
Dissertation zur Erlangung des Doktorgrades der Technischen Fakultät
der Albert-Ludwigs-Universität Freiburg im Breisgau

Analysis of Partial Order Reduction

Techniques for Automated Planning

vorgelegt von

M. Sc. Yusra Al-Khazraji

2017

Betreut von

Prof. Dr. Bernhard Nebel

Tag der Disputation:
19.06.2018

Dekan:
Prof. Dr. Oliver Paul

Prüfungskommission:
Prof. Dr. Christoph Scholl (Vorsitz)
Prof. Dr. Bernd Becker (Beisitz)
Prof. Dr. Bernhard Nebel (Betreuer)
Prof. Dr. Andreas Podelski (Prüfer)

iii

Zusammenfassung

Automatisierte Planung ist ein Teilbereich der Künstlichen Intelligenz, der
eng mit Entscheidungsfindung zusammen hängt. Gegeben ein Planungsproblem,
das durch einen Anfangszustand (d.h. eine Startkonfiguration des Problems), ei-
ne Menge von Aktionen und eine Zielbeschreibung spezifiziert wird, beschäftigt
sich ein Planungsalgorithmus mit der Suche nach einer Abfolge von Aktionen
oder einer Strategie, um die Zielbedingungen vom Anfangszustand aus zu er-
reichen. Planung, in all ihren Variationen, ist ein schweres Problem. Die klas-
sische Planung ist eine der einfachsten Planungsformen. Trotz ihrer Einfach-
heit hat diese immer noch eine hohe Berechnungskomplexität. Daher können
Planungsprobleme nicht durch Brute-Force-Algorithmen gelöst werden, son-
dern eher durch zielgerichtete Algorithmen, die die Komplexität der Planung
abmildern. Planung als heuristische Suche ist eine führende Technik, die im
Bereich der automatisierten Planung benutzt wird. Aktuelle Forschung hat je-
doch gezeigt, dass Planung als heuristische Suche durch orthogonale Techniken
komplementiert werden muss. Partial-Order-Reduktion (POR) ist ein bekann-
ter und zuverlässiger Ansatz, der ursprünglich im Bereich der Computer-Aided-
Verification entstanden ist, um die Zustandsraumexplosion zu bekämpfen. In der
Regel wird diese für explizite Zustandsraum-Suche verwendet, um die Größe des
generierten Zustandsraums zu reduzieren. Es gibt zwei Kategorien von POR-
Techniken: Zustandsreduktion und Transitionsreduktion. Die Ersteren sind auf
das Ignorieren einiger Zustände spezialisiert, die garantiert unkritisch sind, um
Terminalzustände (z.B. Zielzustände für Planungsprobleme) zu erreichen, während
die Letzteren entworfen sind, um redundante Zustände zu ignorieren. Später
wurden neue POR-Techniken für optimale Planungsalgorithmen vorgeschlagen.
Allerdings war der Zusammenhang zwischen den vorherigen und späteren Tech-
niken unklar. Zudem waren einige der neuartigen Techniken fehlerhaft.

Im Rahmen der klassischen Planung untersuchen wir zwei Varianten einer
mächtigen Zustandsreduktionstechnik aus dem Bereich des Model-Checkings,
nämlich Stubborn Sets. Darüber hinaus schlagen wir eine neue Definition von
Stubborn Sets für Fully Observable Nondeterministic Planning (FOND) vor.
Für die klassische Planung zeigen wir, dass Stubborn Sets die Vollständigkeit
und Optimalität von Suchalgorithmen erhalten, während diese für die FOND-
Planung zumindest noch die Vollständigkeit erhalten. Darüber hinaus verglei-
chen wir zwischen Stubborn Sets und vorhandenen POR-Techniken, die für
optimale Planung vorgeschlagen wurden. Außerdem studieren wir eine Tran-
sitionsreduktionstechnik aus dem Bereich des Model-Checkings, nämlich Sleep
Sets, und klassifizieren diese Methode in vier Hauptvarianten. Danach unter-
suchen wir den Zusammenhang zwischen diesen Varianten und verschiedenen
Suchalgorithmen. Weiterhin untersuchen wir theoretisch, welche Varianten für
Suchalgorithmen (wie A*, IDA*, und Breitensuche) sicher sind. Wie auch Stub-
born Sets vergleichen wir Sleep Sets mit anderen Transitionsreduktionstechniken
für die Handlungsplanung. Des weiteren beschreiben wir eine Familie der Verall-
gemeinerung der Sleep-Sets-Methode und wir evaluieren die allgemeinste Form
für optimale Planung. Schließlich evaluieren wir experimentell die Techniken,
die wir für die Handlungsplanung vorschlagen.

Zusammenfassend lässt sich sagen, dass diese Arbeit POR-Techniken für
Handlungsplanung untersucht, die formalen Beziehungen zwischen mehreren
POR-Techniken darstellt und die theoretischen Beweise durch empirische Aus-
wertungen stärkt.

iv

Abstract

Automated planning is an area of Artificial Intelligence (AI) that is closely
related to decision making. Given a planning problem, which is described as an
initial state (i.e., a start configuration of the problem), a set of actions, and a
goal description, a planning algorithm is concerned with finding a sequence of
actions or a strategy for achieving the goal conditions from the initial state.
Planning, in all its variations, is a hard problem. Classical planning is one of
the simplest forms of planning. Despite its simplicity, it is still computationally
intractable. Therefore, planning problems cannot be solved by brute-force al-
gorithms, but rather by goal-directed algorithms that tackle the complexity of
planning. Planning as heuristic search is a prominent technique that has be-
en considered in the area of automated planning. However, recent research has
shown that planning as heuristic search needs the aid of orthogonal techniques.
Partial order reduction is a well-known and reliable approach that has originally
been introduced in the area of computer aided verification to tackle the state
explosion problem. It is usually used for explicit state-space search to reduce
the size of the generated state space. There are two categories of partial order
reduction techniques: State reduction and transition reduction techniques. The
former are specialized to prune some states that are guaranteed to be uncritical
for reaching some final states (e.g., goal states in planning), while the latter
are designed to prune only redundant states. Later, new partial order reduction
techniques have been proposed for optimal planning algorithms. However, the
formal relationships between the previous and later techniques were unclear,
and furthermore, some of the novel techniques were faulty.

In the context of classical planning, we investigate two variants of a powerful
state reduction technique from the area of model checking, called stubborn sets.
Furthermore, we propose a new definition of stubborn sets for Fully Observa-
ble Non-Deterministic planning (FOND). For classical planning, we show that
stubborn sets are completeness and optimality preserving, whereas for FOND
planning, we show that they are at least completeness preserving. In addition, we
compare between stubborn sets and previous partial order reduction techniques
proposed for optimal planning. Moreover, we study a transition reduction tech-
nique from the area of model checking, called sleep sets, and classify this method
into four main variants. Then, we show the relationship between these variants
and the different search algorithms. Precisely, we theoretically investigate which
variants are safe for search algorithms like A∗, IDA∗, and breadth-first search.
Like stubborn sets, we compare sleep sets with other transition reduction tech-
niques for planning. In addition, we describe a family of generalization to the
sleep sets method and evaluate the most general form for optimal planning.
Finally, we experimentally evaluate the techniques we propose for planning.

In summary, this thesis investigates sound partial order reduction techniques
for automated planning, establishes the formal relationships between several
partial order reduction techniques, and strengthens the theoretical proof by
empirical evaluation.

v

Acknowledgments

It would not have been possible for me to pursue the journey of my PhD rese-
arch without the support of some people to whom I owe my success. First and
foremost, I would like to express my special gratitude to my advisor Prof. Bern-
hard Nebel for giving me the opportunity to be a member of his research group
throughout my doctoral research and for his continuous guidance and advice.

I am also deeply grateful to Martin Wehrle for his scientific cooperation from
the very beginning of this journey. He continuously enriched my knowledge with
many insightful and fruitful discussions. I have learned from him never to give
up on a rejected paper and how to transform it to one that wins a best paper
award.

Special thanks to Robert Mattmüller for providing me with advice and ans-
wering my scientific questions. I have learned a lot from his enthusiasm and love
for research and knowledge.

In addition, I would like to thank Prof. Malte Helmert and Gabriele Röger for
being great teachers of AI planning. I attended their lecture during my Master
studies and it was the reason why I decided to pursue research in the area of
planning.

Furthermore, I would like to thank Dominik Winterer for proof reading this
thesis and Christian Dornhege for helping me improving the abstract.

I also want to thank Prof. Robert C. Holte and Michael Katz with whom
I was happy to do research. Many thanks to my colleagues from the research
group on Foundations of Artificial Intelligence at the university of Freiburg:
Johannes Aldinger, Thorsten Engesser, Petra Geiger, Florian Geißer, Andreas
Hertle, Uli Jakob, Felix Linder, Tim Schulte and Benedict Wright. My thanks
are also for my former colleagues: Christian Becker-Asano, Patrick Eyerich,
Moritz Göbelbecker, Roswitha Hilden, Julien Hué, Thomas Keller, Johannes
Löhr, Manuela Ortlieb, Alexander Schimpf, Dali Sun, Stefan Wölfl and Dapeng
Zhang.

Last but not least, I would like to thank Stefan Schäfer for his encouragement
and support during the last phase of this journey. Thank you!

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Outline . 3
1.3 Contribution . 3

2 Classical Planning 6
2.1 Mathematical Model . 6
2.2 Specification Language . 7
2.3 Planning Algorithms . 8
2.4 General Search Concepts . 9

3 Partial Order Reduction 11
3.1 Preliminaries . 13
3.2 Related Work . 14

4 Stubborn Sets for Classical Planning 17
4.1 Variants of Stubborn Sets . 17

4.1.1 Strong Stubborn Sets . 18
4.1.2 Weak Stubborn Sets . 19

4.2 Stubborn Sets for Optimal Classical Planning 22
4.3 The Pruning Power of Stubborn Sets 23

5 Stubborn Sets for FOND Planning 25
5.1 Preliminaries . 25
5.2 Pruning Techniques for FOND 27

5.2.1 Weak Interference vs. Attachability 29
5.2.2 Nondeterministic Weak Stubborn Sets 32

6 Sleep Sets for Classical Planning 35
6.1 Variants of Sleep Sets . 37
6.2 Sleep Sets and Search Algorithms 40

6.2.1 Breadth-First Search . 41
6.2.2 A∗ Search . 43
6.2.3 IDA∗ Search . 48

6.3 The Pruning Power of Sleep Sets 49
6.3.1 Sleep Sets and Commutativity Pruning 49
6.3.2 Sleep Sets and Stratified Planning 50

6.4 Generalized Sleep Sets . 51

vii

viii CONTENTS

6.4.1 Generalized Sleep Sets are Safe 55
6.4.2 Generalized Sleep Sets and Move Pruning 57

7 Combining Sleep Sets with Stubborn Sets 59
7.1 Loose Integration . 59
7.2 Tight Integration . 62

8 Experimental Evaluation 64
8.1 Strong Stubborn Sets vs. Expansion Core 64
8.2 Weak Stubborn Sets vs. Strong Stubborn Sets 69
8.3 Stubborn Sets for FOND planning 70

8.3.1 NSSS and NWSS . 71
8.3.2 Combining NWSS with other Pruning Techniques 72

8.4 Sleep Sets vs. Commutativity Pruning vs. Stratified Planning . . 74
8.5 Sleep Sets vs. Move Pruning . 77
8.6 Generalized Sleep Sets . 81
8.7 Sleep Sets with Duplicate Elimination and Stubborn Sets 81

9 Conclusion 85
9.1 Summary . 85
9.2 Future Work . 86

Chapter 1

Introduction

This chapter motivates the topic of this thesis, states its outline, and summarizes
the contribution of the author.

1.1 Motivation

Automated planning is a discipline of Artificial Intelligence (AI) that performs
reasoning before acting [GNT04]. It plays a key role in building autonomous
intelligent agents that are capable of exhibiting goal-oriented behaviors. Given
a formal and concise description of the problem, which usually consists of an
initial state of the world, a set of actions that can be executed by the agent
to modify the state of the world, and a goal description that is required to be
achieved, a planning system computes a solution that leads to a state (or states)
satisfying the goal. These solutions are called plans and their structures depend
on the description of the problem provided to the planning system. There is a
wide range of planning models that vary in the assumptions made about the
agent capabilities and the environment in which she is supposed to act.

Classical planning is a planning form that considers a restricted model for
describing problems. It is the basic and simplest planning model in the sense
that it assumes the agent has full control of her actions and complete knowl-
edge about the environment [GNT04]. Extended models can be obtained by
relaxing some of the restricted assumptions. For example, the model that as-
sumes nondeterminism in action execution and complete knowledge about the
environment is known as fully observable nondeterministic planning (FOND).
A solution for a classical planning problem is a sequence of actions, whereas a
solution for a FOND planning problem is a strategy (a.k.a. policy) which is a
function that maps states to actions. Indeed, a considerable amount of research
has been dedicated to investigate efficient planning algorithms for solving clas-
sical planning problems. The main incentive for studying classical planning is
the high computational complexity of planning: It is intractable in theory even
when making very tight restrictions about the structure of the problem [Byl91;
BN95].

State-space search is a well-known approach for solving classical planning
problems [GNT04]. The aspects of a planning problem are described using
variables and values, where each variable has a finite domain of values. A state

1

2 CHAPTER 1. INTRODUCTION

is given as an assignment of variables to values from their domains. The state
space of a planning problem is the Cartesian product of all possible variable
assignments. The reachable state space is the set of all states that can be
reached by applying sequences of actions starting from the initial state. State-
space search solves a planning problem by exploring a part of the reachable state
space. The main challenge to state-space search is the size of the state space,
which is exponential in the number of state variables. Intuitively, exploring the
whole state space is not affordable even for relatively small realistic problems.
For this reason, efficient search algorithms, that explore only a reasonable size
of the state space, are desired. Let’s call the set of explored states by a search
algorithm the explored space. These algorithms are usually armed with heuristic
functions or heuristics, which map each state in the state space to a numeric
value that estimates the distance of the state from a goal state. States with low
heuristic values have high priority to be explored by the search algorithm. The
scalability of search algorithms mostly depends on the quality of the heuristic
function. Heuristic functions that provide values, which are close to the real
distances of states from a goal state, are considered informative.

Planning as heuristic search has been one of the most prominent planning
approaches for decades [McD96; McD99]. Therefore, early planning research
has focused on developing informative heuristic functions to efficiently guide
progression search algorithms towards goals [BG01; HN11]. In particular, the
research on optimal planning (i.e., extracting plans with minimal costs) has
witnessed the development of powerful admissible heuristics like merge-and-
shrink and landmark-cut heuristics [HHH07; HD09].
Despite the success of heuristic search, it has been shown that using standalone
heuristic functions can still lead to exploring a part of the state space whose size
is necessarily exponential in the description of the problem [HR08]. Therefore,
later research started to investigate orthogonal techniques to heuristic search
that can further improve the performance of heuristic search planners.

Pruning techniques [Val89; Pel93; GHP95; God96; FL99; BH11; WH12;
DKS13] are well-known approaches that have originally been developed in the
area of computer-aided verification [CGP01; BK08] in order to tackle the state
explosion problem. They help reduce the size of the explored space by executing
only a subset of the applicable actions in a given state.

Partial order reduction [Val89; GW92; GHP93; KP95; GHP95; God96;
CXY09; CY09; WH12] is a pruning technique that has reliably been used for
decades in the area of model checking. Partial order reduction is beneficial when
the components of the underlying system are independent of each other. These
components are called transitions in computer aided verification, and actions or
operators in planning. A transition (or an action) is a structure that transforms
the system from one configuration (or state) to another. Executing independent
transitions (or actions) in all possible orders can result in exploring unnecessary
parts of the state space, which can be pruned by reducing the partial order
between transitions.

Recently, partial order reduction methods have been utilized in the context
of optimal classical planning in order to reduce the size of the explored state
space, thereby improving the scalability of heuristic search [HG00; CXY09;
CY09; BH11; WH12; Alk+12]. However, some partial order reduction tech-
niques have been proposed for optimal classical planning without being related
to the previous approaches from the area of model checking [CXY09; CY09].

1.2. OUTLINE 3

Furthermore, some of the new techniques, in the original work, turned out to be
faulty. In particular, they were neither completeness nor optimality preserving1.

In this thesis, the main focus is on investigating sound partial order reduction
techniques that can be combined with heuristic search for automated planning
on both theoretical and empirical levels. Furthermore, the pruning power of
investigated techniques are thoroughly analyzed and compared to other tech-
niques.

1.2 Outline

This thesis consists of the following: The rest of this chapter states the con-
tribution of the author in the area of automated planning throughout the doc-
toral process. Chapter 2 introduces the preliminaries of classical planning and
presents the basic formal definitions needed throughout this thesis. Chapter 3
introduces partial order reduction and its categories, and states the preliminar-
ies and the necessary definitions related to partial order reduction. In addition,
this chapter discusses previous work related to partial order reduction. The
first part of Chapter 4 presents the stubborn sets technique and its variants
for planning, while the second part briefly summarizes the relationship between
stubborn sets and a pruning technique from previous work. Chapter 5 intro-
duces the preliminaries of FOND planning and a stubborn sets technique for
nondeterministic planning tasks. Chapter 6 is concerned with applying the
sleep sets technique, that has been introduced for computer aided verification,
to classical planning. It provides a classification of sleep sets into four variants
based on the contexts in which sleep sets have been presented in the literature.
Furthermore, it contains a detailed analysis of the behavior of sleep sets with
different search algorithms. In particular, it studies the combination of sleep
sets and stubborn sets with duplicate elimination and graph search in the con-
text of classical planning. Moreover, the pruning power of sleep sets relative
to previous partial order reduction techniques is discussed in this chapter. Fi-
nally, this chapter presents a family of transition reduction techniques, called
generalized sleep sets, that inherit their features from sleep sets and another
technique called move pruning. Chapter 7 sheds light on combining state and
transition partial order reduction techniques in details. In Chapter 8, empirical
evaluations of the most important techniques presented in this thesis are shown
and discussed. Finally, Chapter 9 provides a conclusion for the topics presented
in this thesis and a summary of potential future work.

1.3 Contribution

The author of this thesis has made several contributions related to the appli-
cation of partial order reduction techniques to the area of automated planning.
These contributions are summarized in the following:

Stubborn sets for optimal classical planning. The author has investigated
the application of strong stubborn sets and weak stubborn sets in the con-

1These techniques are stratified planning and expansion core [CXY09; CY09], which have
been corrected later by Wehrle and Helmert [WH12].

4 CHAPTER 1. INTRODUCTION

text of classical planning, and provided a theoretical proof of their com-
pleteness and optimality. The contribution related to strong stubborn sets
has been presented as a conference paper ECAI 2012 [Alk+12], whereas
the work related to weak stubborn sets is published in a conference paper
at ICAPS 2017 [Win+17]. In addition, the author has participated in the
work that revealed the pruning power of stubborn sets and investigated
their relationship to another partial order reduction technique. This re-
search has been presented as a conference paper at ICAPS 2013 [Weh+13].
This paper won the best paper award at ICAPS 2013.

Sleep sets for optimal classical planning. The research on utilizing sleep
sets in the context of optimal classical planning is the most prominent con-
tribution of the author throughout her doctoral studies. In this context,
sleep sets have been shown to be beneficial for planning when combined
with tree search algorithms like IDA∗. Furthermore, a family of general-
ization of sleep sets have been defined for optimal classical planning. Both
of these contributions are the core ideas of a conference paper presented
at AAAI 2015 [HAW15]. In addition, the author has contributed in study-
ing the pruning power of sleep sets and their relationship to other partial
order reduction techniques. This work has not been published yet.

Finally, the author classified the sleep sets technique into four main vari-
ants and showed the relationship of these variants with some AI search
algorithms. In particular, one variant has been proven to be safe when
combined with A∗ and can be used in the context of optimal classical
planning. This work is the most significant contribution of the author and
has been presented at SoCS 2016 [AW16]. This paper won the best paper
award at SoCS 2016.

Stubborn sets for FOND planning. The author proposed a new stubborn
sets pruning technique for FOND planning. This work is presented as
conference paper at ICAPS 2017 [Win+17] in which the author has a
significant contribution.

Stubborn sets in International Planning Competitions. Strong stubborn
sets have been used in two planners that participated in two different Inter-
national Planning Competitions (IPCs) to provide an empirical evidence
of their pruning power:

• Metis [Alk+14] is a deterministic and optimal planning system that
is based on the planning system Fast Downward [Hel06]. In addi-
tion to strong stubborn sets, Metis is powered by symmetry reduc-
tion [DKS13] and incremental LM-cut [PH13]. This planner partici-
pated in the deterministic track of IPC-14.

• Aidos [Sei+16] is a deterministic and optimal planning system that
is also based on Fast Downward and designed for the detection of
unsolvability in planning problems. This planner is armed with sev-
eral orthogonal techniques whose combination has synergy effects in
discovering unsolvable instances by detecting dead ends as early as
possible. In particular, the planner combines a number of heuristics

1.3. CONTRIBUTION 5

specialized for fast dead ends detection with pruning techniques. Ai-
dos participated in IPC-16 and was the winner of the unsolvability
track.

The list of publications of the author in chronological order:

• Yusra Alkhazraji, Martin Wehrle, Robert Mattmüller, and Malte Helmert.
“A Stubborn Set Algorithm for Optimal Planning”. In: Proceedings of
Twentieth European Conference on Artificial Intelligence (ECAI 2012).
2012, pp. 891–892

• Martin Wehrle, Malte Helmert, Yusra Alkhazraji, and Robert Mattmüller.
“The Relative Pruning Power of Strong Stubborn Sets and Expansion
Core”. In: Proceedings of the Twenty-Third International Conference on
Automated Planning and Scheduling (ICAPS 2013). 2013, pp. 251–259.
(Best paper award).

• Yusra Alkhazraji, Michael Katz, Robert Mattmüller, Florian Pommeren-
ing, Alexander Shleyfman, and Martin Wehrle. “Metis: Arming Fast
Downward with Pruning and Incremental Computation (planner abstract)”.
In: In the Eighth International Planning Competition (IPC 2014) (deter-
ministic track). 2014, pp. 88–92

• Robert C. Holte, Yusra Alkhazraji, and Martin Wehrle. “A Generalization
of Sleep Sets Based on Operator Sequence Redundancy”. In: Proceedings
of the Twenty-Ninth AAAI Conference (AAAI 2015). 2015, pp. 3291–
3297

• Jendrik Seipp, Florian Pommerening, Silvan Sievers, Martin Wehrle, Chris
Fawcett, and Yusra Alkhazraji. “Fast Downward Aidos (planner ab-
stract)”. In: In the First Unsolvability International Planning Compe-
tition (IPC 2016). 2016. (Winner of the unsolvability track at
IPC-16).

• Yusra Alkhazraji and Martin Wehrle. “Sleep Sets Meet Duplicate Elimina-
tion”. In: Proceedings of the Ninth Annual Symposium on Combinatorial
Search (SOCS 2016). 2016, pp. 2–9. (Best paper award).

• Dominik Winterer, Yusra Alkhazraji, Michael Katz, and Martin Wehrle.
“Stubborn Sets for Fully Observable Nondeterministic Planning”. In: Pro-
ceedings of the Twenty-Seventh International Conference on Automated
Planning and Scheduling (ICAPS 2017). 2017

In summary, this thesis is the first work that studies a wide range of par-
tial order reduction techniques for automated planning both on theoretical and
empirical levels.

Chapter 2

Classical Planning

Planning has several forms depending on the model of actions being considered
to model planning problems [GNT04]. Classical planning is the basic form of
AI planning that considers environments with several restrictive assumptions.
Given a description of a planning problem, a classical planning system either
finds and retrieves a sequence of actions as a solution (plan) or proves the
problem unsolvable if no plan can be found.

This chapter introduces the mathematical model that is considered to repre-
sent classical planning problems, the specification language in which the prob-
lems are concisely described, and an introduction to planning algorithms and
general search concepts.

2.1 Mathematical Model

The statement of the planning problem induces a mathematical model that has
the following characteristic [RN10]:

• Finite: the system has a finite number of states.

• Static: no external events can contribute to changing the state of the
system.

• Deterministic: every action applicable in a state leads to a unique suc-
cessor state.

• Fully-observable: the states of the system should be fully known.

• Discrete: the actions and state variables of the system are discrete.

Note that full-observability is obtained by having a fully-observable initial state
and deterministic actions. It is worthwhile to mention that extended plan-
ning models can be obtained by relaxing some of these restrictions to describe
more specialized planning forms that are suitable for solving real-world planning
problems.

Definition 1 (deterministic transition system). The classical model is
represented mathematically as a labeled deterministic transition system (a.k.a.
state space) which is depicted as a directed graph. A deterministic transition
system T is a 5-tuple (S, s0, A, T,G), where

6

2.2. SPECIFICATION LANGUAGE 7

• S is a finite set of states,

• s0 ∈ S is the initial state,

• A is a finite set of transitions (actions),

• T : S ×A 7→ S is the transition relation, and

• G ⊆ S is a finite set of goal states.

2.2 Specification Language

The transition system model provides a theoretical representation of planning
problems. However, it is computationally hard to generate the complete transi-
tion system even for relatively small planning problems. For this reason, spec-
ification languages are necessary to describe transition systems in a compact
way. The first and most well-known planning specification language is the
propositional STRIPS language [FN71]. A more concise language is called
finite-domain representation language. We consider a restrictive form of this
language called SAS+ [BN95] that is similar to STRIPS except for the fact
that SAS+ considers multi-valued state variables instead of Boolean variables.
It is worthwhile to mention that SAS+ is conciser than STRIPS but not more
expressive than it.

In the following, most of the preliminary definitions and notions that are
used in this thesis are introduced.

Definition 2 (finite-domain state variable). A state variable v is a variable
symbol that is associated with a non-empty finite domain of values Dv and can
hold one value from its domain at a time.

Definition 3 (partial state and state). Given a set of state variables V,
a partial state s is a partial function defined on a subset V ′ ⊆ V such that it
assigns to each variable v ∈ V ′ a value from its domain. We write s[v] to denote
the value to which v is mapped by s. The set of state variables for which s
is defined is denoted by vars(s). For a state variable v /∈ vars(s), we write
s[v] = ⊥ to denote an undefined value for v. If V ′ = V, then s is called a
state. A state s satisfies a partial state s′, written s |= s′, iff s[v] = s′[v] for all
v ∈ vars(s′).

Definition 4 (operator). An operator o is a structure that consists of two
parts: A precondition pre(o) and an effect eff (o), where both are partial states.
Operator o is associated with a non-negative real number cost(o) ∈ R+

0 denoting
its cost. We say that o is applicable in state s iff s |= pre(o). The result of
applying o in state s, denoted as o(s), is defined as follows:

• o(s)[v] = eff (o)[v] if v ∈ vars(eff (o)),

• o(s)[v] = s[v], otherwise.

If o has an empty precondition (i.e., it has no precondition) then o is applicable
in every state and its precondition is denoted by >. We use app(s) to denote
the set of applicable operators in state s. For a variable v and a state s, an
operator o is v-applicable in s iff either v /∈ vars(pre(o)), or pre(o)[v] = s[v].

8 CHAPTER 2. CLASSICAL PLANNING

At this point, we introduce the definition of SAS+ planning tasks.

Definition 5 (SAS+ planning task). An SAS+ planning task Π is a 4-tuple
〈V,O, s0, s?〉 where

• V is a finite set of finite-domain state variables,

• O is a finite set of operators,

• s0 is the initial state, and

• s? is a partial state representing the set of goal states.

From now on, we call an SAS+ planning task a planning task for short.
Each classical planning task Π induces a deterministic transition system TΠ =
(S, s0, A, T,G) where S is the set of states over V, s0 is the same initial state
of Π, A = O, and s ∈ G iff s |= s? for all s ∈ S. A transition (s, o, s′) ∈ T
iff o is applicable in s and o(s) = s′. If all o ∈ O have the same cost, the
operators in O are called unit-cost operators. A state s′ is reachable from a
state s if there exist states s1, . . . , sn, where s = s1, and operators o1, . . . , on−1,
with i ∈ {1, . . . , n}, such that oi ∈ app(si), oi(si) = si+1, and sn = s′. The size
of this transition system is exponential in the number of state variables of the
planning task. Therefore, computing this system explicitly is computationally
intractable. Next, we introduce more definitions that we need in this thesis.

Definition 6 (goal-related variable). Let Π = 〈V,O, s0, s?〉 be a planning
task. A variable v ∈ V is goal-related iff v ∈ vars(s?).

Definition 7 (domain transition graph). Let Π = 〈V,O, s0, s?〉 be a plan-
ning task and v ∈ V be a variable. The domain transition graph for v is a
directed graph DTG(v) = 〈V,E〉, where the vertices are defined as V = Dv,
and there is an edge (d, d′) ∈ E iff there is an operator o ∈ O such that
eff (o)[v] = d′, and either v /∈ vars(pre(o)) or pre(o)[v] = d.

Definition 8 (fact). Let Π = 〈V,O, s0, s?〉 be a planning task. A fact is a pair
〈v, d〉, where v ∈ V and d ∈ Dv. A fact 〈v, d〉 is satisfied by state s if s[v] = d;
otherwise, it is unsatisfied. We say that a fact 〈v, d〉 is in partial state s iff
v ∈ vars(s) and s[v] = d.

2.3 Planning Algorithms

Since the emergence of AI planning, several classes of classical planning algo-
rithms have been deployed by the research in this field. For example, state-space
planning, plan-space planning (e.g. partial-order planning) [PW92], planning
as satisfiability (or SAT-based planning) [KS92; Rin09; Rin12], and planning as
a CSP (Constraint Satisfaction Problem) [DK01] are all well-known planning
approaches.
State-space planning is the simplest approach and the most popular among oth-
ers [GNT04]. The rationale behind the prominence of state-space planning is
the direct correspondence between the mathematical model of classical planning
and directed graphs by which deterministic transition systems are represented
as we have seen in the last section [GB13]. Given this fact, a planning task can

2.4. GENERAL SEARCH CONCEPTS 9

be mapped to a path-finding problem which is typically solved by a path-finding
search algorithm. State-space planning is performed by recruiting a search al-
gorithm to explore the state space of the planning problem. The search process
is done by applying operators starting from the initial state until a goal state is
detected, and a plan is extracted and retrieved as a result. In the following, we
formally introduce the definitions of explored spaces and plans.

