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Summary

Targeted interaction with networks in the brain holds immense therapeutic potential

as a clinical technique for the treatment of neurological disorders like epilepsy and

Parkinson’s Disease. Aided by technological advances, electrical stimulation of the brain

is increasingly explored as a therapeutic strategy. Most current approaches involve

continuous stimulation with heuristically chosen parameter settings – the open loop

paradigm – where the influence of ongoing neuronal activity on stimulation outcome

is discounted. Consequently, they fail to achieve targeted interaction and may even

contribute to stimulus-induced side-effects. To fully leverage electrical stimulation

as a therapeutic, augmentative or research tool, there is a need to re-imagine it in a

closed-loop setting, where the stimulator is able to respond appropriately to the current

‘state’ of the network.

Closed-loop control of neuronal network activity is, however, a highly non-trivial

problem. Control strategies typically rely on a suitable dynamical model of the system.

However, a broadly accepted mathematical theory for the collective ongoing activity

of large neuronal populations is unavailable. The interaction between external stimuli

and ongoing activity is also poorly understood and is characterized by irregular and

complex dynamics (stochastic, non-linear and non-stationary). Further, in a clinical

context, it is often not feasible to specify explicit responses or output patterns a priori,

unlike in conventional regulation and tracking problems. Factors like these make it

cumbersome to define tractable control problems for biological neuronal networks.

How can the closed-loop methodology be exploited to approach neurobiological

control problems? In this thesis we propose a novel autonomous paradigm using

methods of Reinforcement Learning (RL) to address this challenge. We implemented

the technical framework of the paradigm and experimentally assessed its ability to

optimize stimulation strategies and adapt to temporal heterogeneities in neuronal

network activity.
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RL emphasizes learning from direct interaction with the system without relying on

exemplary supervision or complete models. To develop the concept and algorithms, we

established the technical framework of the paradigm with generic neuronal networks in

vitro as a model system. These networks retain the richness of cellular level processes

and networked neurophysiological mechanisms characteristic of neuronal ensembles

in the brain. They also preserve many of the challenges current RL algorithms would

face in a neurotechnological context, such as high-dimensional state and action spaces

and non-stationary activity dynamics. Concepts emerging from such co-adaptive

interaction schemes are therefore expected to be generalizable. Major challenges for

autonomous paradigms in the context of clinical neurostimulation were captured in toy

control problems for the model system. With suitably defined target response features,

we pursued RL methods to achieve them autonomously, assuming little in a priori

information. The quality of the autonomously learned solutions were independently

assessed.

In neurobiological control problems, desired response patterns are often stated in

terms of overall system objectives, since their explicit values are seldom known a priori.

Autonomous paradigms need to be able to achieve such objectives while optimizing

stimulus settings with respect to factors like clinical outcomes or energy consumption.

Further, they need to adapt to the non-stationary dynamics of ongoing activity. We

translated such challenges into two separate problems formulated for our model system:

an extremum seeking problem where the explicit target was unknown a priori and

an adaptive clamping problem. While the former aimed at maximizing stimulation

efficacy by interacting with the neuronal network, the latter involved clamping response

strengths to predefined levels for long durations by adapting to the poorly understood

temporal non-stationarities and fluctuations in network excitability, typically found in

neuronal networks both in vivo and in vitro.

Using prior studies on the activity dynamics and their interaction with stimuli in

generic neuronal networks in vitro, we approached the extremum seeking problem

numerically and showed that it was well-defined and had a unique solution for each

network. Therefore, predictions based on phenomenological models could be used to

17



independently validate autonomously learned policies. They were found to be in very

good agreement across networks. Our results offer the first proof-of-principle of an

evaluable framework involving an autonomous controller optimizing its interaction

with biological neuronal networks.

The adaptive clamping problem was approached using a failure driven algorithm

development strategy. An extended history of ongoing and evoked activity was

fed online to the RL controller to allow it to track temporal non-stationarities and

fluctuations in the interaction model. We showed that long term stable goal-directed

interaction was indeed feasible with such a paradigm. Response strengths consistently

improved to levels closer to target and response failures were less likely after learning,

compared to a random stimulation strategy. However, the temporal extent of the

feedback signal and the nature of the interaction model were found to be factors crucial

to the stability of the paradigm. Moreover, biological factors like stochastic shifts in the

ongoing network mode, also contributed to oscillatory instabilities.

Taken together, in this thesis we present a novel autonomous RL based paradigm to

approach closed-loop regulation and tracking problems in biological neuronal networks.

Using control problems that share the underlying structure of targeted neurostimulation

problems, we demonstrated how some of the challenges involved could be mitigated.

Extending the framework may be a promising step forward for clinical applications

involving neurostimulation.
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Zusammenfassung

Die zielgerichtete Interaktion mit Netzwerken im Gehirn besitzt eine großes therapeu-

tisches Potenzial zur Behandlung von neurologischen Erkrankungen wie Epilepsie

und Parkinson. Im Zuge des technologischen Fortschritts wird dabei zunehmend die

elektrische Stimulation des Gehirns als therapeutische Strategie erforscht. Die meisten

aktuellen Ansätze basieren auf der kontinuierlichen Stimulation mit heuristisch ermit-

telten Parametern. In solchen sogenannten Open-Loop-Paradigmen (offener Regelkreis)

wird der Einfluss fortlaufender neuronaler Aktivität und Plastizität auf das Stimulati-

onsergebnis vernachlässigt. In der Folge, verfehlen solche Ansätze oft den erwünschten

Stimulationseffekt und können gar zu unerwünschten Nebenwirkungen führen. Um die

Möglichkeiten der elektrischen Nervenstimulation in der Therapie, Prothetik oder For-

schung voll zu entfalten wäre es daher notwendig sie in einen geschlossenen Regelkreis

(Closed-Loop-Paradigma) einzubetten. In einem solchen reagiert der Stimulator auf den

aktuellen SZustandëines Nervennetzwerks und optimiert die Stimulationsparameter

kontinuierlich nach, um das Stimulationsziel zu erreichen.

Die Regelung neuronaler Netzwerkaktivität mit Hilfe eines geschlossenen Regel-

kreises ist jenoch keinsfalls trivial. Regelungsstrategien basieren typischerweise auf

einer geeigneten dynamischen Beschreibung des Systems. Eine allgemein akzeptierte

mathematische Theorie zur fortlaufenden kollektiven Aktivität in grossen neurona-

len Populationen ist bisher jedoch nicht vorhanden. Ebenso ist die Wechselwirkung

zwischen äußeren Reizen und fortlaufender Aktivität wenig erforscht und zeichnet

sich in der Regel durch unregelmäßige und komplexe (stochastische, nichtlineare und

nicht-stationäre) Dynamiken aus. Im klinischen Kontext ist es zudem oft nicht möglich

ein erwünschtes Antwort- oder Aktivitätsmuster a priori und explizit zu spezifizie-

ren, anders als dies bei herkömmlichen Regelungs- und Trackingaufgaben der Fall ist.

All diese Faktoren spiegeln die Schwierigkeit wider, lösbare Regelungsprobleme für

biologische neuronale Netzwerke zu definieren.
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In wie weit ist es jedoch überhaupt möglich, mit Hilfe der Closed-Loop-Methodik,

neurobiologische Regelungsprobleme zu lösen? In vorliegender Arbeit wird ein neuar-

tiges Paradigma für die autonome dynamische Kontrolle von biologischen neuronalen

Netzwerken mit Methoden des Reinforcement-Learning (RL) vorgeschlagen. RL er-

möglicht ein zielgerichtetes Lernen aus der direkten Interaktion mit einem System

ohne dabei auf vollständige Modelle zurückzugreifen. Ein Regelkreis wurde entspre-

chend implementiert und die Effizienz der Stimulationsstrategie hinsichtlich ihrer

Anpassungsfähigkeit an neuronale Nichtstationaritäten experimentell evaluiert.

Um grundlegende Konzepte und Algorithmen zu entwickeln, wählten wir generi-

sche neuronale Netzwerke in vitro als experimentelles Modellsystem. In diesen Netz-

werken bleibt eine Fülle zellulärer Prozesse und neurophysiologischer Mechanismen

erhalten, die für neuronale Netzwerke im Gehirn charakteristisch sind. Die Netzwerkdy-

namik in vitro bietet daher hinsichtlich ihrer Komplexität eine Problemstellung, die mit

derjenigen im neurotechnologischen Kontext vergleichbar ist. Hierzu gehören hochdi-

mensionale Zustands- und Aktionsräume, sowie nicht-stationäre Aktivitätsdynamiken.

Wir gehen daher davon aus, dass die aus diesem Ansatz hervorgehenden Ansätze zur

koadaptiven Interaktion verallgemeinerbar sind.

Grundlegende Herausforderungen an autonome Paradigmen, die im Kontext klini-

scher Neurostimulation bestehen, wurden auf vereinfachte Regelungsprobleme abgebil-

det. Dabei wurden RL-Methoden eingesetzt, um eine geeignet gewählte Regelgröße

in der Reizantwort autonom und mit wenig a priori Information zu kontrollieren. Die

Qualität der autonom erlernten Lösungen wurde im Anschluss unabhängig überprüft.

In neurobiologischen Regelungsproblemen wird das Stimulationsziel oft bezogen

auf die Funktion des Systems in seiner Gesamtheit definiert, da die zugrundeliegenden

Dynamiken meist unbekannt sind. Autonome Paradigmen müssen in der Lage sein

ein solches Ziel zu erreichen, während Stimulationsparameter bezogen auf Faktoren

wie physiologische Auswirkungen oder Energieverbrauch optimiert werden. Deswei-

teren müssen sie in der Lage sein, sich an die nichtstationäre Dynamik fortlaufender

neuronaler Aktivität anzupassen.

Wir übersetzten solche Herausforderungen in zwei gesonderten Problemstellungen
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an unser Modelsystem: einer Maximierungsaufgabe, in der das erreichbare Stimu-

lationsergebnis a priori unbekannt war, und einer Optimierungsaufgabe, in der die

Regelgröße auf einem Sollwert gehalten werden musste. In der ersten Aufgabe war

das Ziel, die Stimulationseffizienz durch Interaktion mit dem neuronalen Netzwerk zu

maximieren, d.h. möglichst viele Aktionspotenziale auszulösen. In der zweiten Aufgabe

sollte die Stärke der Reizanwort (wieder die Anzahl ausgelöster Aktionspotenziale)

über längere Zeiträume konstant gehalten werden. Hierbei war eine stetige Anpassung

an nicht vorhersehbaren Fluktuationen in der Netzwerkerregbarkeit, die für neuronale

Netzwerke in vivo und in vitro typisch sind, notwendig.

Anhand von Vorstudien zur Aktivitätsdynamik in solchen Netzwerken und deren

Wechselwirkung mit elektrischen Reizen war es uns möglich das Optimierungspro-

blem klar zu definieren und durch eine numerische Strategie für jedes Netzwerk eine

eindeutige Lösung zu finden. Basierend auf phänomenologischen Modellen konnten

zudem Vorhersagen gemacht werden, die eine unabhängige Validierung der erlern-

ten Lösungen erlaubten. Die Ergebnisse zeigten über Netzwerke hinweg eine gute

Übereinstimmung. Wir zeigen damit erstmalig, dass die Realisierung eines autono-

men Controllers für ein Optimierungsproblem in biologischen neuronalen Netzwerken

möglich ist.

Wir näherten uns dem Problem der adaptiven Regelung mit Hilfe einer fehlerbasier-

ten Strategie zur Entwicklung von Algorithmen. Der RL-Controller hatte dabei Zugriff

auf den Verlauf der spontanenen und evozierten Aktivität innerhalb eines zurückrei-

chenden Zeitfensters, um zeitliche Nicht-stationaritäten und Fluktationen mit Hilfe

des Interaktionsmodells zu verfolgen. Wir zeigten, dass es mit diesem Ansatz möglich

ist, über längere Zeitraurme hinweg eine stabile Regulung zu realisieren. Im Vergleich

zu einer zufälligen Stimulationsstrrategie verbesserten sich Reizantworten konsistent

durch eine stetige Annäherung an den Sollwert. Ebenso wurde das Auftreten von

Stimulationsfehlschlägen mit dem Lernen minimiert. Die Wahl des Interaktionsmodells

sowie der des Zeitfensters für das Rückkopplungssignal waren für der Stabilität des

Paradigmas dabei entscheidend. Intrinsische biologische Faktoren, wie stochastische

Zustandswechsel im Netzwerkmodus, konnten oszillatorische Instabilitäten nach sich
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ziehen.

Zusammengefasst wird mit dieser Arbeit ein neuartiges autonomes RL-Paradigma

zur Closed-Loop-Kontrolle von biologischen neuronale Netzen vogestellt. Anhand von

Regelungsproblemen die im Wesentlichen ebenso bei der zielgerichteten Neurostimu-

lation im klinischen Kontext auftreten, konnten wir Wege aufzeigen, um einige der

Herausforderungen anzugehen. Die Erweiterung des vorgestellten Ansatzes könnte ein

vielversprechender Schritt in der klinischen Anwendung der Neurostimulation sein.
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Chapter 1

Introduction

Networks in the brain support the dynamic emergence of spatio-temporal electro-

chemical activity patterns that are thought to form the basis of its information pro-

cessing capabilities (Bressler, 1995; Mesulam, 1998; McIntosh, 2000; Buzsaki, 2006).

The ability to interact with them in a targeted manner – be it to induce or maintain

desired patterns, or prevent undesired ones – will be of substantial clinical import.

Additionally, controlling neuronal networks opens avenues to characterize them and

address fundamental questions on the physiological basis of information process-

ing in the brain (Wallach et al., 2011; Wallach, 2013; Xu and Barak, 2017). Aided

by technological advances, neurostimulation has become the basis for a range of

effective therapies that alleviate the symptoms of otherwise treatment-resistant neu-

rological disorders. Most approaches rely on the continuous stimulation of a chosen

anatomical target. With little dynamic possibilities to adjust stimulation parameters

to the ongoing brain activity and the need for stimulation, such techniques fall short

of achieving target-oriented interaction and may even contribute to the likelihood

of stimulus-induced side-effects (Zhang et al., 2010; Baizabal-Carvallo et al., 2014;

Pedrosa et al., 2014).
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1.1 Targeted interaction with neuronal networks

Static stimuli to control dynamic brain networks?

Numerous efforts have been made since the late nineteenth century to interact with

neuronal networks. Electrical excitability of the brain and the ‘surprising’ effects of

external stimulation were keenly documented by researchers of the time (Fritsch and

Hitzig, 1870; Gildenberg, 2005). In modern times, driven by technological advancements,

electrical stimulation of the brain has evolved into a viable strategy to manage the

symptoms of an increasing range of neurological disorders (Chen et al., 2012; Carron

et al., 2013). It has been proven effective in treating movement disorders like essential

tremor (Benabid et al., 1991; Benabid et al., 1993; Schuurman et al., 2000; Koller et

al., 1999; Rehncrona et al., 2003), generalized dystonia (Coubes et al., 2000; Vidailhet

et al., 2005; Isaias et al., 2009) and Parkinson’s disease (PD) (Benabid et al., 1988;

Benabid et al., 2009; Limousin et al., 1998; Krack et al., 2003; Deuschl et al., 2006; Bittar

et al., 2005; Sarem-Aslani and Mullett, 2011; Kringelbach et al., 2007) and has shown

considerable promise in treating refractory epilepsy (Fisher et al., 2010; Morrell, 2011;

Fridley et al., 2012).

Stimulation of different anatomical targets are being tested for several psychi-

atric diseases such as Obsessive-compulsive disorder (OCD) (Nuttin et al., 1999;

Mallet et al., 2008), Gilles de la Tourette syndrome (Fraint and Pal, 2015) and re-

fractory depression (Mayberg et al., 2005; Holtzheimer and Mayberg, 2011) and has

shown promise in treating other pharmaco-resistant brain pathologies like trigemino-

dysautonomic headaches (e.g. refractory cluster headaches) (Matharu and Zrinzo, 2010;

Franzini et al., 2003; Leone et al., 2006). Neurostimulation has also been pursued as a

means to artificially inject information into neural circuits, e.g. towards neuroprosthetic

devices capable of sensory feedback (Raspopovic et al., 2014). In most cases, the basis

of the strategy is the repeated presentation of an invariant stimulus to the anatomical

target of interest, regardless of the underlying neuronal activity, i.e. they are open-loop

stimulation paradigms.
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Limitations of open-loop neurostimulation

Several key factors severely limit the operational potential of open-loop stimulation

paradigms. Neuronal activity patterns evoked as a response to stimuli applied to a

few neurons are in fact the result of interaction of the stimulus with uncontrolled

ongoing neuronal activity (Arieli et al., 1996; Hasenstaub et al., 2007). One of the first

studies to show this was Arieli et al. (1996). The authors found that visually evoked

activity levels in the cat visual cortex were dependent on the levels of ongoing activity.

They showed that accounting for these fluctuations with a measure derived from the

signal strength immediately preceding the stimulus reduced the variability of event

related responses across repeated presentations of the physically identical stimulus

(trials), and was thus presumably reflective of the instantaneous ‘state’ of the network.

Similar findings were reported in other studies in in vivo model systems. In the cat

striate cortex, single-cell visually evoked responses showed increased response spike

count and reduced latency that was proportional to the increase in membrane potential

prior to stimulation (Azouz and Gray, 1999). Kisley and Gerstein demonstrated that

in the auditory cortex of anaesthetized rats, click-evoked field potentials and unit

responses were modulated by rhythmic ongoing population bursting (Kisley and

Gerstein, 1999). Petersen et al. showed that ongoing spontaneous activity in the form

of locally synchronous fluctuations in membrane potentials regulate the amplitude and

the time-dependent spread of sensory responses in the rodent barrel cortex. Studies

in vitro have also reported response variations and their dependence on the context of

ongoing activity within which the stimulus is presented (Shahaf et al., 2008; Weihberger

et al., 2013).

Not only do these studies demonstrate the impact of ongoing activity on properties

of evoked responses, but they also suggest that the nature of this interaction may not

be a simple additive spillover of the pre-stimulus baseline signal into the response but

may involve non-linear modulations. For instance, Kisley and Gerstein (1999) point

out that apart from average responses, their variability too changed with changing

levels of ongoing activity. In a more abstract and model oriented paradigm, Weihberger

et al. (2013) probed the hidden state of an in vitro network by stimulating at various
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latencies relative to synchronous ongoing activity and observed that evoked response

lengths fit a non-linear function (saturating exponential) of the latencies.

The complex nature of such network-stimulus interactions are, however, totally

discounted in contemporary open-loop strategies. Stimulation parameters, once set,

have limited scope for optimization. Where the beneficial effects of stimulation takes

longer to appear, as in dystonia or OCD, parameter tuning may not be feasible at all.

When stimulation immediately impacts symptoms like in Deep brain stimulation (DBS)

for PD, arduous trial-and-error exploration of the parameter space by a trained clinician

may be possible, but to a very limited extent.

Being ill-equipped to reform stimulus settings to reflect changes in ongoing ac-

tivity patters arising from progression of the disorder, cognitive and motor load,

mood and concurrent drug therapy, the strategy fails to guarantee safe and sus-

tained outcomes (Hickey and Stacy, 2016; Zhang et al., 2010; Pedrosa et al., 2014).

Studies on DBS for PD report that stimulation may eventually be without effect

on some symptoms, worsen them, cause disabling side effects or become less effi-

cient with time (Carron et al., 2013; Hariz et al., 1999). Moreover, frequent parame-

ter adjustments have also been linked to improved DBS efficacy (Rosin et al., 2011;

Moro et al., 2006). Collectively, these observations indicate that adapting stimulus pa-

rameters to the ongoing network state may be key to improving therapeutic outcomes.

Finally, in most clinical applications it would be crucial and desirable to optimize

interactions, i.e. extremize a functional of the system’s behaviour defined in terms of

clinical outcomes, amount of stimulation or energy consumption. Such requirements are

beyond the scope of an open-loop paradigm due to lack of feedback and immutability

of stimulus settings. Using static settings is therefore an unsuitable strategy for goal-

directed interaction with neuronal networks. Ideally, stimuli need to be responsive

to the current ‘state’ of the network and choose settings optimal with respect to pre-

defined cost functions as per application demands. Hence, to fully leverage electrical

stimulation as a therapeutic, augmentative or research tool, there is a need to re-imagine

it in a closed-loop framework.
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1.2 Principles of closed-loop control

A closed-loop system is one in which two (or more) dynamical systems are connected

together such that each system influences the other. Such systems are ubiquitous in

both natural and engineered systems. Closed-loop systems, because of their strong

mutual coupling, are very resilient to external disturbances and variations within

each system (Åström and Murray, 2010). On the flip side, if applied incorrectly, the

paradigm is susceptible to feedback instabilities causing oscillations or even runaway

behaviour. It is therefore imperative that control strategies be developed based on a

formal understanding of system principles that describe its behaviour.

A control strategy is an algorithm that exploits feedback signals to drive a designated

measure (output or state) to a desired behaviour within the constraints of system

stability (i.e. bounded disturbances give bounded errors). The central concept involves

sensing the operation of the dynamic system, comparing it with desired behaviour,

computing safe and appropriate corrective inputs and actuating the system to effect the

desired change. The computational step is executed based on mathematical modelling

techniques that capture the essential physics of the system and permit the exploration

of possible behaviours (Åström and Kumar, 2014).

A control-oriented model is a concise mathematical representation of phenomena

of interest in a physical, biological or information system that allows predictions to

be made on how it will behave given a set of inputs. There are multiple approaches

to modelling dynamical systems: e.g. white-box or internal approach, black-box or

external approach and the grey box approach.

The internal approach attempts to describe the system from first principles, i.e.

based on detailed mechanistic knowledge of the physical laws governing the system. It

results in state models or white box models of the system – a set of coupled differential

equations in a set of internal variables – state variables, along with algebraic equations

that transform the state variables into system outputs. The ‘state’ of such a system is the

minimal set of variables that fully characterizes the dynamic behaviour of the system

and its response to any given set of inputs. The black-box approach, on the other

hand, does not presume knowledge of the interior structure but places emphasis on
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the transfer-characteristics (input-output relationships) of the system. It is particularly

useful to study linear time-invariant systems. The grey-box approach is an intermediate

technique and employs whatever a priori information is available along with input-

output data. Both black and grey-box modelling involves selection of model structures

followed by estimation of model parameters based on observed data that are then

validated (Murray et al., 2003; Le-Yi and Wen-Xiao, 2013; Åström and Kumar, 2014).

As a technology, automatic control based on a closed-loop paradigm has been a

key enabler for engineered systems over the past two centuries. Despite tremendous

advancements, particularly in the past 50 years, control theory has yet to make substan-

tial contributions to bio-medical – particularly neurotechnological applications (Schiff,

2010). In the next section we examine a few closed-loop control strategies devel-

oped for engineered systems and the challenges involved in translating them to the

neurotechnological context.

1.3 Control strategies for neurotechnological applications

1.3.1 Event-driven control

This simple closed-loop strategy involves monitoring a pre-determined indicator func-

tion in the measured activity (Fig 1.1A). It has recently been explored as a means

of introducing feedback in a neurotechnological context. In these studies, a pre-

defined indicator signal in the recorded activity triggered delivery of stimulation,

though stimulus parameters themselves remained unchanged (Rosin et al., 2011;

Little et al., 2013) . The strategy, while simple to implement, is dependent on prior

knowledge of the system and is non-adaptive since signal modalities, thresholds and

stimulus parameters have to be explicitly defined and are not mutually dependent.

Systems of this type are prone to limit cycling – a behaviour in which the steady state

error oscillates around zero – since the control action is inactive unless the triggering

event occurs (Doebelin, 1985).

Rosin et al. (2011) tested an event-driven stimulation strategy for PD in the MPTP

(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) primate model of PD. They reported
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that closed-loop stimulation delivered at the internal segment of the globus pallidum

triggered by spikes detected in the primary motor cortex was more efficient in al-

leviating parkinsonian motor symptoms than the continuous open-loop stimulation

paradigm. Following this proof-of-concept study, the first report of event-driven DBS

on human patients with PD demonstrated an improvement in symptoms compared to

standard DBS, with a simultaneous reduction in stimulation time (Little et al., 2013). In

their study, stimuli were triggered when power in the beta frequency band (13-30 Hz)

of local field potentials in the chosen reference structure (subthalamic nucleus) – which

is known to correlate with motor impairment in PD – exceeded a pre-set threshold.

Studies have shown that tailoring the timing of stimulation to certain phases of

tremor-related neuronal oscillations may help selectively decouple the tremor net-

work (Cagnan et al., 2013). Based on this observation, closed-loop phase-locked DBS

was recently tested in patients with pathological tremor (Cagnan et al., 2017). By

locking stimuli to a particular phase of tremor, they were able to achieve up to 87%

tremor suppression in selected patients with essential tremor, using less than half the

energy of conventional high frequency stimulation. The real-time estimate of phase

served as the ‘event’ in their study and was derived from peripheral inertial sensors

attached to patients’ limbs.

These demonstrations are indicative of the potential value addition that the feedback

control framework could provide in a neurotherapeutic context. However, more

sophisticated control strategies able to interact with the intricacies of network activity

are desirable.

1.3.2 Model based control

First-principles modelling

When detailed mathematical models drawn from prior knowledge of the system are

available, a model-based approach could help the design and analysis of feedback

control strategies. Using control-oriented models specific to the phenomena of interest,

appropriate inputs to actuate the system towards desired outputs can be computed. In

engineered systems, detailed knowledge of physical laws governing the behaviour of
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the system to be controlled (plant) often helps devise analytically tractable models of

adequate scope. On the other hand, a broadly accepted mathematical theory for the

collective activity of populations of neurons does not exist yet (Breakspear, 2017). A

mechanistic understanding of the set of internal state-variables or the requisite spatial

and temporal scale of influence that uniquely represents such a system at any point in

time is often lacking. In addition, the sheer scale of these systems and limitations in

technological interfaces with these networks means only an extremely sparse sample of

the system is experimentally observable. Consequently, defining the state of a biological

network is troublesome.

It is often convenient to think of the veridical ‘state ’of a network as an abstraction

composed of two components: active and hidden states (Buonomano and Maass, 2009).

The former consists of signals the experimenter is able to/chooses to observe at a given

point in time while the latter subsumes the remaining signal components along with the

rich repertoire of time-dependent properties of the cell and its constituent machinery –

e.g. facilitation and depression, ion channel kinetics, Ca2+ concentrations in synaptic

and cellular compartments – that are shaped by the history of activity/inputs at various

time scales. The term ‘state’, as used in the neuroscientific literature is typically not

a well-defined analytical construct. Rather, it is often used in a descriptive sense to

denote clearly separable emergent classes/modes of activity or behaviour that are

mostly identified in retrospect. For instance, the cortical ‘state’ is typically described

as synchronized or desynchronized. In the former state, average population firing

rates in a cortical column fluctuate strongly at a time-scale of ≈100 ms or slower

whereas the latter is characterized by weak fluctuations in population firing rates (see

Harris and Thiele (2011) for review). In another usage, single cells in the neocortex

are described as being in distinct ‘states’ based on intracellular recordings of their

membrane potential. The so called UP (resp. DOWN) state represents spontaneously

occurring depolarizations (resp. hyperpolarizations) in the membrane potential and

thereby the input/output transformations of the neuron (Destexhe et al., 2003).

Due to these limiting factors, control-oriented modelling from first principles i.e. an

internal modelling approach, is infeasible for most applications involving biological
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neuronal networks.

System identification strategies

When the internal model of the plant is unavailable an alternative approach based on

input-output based functional characterization could be useful. Such methods have

been particularly helpful in the study of a special class of systems: linear time-invariant

systems. Biological neuronal networks, being composed of non-linear elements that

exhibit sharp threshold phenomena, do not belong to this class of systems. They

exhibit non-linear, non-stationary, non-ergodic dynamic properties (Bassett et al., 2011;

Bassett et al., 2013; Werner, 2011; Weihberger et al., 2013). Additionally, their dynamics

change stochastically and across cognitive conditions or ‘states’ (Medaglia et al., 2015;

Medaglia et al., 2017). These characteristics have been found to persist across scales of

organization. Long-term measurements of spike time series from network-embedded

single neurons in vivo revealed temporally complex dynamics and fractal charac-

ter (Teich et al., 1997). Because of the inability to separate network effects from the

contributions of single neurons to the observed complexity in vivo, studies on single

neurons isolated from a network were undertaken in vitro (Gal et al., 2010). Temporal

complexities including critical fluctuations, intermittency and scale-invariant rate statis-

tics were found to persist. Complexities of this nature pose a considerable challenge to

widely available system identification based control strategies.

