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Abstract

The brain consists of neurons which are interconnected by synapses. The connectivity of the

networks formed by the neurons and synapses is a key feature for the function and dysfunction of

the brain. In humans, studying the connectivity comes with various challenges. Thus, the access

to connectivity in humans is limited. The aim of this dissertation is to introduce a novel method

to estimate effective connectivity of neural populations from continuous recordings of the activity

of these populations which overcomes limitations of existing methods. This method estimates

the connectivity of neural populations based on the covariance of the measured activity. The key

mechanism for doing so is a L1-minimization via a gradient descent on the manifold of unitary

matrices. The fact that the gradient of a matrix on the unitary manifold is skew-hermitian

and with this in the corresponding Lie-Algebra, is exploited in the update step to project the

gradient back on the manifold via the exponential map.

As presented in this thesis, this method works reliably for sparse networks with more than 40

nodes and a sufficient network interaction. The method can be applied on zero-lag covariance

matrices, hence there is no restriction on the sampling rate of the measurement. Although based

on a linear interaction model, the method also achieves reasonable results for networks which

interact non-linearly. A comparison with structural measures based on fMRI data shows better

agreement than state-of-the-art methods. Also, the method is robust against noise, unobserved

nodes and variable hemodynamics of BOLD signals.

In this thesis, a novel method for the estimation of effective connectivity from covariances of

neural activity is presented. The features of this method make it applicable on a broad range of

data-types, including data based on the BOLD effect or electro physiologic data such as ECoG.

Applications of fast fMRI data show plausible and coherent results.
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Zusammenfassung

Das Gehirn besteht aus Neuronen welche durch Synapsen verbunden sind. Die Konnektivität,

die von Neuronen durch Synapsen geformt wird, ist ein Haupt-Charakteristikum für die Funktion

und Funktionsstörung des Gehirns. Um die Konnektivität im menschlichen Gehirn untersuchen

zu können, müssen mehrere Herausforderungen bewältigt werden. Dadurch ist der Zugang zur

Konnektivität im menschlichen Gehirn limitiert. Ziel dieser Dissertation ist es, eine neue Meth-

ode zur Schätzung von effektiver Konnektivität neuronaler Populationen aus kontinuierlichen

Signalen dieser Populationen vorzustellen, welche die Einschränkungen existierender Methoden

überwindet. Die Methode schätzt die Konnektivität von neuronalen Populationen auf Basis

der Kovarianzen der gemessenen Aktivität. Der zugrunde liegende Mechanismus ist eine L1-

Minimierung die durch ein Gradientenverfahren auf der Mannigfaltigkeit der unitären Matrizen

berechnet wird. Dabei wird ausgenutzt, dass der Gradient einer Matrix der unitären Mannig-

faltigkeit schiefhermitesch ist und durch die Exponentialfunktion auf die unitäre Mannigfaltigkeit

zurück projiziert werden kann.

Diese Arbeit zeigt, dass diese Methode für spärliche Netzwerke mit mehr als 40 Knoten und

einer ausreichenden Netzwerk-Interaktion zuverlässig funktioniert. Die Methode kann auf die

Kovarianzen, die ohne zeitliche Verschiebung berechnet werden, angewendet werden und hat

dadurch keine Einschränkungen in der Anwendbarkeit bezüglich der zeitlichen Abtastrate der

Messung. Obwohl die Methode auf einem lineare Interaktions-Modell basiert, können damit

auch gute Ergebnisse für Netzwerke mit nicht-linearer Interaktion erzielt werden. Vergleiche mit

Maßen von struktureller Konnektivität basierend auf fMRI-Daten zeigen eine bessere Überein-

stimmung als andere aktulle Methoden. Des weiteren ist die Methode robust gegenüber ver-

rauschten Signalen, nicht beobachteten Knoten in Netzwerken und variabler neurovaskulärer

Kopplung bei BOLD Signalen.
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Zusammenfassung

In dieser Arbeit wird eine neue Methode zur Schätzung effektiver Konnektivität aus den

Kovarianzen neuronaler Aktivität präsentiert. Die Charakteristiken dieser Methode erlauben die

Anwendung auf eine breite Klasse von Datentypen, einschließlich BOLD-Effekt basierender oder

elektrophysiologischer Messungen. Die Anwendung auf fMRI Messungen mit hoher zeitlicher

Auflösung zeigen plausible und kohärente Resultate.
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1 Introduction

In modern neuroscience, the human brain is studied as a network of networks formed by neu-

rons and connected by synapses. Function and malfunction of the brain is tightly linked to

the structure and activity of these networks. Especially neural diseases such as Parkinson’s,

Alzheimer’s and epilepsy are caused by changes of the neuronal network of the brain (Wenk,

2003; Davie, 2008; Jacobs et al., 2012; Goldberg and Coulter, 2013; Franzmeier et al., 2018).

This makes neural connectivity, independent of the scale on which it is studied, a prominent

research subject.

Recently, Li et al. (2017) argued that knowledge of effective connectivity is crucial for the

understanding of many neuropsychiatric disorders. Generally, monitoring of effective connec-

tivity is a potential candidate for the detection of degenerative neural diseases. Most of these

diseases start long before the first symptoms occur. Changes in connectivity, therefore, can

be a hint on such diseases. As more and better data becomes available, it might be possible

in the future to build classifiers for diseases based on connectivity. Additionally, for modeling

purposes, knowledge of connectivity is essential. Regardless of whether one is aiming to model

neural circuits (Potjans and Diesmann, 2014) or the whole human brain (Tiesinga et al., 2015),

without knowledge of connectivity it is impossible for models to match experimental findings.

In the brain, connectivity is established by synapses which connect neurons. In recent years, it

has been common to study three types of connectivity: structural connectivity which is based on

anatomical connections between neural units, functional connectivity which is based on statistical

dependencies of neural activity and effective connectivity which reflects causal interactions among

neural units (Friston, 2011). Just like in every complex system, connectivity plays a key role in

neural dynamics and their correlations (Kriener et al., 2008; Tetzlaff et al., 2008; Pernice et al.,

2011; Trousdale et al., 2012). Based on the analysis of Hawkes processes (Hawkes, 1971a,b) the
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1 Introduction

inverse problem, estimating the (integrated) kernel matrix, resulting in effective connectivity,

from correlations has been solved (Pernice and Rotter, 2013; Bacry and Muzy, 2014). It has been

shown that for Hawkes processes the spike count correlation matrix is related to the Hawkes

kernel matrix through a system of Wiener–Hopf integral equations (Bacry and Muzy, 2016).

Another approach uses integrated cumulants for the estimation of integrated Hawkes kernels

(Achab et al., 2017).

On a coarser scale, it is common to divide the neurons in the brain into populations or regions

of interest (ROIs), either on an anatomical (Brodmann, 1909; Tzourio-Mazoyer et al., 2002), a

connectional basis (Fan et al., 2016) or implicitly by the range of the electrodes recording the

activity. These neural populations then form a network of networks, still being interconnected

on neuronal level. Neural signals of these populations can then either be measured invasively,

for example with electrocorticography (ECoG), or non-invasively with methods like functional

magnetic resonance imaging (fMRI) and electroencephalography (EEG). On population scale,

the concept of Granger Causality (Granger, 1969), partial directed coherence (Baccalá and

Sameshima, 2001), Dynamic Causal Modeling (DCM) (Friston et al., 2003) and a number of

other methods (Smith et al., 2011) have been used to estimate connectivity from such signals

(Kiebel et al., 2008; Friston, 2009; Friston et al., 2014; Korzeniewska et al., 2008, 2011). However,

all of these methods have their shortcomings: for example DCM is limited to very small networks

(< 20 nodes) and Granger Causality relies on high temporal resolution. As it turns out, the

modeling of population dynamics is also important for connectivity inference. But this is itself

challenging and has multiple degrees of freedom (Coombes, 2010; Einevoll et al., 2013; Mazzoni

et al., 2015).

Now, the question arises whether it is possible to overcome the problems of the existing meth-

ods for the estimation of effective connectivity on population level. The challenge is, estimating

connectivity from population activity for large networks (up to hundreds of nodes) independent

of the temporal resolution of the data. Also, the application on different data types should be

possible: ECoG data is usually recorded in a trial based format (short but many trials), whereas

fMRI data is recorded in one trial for up to ten minutes. Additionally, the algorithm should

be applicable to as many types of networks as possible: the network topology, density and the

spectral radius of the adjacency matrix should not have an effect on the estimation. In the case

of ECoG data one also faces the problem, that the electrode only covers a part of the brain. So
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1.1 The concept of causal inference in the brain

the estimation method should be feasible in a setting of latent populations which interact with

the observed populations but are not recorded themselves.

1.1 The concept of causal inference in the brain

The idea of learning about causal relationships from any kind of data is rather old. The basis

of what is today known as causal models is the link of probabilistic dependencies and graphs,

which was introduced by Rebane and Pearl (1987). One of the essential assumptions in the

concept of causality is temporal precedence. This means, that in a causal system the effect

cannot occur before the cause. Unfortunately, this is not sufficient without the observation of

all factors involved as illustrated by Pearl (2000):

“the barometer falls before it rains yet does not cause the rain”.

In Rebane and Pearl (1987), the key to overcoming this problem is presented by studying the

three basic causal substructures:

Y Y Y

X Z X Z X Z

Figure 1.1: The three basic causal substructures: chain, fork and collider.

They ask the question whether causal influences in the underlying process can be infered by

distinction among the dependencies of these structures. The determination of the direction of

the causal relationship between X and Y is possible in the case of

“the presence of a third variable Z that correlates with Y but not with X”, Rebane

and Pearl (1987).

This is the case in the collider structure X −→ Y ←− Z which makes it a key structure in the

concept of causal inference.

Nowadays, mathematical modeling of the brain uses the concept of networks of networks of

neurons. The networks of neurons can be interpreted as finite directed graphs, where the neurons
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1 Introduction

correspond to the nodes and the synapses correspond to the edges. In the case of networks of

neural populations, the populations correspond to the nodes and the connections between the

populations to the edges. Causal interactions are represented by the transmission of currents

through synapses evoked by action potentials generated by the neurons. The assumption of

temporal precedence is justified in this setting: the depolarization or hyperpolarization of the

post-synaptic neuron, depending on the type of the synapse, can only occur after the pre-synaptic

has neuron fired an action potential.

On the scale of neural populations, this corresponds to the accumulated counterparts. For

instance, a local field potential (LFP) signal is thought as a superposition of synaptic currents

(Buzsáki et al., 2012; Einevoll et al., 2013). FMRI signals, on the other hand, are based on the

coupling of cerebral blood flow, energy demand, and neural activity (Logothetis, 2003). In either

case, the effect on the post-synaptic population cannot precede the cause in the pre-synaptic

population. In case of LFPs for the same reason as for individual neurons, and for fMRI the

cerebral blood flow cannot precede the energy demand, which can itself not precede the neural

activity.

In the community based on the work of Judea Pearl, inference of causal relationships from weak

structural assumptions, e.g. general directed acyclic graphs by studying statistical independence,

is very popular. Unfortunately, even these assumptions are too strict for the graphs considered

in neuroscience. As the brain is a highly recurrent network, the assumption of an acyclic graph

is not feasible in our setting. Even in the visual system, which is a part of the brain with

prominent feed-forward structure, feedback connections exist (Lamme and Roelfsema, 2000).

This means, that even if one considers only sub-networks of the brain, the assumption of an

acyclic graph is violated. Nevertheless, as I will show below, the investigation of the three basic

causal structures, especially collider structures, can be beneficial for the concept of causality in

the brain.

1.2 Structural, functional and effective connectivity

Structural connectivity describes the anatomical connections (more precisely existence and di-

rection of connections) between neural units. Recently, lots of effort has been put into the
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1.2 Structural, functional and effective connectivity

mapping of the human connectome, that is the structural connectivity of the complete human

brain (Sporns et al., 2005). This is challenging, as invasive tracing methods can only be applied

post mortem. Non-invasively, tractography algorithms on diffusion tensor imaging (DTI) data

can reconstruct white matter tracts forming connections between regions in vivo (Wedeen et al.,

2008; Reisert et al., 2013). However, this method has its limitations, especially for short-range

connections. Also, as DTI data measures the diffusion of water molecules, it is not possible to

reconstruct the direction of connections.

In Friston (2011), functional connectivity is defined as

“... statistical dependencies among remote neurophysiological events”.

Following this definition, the concept of functional connectivity is very general, applicable to any

type of data. The accuracy of the estimate is, of course, highly dependent on the quality of the

data, resulting from data length, sampling rate and artifacts contaminating the measurement

such as breathing and heartbeat. It is independent of models underlying the dynamics. In

contrast to structural and effective connectivity, functional connectivity is by definition, as

covariance, or coherence in the frequency domain, a symmetric respectively undirected measure.

According to https://pubmed.gov1 the term effective connectivity was first used by Melssen

and Epping (1987) who used it to describe “combined influences of parallel pathways”. In the

following years, the usage of this term was not consistent across the field (Aertsen et al., 1989).

Aertsen and Preissl (1991) came up with the following definition:

“effective connectivity should be understood as the experiment and time-dependent,

simplest possible circuit diagram that would replicate the observed timing relation-

ships between the recorded neurons.”

Today, this definition describes what usually is understood as effective connectivity (Friston,

2011). It has two elements which distinguish it from functional connectivity fundamentally: it

is time dependent and relies on the model of interaction assumed. The approach of a “possible

circuit diagram” matching the observation can be interpreted as a link to graphs as described

in section 1.1.

1retrieved: February 21, 2018
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1 Introduction

A key difference between functional and effective connectivity can be illustrated as follows:

if two nodes are not connected but have a common input, like in the fork X ←− Y −→ Z,

the nodes X and Z will have statistical dependencies induced by the activity of Y , thus the

functional connectivity between X and Z is non-zero. On the other hand, there is no causal

interaction between X and Z, the effective connectivity is zero accordingly.

The differences in the concepts of structural, functional and effective connectivity show that

the belief of getting a complete understanding of the brain by knowledge of the full human con-

nectome has clear limitations. First, plasticity is present in the adult human brain. This means

that the brain is constantly changing its structural connectivity, partially based on mechanisms

as short-term depression and long-term potentiation, which are itself dependent of the neural ac-

tivity. Also, the neural pathways alone do not allow much insight about function without taking

activity on these neural pathways into consideration. The effect of a synapse, of course, depends

on the activity of the pre-synaptic neuron. In the most extreme case, when the pre-synaptic

neurons is completely silent, then the existence of a connection to another neuron has no effect

on the post-synaptic neuron. On the other hand, knowledge about structural connectivity can

be used as constraint for the estimation of effective connectivity (Gilson et al., 2016). However,

the quality of the structural estimate is then fundamental for the estimation of the effective

connectivity.

1.3 Inferring effective connectivity

As described in the section above, effective connectivity is model dependent. This induces con-

straints on possible validation procedures. In simulations, anatomically connected neural units

are usually simulated with some kind of neural dynamics. The validation for such algorithms is

then performed by comparing the estimated connections with structurally existing connections.

This implicitly assumes that the underlying model of neural interactions fits the data generating

process. For simulations, this problem is negligible as the interaction model of the estimation

method can be used for simulating data. On the other hand, simulations also allow validating

the robustness of the estimation method for different types of interaction models.

Biological neurons interact non-linearly. However, estimating connectivity of large networks

6



1.4 The scope of this thesis

is not feasible without the assumption of linearity. Granger Causality, partial directed coherence

as well as the method presented in this thesis assume linearity in the interaction of the neural

units. This is a generic linear model of population activity

x(t) = (G ∗ x)(t) + v(t) (1.1)

where the vector x(t) denotes the activity at time t, G(t) the matrix of interaction kernels and

v(t) the fluctuating external inputs. More details about the estimation of the (integrated) linear

interaction kernels G from the activity x can be found in Chapter 2.

For estimating effective connectivity from real data as fMRI, where no ground truth is avail-

able (Zaghlool and Wyatt, 2014; Ryali et al., 2016; Nie et al., 2017), the problem becomes more

involved. Neither a ground truth for structural connectivity is available, nor is there a broadly

accepted model for fMRI dynamics (Welvaert and Rosseel, 2014). It is only possible to validate

the estimation methods with simulations based on various models, especially interaction models

which are not the underlying model of the estimation method itself. Additionally, one can check

the outcome of the algorithms on real data for plausibility and consistency with other estimation

methods and measures, like structural connectivity reconstructed from DTI. Of course, this is

only possible if the structural connectivity was not used as constraint for the effective connec-

tivity. Clearly, the result of estimation methods can be coherent and plausible, but still totally

wrong.

1.4 The scope of this thesis

In this thesis, I provide an algorithm to estimate effective connectivity for sparse networks.

The algorithm is based on the same idea as Pernice and Rotter (2013), namely using a L1-

minimization to estimate connectivity which, based on a linear interaction model, fits the co-

variance structure of the data. This is done via a minimization on a matrix manifold with

unitary constraint (Abrudan et al., 2009; Wen and Yin, 2013). It can be applied on networks

with up to hundreds of nodes and is independent of the spectral radius of the networks adjacency

matrix. Also, it can deal with the presence of latent nodes in networks. The applicability to

zero-lag covariances as well as frequency-resolved cross-spectral densities allows applications on

a broad range of data. By construction, this algorithm achieves reasonable accuracy only for
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sparse networks, roughly up to 17% connection probability. This is due to the L1-minimization

which favors sparse solutions (Yuan and Lin, 2007). However, in presence of varying connection

strengths, the method is able to estimate the strongest connection by estimating a sub-graph.

In chapter 2, the algorithm is introduced and intrinsic properties are studied based on noise-

free covariance matrices. The performance of the estimation is also evaluated based on sim-

ulations of Ornstein-Uhlenbeck processes filtered with the canonical hemodynamic response

function (Friston et al., 1998; Glover, 1999) as model for blood-oxygen-level dependent imaging

(BOLD) data. The estimation is solely based on the zero-lag covariances of the data, making it

independent of temporal precedence in the data. This makes it a good candidate for data where

the sampling rate is much slower than the timescale of the neural interactions. Applications

on MREG data, which is a fast fMRI sequence (Assländer et al., 2013), are shown. Also, the

performance of the estimation method is compared with the Regularized Inverse Covariance

method (Smith et al., 2011) which shows a superior performance of the new method.

In chapter 3 a variant of the estimation method is applied on MREG data and additional

conditions are studied based on simulations. In this case, the estimation method is not applied

on the zero-lag covariances but on cross-spectral densities. This leads to frequency resolved

network, one for each frequency bin. The estimation of effective connectivity is validated with

DTI data. Also, the effect of the sampling rate of the MRI sequence is studied, showing good

performance of the estimation method for a MREG sampling rate (10 Hz) as well as standard

fMRI sampling rates (0.3− 1 Hz). The influence of variable hemodynamic response functions is

studied showing better robustness of the proposed estimation method against it than Granger

Causality. The influence of the strength of noise, type of noise and length of the measurement

are studied based on cross-spectral densities conducted from simulated autoregressive processes.

