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Abstract

In current biomedical research 3D time-lapse microscopy allows to investigate developmental pro-
cesses, such as the growth of whole organisms, on the cellular level. Embryos of zebrafish (Danio
rerio) or fruit fly (Drosophila), for example, can be recorded in vivo in 3D space. Processes such as cell
division and cell migration can be observed, that lead to the formation and growth of tissue, and finally,
to the development of the whole organism. Analyzing cell motion and the emerging motion patterns
is crucial for the understanding of developmental processes and their underlying mechanisms. Typi-
cally, experiments in genomics, proteomics and metabolomics aim at comparing wild-type organisms
to genetically manipulated organisms, usually referred to as mutants. The goal is to link observable
changes in the manipulated organisms (changes in the phenotype) to the underlying genetic manipula-
tion (manipulation of the genotype) to infer the function of certain genes. Generally, a quantitative and
unbiased comparison is desired to discover differences and verify their statistical significance. Such
experiments usually generate huge amounts of data, consisting of time sequences of 3D volumetric im-
ages. Since manual evaluation is neither feasible nor desired, techniques for automated image analysis
have become indispensable.

This thesis presents approaches that enable motion pattern analysis in complex biomedical appli-
cations based on 2D and 3D time-lapse microscopy. They allow precise physical measurements for
quantitative analysis and robust comparisons of motion patterns, which is essential for evaluating ex-
periments in biomedical research and specifically in developmental biology.

Two methods that are based on a trajectory representation of motion provide the main contributions
of this thesis. Trajectories yield a rich motion representation, including long-term motion information,
that is independent of object appearance, which is very important in microscopy when comparing
images that are affected by different imaging settings.

In chapter 2 we propose a general method to detect motion anomalies in 3D+time data. The setting
of anomaly detection fits well to the usual biomedical tasks where wild-type patterns define a normal
model and significant deviations, i.e. anomalies, are to be detected in mutants. We detect anomalies
by placing spatiotemporally deformed instances of a prototype pattern to reconstruct a test pattern. In
the test pattern, we regard poorly reconstructed patterns showing strong deviations from the elastically
registered prototype patterns as anomalies. To define accepted variations a prototype model is learned
from multiple training sequences. We propose a new method for elastic registration of 3D+time tra-
jectory patterns, together with a new efficient and robust supertrajectory representation and a modified
hashing approach to efficiently produce transformation hypotheses. The method performs well in de-
tecting subtle anomalies on a new motion anomaly dataset of juggling patterns, and we demonstrated
the applicability to biological motion patterns in zebrafish development.

The second trajectory-based method allows to detect specific motion patterns in 3D+time data using
spatiotemporal geometrical models. In particular, we developed a model to detect cell intercalation
which is an essential pattern in developmental biology. Cell intercalations occur when cells enter the
space between adjacent cells and play an important role in tissue formation. The approach builds on
single cell motion trajectories and specifies the motion pattern to be detected by spatiotemporal tran-
sition functions of a geometrical model. The method is robust to noisy and incomplete measurements
and handles the variability within the class of 3D intercalations. We applied our method to biological
data from zebrafish development and performed a quantitative comparison of cell intercalations and
their motion statistics between wild-type and mutant embryos.

Two contour-based approaches form the second part of this thesis. Instead of trajectories, sequences
of evolving contours are used to represent motion patterns.

We propose a new robust, effective, and surprisingly simple approach for the segmentation of cells
in phase contrast microscopy. Phase contrast microscopy generates strong intensity gradients along
interfaces of media with different physical densities. They allow to obtain clear boundary responses
even for perfectly transparent samples. However, classical edge-based image segmentation fails due
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to the complex intensity profile consisting of a bright-to-dark and a dark-to-bright transition at the
boundary and other artifacts from phase contrast microscopy. Our algorithm exploits the properties of
positive phase contrast microscopy where the true cell borders always appear as a dark-to-bright tran-
sition in outwards direction. The segmentation mask is effectively found by a fast min-cut approach.
In contrast to classical min-cut our graph contains directed edges with asymmetric edge weights. This
modification to classical min-cut allows to choose optimization parameters from a wider range without
affecting segmentation performance and surpasses segmentation quality with symmetric edge weights.
We outperformed the top ranked methods from the ISBI Cell Tracking Challenge (CTC) 2014 on the
phase contrast dataset, and reached second place in the ISBI CTC 2015.

We were able to directly apply our approach for cell segmentation on phase contrast images to
produce cell contour input data for our second contour-based method. It investigates migrating cells
and their motion patterns. We developed a method to detect symmetry-breaking events, which enabled
automatic browsing of large amounts of data for these cellular events of interest. To investigate motion
patterns along the cell contour, we implemented a method to compute protrusion/retraction maps that
visualize the contour velocities in a 2D map in polar contour coordinates over time. We applied the
approach to the analysis of spontaneous and electric field-controlled front-rear polarization of human
keratinocytes. Our approach enabled the quantification of several experimental conditions and led to
the extraction of biologically relevant results.

In conclusion, this thesis contains several contributions to tackle the task of motion pattern analysis
and quantitative comparison in biomedical applications from 3D+time data. The presented approaches
build on trajectory- and contour-based representations and yielded robust methods that have been suc-
cessfully applied in real biomedical applications and published in the field of computer vision, as well
as in the field of biology and at the intersection of image analysis, imaging and biomedical applications.

It seems reasonable to focus future research into the direction of deep learning as it is currently the
most exciting and promising field for advances. However, many open questions and challenges have to
be addressed to solve the tasks considered in this thesis using deep learning. For the near future, using
a mixture of conventional and deep learning methods seems to be the most promising approach.
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Zusammenfassung

In der aktuellen biomedizinischen Forschung erlaubt es die 3D Zeitraffer-Mikroskopie Entwicklungs-
prozesse, wie zum Beispiel das Wachstum kompletter Organismen, auf zellulärer Ebene zu untersu-
chen. Embryos vom Zebrafish (Danio rerio) oder der Fruchtfliege (Drosophila) zum Beispiel können
in vivo in 3D aufgenommen werden. Prozesse wie Zellteilung und Zellmigration können beobachtet
werden, die zur Anordnung und zum Wachstum von Gewebe, und schließlich zur Entwicklung des
gesamten Organismus führen. Die Analyse von Zellbewegungen und der entstehenden Bewegungs-
muster ist entscheidend für das Verständnis von Entwicklungsprozessen und deren zugrundeliegenden
Mechanismen. Typischerweise zielen Experimente in Genomik, Proteomik und Metabolomik auf den
Vergleich von Wildtyp und genetisch manipulierten Organismen, auch Mutanten genannt, ab. Das Ziel
ist es, beobachtbare Veränderungen in den manipulierten Organismen (Änderungen im Phänotyp) mit
den zugrundeliegenden genetischen Manipulationen (Manipulation des Genotyps) zu verknüpfen, um
die Funktion bestimmter Gene abzuleiten. Grundsätzlich ist ein quantitativer und unverfälschter Ver-
gleich gewünscht, um Unterschiede zu entdecken und deren statistische Signifikanz nachzuweisen.
Solche Experimente erzeugen gewöhnlich riesige Mengen an Daten, bestehend aus Zeitsequenzen von
3D volumetrischen Bildern. Da eine manuelle Auswertung weder machbar noch gewünscht ist, sind
Techniken zur automatischen Bildanalyse unentbehrlich geworden.

Diese Arbeit stellt Ansätze vor, die die Analyse von Bewegungsmustern in komplexen biomedizi-
nischen Anwendungen, basierend auf 2D und 3D Zeitraffer-Mikroskopie, ermöglichen. Sie erlauben
präzise physikalische Messungen zur quantitativen Analyse und zum robusten Vergleich von Bewe-
gungsmustern, was entscheidend für die Evaluierung von Experimenten in der biomedizinischen For-
schung und besonders in der Entwicklungsbiologie ist.

Zwei Methoden, die auf einer Trajektorien-Repräsentation von Bewegung basieren, stellen die
Hauptbeiträge dieser Arbeit dar. Trajektorien liefern eine mächtige Bewegungsrepräsentation, ein-
schließlich Langzeit-Bewegungsinformationen, die unabhängig von der Objekterscheinung ist. Dies
ist zum Beispiel in der Mikroskopie sehr wichtig, wenn Bilder verglichen werden sollen, die mit unter-
schiedlichen Einstellungen aufgenommen wurden.

In Kapitel 2 schlagen wir eine generelle Methode zur Detektion von Bewegungsanomalien in
3D+Zeit Daten vor. Das Szenario der Anomaliedetektion passt gut zu den üblichen biomedizinischen
Fragestellungen, bei denen Wildtyp-Muster ein normales Modell definieren und signifikante Abwei-
chungen, d.h. Anomalien, in Mutanten gefunden werden sollen. Wir detektieren Anomalien durch das
Platzieren von raumzeitlich deformierten Instanzen eines Prototyp-Musters, um ein Testmuster zu re-
konstruieren. Im Testmuster betrachten wir schlecht rekonstruierte Muster, die starke Abweichungen
zu den elastisch registrierten Prototyp-Mustern aufweisen, als Anomalien. Um tolerierte Variationen
zu definieren, wird ein Prototyp-Modell aus mehreren Trainingssequenzen gelernt. Wir schlagen eine
neue Methode zur elastischen Registrierung von 3D+Zeit Trajektorienmustern vor, zusammen mit ei-
ner neuen effizienten und robusten Supertrajektorien-Repräsentation und einem modifizierten Hashing-
Ansatz, um effizient Transformationshypothesen zu generieren. Die Methode erzielt gute Ergebnisse
bei der Detektion von subtilen Anomalien in einem neuen Datensatz für Bewegungsanomalien von
Jongliermustern. Außerdem haben wir die Anwendbarkeit auf biologische Bewegungsmuster anhand
von Entwicklungsmustern vom Zebrafisch gezeigt.

Die zweite trajektorien-basierte Methode ermöglicht die Detektion von spezifischen Bewegungs-
mustern in 3D+Zeit Daten unter Verwendung von raumzeitlichen geometrischen Modellen. Speziell
haben wir ein Modell zur Detektion von Zellinterkalationen entwickelt. Diese stellen ein wesentliches
Muster in der Entwicklungsbiologie dar. Interkalationen treten auf, wenn Zellen in den Raum zwischen
benachbarten Zellen eindringen und spielen eine wichtige Rolle bei der Entstehung von Gewebe. Der
Ansatz basiert auf Bewegungstrajektorien von Einzelzellen und legt das zu detektierende Bewegungs-
muster durch raumzeitliche Übergangsfunktionen eines geometrischen Modells fest. Die Methode ist
robust gegenüber Rauschen und unvollständigen Messungen und kann mit der Variabilität innerhalb
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der Klasse der 3D Interkalationen umgehen. Wir haben unsere Methode auf biologische Daten der
Entwicklung des Zebrafisches angewandt und einen quantitativen Vergleich der Zellinterkalationen
und deren Bewegungsstatistiken zwischen Wildtyp- und Mutant-Embryonen durchgeführt.

Zwei kontur-basierte Verfahren bilden den zweiten Teil dieser Arbeit. Anstatt von Trajektorien, wer-
den Kontur-Sequenzen verwendet, um Bewegungsmuster zu repräsentieren.

Wir stellen ein neues, robustes, effektives und erstaunlich einfaches Verfahren zur Segmentierung
von Zellen in der Phasenkontrast-Mikroskopie vor. Phasenkontrast-Mikroskopie erzeugt starke Inten-
sitätsgradienten entlang der Schnittstelle von Medien mit unterschiedlicher physikalischer Dichte. Die-
se ermöglichen es, deutliche Antworten an Phasengrenzen zu erhalten, sogar für perfekt transparente
Zellen. Klassische kanten-basierte Bildsegmentierung schlägt jedoch fehl, aufgrund des komplexen
Intensitätsprofiles, bestehend aus einem hell-zu-dunkel und einem dunkel-zu-hell Übergang an der
Grenze und anderen Artefakten der Phasenkontrast-Mikroskopie. Unser Algorithmus nutzt die Eigen-
schaften der positiven Phasenkontrast-Mikroskopie aus, wobei die wahren Zellgrenzen immer als hell-
zu-dunkel Übergang in Außenrichtung erscheinen. Die Segmentierungsmaske wird effektiv über einen
schnellen Min-Cut Ansatz gefunden. Im Gegensatz zum klassischen Min-Cut, enthält unser Graph ge-
richtete Kanten mit asymmetrischen Kantengewichten. Diese Modifikation gegenüber dem klassischen
Min-Cut ermöglicht es, Optimierungsparameter aus einem größeren Bereich zu wählen, ohne die Seg-
mentierungsqualität zu beeinflussen und übertrifft die Segmentierungsqualität mit symmetrischen Kan-
tengewichten. Wir haben auf dem Phasenkontrast-Datensatz die bestplatziertesten Methoden aus dem
ISBI Cell Tracking Challenge (CTC) 2014 übertroffen und erreichten den zweiten Platz bei dem ISBI
CTC 2015.

Es war uns möglich, unseren Ansatz zur Zellsegmentierung in Phasenkontrast-Bildern unmittelbar
zur Berechnung von Zellkonturen für unseren zweiten kontur-basierten Ansatz zu verwenden. Dieser
untersucht migrierende Zellen und deren Bewegungsmuster. Wir haben eine Methode zur Detektion
von symmetrie-brechenden Zellereignissen entwickelt, die ein automatisches Durchsuchen von großen
Datenmengen nach diesen zellulären Ereignissen ermöglicht. Um Bewegungsmuster entlang der Zell-
kontur zu untersuchen, haben wir eine Methode implementiert, um Protrusions/Retractions-Karten zu
berechnen. Diese visualisieren die Konturgeschwindigkeiten in einer 2D-Karte in Polarkoordinaten
über die Zeit. Diesen Ansatz haben wir zur Analyse von spontaner und durch ein elektrisches Feld
gesteuerter Polarisation von menschlichen Keratinocytes angewendet. Unser Ansatz ermöglichte die
Quantifikation von mehreren experimentellen Bedingungen und lieferte biologisch relevante Ergebnis-
se.

Zusammenfassend stellt diese Arbeit mehrere Verfahren vor, die zur Analyse von Bewegungsmus-
tern und zum quantitativen Vergleich in biomedizinischen Anwendungen mit 3D+Zeit Daten beitragen.
Die präsentierten Verfahren basieren auf trajektorien- und kontur-basierten Repräsentationen und lie-
fern robuste Methoden, die erfolgreich auf reale biomedizinische Fragestellungen angewandt wurden
und im Bereich Computer Vision, sowie im Bereich Biologie und an der Schnittstelle von Bildanalyse,
Bildgebung und biomedizinischen Anwendungen veröffentlicht wurden.

Es erscheint sinnvoll, zukünftige Forschung in die Richtung von Deep Learning zu fokussieren, da
dies das gegenwärtig aufregendste und vielversprechendste Feld für Fortschritte ist. Allerdings müssen
zuerst viele offene Fragen und Herausforderungen behandelt werden, bevor die Aufgabenstellungen
in dieser Arbeit mit Deep Learning Ansätzen gelöst werden können. Für die nahe Zukunft scheint es
daher am aussichtsvollsten zu sein, eine Mischung aus konventionellen und Deep Learning Methoden
einzusetzen.

10



Contents

1 Introduction 13
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3 Challenges for Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.6 Collaborations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.7 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

I Trajectory-based Methods 25

2 Spatiotemporal Deformable Prototypes for Motion Anomaly Detection 27
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 Supertrajectory Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Hierarchical Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Supertrajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Detection of Motion Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.1 Detection Hypotheses by Efficient Hashing . . . . . . . . . . . . . . . . . . . 32

2.5 Elastic Registration of Motion Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.1 Trajectory Association Function . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.2 Rigid Pre-Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.3 Elastic Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5.4 Temporal discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.5 Energy Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Motion Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.6.1 Learning a Spatiotemporal Deformable Prototype Model . . . . . . . . . . . . 37
2.6.2 Reconstructing Motion Patterns by Prototype Placements . . . . . . . . . . . . 38
2.6.3 Computing Anomaly Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.7.1 Basic Validation Experiments of Elastic Registration . . . . . . . . . . . . . . 39
2.7.2 Anomaly Detection in Juggling Patterns . . . . . . . . . . . . . . . . . . . . . 43
2.7.3 Anomaly Detection in Biological Motion Patterns . . . . . . . . . . . . . . . . 53

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3 Spatiotemporal Geometrical Models for Motion Pattern Detection 59
3.1 Biological Motivation and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2 Cell-triple Intercalation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3 Detection of Cell Intercalations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.1 Fitting the Intercalation Model . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.2 Detecting Cell Intercalations . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

11



Contents

3.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4.2 Image Quantification Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4.3 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4.5 Biological Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.5 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.6 Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

II Contour-based Methods 91

4 Asymmetric Graph Cut for Cell Segmentation in Phase Contrast Images 93
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2.1 Cell segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2.2 Cell tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3.2 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5 Contour-based Motion Pattern Analysis of Migrating Cells 105
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.2 Detection of Symmetry-Breaking Events . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.1 Calculation of Eccentricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2.2 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 Cell Contour Protrusion/Retraction Analysis . . . . . . . . . . . . . . . . . . . . . . . 109
5.3.1 Contour Extraction and Normalization . . . . . . . . . . . . . . . . . . . . . . 109
5.3.2 Calculation of Contour Velocities . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3.3 Protrusion/Retraction Measure . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.4.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.4.3 Quality Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6 Conclusion 123

Bibliography 127

12



1 Introduction

1.1 Motivation

The Biomedical Task and Setting

Figure 1.1: Complex biological motion pattern of
cell dynamics in the early development of a
zebrafish embryo. 3D rendering of cell motion
trajectories with time color-coded (from blue
to red).

In current biomedical research developmental pro-
cesses are investigated on the cellular level using
3D time-lapse microscopy. Living specimen are
recorded in vivo in 3D space and processes such
as cell division and cell migration, that lead to the
formation of tissue, the development and growth of
organs and finally the development of whole organ-
isms, can be observed at the cellular level. The tech-
nological advances in 3D time-lapse microscopy,
in particular light sheet microscopy (Keller et al.,
2008, 2010; Tomer et al., 2012), are impressive.
They revealed the early development of zebrafish
(Danio rerio) and fruit fly (Drosophila) embryos at
the cellular level. As an example, figure 1.1 depicts
the complex cell dynamics in the early development
of a zebrafish embryo. Studying developmental
processes and cell migration can help researchers
understand the underlying mechanisms and lead to
the development of new therapies for diseases that
occur when some of these mechanisms fail. Huge
amounts of 3D+time data, i.e. time sequences of 3D
volumetric images, are generated in such experiments. Since a manual evaluation is usually neither
possible nor desired, techniques for automated image analysis have become indispensable.

To answer biomedical questions the observed phenomena have to be measured precisely in a robust
and unbiased manner that yields a solid quantitative evaluation. Beyond the quantification of single
samples, i.e. the development of single specimen, the comparison of multiple samples or groups of
samples is required to draw biomedically relevant conclusions. Usually the wild-type specimen, which
represent the original natural state, form the reference group to which groups of genetically manip-
ulated specimen (mutants) are compared. The idea is to link observable changes in the manipulated
specimen, i.e. changes in the phenotype, to the underlying genetic manipulation, i.e. the manipulation
of the genotype. Using the link between genotype and phenotype, the final goal is to infer the role
and function of specific genes. High throughput screening experiments present an efficient way to test
for the effect of a large number of drugs. Screening allows to quickly detect drugs or modifications
affecting the phenotype of different target groups. However, automatic localization and quantitative
description of the differences requires high-content imaging and remains a very challenging task.
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Challenges for Automated Image Analysis and Quantitative Comparisons

Properties of the Imaging Technique

Several issues make this task challenging, first of all, the properties of the imaging technique that is
at the interface between biology, or medicine, and image analysis. In 3D microscopy the point spread
function (PSF) characterizes the impulse response of the optical system and results in an anisotropic
resolution which is reduced along the optical axis. Other optical effects such as light absorption,
refraction and scatter occur together with different kinds of noise introduced at various stages of the
image acquisition pipeline. When it comes to the comparison of different recordings additional issues
arise. The use of different imaging settings for example introduces artificial variations that can bias the
comparison. In certain scenarios however the use of different imaging settings is unavoidable, which
becomes particularly critical in terms of quantitative comparisons if the used settings correlate with
the different groups to be compared. This may introduce a systematic bias not related to any actual
difference. Image analysis techniques are required to be robust not only to varying imaging settings
but ideally operate robust across different microscopes, different imaging modalities, and in general be
imaging device independent.

Amount of Training Data

Another limitation in biomedical applications, especially with 3D time-lapse microscopy, is that usu-
ally only few data samples are available, which is due to the time-consuming sample preparation and
recording. This makes the problem difficult for learning-based approaches that rely on a sufficient
amount of training data to capture variability. Moreover, creating ground truth annotations, that are
required for supervised learning, can be very time-consuming, e.g. for 3D segmentation tasks. Con-
sequently, the biomedical field, in contrast to the field of computer vision, cannot rely on large public
image databases with annotations. Compared to standardized medical recording devices, in biology an
ever increasing zoo of experimental microscopes emerges, leading to an amazing data variety in terms
of content and quality. Additionally, often annotation quality of the few available public datasets is
insufficient for supervised learning.

Distinguishing Relevant from Irrelevant Variations

A main challenge in pattern recognition is to distinguish relevant from irrelevant variations in the data.
The same holds for quantitative comparisons and the determination of differences, which requires ap-
proaches that are invariant or robust to all irrelevant variations, such that only the relevant variations,
i.e. discriminative features, remain that can be measured and compared. Relevance of variations is de-
pendent on the specific task and the prior knowledge available or given by the expert. The kind of prior
knowledge usually determines the design of the image analysis algorithm. In the biomedical setting,
apart from irrelevant variations caused by the image acquisition process, common irrelevant variations
include location, orientation or slight elastic deformation of the recorded specimen. Normalization is
one general approach to achieve invariance. It comprises detection and registration, to compensate for
spatial transformations, such as shift, rotation, scaling or elastic deformation. For time-lapse data, de-
tection also incorporates the temporal dimension and, similar to elastic registration in space, dynamic
time-warping allows to register time sequence information. After normalization the aligned datasets
can be compared directly by some measure and the differences can be localized. Localization involves
both, space and time, e.g. spatially w.r.t. the anatomy, and temporally w.r.t. the course of development
of the organism. Most often differences must be localized relative to the anatomy, e.g. using anatomical
coordinates or mapping to an atlas. Anatomical structures can be obtained by segmentation or fitting a
model to the data. Localization alone however gives no clue about the nature of the differences. Instead
a model is required that expresses the differences in meaningful parameters, that can be measured. If,
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for example, the only difference is an increased speed of development then differences would be de-
tected at many locations, but just a model that considers temporal transformations could explain the
differences in a meaningful way.

Amount of Prior Knowledge - Three Scenarios

In the following, we give three examples with decreasing degree of prior knowledge, which makes the
tasks increasingly difficult. The case that a hypothesis about the difference is a priori known or not is
also included.

1. Hypothesis and prior knowledge available: In this example, the early development of zebrafish
is investigated using 3D+time data showing the cell dynamics of wild-type and mutant embryos.
A specific hypothesis is a priori available, namely that differences exist in the dynamic behavior
of cells that perform cell intercalations, i.e. cells that enter the space between adjacent cells.
Mainly two kinds of prior knowledge were used: 1) Since only the dynamic behavior of cells is
of interest, a motion representation by cell trajectories was used. 2) Since only cell intercalations
are in the focus, cell intercalation events were detected and analyzed. This scenario is described
in detail in chapter 3.

2. No hypothesis, but prior knowledge available: This example also investigates the early ze-
brafish development using 3D+time data showing the cell dynamics of wild-type and morphant
embryos. However, no specific hypothesis about differences is a priori available, apart from
that only the dynamic behavior of cells is of interest. In this scenario, a motion representation
by cell trajectories was used. The task was formulated more generally as an anomaly detection
problem. A precise generative model of the commonly observed variations in the normal class,
i.e. the wild-type group, is learned. Any deviation of a test sample that goes beyond the learned
model will be detected as an anomaly, i.e. as a significant difference. The approach is more
generally applicable and introduced in chapter 2.

3. No hypothesis and no prior knowledge available: This scenario states the most difficult case
where neither a hypothesis about the difference nor any prior knowledge about the task is avail-
able. In this setting, only the raw data of the different groups is available. The possibility of
addressing this universal task with a general learning approach is discussed in section 1.3 and in
the outlook of this thesis in section 6.

Focus on Motion Patterns

This thesis focuses on motion patterns in particular, as motion, apart from the appearance, is an im-
portant means to capture temporal dynamics and evolution. It allows recognizing actions or detecting
special events, for example, in the context of human motion or patterns in a traffic scene. Motion in the
biomedical context can be considered from the macroscopic level, such as e.g. the motion of a mouse
down to the microscopic level, where e.g. the motion of single cells is observed. Here, we consider
biomedical motion patterns at the microscopic level, where cell migration is an essential mechanism
that drives the development and growth of organisms. Using motion as the primary feature yields a
clear advantage: The representation is inherently invariant, or at least robust, to appearance changes,
due to different microscopy settings, different imaging devices or even different imaging modalities.
Thus, the motion representation introduces prior knowledge into the task that helps to obtain robust
solutions.

There are two principle ways to represent motion as illustrated in figure 1.2, at the top. Both originate
from fluid dynamics in physics and differ in the point of view of the observer. In the Lagrangian
representation the observer is located on the particles that flow through space driven by the flow field.
Particle trajectories X(x0, t) are functions of a reference location x0 at reference time t0 and time t.
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Figure 1.2: Representations of motion patterns. At the top
the two principle representations of motion are shown:
Lagrangian and Eulerian representation. At the bottom
the representations of motion patterns considered in this
thesis are illustrated. Grid-based methods are not part
of this thesis.

In the Eulerian representation the ob-
server is located at a fixed position x,
where the observed flow u(x, t) is a func-
tion of location x and time t. While the
Lagrangian case yields a dynamic repre-
sentation using trajectories the Eulerian
case yields a stationary representation of
the flow observed at fixed locations.

This thesis focuses on the Lagrangian
representation of motion based on tra-
jectories and is further divided into two
parts. Part I deals with trajectory-
based representations, as illustrated in
figure 1.2 at the bottom left. In the ex-
ample, the motion of three adjacent cells
is illustrated using trajectories, where the
central cell enters the space between the
adjacent cells and performs a cell interca-
lation. This is an example of a sparse tra-
jectory representation, where single ob-
jects, in this case cells, are represented by
single trajectories. We apply this repre-
sentation for motion patterns of cell nu-
clei in zebrafish, both for the detection
of cell intercalations in chapter 3, and for
anomaly detection in section 2.7.3. If in
contrast to individual object tracking the motion pattern of the whole scene is of interest, a dense trajec-
tory representation can be used. In this case each point on a regular grid on the image can be tracked.
We initialize our representation by dense point trajectories for anomaly detection in chapter 2. Track-
ing can be a very challenging task and is thus not reliably possible in all scenarios. However, once
trajectories are extracted they serve as a very robust, efficient and rich representation able to encode
even long term motion information. Tracking algorithms themselves are not subject of this thesis, we
rather use available techniques to obtain trajectories. Dense point trajectories were computed by large
displacement optical flow (Sundaram et al., 2010), while trajectories of cell nuclei in zebrafish were
provided by the biologists directly.

Part II is concerned with contour-based representations, as illustrated in figure 1.2 at the bottom in
the middle. The example shows the evolving contour of a cell that changes its shape while starting to
move. Six contour points are marked and connected to the corresponding points in the next frame. The
contour-based representation is based on a closed contour that segments the object of interest, e.g. the
cell, and the association of contour points across time. The motion pattern represented is the evolution
of a contour. It is a special case of the trajectory-based representation with trajectories sampled only
along the contour, plus the spatial connectivity and ordering a contour implies.

Grid-based representations, as illustrated in figure 1.2 at the bottom right, correspond to the Eulerian
representation of motion. The example depicts a cell dividing into two compartments, cell contours
are only included for better visualization. The vectors of the flow field are indicated for each grid
cell: There is no flow outside the cell, randomly oriented flow inside the cell, and reduced flow at the
evolving inner cell boundary. During my work I experimented with the grid-based representation using
dense optical flow and was able to gain promising preliminary results in an application to intra-cellular
motion patterns of growing and dividing plant cells (Protoplasts). Grid-based methods are however not
part of this thesis.
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Goal

In conclusion, the goal of this thesis is to develop approaches that allow robust quantification and
comparison of motion patterns in the context of biomedical applications and specifically 2D and 3D
time-lapse microscopy. Robustness in terms of microscopy requires device independent approaches.
The restricted number of samples, especially in 3D time-lapse microscopy, requires approaches that can
cope with a small number of training samples. Quantitative comparison requires precise measurements,
possibly within an anatomical reference coordinate system. Importantly, the comparison should, on
the one hand, yield only the relevant differences and, on the other hand, represent differences in a
meaningful and interpretable way, such as physical units or w.r.t. the parameters of a specific model.

