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A B S T R A C T

The principal idea of brain-computer interfaces (BCIs) is that a decoder
translates brain signals into messages or control commands by utilizing
machine learning (ML) methods. BCIs hold great promise to improve the
living conditions of patients by providing a communication channel that is
independent of motor control or by providing feedback about the ongoing
brain state that can be used in a training scenario.

Applying this neurotechnology is not without difficulties. A common
observation is that brain signals strongly differ across patients, but also
vary across different sessions of the same patient or even change within
a single session. The reasons range from human factors, e. g., differences
or changes in anatomical or functional network structures, to non-human
factors such as differences in the measurement environment. While these
changes clearly challenge the ML model and require a subject- and session-
specific decoder, they can also be partly desired, for instance, in cases where
BCI-based feedback is used to trigger targeted neuroplasticity. This thesis
addresses both aspects: the quest for learning a good decoder that can
cope with changing brain signals and the quest for finding new brain state
dependent training protocols that can lead to functional improvements.

In my methodical contributions, I demonstrate how unsupervised ML
methods can quickly and reliably learn a good decoder even in the complete
absence of labeled data, i. e. data where the user’s intentions are unknown.
This task is substantially more difficult than the traditional supervised ML
where labeled data is collected during a calibration session and then used
to associate brain signals to certain tasks. In contrast to supervised learning,
unsupervised methods allow for continuous learning, adapting to changes
in the data distribution and have the prospect of skipping or shortening
the calibration session.

I present a new approach called learning from label proportions (LLP)
for BCIs based on event-related potentials (ERPs) where the unsupervised
ML model exploits the existence of groups in the data that have different
proportions of target and non-target stimuli. For some applications, these
groups occur naturally, e. g., when the number of items varies across differ-
ent selection steps such as in a BCI chess application, while the groups can
be created by changing the user interface in other applications. Noticeably,
LLP is the first unsupervised method in BCI that is guaranteed to converge
to the optimal decoder even if no labels are available. When combined
with an expectation-maximization algorithm, the resulting classifier shows
remarkable performances. In a visual matrix speller, only 3 minutes of
unlabeled electroencephalography (EEG) data were necessary until the
unsupervised ML approach has learned a reliable decoder. In addition,
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classification performances were almost as good as for a supervised de-
coder that has full access to the labels. The results also showed that the
unsupervised approaches even work well on challenging patient data from
an auditory ERP paradigm.

On the application side, I present the first successful BCI-based language
training for patients with chronic aphasia. Aphasia refers to a language
impairment that frequently occurs after brain strokes. The new training
was developed together with the University Medical Center Freiburg. In
contrast to previous speech and language therapies, ML methods were
used to continuously monitor the ongoing brain state of patients using
EEG signals in an auditory ERP paradigm. Based on this information,
we continuously provide feedback to the patients that should reinforce
beneficial brain states. In a pilot study, 10 stroke patients with chronic
aphasia underwent 30 hours of high-intensity BCI-based language training.
The results are extremely promising: compared to other therapies, our
patients showed large improvements in their verbal abilities, and 5 patients
were diagnosed as non-aphasic after the training even though their stroke
occurred several months to years before the start of our training.

Taken together, these contributions increase the usability of BCI systems
and open the door for a completely new application field of BCIs with an
enormous potential user group.
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Z U S A M M E N FA S S U N G

Die Hauptidee von Gehirn-Computer-Schnittstellen (englisch: brain-
computer interfaces; BCIs) besteht darin, dass ein Programm Gehirnsignale
in Nachrichten oder Steuerbefehle unter Verwendung von Methoden des
Maschinellen Lernens (ML) umwandelt. BCIs haben das vielversprechende
Potenzial, die Lebensbedingungen von Patienten zu verbessern, indem sie
einen von der Motorik unabhängigen Kommunikationskanal bereitstellen
oder aber Rückmeldungen über den aktuellen Gehirnzustand liefern, was
in einem Trainingsszenario verwendet werden kann.

Die Anwendung dieser Neurotechnologie ist nicht ohne Schwierigkei-
ten. Eine häufige Beobachtung ist, dass Gehirnsignale nicht nur zwischen
Patienten stark variieren, sich aber auch zwischen verschiedenen Sitzun-
gen desselben Patienten unterscheiden oder sich sogar innerhalb einer
einzelnen Sitzung ändern können. Die Gründe dafür reichen von mensch-
lichen Faktoren, z. B. Unterschiede oder Änderungen in anatomischen
oder funktionellen Netzwerkstrukturen, zu nicht-menschlichen Faktoren
wie Unterschiede in der Messumgebung. Während diese Änderungen das
ML-Modell eindeutig herausfordern und patienten- und sitzungsspezi-
fische Modellparameter erfordern, können sie teilweise auch erwünscht
sein, beispielsweise in Fällen, in denen eine BCI-basierte Rückmeldung ver-
wendet wird, um eine gezielte Neuroplastizität herbeizuführen. In dieser
Arbeit werden beide Aspekte behandelt: Die Suche nach ML-Methoden, die
mit den sich ändernden Gehirnsignalen zurechtkommen, und die Suche
nach neuen, vom Gehirnzustand abhängigen Trainingsprotokollen, die zu
Funktionsverbesserungen führen können.

In meinen methodischen Beiträgen zeige ich, wie unüberwachte ML-
Methoden schnell und zuverlässig gute Modellparameter erlernen können,
selbst bei ungelabelten Daten, bei denen die genauen Absichten der Be-
nutzer unklar sind. Diese Lernaufgabe ist wesentlich schwieriger als her-
kömmliche überwachte Lernverfahren, bei denen gelabelte Daten während
einer Kalibrierungssitzung erfasst und dann verwendet werden, um Ge-
hirnsignale mit bestimmten Tätigkeiten zu assozieren. Im Gegensatz zum
überwachten Lernen ermöglichen unüberwachte Methoden die Möglichkeit
sich an Änderungen in der Datenverteilung anzupassen, kontinuierlich zu
lernen und die Kalibrierung zu überspringen oder zu verkürzen.

In meiner Arbeit zeige ich einen neuen Ansatz namens “Lernen von
Label Proportionen” (LLP) für BCIs basierend auf ereigniskorrelierten
Potenzialen (ERPs), bei dem das unüberwachte ML-Modell verschiede-
ne Gruppen in den Daten nutzt, die unterschiedliche Anteile von Ziel-
und Nichtzielstimuli aufweisen. Bei einigen Anwendungen treten diese
Gruppen auf natürliche Weise auf, z. B. wenn die Anzahl der Elemente
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in verschiedenen Auswahlschritten variiert, wie beispielsweise in einer
BCI-Schachanwendung. In anderen Anwendungen können die Gruppen
durch das Anpassen der Benutzeroberfläche erzeugt werden. Theoreti-
sche Betrachtungen zeigen, dass LLP die erste unüberwachte Methode
für BCIs ist, die garantiert zu den optimalen Modellparametern konver-
giert, auch wenn keine Labels verfügbar sind. In Kombination mit einem
Expectation-Maximization-Algorithmus zeigt das resultierende ML-Modell
bemerkenswerte Leistungen. In einem visuellen Matrix-Speller waren nur
3 Minuten ungelabelte Elektroenzephalographie (EEG)-Daten erforderlich,
bis der unüberwachte ML-Ansatz verlässliche Parameter gefunden hatte.
Außerdem waren die Klassifizierungsergebnisse fast so gut wie für einen
überwachten Algorithmus, der vollen Zugriff auf die Labels hatte. Die Er-
gebnisse zeigten auch, dass die unüberwachten Ansätze sogar in der Lage
sind, schwierige Patientendaten aus einem auditorischen ERP-Paradigma
gut zu klassifizieren.

Auf der Anwendungsseite präsentiere ich das erste erfolgreiche BCI-
basierte Sprachtraining für Patienten mit chronischer Aphasie. Aphasie
bezeichnet eine Beeinträchtigung der Sprache, die häufig nach einem
Schlaganfall auftritt. Das Training wurde gemeinsam mit dem Univer-
sitätsklinikum Freiburg entwickelt. Im Gegensatz zu früheren Therapien
wurden ML-Methoden verwendet, um den fortlaufenden Gehirnzustand
von Patienten mithilfe von EEG-Signalen in einem auditorischen ERP-
Paradigma kontinuierlich zu analysieren. Basierend auf diesen Informa-
tionen geben wir den Patienten fortlaufend Rückmeldungen, die es den
Patienten ermöglichen, Gehirnzustände herbeizuführen, die sich positiv
auf die Sprache auswirken. In einer Pilotstudie absolvierten 10 Patienten
mit einer chronischen Sprachstörung nach einem Schlaganfall 30 Stunden
lang ein BCI-basiertes Sprachtraining mit hoher Trainingsintensität. Die Er-
gebnisse sind äußerst vielversprechend: Im Vergleich zu anderen Therapien
zeigten unsere Patienten eine sehr deutliche Verbesserung ihrer verbalen
Fähigkeiten und 5 Patienten wurden nach dem Training als nicht-aphasisch
diagnostiziert, obwohl ihr Schlaganfall schon mehrere Monate bis Jahre vor
dem Trainingsbeginn lag.

Zusammengenommen erhöhen diese Beiträge die Benutzerfreundlichkeit
und Anwendbarkeit von BCI-Systemen und öffnen die Tür für ein völlig
neues Anwendungsfeld von BCIs mit einer großen potenziellen Zielgruppe.
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L I S T O F N O TAT I O N S

Please note the following naming conventions throughout the thesis. Ma-
trices will always be denoted in bold upper case letters, e. g., A, whereas
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P R E FA C E

‘How did you make the bird sing again, Momo?
Nobody has done it before!’

‘I think that you also have to listen to him if he does not sing!’
From the movie ‘Momo’ after the book by Michael Ende

We live in remarkable times. Most people interact with a computer or
smartphone on a daily basis. Using an input device such as a keyboard,
mouse or touchpad has become natural for most of us and even children
can manage to interact with electronic devices with remarkable speed and
precision. Now, what if someone loses the physical ability to speak, point
or type due to a disease or injury. Then, suddenly, the person will not only
be having difficulties using a computer, but — even worse — sometimes
also loses the ability to communicate at all.

To find strategies to overcome this loss, I want you to briefly think about
the quote from the beginning of the chapter. Reading this quote, you may
ask: “How can we listen to someone that does not produce any sounds?”. Well,
what if we start one step earlier and try to capture the intention to produce
sounds or to communicate. Maybe brain activity can tell us something
about the intended actions although no visible activity has taken place.
Then, once we were able to capture a subjects intention, we can translate it
into sounds or actions.

Indeed, the idea to communicate via brain signals is not new and its
first successful implementation dates back exactly 31 years to Farwell and
Donchin [50]. In their ground-breaking work, users could communicate
without physical activity in the following way. A computer screen showed
all letters from the alphabet in a grid. The user had to concentrate on the
letter that they would like to spell. Then, rows and columns of letters were
alternatively highlighted by increasing their brightness. Simultaneously,

3



preface

brain signals were read out using electrodes placed on the head. By
comparing a few seconds of recorded data to existing training data of the
subject, the computer is then able to infer which letter was attended and
displays it on the screen. This enables patients to have a very limited,
but extremely useful basic communication, e. g., to express their desires
to caretakers or to answer basic questions. It is an example of a brain-
computer interface (BCI). A more detailed introduction to BCIs will be
given in Chapter 2.

While this first approach enables basic communication, patients will
not recover from their disease by using such a BCI. In contrast, the initial
quote could also have another interpretation. In the second version, Momo
curated the bird by carefully paying attention to the bird while it is unable
to speak. If we translate this idea to BCIs, then the BCI “listens” to patients
by continuously analyzing their brain activity. Once the BCI detects an
activation pattern that indicates successful language processing, then the
BCI will inform the patient about that state. Otherwise, the patient needs
to search for alternative strategies to activate his language network. With
that, patients may be able to improve their verbal abilities by repeatedly
practicing with a BCI.

Authors contributions

This thesis contributes to both interpretations of the quote, i. e. I have
made contributions that are beneficial for general BCIs (e. g., used for
communication) and I have substantially contributed to the realization of
the first BCI-based language training.

On the theoretical side, a general problem that is encountered in BCIs is
that labeled training data needs to be available to calibrate the system to
each individual user. Calibration is a process where the user performed
a predefined task, e. g., is instructed to always look at a specific letter or
to listen to a certain sound. With that, example data is collected where
the user’s intentions are known (labeled data). A supervised machine
learning model can then learn to associate the recorded brain signals
with the executed actions which can be used to classify unseen new brain
signals. Because brain signals highly vary between users and even differ
between different sessions of the same user, frequent (re-)calibrations are
normally necessary. This calibration time is effectively lost for the user
because no useful outputs can be generated during that period. In addition,
brain activity might change between this calibration phase and the real
application phase [156] and the data distribution might also change over the
course of a session due to human factors (e. g., fatigue, change in motivation,
learning) or non-human factors (e. g., changes in the environment).

To overcome these obstacles, it is essential that the decoder is able to learn
during the actual usage of the BCI. This is a very challenging task because
the user’s intentions are unknown in that stage. Hence, the algorithm would
need to be able to learn from unlabeled data. This is called unsupervised
learning and was identified as one of the “key challenges for BCI deployment
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outside the lab” [129]. Lotte et al. [117] point out that “there is a need for more
robust unsupervised adaptation methods, as the majority of actual BCI applications
do not provide labels, and thus can only rely on unsupervised methods”. Millán
and colleagues emphasize the importance of unsupervised adaptation and
learning for skill-learning in BCIs, as it “increases the likelihood of providing
stable feedback to the user, a necessary condition for people to learn to modulate
their brain activity” [124].

In the thesis, I address this need by introducing and evaluating two
novel unsupervised learning methods. The basic idea underlying these
approaches is to exploit the relationship between the user interface and
the machine learning model. More specifically, the way the user interacts
with the computer exerts influence on how the recorded data is struc-
tured. In Chapter 3, I demonstrate how the paradigm can be adjusted
to meet the requirements of a machine learning approach called learning
from label proportions and how this classifier can be combined with an
expectation-maximization algorithm. Results from healthy subjects show
that the unsupervised learning methods can utilize unlabeled data almost
as efficiently as labeled data and can — in practice — replace supervised
methods. For a visual speller based an electroencephalography (EEG),
an average time of 3 minutes of unsupervised calibration was enough to
reach very reliable control. I show that this algorithm can also be natu-
rally applied to other interfaces such as a brain-controlled chess interface.
In addition, results from simulations showed that unsupervised learning
methods can even work on stroke patient data from an auditory experiment
which is generally much more difficult to decode.

On the practical side, this is the first work that shows that BCIs can
be used for language rehabilitation after a brain stroke. Together with
colleagues from the University Medical Center Freiburg, we designed and
evaluated the first successful BCI-based language therapy for aphasic pa-
tients. Aphasia refers to an impairment of language abilities often caused by
a left-hemispheric brain stroke. Our patients predominantly had expressive
aphasia, meaning that they had problems to produce language (spoken and
written), but comprehension was generally sufficient to comply with the
training. In the new training protocol, patients have to detect a target word
within a rapid auditory sequence of several words while their brain signals
are analyzed. After each trial, patients then receive feedback on whether
their brain signals indicate a successful target detection. Providing this
information as immediate feedback should allow the patient to strengthen
basic processes underlying language function.

Clinical assessments showed that the BCI-supported training has induced
significant, strong and lasting improvements not only in language compre-
hension, but also in language production, writing, reading and everyday
communication for every single patient. This is a remarkable finding as all
patients were in the chronic phase — meaning that the time from the train-
ing begin to the stroke was at least 6 months, but sometimes even several
years — and regularly underwent ordinary speech and language therapy
before our training which showed only limited effects. In Chapter 4, I will
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present this study in more detail. In addition, I will present a side study
which demonstrates that the training task might be easier if the subject
closes their eyes, see Appendix a.

The following Figure 1.1 gives an overview of the thesis structure and
the list of publications is given in Section 1.1.
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2
F U N D A M E N TA L S

This chapter gives the reader an introduction to the basic tools
and methods that will be used throughout this thesis. I will
cover important aspects of the basic brain-computer interface
loop with a special focus on recording, analyzing and classifying
event-related potentials from the electroencephalography, and
on application fields.
For more advanced readers, Section 2.4.4 might be of inter-
est. In this section, I will demonstrate how the derivation of
the linear discriminant analysis based on the (1) minimization
of misclassifications (Bayes classifier), (2) maximization of the
Fisher criterion (Fisher linear discriminant analysis) or (3) min-
imization of the squared residuals with rescaled labels (least
squares classifier), will always lead to the same projection vector.
One important corollary is that the use of the pooled covari-
ance matrix instead of the class-wise covariance matrix does not
change the direction of this projection. This property is of great
importance for the unsupervised learning that will be presented
in Chapter 3.

This chapter gives the reader an introduction to the basic tools
and methods that will be used throughout this thesis. I will
cover important aspects of the basic brain-computer interface
loop with a special focus on recording, analyzing and classifying
event-related potentials from the electroencephalography, and
on application fields.
For more advanced readers, Section 2.4.4 might be of inter-
est. In this section, I will demonstrate how the derivation of
the linear discriminant analysis based on the (1) minimization
of misclassifications (Bayes classifier), (2) maximization of the
Fisher criterion (Fisher linear discriminant analysis) or (3) min-
imization of the squared residuals with rescaled labels (least
squares classifier), will always lead to the same projection vector.
One important corollary is that the use of the pooled covari-
ance matrix instead of the class-wise covariance matrix does not
change the direction of this projection. This property is of great
importance for the unsupervised learning that will be presented
in Chapter 3.

abstract
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2.1 brain-computer interfaces

The term “brain-computer interface” (BCI) is almost half a century old.
Jacques J. Vidal coined the term in a very prospective paper in 1973 [175].
Although he could not implement a BCI at that time, the basic principle
that he had proposed is still in place today. Figure 2.1 shows a schematic
overview of the basic operating cycle of a BCI. At least, four components
are vital for a BCI.

2. Recording
of neural data

3. Data analysis:
preprocessing, 

feature extraction, 
classification

1. Subject
with a sensor, e.g. EEG, 

performs a task, e.g. listens to a sound 
or imagines to move his finger

HELLO_WORLD

4. Control event:
A specific action is executed

 based on classification results

Figure 2.1: The basic BCI cycle. A subject’s brain signals are recorded while
he/she performs a certain task. Based on the neural recordings, a
machine learning classifier extracts information about the brain state
of the subject. This information is used to control an application (e. g.,
spelling or as feedback to enable skill learning).

1. Subject. First, there needs to be a subject. The subject could be an
animal as well as a human. I will focus on human subjects as all
studies in this thesis have been conducted with humans. The subject
performs a certain task such as to pay attention to specific stimuli
or to perform a mental task, e. g., imagining to move his limb or
subtracting numbers.

2. Recording. During that task, the subject’s brain signals are recorded.
Most recording techniques either rely on measuring electrical activity
or by measuring the hemodynamic activity in the brain. Electri-
cal activity can both be recorded from electrodes placed within the
skull (invasive) or on top of the scalp (non-invasive). Hemodynamic,
meaning to measure the dynamics of the blood flow, is commonly
applied non-invasively by means of functional magnetic resonance
imaging (fMRI) or functional near-infrared spectrography (fNIRS).
All recordings in this thesis used non-invasive electrical signals from

10



2.1 brain-computer interfaces

the electroencephalogram, see Section 2.2, and focus on event-related
potentials, see Section 2.3.

3. Data analysis. The recorded brain data are processed in the third
step. The data analysis generally comprises steps to clean the data
from ambient noise and artifacts, and to extract the quantities of inter-
ests. Once relevant features are extracted, classification or regression
models will then be applied to extract information about the ongoing
brain state of the subject. In this step, individualized parameters
of the machine learning model are learned for each subject. This is
essential because of the high variance across subjects which cannot be
captured by a single set of parameters. A more detailed description
of the data analysis step is given in Section 2.4.

4. Control event. The information about the ongoing brain state can
then be used in the final step to change the state of a computer or
machine. Various applications are possible. In a control or commu-
nication application, this information is used to steer an application
such as a spelling device or a wheelchair. Control is then possible if
stimuli or mental tasks are associated with actions, e. g., the subject
could spell an “A” by paying attention to the highlighting of the
letter “A” on the screen, or he/she could steer a wheelchair to the
left by imagining to move his left arm. Other application areas are
rehabilitation, gaming, basic research, among others, see Section 2.8.

As of April, 15th 2019, more than 7000 publications can be found by
searching for “brain-computer interfaces” in the PubMed database. Although
J. Vidal coined this term already in 1973, the first implementation dates
back to 1988 when Farwell and Donchin could realize the first visual
speller [50]. In 2001, the first successful communication with patients that
had amyotrophic lateral sclerosis (ALS) [103] could be established with a
BCI. This — among other factors — led to a steep increase in publications,
see Figure 2.2. Vidal wisely remarks in 1973 that “the long-range implications
of systems of that type [meaning BCIs] can only be speculated upon at present”.
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Figure 2.2: Number of publications in the PubMed database when searching
for “brain-computer interface”. The PubMed database was accessed
at April, 15th 2019.
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2.2 electroencephalography

The majority of BCIs is based on recording neural data with electroen-
cephalography (EEG) [180]. This technique was discovered by Hans Berger
in 1924 and coined by him in a publication 1929. Already back then, he
realized — based on his own and other research — that every living cell is
able to produce electrical currents and that the large synchronous activity
of cells can be recorded even with electrodes placed on the scalp [13]. It
has now been established that EEG represents mainly the post-synaptic po-
tentials of pyramidal cells close to cortical surfaces [180]. When compared
to other recording techniques, EEG has several advantages.

+ EEG is non-invasive, meaning that no permanent damage to the brain
is induced.

+ It is possible to get a temporal resolution in the order of milliseconds.

+ Compared to other brain recording methods, it is relatively cheap,
easy to use and can be used in a portable setup.

However, there are also some disadvantages.

- EEG has a low spatial resolution.

- The signal-to-noise ratio (SNR), which measures how clearly the
signal of interest can be distinguished from the background noise, is
relatively poor.

- Measured EEG signals are strongly affected by movement artifacts,
especially by eye movements and eye blinks.

2.2.1 Practical aspects

Electrodes are predominantly made from Ag-AgCl, because of their prop-
erty to avoid potential shifts due to electrode polarization. Any mea-
surement not only requires the recording electrode, but also a reference
electrode. This electrode should be ideally located electrically far from the
reference electrode [180]. Common places for the reference electrode are
the ear, mastoid, neck or nose. In this thesis, the reference was always
placed on the nose. The second electrode of interest is the ground elec-
trode. This electrode is primarily used to cancel out electric noise in the
system (e. g., power line noise or slow drifts) by applying a common mode
rejection. The necessity of a ground electrode comes from the fact that a
differential amplifier is not only amplifying the differences between the
signals of interest, but also the common modes, i.e. signals that are shared
between electrodes, although the latter is amplified by a lower factor. The
ground can help to reduce the common modes and with that, reduces the
overall recording error. In our studies, the ground was always placed on
the forehead (position AFz).

To record data with EEG, EEG caps are normally used. These are caps
made from a light fabric which have predefined positions for the place-
ment of electrodes. A widely used positioning scheme is the international
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10-20 system [86]. This system allows for a placement based on standard
landmarks of the skull (i.e. nasion and inion), provides a coverage of the
whole head and introduces a unified naming scheme. An example for 64
electrodes is shown in Figure 2.3.
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Figure 2.3: The placement of 64 electrodes according to the 10-20 system. The
position of the ground and reference electrode varies.

To prepare typical wet electrodes, a conducting paste is applied to each
electrode. Then, the skin is carefully abraded with cotton tabs such that
there is a good contact between the scalp and the electrode. Electrode
impedances should be kept on a low level to avoid noise amplification. In
all studies in this thesis, impedances were kept below 20 kΩ. Figure 2.4
shows exemplary data of 5 seconds of EEG recordings from 32 channels.
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Figure 2.4: Five seconds of EEG data. The event at around two seconds comes
from an eye blink. For the eye blink, it is interesting to observe that the
eye electrode (EOGvu) displays a deflection in the opposite direction
because it is located beneath the eye as opposed to the other electrodes.
One can also observe a high correlation between channels.
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2.3 event-related potentials

When processing an event, the brain elicits a brain response which is called
an event-related potential (ERP). An event can be the perception of a visual
or auditory stimulus, observing an error or even the absence of a stimulus
when expecting one. The registration of such an ERP can provide valuable
information about the ongoing brain processes of the subject. An ERP
response consists of a series of voltage deflections. They are named after
the sign of the amplitude (P: positive, N: negative) and their peak timing,
e. g., P300 (or P3) means that there was a positive deflection after 300 ms.
An ERP response is embedded in the ongoing EEG and relatively small
compared to the background activity. Hence, the ERP responses over
multiple events are normally averaged to obtain a clear estimation of the
ERPs.

A commonly used paradigm to elicit ERP responses is the so-called
oddball paradigm. In that paradigm, a series of at least two different
stimuli (e. g., a high and a low tone) is presented to the user. The user’s
task is to pay attention to one specific stimulus. Typically, one stimulus
is less frequent than others and the subject is instructed to pay attention
to the rare stimulus. The attended stimulus is then called a target stimuli
whereas the other stimuli are called non-targets. The delay between the
onset of two consecutive stimuli is called stimulus onset asynchrony (SOA)
and is one second in the original oddball task.

Figure 2.5 shows typical average target and non-target oddball ERP
responses. Two main components are visible. There is an early negativity
(N200) which is located around channel Fz and a positive response (P300)
peaking around Cz-Pz. In the following, I will provide a more detailed
description of these two components.
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Figure 2.5: Prototypical oddball ERP response. Target and non-target ERP re-
sponses are depicted for the channels Pz (thick line) and Fz (thin line)
where the x-axis depicts the time and the y-axis shows the potential.
In the bottom, the activation pattern of the average target responses for
the intervals [130, 170]ms and [250, 350]ms are presented.
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2.3.1 P300

The P300 is probably the most researched brain signal. Yet, Dinteren et al.
[43] remark that “after almost 50 years of intensive research with over 12, 000
publications on the P300 it has not been possible to link the P300 to a specific
cognitive process.” They further note that “presumably, the P300 complex is
multifarious, reflecting a culmination of multiple cognitive processes.”

The P300 has been linked to language processing. A decreased P300
amplitude was observed in children with language impairments [48] and
the presence of the P300 component was indicative for the recovery of
patients with aphasia (language deficits) [132]. More generally, the shape
and latency of the P300 components have been linked to functional abilities.
Dinteren et al. [43] find that “there is evidence that shorter P300 latencies and
larger amplitudes are associated with superior information processing.” These
are important findings as they suggest a link between the recorded brain
signals and the cognitive capabilities. If the relationship is indeed of causal
nature, then a training which reinforces the P300 component may lead to
improved functional outcome. This idea was explored in-depth in Chapter 4

where I present the first successful BCI-based language training.
The P300 amplitude and latency is influenced by many factors. It has

been found that “as primary task difficulty is increased, P300 amplitude from
the oddball task decreases regardless of modality or the motor requirements of
the primary task” [142]. The task difficulty is commonly increased by de-
creasing the time between consecutive stimuli (i. e. the target-to-target
interval) [142], by using more complex stimuli (e. g., words instead of tones)
and other modifications. The P300 has also been linked to factors like
motivation [99], age [43] and personality attributes such as introversion/ex-
traversion, arousal, sensation seeking, and compulsivity [142]. Because of
these sensitivities, it is recommended to carefully control the general task
setting and record character traits and attitudes to allow comparing the
P300 across subjects. Please note that despite its name P300, the component
may occur with a much longer latency, e. g., it is visible in the whole time
interval of 300 ms to 1200 ms when recording word-evoked ERPs from
stroke patients with language deficits, see Chapter 4.

2.3.2 N200

The other component that will be occurring throughout this thesis, is the
N200. Similar to the P300, the N200 is modulated by attention and can
be used to discriminate attended from non-attended stimuli. In contrast
to the P300, however, this component depends heavily on the modality
of the paradigm. While it is located mostly in the anterior-temporal part
for auditory stimuli (see Figure 2.5), it is located over the occipital cortex
for a visual task. This location can be explained by the position of the
corresponding auditory and visual cortex located in the frontotemporal
and occipital lobe, respectively. Please note that the timing of the N200 may
also vary within 150 ms and 250 ms depending on the subject and task.
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2.4 data analysis

Figure 2.6 shows a typical BCI data analysis cycle for an ERP-based
paradigm following the very instructional paper by Blankertz et al. [21].
In the previous section, I have covered the fundamental aspects of data
acquisition with EEG. All recordings in this thesis were conducted with
a sampling frequency of 1 kHz and amplified using BrainAmp amplifiers
(BrainProducts). Several other steps are necessary to extract meaningful
information from the EEG signals.
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Figure 2.6: Data analysis pipeline. The data processing pipeline can roughly
be subdivided into five steps. First, raw EEG data is acquired. It is
then preprocessed using frequency filtering, subsampling and artifact
removal. Afterwards, ERP features are extracted by averaging parts
of the signal. Then, a classifier (e. g., a linear discriminant analysis
(LDA)) is applied to classify the features as belonging to the target or
non-target class. Finally, the classifier outputs are combined to make
a prediction for a complete trial about the target class. In a BCI, this
loop is usually completed in quasi real-time meaning that a single trial
decision is normally obtained within few seconds after the end of a
trial.

2.4.1 Preprocessing

First, the data is preprocessed. In our recordings, a third-order Chebyshev
Type II low-pass filter with a cut-off frequency of around 12 Hz was typi-
cally applied. If many artifacts are present, lower frequencies such as 8 Hz
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can also be chosen without affecting the classification accuracies, see for in-
stance [49]. Afterward, the data is subsampled to 100 Hz, mainly to reduce
the computational and memory requirements. A second Chebyshev Type II
filter is then applied which is a high-pass filter with a cut-off frequency of
0.5 Hz. This order of filtering and subsampling is crucial to avoid aliasing
effects. For offline analysis, non-causal filters are used, i. e. time-invariant
filter that require knowledge about upcoming samples, whereas causal
filters are used in online scenarios.

2.4.2 Artifact rejection

After basic filtering and subsampling, artifact rejection methods are applied
to deal with eye artifacts and other kind of movement artifacts. While
some methods work on the continuous data, others require the data to be
epoched. An epoch is a time-window that is segmented with respect to an
event, e. g., −200 ms to 700 ms around the presentation of a visual stimulus.
A subset of the four following artifact removal methods is used throughout
this thesis.

