
Approaches to Safe and Efficient
Robot Navigation

Benjamin Suger

Technische Fakultät
Albert-Ludwigs-Universität Freiburg

Dissertation zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

Betreuer: Prof. Dr. Wolfram Burgard

Approaches to Safe and Efficient
Robot Navigation

Benjamin Suger

Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften
der Technische Fakultät der Albert-Ludwigs-Universität Freiburg im Breisgau

Dekan Prof. Dr. Oliver Paul
Erstgutachter Prof. Dr. Wolfram Burgard

Albert-Ludwigs-Universität Freiburg
Zweitgutachter Prof. Dr. Cyrill Stachniss

Rheinische Friedrich-Wilhelms-Universität Bonn
Tag der Disputation 20. November 2017

Zusammenfassung
Autonome Navigation beschreibt ein aktuelles und aktives Forschungsgebiet. Dabei umfasst
es einen weiten Rahmen von Themen und Problemstellungen, wie zum Beispiel: Lokalisie-
rung, Kartierung, Bewegungsplanung und Steuerung sowie Hinderniserkennung. Ein klarer
Indikator für die Aktualität des Themas ist, dass zahlreiche Firmen derzeit große Summen in
Technologien investieren, welche autonome und intelligente Systeme alsbald zu einem festen
Bestandteil unseres täglichen Lebens machen sollen. Eine klassische Problemstellung lässt
sich an dem Beispiel eines autonomen Autos illustrieren: Es sollte jederzeit wissen wo es sich
auf der Welt befindet (Lokalisierung und Kartierung), wissen welche Aktion als nächstes nötig
ist, um dem angestrebten Ziel näher zu kommen (Pfadplanung und Steuerung) und flexibel auf
andere Verkehrsteilnehmer und Hindernisse reagieren (Sicherheit und Hinderniserkennung).
Um dies zu gewährleisten ist es notwendig, die Umgebung mit unterschiedlichen Sensoren
zu erfassen und die erhaltenen Messdaten der Aufgabe entsprechend zu interpretieren. Dabei
muss gewährleistet sein, dass die verfügbaren Ressourcen wie Rechenleistung und Spei-
cherkapazität jederzeit ausreichen, um alle notwendigen Berechnungen hinreichend schnell
auszuführen. Darüber hinaus soll das System unabhängig von Veränderungen der Umwelt
zuverlässig arbeiten.

In dieser Doktorarbeit behandeln wir unterschiedliche Themen zu diesem Gebiet. Dabei sind
wir speziell an der Effizienz, Robustheit und an der Sicherheit von autonomen Systemen inter-
essiert. Zuerst behandeln wir das Thema Lokalisierung und Kartierung. Dabei beschäftigen
wir uns zu Beginn (Kapitel 3) mit dem speziellen Problem der simultanen Lokalisierung
und Kartierung (SLAM), bei welchem ein mobiler Roboter den Kartierungsprozess simultan
mit dem Lokalisierungsprozess ausführen muss. Dieses Problem lässt sich mathematisch
als Graph darstellen, wobei die Knoten des Graphen den Posen des Roboters entsprechen.
Die Kanten, welche zwei Knoten verbinden, repräsentieren relative Transformationen. Diese
werden aus den Sensordaten errechnet. Zur Lösung des SLAM-Problems wird ein äquivalentes
nichtlineares Minimierungsproblem mit Hilfe der Methode der kleinsten Quadrate gelöst.
Unser spezielles Augenmerk richten wir dabei darauf, solche Lösungen mit möglichst wenig
Arbeitsspeicher zu berechnen. Hierbei ist zu beachten, dass im Allgemeinen der benötigte
Arbeitsspeicher zum Lösen eines solchen Problems mit der Anzahl der Knoten und Kanten
wächst. Unser Ansatz macht sich eine hierarchische “Teile- und Herrsche-Strategie” zunutze
und zerlegt den Graphen in kleinere stochastisch unabhängige Teilprobleme, welche mit sehr
viel weniger Speicheraufwand gelöst werden können. Im Zuge dieser Konstruktion müssen
wir Randverteilungen approximativ darstellen, da ansonsten die Konnektivität des Graphen
zu dicht wird und die Speichervorteile nicht realisiert werden können. Dies führt im Sin-
ne der Optimierung zu leicht schlechteren Werten der Zielfunktion. In der experimentellen
Auswertung unseres Ansatzes zeigen wir, dass der Qualitätsverlust verglichen zur exakten
Lösung des Problems gering ist. Dabei benötigen wir signifikant weniger Arbeitsspeicher.
Darüber hinaus erhalten wir im Vergleich mit bisherigen approximativen Lösungsansätzen
mit unserer Methode bessere Lösungen. Unser Ansatz erweist sich daher speziell für Systeme

vi

mit begrenztem Arbeitsspeicher als vorteilhaft.
Ist eine Umgebung einmal kartiert kann sich ein Roboter darauf beschränken, seine Position

in der Karte zu ermitteln. Das Problem der Selbstlokalisierung behandeln wir in den zwei
darauf folgenden Kapiteln. Hierbei gilt unser besonderes Interesse Situationen in denen sich
die Umgebung über die Zeit verändert. In Kapitel 4 betrachten wir eine Problemstellung,
welche wir besonders in industriellen Anwendungen als relevant ansehen. Unser Interesse
gilt der relativen Position zwischen Roboter und einem Zielobjekt, z.B. ein Tisch oder eine
Palette. Dabei nehmen wir an, dass der Roboter zur Wahrnehmung der Umgebung mit einem
Laserscanner ausgerüstet ist. Wir betrachten ein Szenario, in welchem das Zielobjekt mit
der Zeit seine Position verändert, beispielsweise wenn der Tisch durch Interaktion leicht
verschoben wird. Dies führt dazu, dass die globale Positionsschätzung und die relative Positi-
onsschätzung inkonsistent sind und das Problem somit nicht mit Standardmethoden gelöst
werden kann. In unserem Ansatz modellieren wir das Zielobjekt explizit als Bestandteil der
Karte und verwenden eine Formulierung, welche es erlaubt Referenzposen bezüglich mehrerer
Objekte gleichzeitig zu schätzen. Um dies zu erreichen wird ein Algorithmus zur Berechnung
der relativen Transformation zwischen zwei Messpositionen eines Lasersensors dahingehend
erweitert, dass dieser die relativen Positionen zu mehreren Objekten gleichzeitig schätzt. Die
experimentelle Auswertung zeigt, dass mit unserem Ansatz sehr genaue Positionsschätzungen
erreicht werden, auch wenn die Zielobjekte mit der Zeit ihre Postion verändern. Dabei nutzen
wir sowohl simulierte Daten, wie auch Daten von einem echten Roboter.

Im Vergleich zu Laserscannern bieten Kamera-basierte Systeme einen deutlichen Kosten-
vorteil und werden daher oft verwendet. Außerdem bieten sie Informationen über relativ große
Bereiche der Umgebung und als Menschen sehen wir die auf Bildern basierte Wahrnehmung
als natürlich an. In Kapitel 5 betrachten wir ein Kamera-basiertes Lokalisierungsproblem in
welchem der Roboter starke Veränderungen der Umwelt erfährt. Verschiedene Beleuchtungs-
verhältnisse oder jahreszeitlich bedingte Veränderungen erschweren beispielsweise die Beur-
teilung darüber, ob zwei Bilder am gleichen Ort entstanden sind. In unserem Lösungsansatz
machen wir uns die Tatsache zu Nutze, dass Bildsequenzen üblicherweise während einer
kontinuierlichen Fahrt des Roboters aufgenommen werden. Unser spezielles Interesse gilt
Situationen, in denen zwischen zwei Aufnahmen von Bildsequenzen eine große Zeitspanne
vergangen ist und sich die Umgebung jahreszeitlich bedingt stark verändert hat. Dabei be-
schreiben wir eine Methode, um die Ähnlichkeit zwischen zwei Bildern zu quantifizieren
und nutzen diese Werte als Sensormodell in einem probabilistischen Zustandsmodell. Das
Verfahren zur Zustandsschätzung basiert auf einem Bayes-Filter. Darüber hinaus zeigen wir
den Nutzen einer Datenvorbearbeitung auf, welche die Unterscheidbarkeit der erhaltenen
Ähnlichkeitswerte erhöht. Dies führt zu einer Verbesserung in Bezug auf Genauigkeit und
Robustheit der Lokalisierung. In einer umfassenden experimentellen Auswertung zeigen wir,
dass der vorgeschlagene Ansatz eine Verbesserung gegenüber bisherigen Ansätzen darstellt.

Eine weitere, äußerst wichtige, Aufgabe für autonome Systeme ist, dass sie mit Hilfe von
Sensordaten erkennen müssen welche Bereiche ihrer Umwelt sicher befahren werden können
und wo sich Hindernisse befinden. Das ist besonders wichtig, da dies nicht nur die Sicherheit
des Roboters, sondern auch die Sicherheit aller in der Umwelt befindlichen Gegenstände
gewährleistet. Andererseits darf diese Erkennung nicht zu sensibel im Sinne der Sicherheit
sein, da der Roboter sonst eventuell Hindernisse erkennt wo keine sind und somit an seiner
Weiterfahrt gehindert wird. In dieser Arbeit betrachten wir dieses Problem auf zwei Arten,
wobei wir stets einen 3D-Laserscanner zur Wahrnehmung der Umgebung verwenden.

vii

Zuerst entwickeln wir in Kapitel 6 einen Ansatz der darauf abzielt, dass ein nicht speziell
ausgebildeter Nutzer dem Roboter beibringen kann welche Bereiche befahrbar sind. Um diese
Lernphase so einfach wie möglich zu gestalten, ist es lediglich notwendig den Roboter manuell
sicher durch eine Umgebung zu steuern. Ein vollständiges Modell zur Traversierbarkeit leiten
wir von den positiven Beispielen ab, welche von der Trajektorie des Roboters als eindeutig
befahrbar klassifiziert worden sind. Zur Lösung dieses speziellen Lernproblems, bei dem wir
keine Beispiele der negativen Klasse zur Verfügung haben, greifen wir auf bereits existierende
Methoden zurück und zeigen auf, dass diese auch für die Traversierbarkeitsanalyse angewendet
werden können. Unsere experimentelle Auswertung zeigt die Genauigkeit der abgeleiteten
Traversierbarkeitsmodelle. Die vorgestellte Methode unterliegt der Annahme einer vollständig
statischen Umgebung und hat den Nachteil, dass die Sensordaten zuerst akkumuliert werden
und somit nicht unmittelbar in die Abwägung zur Traversierbarkeit einfließen.

Diesem Problem widmen wir uns in Kapitel 7, wobei wir uns die Erfahrungen aus dem
vorhergehenden Kapitel zu Nutze machen. Hindernisse zeichnen sich oft durch grundlegende
geometrische Eigenschaften aus, wie zum Beispiel die Höhendifferenz in der unmittelbaren
Nachbarschaft. Dabei müssen wir die Art des zugrundeliegenden Geländes mit in Betracht
ziehen, da zum Beispiel hohes Gras für einen großen Roboter kein Hindernis darstellt jedoch
große Höhendifferenzen aufweist. Um auf diese Situationen angemessen zu reagieren nutzen
wir zusätzliche semantische Informationen über das zugrundeliegende Terrain, welche wir
ausschließlich aus den 3D-Laserdaten ableiten. Um zu entscheiden was ein Hindernis darstellt
führen wir beide Informationen in einem probabilistischen Modell zusammen. Der Vorteil
ist nun, dass wir die geometrischen Information extrahieren können sobald die Messungen
gemacht wurden. Die Integration der Sensordaten zu Klassifizierung der Geländeart, welche
zweifelsfrei als statisch angesehen werden kann, findet in regelmäßigen Abständen statt.
Unsere Experimente mit einem autonom navigierenden Roboter zeigen die Anwendbarkeit
und Effizienz der vorgeschlagenen Methode, im Sinne der Rechenlast.

Zum Ende dieser Arbeit (Kapitel 8) entwickeln wir einen Ansatz, um globale Navigation
unter Verwendung von öffentlich zugänglichem Kartenmaterial zu ermöglichen, wofür wir die
Daten von OpenStreetMap nutzen. Das Problem dabei ist, dass wir sowohl Ungenauigkeiten
in der Karte, als auch in den GPS-Messungen in Betracht ziehen müssen. Diese Fehler führen
dazu, dass Zielpunkte aus der Sicht des Roboters nicht immer auf dem angestrebten Weg,
sondern manchmal mehrere Meter abseits liegen können. In unserem Ansatz korrigieren wir
diese Fehler indem wir die Terrain-Klassifikation aus dem vorangegangenen Kapitel nutzen.
In einem probabilistischen Modell assoziieren wir damit die Zielpunkte vom Straßennetz der
Karte mit den Wegen in der Umgebung des Roboters. Unser Ansatz ermöglicht autonome
Navigation in Bereichen, die zuvor noch nicht von einem Roboter erkundet wurden. Dies ist
in herkömmlichen Systemen üblicherweise notwendig. Darüber hinaus modelliert der Roboter
während er autonom navigiert ausschließlich seine lokale Umgebung und benötigt somit nur
eine feste, zuvor berechenbare Menge an Hauptspeicher. Wir zeigen die Anwendbarkeit des
Ansatzes mit Experimenten, bei denen ein echter autonomer Roboter in zuvor ungesehenen
Gebieten navigiert.

Abstract
Autonomous navigation is a broad and active research area, which has attracted great interest
in the last two decades. Nowadays, more and more companies invest lots of money and effort
towards making autonomously navigating robots part of our daily lives. Key components
of autonomous systems are mapping, localization, perception, planning and control. To
achieve real autonomy, a robot needs to cope with limited on-board resources, changes of
the environment and varying external conditions. Therefore, such systems need to infer
meaningful and accurate interpretations from the available sensor data. In this thesis, we
address several of these challenges, specifically: resource efficiency, changing and complex
environments, traversability analysis and map interpretation.

First, we present an approximate solution to the problem of simultaneous localization
and mapping (SLAM), particularly to the graph-based formulation of the problem. So far,
state-of-the-art solutions to SLAM have put their main focus on speed and accuracy. Contrary
to that, we provide a fast approximate solution to the SLAM problem that needs significantly
less memory than other state-of-the-art methods. Subsequently, we address the problem of
localization, focusing on two aspects related to changes of the environment. First, we consider
an industrial scenario in which some crucial parts of the environment, i.e. at which there are
objects that the robot needs to fulfill a task, may change their position over time. In this case,
the global pose of the robot is not consistent with the pose relative to the object. To overcome
this problem, we propose a variation for point-set registration, which can cope with multiple
reference frames at the same time. Second, we discuss the problem of visual localization
when facing severe changes of the environment. To cope with such extreme conditions, we
exploit the sequential property of images recorded during continuous runs of the robot.

Besides the knowledge of its position in the world, an autonomous robot needs to know
which parts of the world are safe to traverse and which are not. We discuss this topic from
two perspectives. First, we present an approach to learning the traversability characteristics
for a mobile robot from non-expert human demonstrations. The key challenge here is that the
learning technique needs to cope with only positive examples of traversable ground. Second,
we focus on the computational efficiency, taking into account that the crucial information
about obstacles should be available to the robot as soon as possible. Thereby, we aim to keep
the computational effort as low as possible, as resources may be limited.

Finally, we discuss an approach that makes publicly available map data from the Open-
StreetMap (OSM) project useful to autonomous navigation in outer-urban environments. To
cope with the errors in the map, we utilize semantic terrain information to align the tracks
in OSM with the local vicinity of the robot. With our approach, a robot can navigate au-
tonomously in previously unseen environments, which makes exploration and mapping of the
environment in advance, unnecessary.

In this thesis, we present a variety of techniques and algorithms for autonomous navigation.
In extensive real world experiments, we demonstrate the applicability and accuracy of the
proposed methods.

Acknowledgments
Writing a PhD thesis is a big thing and without the support of many people this would have
been much harder or even impossible. I am grateful for everyone of you, however, to keep the
scope of this section in bounds I can only thank some outstanding supporters and companions.

First of all, I want to thank my supervisor Wolfram Burgard for his support, encouragement,
inspiration and guidance. It was great, and cannot be seen as granted, to enjoy so much
freedom, trust and opportunities in the exploration of ideas as a PhD student.

Great thanks to my co-advisers Bastian Steder, Gian D. Tipaldi and Luciano Spinello for
all their support. It was great to discuss and solve problems as well as writing papers together.
I really enjoyed the time spent with Bastian tracing down bugs and fixing undesired behavior
of our lovely robot Viona, as well as seeing her navigating autonomously based on the code
we developed.

Moreover, I want to thank all my colleagues who joint my way during the past years. We
had great times, productive discussions and tons of chitchat. A special thanks goes to my office
mates Jörg, Tayyab and Chau. It was great to explore the complementary effects of the different
knowledge bases we had. Despite all the serious work we had a lot of fun. Furthermore, I
want to thank Max for uncountable, valuable discussions and Christoph for his imperturbably
willingness to help and especially for sharing his expertise in TiKZ. Furthermore, I want
to thank Susanne Bourjaillat and Manuela Kniss for their support concerning all kinds of
administrative stuff.

Infinite thanks to my beloved family. My children Liam and Iuna for making my life more
exciting and Anki, my dear wife, for the inexhaustible support and her unshakable faith in me.
We will never forget that Iuna was born in the night right before the submission deadline for
ICRA, when I hurried from the office, where we were polishing our submission, directly to
the delivery room. Furthermore I want to express my deep gratitude to my parents, which did
never hesitate to offer help by taking care of the kids when the amount of work was large and
time was scarce.

This work was partially founded by the DFG “Graduate School Embedded Systems” (GR1103),
the EU projects LifeNav (ERC-AG-PE7-267686-LIFENAV) and EUROPA2 (FP7-610603-
EUROPA2), and the German Federal Ministry of Education Research (BMBF) project NaRKO
(01IS15044B-NaRKo). Many thanks to everyone who was involved in writing the proposals
for these projects.

Contents

Contents xiii

1 Introduction 1
1.1 Scientific Contribution . 2
1.2 Publications . 3
1.3 Collaboration . 4

2 Basics 5
2.1 Notation . 5
2.2 Acronyms and Abbreviations . 6
2.3 Simultaneous Localization and Mapping . 7

2.3.1 Graph-SLAM . 7
2.4 Monte Carlo Localization . 8
2.5 Generalized Iterative Closest Point Algorithm 8
2.6 Classification . 9

2.6.1 Random Forest Classifier . 10

3 Memory Aware Considerations of SLAM 11
3.1 Mapping with Low Memory Consumption 12

3.1.1 Graph Partitioning . 14
3.1.2 Leaves-to-Root Coarsening . 14
3.1.3 Root-to-Leaves Optimization . 16

3.2 Memory Consumption Analysis . 18
3.3 Experiments . 18

3.3.1 Memory Consumption . 19
3.3.2 Runtime on Systems with Restricted Main Memory 19
3.3.3 Metric Accuracy . 20

3.4 Related Work . 22
3.5 Conclusions and Future Work . 24

4 Localization with Respect to Non-Stationary Objects 25
4.1 Localization with Respect to Multiple References 26

4.1.1 Generalized ICP for Multiple Rigid Bodies 28
4.2 Point Cloud Generation . 30

4.2.1 Generating the Reference Point Cloud 30
4.2.2 Local Point-set Registration . 31

4.3 Experiments . 32
4.3.1 Simulation Experiment . 33

xiv CONTENTS

4.3.2 Real-World experiments . 35
4.4 Related Work . 36
4.5 Conclusion and Future Work . 38

5 Camera-based Localization Facing Substantial Perceptual Changes 39
5.1 Visual Localization Utilizing Sequential Information 41

5.1.1 Robust Image Matching . 41
5.1.2 Discrete Bayes Filter . 43
5.1.3 State Transition Model . 44
5.1.4 Sensor Model . 44

5.2 Forward Backward Smoothing . 45
5.3 Sequential Filtering . 45
5.4 Zero Component Analysis Whitening . 46
5.5 Experiments . 48

5.5.1 Scattered Trajectories . 51
5.5.2 Connected Trajectories . 53
5.5.3 NewCollege . 54
5.5.4 Parameter Discussion . 55

5.6 Related Work . 55
5.7 Conclusion and Future Work . 57

6 Semi-Supervised Learning of Traversability Models 59
6.1 Basic Structure . 61
6.2 Feature Design . 61
6.3 The Learning Problem . 62

6.3.1 Positive Naive Bayes . 63
6.3.2 Learning from Positive Only Examples 66
6.3.3 Terrain Models . 66
6.3.4 Training . 67

6.4 Experiments . 67
6.4.1 Evaluation using Viona . 67
6.4.2 Evaluation using Obelix . 70

6.5 Related Work . 70
6.6 Conclusion and Future Work . 72

7 Adaptive Obstacle Detection 73
7.1 Online Obstacle Detection . 75

7.1.1 Velodyne Intrinsics . 75
7.1.2 Geometric considerations . 75
7.1.3 Basic Obstacle Detection . 76

7.2 Terrain Analysis . 78
7.2.1 Features . 79
7.2.2 Classification . 80
7.2.3 Terrain-Class-Map . 80

7.3 Terrain-Adaptive Obstacle Detection . 81

CONTENTS xv

7.4 Experiments . 83
7.4.1 Illustration of Mixed Terrain Challenge 83
7.4.2 Terrain Classification Accuracy . 84
7.4.3 Real World with Computational Analysis 84
7.4.4 Effect of Approximations . 86

7.5 Related Work . 88
7.6 Conclusion and Future Work . 89

8 Outer-Urban OpenStreetMap-based Autonomous Navigation 91
8.1 Preliminaries . 93

8.1.1 Planning on OpenStreetMap . 94
8.1.2 Semantic Terrain Information . 94

8.2 Subgoal Alignment . 94
8.2.1 Probabilistic Formulation . 95
8.2.2 Process Model . 96
8.2.3 Measurement Model . 97

8.3 Sequential Markov-Chain Monte-Carlo Sampling 97
8.4 Experiments . 98

8.4.1 System Setting . 99
8.4.2 Performance . 99
8.4.3 Intersections . 101
8.4.4 Runtime . 103
8.4.5 Limitations . 103

8.5 Related Work . 104
8.6 Conclusions . 105

9 Conclusion 107

Bibliography 115

Chapter 1

Introduction

Autonomous navigation embraces a broad range of problems, each of which constitute their
own research area, e.g., mapping and localization, planning, control and traversability analysis.
When we think about a perfect autonomously navigating robot, our expectations of the
capabilities of such a system are usually high. The robot should: know its exact position in
the world at any point in time, be able to handle changes of environment that occur over time,
and be able to know social behaviors and rules such as driving on the correct side of the street
and circumvent pedestrians in a way we would regard as natural. It should be also able to
perceive its nearby vicinity and react appropriately, based on a sophisticated interpretation of
the sensor data. Moreover, we would expect that such a system could navigate autonomously,
independent of external conditions, e.g., season, weather and daytime.

We believe that a truly autonomous system should be able to perform all necessary opera-
tions on-board and, therefore, the algorithms need to take the problem of scarce resources into
account. This becomes especially relevant when we consider autonomous long-term operation.
Another important component is the choice of the perceptual sensor equipage of a robot. In
this thesis, we will mostly rely on laser scanners, since they provide accurate geometrical
data and are rather insensitive to lighting conditions, in contrast to other common sensors,
e.g., cameras. Especially in industrial applications, laser scanners are already commonly
used, due to safety relevant issues. However, for the consumer market, cameras are of great
interest, due to their low prices, and we will discuss a localization problem facing severe
perceptual changes. When reasoning about traversability characteristics of the environment,
the additional value of accurate geometric information, as provided by 3D-laser sensors, are
of utmost importance, even though the pure geometric information alone may be not sufficient.
So far, autonomous systems need an appropriate map of the environment to perform navigation
tasks. Given that there are publicly available map-services that provide almost complete map
data of road networks this effort seems avoidable. As humans, we are perfectly capable of
navigating using these maps and a GPS device, even though the map and the GPS estimate is
often several meters off. So, we would also expect that autonomously navigating robots could
make use of this data in a similar way.

In this thesis, we will address several of the aforementioned problems. In the remainder
of this chapter, we give an outline of the topics addressed in this thesis. Then, we briefly
summarize the scientific contributions, followed by the list of publications, and discuss
collaborations for the specific chapters.

Afterwards, we briefly introduce some basic methods that are used throughout this thesis
in Chapter 2. In Chapter 3 we present an approach to solving the Graph-SLAM problem
with a small memory footprint. In order to do this, we propose a hierarchical decomposition

2 CHAPTER 1. INTRODUCTION

of the problem, for which we use an efficient approximation of the marginal distribution
and consequently subdivide the problem to multiple sub-problems, each of bounded size.
The experimental evaluation shows that our approach needs significantly less memory than
state-of-the-art SLAM solvers, and is more accurate than other state-of-the-art approximate
solvers.

In the following two chapters, we discuss two challenging localization problems. First,
in Chapter 4, we are interested in an accurate localization with respect to objects that may
change their positions over time; when this happens, there is an inconsistency between the
relative reference pose to the object and the global pose. To overcome this problem, we
propose a variation of the ICP-algorithm that handles multiple reference frames for different
rigid bodies. In real-world and simulated experiments, the proposed approach achieves an
accuracy that is sufficient for industrial tasks. Secondly, in Chapter 5, we address the problem
of visual localization facing substantial changes in the environment, caused by e.g., seasonal
changes. We explore the sequential properties of the image streams and apply a Bayesian filter
framework to find correspondences between two image sequences recorded at substantially
different times. In extensive experiments we show the advantages of the presented approach
and the advancement over the state-of-the-art.

In Chapter 6 and Chapter 7 we address the problem of traversability analysis and obstacle
detection. First, in Chapter 6, we present an approach that infers a model for traversability
analysis from positive only demonstrations. The method is specifically designed so that a
non-expert user could teach the robot by manually operating it safely through the environment.
Second, in Chapter 7, we focus on computational efficiency for real-time obstacle detection in
an all terrain scenario, e.g., regular streets, dirt– and forest–roads and grassland. To achieve
a reliable obstacle detection in such environments, we combine fast to compute geometric
measures with semantic terrain information, which is updated with a lower frequency. We
evaluate both approaches in real-world experiments, in which we applied the latter to a real
autonomously navigating robot.

Finally, we present an approach to autonomous navigation using data from OpenStreetMap
(OSM) in Chapter 8. This aims to overcome the requirement of an area having been explored
before an autonomous system can navigate it. The presented approach makes data from
OSM useful to global path planning in outer urban environments and, therefore, allows for
autonomous navigation in previously unseen areas. We use the semantic information that we
already extract for the obstacle detection in the former chapter, to account for errors that are
induced by inaccuracies in OSM and the GPS measurements. In real world experiments, we
use this system for autonomous navigation at different and previously unseen areas.

At the very end, in Chapter 9, we discuss the techniques and results presented in this thesis.
Therein, we will also identify possible directions for future work, with the goal of further
advancing the state-of-the-art in autonomous navigation.

1.1 Scientific Contribution
This thesis describes several contributions to different areas of autonomous navigation, e.g.,
SLAM, localization, perception and traversability analysis. In summary, we present:

• an approximate solution to the SLAM problem that needs significantly less memory
than state-of-the-art solutions (Chapter 3).

1.2. PUBLICATIONS 3

• a localization method that aims to localize a robot with respect to an object of interest,
e.g., a work bench or a shelf. Thereby, we relax the static world assumption and take
into account that this object may undergo movements over time (Chapter 4).

• an approach to localizing a robot, based on image sequences. We consider that the
environment undergoes substantial changes, e.g., different seasons (Chapter 5).

• an approach to learning the traversability capabilities of a mobile robot from positive
only demonstrations (Chapter 6).

• an approach to fast and efficient obstacle detection in mixed terrain scenarios, exploiting
additional semantic terrain information (Chapter 7).

• an approach to outer-urban autonomous navigation, in previously unseen environments,
utilizing the knowledge of a road-network provided by public map services, e.g., Open-
StreetMap (Chapter 8).

1.2 Publications
The content of this thesis is based on publications in international journals and conference
proceedings. In the remainder of this section, we list this publications chronologically.

Journal Articles:

• Tayyab Naseer, Benjamin Suger, Michael Ruhnke und Wolfram Burgard. Vision-
based Markov Localization for Long-term Autonomy. In Journal of Robotics and
Autonomous Systems, vol. 89, pages 147 – 157, 2017.

Conference Articles:

• Benjamin Suger and Wolfram Burgard, Global Outer-Urban Navigation with Open-
StreetMap, To appear in Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), Singapore, Singapore, 2017.

• Benjamin Suger, Bastian Steder und Wolfram Burgard. Terrain-Adaptive Obstacle
Detection. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Daejeon, South Korea, 2016.

• Jörg Röwekämper, Benjamin Suger, Wolfram Burgard und Gian D. Tipaldi. Accurate
Localization with Respect to Moving Objects via Multiple-Body Registration.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Hamburg, Germany, 2015.

• Tayyab Naseer, Benjamin Suger, Michael Ruhnke und Wolfram Burgard. Vision-Based
Markov Localization Across Large Perceptual Changes. In Proceedings of the IEEE
European Conference on Mobile Robotics (ECMR), Lincoln, UK, 2015.

4 CHAPTER 1. INTRODUCTION

• Benjamin Suger, Bastian Steder und Wolfram Burgard. Traversability Analysis for
Mobile Robots in Outdoor Environments: A Semi-Supervised Learning Approach
Based on 3D-Lidar Data. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), Seattle, USA, 2015.

• Benjamin Suger, Gian Diego Tipaldi, Luciano Spinello und Wolfram Burgard. An
Approach to Solving Large-Scale SLAM Problems with a Small Memory Footprint.
In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), Hong Kong, China, 2014. Best Conference Paper Award Finalist

1.3 Collaboration
This section describes the collaboration with other researchers during the process of thesis
creation. The following list explains the role of the author for each individual chapter.

• Chapter 3: The approach presented in this chapter is the result of collaboration with
Gian D. Tipaldi, Luciano Spinello and Wolfram Burgard. The implementation of the
approach was fully done by the author of this thesis. The related publication, Suger
et al. [113], was nominated for the conference best paper award in ICRA 2014.

• Chapter 4: The approach presented in this chapter is the result of collaboration with Jörg
Röwekämper, Wolfram Burgard and Gian D. Tipaldi. The implementation was mainly
done by J. Röwekämper, while the author of this thesis was involved in the theoretical
discussion and the experimental evaluation. See Röwekämper et al. [99] for the related
publication.

• Chapter 5: The approach presented in this chapter is the result of collaboration with
Tayyab Naseer, Michael Ruhnke and Wolfram Burgard. The basics of the approach, the
feature extraction and datasets have been contributed by my colleague, Tayyab Naseer.
The author of this thesis implemented the recursive filter and the sequential selection
algorithm. The chapter is based on Naseer et al. [84, 85]. The paper that describes
the initial approach ([84]) was voted as one of the ten best conference papers by the
participants.

• Chapter 6 and Chapter 7: The system presented in this section is the result of collabo-
ration with Bastian Steder and Wolfram Burgard. The approaches presented in those
chapters are part of the autonomous outdoor robot system that was used in the context of
the EU project LifeNav (ERC-AG-PE7-267686-LifeNav). My colleague Bastian Steder,
particularly, contributed to Chapter 7 with the implementation of the fast geometric
feature. For related publications see Suger et al. [114, 115].

• Chapter 8: The approach presented in this chapter is the result of collaboration with
Wolfram Burgard. The implementation of the approach was fully done by the author
of this thesis, except for the A?-planner on the OSM, which was implemented by my
colleague Philipp Ruchti. For the related publication see Suger and Burgard [112].

Chapter 2

Basics
In this preliminary chapter, we first give an overview of some notations and abbreviations,
which we will use frequently throughout this thesis, in Section (2.1) and Section (2.2). In
the remainder of this chapter, Section (2.3) to Section (2.6), we provide a brief introduction
to some basic concepts, which build the base for the approaches that we will present in the
course of this thesis.

2.1 Notation
Throughout this thesis, we will use the following mathematical notations:

Example Type Description
x = 1.0, ϕ = 0.3, α = 10◦ Scalar Lower case Latin and Greek letters.

x =

x1

x2
...

 Vector Bold lowercase Latin letters.

S = Σ =

x11 x12 · · ·
x21 x22 · · ·

...
... . . .

 Matrix Uppercase Latin or Greek letters.

S = {x1, x2, · · · } Set Uppercase calligraphic letters

M = {S1,S2, · · · } Set of sets Uppercase fracture symbols

|x| =

{
x if x ≥ 0,

−x else.
Absolute value A scalar enclosed by |·|

|x| =

∣∣∣∣∣∣∣
x1

...
xn


∣∣∣∣∣∣∣ = n Length/Size A vector or a set enclosed by |·|

‖x‖p =

(
|x|∑
i=1

|xi|p
) 1

p

Lp-norm A vector enclosed by ‖ ‖p, whereas
‖ ‖2 is also called the Euclidean norm

6 CHAPTER 2. BASICS

‖x‖Σ =
√

xTΣx Malahanobis norm A vector enclosed by ‖ ‖Σ, whereas
Σ is a positive definite matrix

⊕ and 	 Compound opera-
tor and its inverse

Compound operator for transforma-
tions, see Smith et al. [108] for de-
tails.

δA(x) =

{
1 if x ∈ A
0 else

Dirac/indicator
function

The Dirac- or indicator function for
the setA returns one if and only if the
argument is an element of A

2.2 Acronyms and Abbreviations
Besides the mathematical notations of the former section we will use the following acronyms
and abbreviations:

Abbreviation Meaning Description
SLAM Simultaneous Localization

And Mapping
A fundamental problem of mobile
robotics, which concerns the solution
of the localization and the mapping
problem simultaneously.

MCL Monte Carlo Localization A localization method based on sam-
pling.

ICP Iterative Closest Point Iterative method to estimate the rela-
tive transformation between tow point-
sets observed from different positions.

RF Random Forest An ensemble of trees classifier
IMU Inertial Measurement Unit A sensor measuring orientations
GPS Global Positioning System Satellite-based global positioning sys-

tem
HOG Histogram of Oriented

Gradients
Features or descriptors for images,
usually calculated at keypoints

SIFT Scale-Invariant Feature
Transform

SURF Speed Up Robust Features
DCNN Deep Convolution Neural

Network
Neural network with a broad range of
applications

fps frames per second The number of frames a camera deliv-
ers per second

ZCA Zero Component Analysis Decorrelation method in data analysis

2.3. SIMULTANEOUS LOCALIZATION AND MAPPING 7

2.3 Simultaneous Localization and Mapping
The problem of simultaneous localization and mapping (SLAM) is a fundamental problem
of autonomous navigation. The literature distinguishes between the cases of mapping with
known poses and localization with a given map. Both problems have been solved previously,
however, for localization: the map needs to be known in advance and for mapping: the poses
of the robot are required. SLAM is the problem to solve these mutually dependent problems
at the same time, which means that the robot needs to build the map from poses that are
derived from the localization within that map. Not for nothing, this problem was regarded as a
chicken-egg problem for some time. The key to solving the SLAM problem are so called loop
closures, which means that the robot recognizes, from sensor observations, that it has been at
the same area before.