To illustrate the problem, consider the case of focal stimulation in autonomously

active generic neuronal networks. Such a stimulus typically elicits multi-phasic re-

sponses consisting of a) a fast excitatory component characterized by precise and

reliable responses thought to originate from anti-dromic and mono-synaptic activa-

tion of neurons local to the stimulation site, b) a low activity period thought to be

mediated by inhibitory neurons, c) a delayed excitatory component driven by recur-

rent poly-synaptic activation (Butovas and Schwarz, 2003; Rowland and Jaeger, 2008;

Wagenaar et al., 2004). Across trials, however, the strength and duration of the re-

sponse as well as the number and distribution of neurons involved is highly variable.

This has been demonstrated both in vivo (Arieli et al., 1996; Kisley and Gerstein,
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1999; Azouz and Gray, 1999; Petersen et al., 2003) and in vitro (Shahaf et al., 2008;

Weihberger et al., 2013; Gal et al., 2010). As discussed in Section 1.1, studies have

attributed this variability to non-linear interactions of the stimulus with various fea-

tures of ongoing activity (Kisley and Gerstein, 1999; Petersen et al., 2003; He, 2013;

Weihberger et al., 2013) and previous stimuli (Gal et al., 2010). Although these influ-

ences have been described in a general sense, a consolidated mathematical description

reliably predictive of individual stimulation outcomes given ongoing activity remains

elusive.

Experimental evidence that repetitive stimulation may lead to interaction between

responses points to the non-stationary nature of the system. Studies in vitro suggest

that this influence may affect responses across several scales of organization, from

individual neurons (Gal et al., 2010) to networks (Weihberger et al., 2013; Eytan et al.,

2003). Gal et al. (2010) exposed the dynamics of excitability of individual cultured

cortical neurons over long time-scales while applying long series of stimulation pulses

at various frequencies. They identify distinct phases of neuronal responses and critical

stimulation frequencies at which phase transitions occur and that even a single neuron,

when observed over a long enough duration, could exhibit a rich repertoire of response

patterns. At the network level, Weihberger et al. report a loss of responsiveness and

interaction between stimuli when focal stimuli are delivered at intervals less than 10

seconds.

Nevertheless, in applications like brain machine interfaces and prosthetic devices,

where performance may be more important than whether the identified model best

approximates the true neural system, the system identification approach may be of

interest (Grosenick et al., 2015). Where the problem is low dimensional and input-

output relations are mathematically well behaved, stable control strategies may be

devised without directly modelling the system. This was demonstrated in a Single

input-single output (SISO) case by Keren and Marom (2014) in an in vitro model system.

A target response-probability was explicitly specified a priori and was achieved with a

hand designed Proportional-Integral (PI) controller by adjusting stimulus amplitudes

based on responses elicited by previous stimuli. Using offline studies, they were
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able to characterize the relationship between response probabilities and stimulation

amplitudes and show that the former was monotonically influenced by the latter. By

choosing operating conditions where this input-output dependence was nearly linear,

they were able to demonstrate stable performance of the PI controller. However, reliable

characterization of input-output relationships is not a typical starting point in clinical

neuromodulation problems.

1.3.3 Adaptive control

The framework of adaptive control is a promising solution when the parameters of

the plant’s dynamic model change over long time scales (Landau et al., 2011). It has

been applied to a variety of regulation and tracking problems where the objective is for

the system output to follow a possibly dynamic set-point or reference trajectory. An

adaptive control system can be thought of as having two loops: a normal feedback loop

with the process and the controller, and a parameter adjustment loop. The parameter

adjustment loop is often the slower loop (Åström and Wittenmark, 2008) that captures

slow changes in the system state.

If measurable variables that correlate well with changes in the system dynamics are

known a priori, or if these changes are predictable, a gain scheduling scheme could be

applied. If a reference model connecting process output and input command signal is

available, a Model-reference adaptive system (MRAS) may be used to adjust controller

parameters such that the error between process and model output is small.

Most widely studied adaptive control schemes assume that the model of the true

system is available and that feasible system identification techniques yielding im-

plicit/explicit plant model to the adaptive algorithm exist. As discussed above, these

are not typical starting points in neurotechnological applications.

Moreover, regulation and tracking problems, for which these methods were devel-

oped, assume prior knowledge of a reference trajectory. However, it is often the case in

biology that one may not be able to specify a priori explicit desired output patterns, but

only overall system objectives. Minimizing activity synchrony in PD and prolonging

residence in states that minimize susceptibility to epileptic seizures are examples of
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such objectives. When the quantitative value of the target response cannot be clearly

defined, is intrinsically variable, or where multiple interacting objectives have to be

balanced, most adaptive control techniques cannot be directly applied.

1.3.4 Optimal control

In addition to being adaptive, it is desirable from a clinical point of view to optimize

closed-loop interactions with respect to pre-defined cost functions. Considerable

interest in the field over the past few decades has given rise to a general theory of

optimal control. The approach relies on a mathematical model of the system to be

controlled, a reference trajectory, a set of admissible inputs and appropriately defined

performance measures or cost functions. The control problem is to determine the inputs

that generate the desired output and in doing so, extremize the chosen performance

measure (Athans and Falb, 2013).

Deriving optimal control policies is equivalent to solving the algebraic Riccati

equation for linear systems with quadratic performance indices or the Hamilton-

Jacobi-Bellman equation for non-linear systems (Zhao et al., 2015; Lewis et al., 2012;

Al-Tamimi et al., 2007). However, a necessary pre-requisite for solving these equations

is the availability of accurate models of the underlying system.

Adaptive schemes for optimal control are not theoretically well developed and

are almost always based on indirect methods – i.e. control rule is recomputed from

an estimate of the process model at each update. Indirect methods are, however,

computationally infeasible and are not robust solutions particularly for non-linear

optimization problems which involve solving non-linear partial difference equations

that are often difficult to solve even if the model is precisely known (Zhao et al., 2015;

Wang et al., 2012; Sutton et al., 1992; Sutton and Barto, 1998).

1.4 Our proposal: Reinforcement learning (RL) based autonomous

control paradigm

An ideal neurotechnical intervention system would – given a goal – continuously

monitor underlying network states, adapt stimulation settings accordingly and interact
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optimally with respect to pre-defined cost-functions while remaining goal directed. In

addition, the system would need to work without reliable pre-defined models of the

process dynamics and very often without explicit reference trajectories.

In recent times, RL – a computationally inexpensive solution based on methods

of online dynamic programming – has been proposed as a tool capable of handling

problems of this nature. It offers a direct approach to adaptive optimal control. Re-

inforcement learning involves an active decision making agent interacting with its

environment and learning to map its perceived state to actions that in turn affect the

state – so as to maximize a numerical reward signal. These methods are direct in that

they are capable of adaptively converging to optimal control policies without using a

model of the system or conducting an explicit search over possible sequences of future

states and actions (Sutton et al., 1992; Sutton and Barto, 1998).

In this thesis we propose to establish and evaluate an RL based closed-loop paradigm

to autonomously choose optimal control policies, without a priori models of the system

or its interactions with electrical stimulation, in biological neuronal networks (Fig 1.1B).

A

Event
detector

Stimulator

B

Stimulator

Controller

State

Reward
RL

algorithm
Action

Figure 1.1. (A) Schematic of a state-of-the-art event-driven scheme. Chosen signal features trigger
stimuli when a pre-determined threshold value is crossed. Stimulus settings are typically fixed. (B)
Schematic of the proposed RL based autonomous paradigm. Based on ‘state’ information obtained from
activity in the network and an appropriate reward function, the algorithm learns to choose actions
(stimulus settings) that maximize the reward signal.

Challenges for the proposed RL based control paradigm

RL offers a computational approach to understand and automate goal-directed learning

and decision-making. Unlike other computational approaches, it emphasizes learning

of an agent from direct interaction with its environment, without relying on exemplary
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supervision or complete models of the environment (Sutton et al., 1992; Sutton and

Barto, 1998). In this approach the tendency to choose an action is strengthened if it

results in an improvement in the state of affairs as determined in an unambiguous

manner. Extending this idea to allow action selection to depend on state information

introduces aspects of feedback control, pattern recognition and associative learning.

The complex adaptive environment that plastic neuronal networks present poses

several novel challenges for current RL algorithms. First, the task has to be defined

in terms of a Markov decision process (MDP). The definition of the ‘state’ in this

context should be problem relevant and should ideally capture sufficient information

to solve the task at hand. Given the richness of activity patterns exhibited by neuronal

networks, the state encoding is likely spatially and temporally distributed – i.e. high

dimensional and history dependent – which not all algorithms gracefully scale to.

Additionally, the action space to explore, i.e. stimulus modalities like location(s),

timing, intensity, frequency, pulse-width etc. are also very large. To further add to

problem complexity, every network being distinct in its properties and activity patterns

limits generalizability across learning instances. Lastly, measured activity is noisy,

highly variable and fluctuates over a range of time scales, all of which are likely to

impact the efficiency of traditional RL algorithms.

1.5 Objectives of the thesis

The main goal of this thesis was to establish and evaluate paradigms and techniques to

autonomously control activity dynamics in neuronal networks by electrical stimulation

towards desired patterns of activity. We used techniques of reinforcement learning to

identify optimal stimulation patterns and conditions in a novel autonomous closed-loop

scheme. To develop the concepts and algorithms and explore their feasibility, we

used generic neuronal networks in vitro on microelectrode arrays as a model system.

Specifically, we address the following questions:

1. How to capture the interaction of ongoing network activity, electrical stimulation

and evoked responses in a quantifiable ‘state’ to formulate a well-posed control

problem for an RL controller?
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2. How to develop algorithms to learn optimal stimulation settings?

3. How to develop algorithms to dynamically adapt to temporal inhomogeneities in

network-stimulus interactions?

4. How to evaluate autonomously learned solutions for optimality, dynamic stability

and robust performance across networks?

1.6 Generic neuronal networks as a model system

The dynamics of neuronal activity in vivo depend on a multitude of factors including

and not limited to uncontrolled modulations by other brain regions and specificity of

the anatomy and connectivity of the region of interest. Biological complexity in this

scale makes it difficult to extract a consistent understanding of signal relationships

between the network and an external stimulus – a crucial step in developing feedback

control techniques (Kermany et al., 2010; Wallach, 2013). Therefore, in order to develop

the concept and RL algorithms, it is imperative that we work with an appropriate

model system that – while capturing the structure of the challenges and preserving the

mechanistic basis thought to underlie these challenges – offers a stable, controlled and

accessible environment.

Large-scale neuronal networks grown on substrate integrated microelectrode arrays

are an appropriate model system in that they are easily accessible generic neuronal net-

works that can be maintained in a controlled environment, exhibit spontaneous activity

known to influence the network’s interaction with external stimuli, and are known to

operate in distinct network modes across a wide-range of time scales (Wagenaar et

al., 2006). Previous studies provide a partial understanding of the dynamics in such

networks and of the rules governing their interaction with electrical stimuli (Weihberger

et al., 2013), which allow to quantitatively evaluate solutions found by the RL based

controller. Furthermore, these networks preserve many of the challenges current RL

algorithms would face in a neurotechnological context such as high-dimensional state

spaces, continuous action spaces and non-stationary activity dynamics, etc. Since these

networks retain the richness of cellular level processes and networked neurophysiolog-
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ical mechanisms characteristic of neuronal ensembles, concepts emerging from such

co-adaptive interaction schemes are expected to be generalizable.

1.7 Structure of the thesis

The thesis has been structured as follows.

Chapter 2 describes the model system, the technical details of the experimental

set-up and the foundations of the closed-loop learning based system. We also present

the details of experimental procedures. Finally, techniques employed for the analysis of

multichannel extracellular spike data are discussed in detail.

In Chapter 3, we discuss the question of how to develop and evaluate techniques to

autonomously optimize stimulation policies to interact in a goal-directed manner with

biological neuronal networks. To this end, we identified a simple extremum seeking

trade-off problem that arises as the result of the interplay of ongoing and evoked activity

patterns in neuronal networks. Using prior studies on such networks and numerical

methods, we show that the problem so formulated is well-defined, supports a unique

solution throughout the span of parameter values observed experimentally, and had a

relatively stationary optimum over the duration of the experiment. Using open loop

stimulation, model based predictions could be made regarding the optimal stimulus

timing. An RL controller was set to find this optimum autonomously by interacting

with the network in a closed-loop setting. The quality of the learned solutions were

positively evaluated based on open-loop predictions. These results demonstrate the

capacity of RL based controllers to autonomously exploit underlying quantitative

relationships to choose optimal actions without a priori knowledge of activity dynamics

in the network.

Chapter 4 examines the long-term dynamics of network-stimulus interactions.

We asked if signatures of temporal fluctuations and drifts in the quantitative rules

governing stimulus-response relations were present in our model system. Residual

analysis relative to known non-linear models quantifying such relations indeed pointed

to the presence of slow fluctuations in the tens of minutes to hour scale modulating the

interaction. Assigning an RL agent a static goal against such a non-stationary dynamic

38



Chapter 1. Introduction

floor could offer a potent benchmark problem to develop algorithms for dynamic

adaptive control with biological neuronal networks. We discuss the formulation of such

a control problem, namely, to clamp response strengths over trials to a pre-defined

value.

In Chapter 5, we extend the framework to focus on the control problem formulated

in the previous chapter, i.e. dynamic optimization of learned policies in the absence of

a priori information and models governing system dynamics. The technical framework

developed in the previous chapter was augmented to handle high-dimensional and

history-dependent states and actions. We attempted to dynamically clamp response

strengths using enriched state information from the temporal history of activity. Our

experiments brought to focus some of the important caveats attendant with such co-

adaptive paradigms. Performance of the paradigm varied widely across networks.

Dynamic instabilities were found to stochastically arise from network mode switches,

sharp non-linearities in stimulus-response relations, high-dimensionality of the action

set and learning delays. Although we were able to surmount these challenges in some

of our networks, our results bring to the fore pertinent questions that need to be

formally dealt with before such technologies can safely be translated to the clinical

realm.

The main achievement of this thesis is that we translated some of the major chal-

lenges for neuromodulation in the clinical domain to an RL based autonomous stimula-

tion paradigm in a controlled setting. We developed the technical foundations of such a

closed-loop framework and demonstrated its viability using generalizable toy problems

that captured some of the most challenging elements of a clinical neuromodulation

problem. We tested the paradigm on a multi-objective optimization problem and a

dynamic adaptive problem with little a priori knowledge made available to the agent.

Using phenomenological models describing network-stimulus interactions, we showed

that the quality of autonomously learned solutions could be quantitatively evaluated.

The study also identified specific challenges that need formal treatment for the mature

development of a safe and stable technical framework that could translate to effective

clinical solutions in the future.

39



Chapter 2

Materials and Methods

∗ In order to develop our concepts and algorithms, we used networks of cortical

neurons grown in cell cultures. While being generic and independent of specific

functions and/or modalities, these networks preserve the biophysical complexity of the

neuronal ensemble and relevant challenges an autonomous controller would face in a

more complex context.

2.1 Cell culture preparation

For a detailed description of the steps involved in preparing and maintaining these

cultures on microelectrode arrays, please see Kandler (2011), Okujeni et al. (2017) and

Appendix A. In brief, frontal cortical tissue was dissected from newborn Wistar rats

(obtained from the breeding facilities of the University of Freiburg) after decapitation,

enzymatically dissociated, and cultured on polyethyleneimine (PEI)-coated microelec-

trode arrays (MEAs) from Multi Channel Systems (MCS), Reutlingen, Germany. The

culture medium (1 mL) consisted of minimum essential medium (MEM) supplemented

with 5% heat-inactivated horse serum, 0.5 mM L-glutamine, and 20 mM glucose (all

compounds from Gibco Invitrogen, Life Technologies, Grand Island, NY). Cultures

were stored in a humidified atmosphere at 37 ◦C and 5% CO2 – 95% air. Medium was

partially replaced twice a week. Neuronal density after the first day(s) in vitro (DIV)

∗Portions of Sections 2.1, 2.2 and 2.4.1 of this chapter were included in the ‘Materials and Methods’
section of our published article: Kumar SS, Wülfing J, Okujeni S, Boedecker J, Riedmiller M, Egert U (2016)
Autonomous optimization of targeted stimulation of neuronal networks. PLoS Comput Biol 12(8): e1005054.
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ranged between 1500 and 4000 neurons/mm2. The final density after 21 DIV settled at

1500–2000 neurons/mm2, independent of the initial density. At the time of recording,

network size thus amounted to 5− 6× 105 neurons. MEAs were occassionally plasma

cleaned (≈ 20 min, 40 kHz, 100 W; Femto plasma cleaner, model: Femto A, Diener Elec-

tronics, Nagold, Germany). Animal treatment was according to the Freiburg University

(Freiburg, Germany) and German guidelines on the use of animals in research. The

protocol was approved by the Regierungspräsidium Freiburg and the BioMed Zentrum,

University Clinic Freiburg (permit nos. X-12/08D and X-15/01H). All cell cultures were

prepared by Ute Riede and Samora Okujeni.

2.2 Electrophysiology

The activity of neuronal cultures was recorded and after 14 DIV to test for culture

viability and general activity levels. Cultures with very few active channels and

temporally sparse activity were discarded at this stage. Experiments were performed

between 19 and 35 DIV. MEAs used for the experiments had 60 electrodes and a

pitch of 500 µm (rectangular 6x10 grid). Electrodes were 30 µm in diameter, made

out of titanium nitride (TiN) and initially had an impedance between 30 – 50 kΩ.

Electrode tracks were made of Ti or or indium tin oxide (ITO) and insulated with silicon

nitride (MEA Manual, 2017). Contact pads were made of either TiN or ITO. The MEA

versions used were 60MEA500/30iR-Ti and 60MEA500/30iR-ITO. One channel was

used as an internal reference and was thus unavailable for recording.

The MEA was placed into the pre-amplifier (MEA-1060-Inv-BC, MCS) connected

to a filter amplifier (FA60S-BC, MCS) placed outside the incubator. The setting had

a gain of 1100 and passband of 1 – 3500 Hz. Data was acquired and A/D converted

with MC_card (MCS) at 25 kHz and a 12 bit resolution with a PC installation running

Ubuntu Linux 10.04 with kernel version 2.6.32-38-generic-pae. The kernel module

for MC_Card under Linux was provided by Thomas DeMarse.

Neuronal activity was recorded inside a dry incubator (CB 210, Binder, Tuttlingen,

Germany) at 37oC and 5% CO2 – 95% air. Online spike detection was done with

MEABench (versions 1.1.4 and 1.2.5) (Wagenaar et al., 2005) at six to eightfold root mean
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square noise level for spike threshold. It enabled fast and flexible online intervention

by providing direct access to spike and raw data streams during recording. MEABench

1.1.4 was used for offline data acquisition while version 1.2.5 was used for online

experiments.

Custom changes were made to MEABench 1.1.4 used for offline experiments. Spike

cut-outs were extended to -2 ms to +3 ms relative to spike time, an absolute dead time

of 2 ms after each detected spike was enforced and online access to spike and raw

data was made possible. All recordings were performed with a gain factor of 2, i.e.

a signal voltage range of −683 µV. Signals were software-filtered between 150 – 2500

Hz. Online spike detection was performed on filtered data with a threshold crossing

criterion of 6 – 8 fold estimated root mean square noise level. Spike cut-outs and time

stamps were saved on hard disk for later analysis. Spike amplitudes varied strongly,

e.g. due to varying position of neurons to the recording site and quality of the MEA

electrodes. Typical spike amplitudes ranged between ≈20 µV and 100 µV. Noise level

under good recording conditions was less than ± 5 µV.

For closed-loop experiments, MEABench 1.2.5 was used. Its Neurosock server mod-

ule was used to perform online analysis in another dedicated PC connected to the

data acquisition via ethernet. The closed-loop architecture was realized by interfacing

MEABench with the closed-loop control software, CLS2 (Closed-loop Simulation Sys-

tem), an open source framework suitable for testing reinforcement learning controllers.

It is developed and maintained by the Machine Learning Lab, University of Freiburg.

2.3 Electrical stimulation

A stimulus generator (STG2004, MCS) was used to deliver monophasic pulsatile stimuli

to the MEA. Two stimulus inputs were available at the MEA pre-amplifier. Stimuli

could be routed to an electrode of choice via custom written applications. Stimulation

parameters were uploaded with custom-written C/C++ applications via the USB port.

Setting and switching stimulation sites and grounding defective or noisy electrodes

was achieved via the COM port. All custom-made C/C++ applications were obtained

by modifying Visual Basic scripts provided by MCS. The Linux kernel module for
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STG2004 was also provided by MCS.

Electrical stimuli consisted of single monophasic negative going pulse 400 µs wide

and 0.5 – 1 V in amplitude. Monophasic negative pulse shapes were preferred to

prevent oxidation of the TiN electrodes that would otherwise increase their impedance.

The amplifier’s integrated blanking circuit was used to suppress stimulus artefacts.

This involved the following steps. All electrodes were briefly disconnected from the

amplifier when the TTL pulse signalling a stimulus was received. The stimulation

electrode alone was connected to the stimulus input between stimulus start and 400 µs

after its end. An additional waiting period of 3 ms was set before the stimulation

electrode would be disconnected from the stimulus input and the remaining electrodes

reconnected to the amplifier. This reduced cross-talk among stimulation and recording

electrodes.

To select MEA electrodes to serve as sites of stimulation (input) and of evaluation

of responses (output) for closed-loop studies, we analysed spontaneous spike activity.

As candidate stimulation electrodes (SEs) we selected sites that were more likely to

participate early in spontaneous bursts (SBs) (Weihberger et al., 2013). This procedure

identified the so-called “major burst leaders” (Eytan and Marom, 2006; Ham et al., 2008).

Stimulation sites were chosen between rank 1 – 10. Periodic stimuli were delivered at

these sites cyclically with an inter-stimulus interval (IstimI) of 10 s.

The responses were analysed to assess network responsiveness and channel-wise

response properties. Response strength was typically defined as the count of spikes

detected in a 500 ms post-stimulus window. Stimulus latencies – the periods of inactivity

at a channel prior to each stimulus – were also extracted.

Peri-stimulus time histograms (PSTHs) and pairwise response strengths vs. la-

tency relationships were used for qualitative assessments based on which a final SE

and recording electrode (RE) pairs for closed-loop experiments were selected (see

Section 2.5.3 and Appendix B.2 for further details). The chosen REs were typically

found to be sites with responses consisting of both early (≤ 15 ms) and late (≥ 25 ms)

components.

Apart from periodic stimulation for open-loop characterisation, a ‘fixed latency’
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paradigm was also applied occasionally to control the timing of stimuli relative to

ongoing SBs. In this case, stimulation was triggered whenever a pre-defined period

elapsed without spikes detected at a selected RE. A minimal IstimI of 10 s was imposed

to prevent network over-excitation.

2.4 Closed-loop experimental paradigm

Networks of dissociated neurons in vitro exhibit spontaneous activity characterized

by intermittent network-wide synchronous bursts separated by periods of reduced

activity. Inter-burst intervals (IBIs) in these networks fit an approximate lognormal

distribution. Stimulating the network also evoked bursts of action potentials (response).

The length of these responses at a chosen recording electrode can be modulated by the

stimulus latencies relative to the SB at that channel. Their relationship was shown by

(Weihberger et al., 2013) to fit a saturating exponential model. Further such stimulus-

response relations when studied over long time-scales exhibited temporal fluctuations

and drifts. Based on these observations, we formulated two closed-loop problems to use

as a platform to explore the concepts and develop algorithms to realize an autonomous

learning based controller.

Closed-loop learning problems were identified by SSK5 in offline experiments. They

were formalized into a framework approachable by reinforcement learning algorithms

by JW6. The choice, implementation and extension of RL algorithms and parameter

settings was done by JW6. The technical framework of the closed-loop system was

designed by SSK5 and JW6. The experiments were performed by SSK5. All analyses of

the acquired data and quality assessments of the learned solutions were performed by

SSK5 and the results interpreted by SSK5 and JW6.

2.4.1 Optimization of Targeted Stimulation

In the first part (Chapter 3), we consider the problem of autonomously optimizing

stimulation policies to interact in a goal-directed manner with biological neuronal

5Sreedhar Saseendran Kumar, Laboratory of Biomicrotechnology, IMTEK, University of Freiburg
6Jan Wülfing, Machine Learning Lab, University of Freiburg
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networks.

Trade-off problem The optimization problem was defined as the following: what

is the optimal stimulus latency relative to the end of the previous SB at a selected

RE that maximizes response strengths evoked at that site per SB? To illustrate the

problem, consider the following opposing strategies: A) Choosing a long latency:

Based on the saturating recovery model, longer latencies would elicit longer responses.

However, such a strategy would prove futile in the long run; long latencies are prone to

interruptions by succeeding SBs and opportunities to stimulate will be forfeited. This

would lower the count of evoked spikes per SB. B) Choosing short latencies would

ensure that stimuli are delivered more often, but at the cost of evoking shorter responses.

Optimization involves finding the trade-off between these opposing strategies. We

asked that an RL based controller autonomously find the optimal time for stimulation

to balance this trade-off for individual biological networks based only on the activity at

the RE.

Experimental procedure Experiments were performed on 20 networks between DIV

19 and 35 (‘network’ denotes a culture at a specific point in time). Each experiment

began with recording one hour of spontaneous activity, from which bursts were detected

offline. A statistical model of SB occurrence was estimated by fitting a lognormal

function to the IBI distribution to extract the location and scale parameters (µ and σ

respectively). The task was formalized as a Markov Decision Process (MDP) to learn a

controller with RL (see Appendix B for details). Each state of the MDP was defined

as the period of latency subsequent to an ongoing SB event (see Fig 2.1A-B). Actions

included the choice of wait or stimulate at each state. A detailed description is included

in Appendix B.

Response strength Following the choice of SE and RE we studied the dependence

of response strengths on periods of latencies preceding stimuli for each network. The

number of spikes at the recording channel in a 500 ms window following a stimulus was

typically defined as the response strength (RS). In few networks response bursts at the
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recording channel were found to extend beyond this window. In these cases, window

widths were heuristically chosen to envelop most response bursts. The dependence

of RS on stimulus latencies was modelled by a saturating exponential function of the

form A(1− e−λt) + B (see Weihberger et al. (2013); Kumar et al. (2016)). The model

captures the dynamics of recovery of post-burst network excitability with parameters

A representing the gain of the network, B, the excitability threshold for SB termination

and λ, the time constant of the recovery. The model fits to data was used to estimate

these parameters corresponding to each network.

Closed-loop stimulation Closed-loop episodic learning sessions were performed

using RE and SE positions identified as above. The controller was designed to learn in

episodes that commenced at the termination of each SB (Fig 2.1A–B). The closed-loop

architecture was realized by interfacing the data acquisition software (MEABench)

with the closed-loop control software, CLS2 (Fig 2.1C). Learning sessions proceeded

in alternating training and testing rounds. During training, the controller explored

the state-action space and learn a control law using the RL algorithm described in

the following section, while during testing it always behaved optimally based on the

knowledge hitherto acquired. Subsequent to the closed-loop session, spontaneous

activity was recorded for one hour to check for non-stationarity in the IBI distribution.

Learning algorithm As a learning algorithm, we used online Q-learning with a

tabular representation of the Q-function (Watkins and Dayan, 1992). Q-learning allowed

us to learn a Q-function without having a model of the system dynamics, which in

general is not available when dealing with biological systems. Secondly, since the

state space for the control task at hand could be defined as a single discrete variable,

a tabular representation of the Q-function was applicable, which is a prerequisite for

guaranteed convergence (Watkins and Dayan, 1992). A tabular representation of the

Q-function is a suitable choice as long as the biological system can be described by

low-dimensional discretized states. The formulation of the online learning problem

from the acquired data and the software tools used to interact with the network are

summarized in Fig 2.1 and are described in Appendix B.
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Figure 2.1. Stimulation trials and the closed-loop architecture (A) A trial started with the end of
an SB. The trial was terminated either by the next SB (dotted box) or a stimulation. In our paradigm,
reward was defined as the number of spikes in the response. Interruptions by SBs led to neutral rewards
(punishment). (B) The time within each trial was discretized into 0.5 s steps, corresponding to states
1, . . . , N. At each state, the controller could choose between two actions: to wait or to stimulate. A
‘stimulate’ action led to one of the terminal states Ti, with i indicating the strength of the response.
Terminal state F was reached if the trial was interrupted by ongoing activity. (C) Schematic visualization
of the closed-loop architecture. Figure reproduced from (Kumar et al., 2016).

