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Abstract

Resource allocation problems have a large variety of applications in different areas of com-
puter science and operations research. A resource allocation problem seeks to find an optimal
allocation of a given type of expensive or limited resource to a set of clients that request
the services of the given resource. Some of these problems have an online nature: The re-
quests sequence is not revealed at the beginning, but the requests arrive in an online fashion.
An algorithm for an online resource allocation problem must make its decision in response
to a newly arriving request in an online fashion, i.e., typically before the subsequent request
arrives. Depending on the definition of an online resource allocation problem, it might be al-
lowed to postpone serving a request or to change an already made decision. However in this
case, postponing a service and changing a decision come at a cost.

In this thesis, we also study online allocation problems in the distributed setting, where
in contrast to a centralized system, there is no central unit that controls everything and that
is aware of the global state of the system. In addition to the uncertainty about the request
sequence arising from the online arrivals, there is also uncertainty at each node in the network
because the node does not directly learn about requests arriving in other parts of the network.
The nodes of a distributed system therefore need to communicate in order to coordinate their
actions and one typically assumes that this communication does not come for free.

Two online problems are mainly studied in this thesis. First, we consider the distributed
queuing problem as a basic problem that coordinates mutually exclusive access to shared data
in distributed systems. We devise a randomized distributed queuing algorithm with an ex-
pected competitive ratio ofO(log n) on general network topologies. We utilize the well-known
probabilistic tree embedding of Fakcharoenphol, Rao, and Talwar [STOC 2003] that approxi-
mates the distances of a general metric space by mapping it to a special family of tree topolo-
gies known as hierarchically well-separated trees and often just referred to as HSTs. Our
randomized distributed queuing algorithm is obtained by running the ARROW algorithm—a
well-known distributed queuing algorithm—on top of the HST that is produced by applying
the above embedding to the distances of the underlying network. It is shown that (under some
assumptions) the simple and elegant ARROW algorithm outperforms all existing significantly
more complicated distributed queueing algorithms. The second main problem that is studied
in a centralized setting is the online facility location problem. We introduce the online mo-
bile facility location (OMFL) problem, where the facilities are mobile. A lower bound for the
OMFL problem that even holds on uniform metrics is provided. A natural approach to solve
the OMFL problem for general metric spaces is to again use the above embedding into an
HST and to directly solve the OMFL problem on HSTs. In this thesis, we provide a first step
in this direction by solving a generalized version of the OMFL problem on uniform metrics. A
simple deterministic online algorithm is devised and a tight analysis is provided for the algo-
rithm. The second step remains as an open question. We further introduce and study another
variant of the OMFL problem that is closer to the k-server problem, arguably one of the most
influential problem in the area of online algorithms and competitive analysis.





Zusammenfassung

Probleme zur Zuteilung von Ressourcen finden eine Vielzahl von Anwendungen in unter-
schiedlichen Bereichen der Informatik und der Operations Research. Bei einem Problem zur
Zuteilung von Ressourcen geht es darum bestimmte Arten von kostspieligen oder begrenzten
Ressourcen optimal einer Menge von Klienten zuzuordnen, welche Anfragen an die entspre-
chende Ressource stellen. Manche dieser Probleme sind von ihrer Natur her online, dass heißt
die Reihenfolge in der die Anfragen gestellt werden ist anfangs unbekannt. Ein Algorithmus
für ein Online-Problem zur Ressourcenzuteilung muss seine Entscheidung bei jeder neu an-
kommenden Anfrage online treffen, also typischerweise bevor die nächste Anfrage ankommt.
Abhängig von der Definition des Online-Problems zur Ressourcenzuteilung kann es erlaubt
sein das Bedienen einer Anfrage zu verschieben oder eine schon getroffene Entscheidung zu
ändern. In diesem Fall werden dem Verschieben oder Verändern einer Entscheidung Kosten
zugeordnet.

In dieser Thesis untersuchen wir zudem Online-Zuteilungsprobleme in verteilten Syste-
men, bei welchem es, im Gegensatz zu einem zentralisierten Problem, keine zentrale Steue-
rungseinheit gibt die den globalen Zustand des Systems kennt. Zusätzlich zur Unsicherheit
der Anfragereihenfolge bei einem Online-Problem, gibt es hier Unsicherheit an jedem Knoten
des Netzwerkes eines verteilten Systems, da einzelnen Knoten die Anfragen welche an andere
Knoten gestellt werden zunächst unbekannt sind. Aus diesem Grund müssen die Knoten ei-
nes verteilten Systems miteinander kommunizieren um Ihre Handlungen abzustimmen, wobei
man typischerweise annimmt das diese Kommunikation Kosten verursacht.

In dieser Thesis werden hauptsächlich zwei Online Probleme untersucht. Zuerst betrach-
ten wir verteilte Queuing-Probleme als grundlegendes Problem um wechselseitig exklusi-
ven Zugriff auf gemeinsame Daten eines verteilten Systems zu koordinieren. Wir entwerfen
einen randomisierten verteilten queuing Algorithmus, mit erwartetem kompetitivem Faktor
von O(log n) auf allgemeinen Netzwerk Topologien. Wir benutzen die bekannte Probabilistic
Tree Embedding von Fakcharoenphol, Rao, and Talwar [STOC 2003], welche die Distanzen
eines allgemeinen metrischen Raumes approximiert indem wir diese auf eine spezielle Fa-
milie von Baum-Topologien abbilden die als Hierarchically Well-Separated Trees bekannt ist
und oft mit HSTs abgekürzt wird. Wir erhalten unseren randomisierten, verteilten Queuing-
Algorithmus indem wir den ARROW Algorithmus—ein bekannter verteilter Algorithmus—
auf dem HST ausführen, welches wir erhalten indem wir die oben genannten Einbettung der
Distanzen auf das zugrunde liegende Netzwerk anwenden. Es wird gezeigt, dass der einfache
und elegante ARROW Algorithmus (unter einigen Annahmen) eine bessere Performanz bie-
tet als alle bisher existierenden, wesentlich komplizierteren verteilten Queuing-Algorithmen.
Das zweite Hauptproblem ist das Online Facility Location Problem, welches wir in in einem
zentralisierten Szenario untersuchen. Wir führen das Online Mobile Facility Location (OM-
FL) Problem ein bei welchem die facilities mobil sind. Wir geben eine untere Schranke für das
OMFL Problem, welches sogar in metrischen Räumen gilt in dem sich alle Distanzen gleichen.
Ein natürlicher Ansatz um das OMFL Problem für allgemeine metrische Räume zu lösen, ist



die oben gegebene Einbettung in einen HST erneut zu benutzen um das OMFL Problem direkt
anhand von HSTs zu lösen. In dieser Thesis geben wir einen ersten Schritt in diese Richtung,
indem wir eine verallgemeinerte Version des OMFL Problems auf metrischen Räumen mit
uniformen Distanzen lösen. Wir leiten einen einfachen, deterministischen Algorithmus her
und geben eine scharfe Analyse dieses Algorithmus. Der zweite Schritt verbleibt als offene
Fragestellung. Des weiteren definieren und untersuchen wir eine Variante des OMFL Pro-
blems welches nahe verwandt ist mit dem k-Server Problem, eines der wohl einflussreichsten
Probleme im Bereich der Online-Algorithmen und der kompetitiven Analyse.
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Chapter 1

Online Allocation Problems

1.1 Allocation Problems
The study of allocation problems has numerous applications in the fields of computer science,
mathematics, economics, and engineering. In the following, three applications of different
allocation problems are described to give a taste of what is to come.

A sales manager of a company is identifying locations in a city to ship the products of the
company from some new sites to the customers. The sales manager would find the demands
for the products in different locations and neighborhoods of the city. Further, the cost for
constructing a new site at each potential location is calculated. The sales manager creates a
table that includes the potential locations, the cost of constructing a new site at each location,
and the distance between each customer's demand and each site. The goal is to choose a subset
of these potential locations to construct the new sites at their locations such that the total cost
of building new sites together with the cost for shipping the products to the demands' points is
minimized. The above scenario is an application of problems called facility location that aim
to locate a set of facilities to efficiently meet a set of demands [27, 33, 56].

For the second problem, assume there is a shared object such as a linked list in which a
set of processes might need to get exclusive access to the linked list to perform some task,
for instance to remove some elements of the linked list. A distributed computer system must
coordinate the accesses to the linked list such that only one process can access the linked list
at a time in order to keep the linked list in a consistent state. This scenario is an application of
the mutual exclusion problem [31].

As the last scenario, consider a set of machines that are located at different locations and
that are interconnected by a network. A set of jobs are initiated by users in the network at
arbitrary times and locations. The machine at the machine of each job arrival only knows
about the newly arrived job. After each job arrival, one needs to decide whether to execute
the job locally or whether to send it to some other machine with less load or more power. In
case of sending the job to some other machine, however, one needs to pay a transferring cost
that might be proportional to the distance between the two machines. The goal is to provide
an efficient global scheduling of all jobs at all machines such that the total completion time
of all jobs is minimized (where the completion time of a job is the time between the time of
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CHAPTER 1

arrival of the job and the time the job is completed). This scenario is an application of a class
of problems known distributed job scheduling problems [3, 12].

The common denominator of all above scenarios together with a large volume of appli-
cations of allocation problems in areas such as industrial planning, network design, content
distribution in networks, or data clustering is an abstract problem as follows. On the one hand,
there is a set of different potential resources that are either costly or limited in number. On the
other hand, there is a set of requests to access/use these resources. Serving each request might
incur some coast as well. The goal is to devise algorithms to efficiently serve the requests by
using the available potential resources. These problems can also be seen from the point of
view of optimization problems. In this thesis, wherever it is said that a problem is efficiently
solved, we mean that the goal is to minimize the total cost. Alternatively, one might also be
concerned with maximizing some kind of profit.

1.2 Online Allocation Problems

There are applications of allocation problems in the real world where the requests are fed into
the system incrementally and where the requests have to processed as they arrive. In compari-
son to the offline setting, where the whole request sequence is known from the beginning, such
an incremental scenario is known as an online setting [2, 21]. At each point, such a system
must make its decision when to assign a request and to which available resource to assign the
request, without knowledge of the future inputs and only based on the request sequence it has
seen so far. One either assumes that the assignment of a request to a resource is irrevocable
even if the future inputs show that the decision has been suboptimal, or one assumes that the
assignment can be changed in the future. However, in the latter case, the system has to pay
some cost. Such problems are called online allocation problems.

Some fundamental allocation problems such as facility location are traditionally studied in
the offline setting (see, e.g., the first scenario that is described in Section 1.1 as an application
of a facility location problem in the offline setting). However, considering online versions
of such problems is interesting from a theoretical point of view—e.g., since efficient online
solutions might provide additional insights into the structure of the problem—, but it is also
interesting regarding their applications in real life. The online version of facility location
problems has numerous applications in areas such as network design and data clustering [38,
57]. For example, assume a network is established using servers and physical links between
the servers and some clients. Now some new clients need to be added to the network. Since
changing the physical links previously installed between the servers and the clients is very
expensive, the assignment of clients to servers is done in an irrevocable fashion. Hence, one
might need to provide some new servers and new physical links to connect the new clients.
The goal is to minimize the sum of the total cost of servers that are purchased and the total cost
of physical links. In clustering applications, assigning requests to a cluster center might not be
irrevocable since merging the cluster centers might not be expensive. Therefore, upon arrival
of a new request, one can assign the new request to an existing cluster, open a new cluster
center and assign the newly arrived request, or possibly also merge two already open cluster
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centers and assign the newly arrived request to the cluster center resulted by merging. The
formal definition of online facility location problems together with definitions of some other
classic online allocation problems are presented in Section 1.2.1.

1.2.1 Formal Definitions

In this thesis we study some online allocation problems. We next provide the formal definitions
of some of the classic online allocation problems that are related to the problems studied in
this thesis.

Online Facility Location Problem (OFL): There are different variants of online facility
location problems. Here, we provide the definition of the online facility location problem that
was first given by Meyerson [57]. There is a metric space with a set of nodes. Each node can
potentially host a facility or demand. To use a facility, the facility must have been opened,
where an opening cost occurs. A set of demands are issued one by one each at a time and
each request is assigned to the closest open facility once it is issued. The cost for serving a
demand is the distance between the demand and its closest open facility. This cost called the
service cost. The decisions of assigning demands to facilities are irrevocable. The challenge
is to decide when and where to open a new facility (without knowledge of future demands)
such that at the end, the total opening cost of facilities and the total service cost of demands is
as small as possible.

We next consider an allocation problem that has an intrinsic online nature. The classic
k-server problem [16, 54, 55] is perhaps the most and best studied problem among all online
allocation problems and generally among all online problems. The k-server problem is a
generalization of the paging problem [5, 11, 35, 68], which we formally define first.

Paging Problem: Virtual memory hierarchies are implemented in operating systems to pro-
vide a large memory address space and to combine fast and small memory units (such as a
processor cache) with a slow and large memory unit (such as the main RAM). A main part of
a virtual memory hierarchy is a memory management program by which the system transfers
data from and to the slow memory to use in the cache (fast memory). The memory is parti-
tioned into blocks (called pages) of equal sizes. The system receives a sequence of requests,
each at a time, where each request specifies a page in the memory system. A request can be
served immediately if the referenced page is available in cache. If the requested page is not
in cache, a page fault occurs. The missing page is then loaded from slow memory into cache
so that the request can be served. At the same time a page is evicted from the cache to make
room for the newly loaded page. The choose the pages to evict so as to minimize the number
of page faults. Now we can formally define the k-server problem as a generalization of paging
problem.

3
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k-Server Problem: There is an n-point metric space and k mobile servers. The k points
of the metric that host the servers correspond to the k pages in the cache. The other n − k
points of the metric correspond to the remaining pages in the slow memory. Requests arrive
at the points of the metric, one at a time. Each request must be served by a server at the
requested point after the request arrives and before new requests arrive. Therefore, if a server
is not available at the point where a new request arrives, some server must be moved to the
point of the request. This corresponds to evicting some page in the fast memory and moving
the requested page to the fast memory. While in the paging problem, the goal is to minimize
the total number of page faults, in the k-server problem, the objective is to minimize the total
distance by which the servers need to be moved around. The paging problem is equivalent to
the k-server problem if the underying metric is a uniform metric, where the distance between
any pair of distinct points is 1. Some key questions regarding the k-server problem are still
open [55] and the work on the problem has been a major driving force for the developments in
the area of online algorithms and even of various problems where the goal more generally is
to serve online requests with mobile resources.

1.3 Centralized Service for Sequential Requests

Consider a variant of facility location problem where the facilities are mobile. There are
practical scenarios [28, 39], where the goal in a facility location problem is to plan the motion
of facilities and demands such that each demand will be at a point that also hosts some facility.
The mobile facility location (MFL) problem in general metrics has been introduced in [28] as
a movement problem. It can be seen as a generalization of the facility location problem [39].
Initially, there are k mobile facilities located at some points of the metric space. Further, there
is a set of demands where each demand needs to be assigned to some facility. In contrast to
the standard facility location problem, where essentially each demand moves to some facility,
in MFL a facility can move close to some sufficiently large cluster of demands such that the
total movements of demands and facilities are minimized. MFL is modeled in such a way that
the algorithm needs to move each facility and demand such that in the final configuration, each
demand is at a node with some facility. The goal is to minimize the total movement cost of
facilities and demands. Equivalently, one can also only move the facilities. The total cost at
the end then is the total movement cost of the facilities plus the sum of the distances of each
demand to its closest facility.

We introduce an online variant of MFL that we call the online mobile facility location
(OMFL) problem. The problem is formally defined in Chapter 4 in Part II. In the OMFL
problem, initially we are given a set of k mobile facilities with their starting locations. One
by one, demands are added. After each demand arrives, we can make some changes to the
facility locations to ensure we have a feasible solution before the next client arrives and the
new demand is assigned to the closest facility. In other words, facilities can be moved, each
demand is always assigned to the nearest facility and the cost of this assignment is the distance
from the demand to the facility. Hence, if some facility j moves from v1 to v2 in one step
and then from v2 to v3 in another step, the total movement distance d(v1, v2) + d(v2, v3) is
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counted toward the total movement cost of facility j. Two types of costs are considered. The
first type is the total distance traveled by the facilities. The second, is the assignment/service
cost of demands. Since the assignment between facilities and demands can change, we always
take the current assignment cost into account. The goal is to at all times minimize the total
movement cost and the current total assignment cost.

In Part II, in Chapter 5 and Chapter 6, we study two generalized versions of OMFL with
uniform distances.

1.4 Models

1.4.1 Centralized vs. Distributed Systems

In this thesis, we study online problems in the classic centralized sequential setting, but also
in a distributed setting. In centralized systems, there is a central unit that controls everything
and is aware of the global state of the system. The global state includes the configuration of
the system such as for example the locations of demands and facilities in an online facility
location problem. It further includes the complete request sequence up to the current point
in the execution. A centralized system relies heavily on the central unit, which controls the
complete execution. The problems discussed in Section 1.3 are defined in the centralized
setting.

By contrast, in distributed systems such a “mastermind” does not exist. There are different
types of operational units in the system that only act based on local information and that
cooperate in order to achieve a global goal. Hence, in distributed systems, in contrast to
centralized systems, many computational units can be active at the same time. There are two
main types of distributed systems with respect to the way they exploit cooperation between
the processors. One type of distributed systems controls and uses the power of processors to
solve large and complex problems in collaboration while the other type exploits cooperation
to achieve individual goals in which different processors do not disturb each other [60].

The latter type of distributed systems that uses cooperation in a preventive sense is the
one we consider in this thesis. Generally to solve distributed allocation problems such as the
distributed k-server problem [18], the distributed file allocation problem [10], or the distributed
facility location problem [58], a distributed system must serve the requests of individual users
who often do not share any common interest and who are instead merely interested in their own
activities. The cooperation in such distributed systems is done to guarantee that the resource
allocation is achieved correctly and as efficiently as possible. In this thesis, in Part I we study
the queuing problem [48] in a distributed setting.

1.4.2 Network Model

Many applications of online allocation problems are indeed problems that occur in networks
(see for example the last scenario in Section 1.1). In such a case, a network topology is usually
modeled by a simple connected graph where the nodes of the graph represent the processors

5



CHAPTER 1

of the network and the edges represent the communication links between the processors. We
sometimes assume that the network graph is weighted. The weight of each edge can provide
different interpretations regarding the communication link between the corresponding adjacent
processors in the network. In the context of this thesis, the weight of an edge will always refer
to the propagation delay of the communication link between the two corresponding processors
in the network or more generally to the cost of using the link. [8, 60].

1.4.3 Communication Model
Although also in a centralized online problem, the algorithm does not have complete informa-
tion about the input (it does not know the future), the partial information that is available is
completely known by the algorithm. In distributed setting, there is also incomplete knowledge
at the different processors if a piece of information has already fed into the system and a pro-
cessor does not know about that information while some other processors might already know
the information. Thus, when an online problem is studied in the distributed setting, a processor
might suffer from lack of information not only because of the online nature of the problem,
but also because the available information is distributed among the processors. Therefore a
processor needs to communicate with other processors to obtain additional knowledge about
the global state of the system in order to make decisions.

A common way to exchange this information is by using message passing. In a message
passing system, neighboring processors in the network can exchange messages with each other.
Note that even if an online problem is defined in a network context, if we study the online
problem in the centralized setting, we typically do not take into account the communication
cost of informing the nodes of the network about the steps they have to carry out. In contrast,
when considering a distributed online problem, communication is an integral part of the overall
cost. The cost of communication can be measured by the delay and/or the communication
volume that are incurred in the process of answering the requests.

Note that distributed algorithms generally have an online flavor even if all the requests are
revealed from the beginning. In a distributed algorithm, the processors face different sources
of uncertainty and nondeterminism even in an offline setting. The uncertainty for example
comes from unpredictable message delays (asynchrony), failures, and generally from the fact
that a node cannot instantly learn about non-local events in the network and the node can thus
never know the entire current global state of the network. This limitation to not have a global
picture of the current system state makes the work of an online algorithm in a distributed
system harder than in a centralized system.

1.4.4 Synchrony vs. Asynchrony
The communication links can have different delays for sending messages. Synchronous and
asynchronous models are two cornerstone models that have been defined to capture the notion
of timing in distributed systems. In a synchronous message passing model, message delays
are bounded and a distributed protocol has access this timing information and to a global
clock. Often, it is supposed that time is divided into synchronous clock pulses that are known
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as rounds. In each round, each processor executes three steps: a) send message to some
neighbors, b) receive messages from some neighbors, and c) perform some local computation.

In an asynchronous model, in contrast, the messages arrive to their destinations after a
finited but unbounded amount of time. Messages that take a longer path may arrive earlier and
the receiver of a message can never distinguish whether a message is still in transit or whether
it has not been sent at all. Processors do not have access to a clock and all their actions are
event-driven.

In the real world, distributed systems might be neither completely synchronous nor com-
pletely asynchronous. However, from a theoretical point of view it is most relevant to study
problems with respect to the two extreme models. An impossibility result for a problem in the
synchronous setting holds for the problem in any practical model defined between synchronous
and asynchronous models. Analogously, a distributed algorithm that solves a problem in an
asynchronous system can solve the problem in any other intermediate practical model with at
least the same quality. In Part I, the distributed queuing problem is studied in both synchronous
and asynchronous systems.

1.4.5 Input Sequence

In everyday life we might face situations where we need to make decisions that should mini-
mize our future cost or maximize our future profit. One could for example be faced the abstract
problem of paying a large amount of money for using a facility for a long time or instead pay-
ing a smaller amount of money for using the facility for a much (over-proportionally) shorter
time. The difficulty of making such a decision comes from the fact that one might not know in
advance how often one is going to use the facility.

The available information about the input is playing a crucial role in devising efficient so-
lutions for computational problems. In this thesis, we consider different ways in how requests
arrive over time. In classic online algorithm, one assumes that the requests are arriving se-
quentially one by one and each request has to be processed before the next request arrives.
Especially, when we consider online problems in a distributed system, it makes sense to study
a general dynamic setting, where requests can arrive possibly concurrently at arbitrary times
and arbitrary nodes of the system. Recently, the dynamic setting has been also considered
in the centralized setting [15, 19]. The classic sequential arrivals of requests can be seen as
an extreme case of arbitrary dynamic arrivals. In this thesis, we study a distributed online
allocation problem with a dynamic request arrival pattern in Part I and we study two versions
of a centralized online allocation problem with sequential request arrivals in Part II.

1.4.6 Hierarchically Well-Separated Trees

Embeddings of a metric space into (a probability distributions over) tree metrics has found
many important applications [15, 16, 26]. The notion of a hierarchically well-separated tree
(in the following referred to as an HST) was defined by Bartal in [17].

7



CHAPTER 1

Definition 1.1. Given a parameter α > 1, an α-HST of depth h is a rooted tree with the
following properties. All children of the root are at distance αh−1 from the root. Further, every
subtree of the root is an α-HST of depth h − 1 that is characterized by the same parameter α
(i.e., the children 2 hops away from the root are at distance αh−2 from their parents). A tree is
an HST if it is an α-HST for some α > 1.

The probabilistic tree embedding result of [34] shows that for every metric space (X, d)
with minimum distance normalized to 1 and for every constant α > 1, there is a randomized
construction of an α-HST T with a bijection f of the points in X to the leaves of T such that
a) the distances on T are dominating the distances in the metric space (X, d), i.e., ∀x, y ∈ X :
dT (f(x), f(y)) ≥ d(x, y) and such that b) the expected tree distance is E

[
dT (f(x), f(y))

]
=

O(α log |X|/ logα) · d(x, y) for every x, y ∈ X .
Utilizing HSTs as a tool in solving the online allocation problems is a common approach

[15, 16, 26]. The procedure of finding an approximate optimal solution for a given online
minimization problem is roughly as follows: an HST is sampled according to the distribution
defined by the embedding. The problem is then solved on the HST with a competitive ratio
of γ. Since the distances in the HST are at least the corresponding distances in the original
graph/metric, the solution on the HST provides a solution on the original graph of at most the
same cost. However, to bound the cost of the optimal solution with respect to the distances in
the HST from above by the corresponding distances in the original graph, we lose a O(log n)
factor. Consequently, we get an expected O(γ · log n) competitive ratio. The technical results
of Part I on the distributed queueing problem are obtained by following this general approach.

1.5 Distributed Service for Dynamic Requests
Consider a family of allocation problems where the request sequence dynamically and possibly
concurrently arrives in an online fashion at the points of a metric space. There is a server
initially located at some point of the metric space and the goal is to provide an order for serving
the requests by that server. The server needs to move to the locations of the requests to serves
them. The goal in all cases is to provide a schedule for serving all requests. However, there
are different ways in which to measure the cost of a solution, leading to different solutions.
As in all such problems postponing serving the requests is sometimes unavoidable and thus is
allowed. In Part I, we study a problem that fall into the described family of problems.

A problem of the above family, called the online service with delay (OSD) problem [15],
has recently been introduced in the centralized setting. In the OSD problem the delay of a
request is the time that it takes from when the request arrives in the system until it is served.
It is assumed that the server can instantaneously move between different points of the metric,
however the total distance that is traveled by the server is accounted for. The quality of a
solution in the centralized setting for the OSD problem is evaluated w.r.t. the total movement
plus the total delay cost. Another problem of the family that has been studied also in the
centralized setting is the online TSP problem [9, 19]. In the online TSP problem, the server
moves at unit speed to the requested points. The objective in the online TSP problem is to
minimize the total time until all requests have been served.
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The third problem of this family is the distributed queueing problem [48]. This prob-
lem is one of the problems studied in this thesis in Part I. At the core of many distributed
directory implementations is the following basic distributed queueing problem that allows to
order potential concurrent access requests to a shared object [48]. The nodes of a network
issue queueing requests (e.g., requests to access a shared object) in a completely dynamic and
possibly arbitrarily concurrent manner. A queueing algorithm needs to globally order all the
requests so that they can be acted on consecutively. Formally, each request has to find its pre-
decessor request in the order. That is, when enqueueing a request r issued by some node v, a
queueing algorithm needs to find the request r′ that currently forms the tail of the queue and
inform the node v′ of request r′ about the new request r. Hence, the delay of a request is the
difference between the times the request is issued and ordered. The quality of a solution for
the distributed queuing problem evaluated w.r.t. the sum of delays for ordering the requests.
In Chapter 3, we study the distributed queuing problem when the requests dynamically arrive.

1.6 Request-Answer Games
In interactive computations where the inputs are fed into the system in an online fashion, an
algorithm must make a decision in response to each newly arrived piece of the input. Hence,
the algorithm produces a sequence of decisions without knowing the future inputs. An algo-
rithm that solves such an online problem is called an online algorithm. Before we formally
define what an online algorithm is, we provide the definition of a more general framework
called request-answer systems for studying online algorithms, in particular online allocation
problem.

A request-answer system has three main entities. A request setR, a sequence of finite non-
empty answer sets A1, A2, . . . , An, and a sequence of cost functions cost1, cost2, . . . , costn
where n ∈ N+. The cost function cost i where i ∈ {1, 2, . . . n} is defined as follows [21].

cost i : Ri × A1 × A2 × . . .× Ai → R+ ∪ {∞} .

For example, the k-server problem where the number of points in the metric is N is a request-
answer system where the request set is {1, 2, . . . , N} and the answer set is {0, 1, 2, . . . , k}.
The answer i to a request j implies that the server i moves to the requested point j. The
answer 0 in response to the request j implies that there is server at the requested point j and
no server is moved. The total cost of serving the first j requests is cost j = d(vi, vj) + cost j−1

where d(u, v) generally denotes the distance of points u and v. The distance d is nonnegative,
symmetric, and satisfies the triangle inequality. Further, cost0 := 0 and also vj and vi are the
points that host the request j and the server i, respectively.