1.2 Contributions

This thesis presents methods that enable motion pattern analysis in complex biomedical applications
from 3D+time data, specifically 2D and 3D time-lapse microscopy. The developed methods enable
precise measurements for quantitative analysis and robust comparisons of motion patterns, which is
essential for evaluating experiments in biomedical research and specifically developmental biology.
The approaches have been successfully applied to real world problems within several collaborations
and have been published in the area of computer vision (Bensch et al., 2017, 2015), as well as in the
field of biology (Saltukoglu et al., 2015; Bensch et al., 2013) and life sciences (Ulman et al., 2017) and
at the intersection of image analysis, imaging and biomedical applications (Bensch and Ronneberger,
2015). The thesis divides into two parts, trajectory-based and contour-based methods.

Trajectory-based Methods

Spatiotemporal Deformable Prototypes for Motion Anomaly Detection

We developed a general method that enables motion anomaly detection in 3D+time data (Bensch et al.,
2017, 2015). It is based on a new efficient and robust representation by “supertrajectories”. An effi-
cient hashing approach and a new method for elastic registration of 3D+time trajectory patterns allows
placing spatiotemporally deformed instances of a prototype pattern to reconstruct a whole test pattern.
A prototype model is learned from multiple sequences to define accepted variations. Anomalies are
detected in the test pattern as poorly reconstructed patterns, which show strong deviations from the
elastically registered prototype patterns. Unlike most existing methods, our method enables processing
of 3D+time data, as opposed to 2D+time data, features anomaly detection in the context of a proto-
type model and explicitly models spatiotemporal deformations. The method performs well in detecting
subtle anomalies on a new motion anomaly dataset of juggling patterns and outperforms an anomaly
detection approach based on chaotic invariants (Wu et al., 2010). The strength of our method is that
it can cope with few training samples while still generalizing well to patterns in different 3D position,
orientation and with spatiotemporal deformations. Motion anomaly detection is highly relevant to the
comparison of biological motion patterns. We demonstrated the applicability of our approach on the
quantitative comparison of motion patterns from the early development of zebrafish embryos (Bensch
et al., 2017, 2015). As a result, we obtained a detailed spatiotemporal analysis of differences between
wild-type and morphant embryos (genetically modified).

Spatiotemporal Geometrical Models for Motion Pattern Detection

We developed a method to detect specific motion patterns in 3D+time data using spatiotemporal ge-
ometric models. In particular, we developed a model to detect an essential pattern in developmental
biology referred to as cell intercalation (Bensch et al., 2013). Cell intercalations occur when cells enter
the space between adjacent cells and play an important role in tissue formation. The method builds on
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motion trajectories of single cells and models the motion pattern to be detected using a spatiotemporal
geometrical model. The presented method enables the robust detection of cell intercalations in real
3D+time biological data. It is robust to noisy and interrupted measurements and handles the variability
within the class of 3D intercalations. We successfully applied our method to obtain quantitative com-
parisons of cell intercalations and their motion statistics between wild-type and mutant embryos in the
early development of zebrafish (Bensch et al., 2013). While the biological results and contributions are
reported in Bensch et al. (2013), this thesis in addition elaborates on the methods for cell intercalation
detection.

Contour-based Methods

Asymmetric Graph Cut for Cell Segmentation in Phase Contrast Images

We developed a new robust, effective, and surprisingly simple approach for the segmentation of cells
in phase contrast microscopy (Bensch and Ronneberger, 2015). Phase contrast microscopy generates
strong intensity gradients along interfaces of media with different physical densities. They allow to
obtain clear boundary responses even for perfectly transparent samples. However, classical edge-based
image segmentation fails due to the complex intensity profile consisting of a bright-to-dark and a
dark-to-bright transition at the boundary and other artifacts from phase contrast microscopy. The key
feature of our algorithm is that it strongly favors dark-to-bright transitions at the boundary of (arbitrarily
shaped) segmentation masks. This exploits the appearance of true cell borders in positive phase contrast
microscopy which form a dark-to-bright transition in outwards direction. The segmentation mask can
be effectively found by a fast min-cut approach. The small but essential difference to standard min-cut
based approaches is that our graph contains directed edges with asymmetric edge weights, which has
never been applied to phase contrast microscopy, to the best of our knowledge. Our evaluation on
phase contrast datasets from the ISBI Cell Tracking Challenge (CTC) (ISB) shows that asymmetric
edge weights yield better results while being less sensitive to the selected graph cut parameters. Our
method outperforms the top ranked methods from the ISBI CTC 2014 on the phase contrast dataset
and reached second place, winning against the previously 1st ranked method, in the ISBI CTC 2015
(Bensch and Ronneberger, 2015; Ulman et al., 2017; ISB). The accurate segmentation of cells is an
important basis for further analysis and quantification in biomedical applications.

Contour-based Motion Pattern Analysis of Migrating Cells

We successfully applied our approach for cell segmentation in phase contrast images to analyze cell
migration and cell contour motion patterns. We developed a method that, based on the extracted cell
contours from 2D time-lapse data, detects so-called symmetry-breaking events. This enabled automatic
browsing of large amounts of data to focus on these cellular events of interest. To investigate motion
patterns along the cell contour, we implemented a method to compute so-called protrusion/retraction
maps. These visualize the (signed) contour velocities in a 2D map with polar contour coordinates on
the y-axis and time on the x-axis. Our approach enabled quantitative comparisons of several experi-
mental conditions and we contributed to the biological results published in Saltukoglu et al. (2015) and
contained in Saltukoglu (2015).

1.3 Challenges for Deep Learning

In the light of today’s success of deep learning (LeCun et al., 2015; Rusk, 2016), the question may
arise whether the presented approaches in this thesis are still up-to-date. To answer this question, we
first observe that current deep learning approaches, both in computer vision and in biomedical image
analysis, solve rather “basic” tasks, such as classification, detection, segmentation and registration.
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Tracking, specifically multi-target tracking, is a more difficult problem as it combines several tasks.
Solving the problem end-to-end is a desired objective in deep learning. It means that only the raw
input data and a ground truth for the final output data must be given and the deep learning approach
will learn “everything in between” as a kind of black-box.

However, to date no deep learning approach has tackled the complex tasks presented in this thesis
in an end-to-end fashion. The tasks at hand require a quantitative comparison of groups of 4D datasets
(3D+time volumetric data) based on precise physical measurements. Moreover, beyond a localization
of the differences, the comparison should yield a meaningful description of the differences and often
the assessment of statistical significance is required. Several reasons make the tasks at hand difficult
for deep learning approaches:

• The tasks at hand usually consist of several subtasks. Compared to conventional approaches that
solve the problem step-by-step, deep learning as an end-to-end “black-box” approach has the
disadvantage that it is hard to understand the learned internal function and to access intermediate
results, which hampers engineering and development of complex approaches.

• In our setting training data is scarce, which is a problem for deep learning as it relies on large
amounts of training data. This problem is even more severe with 3D+time data, as the number
of possible variations is significantly increased.

• Usually a lot of prior knowledge about the task is available and required for the analysis, e.g.:
Where is the focus of the analysis? What to measure and compare? Is the relation to anatomical
structures important? Which spatial or temporal transformations are irrelevant, or which might
be relevant? Without incorporating any prior knowledge it might be very hard to achieve the
desired result with deep learning, or even to obtain a reasonable training network. While explic-
itly embedding prior knowledge through network design can be difficult, prior knowledge can
be induced implicitly in an elegant way using data augmentation by e.g. sampling from and ap-
plying irrelevant transformations. However, including very specific prior knowledge, e.g. what
to measure and compare exactly, might be very difficult and moreover deviates from the idea of
end-to-end learning.

• Achieving robustness to irrelevant variations, especially fulfilling the demand for device-
independent approaches (imaging settings, imaging modalities, microscopes) is hard because
of the restricted amount of training data. Additionally, even if a sufficient amount of training
data containing e.g. variations of the imaging setting is available, the behavior and result for
a new dataset with so far unseen imaging settings is unpredictable. Recent domain adaptation
approaches may help to solve this issue. Kamnitsas et al. (2016) showed promising results for
transferring knowledge between different CT scan modes using adversarial networks. In our
approaches in part I, we directly build upon a motion representation by trajectories, which basi-
cally neglects the appearance and is thus inherently robust to changes of the appearance. Building
upon a motion representation is an example for including prior knowledge, without which the
task for an end-to-end deep learning approach would be much more difficult from the beginning.

• Localization of the differences in the input data space (sequence of images) is possible with deep
learning, however obtaining a meaningful description of differences and especially the assess-
ment of statistical significance is difficult with deep learning (see section “Pitfalls” in Anger-
mueller et al. (2016)).

• The huge amount of data that has to be processed for comparing groups of 4D volumetric datasets
might pose a practical challenge for applying deep learning in terms of memory consumption and
training time.
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In conclusion, applying deep learning in an end-to-end learning fashion for quantitative comparisons
in the complex biomedical tasks at hand poses several challenges to be addressed. For complex tasks
it might even be hard to achieve a solution using an end-to-end deep learning approach. Therefore,
the approaches in this thesis are still up-to-date and present state-of-the-art. One exception is the cell
segmentation approach presented in chapter 4. This rather “basic” task has been outperformed by the
U-net (Ronneberger et al., 2015), which is a convolutional neural network (CNN) for biomedical image
segmentation. We want to note that the U-net relies on a sufficiently large amount of training data and
data augmentation techniques, while our approach (Bensch and Ronneberger, 2015) requires only very
few training data.

The conclusion gives an outlook on future research and discusses perspectives of deep learning for
the tasks considered in this work.

1.4 Structure

This thesis is organized into two parts, trajectory-based methods (chapter 2 and chapter 3) and contour-
based methods (chapter 4 and chapter 5). Chapter 2 presents our approach to motion anomaly detection
using spatiotemporal deformable prototypes. It first introduces the supertrajectory representation and
then focuses on efficient detection and the new method for elastic registration of motion trajectory pat-
terns. Based on this, our approach to motion anomaly detection is described and extensive experiments
are presented. Chapter 3 introduces our approach to motion pattern detection using spatiotemporal
geometric models. The cell-triple intercalation model and our approach to detect cell intercalations
is described, followed by the experiments. Contour-based methods first present our approach for cell
segmentation in phase contrast images using asymmetric graph cut in chapter 4. First, the properties of
images from phase contrast microscopy are introduced to motivate the use of asymmetric edge weights.
The description of cell segmentation using min-cut with asymmetric costs and cell tracking is followed
by the experiments, including results on the ISBI Cell Tracking Challenge (ISB; Ulman et al., 2017).
Chapter 5 describes our method for contour-based motion pattern analysis of migrating cells. Cell
contours are based on the cell segmentation approach presented in chapter 4. We first introduce our
method to detect symmetry-breaking events, then describe how cell contour protrusion/retraction anal-
ysis is performed, followed by the experiments. In chapter 6 we summarize the results of the thesis,
draw our conclusions and provide an outlook on future research.
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• The topic described in chapter 3 was initiated by a collaboration with Sungmin Song and
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for Systems Biology, University of Freiburg and Renal Devision, University Hospital Freiburg)
and Matias Simons (Center for Systems Biology, University of Freiburg; Renal Devision, Uni-
versity Hospital Freiburg and Imagine Institute, Paris Descartes University-Sorbonne Paris Cité)
who provided the biological task, datasets and experiments and the biological expertise. The
biological results in section 5.4.4 and a compressed version of the methods about segmenta-
tion, detection of symmetry-breaking events and protrusion/retraction analysis are published in
Saltukoglu et al. (2015) and are contained in the PhD thesis by Deniz Saltukoglu (Saltukoglu,
2015).
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1.7 Notation

1.7 Notation

The following notations are used throughout this thesis. In most cases, fields and matrices are repre-
sented by capital letters, while single values or vectors are represented by lower case letters. Further
notations in the thesis are introduced directly on their first appearance.

N Set of natural numbers (positive integers)
R Set of real numbers
C Set of complex numbers
x ∈ R,C Scalar real or complex value
x ∈ Rn,Cn N-dimensional vector of real or complex values
X ∈ Rn×m,Cn×m Matrix of real or complex values
xT ,XT Vector-, Matrix transpose
‖ · ‖ L2 norm of a vector
| · | Absolute value
〈x, y〉 Inner product of x and y
x× y Cross product of x and y
X N-dimensional scalar field (e.g., a gray-valued image)
X N-dimensional vector field (e.g., a gradient field)
X(x) Scalar value (e.g., an intensity value) at position x of scalar field X
X(x) Vectorial value (e.g., a gradient) at position x of vector field X

∇X =
(
∂X
∂x1

, . . . , ∂X∂xn

)T
Gradient operator on scalar field X : Rn → Rn

∇X(x) Gradient of scalar field X at position x
f : X → Y : x 7→ y Function that maps an element in domain X , x ∈ X , to an element in

codomain Y , y ∈ Y
f : Rn → Rm : x 7→ y Function that maps a point in n-dimensional real coordinate space,

x ∈ Rn, to a point in m-dimensional real coordinate space, y ∈ Rm
f [a, b](x, y) Function with variables x and y, and parameters a and b
f̂ , â Estimate of function f , estimate of parameter a
Ω Domain of a function
exp Exponential function
R Rotation matrix
Ω ⊂ N×R Motion pattern domain, with domain of trajectories i ∈ N and time

t ∈ R
x(i, t) : Ω→ R3 Motion pattern position function. x(i, t) yields the position of trajec-

tory i at time t
w(i, t) : Ω→ {0, 1} Motion pattern validity function. w(i, t) = 1 means that trajectory i

exists at time t and the position is valid
u(i, t) : Ω→ R3 Motion pattern spatial deformation function. u(i, t) yields the spatial

deformation vector of trajectory i at time t
τ(i, t) : Ω→ R Motion pattern temporal warping. τ(i, t) yields the temporal warping

of trajectory i at time t
ẋ := dx

dt Time derivative, short-hand notation
ẋ(i, t) Motion pattern velocity vector of trajectory i at time t

————
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2 Spatiotemporal Deformable Prototypes for
Motion Anomaly Detection

In this chapter, we present an approach for detecting motion anomalies. We formulate the problem as a
reconstruction task, in which a test sample is explained using a prototype pattern. To achieve this, the
prototype pattern is detected and elastically registered against a test sample to detect anomalies in the
test sample. The prototype model is learned from multiple sequences to define accepted variations. We
rely on dense point trajectories as the underlying motion representation. From these, “supertrajecto-
ries” are computed based on hierarchical clustering that serve as an efficient and robust representation
of motion patterns. An efficient hashing approach provides transformation hypotheses that are re-
fined by a spatiotemporal elastic registration. We propose a new method for elastic registration of
3D+time trajectory patterns that induces spatial elasticity from trajectory affinities. Finally, anomalies
are detected in the test sample as poorly reconstructed patterns, which show strong deviations from the
elastically registered prototype patterns.

This task is highly relevant to the comparison of biological motion patterns, in which typically
the wild-type pattern (normal behavioral pattern) is compared to a pattern resulting from genetically
modified specimen (e.g. mutants). Usually the task is to quantify whether the classes are significantly
different, and if this is the case, moreover to localize the deviations. The method is evaluated on a
new motion anomaly dataset of juggling patterns and performs well in detecting subtle anomalies.
Moreover, we demonstrate the applicability to biological motion patterns.

The material presented here has been published in the International Journal of Computer Vision
(Bensch et al., 2017) and presented at the British Machine Vision Conference (Bensch et al., 2015) in
a previous version.

2.1 Introduction

An anomaly is generally a deviation from what is regarded as normal. Since there are no examples
from which distinct features of the anomaly could be learned, anomaly detection cannot be modeled

  normal abnormal

(a) (b) (c)

Figure 2.1: Motion anomaly detection in juggling patterns. (a) Motion pattern prototype: Standard 3-
ball cascade pattern. (b-c) Detection of local anomalies in context of prototype detections (bounding
boxes) of different jugglers in different 3D poses. The anomaly score is plotted for supertrajectories
from low/normal (blue) to high/abnormal (red).
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2 Spatiotemporal Deformable Prototypes for Motion Anomaly Detection

as a discriminative classification task. We must rather learn a precise generative model of normal pat-
terns, for which we have examples, and detect anomalies as cases that are not sufficiently explained by
this model. In this work, we consider motion-based anomaly detection from video and present a new
setting of anomaly detection. Compared to existing approaches in the literature, we formulate anomaly
detection as the task of detecting subtle anomalies in the context of a well-defined, reproducible motion
pattern, termed motion pattern prototype. We want to detect instances of this prototype and localize
anomalies in its context. Anomaly detection is performed by reconstructing an unseen motion pat-
tern by prototype placements. Subpatterns that remain poorly reconstructed are detected as abnormal.
For reconstruction, we start with a robust detection followed by a spatiotemporal elastic registration
of a deformable prototype. Our method copes with 3D+time data, while existing methods deal with
2D+time data. Specifically, in our setting 3D+time data denotes motion trajectories in 3D space. For
detection, we allow for temporal shift and 3D spatial translation and rotation. 3D scaling is not mod-
elled explicitly and therefore will be recognized anomalous in principle. However, elastic registration
is able to compensate for scaling to some extent. A statistical prototype model is learned from training
data. It defines the accepted spatiotemporal deformations and deviations. Figure 2.1 illustrates our set-
ting of anomaly detection with an example of juggling patterns. In this example, the prototype defines
a standard 3-ball juggling pattern. It is robustly detected under various transformations. Deviations
from the standard pattern are localized as anomalies. We stress that, in this work, we are interested
in anomalies in the motion pattern rather than the object appearance. For example, we do not want to
detect an anomaly, if a “normal” motion pattern is performed but the person is wearing a different shirt.

The presented material extends a preliminary version that has been published in Bensch et al. (2015).
Mainly, the experimental evaluation has been extended considerably. Experiments on biological motion
patterns are added, together with extended evaluation of anomaly localization, elastic registration and
supertrajectory representation that give additional insights. Moreover, the method description has been
extended and made more comprehensible, in particular the detection and elastic registration of motion
patterns. Furthermore, the section on related work has been extended and mathematical formalisations
have been simplified, among many other minor improvements.

An overview of our method is given in figure 2.2. In the next section, we first summarize the related
work. Then the main parts of our approach, namely the supertrajectory representation, the detection
and elastic registration of motion patterns and the anomaly detection are explained. The experimental
section provides basic validation experiments of elastic registration and evaluates the performance of
our approach on a new motion anomaly dataset. Moreover, we demonstrate the relevance and general
applicability of our method in experiments on biological motion patterns. While in the motion anomaly
dataset 3D+time data originates from Kinect 2D+depth data, the biological motion patterns stem from
3D volumetric microscopy recordings.
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Figure 2.2: Overview of our approach.
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2.2 Related Work

2.2 Related Work

In general, “anomaly detection refers to the problem of finding patterns in data that do not conform to
expected behavior” (Chandola et al., 2009). Accordingly wide is the variety of applications, ranging
from intrusion detection for cyber-security and fraud detection for credit cards to textual anomaly
detection, industrial damage, or medical anomaly detection and image processing (Chandola et al.,
2009).

This work focuses on video-based anomaly detection (Popoola and Wang, 2012; Saligrama et al.,
2010). In this field, predominantly video surveillance applications are found in the literature, such
as surveillance scenarios for crowded scenes of people or traffic scenes (Mahadevan et al., 2010;
Saligrama and Chen, 2012; Kratz and Nishino, 2009; Piciarelli et al., 2008; Hu et al., 2006).

In these scenarios usually a fixed scene and camera setting is assumed and absolute position infor-
mation is the predominant feature. Commonly, a fixed spatial (and temporal) grid representation is
used and local statistics of grid cells are learned. Anomalies are detected for cells in which the ob-
served statistics deviate from the learned model. Mahadevan et al. (2010) model the normal crowd
behavior by mixtures of dynamic textures (MDTs) that jointly model appearance and dynamics of the
scene. Various methods use optical flow to represent motion dynamics (Saligrama and Chen, 2012;
Adam et al., 2008; Kim and Grauman, 2009). In Saligrama and Chen (2012) local statistical aggre-
gates are built upon local feature descriptors based on optical flow computed at each spatio-temporal
location. Adam et al. (2008) maintain probabilities of optical flow in local regions, using histograms.
Kim and Grauman (2009) extract local optical flow and enforce consistency across locations through
Markov Random Field (MRF) models. Benezeth et al. (2009) uses background subtraction to extract
motion labels, these local features are then modeled using a 3D MRF. Kratz and Nishino (2009) extract
spatio-temporal gradients to fit a Gaussian model and use a Hidden Markov Model (HMM) to detect
abnormal events.

Trajectory-based methods constitute another category of approaches, that usually uses object-
trajectories of tracked persons, or cars in traffic scenes for example (Piciarelli et al., 2008; Sillito and
Fisher, 2008; Hu et al., 2006; Li et al., 2013; Nait-Charif and McKenna, 2004; Dee and Hogg, 2004),
but also temporally shorter and dense trajectory representations, such as representative trajectories for
crowd flow obtained from clustering particle trajectories in Wu et al. (2010). In Piciarelli et al. (2008)
single-class support vector machine (SVM) clustering is used to identify anomalous trajectories in
traffic scenes. Sillito and Fisher (2008) presents a method that uses cubic spline curves to parametrise
trajectories and an incremental one-class learning approach using Gaussian mixture models. Hu et al.
(2006) uses a hierarchical clustering of trajectories depending on spatial and temporal information and
a chain of Gaussian distributions to represent motion patterns. Li et al. (2013) introduces trajectory
sparse reconstruction analysis (SRA) that constructs a normal dictionary set which is used to recon-
struct test trajectories. A rather different approach is presented in Dee and Hogg (2004), that uses
inexplicability scores to measure the extent to which a trajectory can be regarded as goal-directed.

Trajectory-based methods share the drawback that they have to rely on a robust tracking result, which
becomes more challenging when long trajectories need to be extracted or difficult scenarios appear such
as crowded scenes. However, once a trajectory representation is available, a clear advantage over local
feature representations is the strong semantic information contained in long trajectories representing
long term motion behavior of objects or particles.

The majority of methods discussed so far, especially methods in the field of surveillance, rely on
fixed scene representations, and for instance learn models on fixed spatio-temporal grids. However, in
several scenarios absolute position or the exact location of events is not relevant for the characterization
of anomalies. Consider cases where anomalies occur invariant to their absolute position, or rather rel-
ative to a certain spatiotemporal context. Moreover, spatio-temporal transformations, such as temporal
and spatial shifts, spatial rotations or even deformations may act on motion patterns that are however
not relevant for characterizing anomalies.
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2 Spatiotemporal Deformable Prototypes for Motion Anomaly Detection

Several approaches in the literature exist that are able to deal with the scenario described above to
some extent. While the approach described in Dee and Hogg (2004) presents a rather abstract way of
measuring anomalies that only considers how goal-directed a movement is, another type of approaches
relies on bag of invariant features. For instance, in Wu et al. (2010) chaotic invariants are computed
that are invariant to position and magnitude, and a global probabilistic scene model of normality is
learned using Gaussian mixture models (GMMs). In Mehran et al. (2009) a social force model induces
interaction forces that serve as input for a bag of words approach. With these approaches localization
of anomalies is only possible indirectly by projecting anomalous features back to their spatiotemporal
domain.

Apart from basic bag of feature (BOF) approaches that usually do not consider relationships and
contextual information, which however is crucial for anomaly detection, another group of methods
exist. These methods are termed dictionary-based, or more general reconstruction-based or analysis-
by-synthesis approaches (Saligrama et al., 2010). Reconstruction-based approaches consider anomaly
detection as a reconstruction task, in which anomalies remain as poorly reconstructed entities. Antić
and Ommer use the term “video parsing” for jointly explaining the foreground from normal training
samples (Antic and Ommer, 2011). In Cong et al. (2011) a sparse reconstruction cost is used to perform
sparse dictionary selection given an over-complete spatiotemporal basis. In Cong et al. (2013) the
problem is formulated as matching against spatiotemporal segments in the training data. Boiman and
Irani (2007b,a) and similarly Roshtkhari and Levine (2013) consider the problem as spatio-temporal
composition from a database of patch ensembles or a codebook. Reconstruction based approaches
provide a more direct explanation of the test data by concrete instances from the training data.

The presented approach is most related to reconstruction-based and analysis-by-synthesis ap-
proaches. However, several aspects distinguish the proposed method from previous work. First of
all, we want to detect anomalies in context of a specific motion pattern, termed motion pattern pro-
totype. Moreover, our method involves detection of all instances of this prototype pattern robust to
globally rigid and locally elastic spatio-temporal transformations. This allows anomaly detection spe-
cific to a certain context robust to strong variations of the normal motion pattern, both globally and
locally. Detection and elastic registration of a single prototype pattern can already explain large parts
of observed variations and contributes to a strong generalization capability. Another component is a
statistical approach that models allowed deformations and deviations in context of the prototype model.
This increases the capability of the method to distinguish normal and abnormal motion on a finer level.
Furthermore, a trajectory-based representation is used together with detection and elastic registration
that induces spatial elasticity from trajectory affinities, which to the best of our knowledge has not
been applied to anomaly detection before. The trajectory-based representation provides an expressive
as well as efficient representation. Moreover, the presented approach deals with 3D+time data, while
existing methods deal with 2D+time data.

2.3 Supertrajectory Representation

We suggest to represent motion patterns by “supertrajectories" describing the motion of local groups
of similarly moving points, see figure 2.3b. We initialize our representation by dense point trajectories
(Sundaram et al., 2010). These basic motion trajectories from tracked points constitute the lowest level
of our representation and are denoted as raw trajectories, see figure 2.3a. Trajectories are allowed to
start and end at arbitrary points in time. We define motion patterns by two functions,

xraw : Ωraw → R3,

wraw : Ωraw → {0, 1},

where Ωraw ⊂ N × R denotes the domain of raw trajectories iraw ∈ {1, . . . , Nraw} ⊂ N and time
t ∈ R. The position is denoted by xraw(iraw, t) and the validity by wraw(iraw, t). wraw(iraw, t) = 1
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Figure 2.3: Supertrajectories are inferred from a hierarchical representation of motion patterns. (a)
Hierarchical representation of motion patterns by agglomerative clustering of motion trajectories.
(b) A supertrajectory (green) provides a smooth, robust and efficient representation of a bundle of
raw trajectories (black ).

means that trajectory iraw exists at time point t and the corresponding position is valid.

2.3.1 Hierarchical Clustering

Motion patterns often exhibit a natural hierarchical composition of subpatterns. We propose a cluster-
ing step to represent bundles of similarly moving points at different hierarchical levels by “supertra-
jectories”, see figure 2.3. We build a hierarchical representation by agglomerative clustering (Everitt
et al., 2011), that iteratively groups trajectories in bottom-up manner. Low levels represent local trajec-
tory bundles, while higher levels represent object-like structures, as shown in figure 2.3a. Hierarchical
clustering is defined by a distance metric between elements and a linkage criterion that defines dis-
tances between sets of elements. We define pairwise distances between trajectories (raw trajectories or
supertrajectories) by their maximum Euclidean distance in the overlapping time window:

d(i, j) = max
t∈R

(w(i, t) · w(j, t) · ‖x(i, t)− x(j, t)‖). (2.1)

The distance between temporally non-overlapping trajectories, i.e. w(i, t) · w(j, t) = 0,∀t ∈ R, is
defined as d(i, j) = +∞. For bottom-up grouping we apply centroid linkage (Everitt et al., 2011),
that defines distances between sets of elements by their centroids. Here, the centroid of a set of raw
trajectories is computed as the supertrajectory (described in the next section). Pairs of temporally non-
overlapping trajectories are not evaluated during linkage. The resulting hierarchical cluster tree can be
cut at arbitrary levels to obtain 1 toNraw clusters. By splitting the hierarchy at a certain level, we obtain
“supertrajectories” (the clusters at the split level).

In practice, the choice of the level depends on the task and the required degree of detailedness. In our
experiments on juggling patterns in section 2.7.2, we chose the level such that the motion of a juggling
ball is represented by a single supertrajectory. This is achieved by setting the split level at distance
d = 8 cm, which is the diameter of a juggling ball. Experimental section 2.7.2 gives more details and
figure 2.11 illustrates supertrajectories at different levels including the level used in our experiments.

2.3.2 Supertrajectories

As illustrated in figure 2.3b, supertrajectories provide a smooth, robust and efficient representation of
the dominant motion of a bundle of raw trajectories. We denote the set of raw trajectories that form
one supertrajectory by Xi ⊂ {1, . . . , Nraw}, where i ∈ {1, . . . , Nsuper}. A supertrajectory is computed
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2 Spatiotemporal Deformable Prototypes for Motion Anomaly Detection

by averaging the positions of all grouped raw trajectories at each time point

x(i, t) =



∑
iraw∈Xi

wraw(iraw, t) · xraw(iraw, t)∑
iraw∈Xi

wraw(iraw, t)
if w(i, t) = 1

0 else,

where w(i, t) = max
iraw∈Xi

wraw(iraw, t). Analogous to raw trajectories, the position is denoted by a func-

tion x and the validity is denoted by a function w, on the domain Ωsuper ⊂ N × R. Because the
underlying raw trajectories may start and end asynchronously and frequently, high frequencies can be
introduced along the supertrajectory. To suppress high frequencies and reduce noise the supertrajectory
x is finally low-pass filtered in temporal direction (average filter).

