
Motion Imitation and Generation for
Mobile Robotic Systems

Felix Burget

Technische Fakultät
Albert-Ludwigs-Universität Freiburg

Dissertation zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

Betreuer: Prof. Dr. Wolfram Burgard





Motion Imitation and Generation for
Mobile Robotic Systems

Felix Burget

Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften
Technische Fakultät, Albert-Ludwigs-Universität Freiburg im Breisgau

Dekan Prof. Dr. Oliver Paul
Erstgutachter Prof. Dr. Wolfram Burgard

Albert-Ludwigs-Universität Freiburg
Zweitgutachter Prof. Dr. Maren Bennewitz

Rheinische Friedrich-Wilhelms-Universität Bonn
Tag der Disputation 10. Juli 2018





Zusammenfassung
Im industriellen Umfeld gelten stationäre Robotersysteme als zuverlässige, präzise und hoch-
produktive Maschinen, die die aufgetragenen Arbeiten mit konstanter Qualität ausführen.
Typischerweise liegt in diesem Einsatzgebiet eine strukturierte Umgebung vor. Außerdem ist
der Arbeitsbereich des Roboters genau definiert und von dem Arbeitsraum der menschlichen
Mitarbeiter abgetrennt. Darüber hinaus sind die Aufgaben, die dem Roboter erteilt werden,
üblicherweise vorab definiert.

Mit der Einführung mobiler Roboterplattformen hat sich dieses Bild eines Roboterstereo-
typs in den letzten Jahrzehnten zunehmend verändert. Mobilität hat hier zu einer enormen
Zunahme an potenziellen Anwendungen für Robotersysteme geführt, die über den Bereich
der industriellen Automatisierung hinausgehen. In Folge dessen ist deren Einsatz heutzutage
auch im häuslichen Bereich und in Katastrophenschutzszenarien denkbar geworden. Die
Kombination mobiler Plattformen mit klassischen industriellen Roboterarmen führte zu agilen
Robotereinheiten, die sowohl Navigations- als auch Manipulationsfähigkeiten besitzen und in
der Robotik als sogenannte mobile Manipulatoren bezeichnet werden. Die durch den mobilen
Unterbau realisierte Erweiterung des Arbeitsbereichs des Roboterarms führte zugleich zu
gesteigerten Erwartungen die an diese Systeme gestellt werden. So sollen diese heute in vielen
verschiedenen Bereichen arbeiten können, in anspruchsvollen Umgebungen zurecht kommen
und flexibel bezüglich der an sie gestellten Aufgaben sein.

Die Nutzung der besonderen Fähigkeit dieser Roboterplattformen, in der Umgebung na-
vigieren und simultan Objekte manipulieren zu können bringt jedoch auch zahlreiche Her-
ausforderungen mit sich. Die erste Schwierigkeit besteht darin, dass diese Systeme eine hohe
Anzahl von Freiheitsgraden besitzen, was die Erstellung effizienter Bewegungsplanungs-
und Regelungsstrategien erheblich komplexer macht. Klassische Ansätze aus der Literatur
folgen deshalb häufig der Strategie, komplexe mobile Manipulationsaufgaben in einfachere
Teilaufgaben, die lediglich Navigation mit der mobilen Basis oder Manipulation mit dem
Roboterarm erfordern zu zerlegen. Anschließend werden diese Teilprobleme sequentiell und
unabhängig voneinander gelöst. Obwohl diese Divide-and-Conquer Strategie für viele An-
wendungen zulässig ist, wird dieses Vorgehen in keiner Weise dem Potential solcher agilen
Robotersysteme gerecht. Zudem gestatten diese Ansätze nicht, Aufgaben auszuführen, bei
denen eine koordinierte Bewegung von mobiler Basis und Roboterarm zwingend erforderlich
ist. Ein weiterer wichtiger Aspekt in Bezug auf mobile Manipulationsaufgaben sind Anzahl
und Art der Bedingungen, die der Bewegung des Roboters auferlegt werden. Letztere können
weiter in Bedingungen unterteilt werden, die mit der kinematischen Struktur des Roboters
zusammenhängen und in solche, die von den zu manipulierenden Objekten auferlegt werden.
Neben allgemeinen kinematischen Randbedingungen wie Gelenkgrenzen und Kollisionsver-
meidung gibt es weitere plattformspezifische Bedingungen, die sich auf das Bewegungsmodell
der mobilen Basis beziehen. Radroboterplattformen, zum Beispiel, weisen eine kinematische
Struktur auf, deren Bewegung entweder durch ein Omnidirektional-, Differentialantrieb- oder
Achsschenkellenkung-Bewegungsmodell beschrieben werden kann. Robotern mit omnidirek-



vi

tionalen Navigationsfähigkeiten ist es möglich, sich jederzeit in beliebige Richtungen zu
bewegen. Bei letzteren genannten Modellen hingegen, ist eine instantane Bewegung in eine
orthogonal zur Sagittalachse des Roboters verlaufenden Richtung nicht möglich. Humanoide
Roboterplattformen besitzen naturgemäß omnidirektionale Mobilität, für deren Navigation
jedoch besondere Bedingungen gelten. Um zu laufen, muss bei diesen Robotern die Schleife,
die durch die kinematischen Ketten der Beine mit dem Untergrund gebildet werden wiederholt
geschlossen werden. Außerdem muss der Körpermassenschwerpunkt kontinuierlich gere-
gelt werden, um zu vermeiden, dass der Roboter die Balance verliert und umfällt. Weitere
Bedingungen werden aktiv, sobald der Roboter mit einem zu manipulierenden Objekt in
Kontakt kommt. In diesem Fall müssen nicht nur Kollisionen zwischen dem Objekt, dem
Roboter und der Umgebung vermieden werden, sondern auch aufgabenbezogene Bedingungen
erfüllt werden. Viele Beispiele für mobile Manipulationsaufgaben, die solche Bedingungen
beinhalten sind im Bereich der Objektzustellung zu finden. Die Lieferung eines mit Flüssigkeit
gefüllten Gefäßes könnte zum Beispiel erfordern, dass das Objekt während des Transports
stets aufrecht gehalten wird. Das Ziehen eines Werkzeugwagens von einem Ort zum ande-
ren würde zusätzlich zu einer Einschränkung der Orientierung erfordern, dass der Greifer
des Roboters auf Höhe des Griffs des Transportwagens verbleibt. Andere Beispiele ergeben
sich aus Manipulationaufgaben für artikulierte Objekte. Das Öffnen von Schubladen, Türen
oder Ventilen setzt voraus, dass der Greifer des Roboters einer linearen Bahn bzw. einem
Kreisbogen um die Drehachse des Objekts folgt.

In der Forschung wurden bereits einige der oben genannten Herausforderungen behandelt
und bedeutende Fortschritte in den Bereichen Roboternavigation und -manipulation erzielt.
Trotzdem verfolgten bisher nur wenige Forschungsarbeiten das Ziel, das mit den Fähigkeiten
moderner mobiler Manipulatoren einhergehende Potential umfassend auszuschöpfen. Für
die nächste Generation mobiler Robotersysteme ist zu erwarten, dass Navigation- und Mani-
pulationaufgaben immer mehr miteinander verschmelzen und somit kinematische als auch
aufgabenbezogene Bedingungen in der Bewegungsgenerierung gleichzeitig berücksichtigt
werden müssen. Der Hauptbeitrag der vorliegenden Arbeit ist es, mobile Robotersysteme
mit Fertigkeiten auszustatten, die es ihnen möglich machen, komplexe mobile Manipula-
tionsaufgaben durchzuführen. Hierbei betrachten wir verschiedene Stufen der Autonomie
für den Roboter, beginnend mit der Imitation menschlicher Bewegung hin zur autonomen
Bewegungsplanung und -ausführung.

Der Mensch ist aus technischer Sicht ein hervorragendes Beispiel eines mobilen Systems,
das in der Lage ist eine große Anzahl von Freiheitsgraden zu kontrollieren und gleichzei-
tig die Bewegungseinschränkungen, die sich aus Kontakt mit der Umgebung ergeben zu
berücksichtigten. Darüber hinaus besitzt der Mensch ein hohes Maß an Intelligenz bezüglich
der Interpretation visueller Informationen und des Prozesses der Entscheidungsfindung. Die-
se Fähigkeiten machen den Wunsch den Menschen als Quelle für die Regelung komplexer
künstlicher kinematischer Strukturen miteinzubeziehen offensichtlich. Im Verlaufe des letzten
Jahrzehnts sind mehrere erschwingliche, leichte und präzise Bewegungserfassungssysteme
auf dem Markt verfügbar geworden, die eine Aufnahme und Untersuchung menschlichen
Bewegungsverhaltens sowie die Nutzung von Bewegungsdaten für Roboterapplikationen
ermöglichen. Beispiele für solche Systeme sind mechanische Exoskelette, auf Interialsensoren
basierende Ganzkörperbewegungserfassungsanzüge und kamerabasierte Bewegungsverfol-
gungssysteme. Für die Weiterverarbeitung der aus Bewegungsdemonstrationen gewonnen
Daten werden typischerweise verschiedene Ansätze verfolgt. Eine erste Möglichkeit besteht



vii

darin zunächst Daten mehrerer Demonstrationen zu sammeln und anschließend umfassend zu
analysieren um Rückschlüsse auf die zugrundeliegenden Prinzipien menschlicher Bewegung
zu ziehen. Alternativ können diese Daten auch genutzt werden, um ein Bewegungsmodell
einer Aktion für den Roboter zu lernen. Andere Ansätze verarbeiten die Bewegungsdaten in
Echtzeit, um Roboterplattformen direkt anzusteuern. Während die erstgenannten Verfahren
darauf abzielen, Roboter mit der Fähigkeit auszustatten, autonom menschenähnliche Bewe-
gungen zu erzeugen, bieten letztere den Vorteil, dass der menschliche Proband fortlaufend
Einfluss auf die Bewegung des Roboters nehmen kann. Somit können in jeder Situation
angemessene Bewegungskommandos vom Menschen vorgeben werden, was dem Roboter
ein hohes Maß an Anpassungsfähigkeit verleiht. Des Weiteren kann das Bild einer auf der
Roboterplattform montierten Kamera kontinuierlich zu dem Probanden übertragen werden,
um ihm eine Interpretation der aktuellen Lage zu ermöglichen. So kann dieser anhand der
visuellen Informationen zum Beispiel den aktuellen Standort des Roboters bestimmen oder zu
greifende Objekte auffinden. Zusätzlich ermöglicht dieser Ansatz eine dynamische Anpassung
der Roboterbewegung, falls dies aufgrund äußerer Einflüsse erforderlich ist. Auf der anderen
Seite gehen mit diesen imitationsbasierten Ansätzen auch eine Menge von Herausforderungen
und Einschränkungen einher. Unterscheidet sich zum Beispiel die kinematische Struktur oder
Größe des Menschen erheblich von der des Roboters ist eine Abbildung der menschlichen
Bewegung auf den Roboter deutlich schwieriger. Wenn die Imitation noch dazu in Echtzeit
stattfinden soll ist außerdem nur ein sehr begrenztes Zeitfenster für die Ausführung von
Berechnungen verfügbar. Generell gibt es jedoch auch viele Anwendungen, bei denen eine
auf dem Menschen basierte Regelung der Roboterbewegung unerwünscht ist. Insbesondere ist
dies bei Roboter-Assistenzsystemen der Fall, die als Museumsführer, Haushaltsroboter oder
für die Altenpflege eingesetzt werden sollen. In anderen Anwendungsszenarien, bei denen
die Kommunikation zwischen Bewegungserfassungssystem und Roboter eine hohe Latenz
aufweist oder gänzlich unmöglich ist, sind imitationsbasierte Methoden nur schwierig oder
gar nicht umsetzbar. Schwierigkeiten dieser Art treten typischerweise häufig bei dem Einsatz
von Roboterplattformen in Katastrophenhilfeszenarien auf.

All diese Szenarien haben gemein, dass sich der Roboter nicht länger auf menschliches
Know-How stützen kann und somit viele rudimentäre Fähigkeiten selbst erlernen muss. Eine
Grundvoraussetzung, um autonom handeln zu können ist dabei die Fähigkeit seine eigene
Position und Orientierung in der Umgebung zu bestimmen. Des Weiteren muss er in der Lage
sein, selbständig den Ort zu bestimmen an den er sich begeben muss um eine bestimmte
Objektmanipulationsaufgabe vorzubereiten oder erfolgreich abzuschließen. Um dieses Naviga-
tionsziel ausgehend von seiner aktuellen Position zu erreichen, muss wiederum ein mit seinem
Bewegungsmodell kompatibler Pfad geplant werden. Außerdem muss der Roboter darauf
achten, dass die von einem Objekt in seinem Greifer resultierenden Bewegungsbedingungen
entlang des geplanten Pfades eingehalten werden. Durch ungenaue Bewegungsausführung
kann es zudem zu Abweichungen vom geplanten Weg kommen, die zu einer Verfehlung des
Ziels oder im schlimmsten Fall zu einer Kollision mit anderen Objekten in der Umgebung
führen können. Aus diesem Grund muss der Roboter seine Pose anhand von Sensordaten
kontinuierlich schätzen und seine Bewegung gegebenenfalls anpassen um eine sichere und
präzise Ankunft am gewünschten Zielort gewährleisten zu können.

Anhand der beschriebenen Herausforderungen wurden folgenden Fragestellungen aus dem
Bereich der Bewegungsimitation und -generierung abgeleitet und im Rahmen der vorliegenden
Arbeit beantwortet:



viii

• Wie können menschliche Ganzkörperbewegungen in Echtzeit von einem humanoiden
Roboter imitiert werden?

• Wie können motorische Defizite von Menschen mit neurologischen Erkrankungen,
z.B. der Parkinson-Krankheit, unter Verwendung von Bewegungsimitationstechniken
quantifiziert werden?

• Wie positionieren sich Menschen relativ zu einem Objekt in Vorbereitung einer Mani-
pulationsaktion und wie kann diese Strategie auf mobile Robotersysteme übertragen
werden?

• Wie können Bewegungen mobiler Roboter für die Umsetzung komplexer Greif- und
Transportaufgaben, unter Berücksichtigung von Kollisionsvermeidung sowie von durch
Objekte auferlegte geometrische Bewegungsbedingungen, effizient geplant werden?

• Was sind die Anforderungen und Herausforderungen in der Entwicklung eines Roboter-
Assistenzsystems für Nutzer die lediglich über eingeschränkte Kommunikationsfähig-
keiten verfügen?

Zunächst stellen wir in dieser Arbeit einen Ansatz vor, der es humanoiden Robotern
ermöglicht, menschliche Ganzkörperbewegungen in Echtzeit zu imitieren. Im Gegensatz
zu bereits existierenden Ansätzen aus der Literatur berücksichtigt unser Ansatz dabei nicht
nur Bewegungen bei denen der Roboter mit beiden Füßen auf dem Boden verbleiben kann,
sondern auch die Imitation von Sequenzen die mehrere Standfußwechsel sowie längere Zeitpe-
rioden, in denen auf einem Bein balanciert werden muss, beinhalten. Um die Bewegung eines
menschlichen Probanden aufzunehmen, nutzen wir einen Ganzkörperanzug, der aus mehreren
Interialsensoren besteht und eine drahtlose Übertragung von Bewegungsdaten anbietet. Des
Weiteren greifen wir auf eine kompakte Repräsentation des menschlichen Bewegungsmo-
dells zurück um die Echtzeitfähigkeit unseres Systems zu gewährleisten. Jeder von dem
Bewegungserfassungssystem zu einem bestimmten Zeitpunkt aufgenommene Datenpunkt
entspricht hierbei einer Ganzkörperpose des Menschen und wird zur Imitation wie folgt wei-
terverarbeitet. In einem ersten Schritt wird die aufgenommene Pose unter Berücksichtigung
der Größenunterschiede zwischen den kinematischen Modellen auf den humanoiden Ro-
boter abgebildet. Anschließend wird die abgebildete Körperhaltung in eine statisch stabile
Ganzkörperkonfiguration für den Roboter überführt. Dieser Schritt ist erforderlich, um dem
Unterschied der beiden Modelle hinsichtlich ihrer Massenverteilung Rechnung zu tragen.
Darüber hinaus muss die Bewegung des Robotermassenschwerpunktes aktiv geregelt werden,
um eine sichere Transition zwischen Posen mit ein- und zwei auf dem Boden aufliegenden
Fußflächen sicher zu stellen. Ein Schwachstelle imitationsbasierter Ansätze ist jedoch, dass die
Qualität der vom Menschen vorgegebenen Bewegung nicht in Frage gestellt wird. Somit haben
suboptimale menschliche Bewegungsmuster ein entsprechend schlechtes Bewegungsverhalten
des Roboters zur Folge.

Um diese Problematik zu behandeln stellen wir als nächstes einen Ansatz vor, der dem
menschlichen Bewegungsverhalten zugrundeliegende Prinzipien untersucht und quantitativ
evaluiert. Dabei stützen wir uns wie zuvor auf Bewegungsdaten von menschlichen Aufgaben-
demonstrationen, die mittels eines Ganzkörperanzugs aufgezeichnet wurden. Die Grundlage
für die vorgestellte Untersuchung bildet eine Handkoordinationsaufgabe, die ausschließ-
lich Bewegungen des Oberkörpers erfordert. Als Referenzgruppe betrachten wir Probanden,



ix

deren Krankheitsvorgeschichte nachweislich keinerlei Erkrankungen beinhaltet, die das Bewe-
gungsverhalten beeinflussen. Die Vergleichsgruppe hingegen wird durch Parkinson-Patienten
(PD-Patienten) repräsentiert, deren neurologische Beeinträchtigungen bekanntermaßen mit
motorischen Bewegungsdefiziten einhergehen. Ziel unseres Ansatzes ist es, die aufgenomme-
nen Bewegungen quantitativ auszuwerten und daraus gruppenspezifische Bewegungsstrategien
abzuleiten. Zur Umsetzung verfolgen wir einen zweistufigen Ansatz. Zuerst übertragen wir
die aufgenommenen Bewegungen auf ein vereinfachtes virtuelles kinematisches Modell des
menschlichen Oberkörpers. Danach wird dieses Modell verwendet, um mittels eines Jaco-
bischen Regelalgorithmus die vorgegebene menschliche Bewegung zu reproduzieren. Zur
Parametrisierung des Reglers wird hierbei eine Gewichtung der individuellen Robotergelenk-
bewegungen eingesetzt. Zur Bestimmung der zur Reproduktion der Bewegung erforderlichen
Gelenkgewichte wurde ein iteratives Lernverfahren entwickelt, welches die aufgenomme-
nen menschlichen Gelenktrajektorien als Referenz verwendet. Abschließend werden die
Datensätze gelernter Gelenkgewichte für die beiden Gruppen statistisch ausgewertet und mit
ihnen assoziierte Bewegungsstrategien abgeleitet.

Als nächstes stellen wir einen Ansatz vor, der es mobilen Roboterplattformen ermöglicht,
eine optimale Standpose zur Vorbereitung oder Ausführung einer nachfolgenden Manipu-
lationsaufgabe autonom auszuwählen. Um bei der Auswahl einer angemessenen Standpose
nicht weiter auf den Menschen angewiesen zu sein, beschreiben wir in dieser Arbeit die Greif-
und Manipulationsfähigkeiten des Roboters durch eine diskretisierte Repräsentation seines
Arbeitsbereichs. Die damit assoziierte Datenstruktur, die als Erreichbarkeitskarte bezeichnet
wird, entspricht dabei einem räumlichen Gitter, das aus gleich großen Arbeitsraumzellen
besteht und die Fähigkeit des Roboters beschreibt, bestimmte Greifziele in seiner unmittelba-
ren Umgebung zu erreichen. Für die Vorbereitung oder Ausführung von Manipulations- und
Greifaktionen ist jedoch exakt die inverse Repräsentation gefragt, d.h. das Greifziel ist gegeben
und eine dafür angemessene Standpose soll ermittelt werden. Um diese Repräsentation zu
erhalten, erzeugen wir in unserem Ansatz sogenannte inverse Erreichbarkeitskarten, deren
Datenstruktur potenzielle Standposen der mobilen Basis relativ zu einem gegebenen Greifziel
beschreibt. Anschließend können die in der Karte gespeicherten Qualitätsinformationen ge-
nutzt werden, um eine bestmögliche Standpose aus der Menge potenzieller Standposen zu
identifizieren.

Des Weiteren stellen wir in dieser Arbeit ein probabilistisches Bewegungsplanungssystem
namens Bidirectional Informed RRT* (BI2RRT*) vor, das zur Erzeugung optimaler Pfade für
mobile Manipulationsaufgaben dient. Dieses baut auf dem bereits existierenden Informed-
RRT* Planungsalgorithmus auf und erweitert diesen um weitere Eigenschaften. So ist es
mit BI2RRT* möglich eine bidirektionale Pfadplanung durchzuführen. Außerdem können
beliebige, von Objekten im Greifer auferlegte, geometrische Bewegungseinschränkungen
während der Planung berücksichtigt werden. Ist eine Start- und Zielkonfiguration gegeben,
führt unser Planungssystem zunächst eine gleichmäßige Abtastung des Konfigurationsraums
durch um neue Konfigurationsstichproben zu generieren. Sobald ein erster, jedoch subopti-
maler, Lösungspfad gefunden wurde wird auf eine intelligentere Abtaststrategie gewechselt.
Durch diese wird in der verbleibenden Planungszeit eine deutlich höhere Konvergenzrate in
Richtung der optimalen Lösung erzielt. Geometrische Bewegungseinschränkungen werden
zudem durch die Anwendung einer Projektionsmethode auf die genommenen Konfigurations-
stichproben während der Planung automatisch behandelt. Eine Evaluierung unseres Ansatzes
anhand unterschiedlicher Planungsszenarien ergab, dass unser System in der Lage ist, schnell



x

und zuverlässig qualitativ hochwertige Lösungspfade für komplexe Manipulationsaufgaben
zu generieren.

Zuletzt wird in dieser Arbeit ein mobiles Roboter-Assistenzsystem vorgestellt, das auch
von Menschen mit stark eingeschränkten Bewegungs- und Kommunikationsmöglichkeiten
genutzt werden kann. Das Gesamtsystem besteht hierbei aus mehreren interagierenden Kom-
ponenten. Dazu gehören eine nichtinvasive Aufzeichnung und Decodierung neuronaler Signa-
le, eine semantische Aufgabenplanung, eine Bewegungs- und Manipulationsplanung sowie
Umgebungswahrnehmungskomponente. Für die Aufnahme neuronaler Signale wird eine
Elektroenzephalographie (EEG) -Kappe verwendet. Zur Decodierung der Signale folgen wir
einem auf künstlichen neuronalen Netzwerken basierenden Ansatz. Die aus den EEG-Signalen
decodierten Informationen werden anschließend zur Steuerung einer grafischen Benutzer-
schnittstelle (GUI) verwendet, die von einem semantischen Planer zur Verfügung gestellt
wird. Die Benutzeroberfläche wiederum zeigt das Spektrum an möglichen Roboteraktionen an,
welches kontinuierlich anhand von Informationen, die von der Roboterplattform oder einem
Kamerasystem geliefert werden aktualisiert wird. Sobald der Benutzer mittels der GUI ein
gewünschtes Ziel ausgewählt hat, zum Beispiel ”bringe mir ein Glas Wasser”, ermittelt der
semantische Planungsalgorithmus die für die Umsetzung erforderliche Sequenz von Robo-
teraktionen. Anschließend werden die Aktionen sequentiell durch Bewegungsplanungs- und
Ausführungstechniken in der realen Welt umgesetzt.

Alle in dieser Arbeit vorgestellten Verfahren wurden praktisch implementiert und sorgfältig
evaluiert. Zudem wurde ihre Anwendbarkeit neben Experimenten in Simulation durch den
Einsatz auf realen Roboterplattformen belegt. Zusammenfassend stellt die vorliegende Ar-
beit somit einen wichtigen Beitrag dar, um mobile Roboter mit der Fähigkeit auszustatten,
komplexe Bewegungen imitieren sowie autonom generieren zu können.



Abstract
Mobile manipulators are highly dexterous robotic units, unifying the navigation capabilities of
mobile platforms with the manipulation capabilities of classical industrial robotic arms. Thus,
they are nowadays expected to be able to operate in versatile domains, cope with challenging
environments and to be flexible regarding the tasks assigned to them. Establishing efficient
motion planning and control strategies for such systems, on the other hand, is particularly
challenging due to their high number of degrees of freedom and the multitude of task and
platform related constraints involved.

The core capabilities required by a mobile robotic system to successfully complete a mobile
manipulation task are to be able to determine where it needs to go in the environment, how to
get there without colliding with obstacles and to ensure that its motions are compliant with
possible task-related constraints. Moreover, it needs to provide an appropriate interface to
permit human operators to specify what it needs to do. In this context, we present in this
thesis several novel contributions to the field of motion imitation and generation for mobile
robotic systems. We hereby consider different levels of autonomy for the robot, initially
relying on a human operator to provide the knowledge required to complete a task successfully
towards a robotic service assistant capable of autonomously planning and executing mobile
manipulation actions. Moreover, we incorporate motion imitation techniques to compare
motion demonstrations of healthy subjects with the ones of patients exhibiting motor control
deficits. Motion imitation and generation are both valuable approaches, as each of them offers
its own individual advantages. Therefore, preference to the appropriate technique should be
given depending on the intended field of application.

At the beginning, we introduce an approach that permits humanoid robots to imitate whole-
body motions captured from a human operator in real time. Hereby, the robot is able to
perform motions involving extended periods of time in which the robot needs to balance on a
single leg. For our investigation on the underlying principles of human motor control behavior,
we rely on motion capture data recorded from human demonstrations. More specifically, we
quantitatively evaluate and compare the motion control strategies adopted by two groups, i.e.,
healthy subjects and Parkinson’s disease patients. Additionally, we develop an approach that
lets mobile robotic platforms autonomously select an optimal stance pose for preparation
or execution of a subsequent mobile manipulation task by adopting the concept of inverse
reachability maps. In the following, we present a probabilistic motion planning framework
for generating asymptotically optimal paths for mobile manipulation tasks. This framework
extends previous planning approaches in the field towards bidirectional search and satisfaction
of arbitrary geometric end-effector task constraints. Finally, we present a mobile robotic
service assistant framework composed of several interdisciplinary components that permits
users with limited communication skills to express their desire using only thoughts.

All techniques developed in this thesis were practically implemented and thoroughly evalu-
ated. The overall contribution of the present work is to equip mobile robotic platforms with
the ability to imitate complex whole-body motions as well as to generate them autonomously.





Acknowledgments
Pursuing a PhD requires a high level of stamina, which over the years is impossible to maintain
without the support and encouragement by many people. In the following, I would like to
thank all those people who have contributed to the positive development of this journey.

First of all, I would like to thank my advisers Wolfram Burgard and Maren Bennewitz
for guiding my scientific work and providing me with many valuable suggestions along
the way. During my work in the Humanoid Robots Lab and the Autonomous Intelligent
System Lab I learned a lot from their experience not only regarding scientific matters, but
also concerning the presentation of own research findings on international conferences and
workshops. Furthermore, they gave me the unique opportunity to gain insights into various
research fields by getting involved into several interdisciplinary projects within the BrainLinks-
BrainTools Cluster of Excellence.

My thank also goes to the former and current members of the Autonomous Intelligent
System Lab and my former colleagues at the Humanoid Robots Lab. Due to the great
atmosphere and the many fruitful discussions it was always a pleasure to work with you. Here,
I would particularly like to mention my office mates Tim Welschehold, Benjamin Suger, Jörg
Röwekämper, Tayyab Naseer, Ayush Dewan, Andreas Eitel, Oier Mees, Armin Hornung and
Daniel Meier.

For their efforts and contributions in collaborative research projects, I furthermore thank
my co-authors Daniel Kuhner, Johannes Aldinger, Lukas Fiederer, Martin Völker, Robin
Schirrmeister, Chau Do, Joschka Bödecker, Bernhard Nebel and Tonio Ball.

I also would like to thank Tobias Schubert, Christian Dornhege, Chau Do, Daniel Kuhner
and Tim Welschehold for proof-reading earlier versions of this document and providing
valuable feedback.

In addition, I would like to appreciate the assistance of Susanne Bourjaillat and Michael
Keser in the course of technical and administrative issues.

My deepest gratitude goes to my friends and family for supporting me in all decisions.
Most of all, I would like to thank Britta, Robin and Malia for their consideration, support and
love throughout the years.

Last but not least, I also would like to gratefully acknowledge that the work on this
thesis has been generously supported by the German Research Foundation (DFG) within the
BrainLinks-BrainTools Cluster of Excellence (grant number EXC 1086).





Contents

1 Introduction 1
1.1 Key Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Collaborations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Real-time Imitation of Human Whole-Body Motions 9
2.1 Whole-Body Motion Capture . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Motion Capture Suit . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Human Motion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Human to Humanoid Posture Mapping . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Reference Posture . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Posture Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Humanoid Posture Stabilization . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Controlling the Center of Mass . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Controlling the Support Mode . . . . . . . . . . . . . . . . . . . . . 17
2.4.3 Endeffector Retargeting . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Posture Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7.1 Similarity to Human Motion . . . . . . . . . . . . . . . . . . . . . . 21
2.7.2 Ensuring Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7.3 Computational Costs . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7.4 Teleoperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Learning Motor Control Parameters for Motion Strategy Analysis 29
3.1 Motion Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.2 Motor Control Task . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Motion Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.1 Artificial Model of the Human Upper Body . . . . . . . . . . . . . . 32
3.2.2 Motion Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Learning Motor Control Parameters . . . . . . . . . . . . . . . . . . . . . . 33
3.3.1 End-Effector Trajectory Tracking . . . . . . . . . . . . . . . . . . . 34
3.3.2 Adaptive End-Effector Trajectory Tracking . . . . . . . . . . . . . . 35



xvi CONTENTS

3.3.3 Joint Weights Learning . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.2 Trajectory Tracking Performance . . . . . . . . . . . . . . . . . . . 39
3.5.3 Motion Strategy Analysis . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Stance Pose Selection by Inverse Reachability Maps 45
4.1 Workspace Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Generation of Forward Reachability Maps . . . . . . . . . . . . . . . . . . . 47

4.2.1 Configuration-Space Sampling . . . . . . . . . . . . . . . . . . . . . 48
4.2.2 Quality Information on Configurations . . . . . . . . . . . . . . . . . 48

4.3 Kinematic Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.1 Collision Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.2 Kinematic Loop-Closure . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.3 Static Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Reachability Maps for Whole-Body Humanoids . . . . . . . . . . . . . . . . 55
4.4.1 Building Whole-Body Reachability Maps . . . . . . . . . . . . . . . 56
4.4.2 Double Support Generation . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Reachability Maps for Mobile Manipulators . . . . . . . . . . . . . . . . . . 57
4.6 Reachability Map Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.7 Inverse Reachability Map based Stance Pose Selection . . . . . . . . . . . . 60
4.8 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.9 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.9.1 Selecting a Stance Pose for Grasping . . . . . . . . . . . . . . . . . 62
4.9.2 IRM vs. RM based Stance Pose Selection . . . . . . . . . . . . . . . 63

4.10 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Sampling-Based Motion Planning for Task-Constrained Mobile Manipulation 67
5.1 Rapidly-Exploring Random Trees . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 Asymptotically-Optimal Motion Planning . . . . . . . . . . . . . . . 70
5.1.2 Task-Constrained Motion Planning . . . . . . . . . . . . . . . . . . 71

5.2 Motion Planning With Bidirectional Informed RRT* . . . . . . . . . . . . . 72
5.2.1 The BI2RRT* Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.2 Tree Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.3 Informed Heuristic for Mobile Manipulators . . . . . . . . . . . . . 76

5.3 Sample Projection According to Task Constraints . . . . . . . . . . . . . . . 77
5.3.1 Definition of Task Constraints . . . . . . . . . . . . . . . . . . . . . 77
5.3.2 Satisfaction of Task Constraints . . . . . . . . . . . . . . . . . . . . 78

5.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5.1 Planning Collision-Free Motions . . . . . . . . . . . . . . . . . . . . 81
5.5.2 Transportation of Liquids . . . . . . . . . . . . . . . . . . . . . . . . 81



CONTENTS xvii

5.5.3 Pulling a Cart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 A Robotic Service Assistant for Users with Limited Communication Skills 87
6.1 Online Decoding of Neuronal Signals . . . . . . . . . . . . . . . . . . . . . 88
6.2 High-Level Goal Formulation Planning . . . . . . . . . . . . . . . . . . . . 90

6.2.1 Domain-Independent Planning . . . . . . . . . . . . . . . . . . . . . 91
6.2.2 Goal Formulation with References . . . . . . . . . . . . . . . . . . . 91
6.2.3 Adaptive Graphical Planner Interface . . . . . . . . . . . . . . . . . 92

6.3 Dynamic Knowledge Base . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.4 Robot Motion Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4.1 Navigation Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.4.2 Manipulation Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.6.1 Online Decoding of Neuronal Signals . . . . . . . . . . . . . . . . . 99
6.6.2 Fetch and Carry Task . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.6.3 Drinking Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.6.4 Goal Formulation Assistant . . . . . . . . . . . . . . . . . . . . . . 105

6.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Conclusions 117
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A Mobile Robot Platforms 123
A.1 The Humanoid Robot NAO . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.2 The Mobile Manipulator OmniRob . . . . . . . . . . . . . . . . . . . . . . . 124

List of Figures 127

List of Tables 129

List of Algorithms 131

Bibliography 133





Chapter 1

Introduction

In industrial settings, stationary robotic systems are regarded as reliable, accurate and highly
productive machinery that perform the tasks given with constant quality. In this scope, the
workspace of the robot is well defined and isolated from human coworkers. The environment
is assumed to be structured and the task given to the robot is specified beforehand.

With the introduction of mobile robotic platforms, this robotic stereotype became less
applicable over the last decades. Mobility has led to a vast growth in the field of potential
applications for robotic systems beyond the scope of industrial automation, including their
deployment in the domestic domain and disaster relief scenarios. Combining the navigation
capabilities of mobile platforms with the manipulation capabilities of classical industrial
robotic arms led to highly dexterous robotic units, referred to as mobile manipulators. With
the mobile platform extending the workspace of the manipulator, these systems are nowadays
expected to be able to operate in versatile domains, cope with challenging environments and
to be flexible regarding the tasks assigned to them.

However, the desire to exploit the advanced set of capabilities of such platforms, gained
by the ability to navigate in the environment as well as to manipulate objects therein, to full
extent introduces several new challenges. The major issue is that these systems typically
possess a high number of degrees of freedom, which significantly increases the complexity of
establishing efficient motion planning and control strategies. Classical approaches often follow
the idea of circumventing the complexity of mobile manipulation tasks by decomposing them
into the simpler subproblems of navigation and manipulation, which are solved sequentially
and independent from each other. While this divide-and-conquer strategy is sufficient for
many applications, it does not meet the demands facing such dexterous systems. Furthermore,
it prohibits the execution of tasks requiring a coordinated motion of the mobile base and
manipulator, that are in theory kinematically feasible. Another important aspect regarding
mobile manipulation tasks is the number and type of constraints imposed on the robot’s motion.
The latter can be further distinguished into constraints related to the kinematic structure of the
robot and those being imposed by the objects to be manipulated. Aside from general kinematic
constraints, such as joint limits and collision avoidance, there are more platform-specific ones
concerning the type of mobility. Wheeled robotic platforms, for example, exhibit a kinematic
structure whose movement can be described by either an omnidirectional, differential drive
or ackermann steering motion model. Omnidirectional mobility permits a robot to move in
arbitrary directions at any time, whereas it is not possible for the latter models to instantly
perform a motion in a direction orthogonal to the sagittal axis of the robot. For legged robotic
systems, although naturally exhibiting omnidirectional mobility, particular constraints need
to be taken into account. Humanoid platforms, for example, need to repetitively generate



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Left: The HERMES system for imitation of complex whole-body motions with
a humanoid robot (Source: Biomimetic Robotics Lab, MIT). Center: The Xsens MVN full-
body, wearable motion capture suit (Source: Xsens Technologies). Right: Marker-less motion
capture system that allows a robotic chef to replay the movements recorded from a human
chef (Source: Moley Robotics).

kinematic loop-closure establishing ground contact with both feet in order to navigate through
the environment. Moreover, they are required to actively control the point representing the
projection of their center of mass onto the floor in order to maintain balance and to avoid falling.
Further constraints arise, once the robot has made contact with an object to be manipulated.
Supplementary to the obvious requirement of avoiding collisions between the object, robot
and the environment, the motion of the robot needs to comply with task specific constraints.
The domain of object delivery provides a rich set of mobile manipulation tasks involving such
constraints. A vessel containing liquid, for example, needs to be kept upright throughout its
transition from one location to another. Pulling a tool trolley to a desired destination would
require the robot’s gripper to remain at the height of the trolley’s handle in addition to keeping
a proper orientation. Other examples arise from tasks involving manipulation of articulated
objects. Opening drawers, doors or valves, demands the robot’s gripper to follow a linear
trajectory and a circular arc around the object’s axis of rotation, respectively.

The research community has addressed several of the challenges outlined above and
achieved significant progress in the fields of robot navigation and manipulation. However,
despite the dexterity of modern mobile robotic platforms only little research has been con-
ducted exploiting the advanced set of capabilities inherent to such systems. With the next
generation of mobile robotic systems, navigation and manipulation will become inseparably
intertwined, making the ability to simultaneously deal with kinematic and task-related con-
straints a necessity. The main contribution of this thesis is to provide mobile robotic systems
with the capability to perform complex mobile manipulation actions. We hereby consider
different levels of autonomy, starting from imitation of human motions and moving towards
autonomous motion planning and execution.

Humans are, from a technical perspective, an excellent example of mobile systems that are
capable of controlling a high number of degrees of freedom while simultaneously accounting
for constraints arising from contact with the environment. Moreover, they possess a level
of intelligence with respect to decision making and interpretation of visual information
that is desirable for the control of artificial kinematic structures. Within the last decade,
several affordable, lightweight and accurate motion capture systems have become available,



3

Figure 1.2: Left: Hubo robot of Team KAIST autonomously opens a valve. Right: Google’s
SCHAFT robot removes clutter from the path in a disaster scenario (Source: DARPA)

that permit a closer examination of human motor control behavior and make some of these
human skills accessible for robotic applications. Examples of such systems include mechanical
exoskeletons, inertial sensor-based motion capture suits and marker-less visual motion tracking
systems, as depicted in Figure 1.1. The data captured from motion demonstrations of an
expert human operator is typically processed using one of the following approaches. The
first possibility is to gather data from multiple demonstrations, which are subsequently batch
processed to investigate the underlying principles of human motion or to teach a robot how to
execute a task in a correct manner. Other approaches process the motion capture data online in
order to control robotic platforms in real time. While the former method aims to equip robots
with the ability to autonomously generate human-like motion, the latter offers several benefits
by keeping the human operator in the control loop. The first advantage of these approaches
is that the robot remains flexible regarding the task, by relying on the operator to provide
appropriate motion commands. Secondly, visual feedback from a robot’s on-board camera
permits the operator to infer the current location of the robot and potential manipulation
targets. Finally, the motion of the robot can be dynamically adapted when changes in the
environment make this necessary. However, there are also several challenges and limitations
in the context of motion imitation based approaches. Huge differences between the human
body and the robotic platform regarding their scale and kinematic structure make an intuitive
motion mapping difficult. Moreover, only a strictly limited time window is available for the
computations, if real-time motion imitation performance is to be achieved. Furthermore, there
are many applications where human-based control is undesirable, e.g., for robotic service
assistants deployed as tour-guides, household robots or for elderly care. The usage of online
motion imitation techniques becomes difficult to impossible in other applications, when the
communication between the motion capture system and the robot exhibits large delays or is
impossible, as is frequently the case in disaster relief scenarios such as the ones illustrated in
Figure 1.2.

Common to these settings is that the robot can no longer rely on the abilities of a human
operator, implying that many rudimentary skills need to be explicitly modeled. A basic
requirement for an autonomous agent is that it is capable of determining its own position and
orientation in the environment. Then, it needs to be able to decide where to go in order to
prepare or accomplish a given mobile manipulation task. To reach that target, it subsequently
needs to plan a path which is kinematically feasible and collision-free, initiating from its



4 CHAPTER 1. INTRODUCTION

current pose estimate. With an object attached to its gripper it additionally needs to ensure
that all configurations along the planned path are compliant with the constraints imposed by
the manipulated object. Once the robot starts moving towards the goal, deviations from the
planned path may occur due to imprecise motion execution, which lead to different target poses
or in the worst case to collisions with the environment. To compensate for these inaccuracies
and therefore to guarantee a safe and precise arrival at the desired target pose, the robot needs
to continuously monitor its pose based on sensor data and adapt its motion accordingly.

From the described challenges, we identified the following research questions in the field
of motion imitation and generation for dexterous mobile robotic systems that we will address
in this thesis:

• How can we capture and transfer whole-body human motions to a humanoid robot in
real time?

• How can we quantify motor control deficits in human subjects induced by neurological
impairments, e.g., arising from Parkinson’s disease, using motion imitation techniques?

• How do humans position themselves relative to an object in preparation for a subsequent
manipulation action and how can that strategy be transferred to mobile robotic systems?

• How can we efficiently plan for challenging reaching and delivery tasks for mobile
robots, thereby avoiding collisions and respecting geometric constraints imposed by the
objects to be manipulated?

• What are the requirements and challenges to build a robotic service assistant system for
users with limited communication skills?

The structure of this thesis is as follows. In Chapter 2, we present an approach that permits
humanoid robots to imitate whole-body motions captured from a human operator in real time.
We hereby do not constrain the robot to remain with both feet on the ground. Instead, our
work allows the robot to perform motions involving extended periods of time in single support
mode, i.e., when the robot needs to balance on a single leg. For capturing human motions,
we rely on a whole-body motion capture suit composed of several inertial measurement units
that offer wireless transmission of motion data. To achieve real-time performance, we have
chosen a compact representation for the human motion model. The data obtained from the
suit is processed sequentially in our approach. For every captured frame, we first perform
a motion mapping step which accounts for the differences in scale between the human and
humanoid kinematic model. In a second step, we consider the difference between the two
models regarding their mass distribution in order to convert the mapped body pose into a
statically stable whole-body configuration. To safely switch between single and double support
mode, we furthermore actively control the motion of the robot’s center of mass. A general
shortcoming, however, is that the value of the prescribed motion is not put into question.
Sub-optimal human motion patterns will therefore deteriorate the resulting task performance
of a humanoid robot.

Chapter 3 addresses this issue by examining the underlying principles of human motor
control behavior. Again, we rely here on motion capture data recorded from human demon-
strations. In this context, we consider a hand coordination task involving only motions of



5

the human upper body. For our investigation, we consider subjects which have provably no
history of prior diseases affecting the motion behavior, as a control group. The comparison
group is represented by Parkinson’s disease (PD) patients, whose neurological impairments
are well known to go along with motor control deficits. In this work, we propose an approach
to quantitatively evaluate the motion recordings in order to infer specific motion strategies for
both groups. To do so, we follow a two step approach. In the first step, we map the recorded
motions to a simplified artificial kinematic model of the human upper body. Thereafter, this
model is used to reproduce the same motions using a jacobian damped least-squares controller
with joint weight parameterization. To determine the joint weights required to closely reflect
the observed motions, we develop an iterative learning method that uses the mapped human
joint trajectories as reference input. Considering the resulting set of joint weights, we are
finally able to infer associated motion control strategies for the two groups.

In Chapter 4, we introduce an approach that lets mobile robotic platforms autonomously
select an optimal stance pose for preparation or execution of a subsequent mobile manipulation
task. In order to no longer depend on a human operator to provide an appropriate stance pose,
we describe the robot’s reaching and manipulation capabilities by a discretized representation
of its workspace. The resulting data structure, referred to as the forward reachability map, is a
spatial grid composed of equally sized workspace voxel and indicates the robot’s capability
of reaching certain end-effector targets from different robot base poses. Manipulation and
reaching actions, however, require exactly the inverse information to be available. Therefore,
we generate inverse reachability maps in this work, which permit the selection of optimal
stance poses for a mobile base relative to a given grasping target.