Online Algorithms: A deterministic online algorithm always produces the same sequence
of answers for a particular sequence of requests. Formally, a deterministic online algorithm
ALG is a sequence of functions gi : Ri → Ai for i ∈ N+. For a given request sequence
σ = 〈r1, r2, . . . , rn〉 let ALG[σ] = 〈a1, a2, . . . , an〉 denote the answer sequence of ALG in
response to σ where aj = gj(r1, r2, . . . , rj). The cost of ALG for serving the whole request
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sequence σ denoted by ALG(σ) = costn(σ,ALG[σ]). A randomized online algorithm is a
probability distribution over the set of all deterministic online algorithms {ALGx}. Note that
for a given request sequence σ both the answer sequence ALG[σ] and the cost ALG(σ) are
random variables [21].

Since the answer sequence produced by an online algorithm as well as the cost incurred by
the online algorithm is a function of the request sequence, such an interaction system can be
seen as a game between two players: the online algorithm and an adversary that produces the
request sequence.

1.6.1 Adversary Models

There are different types of adversaries. An adversary aims to maximize the cost of an online
algorithm by producing the worst request sequence based on what it knows about the online
algorithm. At the same time, the adversary aims to minimize the cost incurred by an optimal
offline algorithm. We can view the adversary as the offline player who wants to force the
online player to make costly decisions. When the online algorithm is deterministic, then the
adversary knows everything about the online player and therefore it exactly knows what will
be the answer of the online algorithm in response to each request. This adversary is the most
powerful adversary.

When randomization is used, the online algorithm has more power, or in other words, the
adversary is comparatively less powerful since the answers of the online player are not certain
anymore. Generally, in the case of randomized online algorithms, there are two types of adver-
saries, oblivious and adaptive adversaries. Both of these adversaries know the online algorithm
description including the probability distribution used by the online algorithm. However, the
oblivious adversary must produce the request sequence in advance without knowledge of the
online algorithm's answers. By contrast, the adaptive adversary at each time knows all the
answers that have been made by the online algorithm up to that point in time. Hence, it
can produce the next request dependent on the history of what the online algorithm has done.
There are different types of adaptive adversaries, however with respect to the problems studied
in this thesis we only consider the oblivious adversary and the adaptive adversary that knows
everything about the online algorithm including the random answers of the online algorithm.
In this case, it is known that in the sequential setting, randomization does not help against an
adaptive adversary [21].

We next describe how to measure the quality of online algorithms. The standard method is
to compare the costs of the online and offline players.

1.6.2 Competitive Analysis

Competitive analysis is a mathematical framework that was proposed in [68] for analyzing
online algorithms. In this framework of analysis, the cost of an online algorithm for solving a
problem is compared to the cost of an optimal offline algorithm that solves the same instance
of the problem. The optimal offline cost incurred by an optimal offline algorithm OPT for a

10



ONLINE ALLOCATION PROBLEMS

given request sequence σ ∈ Rn is defined as follows,

OPT(σ) = min {costn(σ, a) : a ∈ A1 × A2 × . . .× An} .

The deterministic online algorithm ALG provides a competitive ratio α ≥ 1 if for any given
request sequence σ we have

ALG(σ) ≤ α · OPT(σ) + β,

where β is an additive constant. Now, we define the competitiveness of a randomized online
algorithm, say again ALG, against an oblivious adversary. The randomized online algorithm
ALG is said to be α-competitive if for every (fixed) request sequence σ,

ALG(σ) = E[ALGx(σ)] ≤ α · OPT(σ) + β,

where again β is supposed to be an additive constant. Competitive analysis is also used for
analyzing distributed online algorithms [3, 18].

1.7 An Abstract Online Allocation Problem
To sum up this chapter, we provide an abstract online allocation problem that captures many
of the standard online problem as a special case. We are given a metric space with n points.
There is a set of servers and there is a set of requests that is fed into the system in an online
fashion and each request needs to be served by some server. The goal is to minimize some
cost function.

This abstract online problem lies at the heart of many centralized and distributed online
applications. A concrete online problem can be specified based on how the servers can act, on
how the servers serve the requests, on how the way in which the online requests arrive, and on
how the cost function is defined. The problems that are studied in this thesis are applications
of this abstract online problem. In the following, we provide a discussion of the possible
variations and on how some specific online allocation problems fit into the general setting.

Arrival of Requests: The requests are fed into the system in an online fashion. As described
in Section 1.4.5, the requests can either arrive one by one sequentially or they can arrive in a
general dynamic and possibly concurrent way (i.e., each request can arrive at an arbitrary
location and at an arbitrary point in time). The latter case generalizes the sequential scenario.

Servers: Either a set of 1 ≤ k < n servers are available and initially located at some
points of the metric space or each point of the given metric can be potentially host a server.
In the latter case, the servers need to be established, which typically incurs an opening cost.
The servers either can be mobile and move around the metric space or they can have a fixed
location.
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Service Scenario: After a request arrives at time t, the request might need to be either per-
manently served (i.e., the request needs to be served at all times t′ ≥ t) or it only needs to
be temporarily served (i.e., the request only needs to be served once at time t). If a request
needs to be permanently served, the decision of assigning the request to some server is either
irrevocable or it is changeable. Further, requests must be served at the requested point or they
can be remotely served. In the latter case, there is a service cost for the request that is typically
proportional to the distance between the server and request. Further, the requests must either
be served immediately after they are issued, or an online algorithm can wait and serve some
request later. In the latter case, however, waiting incurs some latency cost.

Cost Function: The goal can be to minimize a singular cost function such as the total move-
ment cost of all servers. It can be also to minimize a combined cost function that usually con-
sists of two singular cost functions. When the goal is to minimize a combined cost, there is
a trade-off between the two singular cost functions. Therefore, to be competitive against an
optimal offline algorithm, it is necessary to strike a balance between the singular cost functions
in the combined cost.

Table 1.1 includes some applications (including some of the problems studied in this thesis)
of the abstract problem and shows which combination of above characterization defines each
problem.

Table 1.1: Translation of the abstract allocation problem in different applications.

k-Server DQU 1 OSD OMFL OFL

Server(s)
available available available available potential
mobile mobile mobile mobile fixed

Service
Scenario

requested point requested point requested point remotely remotely
immediately late late immediately immediately

permanently permanently
changeable irrevocable

Online Fashion sequential dynamic dynamic sequential sequential

Cost
Function

singular singular combined combined combined
total movement total movement total movement

total latency total latency 2

current service cost service cost
opening cost

1 DQU stands for distributed queuing problem.
2 As mentioned in Section 1.5, the latency in the OSD problem is defined differently from the
latency in the distributed queuing problem.

Remark 1.2. Some combinations of cases are impossible. For example, the case when k < n
servers are available with another scenario where each request must be served at the requested
point both together imply that the requests cannot be permanently served and the servers must
be mobile.
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1.8 Our Results
In the following, we overview the technical contributions of this thesis. The first part of the
thesis mainly deals with the distributed queueing problem. In the second part of the thesis,
we study generalized versions of the online mobile facility location (OMFL) problem with
uniform distances.

Distributed Service for Dynamic Requests: The ARROW protocol [59, 63, 70] is a simple
and elegant distributed algorithm to coordinate exclusive access to a shared object in a network.
The algorithm solves the underlying distributed queuing problem by using path reversal on a
pre-computed spanning tree (or any other tree topology simulated on top of the given network).
It has been previously shown that the ARROW protocol is also an efficient way of solving the
distributed queuing problem on a tree topology. In [48], it was shown that on any tree T
and for arbitrary dynamic arrivals of requests, the ARROW protocol is O(logD)-competitive
in synchronous executions, where D is the diameter of the tree T . We note that here, the
competitive ratio is measured by comparing the ARROW protocol to the best offline algorithm
on the same tree T . If the tree T stretches the distances on an underlying graph G by a factor
s, the competitive ratio w.r.t. the best solution on G might grow to as much as O(s · logD).

In this thesis, in Chapter 3, we significantly generalize the result of [48]. As the main
technical contribution of Chapter 3, we show that when running the ARROW algorithm on top
of an HST T , it has a constant competitive ratio (when compared to an optimal offline solution
on T ). While the analysis in [48] is based on a reduction of the problem to an analysis of
the nearest neighbor heuristic for the TSP problem, the analysis on HSTs given in this thesis
is based on a completely novel approach. In combination with the probabilistic embedding
of arbitrary metrics into HSTs of [34], we show that when run on an HST that is obtained
by using the randomized construction of [34], our result implies that ARROW is O(log n)-
competitive on general network topologies, even if the requests in a arbitrarily dynamic and
possibly concurrent fashion. We further show that the result even holds if communication is
asynchronous.

Centralized Service for Sequential Requests: In the second part of the thesis, we study
variants of the online mobile facility location problem. In Chapter 4, we provide a lower bound
on the achievable competitive ratio. The lower bound even holds for the OMFL problem on
uniform metric spaces, that is, when all pairwise distances are equal to 1. In that case, it
shows that there is not strictly competitive with a small competitive ratio. More specifically,
we (roughly) prove that if an online algorithm guarantees that for some β = Ω(k/ log k), the
service cost of the algorithm is less than an additive β above the optimal service cost, then it
holds that costALG ≥

(
1 + Ω(k/β)

)
· costOPT + O(k log k), where costALG and costOPT refer

to the total costs of the online algorithm and an optimal offline algorithm, respectively.
Chapter 5 is devoted to the main technical result of Part II. We study the following gener-

alization of the OMFL problem on uniform metric spaces. There are n nodes, each node can
host 0, 1, or also more than 1 servers. The requests arrive at the nodes, the service cost at each
node is defined by a general cost function. The service cost is a function of the number servers
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and the number of requests at the node. We note that the standard OMFL problem on uniform
metric spaces is a special case, where the cost is either 0 (if there is a server at the node) or it is
equal to the number of requests at the node. For this generalized uniform OMFL problem, we
provide a deterministic online algorithm that almost matches the lower bound of Chapter 4.
Concretely, we show that at the cost of an additive term which is roughly linear in k (k is the
number of facilities/servers), it is possible to achieve a competitive ratio of (1 + ε) for every
constant ε > 0.

Finally, we introduce a movement version of the OMFL problem. The problem is specified
by two parameters α ≥ 1 and β ≥ 0 such that max{α − 1, β} ≥ 1. A solution at time t is
called feasible if the service cost is within a multiplicative factor α and an additive term β of the
optimal service cost at time t. An algorithm has to move servers in order to guarantee that the
solution remains feasible at all times. We show that for all α and β and all k ∈ {1, . . . , n− 1},
any deterministic online algorithm for the problem necessarily has a competitive ratio of at
least Ω(n).

Organization of the Thesis
The thesis consists of two parts. In Part I, we mainly study the distributed queuing problem.
Chapter 2 provides essential preliminaries that are needed in the technical analysis of the prob-
lem in Chapter 3, where as the main technical contribution, we analyze the ARROW protocol
in hierarchically well-separated trees (HSTs), when the requests can arrive in a completely
dynamic fashion.

Part II starts with introducing an online instance of mobile facility location (OMFL) prob-
lem in Chapter 4. In Chapter 5, we analyze the problem for the special case of having a metric
space with uniform distances (i.e., all pair-wise distances are the same). While we can only
provide an analysis for this special case, we study a generalized version of the problem in
which each point of the metric can host more than one servers and we accordingly define a
general cost function that captures the cost of serving a certain number of requests with a given
number of servers at each point of the metric space. In Chapter 6, a movement version of the
problem introduced in Chapter 5 is studied.

14



Part I

Distributed Service for
Dynamic Requests

15





Chapter 2

The Distributed Queuing Problem:
Preliminaries

2.1 Model and Problem Statement
Coordinating the access to shared data is a fundamental task that is at the heart of almost any
distributed system. For example, when implementing a distributed shared memory system
on top of a message passing system, each shared register has to be kept in a coherent state
despite possibly a large number of concurrent requests to read or write the shared register. In
a distributed transactional memory system, each transaction might need to operate on several
shared objects, which need to be kept in a consistent state [47, 67, 71]. When implementing
a shared object on top of large-scale network, a distributed directory algorithm can be used to
improve the scalability of the system [1, 7, 13, 23, 29, 47, 67]. When a network node requires
access to a shared object, the directory moves a copy of the object to the node requesting the
object. If the node changes the state of the shared object, the directory algorithm has to make
sure that all existing copies of the object are kept in a consistent state.

Communication Model: In this part, i.e., Part I, we consider a standard message passing
model on a network modeled by a graph G = (V,E). In some cases, the edges of G have
weights w : E → R>0, which are assumed to be normalized such that w(e) ≥ 1 for all
e ∈ E. We distinguish between synchronous and asynchronous executions. In a synchronous
execution, the delay for sending a message from a node u to a node v over an edge e connecting
u and v is exactly 1 if the edge is unweighted and exactly w(e) otherwise. In an asynchronous
execution, message delays are arbitrary, however when analyzing an asynchronous execution,
we assume that the message delay over an edge e is upper bounded by the edge weight w(e)
(or by 1 in the unweighted case).

The Distributed Queueing Problem: In the distributed queueing problem on a graph G =
(V,E), there is a shared object and a set R of queueing requests ri = (vi, ti) are issued at the
nodes of V in an arbitrarily dynamic fashion. The goal of a queueing algorithm is to order all
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the requests to access the shared object. Specifically, if a request ri = (vi, ti) is issued at node
vi at time ti ≥ 0, the algorithm needs to enqueue the request ri by informing the node vj of
the predecessor request rj = (vj, tj) in the constructed global order. For this purpose, every
queueing algorithm in particular has to send (possibly indirectly) a respective message from
node vi to vj . We say that the request ri can be enqueued as soon as the predecessor request rj
is in the system and as soon as node vj knows about request ri. The delay of request ri is the
time it takes until it is enqueued. The quality of a solution for the distributed queuing problem
evaluated with respect to the sum of delays for ordering the requests. We assume that at time
0, when an execution starts, the tail of the queue is at a given node v0 ∈ V . Formally, this is
modeled as a request r0 = (v0, 0) which has to be ordered first by any queueing algorithm. We
sometimes refer to r0 as the dummy request.

Note that for two integers a and b, a ≤ b, we use [a, b] := {a, . . . , b} to denote the set of
all integers between a and b. Further, for an integer a ≥ 1, we use [a] as a short form to denote
[a] := [1, a].

Organization of the Chapter: We continue this chapter as follows. Section 2.2 describes
the ARROW protocol, which is a distributed queuing algorithm that has been introduced in [59,
63, 70]. We mainly analyze this algorithm in this first part of the thesis. Then, in Section 2.3
we formally show that ARROW a has greedy nature even in asynchronous systems. In the
subsequent Section 2.4, we provide a formal cost model for analyzing distributed queuing
algorithms. At the end of this chapter, in Section 2.5, we discuss some related work.

2.2 Arrow Algorithm
The ARROW algorithm [59, 63, 70] is a distributed queueing algorithm that operates on a tree
network T = (V,E). At each point in time, each node v ∈ V has exactly one outgoing link
(arrow) pointing either to one of the neighbors of v or to the node v itself. In a quiescent state,
the arrow of the node of the request at the tail of the queue points to itself and all other arrows
point towards the neighbor on the path towards the tail of the queue (i.e., the tree is directed
towards the current tail).

u3

u1

u2

u4

Figure 2.1: ARROW algorithm: initial system state. There is a unique path from each node to
the current tail of the queue.

When a new request at a node v ∈ V arrives, a “find predecessor” message is sent along
the arrows until it finds the predecessor request. While following the path, to the direction of
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the arrows are reversed. More formally, a request r at node v is handled as follows.

u1m1

m2 u2

u3u4

Figure 2.2: ARROW algorithm: the nodes u1 and u2 issue requests to access the shared object
in a distributed (possibly asynchronous) system.

1. New request r at v: If the arrow of v points to v itself, r is queued directly behind the
previous request issued at v. Otherwise if the arrow points to neighbor u, atomically, a
“find predecessor” message (including the information about request r) is sent to u and
the arrow of v is redirected to v itself.

2. Upon u receiving a “find by v” message from node w: If a node u receives a “find
predecessor” message for request r from a neighbor w, if the arrow of u points to itself,
atomically, the request r is queued directly behind the last request issued by node u and
the arrow of u is redirected to node w. Otherwise, if the arrow of u points to neighbor
x, atomically, the “find predecessor” message is forwarded to node x and the arrow of
node u is redirected to node w.

u1

m1

m2 u2

u3u4

(a) System at time t1

u1m2

u2

u3u4

(b) System at time t2 > t1

u1

u2

u3u4

(c) System at time t3 > t2

Figure 2.3: ARROW algorithm: intermediate steps. The “find predecessor” messages follow
the arrows, reversing their directions along their ways. (a) At time t1, the message m1 (cf.
Figure 2.2) reaches u3 whilem2 is on its way towards u3 and hencem1 forwarded to u4. (b) At
time t2 > t1, m1 reaches u4 and thus the issued request by u1 is ordered behind the last request
ordered on u4. Therefore, the shared object is moved to u1. Also, the “find predecessor”
message m2 reaches u3 and is deflected towards u1. (c) The “find predecessor” message m2

reaches u1 at time t3 > t2 and therefore the request issued by u2 is ordered behind the request
issued by u1. The shared object is moved from u1 to u2 and the current tail of the queue is now
the request issued by u2.

See Figure 2.1, Figure 2.2, and Figure 2.3 all together as a simple example of how ARROW

behaves. For a more detailed description of the ARROW algorithm and of how ARROW handles
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concurrent requests, we refer the reader to [30, 46]. It was shown in [30] that the ARROW

algorithm correctly orders a given sequence of requests even in an asynchronous network.
Moreover as shown in [30, 46], when operating on tree T , the algorithm always finds the
predecessor of a request on the direct path on T . As a result, if two requests r′ and r are at
distance d on T and if r′ is the predecessor of r in the queueing order, the “find predecessor”
message initiated by request r finds the node of request r′ in time exactly d in the synchronous
setting and in time at most d in the asynchronous model. Further, it is shown in [46] that
the successor request of a request r at node v in the queue is always the remaining request
r′′ that first reaches v on a direct path. This “greedy” nature of the ARROW ordering was
used in [48], where it was shown that in the one-shot case when all requests arrive at time 0,
the ARROW order corresponds to a greedy (nearest neighbor) TSP path through the requests,
whereas an optimal offline algorithm corresponds to an optimal TSP path on the request set.
The competitive ratio on trees then follows from the fact that the nearest neighbor heuristic
provides a logarithmic approximation of the metric TSP problem [64]. In [46], this analysis
was extended and it was shown that even in the fully dynamic case, it is possible to reduce the
problem to a (generalized) TSP nearest neighbor analysis.

2.3 Greedy Nature of Arrow Algorithm
In this section, we show that the ARROW algorithm can be interpreted as a distributed greedy
algorithm. The greedy property of the ARROW algorithm in the synchronous setting is for-
mally captured by Lemma 2.1 in Section 2.3.1, whereas the corresponding property in the
asynchronous setting is formally captured by Lemma 2.3 in Section 2.3.2. The technical re-
sults in Chapter 3 rely on the greedy nature of ARROW. Throughout Section 2.3, we assume
that we are given a fixed tree T and a set of dynamic requests R are placed at the leaves of
T . Further, we assume that an execution of ARROW (either synchronous or asynchronous)
with request set R on T is given. For convenience, we relabel the requests in R so that they
are ordered according to the queueing order resulting from the given ARROW execution on T .
That is, we assume that for all i ∈ {0, . . . , |R| − 1}, request ri = (vi, ti) is the ith request in
ARROW's order. Note that r0 = (v0, 0) is the dummy request defining the initial tail of the
queue. As discussed in Section 2.2, the ARROW order can be seen as a greedy ordering in the
following sense. Assume we are given the first i − 1 requests in the order. Assume that for
each of the remaining requests r = (v, t), at time t, we send a message from node v to the node
vi−1 of request ri−1. The ith request ri is a request r = (v, t) from the subset of the remaining
requests for which this message can reach node vi−1 first.

2.3.1 Synchronous Executions
The greedy behavior is formally captured by the following basic lemma for synchronous exe-
cutions. For a more thorough discussion, we also refer to [46].

Lemma 2.1. Consider a synchronous execution of ARROW on tree T and consider two arbi-
trary requests ri and rj for which 1 ≤ i < j (i.e., rj is ordered after ri by ARROW). Then it
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holds that

1. ti + dT (vi−1, vi) ≤ tj + dT (vi−1, vj) and

2. ti ≤ tj + dT (vi, vj).

Proof. The first claim of the lemma follows immediately from Definition 3.5 and from Lemma
3.8 and Lemma 3.9 in [46]. The second claim follows from the first claim of the lemma and
the triangle inequality.

2.3.2 Asynchronous Executions
We next generalize the greedy property that was captured by Lemma 2.1 for synchronous
ARROW executions to the asynchronous setting.

Basic Properties of Asynchronous Arrow Executions: We have seen that a synchronous
ARROW execution can be seen as a greedy queueing order. In the asynchronous setting, an
analogous property is true. However, we need to be a bit more careful and we need to argue
about the arrival time of the “find predecessor” message on the whole path from the node of a
request to its predecessor.

Let us assume that we are given an asynchronous execution of ARROW that enqueues the
requests r0, r1, . . . , r|R|−1 in this order. It has been shown in [30] that even in a concurrent
asynchronous ARROW execution, every request ri finds the node vi−1 of its predecessor ri−1

on a direct path. To formally specify the greedy property of ARROW in the asynchronous
setting, we need to study the progress of messages on the whole path from a request to its
predecessor. For any two nodes u, v of T , we use Pu,v to denote the direct path from u to v on
tree T . The following Lemma 2.3 formally establishes the greedy behavior of asynchronous
ARROW executions.

We first introduce some terminology defined in [46]. For all i ∈ [0, |R| − 1], we define
Fi to be a configuration of the tree network, where all arrows are pointing towards the node
vi of request ri. Further, let Ri be the set of requests [ri+1, |R| − 1] that are ordered after
request ri. Finally, let Ei be an execution of the ARROW algorithm starting from configuration
Fi and in which only the requests in Ri are issued. It is shown in Lemma 3.7 in [46] that for
all i, except for request ri no request in Ri−1 can distinguish locally between executions Ei−1

and Ei. More specifically, all these requests see exactly the same arrows in both executions.
This implies that the “find predecessor” message of every request ri sees exactly the same
arrows as if the network started in configuration Fi−1 and only request ri was issued. To study
the behavior of the requests in Ri−1, it therefore suffices to study an execution that starts in
configuration Fi−1 and where only the requests in Ri−1 are issued.

Lemma 2.2. Consider an asynchronous ARROW execution for a request set R on a tree T .
Let i ∈ [1, |R| − 1] and consider the path Pvi,vi−1

= (u0, u1, . . . , us) from node u0 = vi of
request ri to the node us = vi−1 of the predecessor ri−1. For every node uk on the path, the
“find predecessor” message of request ri is the first “find predecessor” message that reaches
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node uk (or is generated at node uk) among all the “find predecessor” of requests rj for
j ∈ [i, |R| − 1].

Proof. In order to prove the claim of the lemma, we can assume that requests r0, . . . , ri−1 have
already found their predecessors and therefore the tree is in configuration Fi−1. Lemma 3.7 in
[46] implies that this does not affect the behavior of any of the remaining queueing requests in
Ri−1.

Assume for contradiction that the claim of the lemma is not true. Let x ∈ [0, . . . , s] be the
maximal value such that the “find predecessor” message of request ri is not the first one among
the requests in Ri−1 reaching uk. Note that we need to have k < s because by the definition of
the ARROW algorithm, the first message reaching us = vi−1 is the successor request of ri−1.
Let r = (v, t) be the first request in Ri−1 that reaches node us. In configuration Fi−1, the
arrow of node uk points to uk+1. In order to change this, a “find predecessor” message first
has to be sent from node uk to uk+1. Because r is the first request reaching uk, when the “find
predecessor” message of r reaches uk, this has not happened and therefore the arrow still points
from uk to uk+1. When reaching uk, in an atomic step, the “find predecessor” message of r is
therefore forwarded to uk+1. As long as the message is in transit between the two nodes, there
is no arrow across the edge {uk, uk+1} and therefore the “find predecessor” message of r also
reaches uk+1 before the “find predecessor” message of ri reaches uk+1. This is a contradiction
to the assumption on the maximality of k and therefore the claim of the lemma holds.

The above lemma shows that if the “find predecessor” messages of two requests reach the
same node v, then the earlier ordered request reaches v first. To have an analogous statement
for Lemma 2.1, we would like to have a statement saying that a request r reaches a node v on
the path to the predecessor request before any request r′ that is ordered after r (not only for
a request r′ that actually reaches v). To achieve this, we extend a given ARROW execution to
simplify the analyses provided in Chapter 3. Whenever a request r = (v, t) is issued at node
v at time t, a “find predecessor” message leaves v at time t and it travels on the direct path
to the predecessor request r′ of r. For the proof, we assume that instead of only going to the
predecessor, the “find predecessor” message is sent as a broadcast to the whole network. We
think of the additional messages to complete this broadcast as virtual messages that are only
used for the analysis and have no influence on the queueing algorithm. Given an asynchronous
execution of ARROW, we assume that the actual messages sent by the ARROW algorithm keep
their message delays (to ensure an equivalent execution). All the virtual messages are assumed
to have the maximum possible message delay. That is, the delay of sending a virtual message
from u to v is equal to the length dT (u, v) of the respective tree edge. Further, to make sure
that virtual messages can never overtake real messages, if a real message and a virtual message
reach a node at the same time, the node always first processes the real message. In this way,
for every request r = (v, t), the delay of the respective “find predecessor” message is defined
for all nodes. For a request r and a node u ∈ V , we introduce the following notation:

∆(r, u) := time of “find predecessor” message of request r to reach node u. (2.1)

We note that for r = (v, t) and any node u ∈ V , we have ∆(r, u) ≤ dT (u, v) (recall that in
the asynchronous setting, for the analysis, the delay of a message is assumed to be at most
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the length of the respective edge). The next lemma will be used as a replacement of the main
statement of Lemma 2.1 in the asynchronous analysis.

Lemma 2.3. Consider an asynchronous execution of ARROW for a set of requests R on tree
T and consider two arbitrary requests ri and rj for which 1 ≤ i < j (i.e., rj is ordered after
ri by ARROW). Then for any node v on the path from vi to vi−1, it holds that

ti + ∆(ri, v) ≤ tj + ∆(rj, v).

Proof. Similarly to the proof of Lemma 2.2, we apply Lemma 3.7 from [46] and we assume
that the network starts in configuration Fi−1. Consequently, initially, all arrows are pointing
towards vi−1 and only the requests in Ri−1 still need to be ordered.

We first show that for every arrow pointing from a node u1 to a node u2 in configuration
Fi−1, the first message sent from u1 to u2 has to be a real message. For contradiction, assume
otherwise and assume that the first arrow along which a virtual message is sent before a real
message is pointing from nodew1 to nodew2. Further, assume that messageM is the first such
message that is sent by w1 over the edge. Note that this also implies thatM is the first message
sent from w1 to w2. Assume that this virtual messageM belongs to a request r = (v, t). First
note thatM is the first message arriving at node w1. Otherwise, some other message would
have been sent from w1 to w2. If messageM arrives at w1 as a real message, it is forwarded as
a real message to node w2. We can therefore conclude that messageM reaches w1 as a virtual
message (say from neighbor w0). BecauseM is the first message that reaches w1, it is also the
first message sent from w0 to w1 (note that as a virtual message, it has the maximum possible
message delay, so it cannot overtake any other message). Because in configuration Fi−1, there
also is an arrow from w0 to w1, this is a contradiction to the assumption that the arrow from
w1 to w2 is the first on which a virtual message is sent before a real one.