Chapter 4 addresses the question of how crucial the assumption of linearity in the underlying

neural interaction is. For this purpose, a simulation of an ECoG electrode is set up, based

on non-linearly interacting leaky-integrate-and-fire neurons. Local field potentials are derived

from the synaptic currents of the neurons and are used for the estimation of the connectivity

of the neural populations underneath the electrodes. Analogue to chapter 2, the connectivity is

estimated based on zero-lag covariances. As the structure of the data in this study is inspired by

ECoG measurements, the covariance matrices are calculated for each trial and averaged before

8



1.4 The scope of this thesis

the connectivity is estimated. The performance is compared to classical Granger Causality

inference (Lütkepohl, 2005) and is shown to be superior for short trials. This study shows

that even assuming a linear interaction model, the estimation method can reconstruct effective

connectivity from data generated by non-linear processes.

In chapter 5 some aspects are explained in more detail and alternative approaches for parts

of the algorithm are discussed. The method is compared to other estimation methods and the

assumption of a linear interaction model is examined.

9
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Abstract
Knowing brain connectivity is of great importance both in basic research and for clinical

applications. We are proposing a method to infer directed connectivity from zero-lag covari-

ances of neuronal activity recorded at multiple sites. This allows us to identify causal rela-

tions that are reflected in neuronal population activity. To derive our strategy, we assume a

generic linear model of interacting continuous variables, the components of which represent

the activity of local neuronal populations. The suggested method for inferring connectivity

from recorded signals exploits the fact that the covariance matrix derived from the observed

activity contains information about the existence, the direction and the sign of connections.

Assuming a sparsely coupled network, we disambiguate the underlying causal structure via

L1-minimization, which is known to prefer sparse solutions. In general, this method is suited

to infer effective connectivity from resting state data of various types. We show that our

method is applicable over a broad range of structural parameters regarding network size

and connection probability of the network. We also explored parameters affecting its activity

dynamics, like the eigenvalue spectrum. Also, based on the simulation of suitable Ornstein-

Uhlenbeck processes to model BOLD dynamics, we show that with our method it is possible

to estimate directed connectivity from zero-lag covariances derived from such signals. In

this study, we consider measurement noise and unobserved nodes as additional confound-

ing factors. Furthermore, we investigate the amount of data required for a reliable estimate.

Additionally, we apply the proposed method on full-brain resting-state fast fMRI datasets.

The resulting network exhibits a tendency for close-by areas being connected as well as

inter-hemispheric connections between corresponding areas. In addition, we found that a

surprisingly large fraction of more than one third of all identified connections were of inhibi-

tory nature.
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Author summary

Changes in brain connectivity are considered an important biomarker for certain brain

diseases. This directly raises the question of accessibility of connectivity from measured

brain signals. Here we show how directed effective connectivity can be inferred from con-

tinuous brain signals, like fMRI. The main idea is to extract the connectivity from the

inverse zero-lag covariance matrix of the measured signals. This is done using L1-minimi-

zation via gradient descent algorithm on the manifold of unitary matrices. This ensures

that the resulting network always fits the same covariance structure as the measured data,

assuming a canonical linear model. Applying the estimation method on noise-free covari-

ance matrices shows that the method works nicely on sparsely coupled networks with

more than 40 nodes, provided network interaction is strong enough. Applying the estima-

tion on simulated Ornstein-Uhlenbeck processes supposed to model BOLD signals dem-

onstrates robustness against observation noise and unobserved nodes. In general, the

proposed method can be applied to time-resolved covariance matrices in the frequency

domain (cross-spectral densities), leading to frequency-resolved networks. We are able

to demonstrate that our method leads to reliable results, if the sampled signals are long

enough.

Introduction

The networks of the brain are key to understanding its function and dysfunction [1]. Depend-

ing on the methods employed to assess structure and to record activity, networks may be

defined at different levels of resolution. Their nodes may be individual neurons, linked by

chemical or electrical synapses. Alternatively, nodes may also be conceived as populations of

neurons, with links represented by the net effect of all synaptic connections that exist between

two populations. In any case, this defines the structural substrate of brain connectivity, repre-

senting the physical (causal) basis of neuronal interactions. Nodes in a brain network influence

each other by sending signals. For example, the activities of nodes in a network are generally

not independent, and neuronal dynamics are characterized by correlations among the nodes

involved in the network. This suggests an alternative perspective on active brain networks:

Functional connectivity assigns a link to a pair of nodes to the degree to which their activities

are correlated. It has been argued that this concept emphasizes connections that “matter”,

including the possibility that the same substrate may give rise to different networks, depending

on how they are used. As a consequence, functional connectivity and structural connectivity

are not equivalent. A well-known phenomenon is that two nodes may be correlated, even if

there is no direct anatomical link between them. For example, a shared source of input to both

nodes may generate such a correlation, which does not correspond to a direct interaction

between the two nodes. Apart from that, correlation is a symmetric relation between two

nodes, whereas a physical connection implies a cause-effect relation that is directed. There

have, in fact, been multiple attempts to overcome the shortcomings of functional connectivity,

especially the lack of directed interaction. The term effective connectivity has been suggested

for this [2]. The idea is to bring the networks, inferred from activity measurements, closer to

structural connectivity, which can only be inferred with anatomical methods. The dichotomy

between structural and functional aspects of connectivity raises the general question whether it

is possible to infer brain networks from recorded activity. We are only beginning to under-

stand the forward link between structural connectivity and functional connectivity. As a conse-

quence, it is possible to compute correlations from connectivity in certain simplified network

Estimating effective connectivity from zero-lag covariances of brain signals
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scenarios [3]. The correspondence between connectivity and correlation, however, is not

one-to-one. Networks with different connectivity may lead to exactly the same correlations

between nodes. As a consequence, the inverse problem of inferring connectivity from correla-

tion is generally ill-defined. As we will demonstrate in this paper, additional assumptions

about the connectivity can help to resolve the ambiguity. Specifically, we search for the net-

work with the lowest number of nonzero edges (via L1-minimization) to disambiguate the

problem. Structural, functional and effective connectivity are not equally well accessible. Some

aspects of the anatomical structure can be assessed post mortem by invasive tracing methods,

or non-invasively by Diffusion Tensor Imaging, DTI. In contrast, functional connectivity is

based on statistical relationships between the activity of neuronal populations and can be easily

estimated from recorded signals. For estimating effective connectivity there are methods like

Dynamic Causal Modelling, DCM [4, 5], Granger causality [6] and others [7–13]. Only few

methods to infer effective connectivity, however, can deal with large numbers of nodes (40 or

more) based on zero-lag correlation only. However, they are either limited to small networks

[14], or to directed acyclic graphs [15]. Here, we are proposing a new method for the estima-

tion of effective connectivity from population activity in the brain, especially BOLD-related

signals. The new method is a variant of the procedure described in [16], based on a L1-minimi-

zation. For the method proposed here it is sufficient to use zero-lag covariances to estimate

directed effective connectivity.

Materials and methods

Estimation method

The main idea of our estimation method is inspired by the finding, “that the key to determin-

ing the direction of the causal relationship between X and Y lies in ‘the presence of a third

variable Z that correlates with Y but not with X,’ as in the collider X! Y Z. . .” [17, 18].

Similarly, assuming a linear interaction model, the presence of a collider structure in a network

(see Fig 1) produces specific entries in the corresponding inverse covariance (precision)

matrix. Fig 1 shows a disconnected network in the left column, and a network which induces

the same covariance matrix if all links have opposite direction in the middle column. In the lat-

ter case an estimation of the direction is impossible, because there is simply no information

about it in the covariance matrix. Whenever a collider structure is present, however, the entry

in the inverse covariance matrix for the two source nodes (here, 2 and 3) is non-zero. This is

due to the fact that in a linear model the entry in the inverse covariance matrix depends not

only on the connections of the nodes 2 and 3, but also whether these nodes have a common

target. This means the presence of a collider structure allows us to disambiguate the direction

of this particular connection.

We consider here a scenario, where the interaction between nodes is described by a generic

linear model. Assuming stationarity, let the neural activity x(t) be implicitly defined by the

consistency equation

xðtÞ ¼ ðG � xÞðtÞ þ vðtÞ ð1Þ

where G(t) is a matrix of causal interaction kernels and v(t) denotes fluctuating external inputs

(“driving noise”). All variables are also listed in Table 1. Fourier transformation of Eq (1)

yields

x̂ðf Þ ¼ Ĝðf Þx̂ðf Þ þ v̂ðf Þ

Estimating effective connectivity from zero-lag covariances of brain signals
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and simple rearrangement leads to

x̂ðf Þ ¼ 1 � Ĝðf Þ
� �� 1

v̂ðf Þ

where x̂ denotes the Fourier transform of x. The cross spectral density of the signals is then

given by

Ĉðf Þ ¼ 1 � Ĝðf Þ
� �� 1

Ẑðf Þ 1 � Ĝ�ðf Þ
� �� 1

where Ẑðf Þ is the cross-spectral density of the external inputs. It follows

Ĉ � 1ðf Þ ¼ 1 � Ĝ�ðf Þ
� �

Ẑ � 1ðf Þ 1 � Ĝðf Þ
� �

¼ B�ðf ÞBðf Þ
ð2Þ

Fig 1. Collider structures are encoded in the inverse covariance matrix. Upper row: Three simple network

architectures. Lower row: The corresponding inverse covariance matrices, red color represents positive entries, blue

color stands for negative ones. In the left and middle column, the entries (2, 3) and (3, 2) are 0. The only difference

between the right column and the middle column is that the connection between node 1 and 2 is flipped, such that

nodes 1, 2 and 3 form a collider structure. Although there is still only an indirect connection between node 2 and 3, the

entry in the corresponding inverse covariance matrix is now non-zero.

https://doi.org/10.1371/journal.pcbi.1006056.g001

Table 1. Variables used for the estimation method and simulation.

Variable name Symbol

node activity x(t)
network connectivity G
external inputs v(t)
cross-spectral density Ĉðf Þ
covariance of external input Ẑðf Þ
unitary matrix U
L1-norm cost function Γ

gradient d
initial matrix B0

Wiener process w(t)
stationary covariance matrix σ
simulation step Δt
time constant of activity τ
regularisation-controlling parameter for regularized ICOV λ

https://doi.org/10.1371/journal.pcbi.1006056.t001
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with Bðf Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Ẑ � 1ðf Þ
q

1 � Ĝðf Þ
� �

. In our model, we assume that the components of the

external fluctuating input are pairwise stochastically independent for all nodes. Then, Ẑ is a

diagonal matrix, and we make the additional assumption that Ẑ ¼ 1. For the linear model

considered here, there is a relation between covariance and connectivity, which can be

exploited for the estimation of connectivity from correlation. In the case Ẑ ¼ 1 it is given by

Ĉ � 1ðf Þ ¼ 1 � Ĝ�ðf Þ
� �

1 � Ĝðf Þ
� �

¼ 1 � Ĝðf Þ � Ĝ�ðf Þ þ Ĝ�ðf ÞĜðf Þ

where the last term contributes the information of the collider structures. If the matrix product

Ĝ�ðf ÞĜðf Þ has a non-zero off-diagonal entry the corresponding nodes have outgoing connec-

tions terminating at the same node, which means these nodes form a collider. It is clear that

for any unitary matrix U 2 UðnÞ the product UB is still a solution of Eq (2), as U�U ¼ 1. We

will resolve this ambiguity with an L1 minimization which is known to prefer sparse solutions

under certain conditions [19]. In order to find G from a given C we first fix an initial matrix B,

and then search for a unitary matrix U 2 UðnÞ such that kUBk1 is minimal, so we are mini-

mizing the function

G : UðnÞ � ! R

U 7� ! kUBk1:
ð3Þ

Gradient descent. To estimate the connectivity matrix from the covariance matrix we use

a conjugate gradient descent algorithm similar to [20, 21] for minimizing the function Γ(U)

given in Eq (3), implemented in Python. For details please see S1 Text. For the gradient

dij ¼
@GðUÞ
@Ui;j

of the cost function Γ(U), a ¼ 1

2
ðd � d�Þ is skew-hermitian, and the matrix exponential of a

skew-hermitian matrix is unitary. This means, starting in a point Uact and choosing an appro-

priate step size δ, we obtain a point Unew = exp(−δa)Uact with Γ(Unew)< Γ(Uact). In other

words, the new point has a smaller L1-norm than the old one and still satisfies the condition

Ĉ � 1 ¼ B�U�newUnewB. Iterating this procedure until convergence leads to a point with locally

minimal L1-norm. The two conditions for convergence are inspired by [21]. The first one is a

condition on the norm of the gradient. In each step, it is checked if

kd � Ud�UkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i;j

jdijðUd�UÞijj
2

r
< gtol

is fulfilled, where k. . .kF is the Frobenius norm and gtol > 0 is the convergence tolerance. As a

second (alternative) condition, it is checked whether simultaneously

kU � UoldkFffiffiffiffi
N
p < xtol and

jGðUoldÞ � GðUÞj
jGðUold þ 1Þj

< ftol

are fulfilled. The values used are listed in Table 2. Before convergence the cost function typi-

cally oscillates around a certain value. To avoid stopping at a random phase of this oscillation,

as a final step we apply a line-search, for details see S1 Text. The described gradient descent

algorithm provides an efficient way for minimizing Eq (3). When calculating the gradient, we

neglect the diagonal. Consequently, we also neglect the diagonal of the resulting estimated

matrix, so we are not able to study self connections of the nodes.

Estimating effective connectivity from zero-lag covariances of brain signals
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Initial condition. As starting condition for the gradient descent we use a matrix B0(f)
such that

B�
0
ðf ÞB0ðf Þ ¼ Ĉ � 1ðf Þ:

There are many ways to choose a B0 with this property, we found the following choice effi-

cient: As Ĉ is the cross-spectral density it is positive definite, and so is Ĉ � 1. Thus, there is

exactly one positive definite square root of Ĉ � 1 [22] which can be calculated by

B0 ¼
ffiffiffiffiffiffiffiffi
Ĉ � 1

p
¼W

ffiffiffi
E
p

W� ð4Þ

where the columns of W are the eigenvectors of Ĉ � 1, and E is the matrix with the correspond-

ing eigenvalues of Ĉ � 1 on the diagonal. Thus we initialize the gradient descent with U0 ¼ 1
and B0 given by Eq (4).

Step size selection. A critical part of the optimization is the selection of an appropriate

step size. If the step size is too large, one might miss the minimum. If the step size is too small,

the optimization converges very slowly. For the gradient descent, we use an adaptive scheme

inspired by [20], where the step-size depends on the largest eigenvalue of the actual gradient:

Let λmax be the largest eigenvalue of dact, the step size is given by

dact ¼
2p

jlmaxj � k

where κ is constant. The intuition behind that, is that smooth cost functions along a geodesic

on the unitary manifold are almost periodic. So the step size should be a fraction of the period

of this function. This is achieved by the scaling with the largest eigenvalue, which allows us to

take a scale-invariant fraction of this period.

Validation methods

Noise-free covariance matrices. We assume that the interactions among neuronal popu-

lations can be described by a linear model, see Eq (2) with Z ¼ 1. This model allows us to

derive a relation between the connectivity matrix of the network G and the inverse cross-spec-

tral density matrix Ĉ � 1 of the measured activity

Ĉ � 1 ¼ ð1 � Ĝ�Þ ð1 � ĜÞ ¼ 1 � Ĝ� � Ĝ þ Ĝ�Ĝ: ð5Þ

Given a sampled connectivity matrix G we can calculate the inverse covariance matrix

directly using Eq (5). For all simulations, half of the connections were negative (inhibitory)

connections, the absolute strength was the same for all connections and 20 repetitions were

simulated. As connectivity profiles we used random Erdős-Rényi networks.

Table 2. Parameter used for estimation.

Parameter Value

xtol 0.7 � 10−2

ftol 0.7 � 10−4

gtol 0.7 � 10−2

κ 500

λ 5

https://doi.org/10.1371/journal.pcbi.1006056.t002
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Ornstein-Uhlenbeck processes. To validate our inference procedure before applying it to

the network inference from measurements of neuronal activity we simulated stationary signals.

Since there is no gold-standard for simulations of fMRI data [23], we based our simulations on

the Ornstein-Uhlenbeck process [24], which provides a simple linear model for neural activity.

dxðtÞ ¼ AxðtÞdt þ dWðtÞ ð6Þ

where A is a matrix and W a Wiener process. In our applications, we parametrize this matrix

as A ¼ 1

t
ðG � 1Þ with real-valued connectivity matrix G and time constant τ. For this process,

it is possible to calculate the stationary covariance matrix S from the continuous Lyapunov

equation

1 ¼ ASþ SAT :

In fact, we simulated the process in discrete time. In analogy with [25] we use a multivariate

version of the exact update formula

xðt þ DtÞ ¼ eADtxðtÞ þ nðtÞ; ð7Þ

where n(t) * N(0, S) is normally distributed, with S being the stationary covariance matrix

described above. As a final step, we filter the time series x(t) with the canonical hemody-

namic response function (HRF) [26, 27]. To match the data obtained in brain scans sampled

at a temporal resolution of Δt = 0.1 s, we used random connectivity profiles G with a connec-

tion probability p = 0.1 (Erdős-Rényi model), 50% negative entries, and a spectral radius

of ρ = 0.3. All parameters used are listed, once more, in Table 3. Before calculating the

covariance C, the data is standardized such that the mean is 0 and the variance is 1 for all

components of the time series. We add normally distributed observation noise uobs with a

N ð0; sobsÞ distribution to the simulated signal. After the simulation we calculated the signal-

to-noise ratio according to

SNR ¼
s2
X

s2
obs

where s2
X denotes the variance of the signal.

Performance measures

When estimating connectivity from simulations with known underlying network structure

(ground truth), one can quantify the performance of the estimation. For measuring the accu-

racy of our estimation we employ three different methods. First, we use the area under the

ROC-curve (AUC). The ROC (receiver operating characteristic) curve is obtained as following:

Table 3. Parameter used for simulations.

Parameter Value

repetitions 20

network type Erdős-Rényi

N 100

p 0.1

T 350000 s

dt 0.1 s

τ 0.1 s

ρ 0.3

https://doi.org/10.1371/journal.pcbi.1006056.t003
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For each possible parameter value (in our case the threshold for the existence of a connection),

the number of true-positives (TP) and false-positives (FP) is used to calculate the true-positive

rate (or recall) TP/(TP+ FN) and the false-positive rate FP/(FP+ TN). The ROC curve is then

obtained by plotting the true-positive-rate against the false-positive rate. Secondly, we use the

average precision score (PRS) which is the area under the precision-recall curve. This also

includes the false-negatives (FN) (precision: TP
TPþFP). If both AUC and PRS are equal to 1, the

connections in the network are perfectly estimated. Sample curves are shown in Fig 2D.