• Regressing out eye artifacts. Eye movements and eye blinks can be
projected out by assuming a stationary eye movement pattern [134]. In
this approach, the horizontal eye movement is estimated based on the
channels F9 and F10 and the vertical eye movement is approximated
by using the channels Fp2 and EOGvu. A regression approach is then
used to project out eye movements.

• MARA. Alternatively to the first approach, the multiple artifact rejec-
tion algorithm (MARA) [178, 179] dissects the continuous EEG signals
into single component based on independent component analysis
(ICA). The components are then classified with a supervised model
that is based on 6303 expert-labeled ICA components as artifactual or
non-artifactual. ICA components that were classified as artifacts are
then projected out from the data.

• Variance-criterion. Electrodes showing only limited variance (less
than 0.5 µV in more than 10% of the trials) or too much variance
(more than three times the difference between the 90th percentile and
the 10th percentile of the variance of all electrodes) were rejected
because this indicates that they were faulty or had bad impedances.
In addition, high-variance epochs (i. e. epochs that show more than
three times the difference between the 90th percentile and the 10th

percentile of the variance of all epochs) were also removed because
they might have been contaminated by artifacts such as eye blinks.

• MinMax. Epochs were marked where the peak-to-peak amplitude in
one epoch exceeds a certain threshold in one of the frontal channels
(Fp1, Fp2, F7, F8, F9, F10). The threshold may vary depending on the
subject with typical values between 60 to 100 µV.
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2.4.3 Feature extraction

In the next step, the features of interest are extracted from the cleaned
data. For that, epochs are first extracted from the data by taking a segment
around an event. Then, epochs are baselined meaning that the average
amplitude in an interval before the stimulus is subtracted from each epoch.
Finally, the average amplitudes are computed for each channel in several
intervals after the stimulus. These averages are the typical features that are
used for classification in an ERP paradigm. The feature dimensionality D
is given by the product of the number of electrodes with the number of
intervals. Throughout this thesis, up to 64 electrodes and 10 intervals are
used, leading to a maximal feature dimensionality of 640. More formally,
our data can be written as

(xi, yi)
N
i=1

where N is the number of epochs, xi ∈ RD are the D-dimensional features
and yi ∈ {−1, 1} are the labels representing epoch from the non-target and
target class, respectively.

2.4.4 Classification with linear discriminant analysis

To decide for a new data point whether it was a target or non-target
stimulus, a machine learning classifier is used. The BCI community spent
an enormous effort in investigating different classification models [117].
One popular classifier is linear discriminant analysis (LDA) that has shown
excellent results and is easy to implement [21]. This is a binary linear
classifier that fits a projection vector w ∈ RD and bias term b ∈ R such that
the decision hyperplane is given by all points x with wTx + b = 0. For the
feature vector of a new data point, xT, we can then predict its class label by
computing

yT = sign(wTxT + b) (2.1)

where (·)T denotes the transpose of a vector or matrix. and sign(x) := 1 if
x ≥ 0 and −1 else.

In this context, the machine learning task is to obtain “good” values for
w and b. Here “good” is placed in quotation marks because the quality of
a classifier can only be judged with regard to a certain evaluation metric
and it is a priori unknown, which metric can be considered as the most
informative one.

Importantly, the LDA classifier is optimal if the data is normally dis-
tributed with equal class-wise covariance matrices — an assumption that
is met by ERP data [21] after artifacts have been removed. Given this as-
sumption, there are three popular ways to derive the LDA classifier based
on the (1) minimization of misclassifications (Bayes optimal solution), (2)
maximization of the Fisher criterion or (3) minimization of the sum of
squared residuals computed with rescaled labels. In the following, I will
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demonstrate that all approaches will lead to the same direction of w, but
to different estimations of b. The variety in approaches demonstrates that
the LDA classifier is optimal with regard to several different metrics which
underlines that it is an excellent choice for classifying ERP signals.

Bayes classifier

In the Bayes approach following [57], the goal is to minimize the 0-1-loss
that measures the ratio of misclassified data points. This is equivalent
to maximizing the probability of assigning the correct class label to a new
data point in a two-class problem. Formally, for a two-class problem with
class labels y1 and y2, our goal is to compute the class with the highest
probability ŷ0 for a given data point x0 from a random variable X.

ŷ0 = arg max
k∈{y1,y2}

P(y = k|X = x0) (2.2)

To solve this problem, we first determine the decision boundary where
both classes have equal probabilities. This is obtained by equalizing their
posterior probabilities.

P(y = y1|X = x) = P(y = y2|X = x) (2.3)

We need to apply Bayes theorem and use the normality assumption to solve
this equality. First, Bayes theorem is given by

P(y = k|X = x) =
likelihood · prior

marginal
=

fk(x) · πk

P(X = x)
. (2.4)

where πk is the prior probability of class k given by πk =
Nk
N where Nk is

the number of samples in class k. Following the assumption of normality
with class means µ1, µ2 ∈ RD and shared covariance matrix Σ ∈ RDxD, the
class-wise density function fk(x) is given by

fk(x) =
1√

(2π)D det(Σ)
exp

(
−1

2
(x− µk)

TΣ−1(x− µk)

)
. (2.5)

where k = 1, 2 represents the two classes. Plugging Bayes theorem into
Equation 2.3, one can observe that the marginal distribution and N cancel
out.

f1(x) · N1 = f2(x) · N2 (2.6)

Dividing by the right-hand side and applying the logarithm on both sides
yields

log f1(x)− log f2(x) + log
N1

N2
= 0. (2.7)

Now, one can insert the density function from Equation 2.4 which will
make the normalization terms cancel out and give

−1
2
(x− µ1)

TΣ−1(x− µ1) +
1
2
(x− µ2)

TΣ−1(x− µ2) + log
N1

N2
= 0. (2.8)
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Using basic algebra, this can be simplified in a final step to(
Σ−1(µ2 − µ1)

)T
x +

1
2

(
−µT

1 Σ−1µ1 + µT
2 Σ−1µ2

)
+ log

N1

N2
= 0. (2.9)

In this equation, we can now identify our projection w and bias b as

wBayesian :=Σ−1(µ2 − µ1) (2.10)

bBayesian :=
1
2

(
−µT

1 Σ−1µ1 + µT
2 Σ−1µ2

)
+ log

N1

N2
(2.11)

=
1
2

wT(µ1 + µ2) + log
N1

N2
(2.12)

Based on these quantities, class 2 is predicted if wT
Bayesianx + bBayesian ≥ 0

and otherwise class 1 is predicted (although possible, it is easy to see that
the opposite assignment will lead to a higher 0-1-loss). In comparison
to the following approaches, the Bayes method has the advantage that it
cannot only predict the class labels, but actually assigns a probability to it
which can serve as a measure of certainty. This might for instance be used
as a confidence score in a dynamic stopping method that stops a trial once
the BCI is certain about its decision.

Fisher discriminant analysis

Instead of maximizing the probability of correctly assigning the class labels,
Fisher proposed the following approach: a good projection w should
achieve two goals at the same time. First, the data points from the same
class should be located nearby in the projected subspace. Second, the
distance between classes should be large in the projected space. This idea
can be formalized with the Fisher criterion.

J(w) :=
wTΣBw
wTΣWw

(2.13)

In this formula, the nominator comprises the between-class covariance
matrix ΣB and is defined as

ΣB :=
2

∑
c=1

Nc(µc − µ)(µc − µ)T (2.14)

where the class-means µi are defined as µc := 1
Nc

∑i∈Cc
xi and the global

mean is defined as µ := i
N ∑N

i=1 xi. The denominator is given by the total
within-class covariance matrix ΣW and is defined as

ΣW :=
2

∑
c=1

∑
i∈Cc

(xi − µc)(xi − µc)
T (2.15)

Please note that ΣW is the weighted sum of both class-wise covariances
matrices and an unbiased estimator of the aforementioned Σ.
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The goal is to find a w that maximizes J(w) which means to either obtain
a large between-class projection or by getting a small within-class projection
following the idea by Fisher. Figure 2.7 depicts two different projections
onto a one-dimensional subspace. The first projection (LDA) maps the
data on a single dimension such that the classes are nicely separated. In
contrast, the second projection (principal component analysis, PCA) finds
a projection that maximizes the variance of the one-dimensional subspace.
This, however, does not help for classification in this scenario.

1D-projection with large variance (PCA), 
but low discriminatory power

1D-projection with high 
discriminatory power (LDA)
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µ
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Figure 2.7: Illustration of LDA and PCA projections. The data from two classes
is projected to a single dimension based on different criteria.

As shown in Bishop’s book [17], differentiating J(w) with respect to w
and setting the derivative to zero, one obtains that

wFisher ∝ Σ−1
W (µ2 − µ1) (2.16)

The projection wFisher is only uniquely determined up to a scaling constant.
This constant is not affecting the decision boundary. In practical applica-
tions, w is often rescaled such that the class means are projected to +1 and
−1, respectively. It is worth noticing that Fisher’s LDA does not deliver a
formula for computing the bias term b.

For the unsupervised learning part in this thesis, it is essential to show
that the class-wise scatter matrix ΣW can be replaced by a scatter matrix
that does not rely on label information. To show this, we first introduce the
notion of the total-scatter matrix ΣT which estimates the pooled covariance,
i.e. the covariance on the complete data disregarding label information.

ΣT :=
N

∑
i=1

(xi − µ)(xi − µ)T (2.17)

Importantly, it holds that

ΣT = ΣW + ΣB. (2.18)
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Proof.

ΣT =
N

∑
i=1

(xi − µ)(xi − µ)T

=
2

∑
c=1

∑
i∈Cc

(xi − µ)(xi − µ)T

=
2

∑
c=1

∑
i∈Cc

(xi − µc + µc − µ)(xi − µc + µc − µ)T

=
2

∑
c=1

∑
i∈Cc

(xi − µc)(xi − µc)
T +

2

∑
c=1

∑
i∈Cc

(µc − µ)(µc − µ)T

+
2

∑
c=1

∑
i∈Cc

(xi − µc)(µc − µ)T + (µc − µ)(xi − µc)
T

=ΣW + ΣB+

2

∑
c=1

[
∑

i∈Cc

(xi − µc)

]
︸ ︷︷ ︸

=0

(µc − µ)T +
2

∑
c=1

(µc − µ)

[
∑

i∈Cc

(xi − µc)
T

]
︸ ︷︷ ︸

=0

=ΣW + ΣB

Second, we will show that for any vector x ∈ RD, it holds that ΣBx points
in the direction of the differences of the class means, i. e.

ΣBx ∝ (µ2 − µ1). (2.19)

Proof. We will make use of µ = N1
N µ1 +

N2
N µ2 and first compute

µ2 − µ = µ2 −
(

N2

N
µ2 +

N1

N
µ1

)
=

Nµ2 − N2µ2 − N1µ1
N

=
(N − N2)µ2 − N1µ1

N

=
N1µ2 − N1µ1

N
=

N1

N
(µ2 − µ1).

With that and the analogous formula for µ1 − µ, the between scatter matrix
can be rewritten in the following way.

ΣB = N1(µ1 − µ)(µ1 − µ)T + N2(µ2 − µ)(µ2 − µ)T

= N1
N2

N
(µ2 − µ1)

N2

N
(µ2 − µ1)

T + N2
N1

N
(µ2 − µ1)

N1

N
(µ2 − µ1)

T

=
N1N2(N1 + N2)

N2 (µ2 − µ1)(µ2 − µ1)
T
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=
N1N2

N
(µ2 − µ1)(µ2 − µ1)

T

For any vector x ∈ RD follows that

ΣBx = (µ2 − µ1)
N1N2

N
(µ2 − µ1)

Tx = (µ2 − µ1) · β (2.20)

where β = N1 N2
N (µ2 − µ1)

Tx ∈ R. This completes the proof.

We can now combine the results to show that the projection obtained
with the total scatter matrix points in the same direction as the projection
obtained with the within-class covariance matrix in Equation 2.16, i. e. we
need to show that

Σ−1
T (µ2 − µ1) ∝ Σ−1

W (µ2 − µ1). (2.21)

Proof. We define w := Σ−1
W (µ2 − µ1). The objective is to show that there ex-

ists a real number α ∈ R such that w = α · Σ−1
T (µ2 − µ1). Multiplying both

sides with ΣT, this is equivalent to showing that ΣT ·w = α · (µ2−µ1). Equa-
tion 2.19 implies that there also exists a β ∈ R such that ΣBw = β(µ2 − µ1).
Taken together, we obtain

ΣTw
Equation 2.18︷︸︸︷

= (ΣW + ΣB)w

= ΣWw + ΣBw

= (µ2 − µ1) + β · (µ2 − µ1) = α ·w

with α = 1 + β. This finishes the proof and yields a relationship that will
be from great importance in the unsupervised learning part.

Least squares classifier

A third way of deriving LDA is by means of a least square classifier as
presented in Bishop’s book, chapter 4.1.3 and 4.1.5 [17]. The objective
function in this approach is to minimize the squared loss of the data points.

arg min
w

N

∑
i=1

(wTxi − yi)
2 (2.22)

Please note that this uses the augmented notation where the bias term
is incorporated into the projection as w = (b, wT

old)
T and into the feature

vector as x = (1, xT
old)

T. Differentiating this sum with respect to w and
setting the derivative to zero yields the well-known solution of the least-
squares problem.

ŵ = (XTX)−1XTY (2.23)

In this equation, X = (xT
1 , xT

2 , ...xT
N)

T is the feature matrix and
Y = (y1, y2, . . . , yN)

T is the vector containing the labels. In Bishop’s book,
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it is then shown that choosing the target labels as N
N1

for the positive class
and as − N

N2
for the negative class, will lead to a projection w that again

points in the same direction as the previous ones [17].
In summary, LDA can be derived in three different ways. Given the

assumption of two normally distributed classes with the same covariance
matrix, LDA is optimal in the sense that it maximizes the probability of
assigning the correct class labels, minimizes the 0-1-loss, maximizes the
Fisher criterion and minimizes the least squares loss for rescaled class
labels.

Figure 2.8 shows the implementation of the different approaches. One
can observe that the projections are all parallel to each other, however, the
bias terms are different. The different bias terms arise from the different
optimization criteria (e. g., minimizing squared residuals or minimizing
false classifications). In some practical use cases, the bias term is often not
relevant when only relative distances from the hyperplane for each class
are compared (see Section 2.6 below).
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Figure 2.8: Projection and bias term for different LDA implementations. While
the projections w always point the same direction, the bias terms may
differ depending on the approach and associated loss function.
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2.5 supervised and unsupervised learning

A fundamental problem in BCI is that there is a large subject-to-subject vari-
ability. Exemplary, I show the average target ERP response in the interval
of [250, 350]ms for 20 healthy elderly subjects in an auditory oddball task
(one stimulus every second) in Figure 2.9. This should capture the classical
P300 component, one of the most widely used and described components
in a very basic task.

However, the variation between subjects in amplitude and peak location
is astonishing. Only a few subjects actually display the P300 component as
it is described in the literature and scalp patterns of different subjects hardly
resemble each other. Clearly, the fact that the subjects were elderly (mean
age around 60 years) amplified these inter-subject differences. However, it
should be convincing without further evidence that patients with a brain
injury (e. g., a brain stroke) will display even greater variability.
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Figure 2.9: Average oddball target ERP amplitude for 20 elderly subjects. For
each subject, 100 target ERPs were first cleaned using artifact removal
methods and then averaged in the interval [250, 350]ms. While the text-
book describes a P300 component which has a positive peak around the
electrodes Cz and Pz, only a few subjects actually show this P300 com-
ponent (e. g., VP6, VP9, VP13, VP15) while some subjects display no
systematic activity at all (e. g., VP8 or VP18) or a very noisy activation
(e. g., VP2 or VP7).

The goal of the training of the machine learning model is to find subject-
and session-specific parameters which can be used to classify brain re-
sponses. In the previous section, I introduced LDA as a suitable classifica-
tion model for ERP data. The goal of this section is to understand how the
recorded data can be used to achieve good estimations of the projection w
and bias b.
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2.5.1 Supervised learning

For supervised learning, a calibration session is performed prior to using
the BCI. During this period, the subject performs a predefined task, e. g.,
the user spells a predefined sentence using the BCI. Since the task is known,
one has full label information meaning that one always knew which task
the subject tried to achieve. This allows to label each data point from the
training data as being a target (class 1) or non-target stimulus (class 2).

When looking at the equations to compute the projection and bias term
in the previous section, e. g., as given in Equation 2.16, one realizes that
only a few quantities need to be known, namely the class-wise means
µ1, µ2 and the within-scatter-covariance matrix ΣW. Based on the labeled
data, we can compute these quantities using the sample mean and sample
covariance matrix. The hat symbol ˆ is used to denote estimators.

Sample class means:

µ̂c =
1

Nc
∑

i∈Cc

xi (2.24)

Sample within-class covariance matrix:

Σ̂W =
1

N − 1

2

∑
c=1

∑
i∈Cc

(xi − µ̂c)(xi − µ̂c)
T (2.25)

The scaling factor 1
N−1 for the within-class covariance matrix is necessary

to have an unbiased estimator.

2.5.2 Regularization of the covariance matrix

In principle, the above estimation of the covariance will converge (in proba-
bility) to the true underlying covariance matrix when the number of data
points goes to infinity, see Figure 2.10A. Hence, it is a consistent estimator.
However, there is a systematic error occurring when the feature dimension-
ality is high and the number of samples is low: the estimated covariance
matrix shows overestimated values for the largest eigenvalues and under-
estimated values for the smallest eigenvalues [110]. This effectively leads
to a distortion of the estimated covariance matrix compared to the true
covariance matrix. A solution to this problem is to regularize the covariance
matrix towards the unity matrix as initially proposed by Ledoit and Wolf
[110] and applied to BCI by Blankertz et al. [21].

Σ̃(γ) := (1− γ)Σ̂ + γνI (2.26)

In this formula, γ ∈ [0, 1] is a tuning parameter, ν := trace(Σ̂)/D rep-
resents the average eigenvalue of Σ̂ and D is the feature dimensionality.
Importantly, Schäfer et al. [151] showed that the shrinkage parameter can
be chosen automatically using the Ledoit–Wolf formula [110]. This can
substantially improve classification accuracies [21]. An example for this
regularization is depicted in Figure 2.10B.
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Figure 2.10: Covariance estimation for different numbers of samples with and
without regularization. The left subplot (A) shows the influence of
the number of samples on the quality of the covariance estimation.
The right subplot (B) shows how regularization can improve the
quality of the covariance estimation.

2.5.3 Unsupervised learning

In the unsupervised learning scenario, one wants to learn the projection
and bias without having any label information, i.e. without knowing what
the subject tried to accomplish. This is substantially more difficult than
supervised learning. Nonetheless, using the results from before, we can
partially simplify the problem. In the previous section, it was proven that
one can replace the within-scatter covariance matrix by the total-scatter
matrix in the computation of w without changing the direction of w, see
Equation 2.21. Importantly, no label information is required to estimate the
total-scatter matrix.

Sample pooled/global covariance matrix:

Σ̂T =
1

N − 1

N

∑
i=1

(xi − µ)(xi − µ)T (2.27)

This estimation can be improved by applying the same Ledoit–Wolf regu-
larization as before.

Because the global covariance matrix can be estimated without labels, the
unsupervised learning problems boils down to obtaining a good estimate
of the class means µ1 and µ2. In Chapter 3, two new approaches are
introduced that are able to learn these mean values without any calibration
phase at all. These classifiers show remarkable properties, namely, (1) a
guarantee to converge to the true class means given the assumption of
independently and identically distributed (IID) data and (2) a classification
performance that — after a short ramp-up — is comparable to supervised
classification. In addition, other unsupervised learning approaches will be
reviewed.
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2.6 postprocessing

In the previous section, I have explained how LDA can be used to classify
a single event as being a target or non-target. In practical applications,
the low signal-to-noise ratio of the EEG leads to a high error rate in this
classification task. To alleviate this problem, a single trial generally consists
of multiple repetitions of each event. This allows for accumulating evidence
over a whole trial until one action is performed. Let Vi = wTxi + b for
i = 1 . . . K be the classifier outputs for the K events in one trial. We will sort
them according to their classes by writing them as VC

i = Vi · 1C(i) where
C denotes the set of indices for which class C was presented and 1C(i) is
the indicator function that is 1 if i ∈ C and 0 else. With these definitions in
place, the winner of a trial can be defined as the class that has the largest
average classifier outputs.

Cwin ∈ arg max
C

1
|C|

K

∑
i=1

VC
i (2.28)

An example is shown in Figure 2.11. Because Vi is real-valued, two winners
should not occur. However, in that rare case, the winning class is randomly
selected between the equal classes.
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Figure 2.11: Integrating evidence from one trial during postprocessing. Clas-
sifier outputs (gray dots) are shown for 6 classes (C1 to C6). The
class-wise averages are depicted in blue for the non-winning classes
and in green for the winning class.

To limit the influence of a single event on the class-wise averages, another
postprocessing step is typically applied in our data processing pipelines.
Rescaling the projection w by dividing it by the projected difference of
the class means wT(µ2 − µ1) will enforce that the target and non-target
class means are mapped to +1 and −1, respectively. With that, one can
simply clip the classifier outputs which exceed a certain threshold, e. g.,
all classifier values whose absolute value is greater than 5 are set to +5 or
−5 depending on the sign of the original value. This step can be seen as a
simple and robust artifact treatment that is especially valuable in the online
scenario where some artifact treatment methods are not directly applicable.
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2.7 performance evaluation

Evaluating a machine learning model is an essential part to verify its
applicability. A wide range of metrics have been previously proposed.
They can roughly be subdivided into two categories.

Single-epoch classification. In the first case, it is quantified how well
the model is able to distinguish single events (epochs) from one class (e. g.,
targets) from the stimuli of the other class (e. g., non-targets). Throughout
this work, this single-epoch classification accuracy will be measured by using
the area under the curve (AUC) of the receiver-operator characteristic (ROC)
curve. To understand the concept of a ROC curve, two additional terms are
introduced. The true positive rate (TPR), also called sensitivity, measures
the proportion of instances from the positive class that are correctly detected
as such. In contrast, the false positive rate (FPR) measures the proportion
of negative data points that are falsely classified as positive examples. The
goal is to maximize the TPR while minimizing the FPR.

Recalling the linear classification model from above as given in Equa-
tion 2.1, it becomes evident that the bias term is influencing the TPR and
FPR, e. g., a very low bias will cause all instances to be classified as negative
and thus, leading to a TPR and FPR of 0. While this minimized the FPR, the
outcome for the TPR is unsatisfactory. To overcome the difficulty of choos-
ing an appropriate bias term b, the ROC curve iterates over each possible
bias term and shows the corresponding FPR and TPR. Five distinct ROC
curves are shown in the left part of Figure 2.12. The AUC then measures
the area under that curve. A higher AUC indicates better performance
where an AUC of 1 represents perfect separability of the classes. The
theoretical chance level of the AUC is 0.5, meaning that a random classifier
should perform on this level. Systematic AUC values below 0.5 can be
improved by simply switching the class allocations of the model. The blue
line in Figure 2.12 represents a very good classifier, whereas the yellow line
depicts a poor classifier.

The right part of Figure 2.12 shows the class distribution and threshold
for three different bias terms. At point P1, both classes are fairly well
separable and TPR and FPR were equally optimized. Point P2 is derived
from the same distribution (green line) with a different bias. This bias
leads to a high TPR (all positive examples are identified as such), but also
to a high FPR (negative examples are often falsely identified as positive
ones). At point P3, classes heavily overlap leading to a small discriminatory
power, and hence, to a small AUC.

Trial-level performance:. Due to the low signal-to-noise ratio, one de-
cision step (a trial) requires the collection of evidence from many single
events. The single classification results are normally combined to obtain
a prediction for a trial, see the previous Section 2.6 about postprocessing.
Instead of quantifying the single epoch classification accuracies as before,
the second metric, which is used throughout this paper, is quantifying
the trial-wise performance. The trial-wise classification performance is
measured by simply dividing the number of correct predictions (e. g., pre-
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Figure 2.12: Different receiver-operator curves and their underlying distribu-
tions and thresholds. Plots are based on simulated data. The left plot
shows five different ROCs while the right plots show the distribution
and bias for three points on the ROC.

dicting the letter that the subject wanted to spell) by the total number of
predictions. The theoretical chance level, in this case, is given by 1 over the
number of possible choices assuming that each choice is equally likely.
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2.8 applications

In the previous sections, I have explained how neural signals can be
recorded and analyzed in a BCI. With this pipeline, the computer can
infer basic knowledge about the ongoing brain state of a subject. This
information can be used in various applications. In their book, Wolpaw
and Wolpaw [180] identified five application areas of BCIs. A sixth area
(basic research) was added by Brunner et al. in the BNCI Horizon 2020
road map [29]. The areas are:

1. Replacement. The traditional use-case of a BCI is to restore function
that has been lost due to an injury or a disease. The most prominent
example for replacement is the situation where a person lost his/her
ability to speak. That person could use a BCI to type words which
appear on a screen or are synthesized into sounds [20, 50]. This
can enable basic communication, e. g., for patients with ALS [126,
155, 187] which is otherwise not feasible. Another use-case is for
patients that lost limb control and use a BCI to operate a motorized
wheelchair [112].

2. Restoration. BCIs can also restore function, e. g., by replacing lost
or faulty neurobiological pathways. An example is the case where
a tetraplegic subject, who had no sensory or motor control over his
arm, could execute basic reaching and grasping movements through
brain-controlled muscle stimulation of his arm [2].

3. Enhancement. BCIs can also be used for enhancing the execution of a
task by monitoring the ongoing mental state of a subject and adapting
the application/device accordingly. For instance, it was demonstrated
that a BCI can be used to detect the intention to execute an emergency
brake in a driving scenario [22]. This information could potentially
be used to actually execute the brake and save valuable time. The
detection of fatigue during driving could also potentially be used to
inform the driver that he/she should make a break [24].

4. Supplement. BCIs can be used in a scenario where the natural
neuromuscular output is augmented by an artificial output, e. g., in a
scenario where a user controls a third (robotic) arm with a BCI.

5. Improvement. The principal goal of BCIs have been medical appli-
cation. In recent years, many studies have demonstrated how BCIs
can be used for motor rehabilitation after stroke. In these studies,
users receive immediate sensory feedback (e. g., via functional elec-
trical stimulation [15]) if a motor attempt was decoded. This should
reinforce the interaction between efferent and afferent pathways of
the brain and has shown medium-to-strong training effects [31].

Other groups have attempted to use BCI neurotechnology for cogni-
tive assessment and rehabilitation, see the review by Carelli et al. [30].
In this field, however, it is vastly unclear, which neural markers are
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sufficiently specific to realize brain-state dependent trainings. The
few existing studies mostly target attention in patients with ADHD
(with inconclusive results [177]) and general cognitive functions in
elderly subjects with a moderate effect [111].

6. Basic research. The real-time closed-loop interaction between brain
and computer provides a new tool to investigate basic scientific
questions. An excellent example of BCIs for basic research is the work
by Schultze-Kraft et al. [154]. In their research, subjects had to press
a button. Once their intention to press that button was detected in
the EEG based on the readiness potentials (RP), subjects should abort
their attempt to press that button. This closed-loop setup allowed
investigating questions regarding the ability to veto a movement and
to link the RP to movements.

2.8.1 ERP-based applications

Most results in this thesis focus on ERP-based paradigms. Visual ERP-
based BCIs have several desirable features [52, 180]: (a) they require almost
no subject training, (b) can be realized with standard hardware, (c) have
a high user acceptance, (d) generally need less than 10 minutes to be cal-
ibrated [52] and (e) are effective for almost all healthy users [64] and for
many patients with ALS [126, 155, 187]. Overall, BCIs based on visual ERPs
are widely used, even though faster alternatives exist in terms of informa-
tion transfer [59]. Examples for faster paradigms are code-modulated visual
evoked potentials (c-VEP) [16, 168] and paradigms based on steady state
visual evoked potentials (SSVEP) [36]. The c-VEP and SSVEP approaches,
however, require a high temporal precision of the visualization hardware
and a high level of gaze control. SSVEP stimulation can be perceived as
a high workload and — due to its flickering characteristics — may even
evoke seizures in epileptic users.

A wide range of applications exists that are based on visual ERPs [59],
e. g., for spelling [20, 50], web browsing [12], games [1, 131], browsing
and sharing pictures [165], predicting emergency brakes in a driving sce-
nario [22], controlling objects in a virtual environment [10, 63] and artistic
expression through painting [126, 187].

In contrast to visual BCIs, auditory BCIs generally suffer from a lower
SNR. Nevertheless, there was burst of activity of BCIs relying on auditory
stimuli in the last decade [9, 40, 58, 65, 66, 70, 71, 77, 91, 98, 100, 114,
128, 130, 141, 147, 152, 153, 157, 163, 166, 182, 186]. Besides their use-
case for communication, there is also an important line of research that
utilizes auditory BCI for brain-state assessment of patients with disorders of
consciousness [141, 147, 182]. These approaches explore the idea that BCIs
can detect residual brain activity even for patients where it is unknown
whether they are conscious.

In Chapter 4, I will show a new application for auditory ERPs in which
stroke patients use a BCI for training their language abilities.
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3
U N S U P E RV I S E D L E A R N I N G F O R

E R P - B A S E D B C I S

The following chapter is mainly taken from the two journal publications in
PLOS ONE [80] and IEEE Computational Intelligence Magazine [82] and
from a BCI Journal publication that is currently under review [76]. The
content is partly copied and partly rewritten and condensed to allow for a
more expedient presentation of the material. In addition to the previously
published material, I provide a new analysis where the new unsuper-
vised machine learning methods are tested in simulations on challenging
data from patients with post-stroke aphasia performing an auditory ERP
protocol with word stimuli in Section 3.5.

One of the fundamental challenges in BCIs is to tune a brain
signal decoder to reliably detect a user’s intention. While infor-
mation about the decoder can partially be transferred between
subjects or sessions, optimal decoding performance can only
be achieved with new data from the current session. Instead
of conducting a time-consuming calibration recording prior to
each BCI usage, it is preferable to learn the brain signal decoder
from unlabeled data gained from the actual usage of the BCI
application. This also has the advantage that an adaptive model
can learn to cope with changing distributions in the data over
the course of a session and that it can continuously improve
when more unlabeled data is recorded.
I present two new unsupervised learning methods for ERP-
based BCIs which can learn without label information: learning
from label proportions (LLP) is a conceptionally simple ap-
proach that relies on the existence of different subgroups in the
data with different label proportions. These subgroups naturally
exist in some application or can be created in others. They are
then utilized to estimate the target and non-target class means
which are used in a linear classifier. Given independent and
identically distributed (IID) data, it is the first unsupervised
classifier for BCIs that is guaranteed to converge to the optimal
classifier.