Definition 9 (Explored space). Let Π = 〈V,O, s0, s?〉 be a planning task
and TΠ = (S, s0, A, T,G) be its induced transition system. Furthermore, let A
be a planning algorithm that runs on Π to find a solution. The explored space of
A is transition system SΠ = (S′, s′0, A

′, T ′, G′), where S′ ⊆ S, s′0 = s0 , A′ ⊆ A,
T ′ = T ∩ (S′ ×A′ 7→ S′), and G′ = G ∩ S′.

Definition 10 (plan). Let Π = 〈V,O, s0, s?〉 be a planning task. A plan π for
Π is a sequence of operators o1, . . . , on where o1 is applicable in s0, and there
are states s1, . . . , sn such that si = oi(si−1), for all i ∈ {1, . . . , n}, and sn |= s?.
The cost of a plan π is the sum of its operators costs, i.e.

cost(π) =

n∑
i=1

cost(oi).

A plan π = o1, . . . , on is optimal if it has the minimal cost among all plans for
Π; otherwise, it is suboptimal.

2.4 General Search Concepts

In the following, we list the most important terminology associated with search
algorithms in order for this thesis to be self-contained.

State expansion is the process of applying applicable operators in a given
state, and generating its successor states.

State generation is the process of creating a successor state of a given state
by applying an applicable operator in it.

Open list is a data structure used by search algorithms to keep track of gen-
erated states that may need to be expanded.

Closed list is a data structure used by search algorithms to store states that
have been expanded.

Graph search algorithms are search algorithms that retain all expanded states
in memory (i.e., in a closed list) in order to avoid expanding them again.
In other words, if a state, which is already in the closed list, has been
generated again, then it is pruned as duplicate. Graph search saves the
effort of exploring redundant parts of the state space at the expense of
high memory usage. Breadth-first search and A∗ with a closed list are
examples of graph search algorithms.

Tree search algorithms are search algorithms that do not use a closed list.
In other words, tree search algorithms do not remember expanded states,
and if such states are generated again, they are added to the open list to be

10 CHAPTER 2. CLASSICAL PLANNING

ready for expansion. Tree search algorithms save the memory (represented
by the closed list) that is needed for storing expanded states. However,
unlike graph search, tree search algorithms might explore redundant parts
of the state space multiple times, which can excessively increase the run-
time of the algorithm. Depth-first search and Iterative-deepening search
(IDA∗) are two well-known tree search algorithms.

The g-value of a state is the overall cost of operators needed to reach this
state from the initial state.

The h-value of a state is the estimated cost needed to reach a goal state from
the state (heuristic value).

Search node is a bookkeeping data structure that is used by some search al-
gorithms to keep track of a state s, and some information related to it, like
its g-value, h-value, parent state, and the operator that has been applied
in the parent state to generate s.

Chapter 3

Partial Order Reduction

Partial order reduction is a pruning technique that was originally proposed in
the area of computer aided verification (particularly in model checking) [Val89;
GW92; GHP93; GHP95; God96]. Model checking is an automatic verification
technique for concurrent systems [CGP01; BK08]. It is the problem of verifying
whether a mathematical model of a system satisfies a formal property which
ensures that the system does not express an undesired behavior that violates its
specifications (e.g., the system is free from deadlocks). One of the most critical
challenges that model checking needs to deal with is the combinatorial state
explosion problem, where the size of the state space of the verified system blows
up exponentially in the size of its individual components.

Several approaches have been used in model checking in order to tackle this
problem, e.g., employing symbolic methods [McM93], abstraction-based meth-
ods [CGL94; CKV10], bounded model checking [Cla+01; Bie+03], and partial
order reduction among others. An asynchronous concurrent system consists of
a set of components where only one component can execute at a time. This be-
havior is modeled by interleaving the execution of the individual components.
The interleaving model imposes an arbitrary ordering between concurrent com-
ponents. In order to avoid prioritizing one order and neglect other orders,
the events of the components are interleaved in all possible ways. Considering
all possible orderings between transitions can contribute to the state explosion
problem. Furthermore, the ordering between independent transitions is irrele-
vant if the specification language is concerned only about the final outcome of
the independent transitions [CGP01].

As its name suggests, partial order reduction aims at reducing the size of
the explored state space by reducing the partial oder between the transitions
of the system. Some forms of partial order reduction impose an explicit total
order on the transitions to be used during search. Roughly speaking, if two
transitions are independent from each other, in the sense that executing them
in any order leads to the same final consequence, then considering one execution
order is sufficient to guarantee the reachability of the final outcome.

To have an intuition about the power of this technique, consider a system
of n independent operations which can be executed in n! different orderings,
thereby leading to 2n different states. Partial order reduction can reduce the
number of explored states to n + 1 by executing only one ordering [CGP01].
Figure 3.1 is an example of pruning by partial order reduction in model checking

11

12 CHAPTER 3. PARTIAL ORDER REDUCTION

s0

s2s1 s3

s5s4 s6

s7

o1 o3
o2

o2 o2

o3 o1

o3 o1

o3o1

o2

Figure 3.1: Pruning by partial order reduction [CGP01]

by Clarke, Grumberg, and Peled [CGP01]. The states preceded by dashed lines
are pruned (not generated) by the search, and only states s0, s1, s4 and s7 are
generated.

There are two main categories of partial order reduction methods in the
literature. They differ from each other in the way of defining the dependency
between transitions, and hence, in the form of pruning they perform. In order to
define the effect of these categories on transition systems, we need to be familiar
with graph homomorphism.

Definition 11 (graph homomorphism). Let G = (V,E) and G′ = (V ′, E′)
be graphs, where V and V ′ denote the sets of vertices, and E and E′ denote
the sets of edges of G and G′, respectively. A graph homomorphism ξ (or
homomorphism for short) is a mapping from V ′ to V (ξ : V ′ 7→ V) such that
(u, v) ∈ E′ implies (ξ(u), ξ(v)) ∈ E.

State Reduction Techniques. In computer aided verification, state reduc-
tion techniques are partial order reduction techniques that can safely prune
unique states from the explored space given that the absence of those pruned
states is not crucial for verifying a given property of the system. Concep-
tually, a state reduction technique is a function that takes a explored space
T = (S, s0, A, T,G) as an argument and returns a reduced explored space T ′ =
(S′, s′0, A

′, T ′, G′) such that S′ ⊆ S, s′0 = s0, A′ = A, T ′ = T ∩ (S′ × A′ 7→ S′),
and G′ = G ∩ S′. Furthermore, there is a homomorphism ξ from T ′ to T
(ξ : T ′ → T) such that the following holds:

• ξ(s′0) = s0,

• (s, a, s′) ∈ T ′ implies (ξ(s), a, ξ(s′)) ∈ T , and

• g′ ∈ G′ implies ξ(g′) ∈ G.

Transition Reduction Techniques. Similar to state reduction techniques,
transition reduction techniques have also been proposed in the area of computer
aided verification for the first time. Unlike state reduction techniques, transition

3.1. PRELIMINARIES 13

reduction techniques do not prune states from the state space but rather prune
transitions that lead to states that have already been visited by the search or
are guaranteed to be visited; hence, they prune redundant states.
Formally, a transition reduction technique is a function that takes a explored
space T = (S, s0, A, T,G) as an argument and returns a reduced explored space
T ′ = (S′, s′0, A

′, T ′, G′) where S′ = S, s′0 = s0, A′ = A, T ′ = T ∩(S′×A′ 7→ S′),
and G′ = G. As in state reduction techniques, there is also a homomorphism
ξ from the reduced transition system to the original transition system with the
same properties mentioned above.

s0

s1 s2

s3

s0

s1 s2

s3

s0

s1 s2

s3

Figure 3.2: Original state space (left), reduced state space with a state reduction
technique (middle), and reduced state space with transition reduction technique
(right).

Figure 3.2 illustrates the differences between the original transition system
and the reduced transition systems of state and transition reduction techniques,
respectively.

3.1 Preliminaries

In the following, we will introduce the most important definitions and notations
related to using partial order reduction for planning that are used in the rest of
this thesis.

Definition 12 (path). A path is a sequence of operators o1, . . . , on that are
sequentially applicable in a state s, i.e., there exist states s1, . . . , sn with s = s1,
oi ∈ app(si), and oi(si) = si+1, for i ∈ {1, . . . , n}. We say that σ = o1, . . . , on is
applicable in state s if o1 ∈ app(s). We use σ(s) as a shorthand for on(. . . (o1(s)))
and |σ| to denote the number of operators in σ (length of σ). The cost of σ is
the accumulated cost of its operators, i.e.,

cost(σ) =

n∑
i=1

cost(oi).

For path σ = o1, . . . , on, we use ops(σ) to denote the set containing the operators
o1, . . . , on. The empty path is denoted by ε. A prefix of σ is a nonempty initial
segment of σ, i.e., o1, . . . , ok with k ∈ {1, . . . , |σ|}. A suffix of σ is nonempty
final segment of σ, i.e., ok, . . . , on with k ∈ {1, . . . , |σ|}.

In this thesis, we use the Greek letters (σ, ρ, δ, . . .) to denote paths. In
addition, we use the terms “paths” and “operator sequences”, interchangeably.

14 CHAPTER 3. PARTIAL ORDER REDUCTION

Definition 13 (permutation equivalent paths). Two paths σ and σ′ are
permutation equivalent, written as σ ≡ σ′, if ops(σ) = ops(σ′) and for all states
s in which σ and σ′ are applicable, it holds that σ(s) = σ′(s).

Definition 14 (equivalence classes of paths). The equivalence class of a
path σ, denoted as [σ]≡, is the set of all paths that are permutation equivalent
to σ.

Definition 15 (interference and commutativity of operators). Let Π =
〈V,O, s0, s?〉 be a planning task. Furthermore, let o and o′ be operators in O.

• o disables o′ iff there exists v ∈ vars(eff (o)) ∩ vars(pre(o′)) such that
eff (o)[v] 6= pre(o′)[v].

• o can enable o′ iff there exists v ∈ vars(eff (o)) ∩ vars(pre(o′)) such that
eff (o)[v] = pre(o′)[v].

• o and o′ conflict iff there exists v ∈ vars(eff (o))∩ vars(eff (o′)) such that
eff (o)[v] 6= eff (o′)[v].

• o and o′ strongly interfere iff o disables o′, or o′ disables o, or o and o′

conflict.

• o weakly interferes with o′ iff o disables o′ or o and o′ conflict1.

• o and o′ are commutative iff they do not strongly interfere, and none of
them can enable the other.

Definition 16 (active operator). (Based on Wehrle & Helmert 2012 [WH12]).
Let Π = 〈V,O, s0, s?〉 be a planning task and let s be a state. An operator o ∈ O
is active in s if the following two conditions are satisfied:

1. For all v ∈ vars(pre(o)), there exists a path in DTG(v) from s[v] to
pre(o)[v]. In addition, if v is goal-related, then there is a path from
pre(o)[v] to s?[v].

2. For all v ∈ vars(eff (o)), where v is goal-related, there exists a path in
DTG(v) from eff (o)[v] to s?[v].

We use act(s) to denote the set of active operators in state s.

3.2 Related Work

Theories about partial order reduction have emerged when it has been recog-
nized that concurrency can immensely exacerbate the state explosion problem
in the area of model checking. Both model checking and forward-search plan-
ning encounter the same fundamental problems that impair the scalability of
algorithms in both research areas. The reason behind this similarity is that
both areas utilize the construction of the reachability graphs for solving the
problem at hand. Intuitively, the techniques developed to tackle the encoun-
tered problem in both fields independently can be based on similar theoretical
concepts.

1In this thesis, the word “interference” refers to strong interference, i.e., “weak” should
explicitly be mentioned if we speak of weak interference

3.2. RELATED WORK 15

The most well-known approaches for partial order reduction in model check-
ing are stubborn sets introduced by Valmari 1989 [Val89], sleep sets introduced
by Godefroid 1996 [God96], and ample sets introduced by Peled 1993 [Pel93].
Furthermore, Godefroid proposed persistent sets which is a general notion for
techniques that perform state-based pruning like stubborn sets and ample sets [GP93;
God96].

Later, researchers in planning and search techniques have proposed state
space pruning techniques that share some features with the approaches of model
checking. The stratified planning and expansion core methods by Chen at
al. 2009; 2009 [CXY09; CY09] are two novel techniques that have been pro-
posed for optimal planning. However, these techniques have had two errors.
Firstly, the design of both techniques have encountered some subtle technical
flaws that threaten their correctness. These problems have later been corrected
by Wehrle and Helmert 2012 [WH12]. Secondly, the theoretical relationships
between the new proposed techniques and the original ones from model check-
ing were unclear. This thesis sheds light on the formal relationships between
different partial order reduction methods.

Furthermore, there are other contributions in planning to prune parts of
the state space and are similar to partial order reduction in their functional-
ity [HG00; HB14]. A pruning method called move pruning has been developed
by Burch and Holte to reduce the number of explored redundant states by
tree search algorithms like IDA∗ [Kor85]. Move pruning follows an approach
introduced by Taylor and Korf 1993 [TK93] for state space pruning. A prun-
ing technique called commutativity pruning has been proposed by Haslum and
Geffner [HG00], and it is a restricted form of move pruning.

Coles and Coles 2010 [CC10] proposed a pruning technique called tunnel-
ing which follows the idea of tunnel macros from Sokoban [JS01]. Inspired by
this work, Nissim et al. 2012 [NAB12] have proposed a generalization of tunnel
macros. Their technique is described as partition-based pruning technique be-
cause it depends on partitioning the set of operators to make pruning decisions.

The idea of active operators pruning has been first introduced by Chen and
Yao 2009 [CY09] and further investigated by Wehrle and Helmert 2012 [WH12]
for excluding some operators that do not belong to any plan. Later, Wehrle and
Helmert 2014 [WH14] compared several definitions of strong stubborn sets and
came up with a notion of generalized strong stubborn sets that unifies earlier
definitions of strong stubborn sets.

Bounded intention planning is a pruning technique proposed by Wolfe and
Russell 2011 [WR11] for optimal unary SAS+ planning tasks. This technique
has been classified, by the authors, as a variant of stubborn sets proposed by Val-
mari 1989 [Val89] without proving their claim. Sievers et al. 2014 [SWH14] have
shown that bounded intention planning is indeed a variant of stubborn sets.

Another pruning technique orthogonal to partial order reduction, called sym-
metry elimination, has been introduced in model checking by Ip and Dill 1996
[ID96]. Symmetry elimination prunes some behaviors given alternative ones
which might not lead to the same final outcomes, but the differences between
final outcomes are not critical for solving the problem at hand. For example,
given a robot with two grippers (right and left), whose task is to move an object
from room A to room B, the state in which the robot holds the object with the
right gripper is obviously different from the state in which she holds it with the
left gripper. However, these states are symmetrical since the choice between the

16 CHAPTER 3. PARTIAL ORDER REDUCTION

two gripper does not play a role in achieving the goal (i.e., having the object
moved from room A to room B). The first work that investigated symmetries
for planning was done by Fox and Long; Fox and Long 1999; 2002 [FL99; FL02].
Recently, symmetry elimination has been thoroughly investigated for classical
planning [DKS12; DKS13; Weh+15; Sie+15a; Sie+15b; Shl+15; DHK15] and
FOND planning [WWK16].

The combination of partial order reduction and symmetry elimination started
in the area of model checking [EJP97; BS15].
The work by Wehrle et al. 2015 [Weh+15] proposed two integration ideas of
partial order reduction and symmetry elimination for optimal classical plan-
ning, where strong stubborn sets for planning has been used as a partial order
reduction technique [Alk+12]. The first idea is the straightforward application
of strong stubborn sets to the computation of the space computed by symmetry
elimination. The second idea is to derive a new notion of symmetrical strong
stubborn sets which is a tighter integration of both techniques.

Chapter 4

Stubborn Sets for Classical
Planning

Stubborn sets are a key notion that has been introduced by Valmari to describe
a group of methods which adhere to a common theory with some differences in
their definitions, implementations, and pruning power [Val89]. These methods
are partial order reduction techniques that are state-dependent, i.e., are spe-
cialized for pruning states from the explored space of a search algorithm. Such
pruned states may be unique in the state space, however, they are guaranteed to
be uncritical for reaching some desired final states. Stubborn sets methods were
originally designed to alleviate the state explosion problem in Petri Nets. Typ-
ically, stubborn sets are used when the search algorithm cares only about some
final states (e.g., deadlocks), but is indifferent about the intermediate states
being explored.
In the context of planning, we are concerned about reaching a goal state, which
can be considered as a final state because the search does not need to continue
beyond it. Roughly speaking, even if a pruned state leads to a goal state, there
must be at least one alternative preserved state from which it is assured that
the same goal state is reachable.

In this chapter, we investigate how two variants of stubborn sets can be used
to perform partial order reduction in the context of optimal planning. Further-
more, the theoretical relationship between stubborn sets and other partial order
reduction techniques from previous work is discussed.

4.1 Variants of Stubborn Sets

The notion of stubborn sets exploits the independence (the opposite of inter-
ference) between transitions to reduce the number of executed transitions in
every state while maintaining the reachability of terminal states. Independent
transitions have the property that by applying them in any order, the same final
state is reached. The two methods that have been proposed for Petri Nets are
strong stubborn sets and weak stubborn sets. Valmari introduced the former as
a computationally more efficient variant but has less pruning power than the
latter [Val89].

Next, we will introduce some necessary definitions, then the definitions of

17

18 CHAPTER 4. STUBBORN SETS FOR CLASSICAL PLANNING

strong and weak stubborn sets.

Definition 17 (disjunctive action landmark). A disjunctive action land-
mark for a partial state t in state s, is a set of operators Lts such that every
operator sequence, which starts in s and leads to a state s′ with s′ |= t, must
contain some operator from Lts [HD09; Alk+12].

Definition 18 (necessary enabling set). A necessary enabling set for op-
erator o in state s is a set of operators N o

s such that every operator sequence,
which starts in s and includes o, must contain some operator from N o

s before
the first occurrence of o in the sequence [God96; WH12].

Alternatively, we can say that a necessary enabling set for a inapplicable
operator o in state s is a disjunctive action landmark for pre(o) in s, but we
prefer to explicitly speak of necessary enabling sets for chronological reasons,
since they have been first introduced by Godefroid [God96]. In addition, it is
easier for the reader to distinguish between operator enablers and goal achievers
when this separation between necessary enabling sets and disjunctive action
landmarks is made.

4.1.1 Strong Stubborn Sets

Valmari has introduced strong stubborn sets as the simplest among the group
of methods based on the stubborn sets theory. Next, the definition of strong
stubborn sets and an algorithm to compute them for SAS+ planning are pre-
sented.

Definition 19 (strong interference relation). Let Π = 〈V,O, s0, s?〉 be
a planning task. Furthermore, let o and o′ be operators in O. The strong
interference relation, written as Is, is a binary relation on O (Is ⊆ O×O) such
that (o, o′) ∈ Is if o and o′ strongly interfere. We write Is(o) to denote the set
of operators with which o interferes, i.e., o′ ∈ Is(o) iff (o, o′) ∈ Is.

Definition 20 (strong stubborn sets). Given a state s, a strong stubborn
set for s is a set of operators Ts such that:

1. For each o ∈ Ts ∩ app(s), we have Is(o) ⊆ Ts.

2. For each o ∈ Ts \ app(s), we have N o
s ⊆ Ts for some necessary enabling

set N o
s .

3. Ls?s ⊆ Ts for some disjunctive action landmark Ls?s .

Algorithm 1 is an iterative way of implementing stubborn sets. First, the
stubborn set is initialized by a disjunctive action landmark for the goal (line 1).
Then, the iteration includes the interfering operators with each operator o in
the stubborn set Ts if o ∈ app(s) (line 5); otherwise, it adds a necessary enabling
set for o in s (line 7). The algorithm terminates when no more operators can
be added to Ts (line 8).
Practically, a disjunctive action landmark in state s is computed as follows:

1. Select v ∈ vars(s?) s.t. s?[v] = d and s[υ] 6= d.

4.1. VARIANTS OF STUBBORN SETS 19

Algorithm 1 Strong stubborn set for state s

1: Ts ← Ls?s
2: repeat
3: for o ∈ Ts do
4: if o ∈ app(s) then
5: Ts ← Ts ∪ Is(o)
6: else
7: Ts ← Ts ∪N o

s

8: until Ts is stable
9: return Ts

2. Ls?s := {o | v ∈ vars(eff (o)) ∧ eff (o)[v] = d}.

In words, the choice of a disjunctive action landmark is done by choosing
an unsatisfied goal fact in s, and adding the operators that achieve that fact to
Ls?s . Similarly, a necessary enabling set for an operator o in state s is computed
as follows:

1. Select v ∈ vars(pre(o)) s.t. pre[v] = d and s[v] 6= d.

2. N o
s := {o′ | v ∈ vars(eff (o′)) ∧ eff (o)[v] = d}.

Like a disjunctive action landmark, a necessary enabling set is computed by
selecting an unsatisfied precondition fact, and adding the operators that achieve
that fact to N o

s .

Example 1. Let Π = 〈V,O, s0, s?〉 be a planning task, where

• V = {a, b}

• O = {o1, o2}, where

– pre(o1) = {a 7→ 0}, eff (o1) = {a 7→ 1}
– pre(o2) = {b 7→ 0}, eff (o2) = {b 7→ 1}

• s0 = {a 7→ 0, b 7→ 0}

• s? = {a 7→ 1, b 7→ 1}

A valid strong stubborn set for state s0 is Ts0 = {o1}: Variable a is a goal-
related variable whose goal value is not satisfied by s0, o1 achieves the goal
value of a, o1 is applicable in s0, and o1 does not strongly interfere with o2,
i.e., o2 /∈ Is(o1). This means that o2 is not applied in s0, thereby pruning state
o2(s0) as shown in Figure 4.1.

4.1.2 Weak Stubborn Sets

Weak stubborn sets have been proposed by Valmari as a state reduction tech-
nique in addition to strong stubborn sets [Val89]. Weak stubborn sets exclude
some operators that disable an operator already included in the set; hence, they
can have, at least theoretically, more pruning power than strong stubborn sets.
However, the conditions stated by Valmari to compute weak stubborn sets in the

20 CHAPTER 4. STUBBORN SETS FOR CLASSICAL PLANNING

00

10 01

11

o1 o2

o2 o1

00

10 01

11

o1 o2

o2 o1

Figure 4.1: Original state space (left) and reduced state space with strong
stubborn set (right).

context of Petri nets are rather complicated and difficult to implement. Next,
we will see that, in the context of classical planning, the definition of weak stub-
born sets is straightforward and does not incur an extra computational effort
when defined for syntactic operators of planning tasks.

Definition 21 (weak interference relation). Let Π = 〈V,O, s0, s?〉 be a
planning task. The weak interference relation is a binary relation on O (Iw ⊆
O × O) such that (o, o′) ∈ Iw iff o weakly interferes with o′ . We write Iw(o)
to denote the set of operators where o′ ∈ Iw(o) iff (o, o′) ∈ Iw.

Note that, in contrast to strong interference, weak interference is not a sym-
metric relation. The weak stubborn algorithm follows the same rules used by
strong stubborn algorithm but considers Iw instead of Is.

Definition 22. (weak stubborn sets) Given a state s, a weak stubborn set
for s is a set of operators Tws such that:

1. For each o ∈ Tws ∩ app(s), we have Iw(o) ⊆ Ts.

2. For each o ∈ Tws \ app(s), we have N o
s ⊆ Tws for some necessary enabling

set N o
s .

3. Ls?s ⊆ Ts for some disjunctive action landmark Ls?s .

The definition of weak stubborn sets is obtained by dropping one of the
conditions needed for the computation of the strong interference relation Is.
Thus, no overhead is incurred for the computation of weak stubborn sets, and
furthermore, they can prune more states than what strong stubborn sets prune.
Weak stubborn sets can be computed using Algorithm 1 by replacing Is(o) with
Iw(o) and Ts with Tws .

The following example shows that weak stubborn sets can prune exponen-
tially more states than strong stubborn sets.

Example 2. Let n > 1 and Πn = 〈V,O, s0, s?〉 be a planning task, where

• V = {a, b, c, v1, . . . , vn}

• O = {ob, oc, o1, . . . , on, ō1, . . . , ōn}, where

– pre(ob) = {a 7→ 0}, eff (o1) = {b 7→ 1}
– pre(oc) = {a 7→ 0}, eff (o2) = {c 7→ 1}

4.1. VARIANTS OF STUBBORN SETS 21

– pre(oi) = {>}, eff (oi) = {a 7→ 1, vi 7→ 1}
– pre(ōi) = {vi 7→ 1}, eff (ōi) = {a 7→ 0, vi 7→ 0}

• s0 = {a 7→ 0, b 7→ 0, c 7→ 0, v1 7→ 0, . . . , vn 7→ 0}

• s? = {b 7→ 1, c 7→ 1}

Before discussing how pruning by weak stubborn sets differs from pruning
by strong stubborn sets, let’s have a closer look at the characteristics of this
planning task:
Πn has O(2n) reachable states: There are variables v1, . . . , vn with values d ∈
{0, 1}, where all the combinations of facts 〈vi, d〉 are reachable from s0, i.e., ev-
ery valuation from v1 7→ 0, . . . , vn 7→ 0 until v1 7→ 1, . . . , vn 7→ 1. Furthermore,
Πn has no dead ends because ob and oc are active in all reachable states (either
a 7→ 0 is true, or it can be achieved by applying an operator ōi). In other words,
there is a goal state reachable from every reachable state.

Weak stubborn sets. There are two possible minimal weak stubborn
sets at state s0: Either {ob} or {oc}, depending on which variable (b or c)
is chosen for including a disjunctive action landmark for s? in s0. Operators
o1, . . . , on are applicable in s0, but none of them is included in a weak stubborn
set because neither ob nor oc weakly interferes with any of them, i.e., oi /∈ Iw(ob)
and oi /∈ Iw(oc) for all i ∈ {1, . . . , n}. Note also that ob and oc are non-
interfering with each other. Therefore, the reachable state space consists of 4
states, namely:

1. s0

2. ob(s0) = {a 7→ 0, b 7→ 1, c 7→ 0, v1 7→ 0, . . . , vn 7→ 0}

3. oc(s0) = {a 7→ 0, b 7→ 0, c 7→ 1, v1 7→ 0, . . . , vn 7→ 0}

4. ocob(s0) = oboc(s0) = {a 7→ 0, b 7→ 1, c 7→ 1, v1 7→ 0, . . . , vn 7→ 0}

Depending on the choice of variable for computing a disjunctive action land-
mark, either ob(s0) or oc(s0) is pruned, which leads to generating only 3 states
using weak stubborn sets.

Strong stubborn sets. We notice that any strong stubborn set in s0 will
contain all operators in O. To illustrate this, assume that variable b is selected
to compute a disjunctive action landmark in s0, then ob is included in the strong
stubborn set. Since ob ∈ app(s0) and all oi ∈ Is(o) (oi operators disable ob) for
all i ∈ {1, . . . , n}, this means that all oi will be included in the strong stubborn
set. Now that all oi ∈ app(s0) and they disable oc, the latter will be in the
strong stubborn set as well. Finally, operators oi and (ōi) conflict, which adds
all (ōi) to the strong stubborn set.

For other non-goal reachable states s from s0, we distinguish two cases:

• s[a] = 1: ob /∈ app(s) (the same holds for oc), and operators ōi are included
in the stubborn set as a necessary enabling set for ob in s, for all i ∈
{1, . . . , n}. At least one operator ōk ∈ {ō1, . . . , ōn} is applicable in s, i.e.,
s[vk] = 1, because at least one corresponding ok led to state s; otherwise,

22 CHAPTER 4. STUBBORN SETS FOR CLASSICAL PLANNING

s[a] 6= 1. Next, all operators oi are included in the stubborn sets because
they conflict with ōk. Finally oc is added to the stubborn set since it is
disabled by operators oi, which are applicable in s. As a result, every
operator is included in the stubborn set.

• s[a] = 0: ob ∈ app(s) (the same holds for oc), and the computation of the
stubborn sets is exactly like in state s0, which includes all operators in
the stubborn set.

For this example, we conclude that the reachable state space using strong
stubborn sets has a size exponential in the number of variables (O(2n)), whereas
the size of the reachable state space is 4 when weak stubborn sets are being
considered (only 3 are actually generated).

4.2 Stubborn Sets for Optimal Classical Plan-
ning

We show now that stubborn sets (strong and weak) can be utilized by an opti-
mal search algorithm (e.g., A∗ guided by an admissible heuristic), such that the
combination preserves completeness and optimality. In the following, A∗sss de-
notes A∗ using strong stubborn sets, and A∗wss denotes A∗ using weak stubborn
sets.

Theorem 1. A∗wss is completeness and optimality preserving.

Proof. Let Tws a weak stubborn set computed according to Definition 22 for
state s. Let Twapp(s) ⊆ Tws be the set of applicable operators included in Tws .
We show that for all states s from which there exists an optimal plan p with
|p| > 0, Twapp(s) contains an operator that starts such a plan. Let p = o1 . . . on
is an optimal plan that starts in s. Since Tws contains a disjunctive action
landmark, at least one operator oi must be included in Tws . Let ok be the
operator with the smallest index in p that is contained in Tws , i.e., ok ∈ Tws and
{o1, . . . , ok−1} ∩ Tws = ∅. We have:

1. ok ∈ app(s); otherwise a necessary enabling set N ok
s has to be included

in Tws by rule 2 of definition 22, which means at least one operator from
N ok
s must be applied before ok in p to enable ok, and this contradicts the

assumption that ok has the smallest index.

2. ok does not weakly interfere with any oi with i ∈ {1, . . . , k − 1}, i.e.,
ok does not disable oi, and ok and oi do not conflict; otherwise, at least
one operator from o1, . . . , ok−1 has to be contained in Tws by rule 1 of
definition 22, again contradicting the assumption.

Therefore, we can obtain an optimal plan by shifting ok to the front, i.e., we
have an alternative permutation of the operators o1, . . . , ok that starts with ok
and has the same cost as p: ok, o1, . . . , ok−1, ok+1, . . . , on.

