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SUMMARY

Molecular chaperones such as heat-shock proteins
(HSPs) help in protein folding. Their function in the
cytosol has been well studied. Notably, chaperones
are also present in the nucleus, a compartment
where proteins enter after completing de novo
folding in the cytosol, and this raises an important
question about chaperone function in the nucleus.
We performed a systematic analysis of the nuclear
pool of heat-shock protein 90. Three orthogonal
and independent analyses led us to the core func-
tional interactome of HSP90. Computational and
biochemical analyses identify host cell factor C1
(HCFC1) as a transcriptional regulator that depends
on HSP90 for its stability. HSP90 was required to
maintain the expression of HCFC1-targeted cell-cy-
cle genes. The regulatory nexus between HSP90
and the HCFC1 module identified in this study sheds
light on the relevance of chaperones in the transcrip-
tion of cell-cycle genes. Our study also suggests a
therapeutic avenue of combining chaperone and
transcription inhibitors for cancer treatment.

INTRODUCTION

Molecular chaperones stabilize or help proteins acquire a native

conformation, but are themselves not present in the final func-

tional structure (Hartl, 1996). In conjunction with the protein

degradation machinery, molecular chaperones influence the

half-lives of proteins controlling protein homeostasis or proteo-
Cell Repo
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stasis. Initially defined as heat-shock proteins (HSPs) owing to

their stress responsiveness (Richter et al., 2010), chaperones

are classified based on their structure and function in various

families such as HSP70 and HSP90. While HSP70 is required

for early events in polypeptide folding, HSP90 interacts with a

limited set of proteins, called clients, that are almost fully folded.

There is no common sequence, structure, or function among the

diverse HSP90 clients. Rather, exposure of hydrophobic resi-

dues over a long stretch and general conformational instability

appears to define HSP90 clients (Taipale et al., 2012). Meta-

stable proteins such as steroid receptors and signaling kinases

exemplify HSP90 clients. The N-terminal ATPase domain of

HSP90 powers the chaperoning process, while the C-terminal

domain is required for homodimerization. A suite of co-chaper-

ones, including p23, AHA1, and CDC37, drive the conformation

cycle of the chaperone and/or deliver clients to HSP90 (Li et al.,

2012). The HSP90 chaperone system also helps in the assembly

and disassembly of protein complexes with the help of specific

co-chaperones (Freeman and Yamamoto, 2002; Makhnevych

and Houry, 2012).

The unique role of HSP90 in the folding landscape of the

cellular proteome coupled with its high levels in unstressed cells

confer upon HSP90 unexpected functions in evolution and can-

cer (Rutherford and Lindquist, 1998). Even if HSP90 levels are

high in normal cells, they further increase in several cancers (Ha-

dizadeh Esfahani et al., 2018; Pick et al., 2007; Whitesell and

Lindquist, 2005). Cancer cells were found to be more sensitive

than normal cells to small-molecule inhibitors of the ATPase ac-

tivity of HSP90, prompting several clinical trials in cancer

patients (Canonici et al., 2018; Trepel et al., 2010). HSP90 facil-

itates and/or maintains neoplastic transformation, causing an

increased dependence of cancers on the HSP90 chaperone sys-

tem. The precise mechanism by which HSP90 supports tumor
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proliferation remains ill-defined, but likely involves chaperoning a

number of oncogenic drivers (Vartholomaiou et al., 2016). A

recent study argued that the active maintenance of the cell cycle

in cancer cells makes them more sensitive to an HSP90 inhibitor

(hereafter referred to as HSP90in) (Echeverria et al., 2019). Thus,

HSP90 represents a key chaperone system that is conserved

from bacteria to human, essential for viability in eukaryotes

and relevant for evolution and cancer. An understanding of the

breadth of HSP90 function in the cellular context requires

exhaustive definition of its clients and co-chaperones. Sys-

tems-wide studies in yeast have outlined the genetic and phys-

ical interactome of HSP90 (McClellan et al., 2007; Millson

et al., 2005; Zhao et al., 2005), illuminating the different cellular

processes HSP90 contributes to. Similar global studies in

metazoan are technically challenging and have recently been re-

ported, widening our understanding of HSP90 functions (Eche-

verrı́a et al., 2011; Falsone et al., 2005, 2007; Gano and Simon,

2010; Moulick et al., 2011a; Taipale et al., 2012, 2014; Tsaytler

et al., 2009).

