6

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

x [m]

y
 [
m

]

0 0.1 0.2 0.3 0.4 0.5 0.6
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

x [m]

y
 [
m

]
Figure 3.6: The motion primitive sets, Usmall (left) with 10 motion primitives and

Ularge (right) with 77 motion primitives.

with 77 controls are shown in Fig. 3.6. For the spline-based extend function we
use η3 splines (Piazzi et al., 2007), seventh order polynomial spline whose paths
have continuous tangent vectors, curvature and curvature derivatives along the
arc length.

All the steer functions share the same integration time step ts and velocity lim-
its. For each combination of extend function/map/planning algorithm we per-
form 100 runs and compute the average and standard deviation of all metrics. We
use uniform sampling and the Euclidean distance as distance metric.

Different cost functions may be used in RRT*: the algorithm formally needs to
have a monotonic, Lipschitz continuous and positive real cost function Karaman
and Frazzoli (2011). The function that we use, is derived from the work of LaValle
and Kuffner (1999) and has two terms, one for the approximated path length
and one that measures heading changes along the path, both with equal weights
(wd = wq)

C =
Ne−1

∑
i=0

wd||Pi+1 − Pi||+ wq (1− |qi+1 · qi|)2 .

Ne + 1 are the intermediate points Pi of the local path and qi the associated qua-
ternions.

The RRT* γRRT∗ used to compute the neighborhood radius is constant at a high
value with respect to the map size.

Our implementation is based on the C++ SMP template library (Karaman,
2011). All experiments were running on an ordinary PC with 2.67 GHz Intel Core
i7 and 10 GB of RAM.

53

CHAPTER 3. POSQ: A NOVEL EXTEND FUNCTION FOR RRT*

a) Office Scenario b) Hallway Scenario c) Random Map Scenario

RRT

RRT*

Figure 3.7: The three environments and example solutions found with the pro-
posed extend function for RRT (top row) and RRT* (bottom row, show-
ing the first solution). The start state (green circle) is always in the
bottom left, the goal region (blue square) in the top right.

3.4.1 Metrics

To quantify planning performance we compute the averages and standard devi-
ations of the following metrics: tree size as the number of vertices (Nv), time to
find a solution (RRT) or a first solution (RRT*) (Ts), and path length in meters (lp).
Regarding smoothness we adopt some of the metrics described in Section 2.7,
namely: ηnmaJ , the average of the mean absolute jerk normalized by the max-
imum velocity, average of the speed arc length ηspal, average number of peaks
ηpm.

3.4.2 Test Environments

Planning is carried out in three simulated environments (Fig. 3.7). In the office
environment, there are few alternative ways to the goal. It has several local min-
ima, the goal lies behind a U-shaped obstacle, and an asymmetry makes that the
shortest path go through a narrow passage. The hallway scenario contains more
open spaces and alternative paths to the goal. The random map environment con-
tains 100 randomly placed square obstacles. There are many homotopy classes,
some require more or less maneuvers than others. The map size in all scenarios
is 50m× 30m.

54

3.5. RESULTS AND DISCUSSION

Figure 3.8: The RRT* cost C computed over 1000 seconds for the Random Map
Scenario. The trends are displayed (mean and standard deviation): in
blue with "∗" as markers the POSQ results, in red with "o" as mark-
ers the motion primitive ones and in green with "+" as markers the
splines.

3.5 Results and Discussion

The RRT results are given in Table 3.1-3.2, the RRT* results in Table 3.3-3.4. The
best values in each metric are highlighted in bold. With RRT, the proposed extend
function POSQ outperforms motion primitives and splines in all metrics except
path length. It produces smoother paths and finds the goal in less time with signi-
ficantly smaller trees. The low number of tree vertices and the smaller planning
times are mainly due to the ability of our approach to better follow the Voro-
noi bias and deeply enter unexplored regions of the configuration space. This
is unlike, for example, motion primitives that require the concatenation of many
small local expansions for the same exploration effort. In fact, all continuous ex-
tend functions that fully solve the two-point boundary value problem possess
this property as also confirmed by the similar trends in the results of the spline-
based steer function. The motion primitive approach find shorter paths which
is not surprising given the much denser trees from the multitude of small-sized
extensions.

With RRT* as planner, our approach outperforms the other methods in tree size,
path length and two of three smoothness measures. The fact that our method

55

CHAPTER 3. POSQ: A NOVEL EXTEND FUNCTION FOR RRT*

finds the shortest paths, and so the lowest cost in all the cases, suggests that it
is particularly easy to rewire in the sense of the cost function, quite in contrast
to motion primitives. This is also pointed out by Webb and van den Berg (2013)
who state that the RRT* rewiring procedure is well suited for continuous exten-
sion approaches where reachability of a state is not compromised. Figure 3.8 is
another indication in this direction. It shows an example cost trend when given
more planning time. POSQ can benefit most from the incremental path improve-
ment of RRT*. While the proposed steer function is the smoothest in terms of the
ηspal and ηpm measures, it falls behind the motion primitive approach in the jerk-
related metric ηnmaJ . This may be explained by the much denser trees with several
factors more vertices that allow solutions with fewer maneuvers. Regarding the
time to find the first solution, Ts, the results are inconclusive. The high variance is
mainly due to the large number of homotopy classes, particularly in the random
map and hallway environments. POSQ and the spline-based approach (the two
continuous approaches) grow the tree deeply into unexplored regions and dis-
cover many different ways to the goal, also inefficient ones at times. However, as
discussed before, such first solutions can be improved when given more planning
time, particularly well by POSQ.

Office scenario
Extenders Nv Ts [s] lp [m]
POSQ 1667 ± 713 0.197 ± 0.09 150.739 ± 18.446
MP Usmall 13335 ± 3283.4 2.235 ± 0.597 134.108 ± 8.687
MP Ularge 14090 ± 3523.1 2.583 ± 0.720 133.504 ± 8.85
η3 splines 2369 ± 939.9 0.274 ± 0.108 159.78 ± 14.88

Hallway scenario
Extenders Nv Ts [s] lp [m]
POSQ 520.4 ± 379.2 0.050 ± 0.021 85.857 ± 16.740
MP Usmall 2458.3 ± 868.09 0.388 ± 0.124 72.918 ± 10.072
MP Ularge 2358.6 ± 922.2 0.367 ± 0.127 71.734 ± 9.254
η3 splines 548.3 ± 514.5 0.0526 ± 0.026 86.659 ± 18.49

Random map scenario
Extenders Nv Ts [s] lp [m]
POSQ 277.2 ± 351.5 0.031 ± 0.022 62.465 ± 9.003
MP Usmall 1095.1 ± 664.2 0.176 ± 0.104 56.448 ± 5.242
MP Ularge 1124.6 ± 646.4 0.168 ± 0.09 57.27 ± 5.3
η3 splines 519.6 ± 718.6 0.044 ± 0.035 66.686 ± 9.514

Table 3.1: RRT results - planning efficiency, tree size, path length.

56

3.6. CONCLUSIONS

3.6 Conclusions

In this chapter we have presented a novel RRT extend function for nonholonomic
wheeled mobile robots. We have evaluated its impact on planning performance

Office scenario
Extenders ηnmaJ ηspal ηpm
POSQ −0.051 ± 0.006 −4.464 ± 0.166 0 ± 0
MP Usmall −0.062 ± 0.0006 −5.8648 ± 0.064 37.8 ± 6.7
MP Ularge −0.062 ± 0.0007 −5.8901 ± 0.066 21.09 ± 6.1
η3 splines −0.55 ± 0.06 −6.88 ± 0.16 0 ± 0

Hallway scenario
Extenders ηnmaJ ηspal ηpm
POSQ −0.039 ± 0.007 −3.602 ± 0.282 0 ± 0
MP Usmall −0.0631 ± 0.001 −5.237 ± 0.138 22.32 ± 5.7
MP Ularge −0.0632 ± 0.001 −5.2528 ± 0.13 11.12 ± 4.4
η3 splines −0.382 ± 0.089 −5.93 ± 0.359 0 ± 0

Random map scenario
Extenders ηnmaJ ηspal ηpm
POSQ −0.027 ± 0.007 −2.881 ± 0.345 0 ± 0
MP Usmall −0.0638 ± 0.001 −4.977 ± 0.099 18.51 ± 4.8
MP Ularge −0.0637 ± 0.001 −5.029 ± 0.098 9.48 ± 4.10
η3 splines −0.3013 ± 0.082 −5.4851 ± 0.337 0 ± 0

Table 3.2: RRT results - smoothness.

Office scenario
Extenders Nv Ts [s] lp [m]
POSQ 1825 ± 785.7 315.1 ± 187.3 105.33 ± 4.96
MP Usmall 13571 ± 3601.8 731.3 ± 301.93 131.88 ± 8.35
MP Ularge 14146 ± 2562.3 933.5 ± 258.50 134.257 ± 8.849
η3 splines 3438 ± 4254.9 646.5 ± 483.62 116.4909± 6.337

Hallway scenario
Extenders Nv Ts [s] lp [m]
POSQ 697.9 ± 704 66.9 ± 109.8 54.16 ± 3.26
MP Usmall 2385.3 ± 987 51.3 ± 31.8 71.0350± 9.5819
MP Ularge 2529.7 ± 1020.4 68.4711 ± 4.12 71.3390± 8.4327
η3 splines 3787.2 ± 14583 637 ± 2921 57.302 ± 4.2401

Random map scenario
Extenders Nv Ts [s] lp [m]
POSQ 400.8 ± 551.2 43.16 ± 90.54 46.11 ± 2.4
MP Usmall 1028.1 ± 597 13.11 ± 12.48 56.66 ± 5.08
MP Ularge 998.7 ± 535.8 15.4411 ± 14 56.9105± 4.7867
η3 splines 815.7 ± 2421.1 157.8 ± 715.8 48.5212± 2.7370

Table 3.3: RRT* results - planning efficiency, tree size, path length.

57

CHAPTER 3. POSQ: A NOVEL EXTEND FUNCTION FOR RRT*

Office scenario
Extenders ηnmaJ ηspal ηpm
POSQ −0.3261 ± 0.135 −5.128 ± 0.29 23.1 ± 11.1
MP Usmall −0.0622 ± 0.001 −5.865 ± 0.06 38.59 ± 8.1
MP Ularge −0.0623 ± 0.001 −5.897 ± 0.07 30.65 ± 5.6
η3 splines −22.3 ± 6.81 −8.49 ± 0.09 47.30 ± 27

Hallway scenario
Extenders ηnmaJ ηspal ηpm
POSQ −0.1430 ± 0.126 −3.6479 ± 0.56 3.1 ± 4.26
MP Usmall −0.0631 ± 0.0007 −5.212 ± 0.129 16.2 ± 5.2
MP Ularge −0.0630 ± 0.0002 −5.2485 ± 0.12 11.3 ± 3.99
η3 splines −9.365 ± 11.91 −7.08 ± 0.59 12.9 ± 13.9

Random map scenario
Extenders ηnmaJ ηspal ηpm
POSQ −0.0896 ± 0.103 −2.95 ± 0.697 1.3 ± 2.71
MP Usmall −0.0636 ± 0.0007 −4.98 ± 0.10 18.7 ± 4.95
MP Ularge −0.0637 ± 0.0005 −5.02 ± 0.08 10.09 ± 4.2
η3 splines −7.67 ± 11.87 −6.46 ± 0.97 5.0 ± 7.54

Table 3.4: RRT* results - smoothness.

and path quality and found that it outperforms motion primitives and a spline-
based approach in many relevant metrics. It enables RRT to find smoother paths
in less time with smaller trees, and it enables RRT* to find shorter paths with
smaller trees while being on par in planning time and smoothness. We also found
that our method can benefit most from the cost-guided rewiring procedure of
RRT* resulting in the lowest cost solutions when given more planning time. Us-
ing a different cost function in RRT* obviously would result in different paths’
shapes: in this thesis we do not investigate this aspect which could be studied in
a future work.

58

CHAPTER 4

Distance Pseudo-Metric Learning
for RRT Motion Planners with

Constant-Time Inference

"With four parameters I can fit an
elephant, and with five I can make him
wiggle his trunk."

John von Neumann
as reported by Dyson (2004)

In Chapter 3, we have introduced the steer function POSQ, which effi-
ciently solves the two-point boundary value problem for wheeled mobile ro-
bots, and showed that it improves the planning performance and the path
quality of RRT and RRT* planners. An other key component in RRT-based
motion planning is the distance pseudo-metric: the latter deeply affects cov-
erage of the state space, path quality and planning time. In this chapter,
with the aim to speed up planning time without deteriorating path quality,
we introduce a learning approach to approximate the distance pseudo-metric
for RRT-based planners. By exploiting the smooth and efficient POSQ steer
function, we train a simple non-linear parametric model with constant-time
inference that is shown to predict distances accurately in terms of regression
and ranking performance. In an extensive analysis we compare our approach
to an Euclidean distance baseline, consider four alternative regression models
and study the impact of domain-specific feature expansion. The learning ap-
proach is shown to be faster in planning time by several factors at negligible
loss of path quality.

4.1 Introduction

A key component in the extension of the tree in RRT is the distance pseudo-
metric, or cost-to-go pseudo-metric, used to select the nearest vertex from where
to grow the tree. In RRT* this function has an even more important role as it

59

CHAPTER 4. DISTANCE PSEUDO-METRIC LEARNING FOR RRT MOTION
PLANNERS WITH CONSTANT-TIME INFERENCE

guides the rewiring procedure. To do so, the pseudo-metric has to be computed
as many times as there are vertices in the near-neighbour ball (Karaman and
Frazzoli, 2011) or near-neighbour box (Karaman and Frazzoli, 2013).

For general kinodynamic systems, it is hard to determine the true cost-to-go
function. It implies solving a two-point boundary value problem (2P-BVP), which
may be as expensive as solving a motion planning query on its own or an optimal
control problem. This is why, in the original RRT paper, LaValle and Kuffner
(1999) suggest to use approximations of the optimal cost-to-go as functions of
path length, difference between initial and final orientation, and translational and
rotational velocities. Cheng and LaValle (2001) shows that such a sub-optimal
distance metric enables a motion planner to entirely cover the configuration space
and to solve hard planning problems.

In this chapter we introduce a novel method to approximate the cost-to-go met-
ric by a simple, offline-learned regression model with constant-time inference.
We consider differential drive robots in the configuration space R2× S1, although
the same approach can be extended to systems with higher dimensions. Our dis-
tance metric estimates the cost of local paths from the novel extender POSQ which
solves the 2P-BVP and produces smooth cusp-free trajectories (Palmieri and Ar-
ras, 2014a). As described in Chapter 3, POSQ is able to connect any pair of R2×S1

poses and produces RRT trees that quickly cover the entire state space and reach
the goal region. The latter is not true for forward propagation approaches of dis-
cretized controls (motion primitives) as also discussed by Glassman and Tedrake
(2010). Furthermore, the POSQ extender makes no linearization or approxima-
tion, is efficient to compute and was shown to produce smoother paths in shorter
time with smaller trees than motion primitives and a spline-based extender ap-
proach (Palmieri and Arras, 2014a). In this chapter, with the goal of making the
planner even more efficient, we make the following contributions (published in
(Palmieri and Arras, 2014b) and (Palmieri and Arras, 2015)):

• We show how the distance pseudo-metric for the case of the POSQ extender
can be learned offline using a set of domain-specific features and a simple
basis function model with constant-time inference. In addition of being very
fast to compute, the learned model is accurate in terms of regression and
ranking performance at negligible loss of path quality.

• We present a comprehensive comparison to an Euclidean distance baseline
and four alternative regression models namely neural network regression,
LWPR, SVM regression, and random forest regression and analyze the im-
pact of domain-specific feature expansion.

• The comparison demonstrates that the Euclidean distance – although fast
to compute – is highly inaccurate in terms of ranking and regression and
leads to paths of poor quality and length. The experiments also show that

60

4.2. RELATED WORK

Figure 4.1: An example tree and path generated with our learned distance metric.
The robot starts at the bottom-left and plans a path to the goal region
marked in red. The first-solution path is shown in green.

our learning approach is able to cover the state space in the same way than
the ground truth function.

The chapter is structured as follows: Section 4.2 details the related work, in
Section 4.3 we describe how the distance metric is learned. Experiments and their
results are described in Section 4.4. Section 4.5 concludes the chapter.

4.2 Related Work

A number of different distance pseudo-metrics have been used in previous re-
search (Amato et al., 2000; Kuffner, 2004; Glassman and Tedrake, 2010; Perez et al.,
2012; Webb and van den Berg, 2013; Li and Bekris, 2011).
Variants of the Euclidean distance have been studied by Amato et al. (2000);
Kuffner (2004). Amato et al. (2000) compare several distance metrics defined in
the configuration space and show that for nonholonomic systems, the weighted
Euclidean distance – commonly used for holonomic systems – is unable to cor-
rectly cover the space. They give recommendations on how to select a metric
based on efficiency and effectiveness.
Kuffner (2004) defines a proper distance metric for the configuration space of a
3D rigid body, the Lie group SE(3). The author proposes a weighted metric with
a translation component that uses a standard Euclidean norm and a scalar func-
tion that returns an approximate measure of the distance between the initial and
final orientation.
Distance metrics have been derived by linearizing the system dynamics in (Glass-
man and Tedrake, 2010; Perez et al., 2012; Webb and van den Berg, 2013). Glass-
man and Tedrake (2010) describe how the Voronoi bias of RRT only applies when

61

CHAPTER 4. DISTANCE PSEUDO-METRIC LEARNING FOR RRT MOTION
PLANNERS WITH CONSTANT-TIME INFERENCE

a proper metric is defined for the case of an extend function that forward simu-
lates a dynamical system. They use an affine quadratic regulator design and show
that it can be used to approximate the exact minimum-time distance pseudo-
metric at a reasonable computational cost.
Perez et al. (2012) use an optimal infinite-horizon LQR controller to connect pairs
of states. The method linearizes the domain dynamics locally. In this case the
cost-to-go pseudo-metric is defined as the solution of the Riccati’s equation used
in the LQR extender. Webb and van den Berg (2013) use a finite-horizon optimal
controller as local planner. They can optimize a certain class of cost functions that
trades off time and control effort. A drawback of these linearization methods is
that the approximations are valid only as long as the linearization is valid. When
non-linearities increase, the accuracy of the metric degrades. They may also suf-
fer from high computational costs and numerical issues.
Li and Bekris (2011) approximate the optimal cost-to-go pseudo-metric by an off-
line learning method: the distance between two states is approximated by the cost
of an A* path between their closest sampled states on a learned graph. The graph
is generated off-line by using forward propagation of the system dynamics. For
speeding up the method, they map the offline samples into a higher-dimensional
Euclidean space. The method makes approximations on two levels: the graph is
built using a discretized set of controls, not solving the 2P-BVP, and the mapping
of the samples which compromises the method’s ability to cover the state space.
Varricchio et al. (2016) propose a novel k-d tree build and query strategies asso-
ciated to sub-Riemannian metrics. The authors demonstrate significant improve-
ments in the running time of nearest-neighbor search queries when compared
to k-d tree structures that consider Euclidean distance. Differently from our ap-
proach, this method avoids an expensive linear search, nevertheless for high-
dimensional systems, computing boxes (and their weights, see ball-box theorem
from Appendix A) that approximate the reachability space of the system can be
very difficult to compute a priori.
A recent idea, which has been developed independently by three research groups
at the same time (Palmieri and Arras, 2014b; Bharatheesha et al., 2014; Allen et al.,
2014), is to approximate the distance pseudo-metric by supervised learning of a
non-linear regression model.
Bharatheesha et al. (2014) approximate the optimal cost-to-go using locally
weighted projection regression (LWPR). The optimal cost-to-go is obtained by it-
eratively solving a linear quadratic regulator problem where non-linear dynamics
are still linearized around a nominal trajectory instead of a point. The learning
approach is incremental which makes that cost prediction scales with the increas-
ing number of nodes in the RRT tree.
Allen et al. (2014) use locally weighted linear regression (LWR) to predict optimal
cost-limited reachable sets of dynamical systems in real-time and a binary SVM
classifier to learn the non-linear boundary between a state’s reachable and non-

62

4.3. OUR APPROACH

reachable set. While achieving good regression accuracy, inference times scale
quadratically with the number of LWR training samples and linearly with the
number of SVM support vectors, respectively.

4.3 Our Approach

In RRT-based planning, a tree is grown by connecting randomly sampled config-
urations xrand to their nearest vertex xnear in the tree. For the selection of xnear, the
algorithm evaluates the distances from all or a subset of tree vertices to xrand.
The evaluation of this distance metric is a frequent operation deep within every
RRT algorithm and a speed up at this point would have a strong impact onto
planning times.
The idea is, instead of computing an extension path and then evaluating its cost,
to learn a parametric regression model that directly predicts the cost. This is fast
to compute and we can expect a speed up even though the forward simulation
by POSQ (presented in Chapter 3) is already efficient to implement.
Formally, we have a regression model

y ≈ g(X , βββ) (4.1)

with X being the set of independent variables (features or attributes) and βββ the
parameters of g.
In this section, we first define the class of distance metrics considered here, design
a set of features, choose a regression model and a learning algorithm to fit its
parameters.

4.3.1 The distance metric

Following the work by LaValle and Kuffner (1999), we consider a class of dis-
tance metrics C(x1, x2) defined as a linear combination of path length and sum of
heading changes between states x1 and x2,

C(x1, x2) =
Ne−1

∑
i=0

wd||Pi+1 − Pi||+ wq (1− |qi+1 · qi|)2 . (4.2)

Pi are the Ne + 1 intermediate points of the path and qi the associated qua-
ternions. The time needed to compute this cost expression depends on the dis-
tance between x1 and x2 and the integration time step ∆t (leading to more or fewer
intermediate points Pi). Fig. 4.2 shows the cost distribution for paths generated
by the POSQ controller.

63

CHAPTER 4. DISTANCE PSEUDO-METRIC LEARNING FOR RRT MOTION
PLANNERS WITH CONSTANT-TIME INFERENCE

Figure 4.2: The cost-to-go function C(0, x) for paths generated by the POSQ
controller.

(x
1
, y

1
, θ

1
)

(x
2
, y

2
, θ

2
)

Figure 4.3: Example two robot poses used for features computation. Both poses
refer to the same world reference frame W.

4.3.2 Features

Let the set of independent variables X be the vector of features f that we define in
this section. Naively, we could directly use the inputs of the extend function, the
two poses x1 and x2, as features f = (x1, x2, y1, y2, θ1, θ2) since they fully define
the problem. However, this choice encodes the relevant information only very
implicitly. We expect interesting interactions between those features which we

64

4.3. OUR APPROACH

Description Expression
Displacement in x ∆x = x2 − x1
Displacement in y ∆y = y2 − y1
Displacement in θ ∆θ = θ2 − θ1
Euclidean distance between poses d = ‖x2 − x1‖
x-projection of the orientation change cos ∆θ
y-projection of the orientation change sin ∆θ
Orientation change multiplied by Euclidean
distance

d ∆θ

x-projection of the orientation change multi-
plied by Euclidean distance

d cos ∆θ

y-projection of the orientation change multi-
plied by Euclidean distance

d sin ∆θ

Angular difference between x1 and connecting
line of the two poses

atan ∆y
∆x − θ1

Angular difference between x2 and connecting
line of the two poses

atan ∆y
∆x − θ2

Ratio between the previous two features atan(∆y/∆x)−θ1
atan(∆y/∆x)−θ2

Angular difference between x1 and connecting
line multiplied by Euclidean dist.

d (atan ∆y
∆x − θ1)

Angular difference between x2 and connecting
line multiplied by Euclidean dist.

d (atan ∆y
∆x − θ2)

Table 4.1: Input features computed considering two different robot poses
(x1, y1, θ1), (x2, y2, θ2) (see Fig. 4.3).

seek to make explicit by performing feature expansion to obtain more meaning-
ful inputs. But instead of an uninformed, generic method such as quadratic ex-
pansion or kernel methods, we can take advantage of our domain knowledge to
capture those interactions. For example, it is obvious that the Euclidean distance
dE(x, y) =

√
(y2 − y1)2 + (x2 − x1)2 will be a dominant feature for predicting

the cost of paths that connect x1 and x2. Finally, in multiple validation runs, we
have found a set of fourteen features to characterize the cost-to-go function, see
Table 4.1. The features make the geometry of POSQ paths under the cost model
Eq. 4.2 more explicit and, as will be shown in the experiments, facilitate the learn-
ing process.

65

CHAPTER 4. DISTANCE PSEUDO-METRIC LEARNING FOR RRT MOTION
PLANNERS WITH CONSTANT-TIME INFERENCE

4.3.3 Learning

We choose a basis function model (BFM) for learning to predict path costs, fitted
to the training set S = {si}N

i=1 using Levenberg-Marquardt. The model is defined
as

y =
M

∑
m=1

Φm(f, βββ) (4.3)

where M is the number of basis functions Φ. Given our initial goal of speeding
up planning time, this choice appears promising for its simplicity and constant-
time inference, independent on the number of training samples. Concretely, we
choose quadratic basis functions given by

y =

M f

∑
m=1

βm1(fm − βm2)
2 (4.4)

where M f is the number of features.
Training samples si = [fi, ci] are pairs of feature vectors and ground truth

costs. Here, we randomly generate pose pairs (x1, x2) in the configuration space,
compute their 14-dimensional feature vector fi and determine the corresponding
ground truth cost from the POSQ extend function, ci = C(x1, x2).

4.4 Experiments and Results

In the experiments we compare our approach to an Euclidean distance baseline,
consider four alternative regression models and study the impact of the domain-
specific feature expansion described above. We perform two sets of experiments,
first we evaluate the prediction accuracy of the different methods in terms of
regression and ranking metrics, and second, we analyze how the learned distance
metrics impacts planning time, path quality, and state space coverage. Concretely,
we consider

• The proposed basis function model with the fourteen domain-specific fea-
tures (BFM) in Table 4.1.

• The basis function model with naive features f = (x1, x2, y1, y2, θ1, θ2) (BFM
naive).

• A neural network model (NN) with two hidden layers, 30 neurons in the
first and 20 in the second one, has been trained with the back-propagation
algorithm Werbos (1989). The architecture has been found through 5-fold
cross validation.

66

4.4. EXPERIMENTS AND RESULTS

• A random forest regression model (Rnd Forest) (Breiman, 2001) with 100
trees each with 5 terminal leaves. Both hyperparameters have been found
through cross validation and provide a good trade off between prediction
time and accuracy.

• A ν-SVR model (Schölkopf et al., 2000) with a RBF kernel Qij =

exp(−γ||xi − xj||2) with parameters C = 1e−8 and γ = 1e−3 which have
been found via cross validation.

• A locally weighted projection regression (LWPR, Vijayakumar and Schaal
(2000)) model with Gaussian kernels and eight receptive fields. Initial para-
meters and hyperparameter have again been found through cross valida-
tion.

• We also consider the Euclidean distance (Eucl. Dist.), the most commonly
used distance metric, as an approximation of the true cost.

4.4.1 Regression and Ranking Performance

To evaluate the prediction accuracy of the learned regression models, we use the
following metrics: median of the residuals, mean squared error normalized by
the residuals’ variance (NMSE), and the coefficient of determination. We also
determine the average runtime tpred of a single prediction.

Note that although we framed our task as a regression problem it is actually a
learning-to-rank problem. When searching the tree for the nearest state xnear given
xrand, we are actually interested in the correct ranking of the tree vertices under
the cost model rather than the predicted costs as such. The typical strategy is
then to choose the best ranked (lowest cost) vertex as xnear. Therefore, we also
evaluate the model with respect to its ability to correctly rank a set of states and
use the following ranking metrics: Kendall τ coefficient, Kendall τd distance and
Spearman ρ coefficient (Spearman, 2010). Kendall τ and Spearman ρ coefficients
are both correlation measures between two-ordinal level variables equal to 1 if the
two rankings agree perfectly and equal to−1 if they disagree perfectly. Kendall τd
distance measures the number of disagreements between two ordered lists equal
to 0 if the two ranks are equal. Here, we consider the ranking of the five best
vertices.

We learn all models with the same 50,000 training samples and validate with
10,000 samples in terms of regression performance. For ranking, we predict the
cost and evaluate the metrics for a grid of poses over the entire configuration
space without obstacles with a resolution of 0.1m in x, y and π/4 rad in θ.

67

CHAPTER 4. DISTANCE PSEUDO-METRIC LEARNING FOR RRT MOTION
PLANNERS WITH CONSTANT-TIME INFERENCE

Figure 4.4: The three environments and example trees obtained with our ap-
proach. Left: open space scenario. Center: hallway scenario. Right:
random map scenario

4.4.2 Regression and Ranking Results

The results for the regression and ranking metrics are reported in the Table 4.2.
The poor performance of the naive features approach clearly demonstrates the
necessity to design informative features for this learning task. Also the Euclidean
distance fails to approximate the true distance metric accurately in terms of both
regression and ranking error. Furthermore, the results show the relation between
a model’s ranking and regression performance: less accurate regression does not
prevent perfect ranking (of the best five states). Among the four methods with
perfect ranking results, the BFM approach is a clear winner with two orders of
magnitude better runtime performance. The worst model in this sense is ν-SVR
where inference time scales with the number of support vectors which in our
experiments exceeds 16,000.

4.4.3 Planning Performance

We now investigate how the learned regression model impacts planning time as
well as path quality and – further below – coverage ability.
To this end, we compare the learned distance metric with two ground truth
baselines, the second best model in the previous experiment (NN), and, due to
its common usage, the Euclidean distance.
The baselines are the ground truth cost of the POSQ extender with the regular
high-resolution integration time of ∆t = 0.1 sec (POSQ 0.1) and a lower integra-
tion time of ∆t = 0.5 sec (POSQ 0.5). The latter is to analyze the performance of
a faster but “rougher” version of POSQ with fewer path points. For the sake of a
fair comparison the Euclidean distance uses a k-d tree data structure to speed up
nearest neighbor search.
We consider three simulated test environments (Fig. 4.4) that stress different
properties of a planner. The open space scenario has no obstacles, it serves to study
the planner’s behaviour when the tree can grow freely. The hallway scenario con-
tains many open space areas, alternative paths to the goal and local minima. The
random map scenario contains 100 randomly placed square obstacles. There are

68

4.4. EXPERIMENTS AND RESULTS

many homotopy classes, some require more or less maneuvers along paths than
others. The map size in all scenarios is 50m× 30m.
To quantify planning performance we compute the averages of the following
metrics: time for a single extension (text), time to find a solution (Tpath), and path
length in meters (lpath).
Regarding smoothness also in this case, we adopt some of the metrics described
in Section 2.7, namely: ηnmaJ , the average of the mean absolute jerk normalized
by the maximum velocity, average of the speed arc length ηspal, average number
of peaks ηpm.

For each environment and method we perform 100 runs and compute the av-
erage of all metrics. We use uniform sampling in the entire state space. All exper-
iments were carried out in a C++ implementation on a single core of an regular
laptop with 2.70 GHz Intel i5 and 12 GB RAM.

4.4.4 Planning Performance Results
The results, given in Tables 4.3-4.4, show the expected speed advantage of the
Euclidean distance over all other methods but also that this cost metric produces
by far the longest and least smooth paths. Among the learned distance metrics,
the BFM model generally improves both runtime metrics by several factors at
a negligible loss of path smoothness. This remains true even for the “rough”
version of the POSQ extender, POSQ 0.5.
The speed up in planning time of the learned distance metric is most dramatic in
the open space scenario. This is because without obstacles, the other RRT heuristics
that influence tree growth (extend function, collision checking and random state
generation) have no effect and the improvement is fully visible.
In the hallway scenario, the BFM approach is still able to find a solution more than
twice as fast while in the cluttered random map environment, the learning method
is on par with the POSQ extender. The reason is that in cluttered environments
a lot of time is spent for collisions checking and short extensions for which the
acceleration by the learning approach is less visible. Path smoothness remains
largely unaffected, the values are all within the same order of magnitude than
the original approach.

4.4.5 State Space Coverage
Different distance metrics may lead to different state space coverage behaviors
(Glassman and Tedrake, 2010). We thus compare the ability of our learning ap-
proach to cover the state space with the previous four methods in the random map
scenario.
To this end, we divide the entire state space into a grid of 3D cells and determine
state space coverage as the ratio of grid cells covered by the tree. We perform 100

69

CHAPTER 4. DISTANCE PSEUDO-METRIC LEARNING FOR RRT MOTION
PLANNERS WITH CONSTANT-TIME INFERENCE

Figure 4.5: Example trees obtained using the Euclidean distance in the three scen-
arios. The initial pose of the robot is shown by a black dot. Although
state space coverage is good, the planner generates trees that lead to
poor solutions in terms of path length and quality.

POSQ 0.1 POSQ 0.5 BFM Neural Network Eucl. Dist.
0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

Figure 4.6: Means and standard deviations of the state space coverage metric after
5000 iterations.

runs of 5,000 iterations for each method.
The results are shown in the Fig. 4.6. The Euclidean distance is best at covering
the state space but it does so because it fails to approximate the true cost and picks
incorrect (quasi random) nearest vertices. The resulting trees lead to poor solu-
tions in terms of path length and quality (see Fig. 4.5 for example trees). Thanks
to its good approximation abilities, the learned BFM-based model distance metric
does not degrade in terms of state space coverage. On average, its trees are able
to cover the same amount of grid cells than the baseline method.

4.5 Conclusions

In this chapter, we have presented a new learning approach to approximate the
distance pseudo-metric (or cost-to-go metric) for RRT-based motion planning for

70

4.5. CONCLUSIONS

wheeled mobile robots in C = R2 × S1. Instead of computing local extension
paths and then evaluating their cost when growing the tree, we learn a paramet-
ric regression model that directly predicts the cost. In a comparison with four
alternative regression models we could show that a simple basis function model
with constant-time inference is the best choice in terms of regression and rank-
ing accuracy as well as planning time and path quality. The resulting speed up
in planning time is significant particularly in less cluttered environments. Using
a set of domain-specific features, we have also demonstrated the need to design
informative features for this learning task.
Despite good results for planning time and state space coverage, our experiments
have shown the Euclidean distance to be a poor choice for the approximation of
the true cost with respect to regression and ranking accuracy, and consequently,
path quality and length.