Possible approaches to SLAM are based on filtering techniques, as they use the Kalman-
filter [65, 108, 119] or the particle filter [39, 78]. A more recent method, models SLAM as a
graph and solves an equivalent least-squares minimization problem [36, 40, 43, 57, 67, 92].
This method has gained popularity due to the robustness and quality of the solutions. As we
rely on the formulation of this method in Chapter 3 and Chapter 4, we give a brief summary
of this technique in the forthcoming section.

2.3.1 Graph-SLAM
The graph-based formulation of SLAM, usually called Graph-SLAM, models the SLAM
problem as a graph G = (V , E). The nodes xi ∈ V of the graph describe the poses of the
robot, and an edge connecting two nodes xi and xj , (i, j) ∈ E , represents a measurement of
the relative transformation zij between the two nodes, in conjunction with the information
matrix Ωij , which models the uncertainty of the measurement. Basically, there are two types
of measurements: those that connect two consecutive nodes, xi and xi+1, are usually provided
by e.g., odometry or incremental scan matching, and those that represent a loop closure that
associates two nodes, xi and xj with |i− j| > k, from different time steps. From the estimate
of the robot poses and the measurement from the edges, we can define an error function e as

e (zij,xi,xj) = eij = zij 	 ẑ (xi,xj) = zij 	 (xi 	 xj) , (2.1)

which measures the displacement of the relative transformation of the poses and the one
estimated by the measurement zij .

The probabilistic formulation of the SLAM problem aims to compute the most likely
positions of the robot, given all observations Z .

(x?1, . . . ,x
?
n) = argmaxP (x1, . . . ,xn | Z) (2.2)

This optimization problem is equivalent to minimizing the negative log-likelihood of this
posterior. In a Gaussian model, this corresponds to the weighted error sum of the graph-based
model above. The SLAM solution is then computed by solving the resulting non-linear least
squares minimization problem

(x?1, . . . ,x
?
n) = argmin

x1,...,xn

∑
(i,j)∈E

‖eij‖2
Ωij
. (2.3)

8 CHAPTER 2. BASICS

2.4 Monte Carlo Localization
The probabilistic formulation of localization aims to estimate the distribution of the current
pose of the robot, given all of the data that has been observed so far, P (xt | Zt,Ut), with
Zt = {zt, . . . , z0} being the set of observations and Ut = {ut−1, . . . ,u0} being the set of
controls until time t. A common technique to recursively updating this probability is to apply
a Bayesian filter, which detaches the sensor model and the transition model.

P (xt | Zt,Ut) = η P (zt | xt)︸ ︷︷ ︸
Sensor model

∫
P (xt | ut−1,xt−1)︸ ︷︷ ︸

Process model

P (xt−1 | Ut−1,Zt−1)dxt−1 (2.4)

Monte Carlo Localization (MCL) is a popular and commonly used probabilistic localization
technique, which was introduced by Fox et al. [33]. The approach turns out to be robust and
it is not bound to a specific distribution, as e.g., the Kalman Filter [54]. MCL represents
the distribution of the localization problem by samples. Each sample, also called particle,
represents a pose hypothesis that is updated by sampling motions from the process model.
From the sensor model, each particle is associated with a weight ωi, which is proportional to
the sensor model.

ωi ∝ P (zt | xt,i) (2.5)

After this step, a resampling scheme is applied that samples particles with a probability
equal to the normalized weight. Particles that exhibit a large weight are likely to be sampled
multiple times, and those with a low weight are likely to not be represented in the new set
of particles. The state estimate is then derived from the set of samples, e.g., by the mean or
the mode. A drawback of MCL is that the computational complexity grows linearly with the
number of particles, whereas the number of particles that is necessary for success depends
mainly on the dimensionality of the state space and the size of the environment. Fox [32]
proposed a technique called Kullback-Leibler divergence (KLD) sampling, which aims to
compute the minimum amount of samples needed to represent the current distribution.

2.5 Generalized Iterative Closest Point Algorithm
The “Iterative Closest Point” algorithm (ICP) is a popular method for the efficient alignment
of two point-sets S and A that observe the same scene from different positions. With the
ICP algorithm, we seek to find the transformation that aligns the two point-sets best, which
is equivalent to determining the relative transformation between the reference frame of A
and the reference frame of S. In order to simplify notations, we assume that the two point-
sets Ŝ = {ŝi} and Â = {âi} are sorted with respect to their correspondences and both
sets are filtered for outliers. In this case, assuming perfect associations with no noise in
the measurements, we can find a single affine transformation T, which is composed of a
rotaion-matrix RT and a translation vector tT, such that

ŝi = T(âi) ∀1 ≤ i ≤ |Ŝ|
(

= |Â|
)
. (2.6)

However, in real world scenarios the data association will not be perfect, and the measure-
ments are typically affected by noise. Therefore, the equation above will not hold, in general.

2.6. CLASSIFICATION 9

To overcome this problem, we assume that the point-sets are drawn from Gaussian probability
distributions, i.e., âi ∼ N (âi,Σ

A
i) and ŝi ∼ N (ŝi,Σ

S
i). To quantify the differences between

the point-sets we define the difference function dT under the affine transformation T as

dT(ai, si) = T(ai)− si. (2.7)

The probabilistic formulation leads to a relaxation of Eq. (2.6) in the way that the distribution of
the differences are again Gaussians with zero mean and appropriately transformed covariances:

dT(âi, ŝi) ∼ N
(
0,ΣSi + RTΣAi RT

T
)

= N (0,Σi,T) (2.8)

Using this formulation we can find the optimal transformation T with a maximum likelihood
approach, solving

T? = argmax
T

∏
i

p
(
dT(âi, ŝi)

)
. (2.9)

Transforming the optimization equation to the log-space this results in

T? = argmax
T

∑
i

log
(
p
(
dT(âi, ŝi)

))
= argmax

T

∑
i

‖dT(âi, ŝi)‖2
Σi,T

. (2.10)

Different assumptions on the distribution of the points ai and si result in different distance
models that are optimized. With ΣSi = I and ΣAi = 0 this formulation is equivalent to the
original ICP approach by Besl and McKay [12]. For more details about other distances, e.g.,
point-to-point and point-to-plane, we kindly refer the reader to Segal et al. [104].

So far, we have assumed that the associations between the data in the two point-sets are
given, which is usually not the case for real world data. As indicated by its name, a data
point ai is associated to the point s ∈ S that has the minimal distance, based on the current
transformation. More specifically, the solution of the following minimization:

s?i = argmin
s∈S

‖dT(ai, s)‖2 (2.11)

The ICP-algorithm iterates the assignment step of Eq. (2.11) followed by solving the optimiza-
tion problem stated in Eq. (2.10). To initialize the transformation for the very first assignment,
an initial guess needs to be given to the algorithm. In robotics, this is usually derived from
odometry measurements or if no further information is available then it is initialized with the
identity. Afterwards, the latest result of the optimization is used for the association step. This
process is iterated until convergence or a maximum number of iterations is reached, since in
general, there is no guarantee for the convergence of the algorithm.

2.6 Classification
Classification frameworks are typically employed to extract semantic information from sensor
data. A common model is that the data is represented as a real valued vector x ∈ Rd, and
a classifier F is a function that maps the data to semantic classes, which are commonly
represented as a set of integers.

F : Rd −→ C ⊆ Z (2.12)

10 CHAPTER 2. BASICS

In general, one can not design a classifier by hand, due to the complexity of the values encoded
in the feature data x. One can, however, employ machine learning techniques in order to
learn a classifier from input data. Thereby, for a specific problem, the space of the possible
classifiers is usually restricted to a subset F1 ⊆ F , where F is the set of all possible functions
as specified in the map (2.12). The classifier is trained on a training set T , which consists of
features along with their desired semantic label.

T = {(x, y) | x ∈ Rd, y ∈ Z} ⊆ Rd × Z (2.13)

Learning the classifier is then usually formulated as an optimization problem:

F ? = argmin
F∈F1⊆F

∑
(x,y)∈T

L(F (x), y) (2.14)

with the loss function L : Rd × Z→ R≥0 quantifying the penalty for wrong results.
Common classifiers are, e.g., Support Vector Machine, Neural Networks, k-Nearest Neigh-

bors, k-Means and Random Forests. In this thesis, we will use the Random Forest classifier,
which we will, therefore, briefly introduce in forthcoming section.

2.6.1 Random Forest Classifier
The random forest classifier, as introduced by Breiman [16], is formed by an ensemble of
decision trees. A decision tree is a binary tree that routes a data point x ∈ Rd based on the
value in a certain dimension and a threshold, both of which are stored in the corresponding
node. We briefly explain how such a tree is trained.

The root node contains the full training set T . Based on information theoretic measures,
e.g., gini-impurity or information gain, it exhaustively searches for the combination of split
dimension and threshold that provides the most improvement of this measure for the resulting
split. The data of the parent node is assigned to the child nodes, based on this split, and the
process iterates until a break-condition is fulfilled, e.g., a node contains only samples with the
same label, a minimum amount of samples or a certain depth is reached. To classify a data
point x ∈ Rd, the decision tree returns the label of the resulting leaf node. This process is
fully deterministic and the trees tend to overfit the data when they are grown too deep.

The RF-classifier improves this behavior by randomizing the construction process. Instead
of a single tree, it trains N trees and the classification result is provided by the accumulated
results of each of the individual trees, e.g., by majority vote or as probabilities. Each tree is
trained on a training set Ti that is sampled, with replacement, from the original training set T .
This process is called bootstrapping or bagging, and as a consequence, each tree is trained
on a slightly different training set. Second, instead of using deterministic decision trees, the
RF-classifier trains randomized decision trees, which use random dimensions to determine the
split instead of taking all dimensions into account. A nice characteristic of RF-classifiers is
that it is proven by the strong law of large numbers that they do not overfit as the number of
trees is increased [16].

In this thesis, we use the RF-classifier with the gini-impurity-based measure to construct
the decision trees. Given the frequencies of the classes p1, . . . , pn for the data of a node, the
gini-impurity is computed as

G(p1, . . . , pn) =
∑
i

pi(1− pi) =
∑
i 6=j

pipj (2.15)

Chapter 3

Memory Aware Considerations of SLAM

Building a map of an unknown environment and localizing within this
map at the same time is known as the Simultaneous Localization and
Mapping (SLAM) problem, and constitutes one of the fundamental
problems in mobile robotics. In the past, solutions that are based on
solving a non-linear optimization problem, which are highly effective
due to an underlying sparse graph structure, have gained popularity,
and are widely used. However, most approaches put their major focus
on runtime and accuracy, rather than on memory consumption, which
becomes especially relevant when large-scale SLAM problems have to
be solved. In this chapter, we consider the SLAM problem with respect
to memory consumption, and present a novel approximate approach to
SLAM with a low memory footprint. The proposed approach achieves
this, based on a hierarchical decomposition that consists of small sub-
maps of limited size. We perform extensive experiments on synthetic
and publicly available datasets to elaborate on the advantages of our
approach. The results demonstrate that in situations in which the
optimization of the complete map requires more than the available
main memory, our approach, in comparison to state-of-the-art exact
solvers, reduces the memory consumption and the runtime up to a
factor of two, while still providing highly accurate maps.

Map building in SLAM is one of the fundamental problems in mobile robotics, as being
able to learn what the environment looks like is typically regarded as a key prerequisite for
truly autonomous systems. In the past, several techniques to solve the SLAM problem have
been developed. One of those techniques, models the SLAM problem as a graph, where
the poses of the robot are the nodes and measurements between different poses are encoded
in the edges of the graph. The problem of SLAM is then reformulated as a nonlinear-least
squares optimization problem. For more details on this technique see Chapter 2.3.1. Within
this chapter, we refer to the Graph-SLAM formulation whenever we talk about SLAM. So
far, highly effective SLAM methods have been developed and state-of-the-art SLAM solvers
are able to achieve accurate solutions (meaning close to the optimum), in a minimum amount
of time [40, 52, 92]. In this chapter, we will focus on memory consumption and seek for a
SLAM solver that can produce fast and accurate solutions, while being effective with respect to
memory consumption. This aspect is particularly relevant when one has to solve a large-scale
SLAM problem on a memory-restricted system, at which the interpretation of large-scale may

12 CHAPTER 3. MEMORY AWARE CONSIDERATIONS OF SLAM

be relative to the available memory of the system. In the case of large mapping problems, an
algorithm that is not designed to be memory efficient will eventually try to allocate more than
the available main memory on the computing unit. This typically triggers paging mechanisms
of the operating system, during which parts of the memory are stored to or retrieved from
the hard disk, thus largely slowing down the execution. It is worth to note that the very fast
Solid-State-Disks (SSDs) are not appropriate to use for the paging mechanism due to the
limited write cycles during their lifetime. We are convinced that the memory efficiency is
highly relevant for the development of low-cost robotic systems, where hardware resources
are often extremely limited to be competitive on the consumer market.

Due to the robustness of approaches to robot navigation and SLAM, the range of au-
tonomous navigation for robots is rapidly increasing. City-scale autonomous navigation
[58] is already possible, and autonomous cars have traveled hundreds of kilometers through
the desert [121] and navigated for hours in city-like traffic environments [125]. Companies
have started to test autonomous cars in cities and on highways, e.g., Google, Tesla, Uber,
Ford and Daimler, and it is somehow an open secret that they all rely on highly accurate
maps of the environment in which they drive autonomously. Therefore, several modern
techniques address the problem of learning large-scale maps, required by such applications
[15, 30, 41, 88]. However, these approaches mostly concentrate on accuracy and runtime
whilst memory consumption has not been their major focus.

In the remainder of this chapter, we present an algorithm that is able to solve large mapping
problems with low memory consumption. Our method employs a divide-and-conquer prin-
ciple to hierarchically subdivide the problem into many submaps of small size with limited
dependencies, see Section (3.1.1), and to solve a fine-to-coarse, see Section (3.1.2), followed
by a coarse-to-fine least-squares map optimization, see Section (3.1.3). At each level of the
hierarchy, we subdivide the graph into subgraphs. For a schematic diagram see Figure (3.1).
We optimize each subgraph independently of the others and approximate it coarsely (fine-to-
coarse). All the approximated subgraphs, along with the edges that connect them, constitute
the graph at the next level. We iterate this process until we reach a desired top level. Then, we
carry out coarse-to-fine map adjustments by traversing the hierarchy in a top-down manner
and performing an optimization at each level. Our algorithm does not require a specific graph
clustering technique. Rather, every technique that is able to limit the number of nodes per
cluster constitutes a valid choice. We present extensive experiments, see Section (3.3), in
which we evaluate metric accuracy, memory footprint and computation time. The results
are obtained by running the methods on publicly available datasets and demonstrate that our
approach yields a precision that compares to that of other state-of-the-art methods. In addition,
we perform evaluations on large-scale datasets consisting of hundreds of thousands of nodes
and demonstrate that our method exhibits lower memory consumption than the state-of-the-art
implementations. For memory-constrained systems, for which the entire data set does not fit
into main memory, our approach is able to solve problems two times faster.

3.1 Mapping with Low Memory Consumption
In this chapter, we consider the SLAM problem in its probabilistic graph-based interpretation.
Let x = [x1, . . . ,xn]T be the vector of robot poses, where xi is the pose of the robot at time i.
Let zij and Ωij be the mean and information matrix of a measurement between pose xi and

3.1. MAPPING WITH LOW MEMORY CONSUMPTION 13

Figure 3.1: The proposed small memory footprint approach is based on a hierarchical graph
partition. In each partition GMi (same color) we identify separator nodes VS (squares) and
interior nodes VM (circles). This implicitly partitions the edges into separator edges ES
(dashed lines) and interior edges EM (solid lines). We build the graph of the separator nodes
in GS by using a tree approximation on each subgraph (thick lines). We optimize on each
layer and on disjoint subgraphs, from bottom to top and vice versa. With our algorithm, we
never optimize the entire graph as a whole.

pose xj . This measurement can arise from odometry or be the resulting estimate of a local
matching algorithm. Without loss of generality, we only consider pose-to-pose constraints
in this chapter. For more general constraints, virtual measurements as proposed by Grisetti
et al. [42] can be used.

Finding a solution to the SLAM problem is then equivalent to minimizing the negative
log-likelihood of the joint distribution

x∗ = argmin
x

(−log (p(x | Z))) (3.1)

= argmin
x

 −log
∏

zij∈Z

φzij(xi,xj)

 (3.2)

= argmin
x

∑
zij∈Z

1

2
‖ẑ(xi,xj)− zij‖2

Ωij
(3.3)

where ẑ(xi,xj) is the prediction of a measurement given a configuration of xi and xj , the

function φ(xi,xj) = exp
(
−1

2
‖ẑ(xi,xj)− zij‖2

Ωij

)
is the pairwise compatibility function,

and Z is the set of all measurements. Our idea is to address the problem of mapping with
low memory consumption by building a hierarchical data structure with a decreasing amount
of detail such that, at each level, inference is always performed on subgraphs of bounded
size. Our method applies the following inference procedure: First, a bottom-up inference
process propagates information from the lower levels to the upper one (similar in spirit to
Gaussian elimination). Second, a top-down inference procedure solves the top-most system
and propagates the resulting information down to the lower levels (similar in spirit to back-
substitution).

In the remainder of the section and for the sake of simplicity, we restrict the description of
the approach to a two-level hierarchy. We can deal with multi-level hierarchies by iteratively
applying this approach.

14 CHAPTER 3. MEMORY AWARE CONSIDERATIONS OF SLAM

3.1.1 Graph Partitioning

Let the whole pose graph be G = (V , E) where V = {x1, . . . ,xn} denotes the set of nodes
and E = {(i, j) | zij ∈ Z} denotes the set of edges. Two nodes xi and xj are adjacent if and
only if there exists a measurement zij ∈ Z or zji ∈ Z between the two poses. We partition the
set of nodes V into m pairwise disjoint subsets VI = {VI1 , . . . ,VIm} by an edge-cut, such that
VIi ∩ VIj = ∅ for 1 ≤ i < j ≤ m and V =

⋃
i VIi . This directly induces a partitioning on the

edge set into two disjoint subsets: ES and EM , with EM = EM1 ∪ · · · ∪ EMm and ES ∪ EM = E .
The set EMi contains edges which connect only the nodes in V I

i and ES is the edge-cut set
that connects nodes from two different subgraphs. Each VIi is then subdivided into the set of
boundary nodes VSi and a set of interior nodes VMi , where VIi = VMi ∪VSi , VSi are those nodes
of VIi which are incident with at least one edge from ES , and VMi ∩ VSi = ∅.

LetXM
n =

⋃
j∈VM

n
{xj} andX S

n =
⋃
j∈VS

n
{xj}. We can decompose the distribution p(x | Z)

in Eq. (3.3) according to:

p(x | Z) = p(XM ,X S | Z) (3.4)
= p(XM | X S,Z)p(X S | Z) (3.5)

Markov
=

m∏
n=1

p(XM
n | X S

n ,ZMn)p(X S | Z), (3.6)

where XM =
⋃
nXM

n , X S =
⋃
nX S

n , ZMn = {zij | {i, j} ∈ EMn } and the rightmost part
stems from the global Markov property.

Eq. (3.6) defines the building blocks of our hierarchy. The bottom level of the hierarchy
consists of the m disjoint subgraphs GMn induced from the distributions p(XM

n | X S
n ,ZMn).

The top level is the graph of the separators GS and is induced by the distribution p(X S | Z).
Figure 3.1 shows an example of a two-level hierarchy. Multiple levels are then iteratively built,
considering the previously computed separator graph GS as the input graph G and performing
the decomposition on it.

To design a low-memory-consumption algorithm, we require that the size of all the par-
titions, on every level, is small enough to fit into memory. In principle, one can use any
partitioning algorithm with this property. Potential candidates are METIS [55] or Nibble [109].
In our current implementation, we have opted for Nibble because it is a local algorithm and it
is able to generate graph partitions in an incremental fashion. Accordingly, it does not need to
store the whole graph in memory.

3.1.2 Leaves-to-Root Coarsening

The purpose of the leaves-to-root inference is to compute, at each level of the hierarchy, the
marginal distribution p(X S | Z) of the separator graph GS . Therefore, we exploit the pairwise

3.1. MAPPING WITH LOW MEMORY CONSUMPTION 15

nature of the SLAM graphical model, as already been done in Eq. (3.3).

p
(
X S | Z

)
=

∫
p
(
XM ,X S | Z

)
dXM (3.7)

∝
Eq. (3.2)

∫ ∏
zij∈Z

φzij (xi,xj) dXM (3.8)

=
∏

zij∈ZS

φzij(xi,xj)
m∏
n=1

∫ ∏
zuv∈ZM

n

φzuv(xu,xv)dXM
n . (3.9)

This decomposition tells us that the marginal distribution of the separator nodes is composed
of the factors coming from the separator edges ES , connecting the respective boundary nodes
of two different subgraphs, and the factors computed by marginalizing out the inner nodes of
each individual subgraph, connecting the boundary nodes of the same subgraph. However, the
process of marginalization will destroy the original sparseness of the pose-graph, leading to
high computational costs and memory requirements. This is not in line with the target of our
approach, since we want to be explicitly memory efficient. To overcome the problem of the
fully connected marginalization graph, we propose to approximate the marginal distribution
of the boundary nodes with a tree-structured distribution that preserves the marginal mean.

Chow and Liu [21] showed that the tree-structured distribution that minimizes the Kullback-
Leibler divergence can be obtained by computing the maximum spanning tree on the mutual
information graph. Although their proof considers discrete distributions, the result also holds
for continuous densities. Unfortunately, computing the mutual information between boundary
nodes involves inverting the information matrix relative to the entire subgraph, resulting in a
computationally expensive operation.

We instead build a maximum spanning tree of the measurement information, where the
graph structure is the same as GMn and the edges are weighted according to det(Ωij).

We build the approximate separator graph incrementally. First, we optimize the subgraph
without considering the separator edges. Second, we compute the maximum spanning tree T
with one of the separators as root node and the path P ij on the tree connecting the nodes i and
j. By performing a depth-first visit on the tree, we select the edges of the graph such that any
separator is connected to its closest parent in T , resulting in the edge set ET . For each edge
(i, j) ∈ ET , we compute a virtual measurement

z∗ij =
⊕
k∈Pij

ẑk,k+1 (3.10)

Ω∗−1
ij = JTΩ−1

PijJ, (3.11)

where J is the Jacobian of Eq. (3.10), ẑk,k+1 = x̂k 	 x̂k+1 is the transformation between
node k and k + 1 in the path, after optimization, and ΩPij is a block diagonal matrix, whose
diagonal elements correspond to the information matrix associated to the edges on the path.
In practice, we compute the covariance matrix Ω∗−1

ij by propagating the covariance matrices
of the measurements along the compounding path [108]. Figure 3.2 shows an example
construction of the separator graph for a single subgraph.

This results in a new graph G∗ = (V∗, E∗) with V∗ = X S and E∗ = ∪
n
ETn ∪ ES which

constitutes the graph of the next level higher, in our hierarchical construction. We iterate this

16 CHAPTER 3. MEMORY AWARE CONSIDERATIONS OF SLAM

Figure 3.2: Example construction of the approximate separator graph for a single partition.
The left image shows the original graph, where the separators are displayed as squares and
thicker lines depict the maximum spanning tree. The right image shows the resulting separator
graph obtained by performing the depth-first visit.

process of fine-to-coarse optimization until we reach the top level of the hierarchy. In principle,
any non-linear least-squares optimizer can be used for the optimization of the subgraphs,
however, in our current implementation we use g2o [57] for that purpose.

3.1.3 Root-to-Leaves Optimization

Once the hierarchy has been built up to the top level L, we compute a solution for the top-most
graph GL = (VL, EL) by solving the corresponding least squares problem. By construction
of the hierarchy, as explained in Section (3.1.2), each new level has fewer nodes and fewer
edges than the current level. This is because the number of separator nodes is smaller than
the original number of nodes and the edges are the union of existing edges, and the minimal
amount of nodes to connect the separator nodes of the individual subgraphs. Therefore,
we have |VL| << |V0| and |EL| << |E0| so that we can solve the top-level graph using
substantially less memory than for the full graph.

Let us recall Eq. (3.6), where we factorized the target distribution for the individual
subgraphs and the marginal distribution of the separator nodes. As derived from the previous
section, we approximate the marginal distribution by the graph GL, which we have just
optimized. To obtain the final map, we need to propagate the solution obtained to the leaves of
the hierarchy. In the case of linear systems, this propagation is equivalent to back substitution.
To overcome the non-linearities of SLAM, we propose to perform an additional optimization
step on each subgraph, by fixing the separator variables and only minimizing with respect to
the inner nodes. This step corresponds to N independent minimization problems of limited
size, one for each subgraph GML−1,n. The process is then iterated for each level in the hierarchy.

Note, that the least square minimization algorithm is always applied to bounded problems.
The partitions are bounded by construction, due to the partitioning algorithm. The separator
graph is also bounded by construction. The number of separator nodes S is smaller than the
number of original nodes, since the separators are a subset of the nodes of the original graph.
The number of edges is also bounded, since we only consider the edges between separators
from the original graph and the edges connecting the separators of the individual partitions,
which are at most S − 1.

3.1. MAPPING WITH LOW MEMORY CONSUMPTION 17
A

IS
2K

lin
ik

|V| = 15115, |E| = 16727 |V| = 4378, |E| = 4897

|V| = 1200, |E| = 1392 |V| = 323, |E| = 390

E
T

H
C

am
pu

s

|V| = 7065, |E| = 7429 |V| = 2001, |E| = 2118

|V| = 541, |E| = 583 |V| = 137, |E| = 151

In
te

l

|V| = 1728, |E| = 2512 |V| = 542, |E| = 765

|V| = 149, |E| = 213 |V| = 38, |E| = 50

Figure 3.3: Hierarchies computed by SMF for different datasets. The picture shows the
separator graph at different levels, with the number of nodes and edges.

18 CHAPTER 3. MEMORY AWARE CONSIDERATIONS OF SLAM

3.2 Memory Consumption Analysis

In this section, we look briefly into the memory consumption of our approach and full SLAM
solvers. Since the exact amount of memory used by an approach also highly depends on
the implementation as well as on the specific instance of the problem, we will establish
approximate estimates to get an idea of the magnitude of the memory consumption.

The graph that models the SLAM problem is typically sparse, which means that the average
number of edges that intersect with a node is bounded, |E| ≤ c|V| for some c > 0. By our
sparse construction, this holds for each level of hierarchy as well. First, let us analyze how a
classic solution is computed. Solving the least squares minimization problem, incorporates
the calculation of a solution to a linear equation Ax = b for a sparse d|V| × d|V| matrix A,
where d is the dimension of the pose representation, for which the number of edges determine
the number of non-zero entries. With a good permutation of the columns of A, the fill-in,
which arises by solving the linear system, can be minimized and the number of non-zero
values is in the same range as the number of non-zero values of A. Even though finding the
optimal permutation is known to be NP-complete [137] good approximations to the problem
exist [4, 25, 37]. To sum up, the full solver needs to store the graph, the matrix A and the
decomposition, in order to solve the linear system. This results in a memory consumption in
the magnitude of at least (3c+ 1)|V|.

In contrast, our method needs to solve equations of bounded sizes only, and therefore our
memory consumption on the fill-in is independent of the size of the graph. However, our
current implementation needs to store the hierarchy, which we will briefly analyze. We assume
that each level of our hierarchy satisfies the same sparseness inequality as above. Let us
further consider that in our hierarchical construction, the number of nodes are at most, half of
the prior level, |VL| ≤ |VL−1|

2
. The number of nodes in our hierarchical construction can be

bounded as follows.

∑
i=0,...,K

|Vi| ≤
∑
i

|V0|
2i
≤ 2|V0| (3.12)

Which leads to a memory consumption of our approach in the magnitude of (2c+ 2)|V|.
These considerations show that our approach would need at most 2/3 of the amount of memory
a regular graph solver needs. The main advantage of our approach is that it never optimizes
the graph as a whole, which leads to a tight bound of the dimensionality of the linear equation
to solve.

In the forthcoming experimental section, we compare the memory consumption of different
solvers. The results confirm the derived bound; in fact, our approach consumes only about
half of the memory as regular solvers, in some problem instances.

3.3 Experiments

We evaluate our approach (SMF) with respect to memory consumption, runtime on low mem-
ory systems and metric accuracy, and compare it to other state-of-the art mapping approaches,

3.3. EXPERIMENTS 19

Figure 3.4: One example Manhattan world dataset used in the memory consumption experi-
ment.

namely TSAM21 [88], GTSAM2 [53], g2o3 [57]. To investigate the properties of our approxi-
mation, we compare our method to two other non-exact solvers, which are HogMan4 [41] and
a variant of TSAM2 that does not perform subgraph relaxation (T2-NOREL). Throughout the
experiments, we limited the maximum submap size to 500 nodes. We ran all approaches on a
single thread and without any parallelization, using Ubuntu 12.04 on an i7-2700K processor
running at 3.5GHz. Note that HogMan runs incrementally, while all others are batch solvers.

3.3.1 Memory Consumption
In the first experiment, we evaluated the memory footprint on large-scale and synthetically
generated datasets of Manhattan-like worlds, see Figure (3.4). The corresponding maps have
graphs whose number of nodes ranges between 20,000 and 500,000 and whose connectivities
lead to up to two millions edges. To investigate the memory consumption, we employed
valgrind and massif in a native Linux environment. Both are open source tools for
process memory analysis.

Figure 3.5 shows the results of the experiment. The graph shows two important aspects.
First, our approach has the lowest memory consumption: it is consistently almost one order of
magnitude more memory efficient than TSAM2, up to 2 times more than g2o and GTSAM,
and up to 1.3 times more than T2-NOREL and HogMan. Even though SMF, HogMan and
T2-NOREL have a similar memory footprint, SMF is substantially more accurate, as shown
in Section 3.3.3. Second, the approximate methods HogMan, SMF, and T2-NOREL) have
lower memory consumption than the exact methods TSAM2, g2o, and GTSAM.

3.3.2 Runtime on Systems with Restricted Main Memory
This experiment evaluates the computation time on systems with restricted main memory. For
simulating these systems, we limited the available memory for the Linux kernel. We evaluated

1We thank the authors for providing their own implementation
2ver. 2.3.1 – https://collab.cc.gatech.edu/borg/gtsam/
3ver. git455 – https://github.com/RainerKuemmerle/g2o
4ver. svn20 – http://openslam.org/hog-man.html

20 CHAPTER 3. MEMORY AWARE CONSIDERATIONS OF SLAM

0.1

0.2

0.5

1.0

2.0

5.0

10.0

0 100 200 300 400 500

M
em

or
y

[G
B

] i
n

lo
ga

ri
th

m
ic

 s
ca

le

number of nodes [thousands]

SMF
g2o

GTSAM
TSAM2

T2-NOREL
HogMan

Figure 3.5: Memory consumption of modern SLAM solvers compared to our approach on
large-scale graphs. Please note that the y-axis has logarithmic scale.

three budgeted memory settings (0.5GB, 0.75GB and 1.0GB) on 15 synthetic datasets with
200,000 nodes and varying connectivity. The mean number of edges was 640,000 with a
standard deviation of 78,800.

Figure 3.6 shows the average runtime of all the batch solvers (g2o, GTSAM, TSAM2,
T2-NOREL and SMF). SMF is the fastest method at the lowest memory setting and compa-
rable to T2-NOREL at increasing memory setups. All the other methods are significantly
slower. In the lowest memory setup, TSAM2 was frequently killed by the kernel and was
successful only 3 out of 15 trials. In the same setting, GTSAM never terminated.

To evaluate the statistical significance of the results, we performed a paired sample t-test
with a significance level α = 0.05. The test shows that SMF is 2 times faster than g2o on
0.5GB, 1.6 times on 0.75GB, and 1.7 times on 1GB. With respect to TSAM2, SMF is 8
times faster on 0.75GB and 10 times faster on 1GB, where on 0.5GB no significant result
can be given due to the limited amount of successful trials. SMF is also 7.2 times faster than
GTSAM on 0.75GB and 3.7 times faster on 1GB. The timing performance of T2-NOREL is
very similar to SMF, with SMF being 1.4 times faster on 0.5GB settings. Note, however, that
SMF is substantially more accurate than T2-NOREL as shown in the next section.

3.3.3 Metric Accuracy
In these experiments, we quantified the metric precision of all the SLAM solvers and the
time required to provide a solution without constraining the amount of available memory.
Here, we run the solvers on several publicly available datasets: AIS2Klinik (15,115 nodes,
16,727 edges), ETHCampus (7,065 nodes, 7,429 edges), Intel (1,728 nodes, 2,512 edges)
and Manhattan3500 (3,500 nodes, 5,542 edges). These datasets have been selected because
they are good representatives of different environments (indoor and outdoor), simulated and
real-data.

Table 3.1 summarizes the results with respect to the χ2 error and runtime. Bold numbers

3.3. EXPERIMENTS 21

1
5

10

20

30

40

0.5 0.75 1

T
im

e
[m

in
]

Memory [GB]

SMF
g2o

GTSAM
TSAM2

T2-NOREL

Figure 3.6: Runtime comparison with memory constraints.

indicate the best result among the approximate methods. Out of the approximate solvers, SMF
has the lowest error and the lowest runtime in all the datasets but Intel and Manhattan3500,
where T2-NOREL is slightly faster. SMF is more accurate than T2-NOREL: from 500 times
on the ETHCampus dataset to 1.3 times on the Intel one. Compared to HogMan, SMF is up to
2 times more accurate and up to 10 time faster. However, the runtime comparison in this case
is not meaningful as HogMan is an iterative solver that executes an optimization after each
measurement. With respect to the exact solvers, SMF achieves comparable accuracy in all the
datasets, being slightly slower than GTSAM and g2o and slightly faster than TSAM2.

In order to precisely assess the quality of map reconstruction, we have also computed the
reprojection error (RPE) between every edge of the optimized graph and the ground truth map
computed using an exact solver – g2o in our case.