Chapter 5 presents a probabilistic motion planning framework, called Bidirectional In-
formed RRT*, for generating asymptotically optimal paths for mobile manipulation tasks. It
extends the Informed RRT* algorithm towards bidirectional search and satisfaction of arbitrary
geometric end-effector task constraints. Given a pair of terminal robot configurations, our
planner uses uniform sampling in the configuration space until an initial, though sub-optimal,
solution path is found. Afterwards, the remaining planning time is used for path refinement
adopting an informed sampling strategy which provides a higher rate of convergence towards
the optimal solution. Task-related end-effector constraints are automatically handled during
planning by employing a first-order projection method for configuration space samples.

Afterwards, we introduce in Chapter 6 a mobile robotic service assistant framework dedi-
cated to users with limited communication skills. The overall system is composed of several
interacting components, i.e., non-invasive neuronal signal recording and decoding, high-level
task planning, motion and manipulation planning as well as environment perception. Neu-
ronal signals are recorded with an electroencephalography (EEG) cap and decoded using a
convolutional neural network approach. The decoded information is subsequently used to
control a graphical user interface (GUI), provided by a high-level planner instance. The GUI
in turn displays the current set of feasible actions which is continuously updated according
to information provided by the robot and a camera perception system. Tasks selected by the
user are finally decomposed into an atomic action sequence and resolved into robot motion
trajectories using low-level motion and manipulation planning techniques.

In Chapter 7, we finally summarize the results of this thesis and elaborate on open research
questions for future work.



6 CHAPTER 1. INTRODUCTION

1.1 Key Contributions
In this thesis, we present several scientific contributions to the field of motion imitation and
generation for mobile robotic systems. In summary, our key contributions are:

• a real-time posture mapping approach to transfer human motion data to a humanoid
robot (Chapter 2),

• a method to evaluate the motor control deficits in human subjects introduced by neuro-
logical impairments, such as Parkinson’s disease (Chapter 3),

• an approach for automatic stance pose selection for mobile robotic systems based on
inverse reachability maps (Chapter 4),

• a flexible and efficient path planning framework for task-constrained mobile manipula-
tion (Chapter 5),

• a modular robotic service assistant framework controllable by users with limited com-
munication skills (Chapter 6).

1.2 Publications
The contents of this thesis have been published in international conferences and workshop
proceedings. In the following, a summary of the publications is given in chronological order.

Conference Proceedings
• F. Burget, L.D.J. Fiederer, D. Kuhner, M. Völker, J. Aldinger, R.T. Schirrmeister, C. Do,

J. Boedecker, B. Nebel, T. Ball, and W. Burgard. Acting Thoughts: Towards a Mobile
Robotic Service Assistant for Users with Limited Communication Skills. In European
Conference on Mobile Robots (ECMR), 2017

• F. Burget, M. Bennewitz, and W. Burgard. BI2RRT*: An Efficient Sampling-Based
Path Planning Framework for Task-Constrained Mobile Manipulation. In Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2016

• F. Burget, C. Maurer, W. Burgard and M. Bennewitz. Learning motor control parameters
for motion strategy analysis of Parkinson’s disease patients. In Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), 2015

• F. Burget, and M. Bennewitz. Stance Selection for Humanoid Grasping Tasks by Inverse
Reachability Maps. In Proc. of the IEEE International Conference on Robotics and
Automation (ICRA), 2015

• J. Koenemann, F. Burget, and M. Bennewitz. Real-time Imitation of Human Whole-
Body Motions by Humanoids. In Proc. of the IEEE International Conference on
Robotics and Automation (ICRA), 2014



1.3. COLLABORATIONS 7

Workshop Proceedings
• F. Burget, M. Cenciarini, B. Meier, H. Bast, M. Bennewitz, W. Burgard, and C. Maurer.

A Closed-Loop System for Real-Time Calibration of Neural Stimulation Parameters
using Motion Data. In Proc. of the ICRA Workshop on Wearable Robotics for Motion
Assistance and Rehabilitation - RoboAssist, 2014

The following publications are not covered by this thesis
• F. Burget, A. Hornung, and M. Bennewitz. Whole-body motion planning for manipula-

tion of articulated objects. In Proc. of the IEEE International Conference on Robotics
and Automation (ICRA), 2013

1.3 Collaborations
This thesis was carried out within the projects Calimotion and NeuroBots of the interdisci-
plinary cluster of excellence BrainLink-BrainTools and includes several collaborations with
other researchers. The following listing summarizes these collaborations for the individual
chapters of this work.

• Chapter 2: The motion imitation system presented was originally developed during the
work of Jonas Koenemann as a research assistant and extends prior work published in
[74]. The related publication is [75].

• Chapter 3: The work on motion strategy analysis has been conducted in collaboration
with Massimo Cenciarini, Christoph Maurer, Wolfram Burgard and Maren Bennewitz.
The experimental protocol and the database of motion capture data has been established
together with Massimo Cenciarini and Christoph Maurer. The joint weights learning
approach is the outcome of fruitful discussions with Maren Bennewitz and Wolfram
Burgard. Medical implications are drawn from the results with the support of Christoph
Maurer. The related publications are [14, 15].

• Chapter 4: The approach for selecting optimal stance poses for mobile robotic platforms
based on inverse reachability maps has been developed in cooperation with Maren
Bennewitz. The related publication is [12].

• Chapter 5: The framework for task-constrained mobile manipulation planning, presented
in this chapter, is the result of a collaboration with Maren Bennewitz and Wolfram
Burgard. The related publication is [16].

• Chapter 6: The mobile robotic assistant system presented in this chapter is a result of a
collaboration with Lukas Fiederer, Daniel Kuhner, Martin Völker, Johannes Aldinger,
Robin Schirrmeister, Chau Do, Joschka Boedecker, Bernhard Nebel, Tonio Ball and
Wolfram Burgard. The author of this thesis has contributed the component for planning
and executing navigation actions for the mobile base. Moreover, the central knowledge
base interfacing all components as well as the perception system and its logic layer
has been jointly developed with Daniel Kuhner. Recording and decoding of neuronal



8 CHAPTER 1. INTRODUCTION

signals is work conducted by Lukas Fiederer, Martin Völker, Robin Schirrmeister and
Tonio Ball. The high-level planning component and its graphical user interface has been
developed by Johannes Aldinger and Bernhard Nebel. Daniel Kuhner contributed the
component for arm manipulation planning. The approach for liquid level detection has
been developed by Chau Do. The related publication is [17].

1.4 Notation
The following notation will be used throughout this work.

Symbol Description

a, b, . . . scalar value
x,y, . . . vector (column vector by default)
x = (x, y, z) vector with the scalar values x, y, z
A,B, . . . matrix
x>,A>, . . . transpose of a vector or a matrix
‖x‖ norm of a vector (i.e. its length)
Aij entry of matrix A at row i and column j
xi i-th entry of a vector
x̄ mean of the elements of x
x̃ range of x
x̂ a value in the neighborhood of x
a← b assignment of value b to variable a
ϕ, θ, ψ Euler angles roll, pitch and yaw
S = {s1, s2, . . . } set
|S|, |x| cardinality (number of elements) of a set or dimension of a vector
x⊕ y,x	 y concatenation and difference of 6D rigid body transforms [123]



Chapter 2

Real-time Imitation of Human
Whole-Body Motions

The system presented in this chapter enables humanoid robots to imi-
tate complex whole-body motions of humans in real time. Based on a
compact representation of the human kinematic model, we consider
the positions of the hands and the motions of the center of mass as
the most important aspects to imitate. Since direct imitation of the
prescribed human motion would quickly yield unstable motion behav-
ior of the humanoid robot, our system proposes a method to actively
control the motion of the center of mass over the support polygon. For
every motion capture frame recorded from the human operator, our
approach generates a statically stable whole-body pose. Hereby, we
do not constrain the configurations to be in double support. Instead,
we allow for changes of the support mode according to the motions
to imitate. To achieve safe imitation, we adapt the target poses of the
robot’s feet if necessary. Subsequently, we find corresponding statically
stable configurations by means of inverse kinematics. We present ex-
periments using human data, captured with an inertial sensor-based
whole-body motion capture suit. The results show that a Nao humanoid
is able to reliably imitate complex whole-body motions in real time.
This considers also human demonstrations involving extended periods
of time in single support mode, i.e., when the robot has to balance on a
single leg.

The advancements in sensor technology, achieved within the last decade, has enabled the
development of a variety of highly accurate and lightweight motion capture systems such as
mechanical exoskeletons, inertial sensor-based whole-body suits and visual motion tracking
systems. The data obtained by recording multiple human task demonstrations with such a
system can be subsequently used, for example, to teach a robot how to generate human-like
motion patterns. Furthermore, these systems are capable of recording human motion data at
very high frequency rates, thus opening up interesting perspectives for online control of robotic
platforms exhibiting a high number of degrees of freedom. Humanoid robots, for instance,
can be teleoperated by imitating the motions captured from a human operator. This capability
might be particularly useful for implementing motion control for telepresence systems or
humanoids to be deployed in hazardous environments.



10 CHAPTER 2. REAL-TIME IMITATION OF HUMAN WHOLE-BODY MOTIONS

Figure 2.1: Imitation of a complex whole-body motion with a humanoid for a teleoperated
manipulation task. Note that the robot imitates configurations in which it is required to balance
on a single leg over a longer period of time.

However, transferring the captured human motion to a humanoid robot is not straight-
forward. There are mainly two factors that prevent a direct imitation of the prescribed
motion. First, the kinematic structure of the robot is typically very different from the human
body regarding scale and agility. Secondly, there are large differences concerning the body
mass distribution between the two models. Therefore, it can be challenging generating
feasible motions for the robot and ensure stable execution when dealing with complex motion
demonstrations. Particularly, when the human motion involves multiple support mode changes
or even extended periods of time in single support, safe imitation on the humanoid robot is
difficult to achieve.

To this day, a variety of approaches towards imitation of human whole-body or upper body
motions have been presented. Many of them rely on an offline step that performs optimization
on the human data to adapt it to the robot’s kinematic structure and constraints [20, 73, 93,
110, 131, 134]. On the other hand, several systems that allow for real-time imitation have been
presented. Most of them focus on generating upper-body motions while the legs are neglected
or mainly used for balancing [37, 42, 95], others do not take support mode changes into
consideration [127, 145]. In contrast to previous work, our system enables a real humanoid
robot to imitate complex whole-body motions that include support mode changes in real time
while ensuring static stability. Instead of relying on expensive preprocessing steps and a high
number of variables to optimize, our approach uses a compact human model to reduce the
computational effort. In particular, we consider the positions of the end-effectors, i.e., the
position of the hands and feet, as well as the position of the center of mass (CoM). By doing
so, we render the robot’s motion as similar as possible to the demonstrated motion. Our
approach applies inverse kinematics (IK) to generate joint angles for the four kinematic chains
given the end-effector positions as input. Afterwards, we adapt the joint angles of the leg
kinematic chains to match the human’s CoM position and to ensure static stability of the robot.
To do so, we use a retargeting technique for the robot’s feet which generates statically stable
whole-body configurations by employing numerical inverse kinematics.



2.1. WHOLE-BODY MOTION CAPTURE 11

Figure 2.2: Left: Xsens MVN motion capture suit. Right: Biomechanical model with
anatomical landmarks (Source: Roetenberg et al. [105]).

The approach we present in this chapter is, to the best of our knowledge, the first one that
explicitly allows imitation of motion sequences involving extended periods of time in single
support mode, in which balancing on one foot is inevitable. We present experiments with a
Nao humanoid reliably imitating complex whole-body motions in real time (see Figure 2.1).
The human motion is captured with a motion capture suit consisting of several inertial sensors
attached to the individual body segments. We thoroughly evaluate our approach regarding
stability, similarity to the human motion and computational effort. As the results show, our
system generates safe motions for the robot while achieving high similarity to the human and
allows for teleoperation in real time. Preliminary results of this work have been published
in [74].

2.1 Whole-Body Motion Capture
As our approach relies on accurate motion data recorded from human demonstrations in real
time, we describe in the following the motion capture system used in our work as well as the
associated data acquisition process.

2.1.1 Motion Capture Suit
To record human motion data, we use the Moven full-body, wearable motion capture system by
Xsens Technologies [105]. The suit is composed of 16 inertial measurement units of the type
MTx1, which are attached to specific anatomical landmarks on the human body, as depicted in
Figure 2.2 (left). The measurement units are equipped with accelerometers, gyroscopes and
magnetometers measuring the earth’s magnetic field. The data recorded from these units is
collected by two wireless transmitters located at the human operator’s hip. A computer on the
receiver side processes the incoming data based on advanced Kalman filter algorithms and

1A detailed specification is available under http://www.xsens.com/products/mtx

http://www.xsens.com/products/mtx


12 CHAPTER 2. REAL-TIME IMITATION OF HUMAN WHOLE-BODY MOTIONS

displays the resulting body posture in the MVN Studio user interface provided by Xsens. Here,
the biomechanical model shown in Figure 2.2 (right), composed of 23 body segments and 22
revolute joints, is used for graphical representation of the captured motion.

Furthermore, MVN Studio offers to store the captured motion data offline or to transmit it in
real time for further processing. For offline storage of the recorded motion, the accumulated
data is exported to a Moven Open XML (MVNX) file after recording. On the other hand,
real-time transmission is achieved by sending the data of each motion capture frame over the
network, as will be described in more detail in Section 2.1.2.

The data representation of each motion capture frame, however, is independent from the
modality chosen for the transmission. Although the system provides several motion quantities
such as angular velocities and accelerations, only the orientation and position information of
body segments is considered relevant in this work. Therefore, we describe for both modalities
a motion capture frame fi, recorded at time i, by a vector of 161 data elements, i.e., 7 values
for each of the N = 23 body segments,

fi = (qseg1 ,pseg1 , . . . ,qsegN ,psegN )>, (2.1)

where qseg and pseg describes the orientation represented as a quaternion (4 values) and the
position (3 values) of a segment, respectively.

2.1.2 Data Acquisition
A premise to achieve real-time motion imitation performance for our approach is that motion
capture frames are aquired from MVN Studio immediately after they have been recorded. To
permit the transmission of motion capture data, Xsens has developed a real-time network
streaming protocol, called the Moven Xsens Transfer Protocol (MXTP). It builds upon the
IP (Internet Protocol) and UDP (User Datagram Protocol) network layer already available
for network clients. The IP layer is used to defined the source and destination of the packets
within the network. The UDP layer is used to encapsulate the data. Contrary to the TCP
(Transmission Control Protocol), the UDP protocol is unidirectional and stateless, i.e., does
not require the receiver to answer incoming data packets. Nevertheless, with our local network
being composed of only two computers, we experienced nearly no or only very little packet
loss during our experiments.

2.2 Human Motion Model
The captured motion data allows for precisely reproducing the human motions on a virtual
model of the human body. However, the execution of the same motion on a robot platform
is virtually impossible due to the differences in the number of degrees of freedom and joint
range between the two models. Based on the received data fi (see Eq. (2.1)), we consider in
this work a motion as a sequence of postures pi

pi = (pLShoulder
LHand ,pLHip

LFoot ,p
RShoulder
RHand ,pRHip

RFoot)
>. (2.2)

Thus, each posture is defined as the 3D position of the end-effectors, i.e., the hands and feet,
relative to the left or right shoulder/hip frame at time i (see Figure 2.3). So far, we just include



2.3. HUMAN TO HUMANOID POSTURE MAPPING 13

pLShoulderLHand

pLHip
LFoot

pRShoulder
RHand

pRHip
RFoot

Figure 2.3: T-pose of the human and the robot model used as reference for posture mapping.

the end-effectors’ positions in the model. However, the model can be easily extended to
include the end-effectors’ orientations provided by fi as well as further features such as the
elbow and knee positions. As the proposed method is based on inverse kinematics, additional
constraints or tasks can be included in an augmented Jacobian or can be solved by projection
into the Nullspace of the Jacobian. For each posture we additionally take into account the
position of the CoM and the support mode of the demonstrator, which can be estimated
from the motion capture data. By adopting this compact representation of body postures, we
account for the limited physical capabilities of humanoid robot platforms with respect to the
human body.

2.3 Human to Humanoid Posture Mapping

The first step of our approach aims to generate a whole-body configuration for the humanoid
robot that reflects the captured human posture as closely as possible while initially neglecting
constraints arising from the humanoid’s kinematic structure. To do so, we make use of a
common reference posture which is subsequently used in the posture mapping process. In the
following this procedure will be described in detail.

2.3.1 Reference Posture

In order to account for the difference in scale between the two models, an initialization is
performed prior activating real-time imitation. During that initialization, the human and
humanoid are adopting a specific body posture, referred to as the T-pose (see Figure 2.3).
Besides being suitable for comparing the lengths of the respective kinematic chains, this pose
is also used to calibrate the biomechanical models depicted in Figure 2.2 in order to obtain
more accurate human body posture estimates. In the following, we will refer to pref ,H and
pref ,R as the posture of the human and the robot in the T-pose, defined according to Eq. (2.2).



14 CHAPTER 2. REAL-TIME IMITATION OF HUMAN WHOLE-BODY MOTIONS

2.3.2 Posture Mapping
To continuously update the robot posture, we consider the change of the human body posture
pi ,H , recorded at time i, relative to its reference posture pref ,H . The deviation of the end-
effector positions relative to their references is determined by

∆pci,H = pci ,H 	 pcref ,H , (2.3)

with c ∈ [1, 4] being the respective kinematic chain. In order to imitate the motion of the
human, we expect the deviation of the robot’s end-effector positions ∆pcR from their positions
in pref ,R to be proportional to the values obtained from Eq. (2.3), as given by the following
equation

∆pci,R = mc ·∆pci,H , (2.4)

where mc represents the proportionality constant, given by the ratio between the limb length
of the robot llimb,R and the human llimb,H for the c-th kinematic chain, defined as

mc =
lclimb,R

lclimb,H

. (2.5)

The length of the limbs is extracted from motion data recorded while the human and humanoid
are performing the T-pose depicted in Figure 2.3. Given ∆pi,R, the robot’s posture pi ,R at
time i is updated as

pi ,R = pref ,R ⊕∆pi,R. (2.6)

For the target position of the c-th end-effector contained in pi ,R, we find the joint angles
for the corresponding kinematic chain using a numerical inverse kinematics solver, which
contrary to analytical solvers generates continuous motion transitions. The technique used for
this purpose is based on the damped least-squares (DLS) control method, which considers
a weighting matrix for joint limits avoidance in addition to avoiding kinematic singularities
[21]. The control law applied to generate joint velocities that iteratively lead to a kinematic
chain configuration matching the desired target position for a robot end-effector is given by

q̇ = W−1J>(JW−1J> + λ2Im)−1e, (2.7)

where λ, e is a constant damping factor and the error between the current and desired target
position pci ,R, respectively. The Jacobian of the kinematic chain is denoted by J. Im is an
m×m identity matrix, where m is the number of task coordinates. The diagonal weighting
matrix used for joint limits avoidance is defined as

W =


w1 0 · · · 0

0 w2
. . . ...

... . . . . . . 0
0 · · · 0 wn

 , (2.8)

with n being the number of joints for the respective chain. The individual entries wj are
computed as follows

wj =

{
1 + |∂H(q)

∂qj
|, if ∆|∂H(q)

∂qj
| ≥ 0

1, if ∆|∂H(q)
∂qj
| < 0

, (2.9)



2.4. HUMANOID POSTURE STABILIZATION 15

where the gradient of the performance criterion H(q) is defined as

∂H(q)

∂qj
=

(qj,max − qj,min)2(2qj − qj,max − qj,min)

4(qj,max − qj)2(qj − qj,min)2
. (2.10)

Here, qj refers to the angle of the j-th joint. The quantities qj,min, qj,max denote the upper and
lower joint limit, respectively. From Eq. (2.9), it follows that a joint is free to move given that
it is moving away from its limits, i.e., the associated weight factor wj is set to 1. Contrarily,
motions towards the joint range borders are damped according to the current distance to the
limit or entirely stopped once a critical proximity is detected.

Executing the resulting joint angles for the individual chains will lead to a robot posture that
is similar to the captured human posture considering the differences between the two models
in scale and kinematic structure. Nevertheless, the mapping procedure is insufficient for safe
imitation of human motions. So far, only the feet positions have been considered for the
mapping. Therefore, the support feet of the robot may not be parallel to the ground. Moreover,
differences in the mass distribution of the robot and the human have not been considered to
this stage. Finally, the dynamics of the human and the robot are different. For simplification,
our approach does not explicitly consider the dynamics of the robot. Instead, it generates
statically stable robot poses for every point in time as described in the following.

2.4 Humanoid Posture Stabilization

As it is desirable to maintain maximal similarity between the robot’s motion and the human
motion, the mapped, though unstable robot postures should be modified as little as possible.
To ensure this requirement, we present a posture stabilization method that modifies only the
configurations of the robot’s lower body kinematic chains. Another important criteria for a
realistic reproduction of the demonstrated motion is that the support mode and the trajectory
of the CoM of the robot closely follows the one given by the human operator. Thus, posture
stabilization aims to transfer the unstable robot pose obtained after posture mapping into a
statically stable robot configuration, given the current CoM and support mode of the human.

To fulfill these demands, our approach performs the following steps. Initially, a common
representation of the CoM position for the robot and the human is established. However, direct
mapping of the CoM trajectory to the humanoid robot is prohibited due to the fact that the
human may change his support mode dynamically, whereas the dynamics of the robot have
not been modeled in this work. Therefore, the recorded CoM trajectory is adapted in order to
generate statically stable support mode transitions for the robot. Furthermore, the change of
the CoM position per time step is constrained to ensure safe motion execution. The support
mode for the robot is determined based on the support mode of the human and the designated
position of the CoM. In the last step, the end-effector pose of the feet is retargeted to generate
a statically stable whole-body pose. The corresponding joint configurations are found using
the numerical inverse kinematic solver, defined according to Eq. (2.7). The outlined steps are
explained in detail in the following.



16 CHAPTER 2. REAL-TIME IMITATION OF HUMAN WHOLE-BODY MOTIONS

CoM

01 oCoM = 0.3

pRFoot pLFoot

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

oRCoM

ȯR C
o
M
[m

/
s]

Figure 2.4: Left: Determination of the normalized offset given the projection of the center
of mass onto the connection line between the feet. Right: Different choices for the maximal
permitted offset velocity ȯRCoM as a function of the current offset oRCoM . The colors of the
curves indicate their impact in terms of stable motion execution, ranging from safe transitions
with larger imitation delays (green) to critical transitions yielding lower imitation delays (red).

2.4.1 Controlling the Center of Mass
We use a low-dimensional projection of the CoM to describe the position of the CoM pCoM

relative to the positions of the feet as a scalar factor. This offset oCoM is determined by the
orthogonal projection of the CoM onto the connection line between the feet, as depicted in
Figure 2.4 (left). The offset is normalized between 0 and 1 so that it describes the relative
distances of the projected CoM to the feet center positions pLFoot and pRFoot . With this
normalization, the offset from the human motion data can be directly translated to the robot.
The offset is computed as follows:

oCoM =
(pCoM − pLFoot) · (pRFoot − pLFoot)

‖pRFoot − pLFoot‖2
(2.11)

As the CoM of the human is not necessarily over a single support foot when changing to the
single support mode, the trajectory of the offset needs to be adapted for the robot to allow
statically stable support mode transitions. For example, the offset is required to be 0 before the
robot can safely lift its right foot to balance on the left leg. Thus, whenever the human stands
on a single foot, the offset for the robot is forced to be 0 or 1. Obviously, this would result
in fast changes in the trajectory of the CoM. Thus, the velocity of the offset from its current
value oRCoM towards the desired offset oCoM is limited to generate smooth and safe trajectories
of the CoM. Here, we use the negative quadratic function, illustrated in Figure 2.4 (right,
green curve), with maximum velocity at oRCoM = 0.5 and close to zero velocity at the borders
of the offset range to determine a new target offset ôRCoM for the robot. In practice, this results
in safe motion imitation, but on the other hand causes a slight delay in the imitation process
when support mode changes occur. Reducing the delay by adapting the function parameters
is generally possible, though comes along with a higher risk of loosing balance. A sample
trajectory of the human and robot offset is illustrated in Figure 2.11 within the experimental
section.



2.4. HUMANOID POSTURE STABILIZATION 17

Double RightLeft

HR and oRCoM = 1HL and oRCoM = 0

else

else
HDelse

HD

Figure 2.5: Robot support mode states and transitions. HD, HL, and HR indicate whether
the human is in double, left, or right support mode. oRCoM refers to the normalized offset
(see Figure 2.4). Before a change to single mode occurs, the CoM is smoothly shifted to the
corresponding foot.

2.4.2 Controlling the Support Mode

Having a good knowledge about their own body dynamics, humans are capable of almost
instantaneously switching from double to single support and vice versa. With the ability to
recover from unstable body postures, i.e., where the projection of their CoM lies outside of
the support polygon, they can safely perform motions such as dynamic walking or jumping.
Aside from the fact that many motion sequences are impossible to imitate by a humanoid
robot due to the limited dynamic properties of its mechanical structure, we do not explicitly
consider the dynamics of the humanoid in this work. Thus, the trajectory of the projection of
the CoM is enforced to stay within the support polygon at any time in order to achieve a safe
statically stable motion execution behavior. To do so, the CoM of the robot is carefully shifted
over the desired support foot prior initiating a support mode change. Our approach uses a
finite state machine to model the support mode of the robot based on the support mode of the
human (which is either double (HD), left (HL), or right (HR)), the robot’s current support
mode and the offset of the robot oRCoM . The state transitions are illustrated in Figure 2.5.
Support mode changes of the human are detected once the height difference between the two
feet has exceeded or fall below a specific threshold. The current pose of the feet is obtained
from motion capture data. When the robot is in double support, for example, it will only
change to single support if the human is in single support and if its own offset oRCoM is 0 or 1.
If the offset has a value in between, the robot is not allowed to change to single support, even
if the human is already on a single foot. Instead, the offset is smoothly shifted towards 0 or 1
by the offset control, described in Section 2.4.1, in order to achieve the desired support mode.
Accordingly, the robot needs a few frames to change its support mode.

2.4.3 Endeffector Retargeting

Finally, we describe how statically stable whole-body configurations are generated from the
robot postures (obtained after posture mapping), the determined CoM positions and support
modes. As explained in the following, our approach follows the idea of adapting the pose of
either one foot or both feet such that the target offset ôRCoM is met.



18 CHAPTER 2. REAL-TIME IMITATION OF HUMAN WHOLE-BODY MOTIONS

pCoM

pRFoot pLFootôRCoM

p̂LFoot

oRCoM

Figure 2.6: Double support posture stabilization. Depending on the current CoM and the
target offset ôRCoM , the pose of one foot is retargeted and the joint angles of the corresponding
leg chain are recalculated such that the resulting posture is statically stable.

Double Support

Given the current offset of the robot oRCoM and the desired offset oCoM specified by the human
demonstrator, we want to achieve statically stable double support for the robot, with oRCoM

being ideally equal to oCoM . However, as outlined above, the change of the human offset
from one posture to the next is often quite large due to the dynamic nature of human motion.
Trying to instantaneously shift the robot’s offset by the same amount would very likely cause
the robot to become unstable or even to fall over. Therefore, we allow only for a limited
maximum shift of the robot’s offset in each imitation step. This issue is taken care of by
our offset controller, introduced in Section 2.4.1. In double support mode only one foot is
repositioned such that the CoM, projected on the connection line between the feet, equals the
target offset ôRCoM . The repositioning process is illustrated in Figure 2.6. Here, the left foot
position pLFoot is shifted along the line pointing to the CoM position pCoM until the CoM’s
orthogonal projection onto the line connecting the feet centers yields the desired target offset.
Whether the right or the left foot position is adapted depends on the target offset ôRCoM and
the current offset oRCoM . If ôRCoM < oRCoM , i.e., the CoM is required to move to the left from
its current position, the left foot is repositioned. Similarly, the right foot position is adapted
given that the target CoM moves towards the right.

Afterwards our approach calculates new target orientations for the feet such that they have
the same orientation and span a plane on the ground. The orientation is given by the direction
of the up-pointing vector of the feet, which is the normal n{L/R}Foot of the desired plane

n{L/R}Foot = pCoM − (p̂LFoot + ôRCoM · (pRFoot − p̂LFoot)). (2.12)

Accordingly, it points from the target offset ôRCoM corresponding to the projected CoM, to the
new CoM position.

Single Support

Provided that the human operator is in single support mode and oRCoM = 0 or 1, i.e., the
projection of the robot’s CoM lies within the left or right foot support polygon, it is sufficient
to adapt the target orientation for the supporting foot for each new incoming human posture.
The target positions, on the other hand, obtained after posture mapping can be adopted without



2.5. POSTURE POSTPROCESSING 19

modification in this mode. An appropriate support foot orientation is computed according to
Eq. (2.12), with ôRCoM being either 0 or 1.

Finally, given a modified target position and orientation for one or both feet, we determine
a joint configuration for the respective kinematic chain, using the numerical IK solver defined
in Eq. (2.7). Here, we solve the IK for the 5 dimensional task, specified by the target position
p̂{L/R}Foot and orientation n{L/R}Foot . In contrast to posture mapping, precision is crucial for
stabilization. Therefore, we run the damped least-squares IK solver for this operation until the
error is found to be within a certain tolerance.

2.5 Posture Postprocessing

For increasing the robustness of our approach, we additionally implemented a set of safety
routines taking into account stability issues arising from fast movements of a non-supporting
end-effector, collisions between the feet and the ground as well as self-collisions among
different end-effectors of the robot. To address the former problem, our approach limits the
velocity of non-supporting end-effectors if their scheduled Cartesian velocity is found to
induce a critical deviation of the CoM’s motion from its desired statically stable trajectory.
For the latter, we evaluate and adapt the target position of the non-support foot in single to
double support mode transitions if needed, in order to avoid motions of the foot towards a
position penetrating the ground. Lastly, we keep track of the distances between the robot’s
end-effectors and push the target positions apart in case they are found to be to close to each
other. This is particularly important considering motion sequences where the hands of the
operator get in touch with each other.

2.6 Implementation Details

The MVN motion capture suit by Xsens used in this work is generally capable of recording
motions at a rate of 120 Hz. In our approach, however, we found a sampling rate of 30 Hz to
be sufficient for accurately capturing the demonstrated human motions. Moreover, it comes
along with a reduced computational effort, yielding a real-time performance with even lower
motion imitation delays. For mapping postures from the human operator to the humanoid
robot, as described in Section 2.3, we run the damped least-squares based IK solver (DLS)
with a fixed number of 30 iterations for the arms and 5 iterations for the feet. A rough tracking
of the feet is sufficient in the posture mapping process as the positions are subsequently
adapted in the stabilization step to achieve static stability. The same IK solver is used in our
stabilization method and executed until an accuracy of at least 1 mm or 0.033 rad is reached.
For the damping factor λ used in the DLS method, we experimentally determined a value of
0.3. This choice has shown to be a good compromise between stability and convergence of
the IK method. Computations were performed on a single core of a standard desktop CPU
(Intel Quadcore i5-2400, 3 GHz).



20 CHAPTER 2. REAL-TIME IMITATION OF HUMAN WHOLE-BODY MOTIONS

Figure 2.7: Samples of motion imitation sequences generated by our approach. The examples
include arm and leg motions as well as coordinated whole-body motions in single support.



2.7. EXPERIMENTAL RESULTS 21

Figure 2.8: Nao humanoid imitating a human performing a motion to reach a complex single
support posture. Using our approach, the robot can even keep its balance when it is in single
support for longer periods of time. The leftmost image shows the calibration posture for the
mapping process, introduced in Section 2.3.1.

2.7 Experimental Results

For the evaluation of our motion imitation approach, we used a Nao v4 humanoid robot
developed by SoftBank Robotics. Nao is 58 cm tall, weighs 5.2 kg and has 25 degrees of
freedom. A detailed description of the humanoid robot platform can be found in Appendix A.1.
The human was wearing an MVN suit by Xsens for capturing the motions. This inertial sensor-
based tracking device provides an accurate estimate of the human’s posture from which the
target positions of the end-effectors, used as input for posture mapping, are extracted.

Several samples of motion imitation sequences generated by our approach are depicted in
Figure 2.7. In the following, we evaluate our system in terms of similarity of the robot motion
to the demonstrated human motion, stability and computational cost. Finally, we present a
teleoperation experiment as an application scenario for our approach.

2.7.1 Similarity to Human Motion

In order to quantitatively evaluate our approach regarding the similarity of the generated robot
motion to the demonstrated motion of the human operator, we measured the deviation of
the respective end-effector positions in a complex whole-body motion sequence involving
fast arm movements and support mode changes. More detailed, the human first stretched
his right foot backwards followed by raising his arms in order to maintain balance in single
support. Afterwards, he returned to a calm statically stable double support posture with the
arms adjacent to the body. Some snippets of the described motion sequence are illustrated
in Figure 2.8. Here, the reference human postures given as input are shown alongside with
the corresponding humanoid robot postures generated by our method. The first frame shows
the human and robot adopting the reference posture, referred to as the T-Pose, used for the
calibration process in posture mapping.



22 CHAPTER 2. REAL-TIME IMITATION OF HUMAN WHOLE-BODY MOTIONS

0 50 100 150 200 250
0

0.02

0.04

0.06

0.08

0.1

Frame

E
rr

or
in

m

Left Hand
Right Hand

Figure 2.9: Deviation of the hand positions from the desired positions for the motion depicted
in Figure 2.8. The average error is only 1.4 cm.

A measure for the similarity between the human and humanoid motion is obtained by
comparing the desired end-effector trajectories generated by the human to humanoid posture
mapping step (see Section 2.3) with the actual end-effector trajectories obtained after posture
stabilization and postprocessing. The progression of the end-effector deviation in course of
the motion sequence, depicted in Figure 2.8, is shown for the hands and feet of the robot in
Figure 2.9 and Figure 2.10, respectively. The accumulated error observed for the lower and
upper body end-effectors can be traced back to various sources. A first error component is
induced by the joint limits weighting matrix and the constant damping factor used within the
numerical inverse kinematic solver applied in posture mapping. Particularly, when imitating
motions that drive the robot’s joints in proximity to their range limit, slow convergence and
therefore increased errors occur. Another error component, related to the feet, arises from the
posture stabilization method, where stability is enforced at the expense of imitation delays.
These delays are especially apparent in the case of support mode changes. Further deviations
occur due to the limitation of the end-effector velocities in the stabilization and postprocessing
method.

Figure 2.9 shows that the deviation of the hands from their nominal positions increases when
the operator raises (Frame No.40) and lowers (Frame No.125) its arms due to our limitation of
non-supporting end-effector velocities. Figure 2.10 plots the corresponding errors of the foot
positions. Here, our stabilization method shifts the robot’s center of mass by incrementally
adapting the leg configurations in order to realize the demonstrated support mode change.
Initially being in double support mode, the observed deviations from the target positions are
rather small. When the operator changes to left foot single support mode (Frame No.40), the
robot needs some time to shift its CoM statically stable to the left foot, while the operator
continues with the motion. Simultaneously to changing the support mode, the operator
performs a fast backwards movement of the right leg, inducing a growth of the error for the
right foot. This effect is amplified by the end-effector velocity control of the postprocessing
step. In the left support phase, the left foot keeps on balancing while the right foot attempts to
catch up with its desired position (Frame No.48-152). At the end of the left support phase, the
human operator moves the right foot with high acceleration forwards, i.e., towards the support
foot (Frame No.125-145), before placing it back to the ground (Frame No.150). Finally, the



2.7. EXPERIMENTAL RESULTS 23

0 50 100 150 200 250
0

0.02

0.04

0.06

0.08

Double Left Double

Frame

E
rr

or
in

m

Left Foot
Right Foot

Figure 2.10: Deviation of the generated feet positions from the desired ones for the sequence
depicted in Figure 2.8. The dashed vertical lines specify the beginning and end of support
mode changes. The increased error in the left foot during support mode changes results from
shifting the CoM within our stabilization method. Furthermore, the human right leg is moved
fast backward and forward, respectively, and the robot needs a few time steps to catch up. The
average error is only 1.6 cm.

CoM is shifted towards the neutral position by the stabilization procedure using both feet,
resulting in a temporarily increased error in the left and the right foot (Frame No.153-178).

For evaluating the average error with respect to the given target end-effector trajectory for
the complex single support sequence in Figure 2.8, we repeated the experiment 10 times in
total. The average error over all repetitions is found to be 1.4 cm for the hands and 1.6 cm for
the feet. Note that although the mapped human postures are adapted for the humanoid robot
to ensure stability, there is almost no noticeable difference observable between the human and
the corresponding humanoid motion.

2.7.2 Ensuring Stability

In this experiment, we examine our motion imitation approach regarding its performance
in generating statically stable support mode transitions from the human CoM trajectory and
support mode given as input. In particular, we consider the offset value oCoM introduced
in Section 2.4, which is the low-dimensional representation of the projected CoM. The
temporal evolution of the human and robot offset for the sequence in Figure 2.8 is depicted in
Figure 2.11. During the initial double support phase, the robot and human possess an identical
offset, which results from their center of mass being slightly shifted towards the right foot.
Afterwards, the offset of the demonstrated motion rapidly approaches a value of 0, before
the left foot lifts off and single support mode is entered (Frame No.37). Once the human
is in single support, the offset of the robot is forced to approach a value of 0, even though
the desired human offset might be slightly different. The admissible offset velocity defined
according to Figure 2.4 (right), is relatively high in the mean interval. Therefore, the robot’s
offset is capable to closely follow the demonstrated trajectory until it gets close to its range



24 CHAPTER 2. REAL-TIME IMITATION OF HUMAN WHOLE-BODY MOTIONS

0 50 100 150 200 250

0

0.2

0.4

0.6

0.8

1

Double Left Double

Frame

O
ff

se
to

C
o
M

Robot Offset
Human Offset

Figure 2.11: Evolution of the human and robot offset value for the motion sequence depicted
in Figure 2.8. The robot’s offset closely follows the human’s offset. During support mode
changes, the speed of shifting the robot’s CoM is limited to ensure stability.

limit. In the proximity of 0 (or 1) the motion is slowed down by our offset control method, thus
guaranteeing a safe statically stable arrival at the target value 0 (Frame No.37-48). Throughout
the left foot single support phase the offset value remains at a value of 0. Finally, the human
operator places the right foot back to the ground (Frame No.152). Analogous to the previous
support mode change, our offset control forces the offset to approach its desired value with
limited velocity, inducing a delay of a couple of frames (Frame No.152-180).

As shown by the experiments, our technique is capable of controlling the robot’s CoM
such that the generated motion is as closely as possible to the human motion while at the
same time ensuring static stability. More specifically, our system generates a trajectory of
the robot’s CoM that closely follows the human CoM trajectory, achieves the desired support
mode changes and limits the velocity of the CoM to ensure safe execution.

2.7.3 Computational Costs
In order to evaluate the computational demands of our motion imitation technique, we
measured the computation times required for the individual processing steps. Here, we
considered a long motion sequence composed of 1000 frames in order to obtain meaningful
results. The sequence contains different movements such as stepping and reaching, as depicted
in the teleoperation experiment described in Section 2.7.4. Table 2.1 specifies the mean and
standard deviation as well as the maximum value encountered for the individual steps. The
times listed for posture mapping include the calculation of all end-effector target positions
and the determination of the corresponding joint configurations for the robot using the inverse
kinematic solver. Note that the target end-effector transforms can be calculated in constant
time and the number of IK iterations is fixed to a small value. The time required by posture
stabilization, on the other hand, is dominated by the inverse kinematics calculations. As
opposed to posture mapping, it is here crucial to reach the desired target positions with
sufficient accuracy. Therefore, the IK solver is run until the error is found to be below a
certain threshold. The total time includes all computations of our system, beginning when the



2.7. EXPERIMENTAL RESULTS 25

Mean/Std Max

Posture mapping 1.04± 0.35 ms 1.73 ms
Posture stabilization 1.85± 3.50 ms 27.08 ms
Total time 3.30± 3.57 ms 29.21 ms
# IK iterations 54± 178 1784

Table 2.1: Computational effort and number of IK iterations.

Figure 2.12: Teleoperation with visual feedback. Left: Human operator and live view of the
robot’s camera displayed on a monitor. Right: Teleoperated Nao humanoid.

captured human data is obtained and ending when a statically stable pose has been generated
for the robot. The last row in Table 2.1 specifies the number of iterations performed by the
damped least-squares solver per motion capture frame.

The calculation times are within a few milliseconds on average. Some configurations
require a larger amount of iterations to converge to the desired accuracy. However, even in the
worst case the computation time does not exceed the 30 ms limit required to achieve real-time
performance. Given the complexity of the demonstrated motion, we can therefore conclude
that a large set of whole-body motions can be safely imitated with our approach at a rate of 30
frames per second.

2.7.4 Teleoperation

In the last set of experiments, we evaluated the applicability of our system towards teleoper-
ation of a humanoid robot for manipulation of objects in its surrounding. What makes this
scenario particularly challenging is that the scene and the robot are not directly observable by
the human operator. Instead, he needs to rely only on visual feedback provided by the robot’s
on-board camera. The camera itself, located in the head, is always pointing to the right hand
of the robot, which is intended to be used for the manipulation task. This way, the operator is
able to continuously monitor the distance between the hand and the target object. The setup
for the two teleoperation experiments we conducted in this context is shown in Figure 2.12.
Here, the operator is located in front of a screen displaying the live-view of the robot’s camera.



26 CHAPTER 2. REAL-TIME IMITATION OF HUMAN WHOLE-BODY MOTIONS

Figure 2.13: Teleoperated walking and object manipulation. A video demonstrating our
imitation approach is available online at http://www.youtube.com/watch?v=AWdvffiw5Ug.

The two sequences include stepping, balancing in single support and grasping an object.
In the first experiment, depicted in Figure 2.1, the operator balances on the left foot while
picking up the object. Here, the robot is able to reach the distant object by leaning forward
and counterbalancing the CoM shift by simultaneously stretching the right foot backwards.
After successfully grasping the object, the operator returns to double support and drops the
object into a bucket. For simplicity, we set the desired target orientation for the right hand
to remain upright in this experiment. In the second experiment, shown in Figure 2.13, the
robot is initially too far away from the object in order to instantly reach it. Nevertheless, the
operator is capable to get the object within the robot’s reachable workspace by performing a
sequence of two steps. Afterwards, he bends forwards, stretches his right arm to pick up the
object and finally drops it into the bucket. Both teleoperation experiments were successfully
conducted multiple times on the real robot platform, without encountering unstable motion
behavior. Note, that the robot and human operator do not necessarily need to share the same
location, which makes our approach interesting for situations where manipulation actions
need to be carried out in hazardous environments.

2.8 Related Work
One of the first approaches for real-time control of a humanoid robot by imitation is presented
by Riley et al. [104]. For motion data acquisition, a simple visual marker system attached
to the upper body is used. The authors apply inverse kinematics to estimate the human’s
joint angles and map them afterwards to the robot. Ott et al. [95] proposed to use a spring
model, in which control points on the robot’s skeleton are virtually connected to the markers
on the human body. Based on the forces acting on the springs, joint angles are determined that
consider the robot dynamics. The authors present experiments, in which a humanoid imitates
human upper-body motions in real time. However, the legs are only actuated for the purpose
of maintaining balance. The work by Dariush et al. [37] considers imitation as task space
control based on low-dimensional motion primitives. The authors use a separate Zero Moment

http://www.youtube.com/watch?v=AWdvffiw5Ug


2.8. RELATED WORK 27

Point (ZMP)-based balance controller and the lower body is only controlled so as to ensure
stability.