This approach and partly those results generalize to different 2P-BVP solvers.
This is particularly true, in terms of planning time speed-up, for complex solvers,
i.e. in the case of optimal controllers or high dimensional spaces, which are in
general slow to compute trajectories between different states.

71

CHAPTER 4. DISTANCE PSEUDO-METRIC LEARNING FOR RRT MOTION
PLANNERS WITH CONSTANT-TIME INFERENCE

R
eg

re
ss

io
n

Pe
rf

or
m

an
ce

M
et

ri
c

B
FM

B
FM

na
iv

e
N

N
R

nd
Fo

re
st

ν
-S

V
R

LW
PR

Eu
cl

.D
is

t.
M

ed
ia

n
re

s.
0.

03
0

7.
83

76
1.

60
7

e−
6

0.
00

54
98

7
0.

00
02

61
0.

60
55

0.
16

7
N

M
SE

0.
00

5
0.

88
43

7.
72

9
e−

7
0.

00
11

03
7

0.
02

89
91

0.
08

06
0.

01
18

D
et

er
m

in
at

io
n

0.
99

9
0.

80
40

1
0.

99
97

6
0.

99
34

9
0.

98
21

0.
98

95
R

un
ti

m
e

Pe
rf

or
m

an
ce

M
et

ri
c

B
FM

B
FM

na
iv

e
N

N
R

nd
Fo

re
st

ν
-S

V
R

LW
PR

Eu
cl

.D
is

t.
t p

re
d

[s
ec

]
6.

22
e−

07
4.

09
e−

07
1.

24
e−

05
6.

81
e−

05
0.

00
12

1.
87

e−
05

3.
85

3
e−

07

R
an

ki
ng

Pe
rf

or
m

an
ce

M
et

ri
c

B
FM

B
FM

na
iv

e
N

N
R

nd
Fo

re
st

ν
-S

V
R

LW
PR

Eu
cl

.D
is

t.
τ

1
−

0.
2

1
1

1
0.

40
−

0.
40

τ d
0

0.
6

0
0

0
0.

30
0.

70
ρ

1
−

0.
3

1
1

1
0.

40
−

0.
50

Table 4.2: Regression and ranking performance

72

4.5. CONCLUSIONS

Open space scenario
Method text [s] Tpath [s] lpath [m]

POSQ 0.1 0.01019 14.5215 47.6487
POSQ 0.5 0.006093 5.3704 50.4071
BFM 0.001325 1.0902 48.608
NN 0.003556 2.6722 48.2047
Eucl. Dist. 0.001353 0.1417 56.0124

Hallway scenario
Method text [s] Tpath [s] lpath [m]

POSQ 0.1 0.01082 92.9419 54.6069
POSQ 0.5 0.007975 70.6947 56.0821
BFM 0.00179 26.2349 61.5938
NN 0.005318 65.2463 63.3869
Eucl. Dist. 0.0007944 1.4498 83.0162

Random map scenario
Method text [s] Tpath [s] lpath [m]

POSQ 0.1 0.01180 37.7666 49.8373
POSQ 0.5 0.01089 20.88 50.129
BFM 0.003976 23.3264 53.2168
NN 0.003783 19.452 53.5202
Eucl. Dist. 0.001503 0.6197 61.7909

Table 4.3: Results for planning efficiency and path length

Open space scenario
Method ηnmaJ ηspal ηpm

POSQ 0.1 −7.32075 e−05 −0.802622 0.62
POSQ 0.5 −6.77003 e−05 −0.73929 0.38
BFM −6.44915 e−05 −0.759564 0.31
NN −6.71913 e−05 −0.777919 0.55
Eucl. Dist. −0.0034127 −2.28714 0.36

Hallway scenario
Method ηnmaJ ηspal ηpm

POSQ 0.1 −7.44230 e−05 −0.844397 0.90
POSQ 0.5 −8.01868 e−05 −0.8833 3.23
BFM −4.28115 e−05 −0.9543 0.42
NN −7.22698 e−05 −1.01336 0.39
Eucl. Dist. −0.00705978 −3.36954 0.52

Random map scenario
Method ηnmaJ ηspal ηpm

POSQ 0.1 −6.04633 e−05 −0.794841 0.45
POSQ 0.5 −6.12429 e−05 −0.795457 0.68
BFM −6.85253 e−05 −0.844749 3.89
NN −6.98598 e−05 −0.865452 0.33
Eucl. Dist. −0.00487451 −2.76645 2.63

Table 4.4: Smoothness results

73

CHAPTER 5

Theta*-RRT: Any-angle Path Biasing
for RRT Nonholonomic Motion

Planning

Geometry does not teach us to draw
these lines, but requires them to be
drawn; for it requires that the learner
should first be taught to describe these
accurately, before he enters upon
geometry; then it shows how by these
operations problems may be solved

Isaac Newton
Philosophiae Naturalis
Principia Mathematica

In the previous chapters we have introduced improvements for two key
functions in RRT and RRT* based planning, namely a novel steer function
and a learning-based method to compute the distance pseudo-metric. An other
key routine in RRT and RRT* is the sampling unit. With the goal of further
improving the efficiency and the path quality of the single-query planners
detailed in the previous chapters, we introduce a new technique to generate
informed samples for RRT-based planning. RRT and RRT*’s planning times
can scale poorly for high-dimensional systems such as wheeled robots with
complex nonholonomic constraints, especially if samples are drawn blindly
and in an uninformed way in the entire configuration space. This has motiv-
ated researchers to study hierarchical techniques that grow the RRT trees in
more focused ways. Along this line, we introduce Theta*-RRT that hierarch-
ically combines (discrete) any-angle search with (continuous) RRT motion
planning for nonholonomic wheeled robots. Theta*-RRT is a variant of RRT
that generates a trajectory by expanding a tree of geodesics toward sampled
states whose distribution summarizes geometric information of the any-angle
path computed considering only the workspace. We show experimentally, for
both a differential drive system and a high-dimensional truck-and-trailer sys-

75

CHAPTER 5. THETA*-RRT: ANY-ANGLE PATH BIASING FOR RRT
NONHOLONOMIC MOTION PLANNING

tem, that Theta*-RRT finds shorter trajectories significantly faster than four
baseline planners (RRT, A*-RRT, RRT*, A*-RRT*) without loss of smooth-
ness, while A*-RRT* and RRT* (and thus also Informed RRT*) fail to gener-
ate a first trajectory sufficiently fast for systems with complex nonholonomic
constraints. We also prove that Theta*- RRT retains the probabilistic com-
pleteness of RRT for all small-time controllable systems that use an analytical
steer function.

5.1 Introduction

Any-angle search is a family of discrete search techniques which, unlike A* or
Dijkstra’s algorithm, find paths that are not constrained to grid edges. Daniel
et al. (2010) introduce Theta*, an any-angle search technique whose paths are
only slightly longer than true shortest paths. The authors show that the basic
variant of Theta* finds shorter paths than Field D*, A* with post smoothing and
A* on grids, see Fig. 2.2.
To improve the performance of sampling-based motion planners, recent research
has combined them with discrete search techniques (Plaku et al., 2007, 2010;
Bekris and Kavraki, 2008; Brunner et al., 2013) that generate paths considering
only workspace information. None of these studies, however, combine any-angle
search with RRT variants although its properties (such as finding shorter paths
than A* with fewer heading changes) are likely beneficial for the performance of
the combination.
Following the approaches detailed in Chapters 3-4, in this chapter with the goal
of further improving the efficiency and the path quality of the single-query plan-
ners, we introduce Theta*-RRT (Palmieri et al., 2016) a new technique to generate
informed samples for RRT-based planning. Theta*-RRT is a hierarchical tech-
nique that combines (discrete) any-angle search with (continuous) RRT motion
planning. It improves the efficiency of RRT in high-dimensional spaces substan-
tially by transferring the properties of the any-angle path to the final trajectory.
Theta*-RRT considers a continuous control space during planning: it uses steer
functions instead of random control propagations to exploit as much knowledge
of the nonholonomic constraints of the system as possible and to ensure both high
planning efficiency and high trajectory quality. Since heuristics can also be mis-
leading and degrade planning performance, we prove that Theta*-RRT retains
the probabilistic completeness of RRT for all small-time controllable systems that
use an analytical steer function. We evaluate the approach using a 3D differential
drive robot and a 8D truck-and-trailer system and four baseline planners: RRT,
RRT* (and thus also Informed RRT* (Gammell et al., 2014) which behaves like
RRT* until a first trajectory is found), A*-RRT, and A*-RRT* (Brunner et al., 2013).
The evaluation shows that Theta*-RRT is significantly faster and produces shorter

76

5.2. SAMPLING MEASURE

S

G

S

G

Figure 5.1: Theta*-RRT trees in two example environments used in the experi-
ments. Left: Maze environment. Right: Random map environment.
The trees (in blue) grow smoothly towards the goal in a subspace
centered around the any-angle path (in red).

high-quality trajectories than those of the baselines.
The chapter is structured as follows: We describe related work in Sec. 5.2-5.3 and
Theta*-RRT in Sec. 5.4. We present experiments in Sec. 5.5 and discuss their res-
ults in Sec. 5.6. Probabilistic completeness of Theta*-RRT is proven in Sec. 5.7.

5.2 Sampling Measure

Sampling configurations is a key routine in RRT-based planning. Hsu et al. (2007)
detail the importance of the sampling unit in sampling-based motion planning
(the authors detail its properties for PRM but the same can be fairly extended
for single-query based algorithms e.g. RRT). The same authors define a sampling
strategy as:

Definition 9 (Sampling Strategy (Hsu et al., 2007)). A sampling strategy is specified
as a pair (π, S), where:

• π is a probability measure that prescribes how sampled configurations are distrib-
uted over the configuration space C

• S is is a source of uniformly distributed, random or deterministic numbers.

π is often defined, in context of sampling-based motion planner as a uniform
distribution. Several techniques have been introduced to generate good non-
uniform sampling distributions that improve the overall planner performance
(i.e. path quality and length and planning efficiency, see for the work by Şucan
and Kavraki (2010) for a review).

77

CHAPTER 5. THETA*-RRT: ANY-ANGLE PATH BIASING FOR RRT
NONHOLONOMIC MOTION PLANNING

Hsu et al. (2007) give an intuition on how important is the sampling unit. Quot-
ing the authors:

"Suppose that while constructing a roadmap, the planner could maintain a
representation (H, η), where H is the set of all hypotheses over the shape
of Cfree and η is a probability measure that assigns to each hypothesis in H
the probability of it being correct. Then, in each iteration of the planner, the
optimal sampling measure π∗ would be the one that minimizes the expected
number of remaining iterations until the roadmap connects xstart and xgoal,
whenever these two configurations lie in the same connected component of
Cfree. In principle, π∗ could be inferred from (H, η). In practice, maintaining
(H, η) explicitly would be too expensive. So, existing PRM planners use
heuristics to approximate the optimal sampling measure."

With Theta*-RRT we go into this direction and find a sampling heuristic that
would allow the planner to efficiently generate high quality solutions.

5.3 Related Work

Prior research, like in Theta*-RRT, has combined discrete search with continuous
sampling-based motion planning to approximate the optimal sampling measure.
For example, Plaku et al. (2007, 2010) propose a planner where a search-based
planner finds a sequence of decomposition regions, into the workspace, that are
then used to guide how RRT grows the tree into the configuration space. Bekris
and Kavraki propose the Informed Subdivision Tree technique (Bekris and Kav-
raki, 2008) that uses a heuristic to direct the tree growth and improve the cover-
age of the state space. In contrast to these two planners, Theta*-RRT biases the
tree growth most likely in the homotopy class found by Theta* and considers a
continuous control space (by utilizing steer functions instead of a discrete set of
randomly generated control propagations) to exploit as much knowledge of the
nonholonomic constraints as possible.
Brunner et al. (2013) propose a two-phase motion planner where A* finds a geo-
metrically feasible path, which then biases the tree growth of RRT*. This planner
is applied only to a high-dimensional holonomic robot, where the RRT* vertices
(sampled from a Gaussian distribution centered around the A* path) are connec-
ted using motion interpolation. In contrast, Theta*-RRT focuses on more complex
nonholonomic systems and uses steer functions.
Cowlagi and Tsiotras (2012) propose a planner that constructs a discrete control
set using expensive model-predictive control techniques. In contrast, Theta*-RRT
adopts a continuous control space.
Rickert et al. (2014) propose the EET planner for holonomic systems that sacri-
fices probabilistic completeness by using workspace information to continuously

78

5.4. COMBINING ANY-ANGLE SEARCH WITH RRT

adjust the sampling behavior of the planner. In contrast, Theta*-RRT is probabil-
istically complete.

Moreover our approach takes inspiration from the two level planning approach
detailed by Sekhavat et al. (1997); Laumond et al. (1998); Sekhavat et al. (1998),
where the nonholonomic motion planning problem for small-time controllable
systems is solved by approximating an initial geometric feasible path into a
kinematically feasible one, by using repeatedly a steer function to connect sub-
divisions of the initial path. In our approach, differently from the latter, the geo-
metric path is used to bias the sampling-unit and we do not try to connect directly
points on the geometric path: this operation may result in paths with unexpected
cups.

5.4 Combining Any-Angle Search with RRT

Let C ⊂ Rd be the state space, U ⊂ Rm the control space, and Cobs ⊂ C and
Cfree = C \ Cobs the obstacle and free spaces, respectively. A nonholonomic (con-
trol) system Σ on state space C is a differential system such that

ẋ(t) = f (x(t)) u + g(x(t)) x(0) = xstart, (5.1)

where xstart ∈ C and, for all t, x(t) ∈ C and u(t) ∈ U . g describes the drift, and
f describes the system dynamics (for more details on the properties of nonholo-
nomic systems see App.A). Theta*-RRT is a feasible motion planner for small-
time controllable nonholonomic systems: It finds controls u(t) ∈ U for t ∈ [0, T]
such that the unique trajectory σσσ that satisfies Equation (5.1) connects a given
start state xstart ∈ Cfree to a given goal state x(T) = xgoal ∈ Cgoal ⊂ Cfree in the free
space Cfree.

5.4.1 Geodesic Distance for Nonholonomic Wheeled Robots
Let us consider small-time controllable nonholonomic systems.

Definition 10. System Σ is locally controllable from C if the set of states reachable from
C by an admissible trajectory contains a neighborhood of C. It is small-time controllable
from C if, for any time T, the set of states reachable from C before time T contains a
neighborhood of C.

For small-time controllable nonholonomic wheeled robots, we define the
geodesic distance DP(x1, x2) of two states x1 and x2 to a path P through R2 × S1.
Consider a path P and let x′1 and x′2 be the orthogonal projections of x1 and x2
onto P and their Euclidean distances be d1 = ‖x1 − x′1‖ and d2 = ‖x2 − x′2‖ (re-
spectively). Then, the geodesic distance DP(x1, x2) is the sum of the lengths of the

79

CHAPTER 5. THETA*-RRT: ANY-ANGLE PATH BIASING FOR RRT
NONHOLONOMIC MOTION PLANNING

geodesics from each of the two states to path P, that is,

DP(x1, x2) = we (d1 + d2) + wθ

(
1− |qx1 · qx′1

|
)

+wθ

(
1− |qx2 · qx′2

|
)

(for parameters we and wθ), where qx1 and qx2 are the quaternions of states x1 and
x2, and qx′1

and qx′2
the quaternions of the segments of path P to which x′1 and x′2

belong. The geodesic distance of two states is the smaller, the closer they are to
path P in Euclidean distance, heading orientations and steering orientations.

5.4.2 Our Technique: Theta*-RRT
Theta*-RRT (detailed in Algorithm 6) first generates a geometrically feasible any-
angle path P using only geometric information about the workspace. Then, it
computes the trajectory by growing a tree τ of smooth local geodesics around
path P (path-biasing heuristic) satisfying the system’s nonholonomic constraints.

Algorithm 6 Theta*-RRT
1: function Theta∗-RRT(xstart , xgoal)
2: P⇐ AnyAngleSearch(xstart , xgoal)
3: if P = ∅ then
4: return failure
5: end if
6: τ.AddNode(xstart)
7: g(xstart)⇐ 0
8: k⇐ 1
9: while k ≤ MAX_ITERATIONS do

10: xrand ⇐ AnyAngleSampling(C, P)
11: xnear ⇐ NearestNeighborSearch(τ, xrand, P)
12: unew, σσσnew ⇐ Steer(xnear, xrand)
13: if σσσnew ∈ Cobs then
14: continue
15: end if
16: τ.AddNode(xrand)
17: τ.AddEdge(xnear, xrand, unew)
18: g(xrand)⇐ g(xnear) + C(xnear, xrand)
19: if xrand ∈ Cgoal then
20: return ExtractTrajectory(xrand)
21: end if
22: k⇐ k + 1
23: end while
24: return failure

80

5.4. COMBINING ANY-ANGLE SEARCH WITH RRT

0

5

10

15

20 0

5

10

15

20

0

1

2

3

4

5

6

y

x

θ

Figure 5.2: Example samples obtained by the path-biasing any-angle sampling
strategy for a differential drive system, with configurations (x, y, θ).
The samples (grey dots) are most likely generated around an any-
angle path (2D projection in orange) which has been computed con-
sidering only the workspace information (xy plane).

The probability measure πTheta∗−RRT of its sampling strategy, repeatedly samples
a state xrand mainly from a subspace Clocal ⊂ Cfree centered around path P, see
Fig. 5.2-5.3: in this phase the workspace information, i.e. the any-angle path and
its heading changes, informs the algorithm while guiding the tree through the
remaining part of the configuration space. The algorithm then makes xrand a new
tree vertex and connects it to xnear, which is selected among several ones as the
vertex that connects with minimum cost to xrand. The cost depends on the length
and smoothness of the trajectory from the candidate tree vertex to state xrand and
the geodesic distance of both vertices to the any-angle path.

The subroutines of Algorithm 6 are described below:
AnyAngleSearch(xstart , xgoal) uses Basic Theta*, detailed in Alg.1-2, to search

an eight-neighbor grid from start grid vertex sstart to goal grid vertex sgoal, where
S is the set of all grid vertices. sstart ∈ S is the grid vertex that corresponds to
the start vertex xstart, and sgoal ∈ S is the grid vertex that corresponds to the goal
vertex xgoal. We assume obstacles cells to be inflated so as to reflect the robot

81

CHAPTER 5. THETA*-RRT: ANY-ANGLE PATH BIASING FOR RRT
NONHOLONOMIC MOTION PLANNING

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

x

y

Figure 5.3: 2D-Projection of the example samples showed in Fig. 5.2. The samples
(grey dots) are most likely generated around an any-angle path (2D
projection in orange) which has been computed considering only the
workspace information (xy plane): a fraction of the samples (bigger
grey dots) have been generated also in the remaining part of the con-
figuration space.

shape. Theta* uses the consistent straight-line distances as heuristics. It returns
an any-angle path P = {p1, p2, ..., pN} (a discrete Cartesian path) if one exists and
the empty path otherwise.

AnyAngleSampling(C, P) samples mainly from a connected subspace Clocal ⊂
C according to a distribution πTheta∗−RRT that conveys geometric information of
path P and returns the sampled state xrand. Concretely, the Cartesian components
of the samples are generated uniformly from a strip with width W (for parameter
W, called position bias) centered around path P. To convert the any-angle path
into a smooth trajectory, the heading orientation xθ and steering orientation xδ

of the samples are generated uniformly from angular intervals centered around
a mean orientation γ̄, which is a linear combination of the orientations of the

82

5.4. COMBINING ANY-ANGLE SEARCH WITH RRT

obstacle

pi

W

pi+2

pi+1

x x′

Figure 5.4: Path-biased sampling strategy. Left: Example strip (in grey) around
an any-angle path (in orange), in which samples are randomly gen-
erated. Black arrows are samples, and green arrows are their pro-
jections onto the any-angle path. Blue sectors are the angular ranges
from which the sample orientations are drawn. The mean sector ori-
entations are computed as weighted averages of the orientations of
the any-angle path segments. The individual weight contributions
are evaluated in geodesic path coordinates along the offset black line.
Right: Resulting mean orientations around an example any-angle
path.

segments of path P, that is,

γ̄ =
N

∑
i=1

wi γi
p, (5.2)

where γi
p is the orientation of segment pipi+1. The weights wi are calculated from

trapezoidal membership functions that are associated with each segment. The
functions are centered around the centers of their segments with tails that over-
lap into the neighboring segments such that their values at the path vertices pi
are exactly 0.5 and their slopes are no less than a minimal slope δS (for parameter
δS). The influence of each membership function on a given sample x is com-
puted along geodesic path coordinates, obtained by offsetting path P with the
perpendicular distance of x to P (see Fig. 5.4, left). The orientations xθ and xδ of
the samples are then generated uniformly from the interval (γ̄− ∆θ, γ̄ + ∆θ) (for
parameter ∆θ, called orientation bias). The components of the samples that are

83

CHAPTER 5. THETA*-RRT: ANY-ANGLE PATH BIASING FOR RRT
NONHOLONOMIC MOTION PLANNING

not related to the workspace (such as velocities and accelerations) are generated
uniformly. Moreover with a frequency funiform, this function generates uniformly
a sample from the entire Cfree (for parameter funiform).
NearestNeighborSearch(τ, xrand, P) returns the tree vertex xnear that con-

nects with minimum cost C(xnear, xrand) to state xrand. Instead of determining tree
vertex xnear directly, Theta*-RRT determines a set of tree vertices Cnear within dis-
tance δR from xrand (for parameter δR). If this set is empty, it returns the tree vertex
nearest to xrand. Otherwise, it returns the tree vertex from set Cnear that connects
with minimum cost C(xnear, xrand) to state xrand, that is,

xnear = arg min
x∈Cnear

C(x, xrand) (5.3)

with
C(x, xrand) = g(x) + Cσσσ + DP(x, xrand), (5.4)

where g(x) is the sum of the costs from the tree root xstart to the tree vertex x and
DP(x, xrand) the geodesic distance of states x and xrand from path P. The cost Cσσσ

measures the length and smoothness of the trajectory σσσ from tree vertex x to state
xrand returned by the steer function. It is defined as

Cσσσ =
Ne−1

∑
i=0

wd||σσσi+1 − σσσi||+ wq (1− |qi+1 · qi|)2

(for parameters wd and wq), where Ne + 1 is the number of intermediate states σσσi
on trajectory σσσ and qi are the associated quaternions. The cost Cσσσ can be com-
puted on-line or very efficiently with a regression approach (Palmieri and Arras,
2015).
Steer(xnear, xrand) returns controls unew and a trajectory σσσnew from state xnear to

state xrand with terminal time T. The analytical steer function connects any pair of
states and respects the topological property (Laumond et al., 1998), that is, for any
ε > 0 there exists some η > 0 such that, for any two states xnear ∈ C and xrand ∈ C
with ||xnear − xrand|| < η, it holds that ||xnear − σσσnew(t)|| < ε for all t ∈ [0, T]. If
σσσnew is collision-free, it is added to τ as the tree branch (or edge) that connects
xnear to xrand.

5.5 Experimental Setup

We now investigate how well Theta*-RRT performs against the baseline planners
RRT, A*-RRT, RRT* and A*-RRT*. All planners extend their trees using steer func-
tions. RRT and RRT* sample in the entire state space. RRT uses Cσσσ as distance
metric, and RRT* uses Cσσσ as cost function. A*-RRT and A*-RRT* sample along
A* paths. A*-RRT generates samples and selects the tree vertex that connects to

84

5.5. EXPERIMENTAL SETUP

the sampled state with minimum cost in the same way as Theta*-RRT. A*-RRT*
generates the samples from a Gaussian distribution centered around the A* path
as introduced by Brunner et al. (2013) and uses Cσσσ as cost function.

All experiments are carried out with a C++ implementation on a single core of
an ordinary PC with a 2.67 GHz Intel i7 processor and 10 GB RAM. The weights
of the cost function and the parameters of the distance metric are wd = we =
wq = wθ = 0.5 and δS = δR = 4m. funi f orm is set to 1 over 5000 samples.

5.5.1 Nonholonomic Systems

We consider two small-time controllable nonholonomic systems, namely a 3D
differential drive system and an 8D truck-and-trailer system.

Differential drive system: We use a unicycle system with state (x, y, θ), where
(x, y) ∈ R2 is the Cartesian position and θ ∈ [−π, π) is the heading orientation.
After a Cartesian-to-polar coordinate transformation, see Fig. 5.5, the equations
of motion are

ρ̇ = − cos α v

α̇ =
sin α

ρ
v−ω

φ̇ = −ω,

(5.5)

where v and ω are the translational and the angular velocities, respectively. For
this system, we use the efficient and smooth steer function POSQ (Palmieri and
Arras, 2014a). Width and length of the robot are set to 0.4m and 0.6m, respectively.

Truck-and-trailer system: For this system, we use the extended state
(x, y, θ0, θ1, v, v̇, δ, δ̇), where (x, y) ∈ R2 are the coordinates of the trailer axle’s
midpoint, θ0 and θ1 the orientations of the trailer and truck, respectively, v the
translational velocity of the truck, v̇ its acceleration, δ the steering angle of the
truck and δ̇ its derivative, see Fig. 5.6. The equations of motion are

ẋ = v cos(θ1 − θ0) cos θ0

ẏ = v cos(θ1 − θ0) sin θ0

θ̇0 =
v
d0

sin(θ1 − θ0)

θ̇1 =
v
d1

tan(δ).

(5.6)

For this system, we use the η4 splines (Ghilardelli et al., 2014) as steer function
since they are known to generate high-quality trajectories for truck-and-trailer
systems. We set d0 = d1 = 1, width and length of the trailer to 0.4m and 0.6m and
the truck width to 0.4m.

85

CHAPTER 5. THETA*-RRT: ANY-ANGLE PATH BIASING FOR RRT
NONHOLONOMIC MOTION PLANNING

Figure 5.5: Differential drive system in polar coordinates: ρ is the Euclidean dis-
tance between the Cartesian coordinates of the robot pose (x, y, θ) and
of the goal state, φ the angle between the x-axis of the robot reference
frame {Xr} and the x-axis of the goal state frame {Xg}, α the angle
between the y-axis of the robot reference frame and the vector con-
necting the robot with the goal position, v the translational and ω the
angular robot velocity.

Figure 5.6: Truck-and-trailer system: (x, y) ∈ R2 are the coordinates of the trailer
axle’s midpoint, θ0 and θ1 the orientations of the trailer and truck, v
the translational velocity of the truck, δ its steering angle, d1 the dis-
tance between the front axle and the rear axle of the truck, and d0 the
distance between the trailer axle and the hitch joint on the rear truck
axle.

5.5.2 Environments

To stress-test the planners and study how they behave in environments of vary-
ing complexity, we design three simulated test environments shown in Figs. 5.1

86

5.5. EXPERIMENTAL SETUP

Figure 5.7: Narrow corridor environment with the goal position (in red) and the
trees (in blue). Left: Tree of Theta*-RRT. Right: Tree of RRT. Theta*-
RRT generates a smaller tree than RRT, which makes Theta*-RRT
faster.

and 5.7. The maze environment in Fig. 5.1 contains many different homotopy
classes, has local minima (such as U-shaped obstacles) and narrow passages.
Its size is 50m×50m. The random environment contains randomly generated
square obstacles, its size is 50m×30m. The narrow corridor environment in Fig. 5.7
stresses the ability of the planners to generate smooth trajectories in narrow cor-
ridors, its size is 25m×25m. The grid cell size for the any-angle search is 1 m in
all environments.

5.5.3 Performance Metrics

For each planner and environment, we perform 100 runs for the differential drive
system and 50 runs for the truck-and-trailer system. We are solely interested
in the first trajectories found. We compute the means and standard deviations
of the following four performance metrics for all planning problems that are
solved within the planning time limit of 1,000 seconds: tree size Nv (measured in
the number of stored tree vertices), planning time Ts (measured in milliseconds
or seconds) and resulting trajectory length lp (measured in meters). Regarding
smoothness, instead of using performance metrics based on the velocity profile
of the robot (as in the previous chapters such as the average speed arc lengths,
velocity profile peaks or normalized jerk), here we use a metric that is better
suited for measuring geometric trajectory smoothness and thus human-perceived
smoothness (namely how sharp the turns are) as also presented in Chapter 2
roughness R, defined as the square of the change in curvature κ of the robot,
integrated along the trajectory and normalized by the trajectory length L,

87

CHAPTER 5. THETA*-RRT: ANY-ANGLE PATH BIASING FOR RRT
NONHOLONOMIC MOTION PLANNING

pi/10 pi/2 2pi
0

1

2

3

4

5

6

7

∆θ

T
s
 [

s
]

Planning time

∆θ

pi/10 pi/2 2pi

 R

-0.1

-0.05

0

0.05

0.1

0.15

Roughness

pi/10 pi/2 2pi
0

500

1000

1500

2000

2500

3000

3500

4000

4500

∆θ

 N
v

Tree size

pi/10 pi/2 2pi
85

90

95

100

105

110

115

120

∆θ

l p
 [

m
]

Trajectory length

Figure 5.8: Performance trends for different strengths of the position bias W
(W = 1m in red, W = 4m in blue and W = 10m in green) and orient-
ation bias ∆θ in the maze environment for the metrics planning time,
roughness, tree size and trajectory length (smaller values are better for
all performance metrics).

R =
∫ tl

t0

∣∣∣∣ 1L dκ

dt

∣∣∣∣2 dt.

A smaller roughness indicates smoother trajectories. We also compute the per-
centage of trajectories found within the planning time limit.

5.5.4 Theta*-RRT Parameters

Prior to the main experiment, we analyze the impact of the parameters W and
∆θ on the performance of Theta*-RRT. Position bias W is related to the geometry
of the wheeled robot and should be set to a value no less than the maximum

88

5.6. EXPERIMENTAL RESULTS

value of its length and width. We use the maze environment and the ranges
W = {1m, 4m, 10m} and ∆θ =

{
π
10 , π

2 , 2π
}

. For each pair of parameter values,
we compute the mean and standard deviation of the four performance metrics
over multiple runs. Fig. 5.8 shows the results for the differential drive system.
The results for the truck-and-trailer system are qualitatively similar. We observe
three trends: (i) With a larger orientation and position bias (that is, smaller ∆θ
and W), the trajectories tend to be shorter and smoother, which is expected since
the trajectories then follow the any-angle paths more closely. (ii) With a smal-
ler orientation bias (that is, larger ∆θ), the tree sizes and planning times tend to
be smaller. The optimum is at the medium value W = 4m where the value of
∆θ has almost no influence (but the optimum is at the smallest value ∆θ = π

10).
Given these trends, we select the medium position bias W = 4m and the strong
orientation bias ∆θ = π

10 .

5.6 Experimental Results

The experimental results for Theta*-RRT and the four baseline planners are given
in Tables 5.1-5.6. Smaller values are better for all performance metrics. The best
values are highlighted in boldface. Theta*-RRT outperforms the four baselines
with respect to all performance metrics, with only two exceptions. It is a close
second with respect to trajectory smoothness to RRT* for the differential drive
system in the random environment and to A*-RRT for the truck-and-trailer system
in the narrow corridor environment. We make the following observations:

(i) The path-biasing heuristic of Theta*-RRT avoids the time-consuming explor-
ation of the entire state space and thus results in small tree sizes and planning
times. This advantage comes at the cost of having to find an any-angle path first
but Tab. 5.7 shows that the runtime of the discrete search is negligible compared
to the overall planning time. Theta*-RRT thus has an advantage over RRT and
RRT* that explore large parts of the state space, especially in environments with
local minima and narrow passages. For this reason, RRT* (and even A*-RRT*) fail
to find any trajectory within 1,000 seconds for the high-dimensional truck-and-
trailer system in all runs in two of the three environments.

(ii) The path-biasing heuristic of Theta*-RRT results in trajectories that fall into
good homotopy classes and are thus short. Theta*-RRT thus has an advant-
age over A*-RRT and A*-RRT*, whose path-biasing heuristics suffer from the A*
paths typically being in worse homotopy classes than the Theta* paths, which
results in longer trajectories and thus also larger planning times and tree sizes.

(iii) The sampling strategy of Theta*-RRT results in smooth trajectories. Theta*-
RRT thus has an advantage over A*-RRT*, whose sampling strategy is not quite
as sophisticated.

Additionally, we tested Theta*-RRT in a real-world setting by deploying it on a

89

CHAPTER 5. THETA*-RRT: ANY-ANGLE PATH BIASING FOR RRT
NONHOLONOMIC MOTION PLANNING

Figure 5.9: Theta*-RRT on a real differential drive robot. Right: The robot guides
a group of people. Left: The dots S and G (in red) represent the start
and goal positions (respectively). The any-angle path (in green) is gen-
erated first, followed by the smooth trajectory (in purple)

.

passenger guidance robot for complex and busy airport environments (Fig. 5.9).

Random environment
Planner Nv Ts [s] lp [m]
Theta*-RRT 54 ± 59 0.011 ± 0.007 43.11 ± 1.485
A*-RRT 49 ± 46 0.020 ± 0.01 44.16 ± 1.76
RRT 137 ± 150 0.09 ± 0.05 65.25 ± 13.54
RRT* 168 ± 154 9.57 ± 13.73 43.84 ± 1.45
A*-RRT* 32 ± 34 0.40 ± 0.93 52.88 ± 19.0

Maze environment
Planner Nv Ts [s] lp [m]
Theta*-RRT 319 ± 164 0.19 ± 0.07 94.86 ± 2.74
A*-RRT 1470 ± 777 3.73 ± 4.8 98.45 ± 1.12
RRT 2615 ± 960 4.85 ± 4.62 139.16 ± 21.63
RRT* 658 ± 37 16.13 ± 0.34 129.61 ± 5.65
A*-RRT* 356 ± 193 47.66 ± 48.47 96.57 ± 5.37

Narrow corridor environment
Planner Nv Ts [s] lp [m]
Theta*-RRT 1206 ± 258 8.16 ± 3.63 77.78 ± 1.44
A*-RRT 1799 ± 715 18.84 ± 15.2 77.8 ± 1.33
RRT 8488 ± 1639 180.45 ± 58.55 78.36 ± 1.82
RRT* 45310 ± 7012 2667.5 ± 481.7 79.47 ± 0.9
A*-RRT* 3236 ± 572 309.4 ± 119.4 78.37 ± 0.65

Table 5.1: Experimental results: Planning efficiency for the differential drive
system.