One of the fundamental challenges in BCIs is to tune a brain
signal decoder to reliably detect a user’s intention. While infor-
mation about the decoder can partially be transferred between
subjects or sessions, optimal decoding performance can only
be achieved with new data from the current session. Instead
of conducting a time-consuming calibration recording prior to
each BCI usage, it is preferable to learn the brain signal decoder
from unlabeled data gained from the actual usage of the BCI
application. This also has the advantage that an adaptive model
can learn to cope with changing distributions in the data over
the course of a session and that it can continuously improve
when more unlabeled data is recorded.
I present two new unsupervised learning methods for ERP-
based BCIs which can learn without label information: learning
from label proportions (LLP) is a conceptionally simple ap-
proach that relies on the existence of different subgroups in the
data with different label proportions. These subgroups naturally
exist in some application or can be created in others. They are
then utilized to estimate the target and non-target class means
which are used in a linear classifier. Given independent and
identically distributed (IID) data, it is the first unsupervised
classifier for BCIs that is guaranteed to converge to the optimal
classifier.

abstract
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Together with colleagues from TU Ghent and TU Berlin, we then
developed a second algorithm (called MIX) which combines
the strengths of LLP and an expectation-maximization (EM)
algorithm. Two online EEG-studies where healthy volunteers
controlled a modified visual speller, confirmed that both novel
algorithms work well in practice. Remarkably, the MIX method
not only defeats its two unsupervised competitors (LLP and
EM), but — after a short ramp-up — even performs on par with
a state-of-the-art regularized LDA classifier trained on the same
number of data points and with full label access.
As additional verifications, the performance of the new unsuper-
vised methods was tested in two more applications. First, I show
that it can work in a BCI chess application without changing
the user interface. Second, the unsupervised classifiers were
simulated on data from post-stroke aphasia patients performing
an auditory ERP paradigm with word stimuli. Although the
number of classes is smaller in that task, this data is much more
challenging because of a lower signal-to-noise ratio. Simulations
show that brain signals are still reliably decodable even without
calibration with a purely unsupervised approach.
This research demonstrates that a synergistic design between
the user interface and machine learning algorithm opens the
door for previously unseen performances. It paves the way for
a transition from supervised to unsupervised learning methods
in ERP-based BCIs.

Together with colleagues from TU Ghent and TU Berlin, we then
developed a second algorithm (called MIX) which combines
the strengths of LLP and an expectation-maximization (EM)
algorithm. Two online EEG-studies where healthy volunteers
controlled a modified visual speller, confirmed that both novel
algorithms work well in practice. Remarkably, the MIX method
not only defeats its two unsupervised competitors (LLP and
EM), but — after a short ramp-up — even performs on par with
a state-of-the-art regularized LDA classifier trained on the same
number of data points and with full label access.
As additional verifications, the performance of the new unsuper-
vised methods was tested in two more applications. First, I show
that it can work in a BCI chess application without changing
the user interface. Second, the unsupervised classifiers were
simulated on data from post-stroke aphasia patients performing
an auditory ERP paradigm with word stimuli. Although the
number of classes is smaller in that task, this data is much more
challenging because of a lower signal-to-noise ratio. Simulations
show that brain signals are still reliably decodable even without
calibration with a purely unsupervised approach.
This research demonstrates that a synergistic design between
the user interface and machine learning algorithm opens the
door for previously unseen performances. It paves the way for
a transition from supervised to unsupervised learning methods
in ERP-based BCIs.

Motivation

Many applications in the field of human-device interaction need a calibra-
tion phase prior to the actual usage of the application. During calibration,
the user is requested to perform a series of predefined tasks in order to
collect example data, for which the user’s intentions are known. Machine
learning methods then use this labeled data to learn the subject-specific
brain signal characteristics and predict the user’s intentions on new unseen
data. This can be used for different applications, see Section 2.8.

Calibration is challenging in BCIs, because the SNR is unfavorable and the
subject-to-subject variability is large [180], see for instance Figure 2.9 from
the previous chapter which illustrates the large variability even in healthy
subjects. Depending on the type of paradigm chosen, the calibration time
can differ between minutes [52] to multiple sessions [103]. Even though it
was shown that the calibration time can be partly reduced by transferring
brain signals from within the same subject [102] or other subjects [53, 54,
87], a rest of subject- and session-specific variation remains to be learned.

To make this problem even more difficult, we can sometimes observe
that brain signals change over the course of one single session. An example
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is shown in the Figure 3.1 below where I show the P300 amplitude from
one aphasia patient (please see Chapter 4 for more details) in channel
Cz over the course of a session. One can clearly observe that the P300
amplitudes is (1) showing a high level of variance across sessions and (2)
that the P300 amplitudes shows a clear increase from the beginning of
a session (run 1) to around run 6 which is approx. 30 minutes into the
session. With that, it might even be necessary to (re)-calibrate the classifier
within one session. It is almost impossible to adapt to the very fast (and
unpredictable) fluctuations in the data distribution (e. g., from run 13 to
run 17 in Figure 3.1), but an adaptive classifier should be able to learn these
slower trends (e. g., from run 1 to run 7).
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Figure 3.1: P300 development during different sessions of the same patient. The
thick blue line and shaded area show the average ERP response and
standard deviation across sessions, respectively. The thinner lines show
the ERPs for single sessions for a total of 8 different sessions.

To tackle these challenges, different learning strategies have been pro-
posed. They can be subdivided into two groups: the first group takes a
pre-trained classifier and updates it with unlabeled new data from the
current session [23, 38, 39, 118, 133, 176, 185]. We refer to this approach as
unsupervised adaptation. Algorithms implementing unsupervised adaptation
rely on the assumption that suitable training data is available or can be
recorded in order to pre-train a classifier. However, for subjects with limited
attention span or atypical brain patterns, e. g., stroke survivors, this might
not be the case. To overcome this limitation, a second group of algorithms
was recently proposed for BCIs. These algorithms can learn the individual
brain characteristics from scratch without requiring any labeled data at
all [61, 62, 80, 84, 95, 98, 174]. We refer to them as unsupervised learning
methods. They are a generalization of the first group of algorithms as they
can also be initialized with good parameters obtained via transfer learning.
See Figure 3.2 for an illustration of the difference between the two groups.
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Figure 3.2: Unsupervised learning and unsupervised adaptation. Red and blue
dots indicate historic labeled training data from two classes. Grey dots
depict unlabeled data. Dashed lines indicate classification models. The
general goal is to find a model which separates the two classes as good
as possible. Label information is necessary only in the adaptation sce-
nario. For transferring the classification model, only a slight adaptation
may be necessary while the unsupervised learning algorithm has to
learn the model from a random initialization. Figure taken from [82].

Both approaches are able to update their decoding model during the
actual usage of the BCI application and hence, are able to adapt to changing
brain signals over time. To accomplish this, the ML method is required to
learn from unlabeled data, i. e. when the user’s intentions are unknown.
Unsupervised learning bears the potential of exploiting large unlabeled
data sets to find common brain patterns — a key ingredient for developing
true plug & play BCI systems.

A different line of work explores strategies to adapt the policy of the
interaction between user and computer instead of adapting the brain signal
decoder [33, 34, 83, 85, 149, 184]. These policy adaptation approaches
generally rely on the detection of error-related potentials, i. e. signals that
reflect the observation of an error, in order to infer the correct or intended
actions of the user.

ERP-based BCIs generally facilitate unsupervised learning.

In the previous chapter, I have introduced the basics of ERPs in Section 2.3
and their BCI applications in Section 2.8.1. Importantly, visual ERP-based
BCIs often have the advantage that the stimulus presentation mode leads to
a special structure of the collected brain signal data, which can be exploited
by unsupervised learning methods.

For instance, in the case of the well-known P300 speller by Farwell and
Donchin [50], the user can select to spell between 36 symbols which are
arranged in a 6 × 6 grid by focusing his attention on the target letter,
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see Figure 3.3A. Rows and columns are then highlighted in alternating
order. A complete highlighting round of 12 events is called an iteration.
Typically, a trial consists of multiple iterations to uniquely determine the
attended character. This highlighting scheme is inducing constraints on
the data, e. g., exactly one row and one column of the symbol grid will
contain the selected letter while five rows and columns do not contain
it. Also, knowing the selected symbol uniquely determines each event
as being a target or non-target symbol, see Figure 3.3B. These and more
constraints allow for efficient learning from unlabeled data in ERP-based
BCIs, something which is not yet sufficiently explored in the oscillatory
domain, see for instance [115]. In the following sections, I will first review
other approaches to learn from unlabeled data before presenting two new
approaches that heavily rely on the rich structure of ERP-based BCIs.
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Figure 3.3: Visual spelling matrix and flash groups of a row-column speller. The
left subplot (A) shows the spelling interface of the classical speller by
Farwell and Donchin [50]. The right subplot (B) shows the flash groups
per event where white squares indicate characters that were highlighted
for a certain event and black squares indicate those which are not
highlighted. The green horizontal bar reflects the highlighting event of
the left subplot. Knowing the target letter ’P’ uniquely determines all
target events (see vertical red bar). The blue bracket on the right shows
one full iteration.
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3.1 review of previous approaches

Different attempts have been undertaken to accomplish learning from un-
labeled data in ERP-based BCIs. A review of examples from the group
of unsupervised adaptation techniques (sometimes also referred to as semi-
supervised [115] methods) is presented before discussing unsupervised learn-
ing approaches. It should be emphasized that all unsupervised methods
can be used for an ordinary visual P300 speller unless specified otherwise.
The ML model is hidden from the user such that the interaction between
user and computer remains the same except for the decoding quality of the
control signals.

3.1.1 Unsupervised adaptation for ERP protocols

Unsupervised adaptation always relies on a classifier that has been pre-
trained on supervised data from the same or other subjects. For transferring
it to a novel user or to the next session, the pre-trained classifier is then
adapted using unlabeled data gained during the usage of the BCI applica-
tion. An overview of currently published methods is given in the top part
of Table 3.1.

Table 3.1: Overview of unsupervised adaptation and unsupervised learning
methods for ERP-based BCIs.

Unsupervised adaptation
1) Naïve labeling with adaptation based on predicted labels:

Lu 2009 [118]; Kindermans 2011 [96].
2) Co-training two classifiers based on predicted labels:

Panicker 2010 [133].
3) Usage of error-related potentials as label information:

Zeyl 2016 [185].
4) Pooled mean & covariance adaptation disregarding labels:

Vidaurre 2011 [176]; in ERP: Dähne 2011 [38].
5) Alternatively estimating CSP and Riemannian classifier:

Barachant 2014 [5]; in MEG: Bolagh 2016 [23].
Unsupervised learning

1) Exploiting task constraints and error-related potentials:
Grizou 2014 [61, 62]; Iturrate 2015 [84].

2) Utilize data constraints with expectation-maximization (EM):
Kindermans 2012 [95]; Kindermans 2014 [98].

New unsupervised learning approaches (presented in this thesis)
1) Modify paradigm to learn from label proportions (LLP):

Hübner 2017 [80]. See Section 3.2.
2) MIX: Combine the mean estimations from EM and LLP:

Verhoeven 2017 [174]; Hübner 2018 [82]. See Section 3.3.
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Naïve labeling

Lu et. al [118] proposed an approach in which a subject-independent
classifier is first trained on historic data and then used to predict the
labels for newly recorded ERP signals. Assuming that these predictions
are correct, the model is then retrained with the new data to obtain an
updated classifier. Obtained labels are called “naïve" as it is uncertain
whether they are correct or not. To measure the degree of uncertainty, Lu
et al. introduced a confidence score that is measuring how consistently the
labels were predicted during the spelling of one letter. Only when a high
consistency is observed, they trusted an estimated label. Otherwise, the
unlabeled data was discarded. While their approach worked well in an
offline study using a visual spelling paradigm with 10 healthy subjects,
it can be expected to have severe problems when the initial accuracy is
close to chance level, e. g., in patient data or in auditory ERP data with
a low SNR. In this case, the instability of the labeling can cause runaway
errors [105]. The self-labeling approach was also used by Kindermans et
al. [96] for a class re-weighted version of the Ridge regression and was
shown to outperform a non-adaptive classifier on the BCI Competition III
data set [18].

Two-classifier co-training approach

Panicker et al. [133] extended the idea of naïve labeling using two classifiers
— Fisher linear discriminant analysis and Bayesian linear discriminant
analysis — which co-train each other. To do so, both classifiers are first
initialized on a labeled training data set. Then both classifiers determine the
labels for a chunk of unseen and unlabeled data points. These points with
corresponding estimated labels are then added to the current training data
set of the other classifier and both classifiers are retrained. This procedure
is repeated until convergence or until the improvements (measured by a
confidence score) are minimal. The authors evaluated this approach using
an offline visual ERP speller study with data from five healthy subjects. For
this relatively small number of subjects, it was found that the co-training
approach outperforms the naïve labeling strategy of a single classifier in
most situations, however, runaway errors may still occur.

Pooled mean and covariance adaptation

Vidaurre et al. [176] suggested an unsupervised adaptation method of
an LDA classifier. Vidaurre et al. also utilized the equivalence of the
two LDA formulations based on the local and global covariance matrix,
see Equation 2.21. They proposed an adaptation scheme which adapts
either only the common class means or both, the class means and the
global covariance matrix in an unsupervised fashion. This approach was
shown to outperform a fixed supervised classifier on motor imagery data
both in simulations and online. It can readily be applied to ERP data as
demonstrated in [38].
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Adaptation based on error-related potentials

When the user perceives a mistake, e. g., when an incorrectly spelled letter
was shown to the user, a time-locked error-related potential (ErrP) can
be observed. These ErrPs can be decoded with an accuracy of around
80% [35, 55, 113] and — depending on the application — may be useful
to automatically correct detected errors [122]. Initially proposed for code-
modulated visual evoked potentials, Spüler et al. [160] proposed to ignore
the data, if an ErrP is detected after showing the predicted character since
the true class label is unknown and the estimated class label is suspected
to be wrong. Other groups used ErrPs to adapt the policy of a virtual or
real robot in order to achieve a certain goal [33, 34, 83, 85, 149, 184]. In
Section 3.1.2.1, we review an approach that can jointly learn to decode
ErrPs and to adapt its policy to control a device.

Recently, Zeyl et al. [185] compared an adaptation of the decoder based
on (a) ErrPs, (b) a naïve-labeling approach based on target confidence and
(c) a hybrid approach which combines (a) and (b) in a visual ERP speller.
The problem with exploiting ErrPs in the context of the classical visual ERP
speller is that feedback signals are only shown at the end of each trial, and
hence, ErrPs are harvested rarely compared to the number of presented
stimulus events. To alleviate this mismatch, Zeyl and colleagues proposed
to show both the row and the column selection as two separate decisions to
the user to collect ErrPs more frequently. Interestingly, an offline analysis
and a simulated online experiment with 11 healthy subjects showed that the
naïve-labeling approach performed best, with the hybrid approach close
behind and the pure ErrP approach significantly worse. This indicates that
additional information from the ErrPs could not contribute in improving
the adaptation in this specific experimental scenario.

Alternatively training a spatial filter and Riemannian classifier

Barachant and colleagues proposed an information theoretical framework
which allows measuring distances between trial covariance matrices based
on concepts of the Riemannian geometry [6]. The use of this representation
and Riemannian distance has the advantage of being invariant under affine
transformations which would not be the case in the original Euclidean
space. Supervised classifiers operating on Riemannian distances have been
successfully applied to ERP signals [5]. Although mentioned as an option,
unsupervised adaptation was not implemented in their work on EEG-based
ERP data [5], but it was implemented successfully on magnetoencephalog-
raphy (MEG) data by authors around Bolagh from the same group [23].
Again, the premise is that labeled historic data from earlier subjects is
available which is used to obtain an initial estimate of the novel unlabeled
data.

An iterative two-step procedure for estimating these labels is at the
core of their approach. It makes use of a widely-used spatial filtering
method, common spatial patterns (CSP) [19]. As this algorithm requires
labels, which are not available in an unsupervised adaptation approach,
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the current label estimates are used in every iteration of the procedure.
The first step involves to replace the original trials by new “super trials”.
These are formed by CSP-filtered original trials, enlarged by the two CSP-
filtered class means. Super trials are then used to calculate the so-called
feature covariance matrices (one per trial). The second step takes place in
Riemannian space, where distances between these novel feature covariance
matrices and mean covariance matrices can be computed. A Riemannian
classifier based on labels of the last iteration (or on labels of historic data in
case of the first iteration) is used to update the label estimate of each trial.
These two steps are repeated until convergence.

This approach won the open “DecMeg2014” Kaggle competition. It could
easily be transferred to EEG-based ERP data.

3.1.2 Unsupervised learning for ERP protocols

I now address the second group of classifiers, unsupervised learning ap-
proaches, which can learn the model parameters without requiring any
labeled data at all, not even historical data. Compared to the approaches
described in the previous section, this type of learning is substantially
more difficult as no initialization or prior information of the parameters
are available.

Assuming a two-class problem with high SNR, one could imagine an
obvious approach: applying a clustering algorithm would allow splitting
the data into two groups, e. g., by assuming a Gaussian distribution of each
class. One could then further identify the two clusters as target and non-
target classes by utilizing structure imposed by the experimental design. In
case of ERP paradigms, fewer data points can be expected in the cluster
formed by target points compared to the non-target cluster.

However, given the low SNR in ERP-based EEG recordings, this obvious
approach would require an enormous number of data points. Practically, it
is not feasible. Instead, unsupervised learning methods need to exploit the
data constraints provided by the ERP application as good as possible. Only
this information allows them to solve the classification task despite the low
SNR and missing labels.

Two algorithms that implement unsupervised learning are reviewed: (1)
an approach combining task constraints with ErrPs and (2) the probabilistic
expectation-maximization algorithm. An overview is shown in the middle
part of Table 3.1.

Exploiting task constraints and error-related potentials

The calibration-free approach by Grizou [61, 62] and Iturrate [84] is able
to simultaneously calibrate the system while the user controls the BCI by
making intelligent use of the given task constraints and ErrPs. The authors
demonstrated the feasibility of the approach on a virtual 5× 5 grid where
the user should move a cursor to a goal position [84]. Users achieve control
by monitoring the moving cursor and passively assess whether it moves
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in the right or wrong position. In the latter case, an error-related potential
is automatically elicited by the user. Detecting those ErrPs would allow
a BCI controller to determine the goal position. Now, the learning task
is to simultaneously infer the unknown goal position as well as to train
an ErrP decoder. This chicken-and-egg problem is solved by utilizing the
observation that each of the 25 possible goal positions should lead to a
different sequence of elicited ErrPs, thus providing only 25 possible ways
to label the ErrP data. Their algorithm then assigns a higher likelihood
to data sets that are most consistent, where consistency is measured as
the separability between the two classes (correct or incorrect direction).
The goal position desired by the user is the one associated with the most
consistent data set, which can, in turn, be used to update the parameters of
the ErrP classifier. An online study with eight healthy subjects showed that
this method allowed users to correctly navigate the cursor to more goals
compared to a scenario where a supervised adaptation was conducted
prior to the experiment and with the same total experiment time. Although
their navigation problem is formulated in a grid shape, this technique was
not yet applied to any ERP-based spelling paradigm, see [34].

Expectation-maximization

The approach by Kindermans and colleagues [95] also simplifies the overall
learning task by trying to infer the latent variable (selected symbol) of a
matrix speller rather than solving the more complicated problem to decide
for each stimulus whether it was a target or non-target. This reduces the
number of possible configurations from an exponentially growing number
in the latter case, to a limited one — 36 possible letters in the case of
the original visual ERP speller — per trial, see Figure 3.3B from before.
Importantly, the number of possible configuration only depends on the grid
size, and does not change when more iterations are recorded to spell one
character. With this constraint in mind, Kindermans et al. proposed to use a
version of Bayesian least square regression [17, 95] which assumes that the
feature vectors can be linearly projected onto two one-dimensional Gaussian
distributions (one for targets and one for non-targets), which share the
same within-class variance. This original approach directly computed the
projection vector w and the within-class variance β.

The learning task is tackled by utilizing an expectation-maximization
(EM) algorithm which alternatively estimates the probabilities of the latent
variables — which letter was selected by the subject — during the expecta-
tion step [E-step] and optimizes the parameters given these probabilities
in the maximization step [M-step]. The EM procedure is repeated until
convergence. In comparison to a direct optimization of the model param-
eters, the iterative procedure of the EM algorithm has fewer parameters
that are optimized in each step which solves the intractability of a direct
optimization. EM can be seen as a mathematically rigorous version of the
naïve labeling approach from before and realizes the maximum likelihood
estimator.
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In the work by Kindermans et al. the projection vector w is directly
estimated with EM, thereby automatically optimizing the regularization
parameter λ for the pooled covariance [95]. An online study with 10 young
healthy users showed that the EM algorithm can successfully decode audi-
tory ERP signals from scratch without any label information [98]. Given a
sufficient amount of data, the EM approach can compete with a supervised
classifier. In cases when non-stationarities occur in the data [98], the EM
has the potential to outperform a non-adaptive supervised classifier. Nev-
ertheless, during the first spelled symbols performance is not satisfactory
and highly dependent on parameter initialization. This so-called warm-
up period is the main claim against the EM method as it is discouraging
for the user and as such shows the same disadvantages as a calibration
procedure. It was demonstrated that transfer learning can alleviate these
problems [97].
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3.2 new approach 1 : learning from label proportions

In Section 2.5.3 in the previous chapter, I have shown that the unsupervised
learning problem boils down to estimating the target and non-target class
means, µT and µN , respectively. These quantities and the pooled covariance
matrix, which can be computed without label information, are sufficient to
obtain the optimal projection w for ERP classification. This reformulation
of the unsupervised learning problem is one of the keys to enable the
following approach.

Please note that the bias term b is mostly ignored in this thesis, because
in most ERP applications only the relative and not the absolute scores of
the classifier outputs between the classes are compared, see Section 2.6.
In the case of relative scores, the bias term cancels out. Also, the bias is
not relevant for the AUC performance because the AUC is computed by
iterating over all possible bias terms. In all experiments, we simply set
b = 0.

I will now explain how learning from label proportions (LLP) [145] — a
simple, yet very powerful idea — can be used to estimate the class means.
It is applicable in cases where the data contains groups that have different
label proportions. The idea will be presented on an intuitive level with
Figure 3.4 before formally introducing LLP. Most of the section is taken
from the PLOS ONE journal publication [80].

To enable LLP in a visual ERP speller, two new paradigm modifications
are necessary. First, the normal highlighting matrix is extended by adding
“#” symbols. These symbols should not be spelled by the user and as such,
are non-targets by definition. Second, two sequences are interleaved per
trial (see Figure 3.4A) resulting in two subgroups in the data. Events from
S1 highlight only ordinary symbols while events from sequence S2 also
highlight “#” symbols. This means that the sequences S1 and S2 are both
composed of some target and some non-target events, but S2 has a higher
non-target ratio compared to S1 (see Figure 3.4B). Hence, we can write the
average response of S1 (µ1) and of S2 (µ2) as a function of the target and
non-target class means (see Figure 3.4C) with different label proportions
which represent the coefficients in the linear system. The exact proportions
are not yet important, they can be chosen by constructing the sequences and
will be explained below. It is important, however, that they are different
and known for both sequences and that it is possible to estimate µ1 and
µ2 without requiring any label information by simply averaging all events
from the corresponding sequence. The final step to obtain the target and
non-target class means is then obvious: all one has to do is to solve the
linear system of two equations and plug in the estimates of µ1 and µ2 (see
Figure 3.4D).

3.2.1 Methods

The LLP idea will now be formalized. Consider a two-class problem and G
groups of data where each group is a mixture of two classes (e. g., targets
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A: Trial B: Stimuli and label proportions C: Linear system

D: Solving the linear system yields an estimate of the class means

Figure 3.4: Basic principle of learning from label proportions. See the descrip-
tion in the text for an explanation. Figure adapted from [79].

and non-targets) with known mixture ratios contained in the matrix Π.
The means of the feature vectors in the groups µ1, µ2, . . . , µG can then be
expressed as a function of the class means µT, µN as follows.

µ1
...

µG

 = Π

[
µT

µN

]
, Π :=


π1

T π1
N

...
...

πG
T πG

N

 (3.1)

To obtain an empirical estimate of the group means µ1, µ2, . . . , µG, we
do not need label information. These quantities can then be used to
approximate the class means by using the pseudoinverse of Π, given by
Π−1 := (ΠTΠ)−1ΠT. Using this notation, the class means are computed as

[
µT

µN

]
= Π−1


µ1
...

µG

 . (3.2)
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Hence, by solving the resulting system of linear equations, one can get
an estimation µ̂T, µ̂N of the true class means µT, µN . The implicit homo-
geneity assumption in this formulation is that µT, µN are the same for each
group, i. e. the feature distributions for target and non-target samples are
independent of the sequence. I will later present data that shows that
this assumption is justified. Additionally, there also exists a version of
this algorithm using a manifold regularizer that performs better than this
version under a violation of the homogeneity assumption [136].

So far, we have obtained an estimation of the target and non-target class
means. From this, a classifier can be obtained by multiplying the inverse of
the estimated pooled (global) covariance matrix (see Equation 2.27) with
the difference of the class means. As shown in Equation 2.21, the resulting
orientation of the hyperplane is identical to the one obtained by the regular
(supervised) LDA approach.

Guaranteed convergence. One important property of LLP is that it
is guaranteed to converge to the optimal classifier. The proof is simple
and relies on the central limit theorem. Because of the equivalence given
in Equation 2.21, it is sufficient to show that the estimated class means
converge to the true class means. Let xi

k denote the i-th feature of the k-th
feature vector xk. If we assume that each feature instance xi

1, xi
2, . . . , xi

N
is drawn independently from an identical distribution (IID) with finite
expected value µi and variance σi, then the central limit theorem states that
the sample average µ̂i is normally distributed for large N.

µ̂i :=
xi

1 + . . . + xi
N

N
∼ N (µi,

σ2
i

N
) (3.3)

This implies that the estimators µ̂1, . . . , µ̂G converge to the true means
µ1, . . . , µG. After solving the linear system, we therefore have an estimation
of the class-wise means which is guaranteed to converge for N → ∞. Hence,
we have an unsupervised classifier that, under the assumption of IID and
homogeneity, is guaranteed to deliver the optimal classifier. As explained in
Section 2.4.4, this optimality is with regard to the 0-1-loss (Bayes classifier),
Fisher criterion and least squares with rescaled labels.

3.2.2 Paradigm modification

In the introduction to LLP, I have stated that the exact label proportions can
be chosen by constructing the sequences. I will now explain this process. To
generate two different sequences (S1, S2) in the data (G = 2), the stimulus
presentation paradigm by Verhoeven et al. [173] was used. This paradigm
is flexible in the sense that it can generate sequences with a desired mixture
ratio of target and non-target stimuli and it can highlight other subsets than
just rows and columns. At the same time, it uses a heuristic to increase the
SNR in the stimulus responses by avoiding the two most common spelling
errors: adjacency distraction (i. e. neighboring fields are highlighted) and
double flashes (i. e. fields are highlighted twice in a row).
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Stimuli from S1 highlight each character exactly 3 times for every 8
stimuli. This means that no matter which character the user is focusing on,
we obtain 3 targets and 5 non-targets in this train of 8 stimuli. However,
the decoding method and sequence generator are of course unaware about
the exact target positions, i. e. where the 3 targets are located within these
8 stimuli. Similarly, sequence 2 contains trains of 18 highlighting events
where each character is only highlighted twice. This leads to a ratio of 2
targets and 16 non-targets out of 18 stimuli in the second sequence. With
that, it should have become evident how the numbers in Figure 3.4C and
D arise.

A few additional measures were taken to comply with the assumption
that ERP responses are distributed identically and homogeneously within
each group. First of all, it is known that the response upon a stimulus
event is influenced by its brightness and thus, by the number of symbols
highlighted within that stimulus event [90]. With that, it is clear that the
number of highlighted symbols should be the same for both sequences.
Enforcing the above target and non-target ratios would not be possible
in the original spelling matrix as S1 would highlight more symbols than
S2 leading to different brightness levels. Hence, the original spelling was
extended by adding 10 "#" symbols. These symbols should not be attended
and therefore, serve as permanent non-targets. They are solely highlighted
within sequence 2 to guarantee that the same number of symbols (12) is
highlighted in both sequences and to ensure that the subject does not
realize whether the current event is from S1 or S2.

Adding these symbols resulted in the necessity to also increase the overall
spelling matrix. Hence, an additional column was added to increase the
total number of symbols resulting in a 6 x 7 grid and 42 entries. In addition,
to the 10 "#" symbols, the spelling matrix also contained all letters from the
alphabet were included plus the symbols " " "." "," "!" "?" and "←.

The second precaution is to have sequences from both groups randomly
interleaved within a trial. This avoids violating the homogeneity assump-
tion, e. g., non-stationarity in the feature distribution within one trial or a
modulation of the P300 amplitude because of differences in the target-to-
target interval [60, 77]. This random interleaving leads to a second effect
which is crucial for LLP. When averaging all events from one sequence,
the average response to the previous (t = −250 ms) and to the upcoming
events (t = 250 ms, t = 500 ms, . . . cancel out. This is important because
otherwise the LLP would reconstruct a periodic signal. A more careful
analysis of this aspect is given in the BCI chess Section 3.4.1.2 below.

3.2.3 Study details

To verify the applicability of LLP for BCIs, an online EEG study was
conducted. Overall, 13 healthy subjects (P1-P13, 5 female, average age:
26 years, std: 1.5 years) were recruited. Only one subject (S2) had prior
EEG experience. The EEG study was approved by the Ethics Committee
of the University Medical Center Freiburg. Following the principles of the
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Declaration of Helsinki, written informed consent was obtained from the
subjects prior to participation. One session took about 3 hours (including
EEG set-up and washing the hair), and participants were compensated
with 8 Euros per hour.

The subjects were asked to spell the sentence: “Franzy jagt im komplett

verwahrlosten Taxi quer durch Freiburg”. The sentence was chosen
because it contains each letter used in German at least once. Each subject
spelled this sentence three times. The SOA was 250 ms (corresponding to
15 frames on the LCD screen utilized) while the stimulus duration was
100 ms (corresponding to 6 frames on the LCD screen utilized). For each
character (trial), 68 highlighting events occurred and a total of 63 characters
were spelled three times. This resulted in a total of 68 · 63 · 3 = 12852
EEG epochs per subject. Spelling one character took around 25 s including
4 s for cueing the current symbol, 17 s for highlighting and 4 s to provide
feedback to the user. Assuming a perfect decoding, these timing constraints
would allow for a maximum spelling speed of 2.4 characters per minute.
Figure 3.5 shows the complete experimental structure.