Corollary 1. Strong stubborn sets are completeness and optimality preserving.

4.3. THE PRUNING POWER OF STUBBORN SETS 23

Practically, the implementations of stubborn sets consists of two steps: A
preprocessing step in which the interference relation (Is or Iw) is precomputed
for all operators of the planning task and cached in memory, and a runtime
step where stubborn sets are computed during the search process for generated
states by looking up the interference relation.

4.3 The Pruning Power of Stubborn Sets

An in-depth analysis has shown that stubborn sets1, in their original form,
strictly dominate previous state pruning techniques like expansion core. The ex-
pansion core method has been proposed as a state reduction technique [CY09].
However, the original version was marred with a technical flaw that has been
discovered and corrected later by Wehrle & Helmert [WH12]. Previous work
has shown that expansion core is an instantiation of the strong stubborn sets
method [WH12]. Although both stubborn sets and expansion core are state re-
duction techniques, there are fundamental differences in the way both methods
are presented. While stubborn sets are defined in an operator-based fashion, ex-
pansion core is defined with respect to variable dependencies (i.e. interference).
For this reason, the relationship between both techniques is not straightforward
to be inferred. Therefore, both methods have been represented as sets of rules
to show the strict dominance of stubborn sets over expansion core.

This section summarizes the process used for showing the relationship be-
tween expansion core and stubborn sets. The detailed theoretical results exists
in [Weh+13]. First, we briefly describe the expansion core method based on
Wehrle & Helmert [WH12].

Expansion Core. Let Π = 〈V,O, s0, s?〉 be a planning task and let s be a
state. Given variables v and v′ ∈ V, v is a potential precondition of v′ in s if
there is an operator o ∈ act(s) such that v ∈ vars(pre(o)), o is v-applicable, and
v′ ∈ vars(eff (o)). v is a potential dependent of v′ in s if there is an operator
o ∈ act(s) such that v ∈ vars(pre(o)), o is v-applicable, and v′ ∈ vars(eff (o)).
The potential dependency graph PDG(s) is a directed graph 〈V,E〉, where V =
V. There is an edge from variable v to v′ if v is a potential precondition of v′ in
s, or v is a potential dependent of v′ in s, or there exists an operator o ∈ act(s)
such that v ∈ vars(eff (o)) and v′ ∈ vars(eff (o)). Given a state s, the expansion
core algorithm is computed a follows:

1. Compute the potential dependency graph PDG(s) in s.

2. Select a goal-related state variable v? that is unsatisfied in s (i.e., s?[v?] 6=
s[v?]),

3. Compute a dependency closure dc(s), which is a set of variables, such that
v? ∈ dc(s), and for variables v and v′, if v ∈ dc(s) and PDG(s) contains
an edge from v to v′, then v′ ∈ dc(s).

4. Select a subset of app(s), whose operators modify a variable in dc(s), to
be applied in s.

1By stubborn sets we mean the strong variant.

24 CHAPTER 4. STUBBORN SETS FOR CLASSICAL PLANNING

Sets of rules. For the purpose of the analysis, several sets of rules have been
introduced to show the strict dominance of strong stubborn sets over expansion
core (the detailed rules are stated in [Weh+13]):

• The expansion core is first reformulated as a set of monotonic rules that
can be applied until a fixed point is reached. For a given state s, EC(s) is
the result of applying these rules. The first rule initializes dc(s), the next
three rules adds variables to dc(s), and the fifth rule computes EC(s).
The final result is identical to the result of the original formulation of the
algorithm when the same goal-related variables is selected for initializa-
tion.

• The next set of rule is obtained by computing the expansion core in an
operator-based fashion, i.e., operators added to EC(s) without building
dc(s) first. This variant of expansion core is called operator-based expan-
sion core (OBEC), and it is an intermediate step between the original
version of expansion core and strong stubborn sets. It has been shown
that the pruning power of OBEC is always at least as large as the pruning
power of EC. This fact has been concluded by comparing the previous set
of rules with the ones of OBEC.

• Finally, an instantiation of strong stubborn sets has been proposed as
a set of rules. This variant is called SSS-EC, and it is computed in a
way that reflects definition 20, with special choices for disjunctive action
landmarks and necessary enabling sets that achieve the dominance of SSS-
EC over OBEC. The final and most important theorem in this analysis
has shown that this particular instantiation of strong stubborn sets strictly
dominates the expansion core in terms of pruning power. Furthermore,
there exist families of planning tasks where strong stubborn sets explore
exponentially less states than what expansion core explores [Weh+13].

Chapter 5

Stubborn Sets for FOND
Planning

Planning agents can face situations where they are uncertain about the out-
comes of executing their actions in the world. Fully observable nondeterministic
(FOND) planning is a planning form used for modeling uncertainty by nonde-
terminism in actions of planning problems [Cim+03; Lev05; Kut+08; KE09;
Fu+11]. A nondeterministic action has several outcomes, where only one of
them is applied in a given state when the action is executed. However, it
is unknown a priori which outcome is going to influence the successor state.
Therefore, the state space of the nondeterministic model needs to represent all
possible successor states that are obtained by different outcomes of nondeter-
ministic actions. Like classical planning, FOND planning faces the exponential
growth in the state space induced by the concise description of a nondeterminis-
tic planning problem. Therefore, pruning techniques might help reduce the size
of the explored state space of a FOND planning problem. In this chapter, we
establish the theoretical basis for a stubborn sets technique for FOND planning
problems. Most of the content in this chapter has been published by Winterer
et al. 2017 [Win+17].

5.1 Preliminaries

In the following, we state the most important definitions needed in this chapter.
We start with the formal definition of nondeterministic transition systems used
to represent nondeterministic planning tasks1.

Definition 23 (nondeterministic transition system). A nondeterministic
transition system T is a 5-tuple (S, s0, A, T,G), where

• S is a finite set of states,

• s0 ∈ S is the initial state,

• A is a finite set of transitions (actions),

1The main difference between the definitions of deterministic transition system (Def. 1)
and nondeterministic transition system is the nondeterministic transition relation T .

25

26 CHAPTER 5. STUBBORN SETS FOR FOND PLANNING

• T : S ×A× S is the nondeterministic transition relation, and

• G ⊆ S is finite set of goal states.

Next, we define nondeterministic operators and FOND planning tasks.

Definition 24 (nondeterministic operator). A nondeterministic operator
o is a structure that has a precondition pre(o) and a set of effects effs(o), where
pre(o) and eff i(o) ∈ effs(o) are partial states. The degree of an operator o,
denoted as deg(o), is the number of its nondeterministic effects. If deg(o) = 1,
i.e., effs(o) = {eff 1(o)}, then o is deterministic. If o is a deterministic operator,
we write eff (o) instead of eff 1(o).

Definition 25 (Fully observable nondeterministic planning task). A
fully observable nondeterministic (FOND) planning task is a tuple Π = 〈V,O, s0, s?〉,
where

• V is a finite set of finite-domain state variables,

• O is a finite set of nondeterministic operators,

• s0 an initial state, and

• s? is a partial state representing the set of goal states.

Definition 26 (all-outcome determinization). The all-outcome determiniza-
tion of a nondeterministic operator o is o[1], . . . , o[k], where k = deg(o) and every
outcome o[i] has precondition pre(o) and eff (o[i]) = eff i(o). We use Odet to de-
note the set of all outcomes of operators in O.

Solutions to FOND planning tasks are called policies.

Definition 27 (policy). A policy is a mapping π : S 7→ O ∪ {⊥}, which maps
states to operators or π is undefined (i.e., π(s) = ⊥). A policy π is called weak
if π defines at least one path from the initial state to a goal state when following
π. In this case, π is called a weak plan for Π. A policy π is closed if following
π either leads to a goal state, or to a state where the policy is defined. It is
proper if from every state visited following π, there exists a path to a goal state
following π. A policy that is closed and proper is called a strong cyclic plan
for Π. Furthermore, π is acyclic if it does not revisit already visited states. A
closed and proper acyclic policy is called a strong plan for Π.

Informally, a weak plan is a sequence of operators which may lead from
the initial state to a goal state but are not guaranteed to do so [Cim+03].
Weak plans correspond to sequential plans in classical planning. A strong plan
guarantees that a goal state is reached, where an upper bound on the number
of plan steps exists. In contrast to strong plans, strong cyclic plans reach a
goal state after a number of steps under the fairness assumption, i.e., there is
a nonzero probability that a goal state can be reached when following a strong
cyclic plan.

5.2. PRUNING TECHNIQUES FOR FOND 27

5.2 Pruning Techniques for FOND

Similar to classical planning, FOND planning faces the state explosion prob-
lem. Due to this fact, state space pruning techniques, like stubborn sets, are
considered as eligible methods to tackle the state explosion problem in nondeter-
ministic worlds. However, pruning techniques cannot be applied in the context
of FOND planning in a straightforward way due to the complicated structure of
the nondeterministic state space which is represented by AND/OR graphs. In
this section, we present the theoretical basis for a stubborn sets method com-
bined with LAO∗ [HZ01] search in the context of FOND planning. First, we
show, by the following example, that using the original stubborn sets definition
with the all outcome determinization is unsafe.

Example 3. Consider the following all-outcome determinization Πdet = 〈V,Odet, s0, s∗〉
of nondeterministic planning task Π with:

• V = {v1, v2, v3},

• O = {o1, o2, o3, o4, o5, o6}, where

– pre(o
[1]
1) = {v1 7→ 0}, eff (o

[1]
1) = {v1 7→ 1}

– pre(o
[2]
1) = {v1 7→ 0}, eff (o

[2]
1) = {v1 7→ 2}

– pre(o
[1]
2) = {v2 7→ 0}, eff (o

[1]
2) = {v2 7→ 1}

– pre(o
[2]
2) = {v2 7→ 0}, eff (o

[2]
2) = {v2 7→ 2}

– pre(o3) = {v1 7→ 1, v2 7→ 1}, eff (o3) = {v3 7→ 1}
– pre(o4) = {v1 7→ 1, v2 7→ 2}, eff (o4) = {v3 7→ 1}
– pre(o5) = {v1 7→ 2, v2 7→ 0}, eff (o5) = {v3 7→ 1}
– pre(o6) = {>}, eff (o6) = {v2 7→ 0}

• s0 = {v1 7→ 0, v2 7→ 0, v3 7→ 0}

• s? = {v3 7→ 1}

The set {o3, o4, o5} is a disjunctive action landmark for s? in s0 and, there-
fore, is a candidate to initialize Ts0 . As all operators in this set are inapplicable
in s0, a necessary enabling set for each of them needs to be added to Ts0 . Assume

the computation of stubborn sets chooses o
[1]
2 , o

[2]
2 and o6 as necessary enabling

sets for o3, o4, and o5 (with respect to variable v2), respectively. At this point of
the computation, Ts0 contains o3, o4, o5, o6 and both outcomes of o2. o6 is appli-
cable and mutually conflicts with both outcomes of o2, which are already in the

stubborn set. The computation terminates with Ts0 = {o3, o4, o5, o6, o
[1]
2 , o

[2]
2 }.

This means that o1 is pruned in s0, leading to a policy with deadends. Figure
5.1 shows that the only possible solution starts by applying o1 in s0.

Example 3 shows us that non-interference between operators’ outcomes is
not a sufficient criterion to safely apply the stubborn sets technique in the
nondeterministic setting. In the following, we introduce the notion of attachable
operators and show that it can be utilized to design a safe stubborn sets method
for FOND planning.

28 CHAPTER 5. STUBBORN SETS FOR FOND PLANNING

1

000

2010 2 020

110 210 120 220

111 121

o2

o1 o1

o3 o4

1

000

2100 2 200

110 2120 201

111 121

o1

o2
o5

o3 o4

Figure 5.1: Applying o2 before o1 in s0 only leads to a policy (left figure: red
nodes are deadends) with dead-ends. The right figure is a strong plan.

s

o2 π ⇒
s

o1 o2 π

Figure 5.2: Adding o1 to the front of the operator transforms weak plan o2π
into weak plan o1o2π.

Definition 28 (attachable operator). Let o1 and o2 be operators in Odet,
π be an operator sequence, and s be a state. Operator o1 is attachable to o2 in
state s if for every weak plan o2π from s, o1o2π is a weak plan from s.

Checking the attachability property is computationally intractable. To be
precise, this property is state-dependent, i.e., it needs to be checked in each vis-
ited state. Moreover, verifying this property amounts to finding two weak plans
for s, one that starts with o2 and another one that starts with o1. Therefore,
it is necessary to come up with an approximation based on a syntactic check of
operators. Figure 5.2 shows the idea of attachability: If o1 is attachable to o2,
then the weak plan o2π from s can be applied in state o1(s).

Definition 29 (disabled set and negated goal set). Let Π = 〈V,O, s0, s?〉
be a FOND planning task and o1 be an operator in Odet.

• The disabled set dis(o1) is defined as the set of operator-variable pairs
(o2, v) ∈ Odet × V, such that o1 disables o2 on v, i.e., v ∈ vars(eff (o1)) ∩
vars(pre(o2)) and eff (o1)[v] 6= pre(o2)[v].

• The negated goals set neg(o1) is defined as the set of goal variables with
which o1 conflicts, i.e., eff (o1)[v] 6= s?[v].

Definition 30 (syntactic attachable operator). Let o1 and o2 be two op-
erators in Odet. We say that o1 is syntactically attachable to o2 if

1. o1 does not disable o2,

2. dis(o1) ⊆ dis(o2), and

3. neg(o1) ⊆ neg(o2).

5.2. PRUNING TECHNIQUES FOR FOND 29

In the following theorem, we show that syntactic attachability is sufficient
to check attachability.

Theorem 2. Let Π = 〈V,O, s0, s?〉 be a FOND planning task, s be a state of
Π, and o1 and o2 be operators in Odet ∩ app(s). If o1 is syntactically attachable
to o2, then o1 is attachable to o2 in s.

Proof. Let π = o′1 . . . o
′
n be a weak plan from o2(s), where all operators o′i are

in Odet. Since o1 and o2 are both applicable in s, we know from condition (1)
(Definition 30) that o2 is applicable in o1(s). To show that the entire operator
sequence π is applicable in state o2(o1(s)), we compare the valuations of state
variables in states o2(o1(s)) and o2(s). By condition (2), we know that states
o2(o1(s)) and o2(s) cannot have different valuations on variables that occur
in o1’s effect such that these valuations destroy at least one precondition of
some operator in π. Therefore, it holds that o2(s)[v] = o2(o1(s))[v] for all v ∈
{v′ | (o, v′) ∈ dis(o1)}. For all other v ∈ vars(eff (o1)) \ {v′ | (o, v′) ∈ dis(o1)}
with o2(o1(s))[v] 6= o2(s)[v] we distinguish two cases: Variable v /∈ vars(pre(o′i))
for all i ∈ {1, . . . , n} or v ∈ vars(pre(o′i)) for some i ∈ {1, . . . , n}. In the
first case, operator sequence π is applicable in o2(o1(s)). In the second case,
eff (o1)[v] = pre(o′i)[v], otherwise (o, v) ∈ dis(o1) for some o ∈ {o′1, · · · , o′n}
contradicting condition (2). Hence, π is applicable in o2(o1(s)) in this case as
well. Finally, we have to show that o1o2π is indeed a weak plan from s. From
condition (3), we know that all goal facts that are satisfied in o2(s) must be
satisfied in o2(o1(s)). Therefore o1o2π is a weak plan from s concluding the
proof.

5.2.1 Weak Interference vs. Attachability

Pruning using the notion of weak interference might result in equivalent weak
plans that are permutations of non-interfering operators. On the other hand,
attachability allows introducing new operators to the beginning of weak plans
such that the resulting sequence is also a weak plan. To understand the de-
sign choices of the new pruning technique proposed next, we first clarify the
relationship between attachability of operators and weak interference.

At first glance, it might seem to the reader that the notion of attachability
subsumes the notion of weak interference. However, as we are going to see by
examples, both notions are incomparable, i.e., if operator o1 is syntactically
attachable to operator o2, this does not imply that o1 does not weakly interfere
with o2.

Example 4. Consider a FOND planning task Π = 〈V,O, s0, s?〉, where

• V = {v1, v2, v3, v4}

• O = {o1, o2}, where

– pre(o1) = {v1 7→ 0}, effs(o1) = {{v2 7→ 1, v4 7→ 1}}
– pre(o2) = {v1 7→ 0}, effs(o2) = {{v3 7→ 1, v4 7→ 2}}

• s0 = {v1 7→ 0, v2 7→ 0, v3 7→ 0, v4 7→ 0}

• s? = {v2 7→ 1, v3 7→ 1}

30 CHAPTER 5. STUBBORN SETS FOR FOND PLANNING

We observe that operators o1 and o2 are mutually syntactically attachable
to each other: dis(o1) ⊆ dis(o2) = ∅, and neg(o1) ⊆ neg(o2) = ∅. However,
they also mutually weakly interfere with each other because they conflict on
variable v4.

In addition, attachability gives rise to a new concept of state space pruning:
We obtain a stubborn set based solely on attachability. For simplicity, we assume
classical planning tasks in the following definition.

Definition 31 (attachability-based stubborn sets). Given a state s, an
attachability-based stubborn set for s is a set of operators Ta such that:

1. For each o ∈ Ta ∩ app(s), Ta contains all operators to which o is not
syntactically attachable.

2. For each o ∈ Ta \ app(s): N o
s ⊆ Ta for some necessary enabling set N o

s .

3. Ls?s ⊆ Ts for some disjunctive action landmark Ls?s .

If we review Definitions 20 and 22 from Chapter 4, we see that Definition 31
differs from them only in rule 1, which considers attachability instead of strong
or weak interference.

Theorem 3. Attachability-based stubborn sets technique is completeness pre-
serving.

Proof. Let Π = 〈V,O, s0, s?〉 be a planning task. Let o1 and o2 be operators in
O such that o1 is syntactically attachable to o2. From Definition 30, we know
that o1 does not disable o2, which is the first condition to check whether o1

weakly interferes with o2.
Now, assume that o1 and o2 conflict on some variable v ∈ vars(eff (o1)) ∩

vars(eff (o2)), i.e., eff [o1](v) 6= eff [o2](v). We show that conflicting on v is not
critical for reaching a goal state by performing syntactic analysis. Assume that
v ∈ vars(pre(o′)) for some o′ ∈ O such that o2 can enable o′ on v and o1 disables
o′ on v. This means that (o′, v) ∈ dis(o1) and (o′, v) /∈ dis(o2), contradicting
the second condition of attachability: dis(o1) ⊆ dis(o2). Now assume that v is
a goal-related variable such that o1 sets it to a value other than its goal value,
and o2 sets v to its goal value. Again, this implies v ∈ neg(o1) and v /∈ neg(o2)
contradicting the third condition of attachability: neg(o1) ⊆ neg(o2). Hence,
no such o′ can exist and the claim of the theorem holds.

It is worthwhile to mention that, due to the nature of attachability, it can
lead to suboptimal weak plans. We further show, by the following examples, that
stubborn sets based on weak interference and stubborn sets based on attacha-
bility are two different pruning techniques such that none of them dominates
the other with respect to pruning power.

Example 5. Consider a FOND planning task Π = 〈V,O, s0, s?〉, where

• V = {v1, v2, v3}

• O = {o1, o2, o3}

– pre(o1) = {>}, eff (o1) = {{v1 7→ 2, v2 7→ 1}}
– pre(o2) = {>}, eff (o2) = {{v1 7→ 1}}

5.2. PRUNING TECHNIQUES FOR FOND 31

– pre(o3) = {v1 7→ 1, v2 7→ 1}, eff (o3) = {{v3 7→ 1}}

• s0 = {v1 7→ 0, v2 7→ 0, v3 7→ 0}

• s? = {v1 7→ 1, v2 7→ 1, v3 7→ 1}

Let Ta denote a stubborn set that uses only syntactic attachability. Since
{o2} is a disjunctive action landmark for s? in s0, we can use it to initialize
the stubborn set: Ta(s0) = {o2}. Because o2 ∈ app(s0), we need to add the
operators to which o2 is not attachable. Since dis(o2) = ∅ and neg(o2) = ∅, o2 is
attachable to both o1 and o3. This means that the computation will terminate
on Ta(s0) = {o2}. On the other hand, if we compute Ts, the stubborn set based
on weak interference, the result is different. We initialize Ts(s0) with o2 as
before. o2 is applicable, which means we need to add operators with which o2

weakly interferes. Obviously, o2 weakly interferes with o1 because they conflict
on variable v1. Therefore, o1 is added to Ts(s0). Also, o1 is applicable and it
disables o3, hence o3 is added to Ts(s0), which means all operators are applied
in s0 (Ts(s0) = {o1, o2, o3}).

Furthermore, each method can result in a different plan: Depending on
the search algorithm, using only syntactic attachability might result in plan
o2o1o2o3, while using only weak interference might lead to plan o1o2o3 which is
optimal.

Example 6. Consider a FOND planning task Π = 〈V,O, s0, s?〉, where

• V = {v1, v2}

• O = {o1, o2, o3}, where

– pre(o1) = {>}, eff (o1) = {{v1 7→ 1}}
– pre(o2) = {>}, eff (o2) = {{v2 7→ 1}}
– pre(o3) = {v1 7→ 0}, eff (o3) = {{v2 7→ 1}}

• s0 = {v1 7→ 0, v2 7→ 0}

• s? = {v1 7→ 1, v2 7→ 1}

We compute Ta(s0): The set {o1} is a disjunctive action landmark in s0,
so we add it to Ta(s0). Since o1 is applicable, we add operators to which it
is not attachable. Because dis(o1) = {o3} * dis(o2) = ∅, o1 is not attachable
to o2 and therefore o2 is added to Ta(s0). In addition, o3 is added because o1

disables o3 and hence not attachable to it, ending in Ta(s0) = {o1, o2, o3}. Using
weak interference: We add o1 to Ts(s0) as a disjunctive action landmark. o1 is
applicable so we need to add the operators with which it weakly interferes. We
add o3 only because o1 disables o3, but we do not add o2 because neither o1 nor
o3 weakly interferes with o2. Therefore, Ts(s0) = {o1, o3}.

We conclude this section with the following corollary, summarizing our ob-
servations.

Corollary 2. Stubborn sets based on weak interference and stubborn sets based
on attachability are incomparable in terms of pruning power.

32 CHAPTER 5. STUBBORN SETS FOR FOND PLANNING

5.2.2 Nondeterministic Weak Stubborn Sets

While attachability is a sufficient criterion for stubborn sets pruning, it could
lead to unnecessary state explorations (e.g., see plan length in Example 5). We
propose a stubborn set method based on a combination of attachability and
weak interference for FOND planning. The definition of a disjunctive action
landmark can be extended to FOND planning in a straightforward way. In the
context of FOND planning, a disjunctive action landmark for a partial state s′

in a state s is a set of nondeterministic operators with the property that some
outcome of an operator from this set occurs on every path from s to any state
that satisfies s′. A necessary enabling set for an operator o in s is a disjunctive
action landmark for pre(o) in s. The following definitions extend syntactic
attachability and weak interference to nondeterministic operators.

Definition 32 (operator accordance). Let o1 and o2 be operators in O. We

say that o1 accords with o2 if outcome o
[i]
1 is syntactically attachable to outcome

o
[j]
2 for all i ∈ {1, . . . , deg(o1)} and all j ∈ {1, . . . , deg(o2)}.

Definition 33 (weak interference of nondeterministic operators). Let
o1 and o2 be operators in O. We say that o1 weakly interferes with o2 if at least

one outcome o
[i]
1 weakly interferes with at least o

[j]
2 for some i ∈ {1, . . . , deg(o1)}

and some j ∈ {1, . . . , deg(o2)}.

Based on these definitions, we define now weak stubborn sets for FOND
planning.

Definition 34 (nondeterministic weak stubborn sets). Let Π be a nonde-
terministic planning task, and s be a state. A set Ts ⊆ O is a nondeterministic
weak stubborn set (NWSS) in s if the following conditions hold:

1. Ts contains a disjunctive action landmark for s? in s.

2. For each operator o ∈ Ts with o /∈ app(s), Ts contains a necessary enabling
set for o in s.

3. For each operator o ∈ Ts with o ∈ app(s), Ts contains all nondeterministic
operators o′ (deg(o′) > 1) with which o does not accord.

4. For each operator o ∈ Ts with o ∈ app(s), Ts contains all operators with
which o weakly interferes.

Nondeterministic weak stubborn sets can be seen as a hybrid notion com-
bining attachability with weak interference. Points (1) and (2) of Definition 34
are equivalent to points (3) and (2) in Definition 22, respectively2. Accordance,
in point (3), is a necessary property for changing the application order of non-
deterministic operators in AND/OR graphs. However, in some cases, pruning
can be performed by merely permuting operator sequences (e.g., if the involved
operators are deterministic) without the need to attach extra operators, which
cannot be guaranteed by accordance alone. For this reason, we make the dis-
tinction between deterministic operators and operators of degree at least two,
and use only weak interference when processing deterministic operators (point

2The order of rules in a definition of stubborn sets is not important.

5.2. PRUNING TECHNIQUES FOR FOND 33

4). This means, if a planning task has only deterministic operators, then only
points (1), (2), and (4) of Definition 34 are relevant.

In the following theorem, we see that pruning with nondeterministic weak
stubborn sets is a safe option for FOND planning.

Theorem 4. Restricting the successor generation to a NWSS in every state is
completeness-preserving for strong cyclic planning.

Proof. Let s be a state from which a strong cyclic plan exists and let π be such a
plan. Let Ts be a nondeterministic weak stubborn set for s. We show that either
(i) the operator π(s) is in Ts, or (ii) there exists o ∈ Ts such that o ∈ app(s)
and for each state s′ ∈ o(s), there exists a strong cyclic plan from s′.

Let π′ = o1 . . . on be any sequence of operators from π that defines an acyclic
weak plan from s. Ts contains a disjunctive action landmark for s? in s, and thus
it contains an operator from π′. Let oi be such an operator with smallest index.
Then oi ∈ app(s) (otherwise its necessary enabling set would be contained in Ts,
mandating an operator from the necessary enabling set to appear in π′ before
oi). If i = 1, we are done; otherwise, we distinguish two cases: Operator oi is
a strictly nondeterministic operator or operator oi is a deterministic operator.

In the first case, we observe: For every outcome o
[j]
i , o

[j]
i π
′ is a weak plan as

o
[j]
i accords with every operator of smaller index within π′. For the second case,

we see that o
[j]
i o1 . . . oi−1oi+1on is a weak plan from s. As o

[j]
i is an arbitrary

outcome of oi, the resulting structure is a strong cyclic plan.

We also provide a nondeterministic strong variant of stubborn set (NSSS)
by modifying Definition 34 as follows: In point 3, all operators that do not
mutually accord with o are added to the stubborn set. In point 4, all operators
that strongly interfere with o are added to the stubborn set.

Corollary 3. NSSS inherit the completeness property from NWSS.

Proof. The definition of NSSS subsumes the definition of NWSS; hence, the
proof of Theorem 4 shows also that NSSS is a completeness-preserving pruning
technique.

Example 7. Consider the following nondeterministic planning taskΠ = 〈V,O, s0, s?〉,
where

• V = {v1, v2, v3}

• O = {o1, o2, o3, o4, o5, o6, o7}, where

– pre(o1) = {v1 7→ 0}, effs(o1) = {{v1 7→ 1}, {v1 7→ 2}}
– pre(o2) = {v2 7→ 0}, effs(o2) = {{v2 7→ 1}, {v2 7→ 2}}
– pre(o3) = {v1 7→ 2}, effs(o3) = {{v3 7→ 1}, {v3 7→ 2}}
– pre(o4) = {v1 7→ 1, v2 = 1}, effs(o4) = {{v2 7→ 3}}
– pre(o5) = {v1 7→ 1, v2 = 2}, effs(o5) = {{v2 7→ 3}}
– pre(o6) = {v1 7→ 2, v3 = 1}, effs(o6) = {{v2 7→ 3}}
– pre(o7) = {v1 7→ 2, v3 = 2}, effs(o7) = {{v2 7→ 3}}

• s0 = {v1 7→ 0, v2 7→ 0, v3 7→ 0}

34 CHAPTER 5. STUBBORN SETS FOR FOND PLANNING

1

000

100 200

110 120 201 202

130 130 231 232

o1

o2 o3

o4 o5 o6 o7

1

000

010 020

110 210 120 220

130 231211 212 221 222

231 232 231 232

o2

o1 o1

o4 o5o3 o3

o6 o7 o6 o7

Figure 5.3: Both structures are policies for the planning task.

• s? = {v2 7→ 3}

We compute Ts0 according to Definition 34: The set {o4, o5, o6, o7} is a
disjunctive action landmark for s? in s0 which we add to Ts0 . Obviously, all
of these operators are inapplicable, which means we need to add a necessary
enabling set for each of them. By considering variable v1 in the precondition of
all operators in Ts0 , operator o1 can be added to Ts0 as a necessary enabling
set. Clearly, o1 is applicable in s0, weakly interferes with o3, and accords with
o2; hence, only o3 will be added to Ts0 . Operator o3 is inapplicable and {o1} is
a necessary enabling set for it. Consequently, the computation terminates with
Ts0 = {o1, o3, o4, o5, o6, o7} with only o1 being applied in s0 and o2 is pruned.
The left graph in Figure 5.3 shows a strong plan that starts with o1 in s0.

On the other hand, considering variable v2 for operators o4 or o5, as a basis
to choose a necessary enabling set, leads to including o2 to the stubborn set in
addition to o1, which is included for any choice of variables for operators o6 and
o7. The right graph in Figure 5.3 shows the strong plan that starts with o2 in
s0.

Unlike permuting operators of sequential plans, changing the application
order of nondeterministic operators might result in new structures that differ in
size from the original ones. For example, Figure 5.3 shows two strong plans that
can be obtained by two different application orders for operators o1 and o2. For
future work, this observation is a motive to investigate an optimized version of
stubborn sets algorithm tailored to enforce the choice of small structures over
larger ones (e.g., the left graph vs. the right graph in Figure 5.3).