90

5.7. PROBABILISTIC COMPLETENESS OF THETA*-RRT

Roughness R
Planner Random env. Maze env. Narrow corridor

env.
Theta*-RRT 0.001 ± 0.003 0.0038 ± 0.0038 0.0027 ± 0.004
A*-RRT 0.003 ± 0.004 0.015 ± 0.007 0.023 ± 0.01
RRT 0.009 ± 0.008 0.018 ± 0.01 0.0069 ± 0.005
RRT* 0.0007 ± 0.00140 0.024 ± 0.01 0.03 ± 0.008
A*-RRT* 0.0057 ± 0.0098 0.013 ± 0.009 0.0125 ± 0.006

Table 5.2: Experimental results: Trajectory quality for the differential drive robot
system.

Problems solved
Planner Random env. Maze env. Narrow corridor env.
Theta*-RRT 100% 100% 100%
A*-RRT 100% 100% 100%
RRT 100% 100% 100%
RRT* 100% 100% 100%
A*-RRT* 100% 100% 100%

Table 5.3: Experimental results: Problems solved for the differential drive robot
system.

5.7 Probabilistic Completeness of Theta*-RRT

The results clearly demonstrate the benefit of Theta*-RRT. However, its path-
biasing heuristic – as any heuristic – can mislead and even degrade the per-
formance of RRT, for example when the any-angle path is infeasible to follow
under kinodynamic constraints, although a geometric solution (in the inflated
grid world) exists. In such cases, the probabilistic completeness, a key property
of RRT, is lost. In this section, we prove that Theta*-RRT retains the probabil-
istic completeness for all small-time controllable nonholonomic systems which
use an analytical steer function. Our proof follows the one introduced by LaValle
and Kuffner Jr (2001) but we consider a special class of nonholonomic systems,
namely systems that are small-time controllable, see Definition 10. Moreover our
proof takes inspiration from the two level planning approach and its properties de-
tailed by Sekhavat et al. (1997); Laumond et al. (1998); Sekhavat et al. (1998).

Theorem 1. Consider a small-time controllable nonholonomic system. Define a non-zero
and non-uniform continuous sampling distribution fs over C f ree generated by the path-
biasing technique. Let Theta*-RRT use an analytical steer function that connects any

91

CHAPTER 5. THETA*-RRT: ANY-ANGLE PATH BIASING FOR RRT
NONHOLONOMIC MOTION PLANNING

Random environment
Planner Nv Ts [s] lp [m]
Theta*-RRT 52.2 ± 48.3 0.0547 ± 0.0790 44.331 ± 2.8418
A*-RRT 75.7 ± 52.4 0.1019 ± 0.0984 51.74 ± 7.89
RRT 836 ± 378 1.32 ± 0.84 66.96 ± 14.7
RRT* 3957 ± 2756 816.16 ± 656.58 52.39 ± 13.12
A*-RRT* 3582 ± 3138 949.6 ± 823.7 49.30 ± 12.79

Maze environment
Planner Nv Ts [s] lp [m]
Theta*-RRT 522 ± 167 2.57 ± 1.50 98.59 ± 4.95
A*-RRT 661 ± 181 4.56 ± 2.0858 101.79 ± 8.26
RRT 4858 ± 1276 38.88 ± 15.83 126.34 ± 16.52
RRT* 0 ± 0 0 ± 0 0 ± 0
A*-RRT* 0 ± 0 0 ± 0 0 ± 0

Narrow corridor environment
Planner Nv Ts [s] lp [m]
Theta*-RRT 1513 ± 492 20.87 ± 13.77 77.10 ± 6.75
A*-RRT 2139 ± 573 33.46 ± 16.74 79.66 ± 5.94
RRT 1794 ± 5473 733.98 ± 438.28 83.77 ± 7.04
RRT* 0 ± 0 0 ± 0 0 ± 0
A*-RRT* 0 ± 0 0 ± 0 0 ± 0

Table 5.4: Experimental results: Planning efficiency for the truck-and-trailer
system.

Roughness R
Planner Random env. Maze env. Narrow corridor env.
Theta*-RRT 0.0057 ± 0.0060 1.0073 ± 0.7226 2.15 ± 1.12
A*-RRT 3.4993 ± 8.8502 1.1317 ± 1.0372 1.9352 ± 0.8722
RRT 2.17 ± 2.00 2.0788 ± 1.2985 2.31 ± 1.47
RRT* 0.54 ± 1.01 0 ± 0 0 ± 0
A*-RRT* 0.1013 ± 0.2647 0 ± 0 0 ± 0

Table 5.5: Experimental results: Trajectory quality for the truck-and-trailer
system.

Problems solved
Planner Random env. Maze env. Narrow corridor env.
Theta*-RRT 100% 100% 100%
A*-RRT 58% 100% 100%
RRT 100% 100% 100%
RRT* 76% 0%− failed 0%− failed
A*-RRT* 100% 0%− failed 0%− failed

Table 5.6: Experimental results: Problems solved for the truck-and-trailer system.

92

5.8. CONCLUSIONS

Environments TTheta∗ [ms] TA∗ [ms]
Random 5.34 8.07
Maze 12.06 19.91
Narrow corridor 45.14 37.74

Table 5.7: Experimental results: Planning times of Theta* and A*

pair of states in C. Then, Theta*-RRT is probabilistically complete since the probability
of connecting the start state xstart ∈ C f ree to the goal state xgoal ∈ C f ree, if possible,
approaches one asymptotically.

Proof. Let B(xi, ρ) denote the ball of radius ρ > 0 centered on xi ∈ C f ree.
Consider all the tree vertices ∪i=0,..,k xi ∈ τ at iteration k. Since the volume
Ω = ∪i=0,..,k B(xi, ρ ≥ δR > 0) is non-zero for the Lebesgue metric the event
of sampling a state xrand ∈ Ω will happen with probability one as the number of
iterations goes to infinity. Given that the system is small-time controllable, the
connection (performed by the steer function) of xrand to xnear (chosen among mul-
tiple vertices in τ), will be successful and therefore (if collision free) xrand will be
added to τ. The set C̃k = {x ∈ Cfree \ ∀x ∈ τ} represents the uncovered part of
the space Cfree by τ. By induction following the above property, as k approaches
infinity, µ(C̃k) (the volume of C̃k) approaches zero, therefore the state xgoal will be
added to τ with probability one.

Since the proof does not exploit any geometric properties of Clocal, Theorem 1
extends to RRT with any path-biasing heuristic as long as it uses analytical steer
functions for systems that are small-time controllable.

5.8 Conclusions

In this chapter, we introduced Theta*-RRT, a hierarchical technique that combines
(discrete) any-angle search with (continuous) RRT motion planning for small-
time controllable nonholonomic wheeled robots. We evaluated the approach
using two different nonholonomic systems in three different environments and
compared it to four different baseline planners, namely RRT, A*-RRT, RRT* and
A*-RRT*. The results show that Theta*-RRT finds shorter trajectories at least one
order of magnitude faster than the baselines without loss of smoothness in very
complex environments and for high dimensional systems, while A*-RRT* and
RRT* (and thus also Informed RRT* (Gammell et al., 2014)) fail to generate a
first trajectory sufficiently fast in environments with complex nonholonomic con-
straints. We also proved that Theta*-RRT retains the probabilistic completeness
of RRT for all small-time controllable systems that use an analytical steer func-
tion: we showed that high dimensional problems with difficult nonholonomic

93

CHAPTER 5. THETA*-RRT: ANY-ANGLE PATH BIASING FOR RRT
NONHOLONOMIC MOTION PLANNING

constraints can be solved without sacrificing the original probabilistic complete-
ness of RRT by properly exploiting, with an any-angle path biasing technique,
the workspace information.

94

CHAPTER 6

Kinodynamic Motion Planning on
Gaussian Mixture Fields

"Wahrlich es ist nicht das Wissen,
sondern das Lernen, nicht das Besitzen
sondern das Erwerben, nicht das
Da-Seyn, sondern das Hinkommen,
was den grössten Genuss gewährt."

Johann Carl Friedrich Gauss
Letter to Farkas Bolyai

In this chapter, we extend the work presented in the previous chapters by
introducing a motion planning approach for wheeled mobile robots under
kinodynamic constraints to environments where the objects’ dynamics are
described by learned perception priors in the form of continuous Gaussian
mixture fields. Our Gaussian mixture fields are statistical multi-modal mo-
tion models of discrete objects or continuous media in the environment that
encode e.g. the dynamics of air or pedestrian flows. We approach this task us-
ing a recently proposed circular linear flow field map based on semi-wrapped
GMMs whose mixture components guide sampling and rewiring in an RRT*
algorithm using an enhanced POSQ steer function for nonholonomic mobile
robots. In our experiments with three alternative baselines, we show that
this combination allows the planner to very efficiently generate high-quality
solutions in terms of path smoothness, path length as well as natural yet min-
imum control effort motion through multi-modal representations of Gaussian
mixture fields.

6.1 Introduction

So far we have introduced modifications to the main functions in RRT and RRT*
based motion planners, aiming to efficiently generate smooth robot kinodynamic-
ally feasible motion in complex and cluttered static environments. In this chapter,
we consider the robot in a dynamic environment and present an RRT* based ap-
proach, that generates robot motion based on learned perception priors of the

95

CHAPTER 6. KINODYNAMIC MOTION PLANNING ON GAUSSIAN
MIXTURE FIELDS

Figure 6.1: We present a planning approach that generates smooth and optimal
trajectories over a field of Gaussian mixtures. Left: The figure shows
an example from the studied simulated intersect scenario where mul-
tiple flows of people encounter each other. Right: An example path (in
green) generated among the Circular Linear Flow Field (CLiFF) map
which associates a Gaussian mixture model to each location, whose
components encode multiple weighted flow directions.

obstacles and humans’ dynamics. Robot operation environments are often rich in
semantics, affordances and dynamically moving objects that follow typical mo-
tion patterns. Knowledge of such features in addition to the basic geometry of
the workspace represents valuable information for a motion planner to generate
better solutions in terms of path quality, safety, replanning frequency or social
normativeness. Mobile service robots in human environments, for example, may
exploit information about typical pedestrian flows to avoid high-density areas
and to take advantage of such flows to reach a destination.

Here we present a planning approach that accounts for typical motion of dy-
namic objects or continuous media such as pedestrian flows, modeled as a field of
semi-wrapped Gaussian mixtures to represent the underlying multi-modal vec-
tor field.

In addition to the model to represent environment dynamics, we use an asymp-
totically optimal sampling-based motion planner that implicitly considers the ro-
bot’s kinematic and its nonholonomic constraints by using a steer function to
plan over a continuous state space. The combination leads to a novel algorithm,
named CLiFF-RRT*, that plans kinodynamically feasible paths under a CLiFF-
map model (the model will be introduced in Sec.6.3), trading off classical path
quality metrics with the compliance to the environment dynamics. In the exper-
iments, we compare our approach to RRT, RRT* and an uninformed variant of

96

6.2. RELATED WORK

the algorithm and show that CLiFF-RRT* is significantly faster than the baselines
and produces solutions that best comply to the flow directions as modeled by the
map. The algorithm also achieves shorter and smoother paths and retains the
probabilistic completeness and asymptotic optimality properties of RRT*.
The chapter is structured as follows: in Sec.6.2 we detail related state-of-the-art
methods, in Sec.6.3 we briefly present the CLiFF-map model and describe the
algorithm and its properties in Sec. 6.4. We present experiments in Sec. 6.5 and
discuss their results in Sec. 6.6.

6.2 Related work

Past approaches have considered motion planning over regular (unimodal) vec-
tor fields. Kularatne et al. (2016) present a graph-based approach that generates
time optimal and energy efficient motion plans for autonomous surface and
underwater vehicles in time-varying flow fields. The kinematic constraints of the
vehicles are accounted for in the cost function. Moreover in navigation among
humans the robot is not always interested in finding the most efficient solution
but rather one that respects some social norms. Otte et al. (2016) describe a graph-
based algorithm to solve the problem of real-time path planning in time-varying
wind fields. The anytime algorithm finds an α β solution quickly which is then
incrementally improved given more time. Lolla et al. (2014) generate paths for
swarms of underwater vehicles, deployed in the Philippine Archipelago region,
over dynamic water flow fields using a level set approach. The method, based
on a 2D grid representation of the environment, finds time-optimal paths while
respecting the kinematic constraints of the system. Ko et al. (2014) present an
RRT-based path planner over a vector field defined in the configuration space. To
find a path, the algorithm tries to minimize an upstream criterion which quantifies
the control effort to go against a vector field. Tree growth is guided by this
criteria resulting in extensions that are more probably aligned with the vector
field directions.
Recurring patterns of human motion that people typically follow in an envir-
onment have been learned and used for planning by Bennewitz et al. (2003);
O’Callaghan et al. (2011); Fulgenzi et al. (2010); Rios-Martinez et al. (2011). Such
patterns can be seen as sparse vector fields as they are only defined in parts
of the state space where humans have been repeatedly observed. Based on
the Risk-RRT algorithm (Fulgenzi et al., 2010), Rios-Martinez et al. (2011) use
Gaussian processes (GP) to predict motion of humans and generate paths with
an RRT-based planner that minimize the risk of disturbing and colliding with
surrounding people.
O’Callaghan et al. (2011) present a method that generates paths by following
learned motion patterns of people using GPs. The method computes a nav-

97

CHAPTER 6. KINODYNAMIC MOTION PLANNING ON GAUSSIAN
MIXTURE FIELDS

igational map based on the motion patterns whose cells incorporate velocity
vectors. The robot navigates through the environment by querying the learned
map and obtaining the next direction to follow. Bennewitz et al. (2003) learn a
collection of human motion patterns using Gaussian mixtures and EM. For each
observed human the most probable pattern is determined and used to make
predictions of future motion for planning. The method uses A* on a 2D grid with
cell costs discounted by the probability that a person is in a cell at a given time.
Unlike (Kularatne et al., 2016; Otte et al., 2016; Lolla et al., 2014; Ko et al., 2014)
we use a more powerful probabilistic representation than vector fields named
Circular Linear Flow Field (CLiFF) map (Kucner et al., 2016). It associates a
Gaussian mixture model to each location whose components encode multiple
weighted flow directions. The model captures the dependency between motion
speed (a linear variable) and direction (a circular variable) using semi-wrapped
Gaussian mixture models introduced by Roy et al. (2014).

6.3 The CLiFF-Map Model

The Circular Linear Flow Field map (CLiFF-map 1) Kucner et al. (2017) describes
motion patterns as a field of Gaussian mixtures whose local elements are probab-
ility distribution of (instantaneous) velocities VVV = (θ, ρ), where θ ∈ [0, 2π) is the
orientation and ρ ∈ R+ the speed. This is a heterogeneous vector with one cir-
cular random variable (θ) and one linear (ρ). For their representation we choose
the semi-wrapped normal distribution: a bivariate normal distribution on a cylin-
der where one of the dimensions is defined along the cylinder’s height while the
other is wrapped around it’s circumference,

N SWµµµ,ΣΣΣ (VVV) = ∑
k∈Z

Nµµµ,ΣΣΣ

([
θ
ρ

]
+ 2π

[
k
0

])
. (6.1)

To model multi-modal events such as human motion patterns, CLiFF-maps em-
ploy semi-wrapped Gaussian mixture models (SWGMM),

p(VVV|ξξξ) =
J

∑
j=1

πjN SWµµµj,ΣΣΣj
(VVV) (6.2)

with ∑J
j=1 πj = 1. A SWGMM (ξξξ) is a weighted sum of J semi-wrapped nor-

mal distributions, that capture the local distribution of velocities. A CLiFF-map

1Note that the CLiFF representation has been introduced by Kucner et al. (2017). In this work
we combine the CLiFF map concept with a kinodynamic motion planner.

98

6.4. OUR APPROACH

Figure 6.2: Visualisation of CLiFF distributions obtained for a set of wind meas-
urements. The red arrows represent the directions of the modes while
color coded ones represent the raw measurements. Wada et al. (2010)

(see Fig. 6.2), denoted as D, is a field of ND tuples that characterize local motion
patterns of dynamic obstacles as

D = {(ξξξs, llls)|s ∈ Z+ ∧ llls ∈ R2}, (6.3)

where ξξξs denotes a SWGMM that describes a local motion pattern at position llls.
We use Mean Shift (MS) to estimate the initial position of clusters for EM, which
estimates the parameters of SWGMM (ξξξ).

The von Mises distribution, broadly used for modeling uncertain circular data
(e.g. Calderara et al. (2011)), is not suitable due to the heterogeneity of the con-
sidered variables. Attempts to overcome this include e.g. building Independent
von Mises–Gaussian distributions (Roy et al. (2012)) but such distributions still
assume no correlation between magnitude and orientation of velocity vectors –
an invalid assumption in most real world cases.

6.4 Our Approach

In this section we describe our method to plan a robot’s motion under a CLiFF-
map model. To this end, we introduce an extended upstream criterion which meas-
ures the effort to navigate through a CLiFF-map, followed by the description of
the algorithm and its properties.

99

CHAPTER 6. KINODYNAMIC MOTION PLANNING ON GAUSSIAN
MIXTURE FIELDS

6.4.1 Extended Upstream Criterion
The goal of our algorithm is to find planning solutions that trade off classical
motion planning metrics such as path length and path smoothness with the com-
pliance to the environment dynamics. In order to quantify the latter, we extend
the upstream criterion, proposed by Ko et al. Ko et al. (2014) for unimodal vector
fields, to fields of Gaussian mixtures so as to account for the multi-modal nature
of the CLiFF-map representation.

Given a state xi that falls into a cell llli to which a mixture ξξξ i with Ji semi-
wrapped normal components is associated, the upstream metric is computed as

Ud(xi, ξξξ i) =
Ji

∑
j=1

(
‖µji‖ − 〈µji, x′i〉

)
with 〈, 〉 being the inner product, µji the first-order moment of the jth component
of mixture ξξξ i, and x′i the unit vector describing the direction of the path at xi.
When xi is mapped to a cell llli that has no distributions, we perform nearest-
neighbor interpolation and compute Ud(xi, ξξξ i) using the closest mixture ξξξ i. The
criterion yields low costs for paths that comply to the directions of CLiFF-map
mixture components and high costs for paths in opposite directions.

6.4.2 CLiFF-RRT*
For planning, we choose (and modify) RRT* as a natural choice for optimal mo-
tion planning under kinodynamic constraints. Let X ∈ Rd be the configura-
tion space and U ∈ Rm the control space, the dynamics of the robot can be de-
scribed by the differential equation ẋ(t) = f (x(t), u(t)), x(0) = x0, with x(t) ∈ X ,
u(t) ∈ U and f describing the system’s kinematic constraints.

RRT* Karaman and Frazzoli (2011) is a probabilistically complete single-query
sampling-based planner that asymptotically finds optimal solutions for a motion
planning problem. Given an obstacle space Xobs∈X , a free space X f ree∈X \Xobs,
a start state xstart ∈ X f ree and a goal state xgoal ∈ Xgoal ⊂ X f ree, the algorithm
expands into X f ree a tree τ whose edges are trajectories σi (with σi(j) being state
j of trajectory i) that satisfy the kinematic constraints of the considered system.

In summary, we approach the task as a hierarchical motion planning problem
in that we first generate a discrete path PD that selects mixtures at relevant loca-
tions, and then use those mixtures to bias the sampling and rewiring procedures
in RRT*. The first step makes sure that an initially feasible path is found quickly
given a CLiFF map while the second step, generates and incrementally improves
a trajectory xD that satisfies the kinodynamic vehicle constraints. The result is
CLiFF-RRT* in Alg. 7 whose steps are explained next.
SelectMixtures(X , xstart, xgoal): in this step we select the semi-wrapped

mixtures N SW that allow the system to move from xstart to xgoal while respecting

100

6.4. OUR APPROACH

Algorithm 7 CLiFF-RRT*
1: function CLiFF-RRT*(xstart , xgoal)
2: PD ⇐ SelectMixtures(xstart , xgoal)
3: if PD = ∅ then
4: return failure
5: end if
6: τ.AddNode(xstart)
7: g(xstart)⇐ 0
8: n⇐ 1
9: while n ≤ MAX_ITERATIONS do

10: xrand ⇐ CLiFFSampling(C, PD)
11: xnear ⇐ NearestSearch(τ, xrand, PD)
12: unew, σσσnew, xnew ⇐ Steer(xnear, xrand)
13: if σσσnew ∈ Cobs then
14: continue
15: end if
16: τ.AddNode(xnew)
17: τ.AddEdge(xnear, xnew, σσσnew, unew)
18: g(xnew)⇐ g(xnear) + Cost(xnear, xnew)
19: τ⇐ Rewire(τ, xnew, xnear)
20: if xnew ∈ Cgoal then
21: xD = ExtractTrajectory(xnew)
22: end if
23: n⇐ n + 1
24: end while
25: return failure

the learned environment’s dynamics. We run a Dijkstra search over the graph G
in which each node nG,i is associated to each mixture component

(
∀(ξξξ i, llli) ∈ D

)
:

for each map cell llli we compute edges that go between all pairs of the SWGMM
components of llli and those of the cells in its 4-neighborhood. To each edge
e(nG,i, nG,j), with nG,i and nG,j being two neighboring nodes, we associate the fol-
lowing cost:

c(e(nG,i, nG,j)) = d(e(nG,i, nG,j)) + Ud(xnG,j , ξξξnG,j) (6.4)

where d(e(nG,i, nG,j)) is the squared Euclidean distance between the nodes, xnG,j
and ξξξnG,j respectively the state and the mixture associated to the node nG,j.

The search generates a concatenation PD (i.e. a path) of NPD CLiFF-map tuples
(ξξξ i, llli) from lll0 (with xstart ∈ lll0) to lllNPD−1 (with xgoal ∈ lllNPD−1) which is forwarded
to the sampling unit.
CLiFFSampling(C, PD): it draws xrand samples in X . The parameter α ∈ [0, 1]

sets the probability of the biasing towards the NPD CLiFF-map mixtures ξξξ i of PD:

101

CHAPTER 6. KINODYNAMIC MOTION PLANNING ON GAUSSIAN
MIXTURE FIELDS

xrand ∼
NPD−1

∑
i=0

Ji

∑
j=1

πjN SW
ξξξ i

(µµµjξξξ i
, ΣΣΣjξξξ i

)

With a probability of (1 − α), samples are drawn from a uniform distribution
defined on the entire state space X . Note that the samples contains, not only
the robot pose but also its velocity.
NearestSearch(τ, xrand, PD): it returns the node xnear that connects to xrand

with minimum cost-to-go C(xnear, xrand, PD) within distance δR (as parameter)
from the latter:

xnear = arg min
x∈XδR

g(x) + Cost(x, xrand) (6.5)

with g(x) being the cost-to-come to vertex x from root xstart through the current
tree τ. If no nodes are found within this distance, the closest vertex in terms of
Euclidean distance is returned.
Cost(xi, xj): returns the cost of the trajectory σ that connects node xi to node xj.

Our algorithm aims to find trajectories which are smooth and short, respect the
environment dynamics and minimize the upstream criteria (the control effort to
move with the vector field) with respect to the off-line learned mixtures ∀ξξξ i ∈ D.
For these reasons we use the following cost function:

C(xp, xz, PD) =
Np

∑
i=1
‖σ(i)− σ(i− 1)‖+ |(1− |qi · qi−1|)|

+
Np

∑
i=1

Ud(σ(i), ξξξ i)

where σ(i) are intermediate states of the trajectory σ connecting xp to xz, qi are
related quaternions, and Ud(σ(i), ξξξ i) being the upstream functional value at σ(i).
A supervised learning approach can be used to improve the efficiency of the cost
computation as in Palmieri and Arras (2015).
Steer(xi, xj): it generates a trajectory σ and the set of controls u needed to

steer the system from xi to xj. The analytical steer function connects any pair of
states and respects the topological property as described in Karaman and Frazzoli
(2011); Palmieri et al. (2016). Moreover, the generated trajectory needs to respect
the initial and the final velocity contained in the samples xi, xj.
Rewire(τ, xnew, xnear): rewires the tree τ, see Alg. 8, as in the original RRT*

Karaman and Frazzoli (2011), using the above described Steer and Cost func-
tions. The rewiring is done at each iteration on a set of vertices found by a near
neighbor search as in Karaman and Frazzoli (2013): it finds the set of all the states
in τ that lie within a box centered on xnear whose volume scales as γD log(nU)

nU
, with

102

6.4. OUR APPROACH

Algorithm 8 Rewire(τ, xnew, xnear)
1: function Rewire(τ, xnew, xnear)
2: xmin ⇐ xnear
3: g(xmin)⇐ g(xnew)
4: Xnear ⇐ NearNeighborSearch(τ, xnew, |τ|)
5: for ∀ xi ∈ Xnear do
6: ui, σσσi, xi ⇐ Steer(xi, xnew)
7: if σσσi ∈ Cobs then
8: continue
9: end if

10: ci = g(xi) + Cost(xi, xnew)
11: if ci < g(xmin) then
12: xmin ⇐ xi, σσσmin ⇐ σσσi, umin ⇐ ui
13: end if
14: end for
15: τ.AddEdge(xmin, xnew, σσσmin, umin)
16: for ∀ xj ∈ Xnear do
17: uj, σσσj, xj ⇐ Steer(xnew, xj)
18: if σσσj ∈ Cobs then
19: continue
20: end if
21: cj = g(xnew) + Cost(xnew, xj)
22: if cj < g(xj) then
23: xparent ⇐ Parent(xj)
24: τ.RemoveEdge(xparent, xj)
25: τ.AddEdge(xnew, xj, σσσj, uj)
26: end if
27: end for
28: return τ

D being the Hausdorff dimension of the distribution generated by the system dy-
namics and nU the number of uniformly distributed samples added to the tree τ.

6.4.3 Steer Function: Augmented POSQ

CLiFF-RRT* draws samples containing not only information regarding hypothet-
ical robot poses but also velocity information. For this reason the steer function
needs to be able to generate a trajectory that respects also the desired initial and
final velocities of the two samples to connect. We consider wheeled mobile robots
with a differential drive kinematic configuration with state x = (x, y, θ, v), where
(x, y) ∈ R2 is the Cartesian position, θ ∈ [−π, π) is the heading orientation and
v its translational velocity. After a Cartesian-to-polar coordinate transformation,

103

CHAPTER 6. KINODYNAMIC MOTION PLANNING ON GAUSSIAN
MIXTURE FIELDS

the equations of motion are
ρ̇ = − cos α v

α̇ =
sin α

ρ
v−ω

φ̇ = −ω,

(6.6)

where ρ is the Euclidean distance between the Cartesian coordinates of the robot
pose (x, y, θ) and of the goal state, φ the angle between the x-axis of the robot
reference frame {Xr} and the x-axis of the goal state frame {Xg}, α the angle
between the y-axis of the robot reference frame and the vector connecting the
robot with the goal position, v the translational and ω the angular robot velocity,
see Fig. 3.3. Thanks to the polar representation we overcome the obstruction
to stabilizability for such system described in the Theorem of Brockett (Brockett
et al., 1983). To exactly connect any pairs of states smoothly and efficiently for
this description of a wheeled mobile robot, we use and extend the POSQ steer
function (see Chapter 3). Each time when the steer function is called in Alg. 7 to
connect two sampled states x1 = (x1, y1, θ1, v1) to x2 = (x2, y2, θ2, v2), we plan an
initial extension by using POSQ as described in Chapter 3 and then modify the
velocity profile so that the initial velocity is equal to v1 and final one is v2. The
velocity profile is generated using an efficient third-order polynomial time-law

6.4.4 Algorithm Properties

RRT* has favourable properties such as probabilistic completeness and asymp-
totic optimality. In this section we briefly analyze how the alterations of the pro-
posed algorithm impact those properties.

RRT and RRT* are probabilistically complete as their sampling procedure draw
samples from a uniform distribution over the state space. This applies also to
CLiFF-RRT* which generates, at a given probability, uniformly distributed ran-
dom samples, none of which are rejected.

Regarding asymptotic optimality, Karaman and Frazzoli have shown that for
n uniformly distributed random samples, a steer function that connect two poses
exactly, an admissible cost function and a specific constant γ in the selection of
the neighboring nodes, RRT* almost surely converges asymptotically to the op-
timal solution as n goes to infinity (Karaman and Frazzoli, 2013). CLiFF-RRT*
uses the same rewiring and neighbor nodes selection procedures of RRT*. It uses
a steer function that exactly connects two nodes and its cost function C(xi, xj, PD)
is an admissible cost function for RRT*: it is monotonic, additive and Lipschitz
continuous. Moreover, it generates, at a given probability (1-α), uniformly distrib-
uted random samples. Therefore CLiFF-RRT* retains the asymptotic optimality
property of RRT*.

104

6.5. EXPERIMENTS

6.5 Experiments

The purpose of the experiments is to evaluate the performance of the proposed
CLiFF-RRT* algorithm with respect to the baselines of regular RRT and RRT* and
an uninformed variant of the algorithm, called All-Mixtures-RRT*, that gener-
ates samples from a distribution composed of all CLiFF-map mixtures and not
on a subset as it the case with CLiFF-RRT*. The latter, as explained in Sec.6.4,
draws samples considering a subset of mixtures selected at the beginning of the
algorithm via a discrete search (i.e. Dijkstra algorithm). All methods use the steer
function described in Sec. 6.4.3 and cost function described in Sec. 6.4.2.

We run the experiments on a single core of an ordinary PC with a 2.80 GHz
Intel i7 processor and 32 GB RAM using C++. After a set of informal validation
runs we set the parameters α to 0.95 and δR to 4 m, while γ is set in a way to
satisfy the requirements of RRT*, see (Karaman and Frazzoli, 2013).

6.5.1 Environments
We study how the planners behave in environments of varying complexity. Given
our interest in wheeled mobile service robots, environments are generated by ex-
ploiting off-line learned motion models of pedestrian traffic. We have designed
four simulated test environments shown in Fig. 6.1 and Fig. 6.3-6.5. In all cases
there are different flow dynamics between the start and goal, and different plan-
ning solutions (homotopy classes) are possible. The L and P environments con-
tain a few obstacles. Here the planners have less geometric constraints to better
follow the upstream criterion in the free space. The maze environment has many
different homotopy classes and narrow passages: the environment has many dif-
ferent flows that go against each other. The intersect scenario has many flows
of pedestrians coming from different corridors intersecting in a junction: also
here there are few geometric constraints but several flows are present. All the
CLiFF-maps have been generated with the help of the pedestrian simulator Ped-
sim (Vasquez et al., 2014). The grid cell size for the CLiFF-map is set to 1 m in all
the environments.

6.5.2 Metrics
For each planner and environment, we perform 50 runs. For the L, P and intersect
scenarios we limit the planning time to 60 s, and for the maze scenario to 120 s. We
compute the means and standard deviations of the following metrics: planning
time Ts (measured in seconds), resulting trajectory length lp (measured in meters)
and final cost Cs. Furthermore, to measure smoothness, we use the roughness
metric introduced in Section 2.7 defined as the square of the change in curvature
κ of the robot, integrated along the trajectory and normalized by the trajectory

105

CHAPTER 6. KINODYNAMIC MOTION PLANNING ON GAUSSIAN
MIXTURE FIELDS

Figure 6.3: An example CLiFF-RRT* path (in blue) generated in the L scenario.
The arrows represent the learned mixtures. In the environment just a
few obstacles are present. The algorithm finds the best solution that
optimizes path length and the upstream criterion: the solutions follow
the learned flows.

Figure 6.4: An example CLiFF-RRT* path (in green) generated in the P scenario.
The arrows represent the learned mixtures. The algorithm finds the
best solutions that optimize path length and the upstream criterion.

length L,

R =
∫ tl

t0

∣∣∣∣ 1L dκ

dt

∣∣∣∣2 dt.

Smoother trajectories have smaller roughness. We also report the percentage of
trajectories found (problems solved) within the planning time limit.

Furthermore, we evaluate the capability of the planners to generate velocity
profiles that adhere to the ones that usually flows have into the environments,

106

6.6. RESULTS AND DISCUSSION

Figure 6.5: An example CLiFF-RRT* path generated in the more complex maze
scenario. In red the RRT* path generated by minimizing only path
length. The arrows describe the learned mixtures. CLiFF-RRT* com-
putes a path (in orange) that better minimizes the upstream criterion,
without encountering or crossing flows going in opposing direction.

which have been learned by the CLiFF map. In this respect we compute the aver-
age of the mean squared error (VMSE) between the velocity profile generated by
the planners and the one contained in the CLiFF map, in the locations where the
planner’s paths are generated.

6.6 Results And Discussion

The experimental results for CLiFF-RRT* and the three baseline planners are
given in Table 6.2-6.5. The best values are highlighted in boldface, smaller values
are better for all performance metrics excepts for the percentage of the problems
solved.

CLiFF-RRT* outperforms the baselines with respect to all the metrics. We make
the following observations:

• CLiFF-RRT* with its focused search finds an initial solution faster than all
the baselines (thus also Informed RRT* Gammell et al. (2014) which behaves
as RRT* until a first solution is found). RRT and RRT* do not avoid the time-
consuming exploration of the entire state space. For this reason the latter
more often fails to find an initial solution in the given time. Moreover from
Table 6.1, we can see that the planning time of sub-selecting a set of mixtures

107

CHAPTER 6. KINODYNAMIC MOTION PLANNING ON GAUSSIAN
MIXTURE FIELDS

with the Dijkstra search does not largely affect the overall planning time of
CLiFF-RRT*. Additionally CLiFF-RRT*, in average, converges faster to a
lower cost solution than the baselines, see Fig. 6.6. Those results confirm
the intuition that having prior knowledge of the environment’s dynamics,
improves planning efficiency (e.g. in our experiments knowing how people
usually move in an environment allows the planner to explore a smaller
part of the configuration space).