Figure 3.5: Experimental structure of the LLP study. Thirteen subjects were asked
to write a sentence three times. A trial denotes the process of writing
one letter. Each trial consists of 68 events where 32 events were part
of sequence 1 and 36 events were part of sequence 2 (see text). Figure
adapted from [78].

Subjects were placed in a chair at 80 cm distance from a 24-inch flat
screen. EEG signals from 31 passive Ag/AgCl electrodes (EasyCap) were
recorded, which were placed approximately equidistantly according to the
extended 10–20 system, and whose impedances were kept below 20 kΩ.
Please see Chapter 2 in the last chapter for a more detailed explanation
about the EEG fundamentals. The signals were registered by multichannel
EEG amplifiers (BrainAmp DC, Brain Products) at a sampling rate of 1 kHz.
To control for vertical ocular movements and eye blinks, we recorded with
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an EOG electrode placed below the right eye and referenced against the
EEG channel Fp2 above the eye. The data of all 13 subjects is freely available
online at http://doi.org/10.5281/zenodo.192684.

Data processing. The data processing closely follows the pipeline intro-
duced in Section 2.4 in the previous chapter. To process the data in the
online experiment and during offline re-analysis, the BBCI Toolbox was
used [20]. In both cases, the collected data was bandpass filtered with a
third order Chebyshev Type II filter between 0.5 and 8 Hz and downsam-
pled to 100 Hz. Epochs were windowed to [−200, 700]ms relative to the
stimulus onset and corrected for baseline shifts observed in the interval
[−200, 0]ms. After dismissing channels Fp1 and Fp2, features describing
the elicited transient potentials were extracted from the remaining 29 EEG
channels. Per channel, the mean amplitudes of six intervals ([50, 120],
[121, 200], [201, 280], [281, 380], [381, 530] and [531, 700]ms) were computed,
resulting in a representation of each epoch by 6 · 29 = 174 features.

Classification. At the end of each trial, the LLP algorithm was applied
on the complete set of observed responses in order to estimate the class
means µT and µN as explained in the previous Section 3.2.1. Additionally,
the pooled (global) covariance matrix ΣT on the combined data of both
classes was estimated using shrinkage-regularization, see Equation 2.27 for
the pooled sample covariance and the Section 2.5.2 about regularization.
Based on the reconstructed class means and the pooled covariance matrix,
the projection vector w was then computed as w := Σ−1

T (µT − µN).
To select a symbol in each trial, the class with the highest average classi-

fication output was chosen, see Section 2.6. Please note that this decision
does not depend on the bias term, because each symbol is highlighted
the same number of times (except “#”) and the same bias is summed up
for each symbol. Thus, the relative ordering between the classes is not
affected by the bias. Visual blanks (“#”) were excluded from being chosen
as selected symbols.

The classifier was reset and started from scratch for each of the three
spellings of the sentence "Franzy jagt ..." in the online experiment. After
collecting the data of a new character, the classifier was retrained. Label
information (target / non-target role of characters) were used exclusively
to evaluate the performance during offline analysis, but never to train the
LLP classifier or generate the sequences during online use.

3.2.4 Results

Before investigating LLP, we first inspected the class-wise visual ERP
responses to assess the quality of the data of the online study. They
are provided as grand average responses in Figure 3.6. The rhythmic
characteristic of the non-target responses generally reflects the SOA of
250 ms. We found a strong early negative ERP upon target stimuli over
the occipital lobe (hereafter called N150) at around 150 ms for almost all
subjects with an average amplitude of around −8 µV. Please note that this
is the same component that has been described in the previous chapter as
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N200 in Section 2.3.2. For non-target stimuli, the N150 was very reduced.
The late positivity of targets (hereafter called P300) in the central electrodes
is rather late and weak with an average peak time around 400 ms and an
average amplitude of only around 2 µV. Table 3.2 lists the amplitudes and
peak latencies per subject observed for channels O1 (for the N150) and
Cz (for the P300). By training a supervised shrinkage-LDA on this data
set in an offline analysis and calculating the binary target vs. non-target
classification accuracy based on a 5-fold chronological cross-validation, we
obtained an average AUC of 97.5 % which indicates a very good SNR of
the data set.

Figure 3.6: Grand average (N = 13) visual ERP response of the LLP study. Top
row: average responses evoked by visual target (blue) and non-target
(green) stimuli in the occipital channel O1 (thick) and the central
channel Cz (thin) during the online experiment. Prior to averaging, a
baseline correction was performed based on data within the interval
[−200, 0]ms. The signed R2 values for channels O1 and Cz over time
are provided by two horizontal color bars. Their scale is identical
to the scale of the plots in the bottom row of scalp plots. Middle
rows: scalp plots visualizing the spatial distribution of mean target
and non-target responses within four selected time intervals: [50, 120],
[120, 200], [201, 380] and [381, 700]ms relative to stimulus onset. Bottom
row: scalp plots with signed R2 values indicate spatial areas with high
class-discriminative information. Figure taken from [80].

Reconstructed Means

After verifying that the data quality is good, we investigated if LLP could
correctly reconstruct the mean target and non-target ERP responses, when
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Table 3.2: Overview of neurophysiological features and supervised classifica-
tion performance. The amplitude and latency of peak amplitudes were
derived after epoch-wise baseline removal and class-wise averaging of
epochs. Values reported for N150 were determined as the minimum of
channel O1 of the interval [100, 200]ms, while the late positivity (P300)
was derived as the maximum of channel Cz in the interval [250, 500]ms.
The last column lists the AUC values estimated via cross-validation from
a supervised classifier (see text).

N150 (O1) P300 (Cz)

Subject Ampl. (µV) Lat. (ms) Ampl. (µV) Lat. (ms) AUC (%)

P1 -9.76 150 2.72 340 98.85

P2 -11.11 150 1.48 400 98.73

P3 -5.63 170 1.94 500 98.06

P4 -9.48 160 -0.25 500 99.82

P5 -7.59 160 1.15 410 97.05

P6 -12.17 170 0.65 470 97.12

P7 -7.79 150 1.13 450 99.92

P8 -3.57 180 3.87 360 91.69

P9 -13.25 140 0.11 380 99.56

P10 -12.01 140 3.67 380 99.72

P11 -2.93 180 1.31 300 89.18

P12 -4.35 150 3.49 370 98.89

P13 -4.10 160 3.57 370 98.45

Mean -7.98 158.46 1.91 402.31 97.46

the full amount of data (all 12852 epochs) are available. The ERP plots for
subject S6 and four intervals are given in Figure 3.7. It compares the target
and non-target ERP means estimated by LLP (Figure 3.7A) with the true
class means (Figure 3.7B). We observe, that the reconstructed class means
capture the characteristics of the original means almost flawlessly.

It is also of interest, how the class means estimated by LLP evolve using
a growing amount of data. As an example the target mean for subject P6 is
provided in Figure 3.7C. Using epochs that correspond to 1, 3, 7, 14, 28, 42
and 63 symbols, the mean target pattern in the interval [120, 200]ms stabi-
lizes towards the supervised true mean. While the negative potential over
occipital channels undergoes a linear development from strong to weak
intensity, the activity in frontal and central channels reveals jumps between
negative and positive potentials specifically during the first 10 symbols
until finally converging towards the ground truth.
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Figure 3.7: Original and LLP-reconstructed average ERP responses. For the pro-
totypical subject P6, subplot A displays the reconstructed class-wise
means using LLP and subplot B shows the average ERPs using the (su-
pervised) sample means. Subplot C shows the LLP target estimations
in [120, 200]ms for different numbers of training points. Figure taken
from [80].

Online Spelling Performance

Having found that LLP is able to successfully reconstruct the class means,
LLP should be able to correctly decode the attended symbol. We will now
present the results from the online study. Figure 3.8 shows the character-
wise online spelling performance with LLP for all 13 subjects including
the grand average. In total, 84.5 % of all characters were spelled correctly
(chance level = 3 %). After a ramp-up phase of around 7 characters (which
corresponds to 3 minutes wall clock time), this accuracy reaches 90.2 %
correct characters on the remaining characters on average. In general,
the algorithm worked well for all subjects except for P11. The reason for
P11’s low performance could be determined as an overall low SNR. It is
evident also when looking at the supervised performance values provided
in Table 3.2 and by the lack of class-discriminative N150. In the next section,
we will analyze whether a violation of the homogeneity assumption could
be the reason for the poor performance.

Homogeneity

To test the homogeneity assumptions of LLP, i.e. that both sequences
have the same average target and non-target ERP responses, we visually
inspected the responses for both sequences and each subject with the goal to
detect systematic differences in the ERP amplitudes and latencies between
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3.2 learning from label proportions

Figure 3.8: LLP online spelling performance. Top: each row represents a single
spelling of the test sentence "Franzy jagt ...", with yellow squares
indicating incorrectly spelled characters and blue squares indicating
correctly spelled characters. Bottom: the averaged spelling accuracy
across sentences and subjects is shown for each character. Figure taken
from [80].

the two sequences. Figure 3.9 shows the ERP plots from subject P11 for
both sequences. Even though small differences can be observed, the ERP
responses generally look extremely similar, and we could not detect any
systematic differences by visual inspection.

Figure 3.9: Sequence-wise average target and non-target ERPs for subject P11.
Subplot A shows the average response for sequence 1 and subplot B
displays the average for sequence 2. See the caption of Figure 3.6 for a
detailed description of the plots. Figure taken from [80].

We also performed a leave-one-out bootstrapping test comparing the
similarity of a sample from sequence 1 to the average ERP responses of
both sequences. The idea of this test is to compute the similarity of a
sample from S1 to the average ERP response from S1 and to the average
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ERP response from S2. The similarity values allow testing whether the
null hypothesis holds that target and non-target responses follow the same
distribution for both sequences. After applying the same preprocessing
steps as mentioned before, we iterated over each target (non-target) epoch
of S1. The average target (non-target) ERP responses for both sequences
were computed where the selected epoch was excluded when calculating
the average of S1. In the next step, the squared distance (L2 - norm) between
the selected epoch and the previously computed averages was calculated
in the interval [0, 700]ms using all channels. A two-sided paired T-test was
finally conducted to check, whether the distances to S1 differ significantly
from the distances to S2. This procedure was done separately for each class
(target / non-target) and subject, yielding a total of 2 · 13 = 26 tests. The
significance level was corrected by dividing by 13 accounting for testing on
13 independent subject.

One significant difference for the corrected significance level (α :=
0.05/13) was found, namely the differences in target ERP responses for P4.
However, the good spelling performance in Figure 3.8 suggests that this
violation is not critically harming LLP. No violation of the homogeneity
assumption was found for the worst subject P11.

In summary, this section has introduced the learning from label propor-
tions idea to the BCI community. Results from an online study provide
strong empirical evidence that LLP is readily applicable. With that, we
have opened the door for a new class of unsupervised learning algorithms.

This work was a joint work with Pieter-Jan Kindermans, Kon-
stantin Schmid, Thibault Verhoeven, Klaus-Robert Müller and
Michael Tangermann. The LLP idea originated from a meeting
with Pieter-Jan Kindermans. I took the leading role in formulat-
ing the idea, in implementing and testing the idea in the online
study and in the data analysis, result visualization and paper
writing. A full list of contributions can be found at the end of
the published paper [80].

This work was a joint work with Pieter-Jan Kindermans, Kon-
stantin Schmid, Thibault Verhoeven, Klaus-Robert Müller and
Michael Tangermann. The LLP idea originated from a meeting
with Pieter-Jan Kindermans. I took the leading role in formulat-
ing the idea, in implementing and testing the idea in the online
study and in the data analysis, result visualization and paper
writing. A full list of contributions can be found at the end of
the published paper [80].

author’s contribution
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3.3 new approach 2 : mixing model estimators

In the last section, I have derived LLP as a simple, yet powerful unsuper-
vised machine learning algorithm by modifying the paradigm according
to the needs of the classifier. LLP is the first unsupervised classifiers with
guaranteed convergence for ERP-based BCIs. It shows a quick learning
behavior in the beginning, but has a low convergence rate.

In contrast, the EM-algorithm for a Gaussian mixture model has a better
convergence rate, but it relies on a good initialization. Without a good ini-
tialization, EM performs poorly. Observing these complementary strengths
naturally leads to the idea of combining both algorithms. In a collaboration
with Thibault Verhoeven, we have derived a theoretical framework to obtain
an analytical combination of the two algorithms [174]. A short summary
of the method will be given in the following section. This framework was
then tested in an online study [82]. The text and Figures are largely taken
from the latter publication.

3.3.1 Methods

This method relies on the same classification framework as before. Again,
the goal is to find a projection w which only depends on the (inverse) global
covariance matrix and the difference of the class means, see Section 2.5.3.
The global covariance matrix can be estimated without label information.
To integrate both classifiers, a new method needs to derived that is able to
combine the mean estimations of the target and non-target classes.

Analytical combination of LLP and EM

The LLP algorithm directly calculates the class-wise means. Importantly, the
EM-algorithm can also be formulated in a way that yields mean estimations,
see [174] or [172] for a detailed derivation. We define the new (mixed)
mean estimation µ̂MIX as a linear combination of the EM mean µ̂EM and
the LLP mean µ̂LLP

µ̂MIX(γ) = (1− γ)µ̂EM + γµ̂LLP (3.4)

where γ ∈ [0, 1] is the mixing coefficient and regulates the influence of each
individual mean.

Optimal mixing coefficient

Inspired by the concept of mean shrinkage for supervised classification [72],
the optimal mixing coefficient γ∗ is obtained as the value that minimizes
the expected mean squared error between the estimated value µ̂ and the
unknown true parameter value µ:

γ∗ = arg min
γ

E
[
‖µ− µ̂MIX(γ)‖

2] . (3.5)
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Given the approximation that the EM algorithm gives an unbiased esti-
mation of the mean (µ̂EM = µ), Verhoeven and colleagues showed that
this approach leads to an analytical formulation for the optimal mixture
coefficient γ∗ [174]:

γ∗ =
1
2


D
∑

d=1
Var

[
µ̂EM,d

]
−

D
∑

d=1
Var

[
µ̂LLP,d

]
‖µ̂EM − µ̂LLP‖2 + 1

 . (3.6)

Here, d runs over the features, and Var
[
µ̂(·),d

]
denotes the variance (over

different realization of the data) of the estimator for the dth entry of the
estimated mean µ̂(·). This variance is a measure of the uncertainty of the
estimated value. The higher the uncertainty on the output of the LLP
method, the higher the weight given to the output of the EM method and
vice versa.

To estimate the variance in LLP, one can derive a closed-form solution
which only depends on the mixing matrix and data variance. For the EM,
no closed-form solution exists. Additionally, only one realization of the data
is observable in practical applications, and simulating other realization
is time-consuming and inaccurate. To overcome these limitations, one
can utilize that the EM-estimator converges asymptotically to a Gaussian
distribution where the variance can be computed based on the data [174].

Study details

In a single experimental session per subject, we compared the LLP, EM
and newly-derived MIX classifier. Twelve healthy volunteers (8 female, 4
male, mean age: 26 yrs, age range: 19− 31 yrs) performed a copy-spelling
session using a visual BCI speller. Two of the subjects (S2, S8) had prior
EEG experience. All participants gave written informed consent prior to
participation and the ethics committee of the University Medical Center
Freiburg approved the study. A session took about 3 hours (including the
EEG set-up and washing the hair), and participants were compensated
with 8 Euros per hour.

The setup is very similar to the previous study that has been described
in Section 3.2. Therefore, the description of this experiment is restricted to
the essential points and main differences to the previous study.

Within a single session, a subject was asked to spell the beginning of
a sentence in each of three blocks. The text consists of the 35 symbols
“Franzy jagt im Taxi durch das ”. Each block, one of the three decoding
algorithms (EM, LLP, MIX, see Section 3.1.2) was used in order to estimate
the attended symbol. The order of the blocks was pseudo-randomized over
subjects, such that each possible order of the three decoding algorithms
was used twice. This randomization should reduce systematic biases by
order effects or temporal effects, e. g., due to fatigue or task-learning. An
overview of the experimental structure is given in Figure 3.10B.
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3.3 mixing model estimators

Figure 3.10: Structure of the online experiment. A: each subject performed three
experimental blocks. Each block used a different unsupervised classi-
fier (expectation-maximization (EM), learning from label proportions
(LLP) or a mixing of the two (MIX)). B: at the start of a block, the
corresponding classifier was initialized randomly. The speller was
modified to allow the application of LLP by introducing visual blanks
“#” and two sequences (S1,S2), see the description of LLP. Attended-
(target events) and not attended stimuli (non-target events) are indi-
cated by shorter and longer bars, respectively. This label information,
however, remained unknown to the classifiers. After each trial, the
attended character was predicted and the classifiers were updated.
Figure taken from [82].

Implementation

Since the EM algorithm relies on a good (random) initialization, Kinder-
mans et al. [98] proposed to initialize five classifier pairs in parallel, thus,
increasing the chance of having a good random initialization. After each
trial, the classifier with the highest log likelihood was selected as the active
classifier, while the other classifiers were also updated. Pairs were used
because the unsupervised EM classifier can also learn to solve the inverse
problem (meaning that non-target and target are swapped). As shown by
Kinderman et al., a higher log likelihood correlates with better AUC and
selection performance [95]. Hence, always the classifier (and its negative)
of each pair with the highest log likelihood were kept in the following.

3.3.2 Results

Figure 3.11A shows the target vs. non-target classification accuracies for
each subject and each of the three unsupervised learning method and
Figure 3.11B shows the grand averages over the 12 subjects. While LLP
reliably improves in the beginning but only shows slow learning over time,
the EM algorithm performs more dichotomous. Depending on the random
initialization, the classifier can either find the projection very early (S7) or
only relatively late (S6, S9). The MIX method performs best for almost all
subjects and is able to consistently reach a high decoding accuracy with
an average of around 80 % after data of around seven characters has been
recorded. We would like to emphasize that seven characters correspond
to only 168 s of unsupervised training time or 476 unlabeled epochs. This
small amount of data suffices to reliable estimate attended characters (see
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Figure 3.11C). The characteristic behaviors of the three classifiers also
transfer to the spelling accuracy depicted in Figure 3.11C.

Figure 3.11: MIX, EM and LLP online performance. A: target vs. non-target
classification accuracies for each subject. The AUC was computed on
the latest (unseen) character. B: grand average classification accuracy.
Shaded area depicts the mean ± standard deviation across subjects.
C: overview of correctly and incorrectly spelled characters for all 12
subjects. Blue squares denote incorrectly spelled characters while
yellow squares indicate correctly spelled characters. For each subject
and method, the red circles indicate the first time point of perfect
control, where all post-hoc reanalyzed characters and all upcoming
letters are correctly decoded. Post-hoc reanalyzed characters are
obtained by reapplying the current (improved) classifier to the data
from all trials up to the current one. EM: expectation-maximization,
LLP: learning from label proportions, MIX: combination of the two
methods. Figure modified from [82].
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In the following, we want to have a closer look at the mixing coefficients
γpos and γneg for the positive and negative class, respectively. They are
shown for the twelve subjects in Figure 3.12. Three observations can be
made. First, interestingly, the mixture coefficients of the poor-performing
subject (S8) appear to be different from the rest. Second, non-target mixture
coefficients are higher than the target mixture values. This is because
there are more non-target examples than target examples in the data which
leads to a higher confidence in the LLP mean estimation for the non-
targets. Third, the mixture coefficient is not going down to zero which is
surprising because the EM estimator should have the lowest variance as it
is the maximum likelihood estimator. Thibault Verhoeven argues that this
behavior is because the variance does not decrease fast enough compared to
the norm in the nominator of the mixture formula in Equation 3.6, see [174].
Having found that the MIX method is outperforming the two competing
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Figure 3.12: Mixture coefficients for target and non-target means. The left plot
shows the mixture ratio γ for the targets while the right plots shows
them for the non-target in dependence of the number of trials (i. e. the
number of spelled characters).

unsupervised learning methods by a large margin in the online study, the
question remains how well it competes with a supervised classifier. We
compared the unsupervised MIX performance with supervised shrinkage-
regularized LDA classifier [21] which is a highly competitive supervised
classifier in the field of BCIs [117]. As no supervised classifier was used
in the online experiments, we could realize such a comparison only in a
post-hoc offline re-analysis of the data. In this offline re-analysis, both
classifiers were trained on the first N − 1 characters and tested on the Nth

character. Figure 3.13 shows the results.
We tested the null hypothesis that both single epoch classification ac-

curacies come from the same distribution. The non-parametric Wilcoxon
signed-rank test showed that significant differences exist only for the first
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9 characters (for p = 0.05). This is convincing evidence that the unsuper-
vised MIX method can utilize data that is unlabeled almost as efficient as a
supervised method with full label access.
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Figure 3.13: Comparison of the unsupervised MIX method with a supervised
regularized LDA classifier. Both classifiers were trained on the first
N− 1 characters and tested on the Nth character. The thick lines depict
the grand average over 12 subjects while the shaded area shows the
standard deviation across subjects. The red dotted line shows the
p-value of a Wilcoxon rank sum test comparing the supervised and
unsupervised performance for character N. Figure taken from [82].

This work was again joint work with researchers from TU Berlin,
TU Ghent and the University of Freiburg. Thibault Verhoeven
took the leading role in deriving the MIX classifier. I took the
leading role in testing the new method in the online study, in
performing the EEG data analysis, in visualizing the results and
in the writing process of the IEEE publication including the
review from Section 3.1.
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TU Ghent and the University of Freiburg. Thibault Verhoeven
took the leading role in deriving the MIX classifier. I took the
leading role in testing the new method in the online study, in
performing the EEG data analysis, in visualizing the results and
in the writing process of the IEEE publication including the
review from Section 3.1.
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3.4 bci chess application

3.4 unsupervised learning in a bci chess application

In the previous two sections, I have shown how the LLP and MIX method
can be derived and that they show extremely promising results in a mod-
ified visual speller. One limitation is that additional symbols (the “#”
symbols) needed to be introduced which effectively do not transfer any
information, and hence, lead to a slightly inefficient interface. Additional
programming effort is also needed when implementing these extra symbols.
In this section, I want to explore the idea that the LLP and MIX method
can also be applied to an interface that does not have additional explicit
“non-target symbols”. This will be tested in a recently presented two-player
online chess application [75] where both players make all their moves using
a visual ERP-based BCI system. The following text and Figures are largely
taken from a publication that is currently under review [76].

The control over the chess application is realized with a visual highlight-
ing scheme that highlights candidate chess pieces and fields in a two-step
process. First, all possible chess pieces are highlighted one by one, and the
user is instructed to focus on the piece that they want to move, see Fig-
ure 3.14A. The goal of the highlighting is to elicit distinguishable transient
ERPs in the subjects that can be recorded with EEG and used to identify
the selected piece. The same visual highlighting pattern (trichromatic grid
overlay) as before was used. Once the piece was selected, the possible fields
are highlighted one by one and the user can select them by paying attention
to the one field where the player wants to move his piece, see Figure 3.14B.

Figure 3.14: Example move of a BCI-based chess game, broken down into two
steps. A: in the first step, the white player can select any of the 12
pieces marked by a yellow background. B: after the knight had been
selected (marked by green background), the user can move it in the
second step to any of the 3 fields marked by a yellow background.
During online gaming, the 12 / 3 options are highlighted one by one
to elicit time-locked ERP responses in the player’s brain. Recording
them with EEG and decoding them with machine learning methods,
the BCI can then infer the desired piece and its next position.
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Now I claim that this is a very well suited application to make use of
unsupervised learning via LLP. If we have a closer look at the two selection
steps above, we can easily observe that the number of highlighted fields
differs between the steps. For instance, in the game situation depicted in
Figure 3.14A, 12 figures could be selected. Assuming that the figures are
highlighted one by one, this yields a target to non-target ratio of 1 : 11. In
contrast, only 3 fields can be selected in the second step (see Figure 3.14B),
yielding a target to non-target ratio of 1 : 2. With other words, the ERP
response averaged over all stimuli in the first step will resemble a non-target
response more closely compared to the average response in the second step,
which will look more similar to a target response. Over multiple trials, we
can then define a (sub)group as the collection of all EEG epochs that come
from trials with the same number of highlighted pieces or fields. To give
an example, the epochs from Figure 3.14A fall into a group with sequence
length 12. In summary, we have identified different groups in the data that
display different label proportions. This is the central prerequisite for LLP
and it was achieved without a paradigm modification.

Even though the central prerequisite for LLP is fulfilled, we face three
new challenges when applying LLP in this interface compared to the
modified visual speller. First, we will not only have two different groups
in the data, but as many groups as there are different numbers of chess
pieces/fields that can be selected in one step. This number theoretically
ranges from a single possible move, e. g., if a player needs to respond to a
check, to as many as 28 possible moves if a queen can freely move on the
board. Second, a different number of epochs will be collected over time
for each of the groups because some chess situations are more likely than
others, see Figure 3.15.
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Figure 3.15: Relative frequency of different sequence lengths. The x-axis de-
notes the number of options (pieces or fields) that can be selected
during one step. Please note that there is always one additional option
to request more thinking time and that the program automatically
executes the move if only one move is possible. During calibration,
users were presented with predefined real chess positions.
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Third, the label proportions are not mixed within a single trial anymore,
but they are mixed across trials. This is in stark contrast to the scenario
of the visual speller application, where two groups with different label
proportions were present during the spelling of a single character. In the
BCI chess application, different label proportions only exist when we have
collected data of multiple and different selection steps. I will explain in
more depth below why this entails consequences for the experimental
paradigm.

3.4.1 Methods

Weighted least squares regression

Consider the LLP scenario from before as shown in Section 3.2.1. We faced
a two-class classification problem (target vs non-target) with G groups
of data where each group is a mixture of these two classes with known
mixture ratios contained in the matrix Π. The means of the feature vectors
in the groups µ1, µ2, . . . , µG can then be expressed as a function of the class
means µT, µN as follows.

µ1
...

µG

 = Π

[
µT

µN

]
+


ε1
...

εG

 , Π :=


π1
+ π1

−
...

...

πG
+ πG

−

 , εi ∼ N(0, σ2) (3.7)

The G different groups in the data correspond to subsets of the chess data
where each subset is given by a certain number of possible fields/pieces
that can be selected. The mixture ratios contained in Π indicate the pro-
portions of targets and non-targets in each of these groups. We can obtain
an estimate for the group averages µ1, µ2, . . . , µG by simply averaging all
responses contained in the respective group. This averaging, again, does
not require label information. The term ε is a vector containing random
variables that describe the errors we make during that averaging and which
is mostly influenced by the SNR of the data and the number of data points.
If the errors εi are independent and normally distributed with constant
variance σ2 and an expected value of 0 for all i ∈ {1 . . . G}, then this is the
ordinary least squares (OLS) problem where the solution was presented in
Equation 3.2:

[
µT

µN

]
OLS

= (ΠTΠ)−1ΠT


µ1
...

µG

 . (3.8)

However, we face the following problem. The number of samples per
group differs, see Figure 3.15. Remember that a group is defined by
the number of possible fields/pieces that can be selected. The critical
observation is now, that the number of samples influences the quality of the
mean estimation for the different groups, resulting in better group mean
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estimates for some groups than for others. Hence, we need to consider
the number of samples per group. To incorporate this, we adjust the noise
model by replacing the error vector ε from before by an error vector ε̃:

µ1
...

µG

 = Π

[
µT

µN

]
+ ε̃, ε̃ :=


ε̃1
...

ε̃G

 . (3.9)

In Equation 3.7, all εi had the same variance. As they can differ now, we
face a heteroscedastic problem for which, however, we can estimate the
error terms. From the central limit theorem, it is known that the variance
of a mean estimation based on independent and identically distributed
random variables is proportional to 1

N , where N is the number of available
samples:

Var(ε̃i) ∝
1

#samples in group i
. (3.10)

Simply said, more data per group will reduce the variance (noise) of the
corresponding group mean estimate, and we should trust these group
averages more than those obtained for less frequent groups. Accordingly,
we define the weighting matrix W whose diagonal entries indicate the
relative importance of each group. Please note that any scaling of this
matrix (e. g., multiplication with a factor such as the total number of
samples) will become irrelevant later on.

W :=


#samples group 1 0 . . . 0

0 #samples group 2 . . .
...

...
...

. . .
...

0 . . . . . . #samples group G


(3.11)

With these definitions in place, we can retrieve a model with constant
variance by computing 1

σi
ε̃i. Based on that, we can see that our new error

term ε̃ is given by

ε̃ = W− 1
2 ε · C (3.12)

where C ∈ R is an (irrelevant) scaling constant. This holds because we can
recover the relationship from Equation 3.10:

Var(ε̃i) ∝ Var((W− 1
2 ε)i) (3.13)

=

(
w−

1
2

ii

)2

·Var(εi) (3.14)

=
1

#samples in group i
· σ2 (3.15)
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Please note, that neither the expected value nor the independence of the
new error term is affected by this transformation. With this, we can rewrite
Equation 3.9 by multiplying both sides with W

1
2 and obtain

W
1
2


µ1
...

µG

 = W
1
2 Π

[
µT

µN

]
+ W

1
2 ε̃ = W

1
2 Π

[
µT

µN

]
+ ε. (3.16)

We have now found a new linear system where the error terms are
independent and identically distributed according to N(0, σ2). It can be
solved by minimizing the least squares of the error term. It is easy to see
that we can formulate the minimization problem as the weighted least
squares (WLS) regression problem.[

µT

µN

]
WLS

= arg min
µ+, µ−

εTε (3.17)

= arg min
µ+, µ−

ε̃TWε̃. (3.18)

Multiplying this optimization problem with a constant will not change
the outcome which justifies why the constant C is irrelevant. The solution
is given by the following analytical expression [125].

[
µT

µN

]
WLS

= (ΠTWΠ)−1ΠTW


µ1
...

µG

 (3.19)

It delivers an optimal estimation of the target and non-target class means,
µT and µN , respectively. This estimator has the same properties (guaranteed
convergence to true class means for independent and identically distributed
data points; variance decreases with 1/N) as the one used before. In fact, it
is a generalization of the previous approach where the number of samples
was equal for all groups. With that, we have successfully tackled the
challenges that arise from an unequal number of data points per group,
and from a large number of different groups.