Thirdly, we calculate the Pearson Correlation Coefficient (PCC) which in contrast to the

measures defined before also take the strength and the sign of the interactions into account.

This also means that this measure is less suited to assess whether a connection exists or not.

It rather measures whether the estimated connections have the same strength as the original

ones. We consider all three performance measures simultaneously to establish the quality of

our estimates.

Experimental fMRI data

Seven healthy subjects underwent a 20-minute resting-state fMRI experiment on a 3 T Siemens

Prisma scanner. The data was acquired using the MREG sequence [28], yielding a high tempo-

ral resolution (TR = 0.1 s, 12000 time points) that facilitates functional connectivity analyses

[29]. The other sequence parameters were TE = 36 ms, FA = 25˚, 64 × 64 × 50 matrix and

3mm isotropic voxel size. Additionally, cardiac and respiratory signals were recorded with

the ECG and abdominal breathing band from the scanner’s physiological monitoring unit.

Motion correction was done with FSL and physiological noise correction was performed with

RETROICOR [30]. Average CSF and white matter signals were regressed out, but no global

signal regression was performed. Following image normalization to MNI space, voxels were

parcellated according to the AAL atlas (excluding the cerebellum), and the mean activity

within each atlas region was calculated. The connectivity was then estimated using zero-lag

covariances of the standardized signals.

Ethics statement. The experiments have been approved by the Ethics Committee of the

University Medical Center Freiburg.

Results

Noise-free covariance matrices

Intrinsic properties of our new estimation procedure can be identified by studying the perfor-

mance of the method for perfectly estimated (noise-free) covariance matrices. This way we

address properties that do not depend on any particular feature of the underlying data, and

that are not due to the success of the measurement process. In particular, we show for which

types of networks our estimation procedure gives good results on technical grounds, with a

wide range of networks hopefully including those arising in applications. We used random

Erdős-Rényi connectivity profiles for all simulations. The macro-connectivity between neuro-

nal populations has to satisfy certain conditions in order to be tractable by our methods.

Two of these conditions concern the dynamic stability of the network and the strength of

the interactions. There is a trade-off between the number of physical links and the resulting

strength of macro-connections, and the dynamic stability of the network. To study the perfor-

mance of our method in these various regimes, we separately varied the network size N, the

connection probability p, and the absolute strength of connections |J| in the connectivity

matrix G, while the fraction of inhibitory couplings was kept at 50%. The spectral radius ρ of

Estimating effective connectivity from zero-lag covariances of brain signals
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Fig 2. Networks inferred from a simulated Ornstein-Uhlenbeck process. A shows the original network. B shows the network inferred with our new

method from the zero-lag covariances. White and black entries indicate true negative (TN) and true positive (TP) connections, blue and red entries

indicate false negative (FN) and false positive (FP) connections, respectively. In this example, the performance measures are AUC = 0.98, PRS = 0.97

and PCC = 0.95. C depicts the sample covariance (functional connectivity) matrix directly estimated from the data. In C, as a consequence of symmetry,

the number of wrongly estimated connections is quite high, the performance measures are AUC = 0.93, PRS = 0.54, and PCC = 0.29. D shows the

Receiver Operating Characteristic Curve and the Precision Recall Curve for the networks estimated from zero-lag covariance Gest in blue/orange and of

the functional connectivity C in red/cyan. The areas under these curves are the AUC and PRS, respectively.

https://doi.org/10.1371/journal.pcbi.1006056.g002
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the bulk eigenvalue spectrum is approximately given by

r2 ¼ J2pð1 � pÞN: ð8Þ

The default values of the parameters used in our study were N = 100, p = 0.1 and ρ = 0.7,

where only one of them at a time was systematically varied. Low values of the spectral radius ρ
correspond to networks with weak recurrent interaction and high values to networks with

strong interaction, respectively. According to the model of network interaction assumed here,

the networks need to have a spectral radius ρ> 0 for network interaction to be present and

ρ< 1 for the dynamics to be stable. First, our results in Fig 3A indicate that a certain minimal

level of interaction is necessary to be able to estimate the connections reliably. Above a value of

ρmin = 0.2, the influence of the spectral radius on the performance of the estimation is weak,

but the larger the spectral radius is the better the estimation gets.

Secondly, the connection probability of the network influences the quality of the estimation.

For all connection probabilities tested here the network size was kept constant at N = 100

nodes. The networks were constructed such that the strength |J| of all connections was the

same and such that the spectral radius ρ was constant according to Eq (8). Fig 3B shows that

the estimation works very well for sparse matrices with a connection probability in the range

Fig 3. Effects of spectral radius ρ, connection probability p and network size N. Here we consider the case of noise-

free covariance matrices, which were created based on the theory of the underlying model. The quantities considered

are the area under the ROC curve (AUC; green), the precision recall score (PRS; orange) and the Pearson correlation

coefficient (PCC; purple). The shaded areas indicate the mean ± standard deviation computed over 20 realizations. A If

the network interaction is larger than ρmin, it has relatively little effect on the performance of the estimation. Even in

the extreme case, where ρ is close to 1, the estimation works well. B Performance of the estimation for different sparsity

levels, encoded by the respective connection probabilities p. As expected, for non-sparse networks the performance of

the algorithm degrades dramatically. C Performance of the estimation for increasing network size. Our results indicate

clearly that bigger networks can be better reconstructed. Applicability may be limited by the numerical effort

associated with the optimization. D Performance of the estitmation in presence of weak background connections. It is

nevertheless possible to infer the skeleton of strong connections with high fidelity.

https://doi.org/10.1371/journal.pcbi.1006056.g003
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between 5% and 15%. For networks with higher connection probability and equally strong

connections, the performance decreases as expected, due to the bias associated with L1-mini-

mization. But even for a connection probability of p = 0.21, a fraction of 14.2% of the estimated

connections are false negative, and 3.3% are false positive. More than 90% of the correctly esti-

mated connections have the correct sign. In applications, the focus of the estimation often lies

on the strongest connections in the network. In networks with a background of weak connec-

tions and a sparse skeleton of stronger connections, it is possible to selectively estimate these

strong links although, strictly, the assumption of a sparse network is violated. Fig 3D shows

the performance of our method for such networks: the networks consist of a skeleton of strong

connections with connection probability p = 10% and a connection strength derived from

Eq (8) for ρ = 0.7. Additionally, we created a second network with weaker connections for vari-

ous connection probabilities q. The two networks were combined by adding the connectivity

matrices. The connection strength of this weaker connections is also derived from Eq (8), with

a spectral radius of the background network being 20% of the spectral radius of the skeleton

network. Then the performance of the estimation is calculated with respect to the skeleton of

strong connections.

Thirdly, to be applicable to a broad range of data types, a method of connectivity estimation

should perform stable for different network sizes N. For most common types of non-invasive

recordings of population activity the number of nodes considered is in the range between 30

and 150. It is, of course, possible to consider larger networks, although the estimation becomes

computationally more expensive. The runtime of the algorithm for networks with 200 nodes

still in the range of seconds on a state-of-the-art desktop computer, but even networks with

1000 nodes or more are tractable. The strength of the connections |J| are set such that the spec-

tral radius ρ of G is constant; the connection probability is constant at p = 0.1. Fig 3C shows

that our method performs better for bigger networks. We have observed that the L1 cost land-

scape becomes smoother for larger networks.

Ornstein-Uhlenbeck processes as model for BOLD signals

In order to create surrogate data which fit fast fMRI data [28], we simulated interacting sto-

chastic processes known as Ornstein-Uhlenbeck processes. In this case, the performance of the

network inference depends on how well the inverse covariance matrix, which is the basis of

the estimation, can be derived from the data. In addition to finite size effects, we studied the

impact of observation noise on the performance, see Fig 4. We used N = 100, p = 0.1, dt = 0.1 s,

ρ = 0.74 and τ = 0.1 s as default values of the parameters. Generally, it seems natural to use

Welch’s method to calculate cross-spectral densities directly, and then to estimate the connec-

tivity for each frequency band separately. For the data described here, however, we can esti-

mate the connectivity from zero-lag sample covariances in the time domain. This is possible

when the mass of the covariance function is concentrated very close around lag 0. Then lag 0 is

the only one contributing to the integral of the covariance function, which corresponds to the

cross-spectral density Ĉð0Þ. As shown in Fig 4A, with noisy data the AUC is still good, but the

PRS is lower than in the case, where the covariance is known without error. However, for a sig-

nal-to-noise ratio above 1 the performance improves very quickly.

In the case of fMRI usually the whole brain is scanned, and there are no unobserved nodes

in the network. However, for other data types (e.g. fNIRS) only parts of the brain can be

observed. The question then is, whether this sub-network can nevertheless be reconstructed

from the recorded signals. To model this scenario, we took simulated data and removed ran-

domly a certain subset of components from the dataset. The interaction of the removed nodes

is then not part of the covariance matrix of the reduced dataset, although the unobserved
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nodes of course still exert their influence on the observed ones. The performance of the estima-

tion of the sub-network based on the reduced dataset is shown in Fig 4B. Our analysis shows

very clearly that the estimation still leads to reasonable results under these conditions. In fact,

we can demonstrate that we are inferring causal connections only: For unconnected observed

nodes X, Y and a latent node L connected to both X and Y, our method does not erroneously

indicate a link between X and Y. One key factor for a reliable estimation of the covariance

matrix is the amount of data available. This depends on the length of the measurement or sim-

ulation, and on the sampling rate. Since fast fMRI time series are obtained by measuring the

BOLD response as a proxy of neuronal activity, the time scale of the measured data is relatively

slow compared to the time scale of the underlying neuronal activity. Fig 5 shows the perfor-

mance of network inference depending on the amount of data available, and on the time-scale

of the neuronal activity. Not surprisingly, the more voluminous the dataset is, the better the

estimation gets. On the other hand, it shows that the estimation generally leads to better results

for slower temporal dynamics. Also, for data of sufficient length with a fairly good signal-to-

noise ratio, the estimation of the connectivity is possible even when only a part of the network

is observed. To allow comparison of our new method with other known methods for network

inference [31–33], we applied it to the NetSim dataset provided by [34]. For details on the

result of this, please see Fig A in S1 Text.

Fig 4. Performance of network inference based on simulated Ornstein-Uhlenbeck processes. Same colors as in Fig

3. A Performance of the estimation when measurement noise is added. B Performance of the estimation if only parts of

the network are observable. The fraction of observed nodes in a network are indicated on the x-axis. The total number

of nodes in the network was N = 180.

https://doi.org/10.1371/journal.pcbi.1006056.g004
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fMRI data

We estimated connectivity from seven fast fMRI datasets, for details see the methods section.

The resulting networks, after a threshold of 10% was applied, consist of 810 connections for

each dataset. The threshold of 10% was chosen arbitrarily. In Fig B in S1 Text we show the his-

togram of estimated connection strengths for all seven reconstructed networks before thresh-

olding. The threshold is derived from the 10% strongest connections, disregarding their signs.

As there is generally no full ground truth for the connectivity inferred from human fMRI

recordings available [31, 32, 35], we cannot definitely assess the degree to which the result of

our inference are correct. We can, however, establish whether they are plausible. One repre-

sentative connectivity matrix is shown in Fig 6. On average, 34% of the connections were

inhibitory, with negligible variability across subjects. Of all connections found, 301(37%) were

found in four subjects or more, and 4872 out of 8100 possible connections were absent in all

subjects. On average, 245 of the connections were bi-directional and 565 connections were

identified only for one direction. In general, close-by areas are more likely to be connected

than more distant ones. This fact is (approximately) represented by a concentration of connec-

tions along secondary diagonals in the within-hemisphere blocks. Also, there are frequent

inter-hemispheric connections between corresponding areas. This fact is represented by the

diagonal entries in the across-hemisphere blocks.

Comparison with the Regularized Inverse Covariance (RIC) method

As mentioned above, different heuristics have been suggested to reconstruct networks from

neuronal signals. In Fig 7 we compare the performance of the new method we propose here

and the established method of Regularized Inverse Covariance [34], based on the implementa-

tion provided at https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets. Our comparison clearly shows

that our new method performs significantly better than the Regularized Inverse Covariance

method, mainly, because the latter cannot establish the direction of connections. The superior

performance of the new method is reflected in higher values for all three performance mea-

sures, in particular PRS and PCC. As regularization parameter required by the software tool-

box, we used λ = 5.

Furthermore, we applied the RIC method on all seven MREG datasets described before. A

threshold was applied, such that only the 10% strongest connections are retained. To compare

Fig 5. Performance (color coded) of the estimation depending on data length (y-axis) and time scale of the activity (x-axis). Both scales are

logarithmic. For interpolation a bilinear method is used.

https://doi.org/10.1371/journal.pcbi.1006056.g005
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the outcome of both methods, we only condidered the existence of connections (binary and

symmetric connectivity) and disregarded weights and directions (weighted nonsymmetric

connectivity). One representative example of the comparison of both methods is shown in Fig

8. For RIC, 376 out of 810 possible connections where identified in four subjects or more out

Fig 6. Left panel: Directed connectivity estimated with our new method from one sample MREG data set. Voxels were parceled using the

AAL90-atlas. In the top-left block of the connectivity matrix connections within the left hemisphere are shown, in the lower-right block connections

within the right hemisphere. The off-diagonal blocks represent the inter-hemispheric connections from the left to the right hemisphere (lower left) and

from the right to the left hemisphere (top right). The strength of all connections is color coded, with red representing positive (excitatory) connections

and blue representing negative (inhibitory) connections. Only the strongest 10% of connections are shown. Right panel: Functional connectivity matrix

derived from the same data.

https://doi.org/10.1371/journal.pcbi.1006056.g006

Fig 7. Comparison of performance with the Regularized Inverse Covariance (RIC) method based on numerical simulations of

Ornstein-Uhlenbeck processes. Shown are the results from the reconstruction of 20 different networks with Erdős-Rényi

connectivity profiles as described before (cf. Fig 2). AUC, PRS and PCC of our new method and of the RIC method, respectively, are

shown side-by-side.

https://doi.org/10.1371/journal.pcbi.1006056.g007
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of seven, the corresponding number for our method is 392 out of 810 possible connections. If

any method produced directed networks with 10% connection probability at random, this

would yield an average count of less than 25 connections (3% of 810 connections) that agree

for least four out of seven independently generated networks. On average, 290.5 out of 4050

possible connections (undirected) are identified by both methods, 3530.5 connections were

found by neither of the methods. This means that both methods agree on 3821 out of 4050

connections on average. The two methods disagreed on the remaining 229 connections.

Discussion

With the described method we can estimate directed and signed effective connectivity between

neural populations from measured brain signals, based on zero-lag covariances only. To inves-

tigate the reliability of our estimated connections we used simulations of Ornstein-Uhlenbeck

processes mimicking BOLD-related signals generated by interacting neuronal populations.

Our method shows very good performance, if enough data is available and the observation

noise is not too strong. Also, even in cases with relatively poor performance (e.g. if the network

is too dense) more than 90% of the estimated connections have the correct sign. Applying the

method on measured fast fMRI data, we found that about 34% of all identified connections

have an inhibitory effect on their respective target population. In general, inhibitory synapses

are mainly formed within local populations, and typically do not project to distant targets. An

inhibitory connection between populations, however, can also be achieved by excitatory neu-

rons preferentially terminating on the inhibitory neurons of the target region. The comparison

with the Regularized Inverse Covariance (RIC) method shows good agreement with regard to

the existence of connections. Directions cannot be disambiguated with the RIC method. Our

results based on simulated surrogate data reflect what one would expect from the design of an

estimation procedure. For large, sparse networks with sufficiently strong interaction, our net-

work estimation procedure works reliably. However, as expected if the network is not sparse,

or the time series is too short, the quality of the estimate drops. Nevertheless, in most cases

the main interest lies on the strongest connections, which can be reliably estimated with our

method even when the network is not sparse. For the experimental data shown, individual

connections may be unreliable because of the limited size of the dataset. Also, it is unclear

whether the biological network to be analyzed is really sparse, and if the assumption of

Fig 8. Estimated networks for one representative MREG dataset. The left panel shows the symmetrized network reconstructed with our estimation

method, the middle panel shows the network found with the RIC method. The right panel shows the connections which are identified by both methods

(EB, black), by none of the methods (EN, white), the connections found only by the RIC (ERIC, blue) and the connections found only by our method,

but not by the RIC method (NERIC, red).

https://doi.org/10.1371/journal.pcbi.1006056.g008
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pairwise independent external input is really justified. On the other hand, due to the higher

likelihood of a coupling between close-by areas and between inter-hemispheric counterparts,

the resulting network looks plausible. For interpreting individual connections longer record-

ings would certainly be beneficial. Also, one could then use temporal information from addi-

tional frequency bands. Of high interest is also the comparison with structural measures as the

ones obtained by diffusion tensor imaging. To the best knowledge of the authors, this is the

first time that effective whole-brain connectivity has been estimated from zero-lag covariances.

Other methods [8] rely on lagged covariances, where the correct lag parameter is critical, and

needs to be inferred from the exponential decay of the observed auto-covariances. Also, our

proposed method is the only one that can detect directed inhibitory connections on the whole-

brain scale. The estimation procedure is fast and easy to apply. As it uses no temporal informa-

tion, our method can also be applied on other data types that rely on the BOLD effect, e.g.

fNIRS, but also data types measuring electrical population activity directly. This makes it a

good candidate for, among other things, studying changing connectivity in neurodegenerative

diseases, like Parkinson’s or Alzheimer’s.

Conclusion

With the presented method we can estimate directed effective connectivity on a whole-brain

scale. Also we are able to detect whether connections are excitatory or inhibitory. The estima-

tion is possible based on zero-lag covariances, but can also be applied to frequency-resolved

cross spectral densities.

Supporting information

S1 Text. Supporting information.
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In functional magnetic resonance imaging (fMRI), functional connectivity is conventionally

characterized by correlations between fMRI time series, which are intrinsically

undirected measures of connectivity. Yet, some information about the directionality

of network connections can nevertheless be extracted from the matrix of pairwise

temporal correlations between all considered time series, when expressed in the

frequency-domain as a cross-spectral density matrix. Using a sparsity prior, it then

becomes possible to determine a unique directed network topology that best explains

the observed undirected correlations, without having to rely on temporal precedence

relationships that may not be valid in fMRI. Applying this method on simulated data

with 100 nodes yielded excellent retrieval of the underlying directed networks under

a wide variety of conditions. Importantly, the method did not depend on temporal

precedence to establish directionality, thus reducing susceptibility to hemodynamic

variability. The computational efficiency of the algorithm was sufficient to enable

whole-brain estimations, thus circumventing the problem of missing nodes that otherwise

occurs in partial-brain analyses. Applying the method to real resting-state fMRI data

acquired with a high temporal resolution, the inferred networks showed good consistency

with structural connectivity obtained from diffusion tractography in the same subjects.