2.4.2 Autonomous adaptive control of responses

In Chapter 5, we consider the problem of clamping response strengths to pre-defined

levels by continuously adapting to ongoing trends in stimulus response relations. The

problem statement captures the essential structure of a dynamic adaptive problem in

the context of a general neurotechnological application.

Experimental procedure Experiments were performed on 40 networks between DIV

19 and 35. Similar to the optimization problem, experiments began with one hour of

spontaneous activity recording, and subsequent selection of candidate SEs. Open loop

periodic stimuli were delivered at these sites and data analysed to identify viable pairs

of SEs and REs (see Section 2.5.3 and Appendix B.2 for further details).

The recovery function at these REs were visually assessed and a target response

strength defined such that it belonged to the first quartile of the ranked observed

response strengths.

The task was formalized as a Markov Decision Process (MDP) to learn a controller

with RL (see Appendix B for details). For this problem, each state of the MDP was

defined as a vector of strengths (i.e. spike counts) of spontaneously occurring and

evoked events prior to each trial. The number of events of each kind, included from the

history of activity was typically set to 2 (4 and 5 were used in some cases). The time

to the previous stimuli was added as an additional dimension in a few sessions (see
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Fig B.1 for a schematic illustration). This high-dimensional state vector helped capture

the network state in the temporal neighbourhood of the stimulus.

Compared to earlier experiments, a larger action set was available to the controller.

From a visual assessment of recovery function at the RE, the approximate stimulus

latency necessary to achieve target response strength was estimated. An interval

spanning this latency was selected, discretized and provided to the controller. For

details see Appendix B. Further, a choice of multiple stimulation sites was also provided.

Typically, stimulus amplitudes were set to 700 mV. In a few sessions, a choice of multiple

stimulus amplitudes were also included in the action set (see Appendix B for details).

During online learning, the controller explored various actions. Absolute errors

between achieved and target response strengths were used as punishments for the

controller. Thus minimizing punishments would improve the controller’s performance

toward target levels.

Learning algorithm We used online Q-learning as the algorithm for the paradigm.

Unlike in the optimization problem, state-action space for the adaptive control prob-

lem had multiple dimensions. Thus a tabular representation of the Q-function was

not advisable due to the memory demand growing exponentially with increasing

dimensionality.

To cope with this problem, we switched to an approximate algorithm based on Least-

Squares Policy Iteration (LSPI) that approximated the Q-function as a linear combination

of the state features (Lagoudakis and Parr, 2003). To address challenges stemming from

sharp non-linearities in stimulus-response relationships and higher action cardinalities,

we switched to Neural Fitted Q-iteration (NFQ) algorithm (Riedmiller, 2005). In NFQ,

the Q-function is approximated with an artificial neural network (ANN) to alleviate

the memory problem. A further advantage of using ANNs for approximating the

Q-function are their generalization capabilities; that is, we would expect approximate

Q-value predictions by ANNs to give reasonable estimates not only for observed but

also for unseen states. Details of the learning algorithm and the approximate methods

we used are described in Appendix B.
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2.5 Data analysis

Data analysis was performed with Matlab R©(versions R2013b – R2017b, The MathWorks,

Natick, MA, USA) with our own scripts. Data were loaded into Matlab using mod-

ified versions of scripts provided along with MEABench. Typically data consisted

of extracellular spike timing and channel number. Spike sorting was not performed.

When electrical stimulation was delivered, all spikes up to 2 ms after each stimulus

were removed to avoid potential artefacts. All remaining spikes in open-loop random

stimulation, closed-loop fixed-delay stimulation and spontaneous recordings were put

through a spike cleaning procedure described below (see Section 2.5.1). Since such

shape based processing was unavailable to the controller during online session, this

process was skipped for the analysis of closed-loop learning experiments.

2.5.1 Spike cleaning procedure

A shape based custom post-hoc cleaning routine was written to isolate potentially

spurious spikes (i.e. cases when spike detection threshold were crossed due to slower

components or drifts in the extracellular voltage traces), from the train. The routine

was run only on data from offline (open-loop) experiments. During online learning,

since the spike train the controller received was not cleaned, the procedure was not

applied also for post-hoc analyses.

Context traces (−2 ms to 3 ms with the peak at t = 0) of the recorded spikes were

put through a series of tests. The basic rationale was to verify that voltage trace was

sufficiently cuspidate. In case they were shallow, we tested if intermediate peaks

existed within the shallow region. These would then be considered indicative of

multi-unit activity and accepted as a spike. Otherwise, such shapes could indicate

threshold crossings arising from slower components or drifts in the extracellular voltage

traces. They could be of biological or technical origin, but should in either case not be

considered a spike. The algorithm and test criteria are detailed in Algorithm 1. For

spikes with positive peaks, the same algorithm with appropriately reversed operators

was applied. A sample context that passed the tests is shown in Fig 2.2. Custom routines

were obtained by modifying context cleaning scripts provided with MEABench 1.1.4.
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Algorithm 1 Algorithm for cleaning spikes. Variables: v(t) - voltage as a function
of time, vp - peak voltage (in µV), zone1 : 200 µs < |t| ≤ 1000 µs, zone2 : 500 µs <
|t| ≤ 1000 µs, tbreach1 - time such that v(tbreach1 = 0.9 · vp), tbreach2 - time such that
v(tbreach2 = 0.5 · vp)

loop
if tbreach1 ∈ zone1 then

if v(t) ≤ (thresh− 4) · rmsnoise ∀ |t| ≤ tbreach1 then
reject← spike

else
retain← spike

end if
else if tbreach2 ∈ zone2 then

if v(t) ≤ (thresh− 1) · rmsnoise ∀ |t| ≤ tbreach2 then
reject← spike

else
retain← spike

end if
end if

end loop
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Figure 2.2. An extracellular spike shown overlaid with the zone limits used for the testing
procedure. Blue solid lines indicate the voltage threshold for spike detection in that channel (positive
and negative). Black solid lines denote the outer limits of both zones 1 and 2. Red dashed lines (200 µs)
and dotted lines (500 µs) indicate the inner limits of zones 1 and 2 respectively. Blue dashed and dotted
lines indicate the 90% and 50% peak voltages. If a spike is not pointy enough and violates the zone 1 or
2 tests, crossing these secondary thresholds will prevent its rejection.

To quantitatively validate the cleaning procedure, isolation scores were computed

(Joshua et al., 2007). Isolation score measures the overlap between rejected (non-spike)

and accepted spike clusters in high-dimensional space (script courtesy Ioannis Vlachos).

To verify the effectiveness of the cleaning procedure, 10 batches of 1000 spikes each
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A B

Figure 2.3. Example of a spike accepted (A) and rejected (B) by the algorithm. Extracellular
contexts are shown over a 5 ms period. Red and green patches denote zones 1 and 2 respectively. Lines
show the respective secondary thresholds. Grey line denotes the threshold. The code numbers in the panel
titles indicate processing status. Code 0 in panel (A) meant that the spike was accepted while code 2
meant that a zone 2 violation was the reason for rejecting the spike in panel (B).

were randomly selected from the raw spike train to form the spike and noise clusters

(before cleaning). This was repeated after the cleaning procedure, but the batches

were selected from the accepted and rejected spike sets (after cleaning). The mean and

standard deviation of the isolation scores over the 10 batches are shown in Fig 2.4 for

an hour long spontaneous activity recording. In every case, isolation scores increased

significantly suggesting that overall, the shapes of rejected spikes were significantly

distinct from those of accepted spikes.
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Figure 2.4. Isolation scores before and after cleaning Isolation scores averaged over 10 batches of
1000 spikes each randomly selected from the spike train (µ± σ). Spikes were first selected from the raw
train to form the spike and noise clusters (before cleaning). After the cleaning procedure, batches were
selected from the accepted and rejected spike sets (after cleaning). Increased isolation scores indicate that
rejected spike shapes were significantly distinct from accepted ones.

For data sets involving stimulation at multiple locations, switching an electrode

from stimulation back to recording and another from recording to stimulating created
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highly synchronous artefacts and were identified and removed by an additional script.

Periods where more than half the channels were synchronized within a 40 µs window

were detected and the corresponding spikes removed (courtesy Samora Okujeni).

2.5.2 Spontaneous activity

Offline burst detection was performed for spontaneous data using the following al-

gorithm: For spikes recorded from each electrode: a) inter-spike interval (ISI) had to

be ≤ 100 ms, b) an interval ≤ 200 ms was allowed at the end of a burst and defined

the minimal IBI, and c) the minimum number of spikes in a burst was set to three.

Furthermore, at least three recording sites had to have burst onsets within 100 ms, and

only one larger onset interval ≤ 200 ms was allowed (Weihberger et al., 2013).

For online burst detection at a single chosen channel, an individual ISI threshold

was defined for each network based on spontaneous activity at the channel of interest

prior to the closed-loop session (see Section 2.5.3 and Fig 2.5B). The ISI distribution

of spontaneous activity was typically bimodal, with a strong first peak corresponding

to ISI within SBs and a second peak for the intervals between bursts. The minimum

between the intra- and inter-burst intervals was chosen as the threshold. The minimum

number of spikes in a burst was set to three.

For the trade-off problem, parameters extracted from the fitting procedures were

used to compute t∗, the open-loop parametric estimate of the optimal latency (Eq 3.1–

3.5).

To compare the predicted and realized improvement in stimulation efficacy after

learning we estimated the stimulation efficacy of a strategy using random stimulation

latencies taken from the objective function as the baseline model in Fig 3.8E and Fig 3.9F.

The efficacy of this strategy corresponds to the mean of the objective function of each

network.

2.5.3 Response strength analysis

Response strength was defined as the count of spikes detected in a pre-defined post-

stimulus window. This window width was typically set to 500 ms. However, if, on
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visual inspection, response bursts consistently lasted longer across trials, the window

was heuristically increased to contain them.

PSTHs help analytically assess the efficacy of stimulation across trials. Channels

that contained less than 1% of the overall spike count in the recording were excluded

from further analysis. PSTHs were computed for all remaining SE-RE pairs. For each

channel, spikes 50 ms before stimulus delivery till the outer edge of the response

window were binned into 10 ms bins.

For all pairs mentioned above, recovery functions were fitted. The recovery function

represents the mathematical relationship between response strengths and the period of

prior latency at the given RE. This relationship was modelled by a saturating exponential

function of the form A(1− e−λt) + B (see Weihberger et al. (2013); Kumar et al. (2016)).

For the fitting, outliers were visually identified and excluded. Note that statisti-

cally correct identification of outliers was not critical for the task. Latencies between

0.1 s and 10 s were binned in 0.33 s steps and mean response strengths in each bin

calculated. Model fits between binned latencies and response strengths were made

using the Levenberg-Marquardt non-linear least squares algorithm (Seber and Wild,

2003)(Fig 2.5A). The goodness of fit was assessed using the adjusted co-efficient of

determination (R2
adj), calculated as follows:

R2
adj = 1− SSres/d fres

SStot/d ftot
(2.1)

If yi is the mean response strength at latency bin i, and ŷi, the response strength

predicted from the model, N, the number of stimuli, ȳ = 1
N ∑N

i yi, the average of the

yis and p the number of model parameters (3 in our case), the expressions for SSres,
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SStot, d fres and d ftot can be written out as follows:

SSres = ∑
i
(yi − ŷ)2

SStot = ∑
i
(yi − ȳ)2

d fres = N − p− 1

d ftot = N − 1
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Figure 2.5. Model fitting and choice of burst detection threshold (A) Model fit between binned
latencies and bin-wise mean response strengths for an example SE-RE pair. Latencies were binned in
steps of 0.33 s. The fitted model (red), the corresponding parameters and the goodness of fit (R2

adj) are
shown. (B) The distribution of ISIs for the RE in (A) during an hour long recording of spontaneous
activity. The valley of the distribution (630 ms; green triangle) was chosen as the threshold for online
burst detection at the RE.

We identified a set of SE-RE pairs, where the model fits were good (R2
adj > 0.5).

A final selection was made after checking for consistent participation of each RE in

SB events. When many feasible pairs were available, the choice was arbitrarily made.

For the optimization experiments, a single SE-RE pair was chosen per session. For the

adaptive control experiments, a single RE and multiple SEs were chosen. Additionally,

a target response strength was also defined for these experiments (see Appendix B

for details). Spontaneous spiking activity in the chosen RE was analysed to choose a

suitable ISI threshold for online burst detection (see Section 2.5.2). From a visualization

of the bimodal probability distribution of the ISIs at the RE in a spontaneous activity

recording, the valley was chosen as the online burst detection threshold (Fig 2.5B).
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The following chapter (excluding Figs 3.4, 3.12–3.15 and Sections 3.4, 3.5) has been

published as a peer-reviewed research article titled “Autonomous optimization of

targeted stimulation of neuronal networks” in the journal PLoS Computational Biology

(2016, Volume 12(8): e1005054). Authors: Sreedhar Saseendran Kumar (SSK), Jan

Wülfing (JW), Samora Okujeni (SO), Joschka Boedecker (JB), Martin Riedmiller (MR)

and Ulrich Egert (UE).
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• SSK: Developed the theoretical model; Performed experiments to characterize

networks and predict optimal policies and closed-loop experiments; Data analyses;

Quality analysis; Literature review.
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iment and implemented the technical framework for closed-loop experiments;

Discussion of results and interpretations.

• SSK and UE: Discussed results and interpretations; Wrote manuscript.

• JW: Formalized the trade-off problem for RL algorithms; Choice, implementation

and extension of RL algorithm and parameter settings.

• JW and JB: Wrote sub-section, “Reinforcement Learning”; Contributed to writing

the “Discussion” section; Proof-read the manuscript.



Chapter 3

Autonomous Optimization of Targeted

Stimulation of Neuronal Networks

In this chapter, we take up the question of how to develop and evaluate techniques to

autonomously optimize stimulation policies to interact in a goal-directed manner with

biological neuronal networks. The specific challenges we had to address here are: (1)

how to capture the interaction of ongoing network activity, electrical stimulation and

evoked responses in a quantifiable ‘state’ to formulate a well-posed control problem for

a Reinforcement learning (RL) controller; (2) how to develop appropriate algorithms

to learn optimal stimulation settings; (3) how to evaluate the quality of solutions

autonomously learned?

To this end, we identified a toy extremum seeking trade-off problem that, as we

show, emerges from the interplay of ongoing and stimulus evoked activity patterns in

generic neuronal networks in vitro. Drawing on prior studies on such networks and

numerical methods, we show that the problem so formulated is well-defined, supports

a unique solution throughout the span of parameter values observed experimentally,

and had a relatively stationary optimum over the experiment duration – a feature that

ensured we could validate the learned solutions. Using open-loop stimulation on the

same networks, we fit mathematical models to predict optimal stimulus policies for

each case.

Armed with a well posed problem, we asked if and how RL could be employed
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to autonomously learn optimal control policies while interacting with such networks.

Network-wise model based predictions of the optimal control policies were used to

evaluate the quality of the solutions autonomously learned.

We first describe the properties of observed ongoing activity, the response of these

networks to external stimuli and the trade-off problem emerging from their interplay. In

the next sections we develop a numerical model of these activity components and study

their interaction and make network-wise predictions of optimal stimulation policies.

We then present results of the closed-loop learning sessions and how they compare

with open-loop model based predictions. We conclude by exploring the consequences

of bi-directionality in our paradigm and ask what a goal-directed machine reveals

about the underlying biological network.

3.1 Properties of spontaneous network activity and response

to electrical stimulation

Neuronal networks cultured on microelectrode arrays (MEAs) display spontaneous

activity that consists of synchronized network-wide spontaneous bursts (SBs) separated

by periods of inactivity. Burst-lengths ranged between hundreds of milliseconds to few

seconds. SBs were detected using an algorithm that combined an inter-spike-interval

threshold and the number of simultaneously active sites (Fig 3.1A). Inter-burst intervals

(IBIs) were approximately lognormal distributed (Fig 3.1B). Fitting yielded the location

and scale parameters (µ and σ) of the corresponding lognormal distribution. The

cumulative of this distribution was used to estimate the probability of another SB

occurring given the period of inactivity that elapsed – or what we term the ‘probability

of interruption’ following an SB (Fig 3.1B, red line).

Stimulating a network at a channel evoked a burst of activity at others. For our

experiments, we selected one stimulating and recording channel each. Weihberger et al.

showed that the greater the duration of network inactivity, the longer the responses

at a chosen site will be, according to a saturating exponential model. In order to

verify this relationship and extract the parameters of the corresponding model, stimuli

were delivered at random latencies relative to the previous SB (open-loop stimulation).
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Figure 3.1. Identification of network specific objective functions. (A) Networks of dissociated neurons in
vitro exhibit activity characterized by intermittent network-wide SBs separated by periods of reduced
activity (raster plot for 60 channels in a DIV 27 network). The shading marks the limits of individual
SBs as detected by the burst-detection algorithm. (B) The distribution of IBIs is approximately lognormal.
The histogram shows the IBI distribution for the network in (A). The cumulative of this distribution
(red) is predictive of the probability of being interrupted by ongoing activity given the elapsed period of
inactivity, i.e. the current state st. (C) Such a distribution was used to weight response strengths so that
each dot represents the mean response strengths that can be evoked over a set of trials, including those
that did not lead to stimulation, for a given stimulation latency. The fit predicts the objective function of
the optimization problem. The example shows the data for the network shown in Fig 3.2C. The curve
reveals a quasiconcave dependency, a unique global maximum and an optimal latency of ≈ 2.5 s in this
network. (D) Fits to the probability of avoiding an interruption (blue), response strengths prediction
(orange), and the resulting weighted response curve (orange, dotted) shown for another network. An
optimal latency of ≈ 1.5 s emerges in this case. (E) All predicted objective functions for each of the 20
networks studied were quasiconcave and unique choices of optimal stimulus latencies were available. The
objective functions were normalized to peak magnitude (Kumar et al., 2016).

Fig 3.2A shows responses at the recording channel to 50 such trials in an example

network. Responses typically consisted of an early (≤ 15 ms post-stimulus) and late

(> 25 ms post-stimulus) component (Fig 3.2B). The early component, presumably

reflecting responses to anti-dromic stimulation, was characterized by temporally pre-

cise and reliable responses while the late component, likely reflecting responses to

orthodromic, transsynaptic activation, was both variable and unreliable (higher and

lower probabilities respectively in Fig 3.2B).

A least square fit of the response strengths to a saturating exponential model with

stimulus latency as the independent variable was carried out. The fitting function was of

the form A(1− e−λ t) + B (in red in Fig 3.2C). We then weighted all response strengths

with the probability of being able to deliver a stimulus at the corresponding latencies,

without being interrupted by ongoing activity. The weighted response strength curve

(objective function) thus provides an estimate of the average number of response spikes
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Figure 3.2. Stimulating the network at an electrode evokes a burst of activity. Response strengths
were dependent on the period of inactivity preceding the stimulus. (A) Raster plot shows responses at
a recording channel (green in (B)-inset) to 50 stimuli delivered at a single channel (red in (B)-inset).
Stimuli were delivered at random latencies relative to the previous SB. Trials were aligned to the time
of stimulation (red line) and sorted by the count of spikes within the designated response window (see
magenta overlay). A response window of 2 s was chosen for this network. The diagram exposes the
relationship of response strengths to the period of prior inactivity. (B) Responses typically consisted of an
early (≤ 15 ms post-stimulus) and late (≥ 25 ms post-stimulus) component. (inset) Schematic of a MEA
with the chosen stimulation (red) and recording channel (green) marked. (C) The relationship between
response strengths and periods of prior inactivity can be captured in a saturating exponential model of
the form A(1− e−λt) + B. Our model is similar to the response duration model proposed in Weihberger
et al. (2013) (Figure modified from Kumar et al. (2016)).

that can be evoked for each SB cycle, i.e. stimulation trial (Fig 3.1C, D). A solution

that maximizes this estimate is therefore the optimal solution to the proposed trade-off

problem, namely, to find the stimulus latency that maximizes the number of response

spikes per SB.

We observed that a unique optimal stimulus latency exists for each of the 20

networks we studied (Fig 3.1E). The optimal latency emerges as the result of interaction

of processes underlying ongoing and stimulus evoked activity dynamics of the network.

Insights from previous studies (Weihberger et al., 2013) on such networks allowed us to

parametrize each network based on recorded data. These parametric models were used

to predict the network-specific optimal latencies offline before the RL controller was

allowed to explore the problem in closed-loop setting. Note that the model was not

used to instruct the controller.
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3.2 Dependency of optimal stimulus latencies on properties of

network activity

To understand the emergence of the optimal stimulus latencies from interacting biologi-

cal processes and visualize the nature of the input-output relations and their relationship

with the underlying parameter space, we considered simplified phenomenological mod-

els of each of the major contributing processes. Input, in the context of this problem

refers to the period of inactivity/latency after which a stimulus is delivered, and output

– the average number of response spikes evoked for every SB – the response feature of

interest. The recovery of post-burst network excitability was modelled as a saturating

exponential function (Eq 3.1). A statistical model of the temporal occurrence of SB

events was considered (Eq 3.2). The corresponding model parameters were extracted

from spontaneous and evoked activity recorded from each network.

R(t) = A(1− e−λ t) + B, (3.1)

IBI(t) =
1

tσ
√

2π
e−

(ln t−µ)2

2σ2 , (3.2)

Ī(t) = 1−Φ
(

ln t− µ

σ

)
, (3.3)

where Φ(x) =
1

2π

∫ x

−∞
e−

t2
2 dt,

f (t) = Ī(t) · R(t), (3.4)

t∗ = argmax
t

f (t). (3.5)

R(t) and IBI(t) are the response strengths and the IBI respectively, modeled as a

function of the period of inactivity, t (input). Ī(t) is the computed probability of avoid-

ing an interruption, given a period of inactivity, t, and f (t) the appropriately weighted

response strength model – the objective function (the input-output relationship). f (t)|t

then gives the stimulus efficacy for repeated stimulation at latency t. The optimal

latency t∗ is the maximizer of this function.

In order to visualize the dependence of the input-output relations on the contribut-
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ing parameters, we numerically computed objective functions and the corresponding t∗,

while varying one or more parameters and holding the remaining constant. Initially, A

was allowed to vary while parameters B, λ, µ, σ were held constant. Fig 3.3A–B shows

the family of recovery functions considered and the corresponding family of objective

functions. In general, all objective functions shared the property of being quasiconcave

and permitted a unique maximum. These maxima (marked as dots) were the desired

outputs and the corresponding stimulus latencies t∗, the desired optimal latency. The

desired output – or equivalently the desired latency – increased non-linearly with A

(Fig 3.3B). When, B was allowed to vary , holding parameters A, λ, µ, σ constant, the

quasiconcavity of the family of objective functions was preserved (Fig 3.4A–B). Desired

outputs increased and optimal latencies decreased with higher values of B (Fig 3.4C–D).
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Figure 3.3. Dependence of objective function and optimal latency on gain (parameter A). In all panels
the parameters λ, µ and σ were set to 6.67, 1, 0.6 and 1, respectively. (A) Changes of response strength
with the gain A of the response strength model within the range observed experimentally (5 ≤ A ≤
40, B = 6.67; t: stimulus latency) (B) The optimal latencies t∗ (dots), i.e. the maxima of the objective
function f (t) increased non-linearly with increasing A (dashed line). Colour code as in panel A (B =
6.67). (C) Changes of optimal timing t∗ as a function of gain A and y-intercept B within the range
observed experimentally (-10 ≤ B ≤20). B influences the relationship of t∗ with A and was trivial at
B = 0. Black dots and dashed line indicate the case B = 6.67 shown in (B). Note that A + B > 0 was
imposed to ensure that the maximal responses were strictly positive. (Kumar et al., 2016)

Within the parameter range observed for A (15.5 ± 9.3) and B (4 ± 5.8) in our

networks, the nature of the objective function family was preserved; a unique opti-

mal latency existed, and monotonically increased or decreased non-linearly with A,

depending on the value of B (Fig 3.3C). Fig 3.5A summarizes the dependence of t∗ on

the A− B plane. Each colour coded plane corresponds to a different value of the time

constant λ. λ was allowed to vary in the range observed experimentally (0.2≤ λ ≤ 1.2).

Next, we varied the location and scale parameters, µ and σ respectively – see

Eq 3.2 of the IBI distribution. The corresponding input-output relations were still
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Figure 3.4. Dependence of objective function and optimal latency on offset (parameter B). (A) Changes
in the recovery function model R(t) with the y-intercept B varying from -5 to 30. In these panels,
parameters A, λ, µ and σ were set to 20, 1, 0.6 and 1, respectively. t: stimulus latency). (B) Shows
the corresponding objective functions; f (t): stimulus efficacy (C) f (t∗), the optimal value of stimulus
efficacy, increases with parameter B as seen in panel (B). (D) The corresponding optimal stimulus latency
decreases with increasing values of B. This trend is also captured in a vertical slice of data points in
Fig 3.3C. A ∆t of 0.5 s was chosen as the discrete time step for our closed-loop learning experiments. Red
dashed lines indicate the change in B (abscissae) that would be necessary for optimal stimulus latencies to
change by 0.5 s (ordinates). Temporal modulations in parameter values though present in our networks
are unlikely to exceed this range. Thus, given our discretization the trade-off problem is reasonably
stationary.

quasiconcave, thus ensuring the existence of a unique maximum. Optimal latency

depended almost linearly on µ (Fig 3.5D). Fig 3.5E illustrates how optimal latency is

modulated in the A− B− µ space for λ = 1. The scale parameter σ, however, had no

significant effects on the shapes of the objective functions and hence the corresponding

optimal latencies (Fig 3.6B). Based on these analyses we predicted optimal stimulus

latencies for each network.

3.3 RL based strategy to learn optimal latencies

Closed-loop learning sessions consisted of alternating pairs of training and testing

rounds. During training rounds, the controller explored the state-action space and
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Figure 3.5. Dependence of the optimal latency on properties of the network’s activity dynamics. (A)
Dependence of the optimal stimulus latency t∗ on the A− B plane. Each plane corresponds to a different
value of the time constant λ of the recovery function within the range observed experimentally (0.2
≤ λ ≤ 1.2). (inset) Zoom-in to −2 ≤ B ≤ 6.67 to reveal the monotonic rise of t∗ (dots and dashed line)
that corresponds to the case described in Fig 3.3B (λ = 1). (B) Dependence of the gain in stimulation
efficacy by using t∗ over random stimulation latencies on the time constant λ of the recovery function. µ,
A, B, and σ were set to 0.6, 20, 6.67, and 1 respectively. (C) IBI distributions for the range of values
observed experimentally of the location parameter µ (0.6 ≤ µ ≤ 2) for A, B, λ, σ set to 20, 6.67, 1 and 1
respectively. (D) The family of objective functions corresponding to the IBI distributions in (C) shows the
near linear relationship of the optimal latencies with µ (dots and dashed line) (A, B, λ, σ were 20, 6.67,
1 and 1 respectively; colours as in (C)). (E) Summary of the dependence of the optimal stimulus latency
on the A–B–µ space for λ = 1. Each plane corresponds to a different value of the location parameter µ of
the IBI distribution. (inset) Zoom-in to −2 ≤ B ≤ 6.67) to reveal the rise of t∗ (dots and dashed line)
that corresponds to the case described in Fig 3.3B (λ = 1, µ = 0.6) (Kumar et al., 2016).

updated its action-value function estimates, while in a testing round, it always chose

an optimal policy based on the knowledge hitherto acquired. The time taken to run

through with the experiment varied across networks, but was typically around 3-5

hours, covering ≈1000 SBs. This variability was due to differences in the average

burst rate between networks. The latency chosen by the algorithm during the final

testing session was considered the learned latency. To test the stability of the learned
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Figure 3.6. Dependence of the optimal stimulation latency on the slope of the recovery function and
the location and scale parameters of the IBI distributions (A) t∗ depends on the shape of the recovery
function. t∗ shifts to later times with increasing recovery slope (λ increases) when average inter-burst
intervals µ are short, i.e. spontaneous activity is high and the probability for interruption is high. In low
activity regimes, however, the probability of interruption is low, hence t∗ is late and increasing the slope
will lead to a decrease of the stimulus efficacy with increasing latencies since increasing interruption
probability then outweighs the gain in spikes/stimulus. Because of the saturation of recovery changes in
the probability for interruptions have a dominating influence on t∗. (inset) t∗ shifts to later latencies with
increasing µ for a given λ (boxed). A, B and σ were set to 20, 6.67, 1 respectively. (B) Scale parameter,
σ of the IBI distribution had little impact on the optimal stimulation latency. A, B and λ and µ were set
to 20, 6.67, 1 and 0.6 respectively. (C) Across networks, values of λ recovered from fits to closed-loop
data were weakly correlated with open-loop estimates (Kumar et al., 2016).

latency some of the sessions were run with up to 3000 SB in further training and testing

rounds. Fig 3.7 illustrates a typical session in an example network. In this case, learning

proceeded in three pairs of 200 training and 50 testing trials each. Note that a trial in

our paradigm refers to the period between SBs where stimulation can potentially be

delivered. Each trial is therefore initiated by ongoing activity (SB termination) and

not by stimuli. Some of the trials were interrupted by ongoing activity, resulting in

stimulus counts less than the planned number.