Randomized SOAs

The third challenge might not be obvious at first glance. For LLP, we
need to average the ERP responses for each group. Computing the group-
wise averages for a fixed SOA of 200 ms yields periodic responses, see
Figure 3.16. Why is that? Please notice that ERP plots are normally aligned
such that a target event or a non-target event was presented at t = 0 ms.
In our case, we do not have that class label information and just compute
the average per group. For each of the time points t = 0 ms, t = 200 ms,
t = 400 ms, . . . , we thus have a certain fraction of target and non-target
events. That fraction is constant within each group. For this reason, we
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Averaged amplitudes for different sequence lengths when the 
SOA is fixed to 200 ms. Data from subject S3 and channel O1.
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Figure 3.16: Average ERP responses for different sequence lengths and a fixed
SOA of 200 ms. The data is grouped for all chess positions with the
same sequence lengths, i.e. those positions where the same number of
fields/pieces could be selected by the user. It can be observed that the
average responses for shorter sequences show stronger amplitudes,
as they are more similar to a (pure) target response. Similarly, longer
sequences rather resemble non-target responses. The fixed SOA of
200 ms creates periodic ERP responses that obstruct the use of LLP.

have the same average ERP response with regards to these different time
points and obtain periodic group-wise average ERP responses.

LLP estimates the class means by computing a weighted sum of these
average responses where the same weights are applied for each time point.
This is clearly a problem because it means that any LLP reconstruction
based on these group estimations will also lead to a periodic estimation of
the true ERP responses. Hence, LLP will deliver a bad approximation of
the real ERPs.

A simple trick can solve this problem. Instead of using fixed SOAs, we
uniformly sample the SOA from the interval [100, 300] ms. The interval is
chosen such that its range covers a whole period of 200 ms with an average
SOA of 200 ms. With that modification, the ERP responses to stimuli that
occur before or after the stimulus at t = 0 are canceled out when averaging
all responses. The result is shown in Figure 3.17. It depicts the averaged
ERP responses per group for the same subjects, but using variable SOAs.
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Figure 3.17: Average ERP responses for different sequence lengths and a vari-
able SOA. The SOA is randomly sampled between 100 ms and 300 ms
which has the effect that earlier and later ERP responses cancel out
and a single ERP relative to t=0 ms survives the averaging.
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For the sake of comparing the two conditions, we randomly selected
each trial to be with fixed or with variable SOA in the following study
protocol. In the result section, we will show that this simple but essential
SOA modification only has a minor impact upon (supervised) classification
performances.

Study protocol

We recruited six healthy male subjects (S1-S6) with a mean age of 28 years
(range: 25− 31 years), who participated in the chess gaming study after
providing written informed consent. The ethics committee of the University
Medical Center Freiburg had approved the study. Two subjects (S3, S4)
had prior experience with BCIs. Brain activity was recorded with EEG
using 31 passive Ag/AgCl electrodes (EasyCap) from which we only used
the nine channels O1, O2, Cz, Pz, P4, P3, C3, C4, Fz. This reduction in
feature dimensionality had been found beneficial for the unsupervised
methods [78]. The signals were processed as described before in Section 2.4
using the same intervals as in Section 3.2.3.

Two players always competed against each other in pairs. Both players
were controlling their pieces with a BCI chess application that was imple-
mented based on an open-source Java chess application. Communication
between both computers was realized over a free Telnet chess server 1. The
actual experiment consisted of three stages (Figure 3.18A): a calibration
phase where labeled data was collected, an online phase where players
controlled a BCI chess application in free play using individually trained
supervised classifiers, and a final test phase to collect further labeled data.

During the online phase, both players made moves in an alternating order.
After the opponent has made a move, the interface starts the highlighting
sequence of the next move after a predefined thinking time. We have set
the pause between moves to around 15 s and to 5 s between the piece and
field selection, respectively, to allow players to think about their next move.
In the case that the player had only one choice (e. g., only one piece could
be moved or a piece could only be moved to one field), the application
automatically executed that move. Each field was highlighted exactly 5
times. There were additional options to request more thinking time and to
revert the last selection.

Simulated unsupervised classifiers

In addition to the online experiment, we simulated the learning behavior
fof different unsupervised learning methods. We considered two scenarios.
In the first scenario, classifiers were randomly initialized except for the
supervised classifier that always had been trained on 5 minutes (≈ 1000
epochs) of calibration data. In the second scenario, this training data was
made available to all classifiers and was used to initialize them. Later on,
the unsupervised classifiers sequentially (trial-by-trial) got access to the
online data and tried to predict the target or non-target labels for all epochs

1 https://www.freechess.org/
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of each new trial before the unsupervised models were updated using the
new data. In this phase, the fixed supervised classifier also estimated labels,
but was not changed over time. The final classifiers were then tested on
the test data set. Please see Figure 3.18B for an overview. The target vs
non-target AUC was taken as performance measure, see Section 2.7.

Calibration Test

- subjects executed pre-defined 
chess moves for about 15 minutes

- the calibration procedure 
was repeated in the end to 
collect a labeled test data set

Online phase

- two players play against each 
other in free play over a chess server
- they could finish 1-2 games each
- players were asked to report on any 
missclassification to obtain labels 

A: Data collection

B: Simulations

Scenario 1
(without transfer)

- the unsupervised methods 
are randomly intialized
-  supervised method is initialized 
on 5 minutes of calibration data

- unsupervised classifiers adapt based 
on unlabeled data collected during the 
online phase 
- supervised classifier is non-adaptive
- performance is assesed based on the 
provided labels, but not used for 
training

- the final classifier that were 
obtained at the end of the 
online phase, are applied to 
the test setScenario 2

(with transfer)
- 5 minutes of calibration data is 
used for initializing all classifiers

Figure 3.18: Study protocol of the BCI chess study. A: EEG data was collected
from a BCI chess experiment with three phases: calibration, online
phase and test phase. B: this data was also used to simulate an online
experiment where a supervised (fixed) classifier is compared to three
unsupervised classifiers.

We compared the following four classifiers.
1. Supervised (fixed). As a supervised baseline, we chose the regularized

LDA classifier as explained in Section 2.4.4. The supervised classifier was
always trained on the (labeled) calibration data and did not adapt over
time.

2. LLP (unsupervised-adaptive). The LLP classifier is based on the
weighted least squares regression model as given in Equation 3.19.

3. EM (unsupervised-adaptive). We used the same EM-algorithm as
explained before in Section 3.1.2. In this implementation, we utilized one
EM-classifier and its inverse classifier (which has the negative weights) in
parallel. As the EM can learn to solve also the inverse problem during its
optimization, we always evaluated the classifier which showed the better
log likelihood.

4. MIX (unsupervised-adaptive). Similar to our previous approach [82,
174], we used a mixture (MIX) of the EM and the newly proposed weighted
least square LLP classifier. In the MIX method, the estimation of the class-
wise means is proposed to be a linear combination of the mean estimations
found with the EM (µ̂EM) and those estimated by the LLP method (µ̂LLP),

µ̂MIX(γ) = (1− γ)µ̂EM + γµ̂LLP (3.20)

where γ ∈ [0, 1] denotes the mixing coefficient. A higher value of γ

gives more weight to the LLP classifier. In the previous Section 3.3, an
analytic solution for the mixture coefficient γ was presented that relied
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3.4 bci chess application

on the variances of the LLP and EM estimator (estimated by using an
approximation based on the Fisher information) and on the assumption
that the EM estimator is unbiased [174]. While this showed great results
for the visual matrix speller, we found that this approach gave suboptimal
results in the chess application because the high number of different groups
leads to an overestimation of the LLP variance.

In this contribution, we want to argue that the choice of a suitable mixing
coefficient γ should be seen as a hyperparameter optimization problem
for which it is not clear a-priori which exact choice is optimal. In contrast
to the analytical solution, we present a new heuristic as a simple and
computationally efficient alternative for finding a good value of γ. The
heuristic is based on the following three observations. First, the LLP
contribution should be high in the beginning to realize a good initialization.
Thibault Verhoeven showed that an initial mixture ratio between γ = 0.5
and γ = 1 gives excellent performances during the initial learning phase
(see [172], Figure 5.5) in a visual speller. The second observation is that
we needed around 500 epochs to reach a very good performances with the
MIX classifier in the previous section. One can also observe that the LLP
contribution becomes less important after this time point. Putting these
three observations together, we chose the mixing coefficients for target and
non-target as

γ(N) = min(1,
50
N
) (3.21)

where N denotes the number of epochs. The parameter γ is bound
between 0 and 1 and starts with a high weight for LLP, but quickly reduces
the LLP importance to only 10 % after 500 epochs (see Figure 3.19).

Figure 3.19: Heuristic mixture coefficient γ plotted against the number of
epochs. A higher value of γ indicates a higher weight for LLP. The
heuristic is designed such that LLP can provide a good initialization
for the EM classifier and the importance decreases if more data is
available.
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3.4.2 Results

The results of the online chess experiment are shown in Table 3.3. All play-
ers were able to achieve meaningful control of the system and completed at
least one chess game. We observed that player needed slightly more than
half a minute to execute a single move and that an average of 1.5 incorrect
moves occurred for a total of around 39 moves per player, yielding an error
rate of around 4%. The reasons for the errors are of technical (e. g., failure
of the optical sensor, channels in saturation) as well as subject-specific
origin (e. g., the player tried to select a piece that could not be moved).
Interestingly, the modification to use either a fixed SOA of 200 ms or to
use a uniformly drawn SOA from the interval [100, 300]ms did not have a
strong impact on the classification accuracies.

Table 3.3: Results of the BCI-chess experiment.

Moves
Supervised

target vs non-target

accuracy (AUC in %)

Number Incorrect
Time per

move (in s)
Fixed SOA Variable SOA

S1 36 3 42.9 93.74 94.45

S2 36 0 36.3 91.26 92.33

S3 34 1 23.8 97.00 99.31

S4 34 0 27.2 97.37 94.38

S5 47 3 39.5 89.71 88.19

S6 46 2 34.7 95.30 96.21

ERP estimations using learning from label proportions

Next, we examined whether LLP based on weighted least square regression
is able to recover the average target and non-target ERP responses without
using labels. Figure 3.20 and Figure 3.21 show the true ERP responses and
the LLP-reconstructed ERP responses for all subjects, respectively. In both
cases, the combination of the labeled calibration and test data was used.
One can observe that LLP is able to find the major ERP peaks (N200, P300),
although the N200 amplitude is overestimated.

Unsupervised performances for randomly initialized classifiers

In the next analysis, we simulated EM, LLP and MIX in the case that they
all start from a random initialization and compared them to a pretrained
supervised LDA classifier (scenario 1). In Figure 3.22B, the performance in
the test set is reported after the unsupervised models have been trained.
Remarkably, the MIX method was again able to reach the same performance
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Figure 3.20: Grand average (N=6) ERP responses given the true labels. The scalp
activity is shown for the five intervals [50, 120], [121, 200], [201, 300],
[301, 500], [501, 700]ms.

Figure 3.21: Estimated grand average (N=6) ERP responses using learning from
label proportions. LLP is able to recover the two major components
(N200, P300) without requiring labels, but delivers partially noisy
estimates.

level as a supervised calibration although no label information was used.
The other two unsupervised methods performed worse, with the EM being
better than the LLP. When inspecting the learning behavior during the
online phase in Figure 3.22A, the reasons for this behavior become evident.
In agreement with the results from the visual matrix speller, we found the
EM algorithm to perform dichotomous: it works well for data of 4 subjects,
but fails to recover from a bad initialization for the 2 remaining subjects
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(S3, S5). Generally, the LLP performs worse than in earlier studies [80],
however, it can still provide sufficient information to the MIX method such
that the latter quickly ramps up to the performance level of a supervised
classifier for all six subjects.
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Figure 3.22: Simulation of unsupervised classifiers starting from a random ini-
tialization. A: The average classification accuracy for single epochs is
shown for the three unsupervised adaptive classifiers (LLP, EM, MIX)
and a supervised (fixed) classifier for sub-blocks of 5 trials and all
six subjects (S1-S6) during the online learning phase. The classifiers
started from trial 3 to guarantee that different sequence lengths have
occurred which is a prerequisite for LLP. The number of sub-blocks
varies across players as they made a different number of moves and
sometimes used the options to request additional thinking time or to
revert a piece selection. B: The single epoch performance of the final
classifier (the one that was obtained at the end of the online learning
phase) on the test set is shown for all six subjects and averaged (AVG).
The differences between the MIX and supervised classifier are not
significant (n. s.) on this unseen test data set when tested with a
one-sided Wilcoxon signed-rank test (Z=4, p=0.75).

Effect of unsupervised online adaptation on classification performances

In the final analysis, we compared EM, MIX and the supervised classifier in
a “fair” comparison where all of them were initialized on the same amount
of labeled training data (scenario 2) before unsupervised adaptation took
over in the following simulated online phase. The initialization had the
effect that all classifiers started roughly on the same performance level at
the beginning of the online phase, although the unsupervised methods
had a slight lead which may be caused by the internal whitening step.
When more data comes in, the adaptive unsupervised classifiers further
outperform the non-adaptive supervised classifier, see Figure 3.23B. On the
final test set, the unsupervised classifiers were around 1− 2 % better than
the supervised (non-adaptive) LDA (Figure 3.23A) which was significant
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when tested with a Wilcoxon-signed rank test (Z = 20, p = 0.03). One
can observe that the MIX and EM algorithm converge to a similar solution
when LLP’s influence has become smaller and smaller. The results of the
LLP classifier are not presented here, because LLP should not be used as a
standalone classifier if a very good initialization is available.

Sub-block number (each has 5 trials) 
0 1 2 3 4 5 6 7 8 9

Ta
rg

et
 v

s.
 n

on
-ta

rg
et

 A
U

C
 (i

n 
%

)

80

82

84

86

88

90

92

94

96

98

100

MIX
EM
Supervised (fixed)

Subjects
1 2 3 4 5        6           AVG

Ta
rg

et
 v

s.
 n

on
-ta

rg
et

 A
U

C
 (i

n 
%

)

75

80

85

90

95

100

MIX
EM
Supervised (fixed)

A B

*

Figure 3.23: Simulation of unsupervised classifiers starting from a supervised
initialization. All classifiers were initialized on around 5 minutes
of labeled calibration data. A: The time courses of the single-epoch
classification performances (averaged across the 6 subjects) during the
simulated online learning process. B: The performance on the test set
after the unsupervised classifiers have been adapted on the unlabeled
online data. The differences in the average accuracy between the MIX
and supervised classifier are significant at an α-level of 0.05 as tested
by a one-sided Wilcoxon signed-ranks test (Z = 20, p = 0.03).

These simulations demonstrate that the learning from label principle
can successfully be applied in an application without a change of the user
interface. The resulting unsupervised MIX classifier showed remarkable
performances again. This drastically increases the scope of applications for
which the new unsupervised methods can be applied.

This project was conducted together with Albrecht Schall and
Michael Tangermann. Albrecht Schall took the leading role
in the implementation of the BCI-based chess application. I
took the leading role in deriving the LLP extension, testing this
idea in simulations and reporting the results. I want to thank
Max Sagebaum for contributing parts of the code, and Andreas
Rueckert and Harald Faber for implementing the original chess
Java application.
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Rueckert and Harald Faber for implementing the original chess
Java application.
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3.5 simulations on patient data from an auditory bci

The last sections have demonstrated that the unsupervised MIX method
performs exceptionally well in a modified visual spelling paradigm and
in a BCI chess application with performance comparable to supervised
methods. In the following, I evaluated the different unsupervised classifiers
on the auditory ERP data that stems from our new BCI-supported language
rehabilitation and will be described in more depth in Chapter 4. This
application scenario is much more challenging, because it has a much lower
signal-to-noise ratio. In addition, it is more difficult to apply LLP in an
auditory ERP paradigm when compared to a visual setup because auditory
stimulation protocols are less flexible, e. g., playing more than one sound at
a time will quickly confuse the user while multiple letters can be flashed at
the same time without problems in a visual paradigm.

The simplest way to apply LLP is by adding auditory blanks to the
stimulation sequence. These could be tones that are not linked to control
commands or pseudowords that have no meaning. With that, the user
should never attend these sounds or tones, and they should always be in
the non-target role. Naturally, these non-target examples will allow to learn
from negative examples. In addition, this creates two sequences, one with
only non-target examples and one with a mixture of target and non-target
words. This allows for applying learning from label proportions again.
This idea will be evaluated in simulations in this section.

3.5.1 Methods

For understanding the results of the simulations, I briefly outline the
experiment in which the data was recorded and how the data was analyzed.

Study details

The data was recorded as part of a BCI-supported language rehabilitation
for patients with chronic post-stroke aphasia. A detailed description of the
underlying motivation, training protocol and more analysis will be given
in the following Chapter 4.

In this protocol, patients were seated within a ring of six loudspeakers
(AMUSE protocol [152]). Six bisyllabic German words (length=300 ms)
were chosen as auditory stimuli. In each trial, one of these 6 words was
cued by a sentence. Then, a sequence of these stimuli was played to the
subject either via headphones or via 6 loudspeakers with a 1 : 1 relation
between words and loudspeakers. Per iteration, i. e. every six stimuli,
each word was played exactly once. Words were played with a stimulus
onset asynchrony of 250 ms or 350 ms depending on the subject’s abilities
to perform the task. A single trial consisted of at least 42 stimuli and a
maximum of 90 stimuli depending on whether the BCI issued an early
stopping. EEG signals from 31 passive Ag/AgCl electrodes (EasyCap) were
recorded, which were placed according to the 10-20 system. Impedances
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were kept below 20 kΩ, and channels were referenced against the nose. The
signals were registered by multichannel EEG amplifiers (BrainAmp DC,
Brain Products) at a sampling rate of 1 kHz.

Only the data of the first 8 patients was taken in the analysis. We recorded
about 30 hours of data which resulted in between 11 and 25 sessions per
subject. A total of 117 EEG sessions were recorded and are analyzed in the
following. The data is completely labeled because the patients always had
to perform a predefined task. In the following, this label information was
only used to assess the quality of the classifiers, but not to train them at
any point. For each session, only the first 36 trials were used to ensure that
the same number of trials is available for each session.

Simulated online analysis

All the results that follow are from posthoc-simulations. In these simu-
lations, an online scenario was simulated by successively providing the
recorded data to the unsupervised classification methods as it would be in
a real BCI session.

To enable LLP, one or two artificial non-target classes were created in
the following two scenarios. In the first scenario, all trials were discarded
where the first out of 6 words was the target word. In the second scenario,
all trials were discarded where either the first or the second word was the
target word. The remaining trials were left untouched such that they also
include these two words. This exactly simulates the scenario that there is
one or two words in the stimulation sequence that are never attended by
the user, and as such, are guaranteed to be non-targets.

Four different unsupervised classifiers were then trained on this data.

1. LLP. Learning from label proportions was applied by defining two
sequences. The first sequence only consists of non-targets from the
one or two words where the target trials were discarded. The second
sequence consisted of the remaining four or five words. This leads
to a target to non-target ratio of 1 : 3 or 1 : 4 in the second sequence.
With that, LLP can be applied as explained before in Section 3.2.

2. EM original. The same EM method as explained in Section 3.1 with
five classifiers that are initialized in parallel.

3. MIX. This algorithm was also used as described before in Section 3.3.

4. EM with negative examples. In this version of the EM classifier,
I incorporated the information about negative examples in the ex-
pectation step. For each trial, the classifier assigns a probability to
each class of how likely it is that this class was the target during
that specific trial. In the first scenario with one non-target class, the
probability of that class being attended was set to zero. In the second
scenario with two non-target classes, the probability for both classes
were set to zero. As this approach uses the available label information
perfectly, I expected this EM-version to outperform both the MIX and
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the original EM version. For this classifier, also five initialization were
used in parallel.

All classifiers were evaluated on the same test data. In this data, not
only the trials containing the one or two artificial non-target words were
removed, but also all their instances in the other trials. This means that
in the final test set, only 5 or 4 classes were presented for scenario 1 and
scenario 2, respectively. This was done because the user should never select
one of the artificial non-target words in a real application.

3.5.2 Results

I will now present the results of the simulations. For 2 out of 8 patients,
the unsupervised classifiers could not reach a satisfactory performance
meaning that the average spelling performance and target vs. non-target
AUC were both below 60% after training on the complete data. These
two patients were excluded in the following analysis. Figure 3.24 shows
the grand average results for the remaining 6 patients. In this Figure, the
results for scenario 1 and scenario 2 were averaged.

All classifiers start on chance level and improve over time. A clear order-
ing is visible: the EM that also learns from negative examples outperforms
all other classifiers. It reaches remarkable decoding performances of cor-
rectly predicting around 85% of the characters with a binary target vs.
non-target accuracy of 75%. The original EM is on the second place while
MIX and LLP perform worse. Thirty trials correspond to around 20 - 30
minutes of recording time and to about 1000− 2000 epochs.
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Figure 3.24: Simulated grand average unsupervised performances for post-
stroke aphasia patients performing a challenging auditory ERP
task. Subplot A shows the grand average spelling performance for the
4 different classifiers while subplot B displays the target vs non-target
classification accuracy. The shaded areas in both plots shows the
estimated 95% confidence intervals based on 1000 bootstrapping runs
where the sessions were randomly resampled in each run.
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Next, I investigated how the number of non-target classes influences the
relative performance of the 4 classifiers. Therefore, the two scenarios (1:
only one artificial non-target class, 2: two artificial non-target classes) were
evaluated separately. Figure 3.25 shows the result for only one non-target
class (scenario 1). In this Figure, the spelling performance was averaged
over all 30 trials meaning that the results incorporate the initial ramp-up
phase as well as the final phase where the classifier has improved. The
classifier performance can be ordered quite consistently as before.
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Figure 3.25: Average unsupervised performances per subject for one artificial
non-target class. The bars depict the standard deviation across ses-
sions and the red dashed lines depict the chance level. Subplot A
shows the spelling performance while B shows the target vs. non-
target classification performance.

Interestingly, this ordering slightly changes in scenario 2, see Figure 3.26.
In this scenario, the MIX method performs better than the original EM
method, but still worse than the EM algorithm which also learns from
negative examples. The improved MIX performance is very likely to follow
from an improved LLP classification performance.
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Figure 3.26: Average performances per subject for two artificial non-target
classes. Subplot A shows the spelling performance while subplot
B shows the target vs. non-target classification performance.

In summary, these findings show that the EM method can profit from
negative examples. In addition, these final average target vs non-target
performances of over 75% are quite remarkable given that the data comes
from an auditory BCI and that no labels were used to train the classifiers.
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3.6 discussion

In this chapter, learning from label proportions has been introduced to the
BCI community. Compared to previous unsupervised machine learning
approaches in BCI, LLP is a conceptually new approach. Previous studies
have successfully improved many aspects of the individual parts of a BCI
system, e. g., a lot of effort was put into improving the supervised machine
learning models or to improve the SNR by using stimuli with a better
saliency and more discriminatory information. Compared to that, the
novelty of LLP is that it considers the classifier and paradigm as a holistic
system which requires a holistic solution. This general idea to either utilize
the existing rich (temporal or spatial) structure in the data or to create
additional structure, seems to be a key in the unsupervised learning task
to overcome the limited data and bad SNR. I have presented three different
case studies where the paradigms were tuned to meet the prerequisites of
LLP. This synergistic design leads to previously unseen capabilities.

The resulting LLP classifier has not only low conceptual and compu-
tational complexity, but has also a guarantee to recover the correct class
means without using explicit label information. To the best of my knowl-
edge, this is the first unsupervised classifier in the BCI field that has this
property. Assuming discriminatory information between targets and non-
targets, this implies that the user can rely on the system to correctly decode
his or her brain signals given enough data from a stationary distribution.

When combining LLP with an expected-maximization algorithm, the
resulting MIX shows fantastic performance, especially in the online study
with the visual speller. In that online study, the results showed that subjects
only required around 3 minutes of unsupervised learning time to obtain
reliable control over the BCI system. And even this initial ramp-up time
is not lost in some applications, but can be fully used when applying a
later (improved) classifier to reanalyze initial trials that possibly were mis-
classified. When more data was collected, the observed average target vs.
non-target classification AUC did not only exceed 90%, but the best unsu-
pervised method was even on par with a supervised classifier that had full
label information. This is very strong evidence that the approaches, which
have been presented in this thesis, are able to efficiently exploit unlabeled
data which is often abundantly available in BCI studies. This opens the
door for realizing true plug-and-play systems that can dynamically adapt
to the users brain signals over time. Ultimately, this does not only increase
the usability of BCI systems, but can also give the opportunity to gain new
insights when doing BCI data analysis.

While it was necessary to assign some stimuli into a pure non-target role
for the visual speller and auditory ERP decoding, I have demonstrated how
a weighted least squares LLP extension and a small paradigm modification
(using variable SOAs) can allow for successful unsupervised learning even
in a natural user interface, i.e. the chess interface in Section 3.4. This
LLP extension dramatically increases the number of possible application
scenarios. LLP can be applied to all BCI paradigms that rely on a multi-step
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selection process with a different number of items per step. In addition,
it can also be applied in scenarios where the number of selectable items
changes over the course of the experiment, e. g., in a web browser where
the number of objects continuously changes depending on the website
visited [12]. In such applications, the only paradigm modification required
is to replace the fixed SOA by a variable SOA. As shown empirically, this
did not affect the classification accuracies systematically.

3.6.1 Comparison of different unsupervised methods

Although convergence is guaranteed for LLP, the convergence rate is rather
low. While LLP quickly ramps up, it is not able to find a very good
separation of the two classes with limited data. Looking at the convergence
proof, the reason for this becomes evident. The variance of the mean
estimation decreases with 1

N . This means that the convergence rate is linear
in N. Other algorithms have a better convergence rate. For instance, it
was shown that the EM-algorithm has a superlinear (better than linear)
convergence rate [121]. Hence, the main practical purpose of the LLP is
to provide a good initialization for the EM-algorithm which results in the
MIX method.

Compared to a pure EM-based solution, the MIX method shows the
largest benefits if (a) the EM initialization is poor (e. g., due to high-
dimensionality) and/or if (b) the number of classes is high. The first
aspect is due to the fact that the EM algorithm often converges to local
extrema and cannot easily recover from that. For that reason, Kindermans
et al. [98] proposed to train five parallel classifiers and select the one with
the highest data log-likelihood to maximize the chance that one of them is
well-initialized. However, the MIX online study showed that even 5 ran-
domly initialized EM classifiers are inferior compared to the MIX method
in case of a visual speller. On the other side, a well-initialized EM classifier
does not profit from LLP anymore as shown in the BCI chess section.

The EM also works well if the number of classes is rather low. This could
nicely be observed when running the simulations based on the auditory
ERP data where the EM performances exceeded the MIX performance. This
observation can be explained by the following considerations. The EM has
to solve the task of assigning a class label to each trial. The number of
different options to accomplish this task, is given by CT where C is the
number of different classes and T is the number of different trials. It is
easy to see that the number of options explodes with increasing number
of classes and trials. Therefore, the task is easier for the EM classifier if
the number of classes is small (e. g., C = 6 for the auditory paradigm) and
if there are only a few, but very long trials (e. g., the length of the trials
in the auditory paradigm is up to 90 epochs). In the visual speller on the
other hand, the high number of classes (C = 32) despite a shorter trial
length (≤ 68 epochs) makes the classification problem for the EM very
difficult. The chess application has an average of 10 options that can be
selected per trial and with that, is somewhat in between. If we compare
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this dependency on the number of classes to the LLP classifier, we observe
that the LLP is actually agnostic towards the number of classes per trial
because LLP is only concerned with the target vs non-target classification.
For this reason, the number of classes and trial lengths should not affect
the LLP mean estimations given a constant SNR and the same number of
data points.

3.6.2 Unsupervised classification on visual and auditory data

Compared to previous studies with visual ERPs, the N200 elicited for target
stimuli in the visual speller and chess application is very large [89, 169, 170],
even when compared to using familiar faces as stimuli [92, 183] or motion
onset [73]. It may be caused by two main factors: first, the trichromatic
grid overlay is perceived as a very salient stimulus compared to traditional
brightness intensifications. The short rotation of the grid may have been
beneficial for the saliency as well [73], even though Tangermann et al.
[164] found that most of the salience improvement compared to brightness
highlighting is caused by the grid effect alone. Second, precise markers
based on an optical sensor on the screen were used to determine stimulus
onset time points. Compared to an alternative strategy to use markers
elicited by the presentation software, jitter and delay caused by the graphics
adapter and the LCD screen are eliminated by this approach which leads
to better classification performance.

This high SNR in the visual data makes the unsupervised learning
problem easier. To see this, imagine an extreme scenario where no noise
is in the data. Then the target and non-target class will emerge naturally
without the necessity of any advanced clustering method. In contrast, it is
much more difficult to extract the class distributions when the data is very
noisy, because the distributions are less prevalent. The high SNR in case of
the visual speller is one of the reason why the MIX method could reach a
comparable level compared to the supervised classifier.

In contrast to that, it is well-known that decoding auditory ERP data is
much more challenging than visual ERP data because of the lower SNR [59].
The AMUSE paradigm was developed to mitigate this problem by adding
spatial information to the paradigm [152]. In the original publication, 8
loudspeakers and artificial tones were used. In the best condition, young
healthy subjects had a target vs non-target classification accuracy (AUC) of
around 75%. Remarkably, due to the improved stimuli (bisyllabic words
instead of tones) and with user training, some of our post-stroke aphasic
patients could reach classification accuracies above that level — even when
relying solely on unsupervised learning and without transfer learning. This
is a great advance in terms of usability of auditory BCIs. It also gives
hope that future auditory BCIs will have increased SNR which make the
unsupervised learning problems even easier.
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3.6.3 The role of the different label proportions

Learning from label proportions crucially depends on the possibility to
include at least two groups with different target to non-target ratios into
the BCI paradigm. Without this, it is not directly applicable to standard
ERP paradigms. The best performance can be obtained when one group
predominantly contains targets and the other group predominantly contains
non-targets. In the limit, this would lead to a supervised scenario where one
group only contains target events and the other only contains non-target
events.

For the visual matrix speller two sequences were selected: one sequence
of stimuli dominated by targets and one sequence dominated by non-
targets. This specific choice of the sequences and associated mixing matrix
reflects a trade-off between classifier quality, spelling matrix size and
sequences lengths. Other choices are, of course, also possible. However,
it is important to realize that practical limitations come into play when
choosing the groups. For instance, enforcing a target ratio of 1/2 in a
visual speller requires a simultaneous highlighting of half of the selectable
symbols, which may be undesired from a usability point of view. If another
sequence only consists of non-targets (visual blanks) and the number of
highlighted symbols needs to be matched, this would require that half
the amount of selectable characters are to be added as visual blanks. This
would drastically increase the number of items on the screen. Additionally,
if many symbols are highlighted simultaneously, then the number of epochs
required to obtain unique decodability of a character increases [173].