To conclude the proof, observe that in configuration Fi−1, all neighbors u of the path
Pvi,vi−1

= (u0, . . . , us) from u0 = vi to us = vi−1 have an arrow pointing from u to the
neighbor on the path. Hence, on each edge connecting to the path, the first message that
reaches the path is a real message. The same is true for all edges of the path in the direction
from node u0 = vi to node us = vi−1. The only way a virtual message can therefore reach a
node uk of the path before a real message does is when a virtual message for a request r is sent
from a node uk+1 to node uk. Assume that this is the case and assume that ux for x ≥ k + 1 is
the first node on the path that is reached by the message of r. There are two cases to consider,
either the message of r reaches node ux from a neighbor outside the path Pvi,vi−1

or the request
is issued at node ux. Because the first message reaching the path Pvi,vi−1

from a neighbor of
the path has to be a real message, Lemma 2.2 implies that the “find predecessor” message of
request ri reaches ux before any message from outside the path reaches ux. However, in that
case, the “find predecessor” message of ri also reaches all earlier nodes on path Pvi,vi−1

(and
thus in particular node uk) before the message of r does. If the request r is issued at node
ux, Lemma 2.2 also implies that this has to happen after the “find predecessor” message of ui
reaches ux.

The following lemma is a simple consequence of Lemma 2.3.
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Lemma 2.4. Consider an asynchronous execution of ARROW for a given set of requests R on
a tree T and consider two arbitrary requests ri and rj for which i < j (i.e., ri is ordered before
rj). Then, the following two statements hold:

1. ti ≤ tj + dT (vi, vj),

2. if i ≥ 1, ti + ∆(ri, vi−1) ≤ tj + dT (vj, vi−1).

Proof. If i = 0, we only need to prove the first claim, in which this clearly holds because
t0 = 0 and tj ≥ 0 for all rj ∈ R. Let us therefore assume that i ≥ 1. We consider the
part of the tree T induced by the paths between the nodes vi, vj , and the node vi−1 of the
predecessor request ri−1 of ri. Let x be the (unique) node on the tree on which the three paths
Pvi,vj , Pvi,vi−1

, and Pvj ,vi−1
intersect. Because x in particular is a node on the path Pvi,vi−1

,
from Lemma 2.3, we get that

ti + ∆(ri, x) ≤ tj + ∆(rj, x). (2.2)

The term ∆(rj, x) is the delay of the message of request rj to reach node x from node vj .
Because the message delay is upper bounded by the length of the path and because x is on the
path Pvi,vj , we have ∆(rj, x) ≤ dT (vj, x) ≤ dT (vj, vi) and thus, the first claim of the lemma
follows directly from (2.2) (note that ∆(ri, x) ≥ 0). The second claim can also be proved
based on (2.2):

ti + ∆(ri, vi−1) = ti + ∆(ri, x) +
(
∆(ri, vi−1)−∆(ri, x)

)
(2.2)
≤ tj + ∆(rj, x) +

(
∆(ri, vi−1)−∆(ri, x)

)
≤ tj + dT (vj, x) + dT (x, vi−1)

= tj + dT (vi−1, vj).

The second inequality follows because the message delay of an edge is at most the length of
the edge.

2.4 Cost Model
In Chapter 3, we will study the distributed queuing problem and some closely related problems
by analyzing the ARROW algorithm and its modified versions on HSTs. In this section we
formally provide our cost model. Assume when applying some queueing algorithm ALG
to a set of request R, the resulting ordering of the requests can be seen as a permutation
πALG of R such that the request ordered at position i in the order is rπALG(i)

. For every i ∈
{1, . . . , |R| − 1}, we define the cost of ordering rπALG(i) after rπALG(i−1) as the time it takes
a queueing algorithm to enqueue the request rπALG(i) as the successor of rπALG(i−1). More
specifically, we assume that request rπALG(i) can be enqueued as soon as the predecessor request
rπALG(i−1) is in the system and as soon as node vπALG(i−1) knows about request rπALG(i). Assume
that algorithm ALG informs node vπALG(i−1) (through a message) about rπALG(i) at time tALG(i).
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The cost (latency) LALG(rπALG(i−1), rπALG(i)) incurred for enqueueing request rπALG(i) and the
overall cost (latency) costALG of ALG are then defined as follows.

LALG(rπALG(i−1), rπALG(i)) := max
{
tALG(i), tπALG(i−1)

}
− tπALG(i), (2.3)

costALG(πALG) :=

|R|−1∑
i=1

LALG(rπALG(i−1), rπALG(i)). (2.4)

We next specify the above cost more concretely for ARROW and for an optimal offline algo-
rithm. Assume that we have an execution A of the ARROW algorithm that operates on a tree
T . Let πA be the ordering induced by the ARROW execution A. When the “find predecessor”
message of a request rπA(i) arrives at the node of the predecessor request rπA(i−1), clearly
the request rπA(i−1) has already occurred and thus we always have LA(rπA(i−1), rπA(i)) =
tA(i) − tπA(i) for any ARROW execution. Further note, that in a synchronous execution of
arrow on tree T , because ARROW always finds the predecessor on the direct path, this latency
cost is always equal to the distance between the respective nodes in T .

When studying in the cost of an optimal offline queueing algorithm O, we assume that O
knows the whole sequence of requests in advance. However, O still needs to send messages
from each request to its predecessor request. The message delays are not under the control of
the optimal offline algorithm. When lower bounding the cost of O, we can therefore assume
that all communication is synchronous even in the asynchronous case. Note that a synchronous
execution is a possible strategy of the asynchronous scheduler. When operating on a graph G,
the latency cost of O for ordering a request rj as the successor of a request ri is then exactly
LGO(ri, rj) = max {ti − tj, dG(vi, vj)}. As we analyze ARROW on an HST T that is simulated
on top of an underlying network G, we directly define the optimal offline w.r.t. synchronous
executions on the tree T as follows.

LTO(rπTO(i−1), rπTO(i)) := max
{
dT (vπTO(i−1), vπTO(i)), tπTO(i−1) − tπTO(i)

}
, (2.5)

costTO(πO) :=

|R|−1∑
i=1

LTO(rπTO(i−1), rπTO(i)). (2.6)

The ordering πO is chosen such that the total cost costTO(πO) in (2.6) is minimized.

2.5 Further Related Work
The ARROW protocol is a particularly simple and elegant solution for the distributed queueing
problem. The protocol was introduced independently (in slightly different forms) by Naimi
and Trehel, Raymond, as well as van de Snepscheut in the context of distributed mutual ex-
clusion [59, 63, 70]. The algorithm was later reinvented by Demmer and Herlihy [30], who
used ARROW to implement a distributed directory [23]. It has been shown in [30] that the
ARROW algorithm correctly solves the queueing problem even in an asynchronous system
even if the requests are issued in a completely dynamic and possibly concurrent way. Over the
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years, ARROW has been used and analyzed in different contexts [45, 46, 49, 50, 61, 69]. The
algorithm has been implemented as a part of Aleph Toolkit [45] and shown to outperform cen-
tralized schemes significantly in practice [50]. Several other tree-based distributed queueing
algorithms that are similar to the ARROW algorithm have also been proposed in the literature.
An algorithm that combines the ideas of ARROW with path compression has been implemented
in the Ivy system [52]. The amortized cost to serve a single request is onlyO(log n) [41], how-
ever the algorithm needs a complete graph as the underlying network topology. There are also
other similar algorithms that operate on fixed trees. The Relay algorithm [71] has been intro-
duced as a distributed transactional memory algorithm. It is run on top of a fixed spanning
tree similar to ARROW, however to more efficiently deal with aborted transactions, it does not
always move the shared object to the node requesting it. Further, in [7], a distributed directory
algorithm called Combine has been proposed. Combine runs on a fixed overlay tree and it is
in particular shown in [7] that Combine is starvation-free.

The first paper to study the competitive ratio of concurrent executions of a distributed
queueing algorithm is [48]. The paper shows that in synchronous executions of ARROW on
a tree T , if we have a one-shot execution where all requests are issued at the same time, say
at time 0, the total cost of ARROW is within a factor O(log |R|) compared with the optimal
queueing cost on tree T . This analysis has later been extended (and slightly strengthened)
to the general concurrent setting where requests are issued in an arbitrarily dynamic fashion.
In [46], it is shown that in this case, the total cost of ARROW is within a factor O(logD)
of the optimal cost on the tree T . Later, the same bounds have also been proven for the
Relay algorithm [71] and the Combine algorithm [7]. Typically, these algorithms are run on
a spanning tree or an overlay tree on top of an underlying general network topology. While
the cost of all these algorithms is small when compared with the optimal queueing cost on the
tree, the cost of the algorithms might be much larger when compared with the optimal cost on
the underlying topology. In this case, the competitive ratio becomes O(s · logD), where s is
the stretch of the tree. There are underlying graphs (e.g., cycles) for which every spanning tree
and even every overlay tree has stretch Ω(n) [43, 62]. The fact that even the best spanning tree
might have large stretch initiated the work on distributed queueing algorithms that run on more
general hierarchical structures. In [47], an algorithm called Ballistic is introduced and analyzed
for the sequential and the one-shot case. Ballistic has competitive ratio O(logD), however the
algorithm requires the underlying distance metric to have bounded doubling dimension and it
thus cannot be applied in general networks. The best algorithm known for general networks
is Spiral, which was introduced in [67]. Spiral is based on a hierarchy of overlapping clusters
that cover the graph. It's general structure is thus somewhat resembling the classic sparse
partitions and mobile objects solutions by Awerbuch and Peleg [13, 14]. The competitive ratio
of Spiral is shown to be O(log2 n · logD) for sequential and one-shot executions in [67]. In
[66], a general framework to analyze the cost of concurrent executions of hierarchical queueing
and directory algorithms has been presented. In particular, in [66], the competitive analysis of
Spiral and also of the classic mobile object algorithm of Awerbuch and Peleg [13, 14] has been
extended to the dynamic setting. In [46], the authors provide a sketch for how the competitive
analysis of the ARROW protocol can be generalized to the asynchronous case. However, [46]
does not provide a formal proof that the algorithm performs well in an asynchronous setting.
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Apart from analyzing the ARROW protocol on HSTs, this thesis also shows how to formally
treat the asynchronous case. We note that while we analyze the protocol on HSTs in the thesis,
the generalization to asynchronous executions can also be directly applied to the analysis of
[46] for general tree topologies.
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Chapter 3

The Distributed Queuing Problem:
Dynamic Requests

3.1 Introduction
In this chapter we study the distributed queuing problem as defined in Section 2.1 where
the requests arrive in an arbitrarily dynamic and possibly concurrent fashion. As the main
technical contribution, we show that when run on an HST T , the ARROW algorithm achieves a
constant competitive ratio, even in the fully dynamic case. When running ARROW on an HST
T , we assume that all requests R are issued at the leaf nodes of T .

The analysis of ARROW on HSTs in particular strengthens the result of [46], where it was
shown that ARROW has a logarithmic competitive ratio for dynamically arriving requests on
general tree topologies. In combination with the probabilistic tree embedding result of [34],
our analysis implies that when run on the HST resulting from the randomized HST construc-
tion of [34], the ARROW algorithm is O(log n)-competitive even on general network topolo-
gies. The best previously known competitive ratio for the distributed queueing problem with
arbitrarily dynamically injected requests on general graphs isO(log2 n·logD) as shown in [66]
for the hierarchical schemes defined of [13, 67]. This shows that (under some assumptions),
the simple and elegant ARROW algorithm outperforms all existing significantly more compli-
cated distributed queueing algorithms. We note that our algorithm is based on a randomized
tree construction and its competitive ratio is w.r.t. an oblivious adversary. Other algorithms
with polylogarithmic competitive ratio are deterministic and they therefore also work in the
presence of an adaptive adversary. For a more detailed comparison of our results with existing
algorithms, we refer to the discussion in Section 2.5.

The main technical contribution is stated by the following theorem.

Theorem 3.1. Assume that we are given an HST T with parameter 2 and queueing requests
R that arrive in an arbitrarily dynamic manner at the leaves of T . When using the ARROW

algorithm on tree T , the total cost for ordering the requests in R is within a constant factor of
the cost of an optimal offline algorithm for ordering the requests R on T . This even holds if
communication is asynchronous.
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Remark 3.2. We remark that the fact that the stement of Theorem 3.1 also holds for asyn-
chronous executions has an important implication even for synchronous systems, where the
propagation delay of each edge is fixed. Assume that we are given a general synchronous net-
work G. When using the embedding result of [34] to construct an HST T that approximately
captures the distances of G (in a probabilistic sense), T is built as an overlay topology that
runs on top of the underlying network G. The distance between two leaves of T is guaran-
teed to be lower bounded by the distance between the corresponding nodes in G. However
the distance is G might be smaller and therefore the propagation delay when sending a mes-
sage between two leaves of T might be smaller than the distance between the leaves in T if
T if communication on T is emulated by running a synchronous on G. Since the theorem
applies to general asynchronous executions on T , it in particular applies to synchronous (and
asynchronous) executions on the underlying graph G.

For a precise description of the ARROW algorithm and the definition of queueing cost,
we refer to Section 2.2 and Section 2.4, respectively. Further, the formal definition of HSTs
provided in Section 1.4.6. When combining Theorem 3.1 with the celebrated probabilistic
tree embedding of Fakcharoenphol, Rao, and Talwar [34], we get our main result for general
graphs. In [34], it is shown that there is a randomized algorithm that given an arbitrary n-point
metric (X, d) constructs an HST T such all pointsX are mapped to leaves of T , all distances in
(X, d) are upper bounded by the respective distances in T , and the expected distance between
any two leaves in T is within an O(log n) factor of the distance between the corresponding
two points in X . When constructing such an HST T for a given graph G and when assuming
an oblivious adversary1, this implies that the expected total cost of ARROW on T is within
an O(log n) factor of the optimal offline queueing cost on G. We also note that an efficient
distributed construction of the HST embedding of [34] has been given in [40].

Theorem 3.3. Assume that we are given an arbitrary graphG = (V,E) and queueing requests
R that arrive in an arbitrarily dynamic manner at the nodes of G. There is a randomized
construction of an HST T that can be simulated on G such that when running ARROW on T ,
we get a distributed queueing algorithm for G with competitive ratio at most O(log n) against
an oblivious adversary providing the sequence of requests. This even holds if communication
is asynchronous.

Organization of the Chapter: The remainder of this chapter is organized as follows. In
Section 3.2, we first (informally) show that ARROW is optimal when it is run on top of an
HST for one-shot executions where the requests arrive at the same time. Section 3.3 contains
some lemmas that establish some basic properties that are needed for the rest of the chapter.
Section 3.4 analyzes the cost of an optimal offline algorithm on an HST T by relating it to the
total weight of an MST defined on the set of requests. In Section 3.5, we introduce a general
framework to analyze the queueing cost of distributed queueing algorithms on an HST T and
the framework is applied to synchronous executions of the ARROW algorithm. The analysis of

1That is, when assuming that the sequence of requests is statistically independent of the randomness used to
construct the HST T .
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asynchronous executions appears in Section 3.6. In Section 3.7, we prove a general minimum
spanning tree (MST) approximation result that is used in Section 3.4 and Section 3.5. Some
open problems are discussed, finally, in Section 3.8.

3.2 One-Shot Executions
As a warm-up, we first provide a simple (informal) analysis that shows that when run on an
HST T , the ARROW protocol provides an optimal solution for so-called one-shot execution,
that is, for executions, where all requests are entered into the system at time 0. The special
case of one-shot executions was already considered in [49]. Consider the metric space (R, dT )
defined by the set of requests R and where the distance between two requests r, r′ ∈ R is
the distance between the corresponding leaf nodes in T . It was already observed in [49] that
the optimal ordering of the requests on T corresponds to an optimal TSP path that starts at
the dummy request and the optimal offline cost therefore equals the length of an optimal TSP
path. By applying the greedy property of the ARROW algorithm (cf. Lemma 2.1), the ARROW

order corresponds to the TSP path that results from using the nearest neighbor heuristic, i.e.,
the successor of a request r is a request r′ that minimizes dT (r, r′) among all the remaining
requests. It is known that for a general metric space of size n, the nearest neighbor heuristic
always produces a TSP path that is within an O(log n)-factor of an optimal TSP path [64].
As a consequence, it is shown in [49] that for one-shot scenarios, ARROW is O(log |R|)-
competitive.

To analyze the one-shot scenario on HSTs, we therefore need to understand the TSP nearest
neighbor heuristic for a metric space that is induced by the distances between leaves of an HST
T . Recall that an HST T is a tree in which all nodes at depth ` (i.e., at ` hops from the root)
have the same distance to the root and in which all leaves are at the same depth h (i.e., the
same hop distance from the root). The distance between two leaves therefore only depends on
the depth of the nearest common ancestor and it monotonically increases when the depth of
the nearest common ancestor decreases. As a consequence, when running the nearest neighbor
heuristic, a TSP path will always first visit all requests in the current subtree before leaving the
subtree. For ` ≥ 0, n` be the number of subtrees that are rooted at a node at depth ` of T and
for which there is at least one node that has a request (e.g., n0 is the number of subtrees of the
root of T in which there is at least one request). As the nearest neighbor TSP path leaves each
subtree of T exactly once, the number of times it passes through a node at depth at most ` is
exactly n` − 1. If δ` is the distance between two leaves of T for which the nearest common
ancestor is at depth `, the total length of a nearest neighbor TSP path is therefore

TSPNN =
h−1∑
`=0

(n` − n`−1) · δ`,

where for convenience n−1 is defined as n−1 := 0. It is clear that any spanning tree that con-
nects all requests must have at least n` − 1 edges of length at least δ` because all n` subtrees
with requests rooted at nodes at depth ` need to be connected. The length of a nearest neighbor
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tour is therefore even equal to the total length of all edges of a minimum spanning tree and thus
also to the total length of an optimal TSP path. We therefore conclude that for synchronous,
one-shot executions on an HST T , the ARROW protocol provides an optimal solution. We fur-
ther note that with a similar, slightly more complicated argument, based on the asynchronous
greedy property of Lemma 2.2, one can even show that ARROW is optimal for asynchronous
one-shot executions on an HST T .

3.3 Preliminaries
In this section, we provide some basic lemmas that we need for the analysis of the ARROW

protocol in the dynamic setting The first lemma shows that when using the randomized HST
construction of [34], the expected cost (2.6) is within a logarithmic factor of the optimal offline
cost on the underlying network graph G.

Lemma 3.4. Assume T is an HST that is constructed on top of an n-node network graph G
by using the randomized algorithm of [34] and assume that there is a dynamic set of queueing
requests issued at the nodes ofG. If the sequence of requests is independent of the randomness
of the randomized HST construction, the expected optimal total cost on T (as defined in (2.6))
is within a factor O(log n) of the optimal offline queueing cost on G.

Proof. Let πGO and πTO be the optimal orderings w.r.t. the optimal offline costs LGO(ri, rj) and
LTO(ri, rj) on G and T , respectively, as defined above. We have

E
[
costTO(πTO)

]
= E

|R|−1∑
i=1

LTO(rπTO(i−1), rπTO(i))


≤

|R|−1∑
i=1

E
[
LTO(rπGO(i−1), rπGO(i))

]
=

|R|−1∑
i=1

E
[
max

{
dT (vπGO(i−1), vπGO(i)), tπGO(i−1) − tπGO(i)

}]
≤ 2 ·

|R|−1∑
i=1

max
{
E
[
dT (vπGO(i−1), vπGO(i))

]
, tπGO(i−1) − tπGO(i)

}
≤ 2 ·

|R|−1∑
i=1

max
{
O(log n) · dG(vπGO(i−1), vπGO(i)), tπGO(i−1) − tπGO(i)

}
≤ O(log n) ·

|R|−1∑
i=1

max
{
dG(vπGO(i−1), vπGO(i)), tπGO(i−1) − tπGO(i)

}
≤ O(log n) · costGO(πGO).

The first inequality follows from the fact that πTO is an optimal ordering w.r.t. the costLTO(ri, rj)
and by linearity of expectation. The second inequality follows because for every non-negative
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random variableX and every fixed (possibly negative) constant c, it holds that E[max {X, c}] ≤
2 · max {E[X], c}. The third inequality follows from the expected stretch bound of the HST
construction of [34], and the fourth inequality follows because for all values λ ≥ 1, a ≥ 0 and
b ∈ R, it holds that max {λa, b} ≤ λ ·max {a, b}.

Given Theorem 3.1 (which will be proven as the main technical result of this chapter) and
Lemma 3.4, we immediately get Theorem 3.3. We note in light of the remark following
the statement of Theorem 3.1, the statement of Theorem 3.3 is also true for synchronous
executions on the underlying graph G.

Manhattan Cost: In the dynamic competitive analysis of ARROW on general trees in [46], it
has been shown that it is useful to study the optimal ordering w.r.t. to the following Manhattan
cost on a tree T between two queueing requests ri = (vi, ti) and rj = (vj, tj).

cTM(ri, rj) := dT (vi, vj) + |ti − tj|. (3.1)

As the cost function cM(ri, rj) defines a metric space on the request set, the problem of finding
an optimal ordering w.r.t. the cost cM(ri, rj) is a metric TSP problem.2 As a result, we will for
example use that the total weight of an MST on the set of request w.r.t. the weight function
cM(ri, rj) is within a factor 2 of the cost of an optimal TSP path. The following definition is
inspired by Lemma 3.12 in [46].

Definition 3.5 (Condensed Request Set). A set R of queueing requests ri = (vi, ti) on a tree T
is called condensed if for any two requests ri = (vi, ti) and rj = (vj, tj) that are consecutive
w.r.t. time of occurrence, there exits requests ra = (va, ta) and rb = (vb, tb) such that ta ≤ ti,
tb ≥ tj , and dT (va, vb) ≥ tb − ta.

It is shown in [46] that for condensed request sets, the total optimal Manhattan cost is
within a constant factor of the optimal offline queueing cost.

Lemma 3.6 (Lemma 3.17 in [46] rephrased). If the request set R is condensed, then on any
tree T and for every ordering π on the requests, it holds that

|R|−1∑
i=1

cTM(rπ(i−1), rπ(i)) ≤ 12 ·
|R|−1∑
i=1

LTO(rπ(i−1), rπ(i)).

For synchronous executions on trees, it is also shown in [46] that every request set R can
be transformed into a condensed request set without changing the ordering (and the cost) of
ARROW and without increasing the optimal offline cost.

Lemma 3.7 (Lemma 3.11 in [46] rephrased). Let R be a set of queueing requests issued on
a tree T and let ri = (vi, ti) and rj = (vj, tj) be two requests of R that are consecutive w.r.t.
time of occurrence. Further, choose two requests ra = (va, ta) with ta ≤ ti and rb = (vb, tb)
with tb ≥ tj minimizing δ := tb− ta− dT (va, vb). if δ > 0, every request r = (v, t) with t ≥ tj
can be replaced by a request r′ = (v, t− δ) without changing the synchronous ARROW order
and without increasing the optimal offline cost.

2The relation of ARROW and the TSP was already exploited in [46] when analyzing ARROW on general trees.
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Lemma 3.7 implies that every request set R can be transformed into a condensed set R′

without changing the synchronous order of ARROW and without increasing the optimal offline
cost. For the analysis of ARROW in synchronous systems, we can thus w.l.o.g. assume that
the request set is condensed. In Section 3.6, we show that this also holds in asynchronous
systems.

3.4 Analysis of the Optimal Offline Cost
This and the next section discuss the main technical contribution of this chapter and analyzes
the total cost of a synchronous ARROW execution when run on an HST T . Throughout this
section, we assume that a fixed HST T , a set of dynamic requests R placed at the leaves of T ,
and a synchronous execution of ARROW with request set R on T are given. For convenience,
we relabel the requests in R so that they are ordered according to the queueing order resulting
from the given ARROW execution on T . That is, we assume that for all i ∈ {0, . . . , |R| − 1},
request ri = (vi, ti) is the ith request in ARROW’s order. Note that r0 = (v0, 0) is still the
dummy request defining the initial tail of the queue. Before delving into the details of the
analysis, we give a short outline. In the first step in Section 3.4.1, we study the ordering
generated by ARROW in more detail and show that it implies a hierarchical partition of the
requests R in a natural way. To simplify the next Section 3.4.2 transforms the given HST T
into a new tree such that inside each subtree, if ordering the request by time of occurrence,
the gap between the times of consecutive requests cannot be too large (whenever such a gap is
too large, we split the corresponding subtree into two trees). Section 3.4.3 then shows that the
optimal offline cost can be characterized by the total Manhattan cost of a spanning tree that
respects the hierarchical structure of the HST T in a best given way. Finally, in Section 3.5, we
give a general framework to compare the queueing cost of an online distributed algorithm on
an HST T to the optimal offline cost on T and we apply this method to synchronous ARROW

executions. In Section 3.6, we show that the same framework can also be applied to general
asynchronous ARROW executions.

3.4.1 Characterizing ARROW By A Hierarchical Partition ofR
We hierarchically partition the requests R according to the ARROW queueing order and the
hierarchical structure of the HST T . On each level ` of T , we partition the requests into
blocks, where a block of requests is a maximal set of requests that are ordered consecutively
by ARROW inside some level-` subtree of T . In the following, for non-negative integers s and
t, we use the abbreviations [s] := {0, . . . , s− 1} and [s, t] := {s, . . . , t}. Formally, instead of
partitioning the set of requests R directly, we partition the set of indexes [|R|]. Recall that the
requests in R are indexed consecutively according to the queueing order of ARROW.

Definition 3.8 (Hierarchical Block Partition). For each level ` ∈ [0, h], we partition [|R|]
into n(`) blocks

{
b`0, b

`
1, · · · , b`n(`)−1

}
such that

1. each block is a consecutive set of integers (i.e., a consecutively ordered set of requests),
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2. for every block b`i , all requests rp for p ∈ b`i are in the same level-` subtree of T , and

3. for all i, j ∈ [n(`)] and all p ∈ b`i and q ∈ b`j , i < j =⇒ p < q.

For each block b, we further define the first request of b to be the one that has minimum index
in b.

v1 v3 v4 v5

b20

b10

b00

b12 b11 b13

v2

b02 b01 b03b05 b06 b04 b07b08 b09

(a) Blocks within the same subtree
b20

b10 b11 b12 b13

b00 b01 b02 b03 b04 b05 b06 b07 b08 b09

(b) Tree induced by the block hierarchy

Figure 3.1: The partition of R. (a) An HST with height 2 and 5 leaves. The leaves issue
requests at different times. The issued requests by nodes v1, v2, and v3 are partitioned into the
blocks b1

0 and b1
2 on level 1. These two blocks are called neighbor blocks at a subtree rooted

at height 1. (b) The corresponding 4 level-wise partition based on ARROW’s order that forms
a parent-child relation between the blocks on different levels. Blue boxes include the requests
that are ordered first by ARROW among all requests in blocks b0

i for all i ∈ [0, 9].

Note that for each level ` and for the first block of this level, the first request of the block has
index 0. The block partition defined in Definition 3.8 is illustrated in Figure 3.1. Figure 3.1a
shows the blocks within the HST structure, whereas Figure 3.1b shows the hierarchical parti-
tion induced by the blocks. To simplify the presentation of our analysis, we also define a level
−1 block b−1

i for each individual request ri. Note that we have n(−1) = |R|. The following
definition allows to navigate through the block hierarchy.

Definition 3.9 (Children Blocks). The set of children blocks of a block b`i on a level ` ∈ [0, h]
is defined as child(b`i) :=

{
b`−1
j : b`−1

j ⊆ b`i
}

. Block b`i is called the parent block of each of the
blocks in child(b`i).
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In Figure 3.1b, block b1
2 is the parent block of its children blocks b0

5 and b0
6. Block b1

1 has
only one child block b0

4 and thus b1
1 = b0

4.
The blocks

{
b`0, b

`
1, · · · , b`n(`)−1

}
of level ` belong to the subtrees rooted at height ` of the

HST T . Note that by the definition of the block partition, no two consecutive blocks at the
same level ` belong to the same level-` subtree of T . The next definition specifies notation to
argue about blocks of the same subtree of T .

Definition 3.10 (Blocks of Same Subtree). If two blocks b`i and b`j belong to the same level-`

subtree of T , this is denoted by b̂`ib
`
j . Moreover, |b̂`ib`j| :=

∣∣{w : i < w < j ∧ b̂`ib
`
w holds

}∣∣.
Two blocks b`i and b`j are called neighbor blocks if b̂`ib

`
j and |b̂`ib`j| = 0.