2.4 Detection of Motion Patterns

We aim for reconstructing an entire test pattern by prototype placements. Based on that, we detect
anomalies in the context of the prototype. Prototype detection shall be invariant to temporal shift
and 3D spatial translation and rotation, as well as spatiotemporal deformations. In this section, we
describe how a motion pattern prototype, represented by supertrajectories, can be efficiently detected
to yield initial transformation parameters and robust correspondences. The following section deals
with the elastic registration to the underlying test pattern. The prototype pattern is denoted by the
supertrajectories xa. The test sequence is represented by the supertrajectories xb.

2.4.1 Detection Hypotheses by Efficient Hashing

To efficiently detect a prototype pattern in a new test sequence we modified the hashing approach
by Winkelbach et al. (2006) to deal with our spatiotemporal setting. Random point pairs of xa and
xb are chosen and stored in a hash table using rotationally invariant features as table indices. Hash
collisions provide transformation hypotheses with a time complexity of O(n) for the first hypothesis,
that converges to O(1) for further hypotheses.

The original algorithm by Winkelbach et al. (2006) works on oriented points, a combination of
surface points and their surface normals. To adapt it to our setting, we use points on supertrajectories
and their velocity vectors instead: (x(i, t), ẋ(i, t)) for trajectory i at time t, where ẋ := dx

dt . An
oriented point pair in our setting is termed constellation and consists of two oriented points and two
time points:

q =
(
x(i, t1); ẋ(i, t1);x(j, t2); ẋ(j, t2); t1; t2

)
. (2.2)

Figure 2.4a depicts a two point constellation on a pair of supertrajectories from the prototype pattern,
that potentially matches a constellation on a pair of supertrajectories in the test pattern.

To find similar constellations in the test pattern, we compute rotation and translation invariant fea-
tures of constellations. Using

d = x(j, t2)− x(i, t1) , e2 =
d∥∥d∥∥ ,

n1 =
ẋ(i, t1)∥∥ẋ(i, t1)

∥∥ , n2 =
ẋ(j, t2)∥∥ẋ(j, t2)

∥∥ (2.3)
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(a) (b)

Figure 2.4: Transformation hypotheses for the detection of motion patterns using a hashing approach
by Winkelbach et al. (2006) transferred to motion patterns. (a) Relative transformation T between
oriented point pairs (constellations) on pairs of supertrajectories in the prototype pattern (green) and
test pattern (blue). Oriented points, i.e. points on supertrajectories (x(i, t)) and their velocity vectors
(ẋ(i, t)), the connecting line (dashed) and the local coordinate system in the center are indicated.
(b) Relations between oriented points x(i, t1) and x(j, t2), and invariant features (highlighted in red).

we construct the rotation and translation invariant 6-component feature vector

f =



∥∥d∥∥
cosα
cosβ
γ
t1

t2 − t1


=



∥∥d∥∥〈
e2,n1

〉〈
e2,n2

〉
atan2

(
n1 · (e2 × n1), (n1 × e2) · (e2 × n2)

)
t1

t2 − t1


. (2.4)

The features including the involved angles (α, β, γ) between velocity directions n1,n2 and connecting
vector d are illustrated in figure 2.4b.

Additionally, we use the constellation to define a local coordinate system with the unit vectors and
origin

e1 =
e2 × (n1 + n2)∥∥e2 × (n1 + n2

∥∥ , e3 = e1 × e2 ,

t =
(
x(j, t2) + x(i, t1)

)
/2 , (2.5)

and the corresponding Frame F ∈ R4×4

F =

(
e1 e2 e3 t
0 0 0 1

)
. (2.6)

For the construction of a transformation hypothesis Thyp ∈ R4×4 from a constellation qa in the proto-
type pattern and a similar constellation qb in the test pattern the two extracted frames Fa,Fb only need
to be multiplied, i.e.

Thyp = Fb · (Fa)−1 =

(
R b

0 0 0 1

)
, (2.7)

where R denotes the 3×3 rotation matrix and b the translation vector that parametrize the spatial rigid
transformation that maps the constellations.

The rest of the algorithm including hypotheses generation and verification was adapted accordingly.
The output of the algorithm is a number of rigid transformation hypotheses. We parameterize them as

33
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Test patternPrototype pattern

Pattern association

Pattern transformation

Figure 2.5: Pattern association and transformation during elastic registration. The test pattern (blue)
is associated to the prototype pattern (green), which is transformed to fit the test pattern. Exemplary
an assignment (dashed red line) of test pattern point xb(ib, tb) to a prototype trajectory (light green)
and prototype point is depicted. Unassociated test pattern (gray ). A spatio-temporally smooth
deformation is illustrated (red arrows), where spatial elasticity is induced from trajectory affinities,
i.e. similar neighboring trajectories are strongly coupled.

a temporal shift tshift, and a spatial rigid transformation T : R3 → R3 with T(x(i, t)) = Rx(i, t) +b,
such that

x′(i, t) = T(x(i, t− tshift)), ∀i ∈ {1, . . . , Nsuper} (2.8)

and w′(i, t) = w(i, t− tshift) respectively.

2.5 Elastic Registration of Motion Patterns

2.5.1 Trajectory Association Function

To perform registration, both the correspondences and the transformation between prototype and test
pattern have to be estimated. We define trajectory correspondences by association function

σ(ib, tb) = ia,

that assigns test trajectory ib of pattern xb at time tb to a prototype trajectory ia of pattern xa. The
assignment is undefined σ(ib, tb) := 0, if no temporally warped prototype trajectory ia is valid at
time tb. Trajectory association is allowed to change in time, which is important, for instance, when
a temporally long trajectory corresponds to multiple temporally consecutive trajectories. Figure 2.5
illustrates the association of a point on a test trajectory to a prototype trajectory.

2.5.2 Rigid Pre-Alignment

The transformation of each detection hypothesis is refined using a scheme similar to the iterative closest
point algorithm (Besl and McKay, 1992). The energy to be minimized is the sum of squared distances
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2.5 Elastic Registration of Motion Patterns

of all points of test pattern xb to the associated points in pattern xa:

Edata(T, tshift, σ) =
∑

(ib,tb)∈Ωb

w(ib,tb)=1
σ(ib,tb)6=0

Ψ
(
‖T(xa(A[tshift, σ](ib, tb)))− xb(ib, tb)‖2

)
+

∑
(ib,tb)∈Ωb

w(ib,tb)=1
σ(ib,tb)=0

d2
undef. (2.9)

For easier notation, we define association function

A[tshift, σ](ib, tb) = (ia, ta), (2.10)

that assigns test trajectory ib at time tb to prototype trajectory ia at time ta. The function depends on the
temporal shift tshift and the trajectory association function σ. To be robust against outliers, we apply a
truncated squared norm denoted by function Ψ(d2) = d2 for d ≤ dmax and Ψ(d2) = d2

max, otherwise.
The maximum distance parameter dmax > 0 is defined during training and reduces the influence of
outliers beyond that distance. In addition, unassociated points, i.e. σ(ib, tb) = 0, are penalized with
dundef ≥ 0. The energy is minimized with respect to the rigid transformation parameters T and tshift,
and association function σ.

We note that for simplicity we use sum notations in equations 2.9,2.11 and equations 2.5.3-2.5.3 for
the time domain as well, even it is continuous and would require integral notation. In practice however,
time domain is discretized as well, which is detailed below in section 2.5.4.

We give an overview of pattern association and transformation in figure 2.5 to accompany the fol-
lowing section.

2.5.3 Elastic Registration

After rigid pre-alignment we perform a spatiotemporal elastic registration. The elastic transformation
is parametrized by a spatial deformation function u and a temporal warping τ , where

u(i, t) : Ωa → R3 and τ(i, t) : Ωa → R.

The spatiotemporally transformed motion pattern reads

x′(i, t) = x(i, t− τ(i, t)) + u(i, t− τ(i, t)) and

w′(i, t) = w(i, t− τ(i, t)) accordingly.

Data term The data term is defined analogous to equation 2.9, where the rigid transformations
(T, tshift) get replaced by deformation and temporal warping (u, τ). The data term is the sum of
squared distances of all points of test pattern xb to the associated points in pattern xa, subject to spatial
deformation and temporal warping

Edata(u, τ, σ) =
∑

(ib,tb)∈Ωb

w(ib,tb)=1
σ(ib,tb)6=0

Ψ
(
‖xa(A[τ, σ](ib, tb)) + u(A[τ, σ](ib, tb))− xb(ib, tb)‖2

)

+
∑

(ib,tb)∈Ωb

w(ib,tb)=1
σ(ib,tb)=0

d2
undef. (2.11)

Analogous to equation 2.10, we define an association function A[τ, σ](ib, tb) = (ia, ta), which
instead depends on the temporal warping τ .
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2 Spatiotemporal Deformable Prototypes for Motion Anomaly Detection

Smoothness constraints Furthermore, we formulate the following smoothness assumptions:
Firstly, the elastic transformation should be smooth both spatially (across neighboring trajectories)
and temporally (along trajectories). Secondly, the assignment function should be temporally smooth as
well. To this end, we formulate the total energy

E(u, τ, σ) = Edata(u, τ, σ) + αspatialEspatial(u, τ) + αtempEtemp(u, τ) + αassignEassign(σ), (2.12)

with weighting parameters αspatial ≥ 0, αtemp ≥ 0 and αassign ≥ 0.
Spatial smoothness. The elastic coupling within the prototype pattern is described by a smoothness

energy on the spatiotemporal deformation functions for each pair of prototype trajectories

Espatial(u, τ) =
∑
i,j,t

(i,t)∈Ωa ∧ (j,t)∈Ωa

w(i,t)=1∧w(j,t)=1

C(i, j) ·
(
‖u(i, t)− u(j, t)‖2 + βtemp(τ(i, t)− τ(j, t))2

)
.

Spatial smoothness across trajectories is defined, such that the elastic coupling between trajectories

C(i, j) = exp(−d(i, j)2/2σ2
spatial) (2.13)

depends on the pairwise distances d(i, j) (equation 2.1), where σspatial is a spatial scaling parameter (we
used σspatial = 10 cm in our experiments in section 2.7.2). The weighting between spatial deformation
and temporal warping is determined by βtemp ≥ 0. This results in strong coupling between similar
trajectories (similar moving points) and weak coupling between dissimilar trajectories, that therefore
can be transformed rather independently. Figure 2.5 illustrates such a spatio-temporally smooth defor-
mation on the domain of prototype trajectories.

Temporal smoothness. A temporal smooth transformation along trajectories is enforced by the
energy term

Etemp(u, τ) =
∑

(i,t)∈Ωa

w(i,t)=1

‖u̇(i, t)‖2 + βtemp(τ̇(i, t))2, (2.14)

where u̇ := du
dt and τ̇ := dτ

dt respectively.
Assignment smoothness. Moreover, a temporally smooth assignment is preferred by the smooth-

ness term

Eassign(σ) =
∑
i,t

(i,t)∈Ωb ∧ (i,t−∆t)∈Ωb

w(i,t)=1∧w(i,t−∆t)=1
σ(i,t) 6=0∧σ(i,t−∆t)6=0

d2
(
σ(i, t), σ(i, t−∆t)

)
,

that penalizes temporal assignment changes from one to another trajectory by their pairwise distance
d(i, j). In this way, assignment changes between dissimilar trajectories get strong penalization. Let
∆tmin be the shortest interval for assignment changes of σ, then ∆t ∈ (0,∆tmin] ⊂ R must be chosen.

2.5.4 Temporal discretization

In practice motion patterns, specifically trajectories, are not given time continuous. Instead, trajectories
are given discretized by samples along time dimension. In this respect, sum notation for time domain
becomes exact (see equations 2.9,2.11 and equations 2.5.3-2.5.3). To compute intermediate positions
on sampled trajectories we use linear interpolation between the two adjacent sampled positions.
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2.6 Motion Anomaly Detection

2.5.5 Energy Optimization

We found an approximate solution for minimizing the total energy in equation 2.12, for both the rigid
pre-alignment and the elastic registration. We apply alternating optimization of the transformation and
the assignment σ.

Given a fixed elastic transformation for example, the assignment function can be obtained by mini-
mizing the energy

E′(u, τ, σ) = Edata(u, τ, σ) + αassignEassign(σ) (2.15)

with respect to σ. This can be done by exact inference and computed efficiently by dynamic program-
ming. The rigid transformation T and the temporal shift tshift are found by a Procrustes algorithm
(Umeyama, 1991) using all point correspondences with distance d < dmax.

The elastic transformation is obtained by minimizing the energy

E′′(u, τ , σ) = Edata(u, τ , σ) + αspatialEspatial(u, τ) + αtempEtemp(u, τ) (2.16)

with respect to (u, τ). We solve this optimization problem by L-BFGS (Byrd et al., 1995), which is
a popular optimization algorithm particularly well suited for continuous optimization problems with a
large number of variables when first- or second-order information is available.

Alternating optimization is repeated until the estimated transformation converges. Both parts of
the optimization can be solved globally optimal: 1) Optimization of the transformation only involves
quadratic energy terms and thus yields a convex energy that can be solved globally optimal. 2) Op-
timization of the assignment function can even be done by exact inference, since the problem only
involves linear chains of depending variables along separate trajectories. No pairwise trajectory terms
are involved here, and thus no cyclic dependencies are present.

2.6 Motion Anomaly Detection

2.6.1 Learning a Spatiotemporal Deformable Prototype Model

First a concrete motion pattern is selected as the spatiotemporal prototype which represents a clean
and segmented instance of the “normal” motion pattern of interest, see figure 2.1a and movie 2.17.
The “normal” variations of spatiotemporal deformation and remaining deviations observed in training
sequences are learned and together with the prototype build the prototype model. The complete training
pipeline is shown in figure 2.2 (top row).

In our experiments, we manually selected a specific spatio-temporal section of the training data and
used it as the prototype pattern. In case of juggling patterns the selected prototype and its spatio-
temporal extents are depicted in figure 2.11. However, only a single prototype pattern needs to be
selected manually. Learning the prototype model from observed variations in a set of entire training
sequences, as depicted in figure 2.15, is automatic.

For learning the prototype model, the prototype pattern is detected in training sequences and D de-
tections are selected. For each detection d, the prototype pattern is rigidly pre-aligned and elastically
registered. This results in rigid transformation parameters ((Rd,bd), tshift,d) and elastic transforma-
tion parameters (ud, τd). Elastic spatial transformation parameters are transformed to the prototype
coordinate system by u′d = R−1

d ud. We build a statistical model that captures:

Global spatiotemporal deformations and data fitting costs after registration For both,
we define bounds for validating prototype registrations. Global deformation parameters are computed
by standard PCA on the concatenation of deformation parameters u′d(i, t) and τd(i, t), where (i, t) ∈
Ωa ∧ w(i, t) = 1, ∀d ∈ {1, · · · , D}. Let yd be the representation of deformations for detection d in
PCA space, with elements yd(k) and k ∈ {1, · · · ,K}. We define a bounding hyper-cuboid in PCA
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2 Spatiotemporal Deformable Prototypes for Motion Anomaly Detection

space based on the lower and upper bounds ymin(k) = mind(yd(k)) and ymax(k) = maxd(yd(k)), for
each k. Prototype data fitting costs cd are computed analogous to the data term in equation 2.11, but
averaging over valid points on the prototype domain Ωa and applying association functions mapping
from Ωa to Ωb instead. We define an upper bound based on the maximum cmax = maxd(cd).

Residual distances remaining after elastic registration For each prototype pattern point
xa(i, t) the obtained residual distances with associated training pattern points are locally aggregated
and learned using a Gaussian residual model.

2.6.2 Reconstructing Motion Patterns by Prototype Placements

For reconstructing a whole test pattern by prototype placements we apply a greedy search algorithm.
It iteratively finds best placements of prototype patterns into the test pattern. In other words, it finds
rigid transformations of the prototype pattern that are refined by elastic registration to fit parts of the
test pattern, with the goal of explaining or covering the test pattern as much as possible. The algorithm
is detailed in the following. Candidate placements are obtained from prototype detections. A priority
list defines the order of placements. It is sorted by the score s′ = r · s, where s = d2

max − c, with data
fitting cost c, described in section 2.6.1, and maximum value d2

max. The ratio of the candidate pattern
that overlaps with so far unreconstructed test pattern is denoted by r. Thus, a high score is achieved
only with good data fitting combined with good overlapping with so far unreconstructed test pattern.
In each step, the k-best candidates are elastically registered. Registered candidates are accepted only
if all deformation and data fitting parameters are within the learned bounds. Rejected candidates are
removed from the priority list. The scores of accepted candidates are updated (temporarily) and the
best accepted candidate is selected for reconstruction and removed from the priority list. The unre-
constructed test pattern is updated accordingly. The algorithm stops, if the test pattern is reconstructed
completely, or if no candidates remain that can reconstruct parts of the unreconstructed test pattern.

2.6.3 Computing Anomaly Scores

Pointwise Anomaly Score We compute an anomaly score for each test pattern point expressing
how much it deviates from the prototype model. The pointwise anomaly score is computed by taking
the minimum residual distance to all registered prototype patterns and applying the locally learned
residual model from the associated prototype pattern point.

Framewise Anomaly Score We map the anomaly scores of all trajectory points within one video
frame to a framewise anomaly score by computing the maximum. The maximum measure is better
suited for detecting local fine-grained anomalies, compared to the average measure, which is sufficient
for detecting global anomalies. In presence of strong noise, that results in outliers, using a more robust
maximum measure, such as an upper percentile is more appropriate. We use the 98%tile for very noisy
biological motion patterns, see section 2.7.3.

An anomaly profile is computed that yields the temporal progression of motion anomalies. A sam-
ple profile is plotted in figure 2.6a. Overall it shows high anomaly scores in anomalous sections and
decreasing and lower scores in normal sections, indicated by the ground truth profile. The video snap-
shots in figure 2.6b accompany the description at the marked time points on the time axis in the anomaly
profile. Decreasing anomaly scores across the edge of anomalous sections are due to continuous tran-
sitions between normal and abnormal motion, and the fact that the plotted anomaly profile is smoothed
(average filter with size of 15 frames). Also, a peak of rather high anomaly score is present in the first
normal section roughly at frame 40. The reason for this is that in this example we use the maximum
measure to compute framewise anomaly scores. This measure is maximally sensitive, meaning that
even a single anomalous trajectory in the pattern yields an increased anomaly score.
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(a) Anomaly profile (red). Ground truth profile (green). Markers on the x-axis indicate the position of the
frames shown in (b-g). The color indicates whether the frame shows a normal (blue) or abnormal motion
(red).

(b) Starting
juggling
(abnormal,
frame 28)

(c) Regular
pattern
(normal,
frame 75)

(d) Sideward
motion
(abnormal,
frame 125)

(e) Regular
pattern, short
lasting
(normal,
frame 175)

(f) Irregular
pattern, with
outside throw
(abnormal,
frame 225)

(g) Regular
pattern
(normal,
frame 275)

Figure 2.6: Anomaly profile for a juggling sequence containing several motion anomalies. (a) Anomaly
profile. (b-g) Video frames corresponding to the frame markers in the anomaly profile are shown.
Supertrajectories are plotted with a delay of 45 frames (≈ 1.5 sec). The color corresponds to the
obtained anomaly scores and ranges from blue (normal motion) to red (abnormal motion).

Global Anomaly Score In case a global anomaly assessment is desired, a single score is computed
from all pointwise anomaly scores. For quantifying biological motion patterns we compute global
anomaly scores using the 98%tile, see section 2.7.3.

2.7 Experiments

Our anomaly detection approach is basically different from most existing approaches. Accordingly, we
found existing benchmarks to be inappropriate for demonstrating our method. Popular datasets such
as the UMN dataset1 , the UCSD dataset (Mahadevan et al., 2010) or the Subway dataset (Adam et al.,
2008) present surveillance scenarios with fixed scene and camera, where absolute position is relevant
and fixed spatiotemporal grid representations are sufficient. Apart from dealing with 2D data only,
particularly the task of detecting anomalies in context of a specific motion pattern of interest is not
present. To demonstrate our method we recorded a new motion anomaly dataset from persons juggling
balls using a Kinect camera (see figure 2.10).

In this section, we present experiments on juggling patterns, with evaluation of anomaly detection
and localization, as well as insights into supertrajectory representation and elastic registration. An
application on real biological motion patterns concludes the experiments. Beforehand, basic validation
experiments demonstrate the effect of the smoothness terms on elastic registration.

2.7.1 Basic Validation Experiments of Elastic Registration

We first show basic experiments on simple 2D+time patterns to demonstrate the effect of temporal,
spatial and assignment smoothness terms. Figures 2.7, 2.8 and 2.9 first show the initial configuration

1Unusual crowd activity dataset made available by the University of Minnesota at: http://mha.cs.umn.edu/Movies/
Crowd-Activity-All.avi
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2 Spatiotemporal Deformable Prototypes for Motion Anomaly Detection

Without noise

(a)

With noise

(b)

(c) Varying αtemp (d) Varying αtemp

Figure 2.7: Effect of temporal smoothness on elastic registration. (a-b) Minimal sample pattern with
one prototype (green) and one test trajectory (red), without (a) and with noise (b) applied to the test
trajectory. Note that in this minimal case of single trajectory patterns both spatial and assignment
smoothness terms have no influence. (c-d) Registration results for increasing temporal smoothness
parameter αtemp (plots from dark to light green), for both cases (a-b).

of prototype pattern and test pattern, followed by elastic registration results for varying smoothness
parameters.

Temporal smoothness As illustrated in figure 2.7 applying no temporal smoothness (αtemp = 0)
results in an elastic deformation that tightly fits the prototype pattern to the test pattern, and overfits in
case of noise (figure 2.7c-d). Applying slight temporal smoothness instead, also yields smooth results
in case of noise (see figure 2.7d). Further increasing temporal smoothness, increases the temporal
stiffness of the resulting deformation and converges towards a (trajectory-wise) rigid transformation in
the limit, see the progression of registration results for increasing αtemp in figure 2.7c-d. Note that in
this minimal example of single trajectory patterns spatial and assignment smoothness terms have no
influence.

Spatial and assignment smoothness Figure 2.8 illustrates the effect of spatial and assignment
smoothness using four extreme cases. A prototype pattern consisting of two parallel running trajec-
tories is registered to a single sinusoidal test trajectory. Compared to the previous minimal single
trajectory example in figure 2.7, a second prototype trajectory adds spatial constraints, and both spatial
and assignment smoothness terms influence the result. In case smooth assignment of test to prototype
trajectories is disabled (αassign = 0) the assignment changes immediately in favor of fulfilling the data
term instead, see left columns in figure 2.8b-c. In contrast, when assignment smoothness is applied (in
this example αassign = 1000) the assignment stays constant for the whole time range the test trajectory
exists, see right columns in figure 2.8b-c. On the other hand, adding spatial smoothness leads to an
elastic coupling of neighboring trajectories in the prototype pattern. As the example in figure 2.8b
shows, the two neighboring trajectory are smoothly deformed together when spatial smoothness is ap-
plied (αspatial = 1, bottom row) compared to the other extreme where spatial smoothness is disabled
(αspatial = 0, top row).

Spatio-temporal smoothness In addition to the previous examples figure 2.9 demonstrates the
effect of varying spatial and temporal smoothness parameters using more complex patterns of circular
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(a)
αassign = 0 αassign = 1000
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(b)
αassign = 0 αassign = 1000

(c)

Figure 2.8: Effect of spatial and assignment smoothness on elastic registration. (a) Minimal sample
pattern with two prototype (green) and one test trajectory (red). Note that in this minimal case of two
prototype trajectories, only a single degree of spatial elasticity is present. (b) Registration results
in four extreme cases of spatial and assignment smoothness parameter combinations. In all cases
αtemp = 0.5 is chosen. (c) Trajectory association functions σ shows the assignment of test trajectory
to prototype trajectories for both cases αassign = 0 and αassign = 1000 in (b).
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(a) xy-view (b) xyt-view

(c) Varying αtemp (αspatial = 0)

(d) Varying αspatial,
σspatial = 37.5

(e) Varying αspatial,
σspatial = 1.25

Figure 2.9: Effect of spatio-temporal smoothness on elastic registration. (a-b) Sample pattern with
four prototype (green) and four test trajectories (red). Two pairs of contrary circular motions are
present (top and bottom). (a) xy-view (b) xyt-view (c) Registration results for increasing temporal
smoothness parameter αtemp (plots from dark to light green), αspatial = 0. (d-e) Registration results
for increasing spatial smoothness parameter αspatial (plots from dark to light green), αtemp = 0.5. (d)
Large σspatial. (e) Small σspatial.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 2.10: Juggling pattern test datasets of different persons performing the standard 3-ball cascade
pattern including various anomalies. (a-d) One person from four different viewpoints. (e-g) Three
further persons performing the same juggling pattern. (h) Background motion. Supertrajectories
are shown over a range of 45 frames (≈ 1.5 sec), the color corresponds to the depth obtained from
Kinect camera.

motions, see figure 2.9a-b. Also, the influence of the elastic coupling parameter σspatial is shown (fig-
ure 2.9d-e). Figure 2.9c demonstrates two properties: 1) Prototype trajectories are allowed to deform
independently from each other towards the test pattern when spatial smoothness is disabled. 2) Increas-
ing temporal smoothness, increases temporal stiffness towards a (trajectory-wise) rigid transformation
(light green plot), while low temporal smoothness results in high temporal elasticity and tight fit to the
test pattern (dark green plot). Figures 2.9d-e show that with increasing spatial smoothness the result-
ing deformation becomes increasingly spatially stiff. While the elastic coupling is primarily induced
by pairwise trajectory distances, it is scalable by parameter σspatial (see equation 2.13). In this exam-
ple, using a large value results in strong coupling between all trajectories and with increasing spatial
smoothness yields results towards a globally rigid transformation, see figure 2.9d. In contrast, when
using smaller values, coupling between trajectories is reduced and with increasing spatial smoothness
rather yields locally rigid transformations, see figure 2.9e where only the coupling within the two pairs
of circular motion remains strong.

2.7.2 Anomaly Detection in Juggling Patterns

Dataset

To demonstrate our method we recorded a new motion anomaly dataset using a Kinect camera from
persons juggling balls. From the obtained RGB-D data we extract 3D+time motion patterns as follows.
Motion trajectories are generated by large displacement optical flow tracking (Sundaram et al., 2010),
which was adapted to use depth in addition to RGB data. The tracking algorithm generates 2D tra-
jectories, which we transform to 3D by adding the depth coordinates. Background motion is removed
using a threshold on the maximum velocity.

Multiple persons performing a standard 3-ball cascade juggling pattern were recorded from different
viewpoints, see figure 2.10. For testing, we recorded similar sequences, but asked the persons to include
”anomalies“ randomly. Given training sequences and a selected prototype pattern, the task is to detect
anomalies in test sequences, in context of the learned prototype model.

For training, three sequences (200 frames each) were used, that contain juggling patterns from three
different persons, recorded in frontal view with 1.5 m distance to the camera. We chose a rather small
training set with a single viewpoint to demonstrate generalization capabilities of our method. For test-
ing, we used 29 sequences (150-480 frames each; in total more than 11.000 frames). They contain
juggling patterns from five different persons including anomalies, recorded in different viewpoint and
positioning settings: frontal and angular side view, close and far distance to the camera (1.5 m and
2.5 m) and different positions of the person. Challenging sequences are included that contain back-
ground motion (see figure 2.10h), persons moving while juggling and two persons juggling side-by-
side (see figure 2.1b). Anomalies included are manifold and comprise anomalous single ball throws
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Table 2.1: Juggling patterns test set overview

Sequence Person Frames Distance to juggler View angle

1 1 141 1.5m 0◦

2 1 460 1.5m ±20◦

3 1 220 2.5m 0◦

4 1 460 2.5m ±20◦

5 2 250 1.5m 0◦

6 2 440 2.5m 0◦

7 3 410 1.5m 0◦

8 3 430 1.5m ±20◦

9 3 420 2.5m 0◦

10 3 420 2.5m ±20◦

11 4 430 1.5m 0◦

12 4 360 1.5m ±20◦

13 4 440 2.5m 0◦

14 4 440 2.5m ±20◦

15 5 460 1.5m 0◦

16 5 420 1.5m ±20◦

17 5 440 2.5m 0◦

18 5 410 2.5m ±20◦

19 3+5 370 2.5m 0◦

20 3+5 480 2.5m 0◦

21 1 280 1.5m 0◦ . . .± 20◦

22 1 410 1.5m. . .2.5m 0◦ . . .± 20◦

23 1 350 1.5m. . .2.5m 0◦ . . .± 20◦

24 1 320 1.5m 0◦

25 1 250 1.5m 0◦

26 1 390 1.5m 0◦

27 2 360 1.5m. . .2.5m 0◦ . . .± 20◦

28 2 400 1.5m 0◦ . . .± 20◦

29 2 450 1.5m ±20◦

In total: #persons: 5, #sequences: 29, #frames: 11.111

(high or outside throws, see figure 2.1b-c), completely different juggling patterns or juggling mistakes
resulting in ball drop for example. Complementary to figure 2.10, see movie 2.17 to get a better im-
pression of the recorded training and test sequences. An overview of the test set is given in table
2.1.