Human HSP90 is encoded by two paralogs, HSP90a and

HSP90b, in addition to endoplasmic reticulum (ER)-specific

GRP94 and mitochondria-specific TRAP1. Early studies indi-

cated that �2%–3% of the cellular pool of HSP90 resides in

the nucleus (Berbers et al., 1988; Perdew et al., 1993). Unlike

the ER and the mitochondria, the nucleus imports proteins

that have completed de novo folding in the cytosol. Thus, the

nucleus presents a unique opportunity to study the function

of chaperones in steps of proteostasis, such as protein stabili-

zation and complex assembly, after completion of the initial

folding of proteins. We and others have shown that HSP90

binds chromatin and influences gene expression (Cvoro et al.,

2006; Freeman and Yamamoto, 2002; Greer et al., 2015; Mou-

lick et al., 2011a; Sawarkar et al., 2012). The molecular mech-

anism by which HSP90 regulates transcription at the sites of

gene expression is not fully known. By directly interacting

with chromatin-associated proteins, HSP90 may help nucleo-

some disassembly and regulate the transcriptional pausing/

elongation checkpoint (Gvozdenov et al., 2019; Sawarkar

et al., 2012). HSP90 and p23 control the residence time of pro-

teins bound to chromatin by evicting protein complexes from

chromatin (Echtenkamp et al., 2016). High nuclear HSP90 has

been shown to correlate with poor prognosis in a long-term

study of a cohort of patients with non-small-cell lung cancer

(NSCLC) (Su et al., 2016). Given that many cancers are driven

by transcriptional regulators, it is highly likely that cancer-pro-

moting transcription programs are stabilized by the chaperone

activity of HSP90 in the nucleus (Calderwood and Neckers,

2016; Isaacs, 2016). Moreover, both transcription and HSP90

have been independently targeted in cancer therapeutics. Un-

derstanding mechanisms by which HSP90 regulates transcrip-

tion may pave the way for a rational synergistic combination of

cancer therapeutics targeting the chaperone and transcription.

Hence, the complete realm of HSP90 activity in the nucleus

must be thoroughly investigated. For this purpose, we need

to define the spectrum of clients and co-chaperones of nuclear

HSP90 in mammalian cells. Published interaction studies in the

context of human cells have been performed primarily in

cytosol or total cell extract (Falsone et al., 2005, 2007; Gano
1646 Cell Reports 29, 1645–1659, November 5, 2019
and Simon, 2010; Moulick et al., 2011; Sharma et al., 2012; Tai-

pale et al., 2014; Tsaytler et al., 2009), wherein nuclear interac-

tions are either lost or outnumbered by the large amount of

cytosolic HSP90 pool. While physical interactomes of chaper-

ones generate lists of several hundred proteins, genetic interac-

tions can be used to prioritize clients that are functionally

important. Given the importance of HSP90 in cancers, harness-

ing the gene expression data available for numerous tumor

samples would allow us to further narrow down the nuclear

HSP90 interactors with potential relevance to oncogenesis.

RESULTS

In this study, we systematically analyzed the functional interac-

tions of nuclear HSP90 in human cells by using three orthogonal

and independent approaches: (1) a chemical-genetic screen to

quantitate the genetic interactions of HSP90 with transcriptional

regulators, (2) affinity purification of nuclear HSP90 to identify

direct physical interactors in the nucleus, and (3) a computational

analysis to identify transcriptional regulators that are co-ex-

pressed with HSP90 in cancer patient datasets. The individual

approaches are described below.

A Screen to Identify Chromatin Regulators Functionally
Interacting with HSP90
The proliferation of cancer cells is sensitive to HSP90 inhibition

using small molecules that target the ATPase activity of the

chaperone (Tao et al., 2015; Wang et al., 2013a). HSP90 is

likely required for the stabilization of a subset of proteins that

is critical for cell proliferation. The partial depletion of such pro-

teins by knock down is expected to make cancer cells even

more sensitive to sublethal concentrations of HSP90 inhibitors.