• CLiFF-RRT* finds less costly solutions if compared to all the baselines. The
mixtures selected via the Dijkstra search guide the tree towards areas of
the state space where the found trajectory is most likely to offer a good
trade-off between length and control-effort against the dynamics of the en-
vironment (the upstream-criterion). The uniform sampling of RRT and RRT*
has not such knowledge thus those planners fail to find a better solution.
All-Mixtures-RRT*, without the Dijkstra search biasing, fails to find better
solution too in the allowed planning time.

• The CLiFF-RRT* sampling strategy results in smoother trajectories than the
baselines. Mainly because the off-line learned mixtures bias the tree to-
wards concatenation of extensions with less velocity discontinuities. Uni-
form sampling generates velocities without prior knowledge about usual
motion in particular portions of the state space, thus producing less correl-
ated velocities.

• As reported in Table 6.5, CLiFF-RRT* generates velocity profiles that better
adhere, in average, to the observed flow velocity learned by the CLiFF map.

6.7 Conclusion

In this chapter, we present CLiFF-RRT*, an algorithm that exploits prior know-
ledge of the environment’s dynamics in order to efficiently plan smooth and
short paths. Differently from previous approaches that rely on simple vector
fields, our method plans considering a novel multi-modal representation of the
dynamic obstacles’ motion. We evaluated and compared the approach in four dif-
ferent environments to three different baseline planners, namely RRT, RRT* and
an uniformed version of RRT* that samples considering all the off-line learned
CLiFF distributions. The results indicate that learned CLiFF-map priors help
CLiFF-RRT* to find shorter and smoother trajectories faster than all the baselines.
Moreover the results show that the approach requires less control effort (smaller
cost) to drive a wheeled mobile robot trough a dynamic environment. CLiFF-
RRT* retains the probabilistic completeness and the asymptotic optimality of
RRT*.

108

6.7. CONCLUSION

Environments TDijkstra [ms]
L 4.36
P 3.36
Intersect 2.83
Maze 121.20

Table 6.1: Planning times of the mixture selection step.

L environment
Planner Cost Cs Plan. time Ts [s] Traj. length lp [m]
CLiFF-RRT* 111.42 ± 5.08 5.30 ± 8.08 33.59 ± 0.78
All-Mixtures-RRT* 130.89 ± 32.92 14.97 ± 17.65 35.48 ± 2.31
RRT 784.82 ± 618.5 15.83 ± 17.16 40.59 ± 7.36
RRT* 212.26 ± 193.4 28.15 ± 14.91 37.31 ± 3.35

Maze environment
Planner Cost Cs Plan. time Ts [s] Traj. length lp [m]
CLiFF-RRT* 151.51 ± 12.62 31.13 ± 32.66 123.23 ± 1.02
All-Mixtures-RRT* 180.52 ± 54.83 36.74 ± 38.12 126.43 ± 3.83
RRT 1260.54± 1278.96 41.74 ± 17.87 169.94 ± 25.93
RRT* 560.78 ± 397.98 64.29 ± 35.93 176.68 ± 43.67

P environment
Planner Cost Cs Plan. time Ts [s] Traj. length lp [m]
CLiFF-RRT* 1125.16 ± 659.0 11.42 ± 14.11 59.13 ± 4.48
All-Mixtures-RRT* 1688.09 ± 27.48 12.38 ± 7.68 103.54 ± 31.1
RRT 2532.96 ± 798.46 21.16 ± 19.8 82.87 ± 23.04
RRT* 1128.06 ± 454.64 25.43 ± 18.90 122.61 ± 34.72

Intersect environment
Planner Cost Cs Plan. time Ts [s] Traj. length lp [m]
CLiFF-RRT* 182.52 ± 28.77 24.96 ± 17.29 34.71 ± 1.00
All-Mixtures-RRT* 307.67 ± 56.25 29.4 ± 18.70 51.77 ± 20.76
RRT 722.15 ± 373.35 27.78 ± 25.55 41.97 ± 10.14
RRT* 298.75 ± 69.42 27.16 ± 15.77 47.61 ± 16.39

Table 6.2: Trajectory quality and planning efficiency.

Roughness R
Scenarios CLiFF-RRT* All-Mixtures-RRT* RRT RRT*
L 0.00007 ± 0.00004 0.00009 ± 0.0001 0.0023 ± 0.0048 0.00043 ± 0.0013
Maze 0.00002 ± 0.00004 0.000038 ± 0.00002 0.00058± 0.00064 0.00053± 0.00062
P 0.000098± 0.00025 0.0007 ± 0.0024 0.0007 ± 0.0014 0.00057± 0.00007
Intersect 0.013 ± 0.019 0.013 ± 0.0104 0.0196 ± 0.012 0.087 ± 0.0069

Table 6.3: Trajectory roughness.

109

CHAPTER 6. KINODYNAMIC MOTION PLANNING ON GAUSSIAN
MIXTURE FIELDS

Problems solved
Planner L env. Maze env. P env. Intersect env.
CLiFF-RRT* 100% 90% 56% 76%
All-Mixtures-RRT* 48% 10% 2% 14%
RRT 36% 10% 16% 10%
RRT* 34% 14% 16% 24%

Table 6.4: Problems solved for the differential drive robot system.

Av. MSE Velocity Profile VMSE
Scenarios CLiFF-RRT* All-Mixtures-RRT* RRT RRT*
L 0.19639 0.36516 0.35895 0.50673
Maze 0.18766 0.28756 0.36056 0.48896
P 0.3284 0.44525 0.48278 0.47637
Intersect 0.28776 0.32776 0.31372 0.31779

Table 6.5: MSE of the velocity profile generated by the planners respect to the one
learned by the CliFF map.

Figure 6.6: Cost convergence plot (median, first and third quartiles computed
over 50 runs) respect to the planning time of CLiFF-RRT* (in red), All-
Mixtures-RRT* (in green) and RRT* (in blue), for the Intersect scen-
ario. The informed sampling allows CLiFF-RRT* to quickly find an
initial solution and to converge faster to a lower cost solution than the
baselines.

110

CHAPTER 7

A Fast Random Walk Approach to
Find Diverse Paths for Robot

Navigation

"One may even say, strictly speaking,
that almost all our knowledge is only
probable; and in the small number of
things that we are able to know with
certainty, in the mathematical sciences
themselves, the principal means of
arriving at the truth - induction and
analogy - are based on probabilities, so
that the whole system of human
knowledge is tied up with the theory
set out in this essay"

Pierre-Simon Laplace
Théorie Analytique des

Probabilités

The previous chapters introduce several improvements to RRT and RRT*,
which are single-query sampling-based motion planners, to efficiently find a
single solution to the given pair of start and goal poses. Instead of generating
a single solution, an appealing navigation strategy for mobile robots is to find
a set of diverse paths among dynamic obstacles to qualitatively reason about
multiple path hypotheses to the goal. In this chapter we develop an efficient
randomized approach based on weighted random walks, that finds K diverse
paths on the Voronoi diagram of the environment, where each path repres-
ents a distinct homotopy class. We show experimentally that our approach is
significantly faster at finding paths of higher diversity in distinct homotopy
classes than two state-of-the-art methods. Moreover, we also prove that our
method is probabilistically complete.

111

CHAPTER 7. A FAST RANDOM WALK APPROACH TO FIND DIVERSE
PATHS FOR ROBOT NAVIGATION

G

Figure 7.1: An example path selected from the K best homotopy classes in the
Voronoi diagram. The robot is enclosed in the black circle, in red the
path selected to reach the goal position G. The black Voronoi diagram
describes the possible ways to go through a crowd by implicitly en-
coding different homotopy classes.

7.1 Introduction

Single-query robot motion planning generates a single solution from start to goal
under a cost function such as shortest path or maximal traversability. In the pres-
ence of unmodeled dynamic obstacles a solution may quickly become obsolete,
and the path has to be replanned for each change in the environment. Altern-
atively, one can consider an algorithm that reactively computes and maintains
multiple diverse solutions. This approach has benefits in a variety of scenarios:
a set of diverse paths, that is continuously checked for validity in the presence
of unexpected obstacles, reduces the number of replanning queries in highly dy-
namic environments (Voss et al., 2015), allows for novel human-robot-interfaces
in shared autonomy applications (Kuderer et al., 2014; Liu et al., 2012) and highly
efficient, qualitative planning paradigms for social navigation. To ensure robust-
ness of the path set against changes in the environment, paths in the set should
be spatially well separated, since similar or nearby paths are more likely to be
invalidated together. Also in shared autonomy applications having a set of more
diverse paths is obviously a beneficial strategy, since switching between very sim-
ilar paths is of limited if not questionable usability. Furthermore, when generat-
ing a set of paths, a reasonable approach would be to have K paths lying in differ-

112

7.2. RELATED WORK

ent homotopy classes. For example, trajectory optimization methods, which are
limited to finding local minima, may benefit from a set of homotopically distinct
paths ((Kuderer et al., 2014), also discussed by Pokorny et al. (2014)).

With the goal of efficiently finding a set of diverse, high quality paths from
different homotopy classes for robot navigation, we make the following contri-
butions:

a) We present a fast and easy to implement random walk approach to generate
a set of K diverse paths belonging to different homotopy classes. Our method
introduced in (Palmieri et al., 2017, 2015) is an alternative to solve the K shortest
paths problem with deterministic graph search algorithms (Kuderer et al., 2014;
Bhattacharya et al., 2010; Vela et al., 2010). We build a navigation graph (i.e. a
road-map, introduced in Sec.7.3.2) from the Voronoi diagram of the environment
(see Fig. 7.9-Fig. 7.1), where each path represents a distinct homotopy class, and
perform a randomized graph search based on random walks. Additionally, we
prove that our approach is probabilistically complete, i.e., it finds all the paths,
and therefore all the homotopy classes, in the navigation graph.

b) We conduct an extensive evaluation in terms of planning performance and
path quality of our approach, comparing it to two baseline methods that generate
diverse and homotopically-distinct paths (Voss et al., 2015; Kuderer et al., 2014),
and show that our approach is faster and finds more diverse paths (the robot has
a more diversified set from where to choose the path to follow), whilst obtaining
a negligible loss in path quality. We use the notion of robust diversity of a path set
to measure mutual spatial separation of paths. To evaluate the quality of paths in
the set, we adopt the normalized cumulative gain measure which is used to evaluate
web search engine’s returned results and ranking quality.

The chapter is structured as follows: a brief discussion of related works in Sec-
tion 7.2 is followed by the description of our approach and its analysis in Section
7.3. Section 7.4 describes the experiments’ settings. We discuss the results in Sec-
tion 7.5. Section 7.6 concludes the chapter.

7.2 Related Work

Prior research has introduced different methods to generate a set of paths from
different homotopy classes.

Demyen and Buro (2006) introduce a method that searches on a graph built
using constrained Delaunay triangulations. The obstacles are described via poly-
gonal representation. The paths found in the graph belong to different homotopy
classes. In contrast to polygonal representation of the environment, our method
works on arbitrary occupancy grid input, which is simpler to handle and cur-
rently a de facto standard to incorporate data from sensors for real-world opera-
tion.

113

CHAPTER 7. A FAST RANDOM WALK APPROACH TO FIND DIVERSE
PATHS FOR ROBOT NAVIGATION

Voss et al. (2015) introduce an algorithm that seeks to find a set of diverse, short
paths through a roadmap graph. The algorithm searches the graph for shortest
paths avoiding a collection of balls - simulated obstacles in the environment. The
obtained paths often belong to different homotopy classes. The authors compare
their approach to a K shortest paths algorithm and show that, with tolerable loss
in shortness, they produce equally diverse path sets more quickly. Compared
to Voss, our approach is much faster, it always returns the requested K paths if
they exist in the navigation graph, the returned paths always belong to different
homotopy classes and generally are more diverse. Furthermore, our approach
has only one parameter and its runtime does not depend on the density of the
roadmap graph.

Bhattacharya et al. (2010) propose a method for finding different homotopy
classes based on A* search over an augmented graph. The graph encodes topolo-
gical information via the H-signature, a complex analysis value that characterizes
a homotopy class.

Kuderer et al. (2014) select K best homotopy classes by generating K shortest
paths in a Voronoi-based navigation graph. During navigation, the paths feed
an optimization algorithm used to generate homotopically distinct trajectories.
Among those, the best one is selected for navigation. They show that the method
is one order of magnitude faster than Bhattacharya’s approach (Bhattacharya
et al., 2010). Moreover, the authors show that the paths in the Voronoi diagram
are safer and better suited for social navigation, as they lie as far as possible
from the obstacles among all paths in the same homotopy class. Kuderer’s ap-
proach employs Katoh’s algorithm (Katoh et al., 1982) to find the K best paths
in the Voronoi diagram. However, it was shown by Brander and Sinclair (1996)
that for small size graphs and paths of small number of vertices, like in the case
of Voronoi-based navigation graphs, Yen’s algorithm (Yen, 1971) is faster than
Katoh’s. Therefore, we compare our approach to Yen’s algorithm and show that
our method is faster and returns more diverse paths. Furthermore, in very com-
plex environments with many homotopy classes, deterministic K best paths are
very similar to each other, therefore losing the advantage of having a set of dis-
tinct paths. On the contrary, our approach helps to deliver higher diversity in
such scenarios, providing high quality paths that explore different regions of the
map (see Fig. 7.2).

7.3 A Random Walk Approach to Find Diverse Paths

In this section we detail our approach to find a set of diverse paths lying in dis-
tinct homotopy classes. A brief definition of the homotopy class concept and of
the navigation graph is followed by the description of the random walk proced-
ure. Next, we prove that our technique is probabilistically complete.

114

7.3. A RANDOM WALK APPROACH TO FIND DIVERSE PATHS

Figure 7.2: Comparison of the paths found by our approach and by Kuderer’s
approach in the “Cubicles" scenario (best seen in color). The red cross
represents the robot position, the goal is displayed by the green circle.
Left: Kuderer’s 4 best paths in the Voronoi diagram. They all traverse
the same region of the space. Right: 4 diverse paths found by our
approach.

7.3.1 Homotopy Classes
In here we introduce the definition of homotopy and homology classes as also
defined by Bhattacharya et al. (2012).

Definition 11 (Homotopy Class). A homotopy class is defined by the set of paths or tra-
jectories with the same start and goal, in which any two trajectories or paths τ1 and τ2 can
be continuously deformed into one another without intersecting obstacles, see Fig. 7.3.

Definition 12 (Homology Class). An homology class is defined by the set of traject-
ories with the same start and goal, in which any two trajectories or paths τ1 and τ2 (the
later with opposite orientation) forms the complete boundary of a 2-dimensional manifold
embedded into the configuration space C not containing/intersecting any of the obstacles,
see Fig. 7.3.

Bhattacharya et al. (2012) show that to each homotopy class can be associated
a signature H(τ) (τ being a trajectory), a general differential 1-form in a given
D-dimensional configuration space. The authors proposed a complex-value sig-
natureH2(τ) valid for a 2D environment computed based on the Residue Theorem,
where polygonal obstacles are associated to a single point (or pole).

Vernaza et al. (2012) and Gong et al. (2011) show that finding a signature
H2(τ) for a path/trajectory τ is equivalent to find a vector of winding angles

115

CHAPTER 7. A FAST RANDOM WALK APPROACH TO FIND DIVERSE
PATHS FOR ROBOT NAVIGATION

Figure 7.3: Given the position of the obstacles (black rectangles) in the scene, dif-
ferent homotopy classes can be identified. Four trajectories (τi, i =
1 − 4) connect the same start (blue dashed circle) and goal point
(red circle). τ2 and τ3 belong to the same homotopy class since they
can be continuously deformed into one another without intersecting
any obstacle. They are also homologous, since the area between τ2
and τ3 (considering both having opposite direction) does not contain
obstacles. τ4 and τ1 belong to different homotopy classes since it can-
not be continuously deformed into any of the other two.

(θ0, θ1, . . . , θN) with respect to all the obstacles in the scene. A winding angle
θi(τ) of a path τ is the sum along τ of the infinitesimal angles ∆θi(τ) between
the lines starting from two adjacent points of the trajectory and connecting to the
obstacle chosen point pi.

7.3.2 Navigation Graph

To frame the path planning task as a graph search problem, we build the nav-
igation graph of the workspace environment from a Voronoi diagram VD gen-
erated from the sensor data (see Section 7.4.2 for details on the VD generation).
The graph G(V,E) consists of a set of nodes (or vertices) V and a set of edges E.
Let N be the number of nodes and M the number of edges. E(vj) denotes the
set of incoming and outgoing edges of the vertex vj. We associate to each edge
eij = (vj, vi) a weight or cost cij (e.g., length of the edge). The adjacency matrix A
expresses the topology of the graph G and is defined as

[A]ij =

{
1 if (vi, vj) ∈ E, i 6= j
0 otherwise

116

7.3. A RANDOM WALK APPROACH TO FIND DIVERSE PATHS

We compute the set of diverse paths by running our random walk based al-
gorithm on G. A walk w of length k− 1 in G is a sequence of nodes v1, v2, . . . , vk,
where each pair of nodes is connected by an edge, (vi−1, vi) ∈ E for 2 < i ≤ k.
Henceforward, walks are referred to as paths. The approach could also be used on
road-map graphs generated using different methods (e.g. PRM (Kavraki et al.,
1996)), but in our approach we exploit the property, see Sec. 1, of the Voronoi
diagram where two different paths with the same start and goal belong to differ-
ent homotopy classes. In the same situation, road-maps generated by the PRM
algorithm may generate different paths belonging to the same homotopy classes:
for such a road-map, it would require more iterations (or effort) for an algorithm
to find all the homotopy classes in a defined environment.

7.3.3 Randomized Homotopy Classes Finder (RHCF)
To find paths belonging to different homotopy classes we introduce the Random-
ized Homotopy Classes Finder (RHCF), detailed in Alg. 9. Hereinafter all the
steps of the while loop in Alg. 9 are referred to as iteration of RHCF. We iterat-
ively run the Random Walk procedure (see Alg. 10) on the weighted undirected
graph G until K distinct paths are found and stored in the result set P . The walk
starts at the initial node vs ∈ G, where the robot position is mapped to, and aims
to find a random path to the goal node vg. At each step of the random walk we
choose a random neighbor of the current node vj (see RandomNeighbor(vj) in
Alg. 10) with probability pij inversely proportional to the cost cij associated to the
edge eij

pij =
wij

∑k wkj
(7.1)

with wij = 1
cij

Aij and where Aij is an element of the adjacency matrix A. The
weights wij are nonnegative over the entire workspace. The N × N transition
matrix T of the graph G is composed of the elements defined in Eq. 7.1. The
node vj is marked as visited by removing its adjacent edges from the local copy
of Gp and the algorithm is not allowed to walk through it again in the current
random walk. To bias the search towards a not frequently visited subset of the
state space, therefore increasing the probability to generate new paths in the next
random walks, we adopt a DiscountingStrategy(G, α, vj, vi) procedure. Each
time we leave a node vj, the probability pij associated to the edge eij is multiplied
by a discounting factor α ∈ (0, 1) (for parameter α), therefore, the probability to
follow the edge eij in the next run of the walk decreases

pij := α pij. (7.2)

The transition matrix T is then properly normalized. It is worth mentioning that
the case of discounting factor α = 1 corresponds to an initial version of RHCF

117

CHAPTER 7. A FAST RANDOM WALK APPROACH TO FIND DIVERSE
PATHS FOR ROBOT NAVIGATION

(Palmieri et al., 2015) with no biasing towards unexplored regions. Smaller values
of α correspond to heavier bias.

The walk stops when the goal node is found (which means, we have generated
a valid path) or when we reach a node with all neighbours marked as visited.
Each time a valid path P is generated, we compare it to the ones already found
and save it in the result set P if P is new, i.e., not generated before. All the visited
nodes are then marked unvisited.

Algorithm 9 Randomized Homotopy Classes Finder
1: function RHCF(vs, vg, G, K, α)
2: k← 0
3: P ← ∅
4: while k < K do
5: P← RandomWalk(vs, vg, G, α)
6: Pnew ← (P 6∈ P) ∧ isValid(P)
7: if Pnew then
8: P ← P ∪ P
9: k← k + 1

10: end if
11: end while
12: return P

Algorithm 10 Random Walk(vs, vg, G, α)
1: function RandomWalk(vs, vg, G, α)
2: vj ← vs
3: Gp ← G
4: P← vj
5: while vj 6= vg and E(vj) 6= ∅ do
6: vi ← RandomNeighbor(vj)
7: P← P∪ vi
8: Gp ← Gp \ E(vj)
9: G ← DiscountingStrategy(G, α, vj, vi)

10: vj ← vi
11: end while
12: return P

7.3.4 Probabilistic Completeness of RHCF
In Lemma 1 we describe a homotopy-encoding property of the Voronoi diagram.
Theorem 1 proves that RHCF finds any arbitrary path in an undirected weighted
graph. Finally we prove that RHCF is probabilistically complete in Theorem 2.
Here we denote |P|i as the size (or cardinality) of the result set P at iteration i,

118

7.3. A RANDOM WALK APPROACH TO FIND DIVERSE PATHS

Lemma 1. In the navigation graph G(V, E), built from a Voronoi diagram generated
from a 2D environment, two different paths with the same vs and vg belong to different
homotopy classes.

Proof. The Voronoi diagram is defined as the set of points in the free space which
have equal distance to two or more closest obstacles. The Lemma 1 is derived
from the defining property of the Voronoi diagram for 2D environments: only
one path between any two obstacles exists. If two paths between two obstacles
existed, then they would have different distance to each of those obstacles, which
contradicts the definition of the Voronoi diagram. Hence two different paths have
at least one obstacle between them, therefore cannot be continuously deformed
into one another and belong to different homotopy classes.

Theorem 1. Given any arbitrary path in an undirected weighted graph, the Random-
ized Homotopy Classes Finder will find it with probability greater than zero.

Proof. A random walk is a sequence of transitions (or edges) from a vertex vj to
another vi where at each step an edge eij is chosen with a probability higher than
zero, pij > 0. We assume that the weights wij are nonnegative over the entire
workspace. Every possible path Pk in the graph is a concatenation of Z number
of edges’ transitions,

Pk = ∪Z
z=1ez,z−1. (7.3)

Given that all the transitions in the graph have a probability greater than zero
(pij > 0), every possible concatenation of transitions has a probability greater
than zero.

Pr(Pk) =
Z

∏
z=1

pz,z−1 = p1,s p2,1 . . . pZ,Z−1 > 0, k = 1...K. (7.4)

Therefore, any arbitrary path Pk in the graph has non-zero probability to be found
during the random walk.

Theorem 2. Consider an undirected graph G(V, E), built from a 2D Voronoi diagram,
with nonnegative weights and with encoded K possible paths connecting the start vertex
vs and the goal vertex vg. Then the probability that RHCF finds all the K paths lying in
different homotopy classes, in the graph G(V, E) connecting vs to vg, that is the size of the
result set P is equal to K, converges to 1 as the number of iterations n approaches infinity:

lim
n→∞

Pr
(
|P|n = K

)
= 1

Proof. By result of Theorem 1, the random walk generates a path Pk (or walk)
from vs to vg with a non-zero probability. Each time a valid and new path Pk is
generated, it is added toP and thus increasing of one the size ofP . Given that the

119

CHAPTER 7. A FAST RANDOM WALK APPROACH TO FIND DIVERSE
PATHS FOR ROBOT NAVIGATION

graph G(V, E) is built from a 2D Voronoi diagram, by means of Lemma 1 every
new valid path added to P belongs to a new homotopy class. Given enough time,
from Theorem 1, any arbitrary new valid path Pk can be generated by the random
walk and added to P therefore satisfying limn→∞ Pr

(
|P|n = K

)
= 1.

7.4 Experimental Setup

We present a set of experiments to evaluate the performance of our method and
show that it outperforms current state-of-the-art algorithms to compute a set of
diverse paths presented by Voss et al. (2015) and Kuderer et al. (2014), detailed
respectively in Sec. 7.4.5 and Sec. 7.4.6. For our experiments we choose envir-
onments of varying complexity and describe appropriate metrics to demonstrate
the efficiency of RHCF in terms of planning performance and solution quality.

All the simulated experiments are carried out on a PC with 2.3 GHz Intel Core
i5 and 4 GB of RAM. Each reported value is an average of 200 runs. In all the
experiments we use path length as the edge costs.

7.4.1 Simulated Environments

We design four simulated environments, shown in Fig. 7.4, to stress different
properties of the planner and to study how the algorithm behaves in scenarios of
varying complexity. In the wall of people scenario, the robot needs to find different
ways to the goal through a queue of standing people. This scenario has 36 pos-
sible homotopy classes. In the crowd scenario, which has 380 possible homotopy
classes, the people are placed in a sparser way forming different groups. In the
surrounded scenario (710 homotopy classes), the robot is placed in the crowd, sur-
rounded by several people. The corridor scenario (over 60000 homotopy classes)
represents a challenging situation with a crowded corridor and dozens of people,
walking alone and in groups. In all the environments we assume that humans
poses are provided by a people tracker Linder et al. (2016).

7.4.2 Voronoi Diagram

To generate a Voronoi diagram of the environment, we utilize the open-source
C++ package developed by Lau et al. (2013): a computationally efficient approach
that is based on incremental updates, applicable in dynamic environments, which
was shown to dramatically reduce the computation time needed to build (and
update) the Voronoi diagram. Lau’s algorithm is in the same complexity class
as a simple image passing algorithm, i.e., O(n2) for an n × n input map. Lau
et al. (2013) also show that in very narrow and cluttered environments Voronoi-
based planning (first build a Voronoi diagram and then plan over it) outperforms

120

7.4. EXPERIMENTAL SETUP

single-query sampling-based motion planners (like RRT and KPIECE) in terms of
planning efficiency.

7.4.3 Performance Metrics

To quantify the planning performance and quality of our approach, we compute
the averages and the standard deviations of the following metrics: Tk time to get
K paths, nCGk normalized cumulative gain, RDk robust diversity of the result set
PK of K paths returned by the algorithms. For runtime evaluation we are only
interested in measuring the time to generate K paths in the navigation graph,
excluding the time to compute the Voronoi diagram of the environment or gen-
erate the probabilistic roadmap graph (PRM) that is used by Voss’ algorithm. We
report the time to build the navigation graph separately.

The robust diversity measures how large are of the intra-set distances between
pairs of paths in PK. Let us consider the distance between two paths pa and pb to
be the discrete Fréchet distance dF(pa, pb). We define RDk as

RDk =
1
|PK| ∑

pa∈PK

min
pb∈PK ,pa 6=pb

dF(pa, pb)

Higher diversity value indicates better spatial separation of paths in the set.
Paths which are closer to each other (lower robust diversity) intuitively have
more geometric similarities, e.g. they may belong to the same homotopy class.
The Fréchet distance dF measures the similarity between two curves. Given two
curves S1, S2 where each curve is defined as continuous mapping (S1 : [a, b]→ V
and S2 : [c, d] → V with a, b, c, d ∈ R : a ≥ b, c ≥ d and (V , ‖.‖2) being a metric
space), its continuous representation is defined as:

dF(S1, S2) = inf
α,β

max
t∈[0,1]

(‖S1(α(t))− S2(β(t))‖2)

with α : [0, 1]→ [a, b] and β : [0, 1]→ [c, d].
Informally, it is the minimum length of a leash required to connect a dog, walk-

ing along S1, and its owner, walking along S2, as they walk along their respective
curves from one endpoint to the other without backtracking. We make use of the
discrete dF computed as described by Voss et al. (2015). Consider the two paths
F and G formed respectively by the points f1, ..., fn and g1, ..., gm. The discrete

121

CHAPTER 7. A FAST RANDOM WALK APPROACH TO FIND DIVERSE
PATHS FOR ROBOT NAVIGATION

Figure 7.4: Top left: crowd environment, top right: wall of people scenario. Middle:
surrounded environment. At the bottom we have the corridor environ-
ment. In all the environments, the grid cells contain obstacles inform-
ation in terms of cost: the robot is not allowed to go through high cost
cells. The grid is generated according to the humans poses and their
personal space (Sisbot et al., 2007). Personal space of human agents is
displayed in grey scale, with darker regions corresponding to higher
cost: its peaks represent the agent positions. The red cross represents
the robot position, the goal is displayed by the green circle. The edges
of the Voronoi diagram are in dark grey and example paths generated
by our approach are displayed with black edges.

122

7.4. EXPERIMENTAL SETUP

Fréchet distance dF is equal to:

dF(−1,−1) = 0
dF(i,−1) = dF(−1, j) = inf ∀i, j ≥ 0

dF(i, j) = dF(−1, j) = inf ∀i, j ≥ 0

dFmin = min


dF(i, j− 1)
dF(i− 1, j)
dF(i− 1, j− 1)

dF(i, j) = max


‖ fi − gj‖

dFmin = min


dF(i, j− 1)
dF(i− 1, j)
dF(i− 1, j− 1)

for 0 < i ≤ n, 0 < j ≤ m.
The normalized cumulative gain nCGk is used to evaluate ranking performance

of web search engine algorithms (in our tests we use a simplified version of the
normalized discounted cumulative gain, see Wang et al. (2013)). It computes how
far is the candidate ranking set (e.g. a set of K random paths) from the ideal
ranking set (a set of K best paths). nCGk is based on the definition of relevance
(rel) of a single path. We define the relevance as the inverse of the path cost:

rel(p) =
1

cost(p)

To paths with smaller costs correspond higher rel values. The cumulative gain
CGk of a set of paths PK is the sum of rel values of all paths in the set:

CGk = ∑
pi∈PK

rel(pi)

The cumulative gain is normalized by the maximum cumulative gain of K best
paths in the graph between the start and goal points:

nCGk =
CGk

max(CGk)

Therefore the nCGk of the K best paths, e.g. found by Kuderer’s algorithm, equals
1 for any K. In general, nCGk ∈ [0, 1], with higher values corresponding to sets of
paths with lower costs.

It is important to note the trade-off between the quality of paths in the set (e.g.,
their lengths) and diversity: the best K paths are often very similar to each other,
contributing to higher cumulative quality of the path set at the cost of very low

123

CHAPTER 7. A FAST RANDOM WALK APPROACH TO FIND DIVERSE
PATHS FOR ROBOT NAVIGATION

Figure 7.5: Value of the normalized cumulative gain nCG15 (in red) and number
of random walk iterations N_RW15 (in blue) needed to generate 15
homotopy classes (same trends visible with other values of K) for dif-
ferent values of α in the crowd scenario. N_RWk (consequently also Tk)
monotonically decreases with a smaller value of α. The nCGk has only
a slight decrease over the same α range.

diversity (high nCGk, low RDk). Adding diverse paths to the set may decrease
the nCGk value. To provide a baseline, in our evaluation we compare the nCGk
value of RHCF to the nCGk value of a Uniform Random Path: a naïve, uninformed
algorithm, that samples random K paths uniformly from the set of all possible
paths between two nodes.

7.4.4 RHCF Parameters

Prior to the main experiments, we analyze the impact of the single parameter
α on the performance of RHCF. After an informal validation, we see that the
number of random walks N_RWk needed to generate K distinct paths, and con-
sequently RHCF runtime, decreases monotonically as α goes from 1 to 0.5 (see
Fig. 7.5, where we show the results for the crowd scenario, but qualitatively sim-
ilar trends are visible in the other scenarios too). For our experiments we choose
α = 0.8, where we achieve a good trade-off between planning time and path
quality: a smaller α value yields no considerable improvement to the planning
time but causes further decrease of the normalized cumulative gain, therefore
compromising the path quality.

124

7.5. RESULTS AND DISCUSSION

7.4.5 Voss’s Algorithm

Voss’ algorithm seeks to generate a set of diverse paths in the roadmap naviga-
tion graph (PRM) of the environment. We evaluate Voss’ algorithm on the follow-
ing metrics: Tk time to generate K paths, and RDk robust diversity of the result
path set. We use a C++ implementation, provided by the authors of the paper.
Parameters of Voss’ algorithm are set empirically, following the suggestions from
their paper: we choose the recommended branching factor b = 2, we set the ball
radius ρ in each scenario individually to the highest value that still returned an
average of 80% of K paths requested, typically ρ ≈ 0.1− 0.2. The number of PRM
samples is set to 100-500, depending on the complexity of the scenario. We use
the C-space distance for simulated obstacles placement and the filtration step of
the algorithm accepts all paths.

7.4.6 Kuderer’s Algorithm

Both Kuderer’s algorithm and RHCF seek to find paths on a navigation graph
based on the Voronoi diagram of the environment. Kuderer’s approach em-
ploys Katoh’s algorithm to find the K best paths in the graph. For a fair runtime
comparison, we consider three popular algorithms for finding the K best paths
(Yen’s, Katoh’s and Eppstein’s) and choose the Yen’s algorithm (Yen, 1971) for
comparison. Yen’s algorithm finds K shortest loopless paths for a given pair of
start and goal poses. The algorithm’s computational upper bound increases lin-
early with the value of K: with modern data structures it can be implemented
in O(KN(M + Nlog(N))) worst-case time. We use the C++ implementation by
Martins and Pascoal (2003), which is reported to have better performance than
the straightforward implementation. Yen’s loopless K best paths have higher di-
versity than the paths with loops found by Eppstein’s algorithm. Additionally,
as shown by Brander and Sinclair (1996), for small size graphs and paths with
a small number of vertices (like the graphs generated from a Voronoi diagram),
Yen’s algorithm is faster than Katoh’s.

We evaluate Kuderer’s algorithm on the following metrics: Tk, RDk. We also
measure the nCGk value of our K random paths with respect to the K best paths
found in the Voronoi diagram by Kuderer’s algorithm.

7.5 Results and Discussion

Tables 7.1-7.5 collect the empirical results generated for all the scenarios. The best
values are highlighted in boldface. RHCF significantly outperforms the baselines
with respect to all the performance metrics. Moreover, we test the approach in
real-world experiments by applying it to socially-aware navigation in dynamic

125

CHAPTER 7. A FAST RANDOM WALK APPROACH TO FIND DIVERSE
PATHS FOR ROBOT NAVIGATION

environments.