We generated a framewise anomaly ground truth. Additionally, we provide a segmentation of jug-
gling relevant motion patterns (hands and arms of persons, and juggling balls) for both, the train and
test set. The segmentation is given as a pointwise labelling of supertrajectories from our representation.

Evaluation

We quantitatively evaluate anomaly detection, i.e. classifying each video frame as normal or abnormal,
see figure 2.14 and table 2.2, and show qualitative results for anomaly localization in figure 2.15 and
figure 2.16. In addition, qualitative results give insights into the supertrajectory representation (see
figure 2.11) and the elastic registration (see figure 2.12 and figure 2.13).
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Anomaly detection ROC curves are generated by thresholding the anomaly profile (figure 2.6a) at
different levels. We compare against an existing anomaly detection method, namely chaotic invariants
(CI) for anomaly detection in crowded scenes (Wu et al., 2010)2. Among the methods with code
available, CI is the most related one as it provides invariance to position and magnitude. To the best
of our knowledge, there is no previous method that deals with 3D+time data. However, to provide a
comparison for CI on 3D+time data as well, we extended the approach to 3D.

The evaluation is based on a temporally short prototype pattern (25 frames), see figure 2.1a and
figure 2.11c. The prototype model is learned from the training sequences, and anomaly detection
is performed on all 29 test sequences. For comparison, we evaluate two versions of Wu et al. (2010):
1) chaotic invariants only (position invariant), we denote by CI and 2) absolute position added to CI, we
denote by CI+pos. We perform anomaly detection as described in Wu et al. (2010). For comparability,
we provide the same optical flow to both methods (large displacement optical flow (Brox and Malik,
2011)). Since the approach by Wu et al. (2010) does not include model detection, it performs anomaly
detection on the whole frame. We use the segmentation of juggling relevant motion patterns to provide
the method by Wu et al. (2010) with segmentation information. To obtain a framewise anomaly score
we use the maximum measure, whereas chaotic invariants (Wu et al., 2010) use the mean measure.

Results

Supertrajectory representation Figure 2.11 gives insights into the applied supertrajectory rep-
resentation. Supertrajectories are plotted for increasing split levels using the example of the juggling
pattern prototype. The raw trajectory pattern in figure 2.11a shows bundles of highly redundant tra-
jectories tracing the ball parabolas (at the top) and circular hand and arm movements (at the bottom).
Note that for visualizing the 4D patterns (3D+time), we have to resort to 3D projections, such as
xyz-plots (miss temporal dynamics) and xyt-plots (miss spatial z-dimension). With increasing level,
specified by distance d, the hierarchical cluster tree gets split at higher levels (review illustration in
figure 2.3a). In this process, an increasingly larger set of raw trajectories, with larger spatio-temporal
context, contributes to each supertrajectory. One can observe a more compact representation with fewer
trajectories for ball, hand and arm motions in figure 2.11b-e. Apart from spatial merging, trajectories
also get merged and extended in temporal dimension, specifically consider the merged hand and ball
motion in figure 2.11d-e (light blue trajectory). While raw trajectories are too detailed, redundant and
inefficient for computations and high level representations, such as those shows in figure 2.11d-e, are
potentially too coarse, we used the intermediate level of representation in our experiments, see figure
2.11c. We chose the level at distance d = 8 cm, which is the diameter of a juggling ball, and thus
results in single supertrajectories for each ball motion.

Elastic registration To give insights into the elastic registration of juggling patterns we first show
exemplary results in figure 2.12 for two cases, the registration to a normal and an abnormal instance of
the test pattern. Second, the effect of varying smoothness parameters is shown in figure 2.13.

The results in figure 2.12 first of all show, that a robust spatio-temporal rigid initialization is achieved
in case of a normal as well as an abnormal instance of the test pattern, see figure 2.12a,e. These ini-
tializations are obtained during test pattern reconstruction, described in section 2.6.2. Rigid transfor-
mations are initialized from transformation hypotheses and subsequently refined by rigid and elastic
registration. Results in figure 2.12a-b and figure 2.12e-f show that after elastic registration prototype
trajectories fit well to the corresponding test trajectories, such that these test pattern points yield low
residual distances and receive low anomaly scores. In contrast, abnormal trajectories are not fit well,
due to structural differences or elastic deformations that exceed the elasticity of the prototype model.
In particular, consider the high ball throw and subsequent wide arm motion to catch the ball, which

2We thank the authors for providing essential code pieces to reimplement their method.
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(a) Nraw = 1020

(b) d = 0.04 m, Nsuper = 237

(c) d = 0.08 m, Nsuper = 91

(d) d = 0.16 m, Nsuper = 32

(e) d = 0.32 m, Nsuper = 7

Figure 2.11: Supertrajectories obtained at increasing hierarchical levels illustrated using the juggling
pattern prototype. (a) Raw trajectory pattern, with bundles of redundant trajectories. (b-e) Super-
trajectories at increasing split levels (distance d) yield an increasingly compact representation with
fewer supertrajectories. (c) Level of representation used in the experiments. (left column) xyz-view
(right column) xyt-view; Trajectory end points are marked with a dot.
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Normal test pattern instance

(a) Rigid pre-alignment

Abnormal test pattern instance

(e) Rigid pre-alignment

(b) Elastic registration (f) Elastic registration

(c) Residual distances (g) Residual distances

(d) Anomaly scores (h) Anomaly scores

Figure 2.12: Elastic registration of juggling patterns using the example of a normal and abnormal in-
stance of the test pattern. (a-d) Registration of the prototype pattern (green) to a normal instance
of the test pattern (red). (e-h) Registration to an abnormal instance of the test pattern; Both in-
stances originate from a long test sequence (depicted in figure 2.15, time markers at t = 37 sec
and t = 41 sec). For visualization xyz-plots (left columns) and xyt-plots (right columns) of super-
trajectories are used. (a,e) Rigidly pre-aligned prototype pattern. Dots mark trajectory end points.
(b,f) Elastically registered prototype pattern. (c,g) Residual distances for each test pattern point,
color-coded from blue to red for the range 0 to 50 cm. Only the test pattern is plotted. (d,h) Anomaly
scores for each test pattern point, color-coded from blue to red.
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2 Spatiotemporal Deformable Prototypes for Motion Anomaly Detection

(a) Rigid pre-alignment (b) Disabled spatio-temporal smoothness
(0,−, 0)

(c) Used smoothness parameters
(1, 0.1, 2)

(d) Moderately increased spatio-temporal smoothness
(5, 0.1, 10)

(e) Increased temporal smoothness
(1, 0.1, 100)

(f) Increased spatial coupling parameter
(1, 0.4, 2)

Figure 2.13: Effect of varying smoothness parameters on the elastic registration of juggling patterns.
The parameter triple (αspatial, σspatial, αtemp) is considered. (a) Rigidly pre-aligned prototype pattern
(green) and test pattern (red). Dots mark trajectory end points. (b-f) Registration results for varying
spatial and temporal parameters. The parameters used in our experiments are applied in (c).
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(a) (b) Our method (3D) (c) CI+pos. (2D) (d) CI (2D)

Figure 2.14: Anomaly detection ROC curves. Comparison of our method and the chaotic invariants
(CI) (Wu et al., 2010) for the two subsets A (top row) and B (bottom row). (a) Average performance
of all methods. (b-d) Performance on single sequences for each method.

receives high residual distances and high anomaly scores in figure 2.12f-g. Note that, although the
deviation of the wide arm motion is not very strong (color-coded in light blue) anomaly scores are
still very high. This is attributed to fact that deviations are evaluated relatively to the locally observed
deviations during training, which is rather low in case of arm motions.

Figure 2.13 demonstrates the effect of varying spatial and temporal smoothness parameters on elastic
registration. When smoothness is disabled, especially temporally unsmooth results are obtained, see
the registered ball trajectories in figure 2.13a. Applying the smoothness parameters we used in our
experiments, i.e. (αspatial = 1, σspatial = 0.1, αtemp = 2), results in good registration, see figure 2.13c.
Registration results seem to be robust in a certain range, see the result with moderately increased
smoothness parameters in figure 2.13d. Strong increase of temporal smoothness results in temporally
stiff and trajectory-wise rigid transformations (figure 2.13e). Increase of the spatial coupling parameter
results in spatially stiff transformations (figure 2.13f). Both cases yield too stiff transformations that
are not able to fit the test pattern well, which can be observed especially well for the ball trajectories.

Anomaly detection We split the juggling pattern test set into two subsets: Subset A contains 17
sequences with different viewpoints, i.e. the patterns are differently aligned compared to the training
data. In contrast, subset B contains 12 sequences with similar viewpoints and well aligned patterns in
2D. ROC curves in figure 2.14 show the comparison against the original 2D version of CI. The average
performance for each subset and the performance on single sequences is shown. Table 2.2 lists the
average performance for both subsets and all sequences, and includes results for the 3D version of CI.

The results in figure 2.14 and table 2.2 show that CI has problems with the strong variation between
the training and test data caused by different jugglers. CI+pos., which uses the absolute position,
achieves a competitive performance to our approach for subset B, where the absolute position is a
valuable feature. However, on subset A, where the test data includes different viewpoints, the absolute
position is a rather weak feature and our method, which is invariant to changing viewpoint, clearly
outperforms both CI and CI+pos.

To emphasis yet again, our approach outperforms CI due to its robustness to strong variations in
viewpoint, which is provided by normalization through detection and elastic registration of the proto-
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2 Spatiotemporal Deformable Prototypes for Motion Anomaly Detection

Table 2.2: Anomaly detection results of our method and the chaotic invariants (CI). The average per-
formance is given by the area under curve (AUC).

Method Subset A Subset B All sequences

CI (2D) (Wu et al., 2010) 0.42 0.53 0.46
CI+pos. (2D) (Wu et al., 2010) 0.57 0.68 0.62
CI (3D) 0.42 0.41 0.42
CI+pos. (3D) 0.51 0.55 0.53
Our method (3D) 0.71 0.73 0.72

type pattern that compensates these variations. Moreover, CI do not seem to be able to differentiate
between normal and abnormal juggling patterns, e.g. an normal versus an abnormal ball trajectory,
probably because both share similar features in a local context. However, our approach exploits the
global context of the prototype pattern to distinguish normal and abnormal trajectories.

Also the use of 3D trajectories in CI does not improve results. While using 3D in CI adds another
dimension compared to 2D, it still does not add the capabilities of our approach, such as normalization
by detection and elastic registration, and detecting anomalies in the global context of the prototype
pattern. Our method outperforms all tested variants of CI to its accurate modeling of the normal pattern
variation.

Anomaly localization We evaluate anomaly localization qualitatively from results on entire jug-
gling sequences. We utilize 2D+time projections as illustrated in figure 2.15 on the one hand, and
supertrajectories directly rendered into juggling video sequences as shown in figure 2.15d and figure
2.16 on the other hand. Supertrajectories are plotted (time-delayed in case of videos) and color-coded
from blue to red by anomaly scores ranging from zero to one.

Both figure 2.15 and figure 2.16 show several examples and scenarios that demonstrate a precise lo-
calization of anomalous motion trajectories. Moreover, results appear robust in the presence of strong
viewpoint variations and spatio-temporal deformations of the juggling pattern. Furthermore, the ap-
proach appears robust to the inter-subject variation from different persons performing the same juggling
pattern (see figure 2.16). In addition, figure 2.15a gives an example of a full juggling pattern sequence
plotted in xyt-view, and the direct relation between residual distances and anomaly scores is shown in
figure 2.15b-c. Further qualitative anomaly detection and localization results are contained in figure
2.6b-g and in figure 2.12c-d,g-h.

Video results are contained in movie 2.17 that complement the results presented in this section.
The movie shows the prototype and training sequences and anomaly detection results for five test
sequences. Anomaly detection results are rendered into the sequences and give a good impression of
the anomaly localization capability. They include the scenario of a moving juggler and two persons
juggling side-by-side.
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(a) Full juggling pattern sequence (43 sec), xyt-view

(b) Residual distances

(c) Anomaly scores

t = 23 sec

t = 30 sec

t = 41 sec
(d) Anomaly snapshots

Figure 2.15: Anomaly localization results show that anomalous motion trajectories can be precisely
localized within the entire course of a long sequence of repeating juggling cycles. Corresponds
to ”Example Sequence 2“ in movie 2.17.(a) 2D+time projection (xyt-view) of a full juggling pattern
sequence. Ball parabolas including anomalous throws (top), dense arm and hand motion (bottom).
Dots mark trajectory end points. (b) Residual distances for associated test pattern points, color-
coded from blue to red for the range 0 to 50 cm. (c) Anomaly scores for associated test pattern
points, color-coded from blue to red. (d) Anomaly video snapshots, time points marked on time-axis
in (c) by red markers. Supertrajectories plotted time-delayed (≈ 1.5 sec) and color-coded (anomaly
scores range from blue to red).
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2 Spatiotemporal Deformable Prototypes for Motion Anomaly Detection

(a) Anomalous high and outside ball throws

(b) Transition from normal to abnormal pattern (right juggler)

(c) Completely differing patterns

(d) Juggling mistakes, ball drop

(e) Background motion

Figure 2.16: Anomaly localization results show that anomalous motion trajectories can be precisely
localized within the juggling patterns. Supertrajectories are plotted time-delayed (45 frames, ≈
1.5 sec) and color-coded (anomaly scores range from blue to red). (a) The anomalous high and
outside ball throws are correctly detected in various test patterns. (b-e) Anomalies are correctly
identified in various complex scenarios.
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Movie 2.17: Additional anomaly detection results. The movie shows the prototype and training se-
quences and anomaly detection results for five test sequences. Anomaly detection results are ren-
dered into the sequences and give a good impression of the anomaly localization capability. They
include the scenario of a moving juggler and two persons juggling side-by-side. (Available online at
SpringerLink: http://www.edge-cdn.net/video_1073989?playerskin=37016)

2.7.3 Anomaly Detection in Biological Motion Patterns

Application

We show an application of our motion anomaly detection approach on real biological motion patterns.
We use 3D+time trajectory data showing global endodermal cell dynamics in the early development
of zebrafish embryos (Schmid et al., 2013), see figure 2.18. During this early developmental stage
(referred to as ”gastrulation“ in developmental biology) cells, being located on a spherical surface,
”perform a random walk to spread on the surface, followed by convergence and extension movements
to gather along the embryonic axis“ (Schmid et al., 2013). The data consists of two groups, the wild-
type patterns, see figure 2.18a-b, which represent the normal developmental motion pattern, and the
cxcr4a morphant patterns, see figure 2.18c-d, which result from genetically modified embryos. The
goal is to identify, describe and quantify significant differences with regard to the wild-type that result
from genetic modification. In Schmid et al. (2013) extensive analysis and quantification is presented
comparing both groups. Here, we apply our approach to the data and investigate differences in terms
of motion anomalies.

Dataset

The data consists of 12 wild-type (WT) embryos (normal patterns) and 12 cxcr4a morphant (MO)
embryos (genetically modified). Figure 2.18 shows exemplary motion patterns for each group. The
3D+time trajectory data is plotted as 3D rendering with time color-coded (from blue to red), see figures
2.18a,c, and as 2D Mercator projection respectively, see figures 2.18b,d. The trajectory data is given as
3D point sequences, in which 3D points represent cell locations. All points are located on a spherical
surface.

Implementation

All datasets are temporally realigned using manual time point markers (from Schmid et al. (2013)),
such that the three developmental stages denoted as 60% epiboly, 75% epiboly and tailbud stage are
matching. We resample all trajectory data to 100 time points. To learn a prototype model of normal
motion, we select one WT pattern as the prototype and learn the model using 7 further WT patterns.
We exclude 2 WT patterns from model construction, because they obviously constitute outliers. The
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Figure 2.18: Biological motion patterns of cell dynamics in the early development of zebrafish em-
bryos. (a-b) A wild-type (WT) pattern. (c-d) A cxcr4a morphant (MO) pattern. (a-c) 3D rendering
with time color-coded (from blue to red). (b-d) 2D Mercator projection.

two remaining WT patterns are kept for validation in the test phase. For testing and evaluating motion
anomalies we use the 12 MO patterns.

Results

We evaluate motion anomalies from different perspectives and on different scales. Our results concern-
ing global, temporal and spatio-temporal motion anomaly detection are presented in the following.

Global anomaly detection By computing global anomaly scores for each pattern we are able
to quantify significant differences between the WT and MO motion patterns. Figure 2.19a,b depicts
global anomaly scores for all tested patterns (12x MO, 2x WT).

The tested WT and MO patterns can be clearly distinguished when using the 99%tile for computing
global anomaly scores from all pointwise anomaly scores, see figure 2.19a. Compared to using the
maximum value, using an upper percentile gives a more robust measure in presence of noise and
outliers. Using the 98%tile yields a more sensitive result that better reflects variations within the MO
patterns, see figure 2.19b. In figure 2.19c we show how global anomaly scores change with varying
percentile value, i.e. with varying sensitivity threshold. A clear difference between the tested MO and
WT patterns can be observed. The corresponding curves for the training patterns are plotted in figure
2.19d. Excluding 1% outliers, i.e. using the 99%tile, yields a clear separation of WT and MO patterns,
as can be seen in figures 2.19c,d and figure 2.19a.

Temporal anomaly localization We analyze the temporal course of motion anomalies by com-
puting anomaly profiles. For each time point all pointwise anomaly scores are projected to a single
score using the 98%tile, again we use a robust measure as for computing the global anomaly scores.
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(a) Anomaly scores (99%tile) for all tested patterns

(b) Anomaly scores (98%tile) for all tested patterns

(c) Test patterns (d) Training patterns

Figure 2.19: Global anomaly scores clearly distinguish WT and MO patterns. (a) Using the 99%tile
clearly distinguishes WT and MO patterns. (b) Using the 98%tile yields a more sensitive result that
better reflects variations within the MO patterns. (c-d) Variation of anomaly scores with varying
percentile value. (c) Tested WT and MO patterns are clearly separated. (d) Both training and test
patterns suggest an outlier level of 1% for WT patterns. The corresponding 99%tile, as well as the
98%tile, are indicated by dashed lines.

The resulting anomaly profiles are plotted in figure 2.20 and reconfirm a clear difference between WT
and MO patterns.

Moreover, an analysis of the temporal course of motion anomalies is possible. Figure 2.20a(bottom
row) illustrates anomaly profiles for all WT training patterns (in green). Overall WT anomaly profiles
for both test and training patterns have very low scores over the main time course. However, on average
(see WT average plot) an anomaly score of about 0.3 which decreases to zero within the time window
[0, 30] can be observed. Furthermore, there is a strong variation among the WT patterns in this time
window.

This result can be explained by the following fact: At the beginning of the observed cellular motion,
cells are rather randomly distributed over the spherical shell, however with distinct distributions for
WT and for MO patterns. Moreover, cells first perform a random walk to spread on the surface, then
cellular motion transforms into a more distinct pattern of convergence and extension movements. Our
model is encoded using a prototype pattern, for which regular variations are learned. This however
cannot represent rather random variations as they appear at the beginning of cellular motion. However,
when the motion pattern gradually turns from random walk into a distinct motion, the variations can
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(a) Anomaly profiles (line plots).

(b) Anomaly profiles (color-coded anomaly scores from blue to red).

Figure 2.20: Temporal anomaly localization is shown by anomaly profiles that plot the anomaly score
along time dimension. (a) Anomaly profiles are given as line plots for MO (top row, in red) and
WT patterns (bottom row, training patterns in green, test patterns in blue). All single profiles for
the MO and the WT training patterns are given (left column). The average and 95%tiles over all
MO patterns and WT training patterns (excluding the prototype pattern) are shown (middle column).
A single representative MO pattern profile and the two WT test pattern profiles are given (right
column). (b) All anomaly profiles are additionally shown using color-coded anomaly scores (from
blue to red) for better visualization, especially for highly overlapping line plots (see MO patterns in
the time window [0, 60]).
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be explained by our model, and anomaly scores accordingly decrease, see time window [0, 30]. Only
the prototype pattern itself gives a zero anomaly profile, when evaluated with the model, see prototype
zero line plot (in bold green) or the color-coded profile plot of WT (training) pattern 2, respectively.

Figure 2.20a (top row) shows the profiles for MO patterns. Again a high variation between the pat-
terns can be observed, especially in the time window [0, 60], which is conform with the mentioned
higher embryo-to-embryo variability for MO embryos. The profiles seem to cluster into different
groups, which is easier to recognize with color-coded anomaly profile visualization, see figure 2.20b.
On average, see the MO average plot, the time course can be divided into three intervals: T1 ([0,39]),
T2 ([30,69]) and T3 ([60,99]). During the first interval, the average profile follows a similar slope com-
pared to the WT average profile. Again the same explanation as for the WT patterns holds. Anomaly
scores decrease gradually when random motion turns into a distinct pattern. Compared to WT patterns,
an offset of about 0.2 for average anomaly scores in the interval T1 indicates a motion anomaly. The
second interval is characterized by an anomaly peak on average. As can be seen from the color-coded
profiles most MO patterns have an anomaly peak at this location, however there are a few outliers,
specifically MO patterns 1, 2 and 10. In the third interval anomaly scores are consistently increasing
to a very high score for all MO patterns and the variation decreases. A single profile plot is given for
MO pattern 3, which is a representative for the cluster of profiles that have a strong peak at around time
point 50.

Spatio-temporal anomaly localization We further compute the anomaly density on the spher-
ical shell and accumulate densities for time interval T1-T3 to localize motion anomalies on a spatio-
temporal scale, see figure 2.21. The anomaly density is computed by accumulating anomaly scores into
bins on the spherical surface, parametrized by spherical coordinates (polar angle θ and azimuthal angle
ϕ). The values are finally normalized by the area of the spherical bins. Figure 2.21 shows the anomaly
density in comparison to the cell density in the three consecutive intervals T1-T3. Both the average
over all MO patterns, as well as a single pattern (MO pattern 3) is shown. In interval T2 a clear motion
anomaly spot is localized on the left side of the plot (anterior side of the embryo). It corresponds to
the temporal peak observed in figure 2.20. The spot is increasing to a larger motion anomaly region
in interval T3, which corresponds to high anomaly scores at the end of the anomaly profiles in figure
2.20.

Overall, the proposed approach quantifies significant differences between wild-type and morphant
motion patterns and localizes motion anomalies in the spatio-temporal domain.

2.8 Conclusion

We have presented a new approach to motion anomaly detection in complex motion patterns. The prob-
lem is formulated as a reconstruction task, in which a test sample is explained using prototype patterns.
Prototype patterns may appear anywhere in a video and in any orientation. Therefore, our approach
starts with a robust detection that is invariant to rigid transformations, followed by a spatiotemporal
elastic registration of the prototype pattern to the test pattern. The precise alignment of the patterns
allows us to detect and localize subtle anomalies, as demonstrated by experiments on a 3D motion
anomaly dataset. An important application area for our approach is in biomedical image analysis, with
complex developmental and growth patterns to be compared.
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(a) Cell density (b) Anomaly density

Figure 2.21: Spatio-temporal motion anomaly localization from anomaly density and cell density plots.
The three time intervals T1, T2 and T3 are considered, and for each the average over all MO
patterns and a single MO pattern (pattern 3) is shown. (a) Cell density is color-coded (from blue
to yellow) and indicated by isolines. (b) Anomaly density is color-coded (from blue to red) and
indicated by isolines. (All plots represent a map of the spherical surface, with spherical coordinate
ϕ on the x-axis and θ on the y-axis. The equator is located on the mid-horizontal line.)
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3 Spatiotemporal Geometrical Models for
Motion Pattern Detection

In this chapter, we present a method for motion pattern detection using a spatiotemporal geometri-
cal model. The method was developed to detect specific motion patterns in dense cellular motion in
4D (3D+time), namely cell intercalations. Cell intercalations occur when a cell enters the space be-
tween adjacent cells, as depicted in figure 3.1. Cell intercalation is an important mechanism in tissue
formation in developmental biology, and thus of great interest in that field.

(a)

(b)

Figure 3.1: Cell intercalation in developmental biology using the example of embryonic development
in zebrafish (from Bensch et al. (2013) with modifications). (a) Lateral views from 3D time-lapse
recordings show a cell (marked in red) intercalating between two adjacent cells (yellow crosses) in
three stages (T1 to T3). The raw data contains the nuclei fluorescence (in grey ). Tracked cell nuclei
positions are marked with crosses and calculated cell boundaries are highlighted in cyan. (b) 3D
rendering of the cell triple highlighted in (a). More details are given in figure 3.9.

We use sparse motion trajectories of tracked single cells to represent these motion patterns. Cell
intercalations are modeled using a spatiotemporal geometrical model, which is coarsely illustrated in
figure 3.2 and described in detail in section 3.2.

Detecting motion patterns that are similar to the defined intercalation model is challenging for several
reasons: 1) Position measurements of cellular motion from biological data are often very noisy or
interrupted, 2) There is a strong variability within the class of possible intercalations, 3) Compared to
planar intercalations in 2D+time, intercalations in 3D+time are more complex. We developed a method
to robustly detect cell intercalations, which is presented in section 3.3.

The method presented here originates from our work in the field of developmental biology which
we published in Biology Open (Bensch et al., 2013). The workflow of image analysis is shown in
figure 3.3. There the method was applied for the detection of cell intercalations but the description of
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T3T2T1

Figure 3.2: Spatiotemporal geometrical model of cell intercalation for a cell triple in three stages (T1 to
T3). The active cell (marked in red) intercalates between two neighboring cells by pushing through
in the indicated direction (red arrow). In the initial stage (T1) the cell centers are arranged in an
equilateral triangular configuration. When the active cell pushes through, the neighboring cells lose
contact in stage T2. The cell triple approaches a linear configuration in stage T3. More details are
given in figure 3.5.

the method itself was limited by the scope of the journal. Therefore, in this work, we present details
and focus on the methods for modelling and detecting cell intercalations (highlighted in green in figure
3.3).

In the following, we first introduce the biological motivation and related work in section 3.1. Sec-
tions 3.2 and 3.3 describe the intercalation model and the detection of intercalations. In section 3.4
we summarize the experiments conducted and the results obtained in Bensch et al. (2013), together
with application specific method and implementation details. Section 3.4 is published in Bensch et al.
(2013) in large parts.

3.1 Biological Motivation and Related Work

In the development of biological organisms, cellular reorganization is important for reshaping tissue
and thus driving morphogenesis, which “refers to the cell and tissue movements that give the develop-
ing organ or organism its shape in three dimensions” (Slack, 2005, p. 6). Specific mechanisms exist
that promote morphogenesis. Cell intercalation is one of them and denotes the process of cells enter-
ing the space between neighboring cells. This results in a local cellular reorganization. As soon as a
larger number of cells performs coordinated cell intercalation, tissue thinning, for example, can occur.
Several examples to intercalation patterns and corresponding types of tissue reshaping can be found in
Keller et al. (2000).

Figure 3.4 illustrates the importance of the cell intercalation mechanism in developmental biology
using the example of the embryonic development of the zebrafish. Radial cell intercalation occurs
“with a concomitant thinning of the deep cell layer” (see figure 3.4b), (Bensch et al., 2013, p. 845). The
process called doming initiates epiboly and states an important stage during the embryonic development
of the zebrafish (marked in green and blue in figure 3.4).

In Bensch et al. (2013), we conducted a quantitative comparison of cell intercalations and their
motion statistics between wildtype and mutant embryos of zebrafish. Due to the complexity of the
4D cellular motion patterns at hand—more than 1000 cells per recorded embryo perform complex
intermingled motion patterns, see supplementary material movies 3.20 and 3.21—a manual analysis is
impractical. Moreover, a manual analysis is always affected by a user specific bias and is not repeatable.
For these reasons, an automated method for quantification is required, specifically automated detection
of cellular events in this case.
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Figure 3.3: Workflow of image analysis (from Bensch et al. (2013) with modifications). The workflow
of image analysis is schematically presented: Starting from the raw data input (top) the successive
steps performing image analysis and data evaluations are presented. Details on the algorithms
highlighted in green are contained in section 3.2 and section 3.3. Details on the remaining algo-
rithms are contained in section 3.4.2 in the subsections with the corresponding headings. In the
data flow intermediate results are illustrated that serve as input for the subsequent algorithm. Final
results are presented at the bottom.
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Figure 3.4: Importance of the cell intercalation mechanism in developmental biology. (a) Stages of
embryonic development of the zebrafish (from Kimmel et al. (1995); Webb and Miller (2007) with
modifications). From single-cell stage (left) to dome stage (middle, marked in green), epiboly stages
(marked in blue) and a recognizable fish embryo (right). (b) Animalward doming of the yolk cell
initiates epiboly of the zebrafish embryo (from Bensch et al. (2013)). (c) Radial intercalation and
cell layer thinning during epiboly. Cells of the interior layer of the epiblast (blue, light blue, white)
intercalate between the cells of the exterior layer (light green) (from Kane et al. (2005)).