Based on this idea, we performed a chemical-genetic screen to

identify genes that when knocked down enhance/reduce the

sensitivity of cells to the HSP90in. For HSP90in, we used

NVP-AUY922, a drug that is in phase II clinical trials against

several cancers (Brough et al., 2008; Eccles et al., 2008). This

drug is expected to inhibit both cytosolic and nuclear pools

of HSP90. We used human erythroleukemic cell line K562 as

a cellular model to address the functional contribution of

HSP90 to oncogenic proliferation. We leveraged the approach

of barcoded small hairpin RNA (shRNA) pooling (Scuoppo

et al., 2012), in which pools of shRNAs targeting hundreds of

genes are used to transduce a cell population (Figure 1A).

The proportion of cells carrying each shRNA in a mixed popu-

lation is quantified by deep sequencing of barcodes. Thus, the

difference in shRNA frequency in populations exposed to

vehicle compared to HSP90in will represent the quantitative ef-

fect of HSP90 inhibition on the proliferation of cells expressing

an individual shRNA. This allowed us to infer the chemical-ge-

netic interaction score (CGIS) of the target gene. A negative

CGIS of a gene indicates that cells depleted of the correspond-

ing protein were more sensitive to HSP90in than control cells.

To focus on the function of nuclear HSP90 in gene expression,

we used a library of pooled shRNA targeting 677 genes with the

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

annotation as chromatin/transcriptional regulation (Table S1).

Each of the 677 genes was targeted using 4 independent



Figure 1. Chemical-Genetic Screen for HSP90 Interactors

(A) Outline of the experimental approach. The K562 erythroleukemia cell line (black circles) was retrovirally infected to introduce the barcoded shRNA library and

selected for blasticidin-resistant cells (green circles). shRNA expression was induced (red circles) by the addition of doxycycline (dox). HSP90 inhibitor (NVP-

AUY922) was added as shown. Black circles with a dagger sign indicate dead cells. Four days after dox and/or HSP90 inhibitor treatment, cells were harvested

from each pool and barcode frequency was determined by deep sequencing to calculate the chemical-genetic interaction score (CGIS; see Method Details).

(B) Representative western blot analysis of DNMT3A expression in K562 cells, showing the effect of individual shRNAs targeting DNMT3A or Renilla. Tubulin is

used for normalization.

(C) Waterfall plot showing CGIS of all 668 genes screened in the experiment on the y axis plotted against the gene rank from lowest to highest CGIS. Thresholds

used to shortlist HSP90 interactors are indicated with horizontal blue lines.

(D) Z scores of individual shRNAs (red boxes) targeting 20 genes with the lowest CGISs identified in the screen are shown. The gray histogram depicts the

normalized distribution of Z scores of all of the candidates in the screen. Control shRNAs (see Method Details) are highlighted as blue boxes. Red vertical lines

indicate the 66th and the 98th percentile in Z scores on either side of zero.

(E) A subset of genes identified with significant positive (blue) or negative (pink) CGIS from (C) are shown in a network derived using Cytoscape. Genes encoding

the components of a complex or proteins in the same functional pathway are shown together. Lines connecting individual genes indicate interactions known in the

literature. The two boxes indicate complexes of which multiple subunits and related proteins were identified in the screen.

See also Figures S1 and S2 and Tables S1 and S2.
shRNAs (Figure 1B) to reduce the influence of off-target effects

on CGIS. Furthermore, we used the doxycycline-inducible

shRNA library (Figure S1) to minimize the long-term conse-

quences of knocking down critical genes.
We performed the chemical-genetic screen using HSP90in on

K562 cells in two replicates that showed high reproducibility (Fig-

ure S2A). The shRNA targeting luciferase had a CGIS of �0 (Fig-

ures 1C, 1D, and S2B), as expected for the negative control. The
Cell Reports 29, 1645–1659, November 5, 2019 1647



average SD for all shRNAs targeting the same gene was �0.07,

indicating highly reproducible effects between the different

shRNAs (Figure 1D). Thus, our chemical genetic screen yielded

robust CGISs for all 677 tested genes. With a cutoff of jCGISj >
1.5, we identified 203 genes that genetically interact with human

HSP90 in the context of K562 cells: 103 genes with positive

CGISs and 100 with negative CGISs (Table S2). Proteins known

to interact with HSP90 in yeast and flies, such as the Polycomb/

trithorax group and the switch/sucrose non-fermentable (SWI/

SNF), were recovered in the chemical-genetic screen in human

K562 cells validating our approach (Figures 1D and 1E; Table

S2; Hummel et al., 2017; McClellan et al., 2007; Millson et al.,

2005; Tariq et al., 2009; Zhao et al., 2005). The chi-square test

showed a non-significant overlap between genetic interactors

identified here and known clients of HSP90 (https://www.

picard.ch/HSP90Int/index.php). This is likely due to the fact

that known clients are mostly cytosolic, underestimating tran-

scription regulators on which our screen focused (Figure 1).