To analyse the closed-loop sessions, we first looked at the model parameters A,

B and λ extracted from the recovery function and compared values predicted from

open-loop sessions with those recovered from fits to the closed-loop data. Note that

in this paradigm responses are available only at fixed latency intervals corresponding

to the state definition (Fig 3.8A). The gain A of the network showed a strong positive
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Figure 3.7. A closed-loop learning session in an example network. The session consisted of 1000 trials
(200 training (Ti, red), 50 testing (Xi, green) trials and 4 such pairs) (A) Raster diagram showing the
activity at the recording channel around the time of stimulation. Trials interrupted by ongoing activity
are left empty at t > 0 s. The spikes of the interrupting SB were removed in (A) and (B) for clarity.
Successful stimuli evoked responses at t > 0 s. Blue lines mark the period of latency prior to the stimulus
at t = 0 s Magenta triangles indicate stimuli delivered in preceding trials. Within training rounds, the
controller was free to explore the state space. Note that these rounds are in closed-loop mode but with a
random sequence of stimulation latencies. The strategy in this example was non-greedy. During testing
rounds the hitherto best policy was chosen. After the final round, a latency of ≈ 1.4 s was learned in this
example. (B) Zoom-in on responses evoked throughout the session. Interrupted trials without stimulation
appear as empty rows. In this example all stimuli elicited responses. (C) Stimulus efficacy estimated as
the response strength per SB (response strength (RS)/SB) computed over each of the training/testing
rounds. RS/SB improved considerably during testing compared to the training rounds. The fraction, p, of
trials interrupted in each round is shown as red circles and numerically. The dashed line was added for
clarity (Kumar et al., 2016).

correlation to the open-loop ones (r=0.91, p <10 -5, n=15 networks, Fig 3.8A, B), indi-

cating relative stationarity of the quantitative relationship and its accessibility for the

controller. Parameter B, which can be interpreted as the excitability threshold for SB

termination, too showed positive correlation (r=0.66, p=0.003, n=18 networks, Fig 3.8C)

but weaker than gain A, suggesting that SB termination may depend on additional

factors not captured by the model. Parameter λ showed a still weaker correlation

(Fig 3.6C).

We then compared the learned stimulus latencies with those predicted from open-

loop sessions. Overall, stimulus latencies learned by the controller showed a strong
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Figure 3.8. Comparison of open-loop predictions with autonomously learned strategies. (A) Dependence
of response strengths on pre-stimulus inactivities in data during a closed-loop session in an example
network. Each box shows the statistics of response strengths recorded at one discrete state. The central
measures are median and the edges with 25th and 75th percentiles. Whiskers extend to the most extreme
data points not considered outliers, and outliers are plotted individually. The fit (red) was made to the
medians. The minimal latency for burst termination was 0.4 s in this example, which was thus the
earliest state available for stimulation. (B) Across networks, closed-loop estimates of the gain A correlated
strongly with open-loop estimates (r=0.91, p<10-5, n=15 networks), indicating that A was mostly stable
during the experiments. (C) Similarly, closed-loop estimates of B were in agreement with open-loop ones
(r=0.66, p=0.003, n=18 networks), although to a lesser degree. (D) Across networks, learned stimulus
latencies show a positive correlation with predicted optimal values (r=0.94, p<10-8, n=17 networks).
(E) In spite of some variability in B-D the magnitudes of the modelled objective functions for predicted
and learned latencies matched closely (green dots), indicating that the network/stimulator system was
performing at a near optimal regime, regardless of slight discrepancies in the latencies. Exact optima were
likely unreachable owing to the coarse discretization (0.5 s) of states. Red dots denote the corresponding
magnitudes at trand for a strategy delivering stimuli at random latencies estimated as the mean of the
objective function. (F) The distribution of errors between learned and predicted latencies is centered
around the predicted optimum and confined to within 2 discrete steps from it (Kumar et al., 2016).

positive correlation with the optimal latencies estimated from model predictions based

on open-loop experiments (r=0.94, p<10-8, n=17 networks, Fig 3.8D). Nevertheless, in

some networks learned latencies differed from predicted ones, as is visible in their

distances to the diagonal in Fig 3.8D. Next we compared stimulation efficacy, estimated

as the response strength per trial, corresponding to learned and estimated latencies.

The objective function, f (t) (Eq 3.4) calculated specifically for individual networks was

used to estimate the maximal stimulation efficacy f (t)|t achievable with the predicted

optimal latency vs. the one learned for a given network. Values of this measure

were in strong agreement (Fig 3.8E), indicating that the control goal was achieved
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despite errors in predicted latencies (Fig 3.8D). One possible source of errors could

be the discretization of the controller’s state space into 0.5 s steps. Indeed, the error

distribution showed that 74% of the networks studied fell within ±0.5 s around the

optimum (Fig 3.8F).

Finally, the performance of the controller was evaluated with respect to the defined

goal: to maximize stimulation efficacy measured as the total number of response spikes

evoked for every detected SB in the network. A session-by-session analysis showed

that in 94.2% of the sessions (n=52 sessions with non-greedy training, 11 networks),

the percentage of interrupted events per session diminished post learning (Fig 3.9A).

While the number of spikes in a response did not significantly change across sessions

(Fig 3.9B) the standard deviation across stimuli in a session decreased (Fig 3.9C; p=0.01,

two-sample t-test). Concurrently, in 90% of the cases (n=52 sessions, 11 networks),

stimulus efficacy had increased after learning, supporting the effectiveness of the

learning algorithm.

Model parameters were derived from fits to noisy experimental data, i.e. IBIs during

spontaneous activity and response strengths during open-loop stimulation. Predictions

made from these models were therefore only as good as the fits. Comparison of

optimal stimulus efficacies predicted from our models with those achieved during the

final closed-loop testing sessions showed that achieved efficacies were within the 99%

confidence interval for the models fitted for each network (Fig 3.9D). Achieved stimulus

efficacies fell within the interval in 8 of 11 networks studied.

Learning clearly improved performance in each network (p<0.001, two-sample

Kolmogorov-Smirnov test). The amount of improvement, however, varied across

networks (Fig 3.9E). To compare performance across networks, we captured each

network on a normalized response-per-stimulus vs. interruption probability plane

(Fig 3.9F). Each network is shown before and after learning. Only the last pairs of

sessions were used for this plot (n=11 networks). The distribution shows a clear

separation of the mixed-mode performance before and after learning, indicating the

improvement of stimulation efficacy. The improvement was almost exclusively due to a

reduction in interruption probability (Fig 3.10 and Fig 3.11). This, however, also says
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Figure 3.9. Performance evaluation of the controller. (A) The percentage of interrupted trials during
training (x-axis) and testing (y-axis) sessions (n = 52 pairs across 11 networks). This percentage
decreased sharply after learning in 94.2% of the recorded sessions. (B) The mean RS evoked per stimulus
was, however, preserved in both sessions. (C) The variability in RS per stimulus decreased significantly
(p=0.01, two-sample t-test). (D) Comparison of the optimal stimulus efficacies predicted from our models
with the efficacies achieved during the final closed-loop testing sessions. Vertical bars represent 99%
confidence intervals corresponding to the models fitted for each network. Achieved values fall within the
interval in 8/11 networks studied. (E) Mean rewards were calculated over trials in the final training and
testing rounds to compare the controller’s performance. After learning, mean rewards increased in each
network, which is indicative of the improvement in stimulation efficacy. The rewards across the sequence
of trials in each round were drawn from distinct distributions in every network (p<0.002, two-sample
Kolmogorov-Smirnov test). The individual distributions are shown in Fig 3.10 and Fig 3.11. (F)
Summary of learning across networks on a normalized RS/stimulus vs. interruption probability plane (11
networks). Only final training and testing rounds were considered. Normalization for interruptions was
performed relative to the model-based estimate of interruption probabilities, corresponding to stimulation
at random latencies for each network. The RS/stimulus measure was similarly normalized to the model-
based estimates of the efficacy assuming a random stimulation strategy. The improvement in performance
clearly separates the data points in the plane. Of the two modalities that contribute to stimulus efficacy,
the improvement was dominated by reduction of interruption probabilities (Kumar et al., 2016).

that the controller learns to avoid losing in response magnitude by not further reducing

the interruption probability, i.e. it balances the trade-off.

3.4 ‘Learning’ from the machine

An attractive element of autonomous learning approaches is its potential to exploit

patterns and quantitative relationships not readily accessible to conventional analyses.

Neuronal networks, being composed of noisy non-linear elements and prone to tempo-

ral non-stationarities, are extremely onerous to characterize in terms of input-output
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relations. In this context, the ability to selectively clamp defined activity features

offers an opportunity to unravel the functional complexity of the system. It might be

possible to better understand the network from exploring the conditions under which

goal-directed behaviour was sustained.

In the context of our toy problem, the nature of the underlying quantitative relation

of stimulation and ongoing activity was known from previous studies (Weihberger et

al. (2013) and its extensions described above). Thus the inverse problem translates to

whether properties of this relation can be salvaged from the learned machine. Our

experiments proceeded based on a Q-learning algorithm. The Q-function, though not

a model of the input-output relationship per se, should be able to capture aspects of

the underlying quantitative relationship because of the manner in which rewards and

punishments affect it.

To test this proposition, we asked if starting from the learned Q-function one

could infer the quantitative stimulus-response relationships underlying each network.

Fig 3.12 shows the Q-table from an example network. The y-axis represents the Q-

value associated with choosing a particular action (wait/stimulate coloured green/red)

at a given state. The Q-values corresponding to stimulating at each state seems to

approximate the exponential model as shown by the least square fit to the red data

points (red line).
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Figure 3.12. Example Q-table after learning. Each dot represents values of the Q-function corresponding
to each state (time) and action (wait/stimulate coloured green/red respectively). Q-values for stimulation
agreed with the known model relating response strengths to pre-stimulus latencies.

We extracted the model parameters resulting from fits to such Q-values across

networks and found that they were strongly correlated to those from model fits made

to response strength series from the closed-loop session (see Fig 3.13). This suggests
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that it might indeed be a valid proposition to learn from the machine.
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Figure 3.13. Comparison of model fits to the Q-table with closed-loop models. Parameters A (panel A)
and B (panel B), extracted from exponential model fits to Q-values (subscript ‘q’ in figure) were strongly
correlated to those from fits to response strengths during the closed-loop session (subscript ‘cl’ in figure).

Model parameters extracted from the controller were also correlated to those ob-

tained from open-loop data recorded prior to the learning session (Fig 3.14). Interest-

ingly, these correlations were considerably weaker than with parameters closed-loop

data. The observation is suggestive of temporal trends in the recovery function over

long time-scales.

This observation seemingly contradicts our earlier assumption of system stationarity

that was necessary to evaluate the quality of solutions learned autonomously. However,

our specific argument was that by coarse graining the state-space discretization of our

controller, the objective function and hence the optimal solution remained reasonably

invariant under the range of temporal modulations observed in our model parameters

and that therefore the optimization problem itself could be assumed relatively stationary

(see Fig 3.4, 3.8F). In the next chapter we characterize temporal fluctuations, drifts and

inhomogeneities that underlie network-stimulus interactions.

3.5 Drawbacks of session-wise learning

In these experiments the closed-loop framework was designed to learn session-wise. A

set of trials were exclusively dedicated to explore the action space (training session).

In the next session, the controller executed an optimal policy based on its experiences

until then. No further learning occurred during this period. While such a strategy

contributed to the straightforward separation of performance measures before and after
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Figure 3.14. Comparison of model fits to the Q-table with open-loop models. Parameters A (panel A) and
B (panel B), extracted from exponential model fits to Q-values (subscript ‘q’ in figure) were correlated to
those from fits to made to open-loop data collected prior to the each closed-loop session (subscript ‘ol’ in
figure).

learning in this study, it may not be ideal for general problems involving interactions

with biological neuronal networks.

Effects illustrating why this may be the case were observed during some of our

sessions where the nature of interactions was distinctly different across adjacent training

and testing sessions. After initial an training session, a low value of stimulus latency

was incorrectly learned presumably because of the small number of trials. repetitively

delivered to the network, resulting in increased response delays (see Fig 3.15). Our

feedback mechanism failed to capture this unintended consequence, not just because it

was in the testing phase, but also since delays were not a state feature that the controller

was designed to measure.

Note that such effects may not be relevant to the outcome of this particular study,

since it can be shown that response strengths do not depend on delays leaving our

objective function invariant. But the principle, when extended to a yet unconsidered

dependent feature, could be consequential in a more general application context (see

Section 6.1.5 for further discussion).

Summary

• We identified a toy trade-off problem emerging as the interplay of ongoing and

evoked activity.

• We developed and evaluated algorithms to autonomously optimize stimulation
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Figure 3.15. Response delays observed during training (green) and testing (red) sessions were distinctly
different. (A) The raster shows hundreds of trials of the closed-loop trade-off problem in an example
network. Stimuli were delivered at 0 s. (B) The relationship between response delays, defined as the
time to the second phase of the response and stimulus latencies. (C) The distribution of response delays
during training vs. testing shows they were drawn from distinct distributions (Kolmogorov-Smirnov
test, p<0.001) (D) Response delays during training and testing: each box shows the median, 25th and
75th percentiles; whiskers indicate extreme data points.

policies for goal-directed interaction with biological neuronal networks (BNNs).

• We numerically verified that the problem was well-defined and had a unique so-

lution for each network and predicted optimal stimulus policies for each network.

• Policies learned autonomously were in good agreement with those predicted.

• We demonstrate that RL based techniques may indeed be feasible to exploit

underlying network-stimulus relationships to find optimal policies.

• Our proof-of-principle study is the first demonstration of the potential of artificial

agents to interact optimally with biological neuronal networks.
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Temporal Inhomogeneities in Stimulus-

Response Relations

In Chapter 3, we presented proof-of-principle of an autonomous RL based controller

capable of interacting optimally with respect to a pre-defined goal with generic neuronal

networks in vitro. To validate autonomously learned policies, we relied on predictions

from open-loop data acquired at a different point in time. Stationarity of system

dynamics was thus a necessary assumption to be able to evaluate the quality of

solutions learned autonomously. By coarse graining the state-space discretization of our

controller, we argued there that the objective function and hence the optimal solution

remained reasonably invariant under the range of temporal modulations observed

in our model parameters and that therefore the optimization problem itself could be

assumed relatively stationary.

However, spatio-temporal fluctuations in neuronal activity dynamics are ubiquitous

in the brain and have long been described (Cabral et al., 2014, and references therein).

Distinct spatial, temporal and spectral patterns in network activity are thought to

reflect the underlying functional connectivity in a state (wake, rest, sleep etc.) and

task (active, lying, walking etc.) dependent manner. The origin of these fluctuations

are thought to lie in networked neurophysiological mechanisms (Kopell et al., 2014;

Medaglia et al., 2015; Medaglia et al., 2017). Under pathological conditions a further

layer of time-evolving processes that disrupt the healthy evolution of brain states are
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thought to be involved (van den Heuvel and Sporns, 2013). The key question from a

neurotechnological perspective is how we can develop safe and adaptive stimulation

solutions capable of operating efficiently atop the dynamic floor of ongoing activity.

In this chapter, we show that fluctuations and drifts in stimulus-response relations

over long time-scales are features of generic neuronal networks in vitro that are likely

mediated by networked neurophysiological mechanisms. The dependence of evoked

response strengths on the latency of the stimulus to prior activity in the network

was described in chapter 3. The non-linear model fits a saturating exponential of the

form A(1− e−λt) + B. We used this stationary model as a baseline to investigate the

presence of long-term trends and fluctuations in the input-output relationship. To test

for temporal inhomogeneities we asked if sustained periods of hypo/hyper-excitability

w.r.t. the model prevail in the response residual time series.

We make the case that defining a fixed goal – for e.g. clamping response strengths to

a pre-defined value – in our model system is strikingly similar in structure to a generic

control problem in the clinical context. The challenge then is to adapt to partially

observable and poorly characterizable dynamic fluctuations of the underlying network

states. Our experimental configuration offers a controlled setting to develop algorithms

and better understand the challenges of adaptively achieving targeted interaction with

biological neuronal networks.

Slow activity fluctuations, though reported in various studies using cultured neu-

ronal networks in vitro, are yet to be comprehensively characterized in literature (Baltz

and Voigt, 2015; Haroush and Marom, 2015). Because the mechanisms and relevant

time-scales behind these modulations remain unclear, no numerical models describing

them are available.

In our data, temporal inhomogeneities were discernible across hours of repetitive

interaction with the network during closed-loop optimization experiments described

in Chapter 3. Long sequences of stimulation placed at random latencies relative to

ongoing activity also exposed underlying slow fluctuations once the expectation value

determined from the fitted exponential model was subtracted from individual trials.

Further, slow fluctuations were observed in the burst strengths of spontaneous events
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occurring between stimuli. They could serve as indicators of the background process

modulating stimulus-response relationships and help predict successive responses.

Simple predictive models, however, were difficult to infer due to the non-stationary

nature of the relationship.

4.1 Fluctuation of stimulus-response relations in closed-loop

sessions

We analysed the evolution of response strengths during the closed-loop trade-off

problem, which involved repeated interaction with the network over a time-scale of

hours. Data from both training and testing sessions were pooled. Latencies were

explored in steps of 0.5 s during the experiment and grouped according to the chosen

latency. A saturating exponential model fit was made to median response strengths

at each latency (Fig 4.1A). The data revealed considerable variability around the fitted

model across states, particularly in the earlier ones where sampling of the distribution

was richer. This was partly due to the fact that during the learning process certain

latencies were progressively preferred over the others. The other factor was that trials

with stimulation planned for longer latencies were much more likely to be interrupted

by ongoing activity, resulting in fewer samples at these latencies. The latency-wise

distributions of response strengths are shown in Fig 4.1B.
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Figure 4.1. Variability around the recovery function.(A) Box plot capturing the relationship
between response strengths and periods of prior latencies during the closed-loop trade-off experiment for a
sample network. Data from both training and testing sessions were pooled. Each box shows the statistics
of response strengths recorded at each discrete state. The data were overlaid with a jitter along the x-axis
for visualization. The central measures are median (green lines) and mean (blue open circles); each box
extends between the 25th and 75th percentiles and whiskers to extreme data points not considered outliers.
The least-square fit (red) was made to the medians. (B) The distribution of response strengths at each
state. Probabilities are colour coded.

77



Chapter 4. Temporal Inhomogeneities in Stimulus-Response Relations

It is possible that the breadth of the response strength distribution belies just a

measure of ‘noise’ involved in the underlying data generating process, i.e. spiking

activity evoked and measured in a recurrent network as a response to focal stimulation.

One way to rule this possibility out is to analyse the order plot of the residuals, i.e.

the sequence of errors to the model fit. If the model were indeed fitting the central

measure of noisy data from a stationary source, the sequence of residuals would be

expected to be statistically independent, i.e. without serial interaction. Interestingly,

order plots across our networks revealed considerable serial correlations, rhythmic

trends and drifts over long time scales. Example order plots for two networks are

shown in Fig 4.2. The residual sequence was smoothed over a 3 sample box filter to

smooth out fast changes. The network in Fig 4.2A exhibited a general oscillatory trend

in residuals while that in Fig 4.2B showed marked drifts over time.

The self-similar nature of the underlying data generating process was captured in

the occurrence of closed-orbits of varying circumferences and foci in the session wise

second order return map of the residual sequence (Fig 4.3). Residuals appeared more

variable during training than in testing sessions.

The recurring pattern in the data was confirmed in the autocorrelogram of the overall

data (Fig 4.4A). Correlation coefficients – both positive and negative – alternated with

increasing lags. The Ljung-Box Q-test, a quantitative test for residual autocorrelation,

rejected the null hypothesis of no autocorrelations at each of the lags tested (5 – 50).

The Wald-Wolfowitz runs test also rejected the null hypothesis of randomness in the

model residuals (p < 10-6).

Amplitudes and time-periods of the fluctuations observed in the residuals appeared

widely distributed. To reveal the temporal scales of modulation, we analysed the

inter-event interval distribution of data points above and below σ/2 of positive and

negative residuals (Fig 4.4B). Both distributions were bimodal in nature, with the earlier

peak capturing intervals within each residual cluster and the later one between clusters.

Note the logarithmic scaling of the time axis. Inter-cluster events seemed log-normally

distributed over 1 to 10 minutes.

The residuals, during training and testing sessions were shown to be drawn from
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Figure 4.3. The recurring closed trajectories in the session-wise second order return maps of the residuals
sequence during the three training and testing sessions in a closed-loop session (left and right columns
respectively) points to an underlying slow modulation of the data generating process. Individual data
points are shown in grey. Black lines are a smoothed overlay. Data are from the same network in Fig 4.2A.

distinct distributions (Kolmogorov-Smirnov test, p < 0.001; Fig 4.4C, D). A likely

explanation is the asymmetry imposed by the positive-definite nature of response

strengths. An alternative hypothesis is heteroscedasticity in the data, i.e. response

variability may itself be a function of the stimulus latencies. However, we did not find

significant differences when squared residual magnitudes were compared for similarly

sampled latencies (e.g. latencies 0.2, 3.2 and 3.7 s in Fig 4.1A, Bartlett’s test, p = 0.33).

The periodogram of the residual time series revealed dominant frequencies in the

range of 2 – 35/hour (red dots in Fig 4.5A). Similar results were observed across the

20 networks we studied for the optimization experiments. The average dominant time

period observed in each network is shown in Fig 4.5C. The distribution of dominant

periods pooled across all networks is shown in Fig 4.5D (329 frequency peaks from 20

networks).

To quantify the skewed spectral distribution, we used median frequency as a metric

(red line in Fig 4.5A, B). This allowed us to test if the lower frequency peaks were
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Figure 4.4. (A) Autocorrelogram reveals the residual autocorrelation structure. Significant
autocorrelations–both positive and negative– exist outside the Bartlett two-standard error bands for
white noise– given by the blue lines, for various lags. (B) The bimodal distribution of intervals between
residuals above and below σ/2 of positive and negative residuals and were coloured magenta and cyan
respectively (see Fig 4.2A). The residuals during training and testing phases were drawn from distinct
distributions (Kolmogorov-Smirnov test, p < 0.001). (C,D) The distribution of residuals and cumulative
distribution functions during the training and testing phases. All panels are based on the network in
Fig 4.2A.

merely artefacts of the time series smoothing. We generated 250 shuffled surrogates for

each raw residual series and applied the same smoothing kernel (Hinich et al., 2005).

The 95% threshold level µ0.95, for which 95% of the surrogates had a median frequency

greater than µ0.95 was calculated. The observed median frequency lay below the µ0.95

in 14 out of the 20 networks studied (Fig 4.6).

4.2 Fluctuation of stimulus-response relations in open-loop ses-

sions

We then analysed the evolution of response strengths during repeated interaction with

the network in open-loop sessions. Stimuli were delivered periodically every 10 s.

The periods of inactivity prior to stimuli were nevertheless random due to irregularly

occurring spontaneous bursts (Fig 4.7). Furthermore, the temporal evolution of response

strengths revealed a weak fluctuating trend.

We fitted this data with a saturating exponential model of the form A(1− e−λ(t−τ))

(Fig 4.8A). and computed model residuals. The succession of residuals exposed an un-
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Figure 4.5. (A) Lomb-Scargle periodogram estimates of the residual time series shows several dominant
peaks in the range of 2 – 35/hour. The probability that a peak in the spectrum is not due to random
fluctuations of peak detection was set to 0.9 (grey dashed line). Red dots indicate the detected peaks
and the red line, the median frequency. (B) The distribution of median frequencies in the 250 shuffled
instances of the residual time series. The black line is a Gaussian model fit to the data. The solid line
indicates the median frequency observed during the closed-loop session. A threshold, µ0.95 was defined
such that 95% of the surrogates had a greater median frequency (dashed line). The observed median
frequency was lower than the threshold, suggesting that the slow fluctuations observed in the data were
likely not an artefact of smoothing. Both (A) and (B) correspond to the network shown in Fig 4.2A
(Nw# 1 in Fig 4.6). (C) The average dominant time periods observed in each of the networks studied
varied widely between 2 – 20 minutes. (D) Dominant time periods pooled across networks were broadly
distributed over a scale of minutes to tens of minutes.

derlying temporally inhomogeneous trend despite its distribution being approximately

normal (Fig 4.8B, C).

We corrected response strength values with the slowly varying residual trend to

illustrate that, as expected, compensating for such modulations would make response

strengths more predictable (Fig 4.10). First, response strengths were corrected using the

approximate sinusoidal model that we fit to the modulatory trend, resulting in moderate

improvement in the predictive power of the model (Adjusted R2 = 0.73, Fig 4.10A).

The modulatory trend in the raw residuals was considerably dampened (Fig 4.10B, C)

while remaining approximated normally distributed. Even better improvements in the

model’s predictive power was observed when response strengths were compensated

using a history-based lagged estimator (R2
adj = 0.81, Fig 4.10D). The repetitive structure

of the residual sequence was further weakened. The residual distribution was verified

to be approximately normal (Fig 4.10E, F).
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Figure 4.7. Raster plot shows the result of stimulating the network at a single site periodically every
10 s. The periods of latencies relative to previously occurring spontaneous events was random. Figure
shows 50 trials where stimuli were delivered at t=0 (red line). Spontaneous bursts are shown in black
and evoked responses in red. The panel in the right shows trial-wise response strengths. The overlaid
smoothed trace showing the temporal evolution of response strengths revealed a weak fluctuation with
generally stronger responses around trials 25 and 45.
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Figure 4.8. (A) Exponential model fit to response strengths vs. pre-stimulus inactivities from the example
in figure 4.7. The model used here was of the form A(1− e−λ(t−τ)); fit parameters A, λ and τ shown in
the legend. (B) The sequence of residuals w.r.t to the fitted model point to an underlying autocorrelative
structure. The colour code in (A) and (B) corresponds to the temporal order of the trials. (C) The
distribution of residuals was approximately normal.

A sinusoidal model was clearly not a perfect fit to residual dynamics. This was

reflected in the limited improvement in the predictability of response strengths not

only in this particular example but also in data across networks. In general, residual

dynamics exhibited amplitude and frequency modulation in a addition to drifting

trends. Fitting a simple generalized modulation model under these circumstances

would be cumbersome. A non-parametric history based regressor might be a more

feasible approach. Our results imply that an approach seeking to predict or control
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Figure 4.9. Residuals from the same network as in Fig 4.8 shown here overlaid with a smoothed trace
and a least square sinusoidal that fits the data with a period of approximately 42 minutes.

properties of the network’s response to stimuli may have to factor in not just timing

of stimuli relative to ongoing activity but also history dependent processes whose

temporal scale of impact remain poorly understood.
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Figure 4.10. Correcting individual response strengths with the estimates of fluctuations based on the
sinusoidal fit (A) and history based smoothed trace (D) results in improvements to the goodness of fit to
the exponential model while also bringing down serial correlations in the residual time-series (B,E). The
remaining residuals were still approximately normally distributed in each case (C,F).

History dependence in the evolution of response residuals on long time scales

implied that past interactions could be valuable to make local predictions of future

response strengths. Apart from this modality, could other features of network activity

help predict future responses? To this end, we investigated if the background modulat-

ing process is reflected in features of ongoing activity patterns and if they could help

predict modulations observed in stimulus-response relations.

85



Chapter 4. Temporal Inhomogeneities in Stimulus-Response Relations

4.2.1 Relationship with spontaneously generated events

In this section we investigated if the processes mediating stimulus response modulations

could be reflected in features of ongoing activity and thereby used as predictive

indicators of upcoming responses. As discussed in the previous section, the period of

inactivity prior to stimulation is a known predictor of response strengths. Therefore,

we first removed the influence of pre-stimulus latencies by converting actual response

strengths to errors relative to a saturating exponential model fit to the data (residuals).