Interestingly, this agreement could also be seen when considering high-frequency

rather than low-frequency connectivity (average correlation: r = 0.26 for f < 0.3Hz,

r = 0.43 for 0.3 < f < 5Hz). Moreover, this concordance was significantly better

(p < 0.05) than for networks obtained with conventional functional connectivity based

on correlations (average correlation r = 0.18). The presented methodology thus appears

to be well-suited for fMRI, particularly given its lack of explicit dependence on temporal

lag structure, and is readily applicable to whole-brain effective connectivity estimation.

Keywords: effective connectivity, functional connectivity, structural connectivity, fMRI, resting state, correlation

INTRODUCTION

In recent years, brain connectivity analysis of functional magnetic resonance imaging (fMRI)
data has become of high interest, particularly as many diseases such as Alzheimer’s and epilepsy
are now understood as cerebral network malfunctions (Fisher et al., 2017; Ofer et al., 2018).
Functional MRI is a non-invasive method that can monitor whole-brain functional activity. In
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resting state fMRI (rs-fMRI), relationships between intrinsic
fluctuations across multiple brain areas are analyzed, giving
rise to the concept of the brain as a network (Biswal et al.,
1995). For connectivity analyses, it is common to consider
functional connectivity (FC), which is retrieved by calculating the
correlation between the time series from different brain areas.
However, this approach exhibits some limitations (Stephan,
2004; Petersen and Sporns, 2015) as it yields only symmetric
connections, with no information on their direction. Moreover,
conventional approaches using raw correlations may reflect
indirect connections between brain areas that are not actually
directly linked.

Of great interest are methods that retrieve information about
the existence and direction of connections, and which can rule
out indirect connections. The effective connectivity (EC) describes
“the influence one neural system exerts over another” (Friston,
1994), or as Aertsen and Preißl (1991) put it, EC is “the simplest
possible circuit diagram that would replicate the observed timing
relations” between observed responses and therefore describes
directed connectivity. Although several different approaches have
been suggested to estimate EC, the most widely used methods for
fMRI data are Granger Causality (Bressler and Seth, 2011) and
Dynamic Causal Modeling (Friston et al., 2003).

Granger causality (GC) exploits temporal precedence between
two time series to estimate the direction of the connections.
It exists both for time domain (Geweke, 1982) and frequency
domain (Geweke, 1984; Baccalá and Sameshima, 2001) data. In
order to estimate GC, usually a vector autoregressive process
is fit to the data, which can be problematic as fMRI signals
typically have a temporal resolution of 1–3 s (Lin et al., 2014),
whereas characteristic time scales of neuronal processes are
in the order of tens to hundreds of milliseconds. Moreover,
temporal relationships between cerebral areas are confounded
by the spatial variability of the hemodynamic response function
(Handwerker et al., 2004). Although MR acquisition sequences
with faster temporal resolutions are becoming increasingly
common (Feinberg et al., 2010; Posse et al., 2012; Akin et al., 2017;
LeVan et al., 2017), neuronal processes still undergo considerable
downsampling in fMRI time series, affecting the reliability of GC
estimates (Seth et al., 2013; Friston et al., 2014a).

Dynamic causal modeling (DCM) is a framework fitting
differential equations to the fMRI data to yield parameters for
the strength of connections, as well as the strength of the
influence of external stimuli on connectivity. In the classical
deterministic DCM, but also stochastic DCM (Li et al., 2011), the
neuronal activity underlying the BOLD response is determined
by a bilinear model, whereas the hemodynamic response is
estimated using the Balloon model (Buxton et al., 1998; Friston
et al., 2000). DCM requires to define a model a priori to test
different specific hypotheses, which can then be compared via
Bayesian model comparison (Penny et al., 2004, 2010; Penny,
2012). While the classical or stochastic DCM is only suited for
task data with known input functions, a DCM for resting state
data was developed recently (Friston et al., 2014b), which fits a
model to the cross-spectrum of the data. However, due to the
computational complexity of the differential equations, DCM is
not suited for whole-brain connectivity analysis. Furthermore,

with growing size of the models, non-identifiability becomes an
issue of increasing severity (Arand et al., 2015; Frässle et al.,
2015).

Aiming to overcome some of the issues outlined above,
we present a methodology to estimate the EC from the
frequency-domain cross-spectral density (CSD). Similar to the
GC approach, the fMRI data are expressed as a multivariate
autoregressive process, which is computationally suitable to
model a large number of nodes in whole-brain datasets. However,
unlike GC or other similar lag-based methods (see Smith
et al., 2011 for a review of several such methods), we do not
make use of temporal precedence to define the directionality
of the estimated connections, thus partially circumventing
hemodynamic confounds on the lag structure of fMRI time
series. Rather, a directed and potentially asymmetric network
is estimated in such a way as to explain the observed cross-
spectral density matrix. As temporal precedence is not enforced,
this is an underdetermined problem with a potentially infinite
number of solutions, so we additionally constrain the network
to have the smallest number of non-zero connections using an L1
minimization on the entries of the connectivity matrix.

One issue when validating EC estimation in real fMRI data
is the lack of an ideal ground truth. One popular approach
is to use information from structural connectivity (SC), which
can be estimated using diffusion-tensor imaging (DTI). Using
tractography algorithms (Wedeen et al., 2008; Reisert et al.,
2013) on the DTI data, the white matter tracts forming
connections between different regions can be reconstructed and
the number of “fibers” (streamlines) can be used as a proxy
for the strength of these connections. SC is commonly used to
constrain the estimation (Gilson et al., 2016; Crimi et al., 2017;
Dang et al., 2018), or may be used independently to validate
the estimated EC (Uddin et al., 2011; Bringmann et al., 2013).
However, there are also clear limitations to such approaches,
as EC is dynamic and potentially brain-state-dependent as
opposed to static SC. As such, while SC is often used as
a proxy for connectivity and reasonable agreement is found
between FC and SC (Li et al., 2012; Finger et al., 2016), we
should not expect complete concordance between SC and EC,
although the two measures should still be consistent with each
other.

In the remaining sections we will briefly explain the
mathematical background and implementation of the
method. In a simulation study, the influence of several
parameters on the estimation will be analyzed. Finally, we
will apply the methodology to real resting-state fMRI data.
In the absence of ideal validation measures in real data, the
consistency of the estimated effective connectivity with the
structural connectivity from white matter tracts will then be
assessed.

MATERIALS AND METHODS

Methodology
Mathematical and Algorithmic Background
We consider networks of n interconnected neuronal populations.
Each population is characterized by neuronal activity yi(t) with

Frontiers in Neuroscience | www.frontiersin.org 2 May 2018 | Volume 12 | Article 287

30



Lennartz et al. Effective Connectivity From fMRI Cross-Spectra

i ∈ [1, n]. Similar to the GC framework, we assume that the
neuronal activity follows a generic multivariate autoregressive
process

y (t) = x (t) +

∫ t

−∞

G (t − u) y (u) du

= x (t) + G∗y (t) (1)

which describes how the neuronal activity y(t) =

[y1(t), y2(t), . . . , yn(t)]
Tat time point t in each population

depends on the driving “noise” (or external stimuli) x(t) and
the activity in other populations with time lag u via the linear
coupling kernelG(t), whereGij(t) describes the influence of node
j on node i. The coupling can be described by a convolution (“∗”)
of G(t) with the neuronal activity y(t).

Now, in the GC framework, a causal system would then be
assumed by additionally setting G(t) = 0 for negative time lags
t < 0, and the remaining coefficients of G could then be fitted
by linear regression, with non-zero coefficients indicative of a
directed influence of one node on another inferred from their
temporal precedence relationship (Goebel et al., 2003; Duggento
et al., 2016). This approach can also been extended to support
non-linear interactions (Harrison et al., 2003) and couplings that
are dynamically fluctuating over time (Smith et al., 2013; Park
et al., 2017; Samdin et al., 2017). However, as outlined above,
fMRI only indirectly measures neuronal activity in the form of
the BOLD signal, yielding low temporal resolutions and spatially
variable lag structure that confound GC estimates (Deshpande
et al., 2009; Rogers et al., 2010).

Circumventing these issues, we deviate from the GC
framework and do not enforce the causality of G and thus
do not rely on temporal precedence relationships to identify
directed connections. Rather, we rely on the observation that
cross-correlations, which are symmetric and thus undirected,
nevertheless contain information about the underlying directed
(and thus potentially asymmetric) network, notably the presence
of so-called “collider” structures (Ramsey et al., 2010; Pernice
and Rotter, 2013). Based on frequency-domain cross-spectra,
we thus estimate a directed network independently of temporal
precedence relationships.

Applying the Fourier transform to Equation 1, we get ŷ(f ) =
x̂(f ) + Ĝ(f )̂y(f ), where .̂ depicts the Fourier transform of the
respective variable. Assuming that both the intrinsic noise x(t)
and the neuronal activity y(t) are stationary stochastic processes,
the cross-spectral density can be derived (Hawkes, 1971; Pernice
and Rotter, 2013):

〈̂y(f )̂y∗(f )〉 =Ĉ
(
f
)
=

[
1− Ĝ

(
f
)]−1

X̂
(
f
)
[1− Ĝ∗

(
f
)
]
−1

(2)

Ĝ
(
f
)
is the frequency-dependent coupling matrix, 1 the identity

matrix, X̂
(
f
)
=< x̂(f )̂x∗(f ) > depends on the driving noise,

and <,> is the time expectation operator. Noise is assumed to
be independent and Gaussian, so that X̂

(
f
)
is a diagonal matrix

of (unknown) noise variances.
We are ultimately interested in recovering the effective

connectivity Ĝ
(
f
)
of the network of neuronal populations, given

only Ĉ
(
f
)
, the cross-spectral density matrix of the measured

activity y(t). Taking the inverse of the CSD [2] we get

Ĉ−1(f ) =
[
1− Ĝ∗

(
f
)]
X̂−1

(
f
) [
1− Ĝ

(
f
)]

= B∗(f )B(f ) (3)

with B(f ) =
√
X̂

(
f
)−1 [

1− Ĝ
(
f
)]
.

Given an estimate of B(f ), the coupling matrix

Ĝ
(
f
)
= 1−

√
X̂

(
f
)
B(f ) (4)

can be estimated only up to a positive factor
√
X̂

(
f
)
as the

covariance of the intrinsic noise is not known. The matrix B(f ),
nonetheless, gives information about strength, sign and direction
of connections since X̂

(
f
)
is diagonal, although it may affect

the scaling of the estimated weights (For better readability the
dependency of the variables on the frequency is dropped from
here on).

The computation of B from the CSD is, however, not straight
forward, because it is not uniquely defined: Many different
network topologies can give rise to the same CSD.More precisely,
the decomposition of the CSD is only defined up to an arbitrary
unitary transformation U since

Ĉ−1 = B∗B = B∗U∗UB. (5)

To resolve this ambiguity, we assume that the network formed by
the neuronal populations is sparse, which entails minimizing the
L1-norm of the entries of the matrix UB. The corresponding cost
function is

Γ (UB0) = ‖UB0‖1 =
∑

i6=j
|(UB0)ij| =

∑
i6=j

|
∑

k
UikB0,kj|

(6)

where B0 is the initial guess of the decomposition. So the problem
is to find the unitary transform U minimizing the cost function
Γ (UB0) (Pernice and Rotter, 2013; Schiefer and Rotter, 2016)

argminUΓ (UB0)

s.t.UU∗ = 1

Geometrically this optimization can be viewed as a complex
rotation of the cross-spectral density matrix, which can be
implemented using a conjugate gradient descent algorithm
(Abrudan et al., 2008, 2009).

For the estimation of the effective connectivity, each frequency
bin of the CSD is treated separately, leading to a frequency-
dependent connectivity. As starting point B0 for the estimation,
the positive definite matrix square root of Ĉ−1

(
f
)
is chosen.

Threshold From Null Distribution
To exclude statistically non-significant connections in the
estimated connectivity matrix, a threshold for each frequency
is derived from a null distribution. The null distribution is
computed by first splitting the time series into equal segments,
shuffling the segments randomly and differently for each time
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series, and finally computing the CSD on the shuffled segments
using Welch’s method

CSDij, null(f ) =
1

n

∑n

k=1
ŷik

(
f
)
· ŷjσ(k)(f ) (7)

where σ
(
k
)
is a permutation mapping. The shuffling will only

affect the cross-spectra, while the power spectra (diagonal of the
CSD matrix) will be preserved. Calculating connectivities from
this null CSD and assuming that these values are to a great extent
independent, a distribution of effective connectivity values is then
derived. The 2.5 and 97.5% quantiles then yield p < 0.05 lower
and upper thresholds for the connectivity matrices.

Confidence Intervals From Bootstrapping
We also derive confidence intervals for the connection strengths
using bootstrapping. This could also be used to exclude
connections that include zero in their confidence interval.

To derive the confidence intervals, the time series are
again split into segments which are Fourier transformed. These
segments are then drawn randomly with replacement and the
CSD is calculated with the order of the segments kept identical
for each time series

CSDij, bootstrap(f) =
1

n

∑n

k=1
ŷiγ (k)

(
f
)
· ŷjγ (k)(f) (8)

where Ŵ(k) is a permutation with replacement, which is the
same for both time series ŷi and ŷj. Calculating several bootstrap
CSDs and estimating the connectivity thereof, a distribution
of connection strength can be derived for each connection.
Assuming an asymptotic Gaussian distribution of the parameter
values, confidence intervals can then be determined.

Data Acquisition
fMRI Acquisition and Pre-processing
For experiments with real data, all measurements were
performed on a 3 T Prisma scanner (Siemens Healthineers,
Erlangen, Germany). Seven healthy volunteers, five male and
two female in the age between 18 and 49, underwent a 20min
resting-state fMRI scan using the MREG sequence (Hugger et al.,
2011; Assländer et al., 2013) with TR = 0.1 s, TE = 36ms,
FA = 25◦, 64 × 64 × 50 matrix and 3mm isotropic voxel size.
T1-weighted MPRAGE images (TR = 2,000ms, TE = 4.11ms,
FOV= 256mm, 256× 256 matrix, 160 sagittal slices, 1mm slice
thickness) were acquired for anatomic reference. Cardiac and
respiratory fluctuations were additionally recorded with ECG
and abdominal breathing band from the scanner’s physiological
monitoring unit. This study was approved by the Ethics
Committee of the University Medical Center Freiburg. All
subjects gave written informed consent in accordance with the
Declaration of Helsinki. The data is available via the Open
Science Framework repository (https://osf.io/52mf4/).

The fMRI data was motion corrected using FSL. Physiological
noise correction was conducted with RETROICOR (Glover et al.,
2000). The fMRI data sets were registered to their corresponding
T1-images, which were in turn registered to MNI space. The
registered fMRI data sets were parcellated according to the AAL-
atlas and mean activity was calculated within each atlas region,

excluding the cerebellum. The CSD was calculated for each
dataset using Welch’s method with a Hanning window with 50%
overlap between windows.

To ensure that the CSD has full rank to be invertible, the
number of frequency bins needs to be smaller than the degrees
of freedom, i.e., the number of Fast Fourier Transform bins
NFFT <

# time points
# nodes

. As the convolution with the HRF
further reduces the degrees of freedom, the number of frequency
bins was further decreased to the next lower power of two.
Finally, the effective connectivity was extracted from the CSD
for each frequency by sparse optimization as described in section
Mathematical and Algorithmic Background.

DTI Acquisition and Pre-processing
In the absence of a gold standard for validation, a comparison
with structural connectivity was performed. Thus, diffusion-
weighted data was also acquired during the MRI sessions
(61 diffusion directions, TR = 6.6 s, TE = 80ms, b = 1,000
s/mm2, 60 slices, 2mm isotropic voxel size). Using a global
fiber tractography algorithm (Reisert et al., 2013) the structural
connectivity could be extracted by counting streamlines
connecting each pair of brain regions. Fiber endpoints lying
in brain areas not covered by a region in the AAL atlas were
reassigned to the nearest AAL area.

A summary SC matrix across all subjects was also generated
from the individual SC matrices by considering connections
existing in at least two thirds of the subjects.

Simulation Study
As a proof of principle we first applied the method to simulated
fMRI data. Moreover, we investigated the influence of several
parameters on the estimation of the effective connectivity.

For this purpose, a vector autoregressive process of order 50
(VAR[50]) corresponding to a maximum conduction delay of 5 s
was used with an additional contemporaneous term to model
instantaneous self-excitation effects in each node and driving
noise e(t):

y(t) =

50∑

p=0

G(p)y(t − p)+ e(t)

whereG(p = 0) is the identity matrix. To simulate the oscillatory
nature of resting-state fMRI data, the intrinsic activity in each
node of the network was modeled as a noisy superposition of
harmonic oscillations with different phases and frequencies. We
chose a connection probability of each pair of nodes of 15% to
model a sparse network. The coupling matricesG(p), which were
modeled using random Erdős-Rényi networks, were the same
for every lag p, however, they decreased in strength following a
logistic decay. As a last step, the time series were convolved with
the canonical hemodynamic response function (HRF) to simulate
BOLD responses.

Functional magnetic resonance imaging (fMRI) observational
noise is made up of several noise sources like scanner,
physiological and temporal noise. The scanner noise is inherent
in all fMRI data and can be modeled by Gaussian white noise
(Gudbjartsson and Patz, 1995; Welvaert et al., 2011) given
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sufficient signal to noise ratio (SNR). Structured physiological
noise corresponds to respiratory and cardiac oscillations. As
we have a relatively high temporal resolution in our data, we
assumed thatmost of the physiological noise could be filtered out.
Therefore, it was not modeled in the simulated data. Temporal
noise accounts for various sources of fluctuations with temporal
autocorrelation (Purdon andWeisskoff, 1998). This was modeled
using an AR[1] with coupling strength 0.5. Thus, observational
noise with both white “scanner” noise and “temporal” noise in
the form of an AR[1] were added.

We performed 20 simulations with 100 nodes. For each
simulation the same network connectivity was used, but with
different noise realizations. Furthermore, because a fast fMRI
sequence with a TR = 0.1 s was used for the real fMRI
measurements, our simulations of the VAR-process and the
convolution with the HRF were performed with this temporal
resolution with 51,000 data points corresponding to a 85min
measurement.