Thus, the chemical-genetic interaction screen identified several

chromatin regulators that had not been known to interact with

HSP90.

Physical Interaction Network of Nuclear HSP90 in
Human Cells
Genetic interactions can be attributed to an indirect relation be-

tween the two interacting genes. In the context of HSP90, the

candidates we identified in the chemical-genetic interaction

screen need not be clients of the chaperone. Knocking down

such genes may rescue the detrimental effects of HSP90 inhibi-

tion on proliferation or affect proteostasis, making cells more

dependent on unrelated processes that are contingent on

HSP90 (Li et al., 2015). The physical protein-protein interactome

can provide a complementary approach by confirming direct

contact between genetically interacting proteins. Only 2%–3%

of total cellular HSP90 is in the nucleus (Berbers et al., 1988; Per-

dew et al., 1993), and hence, previous attempts to find HSP90

interactors in total cell extracts have yielded mostly cytosolic

proteins (Falsone et al., 2005, 2007; Gano and Simon, 2010;

Taipale et al., 2014; Tsaytler et al., 2009). We sought to identify

proteins that physically interact with nuclear HSP90 by affinity

purification coupled to mass spectrometry (AP-MS) after the

subcellular fractionation of human cells (Figure 2A). Given that

HSP90a binds some clients with higher affinity than HSP90b

(Prince et al., 2015b), we focused on the former for AP-MS. We

used HEK293 Flp-In T-Rex cells (Hauri et al., 2016) expressing

HSP90a N-terminally tagged to Strep-tag to identify the interac-

tors of nuclear HSP90. TheHEK293 system has been extensively

used for interactome analyses of several key cellular proteins, al-

lowing us to contribute to a widely usable resource and linking

our data with pre-existing information (Hauri et al., 2016). Tetra-

cycline-inducible production ensured levels of tagged HSP90

lower than the endogenous protein (Figure 2B). We used nuclear

extracts of induced cells to performStrepTactin-basedAP-MS in

four independent biological replicates. Cells expressing red fluo-

rescent protein (RFP) instead of HSP90a acted as a negative

control. The proteins identified in HSP90a and RFP AP-MS

were statistically analyzed to identify the interactors of nuclear

HSP90a (Figure S3A; Table S3). The analysis focused on inten-
1648 Cell Reports 29, 1645–1659, November 5, 2019
sity ratios of peptides identified in RFP versus HSP90 samples,

as well as reproducibility across replicates, as has been done

before (Cox et al., 2014; Mosley et al., 2011; ten Have et al.,

2011) and as detailed in Method Details. Since cytosolic

HSP90 is much more abundant than the nuclear counterpart,

we made sure that cytosol did not contaminate the nuclear ex-

tracts used to identify the HSP90 interactome. First, the purity

of nuclear extracts was confirmed using western blotting before

AP-MS (Figure 2C). Second, Gene Ontology analysis of proteins

identified in AP-MS confirmed that mostly nuclear proteins were

enriched, ruling out cytosolic contamination (Figure S3B). Third,

kinases present in the cytoplasm known to be HSP90 clients,

such as B-RAF and c-SRC, were not identified in our AP-MS

(Table S3). Instead, 9 of 10 kinases that we identifiedwere known

to have nuclear functions (Table S3).

The resulting complex network of HSP90 binding partners

comprised proteins falling into the following main categories:

(1) chaperones and co-chaperones, (2) components of the pro-

tein degradation machinery, (3) DNA repair proteins, (4) RNA

metabolism factors, and (5) transcription regulators. We recov-

ered several proteins known to interact with HSP90, such as

RNA polymerase II (Pol II) pausing/elongation proteins (Figures

2D and 2E; Table S3; Hummel et al., 2017; Sawarkar et al.,

2012; Sharma et al., 2012). From �450 proteins (Table S3), we

focused on transcription regulators only, and we manually

curated 102 proteins as high-confidence interactors of nuclear

HSP90 with roles in transcription (Figure 2E; Table S4). Of these,

only six were previously reported to be HSP90 interactors

(https://www.picard.ch/HSP90Int/index.php). The large number

of hitherto unidentified interactions seen in our analysis (Table

S4) may stem from the fact that the low-abundance transcrip-

tional regulators are diluted in total cell extracts that had thus

far been used in the field. It should be noted that the nuclear in-

teractome and the chemical-genetic screen were performed in

two different cell lines. A direct correlation between the output

of these two screens may not be appropriate without any further

biochemical validation.