Various features of ongoing spontaneous bursts were tested for correlations to successive

residuals. Though long sequences of features like burst strengths (single channel and

global), burst widths, peak rates within bursts were uncorrelated to response residuals,

slow trends were observed in their temporal dynamics.

Consider the sequence of residuals and spike counts from prior spontaneous events

at the same channel, normalized and overlaid in Fig 4.11. Data belong to the same

network discussed in the previous section (see Fig 4.8). Rhythmic modulations are

evident in both time series suggesting that signatures of the background processes

mediating fluctuations of the recovery function may be reflected in ongoing activity as

well. A time-resolved cross correlation of the two traces was calculated for 15 minute

sliding windows (dt = 0.25 minutes) and a maximal lag of ±5 minutes. Interestingly,

over the first 30 minutes of the session residual dynamics were inversely correlated

with the strengths of preceding ongoing events. Thereafter the pattern switched to a

longer regime where they were positively correlated.

Though such switches in co-modulation were qualitatively observed across net-

works, a general quantitative framework remained elusive. Our data suggest that

indeed the history of ongoing activity might be informative of the magnitude of re-

sponse residuals, though the mapping remains unclear. A network-specific model fitted

to such data would likely be of little worth since the relationship appeared temporally

inconsistent. Locally fitted models may help but are cumbersome to realize given the

lack of clarity in the nature and time scales of their dynamics.

It is conceivable that the exponential model-based compensation introduces artefacts

to the residual time series due to non-uniform sampling of the period of prior inactivity.
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Figure 4.11. Smoothed traces of normalized residuals (red) and spontaneous (green) origin (top). Only
the spontaneous event in the immediate history of the stimulus was considered. Time resolved cross
correlation of the standardized snippets of the two traces show periods where the two sequences are
negatively and positively correlated. Switches between the two happened over a scale of tens of minutes
indicating temporally inhomogeneous system behaviour.

Further, differences in the quality of fitting and stimulation rates across networks also

makes it cumbersome to assess fluctuations observed in the response residuals. One

way around the problem is to control for latencies, i.e. stimulate in a time locked

fashion at fixed latencies and evaluating residuals with respect to the observed mean

response strength. This obviates the need to compensate for the contribution of latency

to response strengths.

We devised such a closed-loop experiment where spontaneous activity at a chosen

channel was continuously monitored for opportune moments to deliver stimuli. Only a

pre-set period of silence had elapsed would the stimulus be delivered. An additional

constraint of a 10 s minimal inter-stimulus-interval was placed in order avoid the effects

of activity depression due to repetitive stimulation (Fig 4.12).

Figure 4.12. Raster plot showing an example of fixed latency stimulation. Stimuli were delivered in a
closed-loop setting after every 2 s in this example; response windows are shaded. Inter-stimulus intervals
were not allowed to be less than 10 s. Spikes detected in the recording channel (52) and the stimulating
channel at the time of stimulation (20) are highlighted in green.
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The response strength series exhibited a modulatory trend around its mean value

(Fig 4.13).
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Figure 4.13. Response strength time-series during the experiment. Black line denotes mean value and
red line the time series smoothed using locally weighted linear regression (span=5).

In order to understand the slow underlying pattern, we isolated strong and weak

events and examined their temporal preferences. To this end, we defined the following

indicator function:

I(n) =


1 if R[n] ≥ µ(R) + σ(R)

−1 if R[n] ≤ µ(R)− σ(R)
(4.1)

The indicator function revealed the tendency of such events to cluster in time

(Fig 4.14 top). The rate of occurrence of each event type exposes a slow alternating

pattern over the 85 stimulus trials (20 minutes) in the session (Fig 4.14 bottom).
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Figure 4.14. An indicator function was defined to return ±1 if response strengths exceeded ±σ over the
mean (top panel, in red/blue respectively). (Bottom) Detected events were binned and smoothed using a
locally weighted regressor over sets of 3 trials each. The rate traces of each event type is plotted against
time. Periods of higher and lower responsiveness emerge over a scale of tens of minutes.

Pre-stimulus spontaneously occurring events were also categorized into strong and

weak events using the same indicator function (cf. Eq. (4.1)). The rate traces of strong

events, both spontaneous and evoked were overlaid in Fig 4.15. Over 20 minutes of

the recording, a delayed complementary coupling in the dynamics of these measures

persisted.
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Figure 4.15. The indicator function described in Fig 4.14 was extended also to spontaneously originating
events relative to which latencies were computed. The resulting rates were superimposed on the ‘strong
event’ rate trace from Fig 4.14. The traces are indicative of a delayed complementary coupling in the
dynamics of these measures.

To study the long-term stability of the coupling of response strengths with sponta-

neously generated events, the network was stimulated in closed-loop with a pre-set

latency of 3 s over ≈ 3 hours (Fig 4.16). The left panel shows spontaneous events in

the recording channel 5 s preceding the stimulus; the right panel shows the response

window (500 ms post-stimulus) in a logarithmic time scale.

Time [s]

T
ria

ls

-4.5 -4 -3.5 -3

100

200

300

400

500

600

10-2 10-1

Figure 4.16. The fixed latency paradigm repeated over longer time scales to study the stability of
the coupling of response strengths with spontaneously generated events close to the stimulus. Raster
plot shows trials delivered over approx 3 hours with a constant latency of 3 s. The left panel shows
spontaneous events in the recording channel 5 s preceding the stimulus which was delivered at t=0 (red
line). The right panel shows the response window (500 ms post-stimulus) in a logarithmic time scale.

Fig 4.17(bottom) shows a time-resolved cross correlation of the two traces were

performed over 7 minute sliding windows (dt = 0.25 minutes) and a maximal lag of

±2.5 minutes. For each stimulus, only the closest spontaneous event was considered.
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Around zero lag, between 20 and 40 minutes, traces were mostly positively corre-

lated. This trend changed thereafter to negative correlations for the next 40 minutes.

Another half an hour stretch of positive correlation re-emerged 90 minutes into the

recording; negative correlations followed thereafter. Clearly, the coupling of evoked

and spontaneous events exhibited dynamics over long time-scales.

Figure 4.17. Smoothed traces of response residuals (red) and spike counts in spontaneous events (green)
shown for the entire stretch of the recording, normalized (top). For each stimulus, only the closest
preceding spontaneous event was considered. Time resolved cross-correlation of standardized snippets of
the two traces show alternating periods of broad positive and negative correlations in the time scale of
hours, indicating non-stationary system behaviour.

As described in the beginning of the section, a minimal inter-stimulus interval

of 10 s was imposed during the fixed-latency experimental paradigm. This resulted

in multiple spontaneously generated events elapsing between successive stimuli. A

case could be made that in considering only one spontaneously originating event

in the history of each stimulus, numerous other preceding events of varying rates

and strengths would have to be ignored. How much of an impact does this selective

sampling create in assessing the local excitability of the network?

To understand this, we computed the history relationship of response strengths

including all spontaneously generated events and timings (Fig 4.18). The time-resolved

cross correlation was performed over 10 minute sliding windows (dt = 0.25 minutes)

and a maximal lag of ± 2.5 minutes. Interestingly, the dynamic structure of the

coupling between the traces was largely comparable with Fig 4.17. Further, periods

of positive and negative correlations and switches between them seemed qualitatively
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more pronounced. This suggests that the immediate history of ongoing activity already

captures substantial information about the trend of excitability in the network and may

be sufficient to make local predictions on subsequent evoked event strengths.

Such temporally local correlations appeared in most of our data sets involving repet-

itive stimulation over longer time periods. The distribution of correlation coefficients

around the zero lag of such correlograms failed the Hartigan’s dip test for uni-modality

in 6 out of 7 networks visually verified, indicating the presence of more than one locally

stable correlation values in the time series.

Figure 4.18. Smoothed traces of response residuals (red) and spontaneous event strengths (green). Unlike
in Fig 4.17, all events of spontaneous origin detected at the channel of interest were included in the green
trace. Time resolved cross-correlation of the standardized snippets of the two traces show that the periods
of broad positive and negative correlations are better distinguishable than in Fig 4.17.

Our results revealed a slow modulation of stimulus-response relations during

repetitive interaction with biological neuronal networks. Their characteristic time scale

was widely distributed across networks. Ongoing activity also exhibited features that

fluctuated over slow time scales and likely reflect the dynamics of the background

process modulating stimulus-response relations. They could thus be useful as predictive

indicators of successive responses. The relationship between ongoing activity features

and response residuals was itself dynamic over long time scales, suggesting that

the network mode may play a pivotal role. Temporary stationary behaviour was

nevertheless observed over periods of tens of minutes. The slow nature of such

dynamics suggests that it may be possible for RL based algorithms to adaptively learn

such relationships.

91



Chapter 4. Temporal Inhomogeneities in Stimulus-Response Relations

We exploited these observations to formulate a toy problem: Can response strengths

be clamped to a pre-defined value with no prior knowledge of the system dynamics?

The problem allows us to capture the structure of a generic adaptive control prob-

lem involving biological neuronal networks and develop appropriate algorithms in a

controlled setting.

Summary

• Stimulus-response relations in generic neuronal networks in vitro exhibit temporal

fluctuations in slow time scales.

• Inhomogeneities were autoregressive suggesting history dependence.

• In addition, spontaneously occurring activity close to stimulus events may help

predict successive responses.

• However, a stationary model of such dependencies did not exist.

• Our observations hint at locally persistent features that influence both ongoing

activity and its relationship to external stimuli.

• We used this intuition to extend the RL based closed-loop framework to clamp

response strengths to predefined values in the next chapter.
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Chapter 5

Adapting to Temporal Inhomogeneities

in Stimulus-Response Relations

A central challenge in neurotechnology is to develop adaptive stimulation solutions

capable of operating safely and efficiently, notwithstanding the poorly understood

dynamic floor of ongoing activity. We showed in Chapter 4 that, like networks in the

brain, generic neuronal networks in vitro exhibit elements of stochastic fluctuations and

long-term drifts in response features, the mechanistic origins of which remain unclear.

In this chapter, we propose to extend our autonomous paradigm for adaptive control

problems in biological neuronal networks (BNNs). Specifically, we explore the following

questions: (1) How do we design controllers that adapt autonomously to the poorly

understood dynamics of stimulus-response relations to remain goal-directed? (2) What

are some factors that govern or limit the dynamic stability of the paradigm? (3) What

are the implications for the development of safe, clinically relevant neurotechnological

solutions?

5.1 Reinforcement learning (RL) framework for adaptive con-

trol of neuronal networks

Based on our findings that the history of multiple evoked and spontaneously generated

event strengths preceding a stimulus could be information-rich features useful to
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predict the outcome of an upcoming stimulation (cf. Chapter 4), we designed an RL

based autonomous controller to now clamp response strengths to pre-defined quantities

by adapting to the ongoing activity dynamics in the network.

A high-dimensional state vector captured the network state in the temporal neigh-

bourhood of the stimulus (see Appendix B for a detailed description). The action set

was augmented to include up to three modalities: multiple stimulation sites, latencies

relative to ongoing activity at each, and multiple stimulus amplitudes.

Online Q-learning was the learning algorithm used. To cope with the dimensionality

of the problem, we used an approximate algorithm based on Least-Squares Policy

Iteration (LSPI) to learn the Q-function as a linear combination of state and action

features. See Section 2.4.2 in Chapter 2 and Appendix B for a detailed description.

5.2 Dynamic instabilities in the co-adaptive architecture

Feedback control schemes, although resilient to external disturbances and noise, are

susceptible to feedback instabilities and runaway dynamics. Additionally, the intrinsic

plasticity dynamics of biological neuronal networks and adaptivity of the RL controller

introduces further interactions over multiple time scales, i.e. co-adaptivity. Understand-

ing coupled dynamics and assessing feedback stability in such architectures is therefore

cumbersome.

Stability alone may not necessarily ensure ‘safety’ in a neurotechnological context.

The notion of ‘safety’ in this context may involve the imposition of dynamic constraints

on the sequences and/or structures of intervention patterns to evade ‘unsafe’ states.

Intervention patterns derived through the proposed autonomous learning approach

are unpredictable as is their behaviour under rare conditions and are thus insufficient

to guarantee safe operation. Given the lack of tractable models of relevant scale and

complexity, it is currently non-trivial, if not impossible to formally estimate stability

and safety of such architectures.

Nevertheless, assessments of this kind remain critical for the translation of such

methods to the clinical domain. Here, we analyse several cases of failures and instabili-

ties to identify failure classes and potential causes.
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Stability in a neurobiological context is cumbersome to define formally. Stability

assessments of our learning sessions were therefore qualitative and expressed in terms

of the degree to which observed response strengths remained goal-directed, goal-averse

or oscillatory.

An additional consideration when investigating the origin on instabilities is the

co-adaptive nature of the architecture and the consequent causality dilemma. However

in many cases, based on qualitative assessments of individual system dynamics, it

was possible to attribute instabilities to specific aspects of the learning algorithm or

the biological neuronal network. The origin of unstable dynamics observed in our

experiments could in general be attributed to one of the following:

1. Network mode switches

2. Sharp non-linearities in input-output relationships

3. Delays in the learning loop

Such instabilities could potentially arise in any autonomous control scheme in-

volving biological neuronal networks. In the following sections, we report examples

illustrating instabilities of each class and use them to develop general strategies that

could help address some of these issues.

5.2.1 Instabilities arising from switching network modes

Biological neuronal networks are known to switch between distinct network modes

over long time scales. Such poorly predictable behaviour was especially problematic

for learning based schemes since a policy learnt from interactions in one mode may

not hold in another. The same target may not even be reachable in the new mode.

Nonetheless, a policy now potentially sub-optimal and unsafe will continue to be

executed until sufficient information has been gathered to adjust the policy to the new

mode.

To test if such situations arise in our networks we probed the extent to which the

controller’s performance was dependent on the ongoing mode in our networks. We

present data from a network where switches in the network’s activity mode were
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ostensible. We distinguished network modes post-hoc, from the analysis of first and

second order statistics of ongoing spontaneous burst (SB) event strengths.

If our hypothesis on the ongoing network mode’s influence on system controllability

were true, we predicted that the time to achieve target would be significantly different

over multiple sessions provided learning began with the similar initial conditions.

Additionally, we expected the learned policy should break down during switches in

activity modes.

Case 1

Spontaneous activity was monitored and found stationary during a short observation

window (30 min) prior to the closed-loop session. Based on responses to open-loop

randomly placed stimuli, stimulation sites, recording sites and an achievable target

response strength was chosen (10 spikes at the evaluation electrode). A 12 episode

closed-loop session with 100 trials each was performed (Case 1a).

At around 120 min, evoked response strengths were close to target (black line

in Fig 5.1A, B). Over the remainder of the recording, achieved response strengths

fluctuated around the target. This was likely due to the discrete latencies available to

the controller (steps of 0.5 s) and delays in the learning loop.

The initial 150 trials (40 min) were dominated by action exploration. No particular

latency was preferred at this stage (Fig 5.1C). Over the next 150 trials, certain latencies

(3, 6, 7, 7.5 and 9 s) were preferred more often (white arrow marks in Fig 5.1C). During

this time, response strengths, though close to target in terms of mean values, varied

considerably (Fig 5.1B). In the next stretch (trials 300 – 380), a low latency policy was

preferred producing a low response regime (green arrow mark in Fig 5.1C). Thereafter,

at around 120 min, the controller switched to a policy that evoked response strengths

close to target. Between trials 400 and 500, two latencies were mostly chosen. In the

last phase (trials 550 onward, white line), the choice of stimulus latency was relatively

distributed (Fig 5.1C). Despite this, no departure from desired levels was observed in

terms of evoked response strengths. This suggested that the learned controller was able

to adapt to ongoing activity patterns over short time scales to clamp response strengths
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Figure 5.1. Case 1a: (A) Response strengths over trials smoothed with a 5 sample moving gaussian
window. (B) Data points in (A) binned (µ± σ) every 4 min. The target response strength is indicated by
the green line. The second x-axis indicates the time course of the session. (C) Evolution of the controller’s
choice of latencies during the session, computed using a sliding window of 10 trials each. Colour indicates
the probability of choosing a latency in each such window. (D) Evolution of spontaneous event strengths
in the network preceding each stimulus trial during the session. Both single channel (D) and global
(E) spike count time series were smoothed with an exponentially weighted moving average technique
(α = 0.12).
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to desired levels.

One of the strengths inherent to a closed-loop strategy is its ability to characterize

dynamical systems. The key question here is: what are the inputs required to hold

the system output at a pre-defined level. The equivalent question in our experimental

context would be: what stimulus latencies were chosen when response strengths were

clamped to desired levels? In this session, response strengths from 120 min onward

were considered clamped to the desired level. The evolution of average latencies

chosen during this period is shown in Fig 5.2. Alternating periods with longer, resp.

shorter latencies were conspicuous. Departures in and out of these states occurred

over a period of tens of minutes and likely expose slow dynamics of excitability in

the network, suggesting that this modulated recovery after spontaneous events. Yet

the controller was able to follow this background process and clamp responses to a

pre-defined level.
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Figure 5.2. Case 1a: Latencies chosen by the controller (bottom) during the period when response
strengths were clamped to target (top). Both quantities were binned in 3 min non-overlapping windows.
The mean ± std values in each bin are shown. The green line in the top panel indicates the target.
Smoothed mean latencies reveal a slow fluctuating trend (red dashed line in bottom panel).

Fig 5.1D–E shows the evolution of spontaneously occurring events over the session.

The initial period was characterized by high variability in event strengths. As time

progressed, activity transitioned into a distinctly different mode characterized by

relatively stable responses in the recording channel, around the time at which the target

was achieved. The network remained in this mode for the remainder of the session.
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The controller learned to adaptively clamp response strengths to desired levels

during the last hour of the session. However, distinct differences in the strength and

variability of spontaneously arising bursts were evident. Moreover, periods with re-

duced variability of spontaneous events coincided with those where response strengths

were close to target.

To test our hypothesis on the network mode’s influence on system controllability, we

ran another session on the network using the same stimulation electrode (SE), recording

electrode (RE) and target with similar initial conditions.

A long-term closed-loop session with a re-initialized Q-function was performed on

the network a day after (Case 1b). The session lasted close to 11 hours. The rewards

received by the controller fluctuated over long time scales and reached a regime of

higher rewards set in only from episode 22 (red arrow in Fig 5.3). Interestingly, the

performance deteriorated later in the session.
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Figure 5.3. Case 1b: Rewards (µ± σ) received by the controller during each episode made up of 100
trials. The second x-axis shows the session’s time-line.The reward was defined as the negative of the
absolute error to target and was therefore ideally zero. From episode 22 onward (red arrow), rewards were
generally higher.

At ≈ 350 min, close to episode 22 (see Fig 5.3), mean response strengths reached

close to target (line in Fig 5.4A–B). However, after a further 5 hour stretch, performance

worsened at around 600 min (line in Fig 5.4A–B).

The initial 100 trials were dominated by action exploration (Fig 5.4C). At around 350

min, the controller evoked response strengths close to target. Around trial number 2200,

a qualitatively different set of actions were executed. This period also corresponded to

the departure from target, pointing to a possible switch in the network mode where
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Figure 5.4. Case 1b: (A) Response strengths smoothed with a 5 sample moving Gaussian window. (B)
Data points in (A), binned (µ± σ) every 5 min. The green line indicates the pre-defined target. (C)
Evolution of the distribution of the controller’s choice of latencies during the session, computed using
a sliding window of 10 trials each. (D, E) Evolution of SB strengths in the network preceding each
stimulus trial during the session. Both single channel (D) and global (E) spike count time series were
smoothed with an exponentially weighted moving average technique (α = 0.04). Lines indicate duration
for which target response strength levels were achieved. Arrows highlight the correspondence of targeted
interaction with features (strength and variability) of ongoing events in the network.
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the learned transfer characteristics of the network-stimulus interaction were no longer

valid.

This interpretation is further supported by the qualitative correspondence of tar-

geted interaction with the strength and variability of spontaneously originating events

over the same duration (Fig 5.4D–E). Spontaneous event strengths at the evaluation

channel (Fig 5.4D) closely followed trends in global events (Fig 5.4E). The initial period

was characterized by weaker spontaneous events. This seemed amenable to learning

and the naive controller approached target response strengths after 250 trials. Soon

after, ongoing activity switched into a mode characterized by strong and fluctuating

events during which the controller was unable to remain goal-directed (red arrow

marks in Fig 5.5B, D). Hours later, as event strengths diminished and the network

transitioned into another mode, the target was once again achieved (green arrow marks

in Fig 5.5B, D). The network stayed in this mode for the next 5 hours of the recording.

In the last hour of the recording, however, it slipped into the high variability mode and

the learned strategy to clamp responses was no longer effective (blue arrow marks in

Fig 5.4B, D).

The evolution of latencies the controller chose during the period where it was able

to exert control of the network revealed a distinct underlying fluctuation dominated

regime (Fig 5.5). Departures in and out of periods of high or low latency choices

occurred again over a period of tens of minutes.

Taken together, Cases 1a and 1b show that drastically different durations (2 and

5 hours respectively) were required to achieve the same target in the same network

across two closed-loop learning sessions. The learned strategy also ceased to perform

well when the network switched into a different mode (Case 1b, Fig 5.4).

These observations suggest that network modes may indeed play a limiting role in

the controller’s ability to achieve pre-set targets. However, it is not clear what role, if

any, such controllers could play in driving the network into a ‘controllable’ mode and

preventing it from switching back to a high variance mode. To study the propensity of

the network to switch between modes regardless of the stimulation strategy involved,

we attempted a long term recording on the same network after disabling learning
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Figure 5.5. Case 1b: Latencies chosen by the controller (bottom) during the period when response
strengths were clamped to target (top). Both quantities were binned in 3 min non-overlapping windows.
The mean ± std values in each bin are shown. The green line in the top panel indicates the target.
Smoothed mean latencies reveal a slow fluctuating trend (red dashed line in bottom panel).

(Case 1c).

We refer to sessions where learning was disabled as ‘non-adaptive’. The choice

of actions in these sessions remained random throughout. Fig 5.6C shows that the

distribution of latencies chosen was relatively uniform across this 11 hour session.

Fig 5.6A–B shows response strengths during the session.

A slow oscillatory rhythm spanning hours affected response strengths as well

as their variability. The pattern was similar to the mode switches observed during

closed-loop sessions. At around 200 min, response variability across trials decreased

drastically. This ‘low variability’ mode persisted for the next 180 min, following which

the network switched back to a high variability mode (lines in Fig 5.6). A subtle trend

of progressively increasing excitability preceding the transition back into the high

variability mode was also observed (arrow at 300 < t < 400 min in Fig 5.6B, D).

However, the low variability mode during open-loop interaction was qualitatively

distinguishable from that in the previously discussed closed-loop session. First, the low

variability mode persisted for a relatively shorter duration compared to the closed-loop

sessions. Second, there were no response strength fluctuations (ringing) as in the two

closed-loop sessions discussed before (see Figs 5.1B, 5.4B). Further, the variance of

response strengths during this mode was higher compared to clamped periods in
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Figure 5.6. Case 1c: (A) Response strengths over trials smoothed with a 5 sample moving Gaussian
window. (B) Data points in (A) binned (µ± σ) every 5 min. The second x-axis indicates the time course
of the session. (C) Evolution of the controller’s choice of latencies during the session, computed using
a sliding window of 10 trials each. Colour indicates the probability of choosing a latency in each such
window. (D) Evolution of spontaneous event strengths in the network preceding each stimulus trial
during the session. Both single channel (D) and global (E) spike count time series were smoothed with an
exponentially weighted moving average technique (α = 0.04). Lines denote switches between high and
low variability modes. Arrows indicate in the rise in excitability during a mode switch.
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closed-loop sessions (two-sample F-test, p < 0.001). These observations indicate that

even in a ‘favourable’ network mode, an appropriate stimulation policy is essential to

achieve targeted interaction.

Similar to the closed-loop session, signatures of network mode switching were

observed in spontaneous activity traces as well (Fig 5.6D–E). Mirroring the response

strength trend, excitability, seen as number of spikes per SB event, increased at the

recording channel from trial 1100 onward (arrow in Fig 5.6B, D).

In summary, the presented data sets illustrated long term switches between activity

modes and their potential influences on autonomous learning strategies.

5.2.2 Instabilities due to non-linearities in stimulus-response relations

Case 2

The control strategy was found to consistently fail to converge to a stable policy

when the stimulus-response relations in the network was characterized by sharp non-

linearities. The closed-loop strategy was applied to a network where the exponential

recovery function fitting stimulus-response relations had a fast time-constant (a high

value of λ) and thereby a step like behaviour during offline random stimulation

(Fig 5.10). When stimulated, the network either failed to respond or responded with a

high value of response strength. The target was set midway to the high value of the

response strength.

The closed-loop session lasted for around 12 hours (Case 2a). Fig 5.7 shows the

rewards received by the controller during the session. The reward showed near periodic

fluctuations.

Around 100 min into the closed-loop session, response strengths approached target

levels for the first time. After a further ≈ 30 min, responses returned to high levels.

The pattern was found to recur with a period close to three hours.

Fig 5.8C shows the distribution of latencies chosen by the controller as the session

progressed. Corresponding to every trough of the response strength sequence, note

that lower latencies were preferred (marked in Fig 5.8C). Given the steep nature

of the recovery function, such strategies would have resulted in response failures.
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Figure 5.7. Case 2a: Rewards (µ± σ) received by the controller during each 100 trial learning episode.
They fluctuated almost periodically with higher rewards regimes appearing ≈ every 10 episodes.

Repeated punishments forced the policy to choose higher latency values which then

yielded responses stronger than the target, thus explaining the oscillatory nature of the

sequence.

We did not find qualitative shifts in the network mode as measured by spontaneous

event strengths prior to each trial (Fig 5.8D–E). Though a weak fluctuating trend was

observed in spontaneous event strengths in the recording channel, we did not find a

consistent relationship with response strength fluctuations.

Weak fluctuations in spontaneous event strengths raised the question whether

closed-loop interactions with the controller played a role in setting them up and if such

fluctuations in turn played a role in the near-periodic appearance of troughs in the

response strength sequence (Fig 5.8). One way to approach the problem was to ask if

fluctuations in SB strengths and oscillatory response strength sequences were present

also during non-adaptive stimulation with randomly chosen latencies.

A 12 hour long ‘non-adaptive’ session (Case 2b) revealed no oscillatory trends in

the response strengths (Fig 5.9A).

However, fluctuations were still observed in SB event strengths at the RC (Fig 5.9B).

This suggests that fluctuations in SB event strengths may not be related to the closed-

loop intervention. It also suggests that the near-periodic ringing of the responses,

observed only when learning was active, could be attributed to an unstable controller.

The closed-loop session described above, used LSPI for a linear approximation of

the Q-function. This may not have been ideal, particularly when handling sharply non-
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Figure 5.8. Case 2a: (A) Response strengths over trials smoothed with a 5 sample moving gaussian
window. (B) Data points in (A), binned (µ± σ) every 5 min. The green line indicates the goal. Red
arrows indicate troughs in the response strength sequence. (C) Evolution of the distribution of the
controller’s choice of latencies, computed every 10 trials (sliding window of 3 trials). The preference for
lower latencies during troughs is marked in magenta. (D) SB strengths (spike counts) in the network
preceding each trial at the evaluation channel (D) and array-wide (E). Both time series were smoothed
with an exponentially weighted moving average technique (α = 0.04).
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Figure 5.9. Case 2b: (A) Response strengths smoothed with a 5 sample moving Gaussian window and
binned (µ± σ) every 5 min. Response strengths were relatively stable over the entire 12 hours of the
session. (B) Evolution of spontaneous event strengths in the network preceding each stimulus trial during
the session at the evaluation channel. The spike count time series was smoothed with an exponentially
weighted moving average technique (α = 0.04).

linear input-output relationships (Fig 5.10). To test if non-linear function approximators

could help in such situations, we asked if Neural Fitted Q-iteration (NFQ) could offer

better performance.
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Figure 5.10. The sharp non-linear stimulus-response relationship in this network. An exponential model
of the form A(1− e−λτ) + B, was fitted (red) to binned response strengths (see Chapter 2). The time
constant λ > 1, points to a particularly fast post-burst recovery in this network.