Table 3.2 summarizes the results of the evaluation, showing the RPE mean, standard
deviation and maximum error. SMF is more accurate than T2-NOREL and HogMan in
all datasets. This is particularly evident on the two large outdoor datasets AIS2Klinik and
ETHCampus where SMF is 3 times more accurate than T2-NOREL with respect to the mean
error and more than an order of magnitude with respect to the maximum error. SMF is also
up to 3 times more accurate than HogMan for the mean error and up to 4 times with respect
to the maximum error. From a robot navigation standpoint, maximum-errors are indicators
of how far some parts of the map are misaligned. Large values of this error may render the
map unusable because, e.g., paths could not be computed: this happens with T2-NOREL
in datasets AIS2Klinik (≥ 10m) and ETHCampus (≥ 7m). In those datasets, SMF instead
achieves a maximum-error of 0.4m and 0.08m.

22 CHAPTER 3. MEMORY AWARE CONSIDERATIONS OF SLAM

Table 3.1: Small Memory Footprint Mapping (χ2, Time)
Dataset Method χ2 error time [s]

AIS2Klinik

SMF 471.0 0.86
T2-NOREL 108,977.8 1.00

HogMan 647.0 15.53

TSAM2 172.8 2.85
GTSAM 172.8 1.00

g2o 172.8 0.21

ETHCampus

SMF 38.9 0.36
T2-NOREL 22,457.2 0.50

HogMan 79.3 2.55

TSAM2 25.0 1.15
GTSAM 25.0 0.36

g2o 25.0 0.06

Intel

SMF 53.3 0.11
T2-NOREL 69.0 0.08

HogMan 134.7 0.78

TSAM2 45.0 0.18
GTSAM 45.0 0.06

g2o 45.0 0.02

Manhattan3500

SMF 287.1 0.35
T2-NOREL 733.8 0.21

HogMan 521.9 3.25

TSAM2 146.1 0.54
GTSAM 146.1 0.23

g2o 146.1 0.07

3.4 Related Work
Over the past years, SLAM has been an enormously active research area and a variety of
approaches to solve the SLAM problem have been presented. More recently, optimization
methods applied to graph-based SLAM formulations have become popular. Lu and Milios [67]
were the first to refine a map by globally optimizing the corresponding system of equations
to reduce the error introduced by constraints. Subsequently, Gutmann and Konolige [43]
proposed a system for constructing graphs and for detecting loop closures incrementally.
Since then, several approaches for minimizing the error in the constraint network have been
proposed, including relaxation methods [36, 47], stochastic gradient descent [92] and similar
variants [40] as well as smoothing techniques [52]. In a recent approach, Kaess et al. [53]
provide an incremental solution to the SLAM problem that relies on Bayes Trees.

Closely related to our work presented here are hierarchical SLAM methods. And several
of them perform the optimization on multiple hierarchies. For example, the ATLAS frame-
work [15] constructs a two-level hierarchy combining a Kalman filter and global optimization.

3.4. RELATED WORK 23

Table 3.2: Small Memory Footprint Mapping (RPE)
Dataset Method mean [m] std [m] maxErr [m]

AIS2Klinik
SMF 0.0045 0.0110 0.41

T2-NOREL 0.0148 0.2454 10.59
HogMan 0.0100 0.0300 2.12

ETHCampus
SMF 0.0016 0.0031 0.08

T2-NOREL 0.0061 0.1496 7.73
HogMan 0.0030 0.0070 0.15

Intel
SMF 0.0026 0.0037 0.05

T2-NOREL 0.0038 0.0071 0.13
HogMan 0.0090 0.0150 0.16

Manhattan3500
SMF 0.0147 0.0161 0.25

T2-NOREL 0.0153 0.0434 1.85
HogMan 0.0330 0.0350 0.44

Estrada et al. [30] proposed Hierarchical SLAM as a technique for using independent local
maps, which they merge when the robot re-visits a place. Frese [35] proposed an efficient
strategy to subdivide the map into a tree of subregions. In the case of an unbalanced tree and
when the leaves contain many poses, his method suffers from high computational demands.
HogMan [41] builds up a multi-layer pose-graph and employs a lazy optimization scheme for
online processing. The hierarchy generated is always fixed and is based on special decimation
principles. One can modify HogMan so as to address low-memory situations, at the price of
performing optimization only on levels that can be loaded in memory. A divide and conquer
approach has been presented by Ni et al. [89], who divide the map into submaps, which are
independently optimized and eventually aligned. This method was later extended by Ni and
Dellaert [88], which turns out to be the closest approach, with respect to the technique, to what
is presented here. They employ nested dissection to decompose the graph into a multi-level
hierarchy by finding node separators, and perform inference with the cluster tree algorithm.

Kretzschmar and Stachniss [56] apply graph compression using an efficient information-
theoretic graph pruning strategy. They build a constant size map by actively removing nodes
in the map. After pruning them away, their information can not be recovered any longer.
In contrast to them, our method stores all of the information in the hierarchy. In a visual
SLAM context, Strasdat et al. [111] presented a double window optimization approach. They
perform local bundle adjustment (inner window) and approximate pose-graph minimization
(outer window). They reduce the complexity of full map optimization but do not bound the
size of the outer window. Our approach can be seen as a multiple window optimization,
where each window is one level of the hierarchy. Another, similar approach to approximating
subgraphs with tree-like subgraphs, has been independently proposed by Grisetti et al. [42].
The main purpose of their work is to construct an approximation of the original problem,
which exhibits a larger convergence basin, to overcome optimization failures resulting from
bad initialization, e.g., caused by odometry with a high noise level. To achieve this, they
condense local submaps into a set of virtual measurements with a star-topology to improve
the initial estimate for a non-linear minimization algorithm on the whole graph. In contrast
to our approach, they partition the graph by determining dissecting nodes, which are then

24 CHAPTER 3. MEMORY AWARE CONSIDERATIONS OF SLAM

shared by different subgraphs, while our approach uses an edge-cut. Further differences are,
that they use the unscented transform to determine the virtual measurement, while we use
linearized propagation of the variables. Their construction consists of a one level hierarchy,
while we do not limit the number of hierarchical levels in our approach. Despite the similarity
of the underlying idea the approaches aim quite different goals. Their approach aims to find a
better initial guess to achieve the global minimum in a batch optimization. Our approach aims
to provide an accurate and efficient solution to large-scale SLAM problems in situations in
which the entire map does not fit into the main memory.

3.5 Conclusions and Future Work
In this chapter, we presented a novel hierarchical and approximated SLAM technique that
produces accurate solutions and thereby requires only a small memory footprint. Our solution
is particularly appealing for solving large-scale SLAM problems or for systems with limited
memory. Our experimental results suggest that our approach uses significantly less memory
than state-of-the-art systems and is significantly faster on systems with restricted main memory.
At the same time, it yields an accuracy that is comparable to that of state-of-the-art exact
solvers and exhibits better results than state-of-the-art approximate solvers.

Future Work
With the approximation of the marginal distribution of the separator nodes, we do not see a
straightforward way to recover the covariances of the solution by our approach. Therefore, we
cannot estimate a posteriori uncertainties of the pose estimate. From a scientific probabilistic
viewpoint it would be interesting to see how this uncertainty is affected by our approach and
whether or not the results are consistent, e.g., for all nodes the exact solution falls into the
95% uncertainty ellipse. Another, implementation related, continuation could be to show that
the presented approach can run with constant memory when dumping all currently unused
data to the hard disk. However, in this case we compete with the paging implementation of
the operation system and therefore would need a sophisticated implementation to compete in
terms of speed.

Chapter 4

Localization with Respect to
Non-Stationary Objects

The ability to precisely execute manipulations tasks is of utmost impor-
tance for autonomous robots in many situations, e.g., flexible produc-
tion and shared workspaces. Especially for repetitive tasks, the robot
needs to know its exact pose, relative to the object that is of interest for
the manipulation. However, these objects may change their position
over time and for consecutive visits of the robot, the global pose and
the pose relative to the object may be inconsistent. In this chapter, we
decouple the global pose of the robot and the relative pose to the object,
to provide both an accurate relative and global position. Thereby, we
relax the static world assumption that is included in regular localiza-
tion problems. To achieve this, we introduce an extension of the ICP
algorithm that handles multiple reference frames in a joint manner. In
extensive experiments, which include simulated and real world scenar-
ios, our approach achieves sub-centimeter accuracy, which is sufficient
for regular industrial tasks.

In the previous chapter, we developed an approximate and memory efficient SLAM solution,
which solves the problem of localization and mapping in a joint manner. In this chapter, we
discuss the problem of localization in the case that a global map is already given. Hereby,
we are particularly interested in situations where the robot needs to be localized accurately
with respect to an object, which may have a relatively small footprint in the perceived sensor
measurements. Moreover, this object may change its position between consecutive visits, e.g.,
pallets or boxes in a shared work-space. This implies that we need to explicitly relax the static
map assumption, which is commonly used in localization approaches.

The ability of self-localization is a crucial prerequisite for autonomous robots that need to
reliably navigate within a known environment. In recent decades, a multitude of approaches
have been developed using different techniques and sensors. However, most approaches seek
an accurate global pose of the robot and include the common static map assumption, and
even if this assumption holds only for major parts of it, probabilistic techniques have shown
accurate results. In contrast to that, we will consider the problem in which we are explicitly
interested: both, an accurate global pose as well as an accurate relative pose with respect to an
object that represents only a small fraction of the map. This becomes crucial in cases where
the target object may change its position over time, since in this case the global and relative

26 CHAPTER 4. LOCALIZATION WITH RESPECT TO NON-STATIONARY OBJECTS

Figure 4.1: Localization example with the omniRob in front of a table. The two images show
the same place, visited at different times. The left image illustrates the initial configuration
during the mapping phase, when we drove the robot to the reference location and built a model
of the table and the background. In the right image, the robot revisits this place, but in the
time between the two visits, the position of the table has changed, having been shifted and
rotated by an external force. Using our relative approach, the robot is able to localize and
position itself relative to the table, at the same position as during the teaching phase.

poses are no longer consistent. We are convinced that this scenario is particularly relevant
in industrial applications, e.g., when pallets have to be moved. In this case, the objects may
be found at a bound location in the map but they may be placed at a different position. An
example scenario is illustrated in Figure (4.1), where the robot is required to position itself in
front of an object that could be moved around.

In this chapter, we propose an approach that solely relies on a laser range finder. These
sensors are commonly used for safety reasons, and therefore we expect most mobile robots
in industrial facilities to be equipped with one. Instead of using a grid-map, which is a
common method for map representation, we use a sensor-based point-set representation,
which is composed of registered point-sets during the mapping phase. The advantage of this
representation is that the noise of the sensor is implicitly reflected by the map. To solve the
localization task, we reformulate the problem as a sensor registration problem with multiple
rigid bodies. Therefore, our approach is able to retrieve a pose with respect to different parts
of the environment, while keeping track of the global pose.

4.1 Localization with Respect to Multiple References
In this chapter, we address the problem of an accurate pose estimate that is consistent with
respect to the global frame and with respect to the object frame. As long as the entire world

4.1. LOCALIZATION WITH RESPECT TO MULTIPLE REFERENCES 27

1 m 1 m

1 m 1 m1 m 1 m

Figure 4.2: Illustration of a case in which the object (marked with the black box) was rotated
after the mapping phase. This causes an inconsistency between the global pose and the relative
pose to the object. On the left, the current scan (red) is projected with respect to the pose
relative to the object. The misalignment to the background points (blue) is obvious, whilst
we can see from the zoomed-in part that the object is aligned well. On the right, the current
scan is drawn with respect to the background (global) pose. The walls align well, while the
zoomed-in part shows the misalignment to the object, which is caused by the change of the
position of the object.

is static, both poses are consistent, and one could be calculated directly from the other, but
as soon as the object changes its position those poses become inconsistent. In Figure (4.2)
we illustrate a case in which both frames are not consistent, because the object changed its
position after it was mapped.

We decouple the problem of localization in two parts: first, a standard global localization,
and second, the proposed approach to achieve accurate positions with respect to pre-defined
objects. To solve the first part, we employ a common MCL approach, see Chapter (2.4).
The second part is triggered whenever the robot arrives near the target object. Since we
maintain the global pose in both cases, the transitions between the modes are smooth and
straight forward. Therefore, we focus on the approach in the vicinity of the object, without
limiting the generality of our approach. We regard this chapter as an extension of the work
of Röwekämper et al. [98] towards localizing a robot with respect to a small fraction of the
environment and relaxing the static world assumption. Röwekämper et al. [98] drove the
robot to a location where a high accuracy was needed and stored local sensor measurements
as reference observations in the map. Those measurements were recorded while the robot
was standing still and then used for scan matching during runtime. To distinguish the objects

28 CHAPTER 4. LOCALIZATION WITH RESPECT TO NON-STATIONARY OBJECTS

−1 0 1 2
−0.5

0

0.5

1

1.5

Figure 4.3: Example of a segmented reference point cloud that contains two objects. The red
points stem from the legs of a table and the blue points from the background walls. Note the
small footprint of the table in the sensor view.

that constitute their own reference frame, we augment the measurement points with semantic
labels that determine the object of reference. Without limitations to the approach, we assume
that the segmentation of the map is provided by the user, e.g., using a graphical interface.
Figure (4.3) illustrates an example of a reference model, where the object (a table) is depicted
in red and the walls are depicted in blue.

4.1.1 Generalized ICP for Multiple Rigid Bodies
We express the problem of localization with respect to different reference frames in terms of a
multi-body registration problem. Common approaches estimate a single affine transformation
between two point-sets. In contrast to that, we model explicitly that different parts of the
environment undergo different rigid-body motions. Given the reference point-set S = {pi},
which is segmented for the rigid body objects Sj = {pi,j} ⊆ S, and a local point-set
Q = {qi}, regular ICP approaches calculate a single transformation that minimizes the
reprojection error between the two sets and ignores the object segmentation, as described in
Chapter 2.5. However, our goal is to estimate the reference pose xj of each object point-set Sj
relative to the robot position xr, which is expressed by the transformation Tj,r = xj 	 xr.

To simplify the notations, we assume that outliers are removed and the points of the local
point-set qi and the points from the reference scene pi,j are ordered with respect to their
associations. This means that point pi,j , which stems from object j, is associated to the
point qi of the local point-set. In general, the object correspondences of the query point are
unknown. Therefore, we introduce a weighting factor ωi,j ≥ 0, which we can use for variable
purposes, e.g., to model the probability that points qi belong to object j or for variations of the
approach adapting constraints like execution time. The objective function for the multi-body
ICP is then

(T?
1, . . . ,T

?
n) = argmin

(T1,...,Tn)

∑
i

∑
j≤n

ωi,j‖pi,j −Tj,r(qi)‖2
Ωi,j

with ωi,j ≥ 0 ∀i, j. (4.1)

4.1. LOCALIZATION WITH RESPECT TO MULTIPLE REFERENCES 29

l1 l3

xb xr xo

l2 l4

zr,b,1

zr,b,2

zr,o,3

zr,o,4

Figure 4.4: Illustration of a factor graph with two rigid bodies, xb and xo, and the robot
pose xr. Point associations are modeled as virtual landmark associations (shaded nodes) that
induce pose-to-pose measurements zr,{b,o},i (black squares) between the object and the current
robot pose. With this graphical model, we can use nonlinear least-squares solvers, e.g., g2o, to
estimate the transformation of the current robot pose and the objects.

In the case of n = 1, this optimization problem is the same as for the extended ICP-algorithm
as given in Eq. (2.10).

In our current implementation, we use a Dirac-based weighting to compute the point
associations. We assign a query point qi to the closest point of any object with weight of one
and zero for all the other objects, based on the euclidean reprojection error.

pi?,j? = argmin
pl,j∈S

‖pl,j −Tj,r(qi)‖2 (4.2)

This means, that we assign the query point qi to the point pi?,j? of object j?. Accordingly,
the Dirac-based weight for the associations of the point qi is ωi?,j = δ{j?}(j). Modeling the
object point correspondences in this way assimilates the regular ICP assignment of the nearest
neighbor. The difference in our approach is that we take the reference pose of the object into
account instead of estimating a single transformation. To find the desired transformation we
apply the ICP scheme. Given an initial estimate for the transformations Ti,r, we perform the
weighted query point to object point correspondences assignment for each point qi ∈ S and
then solve Eq. (4.1) to retrieve the next estimate of the transformations Ti. We iterate these
steps until convergence or a maximum number of iterations is reached.

In our implementation, we use the g2o-optimizer to solve the minimization problem in
Eq. (4.1), as we can transfer the formulation of multi-body ICP to a Graph-SLAM problem. To
show this analogy we interpret the point correspondences as a common landmark observation
from the respective poses, which are the reference poses of the objects and the robot pose.
The measurement error of these observations is modeled as the reprojection error

zi,j,r = pi,j −Tj,r(qi) (4.3)

30 CHAPTER 4. LOCALIZATION WITH RESPECT TO NON-STATIONARY OBJECTS

between the points of the reference model and the local point cloud, transformed with the
current estimate of the pose of object j, xj . With the covariance matrix Σi, which models the
uncertainties of the measurement, the objective function of multi-body ICP is equivalent to
the Graph-SLAM problem

(x?1, . . . ,x
?
n) = argmin

(x1,...,xn)

∑
i,j

ωi,j‖zi,j,r‖2
Σ−1

i
(4.4)

The main difference to the common graph-based SLAM formulation is the iterative re-
assignment of the landmark associations. However, the different error metrics of ICP, like
plane-to-plane, point-to-plane and point-to-point, now become a variation of the covariance
that models the uncertainties of the measurements, see Chapter (2.5), which is an intuitive
interpretation of the different metrics. The correspondence association weighting factor
ωi,j determines the connectivity of the graph. For an illustration of such a factor graph
see Figure (4.4). In our current implementation, we use the point-to-plane metric and a
Levenberg-Marquard solver [80] for the non-linear least squares optimization problem.

4.2 Point Cloud Generation
In the previous section we derived the method for registration of two point-sets when multiple
rigid bodies are present. Under the assumption that the entire environment is static, one can
achieve sub-centimeter accuracy from a single sensor measurement, as shown by Röwekämper
et al. [98]. However, the scenario we consider in this work contains rigid bodies that appear
with a small footprint in the sensor measurements. This means that only a few measurements
refer to some of the rigid bodies, which would not be sufficient for an accurate localization,
e.g., normals can not be estimated reliably due to the sparse measurements. To overcome this
problem, we propose registering multiple measurements, taken at different positions, for the
generation of the local model.

4.2.1 Generating the Reference Point Cloud
We generate the reference point cloud in an offline process and one can interpret it as the
teaching phase of our approach. This process is subdivided into two phases: first, the data
recording, and second, the registration of the points into an accurate joint model. For the
first step, we manually operate the robot in close proximity of the reference pose of the
object, record the data obtained by the laser sensor and determine the reference pose. This
accumulation of sensor measurements is necessary for our approach, since the target objects
may have a small footprint in the sensor data and it ensures that we see the object from
multiple viewpoints.

The second phase is the offline registration of the collected points. For the reference model,
we want the registration to be as accurate as possible and computation time is not an issue,
here. The formulation of this registration is similar to our multi-body variation of the ICP
algorithm, see Eq. (4.1), except that we consider all pairwise combinations of references
instead of the robot pose to the reference frames only. Let x1, . . . ,xn be the poses of the robot
during data collection. Now, for 2 ≤ k ≤ n the pose xk is used as the pose xr and the poses
xk−1, . . . ,x1 are the reference poses, while the object is the full scan. In this process we set all

4.2. POINT CLOUD GENERATION 31

l0 l1 l5

x1 x2 x3 x4

l2 l3 l4

z1,2,0 z1,{3,4},1

z1,{2,3,4},2 z2,{3,4},3 z3,4,4

z3,4,5

Figure 4.5: Illustration of a factor graph for the reference point cloud registration process. In
this case, each pose xi once acts as the robot pose and landmark associations are performed
for each of the previous poses. Some landmarks are seen from more than one pose, which is
the case if more than two poses share an edge with the same factor.

weights ω = 1, which then results in a dense graph representation as illustrated in Figure (4.5).
The objective is the accumulation of all of the measurements that arise from this construction.
This again is similar to bundle adjustment, except that after each optimization, the landmark
associations are recalculated, resulting in an iterative process of optimization.

4.2.2 Local Point-set Registration

At the time of operation, when the robot needs to localize itself with respect to the reference
model, the time constraints from the robot control loop do not allow for running the procedure
described in the previous section, as we generate a dense graph with too many associations.
However, using only the current scan may lead to low accuracy, since only a few points of the
object are present in a single scan, as stated before. Therefore, we will outline a procedure to
incrementally register the current scan with respect to the previous N scans in the following
way. Once the robot reaches the proximity of the reference object, we initialize the first pose of
the procedure as retrieved from the regular MCL approach, which we use for the localization
while navigating between the objects. For each of the following measurements, we initialize
the pose with respect to the previously estimated pose, using the odometry readings from the
robot. Let xr be the initial estimate of the current scan, we then search for associations in
the previous N point sets and weight each association with ωir = 1. Instead of optimizing
for the poses xr−1, . . . ,xr−N we optimize for the current pose x?r , which leads to an accurate
incremental pose estimate. The corresponding factor graph is depicted in Figure (4.6). Then
we transform the local point-set with respect to the current pose xr and run the multi-body
ICP as described in Section (4.2) to retrieve the relative poses we are interested in.

32 CHAPTER 4. LOCALIZATION WITH RESPECT TO NON-STATIONARY OBJECTS

l1 l5

x1 x2 x3 xr

l2 l3 l4

z1,r,1

z1,r,2 z2,r,3 z3,r,4

z3,r,5

Figure 4.6: An example of the factor graph model, which we use to generate the local model
when the robot is in the proximity of the target object. In this optimization, only the current
robot pose xr (white node) is free and the previous, already optimized poses (hatched nodes)
are fixed at their positions. The point-to-point association, which is modeled as a common
observation zj,r,i of the landmark li, is performed for each of the previous poses.

4.3 Experiments

For the experimental evaluation of our approach, we performed experiments in simulation
as well as with a real robot. In both scenarios, we consider an environment that contains
three different types of objects, which change their positions between consecutive visits of
the robot. Those are: a table, a box and a shelf. We chose these objects specifically for their
characteristic appearances when observed with a laser scanner. The convex shape of a box is
easily detectable, as long as we observe at least one edge, from different viewpoints. The shelf
has a concave, u-shaped, representation in the sensor data, which may result in self-occlusions
from some viewpoints. Last, the table has a considerably small footprint in the sensor data,
because the laser range finder only observes the four legs and its appearance is equivalent to a
union of four small rigid boxes.

The procedure of the experiments is the same for both environments. First, we manually
operate the robot and visit each object. Once we reach the proximity of the object, we
start the reference model generation process as described in Section (4.2.1) and after the
optimization has converged, we label the objects in resulting reference model. In the next
phase, the robot visits the objects in a random order, several times. Once the robot reaches the
proximity of the object we generate the local point-set, as described in Section (4.2.2). After
integrating several sensor measurements, we run our multi-body ICP algorithm, as described
in Section (4.1). Between consecutive visits, we change the position of the objects where we
considered translations up to 10cm and rotations up to 10◦. To allow for better control of the

4.3. EXPERIMENTS 33

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6
0

0.001

0.002

0.003

0.004

0.005

Tr
an

sl
at

io
n

E
rr

or
[m

]

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6
0

0.2

0.4

0.6

0.8

R
ot

at
io

na
l

E
rr

or
[◦

]

table box U-shape

Figure 4.7: Results of the simulation experiments with the object shifted by 0.05m (Set 1),
0.1m (Set 2), rotated by 5◦ (Set 3), 10◦ (Set 4), simultaneously translated by 0.05m and rotated
by 5◦ (Set 5), and simultaneously translated by 0.1m and rotated by 10◦ (Set 6). The height of
the boxes show the mean error over all runs, and the bars show its standard deviation. The
crosses mark the maximum errors.

viewpoint variety and to avoid viewpoint biased results, which may arise from the planner
used in the system, we opted for a manual operation of the robot for this phase, as well. To
evaluate the accuracy of our approach, we compare the estimated pose relative to the object to
the ground truth.

4.3.1 Simulation Experiment
In the simulation experiment, we consider a differential drive robot with a laser range finder
mounted parallel to the ground plane. To simulate the odometry of the robot, we use a
velocity motion model with zero-mean Gaussian noise and a standard deviation of 0.1m

s
for

the translational velocity, and zero-mean Gaussian noise and a standard deviation of 0.1 rad
s

for the rotational velocity. The laser sensor is simulated with a field of view of 180◦ and an
angular resolution of 0.5◦. The range readings are calculated with ray-tracing and we add
random noise to each measurement, which is modeled as a zero-mean Gaussian distribution
with a standard deviation of 0.01m . The map of the environment that we used in the simulation
experiments is pictured in Figure (4.8).

34 CHAPTER 4. LOCALIZATION WITH RESPECT TO NON-STATIONARY OBJECTS

Figure 4.8: This is the a map of the environment that we used for the simulation experiments.
The extent of the environment is 8 m× 6 m. For the evaluation of our approach, we used the
box in the lower right, the u-shaped shelf in the lower left and the table in the upper right
room.

In this experiment, we evaluate six different ways that the object may be moved between
consecutive visits:

• Set 1: translation of 0.05m

• Set 2: translation of 0.1m

• Set 3: rotation of 5◦

• Set 4: rotation of 10◦

• Set 5: translation of 0.05m and rotation of 5◦

• Set 6: translation of 0.1m and rotation of 10◦

For each of the sets we perform ten localization runs at each object.
The results of this experiment are illustrated in Figure (4.7), where we draw: the mean error,

which is the height of the box; the standard deviation, which is the error bar in the positive
direction; and the maximum error, which is marked with the cross, in terms of translation and
rotation, for each set and object. The error behavior is similar for all configurations, which
indicates the robustness of our approach. The mean translational error is below 2.6mm for
all settings and objects, with a standard deviation that is always less than 1.4mm, and the
maximum error is about 5mm. The mean rotational error is lower than 0.23◦ for all settings
with a maximum standard deviation of 0.24◦, which occurs for the u-shaped shelf, and a
maximum error of at most 0.85◦. These results are promising and very accurate; we will see
in the forthcoming section whether or not we can achieve a similar performance in the real
world experiment.

4.3. EXPERIMENTS 35

Figure 4.9: An image of the real world environment that we used for the experimental
evaluation of our approach. We modeled three rooms each of which contained one of the three
objects we consider: a table in the lower left, a u-shaped shelf in the middle and a rectangular
card box in the upper left room.

4.3.2 Real-World experiments
For the real world experiment, we set up an exemplary environment similar to the one of the
simulation experiments, see Figure (4.9) for an image of the setting. We used KUKA omniRob
as the mobile robot, see Figure (4.1), which is equipped with SICK-S300 Professional laser
scanner, which exhibits a statistical standard deviation, including the systematic error, of
2.9cm [106]. To provide ground truth for this experiment, we employed an optical motion
capture system, which is equipped with ten high speed Raptor-E cameras from Motion
Analysis Digital, that use infrared light to detect and track reflective markers. The robot and
each of the objects are prepared with a unique constellation of markers, which allows for both
an exact pose estimate and the identification of the object.

In this environment we use the following sets of motion for the reference objects:

• Set 1: translation of 0.1m

• Set 2: rotation of 10◦

• Set 3: translation of 0.1m and rotation of 10◦

In this scenario, we perform ten localization runs for each set at each object as with the
simulation experiments.

The results of this experiment are depicted in Figure (4.10). For (Set 1) the translational
error is similar for all objects, with mean error of less than 5mm and a maximum error less
than 10mm. However, for the rotational errors our approach achieves the best results for the
table, and we observe the largest errors for the shelf, which is still less than 0.5◦. When the
objects are rotated, in (Set 2), we observe that the translational errors increase substantially
for the table and box, while they are stable for the shelf. The same accounts for the rotational
errors. The combination of translation and rotation of the objects in (Set 3) has almost no

36 CHAPTER 4. LOCALIZATION WITH RESPECT TO NON-STATIONARY OBJECTS

Set 1 Set 2 Set 3
0

0.005

0.01

0.015

0.02

Tr
an

sl
at

io
n

E
rr

or
[m

]

Set 1 Set 2 Set 3
0

0.25

0.5

0.75

1

R
ot

at
io

na
l

E
rr

or
[◦

]

table box U-shape

Figure 4.10: Results of the real world experiments with the object shifted by 0.1m (Set 1),
rotated by 10◦ (Set 2), and simultaneously rotated and translated (Set 3). The boxes indicate
the mean error over all runs and the bars its standard deviation. The crosses mark the maximum
errors.

effect for the mean of both measures, but for the rotational errors, we see a larger standard
deviation for the box and table. However, for all experiments the mean translational error is
always less than 15mm with a maximum error of at most 19mm , and for rotational errors the
mean is always less than 0.3◦ with a maximum error of at most 1.1◦.

It is worth noting that the loss of accuracy after a rotation of the object may partially be
caused by small errors of the motion capture system and the distance of the robot to the
object. If we consider that the reference pose of the robot is a distance of about one and a half
meters from the object, a rotational error in the motion capture data of 0.25◦ may lead to an
translational displacement of the reference pose of 6mm. Taking this into account, we can
safely consider the results obtained in this section as a lower bound of accuracy that is reached
with our approach. However, in any case the results of our approach meet the accuracy bounds
for loading tasks in industrial environments, which Saarinen et al. [101] claimed to be less
than 30mm.

4.4 Related Work
Accurate localization for industrial tasks is an active research area and has been addressed by
several researchers. Saarinen et al. [101] proposed to use the Normal-Distribution-Transform
in a MCL framework (NDT-MCL). The NDT uses a set of normal distributions that model the

4.4. RELATED WORK 37

environment in a piece-wise continuous way, to reduce the discretization effect of occupancy
grid maps. Their approach achieves a positioning accuracy of 14mm and they claim that the
minimal accuracy required for industrial loading tasks is at 30mm . An MCL-based approach
that positions a robot at a specific location with an accuracy of few millimeters, was presented
by Röwekämper et al. [98]. As in our approach, their method uses multiple scans as map
representations of the reference pose. Moreover, they employ a validity check of the pose
estimate, comparing the results of two independent laser scanners that are mounted on different
sides (front and rear) of the robot. In contrast to them, the approach we presented in this
chapter achieves a high accuracy even with respect to objects that undergo rigid body motions.

Few authors address the problem of determining possible docking locations for objects
from sensor data. Williamson et al. [132] present an approach that combines a mixture of
Gaussians and an Expectation Maximization (EM) algorithm, for robot docking. Each mixture
represents a possible object, and possible docking points are assigned by the EM algorithm.
Jain and Argall [50] use the Kinect sensor to detect edges of tables, bowls, or cups to find
possible docking candidates. This work is complementary to the approach we described in
this chapter; they can be used to automate the finding of the reference pose for the respective
object. However, the focus of their work is on the safety of people in wheelchairs and the
accuracy they achieve is, as yet, too low for industrial settings.

Other authors address the problem non-stationary objects in an environment during the
mapping and localization. To name two examples: the approaches of Biswas et al. [13]
and Anguelov et al. [6] compute shape models of non-stationary objects. They compare
maps created at different times using an EM-based algorithm in order to identify parts of the
environment that have changed over time. Thereby, their main focus was understanding which
parts of the environment can change their position over time. The accuracy of the approaches
is beyond the purpose of the approach presented in this chapter, which satisfies industrial
needs. The approach presented by Salas-Moreno et al. [102] integrated the location of objects
in the context of SLAM. Although their approach achieves a good accuracy, the work still
relies on the assumption that the entire map, including the objects, is static. These works
could also be used to complement our approach, e.g., for the automation of the object labeling
during the training phase of our approach.

Another field of active research is the detection and tracking of dynamic objects, where
dynamic (in this context) means that objects move continuously. For example, Ahmad et al. [3]
extended the graph-based SLAM formulation to include dynamic objects. However, their work
focuses on constantly moving objects for which the motion model is known. Another approach
presented by Dewan et al. [28], targets the problem of detection and tracking objects in highly
dynamic environments, e.g., traffic. Although this approach is model free, it needs objects
to move continuously in order to be detected. The approach of Tipaldi and Ramos [122]
proposes a conditional random field clustering technique to perform motion segmentation
simultaneously with the computation of the number of objects as well as their displacement.
An extension of this approach, by modeling the data association within the probabilistic
framework, was published by van de Ven et al. [128]. In a series of publications, Yang and
Wang developed a multi-model extension for RANSAC, which makes it applicable to rapidly
changing environments [134]. For better robustness against segmentation errors, the authors
proposed a multi-scale algorithm [136] and include spatio-temporal information in stationary
and dynamic objects [135]. Contrary to these works, we do not limit ourselves to just using
two sequential scan measurements, instead we accumulate points over time, while the robot is

38 CHAPTER 4. LOCALIZATION WITH RESPECT TO NON-STATIONARY OBJECTS

approaching the target, to improve the localization accuracy.

4.5 Conclusion and Future Work
In this chapter, we presented an approach to accurately localize a mobile robot with respect
to a reference object that may change its position between consecutive visits. Our approach
combines existing state-of-the-art global localization techniques, where we use a standard
MCL in our current implementation, with the proposed ICP variant that explicitly decomposes
the scene for different rigid bodies that may undergo different rigid body motions. Furthermore,
we proposed methods to compute accurate models of the environment for the training and
localization phase, using a variation of the multi-body ICP approach. This improves the
accuracy of the localization and indicates the flexibility of the proposed formulation of our
ICP variant. To analyze the localization accuracy of our approach relative to the target object,
we performed simulation and real world experiments. The results show that our approach
achieves an accuracy of at least 20mm, which we believe is sufficient for typical industrial
tasks even when the target object was shifted 10cm and rotated by 10◦ degrees.

Future Work
So far, we have used the nearest neighbor assignment of points and have taken the object
label from the assigned point. This is straightforward, considering the ICP-based nature of the
approach. However, this may lead to problems if the objects are close to each other or if an
object is moved to a substantially different position, e.g., several meters. One possibility to
overcome this limitation could be to improve the point to object assignment, decoupling this
phase from the point-to-point associations by actively searching and segmenting the point-sets
for the objects. However, this would also lead to a higher computational burden. Another
advancement would be to automate the phases that need manual assistance from a human
during the training phase. This could be achieved by integrating approaches that aim to learn
which objects change their positions and the mapping approaches that consider independent
objects, as discussed in Section (4.4).

Chapter 5

Camera-based Localization Facing
Substantial Perceptual Changes

Camera-based robot localization has become very popular in recent
years. They provide an absolute cost advantage when compared to
other perceptual sensors as, e.g., laser scanners. However, camera-
based localization is prone to visual changes of the environment, which
may be caused by different lighting conditions or seasonal changes.
This problem becomes especially important when we think about life-
long autonomy, where a robot needs to reliably navigate for a long pe-
riod of time. In this chapter, we present an approach to camera-based
localization on a sequence of images, in which the map sequence and
the localization sequence exhibit major appearance changes, mainly
caused by seasonal changes of the environment. Under such extreme
circumstances, pairwise image matching techniques tend to fail. We
exploit the sequence structure of the data and employ a recursive
Bayesian filter technique, which results in a more robust localization.
To determine the similarity between images, we use a whole image
HOG descriptor and compare their cosine distances. Moreover, we in-
vestigate the benefits of applying a decorrelation technique to the image
similarities to increase their distinctiveness. In extensive experiments,
we show that our approach outperforms state-of-the-art techniques for
a variety of challenging datasets.