In Figure 3.1a, blocks b0
0, b0

2, and b0
5 are within the same subtree rooted at node v1. Blocks

b0
0 and b0

5 are not neighbor blocks, however blocks b0
0 and b0

2, as well as blocks b0
2 and b0

5 are
neighbor blocks. The next lemma lists a number of simple properties of the block partition.

Lemma 3.11. The block partition of Definition 3.8 satisfies the following properties:

1. For every block b`i and for all p, q ∈ b`i , we have dT (vp, vq) ≤ δ(`).

2. For each level ` and all level-` blocks b`i and b`j , if b̂`ib
`
j holds, for any p ∈ b`i and q ∈ b`j ,

we have dT (vp, vq) ≤ δ(`).

3. For each level ` and all level-` blocks b`i and b`j , if b̂`ib
`
j does not hold, for all p ∈ b`i and

q ∈ b`j , we have dT (vp, vq) ≥ δ(`+ 1).

4. Assume ` < h and consider two blocks b`i and b`j that have a common parent block

b`+1
w , but for which b̂`ib

`
j does not hold. Then, for all p ∈ b`i and q ∈ b`j , we have

dT (vp, vq) = δ(`+ 1).

Proof. Recall that the distance between two leaves u, v of the HST T is equal to δ(`) if the
least common ancestor of u and v is on level `. The first claim then holds because all requests
in a block b`i at level ` are issued at nodes in the same level-` subtree of T and therefore the
least common ancestor of any two of them is on level at most `. The second claim holds for
a similar reason. If b̂`ib`j holds for two blocks b`i and b`j , both blocks consist of requests in the

same level-` subtree of T . For the third claim, note that when b̂`ib`j does not hold for two blocks
b`i and b`j , the two blocks do not belong to the same subtree at level `. Therefore for any two
requests p ∈ b`i and q ∈ b`j , the least common ancestor has to be on level at least `+ 1 and thus
the distance dT (vp, vq) ≥ δ(` + 1). Finally, the fourth claim holds by combining the second
claim (applied to block b`+1

w on level `+ 1) and the third claim.

We have seen that in a synchronous ARROW execution, the latency cost for ordering request
ri+1 as the successor of ri is exactly the distance dT (vi, vi+1) between the nodes of the two
requests. The total cost of ARROW therefore directly follows from the structure of the block
partition.
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Lemma 3.12. The total cost of a synchronous ARROW execution on the HST T with corre-
sponding hierarchical block partition is given by

costA(πA) =
h−1∑
`=0

(
n(`)− n(`+ 1)

)
· δ(`+ 1).

Proof. It follows from claim 4 of Lemma 3.11 that for any two requests r and r′, dT (r, r′) =
δ(`+ 1) for the smallest ` for which r and r′ are in the same level-` block. The block partition
implies that for every level `, there are n(`)− 1 consecutive requests ri and ri+1 which are in
different level-` blocks. For every ` ∈ {0, . . . , h− 1}, the number of consecutive request pairs
at distance at least δ(`+ 1) is therefore equal to n(`)−1. The claim of the lemma now follows
because costA(πA) =

∑|R|−1
i=1 dT (vi−1, vi).

3.4.2 HST Conversion
In this section, a recursive (top-down) splitting procedure is provided so that the original HST
is converted into a new HST with better properties. The conversion does not change the total
cost of ordering the requests by ARROW (in fact, it does not change the block partition).
Further, the total Manhattan cost of optimal offline algorithm’s order asymptotically remains
unchanged as well. We describe how the splitting procedure works and we then argue its
properties. For a set R′ of queueing request (and sometimes by overloading notation also for a
set of request indexes), we define tmin(R′) and tmax(R′) to be the minimum and the maximum
issue time t of any request r = (v, t) ∈ R′, respectively.

Splitting Procedure: We describe the splitting procedure as it is applied to a subtree T ′ that
is rooted at a given level ` ∈ {0, . . . , h} of T . If ` = 0, the tree T ′ is returned unchanged.
Otherwise (` ≥ 1), we go through all level-(` − 1) subtrees T ′′ of T ′. As long as the tree T ′′

has two neighbor blocks b`−1
i and b`−1

j (for i < j) for which the following condition (3.2) is
true, the subtree T ′′ is split into two separate subtrees T ′′1 and T ′′2 of T ′.

tmin(b`−1
j )− tmax(b`−1

i ) ≥ δ(`). (3.2)

The splitting of T ′′ into T ′′1 and T ′′2 works as follows. The topology of T ′′1 and T ′′2 is identical to
the topology of T ′′. Each request r = (v, t) that is issued at some node v of T ′′ is either placed
on the isomorphic copy of v in T ′′1 or in T ′′2 . All requests r in blocks b`−1

x of T ′′ for x ≤ i
are placed in tree T ′′1 and all request in blocks b`−1

y of T ′′ for y ≥ j are placed in tree T ′′2 . We
perform such splittings for trees T ′ of level ` as long as there are subtrees of T ′ on level `− 1
with neighbor blocks that satisfy Condition (3.2). As soon as no such neighbor blocks exist,
the procedure is applied recursively to all trees T ′′ at level `− 1 (including the new subtrees).
The whole conversion is started by applying the procedure to the complete HST T .

Lemma 3.13. The above splitting procedure does not change the hierarchical block partition
and it thus also preserves ARROW's queueing order πA and its total cost costA(πA).
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Proof. We prove that a single splitting step does not change the block partition or the ARROW

cost. The lemma then follows by induction on the number of splits in the above procedure.
Assume that we are working on tree T ′ on level ` and that we are splitting subtree T ′′ of T ′

into T ′′1 and T ′′2 as a result of two neighbor blocks b`−1
i and b`−1

j satisfying Condition (3.2).
We first show that w.r.t. ARROW’s ordering πA before the splitting step, the block partition

remains the same. W.r.t. the ordering πA, the block partition can only change if some block
of level `′ ≤ ` − 1 at a subtree of T ′′ is split into two blocks. Note that any subtree τ of T
that is rooted at some node v outside T ′′ either does not contain any node of T ′′ or it contains
the whole subtree T ′′. In both cases, the request set of τ does not change and w.r.t. ordering
πA therefore also their blocks on the level of node v remain the same. Because the blocks at
some level `′ < `− 1 of tree T ′′ are a refinement of the blocks on level `− 1, if some block of
some level `′ ≤ `− 1 at a subtree of T ′′ is split, there is also a level-(`− 1) block of tree T ′′ is
split into two blocks. However this cannot happen because the splitting procedure moves each
level-(`−1) block of T ′′ either completely to T ′′1 or to T ′′2 . Hence, w.r.t. the ordering πA before
the splitting, the block partition remains the same.

We next show that this implies that for all pairs of requests (ri, ri+1) ordered consecutively
by ARROW, the tree distance dT (vi, vi+1) remains the same. If it does not remain the same,
it means that vi and vi+1 are both within T ′′ and thus before the split dT (vi, vi+1) ≤ δ(` − 1)
(their least common ancestor is some node in T ′′). Hence, ri and ri+1 are in the same block
on level ` − 1. To see this, recall that the blocks of level ` − 1 of T ′′ are the maximal set of
requests inside tree T ′′ that are ordered consecutively by ARROW. Because ri and ri+1 are
ordered consecutively, they therefore have to be in the same level `− 1 block of T ′′. After the
split, we then have dT (vi, vi+1) = δ(`) and thus ri and ri+1 cannot be in the same block at level
`′ any more. As the splitting does not change the block partition (w.r.t. the original ordering
πA), this cannot happen. Hence, we have that for every i ∈ {0, . . . , |R| − 2}, dT (vi, vi+1)
remains unchanged. All other distances can only increase. Hence, even after the split, for every
i ∈ {0, . . . , |R| − 2}, request ri+1 still minimizes t+dT (v, vi) among all non-ordered requests
r = (v, t). Lemma 2.1 therefore implies that πA is still a valid ARROW ordering. Because
the block partition remains the same, Lemma 3.12 also immediately implies that costA(πA)
remains unchanged. Because when splitting tree T ′′, every level-(` − 1) block of T ′′ either
completely goes to tree T ′′1 or to tree T ′′2 , the splitting does not divide any block. Hence, if we
assume that the queueing order πA is preserved, also the block partition is preserved.

The next lemma shows that if a tree T ′′ is split into two trees T ′′1 and T ′′2 such that all
requests in T ′′1 are ordered before all requests in T ′′2 , there is a significant time of occurrence
gap between the requests ending up in subtrees T ′′1 and T ′′2 .

Lemma 3.14. Assume that we are performing a single splitting. Further, assume that we are
working on a tree T ′ on level ` and that we are splitting a subtree T ′′ of T ′ into T ′′1 and T ′′2 such
that T ′′1 obtains the blocks that are scheduled first by ARROW. If R1 and R2 are the request
sets of T ′′1 and T ′′2 , respectively, we have tmin(R2)− tmax(R1) ≥ δ(`)− δ(`− 1).

Proof. Assume that the split of the tree T ′′ is caused by two neighbor blocks b`−1
i and b`−1

j

satisfying Condition (3.2). We first show that tmin(R2) = tmin(b`−1
j ). To see this, we generally
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show that for any subset of blocks bxi1 , b
x
i2
, . . . of some tree T̄ rooted at level x, if bxi1 is the first

of these blocks ordered by ARROW, then the first request ordered in bxi1 has the smallest time of
occurrence among all requests in blocks bxi1 , b

x
i2
, . . . . To see this, note that whenever ARROW

enters a level-x block bxi of tree T̄ , the predecessor request r is at a node v outside tree T̄ . As a
consequence, all leaf nodes in u ∈ T̄ and thus all requests in T̄ are at the same distance from v
in the HST T . Therefore Lemma 2.1 implies that the successor of r is a request with minimum
time of occurrence.

It remains to show that

tmax(R1) ≤ tmax(b`−1
i ) + δ(`− 1). (3.3)

Assume that rp = (vp, tp) is a request from R1 with tp = tmax(R1). Further, assume that
rq = (vq, tq) is the last request ordered by ARROW among the requests in R1. Note that
request rq needs to be inside block b`−1

i because that is the last level-(` − 1) block that is
assigned to tree T ′′1 . Hence, we clearly have tq ≤ tmax(b`−1

i ). Therefore, if rp = rq (3.3)
clearly holds. We can therefore assume that rp is ordered before rq by ARROW. Consider the
predecessor rp−1 of request rp. From the second claim of Lemma 2.1, we have

tp − tq ≤ dT (vp, vq). (3.4)

Since both rp and rq are in T ′′ then dT (vp, vq) ≤ δ(`− 1) thus (3.3) holds.

It remains to show that the splitting also does not affect the optimal offline cost in a signif-
icant way. The following lemma shows that the Manhattan cost cM(r, r′) for any two requests
r and r′ can increase by at most a factor 3. Hence, also the total Manhattan cost of an optimal
ordering cannot increase by more than a factor 3.

Lemma 3.15. For any two requests r and r′, the splitting procedure does not increase the
Manhattan cost cM(r, r′) by more than a factor 3.

Proof. We prove that a) by every single splitting, the Manhattan cost cM(r, r′) can at most
increase by a factor of 3 and b) the Manhattan cost cM(r, r′) is affected by at most one splitting.
Assume that r = (v, t) and r′ = (v′, t′). Clearly, the issue times t and t′ are not affected by the
splitting. The Manhattan cost can therefore only change because dT (v, v′) changes. We first
show that this can happen at most once. When working on tree T ′ at level `, a splitting divides
a subtree T ′′ at level ` − 1 into two subtrees T ′′1 and T ′′2 . Hence, when working on level `, if
two nodes are affected by the splitting their distance in T ′ increases from at most δ(` − 1) to
exactly δ(`). Therefore, after separating two nodes v and v′ because of a splitting for a tree
T ′ on level `, the two nodes cannot be affected by another splitting on a level `′ ≥ `. Claim
b) now follows because we do the splitting in a top-down way, i.e., throughout the splitting
procedure the levels on which we split are monotonically non-increasing.

To prove claim a), let us assume that r = (v, t) and r′ = (v′, t′) are affected by a splitting
when a tree T ′′ at level `− 1 is split into two trees T ′′1 and T ′′2 . We have already seen that this
implies that after the splitting, we have dT (v, v′) = δ(`). It further follows from Lemma 3.14
that |t−t′| ≥ δ(`)−δ(`−1) > δ(`)/2. Hence, before the splitting, we have cM(r, r′) ≥ |t−t′|
and after the splitting, we have cM(r, r′) ≤ |t− t′|+ dT (v, v′) < 3 · |t− t′|.
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For the remainder of the analysis in this section (and also in Section 3.6), we assume that
the HST T is an HST that is obtained after applying the splitting procedure recursively. We
therefore assume that for every level ` and every subtree T ′ at level `, there is no level-(`− 1)
subtree T ′′ of T ′ that contains two neighbor blocks that satisfy Condition (3.2).

3.4.3 Lower Bounding The Optimal Manhattan Cost

In this section, we construct a tree S∗ that spans all requests in R. The tree S∗ has a nice
hierarchical structure: For each subtree T ′ of T , the set edges of S∗ induced by the request
set of the subtree T ′ forms a spanning tree of the request set of T ′. Apart from this useful
structural property, we will show that the total Manhattan cost of the spanning tree S∗ is within
a constant factor of minimum spanning tree (MST) of the request set R w.r.t. the Manhattan
cost. We have seen that on condensed request sets, the optimal TSP path of the request set
w.r.t. the Manhattan cost is within a constant factor of the optimal offline queueing cost. Note
that because any TSP path is also a spanning tree, this implies that the total Manhattan cost of
the MST and thus also the total Manhattan cost of the tree S∗ are lower bounding the optimal
offline queueing cost within a constant multiplicative factor.

Throughout this section, for convenience, we add one more level to the HST T . Instead of
placing the requests at the leaves on level 0, we assume that each level 0 node v has a child
node on level −1 for each of the requests issued at node v. Hence, the new leaf nodes are on
level −1 and each leaf node receives exactly one request. Note that subtrees of T that do not
have any queuing requests can be ignored and therefore, we can w.l.o.g. assume that every leaf
node issues some queueing request. The distance between a level −1 node and its parent on
level 0 is set to be 0.

Spanning Tree Construction: The spanning tree S∗ is constructed greedily in a bottom-up
fashion. For each subtree T ′ of T , we recursively define a tree S∗(T ′) as follows. For the
leaf nodes on level −1, the tree consists of the single request placed at the node. For a tree
T ′ rooted at a node v on level ` ≥ 0, the tree S∗(T ′) consists of the recursively constructed
trees S∗(T ′′1 ), S∗(T ′′2 ), . . . of the subtrees T ′′1 , T

′′
2 , . . . of T ′′ and of edges connecting the trees

S∗(T ′′1 ), S∗(T ′′2 ), . . . to a spanning tree of the set of request issued at leaves of tree T ′. The
edges for connecting the trees S∗(T ′′1 ), S∗(T ′′2 ), . . . are chosen so that they have minimum total
Manhattan cost. That is, to connect the trees S∗(T ′′1 ), S∗(T ′′2 ), . . . , we compute an MST of the
graph we get if each of the trees S∗(T ′′i ) is contracted to a single node. We can therefore for
example choose the edges to connect the trees S∗(T ′′1 ), S∗(T ′′2 ), . . . in e greedy way: Always
add the lightest (w.r.t. Manhattan cost) edge that does not close a cycle with the already existing
edges, including the edges of the trees S∗(T ′′1 ), S∗(T ′′2 ), . . . .

MST Approximation: In the following, it is shown that the total Manhattan cost of the tree
S∗ = S∗(T ) is within a constant factor of the cost of an MST w.r.t. the Manhattan cost. Where
convenient, we identify a tree τ with its set of edges, i.e., we also use S∗ to denote the set of
edges of the tree S∗. Further, the cost of an edge e = {r, r′} is the Manhattan cost cM(r, r′).
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We also slightly abuse notation and use cM(e) to denote this cost. The proof applies a general
MST approximation result that appears in Theorem 3.26 in Section 3.7. Together with the
following technical lemma, Theorem 3.26 directly implies that the total Manhattan cost of S∗

is within a factor 4 of the MST Manhattan cost. For a subtree T ′ of T , we use R(T ′) to denote
the subset of the requests R that are issued at nodes of T ′.

Lemma 3.16. Consider the constructed spanning tree S∗ and consider an arbitrary edge e of
S∗. Let S∗1 and S∗2 the two subtrees that result when removing edge e from S∗. Further, assume
e∗ be an edge that connects the two subtrees S∗1 and S∗2 and that has minimum Manhattan cost
among all such edges. We then have cM(e) ≤ 4 · cM(e∗).

Proof. Assume that the edge e = {rp, rq} ∈ S∗(τ) is an edge that connects two subtrees of a
subtree τ of T that is rooted at some level ` ∈ [0, h]. Further, let VS∗1 and VS∗2 be the node sets
of the two subtrees of S∗1 and S∗2 .

Let us first assume that |tp − tq| ≤ 3 · δ(`). All edges including e∗ from the metric (R, cM)
that cross the cut (VS∗1 , VS∗2 ) have length at least δ(`) since dT (vw, vz) ≥ δ(`) for all rw ∈ VS∗1
and rz ∈ VS∗2 . Since dT (vp, vq) = δ(`), we then have cM(e) ≤ 4 · δ(`). Hence, the claim of the
lemma holds.

τ

T ′

T

ℓ

ℓ′

h

. . . . . . . . .
p q

Figure 3.2: The HST T and the edge {rp, rq}. The subtree T ′ is the highest subtree that
includes rp and rq while |tp − tq| > 3 · δ(`′) where T ′ is rooted at level `′ ≥ `.

Let us therefore assume that |tp− tq| > 3 ·δ(`). Let `′ ∈ [`, h] be the largest level for which
|tp − tq| > 3 · δ(`′) and let T ′ be the subtree of T that is rooted on level `′ and that contains
both requests rp and rq (see Figure 3.2). Note that this implies that

|tp − tq| ≤ 3 · δ(`′ + 1) and thus cM(e) ≤ 3 · δ(`′ + 1) + δ(`). (3.5)

We can partition each of the sets VS∗1 and VS∗2 into two sets where one of the sets in each
case includes the requests in the subtree T ′ and the other set includes the requests outside
subtree T ′ (see Figure 3.3). The edge e obviously connects the two components VS∗1 ∩ R(T ′)
and VS∗2 ∩R(T ′) since rp and rq are both in R(T ′). If the edge e is removed then edge e∗ is an
edge connecting one of the two components VS∗1 ∩R(T ′) and VS∗1 \R(T ′) in VS∗1 to one of the
two components VS∗2 ∩ R(T ′) and VS∗2 \ R(T ′) in VS∗2 . The four different types of such edges
are shown by the dashed edges in Figure 3.3.
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VS∗1 VS∗2

VS∗
1
∩R(T ′)

VS∗
1
\R(T ′) VS∗

2
\R(T ′)

VS∗
2
∩R(T ′)

p q

Figure 3.3: The spanning tree S∗ when there is a subtree T ′ that is rooted at height `′ ∈ [`, h]
and is the highest subtree where |tp − tq| > 3 · δ(`′). If the edge {p, q} is removed then the
edge e∗ could be one of the dashed edges.

Any edge that connects the two components VS∗1 \ R(T ′) and VS∗2 ∩ R(T ′) has length at
least δ(`′+ 1) since dT (vw, vz) ≥ δ(`′+ 1) for all rw ∈ VS∗1 \R(T ′) and rz ∈ VS∗2 ∩R(T ′). By
symmetry, the same also holds for the edges that connect the two components VS∗1 ∩R(T ′) and
VS∗2 \R(T ′). Hence, if e∗ is an edge of one of these two types, we have cM(e∗) ≥ δ(`′ + 1). It
then follows directly from (3.5) that cM(e) ≤ 4 · cM(e∗) and thus the claim of the lemma holds.

Let us therefore move to the case where e∗ connects the two components VS∗1 \ R(T ′) and
VS∗2 \ R(T ′), i.e., e∗ = {rx, ry} connects to nodes vx and vy outside tree T ′. Recall that the
tree S∗ is constructed in a bottom-up way such that the subtree S∗(T ′′) of S∗ is connected
for every subtree T ′′ of T . Hence, removing edge e inside subtree T ′ does not affect subtrees
S∗(T ′′) for trees T ′′ that do not contain T ′. Therefore if two nodes u and v outside tree T ′ end
up on different sides of the cut (VS∗1 , VS∗2 ), the least common ancestor of vx and vy has to be an
ancestor of T ′ and it is thus at level at least `′ + 1. Hence, if e∗ connects the two components
VS∗1 \R(T ′) and VS∗2 \R(T ′), we also have cM(e∗) ≥ δ(`′+1) and therefore again (3.5) implies
the claim of the lemma.

It remains to show that all edges that connect the two components VS∗1 ∩ R(T ′) and VS∗2 ∩
R(T ′) are also large enough. W.l.o.g., we assume that p < q, i.e., the request rp is ordered
before the request rq by ARROW. Further w.l.o.g., we assume that the dummy request is in
VS∗1 .

We next show that tq > tp. If p = 0 then the tq ≥ tp because tp = 0 and because
|tp − tq| > 3 · δ(`) ≥ 0. Otherwise, for the sake of contradiction, let us assume that tq ≤ tp.
By the second claim of Lemma 2.1 we have

tp − tq ≤ dT (vp, vq) ≤ δ(`).

This together with our assumption tq ≤ tp contradicts the fact that |tp−tq| > 3·δ(`). Therefore,
tq > tp.

Recall that e connects the two requests rp and rq inside level-` tree τ . Consider the subtree
S∗(τ) of S∗ and let S∗1(τ) and S∗2(τ) be the two subtrees of S∗(τ) that are obtained when
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removing edge e from S∗(τ). By the construction of the tree S∗, the edge e is one with
minimum Manhattan cost among all edges connecting the requests in S∗1(τ) and S∗2(τ). We
know that for all rw ∈ VS∗1 (τ) and rz ∈ VS∗2 (τ) we have d(vw, vz) = δ(`). These facts imply that
tp = tmax(VS∗1 (τ)) and tq = tmin(VS∗2 (τ)).

Now we show that there is an ARROW edge (rx, rx+1) where rx ∈ VS∗1 (τ) and rx+1 ∈ VS∗2 (τ).
For any two neighbor blocks b`i and b`j at subtree τ and with i < j, we know that

tmin(b`j)− tmax(b`i) < δ(`+ 1)

as otherwise because of the split condition (3.2), the subtree τ would have been split. Thus,
we have

tmin(b`j)− tmax(b`i) < 3 · δ(`)
since δ(` + 1) ≤ 3 · δ(`) for α = 2. Let b`i1 , b

`
i2
, . . . , b`is be the level-` blocks of the subtree

τ and assume that i1 < i2 < · · · < is. As tq − tp > 3 · δ(`) and because tp = tmax(VS∗1 (τ))
and tq = tmin(VS∗2 (τ)), for any two neighbor blocks b`ij and b`ij+1

, the requests r = (v, t) from
b`ij with t = tmax(b`ij) and the requests r′ = (v′, t′) from b`ij+1

with t′ = tmin(b`ij+1
) either all

have to be in in VS∗1 (τ) or they all have to be in VS∗2 (τ). We show that this implies that there
has to be a block b`ij at tree τ for which the first request is in VS∗1 (τ) and which contains some
request from VS∗2 (τ). First note that because of Lemma 2.1 and because we assumed that the
dummy request is in VS∗1 (τ), the first request of b`i1 is in VS∗1 (τ). If all the first requests of blocks
b`ij are in VS∗1 (τ), it follows from the fact that VS∗2 (τ) needs to be non-empty that there has to
be a block b`ij for which the first request is in VS∗1 (τ) and which contains some request from
VS∗2 (τ). Otherwise, assume that b`ij (for j ≥ 2) is the first block for which the first request is in
VS∗2 (τ). Because by Lemma 2.1, the first request of a block is always one with smallest issue
time, the above observation implies that the request with the largest issue time in b`ij−1

is in
VS∗2 (τ) and then b`ij−1

there has the first request is in VS∗1 (τ) and which contains some request
from VS∗2 (τ). In a block, where the first request is from VS∗1 (τ) and there is some request from
VS∗2 (τ), there also have be two consecutive requests rx and rx+1 (and thus an ARROW edge),
such that rx ∈ VS∗1 (τ) and rx+1 ∈ VS∗2 (τ).

We next show that the ARROW edge (rx, rx+1) is the only such ARROW edge even with
respect to the tree T ′ containing tree τ . Specifically, we show that for all rw ∈ VS∗1 ∩ R(T ′)
and all rz ∈ VS∗2 ∩ R(T ′) we have w ≤ x and z ≥ x+ 1. In other words, rx is the last request
ordered in VS∗1 ∩ R(T ′) and rx+1 is the first request ordered in VS∗2 ∩ R(T ′). For the sake of
contradiction, let us assume that there is a request rw ∈ VS∗1 ∩ R(T ′) for which w > x or that
there is a request rz ∈ VS∗2 ∩ R(T ′) for which z < x + 1. We first assume the existence of
request rw. Since (x, x + 1) is an ARROW edge, we have w > x + 1 and using the second
claim of Lemma 2.1 we get

tx+1 − tw ≤ d(vw, vx+1) ≤ δ(`′).

However, we know that tq − tp ≤ tx+1 − tw and therefore

tq − tp ≤ δ(`′).
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This contradicts the fact that tq− tp > 3 ·δ(`′). Consequently, there does not exist any requests
rw ∈ VS∗1 ∩R(T ′) for whichw > x. Now, let us assume that there is a request rz ∈ VS∗2 ∩R(T ′)
for which z < x+ 1. Again since (x, x+ 1) is an ARROW edge, we have z < x and using the
second claim of Lemma 2.1 we get

tz − tx ≤ d(vz, vx) ≤ δ(`′).

However, we know that tq − tp ≤ tz − tx and therefore

tq − tp ≤ δ(`′).

Again, this is a contradiction to the fact that tq − tp > 3 · δ(`′). Consequently, there does not
exist any requests rz ∈ VS∗2 ∩R(T ′) with z < x+ 1.

Finally we show that for all rw ∈ VS∗1 ∩ R(T ′) and all rz ∈ VS∗2 ∩ R(T ′) the Manhattan
cost cM(rw, ry) is at most 3 · δ(`′). Using the second claim of Lemma 2.1 we have

tx+1 − tz ≤ d(vz, vx+1) ≤ δ(`′). (3.6)

We can similarly bound tw − tx. If w = 0 we have tw ≤ tx and otherwise, using the second
claim of Lemma 2.1 we have

tw − tx ≤ d(vx, vw) ≤ δ(`′). (3.7)

Using (3.6) and (3.7) we then get

tx+1 − tx ≤ tz − tw + 2 · δ(`′). (3.8)

We know that the Manhattan cost of (rx, rx+1) is at least the Manhattan cost of (rp, rq) because
tq − tp ≤ tx+1 − tx and because for all rf ∈ VS∗1 (τ) and rg ∈ VS∗2 (τ), we have d(vf , vg) = δ(`).
That is, we have

cM(rp, rq) ≤ cM(rx, rx+1).

Further, because for all rf ∈ VS∗1 ∩R(T ′) and rg ∈ VS∗2 ∩R(T ′), we have d(vf , vg) ≥ δ(`), by
using (3.8), we obtain

cM(rp, rq) ≤ cM(rx, rx+1) ≤ cM(rw, rz) + 2 · δ(`′). (3.9)

Therefore, by using the facts that tq − tp > 3 · δ(`′) and tq − tp ≤ tx+1 − tx, and by using
(3.8), we get that tz − tw ≥ tx+1 − tx − 2δ(`′) ≥ δ(`′) and we thus have cM(rw, rz) ≥ δ(`′).
By applying (3.9), we thus get that

cM(rp, rq) < 3 · cM(rw, rz).

Consequently, also if e∗ connects the two components VS∗1 ∩R(T ′) and VS∗2 ∩R(T ′), its Man-
hattan cost is within a factor 3 of the Manhattan cost of e. Hence, the claim of the lemma
holds.

Corollary 3.17. The total Manhattan cost of the spanning tree S∗ is at most 4 times the total
Manhattan cost of an MST spanning all the requests.