Tk [ms], K = 10
Scenarios RHCF Kuderer Voss
Crowd 0.36 ± 1.87 1.9 ± 3.93 183 ± 135.72
Corridor 3.86 ± 4.90 8.85 ± 4.50 6474 ± 1749
Wall of People 0.36 ± 1.88 0.85 ± 2.78 242 ± 540
Surrounded 0.52 ± 2.21 1.8 ± 3.85 69 ± 66

Tk [ms], K = 50
Scenarios RHCF Kuderer Voss
Crowd 1.8 ± 3.8 7.4 ± 4.7 6541 ± 13732
Corridor 9 ± 4.4 38.6 ± 6.2 98570 ± 89990
Wall of People - - -
Surrounded 2.3 ± 4.2 6.7 ± 4.9 2406 ± 3234

Table 7.1: Planning time results.

Building Time [ms]
Scenarios Voronoi graph PRM graph
Crowd 8.2 130.9
Corridor 30.7 530
Wall of People 5.5 56
Surrounded 6 54

Table 7.2: Navigation graph building time.

Surrounded Scenario
Algorithms Planning Time [ms]
RRT 1007.2± 1.5
KPIECE 1007.3± 1.3
STRIDE 1007.1± 1.4
EST 1007.1± 1.7
Informed RRT* 1006.9± 1.4
RRT* 1006.7± 1.3

Table 7.3: Comparison to sampling-based motion planners.

7.5.1 Empirical Results

Table 7.1 shows the planning time results for K = {10, 50}: our approach is at
least two times faster than Kuderer’s to find a subset of homotopy classes among
those present in the navigation graph. In very complex scenarios the difference
in runtime becomes significant, e.g. 18.8 ms vs. 143.9 ms in the corridor scenario

126

7.5. RESULTS AND DISCUSSION

nCG10
Scenarios RHCF Uniform RP
Crowd 0.7839 ± 0.0628 0.4216 ± 0.0454
Corridor 0.5567 ± 0.0435 0.4781 ± 0.0363
Wall of People 0.8884 ± 0.0451 0.5789 ± 0.0929
Surrounded 0.8009 ± 0.0699 0.3538 ± 0.0346

Table 7.4: Cumulative gain results.

RD10
Scenarios RHCF Kuderer Voss
Crowd 3.01 ± 0.17 2.76 1.34 ± 0.22
Corridor 3.83 ± 0.26 2.13 2.97 ± 0.30
Wall of People 2.51 ± 0.10 2.49 1.44 ± 0.13
Surrounded 2.05 ± 0.19 1.60 1.04 ± 0.18

Table 7.5: Robust diversity results.

for K = 200. Moreover, RHCF is faster than Voss’s algorithm by several orders
of magnitude, also if the graph building times were considered. Table 7.2 reports
the building times for the Voronoi-based navigation graphs and PRM graphs (the
latter built using the OMPL library (Şucan et al., 2012)) for each scenario.

Table 7.3 details the planning time obtained by state-of-the-art sampling-based
motion planners to find a pure geometric solution for the surrounded scenario
(also these experiments were carried out using the OMPL library). As pointed
out in Section 7.4.2 in very complex environments, like the case of the surroun-
ded scenario where start and goal poses are surrounded by obstacles, a Voronoi-
based path planner outperforms sampling-based motion planners, whose trees
(or graphs) fatigue to escape from narrow corridors and complex areas of the en-
vironments. In our evaluation for the case of the surrounded scenario, sampling-
based motion planners are several orders of magnitude slower to find a single
solution to the path planning problem while our approach needs a few milli-
seconds (in average 8.3 ms) to build the navigation graph and to find 50 different
paths. In the other scenarios RHCF and the evaluated sampling-based motion
planners are equally fast.

Table 7.4 details the results related to the normalized cumulative gain for
K = 10. RHCF, whilst being faster, also finds solutions with a gain close to
the maximum value of 1, which means the solution quality is very high. As a
reference, we provide nCGk results of the Uniform Random Paths (Uniform RP)
algorithm that draws samples from the set of all paths between two nodes with
uniform distribution. RHCF reveals much higher nCGk results, indicating its bias
towards high quality solutions. Only in one scenario, corridor, we have a lower
nCGk: this is due to the higher number of total homotopy classes of the scen-

127

CHAPTER 7. A FAST RANDOM WALK APPROACH TO FIND DIVERSE
PATHS FOR ROBOT NAVIGATION

0 10 20 30 40 50

0

5

10

15

20

25

30

K

T
k
 [

m
s
]

RHCF (α=0.8)

RHCF (α=1)

Voss

Kuderer

Figure 7.6: Planning time Tk for different values of K in the crowd scenario. In
blue our approach considering two values of the discounting factor α,
in black Kuderer’s algorithm and in red Voss’s method. Our approach
is faster than all the baselines. The introduction of the discounting
strategy (α = 0.8) further improved the planning performance of our
previous RHCF implementation (α = 1).

ario. In this case the above mentioned quality-diversity trade-off is prominent:
the best K paths of over 60000 present in the corridor scenario are very similar,
so introducing a certain degree of diversity into the path set inevitably leads to
lower normalized cumulative gain.

Table 7.5 details the diversity of the paths generated by the approaches for K =
10: RHCF outperforms Kuderer’s and Voss’s algorithms in all the environments,
delivering more diverse path sets.

Fig. 7.6-7.8 show the metrics trends for different values of K in the crowd scen-
ario (same trends are visible in other scenarios). In all figures the standard
deviation is depicted with vertical lines. RHCF is significantly faster than the
baselines, as Fig. 7.6 indicates. The introduction of the discounting strategy fur-
ther improved the planning performance of our previous RHCF implementation
(Palmieri et al., 2015). Our approach has noticeably higher robust diversity RDk,
see Fig. 7.7: the paths produced are more diverse than the ones generated by the
baselines for small values of K. RHCF quickly converges to the optimal value
of the normalized cumulative gain as K increases, consequently generating high
quality paths (see Fig. 7.8, where the nCGk trends are reported for all the scen-
arios).

128

7.5. RESULTS AND DISCUSSION

0 10 20 30 40 50
1

1.5

2

2.5

3

3.5

4

4.5

5

K

R
D

k

RHCF (α=0.8)

Voss

Kuderer

Figure 7.7: Robust diversity RDk obtained by varying K in the crowd scenario.
The paths produced by our approach are more diverse than the ones
generated by the baselines for small values of K.

0 20 40 600

0.2

0.4

0.6

0.8

1

K

nC
G

k

Wall of People
Crowd
Surrounded

0 1000 2000 30000.5

0.55

0.6

0.65

0.7

K

nC
G

k

Corridor

Figure 7.8: Normalized Cumulative Gain nCGk obtained by varying K in the wall
of people, crowd, surrounded and corridor scenarios. As K increases, our
approach converges to the optimal value of the normalized cumulat-
ive gain nCGk.

7.5.2 Application to Social Navigation
We conduct further experiments in real-world settings. RHCF allows us to ad-
dress the task of social robot navigation as a qualitative planning problem that
enables a robot to evaluate several diverse paths (see Fig. 7.9, Fig. 7.10) with re-
spect to social costs, more rapidly than the other baselines. More specifically, we

129

CHAPTER 7. A FAST RANDOM WALK APPROACH TO FIND DIVERSE
PATHS FOR ROBOT NAVIGATION

Figure 7.9: We test our approach in real-world experiments by applying it to so-
cial robot navigation in dynamic environments. The red Voronoi dia-
gram, which implicitly encodes homotopy classes, describes the pos-
sible ways to go through a crowd in a room. Our approach rapidly
selected two possible paths (in yellow and green).

integrate the approach in a hierarchical motion planning framework that re-plans
at a given frequency (6Hz) 1: firstly a set of diverse paths lying in different ho-
motopy classes is generated from a Voronoi diagram using RHCF, subsequently
among those we choose the best path according to a social cost based on the so-
cial force model by Helbing and Molnar (1995). Finally, a smooth trajectory with
a velocity profile that respects the dynamic constraints of the robot is generated
in the chosen homotopy class by using an nonholonomic RRT* based algorithm
(Palmieri and Arras, 2014a). Throughout several experiments where the move-
ments of the people were uncertain, our method promptly reacts to the environ-
ment changes while generating high quality solutions and respecting the social
constraints of the scene. As Section 7.5.1 points out, for this task (where the robot
is trapped by a group of people moving around it) using sampling-based mo-
tion planners, to plan a path considering the entire environment, would result in
higher planning times.

1A ROS package is available at https://github.com/srl-freiburg/srl_rhcf_
planner

130

https://github.com/srl-freiburg/srl_rhcf_planner
https://github.com/srl-freiburg/srl_rhcf_planner

7.6. CONCLUSIONS

Figure 7.10: Application in social settings. Upper Left: dynamic scene with three
people walking, the robot has to reach a point in front of them, re-
specting a social cost. Upper Right: The robot reaches its goal by
following the yellow path selected by RHCF from the Voronoi dia-
gram (in red). People, tracked by a multi-modal tracker (Linder et al.,
2016), are represented by colored cylinder-shaped objects. Bottom
row: three people that interact with each other and robot following
the rapidly generated socially acceptable path.

7.6 Conclusions

In this chapter we introduce the Randomized Homotopy Classes Finder that finds
a set of K diverse paths belonging to distinct homotopy classes in an undirected
weighted graph built from a Voronoi diagram. We prove that our approach is
probabilistically complete, i.e., it finds all the paths, and therefore all the homo-
topy classes. Our experimental evaluation shows that RHCF finds diverse paths
significantly faster than two state-of-the-art methods. Moreover, as the cumulat-
ive gain results show, the paths produced by our approach are of similar quality
to Kuderer’s true K best paths. A key property of our method is that it computes
a set of more diverse paths with respect to the baselines: usually in dynamic
environments spatially separated paths are more robust to invalidation due to

131

CHAPTER 7. A FAST RANDOM WALK APPROACH TO FIND DIVERSE
PATHS FOR ROBOT NAVIGATION

unexpected obstacles, than similar or adjacent paths. Furthermore we test our
approach in real-world experiments by applying it to social navigation settings
in dynamic environments.

132

CHAPTER 8

A Socially-Aware Motion Planner for
Highly Crowded Environments

"Il semble que la perfection soit
atteinte non quand il n’y a plus rien à
ajouter, mais quand il n’y a plus rien à
retrancher"

Terre des Hommes
Antoine de Saint Exupéry

This chapter presents the socially-aware motion planner for nonholonomic
wheeled mobile robots developed based on the findings and analyses carried
on in the previous chapters. It describes the techniques to generate motion for
the fully autonomous and particularly fast passenger guidance robot of the
EU-funded project SPENCER in un-controlled and densely crowded envir-
onments. Different path planning algorithms and a novel multi-hypothesis
planning technique, have been adapted and combined into a system that gen-
erates smooth robot motion among people, while respecting social norms and
being efficient in accomplishing the guidance tasks. The approach has been
successfully and extensively tested during the final deployment of the Spen-
cer robot at Schiphol Airport in Amsterdam, The Netherlands.

8.1 Introduction

One of the goal of this thesis is the development of a motion planning system that
generates smooth and efficient robot motion in crowded environments. As de-
tailed in Chapter 1, for robots navigating in dynamic and crowded environments,
a motion planner needs to be efficient and to generate smooth robot movements.
Planning efficiency would allow the planner to promptly counteract unpredictable
environment changes. Smoothness of robot movements helps to generate natural
behaviors for a robot navigating among humans; Kruse et al. (2013) write: "one
aspect of natural motion is smoothness. This refers to both the geometry of the
path taken as well as the velocity profile". Smoothness relates to legibility: Kruse

133

CHAPTER 8. A SOCIALLY-AWARE MOTION PLANNER FOR HIGHLY
CROWDED ENVIRONMENTS

et al. (2014); Lichtenthäler and Kirsch (2013) report and show that legible robot
motion can be generated by adjusting the velocity profile, thus slowing down,
when humans are closer or intersect the robot.

Generating motion by balancing efficiency with smoothness is not straightfor-
ward. Kruse et al. (2013) describe the contradiction between efficiency and smooth-
ness in context of human-aware navigation: "In Human Robot Interaction, the
assumption is that the shortest or most energy efficient path is not necessarily the
most desirable. Instead in HRI the intention is to find a path that is also suffi-
ciently safe, comfortable, natural, legible, etc. to persons in the area". If robot
motion are smooth enough a human operator could easily infer the robot inten-
tions, thus being legible from a human point of view.

With the insights gained in the previous chapters, where we have understood
limitations and advantages of several single-query sampling-based motion plan-
ners and of homotopy-based path planners, we now deploy a socially-aware
multi-hypothesis planning architecture on a real robot in a real-world applica-
tion. The approach quickly generates smooth solutions among people while re-
specting social norms and efficiently solving robot-guidance tasks. The system
presents a hierarchical combination of two planners, a global and a local one, that
interact with each other by choosing different behaviors (being efficient or polite)
for the robot. Based on a multi-hypothesis test, the planners choose the behavior
to apply and efficiently generate kinematically feasible motion. The approach has
been successfully and extensively tested during the final demo of the SPENCER
project at Schiphol airport in Amsterdam, The Netherlands, on circa 50 km of
fully autonomous navigation.

The chapter is structured as follows: the introduction of the Spencer project
and its robot in Section 8.2 is followed by the description of the socially-aware
motion planner in 8.3.

8.2 The SPENCER Project

SPENCER is an EU-funded FP7 research project1 in the area of robotics, formed
by a consortium of six universities, namely Albert-Ludwigs-Universität Freiburg
(coordinator), Technische Universität München, Universiteit Twente, Örebro
University, Centre National de la Recherche Scientifique (CNRS), Rheinisch-
Westfälische Technische Hochschule Aachen and two industrial partners, the
Dutch airline company KLM and the Swiss robotics company BlueBotics SA.

The SPENCER project addresses a very interesting business case, highly mo-
tivated by actual challenges in the aviation industry, specifically by the growing

1Name of the project: Social situation-aware perception and action for cognitive robots. Date:
from 1 April 2013 to 31 March 2016. Call FP7-ICT-2011-9.

134

8.2. THE SPENCER PROJECT

Figure 8.1: SPENCER concepts. Left: the robot interacts with the passengers
which need to find their gate of departure. Right: To every tracked
passengers and group of passengers in the scene, a cost that describes
their social behavior is associated; the robot moves smoothly among
the people by respecting their implicit social spaces.

needs of airlines to reduce the number of missed flights and delays for transfer
passengers at hub airports. Particularly the Dutch airline company KLM, end-
user in the SPENCER consortium, is interested in reducing the number of missed
flights or delays of the oversea transfer passengers. For several types of transfer
passengers, finding an efficient way from the arrival to the departure gate, can
be challenging, especially for first-time air travelers, people that have a limited
knowledge of foreign languages (and alphabet) and are not used to airport’s signs
and processes. Moreover, in order to catch a connecting flight to Schengen coun-
tries, once transfer passengers from a non-Schengen country arrive at Schiphol,
they have to go through a passport control (the Schengen filter). For KLM, missed
or delayed connecting flights result in additional costs due to flights re-booking,
hotel bookings, baggage reloading, while for the passengers they mean further
delays and exasperations.

To solve these challenges, the SPENCER project has developed a prototype ro-
bot which efficiently guides transfer passengers from their gate of arrival to their
gate of departure.

The SPENCER consortium aimed to build a wheeled mobile robot that dif-
ferently from earlier tour-guide robot systems (e.g. Burgard et al. (1999) and
Siegwart et al. (2003)), perceives, learns and models human social behaviors
and uses the latter to generate appropriate real-time actions in highly dynamic
crowded environments. The consortium contributed on different fields:

• robust detection, tracking and multi-person analysis of individuals and
groups of people;

• recognition of human social relations, social hierarchies and social activities;

135

CHAPTER 8. A SOCIALLY-AWARE MOTION PLANNER FOR HIGHLY
CROWDED ENVIRONMENTS

Figure 8.2: The Spencer robot at Schiphol. The robot has a screen to interact with
the passengers. A boarding pass scanner, located under the screen
reads the passengers’ gate information. Once the robot has read this
information, it guides the passengers to their gate of departure.

• normative human behavior learning and modeling;

• socially-aware motion, task and interaction planning;

• learning socially-aware annotated maps in highly dynamic environments;

• empirically evaluating socio-psychological effects of normative robot beha-
viors.

After several integration events, the Spencer robot was deployed and suc-
cessfully tested at Schiphol airport, a very challenging environment for socially-
aware mobile robots.

8.2.1 The Demo Environment And Its Challenges

The Amsterdam Airport Schiphol is one of the busiest airports in Europe: ac-
cording to the statistics2 published by the airport operator, the number of passen-
gers travelling through Amsterdam Airport Schiphol amounted to 58.2 million
passengers (excluding transit direct) in 2015. In the same year the number of
people that visited the Louvre, the most visited museum in the world, amounts

2For recent statistics please refer to official Schiphol airport web-site http://www.schiphol.nl/

136

8.2. THE SPENCER PROJECT

to 8.6 million visitors3. This simple comparison intuitively shows that airports
are highly crowded and dynamic environments.

Several difficulties due to the airport environment were considered while de-
veloping the motion planning system:

• Safety for passengers and robot is very important in terms of harms for the
passengers and for the public image of the airport, consortium partners and
the robotics scientific community.

• Human movements and velocities are hard to track and predict in crowded
environments where usually a lot of occlusions happen, their results’ qual-
ity therefore should not always be trusted.

• Illumination conditions that could influence the behavior of the robot ex-
teroceptive sensors (e.g. stereo cameras, rgb-d sensors).

• The robot risks to be "freezed", see Fig. 8.4, to be trapped into the crowd due
to the lack of free space through the people surrounding it (Trautman et al.,
2015).

• Unexpected dynamic objects are disturbing the robot’s operation: e.g.
hand-luggage carried by humans (see Fig. 8.5), cars to assist people with
disabilities or elderly people, several types of vehicles for floor cleaning
services at the airports, hand-luggage carts.

• Airports corridors have shops that dynamically change the shape of the
environment: e.g. stands of the shops can be moved during the day; chairs
and tables of the bars and restaurants can be moved according to the density
of people.

• The airport floor is not a flat surface: e.g. moving walkways are used to
facilitate passengers movements; some gates are in a upper or lower floor
thus requiring stairs to access them.

• 3D obstacles and difficult surfaces for the perception system (e.g. glass
doors).

For the final demo of the SPENCER project, the robot was mainly operating into
pier B and C (see Fig. 8.3). Pier C is narrower than pier B. The latter is longer and
has more shops. Both piers have in the center very long moving walkways. The
two piers connect to a junction were a shopping mall is located. The Schengen
filter, the passport control, is located at one side of the shopping mall. A large

3Refer to http://presse.louvre.fr/ for additional information

137

CHAPTER 8. A SOCIALLY-AWARE MOTION PLANNER FOR HIGHLY
CROWDED ENVIRONMENTS

Figure 8.3: Partial representative Schiphol airport map. Main part of the robot
operation and the final demo have been carried on in the pier C and
pier B of the airport. The robot (in a blue circle) follows the planned
path (dashed blue line) to reach gate B18.

Figure 8.4: The robot faces a crowd at Schiphol, the environment is densely pop-
ulated and highly dynamic, it has no free ways to the goal. The robot
risks to be "freezed", to be trapped into the crowd.

part of the experiments had the robot guiding people from the passport control
area to pier B.

During the project and integration events, all these challenges influenced the
development of the robot, the motion planning architecture and all the other soft-
ware components.

138

8.2. THE SPENCER PROJECT

Figure 8.5: Passengers with hand luggage interacting with the Spencer robot.
Many people were always trying to interrupt the robot during its
tasks, by blocking its way or by hindering its movements with their
hand luggages.

Figure 8.6: SPENCER architecture. Right: A 3D view of the Spencer robot CAD
model. Left: Overview of the hardware configuration running on the
Spencer robot.

139

CHAPTER 8. A SOCIALLY-AWARE MOTION PLANNER FOR HIGHLY
CROWDED ENVIRONMENTS

8.2.2 The Spencer Robot And Its Hardware
The Spencer robot has an abstract human-like appearance, see Fig. 8.2 and
Fig. 8.6. Its appearance was designed to increase the overall acceptance of the
entire robot by the humans: Its friendly look conveys trustfulness and calmness.

The head is used for a simplified non-verbal communication (e.g. nodding or
orientating towards the intended motion direction). The platform has a touch-
screen and a boarding pass reader, to resemble an operating information kiosk.
During the demo, those allowed the passengers to interact with the robot: by
scanning their boarding passes they could start the guidance task of the robot.

The robot has 5 degrees of freedom: 2 for the mobile base with a differential-
drive kinematics, 2 for the head (pan and tilt) and 1 for the eyes (only hori-
zontal movements). The height of the robot is of 1926 mm, its base platform is
800×810 mm and its weight (batteries included) is 250 kg. The robot can achieve
a maximum velocity of 1.8 m/s.

A schematic view of the hardware architecture is given in Fig. 8.6. The robot is
equipped with 3 industrial (2 Intel Core i7 and one i5) PCs and 2 gaming laptops
with nVidia graphics cards. The latter mainly used by the perception components
which require powerful GPUs, while the remaining robot tasks (e.g. planning,
localization etc.) are performed on the industrial PCs. The robot drive motors
are interfaced to the BlueBotics ANT system, used only as gateway between the
motors and the rest of the ROS-based robot software architecture. The sensory
setup consists of:

• two SICK LMS 500 2D laser scanners mounted at a height of 0.70 m,

• two front and two rear RGB-D Asus Xtion Pro live cameras,

• two AVT cameras with 4.5 mm lens as stereo camera system mounted at
shoulder height,

• Velodyne VLP-16 3D lidar mounted on one of the robot’s shoulders (not
planned at the beginning of the project but it turned out to be necessary to
cope with localization difficulties).

8.2.3 Software Architecture Of The Spencer Robot
All software components developed during the SPENCER project are using the
Robot Operating System (ROS) 4: this middleware is a de facto standard for ro-
botics systems, used not only in university laboratories but also by research de-
partment units of private companies. The Spencer consortium made extensive
use and contributed to the development of its main packages (e.g ros-navigation,

4For further information see www.ros.org

140

8.2. THE SPENCER PROJECT

Laser Coll.
Checker

RGB-D
Coll.

Checker

Driving
Safeguard

ANT
System

SEBand
Local

Planner

MH
Global
Planner

Socially-
Aware

Cost Maps

Symbolic
Planner

Person
Guidance

System

Task
Execution

System

People
and

Groups
Tracker

NDT-
MCL and

NDT-OCM

Figure 8.7: Outline of the Spencer navigation architecture. The red block includes
the components of the motion planning architecture: the socially-
aware elastic band (SEBand Local Planner), the multi-hypothesis
global planner (MH Global Planner) and the Socially-Aware Cost
Maps.

ros-core). Here a brief list of the software components (see Fig. 8.7) developed for
the Spencer robot:

• Mapping and localization in large and dynamic environments are very chal-
lenging tasks, to solve them the Örebro University group adopted the Nor-
mal Distribution Transform Monte Carlo Localisation (NDT-MCL) (Kucner
et al., 2015; Saarinen et al., 2013a) and Normal Distributions Transform Oc-
cupancy Map (NDT-OCM) (Saarinen et al., 2013b) frameworks, both having
as input the 3D point cloud provided by the Velodyne sensor.

• To safely navigate among humans, the University of Freiburg group pro-
posed and used a state-of-the-art real-time multi-modal people and groups
tracker (Linder et al., 2016) based on 2D laser and RGB-D data detectors.

• A supervision system (Fiore et al., 2016) to guide people through the airport
via a socially-aware POMDP action plan developed by the CNRS group.
The method interacts with the motion planning component by sending sub-
goals. The latter are generated via a symbolic planner that plans over a
manually annotated graph, covering the airport’s areas where the robot is
allowed to move. The user interface management and its connection with
the supervision system were performed by a task execution system.

141

CHAPTER 8. A SOCIALLY-AWARE MOTION PLANNER FOR HIGHLY
CROWDED ENVIRONMENTS

• 2D cost maps with different layers which model the environment around
the robot. They are used by the motion planner to generate robots motion.
Cost maps encode obstacles (static and dynamic) positions and learned so-
cial behaviors (Okal and Arras, 2016).

• Learning approaches to acquire navigation behaviors from demonstrations
of socially normative human behavior. The group of the University of
Freiburg proposed a flexible graph-based representation (Okal and Arras,
2016) to capture relevant task structure and extend Bayesian inverse rein-
forcement learning to use sampled trajectories from this representation. The
approach enables a robot to learn complex navigation behaviors of varying
degrees of social normativeness using the same set of simple features. In
Spencer we learned and used three different behaviors as reported in (Okal
and Arras, 2016): polite, where the robot always avoids breaking pair-wise
social relations and intruding into people personal spaces; sociable, where
the robot gets as close as possible to the people by avoiding to break pair-
wise social relations; rude, where the robot gets to the goal as fast as possible.

• To further improve the overall safety of the robot platform, a low level col-
lision checker (see Fig. 8.8) runs on the robot at a frequency of 20 Hz. It
checks for collisions in two areas (rectangular zones) around the robot: the
warning (in yellow) and error zones (in red). When a segment of laser (or
RGB-D) points is in the warning zone, which starts at 60 cm in front of the
robot (adapted to the robot speed) and 20 cm to the sides, the translational
velocity of the robot is limited to 0.3 m/s, the angular velocity is scaled down
to keep the initially planned curvature. If the segment is found in the error
zone (starting at 35 cm in front and 3 cm to the sides of the robot), the robot
is stopped and only motion in the opposite direction side of the virtual colli-
sion are allowed. The collisions’ status is provided to the driving safeguard
node that will act accordingly.

• A driving safeguard node that monitors the collisions status or velocity
commands timeouts: in these cases the safeguard node stops immediately
the robot.

8.3 Socially-Aware Motion Planner: Combining
Efficiency and Social Norms

We now describe a socially-aware multi-hypothesis planning architecture, that
was deployed on the Spencer robot for passengers guidance at Schiphol airport.
The approach quickly generates smooth solutions among people while respecting

142

8.3. SOCIALLY-AWARE MOTION PLANNER: COMBINING EFFICIENCY
AND SOCIAL NORMS

Figure 8.8: The Spencer robot has a low level collision checker that slows down
or stops the platform according to the sensors data. If points of a laser
segment (or RGB-D point clouds) are inside the warning rectangle (in
yellow), the maximum robot speed is lowered. If the segment is found
in the error zone (in red), the robot is stopped and only motion in the
opposite side of the virtual collision are allowed.

social norms and efficiently solving robot-guidance tasks. Our approach consists
of:

• a global planner that chooses between being socially-aware or efficient ac-
cording to geometric properties of two path hypotheses and to the presence
of a "cluster of people" in front (referred to its moving direction) of the robot;

• a socially-aware elastic band as local planner that while providing obstacle
and passengers avoidance, it also generates legible motion;

• a learned “rude behavior” in which the robot ignores many social norms,
by reducing the cost inflations associated to the people tracks.

We anticipate that the approach was able to balance task efficiency with social-
awareness, significantly reducing erroneous robot behaviors (i.e. freezing or dan-
cing robot (Trautman et al., 2015)) when navigating through a crowd.

8.3.1 The Architecture

The socially-aware motion planner, deployed during the final demonstration at
Schiphol airport consists of four components: a multi-hypothesis global path
planner, a socially-aware elastic band as local planner, socially-aware cost maps

143

CHAPTER 8. A SOCIALLY-AWARE MOTION PLANNER FOR HIGHLY
CROWDED ENVIRONMENTS

and the package move_base 5. The latter is a ROS package that defines proper
interfaces to interact with sensors and actuators of a mobile base.

Concretely the two planners (local and global) have been implemented as plug-
ins for move_base. The global planner runs in the same move_base thread,
while the local planner is in a different thread. Each planner has a different re-
planning frequency. The global planner is also asked to re-plan whenever the
local planner cannot generate velocity commands.

The multi-hypothesis global path planner plans a path from the current ro-
bot position to the provided goal considering the social norms, encoded into the
socially-aware cost maps, without neglecting efficiency.

The socially-aware elastic band tracks the geometric path generated by the
global path planner while respecting the kinematic constraints of the Spencer ro-
bot and being legible for the humans around the robot. Moreover it provides
obstacle avoidance functionalities when needed.

8.3.2 Modeling The Environment With Cost Maps
For each planner we use two different cost maps: one provided by move_base
which encodes the off-line learned social behaviors and all the static and dynamic
obstacles of the scene (hereafter referred as dynamic cost map) and one that maps
only the static obstacles (static cost map). The dynamic cost maps have four layers:
static, obstacle, social behaviors and inflation. The static cost maps only two:
static and inflation. The layers are organized as follows:

• Obstacle layer: all the 2D laser points that are not part of person detections
predicted by the people tracker and the RGB-D point clouds are considered
dynamic obstacles and provided as input to the obstacle layer of the dynamic
cost maps. The RGB-D point clouds are mainly used to detect obstacles at
or below the height of laser, e.g small hand luggage.

• Inflation layer: for all the cost maps we inflate the obstacles with the radius
of the inscribed circle drawn into the footprint of the robot.

• Static layer: it contains the occupancy grid map generated off-line by the
NDT-OCM mapping software.

• Social behaviors layer: During the deployment, we tested three different off-
line learned behaviors: polite, sociable, rude. With the polite behavior the
robot always avoids breaking pair-wise social relations and overrunning
over the people personal spaces (as in proxemics theory (Hall, 1966)). In the
sociable behavior, the robot does not break pair-wise social relations but it
gets as close to people as possible. In the rude case, the robot tries to get to

5Further information can be found here: http://wiki.ros.org/move_base.

144

8.3. SOCIALLY-AWARE MOTION PLANNER: COMBINING EFFICIENCY
AND SOCIAL NORMS

Figure 8.9: The cost maps (here showed mainly in yellow) are rolling-windows:
they move together with the Spencer robot (in white and blue). The
NDT-OCM (in black) provides information to the static layer.

the goal as fast as possible ignoring all social relations and people personal
spaces. A more detailed description of the learning algorithm is detailed by
Okal and Arras (2016). The social layer, by reading the people and groups
tracks, represents the desired behaviors in the form of costs. Which social
cost (or behavior) to run is highly dependent on the environment, the mo-
tion planner architecture and the type of requested efficiency.

All the cost maps are kept as rolling windows (see Fig. 8.9), centered on the
robot, following its motion through the map. Their static layer receives as input
the occupancy grid map generated off-line by NDT-OCM and it sub-selects and
copies from it the area where the rolling window moves. Costs of the cells are
integers and take a value between 0 and 255: occupied cells are marked with a
cost equal to 253 or 254; the social behaviors cost map layer maps its cost between
0 and 255.

Global cost maps provided to the global path planner, the dynamic and static
one, have a size of 40 m × 40 m, while both local cost maps provided to the local
planner (also in this case one dynamic and one static) have a size of 13 m × 13 m.
The cost maps are updated with a frequency of 4 Hz and have a cell resolution of
0.1 m.

8.3.3 Planning with Multi-Hypothesis
In this section we detail the global path planner deployed on the Spencer robot,
the approach aims to balance efficiency (fast accomplishment of the guidance
tasks) with social-awareness (navigating through humans without generating
hindrances to them). The planner reasons about the difficulties of the crowded

145

CHAPTER 8. A SOCIALLY-AWARE MOTION PLANNER FOR HIGHLY
CROWDED ENVIRONMENTS

Figure 8.10: Example paths in green generated by Theta*-RRT in a pedestrian
simulator. In red the samples drawn by the algorithm among the
simulated pedestrians. The social costs are displayed in dark grey.

environments, where a robot often generates erroneous behaviors. As a matter
of fact, if the robot is too polite, it may risk to be freezed by the crowd or to
generate large detours (as described by Trautman et al. (2015)). Moreover a robot
can be too reactive in terms of directions and acceleration, generating unexpected
movement oscillations, therefore reducing its motion smoothness and legibility.
Reactiveness of the robot in terms of motion direction is highly visible when us-
ing a single-query planner. In this case, we may observe direction oscillations due
to re-planning while the robot is driving through a crowd. Each time that there is
a re-plan, the planner is considering new obstacles and costs thus creating a path
which is distant from the previously generated one. The path planner is essen-
tially generating oscillations due to the highly dynamic environment. Also such
oscillations may generate detours of the robot e.g. trying to avoid a crowd as one
big obstacle.

During the Spencer project, in order to reduce the detailed robot erroneous
movements and oscillations, we initially used the rude behavior encoded by the
social behaviors cost maps (as detailed in the above subsection) which helped, to
some extent, by making the platform to be more efficient than socially-aware.

To additionally counteract the described issues, we introduce a novel multi-
hypothesis path planning approach (MH global planner). The planner reasons
on the environment by considering it in two different conditions: first, modeled
only by static obstacles and second modeled by the static obstacles and all hu-
mans/dynamic obstacles. For both conditions, a path is planned and then com-
pared to each other. The planner may generate two different behaviors (paths) as
described in Fig. 8.17:

• Static-World Path (Phsw): in this case the planner provides a path generated
considering only the static world. The robot keeps going on the static path
while locally respecting social-norms, performing obstacle avoidance and a

146

8.3. SOCIALLY-AWARE MOTION PLANNER: COMBINING EFFICIENCY
AND SOCIAL NORMS

Human-Robot-Interaction (HRI) action when needed.

• Socially-Aware Path (Phsa): the path is generated considering dynamic and
static obstacles. The robot can follow the new socially-aware path without
encountering large detours or oscillations, also for this case performing loc-
ally obstacle avoidance.

The two paths (static-world path Phsw and socially-aware path Phsa) are generated
considering a different cost map (hypothesis) for each case: Phsw is generated
considering only the static cost map while Phsa considers the dynamic cost map.