Genes Co-expressing with HSP90 in Cancer Tissues
The genetic and physical interactions of HSP90 presented in this

study thus far have been carried out in cell lines cultured in the

lab that may be very different from the actual cancer cells from

patients. We argued that if the expression of cancer-relevant in-

teractors of HSP90 is higher in cancer cells compared to normal

cells, then the expression of HSP90may also be higher in cancer

cells that are likely to stabilize those interactors. We tested this

idea using transcriptional regulators that associate with nuclear

HSP90 (Figure 2E; Table S4). We harnessed publicly available

cancer RNA expression data from The Cancer Genome

Atlas (TCGA; https://www.cancer.gov/about-nci/organization/

ccg/research/structural-genomics/tcga), as large-scale quanti-

tative data on protein abundance in cancer cells are not avail-

able. We focused on datasets from 17 cancers encompassing

7,080 patients and 710 healthy controls in total. We confirmed

that HSP90 is transcriptionally upregulated in 12 of 17 types of

cancers compared to the corresponding healthy tissues (Fig-

ure 3A), as has been shown before (Hadizadeh Esfahani et al.,

2018; Whitesell and Lindquist, 2005). The physical interactors

https://www.picard.ch/HSP90Int/index.php
https://www.picard.ch/HSP90Int/index.php
https://www.picard.ch/HSP90Int/index.php
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga


Figure 2. Physical Interactome of Nuclear

HSP90a in Human Cells

(A) Schematic overview of the experimental

protocol.

(B) Expression of recombinant HSP90a upon

tetracycline induction in the HEK293 cell line

demonstrated by western blot of cell extracts.

Glyceraldehyde 3-phosphate dehydrogenase

(GAPDH) is used for normalization.

(C) Purity of cellular fractions as demonstrated by

western blot using small nuclear ribonucleoprotein

particle 70 (snRNP70) as a nuclear marker and

GAPDH as a cytosolic marker.

(D) Visualization of affinity-purified HSP90-bound

complexes by SDS-PAGE and silver staining.

RFP-expressing HEK293 cells were used as a

negative control. The blue arrows indicate the

expected position of the tagged proteins. The

lanes between HSP90a and RFP from the original

gel picture were removed for clarity.

(E) Transcription regulators identified as physical

interactors of HSP90a are shown in a network

derived using Cytoscape. Genes encoding the

components of a complex or proteins in the same

functional pathway are shown together. Lines

connecting individual genes indicate interactions

known in the literature. The two boxes indicate

complexes of which multiple subunits and related

proteins were identified in the interactome.

See also Figure S3 and Tables S3 and S4.
of nuclear HSP90 identified in this study (Figure 2E; Table S4) are

significantly upregulated in most of the cancer types in which

HSP90 levels are higher (Figure S4A). The inference holds true

even after increasing the stringency of the cutoff for identifying

interactors (Figure S4B). This observation motivated us to

perform an unbiased search for transcription regulators whose

expression correlates with the expression of HSP90 across all

17 cancer types. We constructed an expression-correlation ma-

trix using data from individual cancer patients or healthy controls

from the TCGA dataset. We identified 67 transcription regulator

genes whose expression is similar to the expression of both

HSP90a and HSP90b across all of the cancer types studied (Fig-

ure 3B; Table S5). These co-expressed genes were not upregu-

lated in all of the cancers, ruling out generic markers of cell

proliferation. An independent approach using weighted gene

co-expression network analysis (WGCNA; see Method Details)

with a different statistical model identified 350 genes whose

expression correlated with HSP90 (Table S6). Approximately

two-thirds of 67 genes were also found in the set of 350 genes

identified in WGCNA. For further work, we focused on these 67

genes, given the smaller number of genes compared to 350.
Cell Repor
Core Functional Interactome of
Nuclear HSP90
While individual hits obtained in each of

the three datasets—genetic interactors,

physical interactors, and cancer co-

expression gene set—will be a valuable

resource for future studies, we wanted

to focus here on proteins that were iden-
tified in all three datasets. A pairwise comparison of the three da-