Proof. Follows directly from Lemma 3.16 and Theorem 3.26.
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3.5 Analysis of the Online Queueing Cost
In this section, we give a general framework to compare the queueing cost of an online queue-
ing algorithm on HST T with the bound of the offline queueing cost as established in Sec-
tion 3.4. At the end of the section, we apply the method to analyze synchronous ARROW

executions on T . As in Section 3.4.3, for convenience, we add one more level to the HST T
so that each level 0 node v has a child node on level −1 for each of the requests issued at node
v. The new leaf nodes are on level −1 and each leaf node receives exactly one request.

We first state two basic locality properties of ARROW and possibly other online queueing
algorithms. We will then show that those properties are sufficient to prove a constant com-
petitive ratio compared to the optimal offline queueing cost on T . We define the notion of
a distance-respecting queueing order and the notion of distance-respecting latency cost of a
queueing algorithm.

Definition 3.18 (Distance-Respecting Order). LetR be a set of requests ri = (vi, ti) issued at
the nodes of a tree T and let π be permutation on [0, |R|−1]. The ordering rπ(0), rπ(1), . . . , rπ(|R|−1)

induced by π is called distance-respecting if whenever π(i) < π(j), we have ti − tj ≤
dT (vi, vj).

Definition 3.19 (Distance-Respecting Latency Cost). An online distributed queueing algo-
rithm ALG is said to have distance-respecting latency cost if for any request set R and any
possible queueing order πALG of ALG, for all 1 ≤ i < j < |R|, it holds that

tπALG(i) + LALG(rπALG(i),πALG(i−1)) ≤ tπALG(j) + dT (vπALG(j), vπALG(i−1)).

3.5.1 Constructing a Spanning Tree
As the first part of the online queueing cost analysis, we construct a new tree S that spans all
requests in R. It will be shown that the total Manhattan cost of S asymptotically equals the
total Manhattan cost of the tree S∗ constructed in the previous section.

We construct a new tree S on R based on an ordering π of the set of requests. We assume
that the ordering of the requests given by π is rπ(0), rπ(1), . . . , rπ(|R|−1). For each index i with
i ∈ [0, |R| − 2], we define the local successor as

next(i) := min

{
j ∈ [i+ 1, |R| − 1] : dT (vπ(i), vπ(j)) = min

k∈[i+1,|R|−1]
dT (vπ(i), vπ(k))

}
.

(3.10)
Hence, among the requests ordered after rπ(i) by order π, next(i) is the position of a request
in the order π with minimum tree distance to vπ(i) and among those, of the first one ordered
by π. Note that this means that for all requests rπ(k) for which i < k < next(i), we have
dT (vπ(i), vπ(k)) > dT (vπ(i), vπ(next(i))) and for all requests rπ(k) for which k ≥ next(i), we
have dT (vπ(i), vπ(k)) ≥ dT (vπ(i), vπ(next(i))).

The spanning tree S is constructed as follows. For every request rπ(i) for all i ∈ [0, |R|−2],
we add the edge

{
rπ(i), rπ(next(i))

}
to the tree S. Note that S is indeed a spanning tree: If

directing each edge from rπ(i) to rπ(next(i)), each node has out-degree 1 and we cannot have
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cycles because next(i) > i. The following observation shows that in addition, S has the same
useful hierarchical structure as the tree S∗ constructed in Section 3.4.3.

Observation 3.20. As the tree S∗, also the tree S has the property that for any subtree T ′ of
T , the subgraph of S induced by only the requests at nodes in T ′ is a connected subtree of S.
This follows directly from the definition of the local successor rπ(next(i)). Except for the last
ordered request inside T ′, the local successor of any other request of T ′ is inside T ′ (because
the local successor is a request with minimum tree distance).

In light of Observation 3.20, for any subtree T ′ of T , we use S(T ′) to denote the subtree of
S induced by the requests issued at nodes in T ′.

3.5.2 Bounding the Manhattan Cost of the Spanning Tree
The following lemma shows that if the spanning tree S is constructed by using a distance-
respecting ordering π, the total Manhattan cost of the spanning tree S is asymptotically equal
the total Manhattan cost of S∗.

Lemma 3.21. Let CM(S) and CM(S∗) be the total Manhattan costs of S and of S∗. If the tree
S is constructed using a distance-respecting ordering π, we have CM(S) ≤ 3 · CM(S∗).

Proof. Consider some subtree τ of T that is rooted at a node on level ` ∈ [0, h]. Assume
that v has m children an that the subtrees of T rooted at the m children are τ1, τ2, . . . , τm.
Using Observation 3.20, we know that S(τ1),S(τ2), . . . ,S(τm) are subtrees of S(τ) trees that
are connected to each other with m − 1 edges to form the spanning tree S(τ). Let us call
this set of edges I(τ). Note that for ` = 0 the subtrees of τ are single requests at level −1.
Similarly, the construction of S∗ implies that the spanning tree S∗(τ) results from connecting
the spanning trees S∗(τ1), S∗(τ2), . . . , S∗(τm) with m − 1 edges. Let I∗(τ) denote this set of
thesem−1 edges. Recall that the edges in I∗(τ) are chosen such that they have minimum total
Manhattan cost among all sets ofm edges connecting the trees S∗(τ1), S∗(τ2), . . . , S∗(τm). We
also emphasize that for all i ∈ [1,m], the trees S(τi) and S∗(τi) consist of the same set of nodes
(the requests inside tree τi). Let CM(I(τ)) and CM(I∗(τ)) be the total Manhattan costs of the
edges in I(τ) and I∗(τ), respectively. To prove the lemma, it suffices to show that

∀ subtree τ of T : CM(I(τ)) ≤ 3 · CM(I∗(τ)). (3.11)

Let e = (rπ(w), rπ(z)) ∈ I(τ) be an arbitrary edge of I(τ) and let S1(τ) and S2(τ) be the two
subtrees of S(τ) resulting from removing e from I(τ). Let VS1(τ) and VS2(τ) be the set of nodes
(requests) of the trees S1(τ) and S2(τ) and assume, w.l.o.g., that w < z and that rπ(w) ∈ VS1(τ)

and rπ(z) ∈ VS2(τ). Also, consider an edge e∗ that crosses the cut (VS1(τ), VS2(τ)) and has
minimum Manhattan cost among all edges in S∗(τ) that cross this cut. Note that because for
all i the trees S(τi) and S∗(τi) consist of the same set of node, node e∗ must be from the set
I∗(τ). In order to prove (3.11), it suffices to show that

cM(e) ≤ 3 · cM(e∗). (3.12)
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Inequality (3.11) then directly follows from Theorem 3.26.
From the definition of local successor, we know that z = next(w). This implies that for

all requests rπ(x) where w < x < z, we have dT (vπ(w), vπ(x)) > δ(`) since dT (vπ(w), vπ(z)) =
δ(`). Therefore, all requests that are ordered between rπ(w) and rπ(z) by ARROW are not in
R(τ) (i.e., in the set of requests of tree τ ). This means that all requests in R(τ) are ordered
either before rπ(w) or after rπ(z) by ARROW. More precisely, the claim is that for all requests
rπ(x) ∈ VS1(τ) we have x ≤ w and for all requests rπ(x) ∈ VS2(τ) we have x ≥ z. To show this,
we first observe that by the definition of e, S1(τ) and S2(τ), among all edges of S(τ), the edge
e =

{
rπ(w), rπ(z)

}
is the only edge that crosses the cut (VS1(τ), VS2(τ)).

We now first show that for all requests rπ(x) ∈ VS2(τ) we have x ≥ z. For contradiction,
let us assume that there is a request rπ(x) ∈ VS2(τ) for which x < z and therefore x < w. This
implies that there must be a largest y < w such that rπ(y) ∈ VS2(τ). Note that because rπ(y)

is not the last request ordered in τ , rπ(next(y)) must be in τ and it therefore must be in VS1(τ).
This implies that the edge

{
rπ(y), rπ(next(y))

}
of S(τ) crosses the cut (VS1(τ , VS2(τ)), which is

not possible because the edge
{
rπ(w), rπ(z)

}
is the only edge of S(τ) crossing this cut.

We next show that for all requests rπ(x) ∈ VS1(τ), we have x ≤ w. Again assume that there
is a request rπ(x) ∈ VS1(τ) such that x > w and thus x > z. Therefore, there must be smallest
y > w for which rπ(y) ∈ VS1(τ). This implies that rπ(y) is the local successor of some request
in VS2(τ). This again contradicts the fact that the edge e =

{
rπ(w), rπ(z)

}
is the only edge of

S(τ) crossing the cut (VS1(τ), VS2(τ)).
Finally we show that for all rπ(p) ∈ VS1(τ) and rπ(q) ∈ VS2(τ) the Manhattan cost of e is at

most 3 · cM(rπ(p), rπ(q)). Because π is distance-respecting, we have

tπ(z) − tπ(q) ≤ dT (vπ(q), vπ(z)) ≤ δ(`). (3.13)

Further, if p = 0, we have tπ(p) = 0 and thus tπ(p) ≤ tπ(w). Otherwise, because π is distance-
respecting, we get

tπ(p) − tπ(w) ≤ dT (vπ(p), vπ(w)) ≤ δ(`). (3.14)

Using (3.13) and (3.14) we have

tπ(z) − tπ(w) ≤ tπ(q) − tπ(p) + 2 · δ(`). (3.15)

We continue by distinguishing the two cases tπ(z) ≥ tπ(w) and tπ(w) > tπ(z). First assume
that tπ(z) ≥ tπ(w). Then, using dT (vπ(z), vπ(w)) = dT (vπ(p), vπ(q)) = δ(`) and (3.15) we obtain

cM(rπ(z), rπ(w)) ≤ cM(rπ(p), rπ(q)) + 2 · δ(`).

Moreover, because dT (vπ(p), vπ(q)) = δ(`), we know that δ(`) ≤ cM(rπ(p), rπ(q)). Thus,

cM(e) ≤ 3 · cM(rπ(p), rπ(q)).

Let us therefore consider the second case where tπ(w) > tπ(z). It is clear that w 6= 0 as
otherwise tπ(w) = 0 and thus tπ(z) ≥ tπ(w). Because π is distance-respecting, we have

tπ(w) − tπ(z) ≤ dT (vπ(w), vπ(z)) = δ(`).
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Using the assumption that tπ(w) > tπ(z), we then have

cM(rπ(z), rπ(w)) = |tπ(w) − tπ(z)|+ dT (vπ(w), vπ(z)) = tπ(w) − tπ(z) + δ(`) ≤ 2 · δ(`).

Finally, we can again use that cM(rπ(p), rπ(q)) ≥ dT (vπ(p), vπ(q)) = δ(`) and thus get that

cM(e) ≤ 2 · cM(rπ(p), rπ(q)).

This concludes the proof of the lemma.

3.5.3 Bounding the Total Latency Cost
It remains to prove the main claim and show that the total online queueing cost on the HST T
is within a constant factor of the optimal offline cost on T . The following theorem states that
this is generally true for algorithms with distance-respecting latency cost (Definition 3.19) and
which produce distance-respecting queueing orders (Definition 3.18), as long as the request
set R is condensed (Definition 3.5).

Theorem 3.22. Assume that we are given an HST T and a condensed set of requests issued at
the leaves of R. Further, assume that we are given a distributed queueing algorithm ALG that
has distance-respecting latency cost and that always produces a distance-respecting queueing
order π. Then, the total latency cost of ALG is within a constant factor of the optimal offline
cost on T .

Proof. Because the request set R is condensed, Lemma 3.6 implies that the optimal offline
cost is within a constant factor of the Manhattan cost of an optimal TSP path connecting all
the requests. The optimal offline cost therefore also is within a constant factor of the total
Manhattan cost of an MST of the request set. Hence, Corollary 3.17 implies that also the total
Manhattan cost of S∗ is within a constant factor of the cost of an optimal offline solution on
T . Because the ordering π generated by ALG is distance-respecting, by Lemma 3.21, the
same is true for the total Manhattan cost CM(S) of the tree S. It therefore remains to show that
costTALG(π) = O(CM(S)).

Because ALG has distance-respecting latency cost, for all i ∈ [0, |R| − 2], we have

tπ(i+1) + LTALG(rπ(i), rπ(i+1)) ≤ tπ(next(i)) + dT (vπ(i), vπ(next(i))).

Note that we have next(i) ≥ i+ 1. Subtracting tπ(i) on both sides yields

tπ(i+1) − tπ(i) + LTALG(rπ(i), rπ(i+1)) ≤ tπ(next(i)) − tπ(i) + dT (vπ(i), vπ(next(i))).

If we sum up the above inequality for all i ∈ [0, |R| − 2], we get

|R|−2∑
i=0

(
tπ(i+1) − tπ(i) + dT (vπ(i), vπ(i+1))

)
≤
|R|−2∑
i=0

(
tπ(next(i)) − tπ(i) + dT (vπ(i), vπ(next(i)))

)
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The sum of the latencies on the left-hand side exactly equals the total queueing cost costTALG(π)
of ALG. To bound the right-hand side, note that tπ(next(i)) − tπ(i) + dT (vπ(i), vπ(next(i))) ≤
cM(rπ(i), rπ(next(i))). Together, we get

tπ(|R|−1) − tπ(0) + costTALG(π) ≤ CM(S).

As specified in Section 2.1, we assume that t ≥ 0 for every request r = (v, t) and that every
queueing algorithm first has to order the dummy request r0 = (v0, 0). We therefore have
tπ(|R|−1) ≥ 0 and tπ(0) = t0 = 0, which completes the proof of the theorem.

Corollary 3.23. The total latency cost of a synchronous execution of ARROW on an HST T is
within a constant factor of the optimal offline queueing cost on T .

Proof. First note that by Lemma 3.7, w.l.o.g., for synchronous ARROW executions, we can
assume that the request setR is condensed. The corollary therefore follows from Theorem 3.22
if we show that synchronous ARROW's ordering is distance-respecting and that synchronous
ARROW has distance-respecting latency cost. The former follows from the second claim of
Lemma 2.1, the latter follows from the first claim of Lemma 2.1 and the fact that the latency
cost of synchronous ARROW for ordering a request ri as the predecessor of request ri+1 is
exactly dT (vi, vi+1).

Remark 3.24. The above corollary proves Theorem 3.1 for synchronous executions on the
HST T . The full statement of Theorem 3.1 for general asynchronous executions is proven in
Section 3.6. There, it is shown that also for asynchronous executions, ARROW has distance-
respecting latency cost and produces distance-respecting queueing orders. In addition, we also
show that we can still restrict attention to condensed request sets. The claim of Theorem 3.1
for the asynchronous case then follows from Theorem 3.22 in the same way as in the above
corollary.

3.6 Queueing Cost in the Asynchronous Model
In this section, we show that the generic analysis of Section 3.5 also applies to asynchronous
executions of the ARROW algorithm on T . In order to use the framework of Section 3.5 in
the asynchronous setting, we mostly importantly need to show that ARROW has distance-
respecting latency cost (Definition 3.19) and that it generates distance-respecting queueing
orders (Definition 3.18) also in the asynchronous case. To show this, we need asynchronous
variants of the basic Lemma 3.7 and the Lemma 2.4.3 In addition, we also need to generalize
Lemma 3.7 to show that also in the asynchronous setting, w.l.o.g., we can assume that the
given request set R is condensed (Definition 3.5).

As in Section 3.4, we relabel the requests for convenience. Throughout the section, we
assume that an asynchronous execution of ARROW is given and we label the requests according

3The greedy nature of ARROW when the communication is asynchronous has been formally provided in
Section 2.3.2.
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the order. That is, r0 is the dummy request and for every i ≥ 1, ri is the ith non-dummy request
ordered by the asynchronous ARROW execution.

In the following we adapt the basic Lemma 3.7 to the asynchronous setting.

Lemma 3.25. Let R be a set of queueing requests issued on a tree T and let ri = (vi, ti)
and rj = (vj, tj) be two requests of R that are consecutive w.r.t. time of occurrence. Further,
choose two requests ra = (va, ta) with ta ≤ ti and rb = (vb, tb) with tb ≥ tj minimizing
δ := tb − ta − dT (va, vb). If δ > 0, every request r = (v, t) with t ≥ tj can be replaced
by a request r′ = (v, t − δ) without decreasing the worst-case cost of ARROW and without
increasing the optimal offline cost.

Proof. Because the optimal offline cost is computed w.r.t. synchronous executions, the proof
that the optimal offline cost is not increased follows directly from Lemma 3.7. To show that
the worst-case ARROW cost does not decrease, we show that if all the message delays remain
the same, the execution can still produce the same ARROW order with the same total cost.

Let R≤ be the set of requests with issue time ≤ ti and let R≥ be the set of requests with
issue time ≥ tj . Note that R = R≤ ∪ R≥. We first show that when replacing every request
r = (v, t) in R≥ by a request r′ = (v, t− δ+ ε) for an arbitrary ε > 0, if we do not change any
of the message delays, we obtain exactly the same ARROW ordering and cost.4 To see this,
first observe that in this case, the first claim of Lemma 2.4 implies that all requests in R≤ are
ordered before any request inR≥ is ordered. Let rx = (vx, tx) be the last request ordered inR≤
and let ry = (vy, ty) be the first request ordered in R≥ in the original execution. Because all
requests in R≥ are shifted by the same amount and they are still all ordered after the requests
in R≤, also after the shifting, the “find predecessor” request of ry is the first one to arrive at
node vx and therefore ry still is the successor of rx. Because the time differences inside R≥ do
not change, also the rest of the ordering does not change. The argument holds even if we let
ε go arbitrarily close to 0. In the limit, the argument therefore still holds as long as whenever
a node receives several messages at the same time, the asynchronous scheduler processes
messages corresponding to requests in R≤ before processing messages corresponding to R≥.
We have therefore shown that for every initial ARROW execution, the asynchronous scheduler
can enforce an equivalent execution with the same cost with the shifted request. This proves
the claim of the lemma.

Considering the formal discussion provided in Section 2.3.2, we now have everything
needed to prove Theorem 3.1 stating that the total cost of an asynchronous execution of
ARROW on an HST T is within a constant factor of the optimal offline queueing cost on
T .

Proof of Theorem 3.1. The above Lemma 3.25 shows that we can (iteratively) transform the
initial request set R into a condensed set of requests without decreasing the cost of ARROW

and without increasing the optimal offline cost. We can therefore assume that we are given a

4A bit more precisely, the asynchronous scheduler has to generate the same message delays and whenever
several messages arrive at some node at exactly the same time, the scheduler needs to process them in the same
order.
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condensed set of requests. The claim of the theorem now follows if we can show that the la-
tency cost of asynchronous ARROW is distance-respecting and that any asynchronous ARROW

execution generates a distance-respecting queueing order. However, these statements follow
directly from the second and the first claims of Lemma 2.4, respectively.

3.7 Minimum Spanning Tree Approximation
In this section, we prove a general minimum spanning tree (MST) approximation result. As-
sume that we are given a spanning tree τ = (V,Eτ ) of a graph G = (V,E). Together with
τ , every edge e ∈ Eτ induced a cut of G as follows. When removing e from τ , we obtain a
spanning forest consisting of two connected subtrees of τ . Let S and V \ S be the node sets
of these two connected components. We say that (S, V \ S) is the cut induced by removing
e from τ . The next theorem shows that if for every edge e ∈ Eτ , the weight of e is within a
factor λ of the weight of the lightest edge crossing the cut induced by removing e from τ , then
the total weight of τ is within a factor λ of the weight of an MST. We expect that this results
is already known, however, we have not found a proof of it in the literature. The next theorem
proves a slightly more general statement.

Theorem 3.26. Let λ ≥ 1 be some number and let G = (V,E,w) be a weighted connected
graph with non-negative edge weights w(e) ≥ 0 and let τ ⊆ E and τ ∗ ⊆ E be two arbitrary
spanning trees of G. If for every edge e of τ , the lightest edge e′ of τ ∗ crossing the cut induced
by removing e from τ has weight w(e′) ≥ w(e)/λ, then the total weight of all edges in τ is at
most a λ-factor larger than the total weight of the edges in τ ∗.

Proof. In the following, we slightly abuse notation and we identify a spanning tree τ with the
set of edges contained in τ . For an edge set F ⊆ E, we also use w(F ) to denote the total
weight of the edges in F . We prove the stronger statement that

w(τ \ τ ∗) ≤ λ · w(τ ∗ \ τ). (3.16)

We show (3.16) by induction on |τ \τ ∗| = |τ ∗\τ |. First note that if |τ \τ ∗| = 0, we have τ = τ ∗

and thus (3.16) is clearly true. Further, if |τ \ τ ∗| = 1, there is exactly one edge e ∈ τ \ τ ∗ and
exactly one edge f ∈ τ ∗ \ τ . Because τ and τ ∗ are spanning trees, f connects the two sides
of the cut (Ve,1, Ve,2) induced by removing e from τ and we therefore have w(e) ≤ λ · w(f),
implying (3.16).

Let us therefore assume that |τ \τ ∗| = k ≥ 2 and let e be a maximum weight edge of τ \τ ∗.
Let (Ve,1, Ve,2) be the cut induced by removing e from τ . Further, let τ ′ be a spanning tree of
G that is obtained by removing e from τ and by adding some edge f ∈ τ ∗ \ τ that connects
Ve,1 and Ve,2. Note that by the assumptions of the theorem, we have w(e) ≤ λ ·w(f). To prove
(3.16), it thus suffices to show that w(τ ′ \ τ ∗) ≤ λ ·w(τ ∗ \ τ ′). We have |τ ′ \ τ ∗| = k − 1 and
thus, if the spanning tree τ ′ satisfies the conditions of the theorem, w(τ ′ \ τ ∗) ≤ λ ·w(τ ∗ \ τ ′)
and (3.16) follows from the induction hypothesis. We therefore need to show that τ ′ satisfies
the conditions of the theorem.
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Consider an arbitrary edge e′ ∈ τ ′ \ τ ∗ and let (U1, U2) be the partition of V induced
by removing e′ from tree τ ′. Since e′ is an edge of one of the two subtrees of τ resulting
after removing e, e′ either connects two nodes in Ve,1 or two nodes in Ve,2. W.l.o.g., assume
that e′ connects two nodes in Ve,2 and let Ve,2,1 and Ve,2,2 be the partition of Ve,2 induced by
removing e′ from the subtree of τ induced by Ve,2. We need to show that for every edge f ′ ∈ τ ∗
connecting U1 and U2, it holds that w(e′) ≤ λ · w(f ′). Any edge f ′ crossing the cut has to
either connect Ve,1 with Ve,2 or it has to connect Ve,2,1 with Ve,2,2. In the first case, we have
w(e′) ≤ w(e) ≤ λ · w(f ′) (recall that we chose e to be the heaviest edge from τ \ τ ∗). In
the second case, f ′ also crosses the cut induced by removing e′ from the original tree τ and
therefore we also have w(e′) ≤ λ · w(f ′). This concludes the proof.

3.8 Chapter Notes
To conclude the first part of this thesis, we discuss some open problems. In Section 1.5,
we have discussed three problems, i.e., the distributed queuing, the OSD, and the online TSP
problems that consider the dynamic requests. The distributed queuing problem has been stud-
ied in this chapter. Based on this study, studying the distributed version of the OSD problem
on HSTs is an interesting open problem. Note that the OSD problem with k ≥ 1 servers is a
generalization of a variant of the classic k-server problem, where the requests can arrive at any
time rather than sequentially [15]. Therefore, the distributed version of OSD can be seen as
the distributed variant of the k-server problem [18], where the requests arrive dynamically and
possibly concurrently. In [15], the authors left it as an open question whether there is an online
algorithm that provides a constant competitive ratio for the OSD problem in the centralized
setting. The resemblances between the OSD and the distributed queuing problems5 together
with the constant competitive ratio provided in this chapter for the distributed queuing problem
on HSTs build up our hopes that it is maybe possible to achieve a constant competitive ratio
for the distributed OSD problem if the problem is restricted to HSTs.

In the instance of the distributed queuing problem that has been studied in this thesis, we
do not take into account the time that is required by each processor of the network to process
the “find predecessor” messages. In particular, if several messages arrive at some node of the
network at time t, all of them can be handled at the same time. From a practical point of
view, it would certainly be interesting to study the distributed queuing problem in a model
with congestion, where the delay for the processing the messages are taken into account.

Finally, in Section 3.5, we have introduced a general framework to analyze the queue-
ing cost of distributed queueing algorithms on an HST T . In order to use the framework of
Section 3.5 for some other distributed queuing algorithm, we mainly need to show that the
algorithm has distance-respecting latency cost (Definition 3.19) and that it generates distance-
respecting queueing order (Definition 3.18). The question is whether one can apply Theo-
rem 3.22 to some other distributed queuing algorithms specially those that are run on top of
the overlay networks such as RELAY [71] and COMBINE [7] (refer to Section 2.5 for further

5As discussed in Section 1.5, the main difference between the OSD and the distributed queuing problems is
the way in which their cost functions are defined.
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information about these algorithms).
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Chapter 4

Online Mobile Facility Location Problem:
A Lower Bound

4.1 Introduction

The mobile facility location (MFL) problem has been introduced by Demaine et al. in [28] and
studied by Friggstad and Salavatipour in [39] as a variant of facility location problem. The
motivation behind the MFL problem is to model scenarios where it potentially makes sense to
move facilities to regions where there are a lot of demands in order to reduce the overall cost
to serve the demands. We note that the classic facility location problem can be interpreted as
a problem, where there is a fixed set of facilities (possibly with an opening cost) and a set of
movable demands. The goal is to move each demand to the location of some (open) facility
such that the total movement cost (plus potentially the total facility opening cost) is minimized.
In this context, the MFL problem is a variant of the classic facility location problem, where
also the facilities are movable. In this case, by adding an fixed additive term ci to all distances
of a facility i, one can even capture the cost of opening facility i as a part of the total movement
cost of i. We refer the reader to [28, 39] for some real-world applications of MFL in logistics
and networks.

Formally in MFL problem, we are given a metric space (V, d), where V is the point set and
d : V × V → R+ is the distance function. We are further given k mobile facilities initially
located at F = {f1, . . . , fk} ⊆ V , and a demand set D ⊆ V . As (V, d) is a metric space,
it is assumed that the distance function is symmetric and satisfies the triangle inequality. The
goal is to seek a destination f ∗j for each facility j so that the total cost of moving each facility
j from fj to f ∗j and each demand v ∈ D to the nearest facility destination is minimized.
More precisely, the goal is to find a set of k destinations F ∗ = {f ∗1 , . . . , f ∗k} that minimizes∑k

j=1 d(fj, f
∗
j )+

∑
v∈D d(v, F ∗) where for any set of points S ⊆ V and any point v, d(v, S) :=

minp∈S d(v, p).
Many applications of the MFL problem inherently have an online nature. For example,

think of a distributed service that is offered on a large network such as the Internet. To offer the
service, a provider might have a budget to place k servers in the network. The best placement
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of servers depends on the distribution of the users of the distributed service. As the set of users
might grow (or even change arbitrarily) over time, from time to time, we might have to move
some of the servers, even though migrating a whole server might be a relatively costly thing
to do. We would like to minimize the total movement cost of the servers and the assignment
cost (or the movement cost) of users to the servers. Note that since the assignment between
the users and servers can change over time, the current assignment cost is taken into account.
Hence, the assignment cost is a function of the current configuration and not cumulative.

Organization of the Chapter: In the rest of this chapter, we provide a formal definition of
the online mobile facility location (OMFL) problem in Section 4.2. We also provide some
related work in this section. In Section 4.3, a lower bound for OMFL provided. Since the
same lower bound holds for a variant of OMFL that is introduced in Chapter 5, the analysis
for this lower bound will be provided there. However, an outline of the analysis is provided
in Section 4.3. In Section 4.4, an approach that could solve the OMFL problem on general
metrics is discussed. This approach is the main motivation behind the problem that is defined
and studied in Chapter 5. Finally, in Section 4.5 another online variant of OMFL is discussed.