Also Yamane and Hodgins [145] presented a control-based approach to imitate human
motions with a force-controlled robot. Using this technique, joint trajectories for the whole-
body of a humanoid can be generated online. The legs are also controlled to follow the human
motion while maintaining stability. The only assumption is that both feet remain in ground
contact. In the future, the authors plan to lift this assumption by integrating techniques to
detect stepping motions and adapting the CoM trajectory in the controller according to [146].
In the latter approach, the authors proposed to predict the trajectory of the desired Center of
Pressure (CoP) for a number of frames based on the captured motion and accordingly modify
the CoM to ensure stability.

Cela et al. [19] presented a motion capture system consisting of eight sensors to measure
joint angles of the legs and accelerations of the arms. The authors ensure stability during
real-time imitation using a feedback control system based on data of an accelerometer placed
on the robot’s back. With this system, changes from double support to singe support are
possible, however, due to the limited set of sensors, no complex motions can be imitated.
Recently, Vuga et al. [141] introduced an approach for dynamical stable imitation of human
motions. The authors use a separate controller for the lower body that ensures stability by
permitting imitation in the null space of the balance controller only. This way, imitation of
walking motion sequences are possible.

Stanton et al. [127] described a learning approach to determine a kinematic mapping
between the human and the robot. This technique relies on an initial training phase in which
the human is asked to imitate the motions of the robot. Afterwards, the human can teleoperate
the robot in real time. Since no balance controller is used in this approach, the range of
motions the robot is able to imitate is very limited.

Suleiman et al. [131] focus on the imitation of upper body motions. The authors treat
the imitation as a constrained optimization problem on a given sequence of captured human
motions. Nakaoka et al. [92] consider dance movements. In this approach, motion primitives
and their parameters are learned offline from observed human motions. Here, the leg motions
are not directly imitated, but generated from the primitives. In a latter work, Nakaoka et al. [93]
use a set of models for different leg motions of the robot to ensure that characteristic motions
are executed stably during imitation of the dance movement. Also here, the motion models
and their parameters are learned in an offline step. For imitation, the particular type of motion
primitive is recognized from captured motion data and the leg trajectory is chosen accordingly,
so that the robot can safely execute the corresponding sequence. Kim et al. [73] also focus on
dance movements and use an offline optimization step for determining a kinematic mapping
between the human and the robot, used to ensure stability of imitated whole-body motions,
including support mode changes. During execution, three online controllers are used for
balancing and soft stepping. Chalodhorn et al. [20] proposed to apply dimensionality reduction
that transforms the high-dimensional human motion data in a low-dimensional subspace. The
offline optimization of the motions, which takes into account the robot dynamics and stability,
is subsequently performed in the reduced subspace. The authors applied the approach to the
task of ”learning to walk” by imitation.



28 CHAPTER 2. REAL-TIME IMITATION OF HUMAN WHOLE-BODY MOTIONS

2.9 Conclusion
In this chapter, we presented a technique for real-time imitation of human whole-body
motions by humanoid robots. In order to find robot postures that resemble the demonstrated
human motion, our approach uses a compact representation of the human kinematic model in
conjunction with numerical inverse kinematics computations. To achieve safe imitation of
challenging motion sequences in real time, we introduced a method that generates statically
stable motion transitions by incrementally shifting the robot’s CoM towards its target location.
At the same time, the mapped human posture is modified as little as possible to maintain
maximal similarity to the captured motion. The major scientific contribution of our system
is that it also allows for single support phases, where the center of mass needs to be actively
balanced over the support foot for an extended period of time. Real world experiments with
a Nao humanoid and a MVN suit by Xsens demonstrated the capability of our approach
to reliably generate safe motions for the robot, closely following the human reference also
for long and complex motion sequences. The maximum time required to generate a robot
posture for a single motion capture frame is less than 30 ms on average. Therefore, real-time
performance is achieved, which is a necessary prerequisite for the deployment in teleoperation
applications. A video demonstrating the capabilities of our approach is available online2.

An interesting aspect for future work is the inclusion of the end-effector orientations for
the upper body end-effectors in the imitation process. Due to the fact that the arm kinematic
chains are composed of only 5 DOF, whereas the task is 6 dimensional in this case, this would
require using whole-body control in the posture mapping step. In turn, posture stabilization
would aim to achieve the desired CoM position in the Nullspace of the upper body Jacobian
or defines the CoM shift as the highest-priority goal in a task priority control scheme.

Another extension, though complex to implement, would be to consider the robot body
dynamics in the imitation process. Although this would come with a higher risk of falling due
to imprecise estimates of the dynamics, it may yield a further reduction of the imitation delays
and an increased similarity between the robot motion and the demonstrated motion. An issue
to be considered is that the robot body dynamics, as defined by the hardware specification,
cannot keep up with the skills of a human operator to dynamically change between whole-body
postures. Thus, the range of motions the robot is capable to imitate always remains limited
with respect to the human.

An aspect not taken into consideration in this chapter is the actual value of the prescribed
motion. Here, we assumed that the motion samples are representative for a desirable, natural
human kinesic behavior that should be adopted by robotic platforms without putting them into
question. In the following chapter, we will investigate on the differences between the motions
of different human subject. In particular, we will examine the effect of neurological impair-
ments, which are well known to induce motor control deficits, on the human musculoskeletal
system.

2http://www.youtube.com/watch?v=AWdvffiw5Ug

http://www.youtube.com/watch?v=AWdvffiw5Ug


Chapter 3

Learning Motor Control Parameters for
Motion Strategy Analysis

The neurological impairments of Parkinson’s disease (PD) patients are
well known to go along with motor control deficits, e.g., tremor, rigidity,
and reduced movement. However, not much is known about the motor
control parameters affected by the disease. In this chapter, we present
a novel approach to human motion analysis using motor control strate-
gies with joint weight parameterization. We record the motions of
healthy subjects and PD patients performing a hand coordination task
with the whole-body XSens MVN motion capture system. For our
motion strategy analysis we then follow a two step approach. First,
we perform a complexity reduction by mapping the recorded human
motions to a simplified kinematic model of the upper body. Second, we
reproduce the recorded motions using a Jacobian weighted damped
least-squares controller with adaptive joint weights. We developed a
method to iteratively learn the joint weights of the controller with the
mapped human joint trajectories as reference input. Finally, we use the
learned joint weights for a quantitative comparison between the mo-
tion control strategies of healthy subjects and PD patients. Other than
expected from clinical experience, we found that the joint weights are
almost evenly distributed along the arm in the PD group. In contrast
to that, the proximal joint weights of the healthy subjects are notably
larger than the distal ones.

Within the last decade, recording and analyzing human motion data has gained an increased
interest in a variety of research fields, ranging from medical science, neuroscience, computer
graphics, to robotic applications. The way the data is used, however, differs between these
fields. The former fields are mainly interested in understanding human motion and its
underlying principles in order to improve therapy methods for patients with neurological or
physiological diseases, whereas computer graphics and robotics aims at generating human-
like motions for artificial multi-joint robotic systems to improve the appearance, coexistence,
collaboration, and safety in human-robot interaction scenarios. So far, robotic research has
used human motion data to map hand/end-effector and joint trajectories to robotic platforms
for teleoperation applications, similar to the work described in Chapter 2, or applied the
data as reference input for motion planning algorithms and control schemes, rather than



30
CHAPTER 3. LEARNING MOTOR CONTROL PARAMETERS FOR MOTION STRATEGY

ANALYSIS

Motion 
Strategy

Motion 
Capture

Motion 
Data

Motor Control
Parameters

Figure 3.1: Motion strategy analysis: experimental setup for data collection (top left), motion
representation (bottom left), and motion model used to learn the motor control parameters (bot-
tom right).

investigating the underlying motion control strategy that generated the observed human
trajectories. Altogether, these approaches have in common that they consider the human
motion samples as a desirable, natural human kinesic behavior to be adopted by robotic
platforms or reflected by schemes modeling the human musculoskeletal system. Contrary, we
aim in this work towards analyzing the distinction between the human motion samples and
separate them into different groups, namely the motion of healthy subjects and Parkinson’s
disease (PD) patients whose motor control is affected by a neurological disorder. Note that the
end-effector trajectories of different subjects performing the same task, e.g., moving an object
from one location to another, are typically similar, whereas the joint trajectories generated by
the individual motor control scheme might differ significantly depending on the constitution
of the subject.

In this chapter, we present a novel approach to investigate the hypothesis that members
of the respective group share a common motor control strategy to select among the infinite
set of joint trajectory solutions achieving a given task. We focus our analysis on the hand
coordination task of pouring water from one glass into another, as depicted in Figure 3.1.
Our approach relies on motion data of healthy and PD subjects collected using a whole-body
motion capture suit. In a first step, we map the data to a simplified scale-adaptive artificial
model of the human upper body in order to perform dimensionality reduction. Afterwards, we
use this model to track the mapped human end-effector trajectories based on a variable damped
least-squares control scheme with adaptive joint weights. The joint weight parameterization
of the control scheme allows executing the same end-effector trajectory with arbitrary joint
trajectories that, in turn, reflect different motor control strategies. To determine the respective



3.1. MOTION DATABASE 31

Figure 3.2: XSens MVN motion capture suit used to record motions of healthy and PD
subjects in clinical experiments. Left: PD subject performing a functional reach test. Right:
Hand-coordination task of pouring water from one glass into another.

motor control strategy for each subject, we developed a technique to iteratively learn the joint
weights of the controller to match the observed joint trajectories. Based on the resulting joint
weights, we carry out a quantitative comparison of the differences between the motions of PD
patients and healthy subjects and infer their motion control strategy principles. According
to our results, it turns out that we can differentiate between two motor control strategies,
referred to as the proximal and distributed motion strategy, adopted by the two groups for
task achievement. To the best of our knowledge, this is the first approach learning indicative
motor control parameters in order to explain the effects of neurological diseases onto the
musculoskeletal system in human subjects.

3.1 Motion Database
The basis of our motor control analysis is a database of motions recorded from healthy and
PD subjects using the whole-body motion capture suit, described in Section 2.1.1 (XSens
MVN [105]). The deployment of the suit for clinical trials is shown in Figure 3.2. In the
following, we will briefly explain how the motion capture data is acquired and give details
about the motor control task considered for the purpose of our investigation.

3.1.1 Data Acquisition
In order to examine the underlying human motor control behavior, we sample the IMU sensor
data provided by the motion capture suit at full resolution, i.e., with 120 Hz. A visualization of
the corresponding motions is provided by the MVN Studio software, which maps the recorded
motions to an artificial human avatar composed of 23 segments and 22 joints. Since we are
investigating motor control deficits of PD patients in hand coordination tasks, we are using
only the data of the upper body, i.e., the trajectories of the spine and arm joints qh. Instead
of acquiring the data online as done in Chapter 2, we export it in a database of Moven Open
XML (MVNX) files.



32
CHAPTER 3. LEARNING MOTOR CONTROL PARAMETERS FOR MOTION STRATEGY

ANALYSIS

70cm

40cm

50cm

Figure 3.3: Hand coordination task: Subjects are asked to pour water from one glass (green,
at the left of the subject) into another, empty glass (blue).

3.1.2 Motor Control Task
To analyze the motions of PD patients and compare them to motions of healthy subjects, we set
up a task, where water needs to be poured from one glass into another using the left hand (see
Figure 3.3). The task has been designed such that the resulting motions are composed of two
sections, the coarse subtask of transitioning the glass filled with water to the empty glass and
the delicate subtask of pouring the water from one glass into the other without spilling.

3.2 Motion Representation
The intrinsic model of the motion capture system for representing the motions recorded from
the upper body of subjects, i.e., the spine and arm kinematic chain, is composed of 8 spherical
joints, and thus 24 degrees of freedom (DOF) (see Figure 2.2). Empirical analysis of the
recorded data, however, revealed that contrary to the model presented some human joints
have less than three rotation axes, thus resulting in only 19 DOF actively contributing to the
observed motions. Due to this fact, we built a simplified artificial model used as a compact
representation for the motions of a human’s upper body in hand coordination tasks.

3.2.1 Artificial Model of the Human Upper Body
The artificial kinematic model, shown in Figure 3.4, is composed of the previously mentioned
19 DOF dominating the execution of the hand coordination task. Here, the first 8 DOF
represent the motion of the spine and the remaining 11 DOF the motion of the kinematic arm
chain. The configuration of the entire model is defined by the following vector of joint angles

qh = (qspine ,qarm)> ∈ R19, (3.1)

with
qspine = (sϕ1 , s

θ
1, s

ϕ
2 , s

θ
2, s

ϕ
3 , s

θ
3, s

ϕ
4 , s

θ
4) ∈ R8, (3.2)

qarm = (aϕC7, a
ψ
C7, a

θ
sh, a

ϕ
sh, a

ϕ
up arm , a

ψ
el, a

θ
el, a

ϕ
f arm , a

ψ
wr , a

θ
wr , a

ϕ
wr) ∈ R11, (3.3)



3.3. LEARNING MOTOR CONTROL PARAMETERS 33

roll angles
pitch angles
yaw angles

s1

s2

s3

s4

aC7

ash

aup arm

ael

af arm

awrFhip

Fee

Figure 3.4: Artificial kinematic model of the human upper body.

where qspine and qarm denote the configurations of the spine and arm chain, respectively.
Here, the vector elements skj , a

k
j refer to the roll, pitch, and yaw angle k ∈ {ϕ, θ, ψ} of joint j.

Moreover, we use for each subject measurements from the T-pose, depicted in Figure 2.3, in
order to set the length of the links for the artificial kinematic model equal to the length of
corresponding links of the human.

3.2.2 Motion Mapping
In order to map the recorded motions to our simplified representation, we assign the joint
trajectories qhi of the 19 dominant human joints to the respective joints of our artificial
model. Furthermore, we record the trajectory of the hand xhe = (xe, ẋe)

> ∈ R12, referred
to as the end-effector in the following, over the entire motion sequence. The end-effector
pose trajectory xe ∈ R6 of frame Fee , expressed with respect to the fixed frame Fhip , is
obtained by solving the forward kinematics for each configuration qh(t) captured by the
system at time t. The end-effector velocity trajectory follows from the backward difference
ẋe(t) = (xe(t)− xe(t− 1))/∆t, where ∆t ≈ 8ms considering a sampling rate of 120Hz.

We use the same kinematic representation with the trajectory information xhe and qh in the
following to implement a mathematical model that learns the underlying characteristics of the
motions in terms of motor control parameters.

3.3 Learning Motor Control Parameters
When applying a mathematical model for motor control, there exist infinite solutions of joint
trajectories that achieve the desired human end-effector trajectory xhe . A common approach is
to select a solution, generated through the optimization of a specific objective function, that is
assumed to mirror the underlying motor control principles and thus the resulting joint motions
qh adopted by human beings. While the minimum-jerk model [133] has found to yield a
close fit to natural human arm motions, it does not allow to make any statements concerning
the differences between the motion of two different subjects. The motor control analysis
presented in this work relies on an iterative method for fitting a mathematical model to the



34
CHAPTER 3. LEARNING MOTOR CONTROL PARAMETERS FOR MOTION STRATEGY

ANALYSIS

observed human motion by adapting motor control parameters based on joint trajectory error
information.

3.3.1 End-Effector Trajectory Tracking
As a first step, our approach reproduces the recorded end-effector trajectory xhe using a
mathematical model, i.e., a controller, for motion generation. A classical approach from the
literature to generate a desired end-effector trajectory for a kinematic structure is based on the
inverse differential kinematics control scheme [121]. In this approach, a desired end-effector
trajectory xd is tracked by numerical integration of joint velocities over a given interval ∆t,
with q(0) being the initial configuration. The joint values required at time tk+1 to move the
end-effector along the desired trajectory from pose xd(tk) to xd(tk+1) are computed as

q(tk+1) = q(tk) + q̇(tk)∆t, (3.4)

with
q̇(t) = J−1(q(t))(ẋd(t) + Ke(t)), (3.5)

where J−1 is the Jacobian inverse evaluated in configuration q, ẋd the desired velocity along
the end-effector path, and K a positive definite diagonal gain matrix whose scalar values can
be chosen to give individual weights to the components of the error e. Note, that the time
dependency of the variables is omitted from now on in favor of a compact notation. The
operational space error between the desired xd and the current xc end-effector position and
orientation is denoted as e and defined as follows

e = xd − xc. (3.6)

e accounts for the numerical drift of the solution involved in the integration process in Eq. (3.4).
This ensures that the end-effector pose corresponding to the computed joint variables matches
the desired one. Inversion of the Jacobian, however, is only feasible if the number of opera-
tional space variables r is equal to the number of joint space variables n, i.e., if J is a square
matrix. When r < n, as in our case where r = 6 and n = 19, a manipulator is said to be
redundant and we need to refer to a modified control scheme. A solution scheme for redundant
manipulators is obtained by

q̇ = J†dls(ẋd + Ke) + (In − J†dlsJ)ż, (3.7)

where the Jacobian inverse in Eq. (3.5) has been replaced with the damped least-squares
pseudoinverse, defined as

J†dls = J>(JJ> + λ2Ir)
−1. (3.8)

The term λ2 represents a dynamic damping factor used for stabilization of the solution in
the vicinity of kinematic singularities, where the Jacobian becomes ill-conditioned from a
numerical viewpoint. In accordance with [23], we use the following definition

λ2 =

{
0, if σ ≥ ε

(1− (σ
ε
)2)λ2max , if σ < ε

(3.9)



3.3. LEARNING MOTOR CONTROL PARAMETERS 35

where σ is the manipulability measure evaluated at each configuration [148], λmax is the
maximum damping factor, and ε is the activation threshold, respectively. Using an activation
threshold ensures that damping is only applied when needed. Moreover, we consider a
second term in Eq. (3.7) projecting a gradient ż into the null-space of the inverse differential
kinematics solution. This gradient can be used to fulfill additional tasks without perturbing
the end-effector trajectory tracking performance. Here, we choose ż such that the joint values
of our model are kept within the range of human joints, thus respecting the natural kinematic
constraints of the human musculoskeletal system. Following the approach presented by
Chaumette and Marchand [22], we define the gradient as follows

żi =


qi−q̂imax

q̃i
, if qi > q̂imax

qi−q̂imin

q̃i
, if qi < q̂imin

0, else,

(3.10)

where żi is the joint limit gradient for the i-th joint. Here, qi indicates the current joint value
and q̃i = qimax − qimin its respective absolute joint range. The variables q̂imin and q̂imax are used
to select an upper and lower threshold for the joint limit gradient activation, defined as

q̂imin = qimin + γq̃i, (3.11)

q̂imax = qimax − γq̃i, (3.12)

with a fixed value for γ ∈ [0.0, 0.5]. To track the human end-effector trajectory with the
damped least-squares control scheme, we set xd = xe and ẋd = ẋe and choose the first
configuration of the recorded motion qh(0) at time t = 0 as the initial configuration q(0) in
our control setup.

3.3.2 Adaptive End-Effector Trajectory Tracking
The joint trajectories generated by Eq. (3.7) follow from the minimization of a specific cost
functional and represent only one possible solution to track a desired end-effector trajectory xhe .
Alternative solutions can be obtained by adding further objective functions, i.e., optimizing the
motion with respect to different criteria. In this work, we follow the approach of Schinstock
et al. [113], that parameterizes the control scheme using joint weights in order to be able to
generate arbitrary joint trajectory solutions. To do so, we use in Eq. (3.7) an extended variant
of J†dls, referred to as the weighted damped least-squares pseudoinverse

J†wdls = J>w(JwJ>w + λ2Ir)
−1, (3.13)

with
Jw = JWq, (3.14)

where Wq is a n× n diagonal matrix of joint weights for a kinematic model such as the one
depicted in Figure 3.4, defined as

Wq =


w1 0 · · · 0

0 w2
. . . ...

... . . . . . . 0
0 · · · 0 wn

 . (3.15)



36
CHAPTER 3. LEARNING MOTOR CONTROL PARAMETERS FOR MOTION STRATEGY

ANALYSIS

Algorithm 1: Joint Weights Learning Algorithm

Input :Reference joint and end-effector trajectory of the human qh, xhe
Output : Joint weight vector w

1 w, winc , wgrad ← initJointWeights()
2 for i = 1 to maxIter do
3 jointIdx← 0
4 while jointIdx != numJoints do
5 qc ← runControlJWDLS(w, xhe , qh(0))
6 weightUpdate← updateJointWeight(qcjointIdx, qhjointIdx, wgrad

jointIdx)
7 if (weightUpdate = FALSE) then
8 jointIdx← jointIdx + 1

9 end
10 end
11 end
12 return w

Solving Eq. (3.7) using weighted damped least-squares yields q̇w, from which an approximated
solution for q̇ is obtained by

q̇ = Wqq̇w. (3.16)

Such a parameterization of the control law allows for modeling different motor control
strategies that all track the same desired end-effector trajectory. In case of Wq being the
identity matrix, Eq. (3.13) coincides with the damped least-squares solution defined in Eq. (3.8).
On the other hand, lower weights can be chosen for the joints of the spine to generate a motion
that is dominated by the joints of the arm kinematic chain. In the following, we present an
iterative scheme to determine the values for the joint weights wi, required to replicate the
motions recorded from healthy and PD subjects as closely as possible.

3.3.3 Joint Weights Learning
The approach to determine the joint weights, given a human end-effector trajectory xhe and
joint trajectory solution qh, is described as pseudocode in Alg. 1. In line 1 of Alg. 1 the
joint weight w, weight increment winc and gradient direction wgrad vectors are initialized.
Afterwards, maxIter runs of the joint weights learning algorithm are performed, where each
iteration corresponds to the stepwise optimization of all joints weights along the kinematic
chain of our model. At the beginning of each iteration the index jointIdx is set to 0, indicating
that we start the weights optimization process for the first joint of the spine segment, i.e., sϕ1
in Eq. (3.2). Using the initial configuration qh(0) and the current joint weights w, we track
the human end-effector trajectory xhe by running the weighted damped least-squares control
scheme presented in Section 3.3.2 and obtain the joint trajectory solution qc (line 5 of Alg. 1).
Subsequently, the joint trajectories qcjointIdx and qhjointIdx of the jointIdx-th joint, generated
by the controller and the human, respectively, are used as input for the updateJointWeight
function, described in Alg. 2. The additional input parameters rmse thr and ∆rmse thr define
thresholds for the error between the control-based and the recorded human joint trajectories.



3.3. LEARNING MOTOR CONTROL PARAMETERS 37

Algorithm 2: Update step of the joint weights learning algorithm

Input :Reference joint trajectory of human qhi and trajectory generated by the
controller qci , joint weight gradient direction wgrad , thresholds for absolute
value and change of root-mean-square error rmse thr , ∆rmse thr

Output :Updated joint weight wi, return status of update

1 rmseti ← computeJointTrajectoryError(qci , qhi )
2 ∆rmseti ← rmseti − rmset−1i

3 if (rmseti < rmsethr or ∆rmseti < ∆rmsethr) then
4 return FALSE
5 else
6 if (∆rmseti > 0) then
7 wgrad

i ← −wgrad
i

8 winc
i ← incScaleFactor ∗winc

i

9 end
10 wi ← wi + (wgrad

i ∗ winc
i )

11 return TRUE
12 end

Here, we determine in a first step the root-mean-square error rmseti between the trajectories qci
and qhi of joint i and the change of that error ∆rmseti with respect to the one computed in the
previous iteration rmset−1i (lines 1-2 of Alg. 2). If rmseti or ∆rmseti is below the thresholds
rmse thr or ∆rmse thr , respectively, the algorithm returns FALSE, indicating that the similarity
between the control-based and human solution for the motion of joint i has either reached a
satisfactory level or cannot be further improved through joint weight adaption (lines 3-4 of
Alg. 2). Otherwise, we evaluate whether the root-mean-square error has been decreased by
the last joint weight modification performed at t− 1 (line 6 of Alg. 2). If that is not the case,
the joint weight gradient direction wgrad

i ∈ {1,−1} is switched and the current joint weight
increment winc

i is reduced by multiplying it with a constant factor incScaleFactor (lines 7-8
of Alg. 2). This factor helps to avoid undesired oscillation of the joint weight and to ensure
convergence of the learning algorithm. If the joint weight update performed in the last iteration,
has improved the similarity between the control-based and human joint trajectory the values
of the variables wgrad

i and winc
i remain the same. In a final step, the weight wi of joint i

is increased or decreased depending on the current gradient direction wgrad
i and TRUE is

returned, indicating that the joint weight has been modified (lines 10-11 of Alg. 2).
Depending on the weight update status weightUpdate returned by the updateJointWeight

function, the joint weights learning algorithm proceeds in two different ways (line 6 of Alg. 1).
If weightUpdate = TRUE, the weighted damped least-squares controller is run again with
the new joint weight wi followed by another joint trajectory error evaluation. On the other
hand, if weightUpdate = FALSE, the variable jointIdx is incremented to consider the weight
of the next joint along the chain for the optimization process (lines 7-8 of Alg. 1). When the
maximum number of iterations maxIter is reached the final joint weight vector w learned for
the subject is returned (line 12 of Alg. 1). Note, that the joint trajectories generated by the
control scheme are not independent from each other, i.e., an improvement in similarity to



38
CHAPTER 3. LEARNING MOTOR CONTROL PARAMETERS FOR MOTION STRATEGY

ANALYSIS

the human motion achieved for a specific joint trajectory solution qci by modification of the
respective joint weight wi may deteriorate the joint trajectory solution qcj of another joint j.
Therefore, we run the entire weight optimization process maxIter times to find a compromise
between conflicting joint weights, mutually deteriorating each others similarity to the recorded
human joint trajectory solutions.

3.4 Implementation Details
The artificial human upper body model is generated in ROS (Robot Operating System) by
defining an urdf file (Universal Robot Description Format). For recording the human end-
effector trajectories, we perform forward kinematics using the KDL library [124]. The error
gain matrix K used in Eq. (3.5) is set to the identity. For the joint limits avoidance task, we
set the activation parameter γ = 0.2. The parameters used to determine the damping factor
in Eq. (3.9) are set to λmax = 0.04 and ε = 0.0008. For the weight learning algorithm, we
assign an initial value of 1 to all vector elements of w and wgrad . The weight increment winc

is set to 0.8 for all joints. For the weight reduction factor, we use incScaleFactor = 0.8 and
for the joint trajectory error thresholds rmse thr = 0.02 and ∆rmse thr = 0.001. In total, we
perform maxIter = 10 runs of the weight optimization process.

3.5 Experimental Results
In the following, we present experimental results for a database composed of motions recorded
from healthy and PD subjects. The results include an evaluation of the trajectory tracking
performance of our controller as well as an analysis of the joint weights learned by our
algorithm for two different groups, PD patients and healthy subjects.

3.5.1 Experimental Setup
The two groups were recruited from the clinic’s movement disorders outpatient clinic for
the study of the hand coordination task, described in Section 3.1.2. All participants gave
their written informed consent and their data was pseudonomized at study inclusion, all in
accordance with the Helsinki Declaration and to the local ethics committee (Ethikkommission
der Medizinischen Fakultät der Ludwig-Maximilians-Universität).

Six PD patients participated in this study. They were 2 female and 4 male ranging from 48
to 74 (mean 65) years of age. None had any additional disorder influencing postural control.
Patients were on their regular medication in ON state, 2 had deep brain stimulation. Half of
the patients had pathological side left and right, respectively. The momentary state of patients’
mobility was assessed just prior to the experiment with the Unified Parkinson’s Disease Rating
Scale (UPDRS mean 22.33±12.94 SD). Six control subjects were recruited from relatives of
the authors and (former) university personnel, 3 female and 3 male ranging from 48 to 62
(mean 57) years of age. None had history of neurological disorders of any sort or orthopedic
disorders requiring surgery or regular medication. All subjects were right-handed. Each
subject performed six repetitions of the task, leading to an overall database of 36 motions for
the healthy and PD group, respectively.



3.5. EXPERIMENTAL RESULTS 39

s ϕ
1

s θ
1

s ϕ
2

s θ
2

s ϕ
3

s θ
3

s ϕ
4

s θ
4

a ϕ
C
7

a ψ
C
7

a θ
sh

a ϕ
sh

a ϕ
up

arm

a ψ
el

a θ
el

a ϕ
f
arm

a ψ
w
r

a θ
w
r

a ϕ
w
r

0

0.5

1

1.5

2

2.5

3

3.5

4

Joint Weights Healthy Group
Joint Weights PD Group

Figure 3.5: Average joint weights learned for the healthy (blue) and PD (red) subject group.
The y-axis values correspond to the final weights for the joints indicated on the x-axis.

3.5.2 Trajectory Tracking Performance

The mean Cartesian tracking error between the recorded human end-effector position trajec-
tories xe and the associated end-effector position trajectories obtained from the weighted
damped least-squares control scheme using the final joint weights w, learned from Alg. 1, is
0.64 cm. Using the final joint weights, the mean residual error between the control-based and
the corresponding human reference joint trajectories is found to be 0.029 rad, i.e., 1.69°.

3.5.3 Motion Strategy Analysis

The primary goal of our work is to investigate the hypothesis that healthy subjects and PD
patients follow two different motion strategies to complete the same task successfully. Here,
we consider the joint weights as indicative motor control parameters from which we want to
infer underlying motion strategies adopted by the two groups. In this context, learning those
parameters can be considered a prerequisite for the following analysis. In total, we learned
the joint weights for 36 healthy and PD affected hand coordination motions, respectively.
Figure 3.5 shows the mean and standard deviation for the weight of each joint and group.
These first results suggest, that the motions of healthy and PD subjects primarily differ in the
way the arm kinematic chain is actuated for task achievement. Healthy subjects show a strong
tendency towards a proximal motion strategy, with decreasing joint weights along the arm
chain, whereas PD subjects follow a distributed motion strategy, with balanced joint weights
along the arm chain.

In order to determine whether there is a significant difference between the joint activity in
healthy and PD subjects, we additionally performed an independent sample t-test for each
weight. The results depicted in Figure 3.6 confirm that, in particular, the weights for the
proximal joints, shoulder pitch aθsh and upper arm roll aϕup arm , are significantly higher for



40
CHAPTER 3. LEARNING MOTOR CONTROL PARAMETERS FOR MOTION STRATEGY

ANALYSIS

s ϕ
1

s θ
1

s ϕ
2

s θ
2

s ϕ
3

s θ
3

s ϕ
4

s θ
4

a ϕ
C
7

a ψ
C
7

a θ
sh

a ϕ
sh

a ϕ
up

arm

a ψ
el

a θ
el

a ϕ
f
arm

a ψ
w
r

a θ
w
r

a ϕ
w
r

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 3.6: Results from the independent sample t-test: Comparing the joint weight means of
the healthy and PD group against each other.

healthy subjects than for PD patients (with a significance level of α = 0.05 and α = 0.025,
respectively). Given these insights, it seems that healthy subjects naturally use primarily the
proximal joints to minimize the distance to a given target hand pose. On the other hand, distal
joint activity is set aside for delicate hand pose adjustments. PD seems to affect this motion
strategy in terms of reduced proximal joints activity. In order to complete the same task
successfully the reduced proximal motion is compensated by raising the motion contribution
of the remaining joints.

Note that in our experiments, the activation of the spine joints were similar between the two
groups, although PD is well known to affect the postural stability of subjects. This finding may
result from patients recovering stability by making use of the arm and back rest provided by
the chair they are sitting on while performing the task. Investigation of whether the omission
of arm and back rest support yields significant differences between the weights learned for the
spine joints for healthy and PD subjects is subject to future work.

3.6 Related Work

Previous approaches dealing with human motion analysis can be subdivided into two main
categories. The first category deals with the segmentation of the motion data into different
actions or emotions. Approaches from the second category try to build computational models
reflecting the underlying principles of human motion through optimization of different criteria
or objective functions. In this work, both categories are relevant because the motor control
deficits of PD patients can be interpreted as a result of a specific permanent emotional state or
a motor control strategy following an objective function that is different from the one adopted
by healthy subjects. In the following, we discuss representative approaches for each category.



3.6. RELATED WORK 41

Rahimi et al. [103] presented an approach that uses principal component analysis (PCA)
to identify kinematic variables that best represent mobility tasks performed by PD patients.
This method uses motion data of patients at different stages of PD recorded in their home
environments using a full-body motion capture suit. Subsequently, the data were analyzed to
determine possible variability between tasks, subjects, and trials. The results, however, state
that no specific movement profile among patients for each task has been found.

Das et al. [38] use a support vector machine (SVM) to discriminate mild versus severe
Parkinson’s disease symptoms. The authors recorded motions of PD patients performing
various motor control tasks and trained a motor task specific SVM classifier based on different
sets of features. Das et al. report an average classification accuracy of approximately 90%.

Day et al. [39] tested the hypothesis that predictive motor behavior is abnormal in Parkin-
son’s disease by recording the performance of healthy and PD subjects tracking a repeated
and an unpredictable pattern of a moving spot with their hand. Despite of the obvious motor
control deficits of the patients, the authors found that their tracking performance, evaluated
w.r.t. the measured tracking lags, is comparable to that of healthy subjects.

Barbic et al. [7] investigated three techniques for automatic segmentation of motion capture
data into distinct actions, e.g., walking, drinking, or sitting down. The two presented online
segmentation techniques are PCA and probabilistic PCA. The third approach is a batch process
using Gaussian mixture models for segmentation. All methods achieved good results in the
experiments, though probabilistic PCA has found to provide the overall best performance.
Based on the work in [7], Zhou et al. [151] proposed aligned cluster analysis, an extension
of standard kernel k-means clustering for temporal segmentation of human motion data
into actions. Here, the extension allows a variable number of features in the cluster means
and the use of a dynamic time warping kernel to achieve temporal invariance. In a further
extension [152], Zhou et al. developed an approach to implement a hierarchical decomposition
of human motion data, where actions such as running or walking can be further decomposed
into motion primitives of smaller temporal scale.

Cimen et al. [30] presented a technique using a set of posture, dynamic, and frequency-based
descriptors for emotion classification of motion data. Based on different feature combinations,
this approach applies a SVM learning algorithm to classify recorded motions into four distinct
emotional states. Aristidou and Chrysanthou [6] propose a method to automatically extract
motion qualities from dance performances, in terms of laban movement analyses (LMA) for
motion analysis and indexing purposes. Using the four LMA components body, effort, shape,
and space, the authors analyze correlations between the performer’s acting emotional states.

Campos and Calado [18] provided an overview of human arm movement control theories
and the different paradigms that have been used in modelling arm control. The authors
distinguish between descriptive, dynamic, stochastic and motor execution models and analyze
their relevance for rehabilitation practices.

Flash and Hogan [45] presented an approach for modelling voluntary human arm move-
ments mathematically by defining an objective function representing the rate of change of
acceleration. By minimizing the objective function using dynamic optimization, the method
predicts trajectories for point-to-point and curved motions that resemble the observed mo-
tions of human subjects. Based on this work, Todorov and Jordan [133] proposed a novel
mathematical model that accurately predicts the speed profiles of a human arm in straight
reaching and extemporaneous drawing movements. The results indicate that the relationship
between end-effector path and speed profile of a complex arm movement is stronger than



42
CHAPTER 3. LEARNING MOTOR CONTROL PARAMETERS FOR MOTION STRATEGY

ANALYSIS

Figure 3.7: Possible extension of our approach towards lower limb and whole-body motion
strategy analysis. Left: PD subject performing a 10 m walk trial. Right: Walking motion
mapped to a whole-body artificial kinematic model.

previously thought. Albrecht et al. [3] developed an approach that uses physically inspired
optimization principles describing a human’s motion based on bi-level optimization methods.
These principles are subsequently used to generate reaching motion trajectories for a humanoid
robot that are similar to the recorded human behavior.

3.7 Conclusion
In this chapter, we presented an approach to differentiate between the underlying motion
strategies adopted by healthy subjects and patients whose motor control is affected by a
neurological disorder. We propose to learn indicative motor control parameters of a control
scheme based on captured motion data. Our technique relies on a parameterization of the
control scheme by means of joint weights, reflecting the activity level of joints contributing to
the motion task. As we have shown in the experiments, the chosen control scheme is capable
of closely replicating the recorded human end-effector and joint trajectories using the learned
joint weights obtained from our algorithm.

According to our results on a motion database of healthy and Parkinson’s disease subjects,
there exist different motion strategies adopted by the two groups, referred to as the proxi-
mal and distributed motion strategy. Healthy subjects follow a hierarchical joint activation
paradigm, whereas PD subjects show a balanced joint activation pattern. In general, the
advantage of this novel measure of motor behavior lies in its independence of movement
amplitudes and volition. Because joint contributions are not easily visible even for experienced
neurologists, it might open a new field of motion analysis, yielding to new measures of motor
deficits, which might be also used for the evaluation of therapeutic interventions such as deep
brain stimulation in Parkinson’s disease, even in a closed-loop fashion.

As the presented work can be considered as a basis for further investigations, there are also
several issues to be addressed in future work. First, and most important, it would be valuable
to increase the number of motion samples considered for the motion strategy analysis. Here,
care should be taken to ensure that the number of male and female subjects as well as the mean



3.7. CONCLUSION 43

age of the respective groups are as similar as possible. Moreover, it is necessary to record from
subjects with the same handedness in order to avoid a bias of the results. Considering a larger
database would decrease the amount of intra-group variability and overlap between the groups
for each joint weight, as evidenced in Figure 3.5, thus consolidating the findings. However,
building up a control group with a comparable mean age is not easy, as the average age of
patients, diagnosed with PD, is with 64 years1 relatively high and therefore only a low number
of healthy subjects with the same age are available in the immediate work environment.

Another interesting aspect for future work would be to examine whether there is a relation-
ship between motor symptom severity, i.e., the UPDRS scores and the resulting joint weight
means. This may provide some insight into whether there is a gradual shift in the motion
strategy as the motor symptoms of the Parkinson’s disease worsen.

Finally, additional motion capture data could be used to investigate the motor control
strategy also for other tasks involving the lower limbs or even whole-body motions. Of course,
this would require to use an extended artificial kinematic model, as depicted in Figure 3.7,
and simultaneous control of multiple kinematic chain.

1More information is available under http://www.parkinson.org

http://www.parkinson.org




Chapter 4

Stance Pose Selection by Inverse
Reachability Maps

Knowledge about the robot’s reachable workspace is of great impor-
tance when considering grasping tasks carried out with a humanoid
platform. Without this knowledge, it might be necessary to repeatedly
adapt the stance location and call an inverse kinematics solver before a
valid robot configuration suitable for reaching a given grasping pose
can be found. In this chapter, we present an approach to select an
optimal stance location in SE(2) for a mobile robotic platform relative
to a desired grasp pose. We use a precomputed representation of the
robot’s reachable workspace that stores quality information in addition
to spatial data. By inverting this representation we obtain a so-called
inverse reachability map (IRM) containing a collection of potential
stance poses for the robot. The generated IRM can subsequently be
used to select a statically stable, collision-free stance configuration to
reach a given grasping target. We evaluated our approach with a Nao
humanoid in simulation and in experiments with the real robot. As
the results show, using our approach optimal stance poses can easily
be obtained. Furthermore, the IRM leads to a substantially increased
success rate of reaching grasping poses compared to other meaningful
foot placements within the vicinity of the desired grasp.

The inherent anthropomorphic kinematic structure of humanoid robots is a basic property,
allowing them to conduct mobile manipulation tasks in environments originally designed
for humans. A prerequisite for successful task completion in such settings is that the robot
is equipped with sufficient knowledge about the relevant aspects of the scene and its own
capabilities. This also includes the ability to decide where to place itself relative to an object to
be manipulated in order to achieve an admissible grasp configuration. In Chapter 2, a human
operator was supposed to provide that knowledge as well as appropriate motion commands
to reach a convenient stance location relative to a specific grasping target. However, human
assistance depended mobile robotic systems are considered impractical or even undesirable
for many applications, for the reasons previously mentioned in Chapter 1. In such scenarios,
the robot needs to be able to independently infer potential stance poses, suitable to carry out
the upcoming manipulation task, from a desired end-effector grasping target given as input.
To decide where to place itself, the robot needs to account for obstacles in the environment



46 CHAPTER 4. STANCE POSE SELECTION BY INVERSE REACHABILITY MAPS

Figure 4.1: Representation of reachable right hand locations from statically stable double
support poses. Voxels are colored by the maximum value of the manipulability index among
the configurations stored in them (green = high, red = low).

scattered around the prescribed grasping target . Moreover, the decision is strongly influenced
by the structure of the robot’s kinematic model, including the number of joints and their value
range as well as its mass distribution. Based on these parameters, the robot’s manipulation
capabilities can be uniformly represented by a spatial data structure, called reachability
map [150], which is exemplary depicted in Figure 4.1.

Many existing techniques follow the approach of dealing with locomotion and manipulation
tasks as two distinct problems (e.g., [9, 107]). Thus, first a motion for the lower body is
planned, i.e., for the base of a mobile platform or the legs of a humanoid, in order to bring an
object to be manipulated within the extent of the robot’s upper body workspace. Subsequently,
the reaching task is performed using only the upper body joints. Whether the object can
actually be reached from the current stance location significantly depends on the number
of available joints and constraints involved. Most mobile manipulator and humanoid robot
platforms are designed to have at least one degree of redundancy in the upper body end-effector
chains. This choice allows the robot to arrive at almost all of its reachable end-effector poses
with arbitrary orientation without the need to reposition or reconfigure the mobile base or
lower body, respectively. In other words, a suboptimal choice of the stance location relative
to a grasping target is compensated by the redundant kinematic structure of the upper body.
However, when considering robots with an upper body equipped with only six or less degrees
of freedom (DOF), the number of achievable end-effector orientations for the targets within the
reachable workspace of the upper body is limited. As opposed to mobile manipulators, that are
forced to reposition their base once the desired end-effector orientation has been determined
to be unachievable from the current stance location, humanoid robots are capable of adjusting
their lower body configuration to extend the set of achievable end-effector orientations for a
given grasping target. The actuation of the legs of a humanoid, however, introduces balance
constraints and thus cannot fully compensate for the limited kinematic properties of the upper
body chains. Figure 4.2 illustrates this issue by comparing the capability of a humanoid robot
and mobile manipulator in reaching a grasping target at a specific height with a fixed upright
end-effector orientation. Here, the mobile manipulator reaches a large set of end-effector poses



4.1. WORKSPACE REPRESENTATION 47

Figure 4.2: Grasping targets at a specific height, reachable with a fixed upright end-effector
orientation. Targets reached by the NAO humanoid (left) and the omniRob mobile manipula-
tor (right). Voxels are colored by their manipulability index (red = low, green = high).

with dexterous configurations, whereas the number and quality of configurations covering the
workspace is much lower for the humanoid platform. This indicates, that the choice of a stance
pose relative to an object becomes a crucial factor for humanoids, if repetitive adaptions of the
stance location and calls to an inverse kinematics solver for the arm chain are to be avoided.

In this chapter, we present an approach that is based on the concept of inverse reachability
maps (IRM), proposed by Vahrenkamp et al. [136, 138], to select an optimal stance pose for
the feet of a humanoid robot in SE(2), i.e., a 2D position and 1D orientation, relative to the
grasping target. Nevertheless, the approach is not limited to humanoids and can be easily
applied to less constrained robotic platforms, such as mobile manipulators. As we show in
experiments with a Nao humanoid, we can easily select optimal stance poses from our IRM
given a desired grasp. By comparing our approach to random stance pose selection within a
meaningful extent around the target grasp, we achieve a substantially increased success rate.
Note, that such an IRM can also be used for humanoids and wheeled mobile manipulators
with a higher number of DOF’s to choose optimal stance locations for manipulation tasks.

4.1 Workspace Representation

Inspired by the work of Vahrenkamp et al. [138], we describe the robot’s reaching and
manipulation capabilities by a discretized representation of its workspace. The resulting
spatial data structure, referred to as the reachability map (RM), is composed of voxels of
constant size and needs to be computed only once offline. Each voxel of the grid represents a
set of robot configurations for which the end-effector pose lies within the extent of the voxel.