In the previous chapter, we developed a method to cope with scenarios in which parts
of the environment change their position over time. Thereby, we used a laser scanner as a
perceptual sensor, which is a common sensor for industrial applications due to additional safety
constraints. However, the main drawback of laser scanners is that they are relatively more
expensive when compared to cameras. One drawback of using a single camera is that we do not
get any metric information for what we see. Therefore, the data is sensitive to viewpoint and
orientation changes, which constitutes one problem of camera-based approaches. Moreover,
data perceived by a camera may be highly affected by changes in the lighting conditions,
e.g., day and night or sun glare. In this chapter, we will focus on a scenario in which images
recorded in a sequence are supposed to be matched to a previous run. We assume that both
sequences share somewhat similar viewpoints but the appearances of parts of the environment
have changed remarkably.

40
CHAPTER 5. CAMERA-BASED LOCALIZATION FACING SUBSTANTIAL PERCEPTUAL

CHANGES

Summer Winter

Figure 5.1: Local gradient information in the images are robust to seasonal changes. The
geometric information is stable, even though the appearance has substantially changed, e.g.,
see the streetlamps or the church. Our approach needs to cope with different view points,
seasonal changes and illumination changes.

Vision-based localization has been deeply investigated in recent years [24, 76, 77]. However,
varying environmental conditions still constitute a challenging problem for localization. So
far, techniques that determine key-points and compute their descriptors, e.g., SIFT and SURF,
have shown promising results when localizing under similar conditions. The main focus of
these approaches are to find rotation- and scale-invariant key-points and descriptors, to avoid
false positive matches, e.g., Cummins and Newman [23]. When localizing a robot in varying
conditions, such that the places exhibit a large perceptual difference, it turns out that key-
point-based methods suffer not only from unstable descriptors but also from the fact that the
keypoints are detected at spatially different pixels in the image, as claimed by Naseer et al. [82].
Therefore, we will instead use a whole image descriptor for which we calculate and stack
HOG descriptors. The intuition for using HOG descriptors is that the gradient information
stresses the geometrical structures that are persistent over time, e.g., buildings and poles. We
depict this effect in Figure (5.1) with a pair of images and their HOG representations, where
the appearance of the same place changed substantially due to seasonal changes and lighting
conditions. Even though choosing a proper descriptor for the images is crucial for localization,
similarities between images often exhibit high noise and relying purely on those would lead
to a large number of false positive matches. To overcome this, recent methods explore the
property that the images are recorded in a sequence Milford and Wyeth [77], Naseer et al. [82].
The work we present in this chapter will take this sequential characteristic into account as

5.1. VISUAL LOCALIZATION UTILIZING SEQUENTIAL INFORMATION 41

well, and overcome some limiting assumptions of the aforementioned approaches. In our
approach, we model the state of the robot with a recursive Bayes filter, which allows for a
much more flexible transition model compared to state-of-the-art approaches, and therefore,
our approach can handle more complex trajectories in a natural way due to the probabilistic
formulation. Moreover, we show in our experiments that applying a whitening transformation
to the image similarities reduces ambiguities and leads to a better performance.

5.1 Visual Localization Utilizing Sequential Information
In this chapter, a camera is the only sensor source for the mobile robot, which provides data at
a low frame rate; let us consider at most four frames per second. This low frame rate makes
visual odometry infeasible, and hence, no metrical information can be taken into account.
Instead, we make the natural assumption that the images are recorded in a sequence during
operation of a mobile robot. A dataset is composed of two such sequences, where we refer to
the first as the database, D = {d1, . . . , dnD

} with nD = |D|, and the second we will refer to as
the query set, Q = {q1, . . . , qnQ

} with nQ = |Q|. Now, each of the sequences are temporally
ordered and we are particularly interested in cases where the two sequences are recorded with
a large time gap between, e.g., spring and winter, which causes different appearances of the
same places.

In the remainder of this section, we elaborate on the components of our approach. First,
we explain how we compute the similarity matrix between the two datasets in Section (5.1.1).
Afterwards, we briefly explain the model of the discrete Bayes filter and its components
in Section (5.1.2) and Section (5.1.3) and show how to integrate the image similarities in
Section (5.1.4). In Section (5.2), we outline how to compute the final probabilities for image
qj is perceived from the same place as image di for each combination of i and j, using the full
data that is available. Afterwards, the sequential filtering is explained in Section (5.3). We
close the technical part of this chapter with the explanation of the zero component analysis
and outline how we apply it to our framework in Section (5.4).

5.1.1 Robust Image Matching
The input to our approach are images of a fixed resolution. To recognize places after substan-
tial changes in their appearance, we need a descriptor that is not affected by those changes.
As keypoint-based approaches are rather unstable and prone to errors after changes in appear-
ances, we use a whole-image-descriptor based on gradient histograms. Specifically, we use the
HOG descriptor, which works on a local patch of the image, as the base for the whole-image
descriptor. We sub-divide the image in patches of size 32x32 pixels and compute the HOG
descriptor for every patch. See Figure (5.1) for a visualization of the descriptors for each of
the patches. Finally, we stack the descriptors to a single vector f . Considering an image of
size 1024× 768 this would result in 32× 24 HOG descriptors hi, which we stack to a single
vector f of dimension 32 ∗ 24 ∗ |h|.

42
CHAPTER 5. CAMERA-BASED LOCALIZATION FACING SUBSTANTIAL PERCEPTUAL

CHANGES

To quantify the similarity between two images, we calculate the cosine-similarity between
the two whole image descriptors. For two vectors x,y ∈ Rd the real-valued cosine-similarity
is calculated as:

sim(x,y) =
xT · y
‖x‖2‖y‖2

(5.1)

In general, the cosine-similarity can take values in the full range [−1, 1]. However, in our
case the values of the feature vectors are all positive, and therefore sim(f1, f2) ∈ [0, 1] for
all pairs of feature vectors we use in this chapter. The cosine similarity only accounts for
the angle between the vectors and not for their magnitude. It is, for example, often used to
compare text similarities based on term frequencies, e.g., see Adomavicius and Tuzhilin [1].
For computational efficiency we can normalize the whole-image descriptor f = f/‖f‖2 to
avoid the frequent re-computation of the L2-norm. Given our database set D = {fd1 , . . . , fdnD

}
and the query set Q = {f q1 , . . . , f qnQ

} represented with the HOG descriptors of the respective
image, we can now compute the similarity between image qi ∈ Q and dj ∈ D as

sij = sim
(
f qi , f

d
j

)
(5.2)

which forms our similarity matrix S of size nQ× nD for a dataset. The top row of Figure (5.2)
visualizes the similarity matrix. We see that the similarities suffer from noise, high values
are present at random positions and often form blocks. Therefore, we will apply a two step
pre-processing to the similarities in order to achieve more meaningful values.

First, we do a column-wise mean normalization, adjusting the mean of each column to one.

ŝij = sij

(
1

nQ

nQ∑
n=1

snj

)−1

(5.3)

The effect of this normalization is visualized in the second row of Figure (5.2). As we can
see, the parts where we had high similarities for each query are more smooth now. However,
since we divide by the mean of the columns, the values between different columns may vary
in a wide range. Therefore, we apply a second pre-processing step, in which we transform the
values of each row to the interval [0, 1]. We do this by subtracting the minimum value and
dividing by the remaining maximum value of the row.

s̃ij =
ŝij − min

m=1,...,nD

ŝim

max
n=1,...,nD

(
ŝin − min

m=1,...,nD

ŝim

) (5.4)

The resulting similarity matrix S̃ is visualized at the bottom of Figure (5.2). The zoomed-in
part shows that the pre-processing procedure superimposes the path of the robot relative to the
surroundings. For the filter-based localization, which is explained in the forthcoming sections,
we are interested in the probability that the place at which image qi is taken, is the same as the
one where image dj was taken. We will model this proportional to s̃ij .

5.1. VISUAL LOCALIZATION UTILIZING SEQUENTIAL INFORMATION 43

0 500 1,000 1,500 2,000 2,500 3,000

0

200

400

600

800

1,000

Database

Q
ue

ry

0 500 1,000 1,500 2,000 2,500 3,000

0

200

400

600

800

1,000

Database

Q
ue

ry

0 500 1,000 1,500 2,000 2,500 3,000

0

200

400

600

800

1,000

Database

Q
ue

ry

0 500 1,000 1,500 2,000 2,500 3,000

0

200

400

600

800

1,000

Database

Q
ue

ry

0 500 1,000 1,500 2,000 2,500 3,000

0

200

400

600

800

1,000

Database

Q
ue

ry

0 500 1,000 1,500 2,000 2,500 3,000

0

200

400

600

800

1,000

Database

Q
ue

ry Figure 5.2: This figure shows the effect of the two pass normalization used in our approach.
We show a zoomed-in part of the score matrix for better visualization. Column wise normal-
ization in the first pass helps to disambiguate the confusing database images that could match
against all query images and provide high scores. Although the scores do not look highly
discriminative, it greatly reduces the noise in the matrix. In the second pass, we stretch the
scores between 0 and 1 to achieve more distinctive scores.

5.1.2 Discrete Bayes Filter
For the localization task, we are interested in the pose of the robot at each time t. Since
in our case, we do not have any further information except the images, we discretize the
time according to the frequency of the images of the query set. In our probabilistic model,
our goal is to estimate the belief of the robot’s position xt given the sensor data history
Zt = {z1, . . . , zt} and the history of controls Ut = {u0, . . . , ut−1}.

Bel(xt) = p(xt | Zt,Ut) (5.5)

Even though we consider that information of the controls is not available in our scenario, we
keep them in the model, since our approach can integrate them when they are available.

It is a well known fact, that the complexity of the state estimate grows exponentially with
the operation time, which makes it computationally infeasible to estimate the full distribution

44
CHAPTER 5. CAMERA-BASED LOCALIZATION FACING SUBSTANTIAL PERCEPTUAL

CHANGES

at once (Fox et al. [34]). However, if the dynamics of the system, P (xt | xt−1, ut−1), are
known, we can compute the belief recursively without loss of information, which is known as
the Bayes filter.

Bel(xt) = ηtp(zt | xt)
∑
xt−1

P (xt | xt−1, ut−1)Bel(xt−1) (5.6)

The sum goes over all possible states at time t − 1, which is a discrete set, since for all
timesteps we assume that xt ∈ {1, . . . , nD}. The normalization constant ηt does not depend
on the state xt and ensures that the sum of the probabilities over all possible states is equal
to one. In the forthcoming sections, we will briefly discuss the transition- and measurement
model.

5.1.3 State Transition Model
In this section, we will describe the transition model, P (xt | xt−1, ut−1), of the Bayes filter
as it is used in our approach. In our case, the only available prior information we assume, is
that the images are recorded in a sequence. We make use of this information, by setting the
transition probabilities for nearby places relatively higher than for all other places. Therefore,
we choose parameters cf , cb, cs > 0 for forward, stationary and backward transitions:

P (xt|xt−1) = αt ∗


cf if f > xt − xt−1 > 0

cs if xt − xt−1 = 0

cb if − b < xt − xt−1 < 0

1 else

(5.7)

where αt is a normalization factor, that ensures that we model an appropriate probability
distribution. The interpretation of the parameters cf , cb and cs is that it is cf times more
likely to do a transition within]xt−1, xt−1 + f [than anywhere else outside the interval
[xt−1 − b, xt−1 + f]. The same applies to the parameters cs and cb. The intuition behind
this is that both the database as well as the query images are recorded in a sequence, and
if we go with a similar speed, it is very likely that if we are at position i at timestep t − 1
then we will be at position i + 1 at timestep t. Nevertheless, we can never be sure that we
take exactly the same route in both runs, and therefore, the transition model needs to provide
non-zero probabilities for all possible states. This property is not given by other state-of-the-art
approaches that focus on the same problem. For example, the network-flow approach by
Naseer et al. [82] only allows transitions in the forward direction with a strict maximum step
width, i.e., 0 ≤ xt − xt−1 ≤ k for some fixed constant k. SeqSLAM [76] considers a strict
linear motion model. In contrast, we can handle trajectories with shortcuts, detours and loops.
Moreover, our probabilistic formulation allows multiple modes, which we need in the case of
revisiting the same place within the database run.

5.1.4 Sensor Model
For the last part, we need to specify for the Bayes filter described in Section (5.1.2) is the
sensor model. For this, we use the similarity measure between two images as described in

5.2. FORWARD BACKWARD SMOOTHING 45

Section (5.1.1). There we established similarity scores for each image pair and we set the
likelihood for our sensor model as the normalized score

p(z = qi | xt = j) ∝ S̃ij (5.8)

This means that we model the probability of observing image qi at position xt = j of the
database is proportional to the pre-processed similarity between the images qi and dj . This
completes the belief computation of our approach.

5.2 Forward Backward Smoothing
To compute the final belief matrix B, where each row corresponds to a probability distribution
over all possible places from the database, we use the procedure described in the previous
section (Section (5.1)). Therefore, we initialize the recursive procedure with a uniform
distribution, Bel(x0 = i) = 1/nD for all 1 ≤ i ≤ nD, since we do not have any prior
information about the starting point. However, if a more informed prior distribution would be
available one should use it instead of the proposed uniform prior.

As the sensor model, which is based on the similarities of images, exhibits much noise,
we compute the belief matrix by smoothing two passes of the filter. The first one, Bf , is
computed in the direction of movement of the robot, ordered by the provided time steps. The
second one, Bb, is computed in a time-reversed order. Therefore, we reverse the order of
the database as well as of the query set. We then compute the final belief matrix B as the
normalized geometric mean of the two passes.

B = λ ·
√

Bf ·Bb (5.9)

Where the operators · and√. . . denote element-wise operations, i.e. multiplication and square
root, and λ is the row-wise constant nQ × nD normalization matrix, which ensures a valid
probability distribution at each row of B.

Our reasoning for choosing this two-pass smoothing is that the recursive nature of the
Bayesian filter and the noisy measurements, may lead to an overconfident estimate in case of
jumps. This would result in false-positive matches at the end of sub-sequences. On the other
hand, when entering a sequence it may take some steps until the filter accumulates probability
mass to the area. These effects are reversed for the backward pass.

5.3 Sequential Filtering
In our scenario, we have neither an exact transition model, nor a precise sensor model.
Nevertheless, we have derived a meaningful posterior distribution in the previous chapters.
The next step is inferring a path hypothesis from the belief matrix B. At this point, the main
issues are outliers, which are false positive matches with a high likelihood, which seem to
occur randomly at different spots. However, these outliers are typically isolated, and we
assume that they do not occur in long sequences. In contrast to that, the true positive matches
will form sequences, since we know that the images are recorded at consecutive time-steps
during a continuous run of the robot.

46
CHAPTER 5. CAMERA-BASED LOCALIZATION FACING SUBSTANTIAL PERCEPTUAL

CHANGES

As a first step, we search the belief matrix for local peaks that are above a minimum
probability of pmin . In this way, a neighborhood of relative high probabilities is represented by
a single peak, which is the maximum likelihood relative to this neighborhood. This operation
implicitly handles the case in which there is no true positive match for a query image qi due to
visits of so far unseen places during the query run, as we expect the probabilities to be equally
low then.

Second, we check whether or not those remaining values form sequence. We will use
three parameters to define: a sequence, the minimum length ls, the maximum row gap gr and
the maximum column gap gc. The latter two parameters matter for two reasons: first, the
sequences may have been recorded at different speeds, which would result in no matching
images between two consecutive time steps and second, the noisy observations may shadow
consecutive matches.

More specifically, given a row-wise ordered set of matches

M = {(i1, j1), . . . , (in, jn) | ∀k = 1, . . . , n− 1 : ik < ik+1} (5.10)

withM⊂ Q×D we considerM as a sequence of matches if and only if n ≥ ls and for all
k = 1, . . . , n− 1 the conditions ik+1 − ik ≤ gr and |jk+1 − jk| ≤ gc are satisfied. The final
estimated trajectory is the union of the sequences that satisfy these conditions. Obviously, we
may loose some true positive matches and still have some false positive matches in our final
trajectory. However, in our experimental evaluation, our approach, as described to this point,
outperforms state-of-the-art approaches on most of the datasets. To improve the performance
of the approach, we present a further pre-processing step utilizing a whitening transformation,
which aims for more distinctive scores, in the upcoming section.

5.4 Zero Component Analysis Whitening
Data pre-processing with withening transformations is commonly done when analyzing image
data. Typically, it is applied in the feature space, in order to de-correlate and normalize
the features covariance. However, in our case the feature space has 98 304 dimensions and
whitening in that space is seemingly infeasible due to the computational effort, which includes
the computation of a SVD of the covariance, which is a dense matrix of size 98 304× 98 304.

However, encouraged from the improvements that can be achieved using ZCA-whitening,
we successfully experimented with applying the whitening transformation to the initial similar-
ity matrix, as a pre-processing step. In our evaluation, we achieve an average improvement of
17% for the F1-Scores compared to using the raw score-matrix as described in Section (5.1.1).
We visualize the effect of the ZCA-whitening transform to the similarity matrix S in Fig-
ure (5.3). It is clear that the path of the robot is more distinguishable after the transform;
particularly, the region highlighted with the blue rectangle, where we can see that the high
values previously present in the original matrix have been greatly smoothed and which do not
appear in the transformed matrix at the bottom. However, a drawback of the whitening trans-
form is that we may lose correspondences in case of stoppages, as marked by the red rectangle.
Nevertheless, the benefits of the whitening transform outweigh the drawbacks, e.g., especially
as stoppages could be removed in advance without losing the sequential characteristics of the
data.

5.4. ZERO COMPONENT ANALYSIS WHITENING 47

0 200 400 600 800

0

100

200

300

400

Database

Q
ue

ry

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

0 200 400 600 800

0

100

200

300

400

Database

Q
ue

ry

0

2

4

6

8

10

12

14

Figure 5.3: Top: This figure shows the similarity matrix using HOG-descriptors. The scores
are not distinctive and we can notice noise scattered throughout the matrix.
Bottom: Whitening transformation yields highly distinctive scores, which results in removing
most of the noise. This has a great impact on reducing the number of false positives in the
similarity matrix.

For completeness, we briefly discuss the steps of calculating and applying the ZCA-
whitening transform to our similarity matrix S with the raw cosine-similarities. First, we
center every column of S by subtracting the mean for each column.

S 7→ Ŝ = (Sij − µj)1≤i≤nQ

1≤j≤nD

, µj =
1

N

∑
1≤i≤nQ

Sij (5.11)

Then we calculate the covariance matrix of Ŝ for the rows, which results in a nD × nD
matrix.

Σ = Cov(Ŝ) = E[ŜTŜ] (5.12)

This covariance matrix Σ is symmetric and semi-positive definite, therefore we can decom-
pose the matrix, using the eigenvalue decomposition, into a product of a diagonal matrix Λ
and a unitary square matrix U of size nD × nD.

Σ = UΛUT (5.13)

The columns of the matrix U represent the eigenvectors of Σ and the diagonal elements
of Λ are the corresponding eigenvalues. We obtain a diagonal covariance matrix for the

48
CHAPTER 5. CAMERA-BASED LOCALIZATION FACING SUBSTANTIAL PERCEPTUAL

CHANGES

observations when we rotate the data using the matrix U, resulting in ŜU. Now, each
dimension has a covariance corresponding to its eigenvalue. We get an identity covariance
matrix by dividing the square root of Λ. To ensure that the matrix is invertible, we add a small
ε > 0 to the diagonal elements of the diagonal matrix Λ. Thus, the whitening transformation,
also known as ZCA-Whitening, on our similarity matrix is given by

S 7→ S̃ = ŜU
√

(Λ + εI)−1UT. (5.14)

5.5 Experiments
We analyzed the performance of the approach by performing an extensive set of experiments.
Thereby, we provide comparison to state-of-the-art methods, namely: OpenSeqSLAM, an
open-source implementation of the approach presented by Milford and Wyeth [77]; the
network flow approach of Naseer et al. [82], which we will refer to as NFx with x being
the number of flows used; and a baseline that takes the best match from the raw similarity
matrix, which we will refer to as Raw BM. OpenSeqSLAM uses a pixel-wise similarity
measure on down-sampled and patch-normalized images to compute the similarity matrix.
Matches are then inferred from searching the similarity matrix for linear patterns. However,
OpenSeqSLAM is sensitive to changes of the viewpoint as reported by Sünderhauf et al. [116],
likely originating from the pixel-wise similarity measure. In the original publication [77] the
authors state that images were manually cropped to match viewpoints. For this evaluation we
did no manual pre-processing on the images. The network flow approach NFx is based on
similarity scores, similar to the approach we presented in this chapter. It models the problem
as a graph and searches for the path in the graph that has the highest accumulated score. The
main drawback of this method is that due to the restricted connections of the graph, transitions
can only be to the nearby proximity of the current pose with respect to the order of the database.
Moreover, we evaluate the performance of the proposed approach with the ZCA-whitening
pre-processing, which we call OursZCA, and without, which we will refer to as Ours. To
show the full potentials of our approach, we chose challenging datasets for the evaluation,
which include extreme perceptual changes, e.g., illumination, seasonal changes and different
viewpoints, see Figure (5.4) and Figure (5.5), as well as trajectories that exhibit different
characteristics. For a quantification of the results, we use measures of precision and recall,
where we count a match as true positive if and only if the distance in the ground truth was less
than six frames in the positive or negative direction of the database sequence. Considering
a speed of 10m/s and a frame rate of 4Hz, this would result in matching bounds of ±15m.
Within the experiments, we consider a single camera mounted on the robot and therefore we
do not count images taken at the same spot but from the opposite direction as a true-positive
match, since none of the considered methods handle this case. We use precision-recall curves
to visualize the peformance of the approaches, since they are commonly used and intuitively to
understand. To order precision-recall curves for performance, we use the maximum F1-Score,
which is the harmonic mean of precision and recall. The general definition of the Fβ-Score
for β > 0 is given by:

Fβ =
(
1 + β2

)
· precision · recall

(β2 · precision) + recall
. (5.15)

5.5. EXPERIMENTS 49

Figure 5.4: This figure shows true positive pairs of images, matched with our approach. For
each pair: the left image is the query from the localization run and the right image is from the
database. Our localization method is robust to: seasonal changes, partial occlusions and other
sensor specific errors like sun glare.

50
CHAPTER 5. CAMERA-BASED LOCALIZATION FACING SUBSTANTIAL PERCEPTUAL

CHANGES

Figure 5.5: These images show the successfully matched locations from the VPRiCE dataset
using our current approach. Our approach handles large illumination changes, noisy and low
resolution images captured across day and night, seasonal variations and adverse effects, like
sun glare.

Setting β = 1 means that precision and recall is equally weighted, which is a common choice.
We present the quantitative results of the best F1-Scores in Table 5.1. In Figure (5.6),

Figure (5.7) and Figure (5.8) the quantitative precision-recall curves are depicted in the left
column, the qualitative results of the path, corresponding to the best F1-Score, of Ours and
OursZCA, along with the ground truth, are drawn in the right column.

In order to structure the discussion, we divide the datasets into three parts, based on the
characteristics of their trajectory in the database. The first part consists of the data-sets Seq 2,
Seq 1 and Seq 5, which have a rather scattered ground truth trajectory, as they consist of many
small chunks and exhibit many jumps forward and backward in the database. The results for
these datasets are discussed in Section (5.5.1). The second part consists of the data-sets Seq 4,
Seq 3 and VPRiCE, which have a ground truth trajectory that consists of a few rather long
connected sequences. The results of those trajectories are discussed in Section (5.5.2). We
discuss the NewCollege dataset separately in Section (5.5.3), as it is the only dataset in which
database and query are identical and it exhibits a combination of the characteristics mentioned
above: the rather trivial matches at the diagonal as a large connected sequence and many small
sub-sequences, which stem from the loop closures during the run.

Our approach relies on several parameters, and we keep most of them fixed for the eval-
uation. First of all, we have the parameters for the transition model, f, b, cf , cs and cb
(see Section (5.1.3)). For all experiments, we set those parameters to f = 5, b = 3, cf =
500, cs = 100, cb = 50. In general, the performance of our approach depends on those
parameters, because of the dependency of the Bayes filter on the correct transition model, and
our approach uses an approximation due to the lack of additional information. Nevertheless,
all of our experiments are done with the same parameter set for the transition model. Moreover,
there are the parameters of the sequence filtering, gc, gr, ls and pmin (see Section (5.3)). The
performance of our approach is mostly affected by the choice of ls and pmin , while we keep
the same values gc = gr = 5 for all datasets. For the experiments announced above, we
vary the value of pmin to compute the precision recall curves and use a trajectory dependent,
manually set value for ls. To complete the evaluation of our approach, we discuss the variation

5.5. EXPERIMENTS 51

Method Seq 2 Seq 1 Seq 5 Seq 4 Seq 3 VPRiCE NewCollege
Raw BM 0.38 0.48 0.43 0.51 0.55 0.53 0.68
OpenSeqSLAM - - - 0.26 0.36 0.62 0.68
NF1 0.027 0.26 0.3 0.57 0.71 0.66 0.68
NF3/NF2 * 0.08 0.35 0.31 0.70* 0.64* - 0.79
Ours 0.49 0.67 0.51 0.58 0.83 0.55 0.92
OursZCA 0.69 0.72 0.82 0.77 0.88 0.85 0.95

Table 5.1: F1-Scores over all datasets. Bold numbers are those with the best performance for
the dataset, the italicized numbers show which approach performed best before our extension.
For NF3/NF2* the starred numbers (*) indicate that NF2 was used, otherwise it is NF3.

of ls in Section (5.5.4).

5.5.1 Scattered Trajectories

In this section, we discuss the results of the datasets Seq 2, Seq 1 and Seq 5, which we denote
as the scattered trajectories, due to the characteristic structure of the ground truth trajectory.
The datasets have been recorded at different seasons in Freiburg, Germany. For these datasets,
the database as well as the query contain revisits of the same place, which stem from driving
around blocks and taking multiple turns. Moreover, these trajectories exhibit several jumps
forth and back in the database, since the car traverses the streets in a different order. In
these kinds of datasets, the proposed approach shows the most performance improvement in
our comparison, since neither NFx nor OpenSeqSLAM are able to handle such cases. Both
approaches suffer from the limited transition model, which assumes that the trajectories visit
the places in the same order. Thereby, these approaches can not deal with multiple queries
matching the same database entry (query loop), and multiple matches for a single query
(database loop) are not sufficiently handled, as well. Instead, the flexible motion model of the
approach that we propose in this chapter can handle both cases well, which allows for arbitrary
transitions between places in the database for consecutive query images. Consequently, our
approach achieves good results for all of the three datasets, while NFx and OpenSeqSLAM do
not give reasonable results at all; they are even below the baseline of Raw BM for all datasets.
At the same time, we see that OursZCA outperforms Ours for all datasets. This improvement
is substantial for Seq 2 and Seq 5, where OursZCA achieves a precision of more than 0.8 for
the same recall as the highest recall value achieved by Ours.

The scattered and complex trajectory of Seq 2 is depicted in Figure (5.6), where we show the
ground-truth path with an overlay of the results from OursZCA and Ours. We can qualitatively
observe what the precision-recall curve shows, OursZCA achieves a higher recall and produces
fewer false-positives at the same time. For example, OursZCA matches the two short parts
for the queries from 0 to 100 and only shares one of the false positive sequences of Ours.
Referring to Table 5.1, the improvement of OursZCA (0.69) over Ours (0.49) for the best
F1-Score is 40.8%.

The ZCA-whitening of the data matrix has a huge effect on the results of Seq 5 as well,
which is clearly noticeable in Figure (5.6). The precision-recall curve is way above the curve

52
CHAPTER 5. CAMERA-BASED LOCALIZATION FACING SUBSTANTIAL PERCEPTUAL

CHANGES
Se

q
2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n
OursZCA Ours Raw BM

NF1 NF3

0 500 1,000 1,500 2,000 2,500 3,000 3,500

0

200

400

600

800

Database

Q
ue

ry

Ground truth OursZCA Ours

Se
q

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

OursZCA Ours Raw BM
NF1 NF3

0 500 1,000 1,500 2,000 2,500 3,000 3,500

0

500

1,000

Database

Q
ue

ry

Ground truth OursZCA Ours

Se
q

5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

OursZCA Ours Raw BM
NF1 NF3

0 500 1,000 1,500 2,000 2,500 3,000 3,500

0

500

1,000

Database

Q
ue

ry
Ground truth OursZCA Ours

Figure 5.6: Experimental results. Left: Precision-Recall curves. Right: Paths for the best
F1-Score and ground-truth.

of Ours, and OursZCA achieves a much higher recall. The paths produced by the approaches
reflect this fact. While OursZCA matches most of the trajectory with only a few false positives,
Ours shows false positives all over the dataset and even the correctly matched parts of the
trajectory frequently end up with some false positives. This results in an improvement of the
best F1-Score of OursZCA (0.82) over Ours (0.51) for the best F1-Score is 60.8%.

The results of Seq 1 show a similar performance of OursZCA and Ours, as one can see
from the similar shape of the respective precision-recall curves. When we take a look at the
resulting paths, one can see that the ZCA-Whitening of the data matrix shades the matching
scores for the stoppage at the beginning of the trajectory. Moreover, in this dataset OursZCA
exhibits two false positive sequences while Ours returns only one. However, especially in the
middle part of the trajectory OursZCA benefits from true-positive matches that are missed by
Ours. This still results in an improvement in terms of the best F1-Score of 7.5% when we
apply the ZCA-whitening to the score matrix, see Table 5.1.

Altogether, these experiments show that the presented approach performs well on complex
trajectories that can not be processed by other state-of-the-art methods. Moreover, the
improvement of applying the ZCA-whitening transform to the similarity matrix is validated
for all of the datasets considered in this section.

5.5. EXPERIMENTS 53
Se

q
4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n
OursZCA Ours Raw BM

NF1 NF2 OpenSeqSLAM

0 200 400 600 800 1,000

0

200

400

600

Database

Q
ue

ry

Ground truth OursZCA Ours

Se
q

3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

OursZCA Ours Raw BM
NF1 NF2 OpenSeqSLAM

0 100 200 300 400 500 600

0

500

1,000

Database
Q

ue
ry

Ground truth OursZCA Ours

V
PR

iC
E

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n

OursZCA Ours Raw BM
NF1 OpenSeqSLAM

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

0

1,000

2,000

3,000

4,000

Database

Q
ue

ry

Ground truth OursZCA Ours

Figure 5.7: Experimental results. Left: Precision-Recall curves. Right: Paths for the best
F1-Score and ground-truth.

5.5.2 Connected Trajectories
In this section, we discuss the results of datasets Seq 4, Seq 3 and VPRiCE, which exhibit
few and rather long, connected fragments on the ground truth matching between the query
and the database, see Figure (5.7). These datasets exhibit fewer visits to new palaces (gaps)
and almost no loops, whether in the database or in the query, and the ground truth is almost
monotonic with respect to the order of the sequences. Therefore, these trajectories favor the
comparison approaches OpenSeqSLAM and NFx.

For the first dataset, which is Seq 3, we observe that the precision-recall performance of
Ours and OursZCA is quiet similar, see Figure (5.7). The ZCA-whitening exhibits similar
precision values along with a higher recall. NF1 results in a precision of around 0.8 and
a maximum recall of about 0.7. For this method, the recall suffers from the jump at the
beginning of the trajectory, which can not be handled with a single flow. When we use an
additional flow, NF2 results in higher recall values but shows a lower precision due to false
positives gathered by the second flow. This results in maximum F1-Scores of 0.71 for NF1,
0.83 for Ours and 0.88 for OursZCA.

The results for Seq 4 and VPRiCE again show that large gains are possible from using the
ZCA-Whitening transform. In Seq 4, the results show that NF2 outperforms Ours, since in
this case Ours exhibits too many false positives, resulting in a low precision. For the network

54
CHAPTER 5. CAMERA-BASED LOCALIZATION FACING SUBSTANTIAL PERCEPTUAL

CHANGES
N

ew
C

ol
le

ge

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

is
io

n
OursZCA Ours Raw BM

NF1 NF3

0 200 400 600 800 1,000

0

500

1,000

Database

Q
ue

ry

Ground truth OursZCA Ours

Figure 5.8: Experimental results. Left: Precision-Recall curves. Right: Paths for the best
F1-Score and ground-truth.

flow approach we need to use two flows, since the gap between the two subsequences is too
large and can not be bridged by the rigid transition model using a single flow only. However,
applying the ZCA-whitening transform results in a huge performance gain with high precision
and a moderately lower recall. Therefore, OursZCA again outperforms NF2 and performs best
of all of the compared methods. In terms of the best F1-Scores this results in 0.58 for Ours,
0.70 for NF2 and 0.77 for OursZCA.

We observe similar results for the last dataset considered in this class of trajectories, which
is the VPRiCE dataset. This dataset is composed of several sequential datasets, which are
taken from different places around the world. Even though the dataset does not entirely satisfy
our assumption of a full sequential dataset, this assumption is met for each subdataset used
to compose it. For an impression of the different challenges in this dataset, see Figure (5.5).
In this case, Ours suffers from many false positives in the lower right part, as shown in
Figure (5.7). Without applying the ZCA-whitening preprocessing step, our approach is again
outperformed by NF1, although it is important to mention that the network flow approach does
not achieve reasonable results if multiple flows are used. For this dataset, OpenSeqSLAM
achieves reasonable results as well, mostly due to the first part of this dataset, which is
collected by a train and therefore provides a high viewpoint stability. However, OursZCA
performs best among all of the other methods on this dataset again and achieves a best F1-
Score of 0.85, which is substantially higher than the next best results of 0.66 achieved by
NF1.

5.5.3 NewCollege
The last dataset covers a typical single run mapping scenario with identical database and query
set, and is well known in the community as the NewCollege [23] dataset. Nevertheless, we do
not treat it differently from other datasets, so we expect to detect the diagonal as well as the
loop closures of the dataset. In this case Raw BM, NF1 and OpenSeqSLAM will only match
the diagonal, since we compare identical images there, which necessarily leads to a maximum
similarity score. Both versions of the approach that we have presented in this chapter, Ours
and OursZCA, preform really well on this dataset, see Figure (5.8). Nevertheless, consistent
with the former results, OursZCA achieves the best F1-Score of 0.95 and outperforms Ours by
3.3%, see Table 5.1. This high measure of performance stems mainly from the fact that the
similarity scores for this specific dataset are much more distinctive. Accordingly, the network
flow approach with multiple flows also performs well on this dataset where NF3 achieves a

5.6. RELATED WORK 55

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
is

io
n

Seq 2
Seq 1

Seq 5
Seq 4

Seq 3
VPRiCE

NewCollege

Figure 5.9: Precision-Recall curves for all datasets with OursZCA varying the minimum
sequence length parameter ls. With increasing ls the curves go from bottom right to top
left, since we filter false positives as well as true positives, therefore lowering the recall but
increasing precision.