4.2 Online MFL Problem
An instance of the online MFL (OMFL) problem is defined as follows. We are given an ar-
bitrary finite metric space M = (V, d) with |V | = n points and a non-negative, symmetric
distance function d : V × V → R+, which satisfies the triangle inequality. There are de-
mands/requests 1, 2, . . . that are adversarially issued at points one at a time and there is a set
of k mobile facilities/servers. We define a configuration (at time t = 1, 2, . . .) to be a function
S(t) : [k]→ V that specifies which of the servers {1, . . . , k} is located at which point at time
t, i.e., Sj(t) denotes the point that hosts server j at time t.1 At each time t = 1, 2, 3, . . . there is
exactly one request placed at some point in an adversarial manner and J (t) denotes the point
at which the single request at time t is placed.

Formally, “serving all requests” at time t is a function I : [t] → [k], which assigns any
request i ∈ [t] to one of the k servers. We assume there is no bound on the number of requests
that can be assigned to the same server. If request i is assigned to server j at time t then this
induces the cost d (J (i),Sj(t)), denoted as service cost of request i at time t. The overall
service cost of a configuration F ⊂ V at time t denoted by St(F ) is the sum of the service
costs of all requests at this time, i.e.,

∑t
i=1 d

(
J (i),SIi(t)(t)

)
. Hence, the optimal service cost

at time t denoted by S∗t equals minF St(F ). Note that the overall service cost of an optimal
offline algorithm at time t does not necessarily equal the optimal service cost at time t. In order
to keep the overall service cost small, an algorithm can move the servers between the points,
which implies some additional cost, called the movement cost. The movement cost equals the
distance between the points, i.e., if server j is at point v at time t and at point v′ at time t+ 1,
the cost of movement of server j at time t+ 1 equals the distance d(v, v′).

1We remark that for two integers a ≤ b, [a, b] := {a, . . . , b} and for an integer a ≥ 1, we use [a] as a short
form to denote [a] := [1, a].

58



OMFL PROBLEM: A LOWER BOUND

The total cost of algorithm ALG denoted by A at time t is the sum of the total movement
cost by time t and the overall service cost at time t and defined as follows

costAt := SAt +MA
t (4.1)

where

SAt :=
t∑
i=1

d
(
J (i),SAIAi (t)(t)

)
and

MA
t :=

t∑
i=1

k∑
j=1

d
(
SAj (i− 1),SAj (i)

)
.

The competitive ratio is then defined as the total cost of ALG divided by the optimal MFL
solution cost. An optimal algorithm for MFL can wait until all requests arrive and just perform
all the necessary server movements at the very end.

4.2.1 Further Related Work

The MFL problem in general metrics was introduced in [28, 39] as a movement problem. It can
be seen as a generalization of the standard k-median and facility location problems [39]. The
k-median and facility location problems have been widely studied in both operations research
and computer science [6, 22, 24, 33, 42, 51]. In [39], the MFL problem is modeled in such a
way that the algorithm moves each facility and client to a point where in the final configuration,
each client is at a node with some facility. The goal is to minimize the total movement cost of
facilities and clients. The movement cost between the clients and the final configuration points
could be interpreted as a service cost.

There exist various natural models in which the locations of requests are not known in
advance, and a solution must be built or maintained gradually over time without any knowledge
about future requests. The first algorithm for online facility location was introduced in [57].
For a broad discussion of models and results on online facility location problem, we refer to the
survey in [38]. Another online type of the problem, known as incremental facility location (and
also k-median), is studied in [36]. In this variant of the problem, it is possible to close open
facilities and assign all their demands to another open facility. Incremental algorithms were
introduced in the context of clustering applications where merging clusters is quite natural
[25]. A relaxed variant of incremental facility location is presented in [32] (also see [37]). In
this variant, the facilities can also be moved to reduce some cost. However unlike in the OMFL
problem that was defined in Section 4.2, in [32], moving a facility is for free. For a broader and
deeper discussion of models and results on online and incremental facility location problems,
we refer to the detailed survey of Fotakis [38].

59



CHAPTER 4

4.3 A Lower Bound for OMFL
In this section, we provide a lower bound for the OMFL problem. Because the formal proof of
the theorem requires some of the tools developed in the next chapter, the formal proof of the
following theorem is deferred to Chapter 5.

Theorem 4.1. Consider any deterministic online algorithmA and assume thatO is an optimal
offline algorithm. Further assume that A guarantees that at all times t > 0, the additive
difference between the service cost of A and the optimal service cost at time t is less than β.
Then, there exist an execution and a time t0 > 0 such that the total cost of A can be lower
bounded as follows.

• If β = O(k/ε) for any ε > 0, it holds that

costAt0 ≥ (1 + ε) · costOt0 + Ω(k log k − εk).

• If β = O
(
k·log k

log log k

)
and for every ε ≥ log log k

log1−δ k
for any constant 0 < δ ≤ 1, we obtain

costAt0 ≥ (1 + ε) · costOt0 + Ω

(
k · log k

log log k
− εk

)
.

The lower bound theorem essentially says that if we want to guarantee a small multiplica-
tive competitive ratio, we have to tolerate a relatively large additive term. Basically, if we want
to keep the additive term within a bound of β, the multiplicative competitive ratio becomes at
least 1 + Ω(k/β) (as long as β is not too small).

4.3.1 Outline of the Lower Bound Proof
We consider a metric space with uniform distances, i.e., by scaling appropriately, we can
assume that the distance between each pair of points is equal to 1. Assume that we are given
an algorithm ALG denoted by A which guarantees that

SAt < S∗t + β (4.2)

at all times t for some parameter β. In the following, let OPT be any optimal offline algorithm
denoted by O. We essentially compute the total cost of ALG and OPT at any time t as
functions of the optimal service cost at time t. Given ALG, we construct an execution in
which ALG has to perform a large number of movements while the optimal service cost does
not grow too much. We divide time into phases such that in each phase, ALG has to move
Ω(k) servers and the optimal service cost grows as slowly as possible. For p phases, we define
a sequence of integers k/3 ≥ n1 ≥ n2 ≥ . . . np ≥ 1 and values Γ1 < Γ2 < · · · < Γp. In
the following, let v be a free node if v does not have a server. Roughly, at the beginning of a
phase i, we choose a set Ni of ni (ideally) free nodes and make sure that all these nodes have
Γi requests. Note that constructing an execution means to determine where to add the request
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in each iteration. The value Γi is chosen large enough such that throughout phase i a service
cost of niΓi is sufficiently large to force an algorithm to move. Hence, whenever there are ni
free nodes with Γi requests, ALG has to move at least one server to one of these nodes. For
each such movement, we pick another free node that currently has less than Γi requests and
make sure it has Γi requests. We proceed until there are k nodes with Γi requests at which
point the main part of the phase ends. Except for the nodes in Ni, each of the k nodes with Γi
requests leads to a movement of ALG and therefore, ALG has to move at least k−ni = Ω(k)
servers in phase i. At the end of phase i, we can guarantee that there are exactly k nodes with
Γi requests, ni nodes with Γi−1 requests, ni−1− ni nodes with Γi−2 requests, etc. The optimal
service cost after phase p, therefore, is npΓp−1 +

∑p
i=3(ni−1 − ni)Γi−2. The service cost paid

by ALG at time t can not be smaller than S∗t .
By contrast, the optimal offline algorithm can wait until all requests have arrived and just

perform all the necessary server movements at the very end to have an optimal configuration.
Therefore by the end of phase p, OPT has to pay at most k as the total movement cost, while
ALG has to pay Θ(pk) for the movement cost in total by this time. The service cost of OPT
equals the optimal service cost at the end of phase p. By choosing the values ni appropriately,
we obtain the claimed bounds.

4.4 Towards OMFL on General Metrics

It seems hard to deal with the OMFL problem on a general metric. Hence, as the first step to-
wards solving the OMFL problem on general metrics, we study the problem on a uniform met-
ric space (i.e., on a metric space, where all pairwise distances are equal). However, we consider
a generalized version of the OMFL problem (which we call the generalized uniform OMFL
problem), where each point of the metric space can potentially host several servers/facilities.
We assume that if a node v has some servers/facilities, all requests/demands at v are served
by these servers. Depending on the number of servers and the number of requests at a node
v ∈ V , an algorithm has to pay some service cost to serve the requests located at v. This
service cost of node v is defined by a service cost function σv such that σv(x, y) ≥ 0 is the
cost for serving y requests if there are x servers at node v. The service cost function σ is
guaranteed to satisfy a number of natural properties at any time. First of all, for every v ∈ V ,
σv(x, y) has to be monotonically decreasing in the number of servers x that are placed at node
v and monotonically increasing in the number of requests y at v. Further, the effect of adding
additional servers to a node v should become smaller with the number of servers and it should
not decrease if the number of requests gets larger. The concrete definition of the generalized
uniform OMFL problem will be provided in Chapter 5.

As described in Section 1.4.6, utilizing HSTs as a tool in solving the online allocation
problems is a common approach [15, 16, 26]. Due to the special structure of HSTs, the task
of solving problems on top of them can sometimes be reduced to the task of solving a more
general (and thus harder) problem, but on a uniform metric. An interesting and important
application of this approach is the k-server problem that has been studied on HSTs [16, 26].
In [16], it is shown that exploiting the randomized low-stretch hierarchical tree decomposition
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of [34], it is possible to obtain a poly-logarithmic competitive ratio for the k-server problem.
Combined with the general cost functions as described above, a similar approach as [16]

could also work for the OMFL problem. The online algorithm for the generalized uniform
OMFL that will be described in Chapter 5 can potentially be used as a building block to
devise an online algorithm which recursively solves the OMFL on an HST. Roughly speaking,
the idea would be that each internal node of the HST runs an instance of the generalized
uniform OMFL that determines how to distribute the available servers among its children
nodes. Starting from the root, which has k servers, the recursive calls to the generalized
uniform OMFL determine the number of servers at each leaf of the HST, giving a feasible
OMFL solution.

4.5 Chapter Notes
We have mentioned in Section 4.2.1 that the MFL problem in general metrics has been intro-
duced as a movement problem. In the instance of OMFL that is defined in Section 4.2, the
assignment/service costs of requests are not cumulative. Hence, another interesting version of
OMFL that is closer to the movement problem introduced by [28] can be defined as follows:
initially we are given a collection of servers with their starting locations. One by one, requests
(along with, perhaps, new locations in the metric) are added. After each request arrives, we
make some changes to the requests/server locations to ensure we have a feasible solution be-
fore the next request arrives. That is, when a new request arrives we may reassign server and
request locations (including the new request). The cost of this change is the total distance
travelled by all requests and servers.

The overall cost (after all requests have arrived) is the total cost of all moves made by
all servers and requests. The competitive ratio could then be defined as the total cost of all
movements divided by the optimal MFL solution cost.
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Minimizing Combined Cost
in Generalized Uniform OMFL:
A Tight Analysis

5.1 Generalized OMFL with Uniform Distances

In Section 4.4, we discussed that it is easier to study the OMFL problem on HSTs rather than
the general metrics. As described in Section 1.4.6, providing a γ competitive ratio for the
OMFL problem on O(1)-HSTs yields an expected competitive ratio of O(γ · log n) for the
OMFL problem on the general metrics. As mentioned before, the task of solving problems on
top of HSTs can sometimes be reduced to the task of solving a more general and thus harder
problem, but on a uniform metric. In the following, we define a generalized version of OMFL
problem in metrics with uniform distances.

There is a set V of n nodes and there are k mobile servers, where each server has to be
placed at one of the nodes. Further, there are requests that arrive at the nodes in an online
fashion each at a time. We assume that any node can potentially host an arbitrary number of
servers. Formally, the cost for serving the requests at each node v, which is called service cost
of node v, is given by a general cost function that depends on v, on the number of requests at
node v, as well as on the number of servers placed at v. Generally, the more requests there are
at some node, the more it costs to serve these requests. Further, if we place more servers at a
given node, the cost for serving the requests at this node becomes smaller (formally defined
in Section 5.2.1).1 As the requests arrive one by one, we study online algorithms that possibly
have to react whenever a new request arrives. We assume that the servers are movable and the
objective of an algorithm is to move around some of the servers in order to keep the overall
service cost (i.e., the sum of the service costs of all nodes in V ) low. As moving a server is
an expensive operation, we need to keep the number of movements as small as possible. An
online algorithm has to be competitive with an optimal offline algorithm that can wait until all

1The most basic cost function would incur a service cost of x whenever x requests are at a node with no server
and a service cost of 0 for all requests at nodes with at least one server.
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requests have arrived and just perform all the necessary server movements at the very end.
The total cost of an algorithm at time t is the sum of the total number of movements up

to time t and the overall service cost at time t (shown by costAt for a given algorithm ALG).
In Section 5.3 we give a simple deterministic online algorithm that guarantees to bound the
number of movements while keeping the overall service cost close to optimal at all times.
More specifically, we fix two parameters α ≥ 1 and β ≥ 0 and we require that given α and β,
an algorithm has to guarantee that at all times, the overall service cost of the online algorithm
is within a multiplicative factor α and an additive term β of the current optimal service cost.
Recall that the optimal service cost at time any time t is obtained if we have the optimum
configuration of the servers and it is not necessarily equal the configuration of the servers by
an optimal offline algorithm as discussed in Section 4.2. In particular our algorithm a) only
moves when it needs to move because the configuration is not feasible any more and b) always
moves a server which improves the service cost as much as possible.

We show that the total number of movements up to a time t of this online greedy algorithm
can be upper bounded as a function of the optimal service cost S∗t at time t. Most significantly,
we show that even for α = 1, for any ε > 0, as long as β = Ω(k+ k/ε), at all times t, the cost
costAt of the greedy algorithm can be upper bounded by the cost costOt of an optimal algorithm
as costAt ≤ (1 + ε)costOt + O(β + k log k). We also show that this result is almost tight. In
particular, an additive term which is at least linear in k is unavoidable (even for much larger
multiplicative competitive ratio).

In Section 5.3, we describe a simple, deterministic online algorithm ALG with the follow-
ing properties. For two parameters α ≥ 1 and β ≥ 0, ALG guarantees that at all times t ≥ 0,
SAt < αS∗t + β. The algorithm ALG achieves this while keeping the total movement cost
small. More precisely, we prove the following main theorem.

Theorem 5.1. Let O denote an optimal offline algorithm. There is a deterministic algorithm
A such that for all times t ≥ 0, the following statements hold.

• If α = 1 and β = Ω
(
k + k

ε

)
for an abitrary ε > 0,

costAt ≤ (1 + ε)costOt +O(β + k log k).

• If α = 1 and β = Ω
(
k·log k

log log k

)
, for every ε ≥ log log k/ log1−δ k and any constant

0 < δ ≤ 1,
costAt ≤ (1 + ε)costOt +O (β) .

Choosing α > 1: The results of the above theorem all hold for α = 1, i.e., an algorithm is
always forced to move to a configuration which is optimal up to the additive term β. Even if α
is chosen to be larger than 1, as long as we want to guarantee a reasonably small multiplicative
competitive ratio (of order o(k)), an additive term of order Ω(k) is unavoidable. In fact, in
order to reduce the additive term to O(k), α has to be chosen to be of order kδ for some
constant δ > 0. Note that in this case, the multiplicative competitive ratio grows to at least
α� 1. However, it might still be desirable to choose α > 1. In that case, it can be shown that
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the movement cost MA
t of our simple greedy algorithm ALG only grows logarithmically with

the optimal service cost S∗t (where the basis of the logarithm is α). As an application, this for
example allows to be (1 + ε)-competitive for any constant ε > 0 against an objective function
of the form γ · SAt +MA

t even if γ is chosen of order k−O(1).

5.1.1 Further Related Work

As we have defined the service cost for the OMFL problem in Section 4.2, the cost of serving a
request in the facility location problem is classically given by the distance from the request to
the facility to which it is assigned. In a uniform metric, this corresponds to the most basic cost
function that can be studied in our framework (service cost is equal to the number of requests at
nodes with no servers). As described, we significantly generalize this basic service cost model.
In the context of facility location, a similar approach was used in [44]. More concretely, in
[44], it is assumed that the cost of a facility increases as a function of the requests it needs to
serve.

The generalized uniform OMFL problem studied in this chapter has some resemblance
to learning problems [4, 53, 65]. Somewhat similarly to expert learning algorithms where in
essence, one converges to the “right set of experts”, our algorithm has to converge to the “right
set of nodes” to place its servers. However, in our case, the cost will usually be dominated by
the total movement cost, i.e., the total cost for replacing the servers. In learning, switching to
a different set of experts is usually not considered a (main) cost.

Organization of the Chapter: In the remainder of this chapter, the formal statement of the
generalized OMFL problem on the uniform metrics is given in Section 5.2. We also define
a general cost function in this section for the problem and provide some properties that are
satisfied with the general cost function. In Section 5.3, our simple and greedy deterministic
online algorithm for the generalized OMFL problem on uniform metrics is described. In Sec-
tion 5.4, we provide an overview of our analysis of the online algorithm. The analysis of the
online algorithm is then provided in Section 5.5. In Section 5.6 we show that the claim of
Theorem 4.1 holds. Note that our lower bound claimed by Theorem 4.1 even holds for the
generalized OMFL problem in uniform metrics. At the end of this chapter, in Section 5.7,
we discuss the main open question related to this chapter of solving the OMFL problem on
general metrics.

5.2 Problem Statement

We are given a set V of n nodes and there is a set of k servers. Further, there are requests
1, 2, . . . that adversarially arrive one at a time. We assume that at time t ≥ 1, request t arrives
at node v(t) ∈ V . For a node v ∈ V , let rv,t be the number of requests at node v after t requests
have arrived, i.e.,

rv,t := |{i ≤ t : v(i) = v}| .
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In order to keep the overall/total service cost small, an algorithm can move the servers between
the nodes (if necessary, for answering one new request, we allow an algorithm to also move
more than one server). However throughout the execution, each of the k servers is always
placed at one of the nodes v ∈ V . We define a configuration of servers by integers fv ∈ N0

for each v ∈ V such that
∑

v∈V fv = k. We describe such a configuration by a set of pairs as

F := {(v, fv) : v ∈ V } .

The initial configuration is denoted by F0.

Service Cost: We implicitly assume that if a node v has some servers, all requests at v are
served by these servers. This also implies that the “assignment” of requests to servers can
change over time and the service cost is not cumulative. Depending on the number of servers
and the number of requests at a node v ∈ V , an algorithm has to pay some service cost to
serve the requests located at v. This service cost of node v is defined by a service cost function
σv such that σv(x, y) ≥ 0 is the cost for serving y requests if there are x servers at node v.
For convenience, for t ≥ 1, we also define σv,t(x) := σv(x, rv,t) to be the service cost with x
servers at node v at time t. For some configuration F , we denote the total service cost at time
t by

St(F ) :=
∑
v∈V

σv,t(fv) =
∑
v∈V

σv(fv, rv,t).

Let S∗t be the optimal total service cost at time t, i.e.

S∗t := min
F
St(F ).

Note that S∗t is not necessarily the same as the total service cost SOt of an optimal algorithm
OPT at time t. As mentioned before, an optimal offline algorithm such as OPT can wait until
all requests have arrived and just perform all the necessary server movements at the very end.
We say that a configuration F ∗ is an optimal configuration at time t if St(F ∗) = S∗t .

Feasible Solution: For a given algorithm ALG, we denote the solution at time t by FAt :={
FA(i) : i ∈ [0, t]

}
, where FA(t) is the configuration after reacting to the arrival of request

t and where FA(0) = F0. The service cost of an algorithm ALG at time t is denoted by
SAt := St(F

A(t)).

Movement Cost: We define the movement cost MA
t of given algorithm ALG to be the total

number of server movements by time t. Generally, for two configurations, F = {(v, fv) : v ∈ V }
and F ′ = {(v, f ′v) : v ∈ V }, we define the distance χ(F, F ′) between the two configurations
as follows:

χ(F, F ′) :=
∑
v∈V

max {0, fv − f ′v} =
1

2
·
∑
v∈V

|fv − f ′v| . (5.1)
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The distance χ(F, F ′) is equal to the number of movements that are needed to get from con-
figuration F to configuration F ′ (or vice versa). Based on the definition of χ, we can ex-
press the movement cost of an algorithm ALG with solution FAt =

{
FA(i) : i ∈ [0, t]

}
as

MA
t =

∑t
i=1 χ

(
FA(i− 1), FA(i)

)
. The total cost of an algorithm ALG is

costAt := SAt +MA
t .

The competitive ratio is defined as the total cost of ALG divided by the solution cost of OPT.

5.2.1 Service Cost Function Properties
The service cost function σ has to satisfy a number of natural properties. First of all, for every
v ∈ V , σv(x, y) has to be monotonically decreasing in the number of servers x that are placed
at node v and monotonically increasing in the number of requests y at v.

∀v ∈ V ∀x, y ∈ N0 : σv(x, y) ≥ σv(x+ 1, y) (5.2)
∀v ∈ V ∀x, y ∈ N0 : σv(x, y) ≤ σv(x, y + 1) (5.3)

Further, the effect of adding additional servers to a node v should become smaller with the
number of servers (convex property in x) and it should not decrease if the number of requests
gets larger. Therefore, for all v ∈ V and all x, y ∈ N0, we have

σv(x, y)− σv(x+ 1, y) ≥ σv(x+ 1, y)− σv(x+ 2, y) (5.4)
σv(x, y)− σv(x+ 1, y) ≤ σv(x, y + 1)− σv(x+ 1, y + 1) (5.5)

In the following, whenever clear from the context, we omit the superscript ALG in the
algorithm-dependent quantities defined above.

5.3 Algorithm Description
The goal of our algorithm is two-fold. On the one hand, we want to guarantee that the service
cost of the algorithm is always within some fixed bounds of the optimal service cost. On the
other hand, we want to achieve this while keeping the overall movement cost low. Specifically,
for two parameters α and β, where

α ≥ 1 and max {α− 1, β} ≥ 1. (5.6)

we guarantee that at all times
St < α · S∗t + β, (5.7)

where St denotes the total service cost of the algorithm at time t. Condition (5.7) is maintained
in the most straightforward greedy manner. Whenever after a new demand arrives, Condition
(5.7) is not satisfied, the algorithm greedily move resources until Condition (5.7) holds again.
Hence, as long as Condition (5.7) does not hold, the algorithm moves a resource that reduces
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the total service cost as much as possible. The algorithm stops moving any resources as soon
as the validity of Condition (5.7) is restored.

Whenever the algorithm moves a server, it does a best possible move, i.e., a move that
achieves the best possible service cost improvement. Thus, the algorithm always moves a
server from a node where removing a server is as cheap as possible to a node where adding a
server reduces the cost as much as possible. Therefore, for each movement m, we have

vsrcm ∈ arg min
v∈V
{σv,τm(fv,m−1 − 1)− σv,τm(fv,m−1)} and (5.8)

vdstm ∈ arg max
v∈V
{σv,τm(fv,m−1)− σv,τm(fv,m−1 + 1)} , (5.9)

where arg minv and arg maxv denote the sets of nodes minimizing and maximizing the re-
spective terms.

5.4 Analysis Overview
While the algorithm itself is quite simple, its analysis turns out relatively technical. We thus
first describe the key steps of the analysis by discussing a simple case. We assume that the
service cost at any node is equal to 0 if there is at least one server at the node and the service
cost is equal to the number of requests at the node, otherwise. Further, we assume that we
run the algorithm of Section 5.3 with parameters α = 1 and β = 0, i.e. after each request
arrives, the algorithm moves to a configuration with optimal service cost. Note that these
parameter settings violate Condition (5.7) and we will therefore get a weaker bound than the
one promised by Theorem 5.1.

First, note that in the described simple scenario, the algorithm clearly never puts more than
one server to the same node. Further, whenever the algorithm moves a server from a node u to
a node v, the overall service cost has to strictly decrease and thus, the number of requests at
node v is larger than the number of requests at node u. Consider some point in time t and let

rmin(t) := min
v∈V :fv,t=1

rv,t

be the minimum number of requests among the nodes v with a server at time t. Hence, when-
ever at a time t, the algorithm moves a server from a node u to a node v, node u has at
least rmin(t) requests and consequently, node v has at least rmin(t) + 1 requests. Further, if
at some later time t′ > t, the server at node v is moved to some other node w, because the
algorithm always removes a server from a node with as few requests as possible, we have
rmin(t′) ≥ rmin(t) + 1. Consequently, if in some time interval [t1, t2], there is some server
that is moved more than once, we know that rmin(t1) < rmin(t2). In our analysis, we partition
time into phases, the first phase starts at time 0 and where phases are maximal time intervals
in which each server is moved at most once (cf. Definition 5.2 in the formal analysis of the
algorithm).

The above argument implies that after each phase rmin increases by at least one and there-
fore at any time t in Phase p, we have rmin(t) ≥ p − 1 and at the end of Phase p, we have
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rmin(t) ≥ p. In Section 5.5, the more general form of this statement appears in Lemma 5.3.
There, γp is defined to be the smallest service cost improvement of any movement in Phase
p (γp = 1 in the simple case considered here), and Lemma 5.3 shows that rmin grows by at
least γp in Phase p. Assume that at some time t in Phase p, a server is moved from a node
u to a node v. Because node u already had its server at the end of Phase p − 1, we have
ru,t = rmin(t) ≥ p − 1. Consequently, at the end of Phase p, there is at least one node (the
source of the last movement) that has no server and at least p− 1 requests. The corresponding
(more technical) statement in our general analysis appears in Lemma 5.5.

We will bound the total cost of the online algorithm and an optimal offline algorithm from
above and below, respectively, as a function of the optimal service cost. Hence, the ratio be-
tween these two total costs provides the desired competitive factor. Our algorithm guarantees
that at all times, the service cost is within fixed bounds of the optimal service cost (in the
simple case here, the service cost is always equal to the optimal service cost). Knowing that
there are nodes with many requests and no servers, therefore allows to lower bound the optimal
service cost. In the general case, this is done by Lemma 5.8 and Lemma 5.9. In the simple
case, considered here, as at the end of Phase p, there are k nodes with at least p requests (the
nodes that have servers) and there is at least one additional node with at least p − 1 requests,
we know that at the end of Phase p, the optimal service cost is at least p − 1. Consequently,
the online algorithm (in the simple case) pays exactly the optimal service cost (as mentioned
before, in the general case, the service cost is within fixed bounds of the optimal service cost)
and at most (p−1)k as movement cost. Hence, the total cost paid by the online algorithm is at
most a factor k+1 times the optimal service cost since the optimal service cost is at least p−1.
By choosing α which is slightly larger than 1 and a larger β (β ≥ k), the algorithm becomes
more lazy and one can show that the difference between the number of movements of ALG
and the optimal service cost becomes significantly smaller. Also note that by construction, the
service cost of ALG is always at most αS∗t + β.

When analyzing our algorithm, we mostly ignore to take into account the movement cost
of an optimal offline algorithm. We only exploit the fact that by the time ALG decides to
move a server for the first time, any other algorithm must also move at least one server and
therefore the optimal offline cost becomes at least 1.

5.5 Upper Bound Analysis
In the following, we show that how to upper bound the total cost of our online algorithm ALG
by a function of the total cost of an optimal offline algorithm OPT. Clearly, the algorithm at
all times t ≥ 0 guarantees that the service cost can be bounded as

SAt < α · S∗t + β ≤ α · costOt + β. (5.10)

In order to upper bound the total cost, it therefore suffices to study how the movement cost
MA

t of the online algorithm grows as a function of the optimal offline algorithm cost. Let
OPT be an optimal offline algorithm and let FO(t) be the configuration of OPT at time t.
Recall that χ(F0, F

O(t)) denotes the total number of movements required to move from the
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initial configuration to configuration FO(t). We therefore have costOt = SOt + MO
t ≥ S∗t +

χ(F0, F
O(t)). In order to upper bound MA

t as a function of costOt , we will upper bound it as
a function of S∗t + χ(F0, F

O(t)).
Instead of directly dealing with χ(F0, F

O(t)), we will make use of the fact that our analysis
works for a general cost function σ satisfying the conditions given in (5.2), (5.3), (5.4), and
(5.5). Given a service cost function σ, consider a function σ′ which is defined as follows:

∀v ∈ V, ∀x ∈ {0, . . . , k} ,∀y ∈ N0 : σ′v(x, y) := σv(x, y) + max {0, fv(0)− x}

where fv(t) is the number of servers at time t on node v. Clearly, σ′ also satisfies the conditions
given in (5.2), (5.3), (5.4), and (5.5). In addition, for any time t and any configuration F =
{(v, fv) : v ∈ V }, we have

S ′t(F ) =
∑
v∈V

σ′v(fv, rv,t)

=
∑
v∈V

(σv(fv, rv,t) + max {0, fv(0)− fv})

(5.1)
= St(F ) + χ(F0, F ) (5.11)

where S ′t(F ) refers to the total service cost w.r.t. the new cost function σ′. Hence, S ′t(F )
exactly measures the sum of service cost and movement cost of a configuration F . Of course
now, in all our results, S∗t corresponds to the combination of service and movement cost of an
optimal configuration F ∗.