Early works, such as Irvine and Wieschaus (1994), had to rely on manual analysis from video play-
back. Photographs were taken at intervals from the video monitor and cell rearrangements were re-
constructed by following individual cells during playback of videotapes and marking their positions
onto the photographs. Fortunately, today’s methods are more elaborate. In a recent work by Lienkamp
et al. (2012) for example, a method is presented that automatically detects cellular rosette structures in
vertebrate kidney morphogenesis. In this developmental process rosette formation is a characteristic
event when remodelling of 4-cell junctions leads to tissue elongation. Other recent works that anal-
yse cell intercalations in developing tissue, present methods that measure local tissue deformation. In
Blanchard et al. (2009) a kinematic framework is presented that measures domain deformation in terms
of the relative motion of cell positions and the evolution of their shapes. Local strain rates defined by
a domain translation vector and a tissue velocity gradient tensor are computed. Also in Heller et al.
(2014) quantitative analysis of tissue deformation is performed. For determining cell-cell coordination
a Delaunay triangulation is used to connect cells to their nearest neighbors and the cosine similarity
between velocity vectors of cell pairs is computed.

In contrast to existing approaches that mainly deal with 2D (planar) intercalations, we present a
method that is able to detect cellular events in 3D+time. Obviously, this is very important because
developmental processes occur in 3D by nature and often cannot be represented in 2D. Furthermore, our
approach allows to define an explicit prototype model representing the class of events to be detected,
see figure 3.5 for example. Based on this, our method is able to detect all similar event in 3D space and
time under spatiotemporal variations from noisy input data (cellular motion trajectories).
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3.2 Cell-triple Intercalation Model
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Figure 3.5: Model of cell intercalation for a cell triple (i, j, and k) in three stages (T1 to T3) (from
Bensch et al. (2013) with modifications). (a) Geometrical model: The cell k intercalates between the
neighboring cells (i and j). Pairwise distances (blue), enclosing angles (green), contact areas (red)
and motion directions (black arrows). (b) Model functions: Enclosing angles (green) and contact
areas (red) across the three stage (T1 to T3). In the initial configuration (T1) all angles as well as all
contact areas are equal. When cell k pushes through, cell i and j lose contact in configuration T2,
i.e. contact area a∗ij (red solid) decrease to zero. When approaching the linear configuration (T3)
angle α∗

k (green solid) converges to π.

3.2 Cell-triple Intercalation Model

Cell intercalations are modeled based on the intercalation model depicted in figure 3.5. It is applied
in the overall workflow as shown in figure 3.3. This model describes an intercalation in terms of the
angles (α∗i , α

∗
j and α∗k) and contact areas (a∗ij , a

∗
jk and a∗ki) of three cells (i, j, and k). The three cells

start in a triangular configuration (time point T1) and end in a linear configuration (time point T3).
Time point T2 models the point when cells i and j lose their contact. The start and end values of the
six features for an ideal intercalation were manually defined by inspecting several clear intercalation
events in the data set. Furthermore, we assume a linear transition for all features from the start to the
end values, except for a∗ij , which drops to zero between T1 and T2 and stays zero between T2 and T3.
This function models the characteristic event, when cells i and j lose their contact at time point T2.
We point out that using angles and contact areas as local features provides invariance to 3D translation
and rotation in this detection task.

Formally, the model functions are defined as one-dimensional continuous functions, with the angles
being defined by α : R→ R : t 7→ α(t) and the contact areas being defined by a : R→ R : t 7→ a(t).
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Figure 3.6: Cell intercalation in 3D. Cell k (marked in red, cell boundaries are omitted) moves through
an 8-neighborhood of cells and starts intercalating through the upper four cells i, j, l and m. This
involves intercalations, not only in a single cell-triple, e.g. (i, j, k) (blue edges), but in five further
cell-triples (dashed blue edges). In this example, 28 cell-triples have to be considered in total. For
clarity, only 12 cell-triples are marked.

Specifically, the model functions of the angles are defined by

α∗k(t) =
1

(t3 − t1)

2

3
π · (t− t1) +

π

3
; t ∈ [t1, t3] (3.1)

α∗i (t) = α∗j (t) = − 1

(t3 − t1)

π

3
· (t− t1) +

π

3
; t ∈ [t1, t3] (3.2)

and the model functions of the contact areas are defined by

a∗ij(t) =

{
− 1

(t2−t1)ainit · (t− t1) + ainit if t ∈ [t1, t2)

0 if t ∈ [t2, t3]
(3.3)

a∗ki(t) = a∗jk(t) =
1

(t3 − t1)
(r − 1)ainit · (t− t1) + ainit; t ∈ [t1, t3], (3.4)

corresponding to the functions shown in figure 3.5b. The parameter ainit ∈ R denotes the contact
area when the cells are arranged in the initial configuration (T1). For detecting intercalations, contact
area functions are normalized, such that ainit is no free parameter, see section 3.3 equation 3.6. The
parameter r ∈ R, with r > 1, models how much cell contact areas increase, when cells get compressed
when pushing through each other. We set r = 5/3 in our experiments.

3.3 Detection of Cell Intercalations

For detecting cell intercalations in an unseen data set, cell nuclei are tracked and cell boundaries and
contact areas are inferred to extract the features necessary for fitting the intercalation model. The
different steps of processing are depicted in the workflow in figure 3.3. In this section, we assume that
the trajectories of labeled cell nuclei and the cell contact areas are already given. The experimental
section 3.4.2 gives more details about how cell nuclei positions, trajectories and cell contact areas are
computed in particular.

When cells intercalate through neighboring cells in 3D, as depicted in figure 3.6, not only a single,
but multiple cell-triple intercalations are involved simultaneously. In the example, a cell moves through
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an 8-neighborhood of cells and starts intercalating through four cells, which immediately involves six
cell-triple intercalations. However, in total 28 cell-triples have to be considered in this example, which
shows that cell intercalation in 3D is more complex than 2D planar cell intercalation.

In the following, we explain how we detect 3D cell intercalations based on the cell-triple intercalation
model. Basically, for each cell k we fit the intercalation model to all involved cell triples. This yields
intercalation scores for all contributing cell triples, which are combined to a single intercalation score
for each cell k. The algorithm groups into two steps. First, the intercalation model is fit to every
possible cell triple configuration (i, j, k), where k is the intercalating cell (described in section 3.3.1).
Second, for each cell an intercalation score is computed from all contributing cell triples (described in
section 3.3.2).

3.3.1 Fitting the Intercalation Model

The intercalation model is fit to every possible cell triple configuration (i, j, k) and to every possible
combination of start time t1, intermediate time t2 and end time t3. Throughout this and the next section
(section 3.3.2) figure 3.7 serves as a practical example. It shows measured contact areas and angles for
a single cell triple (see figure 3.7a) and gives concrete examples of the model fitting functions derived
in the following.

Energy formulation

We formulate the following total energy

E(i, j, k, t1, t2, t3) = EAngles(i, j, k, t1, t3) + γEAreas(i, j, k, t1, t2, t3)

expressing how well the intercalation model fits to a cell triple (i, j, k) with time points (t1, t2, t3),
compare to figure 3.5. The energy consists of two parts, the model fitting energy in terms of the angles
and in terms of the contact areas of the intercalation model. The parameter γ controls the influence of
the second term. We set γ = 3.8 in our experiments.

Linear regression

As mentioned before, trajectory measurements from biological data can be very noisy and interrupted.
To provide robustness, we fit linear functions to the measured data and compare these to the model
functions instead. We denote the functions representing the measured contact area and the measured
angle by a and α respectively. The linear functions â and α̂ are fit by linear regression within the
interval [t1, t3], such that

â(t) = b̂a + m̂a · t; t ∈ [t1, t3] with (m̂a, b̂a) = arg min
m,b

∫ t3

t1

(a(t)− b−mt)2dt and

α̂(t) = b̂α + m̂α · t; t ∈ [t1, t3] with (m̂α, b̂α) = arg min
m,b

∫ t3

t1

(α(t)− b−mt)2dt.

Concerning model function a∗ij , which is defined piecewise in the interval [t1, t3], linear regression
is performed for each interval separately, such that

âij(t) =

{
b̂a,12 + m̂a,12 · t if t ∈ [t1, t2)

b̂a,23 + m̂a,23 · t if t ∈ [t2, t3].

Figure 3.7b shows an example where linear functions are fit to the measurements of a single cell triple
within a certain time interval.
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(a)

(b)

(c)

(d)

Figure 3.7: Fitting the cell intercalation model, illustrated at a concrete example of a single cell triple.
(a) Measured contact areas (red) and angles (green). Time (in frames) on the x-axis. (b) Linear
functions fit by linear regression in the highlighted time intervals (the intervals [t1, t2] and [t2, t3]
are highlighted in two shades of gray ). (c) Score function (blue, see equation 3.9), detected local
maximum at t = 28 (black dot) and maximum score function (dashed blue, see equation 3.10). (d)
Intercalation score function for cell i (blue, see equation 3.11). Note, this also contains information
from other cell triples that are not shown here.
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3.3 Detection of Cell Intercalations

First energy term (angles)

The energy for fitting the angles part of the intercalation model is defined by

EAngles(i, j, k, t1, t3) =
1

(t3 − t1)

1

π2

1

3

∫ t3

t1

(α̂k(t)−α∗k(t))2+(α̂i(t)−α∗i (t))2+(α̂j(t)−α∗j (t))2dt

The energy computes a linear combination of the mean squared errors between the linear model func-
tions and the linear functions fit to the measured data. This energy term is independent of time point
t2.

Second energy term (contact areas)

The energy for fitting the contact areas part of the intercalation model is defined by

EAreas(i, j, k, t1, t2, t3) =

waij

(
1

(t2 − t1)

∫ t2

t1

(n̂ âij(t)− n∗a∗ij(t))2dt+
1

(t3 − t2)

∫ t3

t2

(n̂ âij(t)− n∗a∗ij(t))2dt

)
︸ ︷︷ ︸

Energy for fitting piecewise model function a∗ij

+

(1− waij )
1

(t3 − t1)

(
1

2

∫ t3

t1

(n̂ âki(t)− n∗a∗ki(t))2dt+
1

2

∫ t3

t1

(n̂ âjk(t)− n∗a∗jk(t))2dt

)
︸ ︷︷ ︸

Energy for fitting model functions a∗ki and a∗jk

. (3.5)

It combines the energies for fitting the piecewise model function a∗ij and the model functions a∗ki and
a∗jk to the underlying measured data. The energy is computed by linear combination of the mean
squared errors between the linear model functions and the linear functions fit to the measured data.
The parameter waij weights the importance of the model function a∗ij , that contains the characteristic
event of cells i and j losing contact. In our experiments we set waij = 0.4. Note that the second part
of this energy is independent of time point t2.

We add a normalization of the contact area functions because we do not want a scaling of the cells
to affect the model fitting. The contact area model functions are normalized by

n∗(i, j, k, t1, t2, t3) =
1∫ t3

t1
a∗ij(t) + a∗ki(t) + a∗jk(t)dt

(3.6)

and the linear functions fit to the data are normalized by

n̂(i, j, k, t1, t2, t3) =
1∫ t3

t1
âij(t) + âki(t) + âjk(t)dt

(3.7)

respectively. To simplify the notation in equation 3.5 we omitted the arguments of the normalization
functions.

Temporal filtering

Given a cell triple configuration (i, j, k) we define a temporal filtering by function fijk : R→ R : t 7→
fijk(t), such that

fijk(t) = min
t1,t3

E(i, j, k, t1, t, t3). (3.8)
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For each t, where t corresponds to the intermediate time point t2 in the intercalation model, the opti-
mal model fit is computed by minimizing the energy w.r.t. the event start and end time (t1, t3). Con-
sequently, for each t the temporal filtering computes the minimum energy corresponding to the best
model fit.

Correspondingly, for each t we denote the arguments (t1, t3) that minimize the energy by

(t1,ijk(t), t3,ijk(t)) = arg min
t1,t3

E(i, j, k, t1, t, t3).

We further map the values of fijk to a score in the range [0, 1] by

sijk(t) = exp (−λfijk(t)). (3.9)

A high score is obtained for a good model fit and a low score for a bad model fit, respectively. We set
λ = 1. In case of incomplete measurements, when a single cell is not tracked within a time interval,
for example, the score is defined to be zero. Figure 3.7c gives an example to this case.

Optimization

In our experiments the time domain is discretized by the temporal sampling of the biological record-
ings. For the optimization in equation 3.8 we use exhaustive search, i.e. we compute the energy for
each combination of t1 and t3 on the set of discretized time points, and extract the minimum. We
further restrict the event duration (t3 − t1) by defining lower and upper bounds Tmin and Tmax, such
that Tmin ≤ (t3 − t1) ≤ Tmax.

3.3.2 Detecting Cell Intercalations

Cell-triple intercalation events

To detect intercalation events local maxima of the score function in equation 3.9 are computed. We
denote detected intercalation events for a cell-triple (i, j, k) by a four-tuple

(tp, sijk(tp), t1,ijk(tp), t3,ijk(tp)),

where tp is the intermediate time point, t1,ijk(tp) and t3,ijk(tp) are the corresponding start and end time
points and sijk(tp) is the score. We discard events whose time window [t1,ijk(tp), t3,ijk(tp)] overlaps
with the time window of another event with higher score. A threshold sthr is used to suppress low
scored events with sijk(tp) < sthr. In our experiments we set sthr = 0.85.

Corresponding to the score function sijk in equation 3.9, we define a maximum score function, such
that

smax
ijk (t) =

{
sijk(tp) if ∃p : (t1,ijk(tp) ≤ t ≤ t3,ijk(tp)) ∧ (sijk(tp) ≥ sthr)
0 else.

(3.10)

At each time point t that is contained in a detection time window it yields the score of the detected
event. Figure 3.7c gives an example.

Single-cell intercalation scores

Finally, to compute an intercalation score function for each cell individually, intercalation score func-
tions from all contributing cell triples are combined by maximum pooling, such that

si(t) = max
j,k

smax
ijk (t) (3.11)

defines the single cell intercalation score for cell i. In figure 3.7d an example to this is given.

68



3.4 Experiments

3.4 Experiments

The presented method for the detection of cell intercalations enabled us to perform quantitative com-
parisons of cell intercalations and their motion statistics between wildtype (WT) and mutant (MZspg)
embryos in the early development of zebrafish (Bensch et al., 2013).

To better understand the conducted experiments, please reconsider the biological motivation we give
in section 3.1. Especially recall figure 3.4 that illustrates the developmental stages called doming and
epiboly, and deep cell layer thinning. As we mention in Bensch et al. (2013), “epiboly is the first
coordinated cell movement in most vertebrates and marks the onset of gastrulation. During zebrafish
epiboly, enveloping layer (EVL) and deep cells spread over the vegetal yolk mass with a concomitant
thinning of the deep cell layer.” (p. 845).

We tested “a prevailing model [suggesting] that deep cell radial intercalations directed towards the
EVL would drive deep cell epiboly.” (Bensch et al., 2013, p. 845) by analyzing “global deep cell
migratory behavior in WT and MZspg mutant embryos. MZspg mutant embryos are deficient in the
Pou5f1 (homolog of mammalian Oct4) transcription factor, and develop a severe delay in epiboly,
while emboly proceeds similar to WT (Lunde et al., 2004; Reim and Brand, 2006; Lachnit et al.,
2008).” (Bensch et al., 2013, p. 847).

To this end, “we have globally recorded 3D cell trajectories for zebrafish blastomeres between sphere
and 50% epiboly stages, and [. . . ] determined intercalation events, intercalation directionality, and mi-
gration speed for cells at specific positions within the embryo. This framework uses Voronoi diagrams
to compute cell-to-cell contact areas, defines a feature-based spatiotemporal model for intercalation
events and fits an anatomical coordinate system to the recorded datasets. We further investigate whether
epiboly defects in MZspg mutant embryos devoid of Pou5f1/Oct4 may be caused by changes in inter-
calation behavior.” (Bensch et al., 2013, p. 845).

The following experimental descriptions in sections 3.4.1–3.4.3 are published in Bensch et al. (2013)
in the section “Material and Methods”. The results, including figures, and the biological discussion
presented in sections 3.4.4 and 3.4.5 are published in Bensch et al. (2013) in the sections “Results” and
“Discussion”.

3.4.1 Datasets

Zebrafish Maintenance and Image Acquisition AB/TL strain was used as WT control. For
embryos devoid of Pou5f1 function maternal and zygotic spgm793 mutants (MZspgm793) were used. 3D
time-lapse recording of global blastomere migration was performed by Song et al. (2013). All nuclei
were labeled by microinjection of nls-tomato mRNA (50 pg) at the one-cell stage. The 3D time-lapse
stacks were recorded using a LSM5 Live Duo confocal microscope (Zeiss, Jena) with a Zeiss LD LCI
Plan-Apochromat 25x/0.8 objective lens. The laser wavelength used was 532 nm together with the
filter BP 560–675.

Volumetric Time-lapse Datasets For the analysis 6 wildtype and 6 mutant datasets were used.
The 3D stack size was 1024× 1024× 81 voxels with voxels of size 0.525× 0.525× 1.367µm3. The
time-lapse was recorded in 120 time steps with 1.05 min intervals, i.e. a total duration of 126 min.

3.4.2 Image Quantification Details

All analyses presented here depend on the position of the nuclei recorded in the primary data. How-
ever, virtual cell boundaries were used to define neighborhoods of cells and provided features for the
detection of cell intercalations. While the full image analysis pipeline (see figure 3.3), the intercalation
model and the detection of cell intercalations have already been described in the previous sections (see
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Figure 3.8: Measurement of migration direction and path length of cells undergoing intercalation
events (from Bensch et al. (2013)). A schematic drawing of the raw cell path and the extracted
features is shown (complementary to figure 3.13).

sections 3.2 and 3.3), the application specific method and implementation details are described in the
following paragraphs.

Track Cell Nuclei

Trajectories of labeled cell nuclei were obtained by applying the track spot tool of Imaris software
(Bitplane, v7.3) using the following parameters: estimated diameter: 7µm, background subtraction,
tracking algorithm: Brownian motion, MaxDistance: 12µm, MaxGapSize: 2.

Infer Cell Boundaries and Contact Areas

Putative individual cell regions and outer boundaries (“membranes”) were estimated by a 3D Voronoi
diagram using the nuclei positions as seeds. The maximal size of a cell was limited to a sphere with
20µm radius to obtain reasonable cell regions at the borders. With this approach, the size of border-
ing cells (especially the flat EVL cells) is overestimated in outward direction. However, inner cell
boundaries are estimated well and the conducted analysis described in the following was not affected.
Figures 3.1 and 3.9 and movies 3.20 and 3.21 give a good impression of the inferred cell boundaries.

Compute Relative Local Motion

The motion of intercalating cells relative to the local tissue was computed by successive temporal
registration of local groups of cells. This compensates for translational motion from both global motion
and local growth motion of the tissue. The resulting relative raw cell path is depicted schematically in
figure 3.8 (dashed black path). The figure furthermore shows the main motion direction we computed
from this raw cell path, the calculated effective displacement (abbreviated as calc. eff. displacement)
and the revised cell path. The main motion direction was found by principle component analysis (PCA)
and represents the best fit with respect to the raw cell path. The extremal points in this main direction
were used to refine the start and end point and the time window of the intercalation event, resulting in
the calculated effective displacement and the revised cell path.

Perform Event Verification

To increase the quality of intercalation detection we subsequently applied a verification step that dis-
cards events that are not likely to be intercalations. This reduces false positive detections.
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Referring to the intercalation model in figure 3.5, intercalating cells are likely to show an effective
displacement in the range of a cell diameter when moving from configuration T1 to T3. Therefore,
we discarded detected events with less than 6µm absolute effective displacement, which is below the
observed range of cell diameters. Furthermore, intercalating cells are likely to perform a rather directed
motion through neighboring cells. Therefore, we discarded events that show an undirected motion. We
calculate the directedness of motion as the ratio of the dominant eigenvalue to the sum of eigenvalues
obtained from principle component analysis (PCA) of the revised cell path (green path in figure 3.8).
In our experiments we discarded events with motion directedness below value 0.85.

Compute Basic Statistics

From the verified intercalation events, basic motion statistics were extracted. The calculated effective
displacement (blue vector in figure 3.8) yielded the absolute effective displacement (supplementary
material figure 3.18a) and the effective speed (figure 3.13b). The revised cell path (green path in figure
3.8) was used to quantify the cell path length (supplementary material figure 3.18b) and the average
instantaneous speed (figure 3.13c).

Compute Directionality Distributions

3D directionality distributions were computed by density estimation, i.e. accumulating measurements
into a single 3D distribution with the starting point of the event centered at the origin (figure 3.11a–f).
High density peaks are obtained when many events show similar direction. To describe isotropy and
polarity, the 3D directionality distributions were projected onto the unit sphere and modeled by spher-
ical harmonics (Rose, 1995) basis functions Ylm (supplementary material figure 3.16a). The resulting
expansion coefficients clm with zero order (m = 0) in every band l (i.e. c10) describe the distribution
of the signal from North to South pole (averaged along the latitudes). For the present application, es-
pecially the second coefficient c20 is important (supplementary material figure 3.16a-b). It is positive,
if the signal is located at the poles, negative if the signal is located at the equator, and zero, if the signal
is homogeneously distributed.

Fit EVL Surface

An anatomical embryo coordinate system was defined by fitting a smooth surface to EVL cell nuclei
for each time point, which is depicted in figure 3.3 (see “EVL surface”, a 2D section of the 3D surface
is plotted in yellow).

Assign Intercalation Location and Direction

The fitted EVL surface was used as an anatomical reference. The direction of intercalations was ob-
tained by measuring the angle of the calculated effective displacement (blue vector in figure 3.13a)
to the surface normal. The location of intercalations was obtained by measuring the distance to this
surface. For representation, the distance is discretized into cell diameters (figure 3.10d-e; supple-
mentary material figure 3.14 and figure 3.17a,c). A reference cell diameter was used and estimated
from the nearest-neighbor distances of all cells in all time steps and datasets. We used the median
value d = 16.1095µm as an estimate. Directions were classified into “lateral”, if the displacement
component in the direction of the EVL was within ±

√
3/4 d (≈ 7µm) and “upward” or “downward”

otherwise.
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3.4.3 Statistical Analysis

Statistical significance in terms of directionality of intercalation in WT and MZspg (figure 3.11) was
evaluated using the non-parametric Wilcoxon rank sum test (Gibbons and Chakraborti, 2011; Hollan-
der and Wolfe, 1999). The test was based on the expansion coefficient c20 describing isotropy and
polarity (supplementary material figure 3.16, n = 6 samples per class). For the description of WT
and MZspg, measurements were averaged (figure 3.11, figure 3.12c) or summed over 6 datasets per
class (figure 3.10, figure 3.12a-b, figure 3.12e-f, figure 3.13d; supplementary material figures 3.14,
3.15, 3.17). Standard MATLAB boxplots were used to plot class distributions (figure 3.13b-c; sup-
plementary material figure 3.18b-d): the central mark is the median, the edges of the box are the 25th
and 75th percentiles, the whiskers extend to the most extreme data points not considering outliers, and
outliers are plotted individually (red crosses). The medians are significantly different at the 5% signif-
icance level if their comparison intervals (notches) do not overlap. In figure 3.10a-e, figure 3.12a-b,
figure 3.12e,f, figure 3.13d, supplementary material figures 3.14 and 3.17 the error is given by the 95%
confidence intervals assuming Poisson noise for counting intercalation events.

All computations and statistical evaluations were performed in MATLAB (The MathWorks Inc.) and
C++.

3.4.4 Results

Furthermore, “quantification of radial and lateral intercalation dynamics of blastomeres reveals that
radial intercalation is symmetric along the animal–vegetal axis of the embryo, which is not in line
with the prevailing model of directed radial intercalation driving deep cell epiboly (Kane et al., 2005;
Málaga-Trillo et al., 2009). Instead speed and migration efficiency of blastomeres appear to be crucial
for the deep cell epiboly” (Bensch et al., 2013, p. 847).

Zebrafish Gastrulation is Initiated with Symmetric Radial Intercalation of Blastomeres

To investigate intercalation mechanism during zebrafish early gastrulation, we analyzed the trajectories
of blastoderm cell nuclei in embryos labeled with NLS-tomato (Tomato fluorescent protein with nuclear
localization signal) between sphere and 50% epiboly stage (Song et al., 2013).

We determined upward (into more exterior level), downward (into more interior level), and later-
alward (intra-level) intercalation events of blastomeres (figure 3.9a-b; supplementary material movies
3.20–3.22). To obtain a quantitative understanding of cell behavior during epiboly, we analyzed the to-
tal number of intercalations in each WT embryo dataset (figure 3.10a). Surprisingly, the total number
of upward and downward intercalations was in the same range, with slightly more downward inter-
calations. This observation does not support the prevailing model that suggests asymmetric radial
intercalation of epiblast cells, i.e. inserting predominantly from an interior level into a more exterior
level, drive DCL flattening (Kane et al., 2005). We further analyzed whether the epiboly delay phe-
notype of MZspg embryos may correlate with different intercalation behavior. The total and relative
number of upward and downward intercalations was significantly lower in MZspg embryos than in WT,
while the ratios between the upward and downward intercalations of blastomeres were balanced both
in WT and MZspg embryos (figure 3.10a-c). However, factors other than the total number of interca-
lations in a specific direction may affect epiboly progression, including directional bias in subsequent
intercalations of individual cells, and dynamic aspects of cell movement. We further investigated both
possibilities in detail.
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Figure 3.9: Automated detection of intercalating zebrafish blastomeres. (a-b) Computational detec-
tion and classification of radial intercalations from 3D time-lapse recording (supplementary material
movies 3.20, 3.21). Embryo stages: sphere to 50% epiboly. The rendering shows lateral views
(animal pole at top) with raw nuclei fluorescence (grey ), tracked nuclei positions (crosses) and cal-
culated cell boundaries (cyan). Arrows indicate direction of cell migration. Upward (green), down-
ward (red), and lateralward intercalations (blue) were detected along an 18µm thick animal–vegetal
oriented sheet transecting the embryo along its dorsoventral axis (shown here as y-projection rep-
resenting 18µm orthogonal to the z-stack). In the circled areas, a blastomere intercalates between
two neighboring cells (yellow crosses) located in adjacent more exterior level (a) or in adjacent
more interior level (b). These two groups of cells were separately rendered in 3D (right). Scale
bars: 100µm.
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Figure 3.10: Quantification of radial and lateral intercalation events. (a-b) Absolute number of later-
alward, upward, and downward intercalations in WT and MZspg (summed over 6 embryos for WT
and MZspg each). Ratios between up- and downward, and between lateral and up-/downward in-
tercalations are shown in each graph. (c) Relative number of upward or downward intercalations
normalized to the number of lateralward intercalations. (d-e) Quantification of WT (d) and MZspg (e)
blastomeres performing upward, downward, or lateralward intercalations in each depth level. Depth
levels (shaded grey along x-axis) were numbered and distance was measured starting from the
EVL in vegetal direction. To be able to compare different depth levels, the absolute number of inter-
calations (summed over 6 embryos for WT and MZspg each; supplementary material figure 3.14)
was normalized by the total number of cells observed for each distance. The x-axis is truncated at
4.0, where the number of measured intercalations starts becoming too small to provide meaning-
ful results. (f-g) Summarized intercalation history of all individual cells (sum over six embryos for
each genotype). The graph presents up to three successive intercalations of individual blastomeres,
indicating upward, downward, or lateralward directions. The root node (leftmost) denotes all cells
performing the first intercalation event. The absolute number and relative fraction of intercalations
is given at each node. Errors are given by 95% confidence intervals assuming Poisson noise.
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Location of Intercalations and Intercalation History

We next examined the number of intercalations along depth levels. Upward and downward intercala-
tions were mainly distributed between the first and third DCL level in both WT and MZspg embryos
(figure 3.10d-e; supplementary material figure 3.14). However, in MZspg embryos, the distribution of
intercalations was shifted towards deeper levels compared to WT. This may be mainly due to signif-
icantly reduced thinning of the DCL in MZspg embryos during the two-hour time window (supple-
mentary material movie 3.20). Therefore, in WT, intercalations can only be detected in the first three
levels at the end of the two-hour recording time, while in MZspg embryos the deep cell layer is still
thicker and intercalations can be detected in all levels. Furthermore, the first DCL depth level shows
the highest number of lateralward intercalations both in WT and MZspg embryos. This is reminiscent
of previous reports that cells in the first DCL level are connected to EVL by E-cad mediated adherens
junctions, suggesting them to be dragged by EVL during epiboly (Shimizu et al., 2005). However, cells
in the first DCL level frequently moved back into the deeper levels both in WT and MZspg embryos
during the two-hour observations, suggesting that adherens junctions were dissociated.

We next measured the number of blastomeres performing subsequent intercalation events towards
the three different directions (up-, down-, and lateralward; figure 3.10f-g). During the first intercalation
event WT blastomeres performed 28% upward, 41% lateralward, and 31% downward intercalations
(figure 3.10f). In MZspg embryos 25% upward, 49% lateralward, and 26% downward intercalations
were measured (figure 3.10g). Following their first intercalation many blastomeres performed a second
and third intercalation in any of those three directions. These data clearly indicate that most blastomeres
have the ability to perform subsequent intercalations in any direction with similar directionality dis-
tribution as in previous events. Supplementary material figure 3.15 shows the intercalation history
of cells grouped by the depth level position of their first intercalation event, confirming that there is
no directional bias. Similar observations were made for MZspg mutant embryos. In summary, cells
have no directional intercalation bias based on previous intercalation events, which we interpret to ex-
clude that some extrinsic signal may initiate irreversible cell-intrinsic processes that would determine
directionality.