Chapter 6

Sleep Sets for Classical
Planning

The sleep sets method has originally been introduced in the area of computer-
aided verification [GW92]. Sleep sets are path-dependent, i.e., they prune tran-
sitions in a state depending on information collected along the path through
which the state has been reached. Several variants of sleep sets have been pro-
posed by Godefroid [GHP93; GHP95; God96]. However, some of these variants
were faulty when combined with search algorithms that perform full duplicate
elimination as it has been shown in later work [KP95; Bos+09]. Although nec-
essary modifications have been performed to guarantee the correctness of sleep
sets, some theoretical questions remained unanswered. For instance, it was still
unclear which search algorithms can safely be combined with the original form
of sleep sets.

In this chapter, we eliminate the ambiguity related to sleep sets’ variants
and come up with a taxonomy of them. The definition of sleep sets relies on the
notion of commutativity between operators (Definition. 15). The commutativity
relation, denoted as on, is a binary relation on the set of operators. Informally,
two operators are commutative if they do not affect the applicability or the
effects of each other. Because the sleep sets technique is a transition reduction
technique, it preserves all reachable states and prunes only redundant ones. As
a path-dependent method, sleep sets require a total order on operators and
operator sequences.

Next, we introduce the definitons of total orders and minimal paths.

Definition 35 (total orders on paths). [HAW15] Let Π = 〈V,O, s0, s?〉 be
a planning task. We introduce the following notions:

• Let α, β, γ and λ be paths. A total order <o on operator sequences is
nested if ε <o α for all α 6= ε, and α <o β implies γαλ <o γβλ.

• Let α and β be paths. Let <o be a total order defined on operators in
O, e.g., o1 <o o2 <o . . . <o on. This order induces a total order on
paths which is length-lexicographic. A total order <o on paths is length-
lexicographic if the following holds: α <o β iff either |α| < |β|, or |α| = |β|
and oi <o o

′
i, where oi and o′i are the leftmost operators in α and β,

respectively, where for all k, 1 ≤ k ≤ i, it holds that ok = o′k, and oi 6= o′i.

35

36 CHAPTER 6. SLEEP SETS FOR CLASSICAL PLANNING

Proposition 1. Every length-lexicographic order is a nested order.

Definition 36 (minimal path). [HAW15] Let <o be a nested order on op-
erator sequences. For any two states s and t, we define min(s, t), the minimal
path from s to t, to be the least-cost path from s to t that is smallest according
to the nested order <o. min(s, t) is undefined if there is no path from s to t.

Let <ss denote a total order on operators that is used by sleep sets. We
emphasize that <ss is an arbitrary total order on operators enforced by sleep
sets, i.e., sleep sets are not restricted to a specific order. To explain the notion
of minimal paths, consider the following example: Let o1 and o2 be operators
such that o1 <ss o2. Furthermore, let s and t be states such that t is reachable
from state s via paths o1o2 and o2o1. Then, min(s, t) = o1o2. In the following,
we introduce the definition of sleep sets.

Definition 37 (sleep set). Given a path σn = o1 . . . on, its sleep set is defined
as follows:

• ss(σn) = {o ∈ O | (o <ss on ∨ o ∈ ss(σn−1)) ∧ o on on} with σn−1 =
o1, . . . , on−1, and

• ss(ε) = ∅.

For every explored path σ, a sleep set is inductively computed and stored
along with state s = σ(s0). In what follows, we will associate a sleep set with a
path σ or with a state s = σ(s0), interchangeably.

When s is ready for expansion, only applicable operators that are not con-
tained in ss(σ) are applied. To make sleep sets technique practically efficient,
sleep sets are computed in an interleaving fashion after generating path σo as
follows:

(1) ss(σo) = {o′ ∈ ss(σ) | o′ on o}, and

(2) o is locally included in ss(σ).

Step (2) is executed to maintain the ordering used by sleep sets, and there-
fore it becomes unnecessary to perform an explicit comparison for the order of
operators in step (1). In other words, the mere purpose of (2) is to propagate
operators to the rest of the successor sequences. “Locally” is used to indicate
that o is allowed to be used for propagating operators only during the current
expansion. This means that o does not have to be included in ss(σ) if the state
which is reached by σ is re-expanded later. This will be clarified later.

Example 8. Let Π = 〈V,O, s0, s?〉 be a planning task, where

• V = {a, b, c}

• O = {o1, o2, o3}, where

– pre(o1) = {>}, eff (o1) = {a 7→ 1}
– pre(o2) = {>}, eff (o2) = {b 7→ 1}
– pre(o3) = {b 7→ 1}, eff (o3) = {c 7→ 1}

• s0 = {a 7→ 0, b 7→ 0, c 7→ 0}

6.1. VARIANTS OF SLEEP SETS 37

• s? = {a 7→ 1, c 7→ 1}

The total ordering between operator is: o3 <ss o1 <ss o2.

We see that o1 on o2 and o1 on o3. Consider the explored space in Figure 6.1.
The initial state s0 is labeled with an empty sleep set because ss(ε) = ∅. State
s2 is labeled with ss(o2) = {o1} because o1 on o2 and o1 <ss o2. State s4 is
labeled with ss(o2o3) = {o1} because o1 on o3 and o1 ∈ ss(o2). Therefore,
operator o1 is not applied in states s2 and s4 (shown as dashed transitions).
As a consequence, sleep sets preserved path o1o2o3 (from s0 to s5) and pruned
both o2o1o3 and o2o3o1.

s0 {}

s2 {o1}s1{o3}

s4 {o1}s3{o1}

s5

o1
o2

o3

o1

o2

o3

o1

Figure 6.1: Sleep sets pruning.

6.1 Variants of Sleep Sets

Sleep sets have been considered within different contexts. In the verification
literature, sleep sets have mainly been used with combination of full duplicate
elimination and depth-first search. In the following, four main variants of sleep
sets are listed [AW16]:

(A) Let s be a state generated by path σ for the first time. A sleep set ss(σ) is
computed and cached with s in order to be used for pruning whenever s is
ready to be expanded. If s is revisited by an alternative path σ′, then s is
immediately pruned. This means that sleep sets are computed only once
per state. This is the first version of sleep sets that has been combined with
depth-first search and full duplicate elimination [GW92]. However, as sleep
sets technique is path-dependent, reaching a state by a different path σ′

can allow some operators to be applied in s, which are contained in ss(σ),
i.e., there exists some o ∈ ss(σ) and o /∈ ss(σ′). This is unsafe, since the
successor state s′ = o(s) can be pruned from the reduced transition graph.
Previous work has shown, by counter-examples, that combing this variant
with depth-first search and full duplicate elimination is incomplete [KP95;
Bos+09].

38 CHAPTER 6. SLEEP SETS FOR CLASSICAL PLANNING

Algorithm 2 DFSss (using variant A)

1: Stack ← ∅;H ← ∅ /*Hash Table*/
2: Stack.push(s0)
3: while Stack 6= ∅ do
4: s← Stack.pop()
5: H.insert(s)
6: app(s)← app(s) \ ss(σ) /*s = σ(s0) */
7: for o ∈ app(s) do
8: s′ ← o(s)
9: if s′ /∈ H then

10: ss(σo)← {o′ | o′ ∈ ss(σ) ∧ o on o′}
11: Stack.push(s′)
12: ss(σ)← ss(σ) ∪ {o}

Algorithm 2 presents depth-first search with full duplicate elimination com-
bined with variant A which has been proposed in [GW92]. It uses a stack
Stack for storing the generated but not yet expanded states, and a hash
table H to store expanded states. Each time a state s is popped from
Stack (line 4), the set of applicable operators app(s) is restricted to the
ones outside the sleep set ss(σ) (line 6). Upon expansion of s, if a successor
state s′ is not expanded before (i.e., not in H) (line 9), then its sleep set
ss(σo) is computed (line 10), the state is pushed on the stack (line 11), and
the operator o is added locally to ss(σ) (line 12) to be propagated to sleep
sets of future successors of s if commutativity holds.

(B) Similar to variant A, states are pruned when they are revisited, but the
algorithm has been modified to exclude some operators from sleep sets.
It is worthwhile to mention that a kind of unsafe interaction can occur
between variant A and the existence of cycles in the state space. The
first modification to variant A was to exclude operator o from ss(σ) if
σo closes a cycle. However, this does not fully eliminate the outcome of
the unsafe interaction as it has been shown later [KP95]. In a further
refinement to the algorithm, upon expansion of a state, operators that lead
to cycles are removed from the sleep set [GHP93]. This version solves the
incompleteness problem that is caused by cycles. These modifications are
shown in algorithm 3 in lines 7, 13 and 14. Line 7 excludes operators
from ss(σ) if they lead to states that already exist on the stack (i.e., cause
cycles), and lines 13-14 do not add operator o locally to ss(σ) if it closes a
cycle.

(C) Let s be a state reached by paths σ1 . . . σn in this particular order, i.e., first
by σ1 and last by σn. We will use the notation ss(σ1 . . . σn) to denote the
set of operators that are allowed to be pruned after visiting s by σn. The
sleep set ss(σ1 . . . σn) is inductively defined as ss(σ1 . . . σn−1)∩ss(σn). This
means that some operators, which are pruned according to ss(σ1 . . . σn−1),
can be applied according to ss(σ1 . . . σn) because they are not included in
ss(σn). Duplicated states are pruned if ss(σ1 . . . σn) = ∅. This variant
has been shown to be complete when used with full duplicate elimination,
and it is independent of the order in which paths are explored by the

6.1. VARIANTS OF SLEEP SETS 39

Algorithm 3 DFSss (using variant B)

1: Stack ← ∅;H ← ∅
2: Stack.push(s0)
3: while Stack 6= ∅ do
4: s← Stack.pop()
5: H.insert(s);
6: app(s)← app(s) \ ss(σ)
7: ss(σ)← {o | o ∈ ss(σ) ∧ s′ = o(s) ∧ s′ /∈ Stack}
8: for o ∈ app(s) do
9: s′ ← o(s)

10: if s′ /∈ H then
11: ss(σo)← {o′ | o′ ∈ ss(σ) ∧ o on o′}
12: Stack.push(s′)
13: if s′ /∈ Stack then
14: ss(σ)← ss(σ) ∪ {o}

search algorithm [God96]. Algorithm 4 represents DFS with full duplicate

Algorithm 4 DFSss(using variant C)

1: Stack ← ∅; H ← ∅
2: Stack.push(s0)
3: while Stack 6= ∅ do
4: s← Stack.pop()
5: if s /∈ H then
6: H.insert(s)
7: app(s)← app(s) \ ss(σ1) /*n = 1*/
8: else
9: app(s)← ss(σ1, . . . , σn−1) \ ss(σn)

10: ss(σ1, . . . , σn)← ss(σ1, . . . , σn−1) ∩ ss(σn)

11: for o ∈ app(s) do
12: X ← ss(σ1, . . . , σn) ∪ {o′ | o′ <ss o ∧ o′ ∈ app(s)}
13: s′ ← o(s)
14: ss(σno)← {o′ | o′ ∈ X ∧ o on o′}
15: Stack.push(s′)

elimination combined with variant C of sleep sets. The algorithm follows
the lines of the search algorithm suggested by Godefroid in his monograph
adapted to the notation of this thesis [God96]. Godefroid proposed the
algorithm to combine persistent sets and sleep sets, while here we have only
sleep sets (the combination of sleep sets with state reduction techniques is
discussed in the next chapter).

If state s is to be expanded for the first time, which means it has been
generated only once via path σ1, then app(s) is computed as before (lines
5-7); otherwise, app(s) contains only the operators which are in the updated
sleep set ss(σ1, . . . , σn−1) but not in ss(σn), and the sleep set ss(σ1, . . . , σn)
is computed (lines 8-10). The set X, in line 12, is used to avoid adding
operators locally as before, since these operators are not supposed to be

40 CHAPTER 6. SLEEP SETS FOR CLASSICAL PLANNING

maintained in ss(σ1, . . . , σn) when s is to be revisited later.

(D) This variant is designed to be used with tree-search algorithms with only cy-
cle elimination (not full duplicate elimination). Let s be a state that is first
generated by path σ = o1 . . . on, then by path σ′ = o1 . . . onon+1 . . . on+k

for k ≥ 1 (s is a part of a cycle). Sleep set ss(σ) is computed, but s is
pruned as duplicate when reached by σ′, i.e., ss(σ, σ′) is not computed.
Furthermore, if s is visited by σ = o1 . . . on, and then by σ′ = o′1 . . . o

′
m,

then a new sleep set ss(σ′) is independently computed and used for s. In
other words, if s is to be expanded after being generated by σ, then ss(σ)
is used for pruning, and when generated later by σ′, ss(σ′) is used upon
expansion. This version has been shown to be completeness and optimality
preserving when combined with IDA∗ [HAW15]. For consistency, we state
Algorithm 5 using DFS that performs only cycle detection combined with
sleep set variant D. The superscript i in si is used to denote the i-th visit
of s, which is tracked by the algorithm, but it is used here to associate it
with σi, which is the particular path through which s is generated in its
i-th visit. Because this algorithm performs only cycle elimination, no hash
table is being used. Like previous variants, the operators in sleep sets are
excluded from the set of applicable operators (line 5). If a successor state
of s does not already exist on the search stack (line 8), a new sleep set
associated with it is computed (line 9), the state is pushed on the stack
(line 10), and operator o is locally added to ss(σi) (line 11).

Algorithm 5 DFSss (using variant D)

1: Stack ← ∅
2: Stack.push(s0)
3: while Stack 6= ∅ do
4: si ← Stack.pop()
5: app(si)← app(si) \ ss(σi)
6: for o ∈ app(si) do
7: s′ ← o(si)
8: if s′ /∈ Stack then
9: ss(σio)← {o′ | o′ ∈ ss(σi) ∧ o on o′}

10: Stack.push(s′) /*ss(σio) is associated with s′*/
11: ss(σi)← ss(σi) ∪ {o}

6.2 Sleep Sets and Search Algorithms

In this section, we show how to safely combine variants of sleep sets with vari-
ous search algorithm, i.e., which combinations are completeness and optimality
preserving.

Given a search algorithm Alg, a set of operators O, and a total order <Alg
on O that Alg uses to generate successor states during search, we say that Alg is
order-consistent if <Alg and <ss are identical. In the following, we assume that
search algorithms, that we want to combine with sleep sets, are order-consistent.

6.2. SLEEP SETS AND SEARCH ALGORITHMS 41

6.2.1 Breadth-First Search

Breadth-First Search (BFS) is a blind search algorithm that performs full du-
plicate elimination, and retains completeness and optimality. We prove that
variant A of sleep sets suffices to be combined with BFS while preserving its
original characteristics, namely, all states are generated modulo duplicates, and
an optimal solution is extracted. We call the algorithm, which combines BFS
with variant A of sleep sets, BFSss.

Before stating the main theorem about completeness and optimality of BFSss,
we need to show that sleep sets preserve at least one permutation of each path
in the state space. The following theorem is a special case from a more general
one for a more general definition of sleep sets by Holte et al. [HAW15].

Theorem 5. For any states s and t s.t. t is reachable from s, it holds that
ok /∈ ss(o1 . . . ok−1) for all k with 1 ≤ k ≤ |min(s, t)|.

Proof. Let min(s, t) = σi−1oiδi+1, where σi−1 is a prefix of min(s, t) consisting
of operators o1 . . . oi−1, and δi+1 is a suffix consisting of operators oi+1 . . . o|min(s,t)|.
If i = 1, then σi−1 is empty, and therefore ss(σi−1) = ∅, oi is preserved. If i ≥ 2,
then we assume that oi ∈ ss(σi−1). We distinguish two cases:

• oi <ss oi−1:
Since oi ∈ ss(σi−1), it follows that oi on oi−1, and σi−2oioi−1δi+1 <ss
σi−2oi−1oiδi+1 = min(s, t). This contradicts that assumption thatmin(s, t)
is minimal according to <ss.

• oi ≮ss oi−1:
Let j be the largest index in σi−2 such that oj on oi and oi <ss oj .
This means that oi ∈ ss(σj) and has persisted in the sleep sets from
σj to σi−1. This implies that oi on ok, where j ≤ k < i, and hence
σj−1oioj . . . oi−1δi+1 <ss σj−1oj . . . oi−1oiδi+1 = min(s, t), which again
contradicts the definition of min(s, t).

The above theorem shows that sleep sets have the property to preserve a
particular optimal path between any two states, namely, the path that is smallest
with respect to <ss. Now we need to show that this path is not pruned by
duplicate elimination executed by breadth-first search.

Lemma 1. Let s and t be states with t is reachable from s. Then it holds for
all i with 1 ≤ i ≤ n − 1 and si = o1 . . . oi(s) that min(s, si) = o1 . . . oi is the
minimal path from s to si according to <ss.

Proof. Let σi = o1 . . . oi for some i ∈ {1, . . . , on−1}. First, we show that
cost(σi) is minimal among all paths that lead from s to si. Assume that
there exists σ such that si = σ(s) and cost(σ) < cost(σi). This implies that
cost(σoi+1 . . . on) < cost(σioi+1 . . . on) = min(s, t) which contradicts the fact
that min(s, t) has a minimal cost among all paths that lead from s to t. Second,
consider a path σ such that si = σ(s), cost(σ) = cost(σi), and σ <ss σi. Then
it holds that σoi+1 . . . on <ss σioi+1 . . . on = min(s, t), which again contradicts
that min(s, t) is minimal according to <ss among paths from s to t.

42 CHAPTER 6. SLEEP SETS FOR CLASSICAL PLANNING

Lemma 1 shows that prefixes of the minimal path between any two states s
and t are also minimal paths.

Theorem 6. [AW16] BFSss is complete. When applied with unit-cost opera-
tors, BFSss is optimal.

Proof. Let s be a state reachable from s0. Let min(s0, s) = o1 . . . on, and
σ = o′1 . . . o

′
m be a path with σ 6= min(s0, s) that reaches s. We show that

standard breadth-first search using <Alg generates s with min(s0, s) first, i.e.,
before it generates s with σ. To see this, consider the following cases:

1. n < m: min(s0, s) is explored before σ because breadth-first search ex-
plores shorter paths before longer ones.

2. n > m cannot occur because it would contradict the assumption that
min(s0, s) is minimal.

3. n = m: Let i be the left-most position where min(s0, s) and σ differ, i.e.,
oi 6= o′i and oj = o′j for j < i. By assumption, <ss is equal to <Alg, and
min(s0, s) <ss σ, hence min(s0, s) <Alg σ and oi <Alg o

′
i. It follows that

breadth-first search explores the path o1 . . . oi before o′1 . . . o
′
i, and hence

(by exploring states in a first-in first-out manner) also their completion
min(s0, s) before σ.

From Lemma 1, we know that all the prefixes of min(s0, s) are minimal as
well, hence it follows that all states s1, . . . , sn, generated on the path from s0 to
s, are generated on the path min(s0, s) first. It follows that s1, . . . , sn are not
pruned by breadth-first search as duplicate states. By Theorem 5, it follows that
additionally computing sleep sets for these prefix paths that generate s1, . . . , sn,
which yields BFSss, preserves min(s0, s), showing the claim.

The theorem shows that min(s0, s) is guaranteed to be generated first by
breadth-first search among all paths that lead from s0 to state s, and therefore
the states on min(s0, s) cannot be pruned as duplicates. However, we do not
have this property in other search algorithms that perform duplicate elimination,
like Dijkstra’s algorithm and A∗. Algorithm 6 describes BFSss.

Algorithm 6 BFSss

1: Open← ∅; H ← ∅
2: Open.insert(s0)
3: while Open 6= ∅ do
4: s← Open.pop()
5: H.insert(s)
6: app(s)← app(s) \ ss(σ)
7: for o ∈ app(s) do
8: s′ ← o(s)
9: if s′ /∈ H then

10: ss(σo)← {o′ | o′ ∈ ss(σ) ∧ o on o′}
11: Open.insert(s′)
12: ss(σ)← ss(σ) ∪ {o}

6.2. SLEEP SETS AND SEARCH ALGORITHMS 43

The main difference between Algorithm 6 and Algorithm 2 is that the former
uses a First In-First Out container for storing generated states (Open), and
the latter uses a Last In-First Out container (Stack). However, Algorithm 2
is incomplete, whereas Algorithm 6 is, indeed, complete. In fact, this leads
us to the conclusion that the order in which states are expanded by the search
algorithm plays a role in the decision of which variant of sleep sets the algorithm
can safely combined with.

6.2.2 A∗ Search

A∗ search algorithm is a graph search algorithm with full duplicate elimination,
and is usually equipped with heuristics. A∗ uses an open list as a priority queue
and a closed list as a hash table, and yields optimal solutions when combined
with admissible heuristics.

This section presents a new algorithm obtained by using A∗ with variant C
of sleep sets, and we call the algorithm A∗ss. For simplicity, we assume that A∗

uses a consistent heuristic. Previously, we presented Algorithm 4, using DFS,
as an example of a search algorithm with full duplicate elimination combined
with variant C of sleep sets. In fact, A∗ss differs from algorithm 4 in three main
points:

1. Algorithm 4 uses a stack data structure to keep track of generated states.
However, the original completeness proof presented by Godfroid does not
rely on the stack behavior [God96]. For this reason, this algorithm remains
complete if a priority queue is used instead of a stack.

2. Similar to A∗, A∗ss needs to check for the goal condition when a state is
popped from the priority queue (open list). This step does not affect the
computation or functionality of sleep sets pruning.

3. Finally, assume a state s is generated first by paths σ1, . . . , σn, and gen-
erated by path σ later. If s is contained in the open list and not yet
in the closed list, then the sleep set of s is updated according to σ, i.e.,
ss(σ1, . . . , σn, σ) := ss(σ1, . . . , σn) ∩ ss(σ).

Algorithm 7 A∗ss

1: Open← ∅; Closed← ∅
2: n0 ← make node(s0)
3: Open.insert(n0);
4: while Open 6= ∅ do
5: n← Open.pop min()
6: s← n.get state()
7: if is goal(s) then
8: plan← σsmin /*minimal cost generating path of s*/
9: return Solved

10: app(s)← app(s) \ ss(σs1, . . . , σsn)
11: expand(s, app(s), ss(σs1, . . . , σ

s
n))

12: return UnSolved

44 CHAPTER 6. SLEEP SETS FOR CLASSICAL PLANNING

In the following, we will describe A∗ss in more detail. In order to make clear
which state the algorithm is considering, we use σs, instead of σ, to denote the
path that ended in state s, i.e., s = σ(s0). Accordingly, the sleep set of state s
reached by paths σs1, . . . , σ

s
n in this order is denoted with ss(σs1, . . . , σ

s
n).

Algorithm 7 represents the usual A∗ algorithm combined with variant (C)
of sleep sets. The algorithm uses search nodes to keep track of states and their
information. Algorithm A∗ss differs from A∗ in the computation of successor
states as follows:

1. Computing the expansion set: while A∗ considers all applicable op-
erators in a given state s for generating its successor states, A∗ss considers
a subset of applicable operators. We call this set the expansion set, and is
defined as

app(s) \ ss(σs1, . . . , σsn),

where σs1, . . . , σ
s
n are the paths by which s has been generated at the time

when s is expanded.

2. Operator application and sleep set updates: A∗ss applies the opera-
tors in app(s)\ss(σs1, . . . , σsn) and computes (or updates, respectively) the
corresponding sleep set of the successor states. The pseudo code of this ex-
pansion step, called expand(s, app(s), ss(σs1, . . . , σ

s
n)) in the following, is

given in Algorithm 8 to be used with consistent heuristics and Algorithm 9
for inconsistent heuristics.

Algorithm 8 Successor generation & sleep set updates with a consistent h

1: function expand(s, app(s), ss(σs1, . . . , σ
s
n))

2: for o ∈ app(s) \ ss(σs1, . . . , σsn) do
3: s′ ← o(s)
4: σs ← minimal cost generating path of s
5: X ← ss(σs1, . . . , σ

s
n) ∪ {o′ | o′ <ss o ∧ o′ ∈ app(s)}

6: ss(σso)← {o′ | o′ ∈ X and o′ on o}
7: ss(σs

′

1 , . . . , σ
s′

m, σ
so)← ss(σs

′

1 , . . . , σ
s′

m) ∩ ss(σso)
8: if s′ ∈ Closed then
9: applicable sleep← ss(σs

′

1 , . . . , σ
s′

m) \ ss(σso)
10: expand (s′, applicable sleep, ∅)
11: else
12: n′ ← make node(s′)
13: Open.insert(n′)

A∗ss with consistent heuristics

In Algorithm 8, the search is guided by a consistent heuristic function. As-
suming that σs is the path on which s has been reached last, function ex-
pand(s, app(s), ss(σs1, . . . , σ

s
n)) computes the sleep set of the successor state s′

reached on the path σso (Line 5–6). The sleep set of s′ is updated according
to variant C (Line 7). If s′ is closed, then s′ is further expanded by generat-
ing all successors that are not pruned according to the most recently computed
sleep set (Line 8–10). Recall that σs

′

1 , . . . , σ
s′

m are the paths by which s′ has

6.2. SLEEP SETS AND SEARCH ALGORITHMS 45

Algorithm 9 Successor generation & sleep set updates with an inconsistent h

1: function expand(s, app(s), ss(σs1, . . . , σ
s
n))

2: for o ∈ app(s) \ ss(σs1, . . . , σsn) do
3: s′ ← o(s)
4: σs ← minimal cost generating path of s
5: X ← ss(σs1, . . . , σ

s
n) ∪ {o′ | o′ <ss o ∧ o′ ∈ app(s)}

6: ss(σso)← {o′ | o′ ∈ X and o′ on o}
7: ss(σs

′

1 , . . . , σ
s′

m, σ
so)← ss(σs

′

1 , . . . , σ
s′

m) ∩ ss(σso)
8: if s′ ∈ Closed then
9: if cost(σso) < cost(σ̃) for all σ̃ ∈ {σs′1 , . . . , σs

′

m} then
10: expand (s′, app(s′), ss(σs

′

1 , . . . , σ
s′

m, σ
so))

11: else
12: applicable sleep← ss(σs

′

1 , . . . , σ
s′

m) \ ss(σso)
13: expand (s′, applicable sleep, ∅)
14: else
15: n′ ← make node(s′)
16: Open.insert(n′)

been reached before reaching s′ on σso. At this point, we also observe that the
particular function signature (which includes app(s) and the sleep set of s) is
convenient for the recursive call in Line 10. Finally, in lines 11-13, we cover the
case where s′ is either generated for the first time, or previously generated but
not expanded yet, i.e., s′ is already in the open list.

A∗ss with inconsistent heuristics

A search algorithm guided by an inconsistent heuristic function might re-generate
states via cheaper paths than the paths via which those states have previously
been generated. This might lead to suboptimal plans, unless this case is handled
by the search separately. A∗ search deals with this situation by checking the
cost of the paths that lead to every generated state s and performs a re-opening
step if the cost of the new path to s is less than the cost of every previous paths
to s. Re-opening means inserting s again in the open list to be ready for future
expansion, and considering the new path instead of the previous paths, i.e., the
minimal cost path via which s has been reached so far.

Now, consider Algorithm 9 that assumes an inconsistent heuristic function. The
only difference from Algorithm 8 can be seen in lines 9-10: Line 9 checks if σso
is the cheapest among previous paths to the generated state s′. In that case,
s′ is expanded with the updated sleep set computed in Line 7. This means all
the operators that have already been applied in s′ (during a previous expansion
process) are going to applied again in s′ after being reached via σso. The
following example shows that neglecting this modification to Algorithm 8 (i.e.,
ignoring Lines 9-10 in Algorithm 9) can result in suboptimal plans.

Example 9. Let Π = 〈V,O, s0, s?〉 be a planning task, where

• V = {a, b, c, d, g}

• O = {o1, o2, o3, o4, og}, where

46 CHAPTER 6. SLEEP SETS FOR CLASSICAL PLANNING

s0

g=0,h=3, s0 = 00010

s1g=1,h=1, s1 = 10010

s2g=2,h=0, s2 = 11010

s3g=3,h=0, s3 = 10100

sgg=4,h=0 g=3,h=0, sg = 10101

s4 g=1,h=2, s4 = 11000

s5 g=2,h=0,s5 = 10100

o3 o1

o4

o2

og

o2

og

Figure 6.2: Using Algorithm 8 with an inconsistent heuristic leads to a subop-
timal plan.

– pre(o1) = {a 7→ 0}, eff (o1) = {a 7→ 1, b 7→ 1, d 7→ 0}
– pre(o2) = {b 7→ 1}, eff (o2) = {b 7→ 0, c 7→ 1, d 7→ 0}
– pre(o3) = {a 7→ 0, d 7→ 1}, eff (o3) = {a 7→ 1}
– pre(o4) = {a 7→ 1, d 7→ 1}, eff (o4) = {b 7→ 1}
– pre(og) = {c 7→ 1}, eff (og) = {g 7→ 1}

• s0 = {a 7→ 0, b 7→ 0, c 7→ 0, d 7→ 1, g 7→ 0}

• s? = {g 7→ 1}

The total order is given as og <ss o4 <ss o3 <ss o2 <ss o1. We also consider
unit-cost operators.

In Example 9, all states have empty sleep sets: Although og is commutative
with o1, o3 and o4, og is applicable in only one reachable state in which none
of these operators is applicable. The states are annotated with their g-values,
h-values, and the values of state variables in the order “abcdg”. The expansion
order of states is indicated by their indices i ∈ {0 . . . 5}. If we consider Algo-
rithm 8, then it is possible to expand state s3 before s5 (where s3 = s5), but
og will be pruned in s5 because the set-difference between both sleep sets (i.e.,
ss(o3o4o2) and ss(o1o2)) is empty. However, by using Algorithm 9, og will be
applied in s5, thereby preserving the optimal plan o1o2og.

6.2. SLEEP SETS AND SEARCH ALGORITHMS 47

000

110

121

122

011

012

o1 o′1

o2

o3

o3

o′2

000

g=0,h=3

110g=1,h=2

121g=2,h=1

122

g=3,h=0

011 g=1,h=2

012 g=2,h=1

o1 o′1

o2

o3

o3

o′2

Figure 6.3: A∗ss generates o′1o3o
′
2 (right) and BFSss generates o1o2o3 (left). The

dashed lines refer to the operators that are not applied because the goal has
already been reached.

Comparing A∗ss to BFSss

While BFSss is guaranteed to generate the minimal path according to <ss be-
tween two given states s and t first (i.e., min(s, t)), A∗ss does not have this
property. The following example illustrates this fact.