Using the same stimulus and recording sites and target response strength, we

performed another closed-loop learning session lasting ≈ 11 hours using NFQ as the

learning algorithm (Case 2c). Fig 5.11A shows the rewards the controller received

during the session. The reward structure though initially fluctuating – as before when

the learning proceeded using LSPI – progressively dampened and settled from episode

28 onward to a stable regime of higher rewards. A similar trend was observed in the
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Figure 5.11. Case 2c: (A) Rewards received by the controller during each learning episode consisting
of 100 trials. The second x-axis shows the session’s time-line. After weak initially fluctuations, the
rewards settled down at around episode 28 to a relatively stable regime of higher rewards. (B) Response
strengths smoothed with a 5 sample moving Gaussian window and binned (µ± σ) every 5 min.The green
line indicates the pre-defined target response strength. From ≈ 400 min onward, response strengths
transitioned to values closer to the target.

binned response strength sequence (Fig 5.11B). At ≈ 1 hour into the recording, mean

response strengths were closer to target but departed soon after. Response strengths

stayed at a higher value for the next 5 hours. However, from 400 min onward, responses

transitioned to values closer to target and remained thereabouts for the remainder of

the session.

In summary, these sessions demonstrated that the nature of input-output relation-

ships was an important factor to consider in the development of stable autonomous

control strategies.

In all networks described heretofore, the available action set was one-dimensional.

Only stimulus latencies could be manipulated by the controller. Overall, 11 sessions

were run with one-dimensional actions sets involving 8 networks. Three of them

were characterized by mode-switches (see Case 1). Three sessions exhibited oscillatory

instabilities due to sharp non-linearities (Case 2). In three sessions, the target was

achievable by random actions and hence learning did not proceed. In the remaining two

sessions, target response strengths were not achieved. The last two categories indicated

lack of controllability due to limitations in either observability of the network state or
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accessibility of the outputs given the action set (see Section 5.3 and Appendix C.1).

5.2.3 Instabilities due to action dimensionality and learning delays

An formidable challenge for neurotechnological devices in a clinical context is the

size of the parameter space to be explored. With open-loop devices, stimulator pro-

gramming involves a highly trained clinician heuristically exploring a large action

space (stimulation site, frequency, amplitude pulse-width etc.). The ability to navigate

high-dimensional action spaces and converge quickly to optimal policies is therefore

extremely desirable in an autonomous paradigm. High dimensional actions spaces

pose a challenge to current RL algorithms, many of which do not scale gracefully with

dimensionality.

To include this aspect of the challenge in our model, we added more action di-

mensions to the controller. Based on the hypothesis that response strengths may be

dependent not just on temporal relationships to the previous network event, but also

spatial considerations, i.e. pathways recruited for propagation of activity in the network,

we now included multiple stimulus locations and latencies at each to the set of actions

available to the controller.

Additionally, to compare random against learned strategies, experiments started

with an initial ‘non-adaptive’ period where random actions were delivered. Response-

strengths during this phase was monitored and used to learn the Q-function. When

the open-loop constraint was removed, the controller transitioned into a closed-loop

learning based policy where it would execute optimal actions based on observations

made thus far. Further along the session, learning proceeded with a forgetting scheme,

i.e. older samples were discarded as and when newer experiences were acquired.

Given the large action set that was available for exploration, to make efficient use of

the collected data and stabilize the learning process we performed batch RL (Lange

et al., 2012). The Q-function was updated in batches of 100 trials each. However the

procedure also introduced a delay of ≈ 30 min between observing the system and

learning from interactions. The choice of permissible delays may play an important

role in the dynamic stability of the paradigm since input-output relations were found
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to fluctuate over similar time scales. LSPI was used as the learning algorithm.

The high dimensionality of the action set and the attendant learning delays resulted

in an oscillatory instability that was reproducible across networks. We report here, two

such cases.

Case 3

A 7 hour long session with a target response strength at the evaluation site set to 5

spikes was performed. The experiment proceeded in batch RL mode with each episode

comprising 100 trials.

During the random phase, mean response strengths were already close to the

predefined target (Figs 5.12A, 5.13A). At around 140 min, the experiment switched

to the learning based adaptive phase. In this phase, though response variability was

found to decrease slightly, mean responses fluctuated around the goal, pointing to a

system instability (Fig 5.13A).

As the controller transitioned into the adaptive phase, certain latencies and stimu-

lation sites were preferred (Fig 5.12B–C). The latencies chosen by the controller over

time revealed a pattern where the smallest latency (0.5 s) was repeatedly preferred ap-

proximately every 50 min. These periods also corresponded to troughs in the response

strength time series (see solid magenta lines in Fig 5.12A–C). Crests in the response

strength sequence were correlated with the choice of stimulation site 83 (see dashed

magenta lines in Fig 5.12A–C). These observations suggest that it was the controller’s

choices that mediated fluctuations in response strengths. The repeated choice of poor

actions points to an unstable closed-loop configuration.

The evolution of SB strengths did not resemble the oscillatory trends of the response

strength time series (Fig 5.12D–E). This supports our contention that in this session,

it was the adaptive controller and the policy it learned, and not changes in ongoing

activity modes that mediated excursions in the response strength sequence. The

ineffective policy could be attributed to the long delays in the learning loop and the use

of linear approximations for potentially non-linear mappings. The example illustrates

the susceptibility of our paradigm to feedback instabilities.
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Figure 5.12. Case 3: (A) Response strengths smoothed with a 5 sample moving Gaussian window and
binned (µ± σ) every 5 min. The green line indicates the goal. (B, C) Evolution of the distribution of
the controller’s choice of latencies (B) and stimulation sites (C) during the session, computed using a
sliding window of 10 trials each. The preference of lower latencies during troughs (solid lines) and site
83 during crests in the response strength sequence (dashed lines) are marked in magenta. (D, E) SB
strengths preceding each trial during the session. Both single channel (D) and global (E) spike count
time series were smoothed with an exponentially weighted moving average technique (α = 0.04). Dashed
line in panels A–E indicate the end of the non-adaptive phase.

Case 4

We report another example of an unstable controller under similar settings. Mean re-

sponse strengths were already around target levels during the random phase (Fig 5.14A).
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Figure 5.13. Case 3: Distributions of the (A) means and (B) standard deviations of response strengths
during random and learned strategies. Response strengths were binned every 3 min during the recording
session (see Fig 5.12A). Normalized distance to target (A) was obtained by subtracting and dividing
with the target response strength. While variability was significantly lower, the mean response strengths
were off target after learning (green line in A). (C) The response probability distribution before and after
learning showed that response failures, possibly due to poor choices of stimulation policy, were more
common after learning.

At ≈ 210 min, the controller switched to the learned adaptive phase (dashed line in

Fig 5.14A). As in Case 3, response variability decreased, though mostly in periods of

low responsiveness (Figs 5.14A, 5.15B). Mean responses weakened and fluctuated over

a period of hours with recurring windows of response failures, likely due to a lousy

stimulation policy (Fig 5.14A).

Figs 5.14B-C shows the evolution of action selection, i.e., latencies and stimulation

sites chosen by the controller. In the adaptive phase, certain actions were preferred

by the controller. Troughs in the response strength sequence corresponded to the

choice of stimulation site 46 (marked in magenta in Fig 5.14A–B), suggesting that the

controller’s choices likely mediated fluctuations in response strengths. However, unlike

in Case 3, such an interpretation is confounded by the fluctuations observed in SB

event strengths at the RC in the adaptive phase of the session (Fig 5.12D). Troughs in

the response strength sequence corresponded to crests in the SB strength sequence,

indicating that the ongoing activity mode may also have a role to play (magenta lines,

Fig 5.14A–D). The example illustrates the causality dilemma inherent to analyses of

coupled co-adaptive schemes.

In summary, experimental sessions that progressed with high dimensional action

sets and delayed learning were dominated by a trend of dynamic instabilities during

closed-loop learning. Overall, 21 networks were studied using two-dimensional action

sets and large learning delays. Distinct oscillatory excursions in response strengths were

found in all 14 networks where sustained closed-loop interaction was viable. In the rest
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Figure 5.14. Case 4: (A) Response strengths smoothed with a 5 sample moving Gaussian window and
binned (µ± σ) every 5 min. The green line indicates the goal. (B, C) Evolution of the distribution of
the controller’s choice of latencies (B) and stimulation sites (C) during the session, computed using a
sliding window of 10 trials each. Site 46 was preferred during troughs in the response strength sequence
(marked in magenta). (D, E) SB strengths preceding each trial during the session. Both single channel
(D) and global (E) spike count time series were smoothed with an exponentially weighted moving average
technique (α = 0.04). Dashed line in panels A–E indicate the end of the non-adaptive phase.

activity switched to a regime characterized by multiphasic synchronized bursting (n=3)

or responsiveness of the RE was lost (n=4; see Fig 5.26 and Appendix C.2).
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Figure 5.15. Case 4: Distributions of the (A) means and (B) standard deviations of response strengths
during random and learned strategies. Response strengths were binned every 5 min during the recording
session (see Fig 5.14A). Normalized distance to target (A) was obtained by subtracting and dividing with
the target response strength. While the variability distribution flattened, the mean response strengths
turned multi-modal due to the recurring periods of low or no responses (see Fig 5.14A). (C) The flattening
of smaller probabilities in the response probability distribution indicates that response failures were
frequent after learning.

5.3 Observability and controllability issues

The stability issues discussed heretofore were not the only factors that mediated the

performance of our controllers. In some of the networks studied, the target response

strength was unachievable.

A formal determination of system observability or controllability are generally not

feasible for control problems involving neurobiological networks. The model-system

was thus assumed observable and controllable. In networks for which the controller was

unable to achieve the goal, it is likely that these assumptions were violated. Learning

impaired closed-loop sessions could be broadly classified into the following categories.

When pre-defined target response strengths were already achievable with a random

strategy, learning was impaired due to insufficient discriminability among actions.

Fig 5.16 shows two such examples.

Temporal drifts and loss of activity in the sole recording channel also hampered

network observability in some of our networks. In such cases, the controller continued

to execute random policies presumably due to the lack of meaningful rewards.

Another limiting factor was the lack of sustained accessibility of the target state

given the limited repertoire of actions available to the controller. In a few cases, the

target was found consistently unattainable using the action space available to the

controller (Fig 5.17).

In other cases, after hours of interaction, certain stimulation sites were no longer
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Figure 5.16. When the target was achievable with a random strategy, the controller was limited in its
ability to improve the stimulation policy. In both panels, response strengths (µ± σ) recorded over 5 min
bins are shown. The green line indicates the target.

able to evoke responses, essentially limiting the controller’s accessibility to the network.
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Figure 5.17. When the target was not achievable with the available actions, the controller was limited in
its ability to improve the stimulation policy. Data as in Fig 5.16.
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5.4 Stable high-dimensional adaptive control of response strengths

Though autonomous approaches could help optimize interactions with biological

neuronal networks (see Chapter 3), ensuring dynamic stability of such interactions

over long periods of time remains a challenge. The failure classes discussed thus far

illustrate various aspects of this challenge and raise the question of whether maintaining

dynamic stability in such a co-adaptive architecture is feasible at all.

Stability, in a formal sense is impossible guarantee for such a paradigm, given the

absence of a computational description of the system’s dynamics. Nonetheless, since the

instabilities discussed in our case studies could be attributed to specific aspects of the

co-adaptive system, we asked if it was possible to address them individually by suitably

adapting our learning algorithms. We followed a failure driven algorithm development

strategy assuming that the biological conditions were favourable (i.e., ‘control-friendly

network mode’, sustained observability and accessibility to the thorough the chosen

sites and so on). Data from networks where these conditions were met were not

analysed.

To dissociate the controller from possible slow mode-switches in ongoing activity

as discussed in Case 1, we introduced a forgetting scheme. Specifically, the agent

retained the memory of transitions only close to the current time instead of the entire

history. In addition, we used non-linear methods to approximate the Q-function (see

Section 2.4.2 and Appendix B for a detailed description). NFQ had already shown

promise compared to linear methods in dealing with sharp non-linear interactions in

a previously discussed case (cf. Case 2). Further, to mitigate the effects of delayed

learning on closed-loop performance (cf. Cases 3 and 4), we shortened our update

cycles.

Along with the higher dimensional action sets we included one or more dud-sites

– channels that were manifestly ineffective to evoke responses in the network. These

served as a sanity check for the learning algorithms while also contributing to clearly

distinguishing between naive and learned policies by making the set of effective actions

a sparser subset of the available ones. Here we report two cases in this category (Cases

5 and 6).

116



Chapter 5. Adapting to Temporal Inhomogeneities in Stimulus-Response Relations

Case 5

A 16 hour long experimental session with a target response strength at a chosen site set

to 12 spikes was conducted. The experiment proceeded with shorter learning episodes

of 50 trials each. Improvement in goal-directed behaviour was observed as the learned

controller was deployed after twenty episodes of random action exploration. Thereafter,

from ≈ 400 min onward, response strengths remained around the target albeit with

small oscillations.

Figs 5.18A shows the individual response strengths evoked during the session.

During the random phase, mean response strengths were low (5 – 7 spikes) with many

response failures (Fig 5.19C). From ≈ 250 min onward, the learned adaptive controller

was deployed and performance improved until response strengths settled around the

target (Fig 5.19A). Mild overshoot and subsequent oscillatory behaviour persisted for

the remainder of the session. Notably, response variability did not change appreciably

from one phase to the next (Fig 5.19B).

During the initial 800 trials (250 min), latencies and stimulation sites were randomly

selected from the available choices (Fig 5.18C–D). As the controller switched to the

learned adaptive phase, certain actions were found to be preferentially selected. A

range of latencies between 2 – 4 s were chosen in the learned phase. When executing the

learned policy, the controller relied mostly on two stimulus sites (42 and 53, Fig 5.18C).

As the experiment proceeded, the choice shifted exclusively to channel 53. Channels

67 and 55 were dud-sites planted for a quick validation of the learned policy. During

the learnt phase, these sites were avoided indicating the efficacy of the learned policy.

Fig 5.18D–E shows the evolution of spontaneous events in the network prior to each

action. The closed-loop phase had a depressing effect on global spike counts, although

events at the recording site were slightly stronger.

Fig 5.20 shows the evolution of chosen stimulus latencies during the period over

which response strengths were reasonably on target. Considerable fluctuations of the

chosen latencies were observed. Particularly, during the last 100 min, a switch to a

different policy was evident although there was no impact on the evoked response

strengths, pointing to adaptive capabilities of the learning algorithm. Cross correlation
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Figure 5.18. Case 5: (A) Response strengths smoothed with a 5 sample moving Gaussian window and
binned (µ± σ) every 5 min. (B, C) Evolution of the controller’s choice of latencies (B) and stimulation
sites (C) during the session, computed using a sliding window of 10 trials each. Colour indicates the
probability of choosing a particular latency or site in each such window. Red triangles indicate the
designated dud-sites. (D, E) Evolution of spontaneous event strengths in the network preceding each
stimulus trial during the session. Both single channel (D) and global (E) spike count time series were
smoothed with an exponentially weighted moving average technique (α = 0.04).

of the mean latencies with the mean response strengths revealed a negative peak at a

lag of ≈ 18 min. The negative value points to the ability of the controller to correct

overshoots and modulations in response strengths and stay on target by choosing
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Figure 5.19. Case 5: (A) The distribution of binned mean response strengths relative to the target
(green line) and normalized by the standard deviation of response strengths during random and learned
strategies showed that after learning, mean response strengths shifted stayed around the pre-defined
target. (B) The distribution of standard deviations of binned response strengths during random and
learned strategies suggested that short time-scale trial-to-trial response variability was not much impacted
in this network by the control strategy. (C) The distribution of Response probabilities before and after
learning showed that far fewer response failures occurred after learning suggesting that the controller
learned to avoid actions that were likely to fail (see also Fig 5.18B–C).
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Figure 5.20. Case 5: Snippet of the clamped phase, response strengths computed over 7 min bins (top)
and the corresponding mean stimulus latencies chosen during the clamped period (bottom). The cross
correlation of the two measures indicate a negative peak at around 18 min (inset).

latencies that tend to oppose response strength fluctuations. The lag corresponds to the

approximate episode duration or the delay after which the controller updates itself.

Case 6

We report another example of a stable controller under similar settings. Performance

was found to improve as soon as the learned adaptive controller was active (Fig 5.21A).

During the random phase, mean response strengths were low (≈ 3 – 5 spikes). At

≈ 175 min, the learned controller was active. Thereafter, performance improved until

it settles around the target near the 250 min mark. Mild overshoot and subsequent

119



Chapter 5. Adapting to Temporal Inhomogeneities in Stimulus-Response Relations

500 1000 1500 2000 2500 3000

Trials

48
34
31
45
55
74

S
ti

m
la

ti
o
n
 s

it
e

0

0.2

0.4

0.6

0.8

P
ro

b
a
b

ili
ty

0 100 200 300 400 500 600

Time [min]

500 1000 1500 2000 2500 3000

Trials

2

4

6

8

10

12

R
e
sp

. 
st

re
n
g
th

 [
sp

ik
e
s]

E15NC04

100 200 300 400 500 600

Time [min]

500 1000 1500 2000 2500 3000

Trials

1

2

3

4

La
te

n
cy

 [
s]

0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

b
a
b

ili
ty

0 100 200 300 400 500 600

Time [min]

C

A

B

Figure 5.21. Case 6: (A) Response strengths smoothed with a 5 sample moving Gaussian window and
binned (µ± σ) every 5 min. (B, C) Evolution of the distribution of the controller’s choice of latencies (B)
and stimulation sites (C) during the session, computed using a sliding window of 10 trials each. Red
triangles indicate the designated dud-sites. Dotted lines in all panels indicate the end of the non-adaptive
phase where random actions were chosen by the controller.

oscillatory behaviour persisted for the remainder of the session. As response strengths

moved toward the target, slight reduction in variability was also observed in this

session (Fig 5.22B).
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Figure 5.22. Case 6: (A) The distribution of binned mean response strengths relative to the target
(green line) and normalized by the standard deviation of response strengths during random and learned
strategies showed that after learning, mean response strengths shifted stayed around the pre-defined
target. (B) Distributions of the standard deviations of binned response strengths during random and
learned strategies suggested that trial-to-trial response variability was considerably reduced by the control
strategy. (C) The distribution of response probabilities before and after learning showed that far fewer
response failures occurred after learning suggesting that the controller learned to avoid actions that were
likely to fail (see also Fig 5.21C).

During the initial 800 trials (175 min), latencies and stimulation sites were randomly
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selected from the available action set (Fig 5.21B–C). In contrast, certain actions were

found to be preferred in the learned phase. When executing the learned policy, the

controller relied mostly on two stimulus sites (34 and 48, Fig 5.21C). Among these, 34

was preferred in the first 5 hours of the closed-loop session and 48, thereafter. Channels

55 and 45 were dud-sites planted for a quick validation of the learned policy. During

the learnt phase, these sites were avoided, validating the efficacy of the learned policy.

Considerable fluctuations in the chosen latencies were observed during the period

when response strengths were clamped to the pre-set target (Fig 5.23). Moreover, their

cross correlation revealed a negative peak at a lag of ≈ 18 min. The negative value

points to the controller’s tendency to correct overshoots and modulations in response

strengths and stay on target by choosing latencies that tend to oppose response strength

fluctuations. The lag corresponds to the approximate learning delay after which the

controller updates itself.
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Figure 5.23. Case 6: (Top) Snippet of the clamped phase, (top) response strengths computed over 5 min
bins and the corresponding mean stimulus latencies chosen during the clamped period (bottom) . The
cross correlation of the two measures indicate a negative peak at around 18 min (inset).

The relationship between binned previous SB event strengths and the latencies

chosen by the RL controller, when responses were clamped to the pre-set target, was

non-linear and non-monotonic (Fig 5.24).

In summary, following a failure driven strategy, we tuned potentially destabiliz-

ing factors in the learning algorithm. This led to substantial improvements in the

controller’s performance across networks (Fig 5.26). Stability and improved target
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Figure 5.24. Relationship between the previous SB event strengths and chosen stimulus latency during
periods when responses were clamped to the pre-set target. Panels (A) and (B) show data corresponding to
the networks discussed in Cases 5 and 6 respectively. Both time series were z-scored. The non-monotonic
relationship shared qualitative similarities.

reachability relative to a random policy was achieved in 27 out of the 29 networks

where the RE was active throughout the session (Fig 5.25). Feedback instabilities were

observed in 2 networks. We demonstrate that achieving stable RL based adaptive

control of biological neuronal networks is indeed feasible though non-trivial. A number

of caveats govern the stable operation of such co-adaptive systems, as illustrated in our

networks. More data are reported as supplementary material in Appendix C.3.
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studied (n=27). Circles correspond to the median binned response strength R̃, normalized by the
predefined target for each network (see Figs 5.19A, 5.22A). (B) Failed trials were less likely after learning.
The circles correspond to median response probabilities (see Figs 5.19C and 5.22C) in each network. (C)
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3 networks with zero probabilities. (D) Learned stimulation policies were, however, unable to reduce
response variability. The median σ (see Figs 5.19B, 5.22B for examples) for each network is shown during
the random and learned phases. Solid lines in each panel connect data points corresponding to each
network. The jitter along the x-axis was added to aid visibility.
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Figure 5.26. (A) In the 21 networks where learning delays were large (updated every 100 trials) and
LSPI was the learning algorithm, sustained interactions were possible in 67% of the networks. They all
exhibited stochastic instabilities and response fluctuations (see Section 5.2.3 and Appendix C.2). (B) 52
networks were studied with shorter learning delays (updated every 50 trials) and NFQ as the learning
algorithm. Stable performance was achieved in 93% (i.e. 27 out of 29) of the viable networks.
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Summary

• We defined a toy problem to develop algorithms for the autonomous control of

BNNs. The aim was to clamp response strengths to pre-defined levels.

• Closed-loop performance was found to vary widely across networks.

• Cases exhibiting dynamic instabilities were analysed to understand the factors

mediating failures.

• Mode switches in ongoing activity and sharp non-linearities in the interaction

model were notable biological factors that contributed to dynamic instabilities.

• High dimensional controller specifications (state and action spaces) and learning

delays in the loop were technical factors destabilizing the system.

• A failure-driven algorithm development strategy allowed us to mitigate the

likelihood of failures and improve performance.

• Our results show that though autonomous methods may indeed be feasible for

stable adaptive control of BNNs, guaranteeing robust performance remains an

open problem.

• Formal methods for safety and stability assessments are necessary; our approach

offers tentative directions to aid their development.
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Discussion

∗ Closed-loop stimulation has been proposed as a promising strategy for targeted

interaction with the activity dynamics of pathological networks in the brain. Realizing

such a framework in the clinical context is, however, riddled with challenges. It remains

unclear how to identify appropriate signal features to measure the ‘state’ of a neuronal

network. How stimulation settings can be optimized relative to a given target is also

not understood. Further, the plastic nature of biological neuronal networks makes it

cumbersome to understand stability properties and guarantee safe operation of such a

co-adaptive scheme.

In this thesis, we proposed a novel RL based closed-loop paradigm capable of

addressing some of the aforementioned challenges. RL based methods are distinguished

from other approaches in that they can learn from direct interaction without relying

on exemplary supervision or complete models of the system. However, the feasibility

and specific challenges of coupling such controllers in a co-adaptive architecture with

high-dimensional and plastic ensembles of biological neuronal networks has remained

unexplored.

To explore the viability of such a paradigm and develop learning algorithms to

achieve goal-directed interaction, we used generic neuronal networks in vitro as a model

system. Cultured neuronal networks, in contrast to in vivo brain networks, are devoid

∗Parts of Section 6.1 were included in the “Discussion” section of our published article: Kumar SS,
Wülfing J, Okujeni S, Boedecker J, Riedmiller M, Egert U (2016) Autonomous optimization of targeted
stimulation of neuronal networks. PLoS Comput Biol 12(8): e1005054.

125



Chapter 6. Discussion

of anatomical or functional specialization and offers a generic network that preserves

low-level networked neurophysiological mechanisms thought to mediate challenges

relevant to closed-loop interactions with neurobiological systems. Moreover, they are

easier to maintain in a controlled bi-directionally accessible environment, independent

of cognitive or behavioural states.

We carefully formulated toy problems that translated the conceptual structure of the

closed-loop neurotechnological problem and approached goal-directed RL algorithm

development with little a priori information. In the first part of this thesis (Chapter 3),

we asked if such a controller could address a multi-objective optimization problem

defined on the model system. Our results offer the first proof-of-principle of an

autonomous controller solving an optimization problem in biological neuronal networks

by interacting with them (Kumar et al., 2016). The details are discussed in Section 6.1.

In the second part (Chapter 5), we investigated the extend to which such controllers

could adapt to the poorly understood temporal non-stationarities corresponding to

changes of the interaction model, typically found in neuronal networks in vivo and in

vitro. Using the history of ongoing and evoked activity to track temporal trends and

continuously revise stimulation policies, we devised a closed-loop strategy responsive

to the dynamics of input-output relations. Analysis of long term performance across

networks suggested that the co-adaptive paradigm was prone to feedback instabilities.

Using post-hoc analysis, we describe few classes of instabilities that biological neuronal

networks coupled to adaptive controllers could fall into. An informal failure-driven

algorithm development strategy enabled us to reduce failure rates and improve per-

formance in many networks, suggesting that stable solutions may indeed be feasible.

However, formal strategies to guarantee robust and stable operation remain an open

problem. The challenges posed by system non-stationarity, tentative strategies to ad-

dress them and the challenges involved in ensuring safe and stable operation of the

paradigm are discussed in Section 6.2.
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6.1 Optimal interactions with biological neuronal networks

It is often the case in a neurotherapeutic context that one may not be able to specify

a priori an explicit desired neuronal output pattern, but can only state overall system

objectives such as maximizing activity correlations, minimizing synchrony, etc. Ex-

amples include maintaining asynchronous activity in PD or prolonging residence in

states that minimize susceptibility to epileptic seizures. The main features of such a

goal is that a quantitative measure of the target response cannot be clearly identified a

priori. It is instead intrinsically determined, variable, or emerges as a result of multiple

interacting processes. It might also be desirable to qualitatively constrain interactions

as is heuristically done in open-loop stimulator programming to balance the trade-off

between clinical improvements and stimulus-induced side-effects. Additionally, the

ability to include technical constraints in the cost functional (e.g. energy expenditure),

could significantly add value to such therapeutic technologies.

The extremum-seeking problem structure underlying such situations was captured

in a trade-off scenario identified in our model system. We discuss the nature of the

problem, our approach to using autonomous RL algorithms and interpret the results in

this section.

6.1.1 Translating the optimization problem to generic networks in vitro

The extremum seeking problem with no numerical set-point available a priori was

translated in our model system to a trade-off problem involving the interplay of

ongoing and evoked activity patterns in neuronal networks. The problem involved

identifying the optimal stimulus latency relative to ongoing spontaneous bursts (SB)

that maximized the response strength evoked per trial. Maximal achievable response

strengths was network dependent and unknown a priori. We found that each network

had a unique optimal latency depending on the ongoing and evoked activity patterns

it supported.

The temporal relationship of SB events in these networks was approximated by a

log-normal function. Moreover, the strengths of responses to electrical stimuli is known

to fit a saturating exponential model, dependent on the period of inactivity following
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an SB event (Weihberger et al., 2013). Response strength was defined as the number

of spikes detected in a predefined temporal window (typically 500 ms) from stimulus

onset. Note that Weihberger et al. (2013) defined response lengths in temporal terms

(time to the last spike in the detected response) and used a two parameter model of

the form A(1− eλt) to capture the interaction. Our data showed that spike counts in a

given post-stimulus window was proportional to response lengths measured in time.

Additionally, when used with a three parameter model A(1− e−λt) + B, improved fits

were obtained compared to the scheme described in Weihberger et al. (2013). The spike

count implementation was also simpler and more robust for closed-loop processing

and allowed a straightforward definition of the reward function. Therefore, we used the

improved interaction model based on the spike count scheme for all our experiments.

Interaction of these underlying processes gave rise to an abstract objective function

predicting a network specific and unique stimulus latency that maximized the number

of response spikes evoked over repeated stimulation. The goal set for the RL controller

was to autonomously identify this optimal latency.