The first path Phsw can be useful to solve the case in which there is a large crowd
in front of the robot, and instead of being blocked by the crowd or avoiding it with
a very large and inefficient detour, the robot keeps going on the path that goes
through the crowd, while performing a Human-Robot-Interaction (HRI) action.
The second path Phsa is generated when the space in front of the robot is not fully
obstructed by the crowd and the robot can follow the new socially-aware path
without encountering large detours or oscillations.

The generation of the two paths is performed with the Dijkstra algorithm (Dijk-
stra, 1959), one of the best choices to generate a low cost solution given a cost
function over a 8-connected 2D costmap (grid). Moreover the latter has a known
complexity that does not scale with the complexity of the environment (shape
and number of the obstacles, like the case of sampling-based motion planners)
but rather with the size of the grid: in our implementation without a Fibonacci
heap, the complexity is O(E log V), with E number of the edges and V number
of vertices, edges and vertices of the graph generated from the 2D cost map.

Sampling-based motion planners, although their interesting properties (like
the innate respect of the nonholonomic constraints), are still not the best choice
for complex, dynamic and large environments like the airports: as seen before,
sampling-based motion planners’ planning time scale with the complexity of the
environment (as previously described in Chapter 3-5, see Fig. 8.10), moreover
their results have high variance (i.e for distinct runs, they may generate different
paths for the same pair of start and goal).

8.3.3.1 Deciding From The Hypotheses

In order to evaluate the hypotheses, the global path planner chooses the final path
by considering both geometric differences between the two path hypotheses and
perception information. Specifically for each path we evaluate and compare path
length lp, discrete Fréchet distance dF, homotopy class, number of people tracks
forming a cluster against robot’s direction of motion. Concretely the metrics are
defined as follow:

147

CHAPTER 8. A SOCIALLY-AWARE MOTION PLANNER FOR HIGHLY
CROWDED ENVIRONMENTS

• Path length (lp): the path length lp of a path P, composed of Np Cartesian
points Pi, is computed as:

lp(P) =
Np−1

∑
i=0
‖Pi+1 − Pi‖2 . (8.1)

The path length of Phsw is denoted as lphsw, while the path length for the
socially-aware path Phsa is denoted as lphsa.

• Fréchet distance (dF): The Fréchet distance dF measures the similarity
between two curves. Given two curves S1, S2 where each curve is defined
as continuous mapping (S1 : [a, b] → V and S2 : [c, d] → V with
a, b, c, d ∈ R : a ≥ b, c ≥ d and (V , ‖.‖2) being a metric space), its con-
tinuous representation is defined as:

dF(S1, S2) = inf
α,β

max
t∈[0,1]

(‖S1(α(t))− S2(β(t))‖2)

with α : [0, 1]→ [a, b] and β : [0, 1]→ [c, d].

Informally, it is the minimum length of a leash required to connect a dog,
walking along S1, and its owner, walking along S2, as they walk along their
respective curves from one endpoint to the other without backtracking. We
make use of the discrete dF computed as described by Voss et al. (2015).
Consider the two paths F and G formed respectively by the points f1, ..., fn
and g1, ..., gm. The discrete Fréchet distance dF is equal to:

dF(−1,−1) = 0
dF(i,−1) = dF(−1, j) = inf ∀i, j ≥ 0

dF(i, j) = dF(−1, j) = inf ∀i, j ≥ 0

dFmin = min


dF(i, j− 1)
dF(i− 1, j)
dF(i− 1, j− 1)

dF(i, j) = max


‖ fi − gj‖

dFmin = min


dF(i, j− 1)
dF(i− 1, j)
dF(i− 1, j− 1)

for 0 < i ≤ n, 0 < j ≤ m.

• Homotopy Class Check (Hc): As described in Chapter. 7, two trajectories
or paths τ1 and τ2 belong to the same homotopy class (see Fig. 8.3.3.1) if

148

8.3. SOCIALLY-AWARE MOTION PLANNER: COMBINING EFFICIENCY
AND SOCIAL NORMS

Start

τ1τ2τ3τ4

Goal

Figure 8.11: Given the position of the obstacles (black rectangles) in the scene, dif-
ferent homotopy classes can be identified. Four trajectories (τi, i =
1− 4) connect the same start (blue dashed circle) and goal point (red
circle). τ2 and τ3 belong to the same homotopy class since they can
be continuously deformed into the other without intersecting any
obstacle. τ4 and τ1 belong to different homotopy classes since it can-
not be continuously deformed into any of the other two.

they can be continuously deformed into the other without intersecting any
obstacle. Bhattacharya et al. (2012) show that to each homotopy class can be
associated a signature H(τ) (τ being a trajectory), a general differential 1-
form in a given D-dimensional configuration space. The authors proposed
a complex-value signature H2(τ) valid for a 2D environment computed
based on the Residue Theorem, where polygonal obstacles are associated to
a single point (or pole). Vernaza et al. (2012) and Gong et al. (2011) show
that finding a signatureH2(τ) for a path/trajectory τ is equivalent to find a
vector of winding angles (θ0, θ1, . . . , θN) with respect to all the obstacles in
the scene. A winding angle θi(τ) of a path τ is the sum along τ of the infin-
itesimal angles ∆θi(τ) between the lines starting from two adjacent points
of the trajectory and connecting to the obstacle chosen point pi.

To check if two paths τ1 and τ2 belong to the same homotopy class we
compare the sum of the winding angles for each path with respect to the
obstacles in the global static map. The obstacles centroids’ positions pi are
computed by using the border following algorithm introduced by Suzuki
et al. (1985). For efficiency reasons, we evaluate the infinitesimal angles
∆θi(τ) of the winding angle only on a subset of points of the path τ. Hc
equals to true if the two generated paths belong to the same homotopy class,
thus having the same vector of winding angles, and false otherwise.

149

CHAPTER 8. A SOCIALLY-AWARE MOTION PLANNER FOR HIGHLY
CROWDED ENVIRONMENTS

Parameter Value
α 1.17 m
dFmin 1.9 m
rhw 2.5 m
θhw 1.27 rad
Nh 3

Table 8.1: Multi-hypothesis path planner parameters

• Cluster (or wall) of people tracks (Hw): to check if the robot is in front of a
cluster of pedestrians blocking its way, we exploit the information provided
by the people tracker. We count all the tracks that fall into a sector of circle
of radius rhw and angle θhw (rhw and θhw as parameters), centered around the
vector describing the robot current direction. After an informal validation
rhw and θhw have been set respectively to 2.5 m and 1.27 rad. If at least Nh
(in our case Nh=3) tracks are into the sector, we declare this as a human wall
(Hw equal to true).

Based on these four criteria, the planner chooses to follow the socially-aware
path hypothesis Phsa when the following two conditions are false:

• We detect a human wall in front of the robot and the socially-aware path
Phsa is much longer (α times, as parameter) than Phsw. In addition their
Fréchet distance dF(Phsa, Phsw) is higher than a defined threshold dFmin (as
parameter):

Hw∧ (αlphsw <= lphsa) ∧ (dFmin < dF(Phsa, Phsw)) (8.2)

• We detect that the paths do not belong to the same homotopy class (¬Hc is
true) and the socially-aware path length lphsa is α times bigger than lphsw

¬Hc ∧ (αlphsw <= lphsa) (8.3)

The parameters of the global path planner, as used on the robot Spencer, are re-
ported in Tab.8.1.

Once the global path planner has chosen one of the two hypotheses, it forwards
the path to the local planner together with its type, so that the socially-aware
Elastic Band (the current local planner, see below) can select the proper cost map
and activate the proper HRI action.

The multi-hypothesis planner runs with a frequency of 0.1 Hz moreover re-
planned is invoked whenever the elastic band cannot generate velocity com-
mands.

150

8.3. SOCIALLY-AWARE MOTION PLANNER: COMBINING EFFICIENCY
AND SOCIAL NORMS

8.3.4 Socially-Aware Elastic Band
The multi-hypothesis path planner is coupled with a modified version of the
Elastic Band (Quinlan and Khatib, 1993) path planner. The elastic band is a dy-
namic path optimization algorithm that locally optimizes (adapts) the global plan
based on the obstacles’ positions and in general on environmental changes. Each
obstacle pushes the band away by means of an elastic force. We modified the
elastic band to better couple it with our multi-hypothesis global path planner
and to generate legible and socially-aware motion.

We adapt the band by using cost maps that encode obstacle positions and social
behaviors of the robot (Okal and Arras, 2016), differently from other previous
approaches (as in (Philippsen, 2004)) which used raw sensor information to read
only obstacle positions. Moreover velocity commands are generated based not
only on the geometry properties of the band and the kinematic constraints of
the robot platform, but we adaptively change them to account for legibility (as
proposed by Kruse et al. (2014)): the authors show that legible robot motion can
be generated by adjusting the robot velocity profile, thus slowing down, when
humans are closer or intersect the robot movements.

8.3.4.1 Following The Path Hypothesis

We describe now the proposed algorithm. The socially-aware elastic band plan-
ner (SEband planner) generates velocity commands such that the robot does not
collide with obstacles and humans, it follows the path generated by the global
path planner and activates the HRI action accordingly; moreover its velocities are
legible by the humans and do not violate the dynamic constraints of the actuators
(see Fig. 8.13 for an overview of its architecture).

Each time that the global path planner provides a new path, our socially-aware
elastic band planner selects the proper local cost map (static or dynamic one) based
on the hypothesis that the robot is following. In case that the static path Phsw is se-
lected the SEband planner activates its HRI module: every time that Nh (as para-
meter, see Tab.8.1) people tracks are in front of the robot direction (and stopping
the robot), the HRI action is triggered to avoid that the robot freezes. During the
SPENCER project final demonstration, the HRI action consisted in the robot ask-
ing for permission to pass, by saying “Excuse me”. When the socially-aware path
hypothesis Phsa is selected, the robot avoids unexpected obstacles-pedestrians by
adapting the path through the elastic band algorithm.

8.3.4.2 Adapting The Path To The Dynamic Environment

Here we detail the elastic band method and our modifications to take in account
the learned social behaviors. The elastic band approach (Quinlan and Khatib,
1993), instead of representing the entire free configuration space of the robot,

151

CHAPTER 8. A SOCIALLY-AWARE MOTION PLANNER FOR HIGHLY
CROWDED ENVIRONMENTS

b
i

b
i+1

ρ
0

ρ(b
i
)

Figure 8.12: Elastic band approach. The path is covered with a set of bubbles
(black circles). Their initial radius is equal to the mask distance
ρ0. Their volume (area in the specific case of a 2D environment)
is squeezed according to the distance, ρ(bi), to the nearest obstacle
(black rectangle).

models the free environment only locally as a union of free space subsets. Each
subset is a bubble centered on a global path point b and expanded according the
local freedom of the robot at that path point (see Fig. 8.12). The free space subsets
are determined based on the relative distance ρ(b) of the robot at configuration b
(considering its shape and kinematics) to the closest obstacle in the scene: in such
a situation the robot can move freely without collisions in all directions up to the
distance ρ(b). Differently to previous approaches, we compute the distance ρ(b)
based on the social behaviors costs encoded into the cost maps.

A free space subset B(b) (called bubble) at configuration x′ is defined as the set
of all robot configurations x that can be reached from x′ before colliding with an
obstacle,

B(x′) =
{

x : D(x′ − x) < ρ(x′)
}

,

where D(x′ − x) represents the distance between two configurations based on
the kinematic constraints and shape of the robot. For a differential drive robot
navigating in a 2D environment, where robot and obstacles can be geometrically
modeled as 2D polygons, the distance D(x′ − x) between the configurations x =

152

8.3. SOCIALLY-AWARE MOTION PLANNER: COMBINING EFFICIENCY
AND SOCIAL NORMS

(x, y, θ) and x′ = (x′, y′, θ′) can be defined as:

D(x′ − x) =
√
(∆x2 + ∆y2) + rcirc

with ∆x = x − x′, ∆y = y − y′ and rcirc being the radius of the circumscribed
circle of the robot footprint.

The distance
√
(∆x2 + ∆y2) in our approach is computed with the cost maps

information: it is the distance to the closest high cost cell (to account for the social
behaviors, we assume that a cost is high if it is higher or equal to 128).

Once a global path is provided, the elastic band is built: it is formed by a finite
series of bubbles (B(b0),B(b1), . . . ,B(bN−1)), centered on the configurations
(b0, . . . , bN−1). To insure that collision free motion can be generated between
the bubbles, we impose the condition that they overlap at consecutive via points.

The initial bubble of the band represents the current robot pose, while the last
one is centered at the final point of the local path, a portion of the global path
inside the local cost map. The initial radius of the bubbles is equal to the mask
distance ρ0 (as parameter, set to 1 m for the Spencer robot): obstacles above that
distance are not considered during the band adaptation. At every re-planning
cycle of the local planner the elastic band is optimized by moving the bubbles
positions (i.e bi, i = 0, . . . , N− 1) considering a set of internal and external forces.

bi(new) = bi(old) + ftot(bi(old))

where ftot is sum of internal forces fint and external forces fext:

ftot(bi) = fint(bi) + fext(bi),

fint(bi) = kint

(
bi−1 − bi

‖bi−1 − bi‖
+

bi+1 − bi

‖bi+1 − bi‖

)

fext(bi) = −
kext

2bexp

[
ρ(bi − bexpx̂)− ρ(bi + bexpx̂)
ρ(bi − bexpŷ)− ρ(bi + bexpŷ)

]

with bexp being ρ(bi) (kint, kext as parameters). As described by Quinlan and
Khatib (1993) to mitigate the movement of bubbles along the elastic band, we
remove the tangential component from the total force applied to the elastic band.
The number of bubbles is not constant, according to the obstacles movements (in
this case cost maps costs changes) bubbles are inserted when the overlap between
adjacent bubbles is not sufficient, and superfluous bubbles are removed from the
band in order to be efficient during its optimization. The parameters of the elastic
band optimization algorithm are reported in Tab. 8.2

153

CHAPTER 8. A SOCIALLY-AWARE MOTION PLANNER FOR HIGHLY
CROWDED ENVIRONMENTS

Parameter Value
kint 1.5
kext 0.5
ρ0 1 m

Table 8.2: Elastic band optimization parameters

Multi-
Hypothesis

Planner

Local
Cost Map
Selector

Elastic
Band

Optimizer

Socially-
Aware
Motion

Generator

Legibility
Monitor

Laser and
RGB-D

Collision
Checker

Motors
Controllers

Global Path Cost map

(vt, wt)

Figure 8.13: Outline of the socially-aware elastic band planner architecture. In
the socially-aware elastic band (SEBand Local Planner) many com-
ponents interact with each other. The multi-hypothesis path planner
generates a path and selects a cost map which are both provided to
the elastic band optimizer. The socially-aware motion generator will
generate velocities according to the optimized elastic band, the legib-
ility, the collision status and the given kino-dynamic constraints.

8.3.4.3 Socially-Aware Motion Generation

Following the motivation detailed in (Kruse et al., 2014), we compute the pair
of velocities (vt, wt), provided to the robot motors, by considering robot motion
legibility (i.e. adjusting the velocity profile, thus slowing down, when humans are
closer or intersect the robot). Moreover the velocities are generated by taking in
account the bubbles forming the band and respecting the kinematic constraints
of the platform.

Although different control strategies can be applied (e.g. path tracking or tra-
jectory tracking (De Luca et al., 2001)), we make use of a simpler pure pursuit con-

154

8.3. SOCIALLY-AWARE MOTION PLANNER: COMBINING EFFICIENCY
AND SOCIAL NORMS

b
i

b
i+1

Figure 8.14: The elastic band covers the path that the robot has to follow. While
generating the velocity commands the socially-aware elastic band
slows down in case of un-expected dynamic obstacles (in the image
represented with red laser scan dots) that suddenly appear and jump
on the virtual elastic band. In this case the robot slows down and op-
timize the band so to avoid the un-expected obstacle or pedestrian.

troller (Coulter, 1992) to better cope with the high dynamic environment, where
at each time step we generate the velocities by looking only at one step ahead
(in terms of bubbles). This approach leads to an efficient generation of smooth
and continuous motion. Given that the robot at time t is mapped to the initial
bubble B(b0), we make use of a pure pursuit strategy that operates on the error
between the current robot heading and the heading to the next bubble point b0
and the Euclidean distance between the two bubbles. The feasibility of the velo-
cities is checked against the desired accelerations (see Tab.8.3 for the acceleration
and velocity limits used during the SPENCER demo). To improve legibility of

155

CHAPTER 8. A SOCIALLY-AWARE MOTION PLANNER FOR HIGHLY
CROWDED ENVIRONMENTS

Parameter Value
vmax 1.3 m/s
0.65 vleg 0.65 m/s
wmax 1.57 rad/s
max trans. acc. 0.125 m/s2

max ang. acc. 0.1 rad/s2

Table 8.3: Socially-aware elastic band motion generation parameters

the robot motion, the velocities of the robot, generated by the SEband planner are
scaled based on the distance of the laser scans readings to the current band (see
Fig. 8.14): when some laser points (at least 4) are found inside the elastic band, the
maximum translational velocity vmax is limited to vleg (see Tab.8.3). To reduce the
oscillations in terms of translational velocity (thus improving legibility), we did
not adopt people tracking information, given that the tracker provides the cor-
rect information only within a given confidence. To improve legibility "a priori"
we use low accelerations for translational and rotational movements too. This
planner runs with a frequency of 6 Hz.

8.4 Final Demo At Schiphol

During the final integration weeks of the SPENCER project in Schiphol (one took
place from November 30 to December 5, 2015 and an other one from March 10
to 24, 2016), we found that an airport is not only a very crowded environment,
it is also a place where humans are very goal-oriented, partially in a rush, and
less attentive of what is happening around them. For those passengers, even an
intelligent robot that usually attracts a lot of attention, becomes an imperceptible
object to which they do not pay particular attention. Moreover passengers often,
during their navigation in the airport, do not cooperate with the robot and/or
other passengers: therefore in such cases, a method that would start a tentative
cooperation between the robot and the humans, as described by Trautman et al.
(2015), would not improve the overall robot navigation quality. Our tests in the
airport led to the conclusion that under such conditions a robot that fully respects
all learned social norms (e.g. in the learned “polite behavior”), ends up in being
overly reactive and/or partially freeze in highly dynamic crowds of fast moving
people.

To reduce the number of such freeze-events, we adopted the motion planner
(described in the previous sections) to achieve an overall "socially-aware and ef-
ficient" behavior of the robot.

Our approach significantly improved the robot efficiency (time to reach the

156

8.4. FINAL DEMO AT SCHIPHOL

Figure 8.15: The Spencer robot while testing its navigation capabilities at
Schiphol.

Date Dist. Auton. Dist. Not Auton. Dist. per day Day’s event
09/03/16 0 4210 4210 Mapping session
10/03/16 589 1055 1644
11/03/16 2168 2701 4868
12/03/16 371 1555 1926 Mapping session
13/03/16 3475 1099 4574
14/03/16 3932 2176 6107
15/03/16 3768 882 4650
16/03/16 2248 1739 3986
17/03/16 3830 2249 6079
18/03/16 7060 1877 8937 Film crew
19/03/16 2235 1096 3331
20/03/16 4397 627 5024 User study (morning)
21/03/16 4813 1084 5897
22/03/16 3562 1379 4941 Review
23/03/16 3912 1980 5891 Film crew and user study
24/03/16 0 1051 1051 Data Recording and Packing
Total 46360 26759 73118

Table 8.4: The table details the distances (in meters) traveled every day (Dist. per
day) during the final demo in Schiphol. The total distance is split into
two: the distance traveled with the robot driving autonomously (Dist.
Auton.) and not autonomously (Dist. Not Auton.). Only on particular
days like the one of the data recording and the mapping sessions, the
robot did not drive autonomously, in the remaining days the robot was
mainly operated autonomously.

gate of destination) and reduced the number of missions aborted for planning
problems to zero, compared to an initial motion planning strategy adopted in
the Spencer project. The initial strategy was merely reactive: global planner and
local planner were communicating only via a single path (hypothesis), the local
planner (based on the dynamic window approach (Fox et al., 1997)) was very

157

CHAPTER 8. A SOCIALLY-AWARE MOTION PLANNER FOR HIGHLY
CROWDED ENVIRONMENTS

Figure 8.16: Scenes from the final SPENCER integration week and deployment.
During the integration week, the robot drove autonomously for circa
46 km. Tests and user studies were carried on along all days, maps
were recorded during two nights, when fewer people were passing
through the terminals.

reactive and often generating the freezing behavior or unexpected direction os-
cillations. Clearly the multi-hypothesis strategy allowed our planner to better
balance social-awareness with efficiency, as depicted also in Fig. 8.17: the planner

158

8.4. FINAL DEMO AT SCHIPHOL

Figure 8.17: Socially aware motion planning. This figures shows two possible
ways to pass a crowd or a group of people (here a group of three
people where one takes a picture of the other two). The blue area on
the floor shows the social link between the group members, the red
line is the socially-aware path computed and selected by our system,
and the green line is the static (direct) path. Green spheres represent
the elastic band.

generated the socially-aware path hypothesis Phsa, each time that in a crowded
situation this choice would not lead to large detour respect to the static world
path hypothesis Phsw.

The legibility aspects helped in improving the robot behaviors: respect to the
initial planning strategy, overall no passengers complained about unexpected ro-
bot behaviors (i.e. oscillation in direction and acceleration); during the robot op-
eration, they significantly reduced the risk of collisions with rushing crowd of
passengers crossing or moving against the robot.

During the final deployment of the Spencer robot, see Fig. 8.16 and Fig. 8.18,
before to start the guidance experiments, we have further fine-tuned the motion
planner parameters to take the particular dynamics of Schiphol Airport into ac-

159

CHAPTER 8. A SOCIALLY-AWARE MOTION PLANNER FOR HIGHLY
CROWDED ENVIRONMENTS

Figure 8.18: Part of the Spencer project team at Schiphol during the final
deployment.

count. All tests and user studies had to be done under uncontrollable passenger
dynamics. The robot was operating in daylight conditions when the majority of
flights were arriving, only twice the robot and some of the developers were oper-
ating in the late evening to record a map of the environment. We developers had
to work on the field, without having the facilities of a research laboratory.

Overall the robot drove autonomously circa 46 kilometers in 15 days. Table 8.4
details the distances traveled every day, which is reported as sum of the distances
traveled by the robot autonomously and not autonomously. Only on particular
days like the one of the data recording and the mapping sessions, the robot did
not drive autonomously.

8.5 Conclusions

During the SPENCER final demo at Schiphol we thoroughly tested the developed
socially-aware and efficient motion planner for nonholonomic wheeled mobile
robots. The planner by means of a multi-hypothesis reasoning balances effi-
ciency with socially-awareness and generates locally legible motion that safely
and smartly reacts to the dynamics of the environment.

Overall the robot met the requirements of safe and reliable operation in a highly
dynamic and uncontrolled environment, which is very different from a laborat-
ory setup, extremely well: the robot drove, gently and faultlessly (without colli-
sions with and hindrances to the pedestrians), autonomously circa 46 kilometers
in 15 days indicating that this it is a valuable system to generate smooth and
efficient motion in very crowded environments.

160

CHAPTER 9

Conclusions

"Und jedem Anfang wohnt ein
Zauber inne, der uns beschützt und
der uns hilft, zu leben."

Herman Hesse,
Stufen

9.1 Summary

In this thesis, we developed several new path and motion planning techniques
for wheeled mobile robots. With the goal of smooth and natural real-time motion
generation and by leveraging different methods from machine learning, artifi-
cial intelligence and control theory, we proposed diverse approaches that extend
state-of-the-art motion planners in several aspects. In summary, we have ad-
dressed the following questions:

1. How can we improve the efficiency of state-of-the-art motion planners for
nonholonomic wheeled mobile robots in complex environments?

2. How can we exploit place-dependent learned motion priors of flows of dy-
namic obstacles (i.e. pedestrians), specifically multi-modal Gaussian mix-
tures models, into kino-dynamic sampling-based motion planners?

3. How can we quickly produce, evaluate and select several path hypotheses
in dynamic crowded environments? And in particular, how can we gener-
ate a small representation of the search space that would allow a wheeled
mobile robot to quickly reason about several possible ways to the goal?

4. How can we generate smooth, efficient and socially-aware motion for a fully
autonomous and particularly fast robot (1.3 m/s), operating in not-controlled
and densely crowded environments (i.e. airports)?

Chapters 3, 4 and 5 answer the first question in the frame of sampling-based mo-
tion planners. In Chapter 3, we show how the performance of a sampling based

161

CHAPTER 9. CONCLUSIONS

motion planner can be improved by using a novel stabilizer for wheeled mobile
robots instead of random control propagations (or motion primitives): this al-
lows the planner to exploit as much knowledge of the nonholonomic constraints
of the system as possible to ensure both high planning efficiency and high tra-
jectory quality. This combination was shown to produce smoother paths in less
time with smaller trees than a set of state-of-the-art baseline methods. Moreover
when combined with an optimal sampling-based motion planner, the approach
produces the shortest paths and achieves the lowest cost solutions when given
more planning time.

In Chapter 4, we present an on-line machine learning approach to compute the
distance pseudo-metric for nonholonomic sampling base-motion planners. The
approach is shown to be faster in planning time by several factors with respect to
different baselines at a negligible loss of path quality. The use of machine learning
– we use a fast constant-time regression approach – helps to efficiently compute
the distance pseudo-metric by avoiding to solve a computationally expensive 2P-
BVP problem.

In Chapter 5, we introduce a hierarchical combination of (discrete) any-angle
search with (continuous) sampling-based motion planning for nonholonomic
wheeled mobile robots. The combination generates a trajectory by expanding
a tree of geodesics toward sampled states whose distribution summarizes
geometric information of the any-angle path. We evaluate the algorithm by
considering the cases of a differential drive robot and of a high-dimensional
truck-and-trailer system. The approach, that is probabilistically complete, finds
smooth and shorter trajectories significantly faster than four baseline planners
without loss of smoothness.
In Chapter 6 we give an answer to the second question by introducing a motion
planning approach (for wheeled mobile robots) under kinodynamic constraints
that generates paths by trading off classical path quality metrics with the com-
pliance to off-line learned model of the environment dynamics. Specifically it
exploits learned perception priors of dynamic environments in the form of con-
tinuous Gaussian mixture fields. The approach, which is asymptotically optimal,
efficiently generates high-quality solutions in terms of path smoothness, path
length as well as minimum control effort through multi-modal representations
of Gaussian mixture fields.
In Chapter 7 we propose a solution for the problem detailed in the third question
by presenting an efficient randomized approach based on weighted random
walks, that finds K diverse path hypotheses on the Voronoi diagram of the en-
vironment, where each path represents a distinct homotopy class. The approach
is significantly faster at finding paths of higher diversity in distinct homotopy
classes than two state-of-the-art methods.
Finally, in Chapter 8, we detail a socially-aware and efficient motion planner
for nonholonomic wheeled mobile robots navigating at high speed in densely

162

9.2. DISCUSSION

crowded environments. Instead of a mere reactive planner, we propose a motion
planning approach, that by means of a multi-hypothesis reasoning, balances
efficiency with social-awareness and generates locally legible motion that safely
and smartly reacts to the dynamics of the environment. The planning system
was developed for the EU-funded project SPENCER and deployed at Schiphol
Amsterdam Airport (a densely crowded environment): overall the robot gently
and faultlessly drove autonomously without collisions with and hindrances to
the pedestrians, with an average velocity of 1.3m/s, circa 46 kilometers in 15 days,
indicating that this system is a valuable answer to the aforementioned question
number four.

All the introduced methods were tested not only in simulated environments
but also in real-world experiments on two robotic platforms of the Social Robot-
ics Laboratory, University of Freiburg: Spencer and Daryl. Many of the methods
are open-source available.

9.2 Discussion

As detailed in the previous chapters, there are many valuable works in the field
of path and motion planning from different scientific communities.

Nevertheless, we believe that more work needs to be done in general in the con-
text of sampling-based motion planners. Although being the choice for solving
very complex tasks, their typical planning times are still high in big and cluttered
environments, which makes them feasible to be used for environments of small
size, but not for big ones (i.e. airports) as detailed in Chapter 8. We also believe
more research needs to be done to reduce their results’ variance (i.e for the first
returned solution to a problem) and to improve their efficiency in dynamic envir-
onments.
This thesis shows that by better coupling low-level control techniques with high-
level motion planning (i.e. search) algorithms the overall performance of the
robotic system can be improved (see the before mentioned results for Theta*-
RRT, RRT/RRT*-POSQ, multi-hypothesis path planner and socially-aware elastic
band). An example that goes in this direction is the combination of high level mo-
tion planning with model predictive control techniques, which can be informed
about future possible state transitions, while still solving their optimization prob-
lem on a shorter horizon. Following this line of research, the overall goal of our
community should be the development of a single algorithm, that by combining
planning and control units, can solve complex tasks.
Moreover, the deployment of the robot Spencer at Schiphol, showed us the im-
portance of planning considering multiple path hypotheses and robot behaviors

163

CHAPTER 9. CONCLUSIONS

(i.e. social-awareness and efficiency). While the robot Spencer was operating at
Schiphol airport, we used only geometric features and people track information
to select two hypotheses: for future applications more priors about the environ-
ment (i.e. motion prediction and uncertainty) should be considered thus reducing
the cases of erroneous behaviors selection.
Lastly, nowadays planners can handle events which are foreseen to happen (i.e.
most likely occupied cells, predicted motion for a dynamic object). Planning con-
sidering rare events (Hertwig et al., 2004; Weinan and Vanden-Eijnden, 2010) is
an interesting line of research to increase the robustness of robot operations: by
studying rare events, such as near collision with unpredictable obstacles, the ro-
bots can develop better planning behaviors for inexperienced or unforeseen situ-
ations.

9.3 Recommendations For Future Work

This thesis introduces many methods for wheeled mobile robot motion planning
which may inspire new ideas and developments.
Here listed interesting follow-up future research for different chapters:

• As discussed in Chapter 3, an initial extension to this work could be a sys-
tematic analysis of how different cost functions impact the overall robot
motion behavior: with different cost functions the final trajectories have
different geometric properties and velocity profiles. Moreover the coupling
of POSQ with RRT/RRT* could be extended to a dynamical representation
of the system: in Appendix B, we detail a dynamic version of POSQ, this
could be used into RRT* to generate trajectories which adhere also to accel-
eration limits. POSQ can be also used in the framework of feedback-based
motion planning (Yershov and LaValle, 2011; LaValle, 2006): in this case it
may be used to generate a vector field of feasible controls into the entire
configuration space to guide the robot to the final goal. Furthermore, the
approach could be modified in a way to become "obstacle-aware": its guid-
ing Lyapunov function could be aware of the obstacles and thus generating
control policies that avoid obstacles.

• Based on the ideas presented in Chapter 4, an interesting follow-up work
is the learning of the distance pseudo-metric for higher dimensional con-
figuration spaces. We believe that for complex systems such as humanoids
and mobile manipulators this approach will lead to an even more dramatic
improvement in planning time. Clearly, new features and a 2P-BVP solver
will be required. Moreover new methods could be implemented by using
machine learning techniques to improve the efficiency of sampling-based

164

9.3. RECOMMENDATIONS FOR FUTURE WORK

motion planners (see also Arslan (2015) and Pan et al. (2013)). A learned dis-
tance metric can be used also to approximate the landmark heuristic (Paden
et al., 2017) for incremental sampling based motion planners. Although ex-
isting works suggest to use deep neural networks for solving motion plan-
ning tasks in end-to-end trajectory generation methods (Levine et al., 2016),
these methods could also be used into the framework of sampling-based
motion planners. One example could be to substitute the sampling unit,
the distance metric and the collision checker, with a generative model. The
latter, based on the current tree and the environment, generates the samples
that may extend the tree by using a steer function towards the goal region
without encountering a collision. This would definitely improve the plan-
ning efficiency.

• Chapter 5 shows us how, by using information of a discrete global search
approach, a sampling based motion planner could improve planning ef-
ficiency without compromising path quality. In the same way, we could
introduce new methods to combine global and local search methods (an al-
gorithm that goes in this direction is described by Choudhury et al. (2016)):
a steer function that is aware of the obstacles could reduce dramatically for
example the number of collision checks, by reducing the number of failed
attempts to connect samples lying nearby obstacles. Moreover the approach
can be easily extended to use different any-angle path planning algorithms:
instead of Theta* (Daniel et al., 2010), one could use Incremental Phi* (Nash
et al., 2009) or ANYA (Harabor and Grastien, 2013), or Lazy Theta* (Nash
et al., 2010). Theta* and all the previously cited any-angle algorithms can
generate a path also in a 3D workspace, thus meaning that the approach
could be used for systems that move into the 3D workspace (i.e. manipulat-
ors or quadrotor) and not only into the 2D Cartesian plane. The any-angle
path biasing technique may also be used in optimal-sampling based motion
planners like RRT* (thus introducing the algorithm Theta*-RRT*).

• Regarding Chapter 6, that introduces a kinodynamic approach to compute
trajectories based on a Gaussian mixture field description of dynamic ob-
jects and humans, a possible extension of this work is to study the behavior
of the algorithm in different types of dynamic environments (e.g. UAVs in
robot olfaction scenarios, for example, may plan paths that help to estim-
ate gas distributions or localize gas sources). To further improve planning
efficiency and reduce the variance of the results, the approach could be ex-
tended to include the use of deterministic Janson et al. (2018), as opposed
to random sampling sequences. Moreover the approach can be extended to
enable the selection of multiple behaviors: by adjusting the bias towards the
CLiFF-map based sampling one may choose if the robot has to follow a flow

165

CHAPTER 9. CONCLUSIONS

of dynamic obstacles or to move in opposite direction. The planner could
also generate different behaviors based on the time of the planning request:
the CLiFF maps may represent different behaviors learned during different
hours of the day, thus the planner may select which behavior to represent
by choosing the CLiFF distributions related to the time of planning request.

• Both Chapters 5-6 show us the importance of the sampling strategy in
sampling-based motion planners. We believe our community should invest
more on finding optimal sampling sequences that are obstacle and graph
aware (see for example the works by Burns and Brock (2005); Kiesel (2016);
Hsu et al. (2007)): generating states that are easier (in terms of reducing
collision checks and computational efforts) to connect to the current graph
(road-map or tree) would allow the planner to more efficiently search the
configuration space.