Example 10. Let Π = 〈V,O, s0, s?〉 be a planning task, where

• V = {a, b, c}

• O = {o1, o2, o3, o
′
1, o
′
2}, where

– pre(o1) = {a 7→ 0, b 7→ 0}, eff (o1) = {a 7→ 1, b 7→ 1}
– pre(o2) = {b 7→ 1, c 7→ 0}, eff (o2) = {b 7→ 2, c 7→ 1}
– pre(o3) = {c 7→ 1}, eff (o3) = {c 7→ 2}
– pre(o′1) = {b 7→ 0, c 7→ 0}, eff (o′1) = {b 7→ 1, c 7→ 1}
– pre(o′2) = {b 7→ 1, c 7→ 2}, eff (o′2) = {a 7→ 1, b 7→ 2}

• s0 = {a 7→ 0, b 7→ 0, c 7→ 0}

• s? = {b 7→ 2, c 7→ 2}

The operator ordering is o1 <ss o2 <ss o3 <ss o
′
1 <ss o

′
2.

In Figure 6.3, the left graph refers to the explored space of BFSss, while the
right one refers to the explored space of A∗ss. The sleep sets of all states are
empty. This is easy to check: The only commutativity that holds is o1 on o3

but there is no reachable state in which both operators are applicable (i.e.,

48 CHAPTER 6. SLEEP SETS FOR CLASSICAL PLANNING

state 001). The minimal path according to <ss is o1o2o3. Given that BFSss
uses <ss for the generation of successor states, path o1o2o3 is guaranteed to be
generated first. Consider the right graph of the figure. The states are annotated
by their h-values and their g-values. First, the initial state is expanded (also
using <ss) by generating state 110 first and then state 011. Both states have
the same f = h+ g value. If the tie-breaking used by the search chooses 011 to
be expanded next, then state 012 is generated. Again, assume the tie-breaking
decides to expand 012 next instead of 110 and the goal state 122 is generated.
Finally, states 110 and 122 have the same f value and we assume that the latter
state is popped from the open list to be expanded, which means that path o′1o3o

′
2

is generated first.
The following theorem states that A∗ remains complete and optimal when

combined with variant C of sleep sets.

Theorem 7. For admissible heuristics, A∗ss is complete and optimal.

Proof. The proof is a special case of the proof of Theorem 12 in the next chapter,
which shows the claim for A∗ss with additional state pruning based on strong
stubborn sets.

6.2.3 IDA∗ Search

IDA∗ with only cycle detection has been combined with variant D of sleep
sets [HAW15]. We call the resulting algorithm IDA∗ss and we will see that
combining sleep sets with cycle detection and heuristic cutoffs is safe. The
following two theorems and their proofs follow the structure of the proofs by
Holte and Burch to show the safety of move pruning [HB14].

Theorem 8. [AW16] Sleep sets are safe to use in conjunction with cycle de-
tection.

Proof. Let s be a state that is reachable from s0. We show that cycle de-
tection does not eliminate min(s0, s). Assume that cycle detection eliminates
min(s0, s). This means that min(s0, s) must contain a cycle, i.e., min(s0, s) =
αγβ for operator sequences α, γ, β, with |γ| > 0 and αγ[s0] = α[s0]. This
implies that αβ is a path from s0 to s with cost(αβ) ≤ cost(min(s0, s)) and
αβ <ss min(s0, s), which contradicts the definition of min(s0, s), hence showing
that min(s0, s) is not eliminated. From Theorem 5, it follows that min(s0, s)
is preserved by sleep sets as well. Together with the properties that IDA∗ is
complete (and optimal for admissible heuristics), this shows the claim.

Theorem 9. [AW16] Sleeps sets are safe to use in conjunction with heuristic
cutoff for any bound b ≥ f∗, and any admissible heuristic h.

Proof. Let h be an admissible heuristic, and let s be a state that is reach-
able from s0. We show that heuristic cutoffs do not eliminate min(s0, s). Let
operator sequence α be a prefix of min(s0, s). As h is admissible, we have
cost(α) + h(α[s0]) ≤ cost(min(s0, s)) since α is a prefix of min(s0, s). As
cost(min(s0, s)) = C∗, we have cost(α) + h(α[s0]) ≤ C∗. Heuristic cutoffs
can only prune paths with costs strictly larger than C∗, hence α is not pruned.
Since α has been chosen as an arbitrary prefix of min(s0, s) (including min(s0, s)
itself), this shows that heuristic cutoffs do not prune min(s0, s).

6.3. THE PRUNING POWER OF SLEEP SETS 49

Corollary 4. IDA∗ss combined with cycle detection is completeness and opti-
mality preserving.

Proof. The proof follows directly from Theorems 8 and Theorem 9.

Like stubborn sets, the implementation of sleep sets consists of two steps: A
preprocessing step in which the commutativity relation for all operators of the
planning task is precomputed and cached in memory, and a runtime step where
sleep sets are computed for generated states using the cached commutativity
relation.

6.3 The Pruning Power of Sleep Sets

Previous work has introduced some other transition reduction techniques that
can be employed by combining them with tree search algorithms to reduce the
number of duplicates. All of these techniques have been proposed in the area
of planning. In the following, we present three transition reduction techniques
and compare them to sleep sets.

6.3.1 Sleep Sets and Commutativity Pruning

Commutativity pruning is a transition partial order reduction technique that
has been proposed to produce less duplicated states during search performed by
IDA∗ search [HG00]. Like sleep sets, commutativity pruning relies on the notion
of commutativity and uses a predefined total ordering <cp on the operators of
the planning task. While performing search, an applicable operator o′ in state
s is allowed only if o <cp o

′, where o is the operator that led to s.
Wehrle & Helmert have shown that sleep sets dominate commutativity prun-

ing given that both methods use the same total ordering on operators [WH12].
This means that sleep sets can prune all paths that are pruned by commutativity
pruning but not vice versa. This fact can be shown by rewriting the definition
of sleep sets for path σ = o1, . . . , on as follows:

ss(σ) = {o ∈ O | o <ss on ∧ o on on} ∪ {o ∈ O | o ∈ ss(σn−1) ∧ o on on}
We observe that the definition of sleep sets of path σ has been split into two
parts:

1. Commutative operators with smaller order than on, and

2. Commutative operators propagated from the sleep set of the prefix σn−1.

The first part is responsible for capturing duplicates caused by swapping two
consecutive commutative operators in a sequence. For example, if o1 <ss o2

and o1 on o2, then o2o1 is pruned and o1o2 is preserved. This is equivalent
to how commutativity pruning behaves when <ss is equivalent to <cp. The
second part of the definition is more powerful in the sense that it can propagate
operators included in sleep sets down sequences of arbitrary length leading to
more reduction in duplicates. For example, given operators o1o2o3 with o1 <ss
o2 <ss o3, o1 on o2, o3 on o2, and <cp is equivalent to <ss, then:

• o3o1o2 is pruned by sleep sets because o2 ∈ ss(o3o1) which triggers the
second part of the definition.

50 CHAPTER 6. SLEEP SETS FOR CLASSICAL PLANNING

• o3o1o2 is not pruned by commutativity pruning because o1 <cp o2.

To summarize, we notice that the pruning power of sleep sets lies in the
second part of the definition which allows an operator to leapfrog over a sequence
of operators of arbitrary length. On the other hand, commutativity pruning is
capable only of permuting sequences of length two.

6.3.2 Sleep Sets and Stratified Planning

Stratified planning is a transition partial order reduction technique that has been
proposed in the context of optimal planning [CXY09; Xu+11]. The original
work was faulty [CXY09] and has been corrected in a later version which is
considered here [Xu+11]. Before we explain the algorithm, we need to introduce
the definition of causal graphs for planning tasks.

Definition 38. (causal graph). [Kno94; Hel06] Given a planning task Π =
(V,O, s0,G), the causal graph of Π is a directed graph CG = (V,E), where
V = V, and there exists an edge (υ, υ′) ∈ E iff υ 6= υ′ and there exists an
operator o ∈ O such that υ ∈ vars(o) and υ′ ∈ vars(eff (o)).

First, the stratified planning technique computes the strongly connected
components C1, . . . , Cn of the causal graph1. Then, a topological ordering C1 <
· · · < Cn is imposed on these components such that there is an edge from a
variable in component Ci to a variable in component Cj only if i ≤ j. Next, the
algorithm performs the following:

1. Every variable υ ∈ V is assigned a level according to the topological com-
ponent it belongs to, i.e., level(v) = i iff υ ∈ Ci.

2. Every operator o ∈ O is assigned a level according to the level of the
variables it modifies, i.e., level(o) = i iff o modifies a variable υ with
level(υ) = i. By Definition 38, it holds that all variables modified by the
same operator are in the same component, and hence have the same level.

To show how stratified planning performs pruning, we need to define the
notion of follow-up operator.

Definition 39 (follow-up operator). (Based on Chen et al. 2009 [CXY09])
Given a planning task Π = (V,O, s0,G) and operators o, o′ ∈ O, o′ is a follow-up
operator of o if vars(o′) ∩ vars(eff (o)) 6= ∅, i.e., o′ reads or modifies a variable
that is modified by o.

Stratified planning works as follows: Let s be a state reached by operator o,
and o′ is an applicable operator in s. Then o′ is pruned in s if level(o′) > level(o)
and o′ is not a follow-up operator of o.

Again, it has been shown by Wehrle & Helmert that commutativity pruning
dominates stratified planning in the sense that the former prunes more paths
than the latter [WH12]. The idea of the proof is to show first that commutativity
pruning prunes all paths pruned by stratified planning, and then show that
commutativity pruning strictly dominates stratified planning in a particular
situation. To illustrate, let a path σoo′ be a path pruned by stratified planning.
Now, consider the following facts:

1A strongly connected component of a directed graph is a maximal strongly connected
subgraph.

6.4. GENERALIZED SLEEP SETS 51

1. Stratified planning prunes o′ if it is not a follow-up operator of o and
level(o′) > level(o). The first condition shows the independence between
o′ and o in one direction, i.e., o′ does not read or modify a variable modified
by o. In other words, o does not disable o′, o cannot enable o′ and they do
not conflict. Second, from the connected components and imposing levels
on variables and operators, the independence between o and o′ holds in
the other direction, i.e., o is not affected by o′ in the same way explained
for the first situation. Putting these two facts together, we have o on o′.

2. Consider defining the total order <cp for commutativity pruning such that
level(o) > level(o′) implies o <cp o

′. By using this order, commutativity
pruning prunes all paths pruned by stratified planning.

3. If two commutative operators exist in the same connected component,
then stratified planning would not prune any path in which the two op-
erators take part because they are in the same level. On the other hand,
commutativity pruning has a more fine-grained ordering for operators such
that the two operators must have different orderings, i.e., for operators o
and o′, either o <cp o

′ or o′ <cp o. For example, given operators o and
o′, where o <cp o

′, o on o′, and both operators belong to the same con-
nected component in the causal graph, then level(o) = leve(o′). In this
case, commutativity pruning prunes path o′o, while stratified planning
preserves both paths oo′ and o′o.

In a nutshell, stratified planning is a less powerful pruning technique than
commutativity pruning due to imposing a less informative ordering on operators
than the arbitrary total order used by commutativity pruning: Stratified plan-
ning does not offer any pruning power for operators with equal levels. Finally,
we need to mention the relationship between sleep sets and stratified planning.
From the fact that sleep sets strictly dominates commutativity pruning, and the
latter strictly dominates stratified planning, we conclude that sleep sets strictly
dominates stratified planning.

To summarize, we considered two previous transition reduction techniques
that have been proposed in the context of optimal planning, and we have seen
that sleep sets strictly dominates both.

6.4 Generalized Sleep Sets

As we have seen, sleep sets allow exploring only one permutation of commutative
operators that lead to some state and prune all other permutations that lead to
the same state. In previous work, a transition reduction technique, known as
moving pruning, has been proposed in the context of single-agent search using
the notion of redundancy between operator sequences [HB14]. On the other
hand, sleep sets use commutativity which is a restricted form of redundancy. In
this section, we show how sleep sets can be generalized to a family of transition
reduction techniques by using different forms of redundancy. Furthermore, we
will see the relationship between generalized sleep sets and move pruning. First,
we introduce the notion of total orders on operator sequences.

Before presenting the generalizations, we need to consider the behavior of the
sleep sets method. As we mentioned before, the original definition of sleep sets

52 CHAPTER 6. SLEEP SETS FOR CLASSICAL PLANNING

distinguishes between two different situations: Operator o is pruned after a path
σ = o1 . . . on if o on on and either o <ss on or o ∈ ss(o1 . . . on−1). These two
cases can explicitly be expressed by the following definitions. These definitions
are skeletons that are used by the relations we are going to see afterwards.

Definition 40 (anchor point). An ω-anchor point for operator o in operator
sequence o1 . . . on is an index i ∈ {1, . . . , n} such that oωoi and o <ss oi.

Informally, a ω-anchor point corresponds to the first condition in the original
definition of sleep sets.

Definition 41 (relay point). An ω-relay point for o in operator sequence
o1 . . . on is an index with 2 ≤ i ≤ n such that oωoi, and (i − 1) is a ω-anchor
point or ω-relay point for o in o1 . . . oi−1.

Again, an ω-relay point reflects the second condition in the original defini-
tion. Furthermore, we state the definition of generalized sleep sets.

Definition 42 (generalized sleep set). A generalized sleep set for an oper-
ator sequence σ with respect to an ω-relation is a set of operators gssω(σ) such
that:

• gssω(σ) = ∅, if σ = ε, and

• gssω(σ) = {o | n is an ω-anchor or ω-relay point for o in σ},
if |σ| = n > 0.

In all definitions, the symbol ω can be instantiated to one of several relations
on operator sequences as we will see next. In the following, we show the whole
family of generalized sleep sets starting with commutativity.

Commutativity on. We have previously seen the syntactic definition of sleep
sets. In the following, a state-dependent definition is presented in order
to have a comparable version to redundancy afterwards.

Given an operator sequence σ, we use pre(σ) to denote the set of states
in which σ can be applied, and σ(s) to denote the state resulting from
applying σ in a state s ∈ pre(σ).

Definition 43 (commutative operators). Let o1 and o2 be two oper-
ators. We say that o1 and o2 are commutative, denoted as o1 on o2, iff
the following holds for every state s:

1. s ∈ pre(o1) and s ∈ pre(o2) =⇒ o1(s) ∈ pre(o2) and o2(s) ∈ pre(o1)
and o1(o2(s)) = o2(o1(s)),

2. s ∈ pre(o1) and s /∈ pre(o2) =⇒ o1(s) /∈ pre(o2), and

3. s ∈ pre(o2) and s /∈ pre(o1) =⇒ o2(s) /∈ pre(o1).

To illustrate the connection with the syntactic definition, it is easy to
see that the first condition implies that o1 does not syntactically interfere
with o2, i.e., o1 does not disable o2, o2 does not disable o1, and they
do not conflict. The second condition means that if o2 /∈ app(s), then
o2 /∈ app(o1(s)), which is syntactically approximated by requiring that

6.4. GENERALIZED SLEEP SETS 53

o1 cannot enable o2. Similarly, the third condition is concerned with the
applicability of o1.

By replacing ω by on in the previously stated definitions, we get on-anchor
point, on-relay point, and consequently a generalized sleep set definition
with respect to on, i.e., for operator sequence σ, a generalized sleep sets is
denoted as gsson(σ).

Since both definitions (i.e., the original sleep sets definition and gener-
alized sleep sets using on) use the same relation (on), these definition are
equivalent, i.e., for all operator sequences σ, it holds that gsson(σ) = ss(σ).

Equivalence ≡. The equivalence relation on operator sequences, denoted as
≡, is a special case of redundancy, which will be defined later.

Definition 44 (equivalent operator sequences). Let σ and ρ be two
operator sequences. We say that σ and ρ are equivalent, denoted as σ ≡ ρ,
iff the following holds:

1. cost(σ) = cost(ρ),

2. pre(σ) = pre(ρ), and

3. s ∈ pre(σ) =⇒ σ(s) = ρ(s).

It is obvious that σ ≡ ρ holds if σ ≤ ρ and ρ ≤ σ. Equivalence is more
general than commutativity. The following lemma shows this fact.

Lemma 2. For any two operators o1 and o2, o1 on o2 =⇒ o1o2 ≡ o2o1.

Proof. By definition 44, o1o2 ≡ o2o1 iff pre(o1o2) = pre(o2o1) and s ∈
pre(o1o2) =⇒ o1o2(s) = o2o1(s). Since o1 on o2, it follows from Def-
inition 43 that pre(o1o2) = pre(o2o1) = (pre(o1) ∩ pre(o2)) and that
s ∈ (pre(o1) ∩ pre(o2)) =⇒ o2o1(s) = o1o2(s) (condition 1 in Defini-
tion 43).

Note that the implication does not always hold in the other direction:
There can be operators such that o1o2 ≡ o2o1 but it does not hold that
o1 on o2. This can happen if pre(o1o2) = pre(o2o1) 6= (pre(o1) ∩ pre(o2)),
i.e., there exists a state s ∈ (pre(o1) ∩ pre(o2)) in which both o1o2 and
o2o1 cannot be applied (o1 disables o2 and o2 disables o1).

Like commutativity, for an operator sequence σ, a generalized sleep set
gss≡(σ) can be defined based on ≡-anchor and ≡-relay points.

However, this generalization does not result in more pruning than in the
case of sleep sets using commutativity since the only difference between
the two relations (≡ and on) is that the former allows operators that mu-
tually disable each other, and hence, neither anchor nor relay points can
introduce any pruning. For example, let o1 and o2 be operators such that
o1 disables o2, o2 disables o1, and o1o2 ≡ o2o1. The operators are ordered
as follows: o1 <ss o2. Clearly, o1 ∈ gss≡(o2), but o1 is not applicable
after o2. Similarly, propagating o1 down the sequence would not result in
any pruning because o1 remains inapplicable until an enabling operator
o′ for o1 is applied, but then the equivalence does not hold and o1 is re-
moved from gss≡(o2 . . . o

′). Thus, the equivalence relation does not add
any pruning power to sleep sets.

54 CHAPTER 6. SLEEP SETS FOR CLASSICAL PLANNING

Redundancy ≤. Similar to equivalence, redundancy is defined on operator
sequences.

Definition 45 (redundant operator sequences). Let σ and ρ be two
operator sequences. We say that ρ is redundant with σ, denoted with
σ ≤ ρ, iff the following holds:

1. cost(ρ) ≥ cost(σ)

2. pre(ρ) ⊆ pre(σ)

3. s ∈ pre(ρ) =⇒ ρ(s) = σ(s)

This definition is general in the sense it considers any operator sequences
of arbitrary length and operators in both sequences might differ. Next, we
show several types of redundancy starting from the simplest to the most
general:

Simple redundancy. This type of redundancy between operator sequences
is restricted to two operators, e.g., o1o2 ≤ o2o1. From Definition 45,
it is obvious that even simple redundancy ≤ is more general than
equivalence and commutativity. To explain this, consider the follow-
ing example:

Let o1 and o2 be operators with the following components:

• pre(o1) = {>}, eff (o1) = {a 7→ 1}
• pre(o2) = {a 7→ 1}, eff (o2) = {b 7→ 1}

Clearly, o1o2 ≤ o2o1 is true for the following reasons:

1. cost(o1o2) = cost(o2o1),

2. pre(o2o1) ⊆ pre(o2o1), and

3. s ∈ pre(o2o1) =⇒ o1o2(s) = o2o1(s).

Condition 2 holds because o1 is applicable in every state (its pre-
condition is trivially satisfied), and o2 has one precondition that is
achieved by o1. This means that o1o2 is applicable in every states.
On the other hand, o2o1 is applicable only in states with a = 1.
Condition 3 holds because o1 and o2 do not conflict on any variable.

Let’s examine commutativity now. Let s = {a 7→ 0, b 7→ 0} be a
state. o1 ∈ app(s) and results in state o1(s) = {a 7→ 1, b 7→ 0}. Obvi-
ously, o2 /∈ app(s) but o2 ∈ app(o1(s)), which violates condition 2 in
Definition 43. Therefore, o1 and o2 are not commutative. Alterna-
tively, it is easy to syntactically check that o1 can enable o2 meaning
that they are not commutative.

Flexible redundancy. A more general definition is to relax the left hand
side of the inequality o1o2 ≤ o2o1 such that o2 can be replaced by an
arbitrary operator x such that the inequality holds, i.e., o1x ≤ o2o1.

Practically, the drawback of computing a sleep set based on this type
of redundancy is the linear overhead needed during the runtime step
for checking all operators x instead of a fixed lookup for o2.

Full flexible redundancy. By further relaxing the left hand side of the
inequality such that both o1 and o2 can be replaced by arbitrary

6.4. GENERALIZED SLEEP SETS 55

operators x and y, i.e., xy ≤ o2o1, we obtain the most general form
of redundancy for operator sequences of length two.

The overhead during runtime is quadratic in the number of operators
since we have free choices of operators for x and y.

Long distance leapfrogging. So far we have considered several forms
of redundancy restricted to operator sequences of length two. Now
we show that an operator can leapfrog over an entire sequence of op-
erators of arbitrary length such that it does not need to leapfrog over
intermediate operators in that sequence, i.e. , oo1 . . . on ≤ o1 . . . ono
and ooi � oio for all i ∈ {1, . . . , n}.
Given an operator sequence σ, ←−σ is used to denote the prefix of σ
up to the last operator in σ, i.e., if |σ| ≥ 1, then ←−σ = σ1 . . . σ|σ|−1;←−ε is defined to be ε. Let <gss be a length-lexicographic order used
by generalized sleep sets. The definitions of anchor and relay points
for ≤ are as follows:

Definition 46. A ≤-anchor point for operator o in sequence o1 . . . on
is an index i ∈ {1, . . . , n} for which there exists an index k ∈ {1, . . . , i},
and an operator sequence α such that:

(A1) α ≤ ok . . . oio, and

(A2) ←−α <gss ok . . . oi

Definition 47. A ≤-relay point for operator o in sequence o1 . . . on is
an index i ∈ {2, . . . , n} for which there exists an index k ∈ {2, . . . , i},
operator x, and operator sequence α such that:

(R1) xα ≤ ok . . . oio,
(R2) |α| ≤ |ok . . . oi|, and

(R3) (k − 1) is a ≤-anchor or ≤-relay point for x in o1 . . . ok−1.

6.4.1 Generalized Sleep Sets are Safe

In this section, we show that generalized sleep sets based on ≤ are completeness
and optimality preserving. For a state s, we use gss(s) instead of gss≤ for
simplicity. Furthermore, we use anchor points and relay points instead of ≤-
anchor and ≤-relay points, respectively. All the following have been shown by
Holte et al. [HAW15]2.

Lemma 3. The relation ≤ is transitive.

Proof. Let α, β, γ be operator sequences such that α ≤ β and β ≤ γ. We show
that α ≤ γ. Consider the three conditions in the redundancy definition:

1. cost(α) ≤ cost(γ) holds because cost(α) ≤ cost(β) ≤ cost(γ).

2. pre(γ) ⊆ pre(α) holds because of pre(γ) ⊆ pre(β) ⊆ pre(α).

3. s ∈ pre(γ) =⇒ α(s) = γ(s) holds because s ∈ pre(γ) =⇒ s ∈ pre(β),
γ(s) = β(s), and s ∈ pre(β) =⇒ β(s) = α(s). Therefore γ(s) = α(s) and
hence, α ≤ γ.

2We slightly reformulated the content to be consistent with the style of this thesis.

56 CHAPTER 6. SLEEP SETS FOR CLASSICAL PLANNING

Lemma 4. Let α and β be any operator sequences such that α ≤ β, and let γ
be any operator sequence. then αγ ≤ βγ and γα ≤ γβ.

Proof. We show that αγ ≤ βγ (the proof for γα ≤ γβ is analogous). For this
purpose, we need to show the following:

1. It holds that cost(αγ) ≤ cost(βγ) because cost(αγ) = cost(α) + cost(γ) ≤
cost(β) + cost(γ) = cost(βγ).

2. It holds that s ∈ pre(βγ) =⇒ s ∈ pre(β) and β(s) ∈ pre(γ). From α ≤ β
it follows that s ∈ pre(α) and α(s) ∈ pre(γ), i.e., that s ∈ pre(αγ).

3. s ∈ pre(βγ) =⇒ βγ(s) and αγ(s) are both defined. βγ(s) = γ(β(s)) =
γ(α(s)) = αγ(s).

Lemma 5. Let α, β, γ, δ, and σ be any operator sequences and let <o be a
length-lexicographic order on operator sequences such that α <o β and |γ| ≤ |δ|.
Then σαγ <o σβδ.

Proof. If |α| < |β| or |γ| < |δ| then |σαγ| < |σβδ| and therefore σαγ <o σβδ.
Alternatively, if |α| = |β| and |γ| = |δ|, then |σαγ| = |σβδ|. If oα and oβ are the
leftmost operators where α and β differ, i.e., oα in α and oβ in the corresponding
position in β, then oα and oβ are also the leftmost operators where σαγ and
σβδ differ. From α <o β we have oα <o o

β and therefore σαγ <o σβδ.

Theorem 10. Let σ = o1 . . . on be an non-empty operator sequence, where
n ≥ 1, and o be an operator. If o ∈ gss(σ), then there exists an operator
sequence σ′ such that:

(P1) σ′ ≤ σo,

(P2)
←−
σ′ <gss σ.

Proof. The proof is shown by induction on n.
Base case: n = 1. Because gss(ε) = ∅, n must be an anchor point for o in σ (n
cannot be a relay point), i.e., there exists k and α such that A1 and A2 hold
with i = n = 1 and o′ = o. k = 1 because n = 1. By setting σ′ to be α, we get
that P1 and P2 and exactly A1 and A2, respectively. Therefore, the theorem
holds for the base case. Inductive case: Assume that the theorem holds for all
m, 1 ≤ m ≤ n. We show that it holds for n + 1. Let σ = o1 . . . on+1 be an
operator sequence of length n+ 1 and o be an operator such that o ∈ gss(σ).

If n + 1 is an anchor point for o in σ, then there exist k and α such that
A1 and A2 hold with i = n + 1 and o′ = o. By setting σ′ to o1 . . . ok−1α, the
theorem holds for the following reasons:

• P1 follows directly from A1 by appending o1 . . . ok−1 to both sides of the
inequality of A1 (Lemma 4).

• If α 6= ε, then
←−
σ′ is equal to o1 . . . ok−1

←−α and P2 follows from A2 and
Lemma 5 by appending o1 . . . ok−1 to both sides of the inequality in A2.

If α = ε, then P2 holds trivially because
←−
σ′ = o1 . . . ok−2 is a prefix of σ.

6.4. GENERALIZED SLEEP SETS 57

If n+1 is not an anchor point for o in σ, it must be a relay point. Therefore,
there exist k, z and α such that R1, R2, and R3 hold with i = n + 1 and
o′ = o. From R3 and the inductive hypothesis, there exists an operator sequence
σ′ = o′1 . . . o

′
|σ′| such that:

(P1) σ′ ≤ o1 . . . ok−1z,

(P2)
←−
σ′ <gss o1 . . . ok−1.

By setting σ′ to σ′α the requirements of the theorem are satisfied for the
following reasons:

• We need to show σ′ ≤ σo, i.e., that σ′α ≤ σo. From P1, we have σ′ ≤
o1 . . . ok−1z. By appending α to both sides of the inequality (Lemma 4),
we get σ′α ≤ o1 . . . ok−1zα. By R1 and Lemma 4 (appending o1 . . . ok−1 to
both sides of the inequality), we have o1 . . . ok−1zα ≤ o1 . . . ok−1ok . . . on+1o =
σo. By the transitivity of ≤, we have σ′ = σ′α ≤ σo, i.e. P1 is true.

• We need to show that
←−
σ′ <gss σ. Let γ =

←−−
(õα), where õ is the last

operator in σ′ if σ′ 6= ε, and õ = ε if σ′ = ε. Then |γ| = |←−−(õα)| ≤ |α|.
Combining this with R2, we get |γ| ≤ |ok . . . on+1|. Using this fact in

Lemma 5 together with the inequality
←−
σ′ <gss o1 . . . ok−1 from P2 we

have
←−
σ′γ <gss o1 . . . ok−1ok . . . on+1 = σ. But

←−
σ′γ =

←−−−
(σ′α), hence P2 is

true.

Theorem 11. Let s and t be states such that t is reachable from s. Let
σk−1okρk+1 = min(s, t) for all k, 1 ≤ k ≤ |min(s, t)|. Then, ok /∈ gss(σk−1)
for all k, 1 ≤ k ≤ |min(s, t)|.

Proof. The theorem holds for k = 1, since σ0 = ε and gss(ε) = ∅. For k ≥ 2, if
ok ∈ gss(σk−1) then, by Theorem 10, there exists an operator sequence σ′ such
that:

(P1) σ′ ≤ σk−1ok = σk,

(P2)
←−
σ′ <gss σk−1.

Let σ = σ′ρk+1. By appending ρk+1 to both sides of the inequality in P1
(Lemma 4), we get σ = σ′ρk+1 ≤ σkρk+1 = min(s, t). Hence, σ is a least-
cost path from s to t. Let o′ be the last operator in σ′ if σ′ 6= ε, and o′ = ε
otherwise. By appending o′ρk+1 to the left hand side of the inequality in P2,
and okρk+1 to the right hand side, by Lemma 5, we get σ′ρk+1 <gss σkρk+1,
i.e., σ <gss min(s, t). There two facts about σ contradict min(s, t) being the
least-cost path that is smallest according to <gss.

6.4.2 Generalized Sleep Sets and Move Pruning

Burch and Holte introduced move pruning as an optimality-preserving dupli-
cate pruning technique for single-agent search problems. The method has been
designed to detect sequences of moves that result in duplicate states in tree

58 CHAPTER 6. SLEEP SETS FOR CLASSICAL PLANNING

search algorithms like DFS or IDA∗ [BH11; BH12; HB14]. Move pruning builds
on an earlier algorithm that has been introduced by Taylor and Korf to reduce
redundancy in some combinatorial games like the N -puzzle sliding tile puzzle
and Rubik’s cube [TK93]. Like sleep sets, move pruning relies on redundancy
between operator sequences and need a total ordering on operators.