F1-Score of 0.79. The use of three flows is obvious, due to the symmetry of the dataset.

5.5.4 Parameter Discussion
We complete the experimental evaluation of our approach by analyzing the influence of the
minimum sequence length parameter of the sequential filtering ls, see Section (5.3). Therefore,
we use the pmin value of the best F1-Scores obtained by the evaluation in the previous section
and compute the precision recall curves for the varying values of ls. One would expect that
the values for ls should take the shape of the trajectory into account, since for the scattered
trajectories we may not retrieve sequences as long as those for the connected datasets. The
trade-off is between losing true-positive matches and eliminating false-positive sequences. In
fact, the values used for the scattered trajectories in Section (5.5.1) range form 16 to 27 and
for the connected datasets in Section (5.5.2) range from 20 to 47.

The resulting precision-recall curves for varying ls are depicted in Figure (5.9), where each
dataset is drawn in a different color. Since false positive sequences are usually rather short,
the curves run from bottom right to upper left, with increasing ls. As expected, the scattered
datasets are more sensitive to the recall when increasing ls, while the connected datasets show
a large step in precision, because we remove mainly false positives for a wide range of ls. The
VPRiCE dataset shows a different behavior, which is due to the challenging images in the last
third of the dataset and the long connected first part of the dataset.

5.6 Related Work
Vision based systems have gained high popularity in the field of autonomous navigation
and monocular camera-based approaches, in particular, are attractive due to the comparably

56
CHAPTER 5. CAMERA-BASED LOCALIZATION FACING SUBSTANTIAL PERCEPTUAL

CHANGES

low sensor costs. Many researchers have addressed the problem of place recognition in
recent years [18, 24, 26, 38]. Many approaches for visual place recognition assume that
the appearance of places remains similar between the mapping and the localization run [11,
24]. The problem of reliable and robust localization becomes harder when the environment
undergoes substantial perceptual changes between the mapping and localization task. These
changes can be caused by seasonal changes, illumination occlusion and view point variations.
So far, keypoint-based feature descriptor matching approaches have been heavily employed
to visual localization problems; the most prominent features in the past have been probably
SIFT [66] and SURF [10]. The feature and keypoint detection are focused on viewpoint
and scale invariance and they are not robust against seasonal changes, as claimed by Naseer
et al. [82], since the keypoints are no longer stable. Valgren and Lilienthal [127] agree
that local feature matching alone is not sufficient for localization across seasons. However,
they could show that high resolution panoramic images, combined with epipolar constraints,
substantially improve the localization accuracy.

Another source of errors, which is tackled by several works, is changes of illumination be-
tween the matched images, since the features are usually not robust against them. Ranganathan
et al. [97] tackle this problem by learning the matching function, and explicitly include various
lightning conditions in the training data. Other authors propose transforming the images to an
illumination invariant chromacity space [68, 74]. The approach of Glover et al. [38] combines
RatSLAM [76] and FAB-MAP [24] to learn consistent maps over different times of a day.
The combination of both systems exhibits fewer false positive matches for different conditions
due to complimentary effects of both approaches. However, the approach still suffers from
unstable features and is sensitive to longer detours. The approach of Milford and Wyeth [77]
exploits sequential information, in combination with a pixel-based whole-image similarity, to
localize across day and night. The approach achieves substantial improvements over keypoint-
based approaches, even if the appearance of the environment undergoes extreme perceptual
changes. The main limitations of the approach are that it assumes pre-aligned viewpoints
across the two image sets and a linear trajectory. In the context of robot navigation, these
assumptions are hardly met. Naseer et al. [82] model the matching problem as a network-flow
optimization, using the inverse of the cosine-similarity of whole image HOG-descriptors,
as in our approach, as edge costs to match sequences across seasons. This approach can
handle non-linear trajectories, loops and detours. Although the approach can handle non-linear
trajectories, it is limited in transitions due to a restricted graph connectivity. The approach
presented in this chapter outperforms both approaches, as presented in the previous section.
Additional sensor data, e.g., range measurements or GPS, can aid the robustness of visual
localization across seasons. Vysotska et al. [129] proposed an extension to the approach of
[82], which utilizes GPS measurements to reduce the complexity of the constructed graph,
gaining computational speed and accuracy. Badino et al. [8] use a Bayesian framework and
combine range and visual data for robust localization across seasons. In contrast, our approach
does not need additional sensor information.

Another approach to tackle cross season visual localization is to learn how the appearance
changes over time. An approach to predict the appearance of an image for a new season was
proposed by Neubert et al. [87]. They built vocabularies of superpixels learned over a long
time span and use pixel-aligned training images for this purpose. Churchill and Newman [22]
suggest an experience-based navigation framework, storing each image retrieved at a location,
as one experience. The query image is then compared to all experiences. This approach can

5.7. CONCLUSION AND FUTURE WORK 57

handle severe perceptual changes but needs visual odometry. The approach of Carlevaris-
Bianco and Eustice [19] analyses time-lapse videos and successfully learns feature point
descriptors that are robust to changes. The feature descriptors map the corresponding image
patches to a lower-dimensional space where the Euclidean distance provides a discriminable
measure for matching images. McManus et al. [75] suggest learning regions of images that
are stable over time. Instead of matching keypoint descriptors, they match the stable visual
elements for robust long-term localization. All of these methods have in common the fact
that they need training data collected over a long time span, which is not necessary for our
approach.

More recently, the usage of Deep Convolutional Neural Networks (DCNN) has gained
popularity. These networks learn the relevant features for a specific problem and have shown
great robustness in several areas. Sünderhauf et al. [117] and Neubert and Protzel [86]
show that DCNN-based descriptors, combined with region proposals, allow for image-pair
matching across viewpoint and appearance changes. In an extension of their previous work,
Naseer et al. [83] uses DCNN-based descriptors for the network-flow approach [82] and robot
odometry for a visual SLAM approach, which aims to associate and join trajectories visited
at different times. However, deep networks have a high computation power demand and,
usually, GPUs are involved to speed up the computations, while our approach can be efficiently
implemented on CPUs. Nevertheless, using DCNN-features for the proposed method should
result in a gain of performance, as well.

5.7 Conclusion and Future Work
In this chapter, we presented an approach to robust and purely vision-based localization, facing
substantial perceptual changes of the environment. We employ a Bayesian filter framework
and measure the similarities of images based on whole-image HOG-based descriptors with
the cosine-similarity. The performance of our approach is substantially improved by applying
the ZCA-whitening transform to the data similarity matrix. On a wide range of datasets, the
proposed approach outperforms state-of-the-art approaches, and it can handle more complex
trajectories due to a probabilistic formulation of the transition model. Moreover, the approach
is computationally lightweight and easy to implement.

Future Work
Possibilities for future work include a deeper analysis of the parameters of our approach. The
derivation of the parameters from an analysis of the datasets, without manual intervention,
would be a great advancement. Moreover, from our experiences during the development of
the approach, it seems likely that different mounting positions of the camera may have an
impact on the performance of the approach and possibly on visual localization approaches, in
general. An analysis with respect to this could lead to interesting and useful conclusions.

Chapter 6

Semi-Supervised Learning of
Traversability Models

A crucial pre-requisite for truly autonomous systems is the knowledge
about which parts of the world can be traversed without causing harm
to itself, the environment or, most importantly, to humans. On the
other hand, traversability analysis also guarantees the mobility of the
robot. The trade-off between safety and mobility constitutes the core
of this important problem. In this chapter, we present an approach
that infers a classification for traversability from demonstrations of
a human. The only necessary capability of that human is that they
are able to provide positive only examples of traversable ground. Our
approach aims to learn a classifier for traversability from these positive-
only samples. To achieve this, we extract features from 3d-lidar data,
which expresses geometric and perceptual-based measures, to learn
appropriate distributions for the traversability analysis. In extensive
experiments, we demonstrate the capabilities of our approach, in terms
of accuracy and usability, for different types of robots and discuss the
expressiveness of the geometric and perceptual-based measures from
our feature vector.

In the previous chapters, we discussed approaches to learn and use a map, e.g., for lo-
calization, which is seen as one of the most important key pre-requisites for autonomously
navigating robots. Decades ago, when research on autonomous navigation first started, re-
searchers usually considered plane indoor environments. In combination with either 2d-lidar
or ultrasonic sensors, solving the SLAM problem was sufficient for navigation. This was due
to the fact that the commonly used occupancy grid map divided the world into free space and
obstacles, which solves the problem of traversability analysis for such environments, as well.
However, progress has been made and robots have started to conquer outdoor environments for
which this assumption does not hold anymore and traversability analysis needs to be treated
separately.

To discriminate traversable from non-traversable ground in unstructured and complex
outdoor environments, a robot needs sensors that can perceive a dense model of the world. We
can not use a single 2d slice, which is sufficient for planar environments, to determine whether
or not an obstacle is present, since obstacles may exhibit various characteristics, e.g., negative
obstacles or slopes, which may appear as false positive obstacle detection. In these cases, 3d

60 CHAPTER 6. SEMI-SUPERVISED LEARNING OF TRAVERSABILITY MODELS

Figure 6.1: Two mobile robot outdoor platforms with different capabilities and different fields
of applications. On the top row Viona, is a large outdoor robot with great ground clearance
and high motor power. On the bottom row Obelix, a robot that should only drive on the streets
and walkways. The right column shows the resulting traversability map of our approach for
the same area: the green depicts traversable ground and the red area depicts untraversable
ground. Viona can traverse the grass in the upper right part, whereas Obelix cannot, in which
case the grass is not traversable.

range data is necessary, as provided, e.g., by stereo-cameras, radar or 3d-laser scanners, or a
fusion of different sensors. The approach that we present in this chapter works on 3d-lidar
data, not only using the purely spatial and geometric information but also including remission
values to add a perceptual component to the process. The definition of traversability highly
depends on the individual type of robot that is used in the application, since they can exhibit
quite different capabilities in regards to: ground clearance, motor power, stability, and whether
it is equipped with wheels or chains. For an example of different robot types, see Figure (6.1).
Common approaches usually put a lot of effort into designing the model for traversability
analysis, taking the platform and sensor specific characteristics into account. This is often
a time consuming and costly process, which involves a real expert in that domain. It would
be much easier if one could just manually operate the robot in that environment, to train the
traversability analysis using the traversed path as positive examples for traversable ground.
However, to make use of this data, we need to deal with the problem that the learning algorithm
only receives the information of the traversed path during the training. This means that the
training set contains only incomplete positive labels and, hopefully, no negative examples.
Within the proposed framework, we will compare the performance of two learning algorithms,
which are adapted from other domains and designed for this kind of problem, with respect to
the quality of the traversability analysis.

6.1. BASIC STRUCTURE 61

The remainder of this chapter is organized as follows: first, we present the internal basic
structures of the approach in Section (6.1). Afterwards, in Section (6.2), we describe the
features, which we extract from the sensor data. With these features, we train the classifiers
for traversability in Section (6.3). Finally, we evaluate the presented approach in extensive
experiments for qualitative and quantitative measures in Section (6.4), using real-world data.

6.1 Basic Structure
In this chapter, we are particularly interested in traversability as a local and static characteristic
of the environment. Furthermore, we assume that the mobile robot is equipped with a 3d-lidar
sensor that additionally provides remission values, which is an important attribute, as we
will see, later. For map representation and organization of the sensor data, we use a 2d grid
structure G with a resolution r ∈ R>0, where each cell can temporarily store the corresponding
raw sensor measurements and an arbitrary number of feature vectors, which we compute from
the raw sensor data. We determine the correspondence of a measurement from the 3d-lidar
with a cell of the grid by the 2d-projection of the respective 3d point.

ΠG : R3 −→ Z2 (6.1) x
y
z

 7−→ (⌊
x
r

⌋⌊
y
r

⌋) (6.2)

A common limitation of 3d-lidar measurements is that they are locally sparse, and therefore it
is hard to reason about the structure of a cell from a single scan. To overcome this, we collect
measurements while the robot is moving, until it covers a distance of dP ∈ R>0. We then
compute and add a new feature vector for each cell. Details of the feature vector will follow
in the next section.

As we are interested in the traversability characteristics of the environment, the goal of our
approach is to estimate the probability that a cell is traversable given the observed features,
P (trav | f1, . . . , fn). To achieve this, we aim to learn the distribution P (f | state) with
state ∈ {trav ,¬trav}, which we model as a multinomial distribution P (· | state) ∼ Multinomial .
Since this is a discrete distribution, we assume that the set of features forms a vocabulary
V . To learn the parameters of the distribution, we need to estimate the frequencies for each
f ∈ V . Without loss of generality, we use the local grid maps that are only used for a distance
of dM ∈ R>0 and withdraw them afterwards, which circumvents accumulated registration
errors, and for navigation, the robot first needs to know the traversability properties of its
nearby vicinity.

6.2 Feature Design
Calculating features from raw sensor measurements is a common way of sensor data inter-
pretation. The advantage of using features for our approach is that we can calculate them
from a varying number of raw sensor measurements and receive a vector of a fixed dimension.
Thereby, it is important that the features are designed to represent the world, which is perceived
with the sensor, in an expressive way for the intended task. For our approach, this means

62 CHAPTER 6. SEMI-SUPERVISED LEARNING OF TRAVERSABILITY MODELS

that they need to be suitable for distinguishing between obstacles and traversable ground,
for different mobile robots. They have to distinguish flat solid ground from: moderate steps,
different kinds of vegetation and solid obstacles of certain heights, since it strongly depends
on the type of robot whether these are traversable or not. To achieve this, we combine the
geometric information, e.g., the height difference, and the remission values in our features, as
they are useful to distinguish different materials, e.g., grass and concrete.

For our approach, we use feature vectors that contain the following measures:

• The absolute maximum difference in the z-coordinate

• The mean of the remission values

• The variance of the remission values

• The roughness of the cell

• The slope

Each dimension should help to distinguish different types of terrain or relate to traversability
constraints of the robot. The maximum height difference and the slope, reflect the ground-
clearance of the robot as well as the motor power. The remission values and the roughness are
expected to help when distinguishing terrain types, e.g., concrete and vegetation.

Since the calculation of the first three dimensions is straight forward, we birefly explain
the calculation of the latter two, which are based on the eigenvalues and the respective
eigenvectors of the covariance matrix, which is calculated from the points that are registered
to the same cell. The magnitude of the smallest eigenvalue is used as the roughness measure.
The eigenvector that refers to the smallest eigenvalue is a least squares estimate of the normal
vector, when estimating the parameters of a plane. Accordingly, the slope is the angle between
this eigenvector and the vector of gravity. To ensure that these values are well defined, we
ignore cells that contain less than five points. As our desired model contains a discrete
distribution, as explained in the previous section, we discretize the features using bins of fixed
increments for each dimension.

6.3 The Learning Problem
Providing a fairly easy method for acquiring training data is one of the goals in this chapter.
Specifically, it should be possible that an arbitrary person, who has not been trained to design
traversability models for mobile robots, could use it. To achieve this, we acquire the training
data for our approach from demonstrations, in which the user manually operates the robot.
From these demonstrations, we determine the traversed cells, which are those that intersect
with the footprint of the robot, and assign a positive label to each of the features that were
observed in these cells. With this method, the only thing that the user needs to know is that
the robot should drive on all kinds of terrain and that the robot does not crash.

Using this process for training data generation has the advantage that it is fairly easy
to execute but also has the drawback that we get scarce positive examples relative to a
massive amount of unlabeled data, from which to learn. Fortunately, this kind of data is
a common problem in other domains, e.g., text classification or biological approaches like

6.3. THE LEARNING PROBLEM 63

Figure 6.2: Trajectory of Viona on the forest track that was used for the experiments on an
aerial image.

protein categorization, and we can adapt existing methods for our approach. We use and
compare two strategies in order to learn a classifier from this kind of training data, one called
Positive Naive Bayes (PNB) introduced by Denis et al. [27] and Learning Classifiers from Only
Positive and Unlabeled Data (POS) by Elkan and Noto [29]. The former was developed for
text classification, for which this kind of data is very common, and also assumes a multinomial
distribution of the words, given the document class. The latter is a more general approach,
which can deal with a variety of distributions.

In the forthcoming sections, we discuss each learning method. As we have either positive
or unlabeled training samples of the features, we denote the set of positive training samples as
P and the set of unlabeled training samples as U .

6.3.1 Positive Naive Bayes

Common applications for document classification are, e.g., spam filtering or to determine
whether or not a document is relevant for a user. Naturally, these cases have a large database
of unlabeled examples and only a few positive examples available. The Positive Naive Bayes
Classifier, as introduced by Denis et al. [27], aims to learn a multinomial distribution of the
words, given the document class. In our case, the words are the discretized features f and

64 CHAPTER 6. SEMI-SUPERVISED LEARNING OF TRAVERSABILITY MODELS

Figure 6.3: Aerial image with the training (blue) and evaluation (red) trajectory of Obelix on
the Campus.

the documents are the cells of the grid. The maximum likelihood estimate for a multinomial
distribution is estimated by the occurrence frequency in the training set. Therefore, we need
the counting function C

C : V × 2G → N (6.3)

C(f,S) :=
∑
c∈S

∑
fc∈c

11f (fc) (6.4)

where 2G is the powerset of the grid cells. The sum takes each cell contained in the set S and
counts the occurrences of the feature f with multiplicities. When we apply C to a set of cells
S it counts the number of features contained in the cells of S with multiplicities.

C : 2G → N (6.5)

C(S) :=
∑
f∈V

C(f,S) (6.6)

To estimate the frequencies of features in the case of traversable ground, we use the positive
samples in our training set.

P (f | trav) =
αp + C(f,P)

αp|V|+ C(P)
(6.7)

with the smoothing parameter αp. The estimate of this frequency is the same as one would
use in the case of fully labeled training data. However, in our case, the positive samples are
not complete and there are no negative samples in the training set. Therefore, we aim to infer
the frequencies for the negative class from the positive class estimate, and the prior for the
positive class. This results in a virtual counting function CN :

CN : V → N
CN(f) := max

(
0,bC(f,U)− P (f |trav)P (trav)C(U)c

)
(6.8)

6.3. THE LEARNING PROBLEM 65

a) Aerial image b) Ground truth c) PNB-based d) POS-based
classifier classifier

Figure 6.4: Traversability map from the forest run with Viona using our approach. From
left to right: aerial image of the scene (a), ground truth labeled map (b), which was used
for the evaluation, our approach using the PNB-based classifier (c) and our approach using
the POS-based classifier (d). The grass on the mid-upper left side is correctly labeled as
traversable (green) while the parts of the forest are labeled as obstacles (red). The POS-based
classifier has false positives in the lower left and mid right. Both classifiers have problems
with the measurements at the border of the map.

Now, we can apply this counting function to estimate the frequencies, given the negative class.

P (f | ¬trav) =
αn + ηCN(f)

αn|V|+ (1− P (trav))C(U)
(6.9)

with η =

(∑
f∈V

CN(f)

(1− P (trav))C(U)

)−1

(6.10)

where we use the smoothing parameter αn and an additional normalization term η, which is
necessary due to the approximate counting function CN .

To sum up: we estimate the frequencies for features given traversable ground, directly from
the positive training samples. To derive an estimate for the negative class frequencies, for
which we do not have labeled samples in the training set, we compute the difference between
the occurrences of a feature f in U and the predicted occurrences of f in traversable cells.

Finally, we need to determine the smoothing parameters α{p,n}. Let us consider what
happens with features of the dictionary V that have not been observed in the training set. In
this case, for the sake of safety, the desired result should satisfy the following inequality.

P (f | ¬trav) > P (f | trav) (6.11)

To achieve this, we set αp = |V|−1 and αn = 1. The classifier then uses the Naive Bayes
strategy to compute the probability P (state | f1, . . . , fn).

P (state | f1, . . . , fn) ∝ P (state)
∏
i≤n

P (f | state) (6.12)

66 CHAPTER 6. SEMI-SUPERVISED LEARNING OF TRAVERSABILITY MODELS

6.3.2 Learning from Positive Only Examples

The classifier proposed by Elkan and Noto [29] follows a different strategy. In their work, they
first train a classifier to predict whether or not a feature f will be labeled, which is equivalent
to being in the positive class, during training, P (label | f). For this purpose, the sets P and U
provide the full information and we can use standard learning methods. Once the distribution
of P (label | f) is estimated, Elkan and Noto elaborated a way to transfer this to the original
classification problem, in our case P (trav | f). For this, they assume that the positive samples
are selected with a uniform probability from all positive cases, which they call the selected
completely at random assumption. Given this assumption, Elkan and Noto could show that
there exists a constant c > 0 such that

P (trav | f) =
P (label | f)

c
(6.13)

While they provide different ways to estimate c using a validation set, we use the maximum
estimate for c, since it should be the most conservative one. Nevertheless, since we have only
incomplete data, it is still possible that we get P (label | f) > c for some features. To cope
with such cases we set

P (trav | f) = min

(
P (label | f)

c
, (1− ε)

)
(6.14)

In our approach, we estimate the distribution P (label | f) using a regular Naive Bayes
approach. To integrate multiple observed features, we use the efficient logit update strategy,
utilizing the assumption that traversability is a static property of the environment.

logit(P (trav | f1, . . . , fn)) =

logit(P (trav |fn)) + logit(P (trav | f1, . . . , fn−1)) + logit(P (trav)) (6.15)

6.3.3 Terrain Models

Since the learning algorithms can only use the positive data obtained by the trajectory, the
unlabeled data may also contain features of different types of terrain that are traversable. The
learning algorithms may get confused if we merge all of the data within one distribution. For
example, if during the training, we traverse the street for most of the time and traverse grass for
only a short time, then the ratio of labeled grass data is very small and, therefore, the learning
algorithms can not adapt grass to be traversable. This kind of problem will occur whenever
the training set of the terrain types is not perfectly balanced, which we cannot assume as it
would induce constraints to the training procedure. Moreover, for the method described in
Section (6.3.2) it will also violate the selected completely at random assumption, which is
crucial for that approach. To overcome this problem, we use a set of different terrain models
M. The positive examples of a local map are compared to the existing terrain models using
Pearson’s χ2-test, [94], with a significance level of α = 0.05. If the test cannot discard the
null hypothesis, we merge the data of the local map with the respective model. Otherwise, if
the test discards the null hypothesis for all existing models, a new model is added toM. For

6.4. EXPERIMENTS 67

the method described in Section (6.3.1), we use a one-vs-all strategy for the final classifier.

P (trav | f1 . . . , fn) = max
m∈M

Pm(trav | f1, . . . , fn) (6.16)

For the method described in Section (6.3.2) we need to specify how to compute P (trav | f)
in the context of terrain models. We use a featurewise one-vs-all strategy here.

P (trav | f) = max
m∈M

Pm(trav | f) (6.17)

6.3.4 Training
As claimed, the training phase is fairly easy to execute for the user. The robot is operated by a
human over all kinds of terrain it can traverse. During this phase, the local maps are given to
the learning algorithm; then, the statistic test is computed for the terrain models. Afterwards,
the selected model (it may be an existing one or a new one), is merged with the data from
the local map and the current distribution of the models are computed. More specifically,
for a selected model m ∈ M the set of labeled data becomes Pm = Pm ∪ Pl and the set of
unlabeled data becomes Um = Um ∪ Ul. This sequential structure of our learning strategy also
allows the retraining of the robot at any point in time. This might be interesting for scenarios
where the robot acts mainly autonomously but is connected to a command center to which it
can send requests, if, for example, it cannot find a path to the mission goal.

6.4 Experiments
In the experiments, we used two mobile robots with different capabilities, like in Figure (6.1).
One robot is capable of urban as well as outer urban environments, providing: good motor
power, high ground clearance and good stability (Viona). The other is only capable of urban
environments, with small ground clearance and weak stability (Obelix). On both platforms,
we evaluate the quality of the classification using hand labeled ground truth on suitable
test tracks, e.g., Figure (6.2) and Figure (6.3). Furthermore, we compare the quality of the
classifier when we omit the remission values (NoRe) and when we omit the roughness and
slope values (NoRS) of the feature vector, see Section (6.2). For the experiments, we used
dM = 20m, dP = 0.5m and limited the maximum range of our 3d-lidar sensor to 20m and
the same parameters to discretize the feature vectors were applied to both robots. For the final
classification, cells were classified as traversable if and only if P (trav | f1, . . . , fn) > 0.5. As
our approach aims to classify traversability as a static property of the environment, we assume
that dynamic obstacles are removed from the scans. In our current implementation, we use an
online dynamic obstacle detection approach based on scan differencing. To register the point
clouds in our local map, we use the smoothed odometry estimate provided by an Applanix
Navigation System. The robots are equipped with 3d-lidar sensors from Velodyne, providing
360◦ horizontal and ∼ 30◦ vertical fields of view.

6.4.1 Evaluation using Viona
We trained Viona on the Campus, by driving over grass of different heights and with different
flowers, dirt, walkways and streets. For the evaluation of our classifier, we used a test track

68 CHAPTER 6. SEMI-SUPERVISED LEARNING OF TRAVERSABILITY MODELS

Aerial image Ground truth PNB-based classifier POS-based classifier

Figure 6.5: Traversability map from the campus run with Obelix using our approach. From left
to right: aerial image of the scene; ground truth labeled map, which was used for the evaluation;
our approach using the PNB-based classifier; and our approach using the POS-based classifier.
Both classifiers produce similar results.

containing dirt roads, Figure (6.2), and on the campus where we traversed walkways as well
as grass areas. For the quality measures of the classifiers, we labeled 30 local maps from the
forest track and five from the campus track, which is about 10% of the local maps that were
created during the run. The ground truth labeling was rather conservative, i.e. particularly in
the forest environment, the cluttered areas between the trees were hard to classify for each and
every cell, when in doubt they were classified as not traversable, since the measure of false
positives is slightly more important for traversability analysis. Nevertheless, a false positive
was counted if and only if the inspected cell and all eight adjacent cells were classified as
positive (traversable).

In this experiment, our approach shows better results, in terms of precision and specificity,
when we use the PNB-based classifier than with the POS-based classifier. On the combined
data set, with the full feature vector, the PNB-based classifier reaches a precision of 0.992
while the POS-based classifier exhibits a precision of 0.945. The POS-based classifier has
problems, especially with the forest data, 0.990 vs. 0.934, while this difference is not that
substantial for the campus data set, 0.998 vs. 0.990. It is interesting to note that for the
PNB-based classifier, the remission values, with a precision of 0.990 for NoRe, seem not to
be as important as the roughness and slope, achieving a precision of 0.953 for NoRS, values.
This changes for the POS-based classifier where the precision without remission is worse than
without roughness and slope. However, for both classifiers the full feature vector is superior to
the pruned feature vectors. The performance, in terms of recall, is antithetic to the precision.
In this measure, the POS-based classifier (0.87) is superior to the PNB-based classifier (0.79).
Like for precision, this difference is larger for the forest data set than for the campus data set.

The last quality measure we used in our evaluation is the specificity, as depicted at the
bottom of Figure (6.6). This measure is of great importance, since it measures the rate of the
true negative classifications. A Type I Error describes the wrong classification of a negative
sample. In the case of traversability analysis, this means missing an obstacle. Here again,
already indicated by the precision measure, the PNB-based classifier (0.987) is superior to the
POS-based classifier (0.898). While we observed different gaps between the classifiers for
precision and recall on the forest and campus data set, measuring the specificity, the difference
is roughly the same for both data sets. Note that the results of this experiment do not prove
that the PNB method is, in general, superior to the POS method, but for this data set and the
way in which we used it.

6.4. EXPERIMENTS 69

CAMPUSFORESTBOTH

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.950.95

0.96

0.97

0.98

0.99

1

Pr
ec

is
io

n

CAMPUSFORESTBOTH

0.75

0.77

0.79

0.81

0.83

0.85

0.87

0.89

0.91

0.93

0.95

R
ec

al
l

CAMPUSFORESTBOTH

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

S
pe

ci
fic

ity

PNB PNB-NoRe PNB-NoRS POS POS-NoRe POS-NoRS

Figure 6.6: Precision, Recall and Specificity for the test trajectories of Viona. We compare
the performance of the full feature vector, without remission values (NoRe) and without
roughness and slope values (NoRS). The classifier based on PNB is shown in blue and the one
based on POS is shown in orange. For both methods, using the full feature vector improves
precision and specificity; the role of remission values and roughness and slope values behave
differently for the two methods.

70 CHAPTER 6. SEMI-SUPERVISED LEARNING OF TRAVERSABILITY MODELS

Table 6.1: Evaluation for Obelix on the campus trajectory.
Method Measure Full NoRe NoRS

PN
B

Precision 0.978 0.924 0.958
Recall 0.947 0.868 0.954
Specificity 0.984 0.945 0.967

PO
S

Precision 0.975 0.637 0.840
Recall 0.947 0.940 0.961
Specificity 0.982 0.589 0.859

Results for Obelix on the campus trajectory (Figure (6.3)). Both learning methods behave
quite similarly in this scenario when using the full feature vector. The absence of roughness
and slope measures (NoRS) gives a better performance in this scenario than the absence of
remission values (NoRe).

6.4.2 Evaluation using Obelix

For Obelix we used only a short training trajectory on the campus, see the blue part of
Figure (6.3), since the complexity of the environment is much lower than for the forest data
set. In this environment, both classifiers perform almost identically with the full feature vector,
see Table 6.1. Both of the classifiers reach a precision of 0.98, a recall of 0.95 and specificity
of 0.98. In this scenario, the remission values are more important than the roughness and
slope parameters. Using the POS-based classifier the precision without remission values
is 0.63 and without roughness and slope it is 0.84. Especially for the POS-based classifier,
the combination of both improves the performance substantially, while for the PNB-based
classifier the performance is similar.

On first view, it seems contrary that for Viona the roughness and slope features are more
important than the remission features, and for Obelix it is the other way around. However,
these measures are rather connected to the characteristics of the robots. As Obelix should
only drive on the street and walkways, it is relatively important to distinguish them from
grass, as the important measure of the step height can not necessarily distinguish between
them. For this task, the remission values provide the more valuable information. On the other
hand, Viona can easily drive over meadows but still needs to be aware of bushes. As our
results suggest, the roughness and slope measures are more suitable for this purpose. Most
importantly for the performance of our approach is that the full feature vector provides the
best results in both cases. This means that the proposed features are suitable for different
robots and can be used to determine traversability for operating in different environments.

6.5 Related Work
A comprehensive survey of traversability analysis methods for unmanned ground vehicles
was presented by Papadakis [93]. He states that the predominant approaches to measuring
traversability are based on occupancy grid maps, which are accredited to Moravec and
Elfes [79]. Furthermore, they are based on the analysis of 2d elevation maps, where 3d
information is represented in 2d maps. Pfaff et al. presented an approach, where the 2d

6.5. RELATED WORK 71

elevation maps were used for traversability analysis as well as for mapping and localization
purposes [95]. A more general representation is a 2d grid map, where each cell stores features
that provide enhanced information from the sensors. Papadakis identified this as the preferred
choice when dense 3d point clouds are available [48, 51, 60].

Many methods for performing traversability analysis are based on heuristics that represent
the capabilities of the robot, in combination with measurement models that describe the
sensor noise [14, 17, 51]. These methods for classifying traversability typically work well for
many environments, but they are limited in their generality, since they often do not explicitly
distinguish different types of obstacles, like rocks or grass. Moreover, a specific heuristic has
to be developed for every robot and also for different combinations of sensors and terrain.
Murphy and Newman use a probabilistic costmap, which is generated from the combined
output of a multiclass Gaussian process classifier and Gaussian process regressors. It models
the spatial variation in cost for the terrain type, to perform fast path planning while taking the
uncertainty of the terrain cost into account [81].

Another problem that is hard to tackle are so called negative obstacles, like holes in the
ground or downwards leading steps. The sensor is not necessarily able to perceive the lower
part of the structure and, therefore, the robot has to reason about the cause of missing data,
which might result from untraversable gaps or simple visibility issues [64, 107]. This is
of special interest in search and rescue scenarios after disasters, where the environment is
very complex due to irregularities. This kind of analysis is particularly critical when the
sensors used only provide a sparse representation of the environment, like rigidly mounted,
downwards facing 2d-laser scanners.

It seems natural to let the robot learn about the traversability of the environment. This
has the advantage that there is no need for a heuristic to interpret the sensor data. But in
supervised scenarios, one has to provide labeled data to the approach, to learn from. Lalonde
et al. [63] proposed segmenting 3d point clouds into the categories: scatter, to represent
porous volumes; linear, to capture, e.g., wires and tree branches; and surface to capture
solid objects, like ground surfaces. The authors achieve this by training a Gaussian Mixture
Model with an expectation maximization algorithm, on hand labeled data. A different way
to perceive the environment is to use proprioceptive measures, like bumper hits, measuring
slip, or vibration. Those can be combined with geometric measures and used, e.g., to project
the current measurements into the environment [5, 48, 105]. Yet, the use of proprioceptive
measures requires an adequately robust robot that is physically able to traverse the terrain in
question. Even though such methods allow the robot to autonomously learn a model of the
environment, the trial and error part of this methodology involves a high risk of damage to the
robot.

In contrast to this, our approach uses data provided by manual operation of the robot
by a, non-specifically trained, human operator who drove a safe trajectory and, therefore,
provided partially labeled training data. This is a very convenient, safe, and time-efficient
way of training a classifier. An approach that follows a similar idea was presented by Ollis
et al. [91]. Their system uses data from a stereo camera, radar, as well as 2d- and 3d-lidar
sensors. Features are computed as multidimensional histograms, and a distribution is learned
for the traversed cells. The approach makes use of a monotonicity assumption that states
that cells with higher values of the features would be expected to be less traversable and the
inferred probabilities were enforced to meet this assumption. The resulting values are mapped
to a cost function that is then used for planning.

72 CHAPTER 6. SEMI-SUPERVISED LEARNING OF TRAVERSABILITY MODELS

In our approach there are no heuristic assumptions about the features and their relation to
traversability. To solve the restricted learning problem, we adapted the techniques of Denis
et al. [27] and Elkan and Noto [29] to learn the probabilities from the available data.