• Chapter 7 introduces a method to quickly compute a set of diverse and
homotopically distinct paths. To reduce the number of re-planning events
(which includes generation of the Voronoi diagram and the iterations of the
RHCF algorithm), future methods could profit from a local optimizer (e.g.
Elastic Band, CHOMP (Zucker et al., 2013)) that elastically deform the ini-
tial homotopically distinct paths to respond to the dynamic changes in the
environment (in a way similar to elastic roadmaps (Yang and Brock, 2006)
and reactive deformation roadmaps (Gayle et al., 2007)). Moreover, future
work may also include the analysis of space and time complexity of the
algorithm, as well as extend it to generate even more robust path sets by
considering sensing and motion uncertainty.

• Regarding Chapter 8, we believe that to build more efficient navigation sys-
tems in crowded environments we need a more robust way to compute hu-
man motion predictions and an intelligent way to consider them during the
planning routines: recently we have been working on this line of work, see
(Rudenko et al., 2017) for preliminary results. Human motion predictions
could be exploited, for example, into the local trajectory optimization meth-
ods (e.g. Elastic Band, CHOMP Zucker et al. (2013), TrajOpt Schulman et al.
(2014)), to reduce the need of unexpected re-planning for those methods.
We believe also that a more intelligent local planner that has more know-
ledge about the global behavior of the system (like the case of the global
planner) and that is better coupled with the controls generation, could re-
duce sub-optimal behaviors (i.e. unexpected turns or decelerations), see a
recent work by Tamar et al. (2017) that shows an approach on how this goal
could be achieved by combining model predictive control techniques with
machine learning.

166

9.3. RECOMMENDATIONS FOR FUTURE WORK

Overall we believe that by better coupling the efforts of communities with dif-
ferent backgrounds (e.g. AI, machine learning, control theory), existing motion
planning methods could further be improved and new interesting ideas could be
developed to efficiently and smoothly solve the motion planning problem.

167

Appendices

169

APPENDIX A

Notions on Nonholonomic systems

In this appendix we illustrate general properties for nonholonomic systems fol-
lowing (Laumond et al., 1998) and (Jean, 2014). We do not go into the details of
the Lie algebra.

A.1 Nonholonomic control systems

Let C ⊂ Rd be the state space, U ⊂ Rm the control space (with m < d), and
Cobs ⊂ C and C f ree = C \ Cobs the obstacle and free spaces, respectively. A (control)
system Σ for nonholonomic systems on the state space C is a differential system
such that

ẋ(t) = f (x(t)) u + g(x(t)) x(0) = xstart, (A.1)

where xstart ∈ C and for all t, x(t) ∈ C and u(t) ∈ U . g describes the drift, and f
describes the system dynamics.
The nonholonomic system Σ in Equ. A.1 can be rewritten as the sum of contribu-
tions of many control inputs.

ẋ(t) =
m

∑
i=1

uiXi(x) + g(x(t)) x(0) = xstart, (A.2)

where the configuration space C of the system is a C∞ manifold, X1, . . . , Xm are
C∞ vector fields on C and the control functions u(t) = (u1(t), . . . , um(t)) are
defined in U .
The system Σ determines a family of vector spaces,

∆x = span{X1(x), . . . , Xm(x)} ⊂ TxC, x ∈ C

whose dimensions depends on x and it can be constant, where Tx is the tangent
space of C at x .

A.1.1 Controllability and Reachable Sets
Controllability is the ability to steer a system from a point of its space to an other
point of the same space. Controllability is often coupled with the Reachability
property.

171

APPENDIX A. NOTIONS ON NONHOLONOMIC SYSTEMS

Definition 13 (Reachable set from x ∈ C (Jean, 2014)). The reachable set from x ∈ C
is defined to be the set Ax of points reached by a trajectory of Σ issued from x.

The system Σ is said to be controllable when the reachable set from any point
in C is equal to the whole manifold C. The controllability of the system Σ is
characterized by the properties of the Lie algebra generated by the vector fields
X1, . . . , Xm.

Hereinafter we describe some fundamental results to solve the nonholonomic
motion planning problem. Mainly they characterize the conditions under which
a nonholonomic system can be defined controllable and the conditions under
which a trajectory between two states in C exists.

Definition 14 (Chow’s Condition or Lie algebra rank condition (LARC), (Jean,
2014)). Σ or the vector fields (X1, . . . , Xm) satisfies Chow’s condition if

Lie(X1, . . . , Xm)(x) = TxC (A.3)

or equivalently, for any x ∈ C, there exists an integer r = r(x) such that |∆r(x)| = d,
where d is the dimension of C.

Lie(X1, . . . , Xm)(x) are the Lie brackets associated to the vector fields
(X1, . . . , Xm) at x. In this case ∆ is said to be bracket generating.

Lemma 1 (Chow’s condition and reachability, (Jean, 2014)). If Σ satisfies Chow’s
condition, then for every x ∈ C, the reachable set Ax is a neighborhood of x.

Theorem 2 (Chow-Rashevsky’ theorem (Chow, 1940)). If C is connected and if Σ
satisfies Chow’s condition, then any two points of C can be joined by a trajectory of Σ.

If two states that we want to connect are lying into the same connected set,
Chow’s theorem assures us the existence of a trajectory (between the two states)
that adheres to the nonholonomic constraints of the system Σ.
An other interesting property for nonholonomic systems, that we use in Theta*-
RRT (see Chapter 5) is the small-time controllability.

Definition 15 (Small-time controllability (Laumond et al., 1998)). The system Σ is
locally controllable from C if the set of states reachable from C by an admissible trajectory
contains a neighborhood of C. It is small-time controllable from C if, for any time T, the
set of states reachable from C before time T contains a neighborhood of C.

Checking if a system is small-time controllable is easy for symmetric systems
(with d = |C|).

Theorem 3 (Small-time controllability for symmetric systems (Laumond et al.,
1998), Lie algebra rank condition). A symmetric system without drift (g(x) = 0) is
small-time controllable from C if and only if the rank of the vector space spanned by the
family of vector fields together with all their brackets is d at C.

172

A.1. NONHOLONOMIC CONTROL SYSTEMS

A.1.2 Reachability

An important theorem in the context of nonholonomic motion planning, also
used in RRT* (Karaman and Frazzoli, 2013), is the Ball-Box Theorem that gives
an estimate of the reachable set for a nonholonomic system. To define it, we need
to detail the sub-Riemannian ball and analyze a nonholonomic system from a set
of privileged coordinates.

A.1.2.1 Sub-Riemannian distance and ball

The arc length of a path σ(t), generated by the system Σ, is defined as l(σ(t)) =∫ T
0

√
〈σ̇(t), σ̇(t)〉, where 〈., .〉 denotes the Euclidean inner product in C. This

function induces a sub-Riemannian distance d on C, defined for x1, x2 ∈ C as
d(x1, x2) = infx l(x). The sub-Riemannian ball is defined as B(x, ε) = {∀y ∈ C :
d(x, y) ≤ ε}, which is a subset of the Euclidean Ball B(x, ε) ⊂ BEucl(x, ε). Clearly
the sub-Riemannian ball of a nonholonomic system Σ describes the reachable sets
of Σ. Computing analytically the sub-Riemannian distance and ball is difficult
and expensive.

A.1.2.2 Regular and singular points

Chow’s condition assumes that ∀x ∈ C there exists a smallest integer r = r(x)
such that ∆r(C) = TxC. The value of the set ∆s generated by Σ forms a flag of
subspaces of TxC: ∆1(x) ⊂ ∆2(x) ⊂ . . . ⊂ ∆r(x) = TxC, where r = r(x) is called
the degree of nonholonomy at x. The r-tuple of integers (n1(x), . . . , nr(x)), with
ni(x) = |∆i(x)|, is called the growth vector of x.

A state (or point) x is a regular point if there exists an open neighborhood of C
around x such that the growth vector is constant, otherwise is a singular point.

A.1.2.3 Privileged coordinates

The structure of the flag can be described by using a sequence of weights at x, wi =
wi(x), i = 1, . . . , n by setting wj = s if ns−1(x) < j ≤ ns(x) where n0 = 0. If x is a
regular point, the weights at x form an increasing sequence w1(x) ≤ . . . ≤ wn(x).

Let us call XiXj f , XiXjXk f , . . . the nonholonomic derivatives of order 2, 3 and
so on of f . If the nonholonomic derivatives of order lower than s− 1 of f vanish
at x, we say that f is of order greater and equal to s at x. The function f is said to
be of order s at x if its order is greater and equal to s but not of order greater and
equal to s + 1.

A set of local coordinates (z1, . . . , zn) centered at x are privileged coordinates
at x if the order of zi at x is equal to wi, for i = 1, . . . , n.

173

APPENDIX A. NOTIONS ON NONHOLONOMIC SYSTEMS

Given a set of privileged coordinates zi, we can define the pseudo-norm at x0 as

‖z‖x0 = max{|z1|1/w1 , . . . , |zn|1/wn}

A.1.2.4 Ball-box theorem

A w-weighted box of size ε at x0, given a set of privileged coordinates, can be
defined as Boxw(ε) = {z ∈ Rn : ‖z‖x0 ≤ ε}.

Theorem 4 (Ball-box theorem (Bellaiche et al., 1998)). The following estimate holds if
and only if (z1, . . . , zn) form a system of privileged coordinates at x: there exist constants
cx, Cx and εx > 0 such that, for y ∈ C with d(x, y) < εx,

cx(|z1|1/w1 , . . . , |zn|1/wn) ≤ d(0, (z1, . . . , zn)) ≤ Cx(|z1|1/w1 , . . . , |zn|1/wn) (A.4)

The estimate A.4 of the sub-Riemannian distance induces a geometric inter-
pretation:

Corollary 1. Expressed in a given system of privileged coordinates, the sub-Riemannian
balls B(x, ε) satisfy for ε < εx,

Boxw(cxε) ⊂ B(x, ε) ⊂ Boxw(Cxε) (A.5)

where Boxw(ε) = [−εw1 , εw1]× . . .× [−εwn , εwn].

A.2 Topological property

In here we describe the topological property and its properties as introduced by
Sekhavat and Laumond (1998), a key property requested by RRT* for nonholo-
nomic systems. Let us denote: with B(x, ρ) the ball centred around the config-
uration x and radius ρ, with x belonging to the configuration space C; la,b a path
connecting the configuration a and b generated by the local planner or steer func-
tion l.

Definition 16 (Local Planner or Steer Function, (Sekhavat and Laumond, 1998)).
Given a nonholonomic system Σ and its configuration space C, a local planner or steer
function is a map

l : C × C → C [0,1]

(x0, x1)→ lx0,x1

such that lx0, x1(0) = x0, lx0, x1(1) = x1 and lx0, x1(t) with t ∈ [0, 1], is a path respecting
the kinematic constraints of Σ.

174

A.2. TOPOLOGICAL PROPERTY

x
S

x
G

ε

η

x0

x(t)

x

Figure A.1: Example describing the topological property. The red path lx0, x(t),
generated by a steer function to connect x0 to x ∈ B(x0, η), is con-
tained always in a ball of radius ε, ∀t ∈ [0, 1], lx0, x(t) ∈ B(x0, ε).

Definition 17 (Topological Property, (Sekhavat and Laumond, 1998)). A local plan-
ner l respects the topological property if:

∀ε > 0, ∃η > 0 | ∀x0 ∈ C, ∀x ∈ B(x0, η)

∀t ∈ [0, 1], lx0, x(t) ∈ B(x0, ε)

Namely the topological property, indicates that a local planner l generates
paths from a configuration x0 to x (whose distance is lower than a certain η > 0)
that do not escape from a ball B of radius ε centered on the initial configuration
x0, see Fig. A.1.

A.2.1 Sufficient condition to respect the Topological Property

Let us define a metric dmax between any two paths σσσ1(t) and σσσ2(t), with para-
meter t ∈ [0, 1]:

dmax = max
t=[0 1]

d (σσσ1(t), σσσ2(t)) (A.6)

where d is an Euclidean metric on the configuration space C. A sufficient condi-
tion guaranteeing that a local planner l respects the topological property:

175

APPENDIX A. NOTIONS ON NONHOLONOMIC SYSTEMS

Definition 18 (Sufficient condition to respect the topological property, (Sekhavat
and Laumond, 1998)). Given a local planner l. If l verifies the two following conditions:

1. l is continuous in the topology associated with dmax;

2. ∀a ∈ C, ∀t ∈ [0, 1], la,a(t) = a;

then l respects the topological property on any compact set.

176

APPENDIX B

Dynamic POSQ

In the following we detail an extension of the POSQ steer function, presented in
Chapter 3, to generate commands to physical systems in which the torques are
the control inputs.

B.1 The Control Law

As in Sec.3.3.1, a control law is developed so that the closed loop system is asymp-
totically stable: also in this case the discontinuity in α̇ is asymptotically canceled,
following the approach in Astolfi (1999).
Let ρ be the Euclidean distance between the initial pose and the goal pose (xnear
and xrand in an RRT notation), φ the angle between the x-axis of the robot refer-
ence frame {XR} and the x-axis of the goal pose frame {XG}, α the angle between
the y-axis of the robot reference frame and the vector Z connecting the robot with
the goal position, v the translational and ω the angular robot velocity, see Fig. 3.3.

We consider the dynamic extended model of a differential drive robot in po-
lar coordinates, with the assumption that the motor dynamics have been com-
pensated,

v̇ = T1

ω̇ = T2

ρ̇ = − cos α v

α̇ =
sin α

ρ
v−ω

φ̇ = −ω

(B.1)

Lemma 2 (Boundness of the internal variable ε). Consider the system

v̇ = T1

ρ̇ = − cos α v
(B.2)

where α(t) ∈ D1 =]− π
2 , π

2], ρ(0) 6= 0.
Let us apply the control law

T1 = −KρKvcosα
v

cosh(Kv ρ)2 − λ1
(
v− Kρ tanh(Kvρ)

)
(B.3)

177

APPENDIX B. DYNAMIC POSQ

with λ1 > 0, Kρ > 0, Kv > 0. The ratio ε(t) = v(t)/ρ(t) is defined and bounded
for every t ≥ 0, furthermore we have: limt→+∞ ε(t) = KvKρ, limt→+∞ v(t) = 0 and
limt→+∞ ρ(t) = 0.

Proof. Locally the first derivative of the variable ε is approximated to:

ε̇ = (ε cosα− λ1)
(
ε− Kρ Kv

)
(B.4)

It follows that the equilibrium point ε = Kρ Kv is locally exponentially stable,
and ε = 0 belongs to its basin of attraction. To show the global stability of the
system B.2 we use the Lyapunov method. The candidate Lyapunov function is
the following:

W(ρ, v) = 2λ1 Kρ ρ2 + λ1
(
v− Kρ tanh(Kvρ)

)2 (B.5)

with its first derivative equal to

Ẇ = −4 Kρ ρ λ1 v cos α− 2λ1
(
v− Kρ tanh(Kvρ)

)2 (B.6)

For λ1 > 0, Kρ > 0 we have that Ẇ ≤ 0, and S =
{
(v, ρ) : Ẇ(v, ρ) = 0

}
contains

only the trivial trajectory (v, ρ) = 0. For the LaSalle invariance principle then we
have that the origin of the system in (B.2) is globally asymptotically stable.

Proposition 4. Considering now the following choice of the torque control inputs:

T1 = −KρKvcosα
v

cosh(Kv ρ)2 − λ1
(
v− Kρ tanh(Kvρ)

)
T2 = Kα

(
v
ρ

sin α− w
)
− Kφ w− λ2

(
ω− Kα α− Kφ φ

) (B.7)

Substituting (B.7) in (B.1), we have that the closed loop system is locally exponentially
stable iff

λ1 > 0 (B.8)
λ2 > 0
Kv > 0
Kρ > 0
Kφ < 0

Kα + Kφ − KρKv > 0 .

Proof. Showing this proposition is trivial. The closed loop system can be locally
approximated by a linear system. If and only if the conditions in (B.8) are valid
then the eigenvalues of the matrix describing the linear approximation of the
model has all negative real parts so the system is locally exponentially stable.

178

B.1. THE CONTROL LAW

−1 0 1 2 3 4 5 6
−1

0

1

2

3

4

5

6

x [m]

y
 [

m
]

0 5 10 15 20
0

0.5

1

t [s]

0 5 10 15 20
0

0.5

v

w

0 5 10 15 20

−0.5

0

0.5

1

t [s]

0 5 10 15 20

−1

0

1

2
T

1

T
2

Figure B.1: Example path (on the top), velocities (bottom left) and torques
(bottom right) profiles generated with control law of Eq.B.7, when
connecting x1 = [0, 0, 0.36] to x2 = [5, 5, 0.2]. The gains are set as fol-
lows: Kv = 1, Kρ = 1, Kα = 3, Kφ = −1, λ1 = 1, λ2 = 1.

Proposition 5. Consider the system in (B.1) with the control laws in (B.7) and assuming
α(0) ∈ D1 =]− π

2 , π
2], ρ(0) 6= 0.

If the relations in (B.8) and Lemma 2 are valid then for every initial condition in the re-
gion Ωdyn =

{
(v, w, ρ, α, φ) ∈ R5 | v ∈ R, w ∈ R, ρ ≥ 0, α ∈ D1, φ ∈ (−π, π]

}
, the

system converges asymptotically to the origin.

Proof. From the following candidate Lyapunov function

Vdyn(v, ω, ρ, α, φ) = λ2
(
v− Kρ tanh(Kvρ)

)2
+ λ2

(
ω− Kα α− Kφ φ

)2 (B.9)

with simple calculations we can show

V̇dyn = −λ2 λ1
(
v− Kρ tanh(Kvρ)

)2 − λ2
2
(
ω− Kα α− Kφ φ

)2 (B.10)

179

APPENDIX B. DYNAMIC POSQ

Vdyn is positive and V̇dyn is non-positive in Ωdyn. Let us define S ={
(v, w, ρ, α, φ) ∈ Ω1 | V̇dyn = 0

}
. For the LaSalle invariance principle, the

trajectory of the system converges to the positively invariant set M ={
(v, w, ρ, α, φ) ∈ Ωdyn | V̇dyn = 0, t→ ∞

}
∈ S, which contains the point

(0, 0, 0, 0, 0), the unique w-limit point of any trajectory starting in the region of
attraction Ωdyn.

180

APPENDIX C

Robot Platforms

In this appendix we describe the robot platforms used to run several experiments
during the thesis.

C.1 Spencer

Spencer is the robot designed during the EU project SPENCER, see Section 8.2,
and built by the Swiss robotics company BlueBotics SA. The robot has an abstract
human-like appearance, see Fig. C.1. Its appearance was designed to increase the
overall acceptance of the entire robot by the humans: Its friendly look conveys
trustfulness and calmness. The head is used for a simplified non-verbal commu-

Figure C.1: Pictures of the Spencer robot at Schiphol.

nication (e.g. nodding or orientating towards the intended motion direction). The
platform has a touchscreen and a boarding pass reader, to resemble an operating
information kiosk. During the demo, those allowed the passengers to interact
with the robot: by scanning their boarding passes they could start the guidance
task of the robot.

181

APPENDIX C. ROBOT PLATFORMS

The robot has 5 degrees of freedom: 2 for the mobile base with a differential-
drive kinematics, 2 for the head (pan and tilt) and 1 for the eyes (only hori-
zontal movements). The height of the robot is of 1926 mm, its base platform is
800×810 mm and its weight (batteries included) is 250 kg. The robot can achieve
a maximum velocity of 1.8 m/s.

A schematic view of the hardware architecture is given in Fig. 8.6. The robot is
equipped with 3 industrial PCs (2 Intel Core i7 and one i5) and 2 gaming laptops
with nVidia graphics cards. The latter mainly used by the perception components
which require powerful GPUs, while the remaining robot tasks (e.g. planning,
localization etc.) are performed on the industrial PCs. The robot drive motors
are interfaced to the BlueBotics ANT system, used only as gateway between the
motors and the rest of the ROS-based robot software architecture. The sensory
setup consists of:

• two SICK LMS 500 2D laser scanners mounted at a height of 0.70m,

• two front and two rear RGB-D Asus Xtion Pro live cameras,

• two AVT cameras with 4.5mm lens as stereo camera system mounted at
shoulder height,

• Velodyne VLP-16 3D lidar mounted on one of the robot’s shoulders (not
planned at beginning of the project but it turned out to be necessary to cope
with localization difficulties).

C.2 Daryl

The robot Daryl is a custom-designed 10 degrees of freedom (dof) wheeled mo-
bile robot platform. It was designed by the Social Robotics Laboratory of the
University of Freiburg and realized in collaboration with two Swiss companies:
Robonaut and Formfabrik.

Compared to Spencer, Daryl has more degrees of freedom: two dof for the
differential drive base, two dof for a laser pointing device mounted on one of
its shoulders, two dof for the ears and four dof for the neck mechanism. The
robot sensory setup consists of: two SICK laser scanners, two cameras, bumpers
and wheel encoders, an industry standard embedded system with an RTOS and a
C++ API. It was often used to study how robots may better interact with humans,
see Fig. C.2-C.3. In fact, differently from Spencer, that had simply the head to
express intentions, Daryl instead has:

• ears, which can rotate and may be used to show different expression-
emotions (happiness, sadness etc.);

182

C.2. DARYL

Figure C.2: Daryl is communicating with a human during an experiment.

Figure C.3: Examples of Daryl possible expressions. Left: Daryl has a sad expres-
sion. Right: Daryl is thinking about a possible answer to a question.

• a body that can move towards or away from the interacting humans, to
show interest (or disappointment);

• colors, showed at the center of the robot body;

• R2-D2 robot speech like.

183

APPENDIX C. ROBOT PLATFORMS

By combining the robot movements, with these additional expressive modality,
Daryl can generate different behaviors and interaction with humans.

184

List of Figures

1.1 Introduction, example of robotics applications 8
1.2 Introduction, conceptual robot architecture 9
1.3 Introduction, nonholonomic motion planning problem 10
1.4 Introduction, overview of the thesis 13

2.1 Foundations, configuration space example 18
2.2 Foundations, comparison of Theta* and A* 21
2.3 Foundations, Example Motion Primitives Set 23
2.4 Foundations, RRT iteration . 28
2.5 Foundations, RRT tree . 29
2.6 Foundations, RGG example . 30
2.7 Foundations, RRT* iteration . 34
2.8 Foundations, CHOMP examples . 36
2.9 Foundations, Smoothness metrics - example paths 39

3.1 POSQ, example RRT tree generated using motion primitives 44
3.2 POSQ, example paths . 47
3.3 POSQ, differential drive robot in polar coordinates 48
3.4 POSQ, example RRT extension . 51
3.5 POSQ, example velocity profile . 51
3.6 POSQ, motion primitive set . 53
3.7 POSQ, simulated environments . 54
3.8 POSQ, RRT* cost evolution with POSQ 55

4.1 Distance Pseudo-Metric, example tree and path generated with the
learned distance metric . 61

4.2 Distance Pseudo-Metric, plot of the cost-to-go function 64
4.3 Distance Pseudo-Metric, robot poses for features computation . . . 64
4.4 Distance Pseudo-Metric, simulated environments and RRT trees

grown with the learned distance pseudo-metric 68
4.5 Distance Pseudo-Metric, example trees generated by using the Eu-

clidean distance . 70
4.6 Distance Pseudo-Metric, state space coverage 70

5.1 Theta*-RRT, example tree of Theta*-RRT 77
5.2 Theta*-RRT, example configurations density 81
5.3 Theta*-RRT, example configurations 2D projection 82
5.4 Theta*-RRT, sampling strategy . 83

185

LIST OF FIGURES

5.5 Theta*-RRT, differential drive system geometric relations 86
5.6 Theta*-RRT, truck-and-trailer geometric relations 86
5.7 Theta*-RRT, narrow corridor environment 87
5.8 Theta*-RRT, parameters . 88
5.9 Theta*-RRT, SPENCER experiments 90

6.1 CLiFF-RRT*, example paths . 96
6.2 CLiFF-RRT*, CLiFF-Map example 99
6.3 CLiFF-RRT*, scenario L . 106
6.4 CLiFF-RRT*, scenario P . 106
6.5 CLiFF-RRT*, scenario Maze . 107
6.6 CLiFF-RRT*, convergence Plot . 110

7.1 RHCF, Voronoi diagram representation 112
7.2 RHCF, comparison in the cubicles scenario of different approaches 115
7.3 RHCF, homotopy class concept example 116
7.4 RHCF, designed environments . 122
7.5 RHCF, discounting factor trend . 124
7.6 RHCF, planning time results by varying K 128
7.7 RHCF, robust diversity RDk obtained by varying K 129
7.8 RHCF, normalized cumulative gain nCGk obtained by varying K . 129
7.9 RHCF, Voronoi diagram representation on a real-world experiment 130
7.10 RHCF, application in social settings 131

8.1 Socially-Aware Motion Planner, EU SPENCER project concepts . . 135
8.2 Socially-Aware Motion Planner, the SPENCER robot 136
8.3 Socially-Aware Motion Planner, a partial representative map of

Schiphol Airport . 138
8.4 Socially-Aware Motion Planner, example of a difficult and crowd

environment . 138
8.5 Socially-Aware Motion Planner, example human robot interaction . 139
8.6 Socially-Aware Motion Planner, SPENCER robot architecture 139
8.7 Socially-Aware Motion Planner, outline of the SPENCER naviga-

tion architecture . 141
8.8 Socially-Aware Motion Planner, SPENCER robot safety zones . . . 143
8.9 Socially-Aware Motion Planner, example of rolling window cost

maps . 145
8.10 Socially-Aware Motion Planner, Theta*-RRT paths among humans 146
8.11 Socially-Aware Motion Planner, homotopy classes concept 149
8.12 Socially-Aware Motion Planner, elastic band approach 152
8.13 Socially-Aware Motion Planner, Socially-Aware Elastic Band Plan-

ner architecture . 154

186

LIST OF FIGURES

8.14 Socially-Aware Motion Planner, legibility functionality in the
elastic band framework . 155

8.15 Socially-Aware Motion Planner, SPENCER Robot at Schiphol 157
8.16 Socially-Aware Motion Planner, Final demo impressions 158
8.17 Socially-Aware Motion Planner, example of group avoidance 159
8.18 Socially-Aware Motion Planner, Spencer team 160

A.1 Topological property, Example describing the topological property 175

B.1 Dynamic POSQ, example velocity and torque profile 179

C.1 SPENCER robot in the airports . 181
C.2 Daryl robot during user studies . 183
C.3 Daryl expressions . 183

187

List of Tables

1.1 Notation . 16

2.1 Smoothness metrics, example paths results 38

3.1 POSQ, RRT results - planning efficiency with POSQ 56
3.2 POSQ, RRT results - smoothness with POSQ 57
3.3 POSQ, RRT* results - planning efficiency with POSQ 57
3.4 POSQ, RRT* results - smoothness with POSQ 58

4.1 Distance Pseudo-Metric, input features 65
4.2 Distance Pseudo-Metric, regression and ranking performance . . . 72
4.3 Distance Pseudo-Metric, efficiency results 73
4.4 Distance Pseudo-Metric, smoothness results 73

5.1 Theta*-RRT, planning efficiency results for the differential drive
system . 90

5.2 Theta*-RRT, trajectory quality results for the differential drive system 91
5.3 Theta*-RRT, problems solved for the differential drive robot 91
5.4 Theta*-RRT, planning efficiency results for the truck-and-trailer

system . 92
5.5 Theta*-RRT, trajectory quality results for the truck-and-trailer system 92
5.6 Theta*-RRT, problems solved for the truck-and-trailer system . . . 92
5.7 Theta*-RRT, planning times of Theta* and A* 93

6.1 CLiFF-RRT*, planning times of Dijkstra 109
6.2 CLiFF-RRT*, results for trajectory quality and planning efficiency . 109
6.3 CLiFF-RRT*, results for trajectory roughness 109
6.4 CLiFF-RRT*, results regarding percentage of problems solved . . . 110
6.5 CLiFF-RRT*, MSE of the generated velocity profiles 110

7.1 RHCF, planning time results . 126
7.2 RHCF, navigation graph building time 126
7.3 RHCF, comparison to sampling-based motion planners 126
7.4 RHCF, cumulative gain results . 127
7.5 RHCF, robust diversity results . 127

8.1 Socially-Aware Motion Planner, multi-hypothesis path planner
parameters . 150

189

LIST OF TABLES

8.2 Socially-Aware Motion Planner, elastic band optimization para-
meters . 154

8.3 Socially-Aware Motion Planner, Socially-Aware Elastic Band mo-
tion generation parameters . 156

8.4 Socially-Aware Motion Planner, distances traveled by the robot
Spencer during the final demo of the project 157

190

List of Algorithms

1 Basic Theta* . 21
2 Basic Theta*, UpdateVertex . 22
3 RRT . 26
4 RRT* . 31
5 RRT*, Rewire . 32

6 Theta*-RRT . 80

7 CLiFF-RRT* . 101
8 CLiFF-RRT*, Rewire . 103

9 RHCF . 118
10 RHCF, Random Walk . 118

191

Bibliography

R. E. Allen, A. A. Clark, J. A. Starek, and M. Pavone. A machine learning approach
for real-time reachability analysis. In Int. Conf. on Intelligent Robots and Systems
(IROS), Chicago, USA, 2014.

N. Amato, O. Bayazit, L. Dale, C. Jones, and D. Vallejo. Choosing good distance
metrics and local planners for probabilistic roadmap methods. IEEE Trans. on
Robotics and Automation (TRO), 16(4):442–447, Aug 2000.

O. Arslan. Machine learning and dynamic programming algorithms for motion planning
and control. PhD thesis, Georgia Institute of Technology, 2015.

O. Arslan and P. Tsiotras. Use of relaxation methods in sampling-based al-
gorithms for optimal motion planning. In Int. Conf. on Robotics and Automation
(ICRA), Karlsruhe, Germany, 2013.

A. Astolfi. Exponential stabilization of a wheeled mobile robot via discontinuous
control. Journal of Dynamic Systems, Measurement, and Control, 121(1), 1999.

R. Bajcsy. Position Statement: Robotics Science, pages 583–585. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007.

S. Balasubramanian, A. Melendez-Calderon, and E. Burdet. A robust and sensit-
ive metric for quantifying movement smoothness. IEEE Transactions on Biomed-
ical Engineering, 59(8), 2012.

K. Bekris and L. Kavraki. Informed and probabilistically complete search for mo-
tion planning under differential constraints. In First International Symposium on
Search Techniques in Artificial Intelligence and Robotics (STAIR), Chicago, IL, 2008.

A. Bellaiche, F. Jean, and J.-J. Risler. Geometry of nonholonomic systems. In Robot
Motion Planning and Control, pages 55–91. Springer, 1998.

M. Bennewitz, W. Burgard, and S. Thrun. Adapting navigation strategies using
motions patterns of people. In Int. Conf. on Robotics and Automation (ICRA),
Taipei, China, 2003.

M. Bharatheesha, W. Caarls, W. Wolfslag, and M. Wisse. Distance metric ap-
proximation for state-space RRTs using supervised learning. In Int. Conf. on
Intelligent Robots and Systems (IROS), Chicago, USA, 2014.

193

BIBLIOGRAPHY

S. Bhattacharya, V. Kumar, and M. Likhachev. Search-based path planning with
homotopy class constraints. In Third Annual Symposium on Combinatorial Search,
AAAI, Atlanta, Georgia, USA, 2010.

S. Bhattacharya, M. Likhachev, and V. Kumar. Topological constraints in search-
based robot path planning. Autonomous Robots, 33(3):273–290, 2012.

A. Botea, M. Mueller, and J. Schaeffer. Near optimal hierarchical path-finding.
Journal of Game Development, 1:7–28, 2004.

M. Brady. Robotics science, volume 1. MIT press, 1989.

A. W. Brander and M. C. Sinclair. A comparative study of k-shortest path al-
gorithms. Proc. of 11th UK Performance Engineering Workshop, 1996.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

O. Brock and O. Khatib. Elastic strips: A framework for motion generation in
human environments. Int. Journal of Robotics Research (IJRR), 21(12):1031–1052,
2002.

R. W. Brockett et al. Asymptotic stability and feedback stabilization. Differential
geometric control theory, 27(1), 1983.

R. Brooks. A robust layered control system for a mobile robot. IEEE journal on
robotics and automation, 2(1):14–23, 1986.

M. Brunner, B. Bruggemann, and D. Schulz. Hierarchical rough terrain motion
planning using an optimal sampling-based method. In Int. Conf. on Robotics and
Automation (ICRA), Karlsruhe, Germany, 2013.

W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz,
W. Steiner, and S. Thrun. Experiences with an interactive museum tour-guide
robot. Artificial intelligence, 114(1):3–55, 1999.

B. Burns and O. Brock. Toward optimal configuration space sampling. In Proc. of
the Robotics: Science and Systems (RSS), MIT, Cambridge, MA, USA, 2005.

S. Calderara, A. Prati, and R. Cucchiara. Mixtures of von Mises distributions for
people trajectory shape analysis. IEEE Transactions on Circuits and Systems for
Video Technology, 21(4), 2011.

S. Caron, Q.-C. Pham, and Y. Nakamura. Completeness of randomized kinody-
namic planners with state-based steering. In Int. Conf. on Robotics and Automa-
tion (ICRA), Hong Kong, China, 2014.

194

BIBLIOGRAPHY

P. Cheng and S. LaValle. Reducing metric sensitivity in randomized trajectory
design. In Int. Conf. on Intelligent Robots and Systems (IROS), San Francisco,
USA, 2001.

H. M. Choset. Principles of robot motion: theory, algorithms, and implementation. MIT
press, 2005.

S. Choudhury, J. D. Gammell, T. D. Barfoot, S. S. Srinivasa, and S. Scherer. Region-
ally accelerated batch informed trees (RABIT*): A framework to integrate local
information into optimal path planning. In Int. Conf. on Robotics and Automation
(ICRA), Stockholm, Sweden, 2016.

W. Chow. Ueber systeme von linearen partiellen differentialgleichungen erster
ordnung. Mathematische Annalen, 117:98–105, 1940.