Let <mp be a nested order on operator sequences used by move pruning,
σ be an operator sequence, and o be an operator. Furthermore, let δ be an
operator sequence such that δ <mp σo and δ ≤ σo, then move pruning prunes
(does not apply) o after σ. The safety proof is given in [HB14]. Similar to sleep
sets, the implementation of move pruning has two steps: A preprocessing step
where the redundancy relation is computed for operator sequences of length L
or less (L is a parameter), and a runtime step in which operators are pruned
during the search. For instance, for operators o1, . . . , on with unit costs, move
pruning checks oioj ≤ okol and oi ≤ ojok, for i, j, k, l ∈ {1, . . . , n}.

Let σ1 = o1 . . . on and σ2 = o′1 . . . o
′
m be operator sequences such that n ≤

m ≤ L. Let s ∈ pre(σ1) ∩ pre(σ2) be a state. If σ1 ≤ σ2 and σ1 <mp σ2,
then operator o′m is not applied in state o′1 . . . o

′
m−1(s). To be comparable to

generalized sleep sets, move pruning can be redefined in terms of move pruning
points.

Definition 48. A move pruning point for operator o in operator sequence
o1 . . . on is an index i where 1 ≤ i ≤ n for which there exists an index k where
1 ≤ k ≤ i and an operator sequence λ such that:

(MP1) λ ≤ ok . . . oio, and

(MP2) λ <mp ok . . . oio.

If a point in a path is a move pruning point for operator o, then o is pruned.
This is similar to the fact that sleep sets would prune o at anchor points. How-
ever, there is an interesting difference between move pruning points and anchor
points. If we consider definitions 46 and 48, we notice the difference between
rules (A2) and (MP2). Let σ1 and σ2 be two operator sequences such that
σ1 ≤ σ2. Assume that operator orderings <gss and <mp are identical. Defini-
tion 46 requires←−σ1 <gss

←−σ2 (A2), while Definition 48 requires σ1 <mp σ2 (MP2).
Indeed, rule (A2) implies (MP2) but not vice versa. For example, given opera-
tors o, o′ and o′′ such that o <mp o

′ <mp o
′′, then oo′ <mp oo

′′ is true although
o <mp o is false. Clearly, move pruning points are more general than anchor
points, and hence they can prune paths that anchor points cannot prune. On
the other hand, relay points of sleep sets have the property that they can prune
path of arbitrary length by propagating operators along paths, while the length
of pruned paths is bounded by L for move pruning.

In a nutshell, we see that generalized sleep sets and move pruning are pair-
wise incomparable in terms of pruning power. We have also shown that gener-
alized sleep sets dominates the original sleep sets method in terms of pruning
power.

Chapter 7

Combining Sleep Sets with
Stubborn Sets

While stubborn sets are directed towards goal states due to employing disjunc-
tive action landmarks in their definition, sleep sets have no clue about the direc-
tion of goal states but rather they rely on the information gathered throughout
the search. In his monograph, Godfroid proposed an algorithm for combining
sleep sets with a state reduction technique called persistent sets [God96]. A
persistent set is a general notion used to define the reduced set of transitions
produced by state reduction techniques (like stubborn sets) [Ove81; Val89]. The
intuition behind this combination is that persistent sets are sometimes forced to
include some transitions that can safely be pruned according to sleep sets since
they lead to redundant states. In the following, we see how sleep sets can be
combined with stubborn sets in a straightforward fashion. Afterwards, we show
that a tighter integration of both techniques can be unsafe.

7.1 Loose Integration

The algorithm that Godefroid suggested, combines sleep sets and persistent
sets in a straightforward fashion: For a given state s, a persistent set (e.g., a
stubborn set) and a sleep set for s are independently computed, then only the
applicable transitions that belong to the persistent set but outside the sleep
set are used to expand s. We followed this method to combine A∗ss with state
pruning.

Algorithm 10 shows how A∗ search can be combined with sleep sets and
stubborn sets. We call this algorithm A∗sssss. The only difference to Algorithm 7
appears in line 10, where app(s) are restricted to the applicable operators in a
stubborn set Ts, which is computed according to Algorithm 1, then the new
resulting app(s) is restricted again to the operators outside the sleep set (line
11). The next theorem shows the safety of A∗sssss. For [σ]≡, we use Σs,σ :=
{oi1 | σ ∈ [σ]≡, σ = oi1o

i
2 . . . o

i
ni
} to denote the set of initial operators of [σ]≡,

i.e., the set that contains the first operators of all paths in [σ]≡.

Theorem 12. [AW16] Let s be a state, and let sg be a goal state reachable
from s via operator sequence σ (i.e., σ(s) = sg). Let σ1, . . . , σn be the paths

59

60 CHAPTER 7. COMBINING SLEEP SETS WITH STUBBORN SETS

Algorithm 10 A∗sssss

1: Open← ∅; Closed← ∅
2: n0 ← make node(s0)
3: Open.insert(n0);
4: while Open 6= ∅ do
5: n← Open.pop min()
6: s← n.get state()
7: if is goal(s) then
8: plan← σsmin /*minimal cost generating path of s*/
9: return Solved

10: app(s)← app(s) ∩ Ts
11: app(s)← app(s) \ ss(σs1, . . . , σsn)
12: expand(s, app(s), ss(σs1, . . . , σ

s
n))

13: return UnSolved

explored by A∗sssss that generated s in this particular order before termination
(i.e., s is generated by σ1 first, and by σn last).

If Σs,σ ∩ ss(σ1, . . . , σn) = ∅, then there is a permutation σ̄ ∈ [σ]≡ that is
preserved by A∗sssss .

Before giving the proof, let us discuss the claim and its implications in some
more detail. Theorem 12 states that if the (updated) sleep set of a state s
eventually does not contain any first operator of the sequences in [σ]≡, then
at least one of these sequences is preserved. As discussed by Godefroid, this
particularly implies the completeness of A∗sssss because the sleep set of the initial
state is empty by definition. In addition, we observe that A∗sssss remains optimal
because for all solutions, at least one permutation is preserved.

Proof. Consider the permutation equivalent paths [σ]≡ of σ, and the set of initial
operators Σs,σ of [σ]≡. We show by induction on the length of σ that at least
one permutation sequence σ̄ ∈ [σ]≡ is preserved by A∗sssss . If |σ| = 0, the result
is immediate.

If |σ| > 0, then there is an operator sequence of length |σ| from s to sg in
the state space induced by A∗ and strong stubborn sets. The proof will show
that such an operator sequence to reach sg still exists in the state space induced
by A∗sssss .

First, we observe that there is o ∈ Σs,σ that is applied by A∗sssss in s: To see
this, consider the first sequence σsk (1 ≤ k ≤ n) by which state s is generated such
that Σs,σ ∩ ss(σs1, . . . , σ

s
k) = ∅ (i.e., Σs,σ ∩ ss(σs1, . . . , σ

s
i) 6= ∅ for 1 ≤ i ≤ k− 1).

Such σsk must exist because Σs,σ ∩ ss(σs1, . . . , σ
s
n) = ∅ by assumption, and by

definition, sleep sets can only reduce when a state is revisited.
Now consider the expansion process of s when s is reached by σsk. Let o be

the operator in Σs,σ that is applied in s and is smallest among the remaining
operators in Σs,σ (according to <ss) that have not yet been applied in s. Such
an operator must exist because Σs,σ ∩ ss(σs1, . . . , σ

s
k−1) 6= ∅. Let s′ := o(s). As

o ∈ Σs,σ, the goal state sg is reachable from s′ with an operator sequence σ′

with |σ′| = |σ| − 1.
Consider the paths ρ1, . . . , ρt explored by A∗sssss that generate s′. To con-

clude the inductive proof argument, we will show (by contradiction) that Σs
′,σ′∩

7.1. LOOSE INTEGRATION 61

ss(ρs
′

1 , . . . , ρ
s′

t) = ∅. Assume Σs
′,σ′ ∩ ss(ρs

′

1 , . . . , ρ
s′

t) 6= ∅. Then there exists an
operator ō ∈ Σs

′,σ′ with ō ∈ ss(ρs
′

1 , . . . , ρ
s′

m) for all 1 ≤ m ≤ t. In particular,
ō ∈ ss(ρs

′

1 , . . . , (σko)
s′), which implies that o and ō are commutative. It follows

that ō is applicable in s (because ō is applicable in s′, and ō is not disabled by
o), and furthermore, ō is an initial operator of a permutation of σ which leads
to sg, i.e., ō ∈ Σs,σ. On the other hand, as ō ∈ ss(ρs

′

1 , . . . , (σko)
s′), it follows

that ō ∈ ss(σs1, . . . , σ
s
k) already (and ō is propagated to ss(ρs

′

1 , . . . , (σko)
s′) after-

wards), or ō has been added to ss(ρs
′

1 , . . . , (σko)
s′) after applying o in s (meaning

that ō is applied before o in s, i.e., ō <ss o). However, both of these cases cannot
happen: The former case is a contradiction to the fact that ō ∈ Σs,σ (because
Σs,σ ∩ ss(σs1, . . . , σ

s
k) = ∅), and the latter case is a contradiction to the choice of

o being the smallest operator according to <ss . The induction continues from
s′ until sg is reached.

Corollary 5. [AW16] A∗sssss inherits the completeness and optimality proper-
ties from A∗ss .

Proof. Completeness follows because the sleep set of the initial state is empty
by definition. Optimality follows because for every solution π, a permutation
of π is preserved, hence in particular for every optimal solution.

In the following, we see an example of the loose integration of sleep sets and
stubborn sets.

Example 11. Let Π = 〈V,O, s0, s?〉 be a planning task, where

• V = {a, b, c, g}

• O = {o1, o2, o3}, where

– pre(o1) = {>}, eff (o1) = {a 7→ 1, c 7→ 1}
– pre(o2) = {>}, eff (o2) = {b 7→ 1, c 7→ 1}
– pre(o3) = {c 7→ 1}, eff (o3) = {a 7→ 0, g 7→ 1}

• s0 = {a 7→ 0, b 7→ 0, c 7→ 0, g 7→ 0}

• s? = {g 7→ 1}
Furthermore, the total order on O is given as follows: o1 <ss o2 <ss o3.

s0

s1 s2

s3 s4

o1 o2

o2 o1

o3

s0

s1 s2

s3 s4

o1 o2

o2 o1

o3

Figure 7.1: Operator o1 is pruned by sleep sets but not by stubborn sets.

This example shows that sleep sets can safely prune operators that cannot be
pruned by stubborn sets. In the initial state s0, neither sleep sets nor stubborn

62 CHAPTER 7. COMBINING SLEEP SETS WITH STUBBORN SETS

sets prune anything: For sleep sets, ss(ε) = ∅. For stubborn sets, Ts0 is initial-
ized with o3 as a disjunctive action landmark. o3 /∈ app(s0) and hence o1 and
o2 are added to Ts0 as a necessary enabling set. Therefore, both o1 and o2 will
be applied in s0. Now assume that the search selects state s2 to be expanded
next. Obviously, operators o1 and o2 are commutative (o1 on o2). Because
o1 <ss o2, o1 ∈ ss(o2) and o1 can safely be pruned at state s2. Now, consider
the computation of a stubborn set Ts2 for state s2. First, Ts2 is initialized with
o3 as a disjunctive action landmark for s? in s2. Indeed, o3 is applicable in s2;
therefore, interfering operators need to be added to Ts2 . Consequently, o1 is
added to Ts2 since it conflicts with o3 on variable a. Figure 7.1 illustrates the
example.

7.2 Tight Integration

The following interesting theoretical question arose throughout the research on
sleep sets and stubborn: Is there a way to integrate both techniques in a tighter
fashion? i.e., can one method make use of the computation of the other? Let
us consider the idea of utilizing sleep sets in the computation of stubborn sets.
For instance, for a state s, an operator o is excluded from being added to the
stubborn set of s if o is already in the sleep set of the path that ended in s,
even though o is member of a selected disjunctive action landmark, a necessary
necessary enabling set, or an interferer of another operator which is already
included in the stubborn set. The following counterexample shows that it is
unsafe to utilize sleep sets in the computation of stubborn sets directly.

Example 12. Let Π = 〈V,O, s0, s?〉 be a planning task, where

• V = {a, b, c, g}

• O = {o1, o2, o3}, where

– pre(o1) = {>}, eff (o1) = {a 7→ 1, c 7→ 1}
– pre(o2) = {>}, eff (o2) = {b 7→ 1}
– pre(o3) = {b 7→ 1, c 7→ 0}, eff (o3) = {g 7→ 1}

• s0 = {a 7→ 0, b 7→ 0, c 7→ 0, g 7→ 0}

• s? = {a 7→ 1, b 7→ 1, g 7→ 1}

The total order on O is given as follows: o1 <ss o2 <ss o3.

The only possible plan for this planning task is o2o3o1. For state s0, variable
a is selected as a seed for a disjunctive action landmark, which leads to including
o1 in Ts0 . Since o1 is applicable, o3 is added to Ts0 as it interferes with o1 (o1

disables o3 on variable c). Finally, o2 is included in Ts0 as a necessary enabling
set for o3 (o3 is inapplicable in s0).

Let’s consider now state s2 in Figure 7.2. Due to commutativity of o1 and
o2, operator o1 is in the sleep set ss(o2). If variable a has been selected as the
seed of a disjunctive action landmark at s2, then o1 needs to be included in the
stubborn set, but o1 ∈ ss(o2), therefore, it would be excluded from Ts which
results in an empty stubborn set, thereby pruning the only plan. Consequently,

7.2. TIGHT INTEGRATION 63

s0

s1 s2

s3 s4

s5

o1 o2

o2 o1

o3

o1

s0

s1 s2

s3 s4

s5

o1 o2

o2 o1

o3

o1

Figure 7.2: Operator o3 is pruned in s2 when o1 is not added to Ts2 .

the direct integration of sleep sets into the computation of stubborn sets is
unsafe.

In future work, it would be interesting to investigate a safe way to utilize
sleep sets for computing stubborn sets.

Chapter 8

Experimental Evaluation

In this chapter, we experimentally evaluate the partial order reduction tech-
niques presented in this thesis. All techniques are implemented on top of the
planning system Fast Downward [Hel06].

Next, we will see the empirical evaluation of stubborn sets (strong and weak).

8.1 Strong Stubborn Sets vs. Expansion Core

All state reduction techniques are implemented with A∗ search algorithm. The
strong stubborn sets method (SSS) is evaluated by comparing it to pure A∗

(without partial order reduction) and to the expansion core method (EC). Fur-
thermore, the variant of SSS that dominates EC (SSS-EC) is also evaluated
(mentioned briefly in section 4.3 and in details in [Weh+13]). The variant of
SSS used for this experiment selects the first unsatisfied precondition or goal
fact as a basis for adding a necessary enabling set or a disjunctive action land-
mark, respectively. Three sets of experiments have been performed for all con-
figurations: A∗ is guided by the landmark-cut heuristic [HD09], A∗ with the
merge-and-shrink heuristic [DFP09; HHH07], and A∗ as blind search.

Table 8.1 provides an evaluation of the configurations mentioned above using
the landmark cut heuristic. Table 8.2 shows the evaluation of all configurations
using the merge-and-shrink heuristic. Finally, Table 8.3 is an overview of the
results using blind search. The domains listed in the tables are those where cov-
erage (i.e., number of solved problems) is not the same for all algorithms. The
rest of the domains are counted in “remaining domains”. The number of gen-
erated states is provided for the instances that are solved by all configurations,
i.e., by pure A∗ as well as by EC, SSS-EC and SSS.

Figures 8.1, 8.2, and 8.3 are scatterplots that show the search time for all
configurations with the landmark-cut heuristic, the merge-and-shrink heuristic,
and the blind heuristic, respectively.

Experiment setting and benchmarks. The experiments are performed on
a cluster with Intel Xeon E5-2650v2 2.6 GHz CPUs, with a timeout of 30 minutes
and a memory bound of 2 GB per run. The benchmarks are all optimal STRIPS
planning instances from the International Planning Competitions (IPCs) up to
2014, with an overall number of 79 domains and 2107 problems.

64

8.1. STRONG STUBBORN SETS VS. EXPANSION CORE 65

(a) A∗ vs. EC (b) A∗ vs. SSS-EC (c) A∗ vs. SSS

(d) EC vs. SSS-EC (e) EC vs. SSS (f) SSS-EC vs. SSS

Figure 8.1: Search time for state reduction techniques using the landmark-cut
heuristic.

(a) A∗ vs. EC (b) A∗ vs. SSS-EC (c) A∗ vs. SSS

(d) EC vs. SSS-EC (e) EC vs. SSS (f) SSS-EC vs. SSS

Figure 8.2: Search time for state reduction techniques using the merge-and-
shrink heuristic.

66 CHAPTER 8. EXPERIMENTAL EVALUATION

Coverage Nodes generated
Domain (problems) A∗ +EC +SSS-EC +SSS A∗ +EC +SSS-EC +SSS

parcprinter-08 (30) 19 −1 +11 +11 2452034 100% <1% <1%
parcprinter-opt11 (20) 14 −1 +6 +6 2452025 100% <1% <1%
woodworking-opt08 (30) 17 +6 +10 +10 6109688 9% <1% <1%
woodworking-opt11 (20) 12 +4 +7 +7 6109399 9% <1% <1%
satellite (36) 7 ±0 +5 +5 5057697 83% 2% 2%
rovers (40) 8 −1 +1 +1 1894389 99% 22% 24%
openstacks-opt08 (30) 21 −4 −2 −1 4324209 100% 63% 63%
openstacks-opt11 (20) 16 −4 −2 −1 4300589 100% 63% 63%
openstacks-opt14 (20) 3 −2 ±0 ±0 333319 100% 64% 64%
tidybot-opt14 (20) 10 −2 −1 −2 359568 100% 75% 75%
hiking-opt14 (20) 9 ±0 −1 ±0 7791154 100% 99% 99%
logistics00 (28) 20 ±0 +1 ±0 12849032 94% 19% 99%
freecell (80) 15 ±0 ±0 −1 12318970 100% 100% 100%
parking-opt11(20) 3 −1 −1 −1 560427 100% 100% 100%
pegsol-08 (30) 28 −1 −1 ±0 6039901 100% 100% 100%
pegsol-opt11 (20) 18 −1 −1 ±0 6402682 100% 100% 100%
scanalyzer-08 (30) 15 ±0 −3 −3 13942542 100% 100% 100%
scanalyzer-opt11 (20) 12 ±0 −3 −3 13942534 100% 100% 100%
sokoban-opt08 (30) 30 −2 −2 −1 20469867 100% 100% 100%
tetris-opt14 (17) 6 −1 −1 −1 1280030 100% 100% 100%
tpp (30) 7 −1 −1 ±0 233191 100% 100% 100%
visitall-opt11 (20) 11 −1 −1 ±0 1991026 100% 100% 100%

Remaining domains (1496) 592 ±0 ±0 ±0 476297502 99.9% 89% 93%

SUM (2107) 893 −14 +21 +26 607511775 98% 85% 90%

Table 8.1: Results overview for the landmark-cut heuristic.

(a) A∗ vs. EC (b) A∗ vs. SSS-EC (c) A∗ vs. SSS

(d) EC vs. SSS-EC (e) EC vs. SSS (f) SSS-EC vs. SSS

Figure 8.3: Search time using the blind heuristic.

Coverage. In Table 8.1, the dominance of SSS-EC over EC is obvious by
observing the number of solved instances by both configurations: SSS-EC solved

8.1. STRONG STUBBORN SETS VS. EXPANSION CORE 67

Coverage Nodes generated
Domain (problems) A∗ +EC +SSS-EC +SSS A∗ +EC +SSS-EC +SSS

parcprinter-08 (30) 14 ±0 +11 +11 69744790 100% <1% <1%
parcprinter-opt11 (20) 10 ±0 +8 +8 69744790 100% <1% <1%
woodworking-opt08 (30) 13 +1 +7 +7 37957178 28% <1% 1%
woodworking-opt11 (20) 8 ±0 +6 +6 37957178 28% <1% 1%
rovers (40) 8 ±0 +1 +1 267804769 97% 8% 9%
pathways-noneg (30) 4 ±0 +1 +1 9372 100% 16% 19%
satellite (36) 6 ±0 +1 +1 1550 94% 28% 29%
mystery (30) 16 −1 −1 −1 14836242 100% 32% 44%
openstacks-opt08 (30) 20 −3 −1 ±0 4969076 100% 60% 60%
openstacks-opt11 (20) 15 −3 −1 ±0 4960916 100% 60% 60%
openstacks-opt14 (20) 3 −2 ±0 ±0 424367 100% 60% 60%
zenotravel (20) 12 ±0 −2 ±0 18998735 99% 76% 77%
floortile-opt11 (20) 4 ±0 +1 +1 34167799 100% 79% 83%
airport (50) 18 −2 ±0 ±0 1992660 100% 61% 90%
mprime (35) 23 −1 ±0 ±0 15102564 100% 92% 92%
nomystery-opt11 (20) 18 −1 −1 −3 401945 100% 97% 97%
hiking-opt14 (20) 13 −3 −4 −3 10851210 100% 99% 99%
hiking-mco14 (20) 3 −1 −1 −1 1412978 100% 99% 99%
pipesworld-notankage (50) 16 −1 −1 −1 16538093 100% 99% 99%
depot (22) 6 −1 −1 ±0 14883344 100% 99% 100%
blocks (35) 26 −1 ±0 ±0 37868664 100% 100% 100%
freecell (80) 20 −6 −6 −6 6147833 100% 100% 100%
miconic (150) 72 ±0 −3 −2 89056243 100% 100% 100%
pipesworld-tankage (50) 14 −2 −2 −1 12223901 100% 98% 100%
scanalyzer-08 (30) 13 −2 −5 −4 23908080 100% 100% 100%
scanalyzer-opt11 (20) 10 −2 −5 −4 23908080 100% 100% 100%
sokoban-opt08 (30) 26 −6 −2 −1 37392445 100% 94% 100%
sokoban-opt11 (20) 20 −3 ±0 ±0 37391596 100% 94% 100%
transport-opt14 (20) 7 −1 −1 −1 40851713 100% 98% 100%
trucks (30) 7 −2 −2 −1 4711045 100% 98% 100%

Remaining domains (1079) 313 ±0 ±0 ±0 1457314640 99% 89% 89%

SUM (2107) 758 −43 −4 +7 2393533796 97% 61% 73%

Table 8.2: Results overview for the merge-and-shrink heuristic.

21 instances more than the baseline A∗ while EC solved 14 instances less than
A∗. In addition, we observe that SSS yields a higher coverage than SSS-EC:
SSS solves additional 26 instances compared to the baseline configuration.
Table 8.2 shows that both EC and SSS-EC solve less instances than the baseline
A∗ when the merge-and-shrink heuristic is used. However, the difference in
coverage loss is still big between the two configurations: EC loses 43 instances,
while SSS-EC loses only 4 instances.
We notice the low coverage increase for SSS (compared to the result for the
landmark-cut heuristic) and significant decrease in coverage for EC and SSS-
EC compared to the baseline configuration. This can be justified as follows:
The computation of the merge-and-shrink heuristic involves a pre-processing
step and a look-up step. After performing the pre-processing step, looking-up
heuristic values for explored states is rather fast compared to the computation
of the landmark-cut heuristic. This means that exploring states is less expensive
with merge-and-shrink than with landmark-cut which makes the pruning effect
less significant. In addition, the overhead required to compute strong stubborn
sets or expansion core could worsen the overall performance.
Finally, Table 8.3 is an overview of the results for all configurations using A∗

with the blind heuristic. The results are similar to the results for the merge-
and-shrink heuristic. We observe that all the three pruning methods lead to
decrease in coverage. In particular, we see the significant degradation of the
performance of EC with the blind heuristic compared to its performance with

68 CHAPTER 8. EXPERIMENTAL EVALUATION

Coverage Nodes generated
Domain (problems) A∗ +EC +SSS-EC +SSS A∗ +EC +SSS-EC +SSS

parcprinter-08 (30) 10 ±0 +20 +20 70870124 100% <1% <1%
parcprinter-opt11 (20) 6 ±0 +14 +14 70854677 100% <1% <1%
woodworking-opt08 (30) 7 ±0 +7 +6 40894144 72% <1% 1%
woodworking-opt11 (20) 2 ±0 +6 +5 38105951 71% <1% 1%
rovers (40) 5 ±0 +1 +1 135111806 98% 3% 3%
satellite (36) 5 1 +1 +1 5926926 88% 4% 4%
mystery (30) 15 −3 −3 −2 16036138 100% 31% 47%
sokoban-opt08 (30) 21 −5 ±0 ±0 46997936 100% 42% 100%
sokoban-opt11 (20) 18 −5 ±0 ±0 46987680 100% 42% 100%
nomystery-opt11 (20) 8 −1 ±0 −1 5527015 100% 49% 69%
airport (50) 21 −3 ±0 ±0 5859635 100% 49% 78%
openstacks-opt08 (30) 20 −3 ±0 −1 5017325 100% 59% 60%
openstacks-opt11 (20) 15 −3 ±0 −1 4992597 100% 60% 60%
openstacks-opt14 (20) 3 −2 ±0 ±0 424367 100% 60% 60%
tidybot-opt11 (20) 13 −10 −6 −8 67404 100% 61% 61%
psr-small (50) 49 −1 ±0 ±0 13379581 100% 64% 64%
elevators-opt08 (30) 11 ±0 +1 ±0 349270958 100% 65% 87%
elevators-opt11 (20) 9 ±0 +1 ±0 348702574 100% 65% 87%
zenotravel (20) 8 −1 −1 −1 10750124 99% 84% 85%
trucks (30) 6 −2 −1 −1 37961719 100% 95% 95%
mprime (35) 19 −5 −4 −2 18473788 100% 98% 98%
hiking-opt14 (20) 11 −3 −3 −3 40366687 100% 98% 99%
thoughtful-agl14 (20) 5 −4 ±0 ±0 10083954 100% 98% 99%
transport-opt14 (20) 6 −2 −2 −1 18867064 100% 99% 100%
pipesworld-notankage (50) 14 ±0 −2 ±0 14036756 100% 99% 99%
depot (22) 4 ±0 −1 ±0 23390231 100% 99% 100%
pipesworld-tankage (50) 11 −3 −5 −3 3537883 100% 99% 100%
freecell (80) 15 −2 −6 −7 8024017 100% 99% 100%
ged-opt14 (20) 15 −2 ±0 ±0 9521324 100% 100% 100%
miconic (150) 50 ±0 −5 ±0 387690342 100% 100% 100%
scanalyzer-08 (30) 12 −6 −6 −6 1798292 100% 100% 100%
scanalyzer-opt11 (20) 9 −6 −6 −6 1005252 100% 100% 100%
tetris-opt14 (17) 8 −5 −4 −3 366690 100% 100% 100%
tpp (30) 6 −1 ±0 ±0 119411 100% 100% 100%

Remaining domains (977) 187 ±0 ±0 ±0 845750046 99% 91% 93%

Sum (2107) 624 −90 −6 −4 2636770418 99% 71% 80%

Table 8.3: Results overview for blind search (i.e., A∗ with the blind heuristic).

the merge-and-shrink heuristic: 90 vs 43 less solved instances. Moreover, we
see that SSS-EC and SSS lose instances in several domains. This is due to the
overhead in the computation of strong stubborn sets, specially in domains where
no pruning occurs.

Generated nodes. The decreased number of generated search nodes is the
main reason for the increase in coverage for partial order reduction techniques1.
Table 8.1 shows that both SSS-EC and SSS have by far more pruning power
than EC. For every domain, the reported numbers of generated nodes refer
to the instances that are commonly solved by all configurations. The most
interesting domains in which SSS-EC and SSS perform significantly well are
Parcprinter and Woodworking where both configurations prune more than
99% of the explored space (i.e., generate less than 1% of the states generated
by A∗). Overall, the number of generated states is reduced to 98% with EC,
85% with SSS-EC, and 90% with SSS using the landmark-cut-heuristic. Using
the merge-and-shrink heuristic, the amount of reduction is 97% with EC, 61%

1The reported number of generated nodes is until the last f -layer to eliminate the effect of
tie-breaking.

8.2. WEAK STUBBORN SETS VS. STRONG STUBBORN SETS 69

with SSS-EC, and 73% with SSS. Finally, using the blind heuristic, the amount
of reduction is 99% with EC, 71% with SSS-EC, and 80% with SSS.

Although SSS-EC outperforms SSS in the terms of node generation, SSS
solves more instances than SSS-EC. This happens because SSS is computa-
tionally faster than SSS-EC. The experimental results reveal that using SSS is
preferable in practice even though SSS-EC is slightly better in terms of pruning
power.

Search time. Figure 8.1 shows that reducing the number of generated search
nodes using SSS and SSS-EC using the landmark-cut heuristic leads to a faster
search on average compared to the baseline and to EC. On the other hand,
Figures 8.2 and 8.3 show that all three pruning configurations worsen the search
time on average using the merge-and-shrink and the blind heuristics.

In summary, the empirical evaluation in this section emphasizes the following
points:

1. The experiments reflect the dominance of a particular instantiation of
strong stubborn sets (SSS-EC) over the expansion core method.

2. Partial order reduction techniques are more effective when combined with
heuristics that are relatively expensive, as the relative overhead of comput-
ing partial order reduction techniques is low. On the other hand, combin-
ing them with cheap heuristics (i.e., fast to compute) does not pay off, due
to the increase of the relative overhead needed during the computation of
partial order reduction techniques, which worsen the overall performance
of the search.

3. For domains where the pruning power is insignificant, using partial or-
der reduction techniques can affect scalability of the underlying search
algorithm, due to the computational overhead which can extensively de-
grade both memory consumption and runtime. For example, in Scana-
lyzer domains, the computation of the interference relation for SSS and
SSS-EC runs out of memory, wheres the overhead in the actual computa-
tion of strong stubborn sets during search leads to timeouts in Parking,
Sokoban, and Visitall domains.

8.2 Weak Stubborn Sets vs. Strong Stubborn
Sets

In chapter 4, we have seen that weak stubborn sets have, at least theoretically,
exponentially more pruning power than strong stubborn sets. In this section,
we experimentally compare both variants to each other. We consider the SSS
version used in the previous section and the landmark-cut heuristic. Weak
stubborn sets are referred to as WSS. In Table 8.4, we provide an overview of
the results on the domains where the pruning power of SSS and WSS differs.