We are now going to analyze the algorithm of Section 5.3. In the following, whenever we
refer to the algorithm introduced in Section 5.3, we omit the superscript ALG. In our analysis,
we will bound the total costs of optimal offline algorithm OPT and online algorithm ALG
from below and above, respectively, as functions of optimal service cost and thus provide
the upper bound (competitive factor) promised in Theorem 5.1. Hence we first go through
calculating the optimal service cost.

For the analysis of the described online algorithm, we partition the movements into phases
p = 1, 2, . . . , where roughly speaking, a phase is a maximal consecutive sequence of move-
ments in which no server is moved twice. We use mp to denote the first movement of Phase
p (for p ∈ N). In addition, we define vsrc,Am and vdst ,Am to be the nodes involved in the m-th
server move, where we assume that ALG moves a server from node vsrcm to vdstm . Formally, the
phases are defined as follows.

Definition 5.2 (Phases). The movements are divided into phases p = 1, 2, . . . , where Phase p
starts with movement mp and ends with movement mp+1 − 1. We have m1 = 1, i.e., the first
phase starts with the first movement. Further for every p > 1, we define

mp := min
{
m > mp−1 : ∃m′ ∈ [mp−1,m− 1] s.t. vsrcm = vdstm′

}
. (5.12)

For a Phase p ≥ 1, let λp := mp+1 −mp be the number of movements of Phase p.
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5.5.1 Optimal Service Cost Analysis
The algorithm moves servers in order to improve the service cost. Throughout the rest of this
chapter, we use τAm to denote the time of the mth movement. For a given movement m, we use
γ(m) > 0 to denote service cost improvement of m. Further, we use F0 to denote the initial
configuration of the k servers and for a given (deterministic) algorithm ALG, for any m ≥ 1,
we let FAm =

{
(v, fAv,m) : v ∈ V

}
be the configuration of the k servers for ALG after m server

movements (i.e., after m server movements of ALG, node v has fAv,m servers).

γ(m) := Sτm(Fm−1)− Sτm(Fm)

=
(
σvdstm ,τm(fvdstm ,m−1)− σvdstm ,τm(fvdstm ,m)

)
−
(
σvsrcm ,τm(fvsrcm ,m)− σvsrcm ,τm(fvsrcm ,m−1)

)
. (5.13)

For each Phase p, we define the improvement γp of p and the cumulative improvement Γp
by Phase p as follows

γp := min
m∈[mp,mp+1−1]

γ(m) and Γp :=

p∑
i=1

γi, Γ0 := 0, γ0 := 0. (5.14)

We are now ready to prove our first technical lemma, which lower bounds the cost of
removing servers from nodes with servers (for all v ∈ V such that fv ≥ 1) at any point in
the execution. The result of following lemma implies that removing any server of an optimal
configuration during some Phase p increases the optimal service cost at least Γp−1 (and Γp
at end of Phase p) since the servers of an optimal configuration are located at places with
maximum number of requests.

Lemma 5.3. Let m be a movement and, F = {(v, fv) : v ∈ V } be the configuration of the
algorithm at any point in the execution after movement m and let t ≥ τm be the time at which
the configuration F occurs. Then, for all times t′ ≥ t and for all nodes v ∈ V , if fv > 0 it
holds that

σv,t′(fv − 1)− σv,t′(fv) ≥ Γp−1,

where p is the phase in which movement m occurs.

Proof. We will show that for each server movement m ∈ N of the algorithm, it holds that

∀v ∈ V : fv,m > 0 =⇒ σv,τm(fv,m − 1)− σv,τm(fv,m) ≥ Γp−1, (5.15)

where p is the phase in which movement m occurs (i.e., the claim of the lemma holds immedi-
ately after movementm). The lemma then follows because (i) any configuration {(v, fv) : v ∈ V }
occurring after movement m is the configuration Fm′ for some movement m′ ≥ m, (ii) the
values Γp−1 are monotonically increasing with p, and (iii) by (5.5), for all v ∈ V , the value
σv,t(f − 1)− σv,t(f) is monotonically non-decreasing with t.

It therefore remains to prove (5.15) for every m, where p is the phase of movement m. We
prove a slightly stronger statement. Generally, for a movement m′ and a Phase p′, let V dst

p′,m′
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be the set of nodes that have received a new server by some movement m′′ ≤ m′ of Phase p′.
Hence,

V dst
p′,m′ :=

{
v ∈ V : ∃ movement m′′ ≤ m′ of Phase p′ s.t. vdstm′′ = v

}
.

We show that in addition to (5.15), it also holds that

∀v ∈ V dst
p,m : fv,m > 0 =⇒ σv,τm(fv,m − 1)− σv,τm(fv,m) ≥ Γp. (5.16)

We prove (5.15) and (5.16) together by using induction on m.
Induction Base (m = 1): The first movement occurs in Phase 1. By (5.14), Γ0 = 0 and by
(5.2), we also have σv,t(f − 1) − σv,t(f) ≥ 0 for all times t ≥ 0, all nodes v ∈ V , and all
f ≥ 1. Inequality (5.15) therefore clearly holds for m = 1. It remains to show that also (5.16)
holds for m = 1. We have V dst

1,1 =
{
vdst1

}
and showing (5.16) for m = 1 therefore reduces

to showing that σvdst1 ,τ1(fvdst1 ,1 − 1) − σvdst1 ,τ1(fvdst1 ,1) ≥ Γ1 = γ1, which follows directly from
(5.13) and (5.14).
Induction Step (m > 1): We first show that Inequalities (5.15) and (5.16) hold immediately
before movement m and thus,

∀v ∈ V : fv,m−1 > 0 ⇒ σv,τm(fv,m−1 − 1)− σv,τm(fv,m−1) ≥ Γp−1, (5.17)
∀v ∈ V dst

p,m−1 : fv,m−1 > 0 ⇒ σv,τm(fv,m−1 − 1)− σv,τm(fv,m−1) ≥ Γp. (5.18)

If m is not the first movement of Phase p, Inequalities (5.17) and (5.18) follow directly from
the induction hypothesis (for m − 1) and from (5.5). Let us therefore assume that m is the
first movement of Phase p. Note that in this case V dst

p,m−1 = ∅ and (5.18) therefore trivially
holds. Because m > 1, we know that in this case p ≥ 2. From the induction hypothesis
and from (5.5), we can therefore conclude that for every node v ∈ V dst

p−1,m−1 (every node v
that is the destination of some server movement in Phase p− 1), we have σv,τm(fv,m−1 − 1)−
σv,τm(fv,m−1) ≥ Γp−1. Note that for all these nodes, we have fv,m−1 > 0. Becausem is the first
movement of Phase p, Definition 5.2 implies that vsrcm ∈ V dst

p−1,m−1. Applying (5.8), we get that
for all v ∈ V , σv,τm(fv,m−1−1)−σv,τm(fv,m−1) ≥ σvsrcm ,τm(fvsrcm ,m−1−1)−σvsrcm ,τm(fvsrcm ,m−1) ≥
Γp−1 and therefore (5.17) also holds if m ≥ 2 is the first movement of some phase.

We can now prove (5.15) and (5.16). For all nodes v /∈
{
vsrcm , vdstm

}
, we have fv,m = fv,m−1

and we further have V dst
p,m = V dst

p,m−1 ∪
{
vdstm

}
. For v /∈

{
vsrcm , vdstm

}
, (5.15) and (5.16) therefore

directly follow from (5.17) and (5.18), respectively. For the two nodes involved in movement
m, first note that vsrcm /∈ V dst

p,m−1. It therefore suffices to show that

fvsrcm ,m = 0 or σvsrcm ,τm(fvsrcm ,m − 1)− σvsrcm ,τm(fvsrcm ,m) ≥ Γp−1, (5.19)
as well as σvdstm ,τm(fvdstm ,m − 1)− σvdstm ,τm(fvdstm ,m) ≥ Γp. (5.20)

We have fvsrcm ,m = fvsrcm ,m−1−1 and fvdstm ,m = fvdstm ,m−1 +1. Inequality (5.19) therefore directly
follows from (5.17) and (5.4). For (5.20), we have

σvdstm ,τm(fvdstm ,m − 1)− σvdstm ,τm(fvdstm ,m)
(5.13)
= σvsrcm ,τm(fvsrcm ,m)− σvsrcm ,τm(fvsrcm ,m − 1) + γ(m)

(5.17)
≥ Γp−1 + γ(m)

(5.14)
≥ Γp.
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This completes the proof of (5.15) and (5.16) and thus the proof of the lemma.

For each phase number p, let θp := τmp be the time of the the first movement mp of Phase
p. Before continuing, we give lower and upper bounds on γp, the improvement of Phase p. For
all p ≥ 1, we define

ηp := (α− 1) · S∗θp + β. (5.21)

Lemma 5.4. Let m be a movement of Phase p and let F ∗ = arg min
F
St(F ) be the optimal

configuration at time τm. We then have

ηp
χ(Fm−1, F ∗)

≤ γ(m) ≤ ηp+1.

Proof. For the upper bound, observe that we have

γ(m) ≤ Sτm(Fm−1)− S∗τm

as clearly the service cost cannot be improved by a larger amount. Because at all times t, the
algorithm keeps the service cost below αS∗t + β, we have Sτm−1(Fm−1) < αS∗τm−1 + β ≤
αS∗τm + β. The upper bound on γ(m) follows from (5.21) and because S∗τm ≤ S∗θp+1

.
For the lower bound on γ(m), we need to prove that χ(Fm−1, F

∗) ≥ ηp/γ(m). Because
the algorithm moves a server at time τm, we know that Sτm(Fm−1) ≥ αSτm(F ∗) + β and
applying the (5.21) of ηp, we thus have Sτm(Fm−1) − Sτm(F ∗) ≥ ηp. Intuitively, we have
χ(Fm−1, F

∗) ≥ ηp/γ(m) because the algorithm always chooses the best possible movement
and thus every possible movement improves the overall service cost by at most γ(m). Thus, the
number of movements needs to get from Fm−1 to an optimal configuration F ∗ has to be at least
ηp/γ(m). For a formal argument, assume that we are given a sequence of ` := χ(Fm−1, F

∗)
movements that transform configuration Fm−1 into configuration F ∗. For i ∈ [`], assume that
the ith of these movements moves a server from node ui to node vi. Further, for any i ∈ [`] let
fi be the number of servers at node ui and let f ′i be the number of servers at node vi before the
ith of these movements. Because the sequence of movements is minimal to get from Fm−1 to
F ∗, we certainly have fi ≤ fui,m−1 and f ′i ≥ fvi,m−1. For the service cost improvement γ of
the ith of these movements, we therefore obtain

γ =
(
σvi,τm(f ′i)− σvi,τm(f ′i + 1)

)
−
(
σui,τm(fi − 1)− σui,τm(fi)

)
(5.4)
≤

(
σvi,τm(fvi,m−1)− σvi,τm(fvi,m−1 + 1)

)
−
(
σui,τm(fui,m−1 − 1)− σui,τm(fui,m−1)

)
≤ γ(m).

The last inequality follows from (5.8),(5.9), and (5.13). As the sum of the ` service cost
improvements has to be at least ηp, we obtain ` = χ(Fm−1, F

∗) ≥ ηp/γ(m) as claimed.

We can now lower bound the distribution of requests at the time of each movement.
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Lemma 5.5. Let m be a movement of Phase p (for p ≥ 1). Then, there are integers ψv ≥ 0
for all nodes v ∈ V such that ∑

v∈V

ψv ≥ k +
ηp

γ(m)
and

∀t ≥ τm ∀v ∈ V : ψv > 0 =⇒ σv,t(ψv − 1)− σv,t(ψv) ≥ Γp−1.

Proof. It suffices to prove the statement for t = τm. For larger t, the claim then follows from
(5.5). Consider an optimal configuration

F ∗ = {(v, f ∗v ) : v ∈ V }

at the time τm of movementm. Let us further consider the configuration Fm−1 of the algorithm
immediately before movement m. Consider a pair of nodes u and v such that f ∗u > fu,m−1 and
fv,m−1 > f ∗v . By the optimality of F ∗, we have

σu,τm(f ∗u − 1)− σu,τm(f ∗u) ≥ σv,τm(fv,m−1 − 1)− σv,τm(fv,m−1). (5.22)

Otherwise, moving a server from u to v would (strictly) improve the configuration F ∗. By
Lemma 5.3, we have σv,τm(fv,m−1 − 1) − σv,τm(fv,m−1) ≥ Γp−1 for all nodes v for which
fv,m−1 > 0. Together with (5.22), for all v ∈ V for which max {fv,m−1, f

∗
v } > 1, we obtain

σv,τm(max {fv,m−1, f
∗
v } − 1)− σv,τm(max {fv,m−1, f

∗
v }) ≥ Γp−1. (5.23)

To prove the lemma, it therefore suffices to show that
∑

v∈V max {fv,m−1, f
∗
v } ≥ k+ηp/γ(m),

as we can then set ψv := max {fv,m−1, f
∗
v } and (5.23) implies the claim of the lemma. By

(5.1), we have∑
v∈V

max {fv,m−1, f
∗
v } = k +

∑
v∈V

max {0, f ∗v − fv,m−1} = k + χ(Fm−1, F
∗).

We therefore need that χ(Fm−1, F
∗) ≥ ηp/γ(m), which follows from Lemma 5.4.

In the next lemma, we derive a lower bound on S∗θp , the service cost of optimal configura-
tion when Phase p starts. For each Phase p ≥ 1, we first define Sp as follows.

For p ≥ 3 : Sp :=

(
1 + (α− 1)

γp−2

γp−1

)
· Sp−1 +

γp−2

γp−1

β, and S1 := S2 := 1. (5.24)

Lemma 5.6. For all p ≥ 1, we have S∗θp ≥ Sp.

Proof. We prove the lemma by induction on p.

Induction Base (p = 1, 2): Using (5.11) we have S∗θ1 ≥ 1 and since S1 = S2 = 1, we get
S∗θ2 ≥ S∗θ1 ≥ S2 = S1.
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Induction Step (p > 2): We use the induction hypothesis to assume that the claim of the
lemma is true up to Phase p and we prove that it also holds for Phase p + 1. Therefore by the
induction hypothesis, for all i ∈ [p],

S∗θp ≥ Sp. (5.25)

For all i ∈ [p], we define ηi := (α−1)Si+β and δi := max
{ηi+1

γi+1
, · · · , ηp

γp

}
. As a consequence

of (5.21) and (5.25), we get that ηi ≥ ηi for all i ∈ [p]. In the following, let p′ ∈ [2, p] be
some phase. Lemma 5.5 implies that after the last movement m of Phase p′, there are non-
negative integers ψv (for v ∈ V ) such that

∑
v∈V ψv ≥ k + ηp′/γp′ ≥ ηp′/γp′ and for all

times t ≥ τm, for all v ∈ V for which ψv > 0, σv,t(ψv − 1) − σv,t(ψv) ≥ Γp′−1. As there
are only k servers for any feasible configuration F = {(v, fv)}, we have

∑
v∈V fv = k and

therefore
∑

v∈V (ψv − fv) ≥ ηp′/γp′ . For any v ∈ V for which ψv > fv, by using (5.4), we
get σv,t(fv) ≥ (ψv − fv)Γp′−1. Hence, after the last movement of Phase p′, for any feasible
configuration F , we have St(F ) ≥ S∗t ≥

ηp′

γp′
Γp′−1. At the beginning of Phase p+1 (for p ≥ 2),

the total optimal service cost therefore is

S∗θp+1
≥ max

p′∈[2,p]

ηp′

γp′
Γp′−1 ≥ δp−1Γp−1 +

p−2∑
i=1

(δi − δi+1) · Γi =

p−1∑
i=1

γi · δi. (5.26)

We define ζi for all i ∈ [3, p] as follows:

ζi :=
i−2∑
j=1

γj · δj. (5.27)

Using the definition of δi, we thus have

ζp+1 = ζp + γp−1δp−1 = ζp + ηp
γp−1

γp
.

Considering the definition of ηi we get

ζp+1 = ζp ·
(

1 + (α− 1)
γp−1

γp

)
+ β · γp−1

γp
.

We therefore have ζp+1 = Sp+1 directly from (5.24) and thus the claim of the lemma follows.

In order to explicitly lower bound the optimal service cost after p phases, we need the
following technical statement.

Lemma 5.7. Let ` ≥ 2 be an integer and consider a sequence c1, c2, . . . , c` > 0 of ` positive
real numbers and let cmax = max

i∈[`]
ci and cmin = min

i∈[`]
ci. Further, let λ ≥ 0 be an arbitrary
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non-negative real number. We have

(I)
∑̀
i=2

ci−1

ci
≥ (`− 1) ·

(
cmin

cmax

) 1
`−1

,

(II)
∏̀
i=2

(
1 + λ

ci−1

ci

)
≥
(

1 + λ

(
cmin

cmax

) 1
`−1

)`−1

.

Proof. The first part of the claim follows from the means inequality (the fact that the arithmetic
mean is larger than or equal to the geometric mean). In the following, we nevertheless directly
prove both parts together. We let x = (x1, . . . , x`) ∈ R` be a vector ` real variables and we
define multivariate functions f(x) : R` → R and g(x) : R` → R as follows:

f(x) :=
∑̀
i=2

xi−1

xi
and g(x) :=

∏̀
i=2

(
1 + λ

xi−1

xi

)
.

We further define X ⊂ R` as X :=
{

(z1, . . . , z`) ∈ R` | ∀i ∈ [`] : cmin ≤ zi ≤ cmax

}
. We

need to show that for x ∈ X , f(x) and g(x) are lower bounded by the right-hand sides of
Inequalities (I) and (II) above, respectively. Note that X is a closed subset of R` and because
cmin > 0, both functions f(x) and g(x) are continuous when defined on X . The minimum for
x ∈ X is therefore well-defined for both f(x) and g(x). We show that both f(x) and g(x)
attain their minimum for

x∗ := (x∗1, . . . , x
∗
`), where ∀i ∈ [`] : x∗i = cmin ·

(
cmax

cmin

) i−1
`−1

.

Note that x∗ is the unique configuration x ∈ X to the following system of equations

x1 = cmin, x` = cmax, ∀i ∈ {2, . . . , `− 1} : xi ∈
xi−1

xi
=

xi
xi+1

. (5.28)

Because we know that min
x∈X

f(x) = f(x∗) and min
x∈X

g(x) = g(x∗), it is therefore sufficient to

show that for any y ∈ X that does not satisfy (5.28), f(y) and g(y) are not minimal. Let
us therefore consider a vector y = (y1, . . . , y`) ∈ X that does not satisfy (5.28). First note
that both f(x) and g(x) are strictly monotonically increasing in x1 and strictly monotonically
decreasing in x`. If either y1 > cmin or y` < cmax, it is therefore clear that f(y) and g(y)
are both not minimal (over X). Let us therefore assume that y1 = cmin and y` = cmax. From
the assumption that y does not satisfy (5.28), we then have an i0 ∈ {2, . . . , `− 1} for which
yi0−1

yi0
6= yi0

yi0+1
and thus yi0 6=

√
yi0−1yi0+1. We define a new vector y′ = (y′1, . . . , y

′
`) ∈ X

as follows. We have y′i0 =
√
yi0−1yi0+1 and y′i = yi for all i 6= i0 and we will show that

f(y′) < f(y) and g(y′) < g(y). Define

C :=
∏

i∈[2,`]\{i0,i0+1}

(
1 + λ

yi−1

yi

)
.
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We then have

f(y)− f(y′) =

(
yi0−1

yi0
+

yi0
yi0+1

)
−
(
yi0−1

y′i0
+

y′i0
yi0+1

)
g(y)− g(y′) =

[(
1 + λ

yi0−1

yi0

)
·
(

1 + λ
yi0
yi0+1

)
−
(

1 + λ
yi0−1

y′i0

)
·
(

1 + λ
y′i0
yi0+1

)]
· C

=

[(
yi0−1

yi0
+

yi0
yi0+1

)
−
(
yi0−1

y′i0
+

y′i0
yi0+1

)]
· λC.

Note that λ ≥ 0 and C > 0. In both cases, we therefore need to show that

∀yi0 ∈ [cmin, cmax] \
{√

yi0−1yi0+1

}
:

(
yi0−1

yi0
+

yi0
yi0+1

)
>

(
yi0−1

y′i0
+

y′i0
yi0+1

)
. (5.29)

This follows because the function h : [cmin, cmax]→ R, h(z) :=
yi0−1

z
+ z

yi0+1
is strictly convex

for z ∈ [cmin, cmax] and it has a stationary point at z =
√
yi0−1yi0+1 ∈ [cmin, cmax].

As long as (α − 1)S∗θp < β, the effect of the (α − 1)S∗θp-term on ηp (and thus of the αS∗t
term in (5.7) is relatively small. Let us therefore first analyze how the service cost grows by
just considering terms that depends on β (and not on α).

Lemma 5.8. For all p ≥ 3, we have

S∗θp ≥ min

{
β

α− 1
, β · (p− 2) · (2k)−

1
p−2

}
.

Proof. Assume that S∗θp < β/(α− 1) as otherwise the claim of the lemma is trivially true. By
Lemma 5.6, using α ≥ 1, for all p ≥ 3, we get Sp ≥ Sp−1 + γp−2

γp−1
β. Plugging in S2 ≥ 0,

induction on p therefore gives

S∗θp ≥ Sp ≥ β ·
p−1∑
i=2

γi−1

γi
(5.30)

for all p ≥ 3. We define γmin = min {γ1, . . . , γp−1} and γmax = max {γ1, . . . , γp−1}. By
Lemma 5.4 and because η1 ≤ · · · ≤ ηp−1, we have γmin ≥ η1/k and γmax ≤ ηp. From α ≥ 1
and (5.21), we have η1 ≥ (α − 1) + β since we know S∗θp ≥ 1 for p ≥ 1 regarding to (5.11).
Further, we have ηp = (α − 1)S∗θp + β < 2β. We therefore have γmin ≥ [(α − 1) + β]/k and
γmax < 2β and thus

γmin

γmax

≥ (α− 1) + β

2kβ

(5.6)
≥ max {β, 1}

2kβ
≥ 1

2k
.

The lemma now follows from (5.30) and from Inequality (I) of Lemma 5.7.

On the other hand, as soon as S∗θp > max
{

1, β
α−1

}
, the effect of the β-term in (5.7)

becomes relatively small. As a second case, therefore, we analyze how the service cost grows
by just considering terms that depends on α (and not on β).
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Lemma 5.9. Let p0 ≥ 2 be a phase for which Sp0 ≥ Sp0−1 ≥ S0 := max
{

1, β
α−1

}
. For any

phase p > p0, we have

S∗θp ≥ S0 ·
(

1 +

√
α− 1

(2k)
1

p−p0

)p−p0

≥ S0

2k
· α p−p0

2 .

Proof. By Lemma 5.6, using β ≥ 0, for all p > p0, we get Sp ≥
(

1 + (α− 1)γp−2

γp−1

)
· Sp−1.

Induction on p therefore gives

S∗θp ≥ Sp ≥ Sp0 ·
p−1∏
i=p0

(
1 + (α− 1)

γi−1

γi

)
(5.31)

for all p ≥ p0. Similarly to before, we define γmin = min {γp0−1, . . . , γp−1} and γmax =
max {γp0−1, . . . , γp−1}. By Lemma 5.4, the assumptions regarding p0, and because the values
ηi are non-decreasing in i, we have

γmin ≥
ηp0−1

k
≥ max {(α− 1) + β, 2β}

k
and

γmax ≤ ηp ≤ (α− 1)S∗θp + β ≤ 2(α− 1)S∗θp .

The last inequality follows because S∗θp ≥ Sp ≥ Sp0 ≥ max
{

1, β
α−1

}
and by applying (5.6).

We can now apply Inequality (II) from Lemma 5.7 to obtain

S∗θp ≥ Sp ≥ Sp0 ·
(

1 + (α− 1)

(
γmin

γmax

) 1
p−p0

)p−p0

≥ Sp0 ·

1 + (α− 1)

(
max {(α− 1) + β, 2β}

2k(α− 1)S∗θp

) 1
p−p0

p−p0

. (5.32)

In the following, assume that

S∗θp ≤ max

{
1,

β

α− 1

}
α
p−p0

2 . (5.33)

Note that if (5.33) does not hold, the claim of the lemma is trivially true. By replacing S∗θp on
the right-hand side of (5.32) with the upper bound of (5.33), we obtain

S∗θp ≥ Sp ≥ Sp0 ·

1 + (α− 1) ·
(

(α− 1) + β

2k(α− 1) max
{

1, β
α−1

}
α
p−p0

2

) 1
p−p0

p−p0

≥ Sp0 ·
(

1 +
α− 1

(2k)
1

p−p0
√
α

)p−p0

≥ Sp0 ·
(

1 +

√
α− 1

(2k)
1

p−p0

)p−p0

≥ Sp0
2k
· α p−p0

2 .

The lemma then follows because we assumed that Sp0 ≥ max
{

1, β
α−1

}
.
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5.5.2 Optimal Offline Algorithm Total Cost
Service Cost: In order to minimize the service cost, we can simply bound the service cost
of OPT as follows

SOθp ≥ S∗θp .

Movement Cost: To simplify our analysis, we take no notice of movement cost by optimal
offline algorithm since it has no substantial effect on the competitive factor we will provide
since OPT has to pay at least the optimal service cost which we show it is large enough. The
total cost of optimal offline algorithm, therefore, is bounded as follows

costOθp = MO
θp + SOθp ≥ S∗θp . (5.34)

5.5.3 Online Algorithm Total Cost
Service Cost: The online algorithm has to keep the service cost smaller than a linear function
of optimal service cost as mentioned in (5.7). In other words, the configuration of servers at
any time has to be feasible as defined in Section 5.2. Thus

SAθp < αS∗θp + β. (5.35)

Movement Cost: First, using Definition 5.2 we bound the number of movement in each
phase.

Observation 5.10. For each Phase p ≥ 1, we have λp ≤ k.

Proof. As an immediate consequence of Definition 5.2, we obtain that the maximum number
of movements in each phase is at most k. Let m > mp and consider the movements [mp,m].
We prove that ifm < mp+1, no two the movements in [mp,m] move the same server. The claim
then follows because there are only k servers. For the sake of contradiction, assume that there
is some server i that is moved more than once and letm′ andm′′ (m′,m′′ ∈ [mp,m],m′ < m′′)
be the first two movements in [mp,m], where server i is moved. We clearly have vdstm′ = vsrcm′′
and Definition 5.2 thus leads to a contradiction to the assumption that m < mp+1.

As a result of above observation and Lemma 5.8 and Lemma 5.9, it is possible to prove the
following lemma to bound the number of online algorithm movements by means of optimal
service cost.

Lemma 5.11. For any α ≥ 1 and β satisfying (5.6), there is a deterministic online algorithm
A such that for all times t ≥ 0, the total movement cost MA

t is bounded as follows.

• If α = 1, for any ` ≥ 1, ε > 0, and β ≥ k(2k)1/`/ε, we have

MA
t ≤ ε · S∗t +O(`k).
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• For α ≥ 1 + ε where ε > 0 is some constant and any β satisfying (5.6), we have

MA
t ≤ k ·O

(
1 + logα S

∗
t + min

{
log k

log log k
, logα k

}
+ logα

k

1 + β

)
.