6.6 Conclusion and Future Work
We presented an easy to use approach to learn traversability models for mobile robots. The
proposed feature vector can capture the important information for traversability from 3d-lidar
data. Furthermore, we successfully applied techniques for learning from training data that
provides only partial information in terms of positive labels. In the experiments, we showed
that our approach can be applied to different robots that exhibit major differences in their
traversability characteristics. Moreover, our approach is usable in outdoor urban environments
as well as in unstructured non-urban environments, like forest roads and grassland. Our
experiments also include a discussion of the expressiveness of the proposed features in the
context of different environmental characteristics.

Future Work
So far, the approach suffers from a growing size of the terrain models. It will be worth putting
further efforts to this point. We expect that this is also connected to the lower recall results for
unstructured environments. To apply the method to a real robot, an extension towards dealing
with dynamics in the environment is necessary for obvious safety-related reasons. We tackle
some of these points in the forthcoming chapter.

Chapter 7

Adaptive Obstacle Detection

Reliable detection and avoidance of obstacles guarantee safety and mo-
bility, and are, therefore, crucial prerequisites for autonomously navi-
gating robots. To ensure safe mobility, the obstacle detection needs to
run online, meaning that the limited resources available to autonomous
systems need to be taken into account. At the same time, robust obstacle
detection is highly important. Here, an overly conservative approach
might restrict the mobility of the robot, while a more reckless one
might harm the robot or the environment in which it is operating. In
this chapter, we present a probabilistic terrain-adaptive approach to
obstacle detection, which relies on 3d-lidar data and combines com-
putationally fast and cheap geometric features, like step height and
steepness, which are updated with the frequency of the lidar sensor,
with semantic terrain information, which is updated with at lower
frequency. We provide experiments in which we evaluate our approach
on a real robot on an autonomous run, over several kilometers con-
taining different terrain types. The experiments demonstrate that our
approach is suitable for autonomous systems that have to navigate
reliably on different terrain types including urban streets, dirt roads
and grass.

As stated in the previous chapter, inferring where a robot can safely drive and where it
can not, is an important component for an autonomously navigating robot. In the previous
chapter, we focused on an approach that is easy to use from the perspective of a non-expert
user. Alhough the results of the approach were promising, a drawback was that it could not
be updated with every measurement and assumes a static traversability map. In this chapter,
we focus on the computational effort and propose an approach to online obstacle detection
that enables the robot to detect obstacles with each measurement provided by the laser sensor.
To achieve this, we combine a supervised learning method, yielding a low frequency terrain
classification, which is based on accumulated measurements, with fast to compute geometric
features that are computed for each measurement.

In this chapter, we are particularly interested in the situation in which a robot operates in
environments with different characteristics, e.g., urban, outer-urban and off road. The scene
that is depicted in Figure (7.1) gives us an idea about the difficulties in mixed scenarios. The
main problem is that the flatness assumption of man-made environments does not hold. Grass
of various heights may easily appear as fake obstacles, because observations of the same

74 CHAPTER 7. ADAPTIVE OBSTACLE DETECTION

Figure 7.1: Our robot navigating autonomously on different types of terrain. It needs to
cope with: grass of various heights, small trees, bushes, dirt roads and regular streets. The
corresponding point clouds need to be dealt with differently depending on the type of terrain
on which the robot moves.

height differences on a street may constitute a hazardous situation. This means that in mixed
terrain settings, it is not possible to rely solely on the geometric features, because free space in
one type of terrain may look like an obstacle in another, and vice versa. In the previous chapter,
we derived the need of modeling the underlying terrain class, in the context of the learning
problem there. While we used a statistical test in the former case, the number of terrain classes
grew with the length of training examples. In this chapter, we propose using a classifier with
preset terrain classes that is trained on hand labeled data. We take the burden of generating
this hand labeled training data for the benefit of a more expressive power of the semantic
information. We believe that our proposed approach, in this chapter, may be particularly
relevant for autonomously navigating robots in agricultural or forestry applications.

As in the previous chapter, we will again rely only on a 3d-lidar as the perceptual sensor.
We use lidar because it is more robust to different lighting conditions, while, e.g., a camera in
a forest would be highly affected by shadows and under/over exposed areas. More specifically,
our 3d-lidar sensor is a Velodyne HDL 64, which provides a full 360◦ horizontal field of view,
returning ∼1.3 million points per second with distance and remission information that needs
to be processed. To cope with the resulting computational challenges, our approach takes
advantage of the special structure of the Velodyne scans. The approach we present is able
to detect traversable regions on medium high grass, dirt roads and regular streets using two
threads on a quad core CPU i7@3.50GHz with a workload of ∼100% (of 400%) leaving
enough computational power for other modules, like path planning or control.

7.1. ONLINE OBSTACLE DETECTION 75

(a) Onboard view (b) stepHeight (c) incline

Figure 7.2: Example for the geometric measures extracted from Velodyne data. From left to
right: A photo from the robots perspective in (a), a top view of the pointcloud with coloring
based on the stepHeight in (b), where black corresponds to low values and red to high values,
and the pointcloud visualization of the incline in (c), using the same color scheme.

The reminder of this chapter is organized as follows. First, in Section (7.1), we describe
how we compute the fast geometric features and how we can get a basic online obstacle
detection approach from it. Then we describe how our terrain classification approach works
and how the terrain map is maintained in Section (7.2). To complete our combined approach,
we discuss the fusion of both sources of information in Section (7.3). Finally, we evaluate
the performance of our approach in Section (7.4), where we explicitly illustrate why we need
terrain information in mixed terrain scenarios, evaluate the terrain classification and evaluate
the computational cost of our approach in a real world experiment. At the end of the chapter,
we discuss related work in Section (7.5), and conclude the chapter in Section (7.6).

7.1 Online Obstacle Detection
In this section, we discuss how we efficiently calculate the geometric measures from the
3d-lidar data. First, we give a short technical overview of the sensor characteristics. Then we
explain how we exploit the special structure of the data to efficiently calculate the geometrical
measures. Finally, we discuss how to use these measures for obstacle detection.

7.1.1 Velodyne Intrinsics
The Velodyne HDL sensors are very popular for autonomous robots. Currently, there are three
versions with 16, 32 or 64 individual laser beams available. The individual lasers are mounted
in the sensor with different pitch angles, setting the vertical field of view, which ranges from
−15◦ to 15◦ for the HDL 16, −20◦ to 20◦ for the HDL 32 and −24.8◦ to 2◦ for the HDL 64.
The data of the sensor is delivered in spherical coordinates, providing the current azimuth and
elevation angle, the distance, the remission and the id of the laser. This leads to the typical
ring structure of the Velodyne scans, as, e.g., depicted in Figure (7.2).

7.1.2 Geometric considerations
Utilizing this structure, we can directly arrange the 3d-points as a matrix Pij , where the
elevation determines i and the azimuth j. For every point Pij we search in each direction on

76 CHAPTER 7. ADAPTIVE OBSTACLE DETECTION

the same ring Pi(j±k) and perpendicular to it P(i±l),j , with 0 ≤ k ≤ K and 0 ≤ l ≤ L, for the
first point that has an Euclidean distance larger than x in 3d.

k?+ = min{k | 0 < k ≤ K ∧ ‖Pij − Pi(j+k)‖2 > x} (7.1)
k?− = min{k | 0 < k ≤ K ∧ ‖Pij − Pi(j−k)‖2 > x} (7.2)
l?+ = min{l | 0 < l ≤ L ∧ ‖Pij − P(i+l)j‖2 > x} (7.3)
l?− = min{l | 0 < l ≤ L ∧ ‖Pij − P(i−l)j‖2 > x} (7.4)

This procedure returns, at most, four neighbors with a maximum of 2(K + L) comparisons.
From these points we calculate the step height (stepHeight), as the maximum absolute
difference of the z-coordinates as well as the inclination angle (incline) of the line that
connects the two points and the xy-plane, which corresponds to the steepness between the
points.

stepHeight = max{‖pij − q‖Πz | q ∈ {p(i±l?±)j,pi(j±k?±)}} (7.5)

incline = arcsin

(
‖pij − q?‖Πz

‖pij − q?‖2

)
(7.6)

with Πz =

 0 0 0
0 0 0
0 0 1

 (7.7)

Here q? is the point that corresponds to the argmax of the stepHeight calculation. For
a visualization of stepHeight and incline see Figure (7.2), and an example to clarify the
computation of the geometric features is depicted in Figure (7.3). Due to the finite number
of comparisons and the constant time look-up for the points, the overall computation of
stepHeight and incline for one point in the scan can be done in constant time. In our
implementation, we use K = 5, L = 2 and x = 0.05m, which is more than 2σ of the typical
sensor noise of the Velodyne. Please note that this procedure requires knowledge about the
robot’s current pitch and roll angle, as, e.g., provided by an IMU on the robot.

As a pre-processing step, in order to reduce the influence of sensor measurement noise,
we average close-by neighboring points along the ring, P(i±k)j with 0 ≤ k ≤ K, thereby
smoothing the surface structure. We compute this average efficiently using a sliding window
so that the pre-processing does not break the constant time cost stated above.

In our current C++ implementation we can calculate stepHeight and incline for every point
provided by the Velodyne with approximately 50% CPU load on a single core of an Intel
i7@3.5GHz PC.

7.1.3 Basic Obstacle Detection

In our implementation, we maintain a rolling occupancy 2d-grid map with a fixed resolution,
which is updated whenever a 3d-lidar measurement arrives, and the cells are shifted whenever
the robot moves, such that the robot is always centered on the map. The 2d map is aligned
perpendicular to the gravity vector, which is estimated from the IMU measurements. To

7.1. ONLINE OBSTACLE DETECTION 77

Figure 7.3: Schematic example for the computation of the geometric features. The green point
is the point that is currently considered and the yellow points mark the local neighborhood
for the computations. They are along the ring and perpendicular to it. The points with blue
strokes satisfy our requirements of a minimum distance and are used for the computations.
The two points connected with the dashed line are those with the largest difference in the
z-coordinate. The stepHeight is indicated by the red line of the triangle. Accordingly, we
take the angle marked in cyan as incline.

determine the cell index for a 3d measurement we use the orthogonal projection to the xy-
plane and chain it with the discretization determined by the resolution of the map res{X ,Y }.

R3 −→ R2 −→ Z2 (7.8) x
y
z

 7−→ (
x
y

)
7−→

(⌊
x

resX

⌋⌊
y

resY

⌋) (7.9)

The geometric properties, as computed in Section (7.1.2), are typically sufficient to perform
a traversability analysis for environments such as offices, fabric halls or urban roads. Therefore,
we use a recursive formula to update the map, which ensures that we integrate the information
of each measurements. In this chapter, we are interested in obstacles that are persistent in
the environment and therefore assume that whether or not an obstacle is present in cell c is a
static property of the cell. For the recursive estimate of the probability, that cell c contains an
obstacle, given the history of measurements, Pc(o | g1, . . . , gn) we can use the efficient logit
representation.

logit(Pc(o | g1, . . . , gn))

= logit(P (o | gn)) + logit(Pc(o | g1, . . . , gn−1))− logit(Pc(o)) (7.10)

78 CHAPTER 7. ADAPTIVE OBSTACLE DETECTION

To perform the recursive calculation, we need only to specify the distribution for P (o | g).
In Figure (7.2) we depict the magnitude of the geometrical measures for an urban-scene.
Comparing the values and the scene, we clearly see that all vertical structures, e.g., the pole
near the robot and the bushes on the opposite side of the street, exhibit high values (red) for
both measures. On the other hand, we can observe a contrary behavior of the two measures
at potential false-positive detections of obstacles, e.g., the lowered curbs right in front of the
robot show a strong response on the incline values in contrast to low values of the stepHeight ,
and vice versa on the pavement on the opposite side of the street. The observation of this
behavior is not unexpected, as the incline is rather sensitive to noise at points nearby the robot,
due to the smaller distances of the points, while at more distant points the incline is robust to
such noise. The stepHeight suffers from noise at the more distant points, since it calculates
the absolute differences in the z-coordinate.

Taking this into account, the distribution P (o | g) should exhibit a high probability if and
only if both values are relative large. So far, we have used two different models for this.
The first, a straightforward and efficient way, is to model it as a Dirac distribution using the
thresholds maxStepHeight and maxIncline.

P (o | g) =

{
1 if incline > maxIncline ∧ stepHeight > maxStepHeight

0 else
(7.11)

For urban or indoor environments, we usually choose maxStepHeight = 0.05 and maxIncline
= 20.5◦. One drawback of this threshold-based modeling is that we cannot apply Eq. (7.10),
since the border values 0 and 1 are not defined for the logit-representation. As a workaround,
we propose marking a cell as occupied for a fixed time span if P (o | g) = 1, assuming that
obstacles are frequently observed, when using the threshold-based measure.

However, modeling the probability that an obstacle is present, given the geometric measures,
continuously, taking their extent into account, should lead to a better estimate. In order to take
into account the characteristics specific to the geometric measures, we propose using

P (o | g) = (1− exp(−αstepHeight))
√

1− exp(−β sin(incline)), (7.12)

with α = 25 and β = 1.2 in urban environments. This function shows a similar but smoother
behavior, like the step-function of the Dirac distribution. The values of both functions are
depicted in Figure (7.4) for a comparison of the returned values. In this case, we can apply
Eq. (7.10) and thereby take the extent of the geometric measures into account.

Independent of the specific model of P (o | g), when the robot enters outer-urban environ-
ments, the probabilities that an obstacle is present depends on the type of terrain on which the
robot operates. For an idea, see the top row, right column of Figure (7.6). In this case, the
robot drives on a meadow. When we use the probabilities as modeled for the urban scenario,
fake obstacles appear all around the robot, which makes progress on this terrain impossible.
Accordingly, our goal is to infer about the terrain type and dynamically adapt the obstacle
probability.

7.2 Terrain Analysis
When the environment is more scattered in its geometry, like a meadow or forest environment,
it is not possible to rely purely on the geometrical measures, since e.g., grass may appear

7.2. TERRAIN ANALYSIS 79

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

30

35

40

45

stepHeight in [m]

in
cl
in
e
in

[◦
]

0.0

0.2

0.4

0.6

0.8

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

30

35

40

45

stepHeight in [m]

in
cl
in
e
in

[◦
]

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7.4: Comparison of the probabilities that an obstacle is present, given the geometric
measure. On the left is the Dirac distribution on the left the smooth distribution.

as fake obstacles with step heights even larger than the ground clearance of the robot. On
the other hand, a robot that should not drive on grass, may consider a mowed meadow as
traversable ground and drive over it. To avoid those situations, we use a terrain classification
based on features, extracted from points that are registered into a fixed resolution moving
grid-map, as in the previous section, and infer the terrain class using a random forest (RF)
classifier. We decided to use a RF-classifier, since it is fast and known for robustness and
accuracy, it also handles the different magnitudes of the individual dimensions of the feature
vector internally. Yet, in general, every multiclass classifier could be employed. Since we
are only interested in the local vicinity of the robot, we utilize the raw odometry aided by an
IMU sensor for the registration of the points. Points from the lidar are mapped with these pose
estimates until the robot has covered a distance of d meters. Then, we compute one feature
for each cell of the map, if more than a predefined value of minPoints are registered in that
cell. Using the inverse sensor model from the random-forest classifier, we can maintain a
probability distribution over the terrain class for each cell.

7.2.1 Features
The features we use for this approach are similar to those we used in the last Chapter 6, as they
were working well in the context of traversability analysis. However, since the maximum step
height is already represented by our geometrical features and we believe that it is closer related
to the traversability characteristics than to the terrain type, we exchange it with the maximum
remission value of a cell. For completeness, our five-dimensional feature is composed of the
following measures:

• Maximum remission

• Mean remission

• Standard deviation of the intensities

• Roughness

• Slope

80 CHAPTER 7. ADAPTIVE OBSTACLE DETECTION

The first three dimensions represent the perceptive or appearance-based information that we
get from the intensity values of the 3d-lidar sensor and the last two represent characteristic
geometric information of the terrain. The results of the previous chapter suggest that both
measures are important when facing mixed terrain scenarios.

7.2.2 Classification

In our approach, we apply an RF-classifier, as introduced by Breiman [16] with the gini-
impurity as split criterion for the nodes of the trees, see Chapter 2, Section (2.6.1). We
hand-labeled data from several scenes, which were recorded in different environments, which
include different terrain types like streets, grass, dirt- and forest roads, in order to train the
classifier. For the labeling, we apply a custom tool to determine areas of the corresponding
terrain type. All of the labeled data were assigned to one of the following classes:

• street

• grass

• dirtroad

• other

The first three classes constitute the terrain we consider as potentially traversable, while the
last class ideally unifies all others that are likely to be untraversable. We train the random
forest to model the inverse sensor model, i.e. it returns a probability estimate P (t | f) for the
terrain class t given the feature f .

7.2.3 Terrain-Class-Map

The terrain class map is a fixed resolution rolling grid-map, where we temporarily store the
raw points until we compute a feature. Then, we calculate a probability distribution over
the terrain class, based on the probabilities provided from the classifier. We assume that
the cells in the terrain map are independent from each other and that the state of a cell is
static. Therefore, we can maintain the probability distribution over the terrain class given the
registered features, P (t | f1, . . . , fn), for each cell independently. Since we want to update
the information incrementally as soon as they are available, we apply the Bayes rule twice
with the assumptions stated above to derive:

P (t | f1, . . . , fn) =
P (fn | t , f1, . . . , fn−1)P (t | f1, . . . , fn−1)

P (fn | f1, . . . , fn−1)
(7.13)

=
P (t | fn)P (fn)P (t | f1, . . . , fn−1)

P (t)P (fn | f1, . . . , fn−1)
(7.14)

= η
P (c | fn)P (t | f1, . . . , fn−1)

P (t)
(7.15)

7.3. TERRAIN-ADAPTIVE OBSTACLE DETECTION 81

Figure 7.5: Left: results of our terrain classification. Yellow is street, green is grass, brown is
dirt and pink is other. Right: aerial image of the scene. Our terrain classification accurately
classifies different terrain types in urban and outer urban environments.

For Eq. (7.13), we apply the Bayes rule and further assume that the current feature fn, given
the cell class, does not depend on other features. This, and again Bayes rule, for P (fn | t)
leads to Eq. (7.14). Finally, we summarize the terms that do not depend on the class of the
cells as a normalization constant η to derive Eq. (7.15). In our implementation, we use a
uniform prior for the class and the inverse sensor model from the random-forest classifier, to
compute the class probabilities of individual cells.

To save computational resources, we apply the assumption of the static terrain class and
mark a cell as classified, if it has been seen more than ten times and if the probability of the
most likely terrain class exceeds 0.9. Classified cells are not considered for updates of the
terrain class but keep their state. In order to counteract cases where the state of the cells may
change from time to time, e.g., a parking car that may start driving, we reconsider classified
cells for updates after a fixed amount of time.

7.3 Terrain-Adaptive Obstacle Detection

Our obstacle detection module combines the methods explained in Section (7.1) and Sec-
tion (7.2). In our implementation, we use two asynchronous threads: one that computes the
geometric measures and the other the terrain analysis. To circumvent race conditions, we
maintain two independent maps: one for the terrain class and the other fuses the information
of our combined approach, which is then given to a planner. Therefore, the system has critical

82 CHAPTER 7. ADAPTIVE OBSTACLE DETECTION

Figure 7.6: Left: an on-board view of the scene. Middle: the resulting obstacle map blended
with the terrain classification of our approach. Right: the resulting obstacle map of the basic
approach. In the top row example, our approach guarantees full mobility while the basic
approach is trapped by many fake obstacles induced from the grass. In the lower row example,
we see what happens if we set the threshold of the basic approach to the same as for grass
in our combined approach. Our approach uses adaptive thresholds and correctly finds the
obstacle. The basic approach misses the massive battery in front of the robot, as marked with
the red rectangle.

information available as soon as it arrives but can still gain from the slower updates of the
terrain class model.

We model the terrain type as a latent variable to obstacle detection, which allows the use of
both measures in a probabilistic sound formulation. Given the feature set F and the geometric
feature g this results in the following computation:

P (o | g,F) =
∑
t

P (o | g, t)P (t | F) (7.16)

Thereby, we assume that P (o | g,F , t) = P (o | g, t), which means that given the terrain
class the probability of containing an obstacle is independent from the observed feature f and
P (t | g, f) = P (t | f), which means that the terrain type t is independent from the geometric
feature g. With Eq. (7.16) we can use a different probability model for each terrain type due
to the dependency of P (o | g, t) on the terrain type t.

A computationally efficient alternative is to approximate Eq. (7.16) in a one-vs-all manner,
which uses the obstacle probability for the most likely terrain type t only.

P (o | g,F) = P (o | g, t?), with t? = argmax
t∈T

P (t | F) (7.17)

Here we lose potential information, since we take only the most likely terrain type into
account; however, the most likely terrain class can easily be tracked by the terrain map. With
this computation, we have fewer evaluations of P (o | g, t), multiplications and memory
access operations, which leads to faster estimates and lower CPU load. The effect of this
approximation is discussed in the Section (7.4.4).

7.4. EXPERIMENTS 83

Table 7.1: Terrain class dependent parameters
Terrain Class maxStepHeight [m] maxIncline [◦] α β

Street 0.05 20.5 25 1.2
Grass 0.50 20.5 10 1.2
Dirt 0.25 20.5 3 1.2

Other 0.05 20.5 25 1.2

7.4 Experiments

We designed our experiments to highlight the different aspects of the proposed approach. We
provide qualitative and quantitative results about the performance of our approach. In addition,
we present a real world experiment of an autonomous four km run through challenging terrain.
Furthermore, we provide a detailed analysis of the computational requirements, illustrating
the economical use of computational resources by our approach. For all experiments, we used
the same parameters and the same random forest, which consists of six trees. The trees were
grown without a depth limit. Each split considered two randomly chosen variables, while the
minimal number of features to split a node was 100 and the split criterion was based on the
gini-index. See Chapter 2 Section (2.6.1) for more details. The terrain analysis grid had a
resolution of 0.2m, a size of 300× 300 and d was set to 0.5m. The map that was given to the
planner, which is updated by our combined approach, had a resolution of 0.1m and a size
of 600× 600. The maximum speed of our robot was set to 1.2m/s. In order to circumvent
inconsistent lidar data, we applied the calibration approach by Steder et al. [110] for our
Velodyne HDL64.

The remainder of this section is organized as follows. First, we illustrate qualitatively that
the knowledge about the terrain type can be important for obstacle detection in Section (7.4.1).
Afterwards, we briefly evaluate the accuracy of our terrain classification with quantitative
measures in Section (7.4.2). Then we present the results of our approach when successfully
applied to a real autonomous robot in Section (7.4.3). Finally, we analyze the effect of the
approximations to compute the obstacle map, as pointed out during the chapter, as well as the
respective computational effort in Section (7.4.4).

7.4.1 Illustration of Mixed Terrain Challenge

If no additional semantic information is available, we can only make a decision based on
a single setting of the parameters. When we apply the parameters for street, as presented
in Table 7.1, the system will easily run into problems if we are not actually on a street. In
Figure (7.6), we show two examples of situations where the naive approach, without terrain
class considerations, is either blocked by fake obstacles like grass or misses the detection
of real obstacles if more reckless settings are used, e.g., the one for grass. In the first row
of Figure (7.6), we use the street parameters from Table 7.1, the rightmost image shows the
result of the obstacle detection, where the robot is trapped by grass which has shown up
as fake obstacles all around the robot. A simple but dangerous fix for the naive approach
would be to increase the parameters such that larger step heights are allowed, e.g., the grass
parameters of Table 7.1, but then, as seen in the second row of Figure (7.6), we may encounter

84 CHAPTER 7. ADAPTIVE OBSTACLE DETECTION

Table 7.2: Terrain Classification Confusion Matrix
Class Street Grass Dirt Other
Street 0.79 (0.64) 0.06 (0.15) 0.14 (0.19) 0.01 (0.004)
Grass 0.02(0.005) 0.91 (0.86) 0.05 (0.13) 0.02 (0.002)
Dirt 0.02 (0.10) 0.18 (0.18) 0.78 (0.72) 0.03 (0.002)

Other 0.04 (0.06) 0.10 (0.10) 0.10 (0.03) 0.76 (0.82)

hazardous situations, since on the rightmost image the rather massive obstacle, a battery, is
not recognized as an obstacle anymore. In contrast, with our terrain-adaptive classification,
we can classify both scenes correctly, as depicted in the middle column of Figure (7.6).

7.4.2 Terrain Classification Accuracy

To evaluate the performance of the terrain classification, we evaluated scenes as shown in
Figure (7.5). We used partially labeled scenes from urban environments taken from our
campus as well as from data in the forest. All in all, ∼100K labeled cells were evaluated,
since only cells for which the class was obvious were labeled. The resulting confusion matrix
is shown in Table 7.2, which presents the results of our cell-wise integrated classification, see
Eq. (7.15) as well as the most likely class per feature, which is given in brackets. Our classifier
can reliably distinguish the four classes from each other, but there are some confusion with
street and dirt as well as with dirt and grass. One reasons for this is probably, as we observed,
that streets are often covered with a little bit of dirt from construction or agricultural machines,
which has a high influence on the remissions of the lidar. Also, the remissions on dirt seems
very similar to those of grass, depending on its composition. It can also be seen in Figure (7.5),
on the top left image, where grass and dirt are mixed in some regions, but the aerial image
on the right indicates that it may not be totally clear what the correct labeling should be.
Nevertheless, classifying grass reliably is important, since most fake obstacles appear in grass
and the false classifications of grass did no harm as far as we could observe, since they are
rather isolated.

7.4.3 Real World with Computational Analysis

In this experiment, we evaluate the capabilities and the computational economy of our
approach in a real world scenario with a robot navigating autonomously on a four kilometer
trajectory. The route starts at our campus and follows a circuit to a nearby forest before
returning to the campus. The GPS-trajectory of this run is depicted in Figure (7.7). As we are
interested in the computational efficiency, we used the Dirac-based formulation, see Eq. (7.11),
for the obstacle detection, combined with the most likely terrain class, see Eq. (7.17), on
the robot. During this experiment, we measured the time taken by the different tasks. Our
algorithm was evaluated using a Intel(R) Core(TM) i7-3840QM @ 2.80GHz with four physical
cores. We used a global planner, which sends short term goalpoints to a local planner, which
itself has planned a path, based on the obstacle map of our approach.

In Figure (7.8) we visualized the CPU percentages of the components of our approach, in
a pie-chart. The whole run took about 4400s, which in return results in an average speed of

7.4. EXPERIMENTS 85

Figure 7.7: The trajectory of the outdoor experiment on an aerial image. The trajectory
contains regular streets, grass and forest roads.

32.9%

Terrain Analysis
68.4%

Geometric Features

and Map Update

40.5%

Plan and Control

34.8%

Overhead

Figure 7.8: CPU usage of our approach during the real world experiment.

0.9m/s, while the maximum speed of the robot was limited to 1.2m/s. The overall processor
clock time was 7760s, where also: path planning, collision checking, motion control, a GUI
and the message management was included, which leads to an overall average processor usage
of about 180%. For the terrain classification, including the feature computation, the system
used on average about 33% of its processing power, while for the high frequency geometric
measures, including the obstacle grid map update, it needed about 68%. This underlines the
economy of our approach, since on our quadcore CPU, more than half of the processing power
was available when our navigation software was running. Moreover, we showed that our
approach can be applied, both online and in the real-world, on an autonomous robot for safe
navigation in forested and outer urban environments, even with the applied approximations.

Finally, we took the recorded data and re-evaluated the CPU-usage of our approach when
we use the full probabilistic model, Eq. (7.12) for the obstacle probabilities and Eq. (7.16)
to include the terrain class. In this case we observe an average processor usage that is about
26% higher than using the approximations for the geometric feature and map update. On our
system it turned out that this is critical since messages may queue up or get ignored. Therefore,

86 CHAPTER 7. ADAPTIVE OBSTACLE DETECTION

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
0

0.5

1

1.5

2

2.5

3

3.5

4

Map ID

A
vg

.
K

L
di

ve
rg

en
ce

DKL(PS‖PW)

DKL(PC‖PW)

DKL(PC‖PS)

Figure 7.9: Average KL divergence for each map. Note the different extend after the robot
enters (map ID 250) and leaves (map ID 500) the forest environment. The difference between
PC and PW is more substantial, however, the difference between PC and PS is visible as well.

we will investigate the effect of the approximations in the next section.

7.4.4 Effect of Approximations

In this section, we discuss the differences between the possible approximations, which we
have discussed earlier in this chapter, and the mathematically exact model. We compare two
approximations (PW , PS) with the exact model (PC):

• PW denotes the rough approximation that was used for the online experiment in the
previous section, which is the combination of the Dirac approximation (Eq. (7.11)) and
the most likely terrain class (Eq. (7.17))

• PS denotes the approximation using the smooth probabilities (Eq. (7.12)) in combination
with the most likely terrain class (Eq. (7.17))

• PC denotes the mathematically exact model, which is the combination of the smooth
probabilities (Eq. (7.12)) and integrates over the full estimate of the terrain classification
(Eq. (7.16))

We processed the data from the autonomous run offline and saved a snapshot of the obstacle
probability map every 5m for the evaluation of the approximations. From these snapshots, we
compare the probability distributions of the individual cells to contain an obstacle. To quantify
the differences between the distributions, we compute the Kullback-Leibler (KL) divergence
for each of the corresponding cell pairs. The KL divergence is commonly used to compare the
quality of approximations to probability measures. For two probability measures P and Q
over the same domain Ω the KL divergence is defined as follows:

DKL (P‖Q) =
∑
x∈Ω

P (x) log2

(
P (x)

Q(x)

)
(7.18)

7.4. EXPERIMENTS 87

PW PS PC

DKL (PS‖PW) DKL (PC‖PW) DKL (PC‖PS)

Figure 7.10: Top: Probabilistic obstacle maps for the probability measures. Bottom: Cell-wise
KL divergence for the approximations depicted as gray scale images.

We calculate the average KL divergence over all cells that contain observations to quantify
the differences between two maps, which we denote asDKL(P‖Q). The results are depicted in
Figure (7.9) that shows the comparison between the DKL(·‖·) for each of the maps computed
under both the approximations and the exact model. It can be observed that the difference
between PC and PW is more substantial than the difference between PC and PS . However,
the difference between PC and PS is also non-negligible. To illustrate this difference more
clearly, we depicted the obstacle maps and the KL divergence for each cell of the map ID 421,
which exhibits the largest average KL divergence (DKL(PC‖PS)) of 0.37, in Figure (7.10).
One can observe that the KL divergence for the cells on the path (center of the map) is lower
than the cluttered surroundings that usually include trees and bushes. This can be explained by
two reasons: first, if the terrain classification is confident, which means that it exhibits a low
entropy, then PS is a close approximation of PC . On the other hand, if the obstacle probability,
P (o | g, t), is similar for all the terrain classes, e.g., on a flat surface, both the probabilities
would be similar again. This effect is also visible in Figure (7.9) where we see that the values
are larger between the map IDs 250 and 500, which is the part the robot’s trajectory in the
cluttered forested environment.

Finally, we measured the average computational time spent for the map update using our
implementation of the different measures on an Intel(R) Core(TM) i7-2700K CPU @ 3.50GHz.
The average computation time for an obstacle map update is (5.9ms, 11.2ms, 47.7ms) for
(PW , PS, PC) respectively. For a map update, memory accesses, the evaluation of P (o | g, t),

88 CHAPTER 7. ADAPTIVE OBSTACLE DETECTION

multiplications and additions are the most computationally expensive operations. Comparing
the computation times of PC and PS , we notice that the run time difference, as expected, is
directly proportional to the number of terrain classes, which is four in our case.

7.5 Related Work
Papadakis [93] categorizes traversability analysis methods for unmanned ground vehicles,
non-exclusively, by their usage of proprioceptive or exteroceptive sensor data, which can be
either geometry- or appearance-based. Our approach relies purely on exteroceptive sensor
data (perceived with a 3d-lidar) from which to interpret the geometric and appearance charac-
teristics. Moreover, Papadakis points out that the 2d-digital-elevation-maps [61, 90] are the
most common choice when a 3D-Lidar is employed. The elevation maps were later used for
mapping [95] and were extended to multilevel surface maps [124] to capture more complex
environments. In this work, we also employ a 2d-grid-based map in order to organize and
interpret the sensor data, where each cell stores features and information about the terrain type
as well as the geometry.

Most approaches concentrate on a certain terrain scenario, either structured outdoor urban
environments or unstructured, rough off-road terrain, since both environments typically
underlie very different assumptions. In urban environments, it is more important to detect and
track dynamic objects, like cars, pedestrians and cyclists, and reasoning about the street lane
or sidewalks [7, 59, 72]. For rough terrain analysis, estimating the load bearing surface seems
promising as done by [130, 131], but these approaches typically have a high computational
burden, e.g., 3d-ray-tracing and also rely on different types of sensors. Another way, is the
estimation of the step height of cells, calculating the difference in the z-coordinate of points
that fall into the cell, like in [20] where range-dependent thresholds were applied to determine
obstacles. A probabilistic formulation was utilized by Thrun et al. [120]. They employed
five 2d-lidar sensors, mounted in different angles, and performed statistical reasoning about
the step height whilst also taking time-differences into account. Manduchi et al. [70] utilize
RGB-D data from stereo-cameras and similar geometrical considerations, as we do. Instead
of a grid-map based approach they reason about the obstacle nature of points, by checking
truncated cones, which are placed on ground plane points. Terrain classification is deduced
from the RGB-D information using a mixture of Gaussians. Moreover, they rely on a 2d-lidar
sensor for terrain classification, analyzing histograms of distances. In contrast to this, our
approach relies purely on 3D-Lidar data, which is less sensitive to lighting conditions and
typically provides more accurate data.

Adding semantic information about the terrain type can be very useful, since different
terrain types may follow different rules for different mobile robot platforms. Assuming a
pure forest environment, McDaniel et al. [73] classify the ground plane and trees, estimating
the tree center by using a least-squares fit on circles for candidate points, from 3d-lidar data.
Besides an online time-of-flight camera based basic obstacle detection, Santamaria-Navarro
et al. [103] perform an offline terrain classification using a Gaussian process classification
approach; however, the classification is only for traversable and not traversable. Wurm
et al. [133] use a tilted 2D-Lidar scanner to distinguish low grass vegetation from street in
structured outdoor environments. The system utilizes self-supervised classification learning by
employing a vibration classifier (proprioceptive sensor information) to train a support vector

7.6. CONCLUSION AND FUTURE WORK 89

machine. The features applied for classification are: range, incident angle and remission.
Laible et al. [62] employ camera and lidar sensors to distinguish: asphalt, big tiles, grass,
gravel and small tiles. In our work, we utilize distance and remission values from the 3d-lidar
in order to compute various features that we employ to determine the terrain class, where
we apply a random forest classifier [16] to distinguish between: regular street, dirt roads and
grass. Finally, we combine the semantic terrain class estimate with geometrical measures
such as step height and steepness, calculated from points of single scans, exploring the special
structure of the sensor for efficient computations.