4.2 Generation of Forward Reachability Maps

A simple strategy to generate a representation of the robot’s reachability in workspace can
be obtained by iterating through all the 3D voxels of the spatial data structure while trying



48 CHAPTER 4. STANCE POSE SELECTION BY INVERSE REACHABILITY MAPS

to solve the inverse kinematics (IK) problem. If a IK solution is found, the corresponding
voxel is marked as reachable. Otherwise, the voxel is marked as being out of reach. Following
this approach, a binary representation of the reachability capabilities is obtained. Whereas
this information is sufficient to determine whether an end-effector pose is reachable or not,
it does not permit concluding how well a voxel is reachable compared to other voxels in
the spatial grid. A more informative representation can be constructed by sampling the
configuration space C of the robot and determining the voxel containing the corresponding
end-effector poses using forwards kinematics. This results in a data structure, from which
the quality of a voxel can be defined as the volume in C-space that maps to end-effector
poses lying within the extent of the voxel. Nevertheless, this measure is not sufficient for
uniquely identifying an appropriate configuration due to the fact that undesirable singular
configurations are equally contributing to the quality measure assigned to the voxels in the
map construction process. To avoid this false information and therefore to represent the robot’s
reaching capabilities more accurately, we adopt in this work the manipulability measurement,
introduced by Yoshikawa [148], to assign quality information to the voxels of the reachability
map. This way, the ability of the end-effector to maneuver in workspace is directly encoded in
the quality index of the resulting reachability data.

4.2.1 Configuration-Space Sampling
To build a reachability map, we need to generate samples from the robot’s configuration
space C. To do so, values can be either sampled uniformly from the respective joint range
or they can be selected iteratively by stepping through the joint value range with a specific
increment. The decision of how to sample the C-space significantly depends on the number
of DOF’s and constraints involved. Considering fixed base and mobile manipulators most
of the samples drawn will fall in Cfree ⊂ C, i.e., the subspace of collision-free and hence
valid configurations. However, in the case of humanoid robots additional loop-closure and
stability constraints arise when leg joints are involved in the sampling process. Hence, the
set of admissible configurations Cstable ⊂ Cfree for a humanoid covers only a small portion of
the entire C-space. In this work, we follow the approach of generating samples by stepping
through the value ranges of the joints actuating the kinematic chains. Here, we define for
humanoid platforms two different increments, a coarse increment for upper body joints and
a finer one for lower body joints that directly affect the compliance with loop-closure and
stability constraints. In contrast, a constant increment can be chosen for wheeled mobile
manipulators, which typically remain statically stable throughout the entire C-space of the
robotic arm mounted at its base.

4.2.2 Quality Information on Configurations
In this work, we evaluate the quality of reachability map voxels based on manipulability
measurements obtained for the configurations, leading to end-effector poses lying within its
extent. According to Yoshikawa [148], the manipulability of a robotic mechanism can be
generally understood as the ease of arbitrarily changing the position and orientation of the
end-effector located at the manipulator’s tip. This freedom of motion plays an important role
when a subsequent interaction between the robot and the environment is intended. Since the
ability to manipulate strongly depends on the configuration of the robot, it is necessary to



4.2. GENERATION OF FORWARD REACHABILITY MAPS 49

recall some general mathematical relationships. Let us consider a task r, typically defined by
a vector of m dimensions, and a configuration q, i.e., a vector of n joint values. The mapping
from configuration space to task space is defined by

r = f(q), (4.1)

which is also known as the forward kinematics equation. Accordingly, the relation between
the joint velocities q̇ and the task velocities ṙ follows from the derivative of Eq. (4.1), given
by

ṙ = J(q)q̇, (4.2)

where J(q) denotes the Jacobian matrix of the manipulator in configuration q. Analyzing the
rank of J(q) reveals some important properties of the kinematic structure. When the following
condition is satisfied

max
q

rank J(q) = m, (4.3)

the manipulator is said to have a degree of redundancy of (n−m). Otherwise, if the manipulator
Jacobian looses rank in a certain configuration q∗, i.e.,

rank J(q∗) < m (4.4)

the robot is said to be in a singular configuration. In this case, the task vector r specifying the
end-effector pose cannot move in a certain direction and thus the manipulability is reduced.
An explicit measure of the manipulability, represented by a scalar value w, has been introduced
by Yoshikawa in [148]:

w =
√

det J(q)J>(q). (4.5)

When considering non-redundant manipulators, i.e., when the number of task and configuration
dimensions are equal, Eq. (4.5) can be reduced to

w = | det J(q)|. (4.6)

The manipulation capabilities of a kinematic chain in a specific configuration can also be
assessed using a graphical representation. When considering the set of joint velocities of unit
norm, defined according to

q̇>q̇ = 1, (4.7)

and substituting in the above equation q̇ with the expression obtained by rearranging Eq. (4.2),
we obtain

ṙ>(J(q)J>(q))−1ṙ = 1, (4.8)

which is the equation of points on the surface of an ellipsoid in the end-effector velocity
space [121]. The direction and dimension of the principal axes of the ellipsoid, centered at
the end-effector frame, then follow by computing the singular value decomposition (SVD)
of the matrix JJ>. Note, that the argument q of the Jacobian is omitted in favor of a
compact representation in the following. The directions of the principal axes are given by the
eigenvectors of the matrix JJ> while their magnitude is determined by the singular values σi
of J, computed as

σi =
√
λi(JJ>), (4.9)



50 CHAPTER 4. STANCE POSE SELECTION BY INVERSE REACHABILITY MAPS

Figure 4.3: Manipulability ellipsoid for a planar manipulator with two revolute joints in
different configurations (Source: [121]).

where λi denotes the i-th eigenvalue of JJ>. Examples of the velocity ellipsoid for an 2R
planar manipulator in different configurations are shown in Figure 4.3. The shape of the
ellipsoid indicates that large velocities can be applied in the direction of the major principal
axis while only small velocities are possible in the direction of the minor axis. In singular
configurations, one of the principles axis vanishes and the ellipse or ellipsoid collapses to a
line in 2D and a plane in 3D, respectively. Finally, multiplying the singular values yields a
manipulability measure w that is proportional to the ellipsoid’s volume

w = σ1σ2 · · · σm, (4.10)

and thus offers an appropriate approximation to be used for assessing the distance of robot
postures to singular configurations. Assigning quality information to voxels on the basis of
this measure, instead of naively counting the number of voxel hits, in the map construction
process therefore generates reachability information that better reflects the true manipulation
capabilities of the manipulator.

Note, that manipulability can be similarly evaluated considering forces instead of velocities.
This measure is of particular importance, e.g., when the robot is intended to lift or push heavy
objects. The principal axes of the corresponding force ellipsoid have the same direction as
the axes of the velocity ellipsoid. The magnitude of the axes, however, are interchanged
with respect to the velocity ellipsoid. Thus, only small forces can be applied in directions
allowing large velocities and vice versa. For further reading about velocity manipulability
and a detailed explanation of the force manipulability the reader is referred to the literature
[28, 120, 121, 148].

Furthermore, additional refinements of the manipulability measure can be achieved by
considering further relevant properties of the robot’s kinematic structure. For example,
Vahrenkamp et al. [137], consider joint limits under redundancy, the distance to obstacles and
between robot links for determining voxel qualities in the map construction process. In case of
humanoid platforms, other meaningful measures such as the distance of the projected CoM to
the support polygon boundaries or the emerging torque at the ankle joints could be included.



4.3. KINEMATIC CONSTRAINTS 51

Figure 4.4: Original model and approximated model used for collision detection and dis-
tance computation for the humanoid robot NAO (left) and HRP-2 (right) (Source: Kanehiro
et al. [68]).

4.3 Kinematic Constraints
The extent of a robot’s reachable workspace highly depends on the number of degrees of
freedom it is composed of and the range of admissible values its actuators can adopt. Beyond
that, configurations need to be checked for self-collisions, i.e., robot postures where different
links of the kinematic structure are getting into contact with each other. Further, humanoid
specific, constraints adopted in our approach consider end-effector poses only reachable if
loop-closure for the kinematic chain formed by the two legs with the ground as well as static
stability can be achieved for the corresponding configurations. In the following, a detailed
description of the kinematic constraints involved in our map construction process will be
given.

4.3.1 Collision Detection
Detecting collisions among the links of a robot (self-collision) and between the robot and the
environment (obstacle-collision) is a fundamental element of sampling-based configuration
generation schemes. At the same time, collision detection represents a problem of considerable
computational complexity and can therefore be seen as a separate field of research. Depending
on the number of collision checks to be performed, the choice of a collision detection algorithm
may have a major influence on the overall performance of frameworks building upon it. This
is particularly relevant considering probabilistic motion planning frameworks, which typically
need to perform many collision checks until a valid solution is found. A common approach
to determine whether a certain configuration is in collision, is to perform an interference
check among the robot link geometries and between the robot and obstacle geometries. In
practice, this is done by finding the minimum distance between the geometries. If the distance
is found to be negative, i.e., the geometries overlap, the configuration is determined to be
in collision. Often, however, robots are constituted by complex geometries and finding the
minimum distance becomes a computational expensive operation. In the field of motion
planning this issue is traditionally addressed by approximating the robot geometry with simple
geometric shapes, such as cylinders and spheres. Additionally, these shapes are enlarged so as
to maintain a safety margin for each robot link against other geometries. An example of an



52 CHAPTER 4. STANCE POSE SELECTION BY INVERSE REACHABILITY MAPS

Passive joints
qa1

qa2

qa3

qa7

qp1

qp2

qp3

Figure 4.5: Example of a link decomposition into active and passive vectors of joints.

approximated robot geometry, generated for the humanoid robot HRP-2, is depicted in Fig. 4.4
(right). Whereas this approach yields a significant reduction of the computational demands, it
comes at the cost of discarding configurations which are actually valid considering the original
robot geometry. Contrary to motion planning algorithms, collision detection is employed only
in the forward reachability map construction process of our framework. Therefore, only very
subtle geometries of the original robot mesh, e.g., the hands of a humanoid, are approximated
by simple geometric shapes in our work. Moreover, a higher computational expense is not
critical here, considering that these maps need to be build only once in an offline step for
the respective robotic platform. The resulting geometry for the Nao robot used for collision
detection is illustrated in Fig. 4.4 (left).

For practical applications, there are already several collision detection frameworks available,
such as FCL, PQP or ODE [97, 122, 135]. Due to their complexity, we consider in this work
collision detection as a black box, providing validity information for the configurations given
as input.

4.3.2 Kinematic Loop-Closure

When sampling configurations for serial kinematic chains, joint angles are assumed to be
constraint only by their admissible value interval, but not to depend on the values chosen
for the preceding joints along the chain. This assumption, however, is no longer valid when
considering kinematic structures whose links are arranged to form loops. In this case, some
joints angles must be chosen such that the loop remains closed. In the case of a humanoid
robot, for example, closed kinematic chains occur when an object is manipulated using both
hands, or the legs of the robot are desired to remain fixed on the ground during a manipulation
task in favor of maintaining robust stability. In order to account for the closure constraint
in the process of generating reachability maps for legged humanoid robots, the classical
configuration sampling scheme needs to be adapted. A first approach is presented by the
Active-Passive Link Decomposition method [54]. With this approach, the configuration vector
q is split into a vector of active joints qa and a vector of so-called passive joints qp. A possible



4.3. KINEMATIC CONSTRAINTS 53

d1

d2
d3

d4
c1

c2

c3

c4

Figure 4.6: Parameter of a 4 link serial chain manipulator.

decomposition for a robot composed of seven revolute joints is shown in Fig. 4.5. With
this choice, the kinematic structure has four degrees of freedom. In a first step, the method
proceeds by randomly sampling values for the active joint variables qa ∈ R4. Afterwards the
remaining passive joint variable qp ∈ R3 are determined by solving the inverse kinematics
(IK) problem in order to satisfy the closure constraint. Note, that while for some choices of qa

multiple IK solutions for qp exist, most of the sampled configurations qa will not allow to
find a solution to the IK problem.

Another method, called the Random Loop Generator [32], improves the constraint satisfac-
tion success rate by iteratively choosing values for the variables in qa that allow an inverse
kinematic solution for the passive variables in qp. A prerequisite for this approach is that the
chosen active joints appear sequentially along the kinematic chain, i.e., they are not interrupted
by a passive joint. In a first step, an interval I1 of admissible values for the first active joint
qa1 is computed. According to some geometrical analysis, it is known that for all values qa1
outside this interval, no IK solution for the passive chain exists. In practice, this analysis
can be performed by checking whether the passive chain can reach the accessible workspace
spanned by the active chain, given a value for qa1 . Once a value for qa1 has been sampled from
I1, an interval I2 of admissible joint values for qa2 is computed. As before, a value of qa2 is
sampled from I2 and an interval for the subsequent active joint is determined. This procedure
is repeated until a value has been assigned to each active joint or the generator has detected
that no admissible assignment is left for one of the joints. If the set of admissible values Ii for
an active joint qai is found to be empty, all previous assignments are discarded and the whole
procedure is repeated. Otherwise, the vector qa is used to find values for the passive joints in
qp through inverse kinematics.

4.3.3 Static Stability

In order to determine the validity of whole-body poses sampled from the C-space of a
humanoid robot it is a necessity to evaluate whether the corresponding configurations provide
a stable posture or cause the robot to lose balance. From a geometrical point of view, the
stability constraint implies that the projection of the Center of Mass (CoM) of the robotic
structure is required to be located inside the support polygon. According to the literature, this



54 CHAPTER 4. STANCE POSE SELECTION BY INVERSE REACHABILITY MAPS

Figure 4.7: Support polygon (black line) and projected CoM (green dot).

formulation of the constraint is also referred to as static stability. An extension of this concept
is presented by considering dynamic stability, where the dynamics of a system are taken into
account to maintain equilibrium [142]. In motion generation schemes, as the one presented
in Chapter 2, it is of great importance to account for the system dynamics in order to ensure
stable trajectory execution. In contrast, a general representation of the reaching capabilities
of a robot does not depend on a specific motion. Thus, only static stability is involved in the
process of generating forward reachability maps for humanoid platforms.

As a first step, which is required to evaluate the validity of a configuration concerning
the stability constraint, the location of the CoM needs to be determined. For simplicity, let
us consider the serial kinematic chain composed of four links joined by revolute joints, as
depicted in Figure 4.6. For each link of the kinematic chain, the length li and the mass mi

are assumed to be given. Furthermore, it is supposed that the robot description, generated
from a 3D CAD model, provides the location of the center of mass ci = (ci,x, ci,y, ci,z, 1)> for
each link, expressed in homogeneous coordinates in the respective reference frame. From the
geometric description of the chain bodies, we can derive the homogeneous transformation
matrices Ti, defined as

Ti =

[
Ri di
0 1

]
, (4.11)

where Ri and di denotes the 3× 3 rotation matrix and the translation vector of the i-th link
frame with respect to the global frame, respectively. The total mass of the system is simply
obtained by summing up the individual masses of the links M = m1 +m2 +m3 + .....+mi.
The CoM location for the entire system in Figure 4.6 is obtained by computing the sum of
each link’s CoM divided by the total mass M [33]:

pCoM =
4∑
i=1

miTici
M

(4.12)

A humanoid robot is typically composed of several such kinematic chains. In this case, the
overall CoM location can be obtained by computing the weighted average of the individual
chain CoMs, determined according to Eq. (4.12).



4.4. REACHABILITY MAPS FOR WHOLE-BODY HUMANOIDS 55

Figure 4.8: Horizontal and vertical cross-section through the RM , showing right hand poses
reachable from statically stable double support configurations. Voxels are colored by their
manipulability index (red = low, green = high).

Once the CoM for the anthropomorphic structure is known, we need to check whether its
projection onto the support plane is within the boundaries of the so-called support polygon.
The support polygon is defined as the convex hull established by the pressure point of the
structure on the ground. Therefore, the shape and size of this polygon depends on whether the
robot is currently in single leg (one foot on the ground) or double (both feet on the ground)
support mode. An example of the support polygon for a double support configuration and the
location of the projected CoM is shown in Figure 4.7. If the projection of the CoM is inside
the support polygon, as depicted, the configuration is said to be statically stable. Otherwise,
if the point is found to be outside the boundaries of the polygon the robot would fall over
when adopting that pose. In the process of generating forward reachability maps for humanoid
platforms, this check is iteratively performed for the sampled configurations. Based on the
outcome of the validity evaluation, configurations are discarded or added to the corresponding
voxel of the spatial reachability grid.

4.4 Reachability Maps for Whole-Body Humanoids

Constructing a reachability map for a humanoid robot equipped with multiple end-effectors
is a challenging problem due to the high number of degrees of freedom and the number
of constraints involved. As opposed to a fixed base and most mobile manipulators for
which samples of the joint space are valid as long as they are self-collision free, additional
stability issues arise when also lower body joints of a humanoid are considered. Although our
framework allows representing reachability information for arbitrary chains of a humanoid
robot, e.g., reachable location of the torso when actuating the leg chains, we are in this work
particularly interested in reaching and manipulation tasks and hence in the workspace volume
covered by the gripper from statically stable double support configurations. The individual
steps for the construction of a reachability map are shown as pseudo code in Alg. 3 and will
be explained in detail in the following.



56 CHAPTER 4. STANCE POSE SELECTION BY INVERSE REACHABILITY MAPS

Algorithm 3: Construction of Reachability Map

Input :Root and tip link lroot, ltip, sampling step width ∆q, fixed desired pose of
swing foot pSUF

SWF

Output :Reachability Map RM

1 chain← getChain(lroot, ltip)
2 while qc ← sampleChainConfig(chain, ∆q) do
3 qSUL ← getSupportLegConfig(qc)
4 phip ← computeHipPose(qSUL)
5 pSWF ← desiredSwingFootPose(phip, pSUF

SWF )
6 qSWL ← solveSwingLegIK(pSWF )
7 if checkConfigValidity(qc,qSWL) then
8 w ← computeManipulabilityMeasure(qc)
9 ptcp ← computeFK(qc)

10 idx← findEEvoxel(ptcp)
11 RM ← addConfigToVoxel(idx,qc,qSWL, w)
12 end
13 end

4.4.1 Building Whole-Body Reachability Maps

The algorithm takes as input a root and tip link lroot, ltip for the chain for which sampling
is performed. Here, ∆q specifies the step width for sampling. Furthermore, a fixed desired
pose pSUF

SWF of the swing foot parallel and expressed with respect to the support foot, which
corresponds also to the root of the sampled chain, is defined. After sampling a configuration
of the chain (line 2 of Alg. 3) the part of the configuration vector qSUL storing the support
leg configuration is extracted (line 3 of Alg. 3) and the forward kinematics is solved to obtain
the pose of the hip phip with respect to the support foot (line 4 of Alg. 3). For a better
understanding, Figure 4.9 shows the joints and frames of the Nao humanoid robot. Given
the hip and the desired swing foot pose expressed in the support foot frame we can easily
determine the pose for the swing foot relative to the hip frame pSWF required to achieve a
double support configuration with the feet being placed parallel to each other (line 5 of Alg. 3).
Afterwards, the algorithm tries to solve the inverse kinematics problem for the swing leg
chain (line 6 of Alg. 3). If an IK solution is found it is stored in qSWL and the whole-body
configuration of the robot is checked for validity, i.e., we determine whether the whole-body
pose is statically stable and collision-free (line 7 of Alg. 3). If no IK solution exists or the
pose is found to be invalid, the algorithm proceeds by sampling a new configuration for the
kinematic chain and repeats the previous steps. Otherwise, if the configuration is valid the
algorithm continues by computing the manipulability measure (see Section 4.2.2) for the
sampled configuration (line 8 of Alg. 3). As described in Section 4.2, the forward kinematics
is subsequently computed to obtain the end-effector pose ptcp for configuration qc of the chain
and the index idx of the voxel containing ptcp is determined (lines 9-10 of Alg. 3). In a final
step the sampled configuration, its manipulability measure, as well as the IK solution for the
swing leg chain is stored in the voxel with index idx (line 11 of Alg. 3). Figure 4.8 depicts
a horizontal and vertical cross-section of a RM , build for the kinematic chain rooted at the



4.5. REACHABILITY MAPS FOR MOBILE MANIPULATORS 57

x y

z

Pitch joints
Roll joints
Yaw joints

x y

z

x

y
z

Figure 4.9: Kinematic chains and frames of the NAO robot considered in the process of
building reachability maps.

right foot and terminating at the right gripper. Note, that the reachability map need to be built
only once in an offline step.

4.4.2 Double Support Generation
In our approach, a voxel of the spatial data structure is reachable when the end-effector can be
placed within its extent from a statically stable and collision-free double support configuration.
Since sampling is performed only for a serial chain of the robot, e.g., for the joint between the
foot and gripper link, the loop-closure and stability constraint must be additionally enforced.
The former requires the adaption of the swing leg configuration such that the feet of the
robot are placed parallel to each other on the floor. Here, we apply the active-passive link
decomposition method, introduced in Section 4.3.2, to achieve a closed-loop configuration
for the legs, where the active chain corresponds to the support leg for which joint values are
sampled and the passive chain is represented by the swing leg. Let us assume w.l.o.g., that
the right leg is the support leg whose configuration is given by qSUL (line 3 of Alg. 3). By
computing the forward kinematics, we obtain the pose phip of the hip frame Fhip with respect
to the support foot frame Frfoot (see Figure 4.9). Then, using the fixed transformation pSUF

SWF ,
expressing the desired pose of the swing foot frame Flfoot with respect to the support foot, we
can infer the desired pose pSWF of the swing foot in the frame Fhip . Finally, we apply an
inverse kinematics solver to find a configuration qSWL for the swing leg.

4.5 Reachability Maps for Mobile Manipulators
As opposed to humanoid robots, which are preferably deployed in the domestic domain,
wheeled mobile manipulators are specifically designed to operate in industrial settings. As the
required skills vary a lot between different industrial sectors, they need to be able to cope with
a large spectrum of tasks. To fulfill these demands, the kinematic structure of such platforms
is defined in a manner establishing high versatility while keeping the complexity of the control



58 CHAPTER 4. STANCE POSE SELECTION BY INVERSE REACHABILITY MAPS

Figure 4.10: Horizontal and vertical layer of the RM , approximating the workspace volume
reachable by the end-effector of the omniRob mobile manipulator. Voxels are colored by their
manipulability index (red = low, green = high).

problem manageable. A first measure taken to equip these platforms with high dexterity is
related to the number of joints and their associated admissible value interval. In practice,
the manipulators used for mobile robotic platforms exhibit a joint range which is notably
wider than the intervals specified for humanoid kinematic structures. Additionally, it typically
possesses 7 degrees of freedom, thus offering a redundant degree of freedom considering
6D grasping tasks. Another characteristic property of mobile manipulators is that the mass
ratio between the mobile base and the manipulator is often chosen in a way, such that the
center of mass remains within the support polygon, defined by the footprint of the mobile
base, throughout the entire C-space of the robotic arm.

Taking these properties into account, the reachability map construction process described in
Alg. 3 becomes far less constraint considering mobile manipulator platforms. Here, the input
parameter specifying the desired pose of the swing foot relative to the support foot as well as
the steps performed in lines 3-6 of Alg. 3 can be omitted for obvious reasons. With regard
to the configuration validity evaluation performed in line 7 of Alg. 3, it is sufficient to check
whether the configurations are self-collision free assuming static stability and the absence
of external forces acting at the robot’s end-effector. The spatial data structure, resulting
from the reachability map construction process for the omniRob mobile manipulator (see
Appendix A.2), is depicted in Figure 4.10.

4.6 Reachability Map Inversion

The reachability maps generated according to Section 4.4 and Section 4.5 represent the robot’s
capability of reaching certain end-effector poses from statically stable and collision-free
configurations. Moreover, all configurations stored in the forward map for humanoids are
guaranteed to be in double support. In manipulation and reaching tasks, however, we face
exactly the inverse problem. Namely, the required end-effector pose is predefined by the pose
of an object to be grasped and we aim at finding a base or feet configuration that maximizes



4.6. REACHABILITY MAP INVERSION 59

x y

z
x

y

z

Figure 4.11: Cross-section through the IRM showing potential right foot locations (left foot
is parallel) relative to the right hand of the robot. Voxels are colored by their manipulability
index (red = low, green = high).

Algorithm 4: Reachability Map Inversion

Input :Reachability Map RM
Output : Inverse Reachability Map IRM

1 while v ← getVoxel(RM ) do
2 nc ← getNumConfigs(v)
3 for i = 1 to nc do
4 (qc,qSWL, w)← getConfigData(v, i)
5 ptcp ← computeTCPpose(qc)
6 pbase ← (ptcp)−1

7 idx← findEEvoxel(pbase)
8 IRM ← addConfigToVoxel(idx,qc,qSWL, w)
9 end

10 end

the probability of successful task execution. For this purpose, we use an inverse reachability
map (IRM) that represents potential base or feet poses relative to the end-effector. The IRM
is generated by inverting the previously generated reachability map. The individual steps
performed for inverting the reachability information are shown as pseudo code in Alg. 4 and
will be explained in detail in the following.

Given the reachability map RM as input, we iterate through its voxels v and for each of
them in turn through the nc configurations stored in it (line 1 of Alg. 4). For wheeled mobile
manipulators, the i-th configuration of voxel v is represented by a data structure composed
of the configuration of the sampled chain qc and the manipulability measure w (line 4 of
Alg. 4). For humanoids, the configuration of the swing leg qSWL is additionally contained.
By computing the inverse of the end-effector transformation ptcp, obtained by solving the
forward kinematics for the sampled chain, we obtain the pose pbase of the support foot or
mobile base with respect to the end-effector frame (lines 5-6 of Alg. 4). Equivalent to the



60 CHAPTER 4. STANCE POSE SELECTION BY INVERSE REACHABILITY MAPS

Algorithm 5: IRM-based Stance Pose Selection

Input : Inverse Reachability Map IRM , target grasp pose pglobalgrasp

Output :Optimal Stance pose pglobalstance

1 IRMgrasp ← transformIRM(IRM,pgrasp)
2 IRMfloor ← intersectIRMwithFloor(IRMgrasp)
3 IRMstance ← checkStanceFeasibility(IRMfloor)
4 pglobalstance ← getMaxManipVoxel(IRMstance)

reachability map construction in Alg. 3, we afterwards determine the index idx of the IRM
voxel containing the support foot or mobile base in pose pbase and add the configuration to
the inverse reachability map data structure (lines 7-8 of Alg. 4). Note, that the map inversion
process does not invalidate any configurations of the RM . Thus, no additional check for
constraint violation is required. The generated IRM represents a set of valid stance poses
relative to the end-effector independent from any specific grasp configuration. A cross-section
of the IRM , representing all right foot poses with respect to the right hand/gripper is shown
in Figure 4.11. As with the RM , the IRM needs to be built only once in an offline step and
can be subsequently used in all stance pose selection queries for arbitrary target grasp poses.

4.7 Inverse Reachability Map based Stance Pose Selection
Once the IRM has been computed, it can be used to determine the optimal stance pose for a
given grasping pose. Here, we assume a 6D target pose for the end-effector given as

pglobalgrasp = (x, y, z, ϕ, θ, ψ)>, (4.13)

where (x, y, z)> and (ϕ, θ, ψ)> is the position and orientation of the desired grasp pose with
respect to the global frame Fglobal . To obtain the set of potential stance poses for a specific
grasp pose from the IRM , we perform the steps described in Alg. 5.

First, the IRM is transformed in order to align its center with the grasp frame Fgrasp (line 1
of Alg. 5). Afterwards, we determine the intersection of the transformed map IRMgrasp with
the ground plane on which the feet must be placed planar (line 2 of Alg. 5). The resulting layer
IRMfloor of ground floor voxels represents all support foot positions from which the grasp
pose pglobalgrasp is reachable. However, the orientation of the support foot poses stored in IRMfloor

is not necessarily planar to the ground plane. Therefore, our algorithm iterates through the
voxels of the IRMfloor and eliminates invalid configurations. To do so, it determines for each
configuration q stored in a voxel of IRMfloor, the pose of the support foot pglobalSUP with respect
to the global frame as

pglobalSUP = pglobalgrasp ⊕ pgraspSUP , (4.14)

where the transformation pgraspSUP is obtained by solving the forward kinematics for the sampled
chain in configuration q. Given the z-axis of Fglobal being oriented perpendicular to the ground
plane, we only need to check whether the roll and pitch angle of pglobalSUP is sufficiently close to
zero in order to determine whether the stance pose is feasible (line 3 of Alg. 5). Note, that the
roll and pitch angles are never exactly zero due to the discretization of the joint range used



4.8. IMPLEMENTATION DETAILS 61

Figure 4.12: Potential stance poses for the right foot for reaching a desired grasping target
with the right gripper. The left foot is always set parallel to the right. Voxels are colored by
the maximum achievable manipulability among the configurations stored in the voxel (red =
low, green = high).

within the forward reachability map generation process. Thus, we consider a certain orientation
offset for the support foot relative to the ground plane to be acceptable. Furthermore, we
exclude all support foot configurations, though being kinematically admissible, whose yaw
angle relative to the grasp frame exceeds ±90° (line 3 of Alg. 5). This operation eliminates
unnatural configurations, for which the robot is heading in the opposite direction with respect
to the object to be grasped. The resulting data structure IRMstance, depicted in Figure 4.12,
finally represents the set of statically stable, collision-free double support configurations from
which the given grasp pose is reachable. Based on IRMstance, an optimal stance pose pglobalstance

is retrieved by finding the voxel containing the whole-body configuration with the highest
manipulability measure among all voxel configurations stored in IRMstance (line 4 of Alg. 5).
For application in humanoid grasping tasks, such a pose could be subsequently fed to a
footstep planning algorithm [49], generating a sequence of footsteps required to arrive at the
desired stance location. Assuming perfect navigation capabilities of the robot, the whole-body
configuration stored in the voxel could be furthermore used as a goal configuration for a
bidirectional whole-body motion planner [13], once the stance destination has been reached.
Thus, solving the inverse kinematics problem for the whole-body of a humanoid robot would
no longer be required. Regarding wheeled mobile manipulators, optimal stance poses can be
similarly used as terminal configurations for bidirectional motion planning algorithms, such
as the BI2RRT* algorithm, which we will introduce in Chapter 5.

4.8 Implementation Details
We implemented our approach for stance pose selection for mobile robotic platforms based on
inverse reachability maps in ROS (Robot Operating System) and use FCL (Flexible Collision



62 CHAPTER 4. STANCE POSE SELECTION BY INVERSE REACHABILITY MAPS

Library) [97] to perform self-collision checks. We evaluate the stability of humanoid whole-
body configurations by checking whether the projection of robot’s CoM onto the ground
plane is within the support polygon, assuming the robot to remain in double support. For
solving the forward and inverse kinematics, we use KDL (Orocos Kinematics and Dynamics
Library) [124] and find swing leg configurations placing the robot’s foot on the ground using
the Newton-Raphson numerical inverse kinematics solver. Additional, we developed functions
that permit to build arbitrary serial chains from the kinematic tree structure representing the
robot. Previously, it was only possible to generate kinematic chains going forwards along the
branches of the kinematic tree, which is typically rooted at the torso for humanoid platforms.

4.9 Experimental Results
Wheeled mobile robotic platforms typically possess a kinematically redundant manipulator
mounted at their base, that is capable of reaching a large set of end-effector poses within
the extent of their workspace with an arbitrary orientation. On the other hand, humanoids
typically exhibit limited reaching capabilities due to their relatively small joint ranges and the
loop-closure and stability constraint involved. Therefore, we consider for the experimental
evaluation of our approach only anthropomorphic kinematic structures, that particularly benefit
from the use of an inverse representation of their reachability capabilities. In the following,
we use the Nao V4 humanoid platform by SoftBank Robotics to demonstrate the improved
success rate in reaching given grasping targets, achieved using our approach. The robot is
58 cm tall and has 25 DOF: 2 in the neck, 6 in each arm (including one to open and close the
hand), and 5 in each leg. In addition, the legs share a common (linked) hip joint that cannot be
controlled independently. Inertia, mass, and CoM of each link are known from CAD models.
For efficient collision checks, we created a low-vertex collision mesh model for each of the
robot’s links from the CAD models, as depicted in Figure 4.4 (left). A detailed description of
the humanoid platform is provided in Appendix A.1.

Generally, our approach is capable of performing reachability analysis for arbitrary sub-
chains of the robot, e.g., for the chain leading from the torso down to one of the feet. However,
here we specifically consider only kinematic chains rooted at one of the feet and ending at one
of the grippers/hands, thus possessing 10 DOF. For building the reachability map for the Nao
humanoid, we used a sampling resolution of 0.3 rad for the upper body joints and 0.2 rad for
the lower body joints, which turned out to be a good compromise between performance and
computational demands. The resulting IRM has a memory consumption of 5GB.

4.9.1 Selecting a Stance Pose for Grasping
In the first experiment, we analyze how the robot benefits from the knowledge about its own
manipulation capabilities represented by the IRM . For the Nao robot, IRMstance contains
only 17% of the IRMfloor voxels and represents the stable, collision-free double support con-
figurations from which the given grasp pose is reachable. Figure 4.12 shows the robot initially
located at the global frame and all potential stance poses for the support foot (here right foot,
left foot is always parallel) for a given grasping pose pglobalgrasp = (0.5, 0.0, 0.3, 0.0, 0.0, 0.0)>,
specified for the robot’s right gripper. Note, that each of the voxels (shown as spheres) can
represent multiple stance poses of different orientations. The color of the voxels corresponds to



4.9. EXPERIMENTAL RESULTS 63

Figure 4.13: Example of a stance pose and whole-body configuration for reaching a grasping
target pglobalgrasp .

the maximum manipulability measure encountered among the configurations stored in it. An
optimal stance pose pglobalstance is easily obtained by selecting the first configuration stored in the
voxel providing the highest manipulability measure among all IRMstance voxels. Figure 4.13
shows a possible stance location and whole-body configuration for reaching the desired grasp
pose pglobalgrasp .

4.9.2 IRM vs. RM based Stance Pose Selection

In order to quantitatively evaluate the improvement obtained regarding the ability of reaching
specific grasping targets using inverse reachability information, we compared the success
rate of our approach with respect to the strategy of selecting stance poses directly from the
forward reachability map. To obtain meaningful foot placements from the RM , generated
according to Section 4.4.1, we randomly selected voxels containing at least one support
foot orientation from which the grasping target is reachable. Without further knowledge,
this is a reasonable approach. In total, we sampled 10000 double support stance poses and
checked whether the grasp pose lying within the extent of the RM is actually reachable from
the individual poses with the correct end-effector orientation. As a result, only 17% of the
sampled stance locations allowed to reach the correct 6D grasp pose. When using the IRM , a
success rate close to 100% can be reached, depending on the joint sampling resolution chosen
within the RM construction process (see ∆q in Alg. 3). Thus, using the IRM , the number
of target grasps successfully reached without the need for a repeated stance pose adaption is
substantially increased. This shows that a humanoid can highly benefit from the knowledge
about its own manipulation capabilities represented by the IRM . On average, it took 820 ms
to compute IRMfloor, IRMstance and to retrieve the optimal stance pose on an Intel Core i7
3.4GHz.



64 CHAPTER 4. STANCE POSE SELECTION BY INVERSE REACHABILITY MAPS

4.10 Related Work
In the literature, several techniques for generating robot configurations that achieve desired
grasping poses with the end-effector already exist. For example, Stulp et al. [130] introduced
the concept of Action-Related Place (ARPlace). ARPlace represents a probability mapping
that specifies the expected probability that the target object will be successfully grasped, given
the positions of the target object and the robot. The authors present results for a wheeled
mobile base equipped with two 6-DOF manipulators.

Jamone et al. [61] proposed a method to allow a humanoid robot to learn a representation
of its own reachable space, referred to as the reachable space map, from motor experience. To
do so, the authors first learn an arm-gaze model, mapping end-effector poses to a specific gaze
configuration for the head and eyes of the robot. Using the inverse of that model, an estimate
of the reachable space map, i.e., a set of visually detected 3D points, for the robot’s hand is
obtained by solving a large number of IK queries. The authors differentiate between a basic
and an enhanced map. While the former only specifies whether a fixated point in the gaze
frame is reachable with the hand, the later additionally provides a quality measure about the
degree of reachability.

Müller et al. [91] use a precomputed reachability map for the arm chain of a humanoid robot
for efficiently planning grasping motions based on A* search. While this approach allows
to quickly find collision-free motion trajectories and to adapt them in real-time, it does not
exploit the manipulation capabilities of the whole-body kinematics to full extent. Moreover,
stability constraints are not taken into account.

Zacharias et al. [150] proposed the so-called capability map which is a representation of
kinematic reachability in the workspace for a robotic arm. The authors use a manipulability
measure to evaluate poses in the workspace considering the distance to singularities [148].
Using the capability map, one can determine relative object positions that allow for good
manipulation by the robot.

Berenson et al. [9] introduced the constrained bidirectional RRT (rapidly exploring random
trees) planner that considers constraints as task space regions (TSRs). The authors used TSRs
initially for goal pose specification and showed later that more complex constraints can be
described by chaining the TSRs together. However, in this approach it is assumed that the
robot is already in a good stance position relative to the object to be manipulated. Thus, the
task is reduced to the problem of finding an optimal whole-body postures given the robot’s
current stance location.

The work presented by Vahrenkamp et al. [137] analyzes the workspace capabilities of a
manipulator using an extended variant of the manipulability measure, previously introduced
by Yoshikawa [148]. By deriving the manipulability measure from an augmented Jacobian,
constructed based on penalization terms for joint limits considering a robot’s redundancy, the
distance between the robot’s body parts, as well as the distance to obstacles in the environ-
ment, a more accurate representation of the reaching capabilities is obtained. Subsequently,
Vahrenkamp et al. [138] used the extended measure to compute base positions for a wheeled
mobile manipulator in order to reach different object grasps. Here, the authors precompute
a so-called inverse reachability distribution (IRD) for the mobile base, which is centered
at the robot’s gripper. For a specific grasp, the IRD centroid is placed at the corresponding
workspace pose and its volume is cut with the floor plane to find valid base positions and
orientations. Later, Vahrenkamp and Asfour extended this approach towards bi-manual ma-



4.11. CONCLUSION 65

nipulation tasks [136]. However, loop-closure and stability constraints inherent to legged
humanoid platforms are not considered at that stage.

Kaiser et al. [66] proposed an approach for the generation of whole-body locomotion and
manipulation actions based on affordance hypotheses, which in turn are determined on the
basis of visual and inertial sensing of environmental elements in the scene. In order to identify
the most promising locations for the execution of an action, affordances that are out of reach
are filtered using precomputed whole-body manipulability and stability maps. Although
reachability analysis is not the focus of this work, it nicely demonstrated how perceptional
data can be augmented using reachability information.

Recently, Paus et al. [99] presented an approach for determining configuration space
trajectories that cover a specified workspace target area with the robot’s end-effector. To do so,
the authors combined robot placement and coverage path planning that takes constraints like
collision avoidance and static stability into account. Since repositioning the robot is associated
with significant costs in this work, the use of reachability information is considered to be of
great importance. Therefore, a reachability map is build for the humanoid robot ARMAR-III
following the approach presented by Vahrenkamp et al. [138] and the one presented in this
chapter. Afterwards, this map is used to determine how much of a target surface can be
reached from all possible robot placements with sufficient manipulability.

Extending the approach presented in this chapter, Yang et al. [147] recently proposed inverse
dynamic reachability maps (iDRM) that allow humanoid robots to find valid and sufficient end-
poses in complex and changing environments in real time. Initially, a reachability map is build
in an offline step. Here, a full-body IK solver and sequential quadratic programming is used
to generate feasible robot configurations, instead of adopting configuration space sampling
and sample projection methods. Afterwards, the iDRM is used online and updated according
to collisions detected between the iDRM voxels and environment obstacles. According to
experiments with the Valkyrie humanoid robot, composed of 38 DOF, a valid end-pose is
found within 0.1 seconds.

4.11 Conclusion
In this chapter, we presented an approach for efficient stance pose selection for mobile robotic
systems elevating the probability of successfully reaching or grasping a desired object. The
generated IRM , reflecting the robot’s capability of reaching a grasping target from different
stance locations is build only once in an offline step and can be subsequently used for arbitrary
grasp pose queries. Considering humanoid robots, static stability is additionally taken into
account in the process of generating a representation of their reachable workspace. Moreover,
our studies revealed that an optimal stance pose selection is especially important if the number
of available DOF’s in the upper body of a mobile robot is limited and redundancy is not given.

As we have shown in our experiments with a Nao humanoid, equipped only with a 5 DOF
arm, the set of potential stance poses providing high manipulability represented within the
IRM is relatively small compared to the results for wheeled mobile platforms carrying a
redundant manipulator [138]. This emphasizes the demand for intelligent stance pose selection
for such platforms as realized by our technique. By considering the IRM for stance pose
selection, we substantially increase the probability of successfully reaching a desired object,
without the need of repeatedly adapting the stance location and calling an inverse kinematics



66 CHAPTER 4. STANCE POSE SELECTION BY INVERSE REACHABILITY MAPS

solver. Note that our approach of building an IRM and its use for stance pose selection is
general and can be also applied to legged humanoids and mobile manipulators with a higher
number of degrees of freedom to efficiently select an optimal configuration for manipulation.

At the present time, the 3D voxels of the reachability map do not explicitly store the
achievable end-effector orientations. Instead, they contain the configurations associated with
the poses lying within their extent. In the future, voxels could be extended to 6D incorporating
also end-effector orientations.

Furthermore, a static transform between support and swing foot pSUF
SWF , placing the feet

parallel to each other, has been considered for generating double support configurations. An
extension in this context, would be to allow flexible non-parallel planar swing foot placements
in the reachability map construction process. Doing so, would enhance the reachability
information by adding end-effector poses, which are otherwise not reachable by statically
stable double support poses considering only parallel foot placements.

A major subject for future investigations is related to the manipulability measure used
to compute a quality index for the configurations entered into the spatial reachability grid.
Whereas the classical manipulability measure has been used in our approach to transfer the
concept of inverse reachability maps to legged humanoid platforms, several extended variants
of the manipulability measure have already been applied to wheeled mobile platforms and
could also be adopted for humanoids. These extensions allow, for example, to additionally
consider the proximity to joints limits taking into account the kinematic chain’s redundancy,
the distance to obstacles and among different body parts in the process of evaluating the quality
of configurations. Another, humanoid specific, refinement of the manipulability index could
be obtained by considering the distance of the CoM projection to the center of the support
polygon not only for the evaluation of a configuration’s validity, but also as an indicator for
its quality. This way, configurations with robust stability are assigned a higher quality index
than configurations exhibiting a critical proximity of their CoM projection to the support
polygon boundaries. Finally, a more accurate representation of the reaching capabilities of a
humanoid could be obtained by considering the torques emerging at the ankle joints in the
forward reachability map construction process. By doing so, statically stable configurations
with leg actuator torques approaching or exceeding the stall torques, defined according to the
hardware specification of the robot, would be excluded from the set of potential stance poses.



Chapter 5

Sampling-Based Motion Planning for
Task-Constrained Mobile Manipulation

Mobile manipulators installed in warehouses and factories for convey-
ing goods between working stations need to meet the requirements
of time-critical work-flows. Moreover, the systems are expected to
deal with changing tasks, cluttered environments and constraints im-
posed by the goods to be delivered. Selecting an optimal stance pose
for the robot, i.e., a terminal configuration for manipulation tasks,
as presented in Chapter 4, can be considered in this context only as
an initial step. The major challenge, however, lies in the problem of
efficiently generating motion transitions safely guiding the robot and
the object attached to its end-effector from their current pose to a
desired target. In this chapter, we present a planning framework for
generating asymptotically-optimal paths for mobile manipulators sub-
ject to task constraints. In particular, our approach introduces the
Bidirectional Informed RRT* (BI2RRT*) that extends the Informed
RRT* [47] towards bidirectional search and satisfaction of arbitrary
geometric end-effector task constraints. In various experiments, we
demonstrate the efficiency of BI2RRT* for both unconstrained and
constrained mobile manipulation planning problems. As the results
show, our planning framework finds better solutions than Informed
RRT* and Bidirectional RRT* in less planning time.