Experiment setting and benchmarks. The same setting and benchmarks
as in section 8.1.

70 CHAPTER 8. EXPERIMENTAL EVALUATION

Coverage Nodes generated # problems
Domain (problems) SSS WSS SSS WSS w. diff. gen.

openstacks-opt08 (30) 20 ±0 6129805 99.968% 10
openstacks-opt11 (20) 15 ±0 6116635 99.968% 10
openstacks-opt14 (20) 3 ±0 4138032 99.552% 2
pathways-noneg (30) 5 ±0 153443 99.791% 2
psr-small (50) 49 ±0 18109203 99.998% 6
satellite (36) 12 ±0 69748950 92.914% 12
rovers (40) 10 ±0 96609018 97.213% 4
storage (30) 15 ±0 2374214 97.725% 12

Table 8.4: Weak compared to strong stubborn sets (using landmark-cut heuris-
tic).

Although WSS can be exponentially more powerful than SSS, the experimen-
tal results show that the difference between both variants is almost negligible
for the available IPC optimal planning domains: The same coverage for both
algorithms, and very few domains where WSS reduce the number of generated
search nodes. Despite the fact that the difference between SSS and WSS is ex-
perimentally small, we believe that the results are interesting for the following
reasons:

1. This is the first experimental evaluation of weak stubborn sets. In the
area of model checking, weak stubborn sets have been only theoretically
analyzed [Val89], but there is no empirical evaluation for them due to their
complicated conditions.

2. In the context of SAS+ language, weak stubborn sets are straightforward
computable by dropping one of the conditions needed to compute the
interference relation for SSS. Furthermore, they exponentially dominate
SSS in theory, and we think, there might be new planning domains in
future, where WSS can practically be more beneficial than SSS.

8.3 Stubborn Sets for FOND planning

In this section, we empirically investigate the pruning power of nondeterministic
stubborn sets when applied as the only pruning technique and also on top of
other pruning techniques such as structural symmetries and active operators
pruning. For this purpose, strong and weak stubborn sets variants as well as
active operators pruning have been implemented on top of an adaptation of
Fast Downward [Hel06] to FOND planning [WWK16], which already included
symmetry based pruning. As a baseline search algorithm, we employ LAO∗

using the FF heuristic [HN11] and we refer to this configuration as FF for
simplicity. The implementation is based on the all-outcome determinization of
FOND planning tasks. All configurations are built on top of this baseline. For
all stubborn sets approaches, the disabling relation and achievers were entirely
precomputed, while the interference relation was computed during the search
and then cached for later use on demand.

8.3. STUBBORN SETS FOR FOND PLANNING 71

(a) FF vs. NSSS (b) FF vs. NWSS (c) NSSS vs. NWSS

Figure 8.4: Generated nodes comparison for FOND planning problems.

Experiment setting and benchmarks. All our experiments were conducted
on a cluster equipped with Intel Xeon E5-2650 v2 CPUs running at 2.6 GHz.
For each run, the time limit and memory bound were 30 minutes and 2 GB,
respectively. The benchmark set consists of all IPC-08 FOND domains, scaled-
up versions of these domains by Christian Muise and other FOND domains
commonly used in the literature.

8.3.1 NSSS and NWSS

Domain (problems) FF NSSS NWSS

blocksworld (30) 22 −1 −1
chain-of-rooms-fixed (10) 10 ±0 ±0
earth-observation (40) 33 ±0 ±0
faults (55) 55 ±0 ±0
first-responders (100) 98 −1 ±0
forest (90) 8 +2 +5
prp-blocksworld-new (50) 16 −1 −1
prp-elevators (15) 14 ±0 +1
prp-ex-blocksworld (15) 8 ±0 ±0
prp-faults-new (190) 190 ±0 ±0
prp-first-responders-new (95) 30 ±0 +1
prp-forest-new (90) 7 ±0 +1
tidyup-mdp (10) 10 ±0 ±0
tireworld (15) 15 ±0 ±0
triangle-tireworld (40) 7 ±0 ±0

Sum (845) 523 −1 +6

Table 8.5: Coverage of baseline (FF), nondeterministic strong stubborn sets
(NSSS) and nondeterministic weak stubborn sets (NWSS).

Coverage. Table 8.5 is an overview about coverage per domain for the baseline
algorithm LAO∗ using the FF heuristic, NSSS, and NWSS both built on top
of the baseline. We notice that NSSS performance is similar to the baseline
algorithm (FF), loosing one problem each in three domains, and increasing
coverage by two problems in one domain. In total, coverage of NSSS is reduced
by one instance. Comparing NWSS to FF, it looses one task each in two domains
and gains five problems in one domain and one problem each in three domains,
overall increasing coverage by six problems.

72 CHAPTER 8. EXPERIMENTAL EVALUATION

(a) ACT vs. NWSS + ACT (b) SYM vs. NWSS + SYM (c) SYM + ACT vs. NWSS + SYM
+ ACT

Figure 8.5: Generated nodes comparison for NWSS with (a) active operators,
(b) symmetries, and (c) both active operators and symmetries.

Generated nodes. Figure 8.4 shows the number of generated nodes per in-
stance comparing the three configurations to each other.
Figure 8.4a compares NSSS to the baseline FF. Most of the tasks appear on or
near the diagonal. This result is consistent with the small difference in cover-
age between FF and NSSS. Comparing NWSS to FF: Figure 8.4b shows that
pruning by NWSS helps in most cases to reduce the number of generated nodes.
In some cases, the decrease in node generations is almost reaching two orders
of magnitude. Note that there is an exponential reduction in generated nodes
on a part of the first-responders domain. Figure 8.4c shows that this gain
carries over to the comparison with NSSS, reflecting the theoretical dominance
of nondeterministic weak stubborn sets over the strong variant. It should be
pointed out that due to the non-optimal nature of the LAO∗ algorithm, the the-
oretical dominance does not necessarily translate to a dominance in the number
of generated nodes.

Search time. In domains where no pruning is possible, the stubborn sets
computation can slow down the search on certain instances. We observe such an
effect in the domains blocksworld and prp-blocksworld-new where less
instances are solved with stubborn sets than without. One possibility to avoid
loss in coverage is to stop the computation of stubborn sets after a predefined
threshold of unsuccessfully pruning attempts is exceeded as has been done in
Metis [Alk+14].

To summarize, nondeterministic weak stubborn are beneficial to LAO∗ search
whereas nondeterministic strong stubborn sets to a lesser extent.

8.3.2 Combining NWSS with other Pruning Techniques

Recently, it has been shown that structural symmetries and stubborn sets can
successfully be combined for classical planning [Weh+15]. Furthermore, struc-
tural symmetries have been applied in the context of planning [WWK16]. Here,
we experiment whether combining stubborn sets with structural symmetries
and with active operators pruning can have synergy effects. First, we shortly
summarize the idea of symmetries and active operators:

8.3. STUBBORN SETS FOR FOND PLANNING 73

Coverage

Algorithm all operators active operators

FF 523 +1

NWSS 529 −2
SYM 526 +1

NWSS + SYM 532 +6

Table 8.6: Coverage results for FF, NWSS, SYM and NWSS + SYM with and
with and without active operator pruning.

• Symmetry elimination: Symmetry elimination considers equivalence classes
of symmetrical states and allows for using representative states of each
equivalence class. Many approaches have shown their potential in several
contexts in classical planning. We consider for the variant of structural
symmetries for FOND planning proposed by [WWK16].

• Active operators pruning : This pruning technique was introduced by Chen
and Yao 2009 [CY09] and later further investigated by Wehrle et al.
2013 [Weh+13]. In a nutshell, given a state s, an operator o is considered
active if there exists a weak plan from s starting with o. A sufficient crite-
rion can be formulated based on domain transition graphs (DTGs). The
successor generation in a state s is restricted to active operators.

Combining these pruning techniques in a straightforward way results in a com-
bined pruning technique that is safe. For this evaluation, we consider all possible
combinations of symmetry elimination and active operators pruning with and
without nondeterministic weak stubborn sets.

Coverage. The coverage results are reported in Table 8.6. We observe that
all non-combined pruning techniques improve coverage. In particular, nonde-
terministic weak stubborn sets is the most beneficial configuration out of those
(529 solved instances), followed by symmetry elimination (526 solved instances)
and active operator pruning (524 solved instances). Most importantly, the con-
figuration that combines NWSS with symmetries and active operators pruning
leads to a substantial coverage increase of 15 additionally solved instances (538)
(compared to the baseline FF). In addition, we observe that applying NWSS
on top of symmetry reduction (SYM) leads to a clear performance improve-
ment with and without active operators pruning. By evaluating the gain from
applying active operators pruning, we see that this pruning technique is only
moderately beneficial both as a single pruning technique and when combined
with symmetry reduction and nondeterministic stubborn sets.

Generated nodes. Figure 8.5 depicts the generated nodes comparison. In
general, we notice that the configurations that uses NWSS are more powerful
regarding pruning than others.

74 CHAPTER 8. EXPERIMENTAL EVALUATION

8.4 Sleep Sets vs. Commutativity Pruning vs.
Stratified Planning

In this section, we experimentally compare sleep sets (SS), commutativity prun-
ing (CP) and stratified planning (SP) to each other. All the three techniques
have been implemented with IDA∗ search algorithm with full cycle elimination,
but no full duplicate elimination. Table 8.7 provides an overview of the cov-
erage for the three pruning techniques and the baseline plain IDA∗. It shows
only the domains for which coverage is not the same for all configurations. The
rest of the domains are considered in “remaining domains”. These experiments
are performed using the operator ordering imposed by the authors of stratified
planning [CXY09] under which the dominance relationships hold (Section 6.3).

Experiment setting and benchmarks. The same setting and benchmarks
as in section 8.1.

Coverage. Obviously, Table 8.7 shows that the landmark-cut heuristic yields
the most powerful configurations for IDA∗ for the same reason we discussed in
the previous section. Most importantly, the theoretical dominance relationship
of sleep sets over commutativity pruning and of commutativity pruning over
stratified planning is confirmed by the coverage results for all heuristics.

Landmark-cut Merge-and-shrink Blind
Domain (problems) IDA∗ +SP +CP +SS IDA∗ +SP +CP +SS IDA∗ +SP +CP +SS

airport (50) 32 ±0 +1 +6 11 ±0 ±0 ±0 7 ±0 +4 +8
depot (22) 2 ±0 ±0 +2 2 ±0 ±0 ±0 1 ±0 ±0 +1
driverlog (20) 8 +1 +2 +2 11 ±0 ±0 ±0 1 +1 +2 +2
elevators-opt08 (30) 0 +2 +3 +5 0 ±0 ±0 ±0 0 ±0 ±0 ±0
elevators-opt11 (20) 0 +1 +1 +3 0 ±0 ±0 ±0 0 ±0 ±0 ±0
floortile-opt11 (20) 1 ±0 +1 +1 4 ±0 ±0 ±0 0 ±0 ±0 ±0
freecell (80) 2 ±0 +2 +2 2 ±0 1 1 1 ±0 ±0 ±0
gripper (20) 2 ±0 +1 +1 20 ±0 ±0 ±0 1 ±0 ±0 ±0
logistics00 (28) 7 +7 +7 +13 10 +4 +4 +9 1 +2 +2 +5
logistics98 (35) 3 ±0 ±0 +3 2 ±0 ±0 +2 0 ±0 ±0 ±0
miconic (150) 138 ±0 ±0 ±0 65 +1 +1 +1 15 ±0 ±0 ±0
movie (30) 30 ±0 ±0 ±0 30 ±0 ±0 ±0 3 ±0 +17 +8
mprime (35) 20 ±0 ±0 ±0 11 −1 ±0 ±0 10 ±0 +3 +1
mystery (30) 15 ±0 +1 +1 7 ±0 ±0 ±0 9 +2 +5 +6
nomystery-opt11 (20) 12 ±0 ±0 ±0 15 +3 +3 +5 5 +1 +1 +1
openstacks-opt08 (30) 4 ±0 +2 +4 7 ±0 +2 +3 4 ±0 +4 +4
openstacks-opt11 (20) 1 ±0 +1 +3 2 ±0 +2 +3 1 ±0 +3 +3
parcprinter-08 (30) 13 +2 +2 +2 14 +1 +1 +1 3 +3 +3 +3
parcprinter-opt11 (20) 8 +1 +1 +2 9 +1 +1 +1 0 +2 +2 +2
parking-opt11 (20) 0 ±0 ±0 +1 0 ±0 ±0 ±0 0 ±0 ±0 ±0
pathways-noneg (30) 4 ±0 ±0 ±0 3 ±0 +1 +1 2 ±0 ±0 +2
pipesworld-notankage (50) 8 ±0 +2 +3 6 ±0 ±0 ±0 4 ±0 +2 +3
pipesworld-tankage (50) 4 ±0 +1 +2 6 ±0 ±0 ±0 2 ±0 +2 +2
psr-small (50) 32 ±0 +10 +10 41 −1 +2 +2 31 ±0 +9 +8
rovers (40) 4 ±0 +2 +2 5 ±0 ±0 +1 4 ±0 ±0 ±0
satellite (36) 5 ±0 ±0 +1 6 ±0 ±0 ±0 1 ±0 ±0 ±0
scanalyzer-08 (30) 12 −3 +1 +1 9 −2 +1 +1 3 ±0 ±0 ±0
scanalyzer-opt11 (20) 9 −3 +1 +1 6 −2 +1 +1 1 ±0 ±0 ±0
storage (30) 11 ±0 +1 +3 11 ±0 +2 +3 9 ±0 +1 +1
tetris-opt14 (17) 2 ±0 ±0 +1 0 ±0 ±0 ±0 1 ±0 +2 +2
thoughtful-agl14 (20) 0 ±0 +1 +4 0 ±0 ±0 ±0 0 ±0 ±0 ±0
tidybot-opt11 (20) 4 ±0 +2 +2 0 ±0 ±0 ±0 1 ±0 +2 +2
tpp (30) 5 +1 +1 +1 5 ±0 ±0 +1 4 ±0 ±0 +1
transport-opt14 (20) 0 ±0 ±0 +1 0 ±0 +1 +1 0 ±0 ±0 ±0
trucks(30) 3 ±0 +1 +1 3 ±0 ±0 ±0 0 ±0 +1 ±0
woodworking-opt08 (30) 10 ±0 +1 +2 8 ±0 ±0 ±0 2 +2 +2 +2
woodworking-opt11 (20) 5 ±0 +1 +2 3 ±0 ±0 ±0 0 ±0 ±0 ±0
zenotravel (20) 9 +1 +1 +1 9 +1 +1 +1 4 ±0 ±0 ±0

Remaining domains (854) 86 ±0 ±0 ±0 116 ±0 ±0 ±0 54 ±0 ±0 ±0

Sum (2107) 511 +11 +52 +89 459 +5 +24 +36 185 +13 +67 +67

Table 8.7: Coverage overview for the transition reduction techniques.

8.4. SLEEP SETS VS. COMMUTATIVITY PRUNING VS. STRATIFIED PLANNING75

Generated nodes. Tables 8.8, 8.9, and 8.10 provide the number of node
generations (until the last f -layer to eliminate the effect of tie-breaking) for the
three pruning techniques using the landmark-cut, the merge-and-shrink, and
the blind heuristics, respectively. The listed domains are those whose overall
number of generated nodes is not the same for all configurations. As before,
the given numbers refer to the instances that are solved by all configurations.
The dominance relation of sleep sets over commutativity pruning and of the
latter over stratified planning are depicted in the results. However, we notice
that sleep sets and commutativity pruning do not differ much in the overall
performance, i.e., the overall number of generated states.

Domain (problems) IDA∗ +SP +CP +SS

logistics00 (7) 2894764 <1% <1% <1%
driverlog (8) 3383376 9% 2% <1%
tpp (5) 48142 1% 1% 1%
tetris-opt14 (2) 337371 100% 3% 2%
floortile-opt11 (1) 1745622 99% 6% 2%
logistics98 (3) 29607 7% 7% 3%
zenotravel (9) 1196887 7% 7% 4%
woodworking-opt08 (10) 220234 22% 5% 4%
woodworking-opt11 (5) 219406 22% 5% 4%
psr-small (32) 18271312 99% 8% 8%
miconic (138) 1833990 17% 11% 11%
depot (2) 4378 19% 15% 11%
pipesworld-notankage (8) 507961 100% 17% 13%
mystery (17) 101347 62% 15% 14%
pipesworld-tankage (4) 118359 100% 19% 15%
gripper (2) 215486 100% 19% 19%
satellite (5) 8444 20% 20% 20%
trucks (3) 3369059 100% 22% 22%
nomystery-opt11 (12) 173254 25% 25% 25%
scanalyzer-08 (9) 231950 100% 36% 33%
scanalyzer-opt11 (6) 231940 100% 36% 33%
tidybot-opt11 (4) 37613 100% 35% 35%
mprime (20) 237976 73% 37% 35%
parcprinter-opt11 (8) 193 40% 40% 40%
rovers (4) 615 51% 49% 41%
hiking-opt14 (1) 428322 100% 45% 45%
freecell (2) 97468 100% 49% 45%
parcprinter-08 (13) 243 53% 53% 53%
openstacks-opt08 (4) 5384 100% 54% 54%
storage (11) 166774 100% 56% 55%
pathways-noneg (4) 14825 70% 67% 64%
transport-opt08 (4) 995 90% 90% 85%
openstacks-opt11(1) 27 100% 96% 96%
ged-opt14 (10) 2069012 100% 99% 99%

Remaining domains (133) 33085018 100% 100% 100%

Sum (507) 68504304 86% 53% 52%

Table 8.8: Overview of node generations using landmark-cut heuristic.

Search time. Figures 8.6, 8.7, and 8.8 compare search time per instance
for all configurations using the landmark-cut heuristic, the merge-and-shrink
heuristic, and the blind heuristic, respectively. Using the landmark-cut and the
blind heuristics, the number of generated nodes of each of the four algorithms
reflects on search time. On the other hand, the effect of pruning on search time
is less obvious using the merge-and-shrink heuristic and the blind heuristic.

76 CHAPTER 8. EXPERIMENTAL EVALUATION

(a) IDA∗ vs. SS (b) IDA∗ vs. CP (c) IDA∗ vs. SP

(d) SS vs. CP (e) SS vs. SP (f) CP vs. SP

Figure 8.6: Search time for transition reduction techniques using the landmark-
cut heuristic.

(a) IDA∗ vs. SS (b) IDA∗ vs. CP (c) IDA∗ vs. SP

(d) SS vs. CP (e) SS vs. SP (f) CP vs. SP

Figure 8.7: Search time for transition reduction techniques using the merge-
and-shrink heuristic.

8.5. SLEEP SETS VS. MOVE PRUNING 77

Domain (problems) IDA∗ +SP +CP +SS

depot (2) 16705038 2% 1% <1%
driverlog (11) 32500074 3% 1% <1%
zenotravel (9) 7114300 3% 3% 1%
nomystery-opt11 (15) 15793616 2% 2% 2%
transport-opt08 (6) 37599870 6% 6% 5%
transport-opt11 (1) 37599870 6% 6% 5%
psr-small (40) 260922 99% 7% 7%
logistics98 (2) 22789 9% 9% 8%
mystery (10) 89067 42% 10% 9%
mprime (10) 9799098 36% 12% 10%
pipesworld-tankage (6) 20437 100% 16% 13%
rovers (5) 3679 37% 30% 15%
pipesworld-notankage (6) 53394 100% 22% 18%
freecell (2) 22464 100% 59% 57%
storage (11) 4496056 100% 68% 68%
scanalyzer-08 (7) 2054 100% 82% 75%
scanalyzer-opt11 (4) 2054 100% 82% 75%
grid (2) 2204405 100% 89% 89%
miconic (65) 15367 93% 93% 93%
ged-opt14 (13) 3233519 100% 99% 99%

Remaining domains (239) 127023216 100% 100% 100%

Sum (456) 294561289 50% 48% 48%

Table 8.9: Overview of node generations using merge-and-shrink heuristic.

(a) IDA∗ vs. SS (b) IDA∗ vs. CP (c) IDA∗ vs. SP

(d) SS vs. CP (e) SS vs. SP (f) CP vs. SP

Figure 8.8: Search time for transition reduction techniques using the blind
heuristic.

8.5 Sleep Sets vs. Move Pruning

Sleep sets and move pruning are evaluated using IDA∗search algorithm that
performs full cycle detection (but no full duplicate elimination) combined with

78 CHAPTER 8. EXPERIMENTAL EVALUATION

Domain (problems) IDA∗ +SP +CP +SS

depot(1) 4801951 1% <1% <1%
transport-opt08(3) 21543128 2% 1% <1%
movie(3) 78283206 100% <1% <1%
logistics00(1) 517972 1% 1% <1%
rovers(4) 15880760 4% 3% 1%
woodworking-opt08(2) 18851767 11% 6% 1%
tpp(4) 837171 1% 1% 1%
airport(7) 218305 90% 2% 2%
driverlog(1) 22854 6% 2% 2%
psr-small(31) 22592573 99% 4% 4%
pathways-noneg(2) 2789361 27% 7% 5%
satellite(1) 610089 6% 6% 6%
pipesworld-tankage(2) 6394300 100% 10% 6%
zenotravel(4) 10671973 10% 10% 7%
pipesworld-notankage(4) 16039104 100% 13% 8%
mystery(11) 410785 54% 12% 11%
tetris-opt14(1) 10808 100% 14% 14%
freecell(1) 2843765 100% 24% 19%
storage(9) 14303454 100% 21% 20%
nomystery-opt11(5) 46361789 22% 22% 22%
mprime(10) 23026942 77% 26% 24%
gripper(1) 82188 100% 35% 33%
tidybot-opt11(1) 294 100% 38% 38%
openstacks-opt08(4) 6884 100% 55% 55%
openstacks-opt11(1) 71 100% 79% 79%
miconic(15) 2028636 96% 96% 96%
ged-opt14(9) 34795897 100% 98% 98%
grid(1) 179738 100% 99% 99%

Remaining domains (228) 60332338 100% 100% 100%

Sum (187) 478052982 76% 45% 45%

Table 8.10: Overview of node generations using blind heuristic.

the landmark-cut heuristic. In the figures, IDA∗SS refers to IDA∗ combined
with sleep sets, and IDA∗MP refers to IDA∗ with move pruning.
For move pruning we set L = 2, where L is the length of operator sequences
that are considered for redundancy check. Times that are less than or equal to
0.1 seconds are shown in the plots as 0.12.

Experiment setting and benchmarks. The evaluation is performed on
Intel Xeon E5-2660 CPUs that run at 2.2 GHz, with a time limit of 30 minutes
and a memory limit of 2 GB per run. The benchmarks are all optimal STRIPS
planning instances up to IPC-11, with an overall number of 44 domains and
1396 problems.

Node generations and search time. Figure 8.9 is a comparison between
IDA∗ (y-axis) and IDA∗SS (x-axis) in terms of the number of nodes generated
(left plot) and search time (without preprocessing time) in seconds (right plot)
using logarithmic scales. The points on the diagonal lines represent problem
instances. The lines y = 2x, y = 10x, and y = 50x are used to easily compare
the performance of the algorithms against each other. The points on the diago-
nal line represent instances for which the performance of both configurations is
equal, while points above the diagonal are instances for which IDA∗SS outper-
formed IDA∗. The instances that were solved by IDA∗SS but not by IDA∗ (due
to exceeding the time limit) are shown at the very top of the plot. There are

2These results have been presented at AAAI 2015 [HAW15].

8.5. SLEEP SETS VS. MOVE PRUNING 79

10−1 101 103 105 107 109

10−1

101

103

105

107

109

109

109

IDA*SS

ID
A
*

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

104

104

IDA*SS

ID
A
*

Figure 8.9: IDA∗ (y-axis) vs. IDA∗SS (x-axis). Left: Number of nodes gener-
ated. Right: Search time [HAW15].

10−1 101 103 105 107 109

10−1

101

103

105

107

109

109

109

IDA*SS

ID
A
*M

P

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

104

104

IDA*SS

ID
A
*M

P

Figure 8.10: IDA∗MP (y-axis) vs. IDA∗SS (x-axis). Left: Number of nodes
generated. Right: Search time [HAW15].

many instances for which both configurations generate exactly the same number
of search nodes (shown on the diagonal line). In these instances, sleep sets prun-
ing does not fire either because there is no commutativity between operators
or the commutative operators are not used during search. For other instances,
IDA∗SS generates substantially fewer nodes than what IDA∗ generates (up to
3 orders of magnitude). The right plot (search time) shows that the reduction
of node generations leads to a corresponding reduction in search time.
Similarly, Figure 8.10 compares IDA∗SS with IDA∗MP. The points at the very
top of the plot represent the instances that are solved by IDA∗SS but not by
IDA∗MP due to exceeding the memory bound during the preprocessing step,
i.e., while computing the redundancy table which consumes more memory than
the commutativity table computed by sleep sets.
We observe that, for most of the problem instances, IDA∗SS and IDA∗MP gener-
ate the same number of nodes. This happens because either no commutativity
and no redundancy have been detected, or both methods detected the same
commutativity (note that commutativity is a special case of redundancy).
The points below the diagonal are instance for which IDA∗MP outperformed

80 CHAPTER 8. EXPERIMENTAL EVALUATION

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

104

104

IDA*

ID
A
*S
S

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

104

104

IDA*

ID
A
*M

P

Figure 8.11: Total time for IDA∗ (x-axis) vs. IDA∗SS (left plot, y-axis) and
IDA∗MP (right plot, y-axis) [HAW15].

IDA∗SS, while the ones above the diagonal are instances for which IDA∗SS
performs better than IDA∗MP. This shows that move pruning can sometimes
outperform sleep sets when it detects redundancies that sleep sets cannot detect.
On the other hand, sleep sets can sometimes be more powerful than move prun-
ing because it has the property of passing commutative operator along operator
sequences of length greater than 2. The plot of the search time shows how the
pruning power is proportional to the search time of both configurations.

Coverage and total time. Figure 8.11 shows the total time required to solve
each problem instance by IDA∗, IDA∗SS, and IDA∗MP where the total time is
the sum of the preprocessing time and the search time.
Preprocessing time for sleep sets is the time consumed for computing the com-
mutativity relation, and for move pruning is the time needed to computing the
redundancy relation for sequences of length 2 (L = 2). The total time of plain
IDA∗ is its search time (no preprocessing is performed).
From the left plot of the figure (y-axis), we notice that the total time of IDA∗SS
is less than the total time (i.e., the search time) consumed by IDA∗. This is
because the preprocessing time of IDA∗SS is negligible, and hence does not af-
fect the overall performance of the algorithm. Moreover, the pruning power of
sleep sets improves the search time of IDA∗SS. As a result, IDA∗SS solves more
instance than IDA∗ (570 vs 477). All instances that are solved by IDA∗SS, but
not by IDA∗ are due to timeouts (exceeding 30 minutes).
As opposed to IDA∗SS, the total time of IDA∗MP is worse than IDA∗’s mostly
by more than an order of magnitude. Consequently, the IDA∗MP’s coverage is
smaller than IDA∗’s (443 vs 477).

We conclude that sleep sets outperform move pruning in terms of total time
and coverage (570 vs 443). Furthermore, because of the expensive preprocessing
of move pruning, it can be suitable in practice when the preprocessing step
is used across many problem instances (the computation of the redundancy
relation is independent of the initial state and goal description).

In summary, we have seen that both sleep sets and move pruning can re-
markably enhance the performance of IDA∗, and that none of the two pruning
techniques dominates the other.

8.6. GENERALIZED SLEEP SETS 81

8.6 Generalized Sleep Sets

In this section, we compare sleep sets (based on commutativity) with the long
distance leapfrogging generalization we presented in Section 6.4 for L = 2 (which
is full flexible redundancy). We use IDA∗GSS to denote this variant.

Experiment setting and benchmarks. The same setting and benchmarks
as in section 8.5.

Node generations and search time. Figure 8.12 shows that the number of
node generations is exactly the same for both IDA∗GSS (y-axis) and IDA∗SS
(x-axis) for most instances. This means that, for these instances, the generalized
variant does not capture more than the commutativity that sleep sets computes.
For other instances, IDA∗GSS can outperform IDA∗SS by at most an oder of
magnitude. The search time plot shows that the overhead for computing the
generalized method is higher than the overhead for computing basic sleep sets.

Coverage and total time. Similar to IDA∗MP, the preprocessing time for
IDA∗GSS is costly, which leads to less coverage than plain IDA∗ (421 vs 477).
Like move pruning, we think that the generalized method is more appropriate
when the preprocessing step can be utilized across many instances.

8.7 Sleep Sets with Duplicate Elimination and
Stubborn Sets

In this section, we evaluate variant C of sleep sets (section 6.1) combined with
strong stubborn sets within A∗ search. These results have been presented
in [AW16].

Node generation. Figure 8.13 shows an overview of the generated search
nodes per domain by considering only instances solved by both configurations.

10−1 101 103 105 107 109

10−1

101

103

105

107

109

109

109

IDA*SS

ID
A
*G

S
S

10−2 10−1 100 101 102 103 104
10−2

10−1

100

101

102

103

104

104

104

IDA*SS

ID
A
*G

S
S

Figure 8.12: IDA∗GSS (y-axis) vs. IDA∗SS (x-axis). Left: Number of nodes
generated. Right: Search time [HAW15].

82 CHAPTER 8. EXPERIMENTAL EVALUATION

A∗sss refers to A∗ combined with strong stubborn sets (SSS in the experiments
of section 8.1). A∗sssss is A∗sss combined with variant C of sleep sets. Although
sleep sets can be applied with any heuristic, we use the landmark-cut heuristic
because, as we have already mentioned, pruning techniques can be more effective
when combined with expensive heuristics. The numbers of commonly solved
problems are given in parenthesis after the domain names, best results are shown
in bold. The number of node generations is shown until the last f -layer to avoid
tie-breaking issues.