More recently, Valada et al. [126] exploited different spectra in a camera-based approach to
classify traversable paths in forested environments. The approach employs a DCNN-based
classifier, which requires heavy computations on a GPU. In contrast to this, the presented
approach needs fewer than two cores on a standard laptop for fully autonomous navigation.

7.6 Conclusion and Future Work
In this chapter, we presented a probabilistically sound approach to online obstacle detection,
adapted according to semantic terrain information. Our method combines low frequency
terrain analysis and high frequency basic obstacle detection, and provides a reliable obstacle
classification with a moderate usage of computational power. In our experiments, we identified
situations where a naive approach, without the terrain adaptation, would yield suboptimal
results for safety or mobility reasons. Moreover, we demonstrated that our approach is:
economical with computational power, fast enough to run onboard, and capable of controlling
an autonomous robot along a challenging four km track which includes different terrain types
like grass, dirt roads and regular streets.

Future Work
We see potential in the combination of camera-based approaches with the proposed approach.
The fusion of two such approaches could improve the quality of the obstacle detection, as the
two sensors provide different characteristics, which may lead two complimentary effects.

Another, more general, perspective would be to develop an evaluation scheme, which makes
approaches comparable. A protocol that contains specific challenges to solve for different
environments and claims, could help to make approaches more comparable. We think that this
is the way to go, as providing benchmark datasets for a wide variety of robots, sensors and
environments does not seem feasible.

Chapter 8

Outer-Urban OpenStreetMap-based
Autonomous Navigation

Autonomous navigation typically requires an accurate global map of
the environment to perform global path planning from the current pose
to the desired goal. This map is commonly acquired from pre-mission
exploration and mapping runs. However, publicly available map ser-
vices are widely used by humans for global navigation and, nowadays,
provide an almost complete road network data. When using them for
autonomous navigation with mobile robots, one is faced with the prob-
lem of inaccuracies in the map and the uncertainty about the position
of the vehicle relative to the map, which are often in the magnitude of
meters. In this chapter, we present a probabilistic approach that makes
the street network data of OpenStreetMap applicable to autonomous
navigation. The approach associates subgoals, retrieved from global
path planning on OpenStreetMap, in the vicinity of the robot with local
sensor data obtained from 3d-lidar. To achieve this, we combine seman-
tic terrain information with a Markov-Chain Monte-Carlo technique.
With our approach, the autonomously navigating robot stays on the
trails while following the path planned in OpenStreetMap, even though
the system is repeatedly exposed to substantial errors. The proposed ap-
proach was successfully used on a real robot, navigating autonomously
at different and previously unseen locations. We perform extensive
experiments to show the robustness of our approach regarding the
alignment between the robot pose and the OpenStreetMap data.

At the beginning of this thesis we discussed the importance of mapping and localization
for autonomous navigation. However, in order to build a map, a robot needs to explore the
environment, which is a time and energy consuming process. Afterwards, pre-mission global
planning is limited to the area that has already been explored, and to extend this area the
robot needs to start the exploration and mapping process again. Given that a multitude of
map-services provide almost complete maps of road networks and additional data, like the
compendiums of buildings, this procedure of exploration and mapping seems avoidable. The
problem to overcome is that those maps are not as accurate as maps that are built using
sophisticated SLAM techniques. In this chapter, we propose a solution to this problem for
outer-urban environments, which uses only the street network data, as no additional data is

92 CHAPTER 8. OPENSTREETMAP NAVIGATION

Figure 8.1: Our approach addresses robot navigation in outer-urban environments and aims to
match a path given from OpenStreetMap (red) to the part in the sensor data that may most
likely correspond to the street (black). It is designed to correct map and GPS errors.

typically available for such environments.
Global path planning is an important pre-condition for reliable and accurate mission

execution of an autonomous robot. A large class of state-of-the-art solutions for large scale
navigation uses solutions to the SLAM problem to create an accurate map of the environment.
Some of them generate dense occupancy grid maps plus a topo-metrical graph, from it. The
topo-metrical high level graph is then used for global path planning purposes and the fine
grained map is loaded dynamically as map tiles for the local vicinity of the robot. In this
case, assuming that the robot is accurately localized, the goalpoints planned in the global
topo-metrical map are consistent with the local map. However, this has the drawback that
unknown areas need to be explored and mapped first and then, at operation time, an active
localization needs to run online. Moreover, planning is only possible in areas that have been
explored already, and a lot of data needs to be stored.

In this chapter, we show that autonomous navigation in outer-urban environments is possible
without the exploration and mapping task. To achieve this, we substitute the topo-metrical
map with the street network data from OpenStreetMap1 (OSM) and instead of computing
globally consistent fine-grained grid-maps, we model the vicinity of the robot online, reducing
the requirements of locally consistent grid-maps. On the other hand, this raises the problem
that the global and the local map are not necessarily consistent. To overcome this, we track
the position of the robot in the OSM using smoothed GPS measurements and align the trails
in OSM with the local vicinity of the robot by exploiting semantic terrain information, as
we need to deal with errors from GPS and OSM. This allows for autonomous navigation at
previously unseen locations, provided that the street network of those is present in OSM.

The idea is inspired by the fact that humans use maps provided by cartographic services
frequently and successfully for global path planning and navigation purposes. The cartographic

1https://openstreetmap.org

8.1. PRELIMINARIES 93

data provided by OpenStreetMap is based on “Volunteered Geographical Information” (VGI),
see Haklay and Weber [45], and is publicly available under a “Open Database License
(ODbL)”. The problem within the context of robotics is that VGI maps contain a high
uncertainty in their quality and even in what is considered a good quality map, the accuracy
is often far from those generated with SLAM. We need to take several sources of errors into
account, e.g., nodes may be placed in incorrect positions by: careless contributors, inaccurate
GPS estimates (during map creation and at operation time), and the sparse approximation of
trails by line segments. Humans can easily resolve these inaccuracies. We hypothesize this
originates from the ability to classify trails and associate them with the map, instead of relying
purely on the GPS estimate. More specifically, humans know that they are currently standing
on the street and not several meters away, as the GPS pose in the map suggests. Furthermore,
the source of error does not matter for a human, we simply make our way along the trails and
usually find our desired goal.

In this chapter, we present an approach to imitate human behavior and make maps like
OpenStreetMap useful for global path planning in outer-urban environments, which includes
navigating on small streets, dirt- and forest roads. To achieve this, we compare samples of the
trails from the map with semantic terrain classification, using the approach from the previous
chapter, and use a Markov-Chain Monte-Carlo technique to determine the most likely position
of the trail in our local frame. With this correction, it is possible to use data from OSM for
global path planning on a real autonomous robot, whereas frequently short term subgoals are
sent to a local planner, which navigates the robot within its nearby vicinity.

The remainder of the chapter is organized as follows. First, we give a brief overview about
the components of the system in Section (8.1). Subsequently, we discuss how we utilize the
terrain classification to match the trails contained in OSM with the local vicinity of the robot
in Section (8.2). Afterwards, we describe how the MCMC technique can be used for our
purpose in Section (8.3). Finally, we evaluate the robustness and timings of our approach
in Section (8.4). At the end, we provide an overview of related work in Section (8.5) and
conclude the chapter in Section (8.6).

8.1 Preliminaries

In this section, we introduce the framework that we use in this chapter. We aim to use the
road network from OpenStreetMap as a global topo-metrical map in order to provide short
term subgoals to a local planner, which is applied to the local vicinity of the robot and is in
charge of planning a path from the current robot position to the next subgoal. Thereby, it will
take sensor information provided by GPS, IMU, odometry and a 3D-LiDAR into account.
For obstacle detection, the local planner uses the approach provided in the previous chapter.
The challenge is to correctly align the frame of OpenStreetMap, which is given in UTM
coordinates, and the local frame of the robot such that the subgoals are located on the street
and the position in the OSM is correct in order to send the correct upcoming subgoal at the
right time. Thereby, we need to take into account that the GPS and odometry measurements
are corrupted by noise and that the map may exhibit errors of varying extend. A failure of this
alignment will result in subgoals that are not on the street and the robot may drive off, or if
the subgoal is unreachable, it might even get stuck.

94 CHAPTER 8. OPENSTREETMAP NAVIGATION

8.1.1 Planning on OpenStreetMap

For efficient planning on the street-network graph, we use a standard A?-planner to plan a
path to the desired goal location on the OSM graph. Assuming that the vehicle is located on a
road, we determine the start point is, from the orthogonal projection, the closest street in OSM,
according to the GPS pose estimate. In order to provide incremental subgoals to the local
planner, we sub-sample the path generated by the A? algorithm equidistantly. Accordingly,
we obtain a sequence of proposed subgoals gG0 , . . . , g

G
n in the global UTM coordinate system.

During the autonomous navigation, we keep track of the robot pose within OSM and whenever
a subgoal is almost reached, we send the next one, until the final goal-point is sent. An
example of this sub-sampled path is depicted in red in Figure (8.2) (a). As we can also see
there, this approach, solely based on GPS, can not be used directly due to diverse sources
of errors, such as inaccuracies in the map or the GPS pose estimate. From our observations,
we can confirm the claim made by Máttyus et al. [71] that these errors mostly matter in the
direction perpendicular to the road. To correct this error and thus make the navigation plan
useful, our approach includes a dedicated classifier for the terrain in the vicinity of the robot
to identify the road. In Figure (8.2) (a), we see that the uncorrected path, depicted in red,
as retrieved from OSM is heading offroad and the robot could not reach those poses at all.
In contrast to that, the corrected path, depicted by black lines, is nicely aligned with the
street (yellow), which enables the robot to follow the desired path on the trail.

8.1.2 Semantic Terrain Information

To integrate the global subgoals consistently into the local frame of the robot, we will rely
on our 3d-lidar-based semantic classification of the terrain type, which we have already
introduced in Chapter 7.2. We distinguish between the terrain classes street, dirt road, grass,
vegetation and other, see Figure (8.2) (a) for a visualization of the terrain class map in a
forest environment. With this information, we can compute relative weights between potential
subgoal positions using decreasing scores from street to other. In our system, the terrain
class map is maintained independently to model the local vicinity of the robot, which is also
explained in the previous chapter. In the forthcoming section, we explain, in detail, how
we use the semantic information to make the global OSM plan useful to an autonomously
navigating robot.

8.2 Subgoal Alignment

In this section, we explain how our approach combines the information from the two
independent maps. From the global planner on OSM, we receive a series of subgoals
gG0 , . . . , g

G
n , which are represented by their UTM-coordinates. We transform the received

subgoals to our local odometry frame, leading to gL0 , . . . , g
L
n . With the subgoals in the robot

frame, we calculate the difference GL
k = gLk − gLk−1, which we represent by the orientation

θk = atan2(GL
k (y), GL

k (x)) and the distance dk = ‖GL
k ‖2, and model it as values of a random

variable uk. The goal of our work is to find the best configuration of the local subgoals, taking
the observations from the 3d-lidar into account. To achieve this goal, we derive a probabilistic
formulation in Section (8.2.1) and provide details of its components in Section (8.2.2) and

8.2. SUBGOAL ALIGNMENT 95

(a) (b) (c)

Figure 8.2: Subfigure (a) visualizes the semantic classification, distinguishing street (yellow),
dirt-road (brown), grass (green), vegetation (purple) and other (pink). The red line visualizes
the OSM representation without correction and the black line shows positions estimated by
our approach. Subfigure (b) visualizes the weighting function, bright colors correspond to
high weights. In subfigure (c), blue markers represent the distribution of the samples for our
subgoals.

Section (8.2.3). Finally, to estimate the positions of the most recent subgoals we use this
formulation in a Markov-Chain Monte-Carlo approach in Section (8.3).

8.2.1 Probabilistic Formulation
Our goal in this chapter is it to find the most likely arrangement of the local subgoals
ĝ0, . . . , ĝn, such that every subgoal is on the street, given the relative positions u1, . . . , un and
the observations, which are the terrain classification results that are stored in the terrain class
map, Z .

ĝ0:n = argmax p (g0:n | Z, u1:n) (8.1)

This results in a 2(n+ 1)-dimensional optimization problem and to the best of our knowledge
there is no efficient method to directly solve it. Therefore, we aim for a recursive solution in
order to reduce the dimensionality of the problem. By construction, we can assume that the
subgoals g0:n, given u1:n, satisfy the Markov property and therefore form a Markov-Chain.

p(gn | g0:n−1, u1:n) = p(gn | gn−1, un) (8.2)

Moreover, we make the assumption that the cells of the terrain map are independent and
therefore, given the subgoals gi are well separated, the observations z0:n corresponding to the
individual subgoals are independent given the subgoals.

p(z0:n | g0, . . . , gn) =
∏
i≤n

p (zi | gi) (8.3)

Now, we can iteratively apply Bayes rule and combine it with Eq. (8.2) and Eq. (8.3) to derive
the following factorization of the posterior.

ĝ0:n = argmax
g0:n

p (g0)
∏
i

p (zi | gi) p (gi | gi−1, ui) (8.4)

96 CHAPTER 8. OPENSTREETMAP NAVIGATION

0 4 8 12 16 20

0

4

8

12

16

20

x

y

0 4 8 12 16 20

0

4

8

12

16

20

x

y
Figure 8.3: Visualization of the different process models. On the left is the well-known
banana-shaped distribution [118], and on the right is the process model distribution with the
discounting factor cos−1, as introduced in Eq. (8.6).

Here, p (g0) is the prior distribution, p (zt | gt) is the observation likelihood and p (gt | gt−1, ut)
is the process model. Even though each factor can be computed efficiently now, the search
space for a full trajectory remains too large. Therefore, we use an iterative solution to
overcome this.

8.2.2 Process Model

We assume that the main source of error occurs perpendicular to the street direction given in
OSM. We take this into account for our process model as follows:

gk = h (gk−1, uk,∆) , with (8.5)

h (gk−1, uk,∆) = gk−1 +
dk + ∆d

cos(∆θ)

(
cos(θk+∆θ)
sin(θk+∆θ)

)
(8.6)

and ∆ is a zero mean Gaussian noise variable.

∆ = (∆d, ∆θ) ∼ N
(

(0, 0) ,

(
σd 0
0 σθ

))
(8.7)

The additional factor (cos(∆θ))−1 accounts for the angular deviation and adjusts the distance,
unfolding the commonly used banana-shaped distributions perpendicular to the street direction,
as depicted in Figure (8.3). For the initial distribution, we assume that the direction of the
street is known and therefore model

g0 ∼ N
(
gL0 ,Σ0

)
(8.8)

with an appropriately rotated covariance matrix. The visualization of the sample distribution
is shown in Figure (8.2)(c).

8.3. SEQUENTIAL MARKOV-CHAIN MONTE-CARLO SAMPLING 97

8.2.3 Measurement Model

To calculate the observation likelihood, we use the terrain class map, which we derive from the
measurements as described in Section (8.1.2). For a quantification of the semantic information
given a local subgoal g, P (Z | g), we map the terrain classes to costs, which increase as
it becomes more unlikely to see a class on a road. More precisely, we define a function
f : T → R+

>0 from the set of classes T = {street , dirtroad , grass , vegetation, other} to a
discrete subset of the real half-line. Given the mapping f we can calculate a value for each
cell C ∈ Z using the results of the fuzzy classification, by calculating the expected value of
the function f over all terrain classes of cell C as

fE(C) =
∑
t∈T

f(t)P (t | C), (8.9)

where P (t | C) is maintained by the terrain map. Now, as we aim to find evidence that a
subgoal is placed on the trail, and since our map has a fixed resolution r, we do not only use
a single cell but a square grid neighborhood with the center at the cell corresponding to the
subgoal g. We refer to this neighborhood as N (g), which has a size of (2N + 1)× (2N + 1).
With respect to this we compute the final costs as an equally weighted average of fE over the
cells in N (g).

fN (g) =
1

|N (g)|
∑

C∈N(g)

fE(C) (8.10)

To transform this cost value into a likelihood, we use an exponential distribution with parameter
λ in our current implementation, stating the observation likelihood as

P (z | g) ∼ λ exp
(
−λfN (g)

)
. (8.11)

Recall that we used the term of well separated subgoals in the derivation of Eq. (8.3), now
it is clear that this characteristic is defined as N (gi) ∩N (gj) = ∅, ∀i 6= j. This also shows
the tight connection between the assumption that observations are independent given the
subgoals and the independence of the cells in the terrain map Z . Figure (8.2)(b) visualizes the
observation likelihood for every cell of the map.

8.3 Sequential Markov-Chain Monte-Carlo Sampling

To solve the optimization problem stated in Eq. (8.4), we employ a MCMC method for an
incremental solution. In the real world, one of the main problems for our approach is visibility.
Especially in forested environments, an intersection is often not observed before the robot
actually arrives there. Moreover, the process model, given in Eq. (8.6), models the incremental,
moderate error and cannot resolve a larger error, which typically occurs at intersections, in a
single step. On the other hand, we are interested in subgoals that are as far away as possible,
which is in favor of the local planner. Therefore, we do not only sample the most recent

98 CHAPTER 8. OPENSTREETMAP NAVIGATION

subgoal, but a sequence of the most recent K subgoals.

p (gn−K+1:n | Z, u1:n) =∫ (n∏
i=n−K+1

p (zi | gi) p (gi | gi−1, ui) ·

p(gn−K+1 | gn−K , un−K)p (gn−K | Z, u1:n−K)

)
dgn−K (8.12)

Unfortunately, this increases the complexity of the distribution and especially in online
scenarios, computation time is crucial. Therefore, we need to find a proper trade-off between
accuracy and computational time, which we analyze in our experimental section. To complete
the description of our approach, we briefly state the different steps, which are sampling,
weighting and resampling. In our case, a sequence hypothesis Gj consists of samples of the
most recent K subgoals, sequentially sampled from the proposal distribution

Gj ∼
n∏

i=n−K+1

p (gi,j | gi−1,j, ui) . (8.13)

In practice, we sample a sequence hypothesis consecutively using Eq. (8.6) with samples from
the distribution given in Eq. (8.7). Furthermore, we calculate the importance weight for Gj as

wj ∝
n∏

i=n−K+1

p (zi,j | gi,j) . (8.14)

Both computations can be done efficiently due to the recursive structure and the independence
of observations. However, the high dimensionality of the state space requires substantially
more samples. After the weighting, we calculate the so-called number of effective particles
neff =

(∑
w2
j

)−1. If neff is fewer than half of the number of samples, we perform a resam-
pling procedure in which we use stochastic universal sampling as introduced by Baker [9].
For the current state, we use the expectation of the sampled trajectory.

8.4 Experiments
We evaluated our approach using real world experiments, with the robot shown in Figure (8.1),
which navigated autonomously in previously unexplored environments as well as with data
that was recorded navigating the robot via remote control. We give a detailed overview of our
system settings in Section (8.4.1). To evaluate our approach, we measure the displacement of
the proposed subgoals relative to the true path in our local frame. Thereby, we will investigate
the influence of the sequence length K and the number of samples we use to approximate the
distribution in Eq. (8.12) in Section (8.4.2). As intersections are critical situations that need
to be resolved correctly for the success of autonomous navigation in real world applications,
we analyze the behavior of our approach at such points in Section (8.4.3). Especially in
online settings, runtime becomes important and results concerning this are discussed in
Section (8.4.4). Finally, we reason limitations of the approach and discuss cases in which our
approach may fail to find the correct path in Section (8.4.5).

8.4. EXPERIMENTS 99

Mooswald Schauinsland

Figure 8.4: GPS tracks of the datasets we used for evaluation on an aerial image. Autonomous
trajectories are colored in yellow, remotely controlled trajectories are colored in red. Mooswald
datasets are collected nearby our campus and Schauinsland datasets are collected from a
mountain with the same name, near Freiburg.

8.4.1 System Setting

For all experiments we used data from the same robot, equipped with a Velodyne HDL-64E
3d-lidar sensor, Kalman-filtered GPS and internal odometry aided by gyroscope and IMU. The
terrain classification integrates measurements for a driven distance of d = 0.5m between the
feature computation steps. The resolution of the grid was set to 0.2m with a rolling grid of size
300× 300, see Section (7.2). Subgoals were generated with a distance of four meters, and the
map service we used was OpenStreetMap. For all experiments, we set the neighborhood size
N = 2, which corresponds to a patch size of 1m× 1m, and λ = 4, see Section (8.2.3). The
terrain cost function was set to {street : 0.1, dirt : 0.2, grass : 0.4, vegetation : 0.8, other :
1.0}. If a cell without observations was requested, a default value, equal to that of other ,
was returned. For the evaluation, we considered datasets from two locations, one nearby
our campus (Mooswald) and one from a mountain near Freiburg, the Schauinsland. The
GPS-tracks of the trajectories are visualized on aerial images in Figure (8.4). All in all, we
evaluated data with an overall trajectory length of 14 kilometers.

8.4.2 Performance

First to mention, we successfully applied our approach to a real robot, navigating autonomously
in both areas, see Figure (8.4), with an overall trajectory length of 5.2 km, in which we used
1,000 samples and a sample sequence length of four. Our approach made the difference
between the robot leaving the road and getting stuck, and successfully reaching its goal. To
quantify these qualitative results, we calculate the root mean squared error (RMSE) measuring
the distance of the subgoals, to the middle of the desired trails in the local frame. Due to the
lack of ground truth data, we approximate the error utilizing the knowledge that the robot was
driving near the middle of the trails most of the time. Given a sequence of robot poses p1:m

and a sequence of subgoals gK1:n, corrected with a sample sequence length K, and assuming a
medium street-width s of 3m, we calculate the RMSE as:

100 CHAPTER 8. OPENSTREETMAP NAVIGATION

1 2 3 4 5 6 7 8 9 10

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

3.75

4

Sample sequence length

R
M

S
E

in
[m

]

OSM

Ours 1,000

Ours 5,000

Ours 10,000

Ours 50,000

Figure 8.5: Average RMSE over ten instances for Ours (N) and the uncorrected data from
OSM, where N denotes the number of samples. Our approach achieves similar RMSE for
different sample sizes and the minimum for the sequence length of four.

RMSEK =

√√√√√∑
i≤n

max

(
min
l≤m
‖gKi − pl‖2 − s

2
, 0

)2

n
(8.15)

For the computation of the RMSE, we concatenate the poses and subgoals of all trajectories.
We examine samples sizes between 1,000 and 50,000 and vary the sequence length from one
to ten. Due to the randomized nature of our approach, we run ten instances for each setting
and calculate the RMSE for each instance.

We compare the average RMSE of the proposed method with different settings, to the raw
data without correction from OSM, the results are depicted in Figure (8.5). The sequence
length of four achieves the minimum RMSE for all the sample sizes, ranging from 0.78m
for 1,000 samples to 0.72m for 10,000 samples. Compared to the raw subgoals from OSM,
which exhibits a RMSE of 3.6m, our method yields an error reduction of up to 80%. The
results indicate, that for longer sequence lengths the dimension for the sampling is too large,
such that even when using 50,000 samples the RMSE is higher than with fewer particles and
shorter sequence sample lengths. In the forthcoming section, in which we inspect the results
of the approach at intersections, we give an explanation for this behavior.

In Figure (8.6) we compare the errors at each subgoal, corrected with our approach using
1,000 samples and a sequence length of four to the errors of the raw subgoals from OSM. The
errors of OSM exceed ten meters several times, while the errors of our approach are typically
below 1m; except for one situation, which we explain in Section (8.4.5), the single peaks that
exhibit a higher error for our approach, stems from crossings where the area of possible street
points is large and the robot often takes a shortcut relative to the shape representation in OSM,
which is not considered by our error measurement. Nevertheless, comparing the errors from
our approach to OSM in a single tailed paired student’s-t-test, the better performance of our
approach was significant (α = 0.05) for all settings and instances.

8.4. EXPERIMENTS 101

0 500 1,000 1,500 2,000 2,500 3,000

0

1

3

5

7

9

11

13

15

17

19

Subgoal

E
rr

o
r

in
[m

]

OSM

Ours

Figure 8.6: The error of our approach compared to uncorrected data from OSM for every
subgoal used in our evaluation set. For our approach, we use 1,000 samples and a sequence
length of four in this case.

8.4.3 Intersections

In the previous section, we measured the average displacement between the middle of the
trails and the estimated position of the subgoals over the whole trajectory. This measure shows
a similar behavior for a wide range of settings. This is because keeping the subgoals on the
trails in the local frame, works robustly for most of the provided settings. However, in practice,
the most critical situations occur at intersections, as there the robot will get stuck if it cannot
find the desired path. In this section, we focus on such situations and take a closer look at
the results of our approach at six intersections. Successful examples at those intersections,
as achieved by our approach with 1,000 samples and a sample sequence length of four, are
depicted in Figure (8.7). For this evaluation, we again recorded the results of ten instances of
our approach and checked whether or not it could estimate feasible subgoals on the desired
trails. We examine situations in which the intersections in OSM are located too far ((a) and
(b)) and too close ((c) and (d)) relative to the driving direction, as well as an intersection
that is exposed to large shape approximation errors, intersection (e), and for validation: an
intersection that is well aligned, intersection (f).

The mapped nodes in OSM at the intersections (a) and (b) are located farther in the map
than they appear in the local frame. As the robot has already passed the intersection while
following the subgoals, the terrain map contains rich information about the intersection and in
this situation the subgoals could be aligned correctly for all settings. Notably, intersection (b)
offers several options for failure, as our approach may detect the wrong street as the desired
path. However, we passed this intersection several times from both directions and never
observed the approach to fail there.

In contrast to this case, at intersections (c) and (d), the junction is located closer in the
map than in the local frame. This situation is more critical to our approach, as by visibility
constraints, the terrain class map may not be as informative as in the former case. When the
robot reaches the presumed point of the junction, only a partial view of the intersecting track
is available. This situation is more severe at intersection (d), as the OSM is more off there. In
these cases, we observe different success rates for different settings of our approach. When

102 CHAPTER 8. OPENSTREETMAP NAVIGATION

(a) (b) (c)

(d) (e) (f)

Figure 8.7: Intersections constitute challenging situations for our approach. For intersections
(a) and (b) the junction point is located too far in the map (red), a situation that is typically
well handled by our approach (black). At intersections (c) and (d), the junction point appears
too early in the map. These situations are challenging as there is only partial visibility and not
all parameter settings can resolve this. At intersection (e) we face substantial approximation
errors and for intersection (f) the map is well aligned with the local frame.

the chosen sequence length K is too small, e.g., K = 1, the degree of freedom is not sufficient
to successfully resolve the situation. On the other hand, when we set K too large, the number
of samples may not be sufficient to explore the full state space, leading to inferior results.
More specifically, with a sequence length K = 1, our approach can not resolve situations at
both intersections, no matter which sample size was used. When we applied a sequence length
between two and four, K ∈ {2, 3, 4}, the results improve substantially. At intersection (c) our
approach was able to successfully find the desired path, with qualitatively better results when
the K was set to two or three. However, at intersection (d) with 1, 000 samples the sequence
length of four was superior, with this setting, our approach found the desired path in nine
of the ten trials, while it was only found in four cases when K was set to two. Raising the
number of samples improves the results, as e.g., for K = 2 and a sample size of 50, 000, our
approach was successful in nine of the ten trials. For a larger sequence length, we tested up
to K = 6, and the success rate drops, as the space to explore is too large. Even with 50, 000
particles, no successful trial was observed at intersection (d).

At intersection (e) we see that the OSM approximation of the path does not match the true
conditions, as the trail takes a short detour to the left. In this case, the path is erroneously
approximated in the OSM but the intersecting street is matched well, our approach can resolve
this situation successfully with each setting. Finally, intersection (f) is well aligned in the
OSM and we have included it in this evaluation as a verification example. As already expected
from the former cases, this situation is handled successfully for each of the settings.

The results in this section explain the shape of the RMSE curves of the former section. As
visibility is good and differences occur incrementally, each setting achieves relatively good
results; however, in cases like intersection (c) and (d) the sample sequence length and the
number of particles matters. As behind the crossing our method usually recovers, and this
results in only a moderate increase of the RMSE.

8.4. EXPERIMENTS 103

1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

80

90

100

110

Sample sequence length

A
v
er

ag
e

ti
m

e
in

[m
s
] Ours 1,000

Ours 5,000

Ours 10,000

Ours 50,000

Figure 8.8: Average runtime for calculating an update for Ours N , where N denotes the
number of samples.

To conclude, the results in real world navigation tasks depend on a complex interaction
between: the sensor visibility, the behavior of the local planner, and the implementation of
how the global planner sends a new subgoal. In our implementation, we found that sequence
lengths between two and four show good results, and we chose four when the robot operates
autonomously, as, in general, the results look qualitatively best in this case.

8.4.4 Runtime
Execution time of the approach is important, especially when deployed in a real autonomous
system. Our approach is efficiently implemented in C++ and the runtime was measured for the
different settings on a single core of an Intel(R) Core(TM) i7-2700K CPU @ 3.50GHz. The
reported computation time does not include updates of the terrain map, which were computed
every 0.5m in a separate thread and took on average 0.3s. The runtime is almost linear in
the number of samples and the sequence length, see Figure (8.8). With 1,000 samples and a
sequence length of four, the average update time is 8.3 ms, whereas this increases to 62 ms
with 50,000 samples. Our choice of parameters is fully supported by our runtime and accuracy
evaluation. This setting of the system yields realtime performance, which is integral for
autonomous navigation in real world scenarios.

8.4.5 Limitations
The performance of our approach depends on the quality and correctness of the terrain
classification. In the remotely controlled experiments, we encountered a situation in which
the path was covered by grass and several meters away the classifier found evidence for a dirt
road; accordingly, the estimation of the subgoals drifts towards that region, see the left image
in Figure (8.9). Nevertheless, as soon as the path is distinguishable from the surroundings
some meters later, our approach can successfully recover from this failure, see the right image
in Figure (8.9). This means that an autonomously navigating robot may deviate from the
desired path in such a region and return to it as soon as our method recovers from its failure.

104 CHAPTER 8. OPENSTREETMAP NAVIGATION

Figure 8.9: An example where our approach fails to find the correct path (left), due to an
ambiguous classification outcome. The path from OSM (red) matches precisely. Our method
(black) estimates the subgoals at an area that is classified as dirt road, whereas the actual path
is classified mostly as grass. As soon as the classification improves, our method recovers
(right).

Another potential source of errors was already identified in the previous section, as we have
seen there that intersections that are mapped earlier than they appear are difficult to resolve. If
the intersection node is placed too far off, our approach as presented, may not find the junction
point, as it is out of sight. However, this could be solved by detecting such situations and then
employing an active search for the junction point.

8.5 Related Work
In recent years, publicly available maps like OSM have gained interest in robotic applications
and several authors have utilized such maps for localization purposes by matching the road
network against data observed by the robot. For example, Floros et al. [31] use the Chamfer-
distance to compare chunks of visual-odometry trajectories from the robot with the network
structure of OSM. Mandel and Birbach [69] fuse GPS and odomtery data for OSM localization.
Ruchti et al. [100] segment single 3d-lidar scans into street and no street areas and match
the street segments against the road-network, while also taking into account the negative
information of no street. Whereas these approaches show an impressive robustness for global
localization, they only provide limited accuracy with localization errors typically exceeding
several meters. In the context of our work, this error is too large.

Other approaches use maps of geotagged images as a source for localization and match
information retrieved from images against the images in the map. There are also feature-based
approaches that match panoramas, e.g., from GoogleStreetView, against the local camera
images [2, 123, 138]. However, these approaches assume a rich image-based map, which is
not available everywhere, especially not in outer-urban and forested environments. Another,
camera-based, approach by Radwan et al. [96] extracts textual information from images and
matches it against georeferenced text of the map for localization, a source of information that
is sparse in outer-urban environments.

8.6. CONCLUSIONS 105

More similar to our approach is Máttyus et al. [71], who combine monocular aerial images
with stereo images from a robot, estimating their pose in OSM and enhancing the map with
semantic information that is derived from deep learning image classification. The authors
assume the error of the OSM alignment to be perpendicular to the road direction, an assumption
that we make in our approach, as well. However, they also assume that the error is within
a fixed bounds of four meters, which seems sufficient for the urban dataset from KITTI. In
our case, we cannot restrict the error to fixed bounds, since in forested environments we face
errors of up to ten meters and more.

Another approach by Irie et al. [49] extracts boundaries from the structural representation of
GoogleMaps and projects them to images recorded by the robot. The matching score is based
on squared-loss mutual information between the image features and projected labels from the
map. This approach is dedicated to urban environments and needs manual preprocessing for
map conversion.

An approach to OSM navigation was recently presented by Hentschel and Wagner [46]
where 3d-lidar data is matched against the rich information of landmarks also provided by
the map, e.g., the compendium of buildings. The approach is particularly suited for urban
environments and cannot directly be applied to outer-urban environments, as they are not
guaranteed to contain a sufficient amount of the required features.

From the related work, it is clear that the uncertainty in the quality of OSM is a well-known
problem. In the context of urban environments, approaches often assume error bounds ranging
from two to four meters, which is typically a strong assumption for less frequently used
outer-urban environments. Haklay [44] evaluated the quality of OSM with a focus on London
and England. His analysis shows that positions recorded by Ordnance Survey (OS) at different
areas in London are on average six meters away from the corresponding positions in OSM.
He also compared the overlap of smaller roads in OS and OSM with results varying from 5%
to 100%. This shows the varying quality of such maps and also provides a clear motivation
for our work presented in this chapter.

8.6 Conclusions
In this chapter, we presented an approach to using publicly available map data from Open-
StreetMap for autonomous navigation in outer-urban environments at previously unseen
locations. Our approach relies only on perceptions of the local vicinity of the robot, and there-
fore, requires constant memory only. Furthermore, it is highly efficient and can operate online
on a robot navigating autonomously in real world settings. The proposed approach needs
neither an accurate map nor an accurate localization on the map for autonomous navigation.
In comparison to the raw data from OSM, the corrections of our approach are significant and
the differences between the trails in the map and the trails in the local frame exceed ten meters
several times.

Future Work
In future work, we can imagine investigating deep learning methods for terrain classification
to further increase the robustness of our approach. On the planning level, a more sophisticated
method that actively searches for the crossing in the case of larger errors, which should

106 CHAPTER 8. OPENSTREETMAP NAVIGATION

increase the robustness, since it would overcome the visibility constraints of our approach.
Most interesting would be to apply an optimization scheme in order to improve the OSM itself.
This could be a great improvement, especially in the less frequently visited outer-urban areas.

Chapter 9

Conclusion

In this thesis, we discussed a number of techniques for highly relevant topics in the field
of Autonomous Navigation. Our contributions are dedicated to the problems of: SLAM,
localization facing changes in the environment, traversability analysis, and the interpretation
and usage of third party maps. Each contribution covers a specific problem for autonomously
navigating robots and has advanced the state-of-the-art in respective fields.