Mobile manipulators are fast, dexterous robotic service systems with the ability of reliably
and repetitively performing pick and place operations in warehouses and production facilities.
Here, the time required by such systems to transfer an object from one location to another
is a common decision criteria for their deployment. Often, the robotic systems handle pick
and place tasks by decomposing them into a sequence of motion planning subproblems,
pick-transition-place [26]. This decomposition allows to solve a set of independent low-
dimensional planning problems, for the manipulator and the mobile base respectively, instead
of solving a complex high-dimensional planning problem for the entire task at once. In
particular, assuming a safe rest pose for the manipulator above the mobile base, the transition
planning phase for the mobile manipulation task simplifies to a planar motion planning
problem for a rigid box. Several asymptotically-optimal motion planning algorithms have been
presented, among which rapidly-exploring random trees (RRT*) and probabilistic roadmaps



68
CHAPTER 5. SAMPLING-BASED MOTION PLANNING FOR TASK-CONSTRAINED MOBILE

MANIPULATION

1m

Figure 5.1: Configuration sequence of a solution path generated by our BI2RRT* planning
framework for the complex task of maneuvering a cart out of a parking lot and into another.
The orange and blue line represent the corresponding trajectory of the mobile base and
end-effector.

(PRM*) [69] are the most popular. Advanced variants, such as Informed RRT* [47] achieve
an enhanced convergence rate using intelligent sampling techniques. Using one of these
planners, optimal solutions can, in principle, be generated for the individual subtask. The
global optimal solution, however, does not equal the sum of the local optimal solutions found
for the subtasks. In fact, each terminal robot pose resulting from a motion plan generated for
a subtask directly affects the set of solutions available for the subsequent motion planning
problems. In the worst case, it even leaves this set empty, hence preventing them to find a
solution at all. The results are globally suboptimal paths or a high number of unsuccessful
motion planning queries. Optimal manipulation planning for the entire task, on the other hand,
would result in globally optimal paths and a higher success rate, but is highly computationally
demanding. Doing so, requires to plan coordinated base-manipulator motions, which respect
the joint limits, avoid self-collisions as well as collisions with obstacles in the environment.
Furthermore, constraints imposed by the object to be manipulated must be taken into account,
as exemplary illustrated for the task of pulling a cart in Figure 5.1 .

In this chapter, we present a motion planning framework for task-constrained mobile ma-
nipulation that unifies asymptotically-optimal sampling-based bidirectional path planning [63]
with informed sampling from an ellipsoidal subset [47] and task-constraint satisfaction based
on the first-order retraction technique [128], projecting samples onto the constraint man-
ifold [9]. In this way, we make use of the advantages of several existing techniques to
achieve an increased rate of convergence also for highly constrained planning problems.
The new algorithm, Bidirectional Informed RRT* (BI2RRT*), extends the Informed RRT*
algorithm [47] towards bidirectional search, informed sampling considering dexterous mobile
robotic platforms, and satisfaction of arbitrary geometric task constraints. Experiments with a
mobile manipulator show that our approach is capable of generating low-cost solutions paths
to complex constrained mobile manipulation tasks. We compared the performance of our
planning framework to state-of-the-art path planning algorithms on several planning problems
of varying complexity and demonstrate that our method generates low-cost solution paths
more reliable and faster than existing methods.



5.1. RAPIDLY-EXPLORING RANDOM TREES 69

qstart

qnear
qnew

qrand

ε

Figure 5.2: Tree expansion step of the Rapidly-Exploring Random Trees (RRT) algorithm.

5.1 Rapidly-Exploring Random Trees

The planning framework presented in this chapter belongs to the family of RRT-based al-
gorithms, which are single-query probabilistic motion planning approaches searching for a
path by incrementally expanding trees T in the configuration space. Introduced by LaValle
and Kuffner [80], the RRT algorithm has shown to yield good performance, particularly for
planning in high-dimensional configuration spaces. Nowadays, a variety of modified variants
exist, that aim to further improve the performance of the original algorithm by adopting differ-
ent strategies for the configuration space sampling and search tree expansion routine. Others
extended the classical algorithm by additional components that permit RRT’s to consider
differential and task constraints during planning. As our approach is also based on the concept
of growing random trees in the configuration space, we will briefly recapitulate the basic idea
of RRT’s and its descendants claiming the final solution path to be optimal with respect to
certain criterions.

As opposed to probabilistic roadmaps (PRM) based algorithms [71], which perform plan-
ning on a precomputed graph covering the configuration space on a large scale, RRT’s only
explore the configuration space to an extent that is sufficient for solving a specific planning
problem. Due to the approach of reusing the configuration space graph for every planning
query, PRM’s are referred to as multi-query algorithms in the literature. On the other hand,
RRT’s are single-query algorithms, in the sense that a new C-space tree is grown for every
problem instance. The routine to be repeatedly applied for growing the trees proceeds as
follows. At the beginning, the search tree T is initialized with a root configuration. Then,
at each iteration of the RRT algorithm a random configuration qrand is uniformly sampled
from the C-space. Afterwards, the closest configuration to qrand in T , also called the nearest
neighbor qnear, is found and a new configuration qnew at a distance ε from qnear along the
segment connecting qnear and qrand is generated using a local planner. For better understand-
ing, this step is represented graphically in Figure 5.2. Subsequently, both qnew and the edge
connecting it to qnear are checked for collisions. If they are found to be collision-free, the
search tree T is expanded by the new configuration and the associated edge. Note that no
collision check needs to be performed for qrand, since its only use is to indicate a direction
for the tree expansion. Thus, random samples are discarded by the planner at the end of each
iteration.



70
CHAPTER 5. SAMPLING-BASED MOTION PLANNING FOR TASK-CONSTRAINED MOBILE

MANIPULATION

Algorithm 6: RRT* Algorithm

Input :Start state xs
Output :Search tree T

1 T .init(xs)
2 for i = 1 to n do
3 xrand ← sampleConfig()
4 xnear ← nearestConfig(T , xrand)
5 xnew ← steer(xnear, xrand)
6 if obstacleFree(xnear, xnew) then
7 addNode(T , xnew)
8 Xnear ← nearNodes(T ,xnew, r)
9 xparent ← bestParent(T ,Xnear,xnew)

10 addEdge(T , xparent,xnew)
11 rewireTree(T , Xnear,xnew)
12 end
13 end
14 return T

The classical RRT planning algorithm grows a single tree, rooted at a start configuration
qstart, for a given period of time. The planning attempt is finally considered successful if the
resulting tree T contains a node that is sufficiently close to the desired goal configuration.
Alternative implementations occasionally try to connect to the goal configuration during the
search by considering it as qrand in the tree expansion procedure. Using this technique, a
planning attempt is found successful when the goal configuration is added to the tree. A faster
and more efficient variant is represented by the bidirectional RRT. With this planner, two trees,
rooted at the start and goal configuration respectively, are grown. Here, the latest configuration
added to a tree Ta is used as qrand for the expansion of the other tree Tb in order to minimize
the effort required for the search. A further, greedier version of bidirectional RRT, is presented
by the RRT-CONNECT algorithm [78]. Here, the tree Tb proceeds expanding towards the
latest node added to tree Ta until the two trees are either connected or an invalid configuration
is encountered. Adopting this strategy, permits solving motion planning queries with minimal
exploration of the configurations space. However, the cost of the best path returned by the
aforementioned RRT variants converges to a random variable, thus yields a suboptimal value
with probability one. Obtaining low cost solution paths from RRT-based approaches, thus
requires to employ more sophisticated strategies in the planning process, as introduced in the
RRT* algorithm [69].

5.1.1 Asymptotically-Optimal Motion Planning
The RRT* algorithm, presented by Karaman and Frazzoli [69], is an incremental sampling-
based motion planning algorithm that provides an asymptotic optimality guarantee, i.e.,
almost-sure convergence to optimal solutions. The individual steps of the algorithm, repeatably
applied in the planning process, are shown as pseudo code in Alg. 6. As with its suboptimal
counterpart, the RRT* algorithm starts with an initialization of the search tree T (line 1 of



5.1. RAPIDLY-EXPLORING RANDOM TREES 71

Alg. 6). As before, a start configuration or more general a start state xs is used as the root
of the tree. Afterwards, the algorithm enters a loop performing a prescribed number of n
planning iterations (line 2 of Alg. 6). The first two steps are identical with the classical RRT
implementation. First, a state xrand is uniformly sampled from the state space of the robot
(line 3). Afterwards, the nearest neighbor xnear in T to the random sample is determined
and the tree is expanded using the steer function to generate a new state xnew (lines 4-5).
The obstacleFree function checks whether the new state as well as the edge connecting it
to xnear are valid (line 6 of Alg. 6). If both were found valid, the standard RRT proceeded
by adding the new state and the corresponding edge to the tree. Contrary, RRT* only adds
the new state to the tree and searches for the set of nodes Xnear that are within a distance
r from xnew (lines 7-8 of Alg. 6). Here, the Euclidean norm is typically considered as a
metric to evaluate the distance between states. Subsequently, this set is used to find the parent
state xparent, allowing to reach the new state along a collision-free path with minimum cost
(lines 9-10). Considering the best, instead of the nearest node for the expansion therefore
guarantees the tree topology to remain optimal regarding path costs, when new nodes are
connected to the existing tree. An additional refinement of the tree structure is achieved by the
rewireTree function, which tries to reduce the cost-to-reach for the near nodes of the current
state xnew (line 11 of Alg. 6). Given the new state and its set of near nodes, it creates new
edges from xnew to nodes in Xnear, if the path through xnew has a lower cost than the path
through the current parent. In this case, the edge linking the node to its current parent is
deleted in order to maintain the tree structure.

For RRT*, as for planning with RRT, a planning query is considered successful if the
returned tree T (line 14 of Alg. 6) contains a node that is within a certain region around the
desired goal state xg or the goal state itself has been added to the tree during the search by
occasionally considering it as xrand. Analogous to RRT, a bidirectional variant of RRT*,
growing and simultaneously optimizing two trees rooted at a start and goal state respectively,
has been introduced by Jordan and Perez [63].

5.1.2 Task-Constrained Motion Planning
In motion planning for mobile manipulation, configuration space samples are not only required
to be collision-free, but also to comply with task constraints imposed on the end-effector by the
object to be manipulated. In its simplest form, manipulation planning requires to additionally
check for collisions between the object, the robot and environment obstacles during planning.
More sophisticated tasks, such as delivering a glass of water, opening a door or pulling a trolley,
furthermore claim specific rotational or translational components of the end-effector pose to
remain within a certain tolerance interval throughout the motion. In order to permit RRT-based
algorithms to efficiently cope with such task constraints during planning, several approaches
have been proposed. A first possibility, introduced by Şucan and Chitta [34], is to pre-compute
a constraint approximation graph, which is subsequently used in the sampling step of the RRT
algorithm (e.g., line 3 of Alg. 6). Directly drawing task compliant samples from the graph is
highly efficient regarding the runtime performance of the algorithm. The downside is that a
new graph needs to be build every time the set of constraints changes, thus yielding low task
flexibility of the planning framework. Two alternative solutions, tangent-space sampling (TS)
and first-order retraction (FR), that perform constraint satisfaction during planning have
been presented by Stilman [128]. The former method generates configuration samples at a



72
CHAPTER 5. SAMPLING-BASED MOTION PLANNING FOR TASK-CONSTRAINED MOBILE

MANIPULATION

small displacement from qnear and projects them into the null space of the task constraint.
However, due to the non-linearity of the constraint manifold these samples are unlikely to be
within error tolerance. Therefore, the randomized gradient descent (RGD) [81] technique is
additionally applied to finally achieve task compliance. The FR method generates in a first
step a configuration space sample qnew, as depicted in Figure 5.2. Afterwards, a task space
error and an associated joint space displacement is iteratively computed to gradually displace
the sample towards the constraint manifold. Once the projected sample q′new is found to be
within error tolerance, it is used for extending the tree. In practice, FR is the preferred method,
since it is found to be faster and more invariant to expansion step size and error tolerance than
the TS and RGD method. Another approach, presented by Berenson et al. [9], introduces the
concept of Task Space Regions (TSR) used to specify arbitrary constraints for manipulation
tasks. Here, task space samples are drawn from TSR’s and converted to configuration space
samples for the robot using numerical inverse kinematics. Compared to previous approaches,
this method has the advantage that multiple constraints can be linked together to form TSR
chains. Moreover, using multiple of such chains and a metric for evaluating the distance to
them it is possible to determine which chain to satisfy given the robot’s current configuration.

5.2 Motion Planning With Bidirectional Informed RRT*
Our system builds upon the Informed RRT* algorithm by Gammell et al. [47], which has
already demonstrated the ability to find optimal solutions to planning problems in high-
dimensional domains. As the authors concluded, only the addition of further samples from an
ellipsoidal subset of the planning domain can lead to an improvement of the current solution
path. Thus, directly sampling from this subset can result in a faster rate of convergence. In
the following, we describe our bidirectional variant of Informed RRT*, which speeds up the
search for a first solution and improves the convergence rate towards the optimal solution also
for highly complex planning problems.

5.2.1 The BI2RRT* Algorithm
Informed RRT* achieves an increased rate of convergence once an initial solution is found.
Before that, it basically coincides with the classical RRT* planner. Obviously, the earlier an
initial solution is found the more planning time is left for informed path refinement. Therefore,
we developed a two-tree variant of Informed RRT*, which quickly generates a first solution,
in turn triggering informed sampling at an earlier planning stage. Furthermore, we consider
two ellipsoidal subsets, used to perform informed sampling for the translational and rotational
component of the configuration space of a mobile manipulator platform. Alg. 7 shows the
pseudo code of our BI2RRT* algorithm. For simplicity, we first explain the basic functionality
of our planner in the absence of end-effector task constraints as given by tcc and B. How
those constraints are considered is afterwards described in Section 5.2.2 and Section 5.3.

Given a start and goal end-effector pose pes, peg, our algorithm generates a start and goal
configuration for the root nodes ns, ng of the two trees Ta, Tb, respectively (lines 1-2 in Alg. 7,
details in Section 5.2.2). Afterwards, the current solution path cost cSP is initialized, and the
algorithm starts growing the search trees until either a maximum number of iterations or time
elapsed is reached (lines 3-4). The sampleRandomConfig function (line 5, see Alg. 8) returns



5.2. MOTION PLANNING WITH BIDIRECTIONAL INFORMED RRT* 73

Algorithm 7: Bidirectional Informed RRT* Algorithm

Input :Start pes and goal peg end-effector pose, vector of constraint task coordinates
tcc, matrix of task coordinates bounds B, number of near nodes knv

Output :A solution path or FAILURE

1 ns.q ← generateIKsolution(pes, tcc, B)
2 ng.q ← generateIKsolution(peg, tcc, B, ns.q)
3 Ta.init(ns); Tb.init(ng); cSP ←∞
4 for i = 1 to max time iter do
5 qrand ← sampleRandomConfig(cSP , ns.q, ng.q)
6 qnn ← findNearestNeighbor(Ta, qrand)
7 Lnv, Va, Vb← ∅
8 ext statenn, ext statenv, ext statec ← FAILED
9 ext statenn,Va ← extendTree(Ta, qnn, qrand, tcc, B)

10 if (cSP <∞ or ext statenn = FAILED) then
11 Lnv ← findNearNodes(Ta, qrand)
12 ext statenv,Va ← bestParentSearch(Ta, qrand, Lknv

nv )
13 end
14 if (ext statenn 6= FAILED or ext statenv 6= FAILED) then
15 insertSegments(Ta, Va)
16 if cSP <∞ then
17 Ta ← rewireTree(Lknv

nv , Ta.last.q)
18 cSP ← recursiveCostUpdate(Ta)
19 end
20 qnn ← findNearestNeighbor(Tb, Ta.last.q)
21 ext statec,Vb ← extendTree(Tb, qnn, Ta.last.q, tcc, B)
22 if ext statec 6= FAILED then
23 insertSegments(Tb, Vb)
24 if ext statec = REACHED then
25 cSP,new ← getSolutionCost(Ta.last.q, Tb.last.q)
26 end
27 end
28 if cSP,new < cSP then
29 cSP ← cSP,new
30 end
31 end
32 swap(Ta, Tb)
33 end
34 if cSP <∞ then
35 return path(Ta, Tb)
36 else
37 return FAILURE
38 end



74
CHAPTER 5. SAMPLING-BASED MOTION PLANNING FOR TASK-CONSTRAINED MOBILE

MANIPULATION

Algorithm 8: Random Configuration Sampling

Input :Current solution path cost cSP , start and goal configuration qs, qg
Output :Random configuration qrand

1 conf valid← FALSE
2 while conf valid = FALSE do
3 if cSP <∞ then
4 qrand,p ← sampleFromEllipse(cSP,p, qs,p, qg,p)
5 qrand,r ← sampleFromEllipse(cSP,r, qs,r, qg,r)
6 qrand ← [qrand,p,qrand,r]

7 else
8 qrand ← getRandomConfig()
9 end

10 conf valid← isConfigValid(qrand)
11 end
12 return qrand

a configuration qrand, randomly sampled from the entire configuration space or the informed
ellipsoidal subset (the latter is detailed in Section 5.2.3), depending on whether a solution path
is already available or not. Afterwards, findNearestNeighbor finds the nearest neighbor qnn in
Ta, to the configuration qrand (line 6). The extendTree function (see Alg. 9) tries to establish
a connection between the two configurations by incrementally stepping from qnn towards
qrand (line 3 in Alg. 9) while performing collision checks for the intermediate configurations
(line 9 in Alg. 9). As a result, the extendTree operation returns a list of segments V , i.e., pairs
of nodes and edges, together with information about the expansion status, ext state (line 9
in Alg. 7). The value of ext state corresponds to either FAILED, PROGRESS, or REACHED,
indicating that tree Ta has not been extended at all, made some progress towards qrand, or has
reached qrand, respectively. As opposed to the classical Informed RRT*, our planner performs
a best parent search, defined by bestParentSearch, not only when a solution is available, but
also when the tree expansion from qnn failed to make some progress (lines 10-12 in Alg. 7).
Here, the function findNearNodes provides a set Lknv

nv of knv near nodes, stored in the order
of ascending cost-to-reach. If either the expansion from qnn or from one of the near nodes,
stored in Lknv

nv , has made at least some progress towards qrand, the segments Va returned by
extendTree are added to the tree Ta (line 15 in Alg. 7). Lines 16-18 in Alg. 7 correspond to
the standard rewire operation of RRT*, considering the last node added to the tree Ta.last.q
and the knv near nodes of Lknv

nv with the highest cost-to-reach. Note, that the reduction of the
cost-to-reach for a single node needs to be propagated through the tree to the leaf nodes. By
doing so, an improvement of the current solution path cSP may be elicited (line 18 in Alg. 7).
The last part of the planner, described in lines 20-27 of Alg. 7, basically corresponds to the
classical connect step of bidirectional search. First, the nearest configuration qnn in tree Tb, to
the last node added to Ta is determined (line 20 in Alg. 7). Afterwards, extendTree tries to
find a new solution path by connecting qnn to Ta.last.q. If extendTree returns REACHED, a
new solution path is found. Its cost cSP,new, however, does not necessarily constitute a better
solution. Therefore, we finally compare cSP,new to the cost of the current best solution cSP . If



5.2. MOTION PLANNING WITH BIDIRECTIONAL INFORMED RRT* 75

Algorithm 9: Search Tree Extension

Input :Search tree T , random configuration sample qrand, nearest neighbor qnn,
vector of constraint task coordinates tcc, matrix of task coordinates bounds B

Output :State of extension ext state, list of path segments V
1 ext state← FAILED ; V ← ∅ ; conf valid← TRUE
2 while conf valid = TRUE do
3 qext, eext ← stepTowardsSample(T , qnn, qrand)
4 if tcc = 0 or qext = qrand then
5 qnew, enew ← qext, eext
6 else
7 qnew, enew ← projectConfigFR(qext, tcc, B)
8 end
9 conf valid← isConfigValid(qnew)

10 if conf valid = TRUE then
11 qnn ← qnew
12 ext state← PROGRESS
13 V ← addSegment(qnew, enew)
14 if qnew = qrand then
15 ext state← REACHED
16 break
17 end
18 end
19 end
20 return ext state,V

cSP,new is found to be lower than cSP , cSP is updated, the trees Ta and Tb are swapped and the
algorithm proceeds with the next iteration. After reaching the stopping criteria, Alg. 7 returns
either the final solution path or FAILURE.

5.2.2 Tree Initialization

For planning, we assume the initial and desired end-effector poses pes and peg, as needed for
an object manipulation task, to be given. Our algorithm allows for specifying a vector tcc of
constrained task coordinates and a matrix B of task coordinate bounds (see Section 5.3.1),
e.g., to describe task constraints corresponding to carrying objects with an upright orientation.
The vector tcc is simply constituted by binary values indicating whether a task coordinate
is constrained. For those coordinates being constrained, the matrix B defines a lower and
upper admissible displacement from pes and peg, respectively. Considering these constraints,
the generateIKsolution function (line 1 in Alg. 7) finally runs a damped least-squares con-
troller [24] using random configuration space seeds to generate a valid inverse kinematics
solution for the mobile manipulator end-effector pose pes. For the generation of an inverse
kinematics solution for peg, we use seeds that are generated by Gaussian sampling around
the start configuration ns.q (line 2 in Alg. 7). This approach yields two advantages. First, it



76
CHAPTER 5. SAMPLING-BASED MOTION PLANNING FOR TASK-CONSTRAINED MOBILE

MANIPULATION

is easier for the planner to find a solution path when the terminal configurations are similar.
Second, we avoid initializations of the planner in mobile manipulation tasks with terminal
configurations that lie in disjoint regions of the constraint manifold, thus making it impossible
to find a valid solution path. Alternatively, it is also possible to select terminal configura-
tions for the specified end-effector poses using a pre-computed inverse reachability map
(IRM), as presented in Chapter 4. In the absence of task constraints, i.e., for unconstrained
motion planning, it is reasonable to select the pose providing the highest quality measure
from the IRM. In fact, using this approach does not affect the prospects of success for the
planning phase, since the algorithm is allowed to explore the entire collision-free subspace
Cfree. However, care must be taken when selecting terminal configurations based on IRM’s
for a constraint manipulation task. Here, a configuration for pes can be chosen as done before
in the unconstrained case. On the other hand, selecting a configuration for peg would require
to additionally filter the IRM for poses lying in the same region of the constraint manifold as
the configuration chosen for pes. Naively choosing the configuration with the highest quality
measure would very likely result in terminal configurations lying in disjoint regions of the
constraint manifold, thus rendering the discovery of a solution path impossible.

5.2.3 Informed Heuristic for Mobile Manipulators
Gammell et al. [47] proposed to directly sample from an ellipsoidal subset of the configuration
space to achieve an increased rate of convergence towards the optimal solution, once an initial
solution has been found. The subset of configurations that can improve the current solution, is
referred to as Cf ⊆ C. Here, uniformly distributed samples in a hyper-ellipsoid are calculated
from

qf̂ = RLqball + qcentre , (5.1)

where qball are uniformly distributed samples from the unit n-dimensional ball and qcentre is
the centre of the hyper-ellipsoid, following from two focal points qg, qs (see Figure 5.3). The
matrix R is given by

R = U diag{1, . . . , 1, det(U) det(V)}V>, (5.2)

where UΣV> follows from the singular value decomposition of a matrix M, in turn given by
the outer product a1I

>
1 . Here, I1 represents the first column of the identity matrix and a1 is

defined as
a1 = (qg − qs)/‖qg − qs‖2. (5.3)

The matrix L follows from

L = diag

{
cSP
2
,

√
c2SP − c2HS

2
, . . . ,

√
c2SP − c2HS

2

}
, (5.4)

with cSP and cHS describing the current and hypothetical solution path cost, respectively. Here,
we defined cHS as the cost of the linear interpolation between the start and goal configuration,
neglecting obstacles and task constraints.

So far, informed sampling has been performed in configuration spaces solely composed
of either revolute or prismatic components [47, 48]. In this work, we split the configuration
space of the mobile manipulator into these components in order to perform informed sampling



5.3. SAMPLE PROJECTION ACCORDING TO TASK CONSTRAINTS 77

Figure 5.3: Informed subset for the prismatic components of the configuration space (purple
ellipse), i.e., the translation of the mobile base. The eccentricity of the ellipse is given by
cHS ,p/cSP ,p . The start and goal configuration of the mobile base is given by qs,p and qg,p.
Green blocks constitute obstacles. The orange and blue line represent the current solution
path for the mobile base and end-effector. The red and green sphere correspond to the start
and desired goal pose of the end-effector.

for each of them. In doing so, we consider in Eq. (5.1)-(5.4) the prismatic and revolute
components of the configuration space, i.e., cSP ,p , cHS ,p , qs,p, qg,p and cSP ,r , cHS ,r , qs,r, qg,r,
respectively. For a better understanding, the quantities used to perform informed sampling
for the prismatic components of the configuration space, i.e., the translation of the mobile
base (n = 2), are graphically depicted in Figure 5.3. The result are two components qrand,p
and qrand,r generated from distinct hyper-ellipsoids (lines 4-5 in Alg. 8), which are stacked
after sampling (line 6 in Alg. 8) in order to obtain an informed configuration space sample for
the entire robot.

5.3 Sample Projection According to Task Constraints
Considering end-effector task constraints in mobile manipulation planning, requires an ad-
vanced sample projection method within the extendTree function (line 7 in Alg. 9). We
therefore apply the first-order retraction method [128], which has already shown to be faster
and more invariant to expansion step size (used in stepTowardsSample, line 3 in Alg. 9) and
error tolerance than other projection methods. Additionally, we adopt the idea of constraining
task coordinates to remain in bounded intervals instead of considering fixed values [9]. In the
following, we briefly recapitulate the definition of task constraints before explaining in more
detail how task constraints are satisfied within our planning framework.

5.3.1 Definition of Task Constraints
For the definition of end-effector task constraints, we introduce the notions task frame F t ,
coordinate constraint vector tcc, and task coordinate bounds B. The task frame represents



78
CHAPTER 5. SAMPLING-BASED MOTION PLANNING FOR TASK-CONSTRAINED MOBILE

MANIPULATION

x

z

y

F t

x

z

y

F t

Figure 5.4: Task frame for pulling a cart (left) and transporting liquids (right) used for the
specification of end-effector task constraints in the first-order retraction sample projection
method.

a reference coordinate system, in which tcc and B are expressed (see Figure 5.4). The
binary elements of tcc are used to compose a diagonal constraint selection matrix of allowed
translational and rotational displacement from F t

C = diag {tcc,1, . . . , tcc,n} , (5.5)

with tcc,i ∈ [0, 1] and n = 6. The matrix B additionally defines lower and upper bounds for the
displacement for those task coordinates constrained by C,

B =


∆xneg ∆xpos
∆yneg ∆ypos
∆zneg ∆zpos
∆ϕneg ∆ϕpos
∆θneg ∆θpos
∆ψneg ∆ψpos

 , (5.6)

where the first and second column refers to the admissible negative and positive deviation
of the coordinates from F t . Here, ϕ, θ and ψ are used to denote the roll, pitch, and yaw
angles. Note that we initialize the task frame F t globally with the desired start pose of the
end-effector frame pes. For manipulation of articulated objects, a parametrized task frame
would be required, instead.

5.3.2 Satisfaction of Task Constraints
After having sampled a random configuration qrand, the extendTree function iteratively per-
forms steps towards qrand from the nearest neighbor qnn until the random sample is reached
or an invalid configuration is encountered (lines 3-9 in Alg. 9). A premise for the extension of
a tree considering end-effector task constraints is a successful projection of each intermediate
configuration qext onto the constraint manifold (line 7 in Alg. 9). To do so, projectConfigFR
first computes the end-effector frame F e by forward kinematics for qext. The result is given
by the transformation T0

e(qext). Afterwards, the displacement of F e with respect to the task



5.3. SAMPLE PROJECTION ACCORDING TO TASK CONSTRAINTS 79

frame F t is found by

Tt
e(qext) = Tt

0T
0
e(qext) = (T0

t )
−1T0

e(qext), (5.7)

where T0
t is assumed to be a fixed transformation between the task frame F t and world frame

F0 . Next, we need to represent the transform for end-effector displacement with respect to
the task frame in task coordinates using the roll, pitch, yaw representation for describing the
relative orientation

∆x ≡ Tt
e(qext). (5.8)

Given the matrix C from Eq. (5.5), we now select the relevant error components from ∆x as
follows

∆xcerr = (ec1, . . . , e
c
n)> = C∆x, (5.9)

eci =

{
0, ci = 0

∆xi, ci = 1
(5.10)

where ci is the i-th element along the diagonal of matrix C. Finally, we consider the admissible
negative and possible deflection intervals for the task coordinates in order to obtain the task
error components subsequently used in the sample projection method,

∆xberr = (eb1, . . . , e
b
n)>, (5.11)

ebi =

{
0, bi1 ≤ ∆xcerr,i ≤ bi2

∆xcerr,i, ∆xcerr,i < bi1 or bi2 < ∆xcerr,i
(5.12)

where bi1 and bi2 are the values in the first and second column of the i-th row in the task
coordinate bound matrix B, defined according to Eq. (5.6).

Once the task error is identified, we need to find a mapping that generates joint motions,
iteratively reducing the error until all its components are within the bounded intervals defined
in B. This is done by a Jacobian-based method. The classical Jacobian J0 is a matrix of
partial derivatives relating joint space velocities to end-effector linear and angular velocities
expressed in the world frame F0 . As the task space error is defined w.r.t. the frame F t in
our case, we need to represent the Jacobian in the same frame. The corresponding task frame
Jacobian Jt is obtained using the inverse rotation matrix R0

t as follows

Jt =

[
Rt

0 0
0 Rt

0

]
J0. (5.13)

The lower three rows of Jt represent the mapping to angular velocities w of the end-effector.
However, the end-effector angular velocity with respect to the task frame is not given by
the rotational velocity of a set of orientation angles. Though, there exists a relationship
between the angular velocity and fixed-axis rotational velocities for a given set of orientation
angles [128]. For RPY angles, the angular velocity vector is found by summing the fixed-axis
velocities, defined according to

w = E−1rpy(qext)(ϕ̇, θ̇, ψ̇)>. (5.14)



80
CHAPTER 5. SAMPLING-BASED MOTION PLANNING FOR TASK-CONSTRAINED MOBILE

MANIPULATION

By inverting E−1rpy, we obtain Erpy, which represents a matrix mapping angular velocities to
fixed-axis velocities. In order to additionally account for the linear velocities, we augment
matrix Erpy with an 3× 3 identity matrix yielding

E(qext) =

[
I3×3 0
0 Erpy

]
=


I3×3 · · · 0 · · ·

... cψ/cθ sψ/cθ 0
0 −sψ cψ 0
... cψsθ/cθ sψsθ/cθ 1

 , (5.15)

where si and ci denote the sine and cosine of the rotation angle i ∈ {ϕ, θ, ψ}, respectively.
Using E(qext), we finally obtain a task Jacobian that considers a mapping to fixed-axis
rotational velocities of the end-effector

J = E(qext)J
t(qext). (5.16)

Subsequently, the pseudo-inverse of the modified task Jacobian J† is used to map the task
error ∆xberr, expressed in frame F t , to the least-norm velocities in joint space required to
correct it:

q̇ = J†∆xberr. (5.17)

Note, that in isConfigValid (line 9 in Alg. 9) a configuration qnew is found invalid not only if
it is in collision, but also when it is equal to qnn (backprojection) or has not made progress
towards qrand (divergence).

5.4 Implementation Details
Our planner is implemented in the MoveIt! framework in ROS [27], uses FCL [97] for collision
checks and is available open source1. When the planner checks a configuration for validity,
the collision mesh model of each robot link is tested for self-collisions and collisions with the
environment, considering also objects potentially attached to the end-effector. Computation
of the forward kinematics for single configurations is done using the KDL library [124]. For
computing the pseudo-inverse of the task frame Jacobian in the first-order retraction method,
we use the singular value decomposition implemented in the Eigen library [53].

5.5 Experimental Results
For the experimental evaluation of our approach, we use the omniRob omnidirectional mobile
manipulator platform by KUKA Robotics (see Appendix A.2), which is composed of 10
degrees of freedom. Its configuration is given by

q = (qbase ,qmanip)>, (5.18)

where

qbase = (x, y, θ)>, (5.19)

qmanip = (q1, q2, q3, q4, q5, q6, q7)
>, (5.20)

1http://github.com/burgetf/mobile manipulation planning

https://github.com/burgetf/mobile_manipulation_planning


5.5. EXPERIMENTAL RESULTS 81

denote the configuration of the base platform and manipulator chain, respectively. For planning
mobile manipulation tasks, we modeled the planar motion of the base by two prismatic joints
representing the translation of the robot in the x, y direction w.r.t. the world frame. For
planning, we considered all DOFs of the robot, resulting in a 10-dimensional configuration
space. The solution path cost cSP is defined by the sum of the rotational and prismatic path
length. Note that we adopted in our comparative experiments anytime variants of the standard
RRT, Informed RRT and RRT-CONNECT planning algorithms in order to allow them to
exploit the available planning time for finding alternative solution paths of lower cost. We
derived these algorithms by selecting different combinations of the features bidirectional
search, informed sampling, tree optimization (continuing the search after a first solution is
found) in our planning framework. For the following experiments, planning was performed
off-board on a single core of a standard desktop CPU (Intel Core i7, 3.4 GHz).

5.5.1 Planning Collision-Free Motions
In a first experiment, we conducted a quantitative comparison between our planning framework
and other variants of RRT-based planning algorithms regarding the performance in planning
collision-free motions for a complex scenario (Figure 5.5, first column). Here, the robot
needed to travel from an initial configuration to a final configuration while avoiding self-
collisions and collisions with objects in the environment. Each planner performed 100 runs,
each given a maximum planning time of 2 minutes. According to the averaged results, the
bidirectional variants generally find better solutions than the unidirectional variants in less
time and more often. Moreover, our planning framework finds a first solution faster compared
to the Informed RRT* (Figure 5.5, first column, fourth row). Thus, informed sampling is
activated at an earlier planning stage and more time is left for the planner to optimize the
current solution.

5.5.2 Transportation of Liquids
In the next planning scenario, we evaluated the performance of our planner w.r.t. other RRT-
based planning algorithms in the presence of serious end-effector orientation constraints. Here,
the robot needed to transport a container of liquid from one location to another (Figure 5.5,
second column). To do so, it needed to maneuver the container out of a narrow space,
then underneath a ceiling joist, and finally through a narrow gate, while respecting the task
constraints. Again, each planner performed 100 runs, this time each given a maximum
planning time of 3 minutes. The coordinate constraint vector for this task is defined w.r.t. the
task frame, depicted on the right side in Figure 5.4, as follows

tcc = (0, 0, 0, 1, 0, 1)>. (5.21)

Accordingly, we set the admissible negative and positive deflection from the task frame for
the roll angle ∆ϕneg, ∆ϕpos and yaw angle ∆ψneg, ∆ψpos in matrix B to −10° and 10°,
respectively. Note that we discarded the results of RRT and Informed RRT in the figures for
this scenario due to their low performance. Regarding the time required to find a first solution,
our results show that about 70% of the runs of bidirectional planners provide a solution after
50% of the total planning time of three minutes (Figure 5.5, second column, fourth row).



82
CHAPTER 5. SAMPLING-BASED MOTION PLANNING FOR TASK-CONSTRAINED MOBILE

MANIPULATION

Collision-free motions Transportation of liquids Pulling a cart

peg

pes

peg

pes

peg

pes

Desired Solution Cost cSP

152025303540

S
u
cc
es
s
R
at
e
[%

]

0

20

40

60

80

100

Desired Solution Cost vs. Success Rate

Desired Solution Cost cSP

202530354045

S
u
cc
es
s
ra
te

[%
]

0

20

40

60

80

100

Desired Final Solution Cost vs. Success Rate

Desired Solution Cost cSP

010203040506070
S
u
cc
es
s
ra
te

[%
]

0

20

40

60

80

100

Desired Final Solution Cost vs. Success Rate

Desired Solution Cost cSP

152025303540

A
v
g.

S
ol
u
ti
on

T
im

e
[s
]

0

20

40

60

80

100

N/A

Desired Solution Cost vs. Avg. Solution Time

Desired Solution Cost cSP

202530354045

A
v
g.

S
ol
u
ti
on

T
im

e
[s
]

60

80

100

120

140

160

N/A

Desired Final Solution Cost vs. Avg. Solution Time

Desired Solution Cost cSP

202530354045

A
v
g.

S
ol
u
ti
on

T
im

e
[s
]

100

120

140

160

N/A

Desired Final Solution Cost vs. Avg. Solution Time

Planning Runtime [s]
0 20 40 60 80 100 120

S
ol
u
ti
on

A
va
il
ab

le
[%

]

0

20

40

60

80

100

Planning Runtime vs. Solution Available

Planning Runtime [s]
0 20 40 60 80 100 120 140 160 180

S
ol
u
ti
on

A
va
il
ab

le
[%

]

0

20

40

60

80

100

Planning Runtime vs. Solution Available

Planning Runtime [s]
0 20 40 60 80 100 120 140 160 180

S
ol
u
ti
on

A
va
il
ab

le
[%

]

0

20

40

60

80

100

Planning Runtime vs. Solution Available

RRT Informed RRT RRT* Informed RRT*
RRT-Connect Bidirectional Informed RRT Bidirectional RRT* Bidirectional Informed RRT* (ours)

Figure 5.5: Comparison of the performances in planning collision-free motions (2 min
planning time, first column), transportation of liquids (3 min planning time, second column)
and cart pulling (3 min planning time, third column), averaged over 100 runs. Example
solution paths are represented by their corresponding base (orange line) and end-effector (blue
line) trajectory. First Row: Planning scenarios. Second Row: Percentage of successful runs
w.r.t. different desired solution path costs. Third Row: Average time required to generate
solutions of specific costs. Fourth Row: Percentage of runs providing a solution as a function
of the planning runtime.



5.5. EXPERIMENTAL RESULTS 83

Figure 5.6: Average deviation of the constrained task coordinates from the task frame along
the end-effector solution path for 100 runs of the transportation of liquids (top) and cart pulling
(bottom) planning scenario.

Furthermore, the combination of the greedy connect heuristic with informed sampling in
our planning framework has shown to find better solution more often and in less time. The
Informed RRT*, on the other hand, needed to dedicate most of the planning time for the
discovery of an initial solution, thus having almost no time left for further path improvements
(Figure 5.5, second column, second and third row). The mean and standard deviation for the
displacement of the constrained orientation angles from the task frame along the solution
paths is depicted in Figure 5.6 (top row). As can be seen, both angles stay within the bounds,
defined in B.

5.5.3 Pulling a Cart

In a final experiment, we quantitatively evaluated the performance of different planning
algorithms considering end-effector position and orientation constraints. Here, the robot
needed to maneuver a cart equipped with omnidirectional wheels out of a parking lot and
into another, while respecting the aforementioned constraints (Figure 5.5, third column).
To compare the results of our planning framework, we resorted to the same set of planning
algorithms considered in Section 5.5.2. The coordinate constraint vector for this task is defined
w.r.t. the task frame, depicted on the left side in Figure 5.4, as follows

tcc = (1, 0, 0, 0, 1, 1)>. (5.22)



84
CHAPTER 5. SAMPLING-BASED MOTION PLANNING FOR TASK-CONSTRAINED MOBILE

MANIPULATION

Here, we set the admissible negative and positive deflection from the task frame for the
x-direction ∆xneg, ∆xpos and yaw angle ∆ψneg, ∆ψpos in B to ±3 cm and ±5°, respectively.
The pitch angle, on the other hand, is allowed to rotate the end-effector around the cart handle
by ∆θneg =-30° and ∆θpos =30°. As our results show, the unidirectional variants RRT* and
Informed RRT* fail to find a solution in most of the planning runs. In contrast, bidirectional
planning algorithms are able to generate a solution in about 70% of the runs (Figure 5.5,
third column, fourth row). Moreover, the few solutions generated by the unidirectional
planning algorithms are found shortly before the available planning time runs out, whereas
their bidirectional counterparts offer solutions of the same cost in a much earlier planning stage
(Figure 5.5, third column, third row). Regarding the success rate for different desired solution
path costs and the corresponding average time required to generate them, the Bidirectional
RRT* algorithm shows a similar performance as our planner. Here, Bidirectional RRT* has a
slightly higher success rate for solution paths of cost cSP > 42, whereas our planner is superior
in generating lower cost solution paths due to the integration of informed sampling (Figure 5.5,
third column, second and third row). Furthermore, we evaluated the average deviations of
the constrained coordinates from the task frame. Here, we obtain ∆x̄ =-1.32 cm±1.19cm
SD for the x-coordinate, ∆θ̄ =-2.16°±11.73° SD for the pitch angle and ∆ψ̄ =-0.61°±2.39°
SD for the yaw angle (see Figure 5.6, bottom row). Note that the resilience of the robot’s
kinematic structure and the object to be manipulated needs to be taken into account when the
task coordinate bounds in B are defined for real world mobile manipulation tasks.

5.6 Related Work
Sampling-based motion planning approaches from the literature can be classified into tech-
niques focusing on either the generation of optimal solution paths or on finding a solution to
planning problems involving motion constraints. Approaches belonging to the former category
extend classical motion planning algorithms by allowing the topology of a search tree or
graph to improve over time, thus generating minimum cost transitions between their elements.
Karaman and Frazzoli introduced PRM* and RRT* [69], which are in comparison to their
probabilistically complete counterparts also asymptotically optimal, guaranteeing that the cost
of the returned solution approaches the optimum as the number of samples goes to infinity.
These algorithms have the property of improving the solution in the available computation
time, however, do not guarantee a high rate of convergence. Furthermore, Karaman et al. [70]
presented an extension of the RRT* algorithm toward anytime motion planning, interleaving
planning with trajectory execution. The idea is to instantly trigger execution as soon as an
initial feasible motion plan has been found whose remaining portions are improved over time.

A two-tree variant of RRT* proposed by Jordan and Perez [63] has shown to very rapidly
provide solutions in planning problems with challenging regions such as narrow corridors, or
high-dimensional configuration spaces with numerous obstacles.

Janson et al. [62] proposed the FMT* algorithm to increase the efficiency of optimal path
search by extending graph-search methods to sampling-based algorithms. This approach
generates resolution-optimal solutions in an asymptotically manner. A further improvement
of the solution, however, requires to restart the search from scratch at a higher resolution.

Alterovitz et al. [4] introduced the rapidly-exploring roadmap algorithm that allows the user
to explicitly control the trade-off between free-space exploration and solution path refinement.



5.6. RELATED WORK 85

The authors show that a careful choice of this parameter enables finding optimal paths more
quickly. Similarly, Akgun and Stilman [2] presented a bidirectional variant of RRT* with
path biasing that quickly finds an initial solution path. Afterwards the planner predominantly
spends the remaining planning time for either refinement of the current path or exploration of
other homotopy classes depending on a user-defined parameter.

The claim for optimal solutions usually comes along with a high computational effort.
Therefore, several heuristics have been introduced to guide the search in order to achieve a
faster convergence of the path cost towards the optimal solution. Nasir et al. [94] developed
RRT*-Smart that follows a similar principle as visibility graph techniques. To accelerate the
rate of convergence, it generates nodes as close as possible to obstacle vertices instead of
adopting a purely random exploration. While the approach quickly reduces the solution cost,
it may also cause other homotopy classes to remain undiscovered.

The Cloud RRT* algorithm, proposed by Kim et al. [72], allocates new samples from
sampling clouds, initially generated from a generalized Voronoi diagram. During planning,
these clouds are updated based on the set of configurations constituting better solutions.
Additionally new clouds are added to refine the current best solution. However, global
sampling remains active throughout the planning phase in order to explore understudied
homotopy classes.

Otte and Correll [96] introduced the use of parallel computing for optimal motion plan-
ning. Their C-FOREST algorithm grows configuration space trees on multiple CPUs, that
propagate improvements found on the current solution among each other. By exchanging this
information, the configuration space region from which samples are drawn is collaboratively
shrunk to an area of configurations potentially improving the current solution. The Informed
RRT* algorithm, proposed by Gammell et al. [47], follows a similar approach of focused
asymptotically-optimal motion planning. Here, the current solution is used to define an
ellipsoidal subset of the planning domain, which is used to draw only samples that potentially
improve the solution. The increased rate of convergence towards the optimal solution achieved
in [96] and [47], however, vanishes for planning problems where most of the planning time
needs to be dedicated to finding a first solution.