tasets showed a high degree of overlap (Figure 3C), despite the

fact that the three approaches were completely independent of

one another. Five proteins were common to all three approaches

used in our study: ACTL6, CHD4, HCFC1, RBBP4, and

SMARCC2 (Figure 3D). The five genes identified as common to

all three analyses were generally insensitive to the cutoff values

used in each of the analyses, confirming the robustness of our

conclusion (Figures S4C–S4E). We refer to these five proteins

as the core functional interactome of nuclear HSP90 that interact

with HSP90 both genetically and physically and are co-ex-

pressed with HSP90 in tumors. SMARCC2 and ACTL6 are part

of the BRG1- or HBRM-associated factors (BAF) complex from

the SWI/SNF chromatin remodeler family (Figure 3E). The SWI/

SNF complex has been linked to HSP90 in independent studies

in yeast (Zhao et al., 2005), validating our data. RBBP4 and

CHD4 are part of the nucleosome remodeling deacetylase

(NuRD) complex (Figure 3E), which is absent in budding yeast

and has thus far not been connected with HSP90. Almost all of

the members of the NuRD complex were identified in one or

more of the three datasets described here (Figure 3E). Finally,
ts 29, 1645–1659, November 5, 2019 1649



Figure 3. Core Functional Interactors of Nuclear HSP90

(A) Normalized expression levels of HSP90 in human RNA-seq datasets from The Cancer Genome Atlas (TCGA). Normal tissue is compared to primary tumors in

17 different cancer types. The dark line denotes the position of 0, the mean of normalized expression of HSP90 in normal tissues. The statistical significance of

(legend continued on next page)
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metazoan-specific host cell factor C1 (HCFC1) was the only core

functional interactor that showed negative genetic interaction

with HSP90 (i.e., HCFC1 knockdown sensitizes cells to HSP90in)

(Figures 1D and 3D). HCFC1, initially discovered as a host factor

that supports the transcription of viral genes is a protein that is

recruited to chromatin via a variety of transcription factors

(TFs) and in turn acts as a platform to recruit chromatin modi-

fying/remodeling complexes such as Sin3A histone deacetylase

complex (HDAC) and Su(var)3-9, enhancer of zeste, trithorax/

mixed lineage leukemia (MLL/SET) histone methyltransferase

complex (Wysocka et al., 2003). Several members of the

HCFC1 complex were recovered in one or more approaches

used here (Figure 3E), suggesting a close molecular partnership

between HSP90 and HCFC1. Thus, using a combination of

orthogonal and independent approaches, we identified five pro-

teins belonging to three different transcriptional complexes as

core functional interactors of nuclear HSP90 (Figures 3D and

3E). To validate our findings in more detail at a mechanistic level,

we further evaluated whether the core interactors require HSP90

for their gene-regulatory role at chromatin.

Genomic Analyses Identify HCFC1 as a Nuclear Target
of HSP90
If HSP90 is required for the function or stability of an interactor X

at chromatin, two predictions can be made: first, HSP90 and the

interactor X should share genomic binding sites as evidenced by

chromatin immunoprecipitation sequencing (ChIP-seq) co-oc-

cupancy, and second, HSP90 inhibition should lead to the loss

of function of the interactor, causing misregulation specifically

of the genes targeted by the interactor X.We tested both of these

predictions in an unbiased manner. We used available ChIP-seq

data of HSP90 in two human cell lines, K562 (Table S7) and

BT474 (Greer et al., 2015), to identify the DNA sequence motifs

enriched in the regions bound by HSP90. In addition, we

analyzed promoter sequences of genes that are misregulated

upon HSP90 inhibition using RNA-seq data of six different cell

lines of human and mouse origin (either published in Hummel

et al., 2017 or generated in the present study). Hypergeometric

optimization of motif enrichment (HOMER)-based motif enrich-

ment analyses of the promoter sequence (defined as �400

to +100 bp with transcription start site [TSS] at 0) of misregulated

genes and HSP90 ChIP-seq peak regions identified 14 TF motifs

(see Figure 4A;MethodDetails).We did not find theHSF1motif in

our analyses, despite the recent data linking HSP90 and HSF1

(Kijima et al., 2018). A detailed analysis revealed that the HSF1

motif was found only in the RNA-seq dataset when HSP90 inhi-
misregulation in cancer compared to normal tissue was determined by the Stude

standard form of TCGA (see Method Details).