Quantification of Intercalation Directionality

To investigate differences in global radial intercalation rates, we compared average motion direction-
ality and cell speed during intercalation events between WT and MZspg embryos. Blastomeres inter-
calate laterally in a rotationally symmetric distribution around the animal–vegetal axis, both in WT
and MZspg embryos (figure 3.11). In contrast, radial intercalation directions are distributed polarized
in animal as well as vegetal direction along the animal–vegetal axis both in WT and MZspg embryos
(figure 3.11b-c,g and figure 3.11e-f,h). Strikingly, 3D directionality distributions indicate a stronger
polarization in animal–vegetal direction in WT embryos than in MZspg embryos, represented by the
significantly higher relative number of intercalations toward the animal and vegetal pole of the WT em-

bryos (North Pole (NP): 0.23± 0.06
0.04

; South Pole (SP): 0.22± 0.09
0.08

) than in MZspg (NP: 0.14± 0.06
0.05

;

SP: 0.17± 0.07
0.03

) (figure 3.11g-h). Accordingly, the ratio between lateralward intercalations and up- or

down- intercalations is higher in MZspg embryos (0.94) than in WT (0.68) (figure 3.10a-c). These data
reveal that in MZspg mutant embryos the directionality of total intercalation events may be affected
by modulation of motility of blastomeres (Song et al., 2013), but may also be caused by a delay in the
onset of epiboly.
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3 Spatiotemporal Geometrical Models for Motion Pattern Detection

Figure 3.11: Motion directionality of intercalation events. (a–f) Average motion directionality analyzed
for WT (a–c) and MZspg (d–f) embryos. The occurrence probability for an intercalation with cer-
tain migration direction and displacement is indicated by color. Isocontours (white) denote lines of
equal probability. Cross-sections of 3D directionality distributions are given: x–y plane (a,d), per-
pendicular to animal–vegetal axis, x–z plane (b,e) and y–z plane (c,f), perpendicular to left–right
and dorsoventral axis, respectively. (g-h) 3D reconstruction of the average motion directionality for
WT (g) and MZspg (h) embryos (modeled by spherical harmonics of degree l = 0 . . . 10). Left: 3D
rendering visualizing occurrence probability of intercalation directions using both color (blue=low
and red=high probability) and shape (extension in each direction corresponds to probability). Right:
2D plot visualizing occurrence probability of intercalation directions averaged along the latitudes.
(P < 0.01;n = 6 embryos each WT and MZspg).
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Analysis of Spatial and Temporal Patterns of Intercalation

The time window of our analysis spans from sphere to 50% epiboly stages, a period during which
different forces may contribute to epiboly. Doming of the yolk may affect cells in a different manner
as compared to progress of epiboly between 30% and 50% epiboly. Therefore, we reanalyzed our data
in three time windows covering the first 42 minutes roughly equivalent to doming, the time from 42 to
84 minutes equivalent to early epiboly stages, and from 84 to 126 minutes equivalent to 30–50% epi-
boly. The precision in determining developmental stages is estimated to be in the range of ten minutes
between different embryo recordings, which argued against analysis of even shorter time windows. We
find that during doming, in WT there are significantly less total intercalations (figure 3.12a), but the
ratio between lateral, up and downward intercalations is not much different from the later two time
windows (figure 3.12b). We also compared the total number of intercalations between WT and MZspg
in each time window, and find that while there are significantly less intercalations in MZspg during
time windows T1 and T2, the intercalation rate is similar between both genotypes in time window T3
(supplementary material figure 3.17b). The later onset of epiboly in MZspg thus contributes to the
differences in intercalation behavior between the genotypes.

We also analyzed the depth distribution of radial intercalations in WT in each time window (sup-
plementary material figure 3.17a), and found that the depth profile changes slightly from the first time
window, when up, down and lateral intercalations appear at similar rates at depth levels from 1.5 to 3
cells distant from EVL, to the last time window, when the normalized number of intercalations in these
three directions is higher in depth layers closer to the EVL than in deeper layers.

We further analyzed whether cells in the animal central portion of the blastoderm at the animal pole
may behave differently from those located more towards the vegetal margin. We defined an inner
sector S1 representing the central animal cells, and an outer sector S2 representing the more vegetally
located and marginal cells (figure 3.12d). Given that S1 contained less cells than S2, we normalized
the number of intercalations in each sector to the cell number. The inner sector S1 has higher up-
and downward intercalation rates, with the downward intercalations nearly as strong as the lateral
intercalations (figure 3.12e-f). In sector S2 the number of lateral intercalations significantly exceeds
the downward intercalations. When analyzing the depth distribution of intercalation rates, inner sector
S1 cells have a similar distribution of intercalation directions from layers 1.5 through 3.5, while in
sector S2 the normalized number of intercalations per cell decreases in deeper layers (supplementary
material figure 3.17c).

Quantification of Radial Intercalation Dynamics

Given the importance of effective movement for intercalations, we investigated the influence of loss
of Pou5f1 activity on the dynamics of cell behavior during radial intercalation by measuring effective
speed and average instantaneous speed of blastomeres undergoing intercalations during early gastrula-
tion (figure 3.13a). Both median effective and median average instantaneous speed was significantly
higher in WT embryos than in MZspg embryos (figure 3.13b-c), suggesting Pou5f1-dependent mech-
anisms are important for control of migration speed of intercalating blastomeres. Supplemental to the
analysis of migration speed during intercalation, measured absolute effective displacements and cell
path lengths are given in supplementary material figure 3.18. We also determined the total number of
intercalations, which was significantly higher in WT embryos than in MZspg (figure 3.13d). These data
together indicate that Pou5f1 affects the total number of intercalations of blastomeres by controlling
cell motility, especially migration speed of cells.
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3 Spatiotemporal Geometrical Models for Motion Pattern Detection

Figure 3.12: Analysis of spatial and temporal patterns of intercalation. (a-b) Absolute number (a)
of lateralward, upward, and downward intercalations in WT for the time windows T1 (0–42 min),
T2 (42–84 min), and T3 (84–126 min). The data are summed over 6 embryos each. (b) Relative
number of upward or downward intercalations in each time window normalized to the number of
lateralward intercalations. (c) Average motion directionality analyzed for WT embryos for each of
the time windows T1 to T3. The occurrence probability for an intercalation with certain migration
direction and displacement is indicated by color. Isocontours (white) denote lines of equal proba-
bility. Cross-sections of 3D directionality distributions are given for the y–z plane. (d) To analyze
potential differences in intercalation behavior between an inner sector located centrally at the ani-
mal pole and an outer sector encompassing more marginal and vegetal cells, the 3D space of the
image data stack was separated into an inner sector S1 (orange) and an outer sector S2 (green),
visualized in lateral (left) and animal pole views (right). (e-f) Number (e) of lateralward, upward, and
downward intercalations in WT for the sectors S1 and S2 normalized by the number of cells for each
sector. The data are summed over 6 embryos each. (f) Relative number of upward or downward
intercalations in each sector normalized to the number of lateralward intercalations.
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Figure 3.13: Migration speed of intercalating cells. (a–c) Radial intercalation dynamics. The effec-
tive and average instantaneous speeds of intercalating blastomeres were quantified. (a) Schematic
drawing of cell path (green) and calculated effective displacement (blue) during intercalation. Cal-
culation and comparison of effective (b) and average instantaneous speed (c) for WT and MZspg
embryos (P < 0.05;n = 6 embryos each WT and MZspg; Standard MATLAB boxplots). (d) Quantifi-
cation of the total absolute number of intercalations for WT and MZspg embryos (P < 0.05; summed
over n = 6 embryos each WT and MZspg). Error bars show 95% confidence intervals assuming
Poisson noise.
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3.4.5 Biological Discussion

Gastrulation is an excellent model to study mechanisms controlling coordinated movements of large
numbers of cells. However, even for the earliest gastrulation movement, epiboly, there is little un-
derstanding of the mechanisms that regulate this movement spatially and temporally throughout the
embryo. Here, we used the zebrafish for a detailed analysis and description of intercalation cell behav-
ior during the first two hours of zebrafish gastrulation, from sphere stage to doming of the yolk and
epibolic spreading of cells up to 50% epiboly. We aimed to record most cell movements based on the
position of their cell nuclei in one coherent data stack, which limited our analysis to about 50% epiboly
stage, as we were not able to image throughout the embryo with a confocal laser scanning micro-
scope at later stages. While other techniques have enabled whole embryo documentation (Keller et al.,
2008) and analysis of surface movement of cells, such data have not been analyzed for cell behavior
orthogonal to the surface, which is essential for analysis of radial cell intercalations. Our global cell
intercalation study therefore focused on early epiboly stages, while previous analyses of small regions
of the embryo investigated cell behavior at late epiboly stages from 70 to 90% epiboly (Kane et al.,
2005).

We used a mathematical three point model to analyze intercalation cell behavior, which enabled us to
apply image analysis algorithms to automatically detect and characterize cell intercalations throughout
the 3D data volume and the two hour time-lapse recording. The results showed that upward, downward
and lateral intercalations occur throughout the deep cell layers, and surprisingly revealed similar rates
of up- and downward intercalations with regard to the EVL surface, which argues against intercalations
directed towards the EVL to be the major force to shape spreading and thinning of deep cells during
epiboly. Observing individual cells also revealed no long-term bias in intercalation directionality:
following a first intercalation, cells that performed a second intercalation did not show any bias in
up-, down-, or lateralward direction. Thus, it appears that cells during early epiboly do not appear to
become intrinsically programmed to intercalate in a defined direction only.

We also investigated changes in cell behavior in three time windows for doming, early epiboly and
30–50% epiboly. We found that in WT embryos, the intercalation directionality is not very prominent
during doming, but a clear animal–vegetal directional bias is established during early epiboly, with
similar upward versus downward intercalation distribution along this axis. We also found that the depth
distribution of intercalations changes as epiboly progresses: while during dome stage up-, downward
and lateral intercalations appear at similar low frequencies in layers one to three cell diameters away
from the EVL, during mid-epiboly a profile is established in which the frequency of intercalating cells
is higher in the upper cell layers compared to deeper ones.

The cell intercalation data raise the question whether they are sufficient to explain blastoderm thin-
ning and epibolic spreading towards the vegetal pole. First, it appears counter-intuitive that a high
number of both up- and downward intercalations has been detected. Because, if they occur in the same
layers, this would effectively eliminate any net effect on expanding the DCL. However, the depth pro-
file of intercalation events normalized to cell numbers in each depth layer reveals that from dome stage,
when the profile is even, a gradient of intercalation rates establishes with higher intercalation rates in
deep cell layer one to two, as compared to layers three to four. Together with the slightly higher propen-
sity for downward intercalations, this may effect a net redistribution of cells by intercalation to promote
thinning and spreading of the DCL. We attempted to evaluate quantitatively the number of cells exiting
the inner sector S1 in comparison to the number of radial intercalations (supplementary material figure
3.19). To visualize temporal changes we performed the analysis in eight 15 minute time windows. We
also determined the ratio of the number of cells leaving the sector S1 and the number of radial inter-
calation events. Supplementary material figure 3.19 reveals that the number of cells leaving sector S1
trails behind the number of radial intercalations, until shortly before 50% epiboly, when exiting cells
and radial intercalations occur at a ratio of approximately one. This analysis would be consistent with
up- and downward intercalations partially compensating each other during doming and early epiboly,
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while intercalations may drive epiboly more effectively when the directionality (figure 3.12c) and the
steeper radial profile of intercalations (supplementary material figure 3.17a) are established at 50%
epiboly. However, it has been impossible for us to exactly quantitate the contribution of intercalation
events to epibolic spreading. The reason is that in the time window analyzed, also the number of cells
approximately doubles as the asynchronous thirteenth cell cycle progresses, and towards the end of the
recording cells also have only about half of the volume each as compared to sphere stage.

Two models have been put forward about the forces that drive DCL epiboly (Keller et al., 2003). In
one model, radial intercalation of deep cells is the driving force to spread the DCL. Here, directional
cues would have to orient the intercalation behavior. Adhesion gradients, specifically of E-cad, have
been proposed to direct radial intercalation during late epiboly to predominantly occur in the direction
towards the EVL (Kane et al., 2005). Our analysis reveals that such a directional intercalation cannot
be detected during early epiboly stages. In the second model (Keller et al., 2003), radial intercalation
may be a more indirect effect of migrational spreading over yolk cell or EVL surfaces. In this model,
for zebrafish epiboly of the YSL and EVL would open a space into which deep cells migrate. The
prevalence of intercalation orthogonal to the EVL surface observed here may be caused by this type
of intercalation effectively filling space opened up by EVL/YSL epiboly. Here, the dynamics and
effectiveness of deep cell migration would be crucial for DCL epiboly progress, which is confirmed
by our measurements. This is also consistent with the changes observed in MZspg mutant embryos,
in which E-cad trafficking and adhesion is affected in a way to reduce effective cell movements (Song
et al., 2013).

3.5 Conclusion and Outlook

We have presented a new approach to motion pattern detection in 4D biological data. First, an explicit
model of the target event is defined. It consists of piecewise linear functions modelling feature tran-
sitions of the spatio-temporal model. Here, we presented a model to detect cell intercalations. The
proposed detection method fits linear models to the measured data and thus is robust to very noisy and
even interrupted data. Furthermore, the detection is invariant to 3D translation and rotation on the one
hand, and temporal scaling and feature scaling on the other hand.

“Our study provides a new approach to investigate dynamic behavior and intercalations of individual
cells within a tissue during embryo development. This method may also be exploited in other fields
such as cancer research to quantify epithelial–mesenchymal transitions in vivo” (Bensch et al., 2013,
p. 853). For future work we suggest to generalize the presented approach, such that it is able to learn
or infer a model from given examples in an unsupervised manner, in contrast to an a priori defined
explicit model.

3.6 Supplementary Material

This section contains figures and movies supplemental to the results in section 3.4.4. They are pub-
lished in Bensch et al. (2013) in the “Supplementary Material”.

————
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Supplementary Material
Robert Bensch et al. doi: 10.1242/bio.20134614

Fig. S1. Quantification of location of radial and lateral intercalation events. Quantification of WT (A,C) and MZspg (B,D) blastomeres performing upward
(green), downward (red), or lateralward (blue) intercalations in each depth level. Depth levels were numbered and distance was measured starting from the EVL at the
animal pole towards the vegetal pole of the embryos. Compared to Fig. 3D,E the absolute (non-normalized) number of intercalations is shown (summed over all
datasets). Besides the continuous representation (A,B) measurements are given discretized into bins of one cell diameter size (C,D) centered on integer distances to
EVL for lateralward and in between for radial intercalations (n56 embryos each for WT and MZspg). The x-axis is truncated at 4.0, where the number of measured
intercalations becomes too small to provide meaningful results. Errors are given by the 95% confidence intervals assuming Poisson noise.
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Figure 3.14: Quantification of location of radial and lateral intercalation events. Quantification of WT
(a,c) and MZspg (b,d) blastomeres performing upward (green), downward (red), or lateralward
(blue) intercalations in each depth level. Depth levels were numbered and distance was measured
starting from the EVL at the animal pole towards the vegetal pole of the embryos. Compared to
figure 3.10d-e the absolute (non-normalized) number of intercalations is shown (summed over all
datasets). Besides the continuous representation (a-b) measurements are given discretized into
bins of one cell diameter size (c-d) centered on integer distances to EVL for lateralward and in
between for radial intercalations (n = 6 embryos each for WT and MZspg). The x-axis is truncated
at 4.0, where the number of measured intercalations becomes too small to provide meaningful
results. Errors are given by the 95% confidence intervals assuming Poisson noise.
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Fig. S2. Quantification of intercalation history of radial and lateral intercalation events. Summarized intercalation history of all individual cells for WT
(A–D) and MZspg (E–H) embryos (sum over six embryos for each genotype). The graph presents up to three successive intercalations of individual blastomeres,
indicating upward, downward, or lateralward directions. The root node (leftmost) denotes all cells performing the first intercalation event. Compared to Fig. 3F,G the
intercalation history is split according to the depth level where the first intercalation event is localized. From left to right the depth level increases by one. The
absolute number and relative fraction of intercalations is given at each node.
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Figure 3.15: Quantification of intercalation history of radial and lateral intercalation events. Summa-
rized intercalation history of all individual cells for WT (a–d) and MZspg (e–h) embryos (sum over
six embryos for each genotype). The graph presents up to three successive intercalations of individ-
ual blastomeres, indicating upward, downward, or lateralward directions. The root node (leftmost)
denotes all cells performing the first intercalation event. Compared to figure 3.10f-g the intercalation
history is split according to the depth level where the first intercalation event is localized. From left
to right the depth level increases by one. The absolute number and relative fraction of intercalations
is given at each node.
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Figure 3.16: Motion directionality of intercalation events: spherical harmonics and expansion coef-
ficients c20. (a) Spherical harmonics basis functions Ylm, plotted for degree l = 0 . . . 4 and order
m = 0 . . . 4. For the present application, especially Y20 (degree 2, order 0) is important. It repre-
sents signals that are polarized at the North and South pole. (b) Expansion coefficients c20 for all
WT and MZspg datasets representing the contribution of spherical harmonics basis function Y20 to
their directionality distributions. Larger positive values represent stronger polarization at the North
and South pole, smaller positive values represent weaker polarization respectively. WT shows sig-
nificantly increased polarization compared to MZspg embryos (P < 0.01;n = 6 embryos each for
WT and MZspg), see also figure 3.11.
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Figure 3.17: Analysis of spatial and temporal patterns of intercalation in wildtype and MZspg. (a)
Quantification of WT blastomeres performing upward, downward, or lateralward intercalations in
each depth level for the time windows T1 to T3. Depth levels as distance in average cell diameters
were numbered and distance was measured starting from the EVL in vegetal direction. To be able
to compare different depth levels, the absolute number of intercalations (summed over 6 embryos)
was normalized by the total number of cells observed for each distance. The x-axis is truncated
at 4.0, where the number of measured intercalations becomes too small to provide meaningful
results. (b) Quantification of the total absolute number of intercalations for WT and MZspg embryos
in each of the three time windows T1 to T3 (P < 0.05; summed over n = 6 embryos each WT and
MZspg). Error bars show 95% confidence intervals assuming Poisson noise. (c) Quantification of
WT blastomeres performing upward, downward, or lateralward intercalations in each depth level for
the inner (S1) and outer (S2) sectors defined in figure 3.12. For details see panel A.

85



3 Spatiotemporal Geometrical Models for Motion Pattern Detection

  

A

Class

B C

Class Class

Figure 3.18: Measurement of migration direction and path length of cells undergoing intercalation
events. (a-c) Radial intercalation dynamics (complementary to figure 3.13). (a-b) Complementary
to figure 3.13b-c, the measured absolute effective displacements and cell path lengths are shown.
(c) The ratios of cell path lengths (c) and absolute effective displacements (a) are shown. The ratio
indicates how effective or directed cellular motion is during intercalation. A value of 1.0 indicates
straight linear motion, while larger numbers indicate less effective or directed motion on a non-linear
path.
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Fig. S6. Quantification of a potential contribution of radial intercalation to epibolic spreading in WT embryos. To determine whether the number of
intercalations correlates with the number of cells leaving the inner sector S1 during shorter time windows, we defined eight consecutive time windows 1 to 8

(15.75 min each during the total observation time of 126 min), and quantified for each time window the number of radial intercalations and the number of cells
leaving sector S1 (summed over n56 embryos). The number of summed upward and downward intercalations in sector S1 (blue bars) is compared to the number of
cells leaving sector S1 (brown bars). The ratio between both quantities is plotted in gray bars. Error bars show 95% confidence intervals assuming Poisson noise.

Movie 1. Radial intercalation events during blastomere movement. Global blastomere migration analyzed by computational detection and classification of radial
intercalation events from two hour 3D time-lapse recording of WT (A–C) and MZspg (D–F) embryos. Embryo stages: sphere to 50% epiboly. Confocal stacks
(109 mm) were recorded from animal pole EVL into the margin of blastoderm over the doming yolk of the embryos. The renderings show lateral views (animal pole

to the top) with raw nuclei fluorescence (grey), tracked nuclei positions (crosses) and calculated cell boundaries (cyan). Upward intercalations into more exterior
levels (green), downward intercalations into more interior levels (red), and lateralward intra-level intercalations (blue) were detected along an 18 mm thick animal–
vegetal oriented sheet transecting the embryo along its dorsoventral axis. (A,D) All intercalation events. (B,E) Upward and lateralward intercalations. (C,F)
Downward and lateralward intercalations. Scale bar: 100 mm.
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Figure 3.19: Quantification of a potential contribution of radial intercalation to epibolic spreading in
WT embryos. To determine whether the number of intercalations correlates with the number of cells
leaving the inner sector S1 during shorter time windows, we defined eight consecutive time windows
1 to 8 (15.75 min each during the total observation time of 126 min), and quantified for each time
window the number of radial intercalations and the number of cells leaving sector S1 (summed over
n = 6 embryos). The number of summed upward and downward intercalations in sector S1 (blue
bars) is compared to the number of cells leaving sector S1 (brown bars). The ratio between both
quantities is plotted in gray bars. Error bars show 95% confidence intervals assuming Poisson noise.
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Fig. S6. Quantification of a potential contribution of radial intercalation to epibolic spreading in WT embryos. To determine whether the number of
intercalations correlates with the number of cells leaving the inner sector S1 during shorter time windows, we defined eight consecutive time windows 1 to 8

(15.75 min each during the total observation time of 126 min), and quantified for each time window the number of radial intercalations and the number of cells
leaving sector S1 (summed over n56 embryos). The number of summed upward and downward intercalations in sector S1 (blue bars) is compared to the number of
cells leaving sector S1 (brown bars). The ratio between both quantities is plotted in gray bars. Error bars show 95% confidence intervals assuming Poisson noise.

Movie 1. Radial intercalation events during blastomere movement. Global blastomere migration analyzed by computational detection and classification of radial
intercalation events from two hour 3D time-lapse recording of WT (A–C) and MZspg (D–F) embryos. Embryo stages: sphere to 50% epiboly. Confocal stacks
(109 mm) were recorded from animal pole EVL into the margin of blastoderm over the doming yolk of the embryos. The renderings show lateral views (animal pole

to the top) with raw nuclei fluorescence (grey), tracked nuclei positions (crosses) and calculated cell boundaries (cyan). Upward intercalations into more exterior
levels (green), downward intercalations into more interior levels (red), and lateralward intra-level intercalations (blue) were detected along an 18 mm thick animal–
vegetal oriented sheet transecting the embryo along its dorsoventral axis. (A,D) All intercalation events. (B,E) Upward and lateralward intercalations. (C,F)
Downward and lateralward intercalations. Scale bar: 100 mm.
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Movie 3.20: Radial intercalation events during blastomere movement. Global blastomere migration
analyzed by computational detection and classification of radial intercalation events from two hour
3D time-lapse recording of WT (a–c) and MZspg (d–f) embryos. Embryo stages: sphere to 50%
epiboly. Confocal stacks (109µm) were recorded from animal pole EVL into the margin of blastoderm
over the doming yolk of the embryos. The renderings show lateral views (animal pole to the top) with
raw nuclei fluorescence (grey ), tracked nuclei positions (crosses) and calculated cell boundaries
(cyan). Upward intercalations into more exterior levels (green), downward intercalations into more
interior levels (red), and lateralward intra-level intercalations (blue) were detected along an 18µm
thick animal–vegetal oriented sheet transecting the embryo along its dorsoventral axis. (a,d) All
intercalation events. (b,e) Upward and lateralward intercalations. (c,f) Downward and lateralward
intercalations. Scale bar: 100µm. (Available online: http://bio.biologists.org/content/suppl/2013/06/
03/bio.20134614.DC1/bio.20134614-s2.mp4)
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3.6 Supplementary Material

Movie 2. Examples for intercalation events within a group of blastomeres. Rendering of individual upward and downward intercalation events from 3D time-
lapse recording of WT embryo (supplementary material Movie 1A–C). (C) Lateral view rendering (animal pole to the top) with raw nuclei fluorescence (grey),
tracked nuclei positions (crosses) and calculated cell boundaries (cyan). Upward intercalations into more exterior levels (green), downward intercalations into more
interior levels (red), and lateralward intra-level intercalations (blue) were detected along an 18 mm thick animal–vegetal oriented sheet transecting the embryo along
its dorsoventral axis. Downward intercalation is shown exemplarily inside the red rectangle during the first 10 minutes of the movie. Upward intercalation is shown
exemplarily inside the green rectangle during the following 20 minutes of the movie. (A,B) 3D rendering of corresponding individual cells performing upward or

downward intercalation within a group of blastomeres. Scale bar: 100 mm.
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Movie 3.21: Examples for intercalation events within a group of blastomeres. Rendering of individ-
ual upward and downward intercalation events from 3D timelapse recording of WT embryo (sup-
plementary material movie 3.20a–c). (c) Lateral view rendering (animal pole to the top) with raw
nuclei fluorescence (grey ), tracked nuclei positions (crosses) and calculated cell boundaries (cyan).
Upward intercalations into more exterior levels (green), downward intercalations into more inte-
rior levels (red), and lateralward intra level intercalations (blue) were detected along an 18µm
thick animal–vegetal oriented sheet transecting the embryo along its dorsoventral axis. Down-
ward intercalation is shown exemplarily inside the red rectangle during the first 10 minutes of the
movie. Upward intercalation is shown exemplarily inside the green rectangle during the following
20 minutes of the movie. (a-b) 3D rendering of corresponding individual cells performing upward
or downward intercalation within a group of blastomeres. Scale bar: 100µm. (Available online:
http://bio.biologists.org/content/suppl/2013/06/03/bio.20134614.DC1/bio.20134614-s3.mp4)
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3 Spatiotemporal Geometrical Models for Motion Pattern Detection

Movie 3. Directional analysis of migrating blastomeres. The calculated effective displacement (Fig. 6A) of all detected intercalations from WT and MZspg

embryos from two hour 3D time-lapse recording (supplementary material Movie 1) were visualized. Colors indicate the classified direction (upward: green,
downward: red, and lateralward: blue). Three different views are shown: x–y plane (animal top view of the embryo), x–z plane and y–z plane (lateral views of the
embryo). Motion direction is indicated in each view additionally by different symbols (lateralward: square; top view upward: circle, downward: cross; side views
up-/downward: up-/downward pointing triangle). Point traces are shown for the past 5 minutes preceding each frame only.
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Movie 3.22: Directional analysis of migrating blastomeres. The calculated effective displacement (fig-
ure 3.13a) of all detected intercalations from WT and MZspg embryos from two hour 3D time-lapse
recording (supplementary material movie 3.20) were visualized. Colors indicate the classified di-
rection (upward: green, downward: red, and lateralward: blue). Three different views are shown:
x–y plane (animal top view of the embryo), x–z plane and y–z plane (lateral views of the embryo).
Motion direction is indicated in each view additionally by different symbols (lateralward: square;
top view upward: circle, downward: cross; side views up-/downward: up-/downward pointing trian-
gle). Point traces are shown for the past 5 minutes preceding each frame only. (Available online:
http://bio.biologists.org/content/suppl/2013/06/03/bio.20134614.DC1/bio.20134614-s4.mp4)
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4 Asymmetric Graph Cut for Cell
Segmentation in Phase Contrast Images

In this chapter, we propose a new robust, effective, and surprisingly simple approach for the segmenta-
tion of cells in phase contrast microscopy images. The key feature of our algorithm is that it strongly
favors dark-to-bright transitions at the boundaries of the (arbitrarily shaped) segmentation mask. The
segmentation mask can be effectively found by a fast min-cut approach. The small but essential differ-
ence to standard min-cut based approaches is that our graph contains directed edges with asymmetric
edge weights. Combined with a simple region propagation our approach yields better segmentation
results than the top ranked methods on the PhC-C2DH-U373 phase contrast dataset in the ISBI Cell
Tracking Challenge 2014 and was the 2nd ranked method in the ISBI Cell Tracking Challenge 2015
winning against the previously 1st ranked method. We provide an open-source implementation for
Matlab on our homepage.

The method has been published in an earlier version at the International Symposium on Biomedical
Imaging (Bensch and Ronneberger, 2015). An oral presentation was given at the conference in New
York 2015 where it was selected among the 18 finalists of the best student paper award1. Our results
achieved at the ISBI Cell Tracking Challenge 2015 were published in Nature Methods (Ulman et al.,
2017). The results were also published on the challenge website in the category “Latest Results”2 (our
method acronym is: FR-Be-GE). The cell tracking challenge has been continued by the organizers and
is open for online submissions since 2017. Up-to-date results are evaluated and published on the new
challenge website (ISB).