Connectivity Analysis
Following the procedure outlined in section Methodology, the
connectivity matrices were estimated for each frequency f from
the CSD. The raw estimated connectivities were used directly
for the analysis of the influence of parameters such as length of
the time series. For the final performance analysis, however, the
connectivities were additionally thresholded using the previously
described null distribution and confidence intervals for each
frequency bin. For the null distribution (Equation 7), as the
“connections” in the null connectivity matrices are independent,
only 10 cross-spectral density matrices were calculated per
frequency and all derived connections were pooled to build a
null distribution with 100,000 entries in the histogram. For the
confidence intervals (Equation 8), 1,000 bootstrapped CSDs were
calculated for each frequency.

Simulation study
Various simulations were performed to investigate the influence
of the following parameters:

Length of the time series
Lengths were varied between 3,000 and 51,000 data points in
steps of 6,000 (= 10min). Furthermore, the SNR (ratio of signal
variance to noise variance) was varied between 1 and 5.

Type of observational noise
Data were simulated with either pure white noise, a more realistic
temporally correlated noise, or a mixture of both

e = a(1) · ewhite + a(2) · etemp

where a (1) is 0.3 and a (2) is 0.7. We again varied the SNR
between 1 and 5 and used time series lengths of 20,000 (∼35min)
or 40,000 (∼70min) data points.

Number of observed nodes
If connectivity analyses are performed in a given subnetwork of
interest rather than the whole brain, hidden nodes exerting an
influence on the observed nodes might yield erroneous results.

To investigate this, connectivity estimations were performed
within various fractions of the whole network in steps of 10
nodes, using either 20,000 or 40,000 data points and an SNR of 5.

Hemodynamic variability
In order to investigate the sensitivity of the estimation to
hemodynamic variability, the activity at each node was subjected
to a different random HRF instead of the canonical HRF. The
random HRFs were generated using a double-gamma model,
where the onset times of each gamma function was varied by up
to 5 s, while the dispersion and amplitude parameters were varied
by a factor of up to 5.

Finally, the recovery of an “average” group-level network
was investigated using the 20 simulated realizations of the
same network with an SNR of 5 and a length of 40,000 data
points. After using the null distribution and confidence intervals
to remove non-significant connections, averaging the resulting
networks was not possible since connections did not necessarily
exist in all datasets, so the mean network was defined as
connections existing in at least half of the 20 data sets.

The comparison of the estimated EC with the true
connectivity was done using correlation between the connectivity
matrices. However, the correlation could be high even if
many erroneous connections were detected, as long as all true
connections are also found. Therefore, the area under the
receiver-operator characteristic (ROC) curve (AUC) was also
calculated to gain information about sensitivity of the estimation,
where the ROC curve was obtained by varying the threshold on
the estimated EC matrices.

fMRI data
For real fMRI data, the effective connectivity matrices were also
derived for each frequency and non-significant connections were
removed by calculating the threshold from the null distribution
and deriving the confidence intervals.

To analyse the variability of the derived networks over
subjects, the correlation and area under the ROC curve were
calculated for the EC and SC networks between all subjects for
each frequency. To compute an average connectivity over all
subjects, only connections which existed in at least half of the
subjects (4 in this case) were kept in the connectivity matrix.
While the true underlying connectivity is not known, consistency
was nevertheless assessed between the estimated EC and SC
from DTI. However, because SC is symmetric, the estimated
EC networks were first “mirrored” by adding the transposed
connectivity matrix to the normal connectivity matrix. It was
thus not possible to strictly validate the directionality of the
estimated connections; in the absence of suitable gold standard,
this approach is nevertheless expected to provide a limited degree
of validation in real data.

Furthermore, EC was also compared to standard functional
connectivity, represented by the raw cross-spectral density
between time series from the various regions of interest. The
correlation and AUC values for the comparison between EC
and SC and FC and SC were calculated for each frequency and
each subject. Furthermore, the agreement of SC and EC/FC
was compared by determining the percentage of connections
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FIGURE 1 | (A) Shows the mean correlation of the estimated connectivity matrices and the true connectivity and the area under the ROC-curve for 20 data sets at

different frequencies. The error bars show the standard deviation of the estimated correlation or AUC values over data sets. (B) Shows the correlation between

estimated networks at different frequencies.

FIGURE 2 | (A–C) Shows the correlation of the estimated connectivity matrices and the true connectivity with varying dataset length. (D–F) Shows the area under the

ROC-curve (AUC) for the different lengths. Different colors correspond to different SNR values.

fulfilling each of the three following cases: (1) The connection
is present in both SC and EC/FC, (2) the connection is present
in EC/FC, but not in SC, and (3) the connection is present in

SC, but not EC/FC. All calculated percentages were relative to
the number of connections present either in SC and/or EC/FC.
For FC, connections were thresholded using the null distribution
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in section Threshold From Null Distribution and the mean FC
network was derived by taking only connections existing in at
least half of the subjects. Since the network densities of EC and FC
do not agree, an additional analysis was performed using custom
thresholds on the mirrored EC and FC networks, set to yield a
10% false positive rate of connections present in EC/FC but not
SC.

As the temporal resolution given by the repetition time (TR)
wasmuch higher than in conventional fMRI (1–3 s), the influence
of the TR was also analyzed by downsampling the time series to
TRs between 0.1 and 3 s.

Finally, the default-mode network (DMN) was analyzed as
an example of a well-studied network in literature. The DMN
consists of three main brain areas in each hemisphere: the
medial prefrontal cortex (mPFC), the inferior parietal cortex
(IPC), and the posterior cingulate cortex (PCC). Furthermore,
the hippocampus (HIP) and the temporal cortex (TC) are also
sometimes included in the network. Note that the network
estimation was still performed at the whole-brain level, after
which only the connections within the DMN were examined in
more detail.

RESULTS

Simulation Study
For the simulated data, only the low-frequency bins were
analyzed as the higher frequency bins contained mainly noise
due to the convolution with the canonical HRF. This left three
frequency bins with 0 < f < 0.45 Hz (cf. Figure 1).

Influence of Length of Time Series and SNR
Figures 2A–C show the mean correlation of the estimated
network with the true network for the first three frequency bins
according to measurement time and SNR. Figures 2D–F show
the mean AUC values for the first three frequency bins. The
correlation and AUC increases monotonically with increasing
length of the time series. Moreover, an increase in SNR improves
the estimation.

With increasing measurement time, the correlation of the
networks and the AUC increases strongly. After a measurement
time of ∼35min the slope of the correlation and AUC plot
is shallower. Most of the estimation power is concentrated in
the frequency range between 0 and 0.31Hz, yielding higher
correlation of the estimated networks with the true networks than
the higher frequency bins (see Figure 1). For the first frequency
bin, the correlation reaches a level of close to 0.8 for an SNR of 5.
For the second frequency bin (0.15–0.31Hz), the correlation and
AUC even go beyond 0.8 for high SNR. For the third frequency
bin, the correlation ranges for a measurement time of 85min
between 0.4 for the lower SNR and 0.75 for the higher SNR. The
AUC varies between 0.6 and 0.75, where a value of 0.5 equals pure
chance.

The SNR has a strong influence on the estimation: An
increase of SNR improves the estimation. Higher frequencies
are especially sensitive to measurement time and SNR (cf. 2
C/F). While for a SNR of 5 the estimation is still quite good,
especially for long measurements of 40min and more, the

TABLE 1 | Influence of type of noise.

Noise type\SNR 1 5

LENGTH OF TS: 20,000 DATA POINTS

White 0.462 ± 0.003 0.588 ± 0.003

Mixture 0.414 ± 0.006 0.565 ± 0.004

Temporally correlated 0.410 ± 0.006 0.562 ± 0.005

LENGTH OF TS: 40,000 DATA POINTS

White 0.558 ± 0.003 0.710 ± 0.003

Mixture 0.505 ± 0.002 0.686 ± 0.003

Temporally correlated 0.499 ± 0.001 0.682 ± 0.004

Mean correlation over 20 datasets and the first three frequency bins for different noise

compositions, SNRs and different length of measurement time.

estimation for the lower SNR declines for measurements shorter
than approximately 45min. At shorter measurements the noise
predominates in the CSD. However, at approximately 45min
there is a prominent jump in the correlation and AUC values.
At such long measurement times, sufficient noise averaging
occurs and the true covariance structure can be retrieved
fairly well.

Influence of Type of Noise
Table 1 shows results from the networks simulated using
different noise types, averaged over the three low-frequency bins.

At low SNR, the differences for the various types of noise are
more prominent than at high SNR, where the differences start to
vanish. The difference between themixture of white and temporal
noise and pure temporal noise, however, is not so prominent. An
increase of measurement time improves the estimation itself, but
does not have an influence on the observed differences between
noise types.

Influence of Missing Nodes on the Estimation
Figure 3 shows an increase of estimation power with increasing
fraction of observed nodes (Figure 3A, correlation and
Figure 3B, AUC), indicating the importance of the missing
nodes on the network.

Regarding the variance of the estimation for different network
sizes, a strong decrease in variance with decreasing fraction of
missing nodes can be observed, demonstrating the beneficial
influence of more nodes and therefore more information to
recover the network.

Influence of Hemodynamic Variability
Figure 4 shows the estimation performance under various
degrees of HRF variability as well as a comparison with
multivariate GC (Barnett and Seth, 2014). While both methods
perform well with fixed HRFs, they also show a clear degradation
under variable HRF conditions, although GC is more susceptible
to the confounding influence of the HRF on temporal precedence
information.

Mean Network From All Data Sets
Figure 5 shows the comparison between the true network
(Figure 5A) and the mean estimated network (Figures 5B–D)
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FIGURE 3 | (A) Shows the correlation of the estimated connectivity matrices and the true connectivity as a function of varying network size with missing nodes

present. (B) Shows the corresponding area under the ROC-curve (AUC). Different colors correspond to different frequency bins.

FIGURE 4 | Correlation (A) and AUC (B) of the EC estimation method as a function of HRF variability (blue line). The labels var_k denote simulations performed with

double-gamma HRFs where the onset of the gamma functions was randomly varied between ±k seconds and the dispersion and amplitude parameters were

randomly varied by a factor of up to k with respect to the canonical HRF. For comparison, the red line shows the performance of multivariate Granger Causality

estimation.

for the lowest three frequency bins. Each entry in the matrix
plot corresponds to a directed connection, where the connection
goes from column to line. Red entries in the matrix plot
correspond to positive (excitatory) connections and blue ones
to negative (inhibitory) connections. Moreover, the hue of
the color depicts the strength of the connections. Due to the
random nature of the simulations, there is no structure in
the network that may facilitate visual inspection, but it can
still be observed that strong connections are especially well
estimated.

The titles from Figures 5B–D show the correlation and
AUC values for the mean networks without thresholding
by the null distribution (AUC and rm) and correlation
with applied thresholds to exclude non-significant connections
(rtm). Taking solely the mean over all networks yields high
correlations between 0.8 and 0.9 for the first three frequency
bins. By removing the non-significant connections from
the network using the threshold from the null distribution
and taking only connections which exist in at least 50%
of the estimated networks increases the correlation even
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FIGURE 5 | The estimated connectivity matrices and the true connectivity for three different frequency ranges are depicted. (A) Shows the true connectivity used to

simulate the data, (B–D) Shows the estimated connectivity matrices for the different frequency ranges. The plots show the weighted adjacency matrices of the

network, where red entries stand for connections with positive weights, blue entries for connections with negative weights and white depicts no connection.

Furthermore, the hue of the color depicts the strength of the connection. Correlation and AUC values are given in the title of each plot: rm stands for correlation with

mean network without threshold from null distribution, rtm corresponds to correlation with mean network with threshold from null distribution. All correlations and AUC

values are above 0.8.

further. The area under the ROC curve lies between 0.8
and 0.9.

Real fMRI Data
Applying the threshold from the null distribution and deriving
the confidence intervals from the bootstrapped networks, sparse
networks were achieved in the real fMRI data (see Figure 6).
We separately consider a low frequency band (0–0.31Hz) and
a high frequency band (0.31–5Hz). The estimated average
low and high frequency networks are quite similar (r = 0.6)
and, moreover show a strong similarity between hemispheres
(r = 0.8 for the low frequency network, r = 0.9 for high
frequencies).

The results from the analysis of the variability of the SC and
EC networks over subjects can be seen in Table 2. EC shows

strong variability both for low and high frequencies with a
correlation around 0.2–0.3 and AUC of around 0.6. SC, however,
shows a strong agreement between subjects (r = 0.85 and
AUC= 0.80), showing the high stability of the SC across subjects.

Comparison With DTI Tractography
Due to the lack of a gold standard the estimated EC networks
were compared to SC from DTI. The resulting correlation and
AUC values are displayed in Table 3.

The low frequency network shows some correlation with SC
(r = 0.24 and AUC = 0.56), which is only slightly increased for
the mirrored network (r = 0.26 and AUC = 0.55). For the high
frequency band the agreement between SC and EC is much more
pronounced. For the mirrored network we have a correlation of
r = 0.43 and even for the normal EC the correlation is quite high

Frontiers in Neuroscience | www.frontiersin.org 9 May 2018 | Volume 12 | Article 287

37



Lennartz et al. Effective Connectivity From fMRI Cross-Spectra

FIGURE 6 | The estimated effective connectivity matrices from fMRI data for low- and high-frequency bands and their mirrored networks and the structural

connectivity from DTI are depicted. (A,B) Show the effective connectivity for low- and high-frequency bands, respectively, (E,F) Show the mirrored estimated

connectivity matrices for the different frequency ranges. For visualization purposes, only connections present in at least two thirds of frequencies in the respective

frequency bands are shown. (C) Shows the structural connectivity and (D) the mean CSD over all subjects and frequencies. The plots show the weighted adjacency

matrices of the network, where red entries stand for positive connections, blue entries for negative connections and white depicts no connection. Furthermore, the

color hue depicts the strength of the connections. The axes refer to indices from the AAL atlas, separated between left and right hemispheres, corresponding to the

regions indicated in the topmost left plot: F, frontal; MT, mesial temporal; O, occipital; P, parietal; BG, basal ganglia; T, temporal.

Frontiers in Neuroscience | www.frontiersin.org 10 May 2018 | Volume 12 | Article 287

38



Lennartz et al. Effective Connectivity From fMRI Cross-Spectra

TABLE 2 | Variability of networks between subjects.

Correlation r AUC of ROC

Low-frequency band 0.228 ± 0.054 0.552 ± 0.022

High-frequency band 0.256 ± 0.060 0.637 ± 0.035

DTI 0.845± 0.049 0.804 ± 0.042

Correlation and AUC values (mean and standard deviations) calculated between

estimated networks from fMRI and structural connectivity from DTI between subjects.

with 0.41 (cf.Table 3). However, there are still clear discordances,
as seen in the AUC values of 0.62 for the mirrored and 0.60 for
the normal EC.

Figure 6 shows both normal and mirrored estimated
EC networks for the low- and the high-frequency band
(Figures 6A,B,E,F), the SC network (Figure 6C) and the mean
CSD over all subjects and frequencies (Figure 6D). In agreement
with SC, the EC shows strong connectivity in the frontal and
and parietal regions. Moreover, the lack of connections between
frontal and mesial temporal and occipital regions is correctly
identified. Discrepancies are mainly visible along the diagonals
of the top-right and bottom-left quadrants corresponding to
interhemispheric connections between homologous regions.
Differences are also seen close the diagonal of the top-left and
bottom-right quadrants because local short-range connections
are not easily recovered by diffusion tractography. The
high frequency EC network, however, has less pronounced
interhemispheric connections, therefore also yielding higher
correlation with SC.

Comparison With Raw Cross-Spectral Density
The results of EC were also compared to standard functional
connectivity, represented by the cross spectral density
(Figure 6D). Mean CSD shows lower agreement with SC
(r = 0.18 and AUC = 0.56). It can be seen that the EC networks
aremuch sparser than the CSD functional network. Furthermore,
the block of massive inter-hemispheric connections in the
occipital lobe present in the CSD (between regions 20–30 on
the top-right and bottom-left quadrants) vanished in the low
frequency EC network and is very much reduced in the high
frequency EC network.

Figures 7A–C shows coincidence maps, where green entries
depict agreement between SC and EC/FC, bright red entries
connections that are only present in EC/FC but not SC, and
pale red entries connections that are only present in SC but not
in EC/FC. For comparison purposes, the EC/FC networks were
thresholded to have a false positive rate (FPR) of 10% to gain
an insight into the agreement of SC with EC/FC given a fixed
FPR. At this FPR, many SC connections are not reflected in
EC/FC. Nevertheless, the high-frequency EC shows the highest
agreement with SC (Figure 7B). Low-frequency EC and FC show
similar agreement (cf. Table 4), although for low-frequency EC
the agreeing connections are very scattered while for FC the
agreeing connections tend to form clusters.

Figures 7D–F shows histograms of the connection strengths
for connections not present in SC but in EC/FC. Such false
connections (without an underlying structural basis) for low- and

TABLE 3 | Agreement between EC/FC and SC.

Correlation r AUC of ROC

LOW FREQUENCY

G+GT 0.26 0.55

G 0.24 0.56

HIGH FREQUENCY

G+GT 0.43 0.62

G 0.41 0.60

MEAN CSD

CSD 0.18 0.56

Correlation and AUC values between mean estimated effective connectivity networks and

functional connectivity networks from fMRI and structural connectivity from DTI.

high-frequency EC networks are very weak even though they
were statistically significant. In contrast, the connection strengths
of the false connections for CSD range from−0.3 up to 0.6.

To quantify the agreement between SC and EC/FC, the
percentage of connections agreeing between SC and EC/FC,
connections only present in EC/FC, and connections only present
in SC were calculated (see Table 4). For non-adapted network
densities, SC and EC correspond better than CSD, which is
mainly due to the higher number of connections in EC than FC.
For connections present in EC/FC, but not in SC, the percentage
is similar for normal EC and SC. Looking at the networks with
adapted densities, mirrored EC for high frequencies and SC
have the highest agreement; FC and EC for low frequencies
have similar but lower agreement with SC. However, as seen in
Figures 7D–F, “wrong” connections, which are present in EC/FC
but not SC, cover a much broader range for FC than for EC.

Figure 8 depicts the mean correlation and AUC values of all
subjects over all frequencies of EC/FC with SC from DTI. The
correlation and AUC is always higher for mirrored EC networks
than for normal EC networks. The correlation is also higher when
compared to the raw CSD. However, for the AUC there is high
variability and strong overlap between mirrored EC and CSD,
although mirrored EC is still mostly above CSD.

This can also be seen in Table 5, where the statistical
significance of the t-test of EC correlation and AUC values
vs. those from CSD are tested, where correlation values were
z-transformed prior to the t-test. For the correlation at low
frequencies, mirrored EC is better than CSD, but other measures
are not significantly different. However, at high frequencies, both
normal and mirrored EC correlate significantly better than CSD,
but only the mirrored EC shows significantly higher AUC than
the CSD.