Our toy problem captures crucial elements of the challenges that closed-loop

paradigms face in a biomedical application, i.e. in a very complex, adaptive envi-

ronment. Balancing the trade-off between response strengths and interruptions involves

figuring out their interdependence and simultaneously factoring in the likelihood of

ongoing activity to choose an appropriate stimulus latency. With every network being

distinct in the properties of its spontaneous dynamics and response to stimuli, the

paradigm was tested for robust operation over a range of parameters (Kumar et al.,

2016). Furthermore, ongoing activity is highly variable and subject to unpredictable

modulation over a wide range of time scales. Stimulation may induce plasticity of

synaptic coupling and thus could lead to further challenges.

6.1.2 Does a unique optimal latency exist for each network?

One of the advantages of the chosen problem in the context of our model system was

the availability of approximate phenomenological models describing stimulus-response

relations. This allowed us to investigate the well-posedness of the control problem
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using numerical methods. We studied the nature of the objective function and how

each model parameter contributed to it.

Simulations revealed the multi-modal nature of the control problem – in that

two separate measurable modalities were simultaneously involved – the exponential

recovery function and the statistical model of ongoing event occurrence. Combining

them enabled us to visualize the non-linear convex cap input-output dependence

f (t). The optimal stimulus efficacy, f (t∗), was unique, distinct for each network

and necessarily attainable, because the corresponding t∗, the optimal latency, always

belonged to the domain of interest (0 – 10 s) throughout the span of parameter values

observed experimentally. Each network, being a parameter combination determined

from fits to open-loop data, therefore mapped to a single non-linear input-output curve

that belonged to the set of objective functions described earlier. In other words, a

unique and optimal solution existed for all parameter sets within the observed range

(i.e. all networks).

6.1.3 Assessing the quality of autonomously learned solutions

In the generic trade-off problem considered, the maximal value of the objective function

for each network was not known a priori. Consequently, evaluating the quality of a

solution autonomously learned was non-trivial. This is in general an issue in any

intervention where only overall, i.e. non-parametric system objectives and not their

quantitative specifics are known upfront.

To address this hurdle, we relied on prior studies on such networks (Weihberger et

al., 2013). This information was used to capture the dynamic interplay of ongoing and

evoked activities using parametric models under the assumption of system stationarity.

By fitting open-loop interaction data to these phenomenological models, we were able

to predict network-specific optimal stimulus latencies to evaluate the quality of the

learned strategy for each network.

However, predictions were based on objective functions estimated from models fits

made to spontaneous activity and noisy samples of response strengths evoked during

open-loop interactions. Predictions made from these models were therefore only as

129



Chapter 6. Discussion

good as the chosen model and how well it could be fitted to the data-set. Based on the

coefficient of determination of model fits to data from each network, we estimated the

99% confidence interval (CI) for the predicted peak stimulus efficacies.

Experimentally achieved efficacies after learning were found to lie within this

interval in 8 of the 11 networks studied and could be above or below predicted efficacy

levels (Fig 3.9D). A further reason for departures from predicted levels could be

temporal inhomogeneities that built up in network activity between the time of the

original estimate of the objective function and the learning sessions eventually available

for evaluation. The gain in efficacies from a naive to a learned controller also varied

across networks. As Figs 3.5B and 3.6A illustrate, the time constant of the exponential

stimulus-response relationship is a significant factor affecting the achieved gain in

stimulus efficacies.

In short, stimulus efficacies improved after learning in all networks studied and lay

within the 99% CI of predicted optima in most networks. This positively validated not

only the quality of the learned solutions but also the robustness of the autonomous

strategy. To our knowledge, this is the first demonstration of the ability of artificial

agents to learn to interact optimally with biological neuronal networks (Kumar et al.,

2016).

6.1.4 Is the assumption of stationarity valid?

In this study, stationarity of the input-output relationship was a necessary assumption to

compare optimal stimulus latencies predicted from open-loop data at one point in time,

to those learned later in closed-loop sessions. However, this is not necessarily correct.

Given that stimulus-response interactions in in vitro and in vivo neuronal networks are

known to undergo activity dependent changes, how valid is our assumption (Minerbi

et al., 2009; Arieli et al., 1996; Hasenstaub et al., 2007; Azouz and Gray, 1999)?

Differences in the magnitudes of correlations between parameters A (strongly

correlated), B (less positively correlated) and λ (no correlation) in open vs. closed-loop

data fits are possible indicators that some parameters were perhaps more strongly

modulated over time than others.
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In spite of such sources of variability, the correlation of the learned latencies

of the controller with the preceding, temporally distant, open-loop predictions was

surprisingly strong. The likely explanation is that the temporal resolution of the

controller – the chosen state-space discretization – was relatively coarse at 0.5 s. The

parametric model of the trade-off problem showed that the impact of parameter

fluctuations on optimal latencies was small relative to this resolution of the state-space

(Figs 3.3, 3.4 and 3.5). The actual optimum, thus, could fall in the neighbourhood of the

learned latencies. Such a tendency is indeed visible in the error between the learned

and optimal times (Fig 3.8F), which are centred around the optimum.

Therefore, in the context of our experiment, we argue that since the objective

function and hence the optimal solution remained reasonably invariant under the range

of temporal fluctuations observed in our model parameters, the specific optimization

problem could be assumed stationary.

6.1.5 The perils of learning in sessions

For experiments discussed heretofore, our closed-loop framework was designed to learn

session-wise. Blocks of trials were dedicated to exploring the action space and learning

an optimal stimulus policy (training session). Thereafter, the controller continually

executed a learned optimal policy, during which period no further learning occurred.

Such an experimental design aided the separation of performance measures before and

after learning.

However, the strategy has to be generalized with caution. It assumes that the

problem at hand is stationary and that repetitive interactions with the network are

serially independent. Though the specific trade-off problem we addressed was arguably

within the scope of these assumptions, it has to be noted that they may not be generally

true of interaction problems involving biological neuronal networks. Such strategies

are unprepared to respond to qualitative changes in stimulus response interactions

occurring either spontaneously or as a consequence of interacting with the network.

Unconstrained and repetitive execution of a particular learned policy may introduce

serial dependencies and induce activity features beyond the repertoire experienced
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during training sessions. This could lead to errors between the ‘true’ and estimated

or learned optimal policies that relegate the controller to a sub-optimal regime. Even

where the objective function per se is invariant under induced modifications in features

of network activity, such interactions should be deemed unsafe because of the poor

predictability of the activity patterns so induced.

Effects indicating this situation were observed during some of our sessions where

the nature of interactions was distinctly different across adjacent training and testing

sessions. During initial training sessions, we found that the naive controller was likely to

learn a low and incorrect value of optimal latency. When such policies were repetitively

delivered to the network during testing, increased response delays were observed

(see Fig 3.15). A possible explanation is the resource depletion and the attendant

network refractoriness resulting from the relatively higher stimulation rates during this

period (Weihberger et al., 2013). An alternative explanation is the selective adaptation of

the network to the frequently presented stimulus – a phenomenon described previously

in such networks (Eytan et al., 2003). Changes in synaptic transmission (excitatory

synaptic depression and increased background inhibition) were shown to underlie such

selective gain control (Eytan et al., 2003).

Our controller ignored such unintended consequences, not just because it was in

the testing phase, but also since response delays were not a feature of the state of the

environment it was designed to measure. This illustrates in principle two pitfalls of

the paradigm: separating learning into sessions, and more generally, working with

potentially deficient states.

In our experiments, the case could be made that response delays are orthogonal to

response strengths in feature space and that their independence meant the objective

function remained invariant. But the principle, when extended to a yet unconsidered

dependent feature, could be consequential. In general, the point remains that constraints

on action selection and their sequential execution may have to be imposed in the interest

of safe operation. Features to inform the constraints will need to be identified online

rather than post-hoc. Further, they may need to operate dynamically for safe and

efficient learning based control. The design of such an autonomous supervisory
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framework remains an open problem.

6.2 Autonomous adaptive control

A pervasive element of neuronal activity in the brain is fluctuation (spatial and

temporal), the scale and origin of which remains poorly understood (Cabral et al.,

2014, and references therein). Under pathological conditions a further layer of time-

evolving processes that disrupt the healthy evolution of brain states is thought to be

involved (van den Heuvel and Sporns, 2013). An ideal neurotechnological intervention

would have to operate efficiently notwithstanding the ongoing dynamics of activity.

Apart from finding optimal stimulus policies, it has to adaptively reconcile the temporal

evolution of the context within which the policy was optimal.

Neurotechnological devices capable of dynamically adapting to ongoing activity

are however challenging to develop, mainly because of a poor understanding of the

network state, its spatio-temporal extent and evolving influence on network-stimulus

interactions. Further, closing the loop on a partially understood dynamic system runs

the risk of feedback instabilities, oscillations and runaway behaviour.

In the second part of the thesis, we approached the design of an autonomous

adaptive controller coupled to biological neuronal networks. We assessed viability of

the approach, identified some of the factors governing dynamic stability and highlighted

specific challenges that need formal treatment for the development of a safe and stable

closed-loop neurotechnological framework.

6.2.1 Translating the adaptive control problem to the model system

Generic neuronal networks in vitro are known to undergo activity dependent changes

(Minerbi et al., 2009). Long term activity fluctuations, though reported in various studies

using cultured neuronal networks in vitro, are yet to be comprehensively characterized

in literature (Baltz and Voigt, 2015; Haroush and Marom, 2015). Our data revealed

slow fluctuations around the quantitative model describing stimulus-response relations

when stimuli were delivered serially over long time scales. We hypothesized that to

repeatedly evoke the same response strength, a stimulation policy would need to be
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adjusted to accommodate the slow dynamics of underlying network states. Our data

also suggest that the background process modulating stimulus-response relations may

also reflect in features of spontaneously occurring events proximal to the stimulus.

Using these insights, we devised an RL based autonomous adaptive controller to clamp

response strengths to a pre-set levels.

The controller had to learn an evolving stimulation policy to clamp response

strengths to target levels. Over long time scales, it had to maintain goal-directed

behaviour by appropriately adapting its policies using information from the history

of evoked and ongoing activity in the network. Neither the mapping between state

and action spaces nor the time scale of fluctuations of stimulus-response relations was

available a priori to the controller. In any case, they were network dependent and often

difficult to characterize precisely. This framework recreates the essential structure of the

control problem in a clinical context. Importantly, it offers an opportunity to develop

algorithms and better understand the challenges of achieving adaptive control with

biological neuronal networks in a controlled setting.

6.2.2 Stability and safety concerns of the autonomous paradigm

Dynamical systems coupled in a feedback loop could lead to instabilities. Since our

paradigm is based on model-free interactions with biological neuronal networks, it is

impossible using current techniques to formally guarantee dynamic stability of the

feedback loop. In our experiments, we did indeed observe dynamic instabilities arising

in the autonomous loop. Here we discuss qualitatively the nature and properties

associated with such instabilities and attempt to attribute their origin to either the

biological network or the controller though the closed architecture made it cumbersome

to identify the origin of instabilities.

Instabilities driven by the network

A characterizing feature of biological neuronal networks is the poorly predictable mi-

gration between ‘network modes’ and the consequent modulation of network-stimulus

interactions over long time scales. Such non-stationary development of MDP dynamics
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is problematic for RL algorithms since we need to store and re-use experiences or

samples from the past to train them. When learning is hampered due to experiences

that are inconsistent with observed activity dynamics, situations could arise where

stimulation is delivered inappropriately, despite being in a mode where intervention

was perhaps not necessary or even ‘unsafe’.

Our experiments exposed limitations of this kind in some our networks. The pre-

defined goal was seemingly unattainable during certain periods in the closed-loop

session (see Case 1). Drastically different durations were needed to achieve the same

target in two closed-loop sessions on the same network (Figs 5.1, 5.4). Further, when

the network switched to a different mode, the hitherto successful strategy failed to

achieve target (Fig 5.4). They suggest that while learning impacts stimulation outcomes,

the ability to learn such policies may be constrained to ‘favourable’ network modes.

However, such conspicuous mode fluctuations were a feature of only a small subset

of the networks we studied (see Fig C.1 in Appendix C). Not all of them were amenable

for closed-loop learning. During characterization studies prior to the learning sessions,

the network had to remain in a stable mode (the low-variability mode in the example

discussed here) so that recovery function fits could be made and a reachable target

assigned. Further, the time scales of mode switches had to be contained within the

experimental duration. We did not find other networks where such conditions were met.

Nevertheless, the described case study illustrates one of the major pitfalls involved in

interacting with the temporally non-stationary activity dynamics of biological neuronal

networks.

As an emergent property of the network, such mode-switches pose a direct challenge

to autonomous learning algorithms and thus map to the structure of the challenge in a

neurobiological context of encountering non-stationary network modes that switch in a

state (sleep, wake etc.) or task (lying, walking) dependent manner. In the context of a

clinical application, such situations could lead to undesirable or unsafe interactions.

Crucially, such periods of unsuccessful exploration could also eclipse the learnt (once)

successful stimulation policy, which may have to be re-learned in a future mode.

In our experiments, we tried to partly address the issue by resorting to a sliding
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window approach on the controller’s memory. To this end, we kept an arbitrarily

chosen number of samples in memory and ‘forgot’ older ones. Needless to say, such

operational rules of thumb may not be optimal. Current RL algorithms do not offer

elegant solutions to such challenges. Formalizing problems of this nature will drive

the development of elegant algorithms capable of identifying and robustly handling

conflicting experiences online.

Another cause of network-driven instabilities was sharp non-linearities in network-

stimulus interactions. Biological neuronal networks, being composed of non-linear

elements, exhibit sharp threshold phenomena across various scales of observation.

Quantitative relationships binding stimulus-response interactions exhibit non-linear

recovery like behaviour explained by a saturating exponential model (Weihberger et

al., 2013; Kumar et al., 2016). However, time-constants of the model varied widely

across networks. Of particular interest were cases when recovery was fast and the

non-linearity, step-like.

When the recovery function was shallow with optimal strategies falling roughly on

its rising phase, the Q-function was found to be successfully approximated using linear

methods. This strategy, however, failed when the time-constant of the exponential

was small. Much better performance was obtained in such cases by using non-linear

methods to approximate the Q-function (Neural Fitted Q-iteration (NFQ)). Experi-

mental data described in Case 2a and 2b demonstrate that the nature of input-output

relationships was an important factor to consider while developing autonomous control

strategies. The observation is notable especially since neuronal networks in the brain

are often characterized by non-linear threshold like phenomena.

Our results suggest that for the paradigm to be stable, the choice of algorithm has

to be made after considering the nature of the system-controller interaction and the

desired activity patterns or features. What are the stability bounds on each class of

algorithms? What techniques could help formally assess system stability? Further

investigations to address such questions are necessary before autonomous paradigms

could be of broader clinical appeal.
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Instabilities due to the controller

The enormity of the parameter space to be explored poses a challenge for neurotech-

nological devices in a clinical context. The ability to navigate high-dimensional action

spaces and converge quickly to optimal strategies is extremely desirable for an au-

tonomous paradigm that seeks to optimize stimulation policies. We captured this

aspect of the control problem by providing the controller an augmented action set.

Ineffective actions were also included in many cases to serve as worst-case validators of

the algorithm.

Since the set of actions were large, we set the Q-function to be updated only

every 100 trials to gather enough samples involving each action (see Cases 3 and 4).

Interestingly, such a configuration led to a high likelihood of oscillatory instabilities.

A prominent signature of instabilities of this kind was the systematic evolution of the

chosen actions. The sequence of actions chosen by the controller closely mirrored the

structure of these excursions but not that of ongoing activity patterns in the networks,

suggesting that the observed instabilities were likely mediated by an unstable policy.

Likely causes were the higher dimensional action set (resulting in potentially non-

linear Q-functions), and long learning delays. Instabilities were particularly accentuated,

the higher the cardinality of the action set. A likely explanation is that with more

actions to explore with the same number of trials, approximations of the Q-function

were unreliable given that fewer samples were available to capture the underlying

mapping.

Instabilities of this kind demonstrate the sensitivity of the paradigm even to technical

factors involved in its controller design.

Pursuing an incremental and failure-driven algorithm development strategy allowed

us to mitigate the likelihood of failures across networks. Considerable improvements

were observed in the target centricity and long-term stability of the interactions. Our

results demonstrate that given suitable conditions, stable and adaptive control of bio-

logical neuronal networks may indeed be feasible with autonomous paradigms. These

conditions are broadly determined by characteristics inherent to biological neuronal

networks and the nature of the control problem. Only when control parameters were
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tuned to accommodate properties unique to such systems, did the paradigm operate

satisfactorily. This opens up the following questions: How can the limits of a ‘suitable’

parameter space be determined relative to the given control problem? How can a formal

strategies to test and validate the existence of such parameter spaces be designed?

Further theoretical studies are necessary to formulate benchmark problems and

design algorithms to handle the identified problem framework elegantly. Alongside,

formal methods to guarantee stable performance will be key to adding translational

capabilities to our findings.

6.3 Are networks always controllable?

Controllability describes the ability of an external input to move the output (in our case)

from any initial to any final condition in a finite interval of time. Formal determination

of system controllability is typically not possible in neurobiological control problems.

An empirical approach is often the feasible alternative.

In our experiments, we relied on a brief stretch of offline random stimulation of each

network to qualitatively assess the range of response strengths (output) corresponding

to input at each channel chosen for stimulation. A target response strength typically

lay within the second to third quartile of the response strengths and was assumed to be

‘reachable’. The strategy was, however, not always successful and on many occasions

failed to produce improvements after closed-loop learning.

In few of our experiments, the target was achievable by a random strategy. Insuffi-

cient discriminability among actions likely impaired the learning process and led to

cases where we were unable to distinguish between naive and learned response proper-

ties (Fig 5.16). Such cases could be indicative of deficiencies in defining, and therefore

observing the network state. Temporal drifts and loss of activity in the sole recording

channel was also found to hamper network observability in some of our recordings.

In such cases, the controller learned or degenerated eventually into (when drifts and

non-stationarities were involved) sub-optimal policies. In a general application context,

such situations represent an inherent limitation of our approach, leaving the paradigm

prone to unsafe operation when network states were ‘insufficiently’ observable.
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Another limiting factor was the assumption of sustained accessibility of the target

state given the limited repertoire of actions available to the controller, even after the

offline characterization. This assumption was not borne out in a few cases (Fig 5.17).

The target was found consistently unattainable within the action space available to the

controller. In other cases, after hours of interaction, certain stimulation sites were no

longer able to evoke responses, thus cutting out accessibility of the controller to the

network. In a more general context, the consequent unpredictable operation of the

controller, represents another limitation of the paradigm. When random actions are

continually delivered in an attempt to access potentially inaccessible states, harmful

consequences may result. One strategy to handle situations of this nature is by in-

creasing degeneracy in the action set. Increasing the number of stimulus sites could

improve the likelihood of sustained target accessibility, although at the cost of higher

dimensionality.

In summary, a valid definition of network states (observability), availability of

appropriate actions (accessibility) and existence of a well-posed problem are crucial

antecedents to the success of autonomous learning based control schemes. Methods

to ensure these given a control problem are beyond the scope of this thesis. Here we

stress the importance of these modalities to the success of the paradigm. Furthermore,

deficiencies in these assumptions could very well lead to unsafe interactions. In the

absence on formal solutions, an online supervisory framework administering the

controller using running estimates of performance metrics may be a promising strategy

from a translational perspective.

6.4 Describing the state of a network

The ‘state’ of a biological neuronal network can be thought of as the set of variables

that completely characterize its dynamic behaviour and response to a given set of

inputs. The veridical ‘state’ remains hidden in the myriad internal variables possibly

pervading multiple scales, both spatial (from molecules to the network) and temporal

(from milliseconds to hours). From observable signals, the challenge is to abstract a

functional measure minimally rich to predict features of interest in upcoming activity,
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e.g. response to subsequent stimuli.

In generic networks in vitro, the notion of ‘network excitability’ has been proposed

as a continuously evolving variable emerging from dynamic interactions of its internal

state variables (Tabak et al., 2001; Weihberger et al., 2013). Though hidden, it can be

sampled by perturbing i.e. stimulating the network, though the perturbation itself

may affect the excitability measure. Models describing the modulation of excitability,

relating bursting and periods of inactivity have been proposed to explain the emergence

of ongoing activity as well (Tabak et al., 2001). A posteriori modelling in perturbed

networks suggests that excitability may be modulated by ongoing spontaneous bursts

(SBs), such that it remains low directly after a burst and recovers gradually thereafter,

over a time scale in the order of seconds (Weihberger et al., 2013).

For our optimization problem (Chapter 3), we exploited this understanding of

stimulus-response relationship to define the low-dimensional state-space for the con-

troller. The discretized latencies after an SB were exploited as ‘states’. Rewards and

punishments were assigned based on the consequences of interacting with the net-

work at each state. The strategy focused the state-space to a relevant low-dimensional

sub-space, thus circumventing the need to explore other less informative options and

limiting the iterations necessary for the controller to converge. The approach could

serve as the basis of a generalisable strategy where consistent phenomenological models

describing activity dynamics are available.

The downside of the approach is that the algorithm fails to respond to processes

not described or captured by the model. An example is the serial structure in response

strength sequences due to possibly higher rates of stimulation, activity dependent

plasticity or damage to neurons. In a general context, such situations may result in

potentially unsafe operating regimes, if not externally constrained by additional means.

We noticed the presence of slow and systematic trends in the fluctuation of stimulus-

response relations, suggesting a deficient state specification. To cope with this situation,

we modified our state definition. Since recorded response strengths were a reflection

of instantaneous excitability, we added it directly to the state vector. Since they were

serially correlated, we assumed that relevant information was present also in the history
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of such measurements. Thus, we included responses of prior perturbations as higher

dimensions of our state vector. Alongside, intervening SBs could also be informative

on the network’s local excitability. The history of global SB strengths were therefore

added as further dimensions of the state vector.

Control of activity patterns in an RL framework hinges on the quality of the

available measure of ‘network state’. Our strategy of incrementally expanding the state

was heuristic and based on trends observed in data as the experiments progressed.

Improvements in the state definition require a better mechanistic understanding of

information processing in networks. Machine learning methods to automatically extract

informative features may be promising in this regard. But it remains unclear if they

will be able to cope with the spatio-temporal complexity and dimensionality of activity

in neuronal networks.

Alternative methods to expose hidden states have involved the so called ‘clamp

rationale’ or reverse functional characterization using closed-loop frameworks (Wallach

et al., 2011; Wallach, 2013; Keren and Marom, 2014) which we discuss in further detail

in the next section.

6.5 What can we ‘learn’ from the machine?

The idea of combining techniques of machine learning and reverse engineering in

a neuroscientific context has received considerable interest in recent times (Wallach,

2013; Barak, 2017). Such approaches are expected to help characterize functional

relationships, provide alternatives for modelling neuronal networks and serve as

hypothesis generation tools (Barak, 2017).

One such technique advances the ‘clamp rationale’ to invert the experimenter’s

perspective and aims to exploit automatic control as a tool to characterize a complex

dynamical system (see Wallach (2013) for review). It assumes controllability of a

given response feature by manipulating some input parameter. In this context, our

paradigm could be effective, especially when input-output relationships are complex

and time-variant. What opportunities exist for learning from the machine? What are

their limitations?
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When input-output relationships are simple and time-invariant, as we showed in

Chapter 3 (see Figs 3.12–3.14), model parameters could be inferred post-hoc from

Q-functions. They were strongly correlated to those from model fits made to response

strength series from the closed-loop session, further supporting the reverse characteri-

zation principle.

During adaptive control with higher dimensional state and action sets, action

sequences demonstrated non-trivial trends over slow time-scales when responses were

clamped (Chapter 5). The principle persisted across networks, though the nature

and time scales of fluctuations varied widely across networks and a general principle

remained elusive. The complexity and dimensionality of the relationship restricted

a further nuanced interpretation using simple techniques. Such limitations have to

be kept in mind when assessing the impact and scope of reverse learning. Further

investigations are necessary to test if dimensionality reduction techniques could yield

meaningful insights from such data sets.

Finally, it has to be stressed that data-based characterizations essentially represent

a pragmatical process. Caution has to be exercised in interpreting such functional

relationships. Degeneracy – i.e. multiple equivalent solutions to the same problem

– being a property inherent to biological systems that impedes a classical black-box

reconstruction approach (see Marom (2009), Braun and Marom (2015) for discussion).

To conclude, while general principles underlying information processing capa-

bilities may be cumbersome to infer, such relationships will certainly be of value in

a neurotechnological context and may help frame testable hypotheses for scientific

studies on such networks.

6.6 Translating to real world clinical problems

How do our findings contribute to the development of smart neurotechnological solu-

tions? Our study was not focused on addressing challenges specific to any particular

neurological disorder or its treatment. Instead, we focused on developing stimula-

tion paradigms for verifiable RL control strategies and on the bottlenecks impeding

advances in general closed-loop interaction strategies with neuronal networks in the

142



Chapter 6. Discussion

brain. The problem structure, along with the biological complexity of the underlying

high-dimensional substrate was replicated in a controlled setting. Our experiments

demonstrated how such challenges could be addressed within an autonomous frame-

work. Formalizing the problem for an RL controller, developing learning algorithms

with minimal a priori information and assessing the quality of the resultant controllers,

involved strategies that could be generalized across applications. Further, the stability

caveats we describe in our experiments are likely relevant, regardless of scale or ap-

plication. A formal understanding of the dynamic characteristics of such co-adaptive

architectures will be key to the safe translation of the paradigm to a neurotechnological

context.

Driven by recent technological advancements, there has been a push to develop

feedback driven stimulation strategies. So far, event based solutions are the furthest

that have been explored for specific neurobiological control problems (Rosin et al., 2011;

Little et al., 2013; Cagnan et al., 2017; Raspopovic et al., 2014). With parsimonious

stimulus regimes that detect the need for intervention, they are expected to improve

therapeutic efficacy, diminish associated side-effects and open avenues to optimize

energy expenditure.

To illustrate the shared context and relevance of our approach vis-a-vis these

event-driven paradigms (see Table 6.1), we break the framework up into the following

functional questions:

Feedback: What should be measured? The term biomarker is often used in medical

literature to refer to signals that serve as measurable indicators of normal biological

processes, pathogenic processes or pharmacological responses to therapeutic interven-

tions (Miller and O’Callaghan, 2015; Colburn et al., 2001). In feedback control terms,

these approximate the ‘state’ of the system. Biological and technical limitations hinder

an unambiguous measurement of the network state. Often, a working solution based

on prior knowledge of the pathophysiology under consideration is used to choose

anatomical structures and signal features to measure.

Of the various biomarkers drawn from literature on the specific disorder, a low-

dimensional choice is heuristically made to constrain the state-space (see column
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Table 6.1. Elements of the feedback based interaction strategy is illustrated along with selected recent
studies on Parkinson’s Disease and pathological tremor. These strategies were all event-driven. The
reference anatomical structure and the signal of interest represents the state space of the pathological
network. Target structures and stimulus parameters denote the action set. Abbreviations: AP - action
potential, GPi - internal globus pallidus, M1 - primary motor cortex, LFP - local field potential, STN -
sub-thalamic nucleus, VLT - ventro-lateral thalamus

Disorder Study Model system Reference Target Parameters Stability

Parkinson’s disease
Rosin et al. (2011) Non-human

primates
APs detected at

GPi or M1
GPi - Site(s) and amplitude deter-

mined manually
- Single pulses or package
- Package - 7 pulses at 130 Hz
- Delay of 80 ms heuristically set

Unknown

Little et al. (2013) Human patients Power in the beta
band (13 – 30 Hz)

of LFP at STN

STN - Site(s) and amplitude deter-
mined manually

- Threshold chosen heuristically
- Stimulus frequency set to 130

Hz
- 250 ms voltage ramping at

stimulus on/offset to avoid
parasthesias

Unknown

Essential/dystonic
tremor

Cagnan et al. (2017) Human patients Tremors detected
peripherally

VLT - Site(s) and amplitude deter-
mined manually

- Frequency, pulse-width set
patient-wise

- Ideal phase chosen manually

Unknown

‘Reference’ in Table 6.1). Our approach to defining the state of the network followed

similar lines. We relied on previously discovered phenomenological models of input-

output relations in generic neuronal networks in vitro, to help quantify the network state.

However, unlike in the in vivo studies mentioned above, our paradigm – being based

on a systematic algorithmic framework – will be able to handle higher dimensional

state representations (see also Section 6.4).