The results reveal a consistent improvement regarding the number of gener-
ated nodes per domain. Although the savings in node generations are slight, the
results show that the node generations can be further reduced compared to pure
strong stubborn set pruning. Figure 8.14 shows the number of generated nodes
and the search time per problem for the domains from the IPC-14. These are
the domains for which the two configurations differ in the number of generated
nodes. From the results we observe that the number of node generations for
A∗sssss is at most as high as for A∗sss except for the Hiking domain. The reason
behind this, is that inconsistent heuristics (like landmark-cut) can cause A∗sssss
to generate more nodes than A∗sss . This presumably happens in the three Hiking
problems where slightly more nodes are generated when sleep sets are applied
in addition to stubborn set pruning.

The node savings are slight in general. However, some domains show that
more additional pruning can be gained. For example, the number of gener-
ated nodes are roughly cut in half in a large instance of the Transport domain
(problem #14).

Coverage. We notice that the savings in node generations do not increase
coverage for the considered direct combination (or loose integration) of sleep sets
and strong stubborn sets: the same coverage of A∗sss and A∗sssss with landmark-
cut in all of the 33 domains.

8.7. SLEEP SETSWITH DUPLICATE ELIMINATION AND STUBBORN SETS83

Generated nodes A∗sssss A∗sss

barman-opt11-strips (4) 22731591 22882501
elevators-opt08-strips (22) 38380306 48873617
elevators-opt11-strips (18) 36666539 46248291
floortile-opt11-strips (7) 29401436 34912718
floortile-opt14-strips (6) 52200140 61804871
ged-opt14-strips (15) 9064612 9064612
hiking-opt14-strips (9) 30638123 30742124
nomystery-opt11-strips (14) 387045 410776
openstacks-opt08-strips (20) 5777074 6129805
openstacks-opt11-strips (15) 5763904 6116635
openstacks-opt14-strips (3) 3866657 4138032
parcprinter-08-strips (30) 4877 4877
parcprinter-opt11-strips (20) 1884 1884
parking-opt11-strips (2) 555418 560427
parking-opt14-strips (3) 2253957 2274968
pegsol-08-strips (28) 54045223 54045223
pegsol-opt11-strips (18) 54408002 54408002
scanalyzer-08-strips (12) 13504754 13942542
scanalyzer-opt11-strips (9) 13504746 13942534
sokoban-opt08-strips (29) 38525983 38525983
sokoban-opt11-strips (20) 8310909 8310909
tetris-opt14-strips (5) 1150721 1280023
tidybot-opt11-strips (14) 299325 308515
tidybot-opt14-strips (8) 269184 269891
transport-opt08-strips (11) 302942 426271
transport-opt11-strips (6) 300508 423268
transport-opt14-strips (6) 2936311 3396159
visitall-opt11-strips (11) 23775034 23775034
visitall-opt14-strips (5) 2530507 2530507
woodworking-opt08-strips (27) 1722277 2583855
woodworking-opt11-strips (19) 976547 1431694

Sum (427) 454256536 493766548

Figure 8.13: Sum of generated search nodes per domain on commonly solved
problems (excluding the last f -layer) [AW16].

84 CHAPTER 8. EXPERIMENTAL EVALUATION

Generated nodes Search time
Problem A∗sssss A∗sss A∗sssss A∗sss

floortile-opt14-strips
p01-4-3-2 1242815 1510800 32.11 35.13
p01-4-4-2 29688755 35050715 1090.50 1186.70
p01-5-3-2 4724922 5612842 153.86 170.11
p02-5-3-2 7206855 8537779 226.70 245.06
p03-4-3-2 1784070 2141977 44.69 48.49
p03-5-3-2 7552723 8950758 238.01 257.55

hiking-opt14-strips
ptesting-1-2-3 1901 1901 0.01 0.01
ptesting-1-2-4 15294 15294 0.18 0.18
ptesting-1-2-5 69869 69749 1.26 1.23
ptesting-1-2-7 634939 634379 21.81 21.50
ptesting-1-2-8 1496276 1495364 67.06 66.22
ptesting-2-2-3 97479 98151 2.99 2.72
ptesting-2-2-4 4702120 4710935 273.92 265.36
ptesting-2-3-4 22911601 22969357 1590.73 1490.90
ptesting-2-4-3 708644 746994 33.43 28.86

openstacks-opt14-strips
p20 1 1710721 1764993 816.36 803.53
p20 2 1939861 2156773 608.38 596.98
p20 3 216075 216266 20.34 19.83

parking-opt14-strips
p 12 7-01 648718 653952 439.45 430.86
p 12 7-02 1305778 1318576 868.17 853.79
p 12 7-03 299461 302440 216.37 212.79

tetris-opt14-strips
p01-8 599145 645908 1530.18 1135.26
p02-4 71 140 0.09 0.08
p02-6 496359 568559 1208.25 893.27
p03-4 6442 7635 2.63 2.18
p05-6 48704 57781 36.93 33.32

tidybot-opt14-strips
p02 27104 27128 540.48 534.46
p03 31957 32420 532.31 534.35
p04 3202 3203 53.44 52.65
p08 9748 9822 152.59 153.74
p11 10775 10817 104.06 103.98
p12 153555 153583 1545.73 1526.25
p13 29865 29938 283.56 283.98
p14 2978 2980 50.51 50.58

transport-opt14-strips
p01 1916 3073 0.14 0.17
p02 210118 227350 23.25 24.41
p03 215554 268080 67.49 89.86
p07 2310840 2513397 236.03 233.54
p13 10979 19434 4.51 5.53
p14 186904 364825 164.77 230.93

Figure 8.14: Node generations (excluding the last f -layer) and search time on
a per-problem basis for IPC-14 domains [AW16].

Chapter 9

Conclusion

In this thesis, we have seen that partial order reduction techniques can be ap-
plied to planning as heuristic search in order to reduce the size of the generated
state space. In particular, the original techniques proposed for the area of com-
puter aided verification are more powerful than other techniques which have
been proposed later for automated planning. In the following, we summarize
the contribution of this thesis and shed light on possible future work.

9.1 Summary

The most important topics that this thesis presented can be summarized as
follows:

• Adapting the stubborn sets technique from its original form proposed by
Valmari [Val89] to optimal classical planning and showing its dominance
over the expansion core [CY09] in terms of pruning power.

• Coming up with a syntactic definition of weak stubborn sets and showing
that it has exponentially more pruning power than strong stubborns sets
(at least theoretically).

• Proposing a pruning technique for FOND planning based on the theory
of stubborn sets.

• Adapting the sleep sets technique from its original form proposed by Gode-
froid [God96] to optimal planning and showing that it dominates both
commutativity pruning [HG00] and stratified planning [CXY09] in terms
of pruning power.

• Performing a detailed analysis for the variants of sleep sets proposed in
the literature. In particular, we have seen that variant A of sleep sets is
safe with BFS, and that variant C can safely be combined with A* and
stubborn sets to be used in the context of optimal classical planning. In
addition, variant D can safely be combined with IDA* search that performs
only cycle detection.

• Proposing a family of transition reduction techniques (generalized sleep
sets) that incorporate the characteristics of sleep sets and move pruning.

85

86 CHAPTER 9. CONCLUSION

9.2 Future Work

We briefly mention the potential future work related to pruning techniques for
planning. One possible topic is to investigate a completeness and optimality
preserving tight combination of sleep sets and stubborn sets which has more
pruning power than the loose combination we considered in our research (orig-
inally proposed by Godefroid).

Another worth-investigating idea is to apply partial order reduction methods
(or pruning methods in general) with backward search algorithms. To the best
of our knowledge, the research on pruning techniques for planning, that has
been done so far, considered only forward search algorithms.

Finally, it is interesting to investigate combinations of pruning techniques to
planning models beyond classical planning. For example, Fully Observable Non-
deterministic Planning (FOND), Partial Observable Nondeterministic Planning
(POND), and Multi-agent planning (MAP).

List of Figures

3.1 Pruning by partial order reduction [CGP01] 12

3.2 Original state space (left), reduced state space with a state reduc-
tion technique (middle), and reduced state space with transition
reduction technique (right). 13

4.1 Original state space (left) and reduced state space with strong
stubborn set (right). 20

5.1 Applying o2 before o1 in s0 only leads to a policy (left figure: red
nodes are deadends) with dead-ends. The right figure is a strong
plan. 28

5.2 Adding o1 to the front of the operator transforms weak plan o2π
into weak plan o1o2π. 28

5.3 Both structures are policies for the planning task. 34

6.1 Sleep sets pruning. 37

6.2 Using Algorithm 8 with an inconsistent heuristic leads to a sub-
optimal plan. 46

6.3 A∗ss generates o′1o3o
′
2 (right) and BFSss generates o1o2o3 (left).

The dashed lines refer to the operators that are not applied be-
cause the goal has already been reached. 47

7.1 Operator o1 is pruned by sleep sets but not by stubborn sets. . . 61

7.2 Operator o3 is pruned in s2 when o1 is not added to Ts2 63

8.1 Search time for state reduction techniques using the landmark-
cut heuristic. 65

8.2 Search time for state reduction techniques using the merge-and-
shrink heuristic. 65

8.3 Search time using the blind heuristic. 66

8.4 Generated nodes comparison for FOND planning problems. . . . 71

8.5 Generated nodes comparison for NWSS with (a) active operators,
(b) symmetries, and (c) both active operators and symmetries. . 72

8.6 Search time for transition reduction techniques using the landmark-
cut heuristic. 76

8.7 Search time for transition reduction techniques using the merge-
and-shrink heuristic. 76

87

88 LIST OF FIGURES

8.8 Search time for transition reduction techniques using the blind
heuristic. 77

8.9 IDA∗ (y-axis) vs. IDA∗SS (x-axis). Left: Number of nodes gen-
erated. Right: Search time [HAW15]. 79

8.10 IDA∗MP (y-axis) vs. IDA∗SS (x-axis). Left: Number of nodes
generated. Right: Search time [HAW15]. 79

8.11 Total time for IDA∗ (x-axis) vs. IDA∗SS (left plot, y-axis) and
IDA∗MP (right plot, y-axis) [HAW15]. 80

8.12 IDA∗GSS (y-axis) vs. IDA∗SS (x-axis). Left: Number of nodes
generated. Right: Search time [HAW15]. 81

8.13 Sum of generated search nodes per domain on commonly solved
problems (excluding the last f -layer) [AW16]. 83

8.14 Node generations (excluding the last f -layer) and search time on
a per-problem basis for IPC-14 domains [AW16]. 84

List of Tables

8.1 Results overview for the landmark-cut heuristic. 66
8.2 Results overview for the merge-and-shrink heuristic. 67
8.3 Results overview for blind search (i.e., A∗ with the blind heuristic). 68
8.4 Weak compared to strong stubborn sets (using landmark-cut

heuristic). 70
8.5 Coverage of baseline (FF), nondeterministic strong stubborn sets

(NSSS) and nondeterministic weak stubborn sets (NWSS). . . . 71
8.6 Coverage results for FF, NWSS, SYM and NWSS + SYM with

and with and without active operator pruning. 73
8.7 Coverage overview for the transition reduction techniques. 74
8.8 Overview of node generations using landmark-cut heuristic. . . . 75
8.9 Overview of node generations using merge-and-shrink heuristic. . 77
8.10 Overview of node generations using blind heuristic. 78

89

Bibliography

[Alk+12] Yusra Alkhazraji, Martin Wehrle, Robert Mattmüller, and Malte
Helmert. “A Stubborn Set Algorithm for Optimal Planning”. In:
Proceedings of Twentieth European Conference on Artificial Intel-
ligence (ECAI 2012). 2012, pp. 891–892.

[Alk+14] Yusra Alkhazraji, Michael Katz, Robert Mattmüller, Florian Pom-
merening, Alexander Shleyfman, and Martin Wehrle. “Metis: Arm-
ing Fast Downward with Pruning and Incremental Computation
(planner abstract)”. In: In the Eighth International Planning Com-
petition (IPC 2014) (deterministic track). 2014, pp. 88–92.

[AW16] Yusra Alkhazraji and Martin Wehrle. “Sleep Sets Meet Duplicate
Elimination”. In: Proceedings of the Ninth Annual Symposium on
Combinatorial Search (SOCS 2016). 2016, pp. 2–9.

[BG01] Blai Bonet and Hector Geffner. “Planning as heuristic search”. In:
Journal of Artificial Intelligence (JAIR) 129.1-2 (2001), pp. 5–33.

[BH11] Neil Burch and Robert C. Holte. “Automatic Move Pruning in
General Single-Player Games”. In: Proceedings of the Fourth Inter-
national Symposium on Combinatorial Search (SoCS 2011). 2011,
pp. 31–38.

[BH12] Neil Burch and Robert C. Holte. “Automatic Move Pruning Re-
visited”. In: Proceedings of the Fifth International Symposium on
Combinatorial Search (SoCS 2012). 2012.

[Bie+03] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strich-
man, and Yunshan Zhu. “Bounded model checking”. In: Journal of
Advances in Computers 58 (2003), pp. 117–148.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model check-
ing. MIT Press, 2008. isbn: 978-0-262-02649-9.

[BN95] Christer Bäckström and Bernhard Nebel. “Complexity Results for
SAS+ Planning”. In: Journal of Computational Intelligence 11 (1995),
pp. 625–656.

[Bos+09] Dragan Bosnacki, Edith Elkind, Blaise Genest, and Doron Peled.
“On commutativity based Edge Lean search”. In: Annals of Math-
ematics and Artificial Intelligence 56.2 (2009), pp. 187–210.

[BS15] Dragan Bosnacki and Mark Scheffer. “Partial Order Reduction and
Symmetry with Multiple Representatives”. In: Proceedings on the
Seventh International NASA Formal Methods Symposium (NFM
2015). 2015, pp. 97–111.

90

BIBLIOGRAPHY 91

[Byl91] Tom Bylander. “Complexity Results for Planning”. In: Proceedings
of the Twelfth International Joint Conference on Artificial Intelli-
gence (AI 1991). 1991, pp. 274–279.

[CC10] Amanda Jane Coles and Andrew Coles. “Completeness-Preserving
Pruning for Optimal Planning”. In: Proceedings of the Nineteenth
European Conference on Artificial Intelligence (ECAI 2010). 2010,
pp. 965–966.

[CGL94] Edmund M. Clarke, Orna Grumberg, and David E. Long. “Model
Checking and Abstraction”. In: Journal of Transactions on Pro-
gramming Languages and Systems (ACM) 16.5 (1994), pp. 1512–
1542.

[CGP01] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
checking. MIT Press, 2001. isbn: 978-0-262-03270-4.

[Cim+03] Alessandro Cimatti, Marco Pistore, Marco Roveri, and Paolo Traverso.
“Weak, strong, and strong cyclic planning via symbolic model check-
ing”. In: Journal of Artificial Intelligence (JAIR) 147.1-2 (2003),
pp. 35–84.

[CKV10] Edmund M. Clarke, Robert P. Kurshan, and Helmut Veith. “The
Localization Reduction and Counterexample-Guided Abstraction
Refinement”. In: Time for Verification, Essays in Memory of Amir
Pnueli. 2010, pp. 61–71.

[Cla+01] Edmund M. Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu.
“Bounded Model Checking Using Satisfiability Solving”. In: Journal
of Formal Methods in System Design 19.1 (2001), pp. 7–34.

[CXY09] Yixin Chen, You Xu, and Guohui Yao. “Stratified Planning”. In:
Proceedings of the Twenty-First International Joint Conference on
Artificial Intelligence (IJCAI 2009). 2009, pp. 1665–1670.

[CY09] Yixin Chen and Guohui Yao. “Completeness and Optimality Pre-
serving Reduction for Planning”. In: Proceedings of the Twenty-
First International Joint Conference on Artificial Intelligence (IJ-
CAI 2009). 2009, pp. 1659–1664.

[DFP09] Klaus Dräger, Bernd Finkbeiner, and Andreas Podelski. “Directed
model checking with distance-preserving abstractions”. In: STTT
11.1 (2009), pp. 27–37.

[DHK15] Carmel Domshlak, Jörg Hoffmann, and Michael Katz. “Red-black
planning: A new systematic approach to partial delete relaxation”.
In: Journal of Artificial Intelligence (JAIR) 221 (2015), pp. 73–114.

[DK01] Minh Binh Do and Subbarao Kambhampati. “Planning as con-
straint satisfaction: Solving the planning graph by compiling it into
CSP”. In: Journal of Artificial Intelligence 132.2 (2001), pp. 151–
182.

[DKS12] Carmel Domshlak, Michael Katz, and Alexander Shleyfman. “En-
hanced Symmetry Breaking in Cost-Optimal Planning as Forward
Search”. In: Proceedings of the Twenty-Second International Con-
ference on Automated Planning and Scheduling, (ICAPS 2012).
2012.

92 BIBLIOGRAPHY

[DKS13] Carmel Domshlak, Michael Katz, and Alexander Shleyfman. “Sym-
metry Breaking: Satisficing Planning and Landmark Heuristics”.
In: Proceedings of the Twenty-Third International Conference on
Automated Planning and Scheduling, (ICAPS 2013). 2013.

[EJP97] E. Allen Emerson, Somesh Jha, and Doron A. Peled. “Combin-
ing Partial Order and Symmetry Reductions”. In: Tools and Algo-
rithms for Construction and Analysis of Systems, Third Interna-
tional Workshop, (TACAS 1997). 1997, pp. 19–34.

[FL02] Maria Fox and Derek Long. “Extending the Exploitation of Symme-
tries in Planning”. In: Proceedings of the Sixth International Con-
ference on Artificial Intelligence Planning Systems (AIPS 2002).
2002, pp. 83–91.

[FL99] Maria Fox and Derek Long. “The Detection and Exploitation of
Symmetry in Planning Problems”. In: Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence, (IJCAI
1999). 1999, pp. 956–961.

[FN71] Richard Fikes and Nils J. Nilsson. “STRIPS: A New Approach to
the Application of Theorem Proving to Problem Solving”. In: Jour-
nal of Artificial Intelligence 2.3/4 (1971), pp. 189–208.

[Fu+11] Jicheng Fu, Vincent Ng, Farokh B. Bastani, and I-Ling Yen. “Sim-
ple and Fast Strong Cyclic Planning for Fully-Observable Nondeter-
ministic Planning Problems”. In: Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelligence (IJCAI
2011). 2011, pp. 1949–1954.

[GB13] Hector Geffner and Blai Bonet. A Concise Introduction to Mod-
els and Methods for Automated Planning. Synthesis Lectures on
Artificial Intelligence and Machine Learning. Morgan & Claypool
Publishers, 2013. isbn: 9781608459698.

[GHP93] Patrice Godefroid, Gerard J. Holzmann, and Didier Pirottin. “State-
Space Caching Revisited”. In: Proceedings of the Fourth Interna-
tional Conference on Computer Aided Verification (CAV 1992).
1993, pp. 178–191.

[GHP95] Patrice Godefroid, Gerard Holzmann, and Didier Pirottin. “State-
space Caching Revisited”. In: Journal of Formal Methods in System
Design 7.3 (1995), pp. 227–241.

[GNT04] Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated plan-
ning - theory and practice. Elsevier, 2004. isbn: 978-1-55860-856-6.

[God96] Patrice Godefroid. Partial-Order Methods for the Verification of
Concurrent Systems – An Approach to the State-Explosion Problem.
Vol. 1032. Springer-Verlag, 1996.

[GP93] Patrice Godefroid and Didier Pirottin. “Refining Dependencies Im-
proves Partial-Order Verification Methods (Extended Abstract)”.
In: Computer Aided Verification, Fifth International Conference,
(CAV 1993). 1993, pp. 438–449.

BIBLIOGRAPHY 93

[GW92] Patrice Godefroid and Pierre Wolper. “Using Partial Orders for the
Efficient Verification of Deadlock Freedom and Safety Properties”.
In: Proceedings of the Third International Conference on Computer
Aided Verification (CAV 1991). 1992, pp. 332–342.

[HAW15] Robert C. Holte, Yusra Alkhazraji, and Martin Wehrle. “A General-
ization of Sleep Sets Based on Operator Sequence Redundancy”. In:
Proceedings of the Twenty-Ninth AAAI Conference (AAAI 2015).
2015, pp. 3291–3297.

[HB14] Robert C. Holte and Neil Burch. “Automatic Move Pruning for
Single-Agent Search”. In: Journal of AI Communications 27.4 (2014),
pp. 363–383.

[HD09] Malte Helmert and Carmel Domshlak. “Landmarks, Critical Paths
and Abstractions: What’s the Difference Anyway?” In: Proceedings
of the Nineteenth International Conference on Automated Planning
and Scheduling (ICAPS 2009). 2009, pp. 162–169.

[Hel06] Malte Helmert. “The Fast Downward Planning System”. In: Jour-
nal of Artificial Intelligence Research (JAIR) (2006), pp. 191–246.

[HG00] Patrik Haslum and Héctor Geffner. “Admissible Heuristics for Op-
timal Planning”. In: Proceedings of the Fifth International Con-
ference on Artificial Intelligence Planning and Scheduling Systems
(AIPS 2000). 2000, pp. 140–149.

[HHH07] Malte Helmert, Patrik Haslum, and Jörg Hoffmann. “Flexible Ab-
straction Heuristics for Optimal Sequential Planning”. In: Proceed-
ings of the Seventeenth International Conference on Automated
Planning and Scheduling (ICAPS 2007). 2007, pp. 176–183.

[HN11] Jörg Hoffmann and Bernhard Nebel. “The FF Planning System:
Fast Plan Generation Through Heuristic Search”. In: Journal of
Computing Research Repository (CoRR) abs/1106.0675 (2011).

[HR08] Malte Helmert and Gabriele Röger. “How Good is Almost Perfect?”
In: Proceedings of the Twenty-Third Conference on Artificial Intel-
ligence (AAAI 2008). 2008, pp. 944–949.

[HZ01] Eric A. Hansen and Shlomo Zilberstein. “LAO*: A heuristic search
algorithm that finds solutions with loops”. In: Journal of Artificial
Intelligence 129.1-2 (2001), pp. 35–62.

[ID96] C. Norris Ip and David L. Dill. “Better Verification Through Sym-
metry”. In: Journal of Formal Methods in System Design 9.1/2
(1996), pp. 41–75.

[JS01] Andreas Junghanns and Jonathan Schaeffer. “Sokoban: Enhancing
general single-agent search methods using domain knowledge”. In:
Journal of Artificial Intelligence 129.1-2 (2001), pp. 219–251.

[KE09] Peter Kissmann and Stefan Edelkamp. “Solving Fully-Observable
Non-deterministic Planning Problems via Translation into a Gen-
eral Game”. In: Proceedings of Advances in Artificial Intelligence,
Thirty-Second Annual German Conference on AI. 2009, pp. 1–8.

94 BIBLIOGRAPHY

[Kno94] Craig A. Knoblock. “Automatically Generating Abstractions for
Planning”. In: Journal of Artificial Intelligence (JAIR) 68.2 (1994),
pp. 243–302.

[Kor85] Richard E. Korf. “Depth-First Iterative-Deepening: An Optimal
Admissible Tree Search”. In: Journal of Artifitial Intelligence (JAIR)
27.1 (1985), pp. 97–109.

[KP95] Maciej Koutny and Marta Pietkiewicz-Koutny. On the Sleep Sets
Method for Partial Order Verification of Concurrent Systems. Tech.
rep. 495. Department of Computing Science, University of Newcas-
tle upon Tyne, 1995.

[KS92] Henry A. Kautz and Bart Selman. “Planning as Satisfiability”. In:
Proceedings of the Tenth European Conference on Artificial Intelli-
gence (ECAI 1992). 1992, pp. 359–363.

[Kut+08] Ugur Kuter, Dana S. Nau, Elnatan Reisner, and Robert P. Gold-
man. “Using Classical Planners to Solve Nondeterministic Planning
Problems”. In: Proceedings of the Eighteenth International Confer-
ence on Automated Planning and Scheduling, (ICAPS 2008). 2008,
pp. 190–197.

[Lev05] Hector J. Levesque. “Planning with Loops”. In: Proceedings of the
Ninth International Joint Conference on Artificial Intelligence (IJ-
CAI 2005). 2005, pp. 509–515.

[McD96] Drew V. McDermott. “A Heuristic Estimator for Means-Ends Anal-
ysis in Planning”. In: Proceedings of the Third International Con-
ference on Artificial Intelligence Planning Systems (AIPS 1996).
1996, pp. 142–149.

[McD99] Drew V. McDermott. “Using Regression-Match Graphs to Control
Search in Planning”. In: Journal of Artificial Intelligence (JAIR)
109.1-2 (1999), pp. 111–159.

[McM93] Kenneth L. McMillan. Symbolic model checking. Kluwer, 1993. isbn:
978-0-7923-9380-1.

[NAB12] Raz Nissim, Udi Apsel, and Ronen I. Brafman. “Tunneling and
Decomposition-Based State Reduction for Optimal Planning”. In:
Proceedings of the Twentieth European Conference on Artificial In-
telligence (ECAI 2012). 2012, pp. 624–629.

[Ove81] William T. Overman. “Verification of Concurrent Systems: Func-
tion and Timing”. AAI8121023. PhD thesis. 1981.

[Pel93] Doron A. Peled. “All from One, One for All: on Model Check-
ing Using Representatives”. In: Proceedings of the Fifth Interna-
tional Conference on Computer Aided Verification (CAV 1993).
1993, pp. 409–423.

[PH13] Florian Pommerening and Malte Helmert. “Incremental LM-Cut”.
In: Proceedings of the Twenty-Third International Conference on
Automated Planning and Scheduling, (ICAPS 2013). 2013.

BIBLIOGRAPHY 95

[PW92] J. Scott Penberthy and Daniel S. Weld. “UCPOP: A Sound, Com-
plete, Partial Order Planner for ADL”. In: Proceedings of the Third
International Conference on Principles of Knowledge Representa-
tion and Reasoning (KR 1992). 1992, pp. 103–114.

[Rin09] Jussi Rintanen. “Planning and SAT”. In: Handbook of Satisfiability.
2009, pp. 483–504.

[Rin12] Jussi Rintanen. “Planning as satisfiability: Heuristics”. In: Journal
of Artificial Intelligence 193 (2012), pp. 45–86.

[RN10] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Mod-
ern Approach (3. internat. ed.) Pearson Education, 2010. isbn: 978-
0-13-604259-4.

[Sei+16] Jendrik Seipp, Florian Pommerening, Silvan Sievers, Martin Wehrle,
Chris Fawcett, and Yusra Alkhazraji. “Fast Downward Aidos (plan-
ner abstract)”. In: In the First Unsolvability International Planning
Competition (IPC 2016). 2016.

[Shl+15] Alexander Shleyfman, Michael Katz, Malte Helmert, Silvan Sievers,
and Martin Wehrle. “Heuristics and Symmetries in Classical Plan-
ning”. In: Proceedings of the Twenty-Ninth Conference on Artificial
Intelligence (AAAI 2015). 2015, pp. 3371–3377.

[Sie+15a] Silvan Sievers, Martin Wehrle, Malte Helmert, and Michael Katz.
“An Empirical Case Study on Symmetry Handling in Cost-Optimal
Planning as Heuristic Search”. In: Proceedings of the Thirty-Eighth
Annual German Conference on AI (KI 2015) – Advances in Arti-
ficial Intelligence. 2015, pp. 166–180.

[Sie+15b] Silvan Sievers, Martin Wehrle, Malte Helmert, Alexander Shleyf-
man, and Michael Katz. “Factored Symmetries for Merge-and-Shrink
Abstractions”. In: Proceedings of the Twenty-Ninth Conference on
Artificial Intelligence (AAAI 2015). 2015, pp. 3378–3385.

[SWH14] Silvan Sievers, Martin Wehrle, and Malte Helmert. “Bounded In-
tention Planning Revisited”. In: Proceedings of the Twenty-First
European Conference on Artificial Intelligence (ECAI 2014). 2014,
pp. 1097–1098.

[TK93] Larry A. Taylor and Richard E. Korf. “Pruning Duplicate Nodes
in Depth-First Search”. In: Proceedings of the Eleventh National
Conference on Artificial Intelligence. 1993, pp. 756–761.

[Val89] Antti Valmari. “Stubborn sets for reduced state space generation”.
In: Proceedings of Tenth International Conference on Applications
and Theory of Petri Nets – Advances in Petri Nets 1990. 1989,
pp. 491–515.

[Weh+13] Martin Wehrle, Malte Helmert, Yusra Alkhazraji, and Robert Mattmüller.
“The Relative Pruning Power of Strong Stubborn Sets and Ex-
pansion Core”. In: Proceedings of the Twenty-Third International
Conference on Automated Planning and Scheduling (ICAPS 2013).
2013, pp. 251–259.

96 BIBLIOGRAPHY

[Weh+15] Martin Wehrle, Malte Helmert, Alexander Shleyfman, and Michael
Katz. “Integrating Partial Order Reduction and Symmetry Elimi-
nation for Cost-Optimal Classical Planning”. In: Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelli-
gence, (IJCAI 2015). 2015, pp. 1712–1718.

[WH12] Martin Wehrle and Malte Helmert. “About Partial Order Reduc-
tion in Planning and Computer Aided Verification”. In: Proceed-
ings of the Twenty-Second International Conference on Automated
Planning and Scheduling (ICAPS 2012). 2012.

[WH14] Martin Wehrle and Malte Helmert. “Efficient Stubborn Sets: Gener-
alized Algorithms and Selection Strategies”. In: Proceedings of the
Twenty-Fourth International Conference on Automated Planning
and Scheduling, (ICAPS 2014). 2014.

[Win+17] Dominik Winterer, Yusra Alkhazraji, Michael Katz, and Martin
Wehrle. “Stubborn Sets for Fully Observable Nondeterministic Plan-
ning”. In: Proceedings of the Twenty-Seventh International Confer-
ence on Automated Planning and Scheduling (ICAPS 2017). 2017.

[WR11] Jason Wolfe and Stuart J. Russell. “Bounded Intention Planning”.
In: Proceedings of the Twenty-Second International Joint Confer-
ence on Artificial Intelligence (IJCAI 2011). 2011, pp. 2039–2045.

[WWK16] Dominik Winterer, Martin Wehrle, and Michael Katz. “Structural
Symmetries for Fully Observable Nondeterministic Planning”. In:
Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, (IJCAI 2016). 2016, pp. 3293–3299.

[Xu+11] You Xu, Yixin Chen, Qiang Lu, and Ruoyun Huang. “Theory and
Algorithms for Partial Order Based Reduction in Planning”. In:
CoRR abs/1106.5427 (2011).