The BIT* algorithm [48] tries to overcome these limitations by combining sampling-based
planning with incremental graph search techniques. Instead of shrinking, the ellipsoidal subset
is incrementally enlarged and batches of configurations are added, which are subsequently
used to update a search graph. Typically, large batch sizes are required to quickly converge to
the optimal solution which, in the presence of task constraints, would require to compute a
constraint manifold approximation in advance.

Efficient optimal motion planning for mobile manipulation, requires collision-free samples
not only to be drawn from particular regions of the configuration space, but also to comply
with task constraints imposed on the end-effector by the object to be manipulated. Şucan
and Chitta proposed to precompute an approximation of the constraint manifold prior plan-
ning [34]. In this way, valid samples can be directly drawn from an approximation graph for
tree expansion instead of applying computationally expensive rejection sampling or sample
projection techniques. The drawback is that multiple approximation graphs are needed in
order to perform planning for different types of constraints.

Stilman presented three modifications to the RRT algorithm for planning with task-space
constraints, namely randomized gradient descent (RGD), tangent-space sampling (TS) and
first-order retraction (FR) [128]. The results of his comparison indicated that the FR method,



86
CHAPTER 5. SAMPLING-BASED MOTION PLANNING FOR TASK-CONSTRAINED MOBILE

MANIPULATION

which iteratively displaces a sample toward the constraint manifold, is faster and more invariant
to expansion step size and error tolerance than the RGD and TS technique.

Berenson et al. [9] described an approach for planning manipulation tasks using Task Space
Regions (TSR). These regions define upper and lower bounds for constraint task coordinates
and can be linked together in order to obtain more complex constraints. Here, samples are
projected onto a region, as opposed to the approach of Stilman [128], where samples are
required to be projected onto a single task space point. This leads to a faster and more
successful projection of samples, thus generating solutions in a shorter amount of time.

Alternative approaches for task constrained mobile manipulation using graph-search tech-
niques instead of sampling-based motion planning are presented by Chitta et al. and Scholz
et al. [25, 115]. These implementations use anytime repairing A* to generate motions for
opening a door or pushing a cart. The discretization, based on general motion primitives,
leads in many cases to dramatic performance improvements in sampling-based planning
algorithms. The main drawback is that these approaches are resolution-complete and provide
only resolution-optimal paths.

5.7 Conclusions
In this chapter, we presented a framework for mobile manipulation planning under arbitrary
geometric end-effector task constraints. Our BI2RRT* planning algorithm uses the greedy
connect heuristic to quickly find a first solution. To enable informed sampling for the
full configuration space of a mobile manipulator, we propose to use two hyper-ellipsoids,
representing subsets for the rotational and prismatic components of the configuration space. In
this way, the solution can be improved if time allows. For constraint satisfaction, we adopted
the first-order retraction method [128], which has shown to be a fast technique for projecting
samples onto the constraint manifold. The experiments reveal that our planner generates
solutions to complex mobile manipulation problems that satisfy all the desired constraints,
e.g., to deliver a glass of water or a tool trolley. Moreover, we demonstrated in the evaluation
on different planning scenarios that our approach is capable of providing low-cost solution
paths more reliably and faster than existing state-of-the-art RRT-based algorithms.

A straightforward extension of our framework for future work is to integrate a sophisticated
motion model in the local planner, used to perform the tree expansion operation, in order make
the algorithm applicable to mobile robotic systems exhibiting differential drive or car-like
kinematics [80]. Doing so, feasible motion trajectories are obtained for robotic platforms that
do not permit instantaneous motions in directions perpendicular to their sagittal axis.

Moreover, the approach of specifying constraints with respect to a single task frame, also
referred to as a Task Space Region in the literature [9], has been considered sufficient for
the manipulation tasks presented in our experiments. Even though the use of a single TSR
is generally admissible also for other tasks such as the manipulation of articulated objects,
e.g., doors or drawers, it unnecessarily poses the planning problem overconstrained for such
cases. A better solution for such planning scenarios would be obtained by defining constraints
with respect to multiple task frames, constituting a TSR chain. Regarding the task of opening
a door, for example, this would permit specifying task constraints in a way that the robot’s
end-effector is allowed to rotate around the door’s handle while being constraint to follow the
circular trajectory around the door’s hinge.



Chapter 6

A Robotic Service Assistant for Users with
Limited Communication Skills

As autonomous service robots become more affordable and thus avail-
able also for the public, there is a growing need for user friendly
interfaces to control the robotic system. Currently available control
modalities typically expect users to be able to express their desire
through either touch, speech or gesture commands. While this re-
quirement is fulfilled for the majority of users, paralyzed users may
not be able to use such systems. In this chapter, we present a novel
framework, that allows these users to interact with a robotic service
assistant in a closed-loop fashion, using only thoughts. The brain-
computer interface (BCI) system is composed of several interacting
components, i.e., non-invasive neuronal signal recording and decoding,
high-level task planning, motion and manipulation planning as well
as environment perception. In various experiments, we demonstrate
its applicability and robustness in real world scenarios, considering
fetch-and-carry tasks and tasks involving human-robot interaction. As
our results demonstrate, our system is capable of adapting to frequent
changes in the environment and reliably completing given tasks within
a reasonable amount of time. Combined with high-level planning and
autonomous robotic systems, interesting new perspectives open up for
non-invasive BCI-based human-robot interactions.

Patients with heavily impaired communication capabilities, such as severely paralyzed patients,
are forced to constantly rely on the help of human care-takers due to their health condition.
Robotic service assistants can re-establish some autonomy for these patients, if they offer
adequate interfaces and possess a sufficient level of intelligence. At this time, however, most
of these systems are not very flexible regarding the tasks that can be assigned to them. Instead,
they are typically dedicated to a specific work area such as cleaning the floor or mowing the
grass. Implementing an intelligent system that is capable to cope with a broad range of tasks,
generally requires adaptive task and motion planning modules to determine appropriate task
plans and motion trajectories for the robot, as well as robust low-level control strategies to
realize the tasks in the real world. Moreover, the deployment of a perception component
becomes indispensable, e.g., to detect objects of interest or to avoid accidental collisions with
obstacles. Typically used interfaces to command the robotic system, such as haptic (buttons),



88
CHAPTER 6. A ROBOTIC SERVICE ASSISTANT FOR USERS WITH LIMITED

COMMUNICATION SKILLS

High-Level Planner

Motion and Mani-

pulation Planning

Motion Execution

Knowledge 

Base

Object DetectionEEG-based User Interaction

Figure 6.1: Framework unifying decoding of neuronal signals, high-level task planning, low-
level motion and manipulation planning and scene perception, with a centralized knowledge
base at its core. Intuitive goal selection is provided through a graphical user interface.

audio (speech) or visual (gesture) interfaces, are intuitive and easy options for healthy users,
but difficult to impossible to use for paralyzed individuals.

In this chapter, we present a novel framework, schematically depicted in Fig. 6.1, that
allows closed-loop interaction between users with minimal communication capabilities and a
robotic service assistant. To do so, we record neuronal activity elicited in the human brain,
the common origin of all types of communication, with an electroencephalography (EEG)
system. Furthermore, we adopt a convolutional neural network (ConvNet) approach for online
decoding of neuronal activity, in order to allow users to navigate through a graphical user
interface (GUI) provided by a high-level task planner. The set of feasible actions displayed
in the GUI, depends in turn on the current state of the world, which is stored in a central
knowledge base and continuously updated with information provided by the robot and a
camera perception system. Once a task has been selected by the user, it is decomposed into a
sequence of atomic actions by the high-level planner. Subsequently, each action is resolved
to a motion for the mobile manipulator using low-level motion and manipulation planning
techniques, as the one described in Chapter 5. In the following, the individual components
shown in Fig. 6.1 will be described in detail. Afterwards, we present a quantitative evaluation
of the overall system and its subparts regarding their performance in virtual and real world
scenarios.

6.1 Online Decoding of Neuronal Signals
Implementing an EEG-signal based interface to permit severely paralyzed patients to com-
municate complex tasks to a robotic service assistant represents a major challenge. So far,



6.1. ONLINE DECODING OF NEURONAL SIGNALS 89

Figure 6.2: Mental task paradigm used to train the ConvNet. Depicted sequence is repeated in
random order for 10 min per block. Blue discs are used as cues indicating the end of a mental
task. The blue circle represents a fixation point, which needs to be fixated by the user in order
to minimize eye movements.

previous work from the literature has considered the deployment of robotic platforms only for
assistance in specific tasks, and thus are only of limited use. Contrary, our system involves
a robotic service assistant with a rich set of capabilities, including autonomous navigation,
manipulation of objects and human-robot interaction. This, in turn, yields a variety of tasks
the robot is able to perform and accordingly patients can choose from. To put patients in
control of the system, we propose a graphical user interface in this work that displays the
currently feasible goals (i.e., tasks) and can be controlled by navigational commands. Finally,
we aim to develop a mapping that translates neuronal activity elicited in the human brain to
directional commands for the GUI such as up, down, confirm selection, return.

As reliable classification of brain signals into navigation directions can not yet be achieved
directly with non-invasive BCIs, we adopt a deep ConvNet approach for decoding of multiple
mental tasks from EEG, as proposed by Schirrmeister et al. [114]. This approach introduces a
hybrid network, combining a deep ConvNet with a shallower ConvNet architecture. The deep
part consists of 4 convolution-pooling blocks using exponential linear units (ELU) [31] and
max pooling, whereas the shallow part uses a single convolution-pooling block with squaring
non-linearities and mean pooling. The deep as well as the shallow part uses a final convolution
with ELU to produce output features. Finally, these features are concatenated and fed to a final
classification layer. In our approach, we trained the ConvNet to decode five mental tasks: right
hand finger and feet toe movements, object rotation, word generation and rest. These mental
tasks evoke discernible brain patterns and are mapped to directional commands to control the
graphical user interface. For offline training, we adopted a cropped training strategy using
shifted time windows within the trials as input data [114].

Empirical results suggested that it is important to train the BCI decoder and subjects in an
environment that is as similar as possible to the environment in which the system is intended
to be finally deployed. Otherwise, pronounced performance losses are to be expected in the
online decoding phase. Here, reasons for a degraded performance arise from different noise
sources. Different ambient light conditions, nearby electrical devices, vibrations as well as



90
CHAPTER 6. A ROBOTIC SERVICE ASSISTANT FOR USERS WITH LIMITED

COMMUNICATION SKILLS

background movements, to name just a few, are likely to alter the brain response patterns
recorded by the EEG electrodes and therefore deteriorate the ConvNet decoding results. To
account for these aspects, we designed a gradual training paradigm within the high-level
planner GUI, where the environment, timing and actions are identical to those of the control
task subsequently used in our real world applications. The training paradigm is schematically
depicted in Figure 6.2 and proceeds as described in the following.

First, each subject is trained offline using simulated feedback, i.e., a GUI action is triggered
every time a mental task has ended. Here, subjects are aware of not being in control of the
graphical user interface. The mental tasks are cued using grayscale images presented for
0.5 s in the center of the display, e.g., a down pointing arrow. Note that the cues illustrated in
Figure 6.2 have been colorized in favor of a better visibility. Throughout the training phase,
a fixation circle is displayed at the center of the GUI and the subject is instructed to fixate
on it to minimize eye movements. Eye movements are considered critical in the context of
decoding from EEG data as their associated brain response superposes the mental task related
signals in the higher frequency band. After a random time interval of 1-7 s the fixation circle
is switched to a disk for 0.2 s, which indicates the end of the mental task. At the same time the
GUI action (go up, go down, select, go back, do nothing) corresponding to the cued mental
task is performed to update the graphical user interface. To keep training realistic, we include
a 20 % error rate, i.e., on average every fifth executed action is different from the action
actually corresponding to the cued mental task. Additionally, subjects are instructed to count
the number of error occurrences to assert their vigilance. Afterwards, this offline data is used
to train the individual deep ConvNets. In a next step, we switch to online training by letting
the subjects perform the decoded mental tasks in the GUI. In a last step, the cueing of mental
tasks is ceased completely. In order to evaluate the performance and thus the usability of the
BCI control achieved after training, subjects are asked to select instructed tasks using the GUI.
These tasks are subsequently decomposed by the high-level planner into a sequence of atomic
action and executed by a simulated robot or the real mobile manipulator using the motion
and manipulation techniques presented in Section 6.4. Furthermore, subjects have to confirm
the execution of every planned action and are also permitted to interrupt the execution of the
action sequence at any time. This way, subjects remain in control of the mobile manipulator
beyond the task selection process and experience a stronger feeling of agency. Finally, a
quantitative assessment of the BCI decoding accuracy for the label-less instructed tasks is
obtained by manually rating each decoding based on the prescribed task steps.

6.2 High-Level Goal Formulation Planning
In our work, we use domain-independent planning for the high-level control of our robotic
system. Whereas automated planning seeks to find a sequence of actions to successfully
complete the task, the goal of the robotic system is determined by the intention of the user.
For directly specifying these goals using traditional planning methods, however, users would
need to know the internal representation of objects stored in the knowledge base. For example,
an expression ID3185 is used by the underlying planning system to represent the red cup
on the shelf. Instead, our approach allows users to access objects more easily by referring
to them by their type and attributes, which represent relations to other objects. Doing so,
users are given the opportunity to express their desire in a way, similar to when they are



6.2. HIGH-LEVEL GOAL FORMULATION PLANNING 91

( : o b j e c t s cup01 cup02 − cup
s h e l f 0 1 s h e l f 0 2 − s h e l f
omnirob − r o b o t )

( : i n i t ( arm−empty omnirob )
( a t omnirob s h e l f 0 2 )
( p o s i t i o n cup01 s h e l f 0 2 )
( c o n t a i n s cup01 w a t e r ) )

Figure 6.3: Left: The red cup in the real world, referred to by cup01 . Right: PDDL problem
description with object instances as well as their initial state.

communicating with other humans. A detailed description of our automatic goal formulation
assistant, incrementally generating references to feasible goals in a menu-driven graphical
user interface, will be given in the following.

6.2.1 Domain-Independent Planning
Automated planning is used to transfer a system into a desired goal state by sequentially
selecting high-level actions. A planning task consists of a planning domain and a problem
description, formulated in the Planning Domain Definition Language (PDDL) [89]. The
former represents a description of the object types and predicates as well as the preconditions
and effects of actions available to manipulate them. The latter models the present objects,
their initial state and the desired goal. For example, our domain contains a type hierarchy,
where furniture and robot are of super-type base , and bottle and cup are of super-type vessel .
Moreover, it defines relations between objects, e.g., position is a relation between objects
of type vessel and type base. Finally, it defines the set of actions supported by the robotic
platform, such as grasp, drop, approach and pour . The problem description, on the other
hand, specifies object instances, such as cup01 , cup02 of type cup and shelf01 of type
shelf as well as relations between them, e.g., the position of cup01 is shelf02 , as illustrated
in Figure 6.3.

6.2.2 Goal Formulation with References
The biggest hurdle in making high-level planning systems accessible for non-expert users is
to translate and communicate feasible goals in a human understandable manner. This problem
is particularly challenging due to limited shared vocabulary between the user and the planning
system, whose world is described by a PDDL planning task [89]. For example, the most
concise representation of the cup in Figure 6.3 might be cup01 for the planner, whereas
this description is not sufficiently clear to the user if multiple cups exist in the environment.
To solve this problem, we provide the goal generation and selection component with a set
of shared references between planner and user, which can be combined to create referring



92
CHAPTER 6. A ROBOTIC SERVICE ASSISTANT FOR USERS WITH LIMITED

COMMUNICATION SKILLS

expressions to objects or sets of objects in the world [35]. This section briefly recapitulates
the relevant concepts in this area, originally introduced by Göbelbecker [50].

In general, a referring expression φ is a logical formula with a single free variable. We
say that φ refers to an object o if φ(o) is valid. For example, the reference φ(x) ≡ cup(x) ∧
contains(x,water) refers to cup01 . For our purpose, we restrict ourselves to references that
are simple conjunctions of facts, such as the example above. This is not only preferable for
computational reasons, but also allows us to incrementally refine references by appending
further constraints, such as adding contains(x,water) to cup(x), to restrict the set of all cups
to the set of cups containing water. A reference is unique iff there is exactly one object it
refers to. However, it is usually sufficient to create references to sets of objects. If the user,
e.g., wants a glass of water it might not be important to refer to a specific glass as long as it
contains water.

In the context of high-level planning, it is important to note that the formal concept of an
object differs from the definition of the notion in the physical world. For example, a red cup is
an object of type cup, possessing an attribute color , which is red . Here, the color red (of type
color ) is considered an object itself by the planner. Instead of attributes, objects are connected
by relations. For instance colored(cup01 , red), describes a binary relation between a cup and
a color. To reference objects in planning domains, we need to specify the components that
can be used to create references. Here, we distinguish between three fundamental types of
references:

• Individual references: These objects can be identified by name. Examples include
objects such as water , apple-juice (of type content) or omniRob (of type robot).

• Typename references: These objects can be identified by the name of their type. While
we cannot refer to the cups and shelves directly in our example, we can refer to an
unspecific shelf or cup.

• Relational references: Objects can be referred by predicates in which they occur as
an argument. In the example depicted in Figure 6.3, we use the content of the cup to
clarify which cup is meant.

In practice, these object references can be applied to specific planning problems to generate
references to the available goals. For the planning system, it is the most natural way to
represent a goal by a conjunction of predicates, e.g., cup(x) ∧ shelf (y) ∧ position(x, y),
which translates to cup is on the shelf in natural language. For humans, however, this is a
rather unnatural way to communicate the goal of putting a cup on a shelf. In our approach,
a more comprehensible and natural way to communicate goals to humans has been adopted
that makes use of the action achieving the goal instead of the goal itself. Accordingly, the
aforementioned goal is represented as action(put , x, y) ∧ cup(x) ∧ shelf (y), or put the cup
on the shelf in natural language.

6.2.3 Adaptive Graphical Planner Interface
Whereas shared references constitute a vocabulary understandable for both, the planning
system and human users, it remains to define an appropriate interface permitting them to
mutually exchange information. Since graphical user interfaces (GUI) are already widespread



6.2. HIGH-LEVEL GOAL FORMULATION PLANNING 93

(a) (b)

(c) (d)

Figure 6.4: Graphical user interface of the high-level planner. (a) Selection of a high-level
planner action. (b) Refinement of the action parameter of type transportable . (c) Refinement
of the argument based on content . (d) Refinement of the last action parameter of type base.

among assistant systems dedicated to disabled people, we aim to provide a similar interface
enabling users to set the goal for the robot, or more specifically communicate their desire.
More precise, we use the object references to build a dynamic, menu-driven goal selection
interface, as depicted in Figure 6.4.

The high-level planner GUI initially displays the set of available actions, e.g., pick , pour
or drop. After selecting one of the goal types, e.g., drop (with three parameters: the robot, the
transportable to be dropped and the base to place the object on) in Figure 6.4 (a), objects for all
parameters of the goal predicate or action are determined. In the following, we start populating
the goal with the most specific reference that still matches all possible arguments, e.g.,
omniRob, transportable(x) and base(y), assuming that omniRob is an individual reference
and transportable and base are typename references (Figure 6.4 (b)). The current goal
reference is displayed in the top row of the GUI (Figure 6.4 (b-d)). Afterwards, the user is
provided with choices to further refine the argument by constraining the previous choice. In
our example the first argument omniRob is the only object in the world that fits the parameter
type robot so it does not have to be refined any further. Therefore, we start by offering choices
for refining the second argument transportable(x), which yields the selections bottle(x),
glass(x), cup(x) and vase(x) (see Figure 6.4 (b)). This continues until the argument is either
determined uniquely, it is impossible to constrain the argument further or the user declares



94
CHAPTER 6. A ROBOTIC SERVICE ASSISTANT FOR USERS WITH LIMITED

COMMUNICATION SKILLS

that any remaining option is acceptable. Considering our example, the refinement of the bottle
argument is completed by selecting apple-juice as the content (see Figure 6.4 (c)) (or in a
more relation-centric view, we offer all feasible choices for adding a relation contains(x , o) to
the referring expression, where o is an object of type content). This procedure is repeated for
all parameters of the goal (e.g., selecting couch table for the base parameter in Figure 6.4 (d)),
which will finally result in a single goal or set of goals (if the references are not unique) that
are sent to the planner. The check marks, depicted adjacent to the selections indicate that the
goal is fully specified for these choices. Instead, arrows declare that further refinements are
available for the respective entry. Some features cannot be used to partition the remaining
objects for one parameter, e.g., not all objects have the attribute color , in which case an entry
for all other objects can be chosen. Additionally, we allow to skip the refinement of the
current parameter and use an arbitrary object for it. Finally, we provide an entry to go back to
the previous refinement step. To decide which feature to use to refine the current selection, we
draw on decision tree learning that maximizes the resulting partition’s information gain [101].
This strategy prefers references that require few selections and split referable objects more
equally, thus offering the user a meaningful choice at every step. Note that only choices are
offered that can result in an achievable goal, as determined by delete relaxation of the planning
task, an efficient over-approximation of goal reachability [10]. For example, if all bottles were
out of reach for the robot, the choice bottle(x) would be removed from the selection depicted
in Figure 6.4 (b). This might result in a completely different selection being preferred in
Figure 6.4 (c), e.g., one that distinguishes by the transportable’s color or position. In case that
several objects can satisfy the specified goal, the planner resolves the ambiguity by picking an
arbitrary object among them.

6.3 Dynamic Knowledge Base
The knowledge base represents the backbone of our network of planning, execution and
perception nodes, as depicted in Figure 6.1. In our work, it is initialized by the previously
mentioned domain and problem description, constituting a planning task. The former defines
object predicates and available actions together with their preconditions and effects. The later
defines which objects are present in the world and sets their corresponding initial state. Once
the knowledge base is initialized, it acts as a central database from which all participating
network nodes can retrieve information about specific objects and their associated attributes in
the world. Dynamic behavior is achieved by additionally introducing a knowledge base server
layer that allows nodes to add, remove or update objects as well as their attributes. Moreover,
the server actively spreads information about incoming changes in the world, or updates on
object attributes across the network. Based on this information, each network node can decide
on its own whether the process it is responsible for is affected by the update and thus if actions
are required to be initiated.

6.4 Robot Motion Generation
Implementing the task-related action sequence generated by the high-level planning component
of our system in the real world requires a robotic service assistant to autonomously plan and



6.4. ROBOT MOTION GENERATION 95

execute navigation and manipulation actions. For the purpose of generating motions for the
robotic arm and mobile base, respectively, we adopt two motion planning frameworks in our
work. Due to the fact, that the workspace of the robotic manipulator is solely defined by its
kinematics, we use a multi-query probabilistic road-map (PRM) based task space planner for
manipulation tasks. On the contrary, the workspace of the mobile base primarily depends on
the size and contour of the environment, which is likely to change as the robot is deployed in
different application scenarios. Therefore, the single-query RRT-based BI2RRT* algorithm,
introduced in Chapter 5, is used to realize navigation tasks. In the following, we will describe
each of the planners as well as how they interact with the high-level planning component.

6.4.1 Navigation Tasks
Navigation tasks, referred to as the move and approach action by the high-level planner,
require the mobile base of the robot to move along a collision-free path to either reach a
desired location, e.g., the kitchen or living-room, or to position itself in front of a furniture
or human in preparation of a subsequent manipulation action. As we perform bidirectional
planning using the BI2RRT* planner, the start and goal tree need to be initialized with a
corresponding configuration for the mobile base. Here, a configuration of the mobile base
simply corresponds to a pose in SE(2), i.e., a 2D position and 1D orientation, expressed with
respect to a global map frame Fmap . For precomputing a static 2D grid map representation of
the environment, existing robot mapping techniques have been adopted [52]. For planning,
however, we rely on a virtual representation of the environment, depicted in Figure 6.5, which
is obtained by vertical extruding the grid map. The result is a 3D octomap [59], that permits
our navigation planning component not only to account for collisions between the mobile base
and the environment, but also for undesirable contact between the robotic arm and obstacles.
In order to acquire the root pose for the start tree, we rely in this work on pose estimates
p̂map
start = (x, y, θ)>, provided by a particle filter-based localization algorithm [46]. The goal

pose, on the other hand, is retrieved from the central knowledge base of our framework using
the action parameters provided by the high-level planner. Let us assume, for example, the goal
is to navigate to a specific shelf, i.e., shelf1 in the notion of the high-level planning system. In
this case, the knowledge base is queried to return the pose attribute of shelf1 , corresponding
to a location in front of the shelf offering a high manipulability measure (see Section 4.2.2)
for the robotic arm. Subsequently, the response is assigned to pmap

goal , i.e., the root pose of the
goal search tree, depicted in Figure 6.5 (top). Note that the prescribed poses stored in the
knowledge base have been selected empirically for the target locations considered in our work,
whereas an automatic and optimal selection of target poses could be obtained using the IRM
approach presented in Chapter 4.

Finally, given a set of terminal configurations p̂map
start and pmap

goal , our planner performs a
bidirectional search using uniform sampling in the configuration space until an initial, though
sub-optimal, solution path is found. Afterwards, the remaining planning time is used for
path refinement adopting an informed sampling strategy providing a higher convergence rate
towards the optimal solution. An example showing a pair of terminal poses (red and green
sphere) and the resulting structure of the start and goal tree (blue and red edges), obtained
after termination of the BI2RRT* algorithm, is shown in Figure 6.5 (top).

For executing the planned paths, as exemplary illustrated by the orange line in Figure 6.5
(bottom), we employ a closed-loop trajectory tracking algorithm using robot localization



96
CHAPTER 6. A ROBOTIC SERVICE ASSISTANT FOR USERS WITH LIMITED

COMMUNICATION SKILLS

Figure 6.5: Top: Bidirectional motion planning to determine a collision-free path, guiding
the mobile base from its current pose (red sphere) to a desired target pose (green sphere).
Collision checks are performed in a 3D representation of the environment, obtained by
vertically extruding the static 2D grid map. Bottom: Closed-loop trajectory tracking using
robot localization feedback.

feedback. Given the robot’s current pose estimate p̂map
R in the map frame Fmap , with

p̂map
R (0) = p̂map

start , the algorithm steps forwards in time through the waypoints of the tra-
jectory, while determining the distance between the current robot pose and waypoint, i.e.,
p̂R
wp = p̂R

map ⊕ pmap
wp , expressed with respect to the coordinate system of the mobile base.

Once a translational or rotational error component of p̂R
wp , i.e., ∆x, ∆y, ∆θ, is found to

exceed a certain upper threshold εlin,max, εrot,max, the corresponding waypoint is selected as
the new target and velocities ṗbase = (ẋ, ẏ, θ̇)>, proportional to the observed error, are send
to the mobile base (see Appendix A.2). To compensate for inaccurate motion execution and
therefore to reliably reach the waypoint, the vector of base velocities is continuously updated
based on pose estimates provided by the localization system. Finally, if all error components
of p̂R

wp fall below a lower threshold εlin,min, εrot,min, the current waypoint is considered as
reached and the algorithm proceeds by determining the next waypoint for the mobile base, as
described above. Whereas it is admissible to traverse intermediate trajectory waypoints with
small deviations, the final waypoint or destination of the mobile base is required to be reached



6.4. ROBOT MOTION GENERATION 97

with high accuracy as it affects the outcome of manipulation actions, potentially considered as
the subsequent task by the high-level planning system. To account for this aspect, we set the
proximity thresholds εlin,min and εrot,min, indicating the arrival at waypoints, to a sufficiently
small value when pmap

wp is found to coincide with pmap
goal .

6.4.2 Manipulation Tasks
Manipulation actions, such as grasp, drop or pour , require the robotic arm to approach or
transfer an object via a collision-free path. As the reachable workspace of the manipulator
depends solely on its kinematics, we follow a probabilistic road-maps (PRM) based planning
approach [71]. Traditionally, PRMs are adopted for planning planar motions in 2D, i.e., in the
(x, y) state space. Instead, in our work we build a 3D Cartesian space road-map of end-effector
poses explicitly considering task constraints, e.g., upright or horizontal orientation, in the
construction process. The resulting algorithm is referred to as the probabilistic task-space
road-map planner (PTRM) and will be described in the following.

The PTRMs need to be build only once in an offline step and can be subsequently used for
all manipulation task related motion planning queries. To generate the road-maps, end-effector
positions with specific orientations are randomly sampled from the spatial hull defined by
the manipulator’s extent and evaluated for reachability adopting an inverse kinematics solver.
If a pose if found to be reachable, it is added as a new node to the road-map or rejected
otherwise. This process is continued until the road-map contains a predefined number of
nodes. Afterwards, edges between graph nodes are inserted considering neighboring nodes
within a certain euclidean distance. The result of a PTRM construction process considering
end-effector poses with upright orientation as, for example, required to manipulate a glass of
water, is depicted in Figure 6.6 (left). Note that the density of the illustrated road-map (500
samples) has been selected intentionally sparse for the sake of a better visibility of graph nodes
and edges. In practice, a much denser map (ca. 5000 samples) is used to achieve reliable
planning results.

Solving a specific motion planning query requires to connect the start and desired goal
pose to the nearest node contained in the road-map graph, respectively. The start pose always
corresponds to the current pose of the end-effector, whereas the goal pose depends on the
task. To elevate the prospects of success, we follow in our work the approach of selecting
multiple goal poses for planning, which are derived from visual information provided by a
depth camera system mounted on the robot (see Figure 6.7). The obtained data includes a
pose estimate for the object to be manipulated, expressed with respect to the base link frame
of the manipulator. Moreover, an octomap representation [59] of the scene is generated from
the camera’s point cloud data [108] which, in addition to evaluating the validity and quality
of goal poses, serves the purpose of performing collision checks during planning. Regarding
the grasp action, for example, a set of potential goals is generated by sampling collision-free
end-effector poses around the given object pose. For drop actions, on the other hand, feasible
goal poses are obtained by determining collision-free object placements on a planar surface
using the 3D octomap.

Finally, A* search [56] is iteratively performed on the PTRM to find optimal solution paths
to the goal poses, starting with the one being closest to the current end-effector pose. In
practice, it has been found useful to initially attempt to connect the start and goal end-effector
position by a straight line, thus avoiding unnecessary planning efforts. Once a valid path is



98
CHAPTER 6. A ROBOTIC SERVICE ASSISTANT FOR USERS WITH LIMITED

COMMUNICATION SKILLS

Figure 6.6: Left: Probabilistic task-space road-map of upright end-effector poses. Right:
End-effector path generated by the PTRM planner for the task of grasping a cup (shown as a
sequence of frames) and snapshot of the trajectory execution. (Courtesy of Daniel Kuhner)

found, the search for paths towards alternative goal poses is aborted and the corresponding
solution is returned. A solution path for grasping a cup is illustrated in Figure 6.6 (right). For
planning, the euclidean distance is considered to evaluate the cost of graph node transitions as
well as to estimate the expected cost to reach the goal from a specific node, i.e., the heuristic.
To ensure that graph transitions comply with the task constraints and are collision-free, a
Jacobian-based numerical inverse kinematics solver is used to iteratively generate intermediate
robot configurations along the graph edges which are evaluated for validity. For execution of
the solution path, we finally employ a task-space motion controller, which maps the desired
task-space velocity commands to velocities in joint space.

6.5 Implementation Details

Implementation of our framework in the real world requires several components, such as
neuronal signal decoding, scene perception, knowledge base operations as well as symbolic
and motion planning, to run in parallel. Therefore, we distributed the computation across a
network of 7 computers, communicating among each other via ROS. The decoding of neuronal
signals has four components. EEG measurements are performed using a Waveguard EEG cap
with 64 electrodes and a NeurOne amplifier in AC mode. Additionally, vertical and horizontal
EOGs (Electrooculography, i.e., measures electrical activity produced by eye movements),
EMGs (Electromyography, i.e., measures electrical activity produced by skeletal muscles) of
the four extremities and ECGs (Electrocardiography, i.e., measures electrical activity produced
by the heart) are recorded. For recording and online preprocessing, we used BCI2000 [112]
and Matlab. We then transferred the data to a GPU server, where our deep ConvNet classified
the data into five classes.

The high-level planner GUI consists of a back- and front-end. The back-end of the GUI
uses the Fast Downward planner [58] to iteratively build goal references and to find symbolic
plans for the selected goal. As the planning time is not crucial for the performance of our



6.6. EXPERIMENTS 99

system, we used the A* implementation of Fast Downward with a default configuration in
our experiments. The front-end of the GUI is implemented in PyQt/QML. Planning task
descriptions are provided by domain and problem PDDL files. The central knowledge base is
implemented as a ROS node, which is able to store objects with arbitrary attribute information.
All changes in the knowledge base automatically trigger updates of the front-end, unexpected
ones interrupt the current motion trajectory execution. For object pose detection and tracking,
we used SimTrack [100]. Extrinsic calibration of the depth camera system is realized following
the approach by Ilonen and Kyrki [60]. For planning collision-free trajectories for the mobile
base, we rely on a static map representation of the environment, created using the Gmapping
algorithm introduced by Grisetti et al. [52]. Finally, we employ the adaptive Monte Carlo
localization algorithm [46] to continuously acquire estimates of the robot’s current pose with
respect to a fixed global reference coordinate system.

6.6 Experiments
To evaluate our framework in real world experiments, we consider the environment schemat-
ically depicted in Fig. 6.7, containing two shelves and a table as potential locations for
manipulation actions. The user sits in a wheelchair in front of a screen, displaying the graph-
ical interface of the high-level planner. The robot used in the experiments is the omniRob
omnidirectional mobile manipulator platform by KUKA Robotics [79], which is composed of
10 degrees of freedom (DOF), i.e., 3 DOF for the mobile base and 7 DOF for the manipulator.
Additionally, the Dexterous Hand 2.0 by Schunk [117] is attached to the manipulator’s flange
and used to perform grasping and manipulation actions. A detailed description of the robotic
platform can be found in Appendix A.2. The tasks, we considered in our real world experi-
ments required the robotic system to autonomously perform the following actions: drive from
one location to another, pick up an object, drop an object (on a shelf or table), pour liquid
from a bottle into a cup, supply a user with a drink. Moreover, we use a perception system
composed of five RGBD cameras. Three of them are statically mounted at the shelves and the
table, in order to observe the scene and to report captured information to the knowledge base.
The other two cameras are carried by the robot on-board. The first one is located at the mobile
base and used to perform collision checks in manipulation planning. The second camera
is mounted at the robot’s end-effector and used for tasks involving physical human-robot
interaction. Additionally, we evaluated the performance and usability of our goal formulation
assistant on virtual environments containing a varying number of objects randomly spawn
in different locations. A video demonstrating the capabilities of our framework is available
online1.

6.6.1 Online Decoding of Neuronal Signals

The BCI control setup has been evaluated by four healthy subjects, referred to as S1-S4 in
our quantitative results. All of them are right-handed, three are female and the average age is
26.75±5.9 years. The recordings for subject S4 were still in progress during the analysis of
the decoding performance achieved by our approach. Therefore, only a few runs are listed

1http://www.informatik.uni-freiburg.de/~burgetf/ecmr17

http://www.informatik.uni-freiburg.de/~burgetf/ecmr17


100
CHAPTER 6. A ROBOTIC SERVICE ASSISTANT FOR USERS WITH LIMITED

COMMUNICATION SKILLS

User
Table

Robot

ShelfShelf

GUI EEG

Camera Object Location

Figure 6.7: Experimental environment: Two shelves and a table can be considered by the robot
for performing manipulation actions. A perception system composed of five RGBD cameras is
used to observe the environment. A human operator selects a goal from the high-level planner
GUI based on BCI control.

for that subject in Table 6.1. In total, 52 runs have been recorded, thereof 20 with the real
robot, where the subjects executed various instructed high-level plans. For 32 runs, we used
simulated feedback from the GUI, i.e., actions were executed by a virtual robot and assumed
to be always completed successfully. By doing so, a significant amount of data is generated
and thus meaningful results are obtained. For assessing the BCI decoding performance during
these runs, video recordings of interactions within the GUI have been used. Individual GUI
actions were rated correct if they corresponded to the instructed path and incorrect otherwise.
Actions which are necessary to remediate a previous error are interpreted as correct if the
correction is obviously needed in order to proceed. Finally, we rated rest actions as correct
during the simulated robot executions (no user command required), incorrect if the next robot
action had to be initialized (user command select required) and ignored them during the phase
of navigating through the high-level planner GUI (doing nothing is acceptable). For evaluation,
five metrics have been extracted from the video recordings: (i) the accuracy of the control,
(ii) the time it took the subjects to execute a high-level plan, (iii) the number of steps taken to
execute a high-level plan, (iv) the path optimality, i.e., the ratio between the steps performed



6.6. EXPERIMENTS 101

Runs Accuracy* Time Steps Path Optimality Time/Step
# [%] [s] # [%] [s]

S1 18 84.1±6.1 125±84 13.0±7.8 70.1±22.3 9±2
S2 14 76.8±14.1 150±32 10.1±2.8 91.3±12.0 9±3
S3 17 82.0±7.4 200±159 17.6±11.4 65.7±28.9 11±4
S4 3 63.8±15.6 176±102 26.3±11.2 34.5±1.2 6±2

52 76.7±9.1 148±50 16.7±7.1 65.4±23.4 9±2

Table 6.1: Aggregated mean±std results for 52 BCI control runs, * p-value < 10−6.

and the minimal possible number of steps required to reach the goal, and (v) the average time
per step. The results are summarized in Table 6.1. On average, 76.67 % of the BCI control
commands were correct. In order to perform a single step in the GUI it took subjects 9 s
on average. For selecting a complete plan users required 148±50 s, performing on average
16.74 steps in the GUI of the high-level planner. The path formed by these steps is on average
34.6 % away from the optimal path, i.e., the minimal sequence of steps required to reach the
instructed goal. The decoding accuracy of every subject is significantly above chance (t-test
result: p < 10−6).

The subject-averaged EEG data used to train the hybrid ConvNets and the decoding results
of the train/test transfer are visualized in Fig. 6.8. In Fig. 6.8 (a), the signal-to-noise ratio
(SNR) of all 5 classes C of the labeled datasets, are depicted . The SNR for a given frequency
f , time t and electrode e is defined as follows

SNRf,t,e =
IQR ({median (Mi)})
median ({IQR (Mi)})

i ∈ C, (6.1)

whereMi corresponds to the set of values at position (f, t, e) of the i-th task, with |Mi| being
the number of repetitions. median(·) and IQR(·) is the median and interquartile range (IQR),
respectively. The upper part describes the variance of the class medians, i.e., a large variance
means more distinguishable class clusters and a higher SNR. The denominator describes
the variance of values in each class, i.e., a lower variance of values results in a higher SNR.
The low SNR in EMG (Electromyography) and EOG ((Electrooculography) channels shows
that the subjects did not move during the tasks, thus proving that navigation actions in the
GUI are not triggered by electrical activity produced by skeletal muscles or eye movements.
The decoding accuracies achieved on the test data after initial training of the ConvNets are
visualized in Fig. 6.8 (b). To further support the neural origin of the BCI control signals,
Fig. 6.8 (c) shows physiologically plausible input-perturbation network-prediction correlation
results (see Schirrmeister et al. [114] for methods).

6.6.2 Fetch and Carry Task
The first experiment, considering the use of the real robot, evaluates the complete system
in fetch-and-carry tasks. The goal was to transfer an object from one location to another,
e.g., from a shelf to the table, using the robot (see Figure 6.7). To fulfill such tasks the robot



102
CHAPTER 6. A ROBOTIC SERVICE ASSISTANT FOR USERS WITH LIMITED

COMMUNICATION SKILLS

S
N
R

(a)

0.7

0

(b) (c)

(a)

(b)
Hand (R)

P
re
d
ic
ti
on
s

Targets

Feet

Rotation

Words

Rest

Sensitivity

(c)

Hand (R) Feet

Rotation Words

Rest

-0.4 0 0.4
x10-2Correlation

(b) (c)

Figure 6.8: EEG data and decoding results. (a) SNR of the first 4 s of data used to train
the hybrid ConvNet. Highest SNR can be observed in the alpha (7-14 Hz) and lower beta
(16-26 Hz) bands. These frequency bands are robust markers of task related mental tasks.
Note that the non-EEG channels (top row) were withheld from the ConvNets at any time and
are displayed as negative control. Not all channels are displayed because of space constraints.
(b) Confusion matrix of decoding accuracies for the train/test transfer. Accuracies are well
above the theoretical chance level of 20 %. (c) Topographically plausible input-perturbation
network-prediction correlation maps in the alpha (7-13 Hz) frequency band. For details on the
visualization technique, we refer the reader to the work of Schirrmeister et al. [114].



6.6. EXPERIMENTS 103

Actions # Executions Success Runtime [s]
(# Scheduled) Executions [%] Mean Std

Grasp 10 (10) 90.0 37.56 4.62
Drop 9 (10) 89.0 34.13 5.75
Approach 19 (20) 100.00 33.05 18.48

Total 38 (40) 94.74 34.42 14.02

Table 6.2: Aggregated results for 10 runs of the fetch-and-carry task.

typically needs to execute four subtasks: approach object location, grasp object, approach
other location, drop object. The user was instructed to select a predefined goal using the
EEG-controlled high-level planner. Moreover, we selected a random initial placement for
the objects in each run, in order to cover different environment states. The experiment was
repeated ten times by the user. Table 6.2 shows the averaged results for the experiment.

The second column indicates the overall number of desired action calls, as scheduled by the
high-level planner, as well as the number of calls actually performed. The third to fifth column
represents the success rate, mean and standard deviation for the runtime of actions, respectively.
Here, the success rates are given with reference to the number of actually executed planning
attempts and not the scheduled ones. Note, that the number of scheduled and actually executed
actions might differ for two reasons. A number of executed calls, lower than the scheduled
ones, indicates that a previous action step has failed to succeed and plan recovery was not
possible. On the other hand, a higher number of executed calls indicates that the user was
able to achieve plan recovery by commanding a repetition of the failed action. Moreover,
we recorded the largest standard deviation for the approach action, which can be attributed
to the diverse complexity of the planning problem for the mobile base and the distance to
travel between the selected grasp and drop location. In total, our system achieved a success
rate of 80% for the entire task. Planning and execution required on average 140.63±36.7 s.
Failures were mainly caused by object detection issues, i.e., the perception component of our
framework was not able to detect the object or the pose estimate was not sufficiently accurate
to complete the corresponding task successfully. The impact of this issue is reflected by a
failed drop and grasp action, recorded in Table 6.2 (third column, first two rows).

6.6.3 Drinking Task

Another real world experiment evaluates the direct interaction between a user and the robot.
More specifically, we implemented an autonomous robotic drinking assistant. Our approach
enables the robot to fill a cup with a liquid, move the robot to the user and finally provide
the drink to the user by execution of the corresponding drinking motion in front of the user’s
mouth. In addition to the techniques adopted in the previous experiment, successful pouring
and drinking using a robot requires the detection of the liquid level in the cup and a reliable
detection and localization of the user’s mouth.

To detect the liquid level while pouring, we follow an approach based on work by Do
et al. [41]. The RGBD camera used for this purpose is located on the bottom right in



104
CHAPTER 6. A ROBOTIC SERVICE ASSISTANT FOR USERS WITH LIMITED

COMMUNICATION SKILLS

Actions # Executions Success Runtime [s]
(# Scheduled) Executions [%] Mean Std

Grasp 34 (30) 91.0 40.42 10.31
Drop 30 (30) 97.0 37.59 4.83
Approach 80 (80) 100.0 20.91 7.68
Pour 10 (10) 100.0 62.90 7.19
Drink 13 (10) 77.0 57.10 8.20

Total 167 (160) 95.86 32.46 15.51

Table 6.3: Aggregated results for 10 runs of the drinking task.