In the auditory ERP paradigm, it is more difficult to create groups with
different target to non-target ratio because auditory paradigms provide less
flexibility. It is, for instance, more difficult for the user when two stimuli are
played at the same time compared to multiple visual stimuli. Also, the total
number of stimuli is often much less than in visual spellers. With these
limitations in place, two strategies could be used to harvest different label
proportions. The first strategy is the same as in the BCI chess application
from Section 3.4 where the user interface comprises a multi-step selection
process, which has a varying number of items per step, to execute an action.
The second strategy is to add non-target stimuli by using pseudo-words
or other stimuli that the user should always ignore. The feasibility of the
latter approach was demonstrated in Section 3.5.

When adding blanks stimuli (auditory or visual ones) to the paradigm,
another limitation is a reduction of the spelling speed because some of the
highlighting time is used for an event that is not associated with any control
command. To overcome this limitation, one could consider a strategy where
the LLP initially learns on the extended paradigm with blank stimuli and
then, once it reached a satisfying performance level, switches back to an
ordinary unmodified paradigm.

In the BCI chess game, the different groups in the data were given by
the application itself. With that, one has no flexibility over the choice of
the target to non-target ratio in those groups, but at the same time, no
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additional symbols/fields needed to be added to the interface. The only
modification that was required to unlock LLP/MIX was to replace the fixed
SOA by a uniformly drawn SOA. Interestingly, most subjects did not even
notice the difference and showed similar performance for both SOAs.

3.6.4 An adaptive version with a limited time horizon

It is known that the EEG feature distribution can change over the course
of a session [98, 156, 176] and thus, violates the IID assumption, see e. g.,
Figure 3.1. The reason for these changes could be human factors (fatigue,
motivation and learning) [88, 181] or non-human factors (drying gel leading
to changing impedances, changed environmental conditions, among others).
Compared to supervised methods, unsupervised methods have the distinct
advantage that they can continuously learn when more unlabeled data
comes. This bears the potential to adapt to changes in the data distribution
over the course of a session. When realizing such an adaptive version, one
needs to find a strategy to “forget” older data.

At least two questions quickly arise, namely how exactly older data
should be discarded and which time frame should be considered to be from
importance. Regarding the first question, many options are possible. The
easiest approach would be to simply use a sliding window of a predefined
length and to discard all data that is outside this window. In another
approach, Vidaurre et al. [176] proposed that the updated BCI model
parameters θt+1 should be a weighted linear combination of the previous
model parameter θt and the estimates of the model parameters based on
the current samples θ̂t+1:

θt+1 = (1− η) · θt + ηθ̂t+1. (3.22)

This effectively realizes an exponential decay where η regularizes the rate
of the exponential decay.

Even more sophisticated approaches have been proposed without specif-
ically targeting BCIs, but non-stationary data streams in general [104]. The
key idea is to use an ensemble of different models where each model has a
different forgetting strategy (e. g., exponential decays with different rates,
window based, etc.) and with that, each model can adapt to different kind
of non-stationary effects. Some models might be better suited to model very
quick changes while others are better to model slow drifts. The different
models in the ensemble are then weighted according to a score that needs
to be computed on the unlabeled data. In our case, a good choice would be
the data log-likelihood which measures how well each of the models can fit
the data. Models with higher likelihood would then receive greater weight.

Regarding the second question to find suitable time constants (e. g.,
update rates η, window lengths), I believe that this problem can only be
solved empirically. One way of finding the constants is to look at the ramp-
up behavior of the unsupervised learning methods to get an upper bound
of the data that is necessary to reach a decent performance. Based on the
Figure 3.11 and the BCI chess results, around 3− 5 minutes are enough
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for visual ERP paradigms and a substantially longer period in the range of
20− 30 minutes is required for the auditory data. The difference in time
scales can again be explained by the difference in SNR. One should select
suitable time constants according to these time scales, however, they can,
of course, strongly vary depending on the application. The time constants
could also be computed in a more thorough approach using cross-validation
or simulations based on modified data where non-stationary effects are
artificially injected into the data.

3.6.5 Limitations

The biggest limitation of the presented unsupervised learning approaches
is that — so far — they are mostly restricted to ERP data and are not
directly applicable to, e. g., motor imagery data. The reason is that they
explicitly utilize the rich structure introduced by the ERP paradigms. For
instance, the EM algorithm exploits that one latent variable — the selected
symbol — uniquely determines all target and non-targets epochs of a trial.
The LLP approach requires groups with different label proportions. In
general, future work should go towards jointly adapting the paradigm and
classifier by considering the user, interface and decoder as a holistic system.

I mentioned before that mistakes in the initial learning phase can be
post-hoc corrected when an updated classifier is available. The prerequisite
for this is that subjects continue writing their sentence or keep executing
the task although they receive misleading/incorrect feedback. For some
subjects, this kind of feedback leads to confusion which in turn can interfere
with the use of the application because subjects think that they need to
change their strategy, or they do not trust the system to successfully read
out their signals. A changed behavior might then lead to changes in
the data distribution which might cause instability. One solution to this
problem is to not display any feedback until the classifier reached a high
certainty (e. g., measured by the data log-likelihood or by the consistency of
the predictions) or another solution is to very clearly explain the expected
behavior of an unsupervised learning system to the user.

The MIX method is the result of combining two unsupervised learning
ideas with complementary strengths [174]. While this combination has
proven to be beneficial, other means of receiving information should defi-
nitely also be harvested in future approaches. This comprises the usage of
a language model and transfer learning [97] as well as the exploitation of
error-related potentials [185] to increase the model’s capacity. Ultimately, I
think that the low SNR in BCI data can only be compensated by aggregating
information from different temporal and neuronal sources in combination
with a careful exploitation of the underlying data constraints.
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The goal in this chapter was to introduce new unsupervised
learning methods for brain-computer interfaces based on event-
related potentials. In the beginning, I reviewed different strate-
gies to learn from unlabeled data which showed clear evidence
that unsupervised adaptation outperforms non-adaptive super-
vised classifiers.
I also presented two new approaches that heavily rely on the rich
temporal structure in the data and which can learn to decode
ERPs without requiring any labeled data. The first approach,
learning from label proportions, is the first unsupervised BCI
classifier that is guaranteed to converge to the optimal decoder
given i.i.d. data points.
The new algorithms were tested in three different application
scenarios. First, a visual speller was modified. In an online
study, the best unsupervised classifier showed a very quick
ramp-up behavior with almost perfect control after only 3 min-
utes of unsupervised learning time and average target vs non-
target classification accuracies of over 90% after only 5 minutes
of learning time. Similarly, I could demonstrate in simulations
on data from a BCI chess game that such a quick ramp-up is
also possible without modifying the user interface in certain ap-
plications. Ultimately, simulations based on data from auditory
ERP experiments show that a modification in this paradigm
also increases decoding performance of unsupervised learning
algorithms and that they can even be successfully applied to
very challenging patient data.
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learning methods for brain-computer interfaces based on event-
related potentials. In the beginning, I reviewed different strate-
gies to learn from unlabeled data which showed clear evidence
that unsupervised adaptation outperforms non-adaptive super-
vised classifiers.
I also presented two new approaches that heavily rely on the rich
temporal structure in the data and which can learn to decode
ERPs without requiring any labeled data. The first approach,
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also increases decoding performance of unsupervised learning
algorithms and that they can even be successfully applied to
very challenging patient data.
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L A N G UA G E R E H A B I L I TAT I O N W I T H A

B R A I N - C O M P U T E R I N T E R FA C E

This chapter is the result of a close cooperation with the University Medical
Center Freiburg with the goal to establish a new clinical application of BCIs.
Large parts of the text and of the Figures are part of a publication that is
currently under preparation [127].

Aphasia refers to an impairment of language abilities mainly
due to a left-hemispheric stroke. About 20% of all first stroke pa-
tients remain with a chronic communicative impairment which
has a large impact on their quality of life. For the 610, 000
first stroke incidents in the US alone, this translates to approx.
122, 000 new chronic aphasic patients every year. For chronic
patients, high-intensity language training guided by speech
therapists can lead to improvements, but effect sizes are rather
limited and generalized training effects are difficult to obtain.
In this chapter, a new BCI-based language training for aphasia
is proposed. In this online BCI training, patients were asked to
infer a target word based on a spoken sentence with a missing
word in the end. They then heard a rapid sequence of words and
were asked to detect the appearances of the target word while
ignoring non-target words. After each trial, patients received
feedback based on how well the attended word – as classified
based on auditory ERP responses – did match the target word.
We tested the feasibility and effectiveness of the new training
protocol in 10 stroke patients with different levels of aphasia.
Per patient, we conducted about 30 hours of high-intensity train-
ing which typically took 4 to 5 weeks. The primary endpoint for
the study was the pre-post comparison in the Aachener Aphasie
Test which is a standardized clinical language assessment. In
this language test, patients showed strong, generalized, signifi-
cant and persistent language improvements. Although patients’
brain responses were delayed before the training, we found that
patients’ ERP responses showed a timing comparable to those
of 20 normally-aged (healthy) controls after the training, which
indicates an improved word processing speed. These findings
may open the door for a completely new application field of
BCIs with an enormous potential user group.
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4.1 introduction

Aphasia refers to an impaired ability to understand or produce language,
as a result of brain damage. Its leading cause is a left-hemispheric stroke
with about 21− 38% of stroke patients experiencing aphasia [8, 47]. In
Germany alone, there are 196, 000 patients with a first stroke and 66, 000
repeated strokes every year [67] leading to around 40, 000− 80, 000 new
aphasic patients annually. In the US, the number of first stroke incidents
is estimated to be around 610, 000 [11]. Spontaneous functional recovery
from post-stroke aphasia is often observed, however, it is estimated that
20% of patients survive with persistent communicative impairments [42].

Aphasia has a large negative impact on the quality of life [68] as it often
results in a loss of independence and reduces the likelihood of returning
to work [44]. In a survey with over 60, 000 patients in long-term care,
a study found that the presence of aphasia shows the largest negative
relationship to the quality of life, ahead of cancer, Alzheimer’s disease,
Huntington’s chorea and quadriplegia [108]. Compared to stroke patients
without language deficits, the mortality rate in aphasic patients is twice
as high [109] and the incidence of major depressions is three times as
high [93].

Patients with aphasia spontaneously recover to a large extent within the
first 6 months, but only minimal further improvements are reported in
the chronic phase thereafter [14]. It was shown that speech and language
therapy (SLT) can help in the chronic phase, especially for functional
communication, reading and writing when compared to a non-aphasia
therapy program [27, 167]. However, general effect sizes of SLT are small
or moderate at most [27, 28, 167]. In addition, a major limitation of current
SLT is that complete recovery is often not achieved [27, 42, 137] and that
severely affected patients with a global aphasia (incidence rate of about
2.5% [150]) show a bad recovery and therapy-resistance [27, 167].

In the past decade, new approaches were developed that use non-invasive
brain stimulation techniques to modulate cortical excitability via repetitive
transcranial magnetic stimulation (rTMS) or transcranial direct current
stimulation (tDCS) in combination with SLT. While no clear benefit was
found for tDCS in the latest Cochrane review [46], a positive training
effect was found for rTMS in a recent meta-review [148], although most
participating patients were in the subacute stage and long-term effects are
still unknown.

Due to the aging population, increasing survival rates after initial
strokes [56] and the limited success in preventing stroke incidences [45],
stroke-related costs are going to increase in the future [135]. The combi-
nation of high costs, the severe negative impact on the quality of life, a
high aphasia incidence rate and the modest successes of language therapies
make aphasia a top ten research priority for life after stroke [143]. This
calls for new evidence-based effective interventions for post-stroke aphasia.

In this study, we present the results of a novel therapeutic approach for
rehabilitation of aphasia based on an ERP-based BCI.
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The idea to use a BCI for rehabilitation is not new. Especially the usage of
BCIs in motor rehabilitation has shown encouraging results. The principal
idea of BCI-based motor rehabilitation is that immediate sensory feedback
via functional electrical stimulation [32, 138], a virtual avatar [139] or a
robotic/orthotic device [146] is triggered, if a movement intent (e. g., of the
hand) was detected by the BCI. Such closed-loop training protocols aim
at reinforcing the interaction between efferent and afferent pathways of
the brain. Compared to traditional physiotherapy, they have the advan-
tage that the movement intention can be detected even if its execution is
infeasible. Moreover, afferent feedback provided by the BCI is time-locked
to the movement attempt and not mediated by an external person (the
physiotherapist). The results are promising: a meta-analysis for upper
limb rehabilitation found a medium to large effect size [32] and another
study provided compelling evidence that the BCI is indeed the key for the
rehabilitation effect [15].

In this contribution, we explore the possibility of using a BCI for aphasia
rehabilitation. We postulate that a BCI approach may elicit great therapeu-
tic effects for aphasia recovery when continuously providing an attention-
constrained and causal feedback about the ongoing language-related ac-
tivity in the brain. Despite the enthusiasm for BCIs in the last years, no
successful BCI-based language training could yet be established. The main
difficulty is that it is vastly unclear, which neural markers are sufficiently
language-specific and capture a broad range of language functions at the
same time, to realize a brain-state dependent closed-loop training. Decod-
ing the intended speech, which would be the direct analogy to BCI-based
motor rehabilitation, is not possible with state-of-the-art non-invasive BCIs
due to the limited spatial resolution. While some language-specific po-
tential responses can be measured in the EEG, e. g., the N400 component,
which is assumed to be related to semantic processing, our concern is that
reinforcing this specific feature may not lead to a sufficiently generalized
training effect. Other known components (e. g., the N200 or P300) are not
language-specific, and therefore may not be sufficiently definite to realize a
successful training. In addition, we also face the problem that the signal-
to-noise ratio of the recorded components is rather poor, making it very
difficult to reinforce specific components in isolation.

In auditory BCI paradigms, simple two-tone oddball paradigms were
used originally where the user was instructed to attend a high tone while
ignoring a low tone [162]. From that, several improvements have been
made. It was found that the task can be made easier by adding spatial
information which was realized by playing each sound from a distinct
loudspeaker [152]. This paradigm called Auditory MUlti-Class Spatial
ERP (AMUSE) is also used in this contribution. It was also found that the
stimulus onset asynchrony (SOA), meaning the time that passes between
the onset of two consecutive stimuli, can be reduced from original values
of 1 second or longer to SOAs as short as a few hundred milliseconds, e. g.,
[69]. A final step was to move away from the simplistic artificial low and
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high tones to more naturalistic sounds, such as animal sounds [9, 65, 157],
spoken syllables [71] or words [120, 155, 163].

With these improvements in place, we designed a fast auditory BCI
where bisyllabic word stimuli were played from different loudspeakers and
the patients were instructed to attend a cued target word while ignoring
other non-target words. This task was designed such that it should elicit
language-related ERPs that, however, are not related to a specific aspect of
language processing. By giving feedback on how well patients accomplish
this task, we expected to reinforce language processes that lead to discrimi-
native target vs non-target ERPs. We hypothesized that this may lead to a
generalized language improvement.

However, as none of the previous auditory BCIs was tested in aphasic
patients, it was an open empirical question, if the single-trial decoding of
ERPs from rapid word stimuli in aphasia patients is feasible at all. Another
open question is if the reinforcement of task-specific word ERPs would
rather lead to an improvement of general attention and working memory
— which clearly are needed for the task — or if it would lead to a specific
improvement of language competences.

In summary, this study examined the following research questions.

1. Is the new BCI-based training protocol feasible for patients with
chronic aphasia?

2. Does the training lead to a generalized, persistent language improve-
ment?

3. How is the training affecting word ERPs?

4. Is the training specifically training language competences or is it a
rather general attention training?
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4.2 methods and subjects

4.2.1 Patients

We recruited 10 patients with chronic aphasia (>6 months) after a left-
hemispheric brain stroke. Most patients were mildly affected by aphasia,
but we also included 2 patients with global aphasia. In order to participate
in the study, patients fulfilled the following criteria.

Inclusion criteria: informed consent; aged between 18− 80; presence
of aphasia in AAT; right-handed; first-ever ischemic stroke; time onset
of stroke at least 6 months ago; German as mother language; sufficient
cognitive functions to comply with study requirements.

Exclusion criteria: hemorrhagic stroke; other structural brain or skull
lesions (tumor, trauma) in MRI; severe cerebral microangiopathy; high
cerebral artery stenosis; implanted medical devices or intracranial ferro-
magnetic objects; cognitive impairment and other medical, neurological
or psychiatric disorders interfering with participation; the patient is early
bilingual or professional musician; hearing loss or loss of vision; severe
adverse skin reaction caused by EEG recordings.

A detailed description of the patients is given in Table 4.1.

4.2.2 Study protocol and endpoints

Patients that have been found eligible for the training in the screening
phase, followed the study protocol described in Figure 4.1. They started
with a familiarization phase in which the training task was practiced.
Afterward, and at multiple time points throughout the training, language
and neuropsychological abilities were assessed.

As a primary endpoint, we used the Aachener Aphasie Test (AAT) [74],
a standardized language test in German. We assessed this endpoint five
times for each patient (at first presentation (which was already in the
chronic phase), pre-training, mid-training, post-training, follow-up after 3
months). The AAT contains six subtests: (1) Token Test which is a complex
test addressing auditory comprehension, working memory and semantic
understanding, (2) repetition of words, (3) written language, (4) naming
objects, (5) comprehension and (6) spontaneous speech. The last aspect is
measured on a different scale compared to the other subtests and hence, is
always analyzed individually.

As secondary endpoints concerning verbal abilities, we took a picture
naming test based on 233 items of the Snodgrass & Vanderwart (S&V)
picture set [159] and assessed functional everyday communication by using
the communication activity log (CAL) [144] before and after the training.
To assess changes in cognitive abilities, we used the digit span test [4], the
block-tapping test which tests working memory [94], a word fluency test
(Regensburger Wortflüssigkeits-Test [3] and the TAP [188] before and after
the training.
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General information Stroke-related information
Aphasia-related

information
Others

Patient Sex Age
Ed.

age
Stroke etiology

Stroke

risk

factors

Stroke

severity (mRS)

at T0, T1, T2

Infarct

volume

(ml)

MCA

stroke

location

Additional

stroke

location

Months

post-stroke at

training start

Hemi-

paresis

(severity)

Aphasia

severity

AAT-based

aphasia

subtype

Speech

apraxia

severity

Comorbidity

1 m 76 11 CE, LAA H,AF,D 3/2/2 113 F,T,P,In 10 moderate Broca

2 m 58 17 LAA H 4/4/2 13 F,P,In,NC ACA,AChA 18 severe minimal anomic mild

3 m 71 23 LAA H,CHD 4/3/2 43 F,T,P ACA 36 mild mild anomic epilepsy, MM

4 m 70 11 EO H 4/4/3 47 F,T,P,In, 9 severe mild Broca prostate cancer

5 m 60 12 LAA H,HL,N 5/4/2 68 F,T,P,In,NC 27 mild anomic

6 m 43 19 LAA H,HL 3/3/2 125 F,T,P,In,NC PBZ 10 severe mild Broca moderate epilepsy

7 w 54 23 ICA-D 5/4/2 100 F,T,In,NC ACA 8 mild mild anomic depression

8 m 61 17 ICA-D H,HL 3/2/1 87 F,T,In 149 mild anomic

9 m 38 12 CE 5/3/3 217 F,T,P,In 21 severe Broca mild

10 m 53 12 CE H,HL 5/5/3 145 F,T,P,In 12 severe severe global mild depression

Table 4.1: Overview of patient-specific information.
Ed. age refers to the educational age, i. e. the number of years in school and in higher education.
Stroke etiology of (ischemic) stroke subtype: cardioembolism (CE), large-artery atherosclerosis (LAA), small-vessel occlusion stroke
(SVD), internal carotid artery dissection (ICA-D), EO=embolic undetermined etiology.
Risk factors: atrial fibrillation (AF), coronary heart disease (CHD), diabetes (D), hypertension (H), hyperlipidaemia (HL), nicotine
(N).
Stroke severity was assessed with the modified Rankin Scale (mRS) at admission (T0) / discharge (T1) / before training (T2).
Location of stroke: all patients had an infarct of middle cerebral artery (MCA). Within the MCA, the infarct involved areas from
frontal (F), temporal (T), Insula (In), parietal (P), nucleus caudatus/ thalamus (NC) regions.
In some patients, also the anterior cerebral artery (ACA), anterior choroidal artery (AChA) or posterior border zone (PBZ) were
affected.
AAT-subtype. Anomic: mild form of aphasia with difficulties to name objects; Broca: partial loss of the ability to produce language
(spoken and written); global: most severe form of aphasia heavily affecting comprehension and production.
Apraxia of speech refers to a disorder which affects an individual’s ability to translate conscious speech plans into motor plans.
Comorbidity: MM=multiples myeloma.
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4.2 methods and subjects

In addition, two EEG-sessions without feedback were also conducted
before the training to tune stimulation parameters (e. g., adjust the difficulty
level according to the patient and train a supervised classifier) and a single
session was conducted after the training to be able to compare the training-
induced changes in the EEG. We also conducted several resting-state fMRIs
but please note that their evaluation is not part of this work.

The training protocol was designed to be in high-intensity, i. e. patients
should train 4 times per week over the course of 4− 5 weeks. In terms of
training duration, our goal was to reach 30 hours of effective training time
which is comparable to other language trainings in the chronic phase [28].

The exact arrangements of the tests and the time course is displayed in
Figure 4.1a.

mid-assessm. (~2 weeks) post-assesm. (~1 month) follow-up (1+3 months)

time
 

language tests (AAT, S&V) fMRI offline EEGneuropsychological tests

pre-assessm.

training sessions (~3-4 h)

screening familiariz.

EEG cap 
preparation

resting 
state

~30 min ~3 min ~3 min~60-150 min

naming
test

resting 
state

~5 min

  

BCI-based training
familiar-
ization

~5 min~10 min

oddball

a

b

'Get ready.' cueing sentence word sequence 'Relax.'

T T T

~3 s ~5 s ~10-32 s ~5 s

{60°

60 cm

duration

c dmonitor auditory & visual
feedback

~6-10 s

Figure 4.1: Study protocol for BCI-based language training. a: overview of the
different clinical testings and training sessions that each patient under-
goes. AAT = Aachener Aphasie Test, S&V = Snodgrass & Vanderwart
naming test, b: structure of a single training session. c: setup of the
AMUSE protocol: a subject is placed in the center of a ring of 6 loud-
speakers [152]. d: time course of a single trial of the training task.
During the word sequence, there are non-target words (red rectangles)
and a few (rare) target words (blue rectangles).

4.2.3 Structure of a single session

The time course of a single training session is depicted in Figure 4.1b.
Brain activity was recorded and amplified by a multichannel EEG ampli-
fier (BrainAmp DC, Brain Products) with 63 passive Ag/AgCl electrodes
(EasyCap) during the offline EEG-sessions before and after the training
and with 31 passive electrodes during the online training sessions. The
channels were placed according to the 10− 20-system referenced against
the nose and grounded at channel AFz. The sampling rate was 1 kHz.
Impedances were always kept below 20 kΩ. Eye signals were recorded
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by electrooculography (EOG) with an electrode below the right eye of a
subject.

At the beginning of each session, patients named around 25− 30 pictures
which neither had an overlap with pictures used in the Snodgrass & Van-
derwart nor with the AAT naming test. This was done to assess the daily
naming performance but is not evaluated in this work. Afterward, a resting
state recording with one minute of open and closed eyes was recorded.
Then, patients underwent two non-verbal ordinary oddball runs with a
high or low tone played every second. Each run took about 5 minutes and
contained 50 targets (high tones) and 250 non-targets (low tones).

4.2.4 Training task and feedback

As a training task, we chose a target vs non-target detection task based on
rapid bisyllabic word stimuli. This is a modified version of the AMUSE
protocol [152], see Figure 4.1c, where subjects are placed in a ring of 6
loudspeakers. An individual training trial (Figure 4.1d) started with a
familiar cueing sentence with a missing word in the end, e. g., “the toner
cartridge is already in the . . . ”. The missing word (hereafter called target) in
that case is “printer”. The patients should remember the target word, but
do not need to speak it. Afterward, they hear a rapid sequence of words
which contains the target word and 5 other (non-target) words. Each word
is played from a single distinct loudspeaker. The subject has the task to
attend/recognize all playbacks of the target word while ignoring the other
words. Words (length = 300 ms) were played with an SOA of 250 ms or
350 ms depending on the patient and a trial consisted of a maximum of 90
words (15 targets, 75 non-targets) that were played in a pseudo-randomized
order. Each word was once in the target role for every run, i. e. within 6
trials. If patients performed very well, we also changed from 6 loudspeakers
to headphones which removes the spatial information to make the task
more challenging.

At the end of a trial, patients receive feedback based on how well tar-
get stimuli could be discriminated from non-target stimuli based on the
recorded brain responses. This was done by using a regularized supervised
LDA classifier that is based on amplitude features of the ERP responses.
For each event, this linear classifier yields a real-valued output that can be
understood as a likelihood that this event was a target (for positive outputs)
or non-target (for negative outputs). These single classification output are
aggregated over the course of a session (see Figure 4.2). Please find more
information about the BCI classification in Chapter 2 with details about
the ERP features (Section 2.4.3), LDA classifier (Section 2.4.4), supervised
learning (Section 2.5.1), covariance regularization (Section 2.5.2) and the
aggregating of information over a trial (Section 2.6).

Patients received four different levels of graded feedback at the end of
the trial.
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Figure 4.2: Example of the classifier outputs of a single trial. Patients hear 6
German different words (x-axis). Each time they hear a word, the LDA
classifier outputs a value (the single grey dots) that indicates the class
membership: a high value indicates that the word was more likely to
be a target while a low value indicates that the word was more likely
to be a non-target. The goal of the patients is to generate high values
for the target word (green) while the non-target words (blue) should
obtain low values.

1. Neutral feedback. If our classifier could not successfully decode the
target word, but predicted that a different word was attended, then
we gave neutral auditory feedback and displayed a bar chart on the
screen similar to Figure 4.2 which indicates which other word was
most dominant.

2. Positive feedback. If we could successfully detect the target word
(e. g., shown in Figure 4.2), we gave positive auditory feedback and
also provided the bar chart to indicate the best runner-up word.

3. Very positive feedback. We used a dynamic stopping routine [153]
that stops the trial if the classifier displayed a significant difference
between the target word and the best non-target word as assessed by
a one-sided Welch’s t-test. In this case, the classifier is very confident
that the patient executed the task correctly. As a feedback, we then
showed a smiley and gave very positive auditory feedback.

4. Exceptional feedback. The early stopping routine was activated after
7 repetitions of the target word. If the classifier could detect signif-
icant differences already at this early stage, we showed a cheering
animation with a probability of 33%. This was only triggered at most
a few times per session.

4.2.5 Transfer learning and supervised adaptation

The training protocol is special from a BCI point of view because the data
is completely labeled, i. e. for each trial we know the target word. This
information can be used to initialize the classifier via a session-to-session
transfer learning approach by training a supervised classifier based on the
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data of the two offline sessions (in the first online session) or based on the
previous online session (in all other online sessions).

However, we observe that the data distribution may also change over the
course of a session (e. g., Figure 3.1 in the previous chapter) which could,
among other reasons, be caused by a changed task-solving strategy. To
account for these changes within one session and to be able to adapt the
classifier to new task-solving strategies, we used a supervised mean and
(unsupervised) covariance adaptation based on the work by Vidaurre et
al. [176]. In their approach, the class-wise means µi(t) with i ∈ {Target,
Non-target} and inverse of the pooled covariance matrix Σ(t)−1 at time
point t are updated after each epoch by using the mean and covariance at
time point t− 1 and the data of the current epoch x(t). Please note that the
mean µi(t) is only updated if the current epoch belongs to class i.

µi(t) = (1− ηm) · µi(t− 1) + ηm · x(t) (4.1)

Σ(t)−1 =
1

1− ηC
·
(

Σ(t− 1)−1 − ηC ·
v(t)v(t)T

1− ηC + ηC · x(t)Tv(t)

)
(4.2)

We used that v(t) := Σ(t− 1)−1 · x(t). This describes an efficient exponen-
tial update rule where the update coefficients ηm = 0.001 and ηC = 0.005
were determined by an initial grid search. The advantage of this update
scheme is that only the current means and covariance matrices need to be
stored and no costly matrix inversion needs to be executed for each step.

4.2.6 Performing the task with eyes-closed

During training trials, patients are instructed to avoid eye movements
and eye blinks. This should minimize the number of artifacts in the EEG,
however, this secondary task can lead to exhaustion and subjects may not
succeed in suppressing eye movements. This is especially challenging for
patients, e. g., one patient could not control the BCI with eyes-open due to
the occurrence of too many eye artifacts. Therefore, we investigated the
option to control an auditory BCI with eyes-closed. In 12 healthy young
subjects, we found that the number of eye artifacts was actually not reduced
in the eyes-closed condition, but subjects expressed a significant general
preference towards the eyes-closed condition and were also less tensed in
that condition while having classification accuracies similar to eyes-open.
Please find the complete study in the Appendix a. Based on these results,
it seems evident that patients could also profit from performing the task
with eyes-closed and for this reason, we allowed single patients to perform
the task with eyes-closed which is unusual in BCIs.

4.2.7 Healthy controls

In addition to the patient study, we also did a single EEG session with
normally-aged controls (NACs). Data of 20 elderly participants (10 female,
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10 male, Mage = 60.20 years, SD = 8.04, range: 48− 74 years) was recorded
and analyzed. NACs performed the same paradigm as the patients except
for the following few modifications.

• They did not receive feedback at the end of the trial. Data was only
analyzed offline.

• All NACs used an SOA of 250 ms and words were played either
from 6 loudspeakers, one loudspeaker, or headphones in a pseudo-
randomized order. For each condition, we recorded 36 trials with 90
words each (leading to 36 · 90 = 3240 epochs). In the following, we
only analyze the condition with the 6 loudspeakers.

• They performed only a single session and not a complete training.