B. Cohen, M. Phillips, and M. Likhachev. Planning single-arm manipulations
with n-arm robots. In Proc. of the Robotics: Science and Systems (RSS), UC Berke-
ley, Berkeley, CA, USA, 2014.

B. J. Cohen, S. Chitta, and M. Likhachev. Search-based planning for manipula-
tion with motion primitives. In Int. Conf. on Robotics and Automation (ICRA),
Anchorage, AK USA, 2010.

R. C. Coulter. Implementation of the pure pursuit path tracking algorithm. Tech-
nical report, DTIC Document, 1992.

R. V. Cowlagi and P. Tsiotras. Hierarchical motion planning with dynamical feas-
ibility guarantees for mobile robotic vehicles. IEEE Trans. on Robotics and Auto-
mation (TRO), 28(2), 2012.

K. Daniel, A. Nash, S. Koenig, and A. Felner. Theta*: Any-angle path planning
on grids. Artificial Intelligence Research, Journal of, 39(1), 2010.

M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geo-
metry, Algorithms and Applications. Springer-Verlag Berlin Heidelberg, 2008.

A. De Luca, G. Oriolo, and M. Vendittelli. Control of wheeled mobile robots: An
experimental overview. In Ramsete, pages 181–226. Springer, 2001.

D. Demyen and M. Buro. Efficient triangulation-based pathfinding. In Proc. of the
AAAI Conf. on Artificial Intelligence (AAAI), Boston, MA, USA, 2006.

M. Diehl, H. J. Ferreau, and N. Haverbeke. Efficient numerical methods for non-
linear MPC and moving horizon estimation. In Nonlinear model predictive con-
trol, pages 391–417. Springer, 2009.

195

BIBLIOGRAPHY

E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959.

D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel. Path planning for autonom-
ous vehicles in unknown semi-structured environments. Int. Journal of Robotics
Research (IJRR), 29(5):485–501, 2010.

B. Donald, P. Xavier, J. Canny, and J. Reif. Kinodynamic motion planning. Journal
of the ACM (JACM), 40(5):1048–1066, 1993.

A. D. Dragan, K. C. Lee, and S. S. Srinivasa. Legibility and predictability of ro-
bot motion. In Human-Robot Interaction (HRI), 2013 8th ACM/IEEE International
Conference on, Tokyo, Japan, 2013.

F. Dyson. A meeting with Enrico Fermi. Nature, 427(6972):297–297, 2004.

D. Ferguson and A. Stentz. Field D*: An interpolation-based path planner and
replanner. In Robotics research, pages 239–253. Springer, 2007.

M. Fiore, A. Clodic, and R. Alami. On planning and task achievement modal-
ities for human-robot collaboration. In Experimental Robotics, pages 293–306.
Springer, 2016.

D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to collision
avoidance. IEEE Robotics & Automation Magazine, 4(1):23–33, 1997.

E. Frazzoli, M. A. Dahleh, and E. Feron. Real-time motion planning for agile
autonomous vehicles. In American Control Conference, Virginia, USA, 2001.

E. Frazzoli, M. A. Dahleh, and E. Feron. Maneuver-based motion planning for
nonlinear systems with symmetries. IEEE Trans. on Robotics and Automation
(TRO), 21(6), 2005.

C. Fulgenzi, A. Spalanzani, C. Laugier, and C. Tay. Risk based motion plan-
ning and navigation in uncertain dynamic environment. INRIA Research Report,
2010.

J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot. Informed RRT*: Optimal
sampling-based path planning focused via direct sampling of an admissible el-
lipsoidal heuristic. In Int. Conf. on Intelligent Robots and Systems (IROS), Chicago,
USA, 2014.

J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot. Batch informed trees (BIT*):
Sampling-based optimal planning via the heuristically guided search of impli-
cit random geometric graphs. In Int. Conf. on Robotics and Automation (ICRA),
Seattle, WA, USA, 2015.

196

BIBLIOGRAPHY

R. Gayle, A. Sud, M. C. Lin, and D. Manocha. Reactive deformation roadmaps:
motion planning of multiple robots in dynamic environments. In Int. Conf. on
Intelligent Robots and Systems (IROS), San Diego, CA, USA, 2007.

F. Ghilardelli, G. Lini, and A. Piazzi. Path generation using η4-splines for a truck
and trailer vehicle. Automation Science and Engineering, IEEE Transactions on, 11
(1), 2014.

E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure for computing
the distance between complex objects in three-dimensional space. IEEE Journal
on Robotics and Automation, 4(2):193–203, 1988.

E. Glassman and R. Tedrake. A quadratic regulator-based heuristic for rapidly ex-
ploring state space. In Int. Conf. on Robotics and Automation (ICRA), Anchorage,
USA, 2010.

H. Gong, J. Sim, M. Likhachev, and J. Shi. Multi-hypothesis motion planning
for visual object tracking. In 2011 International Conference on Computer Vision,
Barcelona, Spain, 2011.

E. T. Hall. The hidden dimension. Doubleday Garden City, N.Y, [1st ed.] edition,
1966.

D. D. Harabor and A. Grastien. An optimal any-angle pathfinding algorithm.
In Twenty-Third International Conference on Automated Planning and Scheduling,
Rome, Italy, 2013.

P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic de-
termination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

D. Helbing and P. Molnar. Social force model for pedestrian dynamics. Physical
review E, 51(5), 1995.

R. Hertwig, G. Barron, E. U. Weber, and I. Erev. Decisions from experience and the
effect of rare events in risky choice. Psychological science, 15(8):534–539, 2004.

D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock. Randomized kinodynamic motion
planning with moving obstacles. Int. Journal of Robotics Research (IJRR), 21, 2002.

D. Hsu, J.-C. Latombe, and H. Kurniawati. On the probabilistic foundations of
probabilistic roadmap planning. In Robotics Research, pages 83–97. Springer,
2007.

197

BIBLIOGRAPHY

J. Hwan J, S. Karaman, and E. Frazzoli. Anytime computation of time-optimal off-
road vehicle maneuvers using the RRT*. In Decision and Control and European
Control Conference (CDC-ECC), 2011 50th IEEE Conference on, Orlando, FL, USA,
2011.

L. Janson, E. Schmerling, A. Clark, and M. Pavone. Fast marching tree: A fast
marching sampling-based method for optimal motion planning in many di-
mensions. Int. Journal of Robotics Research (IJRR), 34(7):883–921, 2015.

L. Janson, B. Ichter, and M. Pavone. Deterministic sampling-based motion plan-
ning: Optimality, complexity, and performance. Int. Journal of Robotics Research
(IJRR), 37(1):46–61, 2018.

F. Jean. Control of nonholonomic systems: from sub-Riemannian geometry to motion
planning. Springer, 2014.

M. Kalisiak and M. van de Panne. RRT-blossom: RRT with a local flood-fill beha-
vior. In Int. Conf. on Robotics and Automation (ICRA), Orlando, FL, USA, 2006.

M. Kalisiak and M. van de Panne. Faster motion planning using learned local
viability models. In Int. Conf. on Robotics and Automation (ICRA), Rome, Italy,
2007.

S. Karaman. Sampling-based Motion Planning (SMP) Template Library. http:
//www.mit.edu/~sertac/smp_doc, 2011.

S. Karaman and E. Frazzoli. Optimal kinodynamic motion planning using in-
cremental sampling-based methods. In 49th IEEE Conference on Decision and
Control (CDC), Atlanta, GA, USA, 2010a.

S. Karaman and E. Frazzoli. Incremental sampling-based algorithms for optimal
motion planning. In Proc. of the Robotics: Science and Systems (RSS), Universidad
de Zaragoza, Zaragoza, Spain, 2010b.

S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion plan-
ning. Int. Journal of Robotics Research (IJRR), 30(7):846–894, 2011.

S. Karaman and E. Frazzoli. Sampling-based optimal motion planning for non-
holonomic dynamical systems. In Int. Conf. on Robotics and Automation (ICRA),
Karlsruhe, Germany, 2013.

N. Katoh, T. Ibaraki, and H. Mine. An efficient algorithm for k shortest simple
paths. Networks, 12(4), 1982.

198

http://www.mit.edu/~sertac/smp_doc
http://www.mit.edu/~sertac/smp_doc

BIBLIOGRAPHY

L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE
Trans. on Robotics and Automation (TRO), 12(4):566–580, 1996.

S. Kiesel. Robotics needs non-classical planning. PhD thesis, University of New
Hampshire, 2016.

I. Ko, B. Kim, and F. C. Park. Randomized path planning on vector fields.
Int. Journal of Robotics Research (IJRR), 33(13), 2014.

S. Koenig and M. Likhachev. D* lite. In AAAI/IAAI, pages 476–483, 2002.

S. Koenig, M. Likhachev, and D. Furcy. Lifelong planning A*. Artificial Intelligence,
155(1):93–146, 2004.

A. J. Krener. A generalization of Chow’s theorem and the bang-bang theorem to
nonlinear control problems. SIAM Journal on Control, 12(1):43–52, 1974.

T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch. Human-aware robot navigation:
A survey. Robotics and Autonomous Systems, 61(12):1726–1743, 2013.

T. Kruse, A. Kirsch, H. Khambhaita, and R. Alami. Evaluating directional cost
models in navigation. In Proceedings of the 2014 ACM/IEEE international confer-
ence on Human-robot interaction. ACM, 2014.

T. P. Kucner, M. Magnusson, and A. J. Lilienthal. Where am I? an NDT-based
prior for MCL. In Proc. of the European Conference on Mobile Robots (ECMR).
IEEE, 2015.

T. P. Kucner, M. Magnusson, E. Schaffernicht, V. H. Bennetts, and A. J. Lilienthal.
Tell me about dynamics! Mapping velocity fields from sparse samples with
Semi-Wrapped Gaussian Mixture Models. In RSS 2016 Workshop: Geometry and
Beyond - Representations, Physics, and Scene Understanding for Robotics, University
of Michigan, Ann Arbor, MI, USA, 2016.

T. P. Kucner, M. Magnusson, E. Schaffernicht, V. H. Bennetts, and A. J. Lilienthal.
Enabling flow awareness for mobile robots in partially observable environ-
ments. IEEE Robotics and Automation Letters, 2(2):1093–1100, 2017.

M. Kuderer, C. Sprunk, H. Kretzschmar, and W. Burgard. Online generation of
homotopically distinct navigation paths. In Int. Conf. on Robotics and Automation
(ICRA), Hong Kong, China, 2014.

J. J. Kuffner. Effective sampling and distance metrics for 3D rigid body path plan-
ning. In Int. Conf. on Robotics and Automation (ICRA), New Orleans, USA, 2004.

199

BIBLIOGRAPHY

D. Kularatne, S. Bhattacharya, and M. A. Hsieh. Time and energy optimal path
planning in general flows. Proc. of the Robotics: Science and Systems (RSS), 2016.

T. Kunz and M. Stilman. Kinodynamic RRTs with fixed time step and best-input
extension are not probabilistically complete. Int. Workshop on the Algorithmic
Foundations of Robotics (WAFR), 2014.

Y. Kuwata, S. Karaman, J. Teo, E. Frazzoli, J. How, and G. Fiore. Real-time motion
planning with applications to autonomous urban driving. IEEE Transactions on
Control Systems Technology, 17(5), 2009.

A. M. Ladd and L. E. Kavraki. Measure theoretic analysis of probabilistic path
planning. IEEE Trans. on Robotics and Automation (TRO), 20(2), 2004.

F. Lamiraux, D. Bonnafous, and O. Lefebvre. Reactive path deformation for non-
holonomic mobile robots. IEEE Trans. on Robotics and Automation (TRO), 20(6):
967–977, 2004.

J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.

B. Lau, C. Sprunk, and W. Burgard. Kinodynamic motion planning for mobile
robots using splines. In Int. Conf. on Intelligent Robots and Systems (IROS), St.
Louis, MO, USA, 2009. IEEE.

B. Lau, C. Sprunk, and W. Burgard. Efficient grid-based spatial representations
for robot navigation in dynamic environments. Robotics and Autonomous Sys-
tems, 61(10):1116–1130, 2013.

J.-P. Laumond. Feasible trajectories for mobile robots with kinematic and environ-
ment constraints. In Intelligent Autonomous Systems, An International Conference,
Amsterdam, The Netherlands, The Netherlands, 1987. North-Holland Publish-
ing Co.

J.-P. Laumond, S. Sekhavat, and F. Lamiraux. Guidelines in nonholonomic motion
planning for mobile robots. Springer, 1998.

S. LaValle and J. Kuffner. Randomized kinodynamic planning. In Int. Conf. on
Robotics and Automation (ICRA), Detroit, USA, 1999.

S. M. LaValle. Planning algorithms. Cambridge university press, 2006.

S. M. LaValle and J. J. Kuffner Jr. Randomized kinodynamic planning. Int. Journal
of Robotics Research (IJRR), 20(5):378–400, 2001.

S. M. LaValle, M. S. Branicky, and S. R. Lindemann. On the relationship between
classical grid search and probabilistic roadmaps. Int. Journal of Robotics Research
(IJRR), 23(7-8):673–692, 2004.

200

BIBLIOGRAPHY

S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuo-
motor policies. Journal of Machine Learning Research, 17(39):1–40, 2016.

Y. Li and K. Bekris. Learning approximate cost-to-go metrics to improve
sampling-based motion planning. In Int. Conf. on Robotics and Automation
(ICRA), Shanghai, China, 2011.

C. Lichtenthäler and A. Kirsch. Towards legible robot navigation-how to increase
the intend expressiveness of robot navigation behavior. In Int. Conf. Soc. Robot.
Embodied Commun. Goals Intentions, 2013.

M. Likhachev and D. Ferguson. Planning long dynamically feasible maneuvers
for autonomous vehicles. Int. Journal of Robotics Research (IJRR), 28(8):933–945,
2009.

T. Linder, S. Breuers, B. Leibe, and K. O. Arras. On multi-modal people track-
ing from mobile platforms in very crowded and dynamic environments. In
Int. Conf. on Robotics and Automation (ICRA), Stockholm, Sweden, 2016.

P. Liu, G. Xiong, H. Zhang, Y. Jiang, J. Gong, and H. Chen. A multi-path selecting
navigation framework with human supervision. In Social Robotics: 4th Int. Conf.,
ICSR 2012, Chengdu, China, October 29-31, 2012. Proceedings, 2012.

T. Lolla, P. J. Haley, and P. F. Lermusiaux. Time-optimal path planning in dynamic
flows using level set equations: realistic applications. Ocean Dynamics, 64(10):
1399–1417, 2014.

T. Lozano-Pérez. Spatial planning: A configuration space approach. IEEE Trans-
actions on Computers, 100(2):108–120, 1983.

T. Lozano-Pérez and M. A. Wesley. An algorithm for planning collision-free paths
among polyhedral obstacles. Communications of the ACM, 22(10):560–570, 1979.

E. Q. V. Martins and M. M. B. Pascoal. A new implementation of Yen’s rank-
ing loopless paths algorithm. Quarterly Journal of the Belgian, French and Italian
Operations Research Societies, 1(2), 2003.

R. Montgomery. A tour of subriemannian geometries, their geodesics and applications.
Number 91. American Mathematical Soc., 2006.

A. Nash, K. Daniel, S. Koenig, and A. Felner. Theta*: Any-angle path planning
on grids. In Proc. of the AAAI Conf. on Artificial Intelligence (AAAI), Vancouver,
Canada, 2007.

A. Nash, S. Koenig, and M. Likhachev. Incremental Phi*: Incremental any-angle
path planning on grids. Pasadena, CA, USA, 2009.

201

BIBLIOGRAPHY

A. Nash, S. Koenig, and C. Tovey. Lazy Theta*: Any-angle path planning and
path length analysis in 3D. In Proc. of the AAAI Conf. on Artificial Intelligence
(AAAI), Atlanta, GA, USA, 2010.

N. Nilsson. A mobile automaton: An application of AI techniques. In Proceedings
of the 1st International Joint Conference on Artificial Intelligence, pages 509–520,
1969.

J. Nocedal and S. Wright. Numerical optimization. Springer Science & Business
Media, 2006.

S. T. O’Callaghan, S. P. Singh, A. Alempijevic, and F. T. Ramos. Learning naviga-
tional maps by observing human motion patterns. In Int. Conf. on Robotics and
Automation (ICRA), Shanghai, China, 2011.

B. Okal and K. O. Arras. Learning socially normative robot navigation behavi-
ors with bayesian inverse reinforcement learning. In Int. Conf. on Robotics and
Automation (ICRA), Stockholm, Sweden, 2016.

M. Otte and E. Frazzoli. RRTX: Asymptotically optimal single-query sampling-
based motion planning with quick replanning. Int. Journal of Robotics Research
(IJRR), 35(7):797–822, 2016.

M. Otte, W. Silva, and E. Frew. Any-time path-planning: Time-varying wind
field+ moving obstacles. In Int. Conf. on Robotics and Automation (ICRA), Stock-
holm, Sweden, 2016.

B. Paden, Y. Nager, and E. Frazzoli. Landmark guided probabilistic roadmap
queries. In Int. Conf. on Intelligent Robots and Systems (IROS), Vancouver,
Canada, 2017.

L. Palmieri and K. O. Arras. A novel RRT extend function for efficient and smooth
mobile robot motion planning. In Int. Conf. on Intelligent Robots and Systems
(IROS), Chicago, USA, 2014a.

L. Palmieri and K. O. Arras. Distance metric learning for RRT-based motion plan-
ning for wheeled mobile robots. In Proc. of Machine Learning in Planning and
Control of Robot Motion Workshop, IROS, Chicago, USA, 2014b.

L. Palmieri and K. O. Arras. Distance metric learning for RRT-based motion
planning with constant-time inference. In Int. Conf. on Robotics and Automation
(ICRA), Seattle, WA, USA, 2015.

202

BIBLIOGRAPHY

L. Palmieri, A. Rudenko, and K. O. Arras. A fast randomized method to find ho-
motopy classes for socially-aware navigation. In IROS 2015 Workshop on Assist-
ance and Service Robotics in a Human Environment Workshop, Hamburg, Germany,
2015.

L. Palmieri, S. Koenig, and K. O. Arras. RRT-based nonholonomic motion plan-
ning using any-angle path biasing. In Int. Conf. on Robotics and Automation
(ICRA), Stockholm, Sweden, 2016.

L. Palmieri, A. Rudenko, and K. O. Arras. A fast random walk approach to find
diverse paths for robot navigation. IEEE Robotics and Automation Letters, 2(1):
269–276, 2017.

J. Pan, S. Chitta, and D. Manocha. Faster sample-based motion planning using
instance-based learning. In Int. Workshop on the Algorithmic Foundations of Ro-
botics (WAFR), Boston, MA, USA, 2013.

J. J. Park. Graceful Navigation for Mobile Robots in Dynamic and Uncertain Environ-
ments. PhD thesis, The University of Michigan, 2016.

M. Penrose. Random geometric graphs. Number 5. Oxford University Press, 2003.

A. Perez, R. Platt, G. Konidaris, L. Kaelbling, and T. Lozano-Pérez. LQR-RRT*:
Optimal sampling-based motion planning with automatically derived exten-
sion heuristics. In Int. Conf. on Robotics and Automation (ICRA), St. Paul, USA,
2012.

R. Philippsen. Motion planning and obstacle avoidance for mobile robots in highly
cluttered dynamic environments. PhD thesis, EPFL, 2004.

A. Piazzi, C. Bianco, and M. Romano. η3-splines for the smooth path generation
of wheeled mobile robots. IEEE Trans. on Robotics and Automation (TRO), 23(5),
2007.

M. Pivtoraiko and A. Kelly. Efficient constrained path planning via search in
state lattices. In International Symposium on Artificial Intelligence, Robotics, and
Automation in Space, Munich, Germany, 2005.

M. Pivtoraiko, R. A. Knepper, and A. Kelly. Differentially constrained mobile
robot motion planning in state lattices. Journal of Field Robotics, 26(3):308–333,
2009.

E. Plaku, L. E. Kavraki, and M. Y. Vardi. Discrete search leading continuous ex-
ploration for kinodynamic motion planning. In Proc. of the Robotics: Science and
Systems (RSS), Georgia Tech, Georgia, AT, USA, 2007.

203

BIBLIOGRAPHY

E. Plaku, L. Kavraki, and M. Y. Vardi. Motion planning with dynamics by a syner-
gistic combination of layers of planning. IEEE Trans. on Robotics and Automation
(TRO), 26(3), 2010.

F. T. Pokorny, M. Hawasly, and S. Ramamoorthy. Multiscale topological traject-
ory classification with persistent homology. In Proc. of the Robotics: Science and
Systems (RSS), UC Berkeley, Berkeley, CA, USA, 2014.

S. Quinlan and O. Khatib. Elastic bands: Connecting path planning and control.
In Int. Conf. on Robotics and Automation (ICRA), Atlanta, GA, USA, 1993.

M. Rickert, A. Sieverling, and O. Brock. Balancing exploration and exploitation
in sampling-based motion planning. Robotics, IEEE Transactions on, 30(6), 2014.

M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation
learning: The RPROP algorithm. In Neural Networks, 1993., IEEE International
Conference On, pages 586–591, 1993.

J. Rios-Martinez, A. Spalanzani, and C. Laugier. Understanding human inter-
action for probabilistic autonomous navigation using Risk-RRT approach. In
Int. Conf. on Intelligent Robots and Systems (IROS), San Francisco, CA, USA, 2011.

A. Roy, S. K. Parui, and U. Roy. A Mixture Model of Circular-Linear Distributions
for Color Image Segmentation. International Journal of Computer Applications, 58
(9), 2012.

A. Roy, S. K. Parui, and U. Roy. SWGMM: a semi-wrapped Gaussian mixture
model for clustering of circular-linear data. Pattern Analysis and Applications,
2014.

A. Rudenko, L. Palmieri, and K. O. Arras. Predictive planning for a mobile robot
in human environments. In Workshop on AI Planning and Robotics: Challenges
and Methods (at ICRA 2017), Singapore, 2017.

J. Saarinen, H. Andreasson, T. Stoyanov, and A. J. Lilienthal. Normal distribu-
tions transform monte-carlo localization (NDT-MCL). In Int. Conf. on Intelligent
Robots and Systems (IROS), Tokyo, Japan, 2013a. IEEE.

J. Saarinen, T. Stoyanov, H. Andreasson, and A. J. Lilienthal. Fast 3D mapping
in highly dynamic environments using normal distributions transform occu-
pancy maps. In Int. Conf. on Intelligent Robots and Systems (IROS), Tokyo, Japan,
2013b. IEEE.

B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett. New support vector
algorithms. Neural Computation, 12(5):1207–1245, 2000.

204

BIBLIOGRAPHY

J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil, K. Gold-
berg, and P. Abbeel. Motion planning with sequential convex optimization and
convex collision checking. Int. Journal of Robotics Research (IJRR), 33(9):1251–
1270, 2014.

J. T. Schwartz and M. Sharir. On the piano movers’ problem I. the case of a two-
dimensional rigid polygonal body moving amidst polygonal barriers. Commu-
nications on pure and applied mathematics, 36(3):345–398, 1983.

S. Sekhavat and J. P. Laumond. Topological property for collision-free nonholo-
nomic motion planning: the case of sinusoidal inputs for chained form systems.
IEEE Trans. on Robotics and Automation (TRO), 14(5):671–680, 1998.

S. Sekhavat, F. Lamiraux, J. P. Laumond, G. Bauzil, and A. Ferrand. Motion plan-
ning and control for hilare pulling a trailer: experimental issues. In Int. Conf. on
Robotics and Automation (ICRA), Albuquerque, NM USA, 1997.

S. Sekhavat, P. Svestka, J.-P. Laumond, and M. H. Overmars. Multilevel path
planning for nonholonomic robots using semiholonomic subsystems. The in-
ternational journal of robotics research, 17(8):840–857, 1998.

B. Siciliano and O. Khatib. Springer Handbook of Robotics. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2007. ISBN 354023957X.

R. Siegwart, K. O. Arras, S. Bouabdallah, D. Burnier, G. Froidevaux, X. Greppin,
B. Jensen, A. Lorotte, L. Mayor, M. Meisser, et al. Robox at Expo. 02: A large-
scale installation of personal robots. Robotics and Autonomous Systems, 42(3):
203–222, 2003.

E. A. Sisbot, L. F. Marin-Urias, R. Alami, and T. Simeon. A human aware mobile
robot motion planner. IEEE Trans. on Robotics and Automation (TRO), 23(5):874–
883, 2007.

C. Spearman. The proof and measurement of association between two things. Int.
Journal of Epidemiology, 39(5):1137–1150, 2010.

I. A. Şucan and L. E. Kavraki. On the implementation of single-query sampling-
based motion planners. In Int. Conf. on Robotics and Automation (ICRA), Anchor-
age, AK, USA, 2010. IEEE.

I. A. Şucan, M. Moll, and L. E. Kavraki. The Open Motion Planning Library. IEEE
Robotics & Automation Magazine, 19(4):72–82, December 2012. http://ompl.
kavrakilab.org.

S. Suzuki et al. Topological structural analysis of digitized binary images by bor-
der following. Computer Vision, Graphics, and Image Processing, 30(1):32–46, 1985.

205

http://ompl.kavrakilab.org
http://ompl.kavrakilab.org

BIBLIOGRAPHY

A. Tamar, G. Thomas, T. Zhang, S. Levine, and P. Abbeel. Learning from the hind-
sight plan–episodic mpc improvement. In Int. Conf. on Robotics and Automation
(ICRA), Singapore, 2017.

E. Todorov and W. Li. A generalized iterative LQG method for locally-optimal
feedback control of constrained nonlinear stochastic systems. In Proceedings of
the 2005, American Control Conference, Portland, OR, USA, 2005.

M. Toussaint. A tutorial on Newton methods for constrained trajectory optim-
ization and relations to SLAM, Gaussian Process smoothing, optimal control,
and probabilistic inference. In J.-P. Laumond, editor, Geometric and Numerical
Foundations of Movements. Springer, 2016.

P. Trautman, J. Ma, R. M. Murray, and A. Krause. Robot navigation in dense
human crowds: Statistical models and experimental studies of human–robot
cooperation. Int. Journal of Robotics Research (IJRR), 34(3):335–356, 2015.

J. van den Berg. Iterated LQR smoothing for locally-optimal feedback control of
systems with non-linear dynamics and non-quadratic cost. In 2014 American
Control Conference, Portland, OR, USA, 2014.

V. Varricchio, B. Paden, D. Yershov, and E. Frazzoli. Efficient nearest-neighbor
search for dynamical systems with nonholonomic constraints. In Int. Workshop
on the Algorithmic Foundations of Robotics (WAFR), San Francisco, CA, USA, 2016.

D. Vasquez, B. Okal, and K. O. Arras. Inverse reinforcement learning algorithms
and features for robot navigation in crowds: An experimental comparison. In
Int. Conf. on Intelligent Robots and Systems (IROS), Chicago, IL, USA, 2014.

P. Vela, A. Vela, and G. Ogunmakin. Topologically based decision support tools
for aircraft routing. In Digital Avionics Systems Conference (DASC), Salt Lake
City, USA, 2010.

P. Vernaza, V. Narayanan, and M. Likhachev. Efficiently finding optimal winding-
constrained loops in the plane. In Proc. of the Robotics: Science and Systems (RSS),
University of Sydney, Sydney, NSW, Australia, July 2012.

S. Vijayakumar and S. Schaal. Locally weighted projection regression: Incre-
mental real time learning in high dimensional space. In Proceedings of the Seven-
teenth International Conference on Machine Learning. Morgan Kaufmann Publish-
ers Inc., 2000.

C. Voss, M. Moll, and L. E. Kavraki. A heuristic approach to finding diverse short
paths. In Int. Conf. on Robotics and Automation (ICRA), Seattle, USA, 2015.

206

BIBLIOGRAPHY

Y. Wada, M. Trincavelli, Y. Fukazawa, and H. Ishida. Collecting a Database for
Studying Gas Distribution Mapping and Gas Source Localization with Mobile
Robots. In Int. Conf. Adv. Mechatronics, Osaka, Japan, 2010.

Y. Wang, L. Wang, Y. Li, D. He, and T.-Y. Liu. A theoretical analysis of ndcg type
ranking measures. In Conference on Learning Theory, Princeton, NJ, USA, 2013.

D. Webb and J. van den Berg. Kinodynamic RRT*: Asymptotically optimal mo-
tion planning for robots with linear dynamics. In Int. Conf. on Robotics and
Automation (ICRA), Karlsruhe, Germany, 2013.

E. Weinan and E. Vanden-Eijnden. Transition-path theory and path-finding al-
gorithms for the study of rare events. Annual review of physical chemistry, 61,
2010.

P. J. Werbos. Backpropagation and neurocontrol: A review and prospectus. In
International Joint Conference on Neural Networks (IJCNN), Washington, DC, USA,
1989.

K. Yang, S. Moon, S. Yoo, J. Kang, N. Doh, H. Kim, and S. Joo. Spline-based RRT
path planner for non-holonomic robots. Journal of Intelligent and Robotic Systems,
73(1-4), 2014.

Y. Yang and O. Brock. Elastic roadmaps: Globally task-consistent motion for
autonomous mobile manipulation in dynamic environments. In Proc. of the
Robotics: Science and Systems (RSS), Philadelphia, PA, USA, 2006.

P. Yap. Grid-based path-finding. In Conference of the Canadian Society for Computa-
tional Studies of Intelligence, Calgary, Canada, 2002.

J. Y. Yen. Finding the k shortest loopless paths in a network. Management Science,
17(11), 1971.

D. S. Yershov and S. M. LaValle. Simplicial Dijkstra and A* algorithms for optimal
feedback planning. In Int. Conf. on Intelligent Robots and Systems (IROS), San
Francisco, CA, USA, 2011.

M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith, C. M. Dellin,
J. A. Bagnell, and S. S. Srinivasa. CHOMP: Covariant hamiltonian optimization
for motion planning. Int. Journal of Robotics Research (IJRR), 32(9-10):1164–1193,
2013.

207

	Abstract
	Zusammenfassung
	Acknowledgements
	Introduction
	Problem statement
	Scientific Contributions
	Publications
	Peer-Reviewed Journal Articles
	Peer-Reviewed Conference Proceedings
	Peer-Reviewed Workshop Proceedings

	Collaborations
	Outline and Notation

	Foundations
	Introduction
	The Configuration Space
	Any-Angle Path Planning on Occupancy Grids
	Theta*

	Discrete Search Approaches with Motion Primitives
	Sampling-based Motion Planning
	Rapidly Exploring Random Trees
	Probabilistic completeness of RRT

	Optimal Sampling-based Motion Planning
	RRT*
	Further Optimal Algorithms

	Trajectory Optimization Methods
	Quantify Smoothness
	Smoothness Metrics
	Behavior of the Metrics

	Summary

	POSQ: A Novel Extend Function for RRT*
	Introduction
	Extend functions in Sampling-based Motion Planners
	Extend or Steer Function
	Motion primitives
	Solving the Two-Point Boundary Value Problem

	The Approach: POSQ
	Our kinematic control law
	Local Stability
	Asymptotically Convergence

	Topological Property

	Experiments
	Metrics
	Test Environments

	Results and Discussion
	Conclusions

	Distance Pseudo-Metric Learning for RRT Motion Planners with Constant-Time Inference
	Introduction
	Related Work
	Our Approach
	The distance metric
	Features
	Learning

	Experiments and Results
	Regression and Ranking Performance
	Regression and Ranking Results
	Planning Performance
	Planning Performance Results
	State Space Coverage

	Conclusions

	Theta*-RRT: Any-angle Path Biasing for RRT Nonholonomic Motion Planning
	Introduction
	Sampling Measure
	Related Work
	Combining Any-Angle Search with RRT
	Geodesic Distance for Nonholonomic Wheeled Robots
	Our Technique: Theta*-RRT

	Experimental Setup
	Nonholonomic Systems
	Environments
	Performance Metrics
	Theta*-RRT Parameters

	Experimental Results
	Probabilistic Completeness of Theta*-RRT
	Conclusions

	Kinodynamic Motion Planning on Gaussian Mixture Fields
	Introduction
	Related work
	The CLiFF-Map Model
	Our Approach
	Extended Upstream Criterion
	CLiFF-RRT*
	Steer Function: Augmented POSQ
	Algorithm Properties

	Experiments
	Environments
	Metrics

	Results And Discussion
	Conclusion

	A Fast Random Walk Approach to Find Diverse Paths for Robot Navigation
	Introduction
	Related Work
	A Random Walk Approach to Find Diverse Paths
	Homotopy Classes
	Navigation Graph
	Randomized Homotopy Classes Finder (RHCF)
	Probabilistic Completeness of RHCF

	Experimental Setup
	Simulated Environments
	Voronoi Diagram
	Performance Metrics
	RHCF Parameters
	Voss's Algorithm
	Kuderer's Algorithm

	Results and Discussion
	Empirical Results
	Application to Social Navigation

	Conclusions

	A Socially-Aware Motion Planner for Highly Crowded Environments
	Introduction
	The SPENCER Project
	The Demo Environment And Its Challenges
	The Spencer Robot And Its Hardware
	Software Architecture Of The Spencer Robot

	Socially-Aware Motion Planner: Combining Efficiency and Social Norms
	The Architecture
	Modeling The Environment With Cost Maps
	Planning with Multi-Hypothesis
	Deciding From The Hypotheses

	Socially-Aware Elastic Band
	Following The Path Hypothesis
	Adapting The Path To The Dynamic Environment
	Socially-Aware Motion Generation

	Final Demo At Schiphol
	Conclusions

	Conclusions
	Summary
	Discussion
	Recommendations For Future Work

	Appendices
	Notions on Nonholonomic systems
	Nonholonomic control systems
	Controllability and Reachable Sets
	Reachability
	Sub-Riemannian distance and ball
	Regular and singular points
	Privileged coordinates
	Ball-box theorem

	Topological property
	Sufficient condition to respect the Topological Property

	Dynamic POSQ
	The Control Law

	Robot Platforms
	Spencer
	Daryl

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