Figure 6.7 and provides a top-down view onto the table, where we intend to perform pouring
actions. RGBD cameras, such as the Asus Xtion Pro Live used in our experimental setup, emit
a speckle pattern into the environment and determine the depth from the reflected pattern.
For transparent liquids such as water, the light is refracted, which results in an incorrect
depth value for the liquid height. When the camera’s viewing angle and the liquid’s index of
refraction are known, the actual liquid height can be determined from the depth measurement
using a relationship based on Snell’s law [55]. Using this knowledge, we first detect the cup in
the depth data and extract depth values for the liquid. This value is converted to an estimated
real liquid height. The type of liquid is selected by the user and hence known beforehand.
Therefore, the index of refraction is known and the viewing angle can be determined from the
depth data. A Kalman filter is then used to track the liquid level and compensate for noise.
Once it is detected that the liquid level has exceeded a user defined value, a stop signal is sent
to terminate the pouring motion.

For detection and localizing of the user’s mouth, we adopt a two step approach. In the
first step, we segment the image based on the output of a face detection algorithm in order
to extract the image region containing the user’s mouth and eyes. Afterwards, we detect the
position of the mouth of the user, considering only the obtained image patch. Regarding the
mouth orientation, we additionally consider the position of the eyes in order to obtain a more
robust estimate of the face orientation, hence compensating for slightly changing angles of the
head. The face, mouth and eye detectors are implemented in OpenCV [11] by applying an
algorithm that uses Haar cascades [84, 139].

Table 6.3 shows the averaged results for the experiment. Here, only 3.75% of the 160
scheduled actions had to be repeated in order to complete the task successfully. In one run,
plan recovery was not possible leading to abortion of the task. Thus, our system achieved in
total a success rate of 90% for the drinking task. Planning and execution required on average
545.56±67.38 s. For the evaluation of the liquid level detection approach, we specified a
desired fill level and executed 10 runs of the pour action. The resulting mean error and
standard deviation is 6.9±8.9 mm. In some instances the bottle obstructed the camera view,
resulting in poor liquid level detection and a higher error.



6.6. EXPERIMENTS 105

shelf1 shelf2

pantry kitchen

bathroom living-room garden

flowerbedshelf3 couch-table

dining-table

g1 v1 b3 v0 b1

f2

g3 g4v2

c0 g2 g0 b0

g5 c1 v3 b4 c2

b2 c3 g6
f0 f3 f4 f1

Figure 6.9: Graphical representation of the virtual environment used to evaluate the goal
formulation assistant. Scenarios of varying complexity are obtained by populating the envi-
ronment with a variable number of objects, randomly spawn in different locations.

6.6.4 Goal Formulation Assistant

Due to the workspace limitations in our real world setup depicted in Figure 6.7 and the
constraint number and type of objects detectable by our perception component, we conducted
an evaluation of the goal formulation assistant considering a virtual environment. The scenario
is illustrated in Figure 6.9 and chosen to resemble a domestic domain composed of a kitchen,
living-room, pantry, bathroom and garden. Each room, in turn, offers at least one potential
locations to perform grasp and drop actions, i.e., a dining table, couch table, shelf or flowerbed,
respectively. Bottles, cups, glasses and vases are distributed among the furniture. There
are three types of flowers: roses , tulips and sunflowers . Drinking vessels can contain
several drinks: water , lemonade , apple-juice , orange-juice , beer , red -wine and white-wine .
Flowers, cups and vases have a color: red , white, yellow ; cups and vases can also be green
and blue. Finally, glasses can be of shape cylinder , balloon, beer -mug or white-wine-glass .
Flowers can be put into vases but may also placed directly on other furniture. A robot
(omniRob) has the ability to move between the rooms and serve the two persons (me and
friend ). The actions, we consider to be available are: arrange to arrange a flower in a
vase, pick to pick a flower out of a vase, grasp to grasp a portable object, drop to drop a
portable object on a furniture, give to give a portable object to a human, pour to pour a liquid
from one vessel into another, drink to assist a human in drinking, move to move the robot
between rooms and approach to approach a furniture or human in preparation of a subsequent
manipulation action.



106
CHAPTER 6. A ROBOTIC SERVICE ASSISTANT FOR USERS WITH LIMITED

COMMUNICATION SKILLS

0s

200s

400s

600s

800s
Initial Exploration

Root Menu

0 50 100 150
0s

1s

2s

3s

4s

5s

Number of objects in the world

1st refinement
2nd refinement
3rd refinement
4th refinement

Figure 6.10: Evaluation of the computation time, considering the arrange task and an in-
creasing numbers of objects in the environment. Top: Times for initial object exploration and
root menu creation, required to build the menu structure. Bottom: Times required to refine
references on different depths in the GUI.

Performance Evaluation

In a first experiment, we evaluated the scaling behavior of the goal formulation framework. To
do so, we deploy a random scenario generator specifically designed to create planning problem
instances with an increasing number of world objects. One of such random planning problems
is graphically depicted in Figure 6.9. In order to quantitatively compare the performance of
the goal formulation assistant on these scenarios, we consider the time required to start the
application and to select the parameters of the arrange action (arranges flowers in a vase).
Moreover, as the performance of the high-level planner GUI does not depend on the control
paradigm adopted, the keyboard is used to send navigation commands for simplicity. The
experiment was repeated ten times and averaged to obtain meaningful results.

Figure 6.10 illustrates the times needed for several operations as a function of the number of
objects present in the world. The most time-consuming component is given by the initial object
exploration of the goal formulation GUI, where potentially reachable goals are determined
based on relaxed exploration. Another computational expensive operation is the root menu
generation, where initial partitions are chosen for all actions (see Figure 6.10, top). The
reference refinements for the current parameter of an action, on the other hand, requires less
than 10 s even for scenarios containing numerous objects (see Figure 6.10, bottom). Thus,
delays are reasonable for scenarios with up to 200 objects. However, this assertion only
holds as long as the world and thus the references do not change. Considering dynamic
environments, changes of the world are frequently triggered by actions taken by the robotic



6.6. EXPERIMENTS 107

service assistant or other robotic and human agents. For example, when the robot has grasped
a cup, the system should no longer refer to the cup as the cup on the table. Instead, the
reference must be rebuilt given the updated environment state yielding the cup at the robot’s
gripper. For simplicity, our approach rebuilds all object references when an environment
change has been detected. In the future, only obsolete references should be recomputed in
order to scale well on larger scenarios.

Usability Study

In a further experiment, we evaluated the user-friendliness and intuitiveness of our goal
formulation assistant and investigated how humans refer to objects in their surrounding. To
do so, we conducted a user study with healthy participants in which we advised the users to
reach a specific goal state in five different scenarios of increasing complexity:

• S1: Move the robot to the garden.

• S2: Drink beer using a beer-mug.

• S3: Arrange a red flower in a red vase.

• S4: Place a red rose on the couch table.

• S5: Give a red wine glass with red wine to your friend.

In total, we gathered data from 20 participants, 3 female and 17 male whose age ranges
from 25 to 45 years. The participants were students in computer science and administrative
employees of the university. This user study has to be seen as a first evaluation of the
intuitiveness and user-friendliness of the system. Further investigations considering a larger
number of users as well as paralyzed patients are required to assess these properties in detail.
All participants gave their informed consent and their data was pseudonomized at study
inclusion. As for the previous experiment, we used the virtual environment depicted in
Figure 6.9 as the basis of our investigations and permitted the subjects to use the keyboard
for navigation in the GUI. The five scenarios, i.e., S1-5, were generated beforehand to get
comparable results for all participants. In particular, care has been taken in the selection of the
scenarios to ensure that the corresponding goals are not trivially reachable.

For conducting the experiment, we defined the following protocol. First, the user interface
was introduced to the inexperienced and untrained participants (i.e, they used the system the
first time) by showing them its individual elements and components. Secondly, participants
were asked to use the navigation tools of the interface in order to achieve the respective goal
states for S1-S5. Meanwhile, we recorded the number of steps performed by them in the GUI
to reach the desired goal. Since there were no time constraints and sub-optimal navigation
strategies were allowed, all users managed to reach the predefined goal states. After finishing
each of the scenarios the participants had to evaluate the system in a questionnaire. First, they
were asked to rate on a scale of 1 (unreasonable) to 5 (fully comply) how well the displayed
control options in the GUI complied with their expectations. Additionally, they had to rate
the overall intuitiveness of the user interface in the range of 1 (not intuitive) to 5 (excellent).
Moreover, we asked the participants whether they prefer using references or internal names
(e.g., b2 in Figure 6.9) to describe an object.



108
CHAPTER 6. A ROBOTIC SERVICE ASSISTANT FOR USERS WITH LIMITED

COMMUNICATION SKILLS

S1 S2 S3 S4 S5

2

4

8

16

32

64

2

6

4 4

20

Scenario

St
ep

s

Figure 6.11: Box plot illustrating the number of steps required by the participants in the user
study to achieve a given goal for the five scenarios S1-S5. The dashed red line indicates the
minimum number of steps required to reach the goals.

Figure 6.11 shows the quantitative result of the user study. Here, we evaluated the number
of steps performed by each of the participants in the GUI to achieve the predefined goals
successfully. In this context, a step corresponds either to a refinement of an attribute or
the selection of the back entry in the GUI. The figure illustrates the maximum, minimum,
mean, upper and lower quantile regarding the performed number of steps for each scenario,
respectively. Additionally, the minimal possible (or optimal) number of steps required to
successfully achieve the goal, is depicted. Most of the participants were able to find a near-
optimal strategy to solve the tasks S1-4. The outliers in the first four scenarios are mainly
caused by the user exploring the possibilities of the user interface. In the last scenario (S5)
an increased number of steps has been observed. This increase can be traced back to the
following reasons. First, contrary to S1-4, this scenario required to execute two consecutive
actions to achieve the goal, i.e., fill a balloon shaped glass with red wine and give this glass to
the friend. Many users were not able to discover that two actions are required to achieve the
goal state, which led to confusion. Therefore, participants often had to correct their decisions
which resulted in a higher number of steps recorded for the fifth scenario. Secondly, the
pour action required to specify the type of liquid to be poured. To keep the pour action as
flexible as possible, we decided to permit pouring arbitrary liquids from all vessels. Thus,
it is possible for users to express the desire of pouring wine from a bottle containing water,
which resolves into an action sequence for the robot initially emptying the water bottle and
subsequently pouring the wine into that bottle. However, after selecting a bottle containing a
specific liquid, e.g., water , for the pour action, the redundant refinement of the content is not
intuitive to the users (water needs to be selected once again). Finally, we split a goal partition
based on its information gain to reduce the number of remaining refinements required to fully
specify the goal. Whereas this strategy is reasonable regarding computational effort, it does
not necessarily reflect the expectations of users. Regarding the grasp action, for example,
humans usually prefer to select among bottles based on their content attribute first, instead of
being initially prompted to select the location of the bottle.



6.6. EXPERIMENTS 109

S1 S2 S3 S4 S5
0

20

40

60

0 0 0 00 00

Scenario

U
se

rC
om

pl
ia

nc
e

in
%

1 (unreasonable) 2 3 4 5 (fully comply)

Figure 6.12: Compliance of the choices offered in the GUI with the user’s expectation for
the five different scenarios S1-S5. The participants had to select compliance levels from 1
(unreasonable) to 5 (fully comply).

Figure 6.12 shows the results on how well the choices offered by the high-level planning
GUI actually comply with the expectations of users. A large percentage of the users comply
with the refinements of the GUI in scenarios S1 to S4. Due to the previously mentioned
issues, however, S5 received a much lower rating compared to the other four scenarios. This
observation suggests that an extended training period is probably needed for users in order to
get more familiar with the capabilities and properties of the provided interface.

In total, 80% of the participants rated the overall intuitiveness of the GUI as good, i.e.,
according to the aforementioned metric they rated the intuitiveness with at least 3 (acceptable)
in a range of 1 (not intuitive) to 5 (excellent). Moreover, 85% of the participants preferred the
proposed referencing of objects over the alternative of representing them by internal names,
e.g., green vase on the couch table vs. v1 .

In a final experiment, we evaluated the subjective quality of object references. To do so,
we proposed four references to objects depicted in Figure 6.9 and let the users rate how well
each of those references describe the corresponding object. Moreover, subjects were asked
to generate references to these objects in natural language themselves. For the purpose of
this study, we considered the green vase with the red rose located in the pantry (v2 ) and the
glass, filled with red wine (g6 ), located on the couch table in the living-room. The proposed
references ranged from under-determined to over-determined descriptions, e.g., the green
vase vs. the green vase located in the right shelf in the pantry which contains a red rose.
According to our results, the preferred references highly depend on the location of the user and
robot and particularly on whether they share the same location. Interestingly, the capability
of users to impersonate the robot has also an strong influence on the references preferred.
For referring to v2 , for example, many users described the object as the vase in the right
shelf or the vase containing a rose, knowing that the robot is already located in the pantry
and therefore does not need further information to identify the object. In contrast, a second
group of users described the same object by additionally specifying the room and content of



110
CHAPTER 6. A ROBOTIC SERVICE ASSISTANT FOR USERS WITH LIMITED

COMMUNICATION SKILLS

the vase, assuming that the robotic service assistant is also located in the living-room and
therefore requires a more detailed object description. These observations were confirmed by
analyzing the preferred user references regarding object g6 . A first group of users referred
to this object as the red wine glass on the couch table, whereas the other group specified the
living-room as additional information for the robot assumed to be currently located in the
pantry. Although detailed references, that uniquely identify each of the two objects were
proposed, most users preferred shorter descriptions assuming to have full knowledge about the
current state of the world. In summary, our evaluation revealed that unique object references
are precise descriptions, however, lack the common sense assumptions expected by human
users. Therefore, references to an object should not only be adapted if the object attributes
itself have changed, but also according to updated information on other entities of the world
and actions previously taken by the robot.

6.7 Related Work
The robotic service assistant framework introduced in this chapter is composed of several
components, whereby each of them can be assigned to a separate field of research. In the
following, we will describe a collection of approaches addressing the problem of implementing
a robotic service assistant, decoding EEG signals and combined task and motion planning,
respectively. Regarding the field of motion and manipulation planning, we refer the reader to
the related work in Section 5.6.

Robotic Service Assistants Park et al. [98] proposed a system that allows paralyzed patients
to command a robotic system for autonomous feeding tasks. To detect task relevant targets,
e.g., the spoon, a bowl and the user’s mouth, a marker-based vision system is used. Control of
the system, however, requires the operator to be able to control a graphical user interface by
hand, which limits the scope of patients that are capable of using it. The system presented by
Chung et al. [29], uses a wheelchair-mounted robotic manipulator to assist a user in eating and
drinking tasks. To do so, the robot needs to locate and pick up the drink, conveying it to the
user’s mouth and finally placing it back on the table. The pick up action is realized adopting a
position-based visual servoing (PBVS) approach. Object manipulation is implemented using
the Contrained Bidirectional RRT planning algorithm. The work, however, does not consider
user commands nor feedback. The work of Achic et al. [1] proposes an integral system
combining a hybrid BCI interface and shared control system for navigation and manipulation
application using a wheelchair mounted manipulator. Here, users are permitted to select
control tasks from a GUI through EEG signals based on steady state visual evoked potentials
(SSVEP). The wheelchair is controlled considering head movements obtained by inertial
sensors.

The aforementioned approach relies on the response of the human brain evoked by visual
cues provided by the system, as commonly used also in other approaches. Generally, these
control paradigms can not be considered as pure BCI control, since users are not actively
communicating their intent, but rather wait for a specific visual event to occur. In contrast,
Wang et al. [144] used a motor imagery BCI with three classes to achieve low-level control
of a robotic arm. The classes correspond to left, right hand and foot motor imageries, which
are actively evoked by users, and subsequently used to navigate through a GUI providing



6.7. RELATED WORK 111

eight different instructions for the robot arm’s end-effector, e.g., left, right, up and down.
Using their approach, users can steer the end-effector in Cartesian space. For complex
manipulation actions, however, the low-level control of the end-effector constitutes a tedious
task, demanding a high mental effort from users.

Schröer et al. [116] developed a system which allows users to command an autonomous
robotic manipulator based on EEG signal recordings. The aim of their work is to assist users
in the tasks of drinking from a cup. Here, the task is represented by a fixed sequence of actions,
which is processed according to go-signals received from the BCI interface. The disadvantage
of their approach is that it is very task specific and therefore not capable of offering users
a wider range of tasks. Moreover, due to the use of a fixed-base manipulator the scope of
potential tasks to be completed by the robotic assistant is strictly limited.

Recently, Muelling et al. [90] presented a shared-control assistance framework using an
implanted intracortical brain-computer interface for controlling a seven degree-of-freedom
robotic manipulator, albeit as a prosthetic instead of an autonomous robotic service assistant.
In a first step, user commanded end-effector velocities are extracted from EEG signal record-
ings. Afterwards, the user’s intent is inferred by entropy maximization considering multiple
manipulation targets. The obtained goal probabilities are subsequently used to decide which
of the objects is the most likely target of the user. The motion of the robotic arm is adapted
accordingly. Compared to the work of Wang et al. [144], this demands a lower mental effort,
but still requires users to stay focused throughout the task execution.

EEG Signal Decoding Robust decoding of neuronal signals is a prerequisite for the above
described applications. Inspired by the successes of deep convolutional neural networks
(ConvNets) in computer vision [57, 77] and speech recognition [111, 118], deep ConvNets
have recently been applied more frequently to EEG brain signal decoding. Deep ConvNets
were already applied to decoding tasks useful for building brain-computer interfaces. Lawhern
et al. [83] presented a deep ConvNet to decode P300 oddball signals, feedback error-related
negativity and two movement-related tasks. When evaluated cross-subject, i.e., trained on
some subjects and evaluated on other subjects, their ConvNet yields competitive accuracies
compared with widely-used traditional brain-signal decoding algorithms.

Tabar and Halici [132] proposed an approach combining a ConvNet with a convolutional
stacked auto-encoder in order to decode motor imagery within-subject, yielding better accura-
cies than several non-ConvNet decoding algorithms.

The work of Schirrmeister et al. [114] deploys a shallow and a deep ConvNet to decode
both motor imagery and motor execution within-subject, reaching or slightly surpassing the
accuracies of the widely used EEG motor-decoding algorithm filter bank common spatial
patterns [5]. Moreover, Bashivan et al. [8] used a ConvNet trained on fourier-transformed
inputs to estimate mental workload. In addition to approaches evaluating the accuracies of
ConvNet decoding techniques, ConvNet visualization methods have been developed that allow
to get a sense of what brain-signal features the network is actually using [8, 114, 129].

In summary, these advances make deep ConvNets a viable alternative for brain-signal
decoding in brain-computer interfaces. Still, to the best of our knowledge, the work presented
in this chapter represents the first approach performing online control with deep ConvNets
using an EEG-based brain-computer interface.



112
CHAPTER 6. A ROBOTIC SERVICE ASSISTANT FOR USERS WITH LIMITED

COMMUNICATION SKILLS

Task and Motion Planning For tasks requiring only a single action or a predefined action
sequence to be executed it is sufficient to rely on existing motion and manipulation techniques.
On the other hand, high-level planning is essential if the tasks become more complex and
are not specified beforehand. In our framework, it is a user to specify a desired goal and the
task of a high-level planner instance to determine an appropriate combination and order of
actions implementing the goal state in the world. To do so, knowledge about the current state
of the world and the preconditions and effects of actions is important. The available actions
in high-level planning, such as drop or grasp, are typically presented in a human readable
fashion, whereas objects are assigned an internal representation, e.g., ID3185, which is hard
to relate to the associated entity of the environment, e.g., red cup on the shelf, by the user.

In this work, we adopted the approach of Göbelbecker [50], proposing an automatic goal
formulation assistant, which enables to reference objects more naturally by their type and
attributes. Following this approach, human operators can express desires such as bring me
a glass of water to the task planner without the need of knowing the underlying system.
The generation of referring expressions has already been subject to computational linguistics
research for years [76]. With recent advances in natural language processing, computer vision
and the rise of neuronal networks, it is nowadays possible to identify objects in images by
building referring expressions generated from features [119]. Spatial references can be used
to discriminate similar objects [149]. Robotic systems can furthermore not only be controlled
by natural language, they can even learn more complex tasks composed of several primitive
actions [86]. However, such systems usually lack knowledge about the actions that can be
executed by the robot, and the objects in the world that can be manipulated by the desired
action. Instead of natural language, we permitted users to communicate goals in a menu-driven
goal selection interface, where only applicable actions and feasible object parameters are
offered to the user.

Task and motion planning (TAMP) is an important component for realizing an autonomous
service assistant, which ensures that high-level actions, i.e., tasks, can be refined to motion
trajectories for the robot. Common to most approaches is a hierarchical decomposition of the
problem into task and motion planning layers. Due to the high dimensionality of the TAMP
problem the decomposition can be understood as a way to guide the low-level planners based
on the high-level plan solution and vice versa.

For example, Kaelbling and Lozano-Pérez [64, 65] propose an aggressively hierarchical
planning method, which operates on detailed, continuous geometric representations and partial
symbolic descriptions. Once it made choices, it commits to them in a top-down fashion in
order to limit the length of plans that need to be constructed. Moreover, their approach limits
the need to project the effect of actions into the far future. Thus, using such a hierarchical
decomposition permits to handle planning problems with long horizons in an efficient way.

De Silva et al. [40] presented an approach that combines the Hierarchical Task Network
(HTN) planning formalism, which reasons on abstract tasks, with a Geometric Task Planner
(GTP). The result is a planner that is able to perform geometric reasoning on abstract entities,
i.e. tasks, relying on a discrete space of precomputed grasp, drop and object positions.

Recently, Dantam et al. [36] introduced the probabilistically-complete Iteratively Deepened
Task and Motion Planning (IDTMP) algorithm, which uses a constrained-based task planner
to create tentative task plans and sampling-based motion planning to perform feasibility tests.

Srivastava et al. [126] propose a planner-independent interface layer that allows combining
off-the-shelf task and motion planning algorithms. Thus, future research can be dedicated to



6.8. CONCLUSION 113

advance the techniques in either field instead of further pursue the development of special
purpose, integrated implementations of task and motion planning algorithms.

The approach introduced by Lozano-Pérez and Kaelbling [87] postpones the decision on
motion plans to avoid expensive backtracking due to restrictions which might happen, if the
low-level planner is queried too early. Instead, they generate a skeleton high-level plan and a
set of constraints, which need to be satisfied to achieve the goals of the high-level planner.

Dornhege et al. [43] integrated task and motion planning by extending the Temporal Fast
Downward (TFD) task planner, introduced by Eyerich et al. [44], with semantic attachments.
These attachments represent external procedural reasoning modules that can compute the
valuations of state variables at planner run-time. The symbolic planner remains mostly
unaffected by the extension, since only table look ups are substituted with function calls
to obtain the necessary information. Integration of such modules, permit to evaluate the
feasibility of motion plans on demand, thus ensuring that high-level plans can be refined to a
valid motion sequence.

6.8 Conclusion
In this chapter, we presented an interdisciplinary framework that permits severely paralyzed
patients to communicate their desire to a mobile robotic service assistant solely using thoughts.
By integrating perception components and autonomous motion and manipulation planning
capabilities, the robotic assistant is able to successfully perform complex tasks, including
close range interaction with the user, in a frequently changing environment. Moreover, users
are provided with a large set of selectable actions, reflecting what is actually feasible given
the current state of the environment. A crucial component of the framework is represented by
the high-level planner and its graphical user interface, which serves as an intermediate layer
between user and autonomous robotic service assistant. In particular, relying on such a system
permits to overcome the curse of dimensionality typically encountered in non-invasive BCI
control schemes, thus opening up new perspectives for human-robot interaction scenarios.

As the framework is composed of several approaches belonging to different research fields,
aspects for potential future improvements are manifold. In the following, we will address only
the most relevant ones for each area, respectively.

EEG Signal Decoding Decoding EEG signals with sufficient accuracy is a basic prerequisite
for the deployment of the proposed robotic service assistant system. Without this capability,
paralyzed patients may experience the control of the user interface as inconvenient and are
likely to refuse its use due to the additional mental load required to revise erroneous GUI
navigation actions. The decoding accuracies achieved by our approach are promising (see
Table 6.1), however, require recording labeled data for each subject for several days. In order
to obtain reliable decoding results within less time, the training phase of the ConvNet could
be shortened using data augmentation techniques. To do so, time windows of smaller size
could be incrementally shifted along the data blocks recorded while a visual cue has been
displayed in the high-level planner GUI, e.g., the down pointing arrow in Figure 6.2. Thus,
the amount of data available for training the ConvNet is many times greater than the size of
the original dataset. Another interesting approach to speed-up the EEG signal decoding setup
is represented by transfer learning, i.e., the neural network is trained on some subjects and



114
CHAPTER 6. A ROBOTIC SERVICE ASSISTANT FOR USERS WITH LIMITED

COMMUNICATION SKILLS

evaluated on other subjects. First steps towards this direction have been already presented in
the work of Völker et al. [140] and need to be evaluated in the context of our application. In the
same work, error-related potentials (ERP) have been investigated, which represent neuronal
activity elicited in the human brain when a user observes an erroneous action. Integrating such
error decoding capabilities in our framework, may allow users to avoid or abort erroneous
actions at an earlier stage, thus improving the responsiveness of the graphical user interface.

Providing subjects with continuous feedback during action execution instead of communi-
cating only the outcome of actions via the high-level planner GUI, represents another point
for improvement. Considerations regarding this issue include the idea of providing users with
the live-stream of the robot’s on-board camera during action execution. The solution would be
easy to implement in our framework, however, goes along with an increased electrical activity
recorded in EOG (eye movements). Moreover, as the EOG signals superimpose with the EEG
signals in the frequency bands relevant for decoding the five mental tasks (see Figure 6.8),
this approach may in turn deteriorate the decoding accuracies. A less intrusive alternative to
realize continuous feedback could be obtained by displaying a progress bar in the GUI during
action execution.

Goal Formulation Assistant Representing available goals by referring expressions and
permitting users to select among them by navigating through a graphical user interface has
been found an appropriate strategy to establish a communication between a human and a
robotic service assistant. However, the order of attribute refinements for actions following from
the adopted information gain sometimes does not fully comply with the users expectations. A
possibility to further improve the user friendliness of the interface would be to record user
feedback during the GUI control, which can be subsequently used to fine-tune the information
gain. This way, the system could propose refinements in an order which complies with the
user’s preferences, e.g., inquiring the content of the bottle before asking for its position in the
process of specifying the grasp action parameters. Another, though challenging, extension
of our framework is to integrate deictic references, which permit creating references to the
position of entities and events by pointing to a time, place or situation. By maintaining the
history of previously selected actions, for example, this would enable users to refer to the cup
the robot just grasped in the previous action for defining the subsequent pour action, i.e., pour
from the cup just grasped, instead of requiring the user to fully specify which cup is meant
once again. In the experiment described in Section 6.6.4, we referred to this aspect also by the
notion of common sense.

Finally, our current implementation rebuilds all object references when an environment
change has been detected, which poses a computationally expensive step considering scenarios
containing numerous objects. In the future, only obsolete or new references should be
recomputed/added in order to scale well on real world domestic environments typically
containing objects numbering in the hundreds.

Motion and Manipulation Planning The probabilistic planning techniques adopted in our
framework have shown to reliably generate and execute solution trajectories for the mobile
base and robotic arm, whereas we assumed the environment to remain static throughout
trajectory execution. For the deployment of an autonomous robotic service assistant in the real
world, however, it is to be expected that there are other moving entities sharing the workspace



6.8. CONCLUSION 115

with the robot. Therefore, dynamic collision avoidance becomes an important ability to be
implemented in the PTRM and BI2RRT* planning system. A solution regarding manipulation
tasks, is to substitute the A* algorithm with its anytime dynamic variant AD* [85]. Here,
the octomap representation of the scene, already employed to perform collision checks
during planning, could be used to continuously monitor the validity of the current solution.
In navigation tasks, the measurement of a pair of 2D laser range finders, mounted at the
mobile base, are currently used to localize the robot in the environment. Additionally, these
measurements could be used to locally adapt the planned path and thus the motions of the
mobile base if needed. An implementation of this approach is represented by the elastic bands
algorithm, proposed by Quinlan and Khatib [102], connecting motion planning and control.
In this context, the solution generated by BI2RRT* would serve as a global reference path,
whereas the control commands for the mobile base are handled by the elastic bands algorithm.

So far, offline planning using the PTRM planner has been adopted to realize physical
human-robot interactions. Whereas this approach is appropriate to reach the human through
a collision-free trajectory, it assumes the perception component to provide highly accurate
pose estimates, e.g., for the user’s mouth, and that users do not move during motion execution.
A solution, improving the safety for such interactions, could be obtained by switching to
a control-based approach for the execution of the last stretch of the planned end-effector
trajectory. Doing so, would allow to explicitly control the exchange of contact forces between
the end-effector (or cup regarding the drinking task) and human, as already proposed in the
literature by Magrini et al. [88].

Finally, further primitive actions, such as open or close, requiring to plan coordinated
base-arm motions could be included in our framework by exploiting the full capabilities of the
BI2RRT* planning system. This way, the robot could, for example, open doors to navigate to
different rooms or open a closet/drawer to examine its contents. Manipulation of articulated
objects, however, generally requires the object’s handle pose, articulation model and range of
motion, to be given. Whereas it is admissible to specify the corresponding information for
the latter beforehand (assuming furniture to be static), the former requires the deployment of
advanced visual perception techniques, such as the one presented by Rusu et al. [109].





Chapter 7

Conclusions

7.1 Summary

In the scope of this thesis, we introduced several novel contributions to the field of motion
imitation and generation for mobile robotic systems. We hereby considered different levels
of autonomy for the robot, initially relying on a human operator to provide the knowledge
required to complete a task successfully towards a robotic service assistant capable of au-
tonomously planning and executing mobile manipulation actions. Moreover, we incorporated
motion imitation techniques to investigate what makes human movements particularly natural
by comparing motion demonstrations of healthy subjects with the ones of patients exhibiting
motor control deficits. Motion imitation and generation are both valuable approaches, as
each of them offers its own individual advantages. Therefore, preference to the appropriate
technique should be given depending on the intended field of application. For all proposed
approaches, we presented the relevant theoretical background, discussed related works and
conducted various experiments.

We first introduced an approach that permits humanoid robots to imitate whole-body
motions from a human operator in real time. Here, we used data from an inertial sensor-based
whole-body motion capture suit to infer trajectories for the human extremities. To transfer
motion samples to the humanoid, we applied a motion mapping method establishing similarity
between the robot and demonstrated human posture in a first step. In a second step, we
performed posture stabilization which adapts the posture in order to make it compliant with
the stability constraint before sending it to the real robot platform. Using the developed system,
the humanoid is able to imitate complex motion sequences, including extended periods of
time in single support and teleoperated mobile manipulation tasks. The actual value of the
prescribed motion significantly affects the performance of the presented system. At this stage,
we assumed that the motion samples are representative for a desirable, natural human kinesic
behavior that should be adopted by the robotic platform without putting them into question.

Evaluating the value of human motion demonstrations requires to quantitatively compare
motion recordings of different human subjects. For our study, we examined in this work the
effect of neurological impairments, which are well known to induce motor control deficits,
on the human musculoskeletal system. In particular, we analyzed the differences in motor
control behavior between healthy subjects and Parkinson’s disease (PD) patients in a hand
coordination task. To do so, we proposed an algorithm that iteratively learns the joint weights
of a Jacobian-based controller, required to reflect the demonstrated human motion as closely
as possible. On the basis of the resulting joint weights learned for each group, we subsequently
conducted a motor control strategy analysis, suggesting a distinction of a proximal and



118 CHAPTER 7. CONCLUSIONS

distributed motion strategy for healthy and PD subjects, respectively.
When the exchange of information between a human operator and a robotic system be-

comes prohibited or undesirable, a robot needs to acquire various autonomous navigation and
manipulation capabilities. A prerequisite for achieving this level of autonomy is that the robot
has sufficient knowledge about its own capabilities and the environment in which it operates.
Accordingly, we presented in this thesis an approach that permits mobile robotic systems to
autonomously select a stance pose relative to a given grasping target in preparation of a subse-
quent manipulation action. To represent the robot’s reaching capabilities, we precomputed
so-called reachability maps, which represent a spatial grid of workspace voxels reachable by
the robot’s end-effector. Additionally, manipulability measurements have been considered in
the map construction process that permit evaluation and comparison of the quality of different
reachability map voxels. A representation of potential stance poses relative to a specific
grasping target is obtained by inverting the reachability information and subsequently filtering
the so-called inverse reachability map considering the relative location and orientation of
the support surface and base (or feet), respectively. As demonstrated by our results for the
Nao humanoid robot, the IRM-based stance pose selection leads to a substantially increased
success rate in reaching grasping targets compared to other meaningful foot placements within
the vicinity of the desired grasp.

Determining a terminal configuration for mobile manipulation tasks can be considered as
an initial step, whereas it remains to equip a robot with the ability to autonomously plan a
collision-free path connecting its current configuration to the desired target configuration. To
implement this capability for mobile manipulator platforms, we presented in this thesis the
Bidirectional Informed RRT* algorithm, which extends Informed RRT* towards bidirectional
search and satisfaction of arbitrary geometric end-effector task constraints. Given a pair of
terminal configurations, our planner performs a bidirectional search using uniform sampling in
the configuration space until an initial, though sub-optimal, solution path is found. This path is
subsequently refined for the remaining planning time, adopting an informed sampling strategy,
which yields a higher rate of convergence towards the optimal solution. We thoroughly
evaluated our approach by comparing the performance of the proposed planning framework to
state-of-the-art path planning algorithms on several planning problems of varying complexity.
As the results show, our approach is capable of generating low-cost solution paths more
reliable and faster than existing RRT-based planning methods.

Finally, we introduced a robotic service assistant framework dedicated to user with limited
communication skills. The brain-computer interface (BCI) system is composed of several
interacting components, i.e., non-invasive neuronal signal recording and decoding, high-level
task planning, motion and manipulation planning as well as environment perception. A
dynamic knowledge base represents the backbone of this network and permits the involved
components to continuously exchange information about the current state of the world. A
graphical user interface provided by the high-level planner displays the currently available
actions, as determined from the knowledge base whose contents are frequently updated based
on information reported by a camera system observing the environment. In turn, navigation
in the GUI, action selection and parameter refinement is realized by decoding EEG data
using a convolutional neural network approach. In order to implement the desired tasks in
the real word, we adopted the BI2RRT* and PTRM planning algorithms for navigation and
manipulation actions, respectively. In various experiments, we demonstrated the applicability
and robustness of our framework in real world scenarios, considering fetch-and-carry tasks



7.2. OUTLOOK 119

and tasks involving human-robot interaction. Furthermore, we demonstrated on virtual
environments that the performance of the system remains reasonable considering up to a
few hundred objects. Moreover, our user study revealed that the proposed goal formulation
assistant is perceived as convenient for the majority of users, even though no prior training on
the GUI has been conducted with the participant.

Summarizing, we developed in this thesis solutions for the following questions:

• How can we capture and transfer whole-body human motions to a humanoid robot in
real time?

• How can we quantify motor control deficits in human subjects induced by neurological
impairments, e.g., arising from Parkinson’s disease, using motion imitation techniques?

• How do humans position themselves relative to an object in preparation for a subsequent
manipulation action and how can that strategy be transferred to mobile robotic systems?

• How can we efficiently plan for challenging reaching and delivery tasks for mobile
robots, thereby avoiding collisions and respecting geometric constraints imposed by the
objects to be manipulated?

• What are the requirements and challenges to build a robotic service assistant system for
users with limited communication skills?

All of our approaches were thoroughly evaluated using the Nao humanoid platform and
the omniRob mobile manipulator. According to the presented results, we believe that the
approaches developed in this work are valuable contributions for the advancement of motion
imitation and generation techniques and will be incorporated in the future by other researchers.

7.2 Outlook
The thesis at hand presented important contributions and promising results in the area of
motion imitation and generation for mobile robotic systems. Furthermore, it demonstrated
that motion imitation techniques are useful beyond the field of robotics by developing new
measures that can be used to evaluate the effectiveness of therapeutic interventions in the
medical field. As the research questions addressed in the scope of this thesis are manifold,
there exist several potential extensions to be elaborated on in future research.

The system proposed for the imitation of complex human whole-body motions by a hu-
manoid robot currently considers only the position for the upper extremities. A possible
extension of our implementation could consider also the orientation of the hands. Doing so,
would facilitate the performance of teleoperated object manipulation tasks for the human
demonstrator. Moreover, human head movements could be included in the imitation process
to let the operator actively control the alignment of the camera, which is typically integrated in
the robot’s head for humanoid platforms. This would permit the operator to explore the robot’s
surrounding as well as to receive visual feedback in delicate manipulation tasks. An approach
integrating these components in a whole-body motion imitation framework has already been
presented by Wang et al. [143]. Ultimately, a full virtual reality experience could be realized
using a head-mounted display, e.g. the Oculus Rift system [82], showing the robot’s on-board



120 CHAPTER 7. CONCLUSIONS

camera view, in combination with an omnidirectional treadmill for teleoperating navigation
actions.

For analyzing the motion strategy adopted by healthy and Parkinson’s disease patients,
we considered a hand coordination task and thus only motor control parameters related to
the upper body limbs. In future research an equivalent artificial kinematic model for the
lower limbs could be used to extend the analysis towards further tasks, such as walking or
climbing stairs. The ultimate objective would be to consider whole-body motions to obtain a
comprehensive analysis of human motor control behavior on the joint activity level. Other
possible extension relate to the data acquisition process and the statistical tools used to evaluate
the joint weight means learned for each group. Regarding the former, it would be beneficial to
increase the amount of motion samples in order to further reduce the intragroup variability for
the joint weight means. In doing so, particular care must be taken to ensure that the number of
male and female, mean age and handiness for the healthy subjects group matches the one of
the PD group. Furthermore, participating patients should have the same pathological side in
order to avoid bias of the results. For the latter, one could consider performing an analysis
of variance (ANOVA) test to evaluate whether there is a significant difference between the
means of multiple joint weights. Finally, it would be interesting to investigate whether there is
a relationship between motor symptom severity, i.e., UPDRS scores, and joint weight means.
This may provide some insight into whether there is a gradual shift in the motor control
strategy as the motor symptoms of the Parkinson’s disease worsen.

In order to add quality information to the voxels of the spatial grid representing the extent
of the workspace reachable by the end-effector of a mobile manipulator, we used the classical
manipulability measure introduced by Yoshikawa [148]. A more accurate description of the
reaching capabilities, however, could be obtained by adopting an extended variant of the
manipulability measure, as already proposed by Vahrenkamp et al. [137]. Doing so, would
permit consideration of the proximity to joint limits taking into account the kinematic chain’s
redundancy, the distance to obstacles and between different links of the robot in evaluating the
quality of configurations. Another extension is to combine our approach with a footstep or
motion planner to actually reach the desired stance pose, given the robot’s current configuration.
In this regard, a solution for humanoid platforms is provided by Garimort et al. [49], whereas
the planning framework proposed in Chapter 5 could be used for wheeled robotic platforms.
Assuming perfect navigation capabilities of the robot, the whole-body configuration associated
with the selected stance pose could be used as a goal configuration for a bidirectional planning
algorithm implementing a subsequent manipulation action. Considering wheeled mobile
manipulators, the BI2RRT* or PTRM planning framework could be deployed for this purpose.
As a counterpart for humanoid robots, the extended RRT-Connect planner [13] could be used.

The bidirectional informed RRT* (BI2RRT*) planner presented in this work permits the
definition of arbitrary geometric end-effector constraints for mobile manipulation tasks. How-
ever, currently it is not possible to specify these constraints with respect to different coordinate
systems, also referred to as task frames in this context. A solution that permits defining
constraints with respect to multiple task frames using the concept of Task Space Region
chains, has already been proposed by Berenson et al. [9] and could be easily integrated into
our framework. So far, the local planner used to expand the search trees during planning
assumes the robotic platform possesses omnidirectional navigation capabilities. In order to
make our planner applicable for mobile platforms exhibiting differential drive or car-like
kinematics [80], other sophisticated motion models need to be made available for the local



7.2. OUTLOOK 121

planner component. Consequently, a quantitative comparison of the performance of our
planning framework with respect to state-of-the-art algorithms need to be conducted for these
motion models, respectively.

Regarding the presented robotic service assistant framework, several extensions are possible
in the field of EEG signal decoding, high-level task planning and motion and manipulation
planning. Formulating goals based on referring expressions has been experienced as conve-
nient for the majority of users in our study. A possible extension in the context of assisted goal
formulation would be to include deictic references, which permit creating references to the
position of entities and events by pointing to a time, place or situation. In order to speed up
the training of the convolutional neural network used to decode EEG data from various mental
tasks, we may apply transfer learning techniques. Furthermore, error-related potentials (ERP),
elicited in the human brain when an erroneous action is observed, could be used for early
abortion of actions. Using the graphical user interface of our high-level planning component,
these aspects have already been investigated in the work of Völker et al. [140] and are to
be integrated into our framework in a future revision. Lifting the static world assumption
for autonomous execution of navigation and manipulation actions implies the requirement
for the BI2RRT* and PTRM planning framework to possess dynamic collision avoidance
capabilities. This could be realized using the elastic band approach proposed by Quinlan
and Khatib [102] and the anytime dynamic A* planner presented by Likhachev et al. [85] for
navigation and manipulation tasks, respectively. Finally, BI2RRT* planning could be deployed
to make further actions available to the user, e.g., open the door, which requires the robot to
perform a coordinated base-arm motion. Execution of such tasks using the real robot platform,
however, would pose additional challenges regarding the synchronization of the base and arm
controller.





Appendix A

Mobile Robot Platforms

A.1 The Humanoid Robot NAO
For the experimental evaluation of our humanoid-related approaches, we used the Nao (V4)
robotic platform [125], also referred to as Nao Next Gen, by SoftBank Robotics, illustrated in
Figure A.1 (left).

The robot is 58 cm tall, weighs 4.8 kg and has 25 DOF: two in the neck, six in each
arm (including one to open and close the hand), and five in each leg. In addition, the legs share
a common (linked) hip joint that cannot be controlled independently. The overall kinematic
model is illustrated in Figure A.1 (right). Inertia, mass, and CoM of each link are known from
CAD models. To perceive its own state and the environment, the robot is equipped with a
large network of proprioceptive and exteroceptive sensors, including 2 cameras located in the
head, 4 microphones, a sonar rangefinder, 2 infrared transmitters and receivers, an inertial
board (IMU), several joint encoders, 9 tactile and 8 pressure sensors. The head of the robot
contains an Intel Atom 1.6 GHz CPU with 1 GB RAM, running a Linux kernel. In this thesis,
most of the computations have been performed off-board on a standard desktop PC, connected
to the robot wireless or via a wired interface.

In order to measure the configuration of the robot and to correct for backlash of the gears
while executing joint angle trajectories, each joint of Nao is equipped with a magnetic rotary
encoder exploiting the Hall effect. According to the hardware specification, these encoders
possess a precision of 0.1° and remain active even if the motors of the robot are disabled. Thus,
pose estimates can be also acquired when the robot is actuated manually, which represents a
convenient feature for analyzing the kinematic capabilities of the robot.

The inertial measurement unit (IMU), located in the robot’s chest, is composed of a two-axis
gyroscope and a three-axis accelerometer and continuously provides an estimate of the robot’s
orientation. In order to protect the robot from damages, IMU measurements have been used in
Chapter 2 to initiate a fall-back motion strategy when falling is detected inevitable.

The two cameras in the robot’s head are vertically aligned and provide output images with
a resolution of 640×480 pixel at 30 Hz. The vertical and horizontal field of view is 47.6°
and 60.9°, respectively. As the lower camera is horizontally aligned with the HeadPitch
joint (see Figure A.1, right) and slightly points downwards observing the components of the
scene proximal to the robot, it has been used for the tele-operation experiment described in
Section 2.7.4.