Proof. First note that by Observation 5.10, the movement cost of our algorithm by time θp is
at most

Mθp ≤ (p− 1)k + 1 ≤ pk. (5.36)

Together with the lower bounds on S∗θp of Lemma 5.8 and Lemma 5.9, this allows to derive an
upper bound on the movement cost of our algorithm as a function of S∗θp . Note that as all upper
bound claimed in the lemma have an additive term of O(k) (with no specific constant), it is
sufficient to prove that the lemma holds for all time t = θp, where p ≥ 2 is a phase number.

Let us first consider the case where α = 1. Because in that case β/(α − 1) is unbounded,
we can only apply Lemma 5.8 to upper bound the movement cost as a function of S∗t . We
choose ` ≥ 1 and assume that β ≥ k(2k)1/`/ε for ε > 0. Together with (5.36), for p ≥ ` + 2,
Lemma 5.8 then gives

S∗θp ≥
k(2k)

1
`

ε
· (p− 2) · (2k)−

1
` =

k

ε
(p− 2) ≥ 1

ε
(Mθp − 2k). (5.37)

The first part of Lemma 5.11 then follows because the total movement cost for the first ` + 2
phases is at most O(`k). The special cases are obtained as follows. For β = Ω (k + k/ε),
we set ` = Θ(log k) and every ε > 0, whereas for β = Ω(k log k/ log log k), we set ε =
Θ(log log k/ log1−δ k) and ` = Θ

(
1
δ
· log k

log log k

)
for constant 0 < δ ≤ 1.

Let us therefore move to the case where α > 1. Let p0 be the first Phase p0 ≥ 2 for
which S∗θp0 ≥ S0, where S0 = max

{
1, β

α−1

}
as in Lemma 5.9. Further, we set p1 = p0 +

d2 logα(2k)e. Using Lemma 5.9, for p ≥ p1, we have

Sθp ≥
S0

2k
· α p−p1

2 α
p1−p0

2 ≥ S0 · α
p−p1

2 .

We therefore get

Mθp ≤ k · p ≤ k

(
p1 + 2 logα

S∗θp
S0

)
≤ k

(
p0 + 1 + 2 logα S

∗
θp + logα

2k

S0

)
.

The second claim of Lemma 5.11 then follows by showing that

p0 = O
(

min
{ log k

log log k
, logα k

})
.

If S0 = 1, we have p0 = 2. Otherwise, we can apply Lemma 5.8 to upper bound p0 as the
smallest value p0 for which β

α−1
= β(p− 2)(2k)−1/(p−2). For α = O

(
log k

log log k

)
, the assumption

that α is at least 1 + ε for some constant ε > 0 gives that p0 = Θ
(

log k
log log k

)
. Otherwise, (i.e.,

for large α), we obtain p0 = Θ(logα−1 k) = Θ(logα k).
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Note that by choosing α > 1, the dependency of the movement cost MA
t on the opti-

mal service cost S∗t is only logarithmic because terms min
{

log k
log log k

, logα k
}

and logα
k

1+β
are

dominated by log k.

Proof of Theorem 5.1. Putting (5.34), (5.35), and Lemma 5.11 all together conclude the
claim of theorem.

5.6 Lower Bound Analysis
The aim of this section is to formally prove our lower bound stated in Theorem 4.1 in Sec-
tion 4.3. As discussed in Section 4.3, the lower bound even holds for the OMFL problem
with uniform distances, that is it even holds for special case of the generalized uniform OMFL
problem, where each node v ∈ V can only have either 0 or 1 servers and where the cost for
serving x requests at a server with 0 servers is linear in x. The lower bound thus holds for
the generalized uniform OMFL problem and for the OMFL problem. An outline of the lower
bound analysis was provided in Section 4.3.1. The formal proof consists of three parts. In
Section 5.6.1, given some online algorithm ALG, we construct an explicit bad execution. In
Section 5.6.2, we analyze the cost of the online algorithm ALG in the constructed execution
and in Section 5.6.3, we bound the cost of an optimal offline algorithm OPT and we combine
everything to complete the proof of Theorem 4.1.

5.6.1 Lower Bound Execution
We assume that ALG is the given online algorithm and OPT is an optimal offline algorithm.
Further recall that we assume that ALG guarantees that the difference between the service
cost of ALG and the optimal service cost at all times is less than β for some given β > 0.

We need n to be sufficiently large and for simplicity, we assume that n ≥ 3k. We denote
a feasible configuration by a set F ⊂ V of size |F | = k. Further, without loss of generality,
we assume that all servers of ALG and OPT are at the same locations at the beginning (i.e.
at time t = 0). At each point t in the execution, a configuration F ∗t with optimal service cost
(note that F ∗t does not necessarily equal the configuration of OPT) places servers at the k
nodes with the most requests (breaking ties arbitrarily if there are several nodes with the same
number of requests). Also, at a time t the optimal service cost is equal to the total number of
requests at nodes in V \ F ∗t for an arbitrary optimal configuration F ∗t .

Time is divided into phases. We construct the execution such that it lasts for at least k
phases. As described in the outline, we define integers Γ1 < Γ2 < . . . such that at the end of
phase i, there are exactly k nodes with Γi requests (and all other nodes have fewer requests).
For each phase i, we define Vi to be this set of k nodes with Γi requests. We also fix integers
k/3 ≥ n1 ≥ n2 ≥ · · · ≥ 1 and at the beginning of each phase i, we pick a set Ni of ni nodes
to which we directly add requests so that all of them have exactly Γi requests. For i = 1, we
pick N1 as an arbitrary subset of V \ F0. We define V0 := F0. For i ≥ 2, we choose Ni as an
arbitrary subset of Vi−2 \ Vi−1. Clearly, at the end of phase i, we have Ni ⊆ Vi as otherwise
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there would be more than k nodes with exactly Γi requests. Note that because Ni−1 ⊆ Vi−1

and because Ni−1∩Vi−2 = ∅, Vi−2 \Vi−1 contains ni−1 ≥ ni nodes and it is therefore possible
to choose Ni as described. Note also that because Ni ⊆ Vi−2 \ Vi−1, at the beginning of phase
i all nodes in Ni have exactly Γi−2 requests. The remaining ones of the k nodes that end up
in Vi (and thus have Γi requests at the end of phase i) are chosen among the nodes in Vi−1.
Consequently, at the end of phase i−1 and thus at the beginning of phase i, there are exactly k
nodes Vi−1 with Γi−1 requests, ni−1 nodes Vi−2 \Vi−1 with Γi−2 requests, ni−2−ni−1 requests
Vi−3 \ (Vi−2∪Ni−1) with Γi−3 requests, ni−3−ni−2 nodes with Γi−4 requests, and so on. Now,
ni of the nodes in Vi−2 \ Vi−1 are chosen as set Ni and we increase their number of requests
to Γi. From now on, throughout phase i, there are k + ni nodes with at least Γi−1 requests
such that at most k of these nodes have Γi requests. The number of nodes with less than Γi−1

requests is the same as at the end of phase i − 1. In fact nodes that are not in Vi−1 ∪ Ni do
not change their number of requests after phase i − 1. As a consequence of the execution,
after increasing the number of requests in Ni to Γi, the optimal service cost remains constant
throughout phase i ≥ 1 and it can be evaluated to

Σ∗i := ni · Γi−1 +
i−1∑
j=2

(nj − nj+1)Γj−1.

For convenience, we also define Σ∗0 := 0 and moreover Σ∗1 = 0 since there are at most k nodes
with Γ1 requests at the end of phase 1.

In the following, let v be a free node at some point in the execution, if the algorithm
currently has no server at node v. We now fix a phase p ≥ 1 and assume that we are at a time
t, when we have already picked the set Np and increased the number of requests of nodes in
Np to Γp. By the above observation, we have S∗t = Σ∗p and therefore A is forced to move if
there are np free nodes with Γp requests and if we choose Γp such that

γp := Γp − Γp−1 =
(α− 1)Σ∗p + β

np
. (5.38)

We can now describe how and when the remaining k−np nodes of Vp are chosen after picking
the nodes in Np. As described above, the nodes are chosen from Vp−1. We choose the nodes
sequentially. Whenever we choose a new node from Vp, we pick some free node v ∈ Vp−1 with
less than Γp requests and increase the number of requests of v to Γp. As described above, Γp
is chosen large enough (as given in (5.38)) such that throughout phase p there are never more
than np− 1 free nodes with Γp requests. Because |Np ∪ Vp−1| = k+np, as long as there are at
most k nodes with Γp requests there always needs to be a free node v ∈ Vp−1 that we can pick
and we actually manage to add k nodes to Vp.

5.6.2 Online Algorithm Total Cost
The service cost paid by ALG at any time t could be simply lower bounded by S∗t . Hence, it
remains to compute a lower bound forMA

t as a function of optimal service cost. The following
lemma computes such a lower bound.
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Lemma 5.12. For any α ≥ 1 and β, assumeA be any deterministic online algorithm that can
solve the problem. There exists a time t > 0 such that the execution of Section 5.6.1 guarantees
the total movement cost MA

t can be bounded as follows.

• If α = 1, for any ` ≥ 1, ε > 0, and β ≤ k(2k)1/`/ε, we have

MA
t ≥ ε · S∗t + Ω(`k).

Specifically, for β = O(k/ε) we get MA
t ≥ ε · S∗t + Ω(k log k) and for β = O

(
k log k

log log k

)
we have MA

t ≥ ε · S∗t + Ω
(
k log k

log log k

)
.

• For α ≥ 1 + ε where ε > 0 is some constant and any β, we have

MA
t ≥ k · Ω (1 + logα S

∗
t ) .

Proof. Let us count the number of movements of ALG in a given Phase p. At each point in
time t during the phase, let Φt be the number of free nodes with Γp requests (possibly including
a node v that we already chose to be added to Vp). We know that for all t, Φt < np. Whenever
we decide to add a new node v to Vp, Φt increases by 1 (as v is a free node). The value of Φt

can only decrease when ALG moves a server and each server movement reduces the value of
Φt by at most 1. As after fixing Np, we add k−np nodes to Vp, we need at least k−2np ≥ k/3
movements to keep Φt below np throughout the phase. Consequently, every online algorithm
ALG has to do at least k/3 movements in each phase.

Now we upper bound the optimal service cost Σ∗p as a function of α, β, and p. Using (5.38),
for all p ≥ 0, we have

Σ∗p =

p∑
i=1

np · γp−1

For p ≥ 1, we then get

Σ∗p =
np
np−1

(
(α− 1)Σ∗p−1 + β

)
+ Σ∗p−1

=

(
1 + (α− 1)

np
np−1

)
· Σ∗p−1 + β · np

np−1

.
(5.39)

In the following, we for simplicity assume that for i = 1, 2, . . . , p, values ni do not have to
be integers. For integer ni, the proof works in the same way, but becomes more technical and
harder to read. We fix the values of ni as

ni := (k/3)
p−i
p−1

such that n1 = k/3 and np = 1. For all i ≥ 1, we then have ni
ni−1

= (k
3
)−

1
p−1 . Equation (5.39)

now be simplified as

Σ∗p =

(
1 +

α− 1

(k/3)1/(p−1)

)
· Σ∗p−1 + β · 1

(k/3)1/(p−1)
. (5.40)
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We have already seen that S∗t = Σ∗p. Using (5.40) and (5.39), the claim of the first part of
the lemma follows analogously from Lemma 5.6 and Lemma 5.8 and the claim of the second
part of the lemma follows analogously from Lemma 5.6 and Lemma 5.9 in the upper bound
analysis section.

5.6.3 Optimal Offline Algorithm Total Cost
An optimal offline algorithm, say OPT, knows the request sequence in advance. In other
words, it can wait until all requests have arrived and just perform all the necessary server
movements at the very end. Therefore, an upper bound for the total cost of OPT at any time t
is

costOt ≤ k + S∗t . (5.41)

We now have everything we need to prove Theorem 4.1.

Proof of Theorem 4.1. The proof of Theorem 4.1 now directly follows from Lemma 5.12 and
from Equation (5.41).

5.7 Chapter Notes
As discussed in Section 4.4, combined with the general cost functions studied in this chapter,
it could be possible to solve the OMFL problem on HSTs. On each level of the hierarchical
decomposition, the cost of each subtree can potentially be modeled using a cost function sim-
ilar to what we use in this chapter. The online algorithm for the generalized uniform OMFL
that was described in Section 5.3 can be used as a building block to devise an online algorithm
which recursively solves the OMFL on an HST. Roughly speaking, each internal node of the
HST runs an instance of the generalized uniform OMFL that determines how to distribute the
available servers among its children nodes. Starting from the root, which has k servers, the
recursive calls to the generalized uniform OMFL determine the number of servers at each leaf
of the HST, giving a feasible OMFL solution.
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Minimizing Movement
in Generalized Uniform OMFL:
A Lower Bound

6.1 Introduction
In Chapter 4, we mentioned that the mobile facility location (MFL) problem in general met-
rics was introduced in [28] as a movement problem. In this chapter, we introduce and study a
movement version of the generalized uniform OMFL problem that was studied in Chapter 5.
In the movement version of the problem, when measuring the cost of an algorithm, we only
take the number of movements of the servers into account. Clearly, if there is no requirement
on the service cost of a solution, an optimal would not move any servers at all. It is therefore
reasonable to define a threshold for the overall service cost as defined in Chapter 5. Every
algorithm that solves the problem must at all times keep its overall service cost below that
threshold, which is defined as a function of the optimal service cost. In the following, we for-
mally provide a definition of the problem. Note that the following problem statement appears
to be almost the same as the one provided in Section 5.2. However, there are some essential
differences.

6.1.1 Problem Statement
We are given a set V of n nodes and there is a set of k servers. Further, there are requests
1, 2, . . . that adversarially arrive one at a time in an online fashion. Moreover two parameters
α and β are given such that

α ≥ 1 and max {α− 1, β} ≥ 1. (6.1)

We assume that at time t ≥ 1, request t arrives at node v(t) ∈ V . For a node v ∈ V , let rv,t be
the number of requests at node v after t requests have arrived, i.e., rv,t := |{i ≤ t : v(i) = v}|.
The service cost of node v at time t denoted by σv,t is 0 if there is a server at v at time t and
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is rv,t, otherwise. The total service cost at each time is the sum of the service costs of all the
nodes in V at that time. In order to keep the total service cost small, an algorithm can move the
servers between the nodes (if necessary, for answering one new request, we allow an algorithm
to also move more than one server). However throughout the execution, each of the k servers
is always placed at one of the nodes v ∈ V . We define a configuration of servers by integers
fv ∈ {0, 1} for each v ∈ V such that

∑
v∈V fv = k. We describe such a configuration by a

set of pairs as F := {(v, fv) : v ∈ V }. The initial configuration is denoted by F0. For some
configuration F , we denote the total service cost at time t by St(F ) :=

∑
v∈V σv,t.

Feasible Configuration: We define a configuration F to be feasible at time t iff

St(F ) < α · S∗t + β (6.2)

where S∗t is the optimal total service cost at time t, i.e. S∗t := minF St(F ). Note that S∗t is not
necessarily the same as the total service cost SOt of an optimal offline algorithm OPT at time
t. We say that a configuration F ∗ is an optimal configuration at time t if St(F ∗) = S∗t .

Feasible Solution: For a given algorithm ALG, we denote the solution at time t by FAt :={
FA(i) : i ∈ [0, t]

}
, where FA(t) is the feasible configuration after reacting to the arrival of

request t and where FA(0) = F0. The service cost of an algorithm ALG at time t is denoted
by SAt := St(F

A(t)).

Movement Cost: We define the movement cost MA
t of given algorithm ALG to be the

total number of server movements by time t. Generally, for two feasible configurations, F =
{(v, fv) : v ∈ V } and F ′ = {(v, f ′v) : v ∈ V }, we define the distance χ(F, F ′) between the
two configurations as follows:

χ(F, F ′) :=
∑
v∈V

max {0, fv − f ′v} =
1

2
·
∑
v∈V

|fv − f ′v| . (6.3)

The distance χ(F, F ′) is equal to the number of movements that are needed to get from con-
figuration F to configuration F ′ (or vice versa). Based on the definition of χ, we can ex-
press the movement cost of an algorithm ALG with solution FAt =

{
FA(i) : i ∈ [0, t]

}
as

MA
t =

∑t
i=1 χ

(
FA(i− 1), FA(i)

)
.

The total cost of an algorithm including an optimal offline algorithm, say OPT, is the total
number of movements made by the algorithm. Note that an optimal offline algorithm cannot
wait until all requests have arrived and just perform all the necessary server movements at
the very end. The OPT algorithm must change the configuration of its servers as soon as
Equation (6.2) is violated. An online algorithm has to be competitive with an optimal offline
algorithm.
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6.1.2 Further Related Work

The movement version of the generalized uniform OMFL problem generally falls into a class
of movement problems introduced in [28]. In this version, the most similar of the classic
problems is the paging problem [68] (equivalent to the k-server problem [54] with uniform
distances). In the k-server problem, every new request has to be served by moving some
server to the location of the request and the only cost considered is the total movement cost.

An interesting special case of the work studied in this chapter is when the service cost at a
node u with 0 servers equals the number of requests at u and u’s service cost is 0, otherwise.
This case is closely related to the paging problem. Naturally, our problem is also related to
metrical task systems, which can be seen as a generalization of the k-server problem [20].

Organization of the Chapter: In the rest of this chapter, we provide a lower bound for
movement problem defined above in Section 6.2. In the last section, we discuss two open
questions based on the movement problem defined in this chapter.

6.2 A Lower Bound
In this section, we provide a lower bound for the problem stated in Section 6.1.1. The following
theorem claims that for every k, the competitive ratio of every deterministic online algorithm
needs to be at least Ω(n). We remark that this lower bound even holds for the simple (and
natural) scenario, where the service cost at a node with at least 1 server is 0 and the service
cost at a node with 0 servers is equal to the number of requests at that node.

Theorem 6.1. Assume that we are given parameters α and β which satisfy (6.1). Then, for
any online algorithm A and for every 1 ≤ k < n, there exists an execution and a time t > 0
such that the competitive ratio between the number of movements by A and the number of
movements of an optimal offline algorithm O is at least n/2. More precisely for all MO

t > 0
there is an execution such that MA

t ≥ n
2
·MO

t .

We provide our lower bound execution in the following. As we can assume that each
node either has 0 or 1 servers, we slightly overload notation and simply denote a feasible
configuration by a set F ⊂ V of size |F | = k.

6.2.1 Lower Bound Analysis

We first fix ALG to be any deterministic online algorithm denoted by A and OPT to be any
optimal offline algorithm denoted by O. For proving the statement of Theorem 6.1, we dis-
tinguish two cases, depending on the number of servers k. In both cases, we define iterations
to be subsequences of requests such that ALG needs to move at least once per iteration. The
number of movements by ALG is therefore at least the number of iterations of a given execu-
tion.
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Case k ≤ bn/2c: At the beginning, we place a large number of requests on any k−1 nodes
that initially have servers. We choose this number of requests sufficiently large such that no
algorithm can ever move any of these k − 1 servers. This essentially reduces the problem to
k = 1 and n− k + 1 nodes.

To bound the number of movements by OPT, we then consider intervals of n−k iterations
such that ALG is forced to move in each iteration. During each interval, the requests are
distributed in such a way that at the beginning of the i-th iteration of the interval there are at
least n−k−i+1 nodes such that if any offline algorithm places a server on one of these nodes,
(6.2) remains satisfied throughout the whole interval. Hence, there exists an offline algorithm
that moves at most once in each interval and therefore the number of movements by OPT is
upper bounded by the number of intervals.

Case k > bn/2c: In this case, there is some resemblance between the constructed execu-
tion and the lower bound constructions for the paging problem. For simplicity assume that
there are n = k + 1 nodes (we let requests arrive at only k + 1 nodes). At the beginning of
each iteration we locate a sufficiently large number of requests on the node without any server
of ALG such that (6.2) is violated. Thus, ALG has to move at least one server to keep (6.2)
satisfied. By contrast, OPT does not need to move in each iteration. There is always a node
which will not get new requests for the next k iterations and therefore OPT only needs to move
at most once every k iterations to keep (6.2) satisfied.

Proof of Theorem 6.1. Consider any request sequence. First we provide a partitioning of the
request sequence as follows. The request sequence is partitioned into iterations. Iteration 0
is the empty sequence and for every i ≥ 1, iteration i consists of a request sequence of a
length dependent on α, β, and the iteration number i. The request sequence of an iteration i is
chosen dependent on a given online algorithm ALG such that ALG must move at least once
in iteration i. We will see that while ALG needs to move at least once per iteration, there is an
offline algorithm which only moves once every at least n/2 iterations.

In the proof, we reduce all the cases to two extreme cases. In the first case, we reduce the
original metric on a set of n nodes with k ≤ bn/2c servers to the case where there is only 1
server. To do this, we first place sufficiently many requests on k − 1 nodes that have servers
at the beginning of execution (for simplicity, assume that we place an unbounded number of
requests on these nodes). This prevents any algorithm from moving its servers from these
k− 1 nodes during the execution and hence we can ignore these k− 1 nodes an servers in our
analysis. In contrast, for the second case where k > bn/2c, we assume that w.l.o.g., k = n−1
by simply only placing requests on the k nodes which have servers at the beginning and on
one additional node.

In the following, we let ti denote the end of an iteration i. Moreover suppose I is the total
number of iterations, where we assume that I ≡ 0 (mod max {k, n− k}).

Case k ≤ bn/2c: The idea behind the execution is to uniformly increase the number of
requests on the n − k nodes that do not have the server at the beginning of an iteration i (i.e.,
at time ti−1) in such a way that ALG has to move at least once to satisfy (6.2) at the end of
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iteration i. Moreover the distribution of requests guarantees that any node without the server
at time ti−1 is a candidate to have the (free) server of ALG at time ti. Let vAt denote the node
on which ALG locates its server at time t and let U(t) be the set of all nodes without server at
time t. Moreover, let v∗t be a node which has the largest number of requests among all nodes
at time t. The node with the largest number of requests at the end if an iteration i, i.e. v∗ti , is
chosen such that v∗ti 6= vAti−1

. At time 0, we have ru = 0 for all nodes u. The distribution of
requests at the end of iteration i is as follows:

∀u ∈ U(ti−1) \
{
v∗ti
}

: ru = rv∗ti−1
+ max {β, 1} , (6.4)

rvAti−1
= rv∗ti−1

, (6.5)

rv∗ti
= (α− 1) · S∗ti + rv∗ti−1

+ β. (6.6)

Note that since it is clear from the context, we skip the second subscript (i.e., t) when referring
to the number of requests at a node (cf. Section 6.1.1).

Claim 6.2. The above execution guarantees that ALG has to move at least once per
iteration. Further, there exists an offline algorithm A that moves its servers at most
I/(n− k) times.

Proof. Consider any interval of n−k iterations such that the first iteration of this interval
has ending time τ1 and the finishing time of the last iteration (or the finishing time of the
interval) is τn−k. Further, suppose the previous interval has finished at t̂. Obviously, if
this is the first interval, t̂ = 0. Let U := U(t̂) \ ⋃τn−k

t=τ1

{
vAt
}

denote the set of nodes
which have not had the server of ALG during this interval. The offline algorithm for all
iterations of this interval, locates its server either on node vAτn−k if set U is empty or on
some node in U , otherwise. The case in which U is empty indicates that every node in
U(t̂) has had the server of ALG exactly once within the interval. Whenever the offline
algorithm needs to move, it locates its server at a node in U ∪

{
vAτn−k

}
. On the one hand

and according to (6.4), node vAτn−k or any node in U (in the case this set is not empty) has
at least rv∗ti−1

+ max {β, 1} requests at the end of each iteration i that is in this interval.
Therefore, the offline service cost at ti is

SA
ti
≤ (α− 1) · S∗ti + 2rv∗ti−1

+ β + (n− k − 2) ·
(

max {β, 1}+ rv∗ti−1

)
(6.7)

On the other hand, the optimal service cost is

S∗ti = (n− k − 1) ·
(

max {β, 1}+ rv∗ti−1

)
+ rv∗ti−1

(6.8)

using (6.4), (6.5), and (6.6). Hence (6.7) and (6.8) imply that

SA
ti
< αS∗ti + β. (6.9)

This guarantees that offline algorithm does not need to move more than once during any
interval of n − k iterations. In other words, at the beginning of the interval, the offline
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algorithm decides to locate its server to a node in U ∪
{
vAτn−k

}
if it needs because it

knows the behavior of the online algorithm in advance as well as the request sequence.
According to (6.9), this one movement by A is sufficient to keep (6.2) satisfied within
the interval. Therefore, the offline algorithm moves at most I/(n− k) times.

At the end of each iteration i, if the online algorithm has not moved yet within the
iteration i then we have vAti−1

= vAti . Thus,

SAti = (α− 1) · S∗ti + rv∗ti−1
+ β + (n− k − 1) ·

(
max {β, 1}+ rv∗ti−1

)
(6.10)

with respect to (6.4), (6.5), and (6.6). Therefore due to (6.8) and (6.10) we have SAti =
αS∗ti+β. This implies that the online algorithm must had moved at least once to guarantee

∀i : vAti−1
6= vAti .

Thus ALG has to move once per iteration and then the claim holds.

Corollary 6.3. The Claim 6.2 implies that

MO
t ≤

MA
t

n− k .

where t be the ending time of (c · (n− k))-th iteration for any integer c ≥ 1.

Proof. It follows by the fact that MO
t ≤MA

t .

Case k > bn/2c: Here when we have more servers than half of the nodes, we assume,
w.l.o.g. n = k + 1. This is doable by letting the requests arrive at a fix set of nodes of size
k + 1 including k servers. Therefore, at each time there is only one node without a server in
which this situation holds for any algorithm. Let v̄At denote the node without any server of
ALG at time t. We force ALG to move in each iteration i by putting large enough number
of requests on v̄Ati−1

while any optimal offline algorithm only moves one of its servers after at
least k iterations. Consider an interval of k iterations starting from the first iteration of this
interval with ending time τ1 and ending at the last iteration at time τk. For any iteration i of
this interval the distribution of the requests at the end of the iteration is as follows.

rv̄Ati−1
= αS∗ti + max {β, 1} . (6.11)

According to (6.11) the optimal service cost does not change during the interval, i.e. S∗τi =
S∗τi+1 for all i ∈ [k − 1] of the current interval.

Claim 6.4. The above execution guarantees that ALG has to move at least once per
iteration while the number of movements by any optimal offline algorithm is at most I/k.
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Proof. At the end of iteration i, assume v̄Ati−1
= v̄Ati , then we have

SAti = αS∗ti + max {β, 1} ≥ αS∗ti + β (6.12)

using (6.11). It implies that the online algorithm must had moved at least once to guaran-
tee

∀i : v̄Ati−1
6= v̄Ati .

The optimal offline algorithm, by contrast, need to move a server from v̄Aτk to v̄Aτ1
during the interval with respect to the request distribution in (6.11). The node v̄Aτk is the
node has αS∗

t̂
+max {β, 1} requests within the interval due to (6.11) where t̂ is the ending

time of any iteration of the previous interval. Hence, at the end of any iteration i in the
interval, the optimal offline service cost equals the optimal service cost and thus (6.2)
remains satisfied. Consequently it implies that at most one movement by optimal offline
algorithm is sufficient during the interval. This concludes that the number of movements
by any optimal offline algorithm is at most I/k in this case.

Let t be the ending time of (c · max {k, n− k})-th iteration for any integer c ≥ 1. Using
Corollary 6.3 and Claim 6.4

MA
t ≥ max {n− k, k} ·MO

t ≥
n

2
·MO

t .

Thus the claim of the theorem holds.

6.3 Chapter Notes
The first question related to the movement problem studied in this chapter is that whether the
result provided by Theorem 6.1 is tight.

Inspired by the resemblances between the movement problem introduced in this chapter
and the paging problem (i.e., the k-server problem with uniform distances), a natural direction
would be to study randomized online algorithms for the problem against oblivious adversaries.
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