Influence of TR/Sampling Rate
The results of the analysis with different TRs are depicted
in Figure 9 for low frequencies (A) and high frequencies (B).
While low frequencies are available at all examined TRs, high
frequencies could only be analyzed at shorter TRs. Each plot
shows the mean correlation of the estimated mirrored EC with
SC for different TRs (blue solid line) and correlation of the
mean network over all subjects with SC (red dashed line). While
the variability between subjects is quite high, the estimated
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FIGURE 7 | Coincidence maps between structural connectivity from DTI and the mirrored low- (A) and high- (B) frequency networks and the cross-spectral density

(C). EC and FC networks were thresholded to yield a false positive rate (FPR) of 10%. Green entries depict connections existing in SC and EC/FC, bright red entries

depict connections only existing in EC/FC. Pale red entries denote connections present in SC but not in EC/FC. (D–F) Shows a histogram of the connection strengths

for connections not present in SC. The red lines depict the threshold chosen to obtain a FPR of 10%.

TABLE 4 | Coincidence of connections in SC and EC/FC.

Connections in SC

and EC/FC(%)

Connections in

EC/FC, not SC(%)

Connections in SC,

not EC/FC(%)

Network density

EC/FC(%)

Network density

SC(%)

Low frequencies 60.6 15.5 (9.9) 22.7 75.7 (43.6) 78

High frequencies 77.1 20.6 (11.6) 2.28 95.1 (49.9) 78

CSD 55.8 11.9 32.3 59.9 78

Low frequencies–adapted FPR 18.5 2.8 77.8 17.1 78

High frequencies–adapted FPR 25.0 2.8 71.3 22.3 78

CSD-adapted FPR 18.6 2.7 78.7 17.1 78

Percentage of connections agreeing between SC and EC/FC. EC networks are mirrored; values for non-mirrored EC are given in brackets. In the last three rows, the percentages of

agreeing connections are shown for mirrored EC and FC whose false positive rate (FPR) was adapted to 10% for a better comparison.

network barely changes with decreasing TR, which is portrayed
by a basically horizontal line for the correlation across different
repetition times, indicating that the method is also appropriate
at slower TRs. Nevertheless, the higher agreement between EC
and SC found at higher frequencies can only be observed at TRs
sufficiently short to observe such frequencies.

Default-Mode Network
From the estimated networks, the default-mode network was
examined more closely. In Figure 10, the DMN is presented for
both the low- and high-frequency bands. In Figures 10A,B, the
low- and high-frequency band networks are shown with dots for
the brain regions connected by red (positive weights) and blue
(negative weights) lines. The width of the lines is proportional

to the connection strength. As both networks are normalized to
their respective strongest connection, the line thickness give only
relative information about connection strength and cannot be
compared directly across frequency bands.

For the low-frequency band the homologous brain areas were
much more connected than for the high-frequency band. In the
low-frequency network, all regions except TC were connected
to their homologous regions. At high frequencies, only TC
and mPFC had connections between homologous brain regions.
Furthermore, the low-frequency network was much sparser,
while the high-frequency network showed many quite strong
connections, which were ordered in a symmetric fashion. For
both networks, mPFC projects to other regions but does not
receive input except from its homologous region in the other
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FIGURE 8 | Correlation (A) and AUC (B) values for the comparison between the estimated networks from fMRI/ CSD matrices and structural connectivity from DTI is

shown at different frequencies.

TABLE 5 | Significance of agreement between EC/FC and SC.

Correlation r AUC of ROC

Test Significant p-value Significant p-value

LOW FREQUENCY

G+GT vs. CSD 1 0.01 0 0.79

G vs. CSD 0 0.84 0 0.24

HIGH FREQUENCY

G+GT vs. CSD 1 <0.001 1 0.02

G vs. CSD 1 <0.001 0 0.15

Test for significance between estimated EC networks from fMRI and pure cross-spectral

density matrices. The correlation and AUC values between estimated networks/CSD and

SC from DTI were used and the mean value calculated for the high and the low frequency

band for each subject.

hemisphere. Also IPC only projects to other regions; however,
it receives input from its homologous region only at low
frequencies. PCC both receives input from mPFC and IPC and
projects further to HIP. The TC mainly receives input but for
high frequencies it also projects to PCC.

DISCUSSION

We presented a method to estimate the effective connectivity
from fMRI data, based on the symmetric cross-spectral density
matrix of the acquired time series. As many different topologies
can give rise to the same cross-spectral structure, the ambiguity in
the estimation is resolved by using a L1-regularization preferring
sparse networks. This is also a popular assumption in the GC
framework, particularly in the case of voxel-wise connectivity

estimation, due to the resulting large number of network nodes
(Valdés-Sosa et al., 2005; Haufe et al., 2010; Garg et al., 2011; Tang
et al., 2012), and is supported by the observation that cerebral
connections tend to be highly selective (Valdés-Sosa et al., 2005;
Sanchez-Bornot et al., 2008).

Simulated Data
As a proof of principle, the method was first applied to simulated
data, where the influence of several parameters was analyzed.

Considering the length of the dataset and the SNR, increasing
the SNR improved the estimation. An increase in the length
of the time series also improved the estimation considerably
up to a measurement time of 40min, after which the increase
became slower (cf. Figure 2). Although the methodology only
depends on the cross-spectral density and not directly on the time
course of the neuronal activity, increasing the length of the time
series yields better estimates of the sample CSD. Furthermore,
increasing the length of the time series allows for a finer
frequency resolution of the CSD. However, long measurements
might be problematic from the point of view of subject comfort
and motion artifacts. Moreover, this assumes data stationarity,
which is questionable for long measurements, particularly given
the prevalence of dynamic connectivity states (Calhoun et al.,
2014; Preti et al., 2016). Hence, a possible solution would be the
acquisition of several shorter measurements and taking the mean
cross-spectrum over the measurements and over connectivity
states.

To further analyse the influence of the type of noise on the
estimation, EC was estimated for pure white noise, pure pink
noise and a mixture of both for different length of time series
and SNR. Pure pink noise and the mixture gave similar results,
mainly due to the high degree of pink noise in the mixed noise.
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FIGURE 9 | Correlation values for the comparison between the estimated networks from fMRI matrices and structural connectivity from DTI is shown for different

repetition times (TR) in the low-frequency (A) and high-frequency (B) bands. The red dashed line shows the correlation of the mean network over subjects with the

structural connectivity from DTI.

For increasing SNR, the difference in estimation power for white,
pink or mixed noise decreases, giving good results also for more
realistic noise. But even for a lower SNR of 1, the difference is
not very striking (cf. Table 1). The loss of estimation power for
temporal noise is due to the correlation between adjacent data
points, which leads to a loss of degrees of freedom and therefore
a loss of information in the CSD. However, the connectivity
information can nonetheless be retrieved from the data unless
data sets are very short and with high temporal autocorrelation.
For higher SNR the information from the true signal dominates
the data, leading to better estimation results.

Often, effective connectivity analyses will only be performed
on a small number of brain nodes of interest. This, however, poses
the problem of missing nodes in the estimation of networks,
which might lead to an erroneous estimation of the connectivity
(Eichler, 2005; Daunizeau et al., 2011; Waldorp et al., 2011).
For example, an indirect influence from a missing node on
two nodes of interest might be interpreted as a spurious link
between those two nodes. Therefore, the proposed method was
applied to various network sizes that were part of larger networks
with unobserved nodes. Not surprisingly, the estimation power
increases monotonically with increasing fraction of observed
nodes of the network (cf. Figure 3). This demonstrates the
importance ofminimizing the number ofmissing nodes. As fMRI
data sets are usually whole brain scans and the computational
efficiency of the proposed method allows for a high number of
nodes (estimation time of a few minutes for a network with a
hundred nodes on a standard computer), this problem can be
overcome by estimating the full network and retrieving the partial
network of interest afterwards.

The reduced dependence on HRF variability in comparison
to lag-based Granger causality (cf. Figure 4) is especially
relevant for fMRI given the indirect nature of the measured
hemodynamic signals. This further confirms previous results
on the possibility to estimate sparse networks from lag-free
covariances (Pernice and Rotter, 2013; Schiefer et al., 2018).
Nevertheless, it is clear that hemodynamic variability still acts as
an important confounder on observed time-series correlations,
so that integrating hemodynamic information, either via separate
HRF estimates (Wu et al., 2013; Proulx et al., 2014) or by

specifically including hemodynamics in the generative model
(Ryali et al., 2011; Friston et al., 2014b) would be beneficial to
EC estimation.

All in all, the analysis of the proposed method on simulated
data proved quite successful, showing high agreement between
the estimated and the true networks (cf. Figure 5). This might in
part be due to the method used to generate the simulated data,
which was closely matched to the estimation model. However,
Pernice and Rotter (2013) also demonstrated good results in
the estimation of networks of leaky integrate-and-fire neurons,
suggesting that the analysis is applicable to a wide variety of
different data types.

fMRI Data
In a second step, the proposed method was applied to fast
fMRI data. Correlating the estimated networks over frequencies
suggested a clustering in two frequency bands: A low-frequency
band from f = 0–0.31Hz and a high-frequency band f = 0.31–
5Hz. Interestingly, high-frequency BOLD signal fluctuations
above 0.1−0.2Hz have rarely been considered in conventional
functional connectivity analyses. However, recently emerged
fast fMRI sequences allow to analyse such higher frequencies,
with multiple studies suggesting that they contain relevant
information (Lee et al., 2013; Yuan et al., 2014; Trapp et al.,
2017). High-frequency connectivity could not be examined in our
simulations as it was completely attenuated by the convolution
with the canonical HRF, but it has been recently reported that
resting-state fMRI may be driven by narrower HRFs with non-
negligible contributions at high frequencies (Chen and Glover,
2015). This is also in line with another recent study that found
that information in Granger causality estimates is carried at
frequencies up to 3Hz in fMRI data (Lin et al., 2015).

The estimated networks showed a strong similarity between
hemispheres (r = 0.8 for the low frequency network,
r = 0.9 for high frequencies), which would be expected.
Both networks showed strong intra-hemispheric connections
in the frontal, occipital and parietal lobes (see Figure 6).
Although the networks for low- and high-frequencies were
similar, the low-frequency network was much sparser and
less symmetric than the high-frequency network. Moreover,

Frontiers in Neuroscience | www.frontiersin.org 14 May 2018 | Volume 12 | Article 287

42



Lennartz et al. Effective Connectivity From fMRI Cross-Spectra

FIGURE 10 | Networks for low- and high-frequency bands of the default-mode network (DMN). In (A,B), network connections are depicted by lines between regions.

Red lines correspond to positive connections and blue lines to negative connections. Connection strength ranges are illustrated by the line thickness. The connection

strengths for both networks are normalized to the strongest connection in the network. (C,D) Show the same networks (low frequencies C, high frequencies D) where

the network is projected onto a generic brain. Both color and arrow thickness represents absolute connection strengths (The brain networks in (C,D) were visualized

with BrainNet Viewer (http://www.nitrc.org/projects/bnv/) (Xia et al., 2013).

the low-frequency network showed strong inter-hemispheric
connections between homologous brain regions in both
hemispheres, which is less pronounced in the high-frequency
network.

Due to the lack of gold standard, the estimated effective
connectivity networks were compared to structural connectivity
from DTI. While the SC networks were very stable over subjects,

the EC networks showed quite high variability. This is not
very surprising, since the SC network corresponds to the “hard
wiring” of the brain, which is expected to be similar for different
individuals. The EC, however, is estimated from resting-state
data. Although some general patterns evolve in resting-state data,
the processing network might vary strongly between subjects
(Mueller et al., 2013). Furthermore, during the measurement,
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subjects might not always be in perfect resting state, but might let
their mind wander leading to an altered network (Kucyi, 2017).

The comparison between EC and SC yielded relatively low
correlation values, which could be partly attributed to the
symmetry of undirected SC measures. The correlation increased
significantly after mirroring the estimated EC. The agreement
between the high-frequency network and SC was significantly
higher than for the low-frequency network. In part this is due
to the presence of strong inter-hemispheric connections between
almost all homologous brain regions in the low-frequency
band, which is a typical point of discordance with SC (Messé
et al., 2014). For the high-frequency band, however, these inter-
hemispheric connections were less pronounced yielding much
higher agreement between EC and SC. Furthermore, the low-
frequency network is much sparser than both the high-frequency
network and SC, hinting to the idea that for low frequenciesmuch
fewer structural connections are active than for high frequencies
due to relatively short conduction delays between brain areas
leading to activity at higher frequencies. We emphasize again,
however, that comparison with SC cannot be considered a strict
validation, since the static physical connections in SC cannot
represent the dynamic connections active in any given time or
brain state. Moreover, diffusion tractography itself only provides
an imperfect estimate of SC and may miss major structural links,
notably interhemispheric connections (Robinson et al., 2014).
Nevertheless, consistency with SC can still provide some evidence
of a successful EC estimation, especially when considering
functional connections not supported by an underlying structural
connection. However, we cannot draw firm conclusions on the
performance of the method regarding the converse situation,
that is, structural connections that may or may not result
in an identified functional connection. A true validation of
EC in humans would require invasive approaches such as
intracranial EEG, which is employed for clinical purposes in
some epilepsy patients. Unlike the non-invasive DTI approach
used in the current study, intracranial EEG can provide directed
measures of effective connectivity (Wendling et al., 2010;
Entz et al., 2014) and would be well worth investigating in
the future.

As the most widespread technique for functional connectivity
analysis is the computation of undirected, potentially band-
limited correlations, the proposed method was also compared
to the pure cross-spectral density and its agreement with SC.
FC was actually better than the normal, unmirrored EC for
AUC (pAUC = 0.02). However, when considering the mirrored
EC network, there was significantly better agreement than
FC. Moreover, CSD exhibited very high variance both for
correlation and AUC compared to normal and mirrored EC.
Falsely identified connections (without an underlying structural
connection) were very weak for EC but covered a broad range of
connectivity strengths for FC (cf. Figure 7). Thus, the estimated
EC networks showed more consistency with DTI than the
functional networks from CSD. The significance values were
however relatively low, which is due to the low number of
subjects used to estimate the networks.

As typical fMRI sequences have much lower temporal
resolution than the sequence used in this study, the network

estimation was performed on datasets that were retrospectively
downsampled to longer TRs to analyse the influence of the
temporal resolution on the estimation. Correlating the estimated
networks with SC showed a relatively stable estimation of the
networks even at lower temporal resolutions. The overall results
suggest that the measurement length is more important than
the number of data points for a given scan time. Note however,
that only low-frequency networks can be recovered at long TRs.
Higher temporal resolutions was still beneficial for the estimation
of high-frequency connectivity (see Figure 9B), which showed
better estimation performance than low-frequency networks, as
well as preprocessing advantages such as better physiological
noise removal (Lin et al., 2012; Jacobs et al., 2014; Korhonen et al.,
2014).

Finally, the directed connectivity for the default mode network
was retrieved from the estimated network (Figure 10). The low
frequency network is much sparser and less symmetrical than the
high frequency network. Compared to the results of Miao et al.
(2010), who did a Granger causality analysis on the DMN, similar
results are obtained, notably the strong connections from all
other regions to the PCC. However, differences are also observed
in the mPFC where we found mostly outgoing rather than
ingoing connections. One potential cause of this discrepancy
may be the particular sensitivity of the employed MREG
sequence to off-resonances in the mPFC, leading to potential
artifacts (Zahneisen et al., 2012; Assländer et al., 2013). Future
work will focus on further validation of the inferred directed
networks.

CONCLUSION

In this paper we presented a method to estimate the effective
connectivity from whole brain resting-state fMRI scans from
the cross-spectral density in the frequency domain. The
influence of different measurement parameters was analyzed in
simulated fMRI data, notably showing a reduced dependency on
hemodynamic variability compared to lag-based methods such
as Granger Causality. The proposed method was further applied
to resting-state fMRI data, showing improved consistency with
the underlying structural connectivity networks obtained from
DTI tractography in comparison to conventional functional
connectivity.
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Abstract

Estimating brain connectivity has been a widely studied field in recent neuroscience. Lacking access
to the ground truth is a major challenge for the validation of the resulting estimates. In this study
we introduce a detailed simulation of electrocorticographic (ECoG) signals and use them to validate
the performance of estimation methods on these signals. We simulate a network of networks con-
sisting of leaky-integrate-and-fire (LIF) neurons from which we derive local field potentials. Then,
we estimate the connectivity by fitting autoregressive processes (AR) to the simulated signals of the
neural populations. Also, we introduce a eigenvalue-spectrum-based distance of networks to quantify
the difference of arbitrary networks. We show that methods based on temporal information as well as
covariance based estimation methods can achieve good estimations of neural population connectivity.
We also show that the spectral distance of networks reflects the same characteristics of differences of
networks like the area under the ROC curve and precision recall score. Our results indicate that au-
toregressive processes reflect the key features of the dynamics of neural population and the estimation
of connectivity based on such processes lead to valid estimates.

Introduction

Estimating connectivity reflects multiple challenges of modern neuroscience: it is multi-scale and
can be defined and described in multiple ways: as structural, functional and effective connectivity
[1]. Access to the connectivity of distributed networks of interacting brain systems is thought of
being a key to understand function and dysfunction of the brain [2]. Originating from the concept of
Granger causality [3], there are multiple methods to estimate effective connectivity based on fitting
an autoregressive process to the data. The original method is based on the coherence derived from
the partial cross-spectrum, variants of it use the temporal information directly [4]. Others are based
on the covariance of the measured data [5, 6, 7, 8]. All of them work fairly well on linear processes.

The estimation method used should always fit the type of data available, and match the temporal
and spatial resolution as well as the amount of data which was recorded. Some of them have been
applied on measured electrocorticography data [7, 9]. However, it remains unclear, whether fitting
an autoregressive process is a suitable method for ECoG data which consists of accumulated post-
synaptic currents [10, 11, 12]. This implies that the dynamics of neural populations, which consist
of non-linearly interacting neurons, can be modeled with linear processes. Also, the lack of access to
the ground truth induces a challenge of validating resulting networks. Often, changes in connectivity
over time are studied, but an objective quantification of the difference of networks is still lacking. For
the comparison of resulting networks, measures like area under the ROC curve and precision recall
score are used. However, these measures assume access to the ground truth. Other comparisons of
networks like [13] are only applicable for undirected networks of the same size. In order to achieve
insights about function and dysfunction of the brain based on changes in connectivity, there is the
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need for validation of the estimation methods as well as a comparable quantification of the changes in
the connectivity.

In this study, we introduce a simulation of ECoG signals based on leaky-integrate-and-fire neurons.
We focus on the estimation of effective connectivity based on data with high temporal resolution.
Our simulation consists of 64 interconnected neural networks representing the neural populations
underneath the ECoG electrode. Based on this simulation, we study the performance of a temporal
based least-square estimation of AR coefficients and compare the results to a covariance based method.
Also, based on the eigenvalue spectra of networks, we introduce an universal procedure to compare
directed networks of arbitrary sizes (including networks of different sizes).