4.2.8 Statistical evaluation

For all endpoints, we calculated the effect size as the standardized mean
difference (SMD) as recommended by the Cochrane research group [27] as
follows.

effect size =
difference in mean outcome between groups

standard deviation of outcome among participants
(4.3)

More specifically, let zpre and zpost denote the test results before and after
the training for N patients, respectively. The numerator is always computed
as the difference of the means of both group. In the denominator, the
standard deviation needs to be calculated. We follow the Cochrane research
group [27] which recommend using Hedges’ gs as the effect size.

gs =
z̄post − z̄pre√

SD(zpre)2+SD(zpost)2

2

·
(

1− 3
8 · N − 9

)
(4.4)

The first term corresponds to Cohen’s ds while the second factor is a
normalization constant that corrects for biases in ds for small samples sizes
(N < 20), see [107]. Please note that the difference between ds and gs is
rather small (around 5% for N = 10). Please also note that the standard
deviation does not need to be estimated for the T-transformed AAT scores
because they have been normalized to a standard deviation of 10. For this
reason, we calculate the effect size d∗ for the T-transformed AAT scores as
follows.

d∗ =
z̄post − z̄pre

10
(4.5)

Empirically, our standard deviation was very close to 10, too.
To assess significance, we used two-sided paired t-tests for normally

distributed quantities and exact Wilcoxon-signed rank sum tests otherwise.
All tests are specified within the result section.
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4.3 results

4.3.1 Primary endpoint (AAT)

Our primary outcome for the training success is the AAT score, a standard-
ized clinical German language test with 6 subtests. Following common
practice, raw AAT scores were transformed into T-scores that are normally
distributed with mean 50 and a standard deviation of 10. The results for
all subtests are displayed in Table 4.2 and Figure 4.3 shows the results for
5 subtests (spontaneous speech is measured on a different scale and can-
not be transformed to T-transformed scores). A significant and consistent
training effect can be observed for all AAT subtests, even after applying
a Benjamini-Hochberg correction to control the false discovery rate, see
Figure 4.3a and Figure 4.3b.

Table 4.2: Training effects from baseline to after 30 hours of high-intensity BCI-
based training for the primary endpoint. Raw p-values are reported.
Effect sizes are calculated as the mean difference divided by the popula-
tion standard deviation (which is taken as 10 for the T-scores in d∗, see
methods) and computed as Hedges’ gs for spontaneous speech.

Test name N Pre-training Post-training p-value Effect size

Aachener Aphasie Test Mean (SD) Mean (SD) Paired t-test d∗

Token Test [T-scores] 10 58.9 (13.25) 63.3 (11.40) 0.0023 0.44

Repetition [T-scores] 10 56.9 (8.33) 60.7 (9.31) 0.023 0.38

Written language [T-scores] 10 55.4 (7.46) 62.0 (10.87) 0.0033 0.66

Naming test [T-scores] 10 56.5 (8.28) 67.5 (13.48) 0.0019 1.1

Comprehension [T-scores] 10 59.1 (8.13) 64.8 (13.26) 0.0232 0.57

AAT: spontaneous speech Median (range) Median (range)
Wilcoxon signed-

rank sum test
Hedges’ gs

All spont. speech subtests [sum] 10 24 (14-29) 26 (16-30) 0.0072 0.52

The naming ability showed the largest improvements with an effect size
of above 1. Across all five categories (except spontaneous speech), the
average effect size is SMD = 0.63 (SD across subject ±0.36).

Before our intervention, most patients had regular conventional speech
and language therapy (cSLT). For all patients except P3, we have an addi-
tional measurement point at first consultation (in the chronic phase) which
was an average of 169 days (±149 days) before training start (see Table 4.3
and Figure 4.3c). None of the improvements during that period were sig-
nificant at a α-level of 0.05. This was the case despite that all except one
patient (P8) underwent language therapy at least twice per week resulting
in an average of 30 hours (±32 hours) of SLT before training start when
assuming an average of 40 weeks of training per year.
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Figure 4.3: Changes in language functions measured by the Aachener Apha-
sia Test. Subplot a shows individual (dots) and groupwise changes
(bars with standard deviation) of the language functions measured
by the T-transformed AAT-scores. The AAT is normalized such that
10 T-transformed AAT points correspond to one standard deviation.
Numbers denote individual patients. Significance was assessed by
two-sided paired t-tests with Benjamini-Hochberg correction: * marks
p < 0.05 and ** marks p < 0.01. Subplot b shows the improvements
in T-scores for each subject and AAT category. Subplot c shows the
average language performance on the group level for five different time
points relative to the pre-training performance. Missing data points are
annotated and were excluded from the computation of the averages
and the statistical tests.
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Total AAT points and severity of aphasia according to AATcSLT between first AAT in

chronic phase and BCI-training start
BCI-training

Pre-training Post-training

Patient
Times per

week (*45 min)

Duration

in days

Number of

sessions

Duration

in hours

AAT points

before cSLT

AAT

points
Severity

AAT

points
Severity

AAT points

at follow-up

1 3 103 15 35.3 321 318 medium 374 medium 374

2 2 356 11 24.2 490 495 mild 517 no aphasia x

3 x x 14 30.0 x 471 mild 523 no aphasia 518

4 2 48 17 29.7 470 457 mild 503 no aphasia 475

5 3 57 11 29.3 448 467 mild 519 no aphasia 508

6 3 423 13 30.0 430 448 mild 494 mild 473

7 3 64 25 30.2 446 468 mild 492 no aphasia 504

8 0 300 15 29.5 473 466 mild 498 mild 503

9 4 48 15 30.4 243 245 severe 276 severe 291

10 3 117 13 30.0 181 198 severe 240 severe 254

Avg (SD) 2.6 (1.1) 168 (149) 14.9 (4.0) 29.9 (2.6) 389 (113) 403 (108) 444 (107) 433 (101)

Table 4.3: Summary of training and aphasia-specific patient data. The sum of the AAT points for all subtests (except
spontaneous speech) are reported. A total of 530 points can be achieved. The classification of aphasia severity is
according to the AAT. Abbreviations: ‘x’ = missing values, cSLT = conventional speech and language therapy.
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A follow-up assessment at 3 months after the training showed that
these improvements remain relatively stable, although small fluctuations
occur (see Figure 4.3c). Patient P2 was not available for a follow-up due
to an accident that was not related to the training. When comparing
the follow-up to the pre-training performance with Benjamini-Hochberg
correction with a two-sided paired t-test, then the improvements were
still highly significant for the Token Test (t(8) = 4.208, p = 0.001), written
language (t(8) = 3.957, p = 0.001), naming test (t(8) = 4.318, p = 0.006)
and significant for comprehension (t(8) = 2.731, p = 0.03). The changes in
repetition was not significant anymore (t(8) = 2.736, p = 0.052).

Another view on the data is in terms of the total number of raw AAT
points which allows judging the current language ability of each patient
based on a single value. Comparing post- vs pre-training raw AAT scores,
an average of 49% of the maximal possible change (MPC) could be realized
(see Figure 4.4). Especially, mildly-affected patients showed remarkable
improvements when considering their maximum possible improvement.
According to the AAT criteria, 5 out of 10 patients were not aphasic any-
more post-training (see Table 4.3).
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Figure 4.4: Realized maximal possible change per patient. The numbers indicate
the percentage of recovery that could be achieved considering that the
maximal number of AAT points is 530.

4.3.2 Secondary endpoints

In addition to the AAT, we assessed various other secondary endpoints.
Table 4.4 shows the endpoints regarding naming ability, functional commu-
nication and cognitive abilities.
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Table 4.4: Secondary endpoints of the BCI-based language training. Uncor-
rected p-values are reported. Abbreviations: S&V = Snodgrass & Van-
derwart naming test, see [158], Wilcoxon test = Wilcoxon signed-rank
test, CAL = communication activity log.

Test name N Pre-training Post-training p-value Effect size

S&V naming test Mean (SD) Mean (SD) Paired t-test Hedges’ gs

Correct Words [in %] 9 53.1 (22.06) 59.5 (20.86) 0.042 0.28

Functional communication (CAL) Mean (SD) Mean (SD) Paired t-test Hedges’ gs

Quantitative [sum] 10 28.9 (11.10) 34.3 (11.45) 0.0003 0.46

Qualitative [sum] 10 76.9 (25.45) 84.4 (24.48) 0.0002 0.29

Cognitive tests Median (range) Median (range) Wilcoxon test Hedges’ gs

Digit span [total count] 9 8 (0-12) 9 (0-13) 0.8867 -0.03

Go/NoGo [number of errors] 10 4 (1-31) 4 (0-36) 0.726 -0.01

Go/NoGo [ms] 9 548 (417-944) 596 (461-700) 0.7344 -0.06

Alertness without signal [ms] 10 248 (201-358) 282 (218-483) 0.0371 0.59

Alertness with signal [ms] 10 263 (188-374) 287 (218-366) 0.5071 0.27

4.3.3 Naming results

The extensive Snodgrass & Vanderwart [158] was used to get a detailed
clinical assessment of the patient’s ability to name pictures. We used a
subset of 233 images from the corpus of 260 images. The following Table 4.5
shows the percentage of correctly named words at four different time points
during the course of the training. In the direct pre-post comparison, the
percentage of images that could correctly be named improved from 53%
before the training to around 60% during post-training and follow-up
assessment. A paired t-test indicates that this is a significant improvement,
see Table 4.4.

Table 4.5: Percentage of correctly named words based on the Snodgrass & Van-
derwart naming test. The test comprises 233 images that should be
named by the patients. ’x’ denotes missing values.

Patient Pre-training Mid-training Post-training Follow-up (3 months)

P1 9.44% 18.03% 16.31% 19.31%

P2 73.82% x 73.94% x

P3 59.23% 62.66% 58.80% 58.80%

P4 39.83% 61.37% 65.95% 69.53%

P5 59.23% 63.95% 64.22% 67.81%

P6 70.31% 71.98% 72.10% 76.77%

P7 68.70% 71.12% 75.86% 75.97%

P8 67.81% 69.96% 75.00% 75.54%

P9 29.61% 30.04% 33.48% 36.05%

P10 x x x x

AVG 53.11% 56.14% 59.52% 59.97%

SD 22.06% 20.46% 20.86% 21.25%
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4.3.4 Functional communication

We also asked patients to report on the quality and quantity of language
use in the real-world using the communicative activity log (CAL) question-
naire [144]. As their partner assisted in the completion process, we required
that the part of CAL which is normally completed by an external person
should not be the partner, but e. g., by a speech therapist. Unfortunately,
we did not receive a sufficient amount of these external ratings and thus,
only report on the self-rated part. A two-tailed paired t-test shows that the
self-reported changes are highly significant for the quality and quantity of
language use with a consistent improvement for all patients (Figure 4.5).
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Figure 4.5: Self-reported everyday communication measured by the communi-
cation activity log (CAL). Subplot a shows the quantity and subplot b
shows the quality of language use in everyday situations as reported by
the patients. Significance was assessed with a two-sided paired t-test
where *** indicates p < 0.001.

4.3.5 Cognitive tests

Before and after the training, patients underwent a series of cognitive
tests regarding their working memory and attention, among others. We
statistically evaluated a subset of five quantities.

1. Working memory as measured by the digit span test [4] which re-
quires patients to repeat a sequence of numbers (either in the same
order or in a reversed order).

2-3. Selective attention as measured by a visual Go/NoGo-task (pressing
a button only if a cross appears on the screen, but not if a plus
appears) in terms of reaction time and the number of errors (part of
the TAP [188]).

4-5. Alertness as measured by the median reaction time to a visual stimu-
lus with and without a prior (auditory) warning signal (part of the
TAP).

Pathological performance is defined as a performance below the 15th per-
centile rank. Before the training, we found that patients show pathological
performances for all categories with 4/10 patients showed pathological
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performance for alertness, while up to 9/10 patients showed it in the work-
ing memory task. Comparing post-pre training performances, a two-sided
Wilcoxon-signed rank test showed a significant increase (p < 0.05) for
the reaction time in the alertness test without warning signal. All other
categories had p-values > 0.05. After correcting for multiple testing, none
of the changes were significant anymore (see Figure 4.6).
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Figure 4.6: Cognitive test results for tasks regarding working memory, alertness
and attention. Single points indicate individual patients. Please see
the text for an explanation of the different tests. The p-values have
been corrected for multiple testing with Bonferroni-Holm correction.
n.s. = not significant, TAP = test of attentional performance.

4.3.6 Word-induced ERP responses

We also assessed the ERP responses to word stimuli before and after the
training and for 20 normally-aged controls which underwent a single BCI
session (see methods for more information). The data provides clear evi-
dence that the training has led to changed target ERP responses (Figure 4.7).
Four out of six categories showed significant changes after p-values were
corrected with Benjamini-Hochberg to control the false discovery rate (see
Figure 4.7c). Specifically, patients showed a significant increase in P300
peak amplitude in channel Cz after the training (two-tailed paired t-test,
t(9) = 3.35, p = 0.023), an earlier onset of the P300 in Cz (Wilcoxon signed-
rank test, Z = 0, p = 0.023, two ties), and an increase in target vs non-target
classification accuracy (Wilcoxon signed-rank test, Z = 54.0, p = 0.023).
On the other hand, N200 peak amplitude in channel Fz did not signif-
icantly change (two-tailed paired t-test, t(9) = 1.25, p = 0.24) and the
peak latency did not change for the P300 in Cz (Wilcoxon signed-rank test,
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Z = 11.5, p = 0.15) and for the N200 in Fz (Wilcoxon signed-rank test,
Z = 10.0, p = 0.17).

 N
or

m
al

ly
 a

ge
d

co
nt

ro
ls

P
at

ie
nt

s
pr

e-
tr

ai
ni

n
g

P
at

ie
nt

s
po

st
-t

ra
in

in
g

b

c

A
m

pl
itu

de
 in

 µ
V

2

1

0

-1

-2

Av
er

ag
e 

am
pl

itu
de

 in
 µ

V

Target amplitude in channel Cz

Time after stimulus in ms
-200 0 200 400 600 800 1000 1200

2

1

0

-1

-2

Normally aged controls(N=20)
Patients pre-training (N=10)
Patients post-training (N=10)

A B C D

Av
er

ag
e 

am
pl

itu
de

 in
 µ

V 2

1

0

-1

-2

Non-target amplitude in channel Cz

Time after stimulus in ms
-200 0 200 400 600 800 1000 1200

A B C D

A B C D

ac
cu

ar
a

cy
 (

A
U

C
 in

 %
)

a

B
C

I b
in

ar
y 

cl
as

si
fic

at
io

n

NACs Pat. (pre) Pat. (post)
200

400

600

800

1000

P
3

0
0

 p
e
a
k 

la
te

n
cy

 (
m

s)

NACs Pat. (pre) Pat. (post)
0

2

4

6

8

P
3

0
0

 p
e
a
k 

a
m

p
 (

µ
v
)

NACs Pat. (pre) Pat. (post)
200

400

600

800

1000

P
3

0
0

 o
n

se
t 

(m
s)

NACs Pat. (pre) Pat. (post)
0

100

200

300

N
2

0
0

 p
e
a
k
 l
a
te

n
cy

 (
m

s)

NACs Pat. (pre) Pat. (post)
0

1

2

3

N
2

0
0

 p
e
a
k
 a

m
p

 (
µ

V
)

NACs Pat. (pre) Pat. (post)
40

60

80

100

n.s.n.s.

n.s. **

*

Figure 4.7: Target ERP responses for patients (pre- and post-training) and for
20 normally-aged controls (NACs). All analysis is based on ERP re-
sponses where the words were played with an SOA of 250 ms and from
6 loudspeakers. Subplot a shows the average target ERP responses
for channel Cz and Fz. Subplot b visualizes the spatial distribution of
mean target responses within four selected time intervals (in ms relative
to stimulus onset): A: [191, 240], B: [301, 420], C: [421, 670], D: [671, 800].
Subplot c shows the average (bars with standard deviation) and in-
dividual values (dots) of the three groups for six different metrics.
P300 peak onset was defined as the first time point where a significant
difference between targets and non-targets could be observed. It was
set to 1000 ms if no such difference could be observed. Peak amplitude
and latencies were determined in a 10-time bootstrapping with 80% of
the data each time. Classification accuracies were determined in 5-fold
chronological crossvalidation. Abbreviations: n.s. = not significant,
AUC = area under the receiver operator curve, * corresponds to p<0.05.

Compared to healthy controls, patients showed a more right-lateralized
brain activity before and after the training (see Figure 4.7b) which is
probably caused by their left-hemispheric brain stroke. The timing of the
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P300 onset appears to become more similar to that of healthy controls after
the training (see Figure 4.7a).

4.3.7 Non-verbal oddball ERP responses

In addition to the word ERPs, we also conducted an ordinary oddball
task where the patients needed to pay attention to a rare high-pitched
target tone while ignoring low-pitched non-target tones with a SOA of
1 second (see methods for more details). The data was analyzed similarly
to the word-ERPs. We found that from the six quantities (N200/P300
amplitude and latency, P300 onset, BCI classification accuracy), only the
BCI classification accuracy showed a significant change at the α-level of
0.05 where the performance after the training was lower than before the
training. After correcting for multiple testing, none of the changes was
significant anymore (see Figure 4.8 for more information).

Figure 4.8: Statistical analysis of the pre-post ERP differences in a non-verbal
oddball task. Please see the description of Figure 4.7c for more infor-
mation.
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4.4 discussion

This is the first study that shows that a BCI-mediated feedback, which
informs the patient about the ongoing brain state, can successfully be used
for language training in patients with chronic post-stroke aphasia. We did
not only show the general feasibility, but our medium-to-strong effect sizes
demonstrate that this training approach is highly competitive compared to
existing speech and language therapies. Many aspects of the training are
novel.

4.4.1 Feasibility

Regarding research question 1, it was an open question whether a sufficient
target vs. non-target word ERP decoding quality in single trial could
be achieved for aphasic patients. Compared to healthy subjects, patient
data shows more missed stimuli, larger delays of word ERP responses
and frequent movement and eye artifacts. This resulted in a lower SNR
that clearly challenged the BCI decoding system but could be mitigated
by a rigorous combination of algorithmic improvements, among them
ICA-based artifact removal [178], session-to-session transfer learning to
reduce the need for calibration [87, 97], and automatic regularization of
the classifier to cope with high feature dimensionality and low SNR [21].
As shown in Figure 4.7c, some patients started around chance level, but
patients showed a significant training-induced increase in BCI performance
with an average performance of around 77% after the training. This value
is comparable to healthy controls.

We think that the choice to use continuous adaptation of the decoding
classifier [176] was important, too. While it generally allows compensating
non-stationarity effects, it may have been pivotal for embracing novel task-
solving strategies developed by patients over time. Patients may explore
different strategies (e. g., repeating the target word in inner speech, visually
imagining the target word, or focusing more on the spatial or phonological
cues) which can lead to different brain signals depending on the strategy.
Because this explorations occur in short time scales within one session, an
adaptive classifier is better suited to model and reward strategies that lead
to more discriminant ERPs.

4.4.2 Training effect on language abilities

Regarding research question 2, i. e. how the training affects language com-
petences, we observed a significant and generalized training effect for all
linguistic competences (including functional communication, spontaneous
speech, object naming, among others) when comparing pre- to post-training
assessments, see Table 4.2 and Table 4.4. A strong training effect is reflected
by the observations that 5 out of 10 patients were classified as non-aphasic
based on the AAT after the training (see Table 4.3) and that almost all pa-
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tients improved in almost every subtest (see Figure 4.3b. The training even
showed an improvement in patients (P9, P10) who had a severe aphasia
which is generally much harder to obtain.

A well-standardized and widely used language test as primary endpoint
allowed us to compare our results with preceding studies assessing the
rehabilitation of aphasia. Compared to SLTs reported in literature, our
average effect size of SMD = 0.63 in the primary endpoint (AAT) is high.
The recent Cochrane review [27] analyzed the effect size for 27 randomized
studies that compared one form of SLT versus no SLT. These studies were
not limited to patients in the chronic phase, but also included subacute
patients, whose improvement may have been dominated by spontaneous
recovery. On average, the SMD was 0.28 for functional communication and
0.06 to 0.41 for other categories (written language, naming, comprehension)
assessed by the AAT.

A more detailed comparison of our results to those of selected studies
which also had focused on patients with varying severity of chronic aphasia,
and that also had administered high-intensity training for around 30 hours,
confirms that our training effect is relatively large. The recent high-profile
study by the FCET2EC group [28] with 78 patients in the treatment group
showed an effect size of SMD = 0.23 for verbal communication compared
to a treatment-deferral group 1. Other studies using the AAT as primary
endpoint with a similar number of patients as in our study [119, 123, 144,
161] reported average AAT improvements of around 2-5 T-transformed
AAT points which translates to effect sizes of SMD = 0.2-0.5.

The observed training effects were still significant at a 3 months follow-
up for all AAT categories except for repetition. During the time period
between the end of the training and the follow-up assessment, patients were
not allowed to start another high-intensity training. For ethical reasons and
to minimize the number of dropouts, we decided to conduct the follow-up
at 3 months, and not after 6 months.

Interestingly, our main training effect could be observed already at the
mid-training assessment which took place after around 15 hours of training.
This indicates that a significant improvement of language competences can
be reached quickly, and that a shorter training duration might also be an
option, especially for mildly affected patients. It is, however, possible that
a shorter training may lead to a weaker consolidation effect.

Importantly, the positive effect induced by our training was not restricted
to the competences directly trained by the BCI task (e. g., comprehension),
but the improvements generalized to all linguistic competences tested
by AAT, the S&V naming test, as well as to functional communication
(Figure 4.5). On an individual level, mildly affected patients improved

1 Please note that the authors reported the effect size of 0.57 in their publication, which had
been computed based on the standard deviation of the differences and not, as recommended
by the Cochrane Study Group, based on the standard deviation of the population [27].
It is known that the former leads to higher estimated effect sizes in a within-subject
analysis [107]. To establish a fair comparison, we have thus recomputed the effect size
based on the population standard deviation using the data published by Breitenstein and
colleagues.
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mainly in production aspects, while more severely affected patients mainly
improved in the Token Test, see Figure 4.3. It is unclear, if prolonged
training durations of more than 30 hours could induce stronger language
production improvements in the latter group, too.

4.4.3 Training-induced ERP changes and training efficiency

Regarding research question 3, how ERPs are affected by the training, we
observed a significant increase in P300 peak amplitude, an earlier onset of
the P300 together with significantly improved BCI performances after the
training. This underlines a relationship between the presence of the P300
and recovery from aphasia [132], a reduced P300 in children with language
deficits [48] and increased P300 amplitude and latency reduction observed
for easier training tasks [101]. Given that our patients performed the same
task in pre- and post-evaluations, we conclude that the task has become
easier for them.

According to a widely acknowledged hypothesis, the P300 reflects a
context-update [142]. This theory says that the P300 is the result of a
matching process where the linguistic representation of the target word in
the working memory (context) is compared to the perceived word. If the
perceived word does not match the context (e. g., a non-target word), then
it does not provide new information regarding the representation of the
target word and thus, does not elicit a strong P300. On the other hand, if
the perceived word matches the target word, then the context is updated
with the new information (e. g., how exactly the word sounded like) which
is reflected by a P300. This explains why targets elicit a strong P300 while
non-targets do only elicit a weak P300.

The question remains whether the training-induced increase in P300
amplitudes is explained by an improved ability to maintain the context
or whether the updating process has become more efficient. Although
patients had severe deficits in the verbal working memory before the train-
ing, post-training assessments showed no improvement regarding that
ability. This provides evidence that indeed the updating process has be-
come more efficient due to the training. It is also assumed that the P300
latency corresponds to the stimulus evaluation time [106, 142]. We argue
therefore that our BCI training approach has induced a faster stimulus
evaluation and has individually strengthened one or more aspects related
to language integration. This improvement together with the observation
that language comprehension and language production are heavily inter-
woven [140] might explain the observed improvements in various language
competences.

It is difficult to pinpoint the exact reason for the high training efficiency.
We think that it was important to incorporate the latest design recommen-
dations for quick user learning in BCI applications [116]. Three major
points should be noticed here. First, we gave informative feedback by
not only showing the success or failure per trial, but by providing graded
feedback with additional information, e. g., about runner-up words and
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the confidence of the classifier. Second, we adjusted the task difficulty
considering the patients’ abilities to maintain a high training pressure
while not making the task too difficult. This was realized by changing
the speed of the word presentation (we chose relatively fast SOAs) and by
changing the stimulus presentation from 6 loudspeakers to headphones
if the task became too easy with the spatial information. Finally, we tried
to maximize the training intensity because randomized controlled trials
have found that high-intensity training is superior compared to a lower
training intensity when controlling for the total training duration [27, 167].
This was realized by three different methods: (a) we maximized the num-
ber of trials executed per session by making use of a dynamic stopping
procedure in each trial [153], (b) we did not limit the length of individual
training sessions (but respected the patients’ stamina, of course) and (c) we
scheduled around 4 trainings per week to quickly accumulate to 30 hours
of effective training. Unfortunately, it is not possible for us to disentangle
which exact design decision was the most important without conducting
further studies.

4.4.4 Language-specificity of the training

The final research question 4 was in how far the training improves language
functions or whether it rather improves general attention. Alternatively
to the context-updating theory, it has been proposed that P300 amplitude
specifically reflects the activation of an event-categorization network that is
controlled by the joint operation of attention and working memory [101].
Before the training, our stroke patients showed — concomitant to aphasia
— deficits in many other higher-level cognitive functions. These deficits are
in accordance with results from the literature [37]. The lack of significant
improvements in these tasks (see Figure 4.6) as well as the absence of
significance changes during the non-linguistic oddball task (Figure 4.8)
despite an increase in P300 word amplitude contradicts the hypothesis
that changes in the P300 can directly be linked to changes in the working
memory or attention. We conclude that (1) our approach does not primarily
train general attention or working memory and (2) that the observed
language improvements cannot be explained by improved attention or
working memory. Overall, we come to the conclusion that the context-
updating hypothesis, which involves closing the loop between bottom-up
processing and top-down prediction, delivers a better explanation of our
results.

4.4.5 Limitations and future work

The BCI system was designed such that it reacts to any information in
the ERPs that is discriminative between target and non-target ERPs. As
explained earlier, this approach was chosen to improve the SNR and might
be beneficial to strengthen a broad range of language functions. It is based
on the assumption that ERPs, which are induced by a language task, are

108



4.4 discussion

language-related. However, there is a limitation to the approach, namely,
that the classifier would also react to other components that are not related
to language-processing. The two most prominent unwanted instances
are eye artifacts and motor evoked potentials due to motor execution (or
imagery) which are time-locked to target stimuli. If patients, for instance,
blinked whenever they heard the target stimuli, then the resulting brain
signals would also be class-discriminative and would have been rewarded
by the classifier. In this case, we would essentially teach patients to blink at
the right moment.

To prevent this, we carefully examined the patient and their brain signals
during the training, employed artifact-removal methods, and analyzed
the origin of the class-discriminative information in post-session analyzes
including an evaluation in the frequency spectrum. For this analysis, it
is from great value that the relevant features can easily be visualized for
a linear classifier. However, for patient P2, we were not successful. The
patient started to perform motor imagery upon perceiving the target stimuli
which manifested itself in event-related (de)synchronization effects over
the motor cortices. To avoid that an irrelevant component (or in the worst
case, a harmful component) is reinforced, we decided to stop the training
after 24 hours for that patient. Future work should address this problem
by implementing advanced monitoring software that can detect unwanted
components early on and by further refining the signal processing pipeline
with the goal to restrict the reinforced signals to a pool of components that
are known to be language-related.

The second limitation of the study is that we did not have an explicit
control group. In our study, patients served as their own control group to
some extent. For all but one patient, we could monitor the progress before
starting our training when they underwent ordinary speech and language
therapy 2− 3 times per week. Compared to that, our training shows a
strong effect size. However, without a control condition, we cannot make a
conclusive statement whether the brain state dependent feedback is indeed
the key to the observed training success. Hence, a randomized controlled
trial should be conducted in the future where the control group trains in
a setup that is as similar to the BCI-based training as possible, but which
does not rely on the analysis of the brain signals.

A candidate for such a control group would be a button-press based
feedback. In this scenario, patients are instructed to press a button upon
hearing the target word. They will then receive feedback based on their
button press accuracies and timings. All other factors should be made
comparable (e. g., patients should also wear an EEG cap). With that, it
is possible to control for confounding factors of the therapy success, e. g.,
the stimulus repetition, interactions with the examiners (social support
and social stimulation can support the recovery of language to a similar
level as conventional SLT [25]) and repetitions of the language tests, to
ultimately come to a conclusion in how far the BCI-based feedback is key
to the training success.
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Together with Mariacristina Musso (UMC Freiburg) and Michael
Tangermann, we designed the training task and study protocol.
I took the leading role in the technical implementation of the
BCI-based online training, data analysis and visualization, and
statistical testing. I also conducted or supervised the majority
of the training sessions.
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author’s contribution

In this chapter, I presented results from the first successful BCI-
based language training for patients with post-stroke aphasia. I
showed how the application of state-of-the-art machine learning
methods allows patients to perform a challenging auditory ERP
task. The clinical language assessments of 10 chronic stroke
patients provided compelling evidence that the BCI-based train-
ing leads to strong and generalized verbal improvements. In
addition, evoked brain responses showed larger amplitudes and
lower latencies after the training, which suggests an improved
language processing. Cognitive tests showed no statistical dif-
ferences for verbal memory and attention-related tests which
indicates that the training is specifically improving language
functions. While future work is necessary to get a more detailed
understanding of the exact training mechanism, I am convinced
that this is the first step towards a new clinically-relevant appli-
cation field for BCIs with many potential users.

In this chapter, I presented results from the first successful BCI-
based language training for patients with post-stroke aphasia. I
showed how the application of state-of-the-art machine learning
methods allows patients to perform a challenging auditory ERP
task. The clinical language assessments of 10 chronic stroke
patients provided compelling evidence that the BCI-based train-
ing leads to strong and generalized verbal improvements. In
addition, evoked brain responses showed larger amplitudes and
lower latencies after the training, which suggests an improved
language processing. Cognitive tests showed no statistical dif-
ferences for verbal memory and attention-related tests which
indicates that the training is specifically improving language
functions. While future work is necessary to get a more detailed
understanding of the exact training mechanism, I am convinced
that this is the first step towards a new clinically-relevant appli-
cation field for BCIs with many potential users.

summary
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S U M M A RY A N D O U T L O O K

This thesis has brought two major improvements to the BCI community.
First, I have presented new unsupervised machine learning methods for
ERP-based BCIs that are able to quickly and reliably learn a brain signal
decoder from completely unlabeled data in Chapter 3. For the first time,
it was possible to derive a completely unsupervised classifier that has the
favorable theoretical property of guaranteed convergence under the assump-
tion that the data points are independent and identically distributed. In
addition, the learning efficiency of a combined unsupervised classifier was
very high when compared to other unsupervised classifiers. Indeed, in
some scenarios, the best new method could utilize unlabeled data almost
as efficiently as a supervised algorithm with complete label access. This
is a big step towards self-calibrating BCIs where the decoder is able to
constantly extract meaningful information from the brain signals without
the need for frequent time-consuming (re-)calibrations.