By default, the robot comes with the NAOqi software, an API that allows communicating
with its sensors and actuators. Regarding motion execution, the API can be used to obtain
a smooth end-effector trajectory from a sequence of timed joint angles for several motors,



124 APPENDIX A. MOBILE ROBOT PLATFORMS

HeadPitch

HeadYaw
RShoulderPitch

RShoulderRoll

RElbowYaw

RElbowRoll

RWristYaw

LShoulderPitch

LShoulderRoll

LElbowYaw

LElbowRoll

LWristYaw

LHipYawPitchRHipYawPitch

LHipRollRHipRoll

RHipPitch LHipPitch

RKneePitch LKneePitch

RAnklePitch LAnklePitch

RAnkleRoll LAnkleRoll

Figure A.1: Left: The Nao (V4) humanoid robot platform. Right: Kinematic model of the
humanoid robot (Source: [51]).

given as input. Here, the configuration samples are considered as control points for Bezier
interpolation. Moreover, the API supports dynamic omnidirectional walking adopting the
linear inverse pendulum approach introduced by Kajita and Tani [67] as well as the generation
of a sequence of footsteps for a given navigation target, as needed, for example, to reach the
stance poses generated by the approach presented in Chapter 4.

A.2 The Mobile Manipulator OmniRob
In this part, we describe the omniRob robotic platform, illustrated in Figure A.2, used through-
out our experiments involving navigation and manipulation tasks. Originally, the robot
has been developed by KUKA Robotics as a technology platform to integrate and evaluate
technologies required for mobile manipulation [79].

The omniRob mobile manipulator consists of an omnidirectional base and a 7 DOF robot
arm. The mobile base has a dimension of 119.6×67.2×64.5 cm (L×W×H), weighs 270 kg and
can travel at a maximum speed of 1.4 m/s. The maximum admissible inclination/declination
for navigation is 0.5%. The base is driven by four independently powered mecanum wheels,
which allows commanding arbitrary combinations of translational and rotational motions. The
angular wheel velocities ψ̇ required to realize a desired base velocity ṗbase = (ẋ, ẏ, θ̇)> follow
from the equations of motion, defined as

ψ̇1

ψ̇2

ψ̇3

ψ̇4

 =
1

r


1 1 (a+ b)
1 −1 −(a+ b)
1 1 −(a+ b)
1 −1 (a+ b)


ẋẏ
θ̇

 , (A.1)

where r is the wheel radius and a and b are half the track and wheelbase, respectively. For
a better understanding, these quantities are schematically depicted in Figure A.2 (right).



A.2. THE MOBILE MANIPULATOR OMNIROB 125

base_x_link

base_y_link

base_theta_link

lbr_0_link

lbr_1_link

lbr_2_link

lbr_3_link

lbr_4_link

lbr_5_link

lbr_6_link
lbr_7_link

TCP

base_link

map_frame a

b

r

ẋ

ẏ

ψ̇1ψ̇2

ψ̇3 ψ̇4

θ̇

LBR

Figure A.2: Left: Kinematic model of the KUKA omniRob mobile manipulator platform with
virtual planar joints. Right: Motion model of the omnidirectional mecanum wheeled mobile
base (Source: [106]).

Due to the omnidirectional navigation capabilities of the robot, we considered for motion
planning a simplified kinematic model, representing the translational and rotational motion
components of the base by two prismatic and a revolute joint, respectively. Additionally, two
bumpers are installed at the front and rear to protect the two Sick S300 Professional CMS
laser scanners mounted at the corners of the base. The laser scanners provide four switchable
protective/warning fields and posses a scan angle of 270°, thus covering the surrounding of
the mobile base at a height of 13.9 cm above the ground.

The robotic arm mounted on the base is a KUKA Lightweight Robot (LWR) manipulator,
also referred to as Leichtbauroboter (LBR) in german. The arm has one degree of redundancy,
weighs 15 kg and is designed for a maximum payload of 7 kg.

The gripper mounted at the end-effector flange of the LBR manipulator is a 3-finger
dexterous hand (SDH) by Schunk [117]. The hand weighs 1.95 kg and has 7 DOF, two for
each finger and a revolute joint for rotating two of them. Additionally, each finger is equipped
with two pressure sensors for tactile sensing. This permits to monitor the manipulation process
as well as to adapt the finger configurations if needed to achieve an optimal grasp.





List of Figures

1.1 Examples of motion imitation systems . . . . . . . . . . . . . . . . . . . . . 2
1.2 Examples for autonomous mobile manipulation . . . . . . . . . . . . . . . . 3

2.1 Whole-body motion imitation for a teleoperated manipulation task . . . . . . 10
2.2 Xsens MVN motion capture suit . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 T-pose of the human and robot model used as reference for posture mapping . 13
2.4 Determination of CoM offset and different offset velocity functions . . . . . 16
2.5 Robot support mode states and transitions . . . . . . . . . . . . . . . . . . . 17
2.6 Double support posture stabilization . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Samples of motion imitation sequences generated by our approach . . . . . . 20
2.8 Nao humanoid imitating a complex single support posture . . . . . . . . . . 21
2.9 Deviation of the hand positions from the desired positions . . . . . . . . . . . 22
2.10 Deviation of the generated feet positions from the desired ones . . . . . . . . 23
2.11 Evolution of the human and robot offset value . . . . . . . . . . . . . . . . . 24
2.12 Teleoperation scenario with visual feedback . . . . . . . . . . . . . . . . . . 25
2.13 Teleoperated walking and object manipulation . . . . . . . . . . . . . . . . . 26

3.1 Motion strategy analysis system . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 XSens MVN motion capture suit in clinical trials . . . . . . . . . . . . . . . 31
3.3 Hand coordination task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Artificial kinematic model of the human upper body . . . . . . . . . . . . . . 33
3.5 Average joint weights learned for the healthy and PD subject group . . . . . . 39
3.6 Independent sample t-test results for joint weight means . . . . . . . . . . . . 40
3.7 Potential extension towards lower limb and whole-body motion strategy analysis 42

4.1 Reachable right hand locations from statically stable double support poses . . 46
4.2 Reachable grasping targets at a specific height . . . . . . . . . . . . . . . . . 47
4.3 Manipulability ellipsoid for 2R manipulator . . . . . . . . . . . . . . . . . . 50
4.4 Collision models for humanoid robots . . . . . . . . . . . . . . . . . . . . . 51
4.5 Active-Passive Link Decomposition . . . . . . . . . . . . . . . . . . . . . . 52
4.6 Parameters of a 4 link manipulator . . . . . . . . . . . . . . . . . . . . . . . 53
4.7 Support polygon and projected CoM . . . . . . . . . . . . . . . . . . . . . . 54
4.8 Horizontal and vertical cross-section through the RM of Nao . . . . . . . . . 55
4.9 Kinematic chains and frames of the Nao robot . . . . . . . . . . . . . . . . . 57
4.10 Horizontal and vertical cross-section through the RM of omniRob . . . . . . 58
4.11 Cross-section through the IRM of Nao . . . . . . . . . . . . . . . . . . . . . 59
4.12 Potential stance poses for the Nao robot . . . . . . . . . . . . . . . . . . . . 61
4.13 Example of a stance pose and whole-body configuration for Nao . . . . . . . 63



128 LIST OF FIGURES

5.1 Example of a solution path generated by our BI2RRT* planning framework . 68
5.2 Example of a RRT tree expansion step . . . . . . . . . . . . . . . . . . . . . 69
5.3 Informed subset for the mobile base . . . . . . . . . . . . . . . . . . . . . . 77
5.4 Task frame for pulling a cart and transporting liquids . . . . . . . . . . . . . 78
5.5 Comparison of planner performances on different scenarios . . . . . . . . . . 82
5.6 Deviation of the constrained task coordinates from the task frame along the

end-effector solution path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1 Robotic service assistant framework . . . . . . . . . . . . . . . . . . . . . . 88
6.2 Mental task paradigm used to train the ConvNet . . . . . . . . . . . . . . . . 89
6.3 Relation between world objects and their associated PDDL description . . . . 91
6.4 Graphical user interface of the high-level planner . . . . . . . . . . . . . . . 93
6.5 Bidirectional motion planning and closed-loop trajectory tracking . . . . . . 96
6.6 Probabilistic task-space road-map of upright end-effector poses . . . . . . . . 98
6.7 Experimental setup for the evaluation of the robotic service assistant framework100
6.8 EEG data and decoding results . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.9 Virtual environment used to evaluate the goal formulation assistant . . . . . . 105
6.10 Evaluation of the computation times for the goal formulation assistant . . . . 106
6.11 Box plot showing the number of steps required by the participants in five

different scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.12 Compliance of the choices offered in the GUI with the user’s expectation for

five different scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.1 Kinematic model of the NAO humanoid robot . . . . . . . . . . . . . . . . . 124
A.2 Kinematic and motion model of the KUKA omniRob mobile manipulator . . 125



List of Tables

2.1 Computational effort and number of IK iterations. . . . . . . . . . . . . . . . 25

6.1 Aggregated mean±std results for 52 BCI control runs, * p-value < 10−6. . . 101
6.2 Aggregated results for 10 runs of the fetch-and-carry task. . . . . . . . . . . 103
6.3 Aggregated results for 10 runs of the drinking task. . . . . . . . . . . . . . . 104





List of Algorithms

1 Joint Weights Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 36
2 Update step of the joint weights learning algorithm . . . . . . . . . . . . . . . 37

3 Construction of Reachability Map . . . . . . . . . . . . . . . . . . . . . . . . 56
4 Reachability Map Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5 IRM-based Stance Pose Selection . . . . . . . . . . . . . . . . . . . . . . . . 60

6 RRT* Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7 Bidirectional Informed RRT* Algorithm . . . . . . . . . . . . . . . . . . . . 73
8 Random Configuration Sampling . . . . . . . . . . . . . . . . . . . . . . . . 74
9 Search Tree Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75





Bibliography

[1] F. Achic, J. Montero, C. Penaloza, and F. Cuellar. Hybrid BCI system to operate an
electric wheelchair and a robotic arm for navigation and manipulation tasks. In IEEE
Workshop on Advanced Robotics and its Social Impacts (ARSO), pages 249–254, 2016.

[2] B. Akgun and M. Stilman. Sampling heuristics for optimal motion planning in high
dimensions. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), pages 2640–2645, 2011.

[3] S. Albrecht, K. Ramirez-Amaro, F. Ruiz-Ugalde, D. Weikersdorfer, M. Leibold, M. Ul-
brich, and M. Beetz. Imitating human reaching motions using physically inspired
optimization principles. In Proc. of IEEE-RAS Int. Conf. on Humanoid Robots (Hu-
manoids), 2011. doi: 10.1109/Humanoids.2011.6100856.

[4] R. Alterovitz, S. Patil, and A. Derbakova. Rapidly-exploring roadmaps: Weighing
exploration vs. refinement in optimal motion planning. In Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), pages 3706–3712, 2011.

[5] K. K. Ang, Z. Y. Chin, H. Zhang, and C. Guan. Filter Bank Common Spatial Pattern
(FBCSP) in Brain-Computer Interface. In IEEE International Joint Conference on Neu-
ral Networks (IJCNN), pages 2390–2397, 2008. doi: 10.1109/IJCNN.2008.4634130.

[6] A. Aristidou and Y. Chrysanthou. Feature extraction for human motion indexing of
acted dance performances. In Proc. of the Int. Conf. on Computer Graphics Theory
and Applications, 2014.

[7] J. Barbic, A. Safonova, J.-Y. Pan, C. Faloutsos, J. K. Hodgins, and N. S. Pollard.
Segmenting motion capture data into distinct behaviors. In Proc. of the Int. Conf. on
Graphics Interface, 2004.

[8] P. Bashivan, I. Rish, M. Yeasin, and N. Codella. Learning Representations from EEG
with Deep Recurrent-Convolutional Neural Networks. In arXiv: 1511.06448, 2016.

[9] D. Berenson, J. Chestnutt, S. Srinivasa, J. Kuffner, and S. Kagami. Pose-constrained
whole-body planning using task space region chains. In Proc. of the IEEE-RAS
Int. Conf. on Humanoid Robots (Humanoids), 2009.

[10] B. Bonet, G. Loerincs, and H. Geffner. A Robust and Fast Action Selection Mechanism
for Planning. In Proceedings of the 14th National Conference on Artificial Intelligence
and 9th Innovative Applications of Artificial Intelligence Conference (AAAI / IAAI),
pages 714–719, July 27–31 1997.



134 BIBLIOGRAPHY

[11] G. Bradski and A. Kaehler. Learning OpenCV: Computer vision with the OpenCV
library. O’Reilly Media, Inc., 2008.

[12] F. Burget and M. Bennewitz. Stance selection for humanoid grasping tasks by inverse
reachability maps. In Proc. of the International Conference on Robotics and Automation
(ICRA), pages 5669–5674, Seattle, USA, 2015.

[13] F. Burget, A. Hornung, and M. Bennewitz. Whole-body motion planning for manipula-
tion of articulated objects. In Proc. of the IEEE International Conference on Robotics
and Automation (ICRA), Karlsruhe, Germany, 2013.

[14] F. Burget, M. Cenciarini, B. Meier, H. Bast, M. Bennewitz, W. Burgard, and C. Mau-
rer. A closed-loop system for real-time calibration of neural stimulation parameters
using motion data. In Proc. of the ICRA Workshop on Wearable Robotics for Motion
Assistance and Rehabilitation - RoboAssist, 2014.

[15] F. Burget, C. Maurer, W. Burgard, and M. Bennewitz. Learning motor control pa-
rameters for motion strategy analysis of parkinson’s disease patients. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 5019–5025,
Hamburg, Germany, 2015.

[16] F. Burget, M. Bennewitz, and W. Burgard. BI2RRT*: An efficient sampling-based
path planning framework for task-constrained mobile manipulation. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea,
2016. doi: 10.1109/IROS.2016.7759547.

[17] F. Burget, L. D. J. Fiederer, D. Kuhner, M. Völker, J. Aldinger, R. T. Schirrmeister,
C. Do, J. Boedecker, B. Nebel, T. Ball, and W. Burgard. Acting thoughts: Towards
a mobile robotic service assistant for users with limited communication skills. In
European Conference on Mobile Robots (ECMR), pages 1–6, Sept 2017. doi: 10.1109/
ECMR.2017.8098658.

[18] F. Campos and J. Calado. Approaches to human arm movement control—a review.
Annual Reviews in Control, 33(1), 2009. ISSN 1367-5788. doi: http://dx.doi.org/10.
1016/j.arcontrol.2009.03.001.

[19] A. Cela, J. J. Yebes, R. Arroyo, L. M. Bergasa, R. Barea, and E. Lopez. Complete low-
cost implementation of a teleoperated control system for a humanoid robot. Sensors,
13(2), 2013.

[20] R. Chalodhorn, D. B. Grimes, K. Grochow, and R. P. N. Rao. Learning to walk through
imitation. In Int. Conf. on Artificial Intelligence (IJCAI), 2007.

[21] T. F. Chang and R. V. Dubey. A Weighted Least-Norm Solution Based Scheme for
Avoiding Joints Limits for Redundant Manipulators. IEEE Trans. on Robotics and
Automation, 11(2), Apr. 1995.

[22] F. Chaumette and E. Marchand. A redundancy-based iterative approach for avoiding
joint limits: application to visual servoing. Proc. of the IEEE Int. Conf. on Robotics &
Automation (ICRA), 17(5), 2001. ISSN 1042-296X. doi: 10.1109/70.964671.



BIBLIOGRAPHY 135

[23] S. Chiaverini, O. Egeland, and R. Kanestrom. Achieving user-defined accuracy with
damped least-squares inverse kinematics. In Int. Conf. on Advanced Robotics, 1991.
doi: 10.1109/ICAR.1991.240676.

[24] S. Chiaverini, B. Siciliano, and O. Egeland. Review of the damped least-squares inverse
kinematics with experiments on an industrial robot manipulator. IEEE Transactions on
Control Systems Technology, 2(2):123–134, 1994.

[25] S. Chitta, B. Cohen, and M. Likhachev. Planning for autonomous door opening with a
mobile manipulator. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
2010.

[26] S. Chitta, E. G. Jones, M. Ciocarlie, and K. Hsiao. Perception, planning, and execution
for mobile manipulation in unstructured environments. IEEE Robotics and Automation
Magazine, Special Issue on Mobile Manipulation, 19, 2012.

[27] S. Chitta, I. Sucan, and S. Cousins. MoveIt! [ROS topics]. IEEE Robotics Automation
Magazine, 19(1):18 –19, 2012.

[28] S. L. Chiu. Task compatibility of manipulator postures. Int. J. Rob. Res., 7(5):13–
21, Oct. 1988. ISSN 0278-3649. doi: 10.1177/027836498800700502. URL http:
//dx.doi.org/10.1177/027836498800700502.

[29] C.-S. Chung, H. Wang, and R. A. Cooper. Autonomous function of wheelchair-mounted
robotic manipulators to perform daily activities. In IEEE International Conference on
Rehabilitation Robotics (ICORR), pages 1–6, 2013.

[30] G. Cimen, H. Ilhan, T. Capin, and H. Gurcay. Classification of human motion based on
affective state descriptors. Computer Animation and Virtual Worlds, 24(3-4):355–363,
2013.

[31] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and Accurate Deep Network
Learning by Exponential Linear Units (ELUs). In ArXiv e-prints, volume 1511, page
arXiv:1511.07289, 2016.

[32] J. Cortés. Motion Planning Algorithms for General Closed-Chain Mechanisms. PhD
thesis, Institut National Polytechnique de Toulouse, Toulouse, France, 2003.

[33] S. Cotton, A. Murray, and P. Fraisse. Statically equivalent serial chains for modeling
the center of mass of humanoid robots. In Humanoids, pages 138–144, 2008.

[34] I. A. Şucan and S. Chitta. Motion planning with constraints using configuration space
approximations. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 2012.

[35] R. Dale and E. Reiter. Computational interpretations of the gricean maxims in the
generation of referring expressions. Cognitive science, 19(2):233–263, 1995.

[36] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki. Incremental task and
motion planning: A constraint-based approach. In Proceedings of Robotics: Science
and Systems, AnnArbor, Michigan, 2016. doi: 10.15607/RSS.2016.XII.002.

http://dx.doi.org/10.1177/027836498800700502
http://dx.doi.org/10.1177/027836498800700502


136 BIBLIOGRAPHY

[37] B. Dariush, M. Gienger, A. Arumbakkam, Y. Zhu, B. Jian, K. FujiMura, and C. Goerick.
Online transfer of human motion to humanoids. Int. Journal of Humanoid Robotics
(IJHR), 6(2), 2009.

[38] S. Das, L. Trutoiu, A. Murai, D. Alcindor, M. Oh, O. D. L. Torre, and J. Hodgins.
Quantitative measurement of motor symptoms in parkinson’s disease: A study with
full-body motion capture data. In Proc. of the Int. Conf. of the IEEE Engineering in
Medicine and Biology Society, 2011.

[39] B. Day, J. Dick, and C. Marsden. Patients with parkinson’s disease can employ a
predictive motor strategy. Journal of Neurology, Neurosurgery & Psychiatry, 47(12):
1299–1306, 1984.

[40] L. De Silva, A. K. Pandey, M. Gharbi, and R. Alami. Towards combining HTN planning
and geometric task planning. CoRR, abs/1307.1482, 2013.

[41] C. Do, T. Schubert, and W. Burgard. A probabilistic approach to liquid level detection
in cups using an RGB-D camera. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Daejeon, Korea, 2016.

[42] M. Do, P. Azad, T. Asfour, and R. Dillmann. Imitation of human motion on a humanoid
robot using non-linear optimization. In Proc. of the IEEE-RAS Int. Conf. on Humanoid
Robots (Humanoids), 2008.

[43] C. Dornhege, P. Eyerich, T. Keller, S. Trüg, M. Brenner, and B. Nebel. Semantic
Attachments for Domain-independent Planning Systems. In Proceedings of the 19th
International Conference on Automated Planning and Scheduling (ICAPS), 2009.

[44] P. Eyerich, R. Mattmüller, and G. Röger. Using the Context-enhanced Additive Heuris-
tic for Temporal and Numeric Planning. In Proceedings of the 19th International
Conference on Automated Planning and Scheduling (ICAPS), pages 130–137, 2009.

[45] T. Flash and N. Hogan. The coordination of arm movements: an experimentally
confirmed mathematical model. The Journal of Neuroscience, 5(7):1688–1703, 1985.

[46] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte carlo localization: Efficient
position estimation for mobile robots. AAAI/IAAI, 1999(343-349):2–2, 1999.

[47] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot. Informed RRT*: Optimal sampling-
based path planning focused via direct sampling of an admissible ellipsoidal heuristic.
arXiv preprint arXiv:1404.2334, 2014.

[48] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot. Batch informed trees (BIT*):
Sampling-based optimal planning via the heuristically guided search of implicit random
geometric graphs. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
pages 3067–3074, 2015.

[49] J. Garimort, A. Hornung, and M. Bennewitz. Humanoid navigation with dynamic
footstep plans. In IEEE Int. Conf. on Robotics and Automation (ICRA), 2011.



BIBLIOGRAPHY 137

[50] M. Göbelbecker. Assisting with Goal Formulation for Domain Independent Planning.
In KI 2015: Advances in Artificial Intelligence, pages 87–99. Springer, 2015. ISBN
9783319244891.

[51] D. Gouaillier, V. Hugel, P. Blazevic, C. Kilner, J. Monceaux, P. Lafourcade, B. Marnier,
J. Serre, and B. Maisonnier. Mechatronic design of nao humanoid. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 769–774, 2009.

[52] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for grid mapping with
rao-blackwellized particle filters. IEEE Transactions on Robotics, 23(1):34–46, 2007.

[53] G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

[54] L. Han and N. M. Amato. A kinematics-based probabilistic roadmap method for closed
chain systems. In B. R. Donald, K. M. Lynch, and D. Rus, editors, Algorithmic and
Computational Robotics: New Directions, pages 233–246. A.K. Peters, Wellesley, MA,
2001.

[55] Y. Hara, F. Honda, T. Tsubouchi, and A. Ohya. Detection of Liquids in Cups Based
on the Refraction of Light with a Depth Camera Using Triangulation. In Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2014.

[56] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):
100–107, 1968.

[57] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2015.

[58] M. Helmert. The Fast Downward Planning System. Journal of Artificial Intelligence
Research 26 (JAIR), pages 191–246, 2006.

[59] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard. Octomap: An
efficient probabilistic 3d mapping framework based on octrees. Autonomous Robots,
34(3):189–206, 2013.

[60] J. Ilonen and V. Kyrki. Robust robot-camera calibration. In 15th International Confer-
ence on Advanced Robotics (ICAR), pages 67–74, 2011.

[61] L. Jamone, L. Natale, K. Hashimoto, G. Sandini, and A. Takanishi. Learning the
reachable space of a humanoid robot: A bio-inspired approach. IEEE RAS and EMBS
Int. Conf. on Biomedical Robotics and Biomechatronics (BioRob), 2012. doi: 10.1109/
biorob.2012.6290729.

[62] L. Janson, E. Schmerling, A. Clark, and M. Pavone. Fast marching tree: A fast
marching sampling-based method for optimal motion planning in many dimensions.
The International Journal of Robotics Research, 34(7):883–921, 2015.

[63] M. Jordan and A. Perez. Optimal bidirectional rapidly-exploring random trees. Techni-
cal Report MIT-CSAIL-TR-2013-021, Computer Science and Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, Cambridge, MA, August 2013.



138 BIBLIOGRAPHY

[64] L. P. Kaelbling and T. Lozano-Pérez. Hierarchical task and motion planning in the
now. In IEEE International Conference on Robotics and Automation (ICRA), pages
1470–1477, 2011.

[65] L. P. Kaelbling and T. Lozano-Pérez. Integrated task and motion planning in belief
space. The International Journal of Robotics Research, 32(9-10):1194–1227, 2013.
doi: 10.1177/0278364913484072.

[66] P. Kaiser, D. Gonzalez-Aguirre, F. Schültje, J. B. Sol, N. Vahrenkamp, and T. Asfour.
Extracting whole-body affordances from multimodal exploration. In Proc. of the
IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), 2014.

[67] S. Kajita and K. Tani. Experimental study of biped dynamic walking in the linear in-
verted pendulum mode. In IEEE International Conference on Robotics and Automation
(ICRA), volume 3, pages 2885–2891, 1995.

[68] F. Kanehiro, E. Yoshida, and K. Yokoi. Efficient reaching motion planning and ex-
ecution for exploration by humanoid robots. In Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2012.

[69] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning.
The International Journal of Robotics Research, 30(7):846–894, 2011.

[70] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller. Anytime motion
planning using the RRT*. In Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), pages 1478–1483, 2011.

[71] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars. Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Transactions on
Robotics and Automation, 12(4):566–580, 1996.

[72] D. Kim, J. Lee, and S.-e. Yoon. Cloud RRT*: Sampling cloud based RRT*. In Proc. of
the IEEE Int. Conf. on Robotics & Automation (ICRA), pages 2519–2526, 2014.

[73] S. Kim, C. Kim, B. You, and S. Oh. Stable whole-body motion generation for humanoid
robots to imitate human motions. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), 2009.

[74] J. Koenemann and M. Bennewitz. Whole-body imitation of human motions with a
nao humanoid. In Video Abstract Proc. of the ACM/IEEE International Conference on
Human-Robot Interaction (HRI), 2012.

[75] J. Koenemann, F. Burget, and M. Bennewitz. Real-time imitation of human whole-body
motions by humanoids. In IEEE International Conference on Robotics and Automation
(ICRA), pages 2806–2812, Hong Kong, China, 2014.

[76] E. Krahmer and K. Van Deemter. Computational generation of referring expressions:
A survey. Computational Linguistics, 38(1):173–218, 2012.



BIBLIOGRAPHY 139

[77] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105, 2012.

[78] J. J. Kuffner and S. M. LaValle. RRT-Connect: An efficient approach to single-query
path planning. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
volume 2, pages 995–1001, 2000.

[79] KUKA AG. The omniRob mobile manipulator, 2017. URL http://www.kuka.
com/en-gb.

[80] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. The International
Journal of Robotics Research, 20(5):378–400, 2001.

[81] S. M. LaValle, J. H. Yakey, and L. E. Kavraki. A probabilistic roadmap approach for
systems with closed kinematic chains. In Proc. of the IEEE Int. Conf. on Robotics &
Automation (ICRA), volume 3, pages 1671–1676, 1999.

[82] S. M. LaValle, A. Yershova, M. Katsev, and M. Antonov. Head tracking for the Oculus
Rift. In IEEE International Conference on Robotics and Automation (ICRA), pages
187–194, 2014.

[83] V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung, and B. J.
Lance. EEGNet: A compact convolutional network for EEG-based brain-computer
interfaces. arXiv preprint arXiv:1611.08024, 2016.

[84] R. Lienhart and J. Maydt. An extended set of haar-like features for rapid object detection.
In Proceedings of the International Conference on Image Processing, volume 1, pages
I–I, 2002.

[85] M. Likhachev, D. I. Ferguson, G. J. Gordon, A. Stentz, and S. Thrun. Anytime Dynamic
A*: An Anytime, Replanning Algorithm. In ICAPS, pages 262–271, 2005.

[86] P. Lindes, A. Mininger, J. R. Kirk, and J. E. Laird. Grounding language for interactive
task learning. In Proceedings of the First Workshop on Language Grounding for
Robotics, pages 1–9, 2017.

[87] T. Lozano-Pérez and L. P. Kaelbling. A constraint-based method for solving sequential
manipulation planning problems. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 3684–3691, 2014.

[88] E. Magrini, F. Flacco, and A. De Luca. Control of generalized contact motion and force
in physical human-robot interaction. In IEEE International Conference on Robotics
and Automation (ICRA), pages 2298–2304, 2015.

[89] D. McDermott. PDDL - The Planning Domain Definition Language. Technical report,
AIPS-98 Planning Competition Committee, 1998.

http://www.kuka.com/en-gb
http://www.kuka.com/en-gb


140 BIBLIOGRAPHY

[90] K. Muelling, A. Venkatraman, J.-S. Valois, J. E. Downey, J. Weiss, S. Javdani,
M. Hebert, A. B. Schwartz, J. L. Collinger, and J. A. Bagnell. Autonomy in-
fused teleoperation with application to brain computer interface controlled manip-
ulation. Autonomous Robots, pages 1–22, 2017. ISSN 1573-7527. doi: 10.1007/
s10514-017-9622-4.

[91] J. Müller, U. Frese, and T. Röfer. Grab a mug - Object detection and grasp motion
planning with the Nao robot. In Proc. of the IEEE-RAS Int. Conf. on Humanoid Robots
(Humanoids), 2012.

[92] S. Nakaoka, A. Nakazawa, K. Yokoi, H. Hirukawa, and K. Ikeuchi. Generating whole
body motions for a biped humanoid robot from captured human dances. In IEEE
Int. Conf. on Robotics and Automation (ICRA), 2003.

[93] S. Nakaoka, A. Nakazawa, F. Kanehiro, K. Kaneko, M. Morisawa, H. Hirukawa, and
K. Ikeuchi. Learning from observation paradigm: Leg task models for enabling a biped
humanoid robot to imitate human dances. Int. Journal of Robotics Research (IJRR), 26
(8), 2007.

[94] J. Nasir, F. Islam, U. Malik, Y. Ayaz, O. Hasan, M. Khan, and M. S. Muhammad.
RRT*-SMART: A rapid convergence implementation of RRT*. International Journal
of Advanced Robotic Systems, 10, 2013.

[95] C. Ott, D. Lee, and Y. Nakamura. Motion capture based human motion recognition and
imitation by direct marker control. In Proc. of the IEEE-RAS Int. Conf. on Humanoid
Robots (Humanoids), 2008.

[96] M. Otte and N. Correll. C-FOREST: Parallel shortest path planning with superlinear
speedup. IEEE Transactions on Robotics, 29(3):798–806, 2013.

[97] J. Pan, S. Chitta, and D. Manocha. FCL: A general purpose library for collision and
proximity queries. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
2012.

[98] D. Park, Y. K. Kim, Z. M. Erickson, and C. C. Kemp. Towards assistive feeding with a
general-purpose mobile manipulator. arXiv:1605.07996, 2016.

[99] F. Paus, P. Kaiser, N. Vahrenkamp, and T. Asfour. A combined approach for robot
placement and coverage path planning for mobile manipulation. In Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2017.

[100] K. Pauwels and D. Kragic. Simtrack: A simulation-based framework for scalable
real-time object pose detection and tracking. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1300–1307, 2015.

[101] J. Quinlan. Induction of decision trees. Machine Learning 1, pages 81–106, 1986.

[102] S. Quinlan and O. Khatib. Elastic bands: Connecting path planning and control. In
IEEE International Conference on Robotics and Automation (ICRA), pages 802–807,
1993.



BIBLIOGRAPHY 141

[103] F. Rahimi, C. DuVal, M. Jog, C. Bee, A. South, M. Jog, R. Edwards, and P. Boissy.
Capturing whole-body mobility of patients with parkinson disease using inertial motion
sensors: Expected challenges and rewards. In Prof. of the Int. Conf. of the IEEE
Engineering in Medicine and Biology Society, 2011. doi: 10.1109/IEMBS.2011.
6091443.

[104] M. Riley, A. Ude, K. Wade, and C. G. Atkeson. Enabling real-time full body imitation:
A natural way of transferring human movements to humanoids. In IEEE Int. Conf. on
Robotics and Automation (ICRA), 2003.

[105] D. Roetenberg, H. Luinge, and P. Slycke. Xsens MVN: Full 6DOF human motion
tracking using miniature inertial sensors. Technical report, xsens, 2009.

[106] C. Röhrig, D. Heß, and F. Künemund. Motion controller design for a mecanum wheeled
mobile manipulator. In IEEE Conference on Control Technology and Applications
(CCTA), pages 444–449, 2017.

[107] T. Rühr, J. Sturm, D. Pangercic, M. Beetz, and D. Cremers. A generalized framework for
opening doors and drawers in kitchen environments. In Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2012.

[108] R. B. Rusu and S. Cousins. 3D is here: Point Cloud Library (PCL). In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13
2011.

[109] R. B. Rusu, W. Meeussen, S. Chitta, and M. Beetz. Laser-based perception for door
and handle identification. In International Conference on Advanced Robotics (ICAR),
pages 1–8, 2009.

[110] A. Safonova, N. Pollard, and J. K. Hodgins. Optimizing human motion for the control
of a humanoid robot. In Int. Symp. on Adaptive Motion of Animals and Machines
(AMAM), 2003.

[111] T. N. Sainath, B. Kingsbury, G. Saon, H. Soltau, A.-r. Mohamed, G. Dahl, and B. Ram-
abhadran. Deep Convolutional Neural Networks for Large-scale Speech Tasks. Neural
Networks, 64:39–48, 2015. ISSN 0893-6080. doi: 10.1016/j.neunet.2014.08.005.

[112] G. Schalk, D. J. McFarland, T. Hinterberger, N. Birbaumer, and J. R. Wolpaw. BCI2000:
A general-purpose brain-computer interface (BCI) system. IEEE Transactions on
biomedical engineering, 51(6):1034–1043, 2004.

[113] D. Schinstock, T. Faddis, and R. Greenway. Robust inverse kinematics using damped
least squares with dynamic weighting. Technical report, NASA, 1994.

[114] R. T. Schirrmeister, J. T. Springenberg, L. D. J. Fiederer, M. Glasstetter,
K. Eggensperger, M. Tangermann, F. Hutter, W. Burgard, and T. Ball. Deep learning
with convolutional neural networks for brain mapping and decoding of movement-
related information from the human eeg. arXiv:1703.05051, 2017.



142 BIBLIOGRAPHY

[115] J. Scholz, S. Chitta, B. Marthi, and M. Likhachev. Cart pushing with a mobile ma-
nipulation system: Towards navigation with moveable objects. In Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), pages 6115–6120, 2011.

[116] S. Schröer, I. Killmann, B. Frank, M. Völker, L. D. J. Fiederer, T. Ball, and W. Burgard.
An autonomous robotic assistant for drinking. In IEEE International Conference on
Robotics and Automation (ICRA), pages 6482–6487, 2015.

[117] SCHUNK GmbH & Co. KG. Servo-electric 3-finger gripper hand SDH, 2017. URL
http://schunk.com/us_en/gripping-systems.

[118] T. Sercu, C. Puhrsch, B. Kingsbury, and Y. LeCun. Very deep multilingual convolutional
neural networks for LVCSR. In IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 4955–4959, 2016. doi: 10.1109/ICASSP.2016.
7472620.

[119] M. Shridhar and D. Hsu. Grounding spatio-semantic referring expressions for human-
robot interaction. CoRR, abs/1707.05720, 2017.

[120] B. Siciliano and O. Khatib, editors. Springer Handbook of Robotics. Springer, Berlin,
Heidelberg, 2008. ISBN 978-3-540-23957-4. URL http://dx.doi.org/10.
1007/978-3-540-30301-5.

[121] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics: Modelling, Planning
and Control. Springer Publishing Company, Incorporated, 1st edition, 2008. ISBN
1846286417, 9781846286414.

[122] R. Smith. Open dynamics engine, 2008. URL http://www.ode.org/.
http://www.ode.org/.

[123] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial relationships in
robotics. In Autonomous robot vehicles, pages 167–193. Springer, 1990.

[124] R. Smits. KDL: Kinematics and Dynamics Library. http://www.orocos.org/
kdl.

[125] SoftBank Robotics. Discover Nao, the little humanoid robot from Aldebaran. Accessed
4 August 2016.

[126] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel. Combined task
and motion planning through an extensible planner-independent interface layer. In
IEEE International Conference on Robotics and Automation (ICRA), pages 639–646,
2014.

[127] C. Stanton, A. Bogdanovych, and E. Ratanasen. Teleoperation of a humanoid robot
using full-body motion capture, example movements, and machine learning. In Proc. of
the Australasian Conf. on Robotics and Automation (ACRA), 2012.

[128] M. Stilman. Global manipulation planning in robot joint space with task constraints.
IEEE Transactions on Robotics, 26(3):576–584, 2010.

http://schunk.com/us_en/gripping-systems
http://dx.doi.org/10.1007/978-3-540-30301-5
http://dx.doi.org/10.1007/978-3-540-30301-5
http://www.ode.org/
http://www.orocos.org/kdl
http://www.orocos.org/kdl


BIBLIOGRAPHY 143

[129] S. Stober. Learning Discriminative Features from Electroencephalography Recordings
by Encoding Similarity Constraints. In Bernstein Conference 2016, 2016. doi: 10.
12751/nncn.bc2016.0223.

[130] F. Stulp, A. Fedrizzi, L. Mösenlechner, and M. Beetz. Learning and reasoning with
action-related places for robust mobile manipulation. Journal of Artificial Intelligence
Research (JAIR), 43:1–42, 2012.

[131] W. Suleiman, E. Yoshida, F. Kanehiro, J.-P. Laumond, and A. Monin. On human
motion imitation by humanoid robot. In IEEE Int. Conf. on Robotics and Automation
(ICRA), 2008.

[132] Y. R. Tabar and U. Halici. A novel deep learning approach for classification of EEG
motor imagery signals. Journal of Neural Engineering, 14(1):016003, 2017. ISSN
1741-2552. doi: 10.1088/1741-2560/14/1/016003.

[133] E. Todorov and M. I. Jordan. Smoothness maximization along a predefined path
accurately predicts the speed profiles of complex arm movements. Journal of Neuro-
physiology, 80(2):696–714, 1998.

[134] A. Ude, C. Atkeson, and M. Riley. Programming full-body move- ments for humanoid
robots by observation. In Robotics and Autonomous Systems, 2004.

[135] University of North Carolina. PQP: A proximity query package. GAMMA Research
Group, Available from http://www.cs.unc.edu/∼geom/SSV/, 2005.

[136] N. Vahrenkamp and T. Asfour. Representing the robot’s workspace through constrained
manipulability analysis. Autonomous Robots, 38(1), 2015.

[137] N. Vahrenkamp, T. Asfour, G. Metta, G. Sandini, and R. Dillmann. Manipulability anal-
ysis. In 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids),
pages 568–573, 2012.

[138] N. Vahrenkamp, T. Asfour, and R. Dillmann. Robot placement based on reachability
inversion. In IEEE Int. Conf. on Robotics and Automation (ICRA), 2013.

[139] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple
features. In Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), volume 1, 2001.

[140] M. Völker, R. T. Schirrmeister, L. D. J. Fiederer, W. Burgard, and T. Ball. Deep
transfer learning for error decoding from non-invasive EEG. In 6th International Winter
Conference on Brain-Computer Interfaces, 2018.

[141] R. Vuga, M. Ogrinc, A. Gams, T. Petric, N. Sugimoto, A. Ude, and J. Morimoto.
Motion capture and reinforcement learning of dynamically stable humanoid movement
primitives. In IEEE Int. Conf. on Robotics and Automation (ICRA), 2013.

[142] M. Vukobratovic and B. Borovac. Zero-moment point – thirty five years of its life. Int.
Journal of Humanoid Robots, 1, 2004.



144 BIBLIOGRAPHY

[143] A. Wang, J. Ramos, J. Mayo, W. Ubellacker, J. Cheung, and S. Kim. The HERMES
humanoid system: A platform for full-body teleoperation with balance feedback. In
IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pages
730–737, 2015.

[144] C. Wang, B. Xia, J. Li, W. Yang, D. Xiao, A. C. Velez, and H. Yang. Motor imagery BCI-
based robot arm system. In Seventh International Conference on Natural Computation
(ICNC), volume 1, pages 181–184, 2011.

[145] K. Yamane and J. Hodgins. Controlling humanoid robots with human motion data:
Experimental validation. In Proc. of the IEEE-RAS Int. Conf. on Humanoid Robots
(Humanoids), 2010.

[146] K. Yamane and J. Hodgins. Control-aware mapping of human motion data with stepping
for humanoid robots. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), 2010.

[147] Y. Yang, V. Ivan, Z. Li, M. Fallon, and S. Vijayakumar. iDRM: Humanoid motion
planning with realtime end-pose selection in complex environments. In IEEE-RAS 16th
International Conference on Humanoid Robots (Humanoids), pages 271–278, 2016.

[148] T. Yoshikawa. Manipulability of robotic mechanisms. The International Journal of
Robotics Research, 4(2):3–9, 1985.

[149] L. Yu, P. Poirson, S. Yang, A. C. Berg, and T. L. Berg. Modeling context in referring
expressions. CoRR, 2016.

[150] F. Zacharias, C. Borst, and G.Hirzinger. Capturing robot workspace structure: repre-
senting robot capabilities. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), 2007.

[151] F. Zhou, F. De la Torre Frade, and J. K. Hodgins . Aligned cluster analysis for temporal
segmentation of human motion. In Proc. of the IEEE Conf. on Automatic Face and
Gestures Recognition, 2008.

[152] F. Zhou, F. De la Torre Frade, and J. K. Hodgins . Hierarchical aligned cluster analysis
for temporal clustering of human motion. IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 35(3):582–596, 2013.






	Table of Contents
	Introduction
	Key Contributions
	Publications
	Collaborations
	Notation

	Real-time Imitation of Human Whole-Body Motions
	Whole-Body Motion Capture
	Motion Capture Suit
	Data Acquisition

	Human Motion Model
	Human to Humanoid Posture Mapping
	Reference Posture
	Posture Mapping

	Humanoid Posture Stabilization
	Controlling the Center of Mass
	Controlling the Support Mode
	Endeffector Retargeting

	Posture Postprocessing
	Implementation Details
	Experimental Results
	Similarity to Human Motion
	Ensuring Stability
	Computational Costs
	Teleoperation

	Related Work
	Conclusion

	Learning Motor Control Parameters for Motion Strategy Analysis
	Motion Database
	Data Acquisition
	Motor Control Task

	Motion Representation
	Artificial Model of the Human Upper Body
	Motion Mapping

	Learning Motor Control Parameters
	End-Effector Trajectory Tracking
	Adaptive End-Effector Trajectory Tracking
	Joint Weights Learning

	Implementation Details
	Experimental Results
	Experimental Setup
	Trajectory Tracking Performance
	Motion Strategy Analysis

	Related Work
	Conclusion

	Stance Pose Selection by Inverse Reachability Maps
	Workspace Representation
	Generation of Forward Reachability Maps
	Configuration-Space Sampling
	Quality Information on Configurations

	Kinematic Constraints
	Collision Detection
	Kinematic Loop-Closure
	Static Stability

	Reachability Maps for Whole-Body Humanoids
	Building Whole-Body Reachability Maps
	Double Support Generation

	Reachability Maps for Mobile Manipulators
	Reachability Map Inversion
	Inverse Reachability Map based Stance Pose Selection
	Implementation Details
	Experimental Results
	Selecting a Stance Pose for Grasping
	IRM vs. RM based Stance Pose Selection

	Related Work
	Conclusion

	Sampling-Based Motion Planning for Task-Constrained Mobile Manipulation
	Rapidly-Exploring Random Trees
	Asymptotically-Optimal Motion Planning
	Task-Constrained Motion Planning

	Motion Planning With Bidirectional Informed RRT*
	The BI2RRT* Algorithm
	Tree Initialization
	Informed Heuristic for Mobile Manipulators

	Sample Projection According to Task Constraints
	Definition of Task Constraints
	Satisfaction of Task Constraints

	Implementation Details
	Experimental Results
	Planning Collision-Free Motions
	Transportation of Liquids
	Pulling a Cart

	Related Work
	Conclusions

	A Robotic Service Assistant for Users with Limited Communication Skills
	Online Decoding of Neuronal Signals
	High-Level Goal Formulation Planning
	Domain-Independent Planning
	Goal Formulation with References
	Adaptive Graphical Planner Interface

	Dynamic Knowledge Base
	Robot Motion Generation
	Navigation Tasks
	Manipulation Tasks

	Implementation Details
	Experiments
	Online Decoding of Neuronal Signals
	Fetch and Carry Task
	Drinking Task
	Goal Formulation Assistant

	Related Work
	Conclusion

	Conclusions
	Summary
	Outlook

	Mobile Robot Platforms
	The Humanoid Robot NAO
	The Mobile Manipulator OmniRob

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