Materials and methods

Simulating ECoG data

Our goal is to establish a computational model for signals recorded by electrocorticography (ECoG)
electrodes. ECoG electrodes are usually placed on the exposed surface of the cortex and record a
composition of post-synaptic potentials [10, 11, 12]. ECoG electrodes differ in size and the amount
of electrodes, for our model we use a 64 electrode (8 × 8) grid as template. Existing models for
ECoG signals [14] are not based on the neuronal activity but on a multivariate tuning model. In
contrast to this, our modeling approach consists of a network of networks of neurons, each sub-
network representing the neural population recorded by one ECoG electrode. In our case, this means
we model 64 neural populations, each consisting of 1 000 neurons. Each neural population is a scaled
version of a Brunel network [15] consisting of 1 000 LIF neurons, where 800 neurons are excitatory
and 200 neurons are inhibitory. For all neurons we use a membrane time constant of τm = 20 ms and
a reset potential of Vreset = −70 mV. Each neuron receives individual Poisson input with a constant
rate. All simulations are performed using NEST [16] and Python [17]. All parameters used in the
simulation can be found in Table 1.

The neurons within each population are randomly connected with a connection probability of 10%,
purely by chemical synapses with α-shaped post-synaptic potentials. For all synapses we use time
constants τsyn = 2 ms, a synaptic delay of 1.5 ms and connection weight of w = 10 mV. The ratio
of inhibitory connection strength to excitatory connection strength is g = 5.0. Additionally, the
excitatory neurons also form long-range connections to neurons in other populations according to a
pre-defined connectivity scheme, cf. Fig 1. While having the same weights as the synapses within a
population, the synaptic delays for these connections are 3 ms. Inhibitory neurons have been reported
to have local connectivity [18], so in our model they form connection within populations but not to
other populations.

For the meta connectivity of the populations we used a network with both, a distance dependent
component and a random Erdős-Rényi component. The connectivity matrix is shown in the left
panel of Fig 2. Each population is connected with its direct neighbors and also with neighboring
populations up to two steps away. These connections are represented by the off-diagonal entries in the
connectivity matrix. We additionally created a random Erdős-Rényi network without any distance
dependency and a connection probability of 10%. The connections of both meta connectivity matrices,
the distance dependent one and the Erdős-Rényi one, are realized by connecting random neurons of
the corresponding populations.
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Figure 1: Scheme of the simulated network. Each circle represents the neural population underneath
one ECoG electrode. Within the populations there is a random connectivity of 10%, ex-
citatory neurons additionally form long-range connections to other populations following a
pre-defined meta connectivity. Here, the inter-population connectivity of upper-left 4 × 4
electrodes are shown, in total we simulated 8× 8 electrodes.

As local field potentials (LFPs) are thought of being generated by postsynaptic currents [10, 11, 12],
we calculate the signal of each electrode similar to [19] by recording the absolute value of the summed
synaptic currents of synapses terminating at the excitatory populations.

Inhomogeneous input

In addition to the model described above, we simulated an extended version of the model including
inhomogeneous inputs to the neurons. Inspired by [20], we choose to use inhomogeneous input to
the neurons such that the power-spectra of the simulated signals are self-consistent. The idea is
to iteratively use the power-spectrum of the simulated signals to create a random signals with the
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Figure 2: Example for the estimation of the connectivity from the data. The left panel shows the true
connectivity matrix of the 64 populations (the connection strengths are color coded and
have been scaled for better visibility). The middle and the right panel show the estimated
connectivity of the populations for AR process of order 2 fitted to the data. In the middle
panel only values bigger than 0.0054 are shown, in the right panel there is no threshold
applied. The area under the ROC curve (AUC) is 0.99 and the precision recall score (PRS)
is 0.97.

Table 1: Parameters used for the simulation of ECoG data

Variable name , Symbol Value
Number of Electrodes, N 64
Simulation length, T 39 997ms
Bin size inhomogeneous input 5.0 ms
Number of inter Electrode connections 3835320
Number of neurons per population 1000
Percentage of excitatory connections 80%
Rate of poissonian input, pois rate 90.75 Hz
Neuron model iaf psc alpha
Synaptic time constant excitatory, τ ex

syn 2.0 ms

Synaptic time constant inhibitory, τ in
syn 2.0 ms

Membrane time constant τm 20.0 ms
Spike threshold, Vth −55.0 mV
Connection propability within populations p 10%
Inter-electrode connection weight 10 mV
Connection weight excitatory, wex 10 mV
Reset potential, Vreset −70 mV
Synaptic delay 1.5 ms
Inter-electrode synaptic delay 3 ms
Ratio inhibition to excitation, g 5.0

same power-spectrum. These signals are then used as rate profiles for the time-varying inputs to the
neurons in the next iteration. Each neuron gets a private realization of a Poisson process with varying
intensity as input. The intensity is piecewise constant, changing every 5 ms. This is repeated until
the power-spectrum of the signals converge towards the power-spectrum of the iteration before, which
means self-consistency for the power-spectra.
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Figure 3: Powerspectra of measured (brown) and simulated ECoG signals for 5 iterations. The power-
spectra have been calculated based on the simulated signals divided by a factor of 1000.

The presence of inhomogeneous inputs leads to higher firing rates of the neurons. To compensate
for this effect, we reduce the homogeneous Poissonian input each neuron receives. This approach can
be interpreted as a model for input of ongoing activity from brain regions which are not recorded to
the neural populations.

Estimating connectivity

Usually, the temporal resolution of ECoG is in the same order of magnitude as the timescales of
neuronal population activity. Other then the methods in [5] and [6], this allows us to use methods
for the estimation of connection which rely on the temporal information in the data. We use a simple
linear regression method described in detail in [4]. The main idea is, as is in Granger causality, to fit
an autoregessive process to the data. Here, an L2 approach is used to fit the AR process to the data,
Assuming the population signals x(t) can be described linearly by an AR process, we have

x(t) = v(t) +

p∑

i=0

G(i)x(t− i), (1)

where v(t) ∼ N(0, σ) is the driving noise of the process, G(i) are the matrices of interaction kernels
and p is the order of the process. With an easy calculation which can be found in [4], one can show
that

Ĝ = xZ∗(Z∗Z)−1

is the least square estimator for G = (G(1), . . . , G(p)) with Z = (Z0, . . . , Zt−1) and Zt =




x(t)
x(t− 1)

...
x(t− p+ 1)


 .

This product with the pseudo inverse of Z is easy to compute, as long as the networks are not too big
(up to 100 nodes is easily feasible on a normal desktop machine).
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Pseudo-metric on graphs

For analyzing the resulting networks of the method described above, we now introduce a pseudo-
metric on graphs. The idea is similar to the method presented in [13], but instead of using the
Laplacian spectrum of the networks, we use the eigenvalue spectrum of the adjacency matrix of the
networks. With this it is possible to study directed graphs instead of only undirected graphs as with
the Laplacian.

For a given network with n nodes, we can calculate the eigenvalues of the corresponding adjacency
matrix. These form a discrete set of points, denoted by S. We can write these sets as Dirac-delta
functions

E(x) =
n∑

k=1

δ(x− xk)

with S = {x1, . . . , xn}. The convolution with a Gaussian kernel g,

(E ∗ g)(x) =

∫
E(x− y)g(y)dy =

∑

k

g(x− xk),

is an element in L2, so we can define a composition

C
Γg−→ ∆

∗−−→ L2

S 7−→ E 7−→ E ∗ g

where ∆ denotes the set of delta-functions.
For two given sets of eigenvalues S and S ′ of graphs with n and m nodes, respectively, possibly

n 6= m, with the corresponding sums of delta-functions E and E′ and a fixed kernel g ∈ L2 with g > 0
we can now define an inner product

〈E,E′〉g = 〈E ∗ g,E′ ∗ g〉,

where 〈·, ·〉 denotes the inner product of L2,

〈f, h〉 =

∫
f(t)h(t)dt,

with f, h ∈ L2. Thus, we can calculate the inner product of two sets of eigenvalues,
S = { x1, . . . , xn}, S ′ = { x′1, . . . , x′m} with corresponding sums of delta-functions

E(x) =
1

n

n∑

k=1

δ(x− xk) and E′(x) =
1

m

m∑

j=1

δ(x− xj)

via

〈E,E′〉g = 〈E ∗ g,E′ ∗ g〉

= 〈
n∑

k=1

g(x− xk),
m∑

j=1

g(x− x′j)〉

=

∫ n∑

k=1

g(x− xk)

m∑

j=1

g(x− x′j)dx

=

∫ ∑

j,k

g(x− xk)g(x− x′j)dx

=
∑

j,k

∫
g(x− xk)g(x− x′j)dx
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where
∫
g(x − xk)g(x − x′j)dx is the autocorrelation of the kernel g evaluated at xk − x′j . The inner

product defined above can be used to define a distance between two spectra of graphs:

dg(E,E′) =
√
〈E − E′, E − E′〉g.

Consider Ŝ = span Γg(S) ⊂ ∆. It is clear that the delta-functions

f(x′) = δ(x− x′)

for all x′ ∈ C form a basis of Ŝ. So, for x′, x′′ ∈ C the inner product 〈·, ·〉g is uniquely given by

〈f(x′), f(x′′)〉g = 〈δ(x− x′), δ(x− x′′)〉g. (2)

The reason why this methods leads to a pseudo-metric and not a metric is, that there are isospectral
graphs, which are non-isomorphic graphs with the same spectrum. Of course, isospectral graphs with
corresponding delta-functions E and E′ have distance zero: dg(E,E′) = 0 for all g ∈ L2. This means
that dg is not a metric on the space of graphs. However, the other direction holds: if dg(E,E′) = 0
for all g > 0, then the corresponding graphs to E and E′ are isospectral. This, and the fact that for
a growing number of vertices the number of isospectral graphs is decreasing [21], makes this method
a promising candidate as an approximation of a metric on large graphs.

Results

Simulated ECoG data without inhomogeneous input

The raster plot of the spiketrains shown in Fig 4 A indicates that the neurons fire asynchronous
irregularly, the average firing-rate is 11.25 Hz. Fig 4 C shows the distributions of the firing rates,
coefficient of variation (CV) of individual spike trains (the mean is 0.59) and correlation coefficients
(CC) for firing of pairs of neurons. The power-spectrum of the simulated signals, averaged over all
channels, is shown as iteration 0 in Fig 3.

Simulated ECoG data with inhomogeneous input

The presence of inhomogeneous input to the neurons changes the characteristics of the firing of the
neurons. The firing rate with inhomogeneous input, being 18.07 Hz, is higher than in the case without
inhomogeneous input. Fig 4 B shows a raster plot for the same neurons as in Fig 4 A, it still indicates
asynchronous irregular firing of the neurons. As shown in Fig 4 D, the firing of neurons is more regular
than without inhomogeneous input, the mean CV decreased to 0.51. Also, correlation coefficients for
the firing of pairs of neurons increased (to a mean value of 0.03 calculated for bins of 20 ms).

As repeatedly reported in the literature [11, 12, 22], the powerspectra of measured LFP data are
decreasing with 1/f between 10 Hz and 100 Hz as shown in Fig 3. The simulated data also shows
a decrease, independent of the inhomogeneous input. However, in the presence of inhomogeneous
input, the decrease is amplified. Additionally, when inhomogeneous input is present the power in
low frequencies is increased and closer to measured ECoG data. As shown in Fig 3 the difference in
the inhomogeneous inputs lead to different power for frequencies under 10 Hz whereas for frequencies
higher than 10 Hz the power-spectra are very similar.

Estimating connectivity

We used the estimation method described in the materials section to estimate the connectivity of
the neural populations for both data types, without and with inhomogeneous inputs. The simulation
length was in total T = 39.997 s. Often, ECoG recordings are recorded during trial based activities.
The task the subjects are asked to perform is repeated several times leading to data sets with multiple
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Figure 4: A Rasterplot of five populations (5 000 neurons) without inhomogeneous input. On average,
the neurons fire at 11.25 Hz and have a mean CV of 0.59. B Rasterplot for the same neurons
with inhomogeneous input. The mean firing rate is 18.07 Hz and the mean CV 0.51. C
and D show the distribution of firing rates, coefficients of variation and pairwise correlation
coeffiecients for the spiking data with and without inhomogeneous input, respectively.

trials each around 3 or 4 s. To ensure the applicability of the estimation to such data sets, we divided
the data into 39 chunks with a length of 1 000 ms each. The estimation was then performed on each
of the chunks separately. The resulting AR coefficients were averaged over all trials. An example of
the estimation is shown in Fig 2, where the AR coefficients were averaged over all orders to end up
with one resulting estimated connectivity matrix.

In general, the estimation works close to perfect, the very high scores for Area Under the ROC Curve
(AUC) and Precision Recall Score (PRS) of 0.99 and 0.97, respectively, where 1.0 is the maximum
achieved by a perfect estimation. The values of our estimation indicate that there is a threshold for
which the estimated connectivity and the true connectivity match almost perfectly. A key factor for
the estimation of the networks is which order is used, cf. variable p in Eq (1). In both cases, the order
were the estimation works best is 2. The results for the estimation studying the effect of the order of
the AR process fitted to the data are shown in Fig 5 A and B, respectively.

Additional to AUC and PRS we also calculated the distance of the estimated connectivity matrices to
the true connectivity matrices using the method introduced in the methods section. The orange curves
(which corresponds to the right y-axis) in Fig 5 show the spectral distances of the networks, depending
on the order used for the estimation, the red curves show the Euclidean distances, respectively. For
calculating the distances, the true network and the estimated networks were normalized by their
maximal value before calculating the distance to achieve comparable values for the distances. As
expected, both sorts of distances show lower values for networks with higher AUCs and PRS and higher
values for estimated networks with lower values for AUC and PRS. Also, their slope is qualitatively
the same. However, the values for the distance have an offset of about 6.

As we simulate non-linear neurons and derive a population activity by summing up post-synaptic
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Figure 5: A Performance of network estimation on simulated data without inhomogeneous input. The
blue curve shows the Area Under the ROC curve, the green curve shows the Precision-Recall
score. The orange curve shows the spectral distance (σ = 0.1) between the estimated network
and the true network and the red curve shows the Euclidean distance between the estimated
network and the true network. For the distance the right y-axis applies. B Same as A but
for data with inhomogeneous input.

currents, the question arises what kind of linear activity is fitted to the simulated data by the least-
square estimator. To study the kernels, we used the same estimations as above, with the only difference
that we don’t average over the order. So, as above, the kernels were estimated for 1 000 ms data chunks
and then averaged over all 39 chunks. The estimated kernels are shown in Fig 6. Independent of the
order used for the estimation, all of them show high values for order p = 1 and a rapid decrease for
the following orders. Even though the kernels estimated for higher orders increase again to a local
peak for order p = 5, this indicates that the dynamics of neural populations act on very fast time
scales. In fact, the estimated kernels indicate that the interactions of neuronal populations occur
almost instantaneous. Qualitatively, the kernels of the data with inhomogeneous input does not differ
from the data without inhomogeneous input.

For calculating the spectral distance, we use a Gaussian kernel with width σ = 0.1 as kernel g in
Eq (2). Of course, this value influences the resulting distance and needs to be chosen adequately for
the network size.

Minimal data length necessary for connectivity estimation

A key factor for the accuracy of the estimation is the amount of data available. In the setting described
above, this has two components: the amount of trials recorded and the length of each trial. Also,
if one wants to study the changes of connectivity over time, one might use sliding windows with
each windows being only a fraction of the trial. Each estimation method has its own characteristics
regarding what kind of data it is usable for. Methods which rely on the temporal information (like the
one described above) need a sufficient length for each data chunk to be able to achieve a reasonable
estimation for each chunk before estimated over all chunks. Other methods which are based on the
covariance of the dynamics and do not rely on the temporal information itself, like [7, 8] or [5] , can
perform better on very short data chunks but might not achieve the same performance as temporal
based methods for longer pieces of data.
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Figure 6: Estimated linear interaction kernels. The left panel shows the kernels for the simulated data
without inhomogeneous input, the right panel the kernels for the data with inhomogeneous
input. The same estimations as for Fig 5 were used.

We studied the estimation for different lengths of data chunks available, the results are shown in
Fig 7. The amount of data available in total was kept constant (in total 39 997 ms), but we varied
the length of the data chunks. Depending on the length of the chunks, the amount of trials available
varied (39 997/length of chunks = #trials). For the least-square estimator of the AR process, we estimated
the AR kernels for each data chunk separately and then averaged over all trials. For calculating the
performance of the estimation we used a fit of order p = 2 and averaged then the two kernel estimates.
We compared this estimation to the estimation method introduced in [5]. This method is a covariance-
based approach using a L1-minimization. We calculated the instant covariance matrix for each trial
and then averaged them. The resulting averaged covariance matrix was then used for the connectivity
estimation.

The results shown in Fig 7 indicate that the covariance approach is superior for very short data
chunks whereas for longer data chunks the least-square estimator achieves better results. In fact, the
AUC and PRS of the L1-based method are 0.95 and 0.86, respectively, for 333 data chunks of 75 ms
each. The least-square estimation method needs data chunks of 300 ms (resulting in 133 trials) to
achieve the same performance. On the other hand, the least-square method achieves AUC and PRS of
0.99 and 0.97 for data chunks of 1 000 ms, whereas the maximum performance of the L1-based method
are 0.97 and 0.91 for AUC and PRS, respectively. Overall, the presence of inhomogeneous input does
not affect either of the methods.

Discussion

In this study, we introduced a detailed simulation for ECoG signals. We used this simulation for
validating the results of different connectivity estimation procedures. Also, we extended an existing
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Figure 7: Performance of the estimation methods depending on the length of data chunks used (total
amount of data was kept constant). A shows the performances for the simulated ECoG data
without inhomogeneous inputs and B the performances for data with inhomogeneous inputs.
The blue and orange curves represent the AUC and PRS for the least-square estimation
of AR coefficients, the green and the red curves represent the AUC and PRS for the L1

minimization based on the covariance matrix described in [5].

tool for the comparison of networks to an universal tool for the quantification of differences in estimated
networks.

The simulation of ECoG signals are based on leaky-integrate-and-fire neurons, which is a realistic
neuron model reflecting fundamental non-linear features of biological neurons and still is computa-
tionally feasible on this scale. Both, the L1 and the L2 based estimation methods, show reasonable
results on the simulated ECoG signals, cf. Fig 7. Also, the spectral distance of networks reflects the
same characteristics (Fig 5) of differences of networks as the area under the ROC curve, precision
recall score and Euclidean distance which are only applicable for networks of the same size.