4.1 Introduction

Since its invention around 75 years ago, phase contrast microscopy (Zernike, 1942) has become the
premier choice to visualize thin transparent regions in living cells (figure 4.1a). The advantageous
high contrast at the cell borders comes with several artifacts, like shade-off and halo patterns (Murphy,
2001), see figure 4.2, which complicate an automated segmentation. The shade-off effect increases

1http://biomedicalimaging.org/2015/student-paper-competition
2http://www.codesolorzano.com/Challenges/CTC/Latest_Results.html (as of July 4th, 2018)

(a) (b) (c)

Figure 4.1: Cell segmentation for phase contrast images. (a) Raw image. (b) Segmentation result
with traditional graph cut (cyan), and ground truth contour (yellow). (c) Segmentation result with the
proposed method (red).
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4 Asymmetric Graph Cut for Cell Segmentation in Phase Contrast Images

  

(a) (b) (c)

Figure 4.2: Artifacts in phase contrast microscopy. (a) Shade-off (b) Halo pattern (c) Strong edges
inside and outside the cell. Artifacts are indicated in yellow and red.

  

(a) (b)

Figure 4.3: Cell segmentation approach: True cell borders in positive phase contrast microscopy ap-
pear as a dark-to-bright transition in outwards direction. (a) Raw cell image with difficult to segment
cell border highlighted by region in yellow. (b) Closeup of region shown in (a). Cell outwards direc-
tion in yellow. True cell border in green and wrong cell border in red.

the inner cell intensity to the same level as the surrounding medium, which hamper the application
of simple region-based approaches. Additionally both effects can introduce strong edges inside and
outside of the cell, which then guide standard edge-based algorithms (see figure 4.1b) to the wrong
positions.

In this work we propose a principled solution that makes use of the fact that the true cell borders in
positive phase contrast microscopy always appear as a dark-to-bright transition in outwards direction,
see figure 4.3. I.e. all borders with an inverse transition (bright-to-dark) are definitely not the sought cell
borders. For simple morphologies, like roundish or star-shaped cells, the wrong borders could be easily
suppressed in a pre-processing step. However, for more complicated morphologies (see figure 4.9) the
outwards-direction depends on the local border-normal of the resulting segmentation mask, which is
not available in advance. We solve this problem by minimizing an energy functional that searches for a
segmentation mask and simultaneously favors dark-to-bright transitions at its boundary. Discretization
of this functional yields a combinatorial optimization problem that can be solved efficiently by a min-
cut approach (see figure 4.1c). The important difference to the usual application of min-cuts in image
segmentation is the use of a graph with directed edges and asymmetric edge costs.

We show that this approach results in a large improvement regarding quality and robustness in phase
contrast images. At the same time, it inherits all the advantageous properties of min-cut segmentation,
like global optimality, simultaneous optimization of region and boundary terms, and computational
efficiency.

In combination with a simple segmentation propagation our approach yields better segmentation
results than the top ranked methods on the PhC-C2DH-U373 phase contrast dataset in the ISBI Cell
Tracking Challenge 2014. Furthermore, it is less complex and has fewer tuning parameters than the
top ranked method by Magnusson et al. (2015). Our approach was the 2nd ranked method in the ISBI
Cell Tracking Challenge 2015 winning against the previously 1st ranked method.

We provide the Matlab source code at http://lmb.informatik.uni-
freiburg.de/resources/opensource/CellTracking/.
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4.2 Methods

4.1.1 Related work

Cell segmentation in phase contrast images has recently been extensively studied by the Kanade group
(e.g. see Li and Kanade (2009)). They propose a two step approach by first reconstructing the absolute
phase image and then applying basic threshold techniques. This technique works only for completely
transparent samples. It fails if the sample contains light absorbing structures, because absorption in-
duced intensity changes and phase-based intensity changes are indistinguishable in standard phase-
contrast or DIC microscopic images. Ambühl et al. (2012) propose a series of morphological image
processing steps combined with level set approaches. They overcome the problem of the strong halo
edges by changing the image during the evolution of the level sets. They apply a morphological top-
hat filter to temporally hide these edges until the contour has passed by. In Dimopoulos et al. (2014)
a graph-cut based approach is presented that uses cross-correlation to define the edge weights. Cross-
correlation is computed between a defined edge intensity profile and the image intensities in radial
direction given the center of a seed point detected before. However, this approach does not naturally
handle the segmentation of arbitrarily shaped cells especially non-convex shapes, in this case sev-
eral seed points have to be considered, merged and additional seed points introduced. The approach
by Magnusson et al. (2015) is currently the top ranked method on the ISBI Cell Tracking Challenge
dataset (ISB). It mainly relies on a strong tracking approach using the Viterbi algorithm. To increase the
performance for the ISBI challenge, they applied a segmentation algorithm based on bandpass filtering,
thresholding and watershed transform, which requires several parameters to be adjusted. The U-net by
Ronneberger et al. (2015) is a convolutional neural network for biomedical image segmentation which
achieved superior performance in several challenges via deep learning. We participated with the U-net
in the ISBI Cell Tracking Challenge as well, where it showed excellent performance in particular for
DIC and phase contrast datasets.

The usage of asymmetric boundary costs in the min-cut segmentation was already proposed by
Boykov in his original graph-cut segmentation paper (Boykov and Funka-Lea, 2006), but never found
its way to the phase contrast microscopy.

4.2 Methods

4.2.1 Cell segmentation

Phase contrast microscopy allows to visualize transparent objects. It turns the invisible phase shifts
of the light waves originating from the object into visible intensity changes by using interference with
the 90o phase shifted illumination wave. Ideally this would result in an intensity decrease proportional
to the object thickness. In reality other effects induce additional shade-off and halo patterns (Murphy,
2001), such that the intensity drop is only reliably found at the object borders to the surrounding
medium.

We cast the segmentation as an energy functional for a mask M : Ω → {0, 1} with Ω ⊂ R2 and
the given image I : Ω → R. The functional contains a data cost Cobj : R → R that depends on the
intensity, and an edge cost Cedge : R→ R that depends on the intensity gradient at the mask border in
outwards direction

E(M) = λ

∫
Ω
M(x) · Cobj(I(x))dx +

∫
Ω
Cedge

(〈
∇M(x),−∇I(x)

〉)
dx, (4.1)

where we define ∇M to be a unit normal vector on the mask boundary and 0 elsewhere. The data cost
for a gray value v is derived from the foreground intensity histogram P (v|O) and background intensity
histogram P (v|B) from training regions. We define it as Cobj(v) = (P (v|B) − P (v|O))/(P (v|O) +
P (v|B))3. This differs from the commonly used negative log-likelihood term, which however comes

3Corrected equation, compared to Bensch and Ronneberger (2015).
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with the assumption that the training and testing region histograms are the same or very similar. For
example it does not allow to assign a pixel to foreground if its intensity has never been observed among
foreground training pixels. In this case infinite region penalties are applied which results in a hard
constraint. Our term yields bounded penalties and rather results in a soft constraint. The edge cost for
the intensity derivative d is computed as

Cedge(d) =

exp
(
− d2

2σ2

)
if d > 0

1 else.
(4.2)

I.e., the edge term in the energy functional favors dark-to-bright transitions at the mask borders.
To optimize this energy, we discretize the edge term into 8 directions and solve it by a min-cut

as described in Boykov and Funka-Lea (2006). Compared to the “standard” min-cut segmentation
approach, our approach results in a directed graph with asymmetric edge weights. In contrast, when
using exp(−d2/2σ2) for both cases in equation 4.2, an undirected graph with symmetric edge weights
is obtained.

Figures 4.4 and 4.5 illustrate the benefit of using asymmetric costs over symmetric costs at an ex-
ample. Asymmetric costs allow to favor low boundary costs at characteristic dark-bright intensity
transitions at cell boundaries in phase contrast images (figure 4.4). Symmetric costs however yield
non-specific boundary costs, since also irrelevant bright-dark transitions receive low costs (figure 4.5).

4.2.2 Cell tracking

Our tracking algorithm consists of two parts. Segmentation propagation promotes temporally consis-
tent segmentation by propagating segmentation information to subsequent frames, see figure 4.7. Each
segmented object is assigned a unique label, and label propagation transfers the labels to subsequent
frames using a greedy association, see figure 4.6.

Segmentation propagation

Each frame is segmented using min-cut, which yields a binary segmentation mask. To promote tempo-
ral consistency, we propagate segmentation information from frame t to frame t+ 1 in two fashions:

Foreground propagation The eroded mask is set as hard foreground constraint for the min-cut
segmentation in the next frame, see figure 4.7a. This adds robustness to the region term in case of
insufficient foreground evidence. The size of erosion must be chosen at least as large as the expected
motion of object boundary pixels between frames.

Non-merging constraint If it can be assumed that cells do not merge, it is reasonable to prevent
separate objects from merging in the next frame. We achieve this by computing a distance transform on
the segmentation mask and applying watershed transform seeded at the object locations. The bound-
aries of the herewith computed “support regions” of each object are set as hard background constraint,
see figure 4.7b.

Label propagation

Each segmented object is assigned a unique label, which is propagated to subsequent frames using a
greedy algorithm, see figure 4.6: Each segment in frame t transfers its label to the segment in frame
t+ 1 with the highest overlap (measured as intersection over union (IoU)). If a segment in frame t+ 1
receives multiple labels, it prefers the segment in frame t with the highest overlap and discards the
other labels. If a segment receives no label, a new label is assigned.
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Figure 4.4: Asymmetric boundary costs promote low costs at characteristic dark-bright intensity tran-
sitions at cells boundaries in phase contrast microscopy. (a) 8-connected pixel neighborhood. Pixels
in blue, edges and weights in each direction in green (only outwards edges shown). (b) Boundary
costs at each pixel are shown in separate maps for each direction in an 8-connected pixel neigh-
borhood (arrows and orientation labels indicate direction). Costs range from zero to one (black to
white). The phase contrast image is shown in the middle.
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Figure 4.5: Symmetric boundary costs, in contrast to asymmetric costs (figure 4.4), also yield low
costs at irrelevant boundaries at bright-dark intensity transitions. Note that the pairs of opposed
boundary maps are redundant in the case of symmetric costs. (For full description see caption of
figure 4.4.)
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(a) (b)

Figure 4.6: Label propagation between two consecutive frames. Propagate labels to overlapping
segments using maximum intersection over union (IoU). (a) Resolve one-to-many correspondences:
Start new tracks (with new label) for segments that do not receive a label from the previous frame.
(b) Resolve many-to-one correspondences: Stop tracks for segments that do not propagate a label
to the next frame. (Images created by Olaf Ronneberger)

  

(a) (b)

Figure 4.7: Segmentation propagation between two consecutive frames. (a) Propagate foreground
segmentation information using the eroded segmentation mask (set mask in green as hard fore-
ground constraint). (b) Propagate partitioning information using borders of „support regions“ (set
borders in red as hard background constraint). (Images adapted from figure 4.6)
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4.3 Experiments

Boundary Seq. 1 Seq. 2
cost F-meas. Recall Prec. F-meas. Recall Prec.

Symm. 0.863 0.838 0.889 0.768 0.732 0.808
Asymm. (equation 4.2) 0.896 0.894 0.897 0.835 0.822 0.847

Table 4.1: Boundary detection results on the PhC-C2DH-U373 training dataset with 4 pixels tolerance.
For comparing symmetric and asymmetric boundary costs, best performing parameters λ and σ (in
terms of F-measure) have been chosen for each setting. Parameters were obtained by grid-search
over the parameter space, shown in figure 4.8.

4.3 Experiments

4.3.1 Dataset

We evaluate our method on challenging phase contrast microscopy videos of moving cells published
by the ISBI Cell Tracking Challenge (ISB; Maška et al., 2014; Ulman et al., 2017). We use the training
dataset PhC-C2DH-U373 (provided by Dr. Sanjay Kumar from UC Berkeley). It contains two 2D
sequences (115 frames each) of Glioblastoma-astrocytoma U373 cells on a polyacrylimide substrate.
Cell segmentation and tracking ground truth is included, along with evaluation tools. Segmentation
masks are available only for a subset of frames and cells.

4.3.2 Implementation details

Image intensities are normalized to the interval [0, 1] first. Then, images are background corrected
by subtracting the smoothed image (large Gaussian kernel with σbgr) from the original image. Re-
gion histograms for computing the data costs in equation 4.1, are obtained from manual foreground
and background scribbles drawn by the authors in one frame of each sequence (that is not contained
in the segmentation ground truth). For graph construction we use an 8-neighborhood. The min-cut
(with parameters λ, σ) is computed using the maxflow algorithm MATLAB interface (Boykov and
Kolmogorov, 2004). Small segments below pixel area amin are discarded. The method starts with seg-
menting the first frame and then segments subsequent frames using segmentation propagation. Erosion
for foreground propagation is computed using a disk-shaped structuring element with radius serosion.
For evaluation, segmentation masks are post processed by a hole-filling algorithm. We set these pa-
rameters: σ bgr = 20px, amin = 500px, serosion = 15px. Best performing parameters λ and σ were
found by grid-search. The method was implemented in MATLAB4.

4.3.3 Evaluation

Boundary detection results We compared the segmentation results obtained when using sym-
metric and asymmetric boundary costs in terms of boundary detection recall and precision. Recall
measures the ratio of ground truth boundary pixels recalled by the computed boundary pixels within
4 pixels tolerance. We used the benchmark code from the Berkeley segmentation benchmark (Ber) to
compute boundary detection results. Table 4.1 shows boundary detection results for both sequences
and compares symmetric and asymmetric costs. The results show that asymmetric boundary costs per-
form better, especially in terms of recall. We also compared the stability of results when varying the
min-cut parameters λ and σ. Figure 4.8 shows that using asymmetric costs also yields more stable
results.

4The Matlab source code is available at http://lmb.informatik.uni-freiburg.de/resources/opensource/CellTracking/.
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(a) Seq. 1 (symm.) (b) Seq. 1 (asymm.)

Figure 4.8: Stability of results. F-measure of the boundary detection results as function of the param-
eters λ and σ. F-measure isolines are plotted in the range [0.5, 1.0] in 0.025 intervals. Black dots
indicate best performing parameters. (a) Results for the standard graph cut with symmetric bound-
ary costs. (b) Results for our approach using asymmetric boundary costs. Our approach yields
better results and is less sensitive to the selected parameters. Compare to table 4.1.

Qualitative results In figure 4.9 qualitative segmentation results are given. They show improve-
ments for detecting very weak phase contrast boundaries, e.g. figure 4.9a right column. Also the
characteristic halo artifacts in phase contrast microscopy are handled well, due to segmentation at the
correct dark-bright intensity transition. In contrast, symmetric boundary costs are strongly affected by
the halo effect and predominantly show leaking segmentation at these borders.

Comparison to reported results We further evaluated our method using asymmetric costs in the
measures of the ISBI Cell Tracking Challenge (CTC) (ISB). The “average segmentation performance”
(Av. SEG) measures the average intersection over union of all reference objects to their matching
segmented objects. The “average tracking performance” (Av. TRA) measures how difficult it is to
change the computed tracking graph to the ground truth graph. For more details, we refer to ISB. Table
4.2a summarizes our results for segmentation and tracking on the training dataset. For comparison,
table 4.2b shows results of the top ranked methods reported at the 2nd CTC (ISB).

Our results at the 3rd ISBI CTC (2015) We participated in the 3rd ISBI CTC (2015). The results
in table 4.2c show that we were able to win against the previously 1st ranked method (KTH-SE) and
also confirm the competitive performance already indicated by the results on the training dataset, see
table 4.2a. The only approach that was able to win against ours was the U-net (Ronneberger et al.,
2015). It was ranked 1st and corresponds to another method we submitted to the 3rd ISBI CTC. It won
a Bitplane Attendance Awards 20155. Compared to our method the U-net relies on a sufficient amount
of training data and additional data augmentation techniques, while our method can cope with very few
training data. In our experiments we used only one frame of each training sequence. The algorithm
description of our method submitted to the challenge is available on the challenge website6. Our results
were published in Nature Methods (Ulman et al., 2017) under the method acronym FR-Be-GE.

Table 4.3 shows the gain achieved by adding segmentation propagation components for temporal
consistency to our pure single-frame segmentation approach.

5http://www.codesolorzano.com/celltrackingchallenge/Cell_Tracking_Challenge/Attendance_Awards.html
6http://www.codesolorzano.com/Challenges/CTC/FR-Be-GE_2015.html
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4.3 Experiments

Sequence Av. SEG Av. TRA

Seq. 1 0.865 0.983
Seq. 2 0.756 0.915

Seq. 1+2 0.811 0.949

(a) Our results (training dataset)

Rank Group Av. SEG Av. TRA

1st KTH-SE 0.795 0.982
2nd HOUS-US 0.532 0.921
3rd IMCB-SG 0.267 0.960

(b) Top ranked methods 2nd ISBI CTC (2014)

Rank Method/Group (acronym) Av. SEG Av. TRA Av. SEG+TRA

1st U-net (FR-Ro-GE) 0.920 0.981 1.901
2nd Ours (FR-Be-GE) 0.826 0.965 1.792
3rd KTH-SE (KTH-SE) 0.795 0.977 1.773
4th ...

...
...

...
5th
...

(c) Our results at the 3rd ISBI CTC (2015)

Table 4.2: Our results at the ISBI Cell Tracking Challenge (CTC) (ISB) on the PhC-C2DH-U373
dataset. Results are reported in terms of the average segmentation (Av. SEG) and the average
tracking (Av. TRA) performance. (a) Our results on the training dataset obtained using best pa-
rameters from grid-search (λ = 0.2, σ = 0.006), for best average segmentation performance on
Seq. 1+2. (b) Results on the challenge dataset of the top ranked methods reported at the 2nd ISBI
CTCa, where the method by Magnusson et al. (2014) (KTH-SE) received 1st rank. (c) Results on the
challenge dataset from the 3rd ISBI CTCb. Our method (Bensch and Ronneberger, 2015) achieved
2nd rank in terms of the Av. SEG measure, as well as the overall measure (Av. SEG+TRA), among
five international participants with a valid submission for this dataset. We improved over the previ-
ously top ranked method (KTH-SE, 2nd CTC), which received 3rd rank. 1st rank results achieved
another method we submitted (U-net, described in Ronneberger et al. (2015)).

aFrom the old challenge website: http://www.codesolorzano.com/celltrackingchallenge/Cell_Tracking_Challenge/Results_Second_CTC.html,
which is currently not available anymore (June 9th, 2017).

bReported in Nature Methods (Ulman et al., 2017, figure 6) among the top-three performing methods of the three challenge
editions and presented on the challenge website: http://www.codesolorzano.com/Challenges/CTC/Latest_Results.html.
Since 2017 the challenge is open for online submissions and up-to-date results are reported on the new challenge website:
http://www.celltrackingchallenge.net

Setting Av. SEG Av. TRA
(Seq. 1+2)

Asymm. only 0.738 0.896

Asymm. + FP 0.803 0.937
Asymm. + FP + NM 0.811 0.949

Table 4.3: Evaluation of different settings of our approach when incrementally adding segmentation
propagation components: Foreground propagation (FP) yields significant improvements, since it
supports the data costs in case of insufficient foreground evidence. The non-merging constraint
(NM) improves results in case of false merging segments.
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(a)

(b)

Figure 4.9: Qualitative segmentation results. Top rows show the raw data. Cyan masks show results
of the standard graph cut with symmetric boundary costs. Red masks show results of our approach
with asymmetric costs. The ground truth contour is shown in yellow. (a) Single frame results for
cells of Seq. 1. (b) Time-lapse results of Seq. 2 for one cell on frames 5, 9, 15, and another cell on
frames 62, 68.
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(a)

(b)

Movie 4.10: Qualitative segmentation results on the challenge sequences of dataset PhC-C2DH-U373
from the ISBI Cell Tracking Challenge (ISB; Ulman et al., 2017). (a) Sequence 1. (b) Sequence
2. Raw images (left) are shown side by side with an overlay of the segmentation result (right).
Each segment is shown in a different color. (Full movie results are available online: (a) http://lmb.
informatik.uni-freiburg.de/people/bensch/phdthesis/PhC-C2DH-U373_01-combined.mkv, (b) http://
lmb.informatik.uni-freiburg.de/people/bensch/phdthesis/PhC-C2DH-U373_02-combined.mkv)
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4.4 Conclusion and Outlook

The segmentation of cells in phase contrast images is significantly improved by using direction depen-
dent boundary costs. Our approach outperforms the standard min-cut segmentation with symmetric
boundary costs. On the PhC-C2DH-U373 phase contrast dataset it beats the top-ranked methods from
the ISBI Cell Tracking Challenge 2014. In the following Challenge 2015, the U-net, a deep learning
method that we also submitted won, but the proposed method still ranked 2nd. Our results were re-
ported in Nature Methods (Ulman et al., 2017) among the top-three performing methods from all the
three challenge editions together.

We assume that cell segmentation in other modalities (transmitted light, dark field, fluorescence,
etc.) also profits from asymmetric boundary costs. Our open-source MATLAB implementation will
enable a large audience to try it on their data sets.

The accurate segmentation of cells is an important basis for further analysis and quantification in
biomedical applications. The next chapter (chapter 5) gives an example, it presents an application
where the motion pattern of migrating cells is analyzed from the extracted cell contours.

104



5 Contour-based Motion Pattern Analysis of
Migrating Cells

In the previous chapter we introduced our approach to cell segmentation and tracking in phase contrast
images. Based on this, in this chapter we present a direct application in a field of biomedical research
investigating migrating cells.

In the following, we first give an introduction including the biological background and related work.
Then, in section 5.2 we describe how we detect so-called symmetry-breaking events. These are special
cellular events, that are in the focus of the analysis. Finally, we represent cell contour motion pat-
terns using protrusion/retractions maps. These visualize the (signed) contour velocities in a 2D map
with polar contour coordinates on the y-axis and time on the x-axis. Section 5.3 details how they are
computed. The experimental section 5.4, on the one hand, gives qualitative results of our methods on
real biological data in terms of cell detection, segmentation, the detection of symmetry-breaking events
and cell contour protrusion/retraction analysis. On the other hand, in section 5.4.4 we summarize the
biological results that were extracted using the presented methods.

The methods were developed and the biological results were obtained as a part of a joint project
and are partially contained in the PhD thesis by Deniz Saltukoglu (Saltukoglu, 2015) and published in
Molecular Biology of the Cell (Saltukoglu et al., 2015).

5.1 Introduction

Vicente-Manzanares et al. (2005) introduces cell migration as “. . . a fundamental process, from sim-
ple, uni-cellular organisms such as amoeba, to complex multi-cellular organisms such as mammals.
Whereas its main functions comprise mating and the search for food in simple organisms (Manahan
et al., 2004) , complexity brings a requirement for specialization, which necessitates cell migration-
mediated tissue organization, organogenesis and homeostasis (Ridley et al., 2003).” Furthermore,
Horwitz and Parsons (1999) emphasize that “cell migration is crucial for embryonic development,
the inflammatory immune response, wound repair, and tumor formation and metastasis (Lauffenburger
and Horwitz, 1996).” In conclusion, Vicente-Manzanares et al. (2005) states that “. . . a thorough un-
derstanding of the mechanisms underlying cell migration will facilitate development of therapies for
the treatment of migration-related disorders.”

In this context, consider figure 5.1a. It illustrates the particular biological application this chapter
focuses on. A single cell (a human keratinocyte) is shown that starts migrating from the left to the right
side. It can be observed that the cell polarizes while migration is initiated and establishes a distinct
front and rear cell edge. This process is referred to as symmetry-breaking by biologists.

In Saltukoglu et al. (2015) we studied molecular requirements for random and electrical field (EF)-
controlled symmetry-breaking. We tested the role of a cascade of molecules in polarization, ranging
from cytoskeleton force generators, cytoskeleton regulators (Rac1, Cdc42 GTPases), inner cell surface
molecules to cell surface receptors. For several questions we addressed the “readout” is the migration
behavior, and more specifically, the way cells change their shape and cell contour during migration,
that is observed in the recorded image data (see figure 5.1). When cells break symmetry and polarize,
the lamellipodium, which is formed at the front, provides the protrusive force, and the lagging edge, at
the back, contracts to detach the cell from the substratum (Saltukoglu et al., 2015).
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(a)

(b)

Figure 5.1: Cell shape and contour changes of a single migrating cell and segmentation results. (a)
Raw data time-lapse of a migrating human keratinocyte acquired by phase contrast microscopy.
The cell starts migrating from the left to the right. (b) Segmentation results obtained when applying
our approach (Bensch and Ronneberger, 2015), presented in chapter 4. Segmentation masks and
detected contours are highlighted (in green). Note that the contours are smoothed intentionally due
to the analysis requested in this application.

The observed behavior and details of cell contour changes are linked with the underlying biological
mechanisms that are in the focus of our study. Thus, the analysis of cell contour changes plays an
important role.

The basis of the desired analysis is a segmentation of the cells in each frame, i.e. the extraction of
the cell contours. The analysis of a large amount of time-lapse image data is not imaginable without
automated image analysis techniques. Even if it was possible, manual analysis would be biased, prone
to errors and not repeatable. Reconsidering the raw image data shown in figure 5.1a, there are several
challenges image segmentation algorithms are faced with: Very weak edges at the cell boundaries,
quickly changing morphology and even changing edge appearance, especially at the rear edge after
migration is initiated.

For detecting, segmenting and tracking cells we apply our approach (Bensch and Ronneberger, 2015)
presented in chapter 4. It uses graph cut with asymmetric boundary costs and was developed for the
segmentation of cells in phase contrast images. In the experiments conducted in Bensch and Ron-
neberger (2015) it outperformed other approaches. Figure 5.1b exemplarily shows the segmentation
results we rely on in this chapter and that we obtain with our segmentation approach. Implementation
details deviating from Bensch and Ronneberger (2015) are given in section 5.4.2. Further cell detection
and segmentation results are shown in section 5.4.4.

Based on the results of cell segmentation and tracking the desired analysis of cell contour changes
can be performed. In the following, we first introduce the related work before we detail how we detect
symmetry-breaking events and perform cell contour protrusion/retraction analysis.

5.1.1 Related Work

A few works exist in the literature that deal with the analysis of cell contour changes of migrating cells
from phase contrast time-lapse microscopy. More specifically, cell contour dynamics of migrating
keratocytes (cells that look and behave similar to keratinocytes shown in figure 5.1) are investigated in
both Ambühl et al. (2012) and Yam et al. (2007). Both first perform cell segmentation and then analyze
cell contour protrusions and retractions.

Ambühl et al. (2012) propose a series of morphological image processing steps combined with level
set approaches for segmentation. Yam et al. (2007) use “a variation of the active contours algorithm
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(Kass et al., 1988) derived from the gradient vector flow method of Xu and Prince (1998)” for seg-
menting cells, for which the contour was initialized manually in the first frame. For more information
on the related work of cell segmentation in phase contrast images we refer to the related work section
4.1.1.

For the description of contour changes and measuring protrusion and retraction three questions have
to be addressed: 1) Which contour parameterization to choose? 2) How to define temporal correspon-
dences? 3) How to transform vectorial contour displacements into a scalar measure that is positive for
contour protrusion and negative for contour retraction?

In Ambühl et al. (2012) curvilinear coordinates are used and each contour point in frame t is assigned
to the closest contour point in the next frame t+ ∆t. This results in a displacement field d(s, t), with
curvilinear coordinates s and time t. Protrusion and retraction is measured by multiplying the norm
of the field of displacement with sign(d · n), where n is the outer normal vector onto the cell outline
(Ambühl et al., 2012). In Yam et al. (2007) boundary movements are computed by a mechanical
model proposed in Machacek and Danuser (2005), it tries to find a mapping that is consistent with and
continuous along the contour normal direction. Cell contour positions are finally represented in polar
coordinates and continuous space-time plots of protrusion and retraction are generated by the scalar
map function (see Yam et al. (2007) for details). Unfortunately, it is not explicitly stated how the scalar
protrusion/retraction measure is computed.

Similar to Yam et al. (2007) we use a contour representation in polar coordinates and measure pro-
trusion and retraction in direction of the contour normal, since the tangential component does not
contribute to the movement of the cell boundary, see section 5.3.

5.2 Detection of Symmetry-Breaking Events

In this work automated detection of symmetry-breaking events was necessary to facilitate and assist
browsing the large amount of data and to extract the relevant time intervals which are in the focus of the
analysis. When cells break symmetry their shape changes from a roundish to an elliptic shape, which is
illustrated in figure 5.2. We identify symmetry-breaking events by detecting these characteristic shape
transitions. We use the eccentricity to measure the “roundness” of the shape as a function of time. To
detect symmetry-breaking we define a simple heuristic on the eccentricity function.

5.2.1 Calculation of Eccentricity

For each cell segment the eccentricity is computed as a function over time. The eccentricity

e =
f

a
=

√
1− b2

a2
(5.1)

is the ratio of the distance f between the center of the ellipse (with the same second-moments as the
segment) and each focus to the length of the semi-major axis a. The semi-minor axis of the ellipse is
denoted by b. The eccentricity of an ellipse is in the interval [0, 1), it is 0 for a circle and 1 for an ellipse
that is degenerated to a line segment. The function is smoothed using an average filter of width wecc.
Figure 5.2b gives the eccentricity values computed for the depicted segments and figure 5.3a shows an
example of the smoothed eccentricity function.