First, we addressed the problem of large scale SLAM under limited resources, specifically
limited main memory. We proposed a hierarchical construction, subsequently dividing the
large problem into independent sub-problems, each of bounded size. Thereby, we efficiently
approximate the marginal distribution of nodes using a tree. The loss of accuracy is moderate,
as shown in the experiments. Moreover, we showed our this approach needs significantly
less memory than state-of-the-art exact solvers and outperforms other approximate solvers in
terms of accuracy and memory consumption. When the main memory is limited, our approach
computes the solution faster than state-of-the-art solvers, which shows the advantage of the
hierarchical construction when compared to the paging mechanism of the operation system.

Once a map is computed, the purpose is to achieve a robust localization for a mobile
robot. A remaining challenge in the area is to cope with changes in the environment, which
may occur for multiple reasons. Subsequently, we address such challenges in two different
domains. At first, we presented an approach to robustly localize a mobile robot relative to an
object, e.g., a table, which is dedicated to industrial environments, using a 2d-laser sensor. We
proposed an extension to the popular ICP-algorithm, which takes multiple reference frames
into account and computes a joint solution for this task. Our approach can cope with moderate
movements of predefined objects and achieves an accuracy that is considered sufficient for
industrial applications. The other problem we addressed in this domain is dedicated to robust
visual localization, facing severe changes in the appearance of the environment. The goal of
the presented approach is to enable visual localization, given two image sequences that are
recorded during continuous runs of a mobile robot with a substantial time difference between
them. During the time between the first and second run, the appearance of the environment is
substantially affected by seasonal changes. The presented approach employs a Bayesian filter,
taking the sequential nature of the recorded images into account, and a sensor model, which is
based on HOG-features, in order to infer the correspondences between the two image sets. As
shown in extensive experiments, our approach outperforms state-of-the-art techniques and can
handle more complex datasets, for which other approaches cannot return meaningful results.

We then discussed the safety relevant topic of traversability analysis. This topic is of utmost
importance to autonomously navigating robots, since it is responsible for the safe success
of autonomous tasks. Thereby, it needs to take both sides into account: safety and mobility.

108 CHAPTER 9. CONCLUSION

First, we presented a learning approach to infer traversability characteristics of a robot from
human demonstrations. In this approach, we proposed a framework that successfully inferred
a traversability model from only positive demonstrations of traversable ground. Our method
does not require the users to have special training to create traversability models for robots.
In the experimental evaluation, we showed that the same approach is applicable to different
robots and we achieved good results for traversability with respect to the safety relevant
measures. However, the approach assumes traversability as a cell-wise static property of the
environment and provides only slow updates, which is sufficient if no dynamics are present in
the environment. We tackled this shortcoming in the following chapter, where we presented
an approach to fast and efficient obstacle detection. To achieve this, we combine slowly
updated semantic terrain information with quickly updated information to compute geometric
features. We showed that the overall computational effort of the full navigation system can
be accomplished by fewer than two cores, despite the complex nature of the outer-urban
outdoor environment, in which the robot navigated autonomously. For both approaches, the
perceptual sensor was a 3d-lidar, which was used for both tasks: inferring the terrain type and
computation of the geometric features.

Finally, we presented an approach to autonomous outer-urban navigation using the map data
from OpenStreetMap. We showed that semantic terrain information can be used to successfully
cope with the errors of the system, introduced by inaccurate map data and inaccurate GPS
measurements. This approach makes it possible to perform navigation tasks at previously
unseen locations, which is not possible with common autonomous navigation systems. This
navigation approach and the online obstacle detection were successfully deployed on a real
autonomously navigating robot, which was developed within the framework of the EU-Project
LifeNav.

To sum up, in this thesis, we presented a number of techniques that advanced the state-of-
the-art in different areas of Autonomous Navigation. The presented approaches are designed
for real autonomy, which means that all computations can be done on-board with a standard
CPU and without the need for communication between robots or other external computation
power.

Future Work
As it is the nature of scientific problems, there are manifold possible starting-points for future
work. We briefly show some examples that, from our point of view, would be the most
interesting.

For the memory efficient SLAM approach, it could be beneficial to recover the covariances
of the final estimate. Therefore, it is probably necessary to change the approximation of the
marginal distributions; however, results towards this would make the approach stronger. So
far, the approach is used as a batch approach, an incremental version of which would make
the approach applicable to online settings with low computational resources.

Recently, the methods using deep neural networks have gained in popularity and it looks
like that they have started to conquer more and more topics related to autonomous navigation.
Even though the limits of such approaches need to determined, they could be integrated within
the context of this work at several points. For example, one could use features computed by
convolutional neural networks for the visual localization approach, since they seem to provide
more expressiveness than previous state-of-the-art features. They could also be integrated

109

within the traversability approach, e.g., to aid the terrain classification, or to directly reason
about obstacles.

Finally, it seems possible to extend the method for outer-urban OSM navigation to correct
the OSM data, based on the estimates made within the approach. GPS-based methods for
crowded environments already exist; however, they rely on a large amount of data that is not
available for less frequently visited outer-urban areas.

List of Figures

3.1 Hierarchical graph partitioning . 13
3.2 Construction of the approximate separator graph 16
3.3 Hierarchies computed by SMF for different datasets. 17
3.4 Manhattan world dataset example. 19
3.5 Memory consumption comparison. 20
3.6 Runtime comparison with memory constraints. 21

4.1 Illustration of the relative localization problem. 26
4.2 Illustration of inconsistent global and relative pose. 27
4.3 Illustration of a segmented point-cloud . 28
4.4 Graph representation of ICP with multiple reference frames. 29
4.5 Graph representation for the reference point cloud registration. 31
4.6 Graph representation for the local point cloud registration. 32
4.7 Quantitative results of the simulation experiments 33
4.8 Map of the simulation environment. 34
4.9 Image of the real world environment. 35
4.10 Quantitative results of the real world experiments 36

5.1 Local gradient information . 40
5.2 Illustration of the similarity normalization 43
5.3 Illustration of whitening transformation . 47
5.4 True positives of our localization approach. 49
5.5 Successful matches for the VPRiCE dataset 50
5.6 Results for the scattered trajectories . 52
5.7 Results for the connected trajectories . 53
5.8 Results for NewCollege . 54
5.9 Evaluation varying the sequence length . 55

6.1 Two robots with different capabilities . 60
6.2 Illustration of training and evaluation trajectories as used with Viona 63
6.3 Illustration of training and evaluation trajectories as used with Obelix 64
6.4 Qualitative results for learned traversability maps 65
6.5 Qualitative results for learned traversability maps 68
6.6 Evaluation of the mixed outer urban and urban scenario 69

7.1 Illustration of different terrain types . 74
7.2 Example for geometric measures . 75
7.3 Geometric feature calculations . 77
7.4 Obstacle probabilities . 79

112 LIST OF FIGURES

7.5 Qualitative evaluation of the terrain classification 81
7.6 Illustration to show necessity for terrain adaption 82
7.7 GPS-track of the evaluation trajectory . 85
7.8 CPU usage of our approach during the real world experiment. 85
7.9 Average KL divergence comparison . 86
7.10 Differences between approximations . 87

8.1 Motivation for OSM navigation . 92
8.2 Approach overview . 95
8.3 Difference between the process models . 96
8.4 GPS tracks of the trajectories for the evaluation 99
8.5 Average RMSE . 100
8.6 Error at each time step . 101
8.7 Challenges at intersections . 102
8.8 Average runtime . 103
8.9 Example for deviation and recovery . 104

List of Tables

3.1 Small Memory Footprint Mapping (χ2, Time) 22
3.2 Small Memory Footprint Mapping (RPE) 23

5.1 F1-Scores comparison . 51

6.1 Evaluation for Obelix on the campus trajectory. 70

7.1 Terrain class dependent parameters . 83
7.2 Terrain Classification Confusion Matrix . 84

Bibliography
[1] G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems:

A survey of the state-of-the-art and possible extensions. IEEE Tran. on Knowledge and
Data Engineering (TKDE), 17(6):734–749, 2005.

[2] P. Agarwal, W. Burgard, and L. Spinello. Metric localization using google street view.
In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2015.

[3] A. Ahmad, G. D. Tipaldi, P. Lima, and W. Burgard. Cooperative Robot Localization and
Target Tracking based on Least Square Minimization. In Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2013.

[4] P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering
algorithm. SIAM Journal on Matrix Analysis and Applications, 17(4):886–905, 1996.

[5] A. Angelova, L. Matthies, D. Helmick, and P. Perona. Learning and prediction of slip
from visual information. Journal on Field Robotics, 2007.

[6] D. Anguelov, R. Biswas, D. Koller, B. Limketkai, S. Sanner, and S. Thrun. Learning
hierarchical object maps of non-stationary environments with mobile robots. In Proc. of
the Conf. on Uncertainty in Artificial Intelligence (UAI), 2002.

[7] P. Babahajiani, L. Fan, and M. Gabbouj. Object recognition in 3d point cloud of urban
street scene. In Computer Vision-ACCV 2014 Workshops, 2014.

[8] H. Badino, D. Huber, and T. Kanade. Real-time topometric localization. In Proc. of the
IEEE Int. Conf. on Robotics & Automation (ICRA), 2012.

[9] J. E. Baker. Reducing bias and inefficiency in the selection algorithm. In Proc. of the
Second Int. Conf. on Genetic Algorithms, 1987.

[10] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up robust features (SURF).
Computer Vision and Image Understanding, 110(3):346–359, 2008.

[11] M. Bennewitz, C. Stachniss, W. Burgard, and S. Behnke. Metric localization with
scale-invariant visual features using a single perspective camera. In European Robotics
Symposium 2006. Springer, 2006.

[12] P. J. Besl and N. D. McKay. A method for registration of 3-d shapes. IEEE Tran. on
Pattern Analysis and Machine Intelligence (TPAMI), 14(2):239–256, 1992.

[13] R. Biswas, B. Limketkai, S. Sanner, and S. Thrun. Towards object mapping in non-
stationary environments with mobile robots. In Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2002.

116 BIBLIOGRAPHY

[14] I. Bogoslavskyi, O. Vysotska, J. Serafin, G. Grisetti, and C. Stachniss. Efficient
traversability analysis for mobile robots using the kinect sensor. In Proc. of the
European Conference on Mobile Robots (ECMR), 2013.

[15] M. Bosse, P. M. Newman, J. J. Leonard, and S. Teller. An ATLAS framework for
scalable mapping. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
2003.

[16] L. Breiman. Random forests. Machine learning, 2001.

[17] G. Broten, D. Mackay, and J. Collier. Probabilistic obstacle detection using 2 1/2 d
terrain maps. In Proc. of the 9th Conf. on Computer and Robot Vision (CRV), 2012.

[18] C. Cadena, D. Gálvez-López, J. D. Tardós, and J. Neira. Robust place recognition with
stereo sequences. IEEE Tran. on Robotics (T-RO), 28(4):871–885, 2012.

[19] N. Carlevaris-Bianco and R. Eustice. Learning visual feature descriptors for dynamic
lighting conditions. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), 2014.

[20] T. Chang, T. Hong, S. Legowik, and M. Abrams. Concealment and obstacle detection
for autonomous driving. In Proc. of the Int. Assoc. of Science and Technology for
Development-Robotics and Application, 1999.

[21] C. Chow and C. Liu. Approximating discrete probability distributions with dependence
trees. IEEE Tran. on Information Theory, 14(3), 1968.

[22] W. Churchill and P. Newman. Practice makes perfect? managing and leveraging visual
experiences for lifelong navigation. In Proc. of the IEEE Int. Conf. on Robotics &
Automation (ICRA), 2012.

[23] M. Cummins and P. Newman. FAB-MAP: Probabilistic localization and mapping in
the space of appearance. Int. Journal of Robotics Research, 27(6):647–665, 2008.

[24] M. Cummins and P. Newman. Highly scalable appearance-only SLAM – FAB-MAP 2.0.
In Proc. of Robotics: Science and Systems (RSS), 2009.

[25] E. Cuthill. Several strategies for reducing the bandwidth of matrices. In Sparse matrices
and their applications. Springer, 1972.

[26] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse. Monoslam: Real-time single
camera slam. IEEE Tran. on Pattern Analysis and Machine Intelligence (TPAMI), 29
(6), 2007.

[27] F. Denis, R. Gilleron, M. Tommasi, et al. Text classification from positive and unlabeled
examples. In Proc. of the 9th Int. Conf. on Information Processing and Management of
Uncertainty in Knowledge-Based Systems (IPMU), 2002.

[28] A. Dewan, T. Caselitz, G. D. Tipaldi, and W. Burgard. Motion-based detection and
tracking in 3d lidar scans. In Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), 2016.

BIBLIOGRAPHY 117

[29] C. Elkan and K. Noto. Learning classifiers from only positive and unlabeled data. In
Proc. of the 14th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining,
2008.

[30] C. Estrada, J. Neira, and J. Tardós. Hierachical SLAM: Real-time accurate mapping of
large environments. IEEE Transactions on Robotics, 21(4):588–596, 2005.

[31] G. Floros, B. van der Zander, and B. Leibe. Openstreetslam: Global vehicle localization
using openstreetmaps. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
2013.

[32] D. Fox. Adapting the sample size in particle filters through kld-sampling. Int. Journal
of Robotics Research, 22(12):985–1003, 2003.

[33] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte carlo localization: Efficient
position estimation for mobile robots. Proc. of the National Conference on Artificial
Intelligence (AAAI), 1999.

[34] D. Fox, J. Hightower, L. Liao, D. Schulz, and G. Borriello. Bayesian filtering for
location estimation. IEEE Pervasive Computing, 2(3):24–33, 2003.

[35] U. Frese. Treemap: An o(logn) algorithm for indoor simultaneous localization and
mapping. Autonomous Robots, 21(2):103–122, 2006.

[36] U. Frese, P. Larsson, and T. Duckett. A multilevel relaxation algorithm for simultaneous
localization and mapping. IEEE Tran. on Robotics (T-RO), 21(2):196–207, 2005.

[37] A. George and J. W. Liu. The evolution of the minimum degree ordering algorithm.
Siam Review, 31(1):1–19, 1989.

[38] A. Glover, W. Maddern, M. Milford, and G. Wyeth. FAB-MAP + RatSLAM:
Appearance-based slam for multiple times of day. In Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2010.

[39] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for grid mapping with
rao-blackwellized particle filters. IEEE Tran. on Robotics (T-RO), 23(1):34–46, 2007.

[40] G. Grisetti, C. Stachniss, and W. Burgard. Non-linear constraint network optimization
for efficient map learning. IEEE Tran. on Intelligent Transportation Systems, 10(3),
2009.

[41] G. Grisetti, R. Kümmerle, C. Stachniss, U. Frese, and C. Hertzberg. Hierarchical
optimization on manifolds for online 2d and 3d mapping. In Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), 2010.

[42] G. Grisetti, R. Kümmerle, and K. Ni. Robust optimization of factor graphs by using
condensed measurements. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), 2012.

118 BIBLIOGRAPHY

[43] J.-S. Gutmann and K. Konolige. Incremental mapping of large cyclic environments.
In Proc. of the IEEE Int. Symposium on Computational Intelligence in Robotics and
Automation (CIRA), 1999.

[44] M. Haklay. How good is volunteered geographical information? a comparative study of
OpenStreetMap and Ordnance Survey datasets. Environment and Planning B: Planning
and Design, 37(4):682–703, 2010.

[45] M. Haklay and P. Weber. Openstreetmap: User-generated street maps. IEEE Pervasive
Computing, 7(4), 2008.

[46] M. Hentschel and B. Wagner. Autonomous robot navigation based on OpenStreetMap
geodata. In Proc. of the IEEE Int. Conf. on Intelligent Transportation Systems (ITSC),
2010.

[47] A. Howard, M. Matarić, and G. Sukhatme. Relaxation on a mesh: a formalism for
generalized localization. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), 2001.

[48] A. Howard, M. Turmon, L. Matthies, B. Tang, A. Angelova, and E. Mjolsness. Towards
learned traversability for robot navigation: From underfoot to the far field. Journal on
Field Robotics, 2006.

[49] K. Irie, M. Sugiyama, and M. Tomono. A dependence maximization approach towards
street map-based localization. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), 2015.

[50] S. Jain and B. Argall. Automated perception of safe docking locations with alignment
information for assistive wheelchairs. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), 2014.

[51] D. Joho, C. Stachniss, P. Pfaff, and W. Burgard. Autonomous exploration for 3D map
learning. In Fachgespräche Autonome Mobile Systeme (AMS), 2007.

[52] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Fast incremental smoothing and
mapping with efficient data association. In Proc. of the IEEE Int. Conf. on Robotics &
Automation (ICRA), 2007.

[53] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert. iSAM2:
Incremental smoothing and mapping using the Bayes tree. Int. Journal of Robotics
Research, 31(2):216–235, 2012.

[54] R. E. Kalman. A new approach to linear filtering and prediction problems. Journal of
Basic Engineering, 82(1):35–45, 1960.

[55] G. Karypis and V. Kumar. Multilevelk-way partitioning scheme for irregular graphs.
Journal of Parallel and Distributed computing, 48(1):96–129, 1998.

[56] H. Kretzschmar and C. Stachniss. Information-theoretic compression of pose graphs
for laser-based slam. Int. Journal of Robotics Research, 31(11):1219–1230, 2012.

BIBLIOGRAPHY 119

[57] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. g2o: A general
framework for graph optimization. In Proc. of the IEEE Int. Conf. on Robotics &
Automation (ICRA), 2011.

[58] R. Kümmerle, M. Ruhnke, B. Steder, C. Stachniss, and W. Burgard. A navigation
system for robots operating in crowded urban environments. In Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), 2013.

[59] R. Kümmerle, M. Ruhnke, B. Steder, C. Stachniss, and W. Burgard. Autonomous robot
navigation in highly populated pedestrian zones. Journal on Field Robotics, 32(4):
565–589, 2015.

[60] S. Kuthirummal, A. Das, and S. Samarasekera. A graph traversal based algorithm
for obstacle detection using lidar or stereo. In Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2011.

[61] I. Kweon and T. Kanade. High resolution terrain map from multiple sensor data. In
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 1990.

[62] S. Laible, Y. N. Khan, K. Bohlmann, and A. Zell. 3d lidar-and camera-based terrain
classification under different lighting conditions. In Autonomous Mobile Systems 2012.
Springer, 2012.

[63] J.-F. Lalonde, N. Vandapel, D. F. Huber, and M. Hebert. Natural terrain classification
using three-dimensional ladar data for ground robot mobility. Journal on Field Robotics,
23(10):839–861, 2006.

[64] J. Larson and M. Trivedi. Lidar based off-road negative obstacle detection and analysis.
In Proc. of the IEEE Int. Conf. on Intelligent Transportation Systems (ITSC), 2011.

[65] J. Leonard and H. Durrant-Whyte. Mobile robot localization by tracking geometric
beacons. IEEE Transactions on Robotics and Automation, 7(4):376–382, 1991.

[66] D. Lowe. Distinctive image features from scale-invariant keypoints. Int. Journal of
Computer Vision, 60(2):91–110, 2004.

[67] F. Lu and E. Milios. Globally consistent range scan alignment for environment mapping.
Autonomous Robots, 4(4):333–349, 1997.

[68] W. Maddern, A. Stewart, C. McManus, B. Upcroft, W. Churchill, and P. Newman. Illu-
mination invariant imaging: Applications in robust vision-based localisation, mapping
and classification for autonomous vehicles. In Proc. of the IEEE Int. Conf. on Robotics
& Automation (ICRA), 2014.

[69] C. Mandel and O. Birbach. Localization in urban environments by matching sensor data
to map information. In Proc. of the European Conference on Mobile Robots (ECMR),
2013.

[70] R. Manduchi, A. Castano, A. Talukder, and L. Matthies. Obstacle detection and terrain
classification for autonomous off-road navigation. Autonomous Robots, 18(1):81–102,
2005.

120 BIBLIOGRAPHY

[71] G. Máttyus, S. Wang, S. Fidler, and R. Urtasun. HD Maps: Fine-grained road segmen-
tation by parsing ground and aerial images. In Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2016.

[72] J. Maye, R. Kaestner, and R. Siegwart. Curb detection for a pedestrian robot in urban
environments. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2012.

[73] M. W. McDaniel, T. Nishihata, C. A. Brooks, P. Salesses, and K. Iagnemma. Terrain
classification and identification of tree stems using ground-based lidar. Journal on
Field Robotics, 29(6):891–910, 2012.

[74] C. McManus, W. Churchill, W. Maddern, A. Stewart, and P. Newman. Shady dealings:
Robust, long- term visual localisation using illumination invariance. In Proc. of the
IEEE Int. Conf. on Robotics & Automation (ICRA), 2014.

[75] C. McManus, B. Upcroft, and P. Newman. Learning place-dependant features for
long-term vision-based localisation. Autonomous Robots, 39(3):363–387, 2015.

[76] M. Milford and G. Wyeth. Persistent navigation and mapping using a biologically
inspired slam system. Int. Journal of Robotics Research, 29(9):1131–1153, 2010.

[77] M. Milford and G. F. Wyeth. Seqslam: Visual route-based navigation for sunny
summer days and stormy winter nights. In Proc. of the IEEE Int. Conf. on Robotics &
Automation (ICRA), 2012.

[78] M. Montemerlo, S. T. D. Koller, and B. Wegbreit. FastSLAM 2.0: An improved particle
filtering algorithm for simultaneous localization and mapping that provably converges.
In Proc. of the Int. Conf. on Artificial Intelligence (IJCAI), 2003.

[79] H. P. Moravec and A. Elfes. High resolution maps from wide angle sonar. In Proc. of
the IEEE Int. Conf. on Robotics & Automation (ICRA), 1985.

[80] J. J. Moré. The Levenberg-Marquardt algorithm: implementation and theory. In
Numerical Analysis. Springer, 1978.

[81] L. Murphy and P. Newman. Risky planning on probabilistic costmaps for path planning
in outdoor environments. IEEE Tran. on Robotics (T-RO), 29(2):445–457, 2013.

[82] T. Naseer, L. Spinello, W. Burgard, and C. Stachniss. Robust visual robot localization
across seasons using network flows. In Proc. of the National Conference on Artificial
Intelligence (AAAI), 2014.

[83] T. Naseer, M. Ruhnke, C. Stachniss, L. Spinello, and W. Burgard. Robust visual SLAM
across seasons. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 2015.

[84] T. Naseer, B. Suger, M. Ruhnke, and W. Burgard. Vision-based markov localization
across large perceptual changes. In Proc. of the European Conference on Mobile Robots
(ECMR), 2015.

BIBLIOGRAPHY 121

[85] T. Naseer, B. Suger, M. Ruhnke, and W. Burgard. Vision-based markov localization for
long-term autonomy. Robotics & Autonomous Systems, 89:147–157, 2017.

[86] P. Neubert and P. Protzel. Local region detector+ cnn based landmarks for practical
place recognition in changing environments. In Proc. of the European Conference on
Mobile Robots (ECMR), 2015.

[87] P. Neubert, N. Sünderhauf, and P. Protzel. Superpixel-based appearance change pre-
diction for long-term navigation across seasons. Robotics & Autonomous Systems, 69:
15–27, 2015.

[88] K. Ni and F. Dellaert. Multi-level submap based slam using nested dissection. In
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2010.

[89] K. Ni, D. Steedly, and F. Dellaert. Tectonic SAM: Exact; Out-of-core; Submap-based
SLAM. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2007.

[90] K. E. Olin and D. Y. Tseng. Autonomous cross-country navigation: an integrated
perception and planning system. IEEE Expert, 6(4):16–30, 1991.

[91] M. Ollis, W. H. Huang, and M. Happold. A bayesian approach to imitation learning for
robot navigation. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 2007.

[92] E. Olson, E. Leonard, and S. Teller. Fast iterative optimization of pose graphs with poor
initial estimates. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
2006.

[93] P. Papadakis. Terrain traversability analysis methods for unmanned ground vehicles: A
survey. Engineering Applications of Artificial Intelligence, 26(4):1373–1385, 2013.

[94] K. Pearson. X. On the criterion that a given system of deviations from the probable in
the case of a correlated system of variables is such that it can be reasonably supposed to
have arisen from random sampling. The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, 50(302):157–175, 1900.

[95] P. Pfaff, R. Triebel, and W. Burgard. An efficient extension to elevation maps for
outdoor terrain mapping and loop closing. Int. Journal of Robotics Research, 26(2):
217–230, 2007.

[96] N. Radwan, G. D. Tipaldi, L. Spinello, and W. Burgard. Do you see the bakery?
leveraging geo-referenced texts for global localization in public maps. In Proc. of the
IEEE Int. Conf. on Robotics & Automation (ICRA), 2016.

[97] A. Ranganathan, S. Matsumoto, and D. Ilstrup. Towards illumination invariance for
visual localization. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
2013.

122 BIBLIOGRAPHY

[98] J. Röwekämper, C. Sprunk, G. D. Tipaldi, C. Stachniss, P. Pfaff, and W. Burgard. On
the position accuracy of mobile robot localization based on particle filters combined
with scan matching. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), 2012.

[99] J. Röwekämper, B. Suger, W. Burgard, and G. D. Tipaldi. Accurate localization with
respect to moving objects via multiple-body registration. In Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), 2015.

[100] P. Ruchti, B. Steder, M. Ruhnke, and W. Burgard. Localization on openstreetmap data
using a 3d laser scanner. In Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), 2015.

[101] J. Saarinen, H. Andreasson, T. Stoyanov, and A. J. Lilienthal. Normal distributions
transform monte-carlo localization (NDT-MCL). In Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2013.

[102] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. Kelly, and A. J. Davison.
Slam++: Simultaneous localisation and mapping at the level of objects. In Proc. of the
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2013.

[103] À. Santamaria-Navarro, E. H. Teniente, M. Morta, and J. Andrade-Cetto. Terrain
classification in complex three-dimensional outdoor environments. Journal on Field
Robotics, 32(1):42–60, 2015.

[104] A. Segal, D. Haehnel, and S. Thrun. Generalized-ICP. Robotics: Science and Systems,
2(4), 2009.

[105] M. Shneier, T. Chang, T. Hong, W. Shackleford, R. Bostelman, and J. S. Albus. Learning
traversability models for autonomous mobile vehicles. Autonomous Robots, 24(1):
69–86, 2008.

[106] S300 Safety laser scanner. Sick AG, 2016.

[107] A. Sinha and P. Papadakis. Mind the gap: detection and traversability analysis of terrain
gaps using lidar for safe robot navigation. Robotica, 31(07):1085–1101, 2013.

[108] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial relationships in
robotics. In Autonomous Robot Vehicles. Springer, 1990.

[109] D. A. Spielman and S.-H. Teng. Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In Proc. of the 36th annual ACM
Symposium on Theory of Computing, 2004.

[110] B. Steder, M. Ruhnke, R. Kümmerle, and W. Burgard. Maximum likelihood remission
calibration for groups of heterogeneous laser scanners. In Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2015.

[111] H. Strasdat, A. J. Davison, J. M. M. Montiel, and K. Konolige. Double window
optimisation for constant time visual slam. In Proc. of the Int. Conf. on Computer
Vision (ICCV), 2011.

BIBLIOGRAPHY 123

[112] B. Suger and W. Burgard. Global outer-urban navigation with OpenStreetMap. In
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2017.

[113] B. Suger, G. D. Tipaldi, L. Spinello, and W. Burgard. An approach to solving large-scale
SLAM problems with a small memory footprint. In Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2014.

[114] B. Suger, B. Steder, and W. Burgard. Traversability analysis for mobile robots in
outdoor environments: A semi-supervised learning approach based on 3d-lidar data. In
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2015.

[115] B. Suger, B. Steder, and W. Burgard. Terrain-adaptive obstacle detection. In Proc. of
the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2016.

[116] N. Sünderhauf, P. Neubert, and P. Protzel. Are we there yet? challenging seqslam on a
3000 km journey across all four seasons. In Proc. of the ICRA Workshop on Long-Term
Autonomy, 2013.

[117] N. Sünderhauf, S. Shirazi, A. Jacobson, E. Pepperell, F. Dayoub, B. Upcroft, and
M. Milford. Place recognition with convnet landmarks: Viewpoint-robust, condition-
robust, training-free. In Proc. of Robotics: Science and Systems (RSS), 2015.

[118] S. Thrun, W. Burgard, and D. Fox. A real-time algorithm for mobile robot mapping
with applications to multi-robot and 3d mapping. In Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2000.

[119] S. Thrun, Y. Liu, D. Koller, A. Ng, Z. Ghahramani, and H. Durrant-Whyte. Simultane-
ous localization and mapping with sparse extended information filters. Int. Journal of
Robotics Research, 23(7/8):693–716, 2004.

[120] S. Thrun, M. Montemerlo, and A. Aron. Probabilistic terrain analysis for high-speed
desert driving. In Proc. of Robotics: Science and Systems (RSS), 2006.

[121] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong,
J. Gale, M. Halpenny, G. Hoffmann, et al. Stanley: The robot that won the DARPA
Grand Challenge. Journal on Field Robotics, 23(9):661–692, 2006.

[122] G. D. Tipaldi and F. Ramos. Motion Clustering and Estimation with Conditional
Random Fields. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 2009.

[123] A. Torii, R. Arandjelovic, J. Sivic, M. Okutomi, and T. Pajdla. 24/7 place recognition by
view synthesis. In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2015.

[124] R. Triebel, P. Pfaff, and W. Burgard. Multi-level surface maps for outdoor terrain
mapping and loop closing. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), 2006.

124 BIBLIOGRAPHY

[125] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark, J. Dolan, D. Duggins,
T. Galatali, C. Geyer, et al. Autonomous driving in urban environments: Boss and the
urban challenge. Journal on Field Robotics, 25(8):425–466, 2008.

[126] A. Valada, G. L. Olivera, T. Brox, and W. Burgard. Deep multispectral semantic scene
understanding of forested environments. In International Symposium on Experimental
Robotics (ISER), 2016.

[127] C. Valgren and A. Lilienthal. SIFT, SURF & Seasons: Appearance-based long-term
localization in outdoor environments. Robotics & Autonomous Systems, 58(2):149–156,
2010.

[128] J. van de Ven, F. Ramos, and G. D. Tipaldi. An integrated probabilistic model for
scan-matching, moving object detection and motion estimation. In Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), 2010.

[129] O. Vysotska, T. Naseer, L. Spinello, W. Burgard, and C. Stachniss. Efficient and
effective matching of image sequences under substantial appearance changes exploiting
gps priors. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2015.

[130] C. Wellington and A. Stentz. Online adaptive rough-terrain navigation vegetation. In
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2004.

[131] C. Wellington and A. Stentz. Learning predictions of the load-bearing surface for
autonomous rough-terrain navigation in vegetation. In Field and Service Robotics,
2006.

[132] M. Williamson, R. Murray-Smith, and V. Hansen. Robot docking using mixtures of
gaussians. Proc. of the Conf. on Neural Information Processing Systems (NIPS), 1999.

[133] K. Wurm, R. Kümmerle, C. Stachniss, and W. Burgard. Improving robot navigation in
structured outdoor environments by identifying vegetation from laser data. In Proc. of
the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2009.

[134] S.-W. Yang and C.-C. Wang. Multiple-model ransac for ego-motion estimation in highly
dynamic environments. In Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), 2009.

[135] S.-W. Yang and C.-C. Wang. Simultaneous egomotion estimation, segmentation, and
moving object detection. Journal of Field Robotics, 28(4):565–588, 2011.

[136] S.-W. Yang, C.-C. Wang, and C.-H. Chang. Ransac matching: Simultaneous registration
and segmentation. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
2010.

[137] M. Yannakakis. Computing the minimum fill-in is np-complete. SIAM Journal on
Algebraic Discrete Methods, 2(1):77–79, 1981.

[138] A. R. Zamir and M. Shah. Accurate image localization based on google maps street
view. In Proc. of the European Conference on Computer Vision (ECCV), 2010.

	Table of Contents
	Contents
	Introduction
	Scientific Contribution
	Publications
	Collaboration

	Basics
	Notation
	Acronyms and Abbreviations
	Simultaneous Localization and Mapping
	Graph-SLAM

	Monte Carlo Localization
	Generalized Iterative Closest Point Algorithm
	Classification
	Random Forest Classifier

	Memory Aware Considerations of SLAM
	Mapping with Low Memory Consumption
	Graph Partitioning
	Leaves-to-Root Coarsening
	Root-to-Leaves Optimization

	Memory Consumption Analysis
	Experiments
	Memory Consumption
	Runtime on Systems with Restricted Main Memory
	Metric Accuracy

	Related Work
	Conclusions and Future Work

	Localization with Respect to Non-Stationary Objects
	Localization with Respect to Multiple References
	Generalized ICP for Multiple Rigid Bodies

	Point Cloud Generation
	Generating the Reference Point Cloud
	Local Point-set Registration

	Experiments
	Simulation Experiment
	Real-World experiments

	Related Work
	Conclusion and Future Work

	Camera-based Localization Facing Substantial Perceptual Changes
	Visual Localization Utilizing Sequential Information
	Robust Image Matching
	Discrete Bayes Filter
	State Transition Model
	Sensor Model

	Forward Backward Smoothing
	Sequential Filtering
	Zero Component Analysis Whitening
	Experiments
	Scattered Trajectories
	Connected Trajectories
	NewCollege
	Parameter Discussion

	Related Work
	Conclusion and Future Work

	Semi-Supervised Learning of Traversability Models
	Basic Structure
	Feature Design
	The Learning Problem
	Positive Naive Bayes
	Learning from Positive Only Examples
	Terrain Models
	Training

	Experiments
	Evaluation using Viona
	Evaluation using Obelix

	Related Work
	Conclusion and Future Work

	Adaptive Obstacle Detection
	Online Obstacle Detection
	Velodyne Intrinsics
	Geometric considerations
	Basic Obstacle Detection

	Terrain Analysis
	Features
	Classification
	Terrain-Class-Map

	Terrain-Adaptive Obstacle Detection
	Experiments
	Illustration of Mixed Terrain Challenge
	Terrain Classification Accuracy
	Real World with Computational Analysis
	Effect of Approximations

	Related Work
	Conclusion and Future Work

	Outer-Urban OpenStreetMap-based Autonomous Navigation
	Preliminaries
	Planning on OpenStreetMap
	Semantic Terrain Information

	Subgoal Alignment
	Probabilistic Formulation
	Process Model
	Measurement Model

	Sequential Markov-Chain Monte-Carlo Sampling
	Experiments
	System Setting
	Performance
	Intersections
	Runtime
	Limitations

	Related Work
	Conclusions

	Conclusion
	Bibliography