The estimation methods assume linear interactions among the neural populations. Although they
were applied on signals which are based on non-linear interactions of neurons, the resulting networks
almost don’t differ from the true networks. The homogeneity of external inputs has no effect on the
estimation procedures. All this indicates that it is reasonable to use estimation methods which are
based on linear interactions for estimating connectivity on neural population scale. Of course, the
estimation method chosen should be adapted on the data available (total amount of data, amount
of trials). A limitation of our model is, that it does not include volume conduction, which can
play a role in the generation of ECoG signals and local field potentials in general [11]. This can
possibly affect the estimation of connectivity through superposition of signals. However, the order
of magnitude of volume conduction depends fundamentally on the design of the electrode. Also,
the leaky-integrate-and-fire model does not account for the spatial extension of biological neurons.
As the bi-polar nature of neurons and the spatial alignment of the neurons are key factors of local
field potentials, this is another limitation of our model. A third limitation of our simulation is, that
for real ECoG measurements the electrodes only conducts signals from parts of the brain which are
embedded in a much bigger network whereas our simulation observes all simulated neurons. However,
we compensated for that by using inhomogeneous inputs to the neurons. Also, as shown in [5] the
covariance based estimation method is robust against unobserved nodes .

Although extensively used in previous studies, this is, to the authors knowledge, the first attempt
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to validate estimation procedures for ECoG data or local field potentials in general based on the sim-
ulation of single neurons. Also, we adapted an existing approach to compare estimated networks [13]
to the more general case where directed networks and even networks of different sizes are comparable.

Conclusion

In this study we showed, that estimating effective connectivity by fitting an autoregressive process
to the data is a suitable approach for neural populations. We showed that depending on the data
available and the research question asked, different methods for the estimation of connectivity should
be considered.
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5 Discussion

5.1 Optimization on unitary manifolds

The method proposed in this thesis uses the exponential map for matrices to project the gradient

back on the unitary manifold. To recap: the gradient of the map

Γ: U(n) −→ R

U 7−→ ‖UB‖1 (5.1)

with respect to U is given by

dij = ∂Γ(U)
∂Uij

.

Then, for the matrix

a = 1
2 (d− d∗)

it follows

a∗ = 1
2 (d− d∗)∗ = 1

2 (d∗ − d) = −a (5.2)

which means that a is skew-hermitian. With this it follows that

exp(a)exp(a∗) = exp(a)exp(−a) = exp(a− a) = exp(0) = 1

which means that exp(a) is unitary. In other words, the space of skew-hermitian matrices forms

the Lie-Algebra u(n) corresponding to the Lie-group U(n). This is the fundamental principle of

the update scheme used in the presented algorithm.

Now the question arises, why with the procedure described above, the update step leads to a

matrix with smaller L1-norm Γ (Us) > Γ (Us+1) for any step s and why it makes sense to take

the skew-hermitian part of the derivative d. I briefly recap the underlying principles, for details
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5 Discussion

please see Absil et al. (2008). In the following, letM be a manifold and f : M−→ R a function

defined on M. The set of smooth real-valued functions defined on a neighborhood of x ∈ M is

denoted by Fx (M). A smooth map γ : R −→M is called a curve in M.

The directional derivative of f at x is defined as

Df (x) [η] = lim
t→0

f (x+ tη)− f (x)
t

. (5.3)

With Γ defined in (5.1) and f = Γ, this corresponds to

DΓ (x) [η] = lim
t→0

Γ (x+ tη)− Γ (x)
t

.

Alternatively, for a real-valued function defined on a neighborhood of x, i.e. f ∈ Fx (M),

the tangent vector of the curve γ at t = 0, is defined as a mapping

γ̇ (0) : Fx (M) −→ R

f 7−→ d (f (γ (t)))
dt

∣∣
t=0

for γ a curve through x at t = 0. Here it is exploited that f ◦ γ : R −→ R is a smooth function

with a well-defined derivative. In the setting of the unitary manifold

U (n) = {U ∈ Cn×n : U∗U = 1},

let U(t) = x+ tη be a curve in U(n) through x = 1. From

U∗ (t)U (t) = 1n (5.4)

for all t, by differentiating Eq (5.4) we get

U̇∗ (t)U (t) + U∗ (t) U̇ (t) = 0 (5.5)

where

U̇(0) : F1 (U (n)) −→ R

Γ 7−→ d (Γ (U (t)))
dt

∣∣∣∣
t=0

Next, we define a tangent vector ξx to a manifold M at point x as a map

ξx : Fx (M) −→ R

64



5.1 Optimization on unitary manifolds

such that there exists a curve γ on M with γ (0) = 0 satisfying

ξxf = γ̇ (0) f := d (f (γ (t)))
dt

∣∣∣∣
t=0

for all f ∈ Fx (M). Using this definition, it can be shown that the tangent space TxM which is

the set of all tangent vectors, is a vector space. In the unitary case, this is clear since we have

U̇(0)Γ = d (Γ (U (t)))
dt

∣∣∣∣
t=0

.

Defining a derivative of a curve γ(t) as

γ′ (t) := lim
τ→0

γ (t+ τ)− γ (t)
τ

requires a vector space structure to compute γ (t+ τ) − γ (t). Thus, this is not possible on

abstract manifolds. However, given a vector space E , it has the structure of a linear manifold in

a natural way. For a tangent vector ξx to E at x we get

ξxf = Df(x)[γ′(0)]

for f ∈ Fx (M). The derivative γ′ does not depend on the curve that realizes ξx. Thus ξx 7→ γ′ (0)

defines a linear map which identifies

TxE ' E . (5.6)

Due to the group structure of U (n) we can exploit Eq (5.6) which gives us TxU(n) ' U(n).

From Eq (5.5) it follows that U̇ (0) ∈ {Z ∈ Cn×n : U∗0Z + Z∗U0 = 0}. Thus, for the tangent

space it holds

TU0U (n) ⊂ {Z ∈ Cn×n : U∗0Z + Z∗U0 = 0}.

Also, it holds

0 = U̇∗ (0)U (0) + U∗ (0) U̇ (0) = U̇∗ (0)1 + 1U̇ (0)

and thus it follows

U̇∗ (0) = −U̇ (0)

which means that the matrix U̇ (0) is skew-hermitian.

Now, with tangent vectors as defined above, we have the notion of directional derivatives for

manifolds. The goal is to find the motion from a point U on the unitary manifold for minimizing
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5 Discussion

Γ. This means, we want to find the motion where Γ has the steepest descent. For doing so, we

need to add a notion of length for tangent vectors. This is the case for Riemannian manifolds,

which are real, smooth manifolds for which the tangent space at each point is equipped with an

inner product and, with this, an induced metric. Since we are focusing on the unitary manifold,

we can use the inner product of C together with the identification C ' R2. With this, we can

define the gradient of f at x, denoted by grad f(x), as an element of TxCn×n that satisfies

〈gradf(x), ξ〉x = Df(x)[ξ] ∀ξ

which is unique. In the unitary case, this gives us

〈gradΓ (U) , ξ〉U = DΓ (U) [ξ] ∀ξ

We then get the result that the direction of the gradient grad Γ (U) is the steepest-ascent

direction of Γ at U :
grad Γ (U)
‖ grad Γ (U) ‖ = arg max

ξ∈TUU(n) : ‖ξ‖=1
DΓ (U) [ξ].

The steepest-ascent property follows from the steepest-ascent properties of the derivative in

Cn×n.

In practice, this means we can calculate the gradient of Γ (U) =‖ UB ‖1 by calculating

d = ∂Γ (U)
∂U

=


∂Γ(U)
∂U11

· · · ∂Γ(U)
∂U1n

...
...

...
∂Γ(U)
∂Un1

· · · ∂Γ(U)
∂Unn


and take the skew-hermitian part a = 1

2 (d− d∗). This then gives us then the element in

the tangent space TUU (n) which can be projected back on the manifold by taking the matrix

exponential Us+1 = exp (−λas)Us for a step size λ ∈ R. With this, we get Γ (Us+1) 6 Γ (Us) for

all s.

Alternative update scheme

As shown in Wen and Yin (2013), there are other possibilities to project the gradient matrix a

back on the orthogonal manifold. All of the results shown in this paper hold for the unitary case,

which will be considered here. They show that for any skew-hermitian matrix a, the matrix

q = (1 + a)−1 (1− a)
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is well-defined and unitary. This is easy to see, using

(1 +M) (1−M) = 1−M +M −M2 = (1−M) (1 +M)

for any matrix M . It follows

q∗q =
(
(1 + a)−1 (1− a)

)∗ (
(1 + a)−1 (1− a)

)
= 1

which means q is unitary. For a given point X on the unitary manifold and a skew-hermitian

matrix a the so-called Cayley transform given by

Y (τ) =
(
1 + τ

2a
)−1 (

1− τ

2a
)
X (5.7)

gives a feasible update formula. Due to the computationally easier calculation, an algorithm

based on the Cayley transform update scheme reaches a minimum faster than with an expo-

nential update scheme. However, even after pronounced investigation of the update scheme and

an appropriate step-size selection, it turns out to not be as accurate as the exponential case.

For reasons I have not been able to work out, the resulting estimated connectivity matrices

have a strong tendency to be symmetric. This corresponds to not being able to estimate the

direction of the connections properly. On the other hand, the fast computability of the update

step for different step sizes, this update formula offers the possibility to study the stucture of

the underlying manifold in the direction of the gradient. An example of this is shown in Fig 5.1

for a collider structure with different connection strengths. The gradients are calculated at the

initial point of the optimization and then the cost is evaluated based on Eq (5.7) for different

step sizes. Notably, for connections that are too strong, the global minimum is in the direction

of negative step sizes from the starting point. In these cases, the optimization does not estimate

the correct network.
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Figure 5.1: Cost landscapes from starting point of the optimization for varying step sizes. Each

curve corresponds with a collider structure, where the connection strengths of the

two connection vary.

5.2 L1-minimization as basis for estimating connectivity

The L1-minimization used for the connectivity estimation is a key factor for the intrinsic prop-

erties of the methods described in chapter 2. A major constraint induced by using L1 as norm

is the limitation of the method to sparse networks. One could ask, why not use the L2 norm

instead, which corresponds with minimizing the function

Γ2 : U(n) −→ R

U 7−→ ‖UB‖2

to overcome the sparsity constraint. For any unitary matrix U ∈ U(n) and B ∈ Cn×n we get

‖UB‖22 = 〈UB,UB〉 = 〈B,U∗UB〉 = 〈B,B〉 = ‖B‖22

for 〈·, ·〉 denoting the inner product. This means that multiplication with a unitary matrix

preserves the L2 of any matrix and is therefore not feasible for our purpose.
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Alternatively, one can use a variant of the Lasso (Tibshirani, 1996) for solving the regulariza-

tion problem

||Ĉ−1 −B∗B‖F + λ
∑
i,j

|Bij |

with respect to B for a regularization parameter λ. It produces some coefficients that are

exactly 0 due to the nature of this constraint, which means it also does not overcome the

sparsity constraint. Nonetheless, it has the advantage of being computationally easier to solve

than the optimization on the unitary manifold used in the presented estimation method. The

minimization on the matrix manifold makes a calculation of the matrix exponential necessary

in each step, which is computationally expensive. For the regularization problem, this is not

necessary, which makes it feasible to even larger networks and faster convergence. However, the

accuracy does not reach the level of the method proposed in this thesis. This, together with the

fact, that most data acquisition methods produce networks in a feasible range of the proposed

method, and the computation time being in range of seconds, speaks in favor of the proposed

method.

5.3 Linear interactions as model for population activity

As explained in chapter 1, the underlying interaction model is a key ingredient of the concept

of effective connectivity. The estimation method presented in this thesis relies on a linear

interaction model, given by Eq (1.1). The validation and evaluation of intrinsic properties of

this estimation method presented in chapters 2 and 3 are based on noise-free covariance matrices

and dynamical processes derived from this linear interaction model. They show that for nodes

following this linear interaction model, the estimation of connectivity is possible very accurately

for large, sparsely coupled networks with reasonable network interaction, also in the presence of

noise and latent nodes.

In contrast to the linear processes used in chapters 2 and 3, the processes used for validating the

connectivity estimation in chapter 4 are based on leaky-integrate-and-fire neurons. The signals

are then derived from the currents flowing through synapses terminating at excitatory post-

synaptic targets. Due to the non-linear generation of action potentials in the leaky-integrate-

and-fire neurons, these signals are also non-linear. Although both methods studied in chapter 4
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are based on a linear interaction model, the estimation of effective connectivity from these signals

shows a very good performance. This indicates that the assumption of linearity for modeling

population activity, at least for the purpose of estimating connectivity, seems to be reasonable.

5.4 Comparability to other methods

For decades, methods for the estimation of connectivity have been a popular research subject

(Granger, 1969; Melssen and Epping, 1987; Baccalá and Sameshima, 2001; Friston et al., 2003;

Kiebel et al., 2008; Korzeniewska et al., 2008; Wedeen et al., 2008; Friston, 2009, 2011; Ko-

rzeniewska et al., 2011; Pernice and Rotter, 2013; Reisert et al., 2013; Friston et al., 2014;

Zaghlool and Wyatt, 2014; Gilson et al., 2016; Ryali et al., 2016; Nie et al., 2017). However,

the method presented in this thesis has several advantages over previously existing methods.

First, the method is feasible if solely the zero-lag covariances of the data are available, which

makes it independent of the sampling rate of the recording. This is a big advantage in case of

BOLD related signals. The estimation method presented in Gilson et al. (2016) uses the same

approach of estimating effective connectivity from measured covariances. This method does not

use any sparsity constraint, but solves an optimization problem based on the Lyapunov equa-

tion. However, this method relies on time-shifted covariances matrices to estimate the direction

of connections, where access to the correct shift parameter is crucial for the estimation. For

fMRI data, this parameter needs to be accessed experimentally. Due to limited models for fMRI

data, this also complicates the validation of the method. Thus, the independence of time-shifted

covariances a is feature which should not be underestimated.

Secondly, the method is applicable on various types of data. In case of fMRI data, one

usually has a single recording of a measurement lasting up to 10 minutes. The repetition

time (TR) determines the temporal resolution of the measurement and through this, the total

amount of samples. In the case of the MREG sequence, a dataset can be up to 12 000 samples

per node. Also, for fMRI signals one needs to take the hemodynamic response function into

consideration. The method presented here is feasible for such kind of data, as shown in chapter 2

and chapter 3. In case of ECoG signals, the datasets usually consist of short (up to 4 000ms)

but many (possibly thousands) trials with a sampling rate around 1 kHz. Often, such data is

recorded with a movement task for the subject. For such kind of data, the changes in connectivity
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within the trials are of special interest. Consequently, one needs to estimate connectivity based

on short data chunks. Assuming stationarity across trials, one can use every trial for estimating

the covariance or connectivity matrix and average over all of these estimates. As shown in

chapter 4 the method presented in this thesis is superior to Granger Causality (Granger, 1969),

as presented in Lütkepohl (2005), in such a setting.

Thirdly, quite a lot of the existing methods, like the Regularized Inverse Covariance method

studied in Smith et al. (2011), are not able to estimate the direction of connections but are

limited to undirected networks. This is, due to the nature of the connections in the brain being

formed by directed synapses, a clear limitation.

Finally, a major limitation of DCM (Friston et al., 2003) is the limitation on small networks

(≤ 20 nodes). This limits applications of DCM to subnetworks of the human brain. Additionally,

as DCM is based on Bayesian estimator, one needs to have access to a prior network and then

estimate the probability distribution of the connection parameters, which limits the applications

of the method to even more specific cases.

5.5 Conclusion

In this thesis a method for estimating effective connectivity from signals of neural populations

is presented. The validations on simulations in chapters 2, 3 and 4 show that the estimation

method works reliably for a broad range of networks. These simulations also show, that due to

the nature of the estimation method it can be applied on a broad range of data: using zero-lag

covariances, cross-spectral densities or averaged covariances from multiple trials allow a very

high flexibility. Additionally, the simulations in chapter 4 show that the estimation method can

be applied on data which does not follow linear interaction models.

The application of the estimation method on fMRI data, which is a prominent example of

data not following linear interaction models, leads to reasonable results. This is supported by

comparing the results to established estimation methods as the Regularized Inverse Covariance

or the study of the Default Mode Network. Also, the analysis of DTI data in chapter 3 shows

better agreement than other methods do for functional connectivity.
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Of course, the lack of a ground truth of connectivity on neural population levels limits the

possibility of validating these results. Even matching results of different methods only show

coherence and are no proof that the estimated networks are the true networks in the brain. DTI

and other structural methods themselves have problems of accuracy or applicability. This is also

expressed in the lack of knowledge of connection probabilities on population scale. Connection

probability, or more precisely, sparsity of the network, is the only fundamental constraint of the

presented estimation method. Due to this, the resulting networks should only be interpreted as

the strongest connections in the network, and not as the complete network. This reduces the

possibility of declaring a connection as not existing to “no strong connection existing”.

The link of changes in connectivity and development of function and dysfunction of the brain

together with the possibility of accessing the connectivity indicates a enormous potential of such

methods. Of course, further investigation has to be carried out before applying it in a clinical

context. This could be done by investigating data which is already available, such as fMRI data

for different stages of Alzheimer’s disease, or on, for example, data of stroke patients where

usually more than one fMRI measurement per subject is available. Also, other non-invasive

data sources, such as fNRIS, could be studied in detail. The potential of classification of neural

diseases based on connectivity estimated from non-invasive measurements is very promising and

should undergo further scientific investigation.

The method for estimating connectivity of neural populations based on data of their activity

presented in this thesis, overcomes several shortcomings of previously existing methods. The

method can be applied on a broad range of data types and is feasible for almost all sparse

networks which are biologically realistic. A corresponding implementation of the algorithm is

easy to apply and available as free software.
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Achab, M., Bacry, E., Gäıffas, S., Mastromatteo, I., and Muzy, J.-F. (2017). Uncovering causality

from multivariate Hawkes integrated cumulants. In Proceedings of the 34th International

Conference on Machine Learning, volume 70, pages 1–10. PMLR.

Aertsen, A. and Preissl, H. (1991). Dynamics of activity and connectivity in physiological

neuronal networks. In Nonlinear Dynamics and Neuronal Networks, pages 281–301.

Aertsen, A. M., Gerstein, G. L., Habib, M. K., and Palm, G. (1989). Dynamics of neuronal firing

correlation: modulation of “effective connectivity”. Journal of Neurophysiology, 61(5):900–917.

Assländer, J., Zahneisen, B., Hugger, T., Reisert, M., Lee, H.-L., LeVan, P., and Hennig, J.

(2013). Single shot whole brain imaging using spherical stack of spirals trajectories. NeuroIm-

age, 73:59 – 70.
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Schiefer, J., Niederbühl, A., Pernice, V., Lennartz, C., Hennig, J., LeVan, P., and Rotter,

S. (2018a). From correlation to causation: Estimating effective connectivity from zero-lag

covariances of brain signals. PLoS Computational Biology, 14(3):e1006056.
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