5.2.2 Detection

We detect events as symmetry-breaking events in frame intervals where the eccentricity traverses the
range [0.6, 0.7]. A reference orientation is computed at the frame where eccentricity is closest to 0.7. It
is the orientation of the major axis of the ellipse that has the same second-moments as the cell segment.

107



5 Contour-based Motion Pattern Analysis of Migrating Cells

(a)

e = 0.2926 e = 0.4180 e = 0.7215 e = 0.8260
(b)

Figure 5.2: Symmetry breaking and initiation of cell migration. (a) A subset of frames from within the
sequence shown in figure 5.1 depicts the moment when symmetry-breaking takes place. The ini-
tially roundish and unpolarized cell turns into an elliptically shaped and polarized cell. The polarized
cell exhibits a distinct front/leading edge (right side) and rear/lagging edge (left side). (b) Segmen-
tation results. Segmentation masks and detected contours are highlighted (in green). Calculated
eccentricity values are given below.

(a)

(b)

Figure 5.3: Detection of symmetry-breaking events. (a) The eccentricity as a function over time
(frames) is shown (in blue) computed for the cell segment depicted in figure 5.1b. The range for
which a symmetry-breaking event is detected is plotted in red. The point for which eccentricity
is closest to 0.7 and that is used to define the reference orientation is indicated by a black dot.
Eccentricity functions of other cells in the same field of view are indicated in light gray. (b) Cell
contours falling into a larger time window around the detection are plotted in blue, contours within
the detection range are plotted in red.
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5.3 Cell Contour Protrusion/Retraction Analysis

In the example in figure 5.3 the detected range is shown in red and the reference point is indicated by
a black dot in figure 5.3a.

5.3 Cell Contour Protrusion/Retraction Analysis

The initiation of cell migration goes along with symmetry-breaking and entails contour protrusion at
the leading edge and contour retraction at the rear cell edge. Figure 5.4 indicates cell contour protrusion
and retraction at an example. In this study, we wish to investigate the underlying biological mechanism
that are linked to these contour movements. Thus, it is important to precisely describe and visualize
these motion patterns.

We compute protrusion/retraction velocity maps that describe cell contour movements in a polar
coordinate system and distinguish outwards (protrusion) and inwards pointing movements (retraction).
Figure 5.5 gives an example. In the following we detail how we compute protrusion/retraction maps
(denoted PR maps in the following).

(a)

(b)

(c)

Figure 5.4: Cell contour protrusion and retraction. (a) Raw data time-lapse of a migrating cell breaking
symmetry. (b) Cell contour protrusion is indicated by red arrows and retraction is indicated by blue
arrows. Segmentation results are highlighted in green. (c) An overlay of all segmentation masks
from (b) shows the retracting and protruding cell contour.

5.3.1 Contour Extraction and Normalization

Contours are extracted as the boundary pixel positions of the segmented cells. For cells breaking
symmetry the orientation is normalized to the reference orientation defined in section 5.2.2. I.e. the set
of contours is rotated such that the orientation of the major axis of the segment in the reference frame
is upright after normalization.

5.3.2 Calculation of Contour Velocities

For calculating cell contour movements, we establish temporal point correspondences by uniform an-
gular sampling (Nsamples angular samples) of the contours centered to their mean position. Contour
positions are smoothed in temporal direction to compensate for inconsistent fluctuations (using an av-
erage filter of width wpos). Finally, contour velocity vectors are computed as the displacement vectors
between corresponding contour points.
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5.3.3 Protrusion/Retraction Measure

Cell edge protrusion/retraction is measured by the scalar projection

〈vi, ni〉 (5.2)

of the velocity vectors vi onto the local normal direction ni of the sampled cell contour, with samples
i ∈ {1, . . . , Nsamples} (normal direction is defined as pointing outwards). The measure is positive for
protrusion and negative for retraction. Figure 5.5 shows an example of extracted contours and the cor-
responding PR map. The PR map in figure 5.5c clearly shows a cone-shaped blue region corresponding
to the retraction of the rear cell edge and red regions corresponding to the protrusion of the front cell
edge shown in figure 5.4b and figure 5.5a.

(a) (b)

(c)

Figure 5.5: Cell contour protrusion/retraction analysis illustrated at the example given in figure 5.4. (a)
Sequence of detected contours with time color-coded in the depicted time range (from blue to red).
(b) Polar coordinate system used for PR maps. Time color code used in contour sequence plots. (c)
The PR map visualizes movements of contour points (in polar coordinates) over time (on the x-axis).
Protrusion is positive signed and color-coded in red, retraction is negative signed and color-coded
in blue. Regions of protrusion and retraction are indicated by red and blue arrows. These regions
correspond to the protrusions and retractions shown in figure 5.4b. Black horizontal bars indicate
the detection of a symmetry-breaking event.

5.4 Experiments

In our experiments we evaluated cell contour protrusion and retraction of migrating human ker-
atinocytes from several time-lapse recordings acquired by phase contrast microscopy. Migrating ker-
atinocytes were recording under different conditions, such as with and without inhibition of cytoskele-
tal regulators (Cdc42 and Rac1), low and normal pH concentrations, or with and without an external
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electric field (EF). The goal of the experiments was to quantify and compare cell contour protrusion
and retraction patterns under these different conditions. In our experiments, we detected, segmented
and tracked cells using graph cut with asymmetric boundary costs as described in chapter 4. Further-
more, we detected symmetry-breaking events and performed cell contour protrusion/retraction analysis
as described in sections 5.2 and 5.3.

In our experimental results in section 5.4.4, on the one hand, we give qualitative results of cell
detection and segmentation, the detection of symmetry-breaking events and cell contour protru-
sion/retraction analysis. On the other hand, we show which biologically relevant results were extracted
using the presented methods. Prior to this, in the following we give details on the datasets and imple-
mentation.

5.4.1 Datasets

The data covers about 20 different experimental conditions, for example composed from the application
of molecular switches, such as Cdc42 and Rac1, the application of an external electrical field (EF), and
the application of an extracellular potential of hydrogen (pH). The effect of different conditions on the
migratory behavior of the cells was in the focus of the biological experiments.

We processed 58 datasets of time-lapse recordings of migrating human keratinocytes consisting of
64-190 frames and containing 1-12 cells (mostly 5-8 cells) in the field of view. The image resolution
was 692 × 520 pixels, with 0.65µm2 pixel size. The temporal resolution was 1 min per frame. Figure
5.6 shows exemplary frames from the recorded data.

5.4.2 Implementation Details

We first normalized the image intensities to the interval [0, 1]. Compared to our implementation in
Bensch and Ronneberger (2015), we do not apply background correction.

Furthermore, no region prior is required, and data costs Cobj are initialized to zero. However, we
apply hard foreground constraints using heuristically initialized foreground seeds in the first frame.
These are initialized reliably from characteristic dark spots inside the cells by intensity thresholding.
For the following frames, foreground propagation is applied. In contrast to Bensch and Ronneberger
(2015), foreground regions are propagated using both, a hard foreground constraint from the eroded
previous segmentation mask, and a hard background constraint from the inverse of the dilated previous
segmentation mask. Hence, min-cut optimization is performed only in a narrow band around the
cell contour determined in the previous frame. The data costs for hard-constraint foreground and
background pixels are set to CO = 10000/NO and CB = 10000/NB respectively. NO is the number
of foreground and NB is the number of background pixels. As touching cells are excluded from the
analysis before anyway, it is not necessary to apply a non-merging constraint (NM).

Asymmetric edge costs for the intensity derivative d are defined by an ordinary step-function and
computed as Cedge(d) = 0, if d > dthr and Cedge(d) = Cmax else. For graph construction we used a
4-neighborhood.

The min-cut is computed using the maxflow algorithm MATLAB interface (Boykov and Kol-
mogorov, 2004). Small segments below pixel area amin are discarded.

After segmenting the first frame the method uses segmentation propagation for segmenting sub-
sequent frames. We computed erosion and dilation for foreground propagation using a disk-shaped
structuring element with radius serosion and sdilation respectively. For the analysis requested in this ap-
plication smooth contours are preferred over contours that include all the fine details along the cell
boundary, such as the thin “cell hairs” termed filopodia. To this end, cell contours are smoothed by
applying a Gaussian filter with sigma σsmooth to the binary segmentation mask and then thresholding at
0.5.
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These parameters are used: Cmax = 0.005, dthr = 0.005, λ = 1, amin = 400px, serosion = 11px,
sdilation = 17px and σsmooth = 5.0px. The parameters were set manually by inspecting several sample
results.

For smoothing the eccentricity function and the contour positions temporally we used an average
filter of width wecc = 10 frames and wpos ≈ 3 frames respectively. For the uniform angular sampling
of contours we used Nsamples = 80 angular samples.

The methods were implemented in MATLAB (The MathWorks Inc.). Eccentricity and orientation
was computed by MATLAB function regionprops.

5.4.3 Quality Control

For the biological evaluations it was essential to ensure high quality segmentation results, since even
small contour deviations can lead to strong artifacts in the PR maps. Although automated cell segmen-
tation overall yielded precise results, the extracted cell contours, relevant for the biological evaluations
(section 5.4.4), were manually inspected and corrected, which was necessary in multiple cases.

5.4.4 Results

Cell Detection, Segmentation and Tracking

In figure 5.6 we show qualitative results for the segmentation and detection of cells in the recorded
images. Figure 5.7 shows qualitative results of tracked single cells. The segmentation results for the
full field of view demonstrate that our approach allows to simultaneously detect and segment multiple
cells. We obtained precise cell contour segmentations, despite various challenges these phase contrast
microscopic images pose. Cell contours are very weak at the leading edge, and at the rear edge the
“halo effect” results in a very bright edge with misleading intensity gradients. Even more challenging,
the edge appearance is changing when cells start to migrate, which can be observed in figure 5.7. The
segmentation is challenging not only because of the complex edge appearance, but also because of the
“shade-off effect” in phase contrast microscopy. It results in similar intensities inside and outside the
cells. In addition, there is a strong variation in the cell shape.

In figure 5.7 we show the evolving appearance and shape of the cells in the phase contrast microscopy
time-lapse. Three cells are given as an example, including two cells that start to migrate and break
symmetry, and one cell that, in contrast, does not migrate and does not undergo symmetry-breaking.
Apart from the discussed artifacts in phase contrast microscopy, artifacts originating from the data
acquisition occur that hamper the segmentation task. As the field of view is recorded in a single slice
only and cell positions may slightly vary in z-direction, single cells can get out-of-focus and appear
unsharp. From the examples in figure 5.7 it can be observed that the segmentation results remain
robust under the described artifacts. Finally, the obtained segmentation results precisely capture the
movement of the cell boundary and the evolution of the cell shape.
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(a)

(b)

Figure 5.6: Cell detection and segmentation results in the recorded images. Left column shows the
raw data from phase contrast microscopy. Right column shows the segmentation masks and de-
tected contours highlighted in green. (a-b) Single frame results of two sequences from different
experiments are shown. (Cell segments from only partially visible cells at the borders are discarded
for the evaluation.)

113



5 Contour-based Motion Pattern Analysis of Migrating Cells

(a)

(b)

(c)

Figure 5.7: Single cell segmentation results. Top rows show the raw data from phase contrast mi-
croscopy. Bottom rows show the segmentation masks and detected contours highlighted in green.
(a-c) Three exemplary cells from different sequences and experiments are shown. (a,b) The first
two cells migrate and break symmetry. (c) The third cell in contrast does not migrate and does not
break symmetry, but only shows protrusions along the contour.
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Detection of Symmetry-Breaking Events

In figure 5.8 we show symmetry-breaking detection results corresponding to the single cell segmenta-
tion results in figure 5.7. For each cell the function of the evolving shape eccentricity is plotted together
with the corresponding sequence of extracted contours.

When cells start migrating their shape changes from a roundish to an elliptic shape. This behavior is
reflected in the results by the fact that the eccentricity is monotonously increasing in the corresponding
time window. Symmetry-breaking is defined as the time windows in which eccentricity traverses the
range [0.6, 0.7]. Results corresponding to these detected time windows are plotted in red in figure
5.8. The examples suggest that based on the defined, simple criterion for the detection of symmetry-
breaking, these events can be detected robustly when they occur (figure 5.8a,b). Accordingly, when no
clear symmetry-breaking is present, no event is detected (figure 5.8c).

In the results shown in figure 5.3 and figure 5.8 eccentricity first decreases before it increases again
and cells perform symmetry-breaking. This matches the observation that cells flatten and spread before
they start to migrate.

The two examples in figure 5.8a,b show that the duration and the speed of symmetry-breaking varies
across cells. We measure the duration from the eccentricity function as the time span between the first
local minimum before and the first local maximum after the detected time window. The speed can be
measured by the slope of the function within the detected time window, for example at the reference
point for which eccentricity is closest to the value 0.7 (indicated by a black dot).

Cell Contour Protrusion/Retraction Analysis

In figure 5.9 we show the time color-coded contours and PR maps in line with figures 5.7 and 5.8.
The color-code used for the contours indicates the temporal progression of the shape sequences (time
is color-coded from blue to red). The PR maps, on the other hand, depict contour protrusions (color-
coded in red) and contour retractions (color-code in blue), as described in section 5.3. Cells that
undergo symmetry-breaking show strong protrusions and retractions, such as the two cells shown in
figure 5.9a,b. In contrast, cells that do not break symmetry only show minor protrusions and retractions
along the contour, see figure 5.9c for example. In the examples in figure 5.9a,b we observe retraction
of the rear cell edge (see the upper half of the PR maps) and protrusion of the leading edge (see
the lower half of the PR maps). The plot allows to extract additional information about the contour
deformations. For instance, the pattern of rear cell edge retraction is cone-shaped starting with a peak
of retraction which broadens with the progression of rear edge retraction. This pattern in the PR maps
geometrically corresponds to a contour retraction that starts with a strong retraction in the middle of
the rear cell edge and slowly proceeds to continuously pull the rest of the rear edge towards cell-inside
direction. The pattern of leading edge protrusion encodes details about location, strength and temporal
progression of protrusions. Consider figure 5.9a for example, there the protrusion pattern indicates
first stronger protrusions in south/south-east direction only after the initiation of retraction and first
stronger protrusion of the cell front in east direction later, when the complete rear cell edge is already
undergoing stronger retraction.
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(a)

(b)

(c)

Figure 5.8: Detection of symmetry-breaking events corresponding to the cells shown in figure 5.7a-c.
Left column shows the eccentricity as a function over time (frames) in blue. The range in which
symmetry-breaking is detected is plotted in red. Note that only intervals are detected in which
eccentricity traverses the range [0.6, 0.7]. The point for which eccentricity is closest to 0.7 is indicated
by a black dot. It is used to define the reference orientation. The eccentricity functions of other
cells in the same field of view are indicated in light gray. Right column shows cell contour plots
corresponding to a larger time window around the detection, contours within the detection range are
plotted in red. (a,b) Symmetry-breaking is detected for the first two cells, which is in line with the
observations in figure 5.7. (c) For the third cell however no symmetry-breaking is detected.
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(a)

(b)

(c)

Figure 5.9: Cell contour protrusion/retraction analysis corresponding to the cells shown in figure 5.7a-
c. Left column (a,b) / top row (c) shows contour plots with time color-coded from blue to red in
the depicted time range. Right column (a,b) / bottom row (c) shows the corresponding PR maps
with protrusion color-coded in red and retraction color-coded in blue. (a,b) The first two cells show
detailed patterns of rear cell edge retraction and front edge protrusion. (c) The third cell in contrast
only shows minor protrusions and retractions occurring along the contour (yellow and cyan spots in
the PR map).
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Biological Results

In this section we give an overview of the results the biologists could extract using the presented
methods. We show the results in figures 5.10 and 5.11 and describe them in the following paragraphs.
These are summarized versions from Saltukoglu et al. (2015) as indicated below.

The role of cytoskeletal regulators in spontaneous and directional polarization
“Cdc42 and Rac1 are molecular switches that orchestrate the organization of the acto-
myosin cytoskeleton and regulate the activities of cytoskeletal force generators (Jaffe and
Hall, 2005). While Cdc42 is a key molecule in polarity establishment, Rac1 controls
the formation of a lamellipodium (Heasman and Ridley, 2008). Both Cdc42 and Rac1
abolished symmetry-breaking in keratinocytes, but produced different morphologies [...].
Cdc42 inhibition led to the apparent loss of protrusive activity, which was confirmed by
automated cell outlining of the cellular boundary over time during the polarization assay
(figure 5.10). By contrast, Rac1 inhibition led to small but detectable protrusions occur-
ring randomly at the cell periphery (figure 5.10). [...] Whereas Cdc42 decreases the overall
ability of cells to make protrusions, Rac1 was required to organized the stability and size
of protrusions to form a stable leading edge.”, (Saltukoglu et al., 2015, p. 5).

“The electric field increases polarization in cells with compromised cytoskeletal sig-
naling We next tested the requirements for cytoskeletal force generators and small GT-
Pases Cdc42 and Rac1 in EF-controlled polarization. [...] The inhibition of the small
GTPases Cdc42 and Rac1 did not affect directionality determination. However, [...] EF
stimulation raised the percentage of symmetry-breaking in Rac1-inhibited cells from 30%
(without EF) to 54% (with EF). By extracting the cellular outlines over time, we could fur-
ther demonstrate how EF could increase symmetry-breaking in Rac1-inhibited cells. This
may occur via the clustering of the uncoordinated protrusive activity, and therefore also
of the protrusive force essential for symmetry-breaking, towards the cathodal side (figure
5.10). By contrast, the EF was unable to enhance symmetry-breaking in Cdc42-inhibited
cells, where all peripheral protrusions were suppressed (figure 5.10). Taken together, these
findings show that the cytoskeleton force generators and cytoskeleton regulators are not re-
sponsible in directionality determination and that in some conditions, EF application can
partially restore the capacity to polarize.”, (Saltukoglu et al., 2015, p. 5).

“Morphological differences in anodal and cathodal polarization To understand the re-
versal of polarization with low pHe further, we used protrusion/retraction maps to compare
the morphology of symmetry-breaking cells in normal and low pHe. In normal pHe, be-
fore any movement in the position of the future lagging edge, cells protruded their plasma
membrane toward the cathode (in the protrusion/retraction map, this can be seen as red
spots before the event of actual symmetry-breaking). This type of leading-edge protrusion
was lacking in the low-pH medium condition. By contrast, an invagination of the back
preceded the leading-edge protrusion. Initially, this invagination started in the midpoint of
the future lagging edge and extended laterally with time, forming the characteristic conical
shape of the blue areas representing retraction in the PR map (figure 5.11). Leading-edge
protrusion and cell translocation during polarization was generally slower in this condi-
tion. Of importance, this type of symmetry-breaking was not a general feature of cells in
low-pH medium, as it was not observed in low pHe without EF stimulation (figure 5.11).
The morphological difference in the mode of symmetry-breaking for cathodal and anodal
polarization suggested that there may be a distinct set of cytoskeletal regulators responsible
for either type of polarization. [...] These results further underscore that cytoskeleton el-
ements are not determining the direction of polarization. Moreover, the observed changes
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Figure 5.10: “The role of cytoskeletal regulators in spontaneous and directional polarization. [...] Auto-
mated boundary detection from phase contrast videos for the representative cells with the indicated
treatments. Time progression is represented from blue to red. (a-b) In Cdc42-inhibited cells, EF
does not induce any protrusions towards the cathode [...]. (c-e) Rac1-inhibited cells show small, un-
sustained and random boundary protrusions without EF. Two examples are shown for Rac1-inhibited
cells with EF. (d) In the left example, the cell clearly polarizes to the cathode. (e) In the right, small
protrusions are driven towards the cathode and suppressed at the anodal side.” Figure and caption
adopted from Saltukoglu et al. (2015, figure 2C, p. 4-5).

in pHi upon pHe reduction do not seem to affect the cytoskeletal organization in polarizing
cells.”, (Saltukoglu et al., 2015, p. 9).

These constitute our contributions to the overall biological findings, which are expected “to have
a number of direct implications for epidermal wound healing”, according to Saltukoglu et al. (2015,
p. 11).
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5 Contour-based Motion Pattern Analysis of Migrating Cells
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Figure 5.11: “Lowering pHe reverses the direction of symmetry-breaking. Automated boundary de-
tection from phase contrast videos and the associated PR maps constructed from boundary move-
ments in time for the conditions of low- and normal-pH medium with and without EF. In the detected
boundaries, time progression is represented from blue to red. In the PR maps, the x-axis repre-
sents the time, and the y-axis is the position of the cellular boundary from 0 to 2π. Representative
cells have been turned [...] so that their leading edges always face the right side. (a-c) Symmetry
breaking in the normal-pH condition (with and without EF), as well as low-pH condition (without EF),
is featured by front protrusions preceding the retraction of the back. (d) By contrast, in low pH (with
EF), there is an invagination of the cellular boundary at the lagging edge. The invagination event is
represented by the unique conical shape of the blue retraction area of the corresponding PR map.
Moreover, there is also a general reduction of leading-edge protrusion [...] in this condition.” Figure
and caption adopted from Saltukoglu et al. (2015, Figure 6C, p. 8-9).
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5.5 Conclusions

5.5 Conclusions

This chapter demonstrates an example in which we successfully applied our image segmentation
approach (Bensch and Ronneberger, 2015) to the analysis of cell migration behavior in human ker-
atinocytes. Our approach resulted in accurately extracted cell contours. Based on these, the detection
of symmetry-breaking events allowed to automatically browse large amounts of data and focus the
analysis on these relevant cellular events. Finally, we visualized and precisely measured cell contour
protrusions and retractions in PR maps. Through the analysis of the protrusion/retraction behavior of
cells under different conditions we answered several biologically relevant questions.

————
————
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6 Conclusion

In this thesis, we presented novel methods for motion pattern analysis in biomedical applications that
enable quantitative comparisons in 2D and 3D time-lapse microscopy. Motion patterns are very rele-
vant in developmental biology, for example, as they describe processes, such as cell migration, that lead
to the formation of tissue, the creation of organs and even whole organisms - generally speaking, the
creation of life. Automated quantitative comparisons between wild-type and genetically manipulated
specimen are important in biomedical research to identify significant differences. The results can help
to decode the function of specific genes.

We developed a general method to detect motion anomalies in 3D+time data using a new, efficient
and robust “supertrajectory” representation. Anomalies are detected by reconstructing a whole test
pattern via placing spatiotemporally deformed instances of a prototype pattern. A modified hashing
approach and a new method to elastically register trajectory patterns allows efficient and robust recon-
struction. A prototype model is learned from training sequences to define accepted variations. Our
approach performed well in detecting subtle anomalies on a new motion anomaly dataset of juggling
patterns on which it outperformed chaotic invariants for anomaly detection (Wu et al., 2010). We
successfully applied the method on the quantitative comparison of motion patterns from the early de-
velopment of zebrafish embryos and obtained a detailed spatiotemporal analysis of differences between
wild-type and morphant embryos.

We presented a method to detect specific motion patterns in 3D+time data using spatiotemporal
geometric models. In particular, we developed a model to detect cell intercalations, which is an es-
sential motion pattern in developmental biology. The method builds on motion trajectories of single
cells, while a spatiotemporal geometric model defines the motion pattern to be detected. Our approach
is robust to noisy and interrupted measurements and handles the variability within the class of 3D
intercalations. We successfully applied the method to obtain quantitative comparisons of cell interca-
lations and their motion statistics between wild-type and mutant embryos in the early development of
zebrafish.

To segment cells in phase contrast microscopy we presented a new robust, effective and surprisingly
simple approach. The key feature of our method is that it strongly favors dark-to-bright transitions at
the boundary of (arbitrarily shaped) segmentation masks. The segmentation mask is effectively found
via a fast min-cut approach. Our graph contains directed edges with asymmetric edge weights, which
has never been applied to phase contrast microscopy, to the best of our knowledge. Our evaluation
shows that asymmetric edge weights yield better results while being less sensitive to the graph cut
parameters. Our method outperformed the top ranked methods from the ISBI Cell Tracking Challenge
(CTC) (ISB) 2014 on the phase contrast dataset and reached second place in the ISBI CTC 2015.

A successful application of our approach for cell segmentation in phase contrast images was the anal-
ysis of cell migration and cell contour motion patterns in human keratinocytes. We developed methods
to detect symmetry-breaking events and to compute protrusion/retraction maps. These enabled auto-
matic browsing of large amounts of data and an analysis of cell contour protrusion/retraction patterns
focused on symmetry-breaking events. Our approach provided the biologists with a quantification of
several experimental conditions (Saltukoglu et al., 2015; Saltukoglu, 2015).
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6 Conclusion

Outlook

As deep learning (LeCun et al., 2015; Rusk, 2016) is currently the most exciting and promising field
for advances, it seems reasonable to focus future research into that direction. Therefore, in this outlook
we discuss some ideas about using deep learning in the context of the presented work.

Currently, solving rather “basic” tasks, such as classification, detection, or segmentation, works well
with deep learning. However, realizing an end-to-end deep learning approach that solves complex
tasks, such as those considered in this thesis, is very challenging to date. The main challenges have
been discussed in the introduction in section 1.3. A mixture of conventional and deep learning methods
might be required on the way of approaching a pure deep learning solution.

In the following, we list several ideas about using deep learning. At first, two general basically
different approaches are discussed.

• Discriminative approach (hypothesis testing): In a discriminative setting a classifier, in this
case a deep neural network, could be trained to distinguish between datasets of different classes.
If this succeeds, then differences exist. This setting is comparable to hypothesis testing. This
approach, however, has several drawbacks. First of all, in case training fails, it is not clear,
whether there are no differences, or whether the learning algorithm fails to train the classifier.
Secondly, the fact that a classifier can distinguish the classes does not imply that the differences
are relevant. They might just be artifacts, for example, introduced by different imaging settings.
Finally, this approach only addresses the existence not the localization of differences.

• Generative approach (anomaly detection): In a generative approach, a generative model could
be learned from the normal class data. Differences in the test data would be detected as deviations
from the learned model. This setting is comparable to anomaly detection. In deep learning this
approach could be realized using auto-encoders. Auto-encoders have already been used in video
anomaly detection, e.g. in Hasan et al. (2016); Chong and Tay (2017). An auto-encoder consists
of an encoder, that is a contracting network for extracting a compact feature representation, and
a decoder, that is an expanding network for reconstructing the original image. When trained with
normal class data, the auto-encoder learns a representation for the normal class. When applied
to test data, the auto-encoder tries to reconstruct the data using the learned representation, which
will succeed only up to the degree of similarity to the normal class. The difference between the
reconstructed and the input image highlights locations that are not reconstructed well, i.e. that
deviate from the normal model. This approach sounds promising, however several drawbacks
remain. First of all, it is not guaranteed whether the detected differences are relevant, or just
device-dependent variations or other artifacts. Secondly, although the localization of deviations
is available, a meaningful representation of the differences is beyond the scope of this approach.

• Unsupervised domain adaptation: An interesting approach for unsupervised domain adapta-
tion has been presented in Kamnitsas et al. (2016). It uses an adversarial network architecture
to learn a segmentation task, while at the same time forcing the network to learn features that
are robust across different domains of the input data, specifically different imaging protocols.
The advantage of this approach is that domain adaptation only requires the domain labels, but
no annotations for the primary segmentation task. This approach could be integrated to obtain
device-independent properties. It could be used in the discriminative setting described above, for
example. A drawback of adversarial networks is that they are very hard to train.

• Recurrent neural networks (RNNs): RNNs allow processing of sequential data and have
proven to be very powerful in numerous scenarios. RNNs could be used in our context in mul-
tiple ways, for example, to process temporal sequences, or a sequence of datasets. Potentially,
RNNs could also be used to sequentially iterate the data to identify differences. Furthermore,
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recent encoder-recurrent-decoder (ERD) architectures (Fragkiadaki et al., 2015; Donahue et al.,
2017) might be helpful. The separate encoder and decoder networks allow to integrate differ-
ent input and output formats, while the recurrent part of the network allows to learn temporal
dynamics.

• Introducing prior knowledge: Introducing prior knowledge helps to simplify the problem and
steers the solution into the desired direction. Instead of building on the raw input data only, one
could augment the input data by precomputed segmentation, detection, or optical flow informa-
tion. One could also directly build on a precomputed trajectory representation and possibly use
graph convolutional networks (Defferrard et al., 2016; Kipf and Welling, 2016) for processing
this type of data. However, including specific prior knowledge is very difficult in deep learning
and moreover deviates from the concept of end-to-end learning.

• Extraction and localization of differences: With regard to the discriminative approach de-
scribed above, for a successfully trained discriminator network, differences could be localized in
the image domain by using backpropagation techniques or methods that invert representations,
such as the method presented by Dosovitskiy and Brox (2016), or other methods discussed in
the related work section in Dosovitskiy and Brox (2016). The auto-encoder approach discussed
above, among generative approaches, directly provides a localization of differences in the image
space. Extracting a meaningful representation of differences will however be very difficult.

• Statistical significance: As mentioned in Angermueller et al. (2016) in the section “Pitfalls”,
assessing statistical significance “is currently difficult using deep learning methods”, and will
probably remain a challenge for future research.

———— ———-
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