Input: How to find effective actions? The set of actions is usually large and may

include stimulation targets, stimulus parameters (e.g. amplitude, frequency, pulse-

width, latency), thresholds etc. Often multiple stimulus contacts are available at a given

anatomical target. Crucially, event-driven paradigms do not offer any improvement

in action exploration or selection strategies relative to an open-loop setting. The

contribution of event-driven paradigms is limited to a potential reduction in the

amount of stimulation delivered. In in vivo studies, while target anatomical structures

were chosen based on the prior knowledge, stimulus settings were typically set using

trial and error methods independently for each subject (see columns ‘Target’ and

‘Parameters’ in Table 6.1).
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Our paradigm is particularly poised to address the problem of choosing opti-

mal stimulation policies. It offers the potential to systematically explore a relatively

high-dimensional action set and autonomously converge to network-wise optimal solu-

tions (Kumar et al., 2016). Moreover, as demonstrated in our proof-of-principle study,

our paradigm could also help autonomously balance trade-offs involving multiple

interacting processes (Kumar et al., 2016). Features or empirical models capturing

the adverse effects of interactions, energy expenditure, etc., where available, may help

formulate more robust cost-functions for such controllers.

Is the system adaptive, safe and stable? Network activity in the brain varies in-

cessantly under the influence of multiple underlying dynamic processes including

plasticity, cognitive and motor load and progression of the pathology. Long-term

inhomogeneities do not feature in event-driven paradigms. Their ability to sustain

therapeutic improvements over long time-scales remains untested.

Our paradigm, being a continuously adapting one, offers co-adaptive capabilities.

Co-adaptivity, however, adds to the risk of oscillations and runaway behaviour in

the system. Assessment of the stability and safety of such paradigms are therefore

necessary but remains a non-trivial challenge. In this thesis, we qualitatively explored

various aspects of long-term stability and uncovered a few determining factors – both

biological and technical. Such exploratory studies, we hope, will lay the ground for a

more formal framework to approach these concerns.

6.7 Perspectives

Clinical techniques do not typically arise de novo, but are the result of gradually

evolving ideas and technologies (Gildenberg, 2005). Hence it is important to reflect on

the proposed framework in the evolving context of neurostimulation therapy. What

specific elements of a state-of-the-art therapeutic intervention do the principles studied

in this thesis map onto? Would you be willing to consider an autonomous therapeutic

technology for yourself? If not, what are the gaps that need to be addressed?

Much work remains in the journey from feasibility to fruition for autonomous

neurostimulation paradigms. On the philosophical front, we are only beginning to
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grapple with the ramifications of such recursive (agent within an agent) interventions

on the notion of identity and freedom of the will. On the more empirical front, the mark

of a mature technology – in my opinion – is the ability to unambiguously demarcate

boundaries of its operational capabilities.

As a next step in this direction, we propose to use insights from our experiments

to augment current RL algorithms and formulate novel benchmark problems for

challenges unique to biological neuronal networks. However, guaranteeing the safety

of autonomous interventions remains cumbersome to approach with the methods

of verification and model checking as they have been developed until now. Our

experiments revealed distinct classes of instabilities such systems are susceptible to.

Perhaps a statistical inductive approach to the safety problem could be a fruitful starting

point.

Questions on the link between controllability and complexity (and therefore infor-

mation processing capabilities) of biological networks also remain open. What features

in the collective phenomena observed in these networks are germane to target reacha-

bility and persistence? Can they be expressed in terms of the functional and structural

complexity of the network? These questions may be addressed by pharmacologically

manipulating the functional and structural properties of the network. Answers to these

questions may help formally articulate limitations of control strategies and estimate the

safety and stability of such interactions.

Our paradigm could also be a potent research tool to characterize functional relation-

ships in biological neuronal networks and understand the basis of their computational

capabilities.

To maximize the potential of electrical stimulation as a therapeutic, augmentative or

research tool, there is a clear necessity to re-imagine it in a closed-loop framework. This

thesis demonstrated how some of the challenges involved could be mitigated using an

RL based autonomous paradigm. Extending the framework may be a promising step

forward for clinical applications involving neurostimulation.
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Appendix A

Protocol for culturing neuronal net-

works on MEAs

7 Here we present the protocol to isolate, dissociate and culture cortical neurons from

fresh born rats on microelectrode arrays (MEAs). The preparation of MEAs, buffers and

solutions took about 2 days before tissue extraction from the animal. The dissection

and plating took 3 – 4 h. Cultures were typically maintained for around 6 weeks.

A.1 Materials and Methods

A.1.1 Chemicals

5% CO2–air mixture Air Liquid, Freiburg, Germany

Deionized water

DNAse Sigma-Aldrich, Munich, Germany

Ethanol neoLab, Heidelberg, Germany

Gentamicine Invitrogen, Paisley, UK

Glucose Invitrogen, Paisley, UK

Horse serum (heat inactivated) Invitrogen, Paisley, UK

L-Glutamine Invitrogen, Paisley UK

MEM-Eagle w/o L-Glutamine Invitrogen, Paisley, UK

Phosphate buffered saline (PBS) Invitrogen, Paisley, UK

Trypsin Invitrogen, Paisley UK

Polyethylenimine (PEI) Sigma-Aldrich, Munich, Germany

7Thanks to Samora Okujeni and Ute Riede for providing details of the protocol.
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A.1.2 Tools

Eppendorf tubes Roth, Karlsruhe, Germany

Pipette tips Roth, Karlsruhe, Germany

Scalpels Bayha GmbH, Tuttlingen, Germany

Scissors Dumont & Fils, Switzerland

Serological pipettes (5, 10 and 25 mL) Becton-Dickinson, NJ, USA and Falcon, Munich, Germany

Spatulas neoLab, Heidelberg, Germany

Syringe (1 mL) Roth, Karlsruhe, Germany

Syringe filters (0.22 µm) Roth, Karlsruhe, Germany

Tubes Falcon, Munich, Germany

Tweezers Dumont & Fils, Switzerland

A.1.3 Devices

Automated cell counter Casy - Schärfe Systems GmbH, Germany

Camera Microcular PCE-ME100, PCE Deutschland GmbH, Germany

Centrifuge Rotofix 32A, Hettich, Tuttlingen, Germany

Incubator CB210 – Binder, Tuttlingen, Germany

Incubator Heracell 240 – Thermo Fisher Scientific, Germany

Laminar flow bench H-190 Ehret, Emmendingen, Germany

Phase contrast microscope Axiovert 40C, Zeiss, Germany

Plasma cleaner model: Femto A, Diener Electronic, Germany)

Ultrasonic bath Elmasonic, ELMA, Schmidbauer GmbH, Germany

Vortex 7-2020; neoLab, Heidelberg, Germany

Water bath Medingen GmbH, Dresden, Germany

A.1.4 Rats

1-24 h old rat pups (Wistar strain) Breeding facilities, University of Freiburg, Freiburg, Germany

A.1.5 Microelectrode arrays

60MEA500/30iR-Ti and 60MEA500/30iR-ITO Multichannel Systems (MCS), Reutlingen, Germany
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A.2 Protocol

A.2.1 Cleaning

MEA surfaces were rinsed with deionized (DI) water and hydrophilized in humidified

air plasma (10–30 min, 40 kHz, 100 W; Femto plasma cleaner, model: Femto A, Diener

electronic, Germany). Freshly cleaned MEAs were used for cultures only after (at least)

2 days.

MEAs were placed in a beaker filled with distilled water and boiled for 1 h. They

were then transferred into sterile Petri-dishes and the water in the chamber pipetted

out. MEAs were left under the sterile hood to dry.

A.2.2 Coating and sterilization

Clean surfaces were subsequently covered with a drop of 150 µL 0.1–0.2% PEI solution

and incubated at room temperature for 2 h. Non-adherent PEI on MEAs was removed

in 1–3 rinsing steps with 1 mL DI water, each. Coated substrates were left to dry for

at least 24 h. All substrates were then sterilized by ultraviolet radiation (2 min; UVP

XX-15 s bench lamp, Upland, CA, USA) prior to their usage for culturing.

A.2.3 Preparation

Cortical tissue was extracted from brains of neonatal wistar rat pups, minced with

a scalpel and transferred into ice-cold phosphate buffered saline (PBS; Invitrogen,

Germany). Tissue pieces were subsequently incubated with trypsin (0.05%, 15 min at

37 ◦C; Invitrogen) to digest the extracellular matrix. Proteolysis was stopped with horse

serum (20%; Invitrogen) and the cells were further dissociated by trituration with a

serological pipette (10 mL). DNase (50 µg mL−1; Sigma) was added to eliminate cell

aggregation through DNA strings, if needed.

The suspension was centrifuged and the cell pellet resuspended in growth medium

(see next paragraph) in a second trituration step. Cell densities were determined with

an automated cell counter (CASY, Schärfe Systems GmbH, Germany).

Cells were seeded in drops of 100-200 µL suspension and left to settle and adhere

for 1–2 h. Defined seeding densities were achieved by appropriately diluting the cell
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suspensions. Once the cells attached to the substrate, growth medium was added to a

final volume of 1 mL.

MEA culture chambers were sealed with cast polydimethylsiloxane lids or with

teflon membranes (ALA scientific, USA) to avoid water evaporation and contamination.

Cultures developed in 1 mL growth medium comprised of minimal essential medium

(MEM; Invitrogen) supplemented with heat-inactivated horse serum (5%, Invitrogen),

L-glutamine (0.5–1 mM; Invitrogen), glucose (20 mM; Invitrogen) and gentamycin

(20 µg mL−1; Invitrogen).

Three quarters of the medium was exchanged after the first day to remove non-

adherent cells and debris. During incubation, a third of the medium was exchanged

twice per week. After the first week, the L-glutamine concentration was reduced to 0.5

mM. Cultures were maintained in a humidified incubator (Thermo Fisher Scientific,

Germany) at 5% CO2 and 37 ◦C.

Culture development was continuously inspected with a phase contrast microscope

(Axiovert 40C; Zeiss, Germany). For documentation, images were taken with a digital

camera (Microcular PCE-ME100, PCE Deutschland GmbH, Germany). Animal handling

and tissue extraction were done in accordance with the University of Freiburg and

German guidelines on the use of animals in research.
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Reinforcement learning for autonomous

control

∗ 8 Reinforcement learning (RL) involves an active agent interacting with its environ-

ment and learning to map its perceived state to actions so as to maximize a numerical

reward signal. Learning a controller for a given task with reinforcement learning

requires formalizing it as a Markov Decision Process (MDP). An MDP is defined as a

four-tuple (S , A, R, P), where S is a set of states and A, a set of actions. The reward

function R : S × A × S → R defines the reward the RL controller receives when it

applies action a ∈ A in state s ∈ S and transitions into s′ ∈ S . The probabilistic

transition model P : S ×A× S → [0, 1] defines the probability of transitioning from

state s to state s′ under the action a. The goal of RL is to find a control law (policy)

π : S → A that maximizes the expected accumulated discounted reward, Vπ(s), i.e.,

Vπ(s) = E

[
∞

∑
t=0

γtR(st, π(st), s′) | s0 = s

]
(B.1)

π(s) = arg max
a

∑
s′
P(s, a, s′)Vπ(s′) (B.2)

where γ ∈ [0, 1) is a discounting factor on future rewards.

∗Portions of Sections B.1, B.2, B.3 and B.4 were included in the subsection ‘Reinforcement Learning’
of our published article: Kumar SS, Wülfing J, Okujeni S, Boedecker J, Riedmiller M, Egert U (2016)
Autonomous optimization of targeted stimulation of neuronal networks. PLoS Comput Biol 12(8): e1005054.

8Author thanks Jan Wülfing for reviewing this Appendix.
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Value Iteration is commonly used to find V if the transition model P is available. In

general, for neurobiological systems, such models are typically not available a priori.

Hence, we considered a model-free setting and used Q-learning (Watkins and Dayan,

1992) to learn an action-value function Q(s, a) (Q : S × A → R) which represents

the value of choosing action a in state s. The greedy policy π was then derived as

π(s) = arg maxa Q(s, a).

To apply Q-learning, we first had to define the state and action space as well as

a suitable reward function. These sets were defined slightly differently for the two

control problems taken up in this thesis.

B.1 State space

In the first part (see Chapter 3), where we tackled an optimization problem in biological

neuronal networks, our definition of S , the set of states, was motivated by the follow-

ing considerations. Solving the trade-off problem involved reconciling the dynamic

interplay of the initiation of synchronous spontaneous bursts (SBs) in the network

and the recovery of network excitability after SB termination. A simple statistical

model of the initiation of synchronous SBs was a lognormal function of the period of

inactivity between SBs. The cumulative of this distribution indicated the probability

of SB initiation as a function of time after the preceding SB (Eq (3.2)). At the same

time, recovery could equally be modelled by an exponential function of the time after

the end of an SB (Eq (3.3)). Stimulation at a certain latency thus effectively probed

the level of recovery at that time. This latency was defined as the quantitative state

variable accessible to the learned controller, providing information on the dynamics

of both processes. Therefore the time after SB termination was a simple and intuitive

choice of a low dimensional state feature. We discretized this latency in 0.5 s steps,

corresponding to states 1, . . . , N. These made up the set of states, S , together with

terminal states that reflect the outcome of the stimulation Ti (i indicating the response

strength) or an “interruption” state F.

For the second part of the thesis (see Chapter 5), we pursed a different approach to

achieve adaptive control of response strengths. Our data suggested that the history of

response strengths and spontaneously generated events proximal to the stimulus were
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likely information rich features to predict the outcome of an upcoming stimulation. We

used this finding to define the new S . Event strengths detected at the recording channel

was used to construct two time series, one with the spike counts in spontaneously

originating bursts ni
sp, and the other, with evoked response strengths, nj

st (i, j indicate

positions in the respective time series). At each trial t, the current state st ∈ R2h,

was computed by concatenating h previous response and spontaneous event strengths

relative to the current trial. h was typically set to 2. In many sessions, time to

the previous stimulus was added as an additional dimension to the state vector, i.e.

st ∈ R2h+1.
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Figure B.1. The composition of the high-dimensional state used for adaptive control of response strengths
is illustrated. Spontaneous bursts (SBs) at the recording electrode (RE) were detected and stimuli were
delivered at various latencies relative to each SB. The history h, (h = 2 in this schematic) of SB and
response strengths, denoted by nsp and nst respectively, and the last inter-trial interval (gray) together
defined the state st ∈ R2h+1 at stimulus trial t.

B.2 Action space

For the optimization experiments (see Chapter 3), the target was to maximize response

strengths evoked at a chosen recording electrode (RE) per trial. To this end, the

controller was given two choices at each state: to ‘wait’ or to ‘stimulate’. These choices

made up its action set A.
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For the adaptive control experiments (see Chapter 5), the controller was provided

a larger set of actions. Candidate stimulation and recording electrodes (SEs and REs)

were first identified as described in Section 2.3. Ranked response strengths evoked at

each SE–RE pair were assessed to identify a suitable target response strength (Fig B.2A).

In general, the target was chosen to lie in the first quartile of the ranked response

strengths across SEs. This was motivated by our observation that such choices often

lay below to the saturating region of each recovery function and offered the controller

room to regulate response strengths. An exponential recovery model was fitted for

each RE–SE pair. Based on the co-efficient of determination of the fits, an RE, few

SEs (between 1 and 5) and the corresponding feasible target was finalized (see also

Section 2.5.3). When multiple equally good alternatives existed, the final choices were

arbitrarily made from among those. In many experimental sessions, we also included

SEs that consistently failed to evoke responses at the candidate RE. These were included

as known ‘dud-sites’ and used for a quick validation of the learned policy.

Once the RE and one or more SEs were selected we used the corresponding recovery

model fits to heuristically constrain the action space. To this end, approximate stimulus

latencies necessary to achieve target response strength were estimated (see Fig B.2B).

An interval spanning the estimated latencies was selected and discretized. Step size

varied across experiments. Values used were 0.1, 0.25, 0.3, 0.5, or 1 s. The most used

step size was 0.5 s. Discrete latencies at each site were included in the action set A. In

few sessions, a choice of multiple stimulus amplitudes (0.5, 0.7 and 0.9 V) for each site

and latency was also included in A.

B.3 Reward function

In the optimization study (see Chapter 3), in order to learn the optimal stimulus latency,

the controller was appropriately rewarded or punished. As shown in Fig 2.1B, within

an episode, at each state the controller could choose between two actions: to ‘wait’ or

to ‘stimulate’. An episode terminated either when a pre-set maximum number of states

(i.e. maximal latency) was reached, an SB occurred or when a ‘stimulate’ action was

chosen. After each episode, the controller received a terminal reward proportional

to the strength of the evoked response. Alternatively, if an SB had occurred or the
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Figure B.2. (A) The box and whisker plot shows response strengths observed at the RE during open-loop
stimulation at multiple SEs as quartiles (box) and the extrema (whiskers). The target response strength
(green line) was chosen to lie in the first quartile. (B) Recovery functions fitted to response strengths at
the RE for two different SEs in an example network. The target was defined as 12 spikes (green line).
Stimulus latencies that achieved target response strengths were estimated (black dashed lines). The range
of latencies was chosen to span these values. In this case, latencies between 0.75 s and 3.75 s discretized
in steps of 0.5 s were used.

maximum number of cycles was reached it received a neutral reward (punishment):

R(s, a, s′) =


i, if s′ = Ti, i ∈ {1, . . . , n}

0, otherwise
(B.3)

For the adaptive control problem taken up in the second half of the thesis, the

goal was to clamp response strengths to a pre-defined value (see Chapter 5). The

reward function in this case was defined as the negative absolute value of the difference

between the observed and desired response strengths. If the controller was interrupted

by ongoing activity, it received a constant negative reward, k.

R(s, a, s′) =


−|nev − ngoal |, if stimulated

−k, if interrupted
(B.4)

where nev is the evoked response strength and ngoal , the target response strength. k

was typically set to ngoal . In few sessions, k = 0 was used.

B.4 Q-Learning

For the optimization experiments (see Chapter 3), we used online Q-learning as the

learning algorithm. It allowed us to learn a Q-function without having a model of

the system dynamics, which in general is not available when dealing with biological
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neuronal networks.

To guarantee full exploration of the state and action space, the controller followed a

random policy πexplore during training that uniformly chose the state of stimulation.

The Q-function was iteratively updated during training sessions as:

Qt+1(st, at) =Qt(st, at) + α[Rt+1 (B.5)

+ γ max
a

Qt(st+1, a)−Qt(st, at)]

where α = 0.5 was the learning rate and γ = 0.99, the discounting factor.

During testing sessions the controller follows a greedy policy without exploration:

π(s) = arg max
a

Q(s, a) (B.6)

For the optimization problem, since the state space for the control task at hand

could be defined as a single discrete variable, a tabular representation of the Q-function

was applicable, which is a prerequisite for guaranteed convergence (Watkins and Dayan,

1992). A tabular representation of the Q-function is a suitable choice as long as the

biological system can be described by low-dimensional discretized states.

In the second part (see Chapter 5), where the goal was to adaptively clamp response

strengths, the state-action space being high-dimensional, a tabular representation of the

Q-function was not advisable due to the so called curse of dimensionality (exponentially

growing memory demand). We therefore resorted to approximate RL methods to cope

with the higher dimensionality. In addition, these methods also offer the ability to

generalize the Q-function over the state-action space, i.e., reasonable estimates can be

made not only for the state-action pairs already encountered but also for novel ones.

Batch processing methods allow efficient use of collected data while keeping the

learning process stable. The technique was employed in experiments to clamp response

strengths to pre-defined values. In the batch RL problem, the agent does not interact

continually with the system like in online learning, but receives a finite set of state-

action transitions and their corresponding rewards from the environment (Lange et al.,

2012).

The following methods were employed for function approximation:
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Least-Squares Policy Iteration (LSPI) Linear methods have been widely used for Q-

function approximation. They are easy to implement and transparent from a debugging

and feature-engineering perspective. In the context of control problems, LSPI is a

popular approximate policy iteration algorithm proposed by Lagoudakis and Parr. It

operates on a fixed set of samples collected by interacting with the environment and

stored in the sample set D. Each sample (s, a, r, s′) indicates that executing action a at

state s resulted in a transition to state s′ with an immediate reward of r.

The state-action value function Q(s, a) is approximated using a linear parametric

combination of d basis functions (Eq (B.7)).

Q̂(s, a; w) =
d

∑
j=1

φj(s, a)wj = φ(s, a)Tw (B.7)

where wj’s are real valued parameters, each φj(s, a) : S ×A → R, a basis function and d,

the dimensionality of the restricted state-action space. In general, basis functions could

be arbitrary functions of the state-action pairs. For our experiments, we directly used

our states and actions to approximate Q. The greedy policy π over this approximate

Q-function can be obtained as:

π(s) = arg max
a∈A

Q̂(s, a) = arg max
a∈A

φ(s, a)Tw (B.8)

An initial policy π0, represented by φ and w0, is fed to a least-squares temporal

difference algorithm called LSTDQ (see Lagoudakis and Parr (2003) for details) along

with a set of samples for evaluation. It returns the parameters wπ of the approximate

Q-function, Q̂π from which the new policy π can be determined in a greedy fash-

ion (Wiering and van Otterlo, 2012). The iteration continues in the same manner until

w converges (Algorithm 2).

In our experiments, we used a ‘growing batch’ approach, where the sample set was

incrementally extended as the controller gathered more experience. In addition, to cope

with non-stationarities in activity dynamics, we resorted to a sliding window approach

to the controller’s memory. 3000 recent transitions were retained in the sample set

while discarding older ones. The discounting factor (γ) was set to 0.99.
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Algorithm 2 The LSPI algorithm (adapted from Lagoudakis and Parr (2003)). After
initializing the policy π0 with parameters w0, the LSTDQ algorithm uses the sample
set to return a greedy policy π′, parametrized by w′. D is the sample set, d, the
dimensionality of the restricted state-action space, φ, the basis functions and γ, the
discounting factor. The iteration continues until a stopping criterion, ||w− w′|| < ε, is
met,.

π′ ← π0
repeat

π ← π′

π′ ← LSTDQ(D, d, φ, γ, π)
until π ≈ π′

Neural Fitted Q-iteration (NFQ) When non-linear functions need to be approximated,

neural networks – in particular, multi-layer perceptrons – offer a promising approach.

However, Q-learning, when implemented directly in neural networks with an online

update rule typically suffers from long learning times and poor reliability (Riedmiller,

1999; Riedmiller, 2005).

Weight changes induced by a certain state action pair, causing unpredictable changes

in other regions of the network is thought to be behind the poor performance. NFQ

attempts to work around this problem by explicitly offering previous knowledge while

updating a new sample. Like LSPI, it uses the batch or offline method of reinforcement

learning.

In NFQ, the neural value function is updated offline based on a stored set of

transition experiences. Experiences were collected in the form of triplets (s, a, s′), by

interacting with the biological network and stored in a sample set D. On the collected

sample set, we used Rprop, a fast supervised batch learning method, known to be

insensitive to the choice of learning parameters.

The learning algorithm consisted of two major steps: (1) The generation of the

training set P and the training of these patterns within the multi-layer perceptron

repeated for Nepochs epochs (Algorithm 3).

We used a ‘growing batch’ approach limited by 500 transitions to form the sample

set. The sliding window approach ensured that the most recent transitions were

retained. These were implemented in the functions Collect_sample_trajectory() and

Limit_sample_set() (see Algorithm 3). The number of epochs (Nepochs) was set to 5 and

the discounting factor (γ) used was 0.99. The number of episodes (Nepisodes) varied
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Algorithm 3 NFQ algorithm (adapted from Riedmiller (2005)). After initializing the
multi-layer perceptron (init_MLP()), a training set P is generated using the collected
samples. inputi indicates the ith state-action pair in the sample set, D and targeti is
computed as shown, using the reward function R and the current estimate of the
Q-function, Qk. The training procedure was repeated for Nepochs epochs. The inner
loop was repeated over a pre-set number of episodes (Nepisodes). The sample set D grew
as the experiment progressed (Collect_sample_trajectory()), but was limited to the 500
most recent samples (Limit_sample_set()).

episode = 0
Q0 ← init_MLP()
repeat

epoch = 0
repeat

P = {(inputi, targeti), i = 1, · · · , |D|} where:
inputi = (si, ai) and
targeti = R(si, ai, s′i) + γ maxb Qk(s′i, b)

Qk+1 ← Rprop(P)
epoch := epoch + 1

until epoch = Nepochs
D = D ∪ Collect_sample_trajectory(π)
D = Limit_sample_set(D, 500)
episode = episode + 1

until episode = Nepisodes

across experiments and were usually set to 40, 50 or 80.

For most of our experiments, we used a variant of NFQ that differed in the following

ways:

• Instead of reinitializing the neural network after each epoch, we continuously

optimized it across epochs.

• We performed mini-batch training using state-of-the art optimisers like Adam (Kingma

and Ba, 2014).

• ‘Dropout’ was used for regularization (Srivastava et al., 2014).

• Two hidden layers with 100 rectified linear units each, were employed.

For a more detailed description of the RL approach, we refer the reader to Jan

Wülfing’s PhD thesis, to appear in 2018.
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Supplementary figures

C.1 Instabilities arising from switching network modes

This section presents data from 4 networks we observed feedback instabilities arising

from a switch in the ongoing network mode (Figs C.1A–D). In these networks, the

fluctuations in response strengths were uncorrelated with the action sequences but not

with the spontaneous component of activity recorded during the session. In all figures,

the response strength sequence was smoothed with an exponential kernel (α = 0.25)

and binned over 3 or 5 min non-overlapping windows and spike counts (µ ± σ) at

the RE in each are plotted. Figs C.1C and D include an initial non-adaptive phase

(red-dashed line).
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Figure C.1. Feedback instabilities from switching network modes observed in four networks.

174



Appendix C. Supplementary figures

C.2 Instabilities due to action dimensionality and learning de-

lays

This section presents 6 examples of feedback instabilities arising during the closed-loop

session when no mode-switches were observed in ongoing activity (Figs C.2A–F). A

summary of networks studied in this configuration is reported in Fig 5.26A. Here,

fluctuations in response strengths were correlated with those in the action sequences

but not with the spontaneous component of activity. In all figures, binned response

strengths were computed as described in Section C.1. The initial non-adaptive phase

(red-dashed line) did not show signatures of instabilities.
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C.3 Stable high-dimensional adaptive control of response strengths

This section presents 6 examples where stable and adaptive control of response strengths

was achieved (Figs C.3A–F). A summary of networks studied in this configuration

is reported in Fig 5.26B. Average response strengths, pooled over 27 networks show

how after learning, sustained goal-directed interaction was achieved (Fig C.4). Binned

response strengths were computed as described in Section C.1.
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Figure C.4. Mean response strengths normalized and pooled over 27 networks. The trial sequence in each
network was normalized such that the non-adaptive phase spanned from 0 – 0.25 and the adaptive phase
from 0.25 – 1. Response strengths were normalized by the target set for the respective networks (green
line). Response strength levels across networks improved following the switch to the adaptive phase (red
dashed line). Interactions remained goal directed thereafter (blue solid line and shading: µ± σ).
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List of devices and software

D.1 Devices

Incubator (CB 210) Binder, Tuttlingen, Germany

Incubator (Heracell 240) Thermo Fischer Scientific, Germany

Laminar flow bench H-190, Ehret, Emmendingen, Germany

MEA A/D conversion MC_Card, MCS, Reutlingen, Germany

MEA filter amplifier FA60S-BC, MCS, Reutlingen, Germany

MEA pre-amplifier MEA1060-Inv-BC, MCS, Reutlingen, Germany

MEAs (grid: 6x10

electrode spacing: 500 µm

electrode diameter: 30 µm)

MCS, Reutlingen, Germany

Phase contrast microscope Axiovert 40C, Zeiss, Jena, Germany

Plasma cleaner Femto A, Diener Electronic, Germany

Stimulus generator STG2004, MCS, Reutlingen, Germany
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D.2 Software

Closed-loop control Python version 3.3.7, Python Software Foundation

Data analysis Matlab R2013b – R2017b, The MathWorks, Natick, MA, USA

Data analysis MEA-Tools (Egert et al., 2002)

Database Microsoft Access 2013, Microsoft Corp., Redmond, WA, USA

Figure preparation Inkscape 0.92.2, Inkscape Project

MEA recording MEABench versions 1.1.4, 1.2.5 (Wagenaar et al., 2005)

Operating system Ubuntu 16.04, Canonical Ltd., Ubuntu community

Operating system Ubuntu 10.04 (kernel version 2.6.32-38-generic-pae), Canonical

Ltd., Ubuntu community

Operating system Windows 7, Microsoft Corporation, Redmond, WA, USA

Reinforcement learning CLS2 (Closed-loop Simulation System) version 4.0

Text processor TeXstudio 2.12.6 with TeX 3.14159265 (TeX Live 2016/Debian)
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