The second contribution was to introduce the first BCI-supported lan-
guage training for patients with language deficits as explained in Chapter 4.
The principal idea of this new approach is that patients receive meaning-
ful feedback about their performance in a language task based on their
ongoing brain signals, with the goal to reinforce strategies or brain states
that are beneficial for the patients’ language abilities. Together with clinical
partners, we could not only show the feasibility of this approach, but we
also observed that the training led to significant and long-lasting beneficial
training effects. In contrast to language therapies with comparable patients
and intensity, the training-induced language effects were strong and gen-
eralized to all verbal abilities. This makes the new BCI-based language
training a promising alternative to existing language therapies and opens
the door for a completely new application field of BCIs with an enormous
potential user group.

In the following, I want to discuss how both contributions can be com-
bined.

It should first be noted that the current BCI-based language training is
completely supervised. This is the case because we instruct the patients to
attend a certain (predefined) target word in every trial. This target word is
known by the classifier and hence, we can use this information to adapt our
classifier. In general, if label information is available and reliable, then un-
supervised methods are always inferior compared to supervised methods.
On the other hand, if label information is unreliable, then unsupervised
methods can indeed provide a benefit. The scenario of unreliable labels
is actually observed in the BCI-based training because some patients have
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problems remembering the target word and start paying attention to a dif-
ferent word during a trial. While a supervised classifier learns misleading
associations between brain signals and the task in this case, unsupervised
methods can cluster the data without requiring the true labels. This allows
unsupervised methods to cope with certain types of label noise as long
as the user still performs any of the proposed tasks (e. g., listens to one
specific word). In future work, one should investigate how much label
noise can still be tolerated by a supervised classifier and when exactly it is
beneficial to switch to an unsupervised classifier.

The introduction of robust unsupervised learning methods also provides
an opportunity to move away from the completely supervised language
training to one, where patients can train with a more flexible training
task. This should make the training more motivating and engaging for the
patients, and with that, ultimately more efficient and enjoyable. I envision a
training task where the users freely select their desired targets (e. g., certain
words). When successful, this triggers an event and users get access to
new options. Various events are imaginable. For instance, a successful
target word selection could trigger a new segment of a story that can again
be continued based on a new set of word stimuli. With that, users could
freely explore their desired story based on personal preferences. For other
patients, it might be interesting to explore these words that they do not
know well and then receive additional information about that word upon
successful selection. Another idea is that patients receive a reward based
on their choice (e. g., some words give more points than others based on
difficulty) and with that, patients can select the difficulty-level more freely
based on their current ability, ambition and confidence level.

While it is very difficult to foresee the future development of BCIs, I
think that the quests for new application fields and for increased usability
are two of the main challenges in the field. With my theoretical and
practical contributions, I could make a significant step towards realizing
robust and efficient algorithms that can be used to steer neurotechnological
applications with real benefits for the user.
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a
A N AU D I T O RY B R A I N - C O M P U T E R
I N T E R FA C E W I T H E Y E S - C L O S E D .

The following text and Figures are mostly taken from the journal publica-
tion in Frontiers in Human Neuroscience [81].

Recent research and the previous section have demonstrated
how brain-computer interfaces (BCI) based on auditory stimuli
can be used for communication and rehabilitation. In these
applications, users are commonly instructed to avoid eye move-
ments while keeping their eyes open. This secondary task can
lead to exhaustion and subjects may not succeed in suppressing
eye movements. In this work, the option to use a BCI with eyes-
closed was investigated. Twelve healthy subjects participated
in a single electroencephalography (EEG) session where they
were listening to a rapid stream of bisyllabic words while alter-
natively having their eyes open or closed. In addition, different
usability aspects for the two conditions were assessed with a
questionnaire. The analysis shows that eyes-closed does not re-
duce the number of eye artifacts and that event-related potential
responses and classification accuracies are comparable between
both conditions. Importantly, we found that subjects expressed
a significant general preference towards the eyes-closed condi-
tion and were also less tensed in that condition. Furthermore,
switching between eyes-closed and eyes-open and vice versa is
possible without a severe drop in classification accuracy. Also, a
patient which could not control the BCI with open eyes could
control the BCI when closing his eyes. These findings suggest
that eyes-closed should be considered as a viable alternative in
auditory BCIs that might be especially useful for subjects with
limited control over their eye movements.

Recent research and the previous section have demonstrated
how brain-computer interfaces (BCI) based on auditory stimuli
can be used for communication and rehabilitation. In these
applications, users are commonly instructed to avoid eye move-
ments while keeping their eyes open. This secondary task can
lead to exhaustion and subjects may not succeed in suppressing
eye movements. In this work, the option to use a BCI with eyes-
closed was investigated. Twelve healthy subjects participated
in a single electroencephalography (EEG) session where they
were listening to a rapid stream of bisyllabic words while alter-
natively having their eyes open or closed. In addition, different
usability aspects for the two conditions were assessed with a
questionnaire. The analysis shows that eyes-closed does not re-
duce the number of eye artifacts and that event-related potential
responses and classification accuracies are comparable between
both conditions. Importantly, we found that subjects expressed
a significant general preference towards the eyes-closed condi-
tion and were also less tensed in that condition. Furthermore,
switching between eyes-closed and eyes-open and vice versa is
possible without a severe drop in classification accuracy. Also, a
patient which could not control the BCI with open eyes could
control the BCI when closing his eyes. These findings suggest
that eyes-closed should be considered as a viable alternative in
auditory BCIs that might be especially useful for subjects with
limited control over their eye movements.

abstract
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a.1 introduction

A problem that is typically encountered when recording brain activity by
means of EEG is the occurrence of artifacts. Although most subjects have
fewer problems to suppress body movements, eye artifacts such as blinks or
eye movements are hard to eliminate during the measurement and their
associated EEG signals are much stronger than the brain signals of interest.
This is especially challenging for subjects wearing contact lenses (leading
to dry eyes) and for theoften elderlypatients. Blinking rates were shown
to be influenced by the workload [171] which is often quite high in BCI
experiments.

In our BCI-based language training that was described in Chapter 4,
we experienced one case where a chronic stroke patient was unable to
voluntarily reduce the number of eye blinks. The subject was persistently
blinking about once every second. This led to an extremely deteriorated
quality of the EEG recordings. Different methods have been developed to
alleviate the effects of eye artifacts using linear regression methods [134] or
independent component analysis (ICA) decompositions [51, 178, 179], but
they still lead to a significant data loss and cannot perfectly separate eye
artifacts from underlying brain activity.

Additionally, the unnatural instruction to avoid eye blinks for a prolonged
period constitutes for an unwanted secondary task that is distracting the
subject from the main task and typically involves a substantial level of
stress. This can have the undesired consequence that a training based on
EEG signals is less efficient due to the split of cognitive resources to the
main training task and to the secondary task of avoiding eye blinks. In an
extreme scenario, subjects may spend so much attention on suppressing
eye artifacts, that they are unable to perform the main task.

The difficulty of avoiding eye movements over a long period leads to
the question if the number of eye artifacts could be reduced and the mea-
surement can be made more comfortable for the test subject by having the
subject close their eyes while collecting the data. This idea is feasible in auditory
BCIs since visual input is not needed during a trial. In this study, we will
compare two conditions: eyes-closed (EC) and eyes-open (EO). While many
studies have shown that EC leads to an increase in occipital alpha as well
as a changed topology and activity in different frequency bands compared
to EO (see [7]), the existing literatureto our knowledgelacks an analysis of
the EC condition for event-related potentials (ERPs) in the fast paradigms
that are used for BCIs. For the slower conditions, a lot of data exists. A
recent meta-review found that latency and amplitude of the P300 were not
significantly different between EO and EC in the standard oddball task
with an SOA of1 second and tones as stimuli [43]. Remarkably, several
hundred subjects were included in this meta-analysis for each condition
(NEO = 555, NEC = 998) where the data was collected from several studies
(16 studies used EO and 23 studies used EC).

However, results from this meta-analysis are not directly transferable
to BCIs as (a) the SOA between two stimuli in the meta-review (1 sec-
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ond) is much longer than in recent BCIs (typically SOAs vary between
250− 550 ms) and because (b) tone stimuli lead to different ERP responses
compared to natural (more complex) sounds (animals sounds or words)
that are used in modern BCIs [9, 65, 71, 157, 163, 166]. In addition, ques-
tions regarding (c) the number of eye artifacts and (d) user comfort and
usability were not investigated.

Another relevant research question is whether a system trained on data
recorded with EO could be applied when the subject has their eyes closed
and the other way around. If this is the case, subjects could switch between
conditions within one session. This could be expected to improve the
overall comfort of the subject during the measurement and decrease the
stress level.

In summary, this study should investigate four main hypotheses.

H1: EC leads to fewer eye artifacts than EO.

H2: The achieved target vs non-target classification accuracies do not
differ significantly between EO and EC.

H3: The measuring process is overall more comfortable for the subjects
for EC than for EO.

H4: A system trained on data recorded in one condition can be applied
in the other condition without a substantial loss in classification
accuracy.
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a.2 material and methods

In a within-subject design, we compared the EEG signals and usability
aspects for the conditions EC and EO in an auditory BCI paradigm using
words as stimuli and a fast SOA of 250 ms. The raw EEG data sets for this
study can be found in the Zenodo Database1.

a.2.1 Participants

Twelve healthy volunteers (11 subjects between 22-29 (mean = 25.2 years,
SD = 2.04 years), and one subject (S7) aged 76, 5 female in total) were
recruited for the experiment. All twelve subjects reported having normal
hearing. Following the Declaration of Helsinki, approval for this study was
obtained by the ethics committee of the University Medical Center Freiburg
and all participants gave written informed consent prior to participation. A
session took about 3.5 hours (including the EEG set-up and washing the
hair).

a.2.2 Experimental structure and stimuli

Subjects were asked to be seated comfortably on a chair, facing a computer
monitor. Six loudspeakers were centered in 60-degree steps, at ear height
around the subjects head, with a radius of approximately 60 cm (see Fig-
ure a.1A). The auditory stimuli were presented from the six loudspeakers
according to the AMUSE (Auditory MUlticlass Spatial ERP) paradigm [152].

'Get ready' Cueing sentence Word sequence 'Relax'

T T T

0 - 3s 3 - 8s 8 - 33s 33 - 38s

Computer monitor

60°
60cm

A

C

B

Run 1
Eyes-open

Run 3
Eyes-open

Run 2
Eyes-closed

Run 4
Eyes-closed

Run 18
Eyes-closed{

Figure a.1: Structure and design of the eyes-open/closed study. A: AMUSE setup
in a top view. Six loudspeakers are spatially centered around the
subjects head. Figure adapted from [152]. B: a session consisted of
18 runs alternating between eyes-open and eyes-closed. Each run
consists of 6 trials. C: a trial comprises 4 distinct stages. The timings
(in seconds) indicate the beginnings of each stage. During the word
sequence, targets (T; blue) and non-targets (red) are interleaved and
played with a fast SOA of 250 ms. Figure taken from [81].

1 DOI: http://doi.org/10.5281/zenodo.1298606
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A session consisted of a total number of 18 runs, each contained 6 trials.
Runs where subjects had their eyes closed were followed by runs where
subjects had their eyes open and vice versa (see Figure a.1B) to alleviate
effects of non-stationaritiy in the EEG signals. The current condition was
indicated to the user on the screen. To prevent systematic errors, the
condition used in the first run alternated between participants.

In each trial, one out of six bisyllabic words (length = 300 ms) were cued
by a sentence as target stimuli before presenting a sequence of word stimuli
(SOA = 250 ms), see also Figure a.1C. In a familiarization phase before the
EEG recording, these sentence-word mappings were practiced with the
subjects. During the sequence, each speaker played a different distinct
word 15 times, resulting in a class-wise ratio of 1 : 5, with 15 target and 75
non-target stimuli per trial. Per condition (EO/EC), 9 runs were recorded.
As each of them contains 6 trials, our experiment resulted in 54 trials per
condition. Multiplying these 54 trials per condition with the number of
targets per trials (15) and the number of non-targets per trial (75) results in
a total of 810 targets and 4050 non-targets per subject and condition (EO
/ EC), respectively. In a run, each of the six stimuli was chosen exactly
once as a target, while the other stimuli served as non-targets. We pseudo-
randomized the ordering in which the stimuli were presented and in which
the targets were selected. The mapping from stimulus to loudspeaker was
also performed pseudo-randomized.

a.2.3 Data acquisition and processing

The study consisted of the EEG recordings during the AMUSE paradigm
and the subjective ratings mainly after the EEG measurements.

For both conditions (EO / EC), we assessed several subjective ratings
after the session in a questionnaire. Subjects were asked to rate their
ergonomic experience during the EEG recordings for eight items regarding
motivation, concentration, fatigue, eye movement suppression, eye blink
suppression, stimulus discrimination, exhaustion, and difficulty of the
task on a 5-point Likert scale. We also asked the subject which condition
they preferred overall (EO / EC / undecided). We further used the self-
assessment manikin (SAM) [26], which is a non-verbal pictorial assessment
technique, to assess valence from 1 (negative) to 9 (positive), and arousal
from 1 (calm) to 9 (excited). In addition, we asked the subjects to indicate
their general fatigue before and after the EEG measurement on a 5-point
Likert scale.

EEG activity was recorded and amplified by a multichannel EEG ampli-
fier (BrainAmp DC, Brain Products) and with 63 passive Ag/AgCl elec-
trodes (EasyCap). The channels were placed according to the 10-20-system,
referenced against the nose and grounded at channel AFz. Electrode
impedances were kept below 15 kΩ. Eye signals were recorded by elec-
trooculography (EOG) with an electrode below the right eye of a subject
(the channel associated with this electrode is hereafter called EOGvu). The
signal was sampled at a rate of 1 kHz.
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In addition to the EEG and EOG channels, pulse (on an index finger)
and respiration (diaphragmatic breathing) were recorded, but not further
analyzed.

EEG data preprocessing

The offline analysis of the EEG data was performed using the BBCI tool-
box [20]. The data was bandpass filtered in [0.58]Hz using a Chebyshev
Type II filter and downsampled to 100 Hz. EEG signals were then epoched
between −200 ms and 1200 ms relative to the stimulus onset. A baseline cor-
rection was then performed based on data within the interval [−200, 50]ms.

We marked those epochs where the difference of the highest and lowest
value in one epoch exceeded 60 µV in one of the frontal channels (Fp1, Fp2,
F7, F8, F9, F10) to capture eye- or other muscular artifacts. We call this step
Minmax_60. The percentage of epochs that gets flagged by this procedure
(and by additional steps that will be described below) is reported in the
result section. In total, we applied three different preprocessing pipelines
in addition to the steps mentioned before:

PP1: Only the above steps were applied (Minmax_60).

PP2: Before applying Minmax_60, we regressed out eye artifacts and ap-
plied the variance criterion. Please see, Section 2.4.2 for more infor-
mation.

PP3: Multiple Artifact Rejection Algorithm, short MARA [178, 179], an
ICA-based supervised machine learning algorithm to reject eye com-
ponents, was applied before Minmax_60. Please also see Section 2.4.2
for more information.

a.2.4 Classification

Per EEG channel, the amplitudes were averaged in eight intervals:
[100, 190], [191, 300], [301, 450], [451, 560], [561, 700], [701, 850], [851, 1000]
and [1001, 1200]ms. These intervals have shown good classification results
in Chapter 4. They had been handcrafted to capture the time intervals with
the highest discriminatory power for typical subjects. We fixed them in the
study design before recording the data to avoid a potential overfitting to the
obtained classification accuracies. The selected interval boundaries were
the same for the two conditions (EO / EC) to guarantee a fair comparison.
For visualization (Figure a.5), we manually picked those intervals that show
the most discriminatory time intervals after computing the grand averages.

This led to a 504-dimensional feature vector (= 63 channels · 8 intervals)
per epoch. The classification between target and non-target stimuli was
performed using the LDA classifier with shrinkage-regularized covariance
matrix [21], see Section 2.4.4 and Section 2.5.2, respectively. If not specified
further, we applied a five-fold chronological cross-validation for estimating
the classification accuracies.

120



a.3 results

a.3 results

Hypothesis 1 (Eye artifacts). In order to test whether the EC condition
leads to fewer artifacts than the EO condition, we applied three different
preprocessing pipelines (PP1-PP3) to the data as explained in the method
section. The results are shown in Figure a.2A. By visual inspection, one
can observe that the number of artifacts is higher for the EC condition. A
Wilcoxon signed rank test over the percentage of artifact trials for each
participant for EO and EC shows that the number of artifacts is significantly
higher for EC when only Minmax_60 is applied (PP1: W = 3, p = 0.0024),
but not for the other two preprocessing condition (PP2: W = 29, p = 0.5;
PP3: W = 9, p = 0.037) when applying the Bonferroni-Holm correction

(uncorrected p-values are reported). Hence, the hypothesis that there are
less artifact trials in the EC condition could not be confirmed. Given the
very consistent results, it is unlikely that more subjects will deliver different
results. Instead, the data suggests the opposite, namely, that more eye
artifacts exist with EC compared to EO.

Differences between both conditions

A

B

PP1:
PP2:

PP3:

Figure a.2: Number of artifacts and classification accuracies for different pre-
processing methods. A: the relative number of artifacts obtained by
Minmax_60 (and the variance criterion in case of PP2) for all subjects.
B: cross-validated classification accuracy for all subjects. The solid
blue-ish bars depict the smaller value for the two conditions (EO/EC).
The red or green bars indicate the value of that condition which led to
a higher outcome. Figure taken from [81].

Hypothesis 2 (Accuracy). We examined whether the accuracies differ
between EO and EC. Depending on the preprocessing and condition, the
grand average performance was around 75− 80% (see Figure a.2B). The
Wilcoxon signed-rank test was used to test the null hypothesis that the
accuracies are the same for both conditions. We found that for all three
preprocessing pipelines, there was no significant different between the two
conditions (PP1: W = 38, p = 0.9, PP2: W = 40, p = 0.9, PP3: W = 17, p =
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0.1). It may be the case that a clear trend evolves in the case of measuring a
larger number of subjects. However, the small difference between the two
groups (the absolute difference between the average performances is less
than 1.5 % classification accuracy for all three preprocessing pipelines in
our data) and the non-significant result from the meta-review concerning
the oddball ERP responses for several hundreds of subjects, convinces us
that the effect of the condition on classification accuracy is rather limited.

Hypothesis 3 (Usability). In order to determine whether the measuring
process is more comfortable for subjects in the EC condition than in the
EO condition, we statistically evaluated a subset of five questions that the
participants have answered in the questionnaire.

1. How much did you struggle with fatigue in the different conditions?

2. How easy was it to avoid eye movements in the different conditions?

3-4. How was your mood during the different conditions in terms of
valence (negative vs. positive) and arousal (calm vs. tensed)?

5. Overall, which condition did you prefer?

We limited the statistical evaluation to these five questions to reduce the
number of multiple comparisons, but report the results for all categories of
the questionnaire (see Figure a.3). For the five statistical tests, we corrected
the resulting p-values with the Bonferroni-Holm correction. A paired t-test
was applied as it was shown to have the same statistical power as a signed
Wilcoxon signed-rank test in case of a 5-point Likert scale, see [41].

p*<0.05

n.s.n.s.

n.s. p*<0.05

A

B C D

-

-

Figure a.3: Questionnaire results regarding usability. The mean values and stan-
dard deviation of the 12 subjects are shown for each category (A-D).
p∗ indicates Bonferroni-Holm corrected p-values, n.s. means ‘not sig-
nificant’. Figure taken from [81].

We found no significant differences for fatigue (t(11) = 1.77, p = 0.10)
and the ease of suppressing eye movements (t(11) = 1.16, p = 0.27), see
Figure a.3A. For valence, results suggest that EC was perceived as more
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positive (t(11) = 2.35, p = 0.039 (uncorrected)), but this was not significant
after Bonferroni-Holm correction (Figure a.3B). Significant effects were
found for arousal (t(11) = −3.92, p = 0.002 (uncorrected)) showing that
participants were calmer with EC and also for the general preference
(Figure a.3C). Nine out of twelve subjects preferred EC, only one subject
preferred EO and two subjects were undecided. A one-sided binomial test
yields p = 0.006 (uncorrected), hence we can reject the null hypothesis that
both conditions have the same comfort level (Figure a.3D).

Hypothesis 4 (Transferability). We investigated whether a system trained
on data recorded with EO could be applied in runs with EC and vice versa.
Therefore, we ran a post-hoc offline simulation consisting of two parts.
The first part describes the influence of the training set size only, while
no transfer learning between conditions was applied. For each subject,
we utilized data of the first 18 trials of a condition (EO / EC) to draw an
increasing number of randomly chosen trials. Then each of these sets was
used to train a shrinkage-regularized LDA classifier. The performance of
each classifier was then tested on another randomly selected (but unseen)
trial from the same condition and subject. This procedure was repeated
many times and with different seeds for the random selection of training
and testing data. The average over these repetitions delivered a reliable
performance estimate for growing sizes of training data sets. The grand
average results are shown in Figure a.4A (left to the red dashed line). Both
conditions performed very similarly during this part.

In the second part we investigated the effects of transfer learning, i.e. the
switching between conditions after 18 trials and continued application on
the remaining 36 trials (remember that we had 54 trials per condition in
total). Four different transitions were simulated offline: two transitions
with a change of conditions (EO→ EC, EC→ EO) andto allow for compar-
isonsanother two without a change of conditions (EO→ EO, EC→ EC).
In each of the four scenarios, we took the LDA classifier that was trained
on the first 18 EO or EC trials (depending on the condition before the
transition). Afterward, we tested the classifier on a randomly drawn trial of
the condition after the transition. This trial was then added to the training
data and the LDA classifier was retrained on the slightly enlarged training
data. As a result of changed conditions, the target vs. non-target accuracy
initially dropped around 3− 4 % (from ∼74 % to ∼71 %), while no drop was
observed when conditions were maintained (see Figure a.4A, right to the
red dashed line). Collecting and including more data from the condition
after the transition, the performance differences between change and no
change rapidly decreased until they were not distinguishable anymore after
30 new trials (see Figure a.4B). In both phases, we applied the aforemen-
tioned randomization procedure with 20 different seeds to obtain reliable
results.
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Figure a.4: Influence of changing from eyes-closed to eyes-open and vice versa.
A: a switch of conditions was simulated after 18 trials (dashed red line)
yielding a small reduction in target vs. non-target classification accu-
racy (measured by AUC). All classifiers were continuously retrained
after each trial (see text). B: this subplot shows the loss in accuracy
when changing from one condition to the other. Figure taken from [81].

a.3.1 ERP analysis

In addition to the four main hypotheses, we also investigated the shapes,
amplitudes and latencies of the ERP responses for both conditions. Fig-
ure a.5 shows the grand average ERP responses after processing the data
with pipeline PP2 (although noisy channels were not removed when com-
puting the grand average). The most relevant features (in a linear discrimi-
natory sense) can be inferred from the signed R2 plots in the bottom row
of Figure a.5A and Figure a.5B. Two main components are visible for EO
and EC: An early negativity with a peak location around FCz and a peak
latency of around 200 ms (‘N200’) and a later positivity (‘P300’) in the pari-
etal area. To quantitatively describe these components, we computed the
peak amplitudes and latencies for each subject. The results are presented
in Table a.1.

The most striking difference between EO and EC is that the late parietal
positivity (P300) appears to be earlier in the EC condition compared to
the EO condition, see Figure a.5C. A two-sided paired t-test for the four
quantities (N200 amplitude and latency and P300 amplitude and latency)
showed no significant differences between the experimental conditions
after Bonferroni-Holm correction, although the P300 latency differs strongly
(uncorrected T-test, t(11) = 2.96, p = 0.013).
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Figure a.5: Grand average ERP responses for eyes-open, eyes-closed and their
differences. Top rows: average responses evoked by target (blue) and
non-target (green) stimuli in the central channel Cz (thick) and the
parietal-occiptal channel POz (thin). The signed R2 values for these
two channels are provided by two horizontal color bars. Their scale
is identical to the scale of the plots in the bottom row of scalp plots.
Target / Non-target rows: scalp plots visualizing the spatial distribution
of mean target and non-target responses within five selected time
intervals: [140, 250], [251, 460], [461, 700], [701, 820] and [821, 1200]ms
relative to stimulus onset. Bottom row: scalp plots with signed R2

values indicate spatial areas with high class-discriminative information.
Figure taken from [81].

125



bci with eyes-closed

Table a.1: Overview of peak latencies (in ms) and amplitudes (in µV) for the 12
subjects. The N200 peaks were computed using channel FCz in the
interval [140, 280]ms. P300 peaks were calculated from channel Pz in the
interval [300, 900]ms. A bootstrapping approach was used to improve
the reliability of the peak estimates in which peaks were estimated 10
times on subsets containing randomly-drawn 80% of the data and then
averaged across subsets.

Eyes-open Eyes-closed

N200 (FCz) P300 (Pz) N200 (FCz) P300 (Pz)

Lat. Ampl. Lat. Ampl. Lat. Ampl. Lat. Ampl.

S1 197 -2.42 792 2.41 206 -1.70 310 2.32

S2 230 -0.65 808 1.53 203 -0.87 428 3.73

S3 150 -0.23 740 0.80 150 -0.50 805 0.81

S4 195 -0.82 796 1.99 197 -0.41 346 2.93

S5 237 -1.85 390 1.81 244 -1.91 437 1.96

S6 169 -0.41 704 1.19 179 -1.04 561 0.89

S7 239 -2.36 615 2.09 250 -2.08 543 2.01

S8 220 -1.27 840 1.86 212 -1.60 512 1.64

S9 195 -2.02 755 1.94 221 -1.46 687 1.91

S10 213 -1.28 359 1.84 223 -1.37 339 1.25

S11 190 -3.53 742 1.59 190 -2.92 570 1.81

S12 179 -1.48 743 1.47 195 -3.23 742 2.11

Mean 201 -1.53 690 1.71 206 -1.59 523 1.95

SD 27.6 0.96 158 0.43 27.4 0.87 161 0.82
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a.4 discussion and conclusion

The goal of this study was to compare the EC and EO condition in a
fast auditory BCI paradigm. In brief, our results show that EC leads to
comparable signals (with slightly more eye artifacts) while clearly being
preferred by the users. Although we have investigated a limited number
of subjects only, we observed significant effects which indicate a strong
influence of the condition on usability. In the introduction, we mentioned a
stroke patient that could not avoid very frequent eye blinks. We instructed
this patient to proceed with EC. Afterward, he could successfully control
an auditory BCI although he reported to sometimes ’drift away’, i.e. to lose
focus.

These important findings can have a direct impact on the usability of
auditory BCIs. It suggests that subjects should either start with EC right
from the beginning or, even better, subjects should simply have the choice
to use their preferred condition (EC/EO). This strategy could mitigate
major difficulties that are faced when working with subjects that have
limited control over their eye movements. In addition, we could show
that a transition from one condition to another leads only to a small loss
in classification accuracy that quickly diminishes when the classifier is
retrained on new data. Especially during longer sessions, we think that this
small sacrifice of classification accuracy justifies the improved user comfort.

To understand why condition EC led to an increased number of eye
artifacts, we have conducted an additional analysis where we computed
the number of artifacts for the two bipolar channels EOGh and EOGv
(see preprocessing pipeline PP2). These channels should mainly capture
horizontal and vertical eye movements, respectively. The analysis shows
that eye artifacts in the EC condition originate from vertical as well as
from horizontal eye movements with a similar proportion. We believe that
the increased number of eye artifacts in the EC condition comes from the
absence of a fixation cross. With that, it is rather difficult to not move the
eyes and subjects involuntarily produce small saccades. Interestingly, this
point has not been reported by the subjects in the questionnaire. Although
not significant, they reported that they perceived it as easier to suppress
eye movements in the EC condition.

Although not significant, we observed that the P300 peak latency is
much larger for the EO condition compared to the EC condition. To explain
this observation, we hypothesize that the EO condition has a higher task
demand due to the need to simultaneously process visual and auditory
input whereas no visual input needs to be processed in the EC condition.
This may lead to higher overall workload in the EO condition and thus,
explain increased P300 latencies.

We designed the protocol is such a way that EC and EO runs are al-
ternating. The idea behind this design was to reduce the effect of any
non-stationarities that occur over the course of a longer session due to
human factors (user learning, changed user strategies, fatigue), medication
or external factors (drying gel, changed cap position) changing the ERP
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responses [156]. On the one side, we believe that this design actually led to
an underestimation of the severity of eye movements in the EO condition
due to the frequent runs where subjects had their eyes closed. One subject
remarked that ‘it would have been difficult to leave the eyes open without
the runs where I had my eyes closed’. On the other side, fatigue might be-
come a more severe problem when longer sessions with EC are conducted.
We think that the EC strategy should be further tested in real application
scenarios to identify possible shortcomings.

A possible limitation with our questionnaire regarding the subjective
ratings is that the answers for each item were ordered from unfavorable to
favorable, for the question ‘How motivating were the different conditions
for you?’ the possible answers were sorted from ‘not at all motivating’ to
‘very motivating’. This same ordering for all questions might increase the
effect of participants trying to answer consistently. Ordering the possible
answers for each item randomly might help to avoid this issue.

Taken together, this is the first study that systematically compares the
eyes-closed and eyes-open condition for an auditory BCI. We found that
the eyes-closed condition should be considered as a viable alternative to
increase the user comfort. In addition, we encourage other scientists and
BCI practitioners to test the eyes-closed condition for subjects that fail to
control a BCI due to frequent eye movements.

The comparison between open and closed eyes was joint work
with Albrecht Schall, Natalie Prange and Michael Tangermann.
My contribution was to design the study together with Michael
Tangermann. In addition, I collected and analyzed the data
together with Natalie Prange and Albrecht Schall and wrote the
initial draft of the paper.

The comparison between open and closed eyes was joint work
with Albrecht Schall, Natalie Prange and Michael Tangermann.
My contribution was to design the study together with Michael
Tangermann. In addition, I collected and analyzed the data
together with Natalie Prange and Albrecht Schall and wrote the
initial draft of the paper.
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