(B) Heatmap showing the hierarchical clustering of 668 transcriptional regulators

cancer types. Themedian scorewas calculated as indicated in the formula.Media

and normal tissue (NT) samples. Clusters are indicated by colored boxes at top.

outline.

(C) Venn diagram showing the overlap between genetic interactors, physical inte

(D) Five genes that were identified in all three screens are shown.

(E) Three complexes (BAF, NuRD, and HCFC1) are depicted with their respectiv

screens in which the subunit was identified. Alternative subunits are shown in lig

See also Figure S4 and Table S5.
bition was for a short duration (8 h), not a long duration (24 h).

This is in line with the observation of HSF1 inactivation due to

increased chaperone expression (Shi et al., 1998). Chaperone

HSP70 upregulation in the early phase of HSP90 inhibition (2–8

h) likely dampens HSF1 activity in the later phases of HSP90 in-

hibition (24 h). Nonetheless, 7 of the 14 TFs that we identified

(Figure 4A) are known to recruit HCFC1 to chromatin (Figure 3E),

suggesting that HSP90 and HCFC1 may co-occupy genomic

sites. ChIP-seq analyses confirmed that the binding sites of

HSP90 overlap with the binding of HCFC1 and TFs known to re-

cruit HCFC1 to chromatin (Michaud et al., 2013; Parker et al.,

2014; Vogel and Kristie, 2000; Yu et al., 2010; Zargar and Tyagi,

2012; Figure 4B). A set of promoters not targeted by HSP90

acted as a negative control and showed no binding of HCFC1

(Figure 4B).

Having defined HCFC1 as a likely nuclear target of HSP90 in

humans, we revisited the TCGA expression data to ask whether

the components of the HCFC1 complex are co-expressed with

HSP90 in cancers. We used the HCFC1 interactome that we

manually curated by combining information from published

data (Ajuh et al., 2000; Alfonso-Dunn et al., 2017; Deplus et al.,

2013; Liu et al., 2010; Michaud et al., 2013; Parker et al., 2014;

Wysocka et al., 2003; Yu et al., 2010; Table S8) and found that

HSP90 expression is highly correlated with the expression of

HCFC1 interactors in most cancer types (Figures 4C and S4F).

We then analyzed the normalized RNA expression data of indi-

vidual genes in primary tumors compared to corresponding

normal tissues (Figure S5). Cancer types that show an increased

RNA expression of HSP90 genes in tumors compared to normal

tissues also showed an increased expression of HCFC1 interac-

tors in tumors. The expression correlation between HSP90 and

HCFC1 interactors held true even in protein expression data in

colon adenocarcinoma for which quantitative protein abundance

information was available for a few genes in the Clinical Prote-

ome Tumor Analysis Consortium (CPTAC; Figure 4D). It is note-

worthy that most of the HCFC1-interacting proteins were not

used in the initial TCGA analysis described in Figure 3.

Thus, several independent approaches led us to suggest that

nuclear HSP90 interacts with the metazoan-specific HCFC1-

regulatory module. HCFC1 is 1 of the 11 genes called the

death-from-cancer signature that were identified in a longitudinal

study of �1,000 cancer patients by Glinsky et al. (2005). Tumors

that have high transcript levels of HCFC1 along with 10 other

genes show poor therapeutic outcomes irrespective of the can-

cer type, which is reminiscent of the finding that NSCLCwith high

nuclear HSP90 levels shows poor prognosis (Su et al., 2016).
nt’s t test and indicated by asterisks. The acronyms of cancer types are in the

(Table S1) based on the median score of their expression across 17 different

nPT andmedianNT denote themedian expression of a gene in primary tumor (PT)

The cluster containing HSP90AA1 and HSP90AB1 is highlighted with a black

ractors, and genes co-expressed with HSP90 in different cancer types.

e subunits. The color scheme of the subunit names represent the number of

hter-colored ovals. See Method Details for the subunit annotation sources.
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Figure 4. Physical and Function Interplay

between HSP90 and HCFC1 at Chromatin

(A) Scheme to identify motifs underlying the func-

tion of HSP90 at chromatin. Promoter regions of

genes misregulated upon HSP90 inhibition and

HSP90 peak regions were used to identify en-

riched TF binding motifs. Names in bold indicate

TFs known to recruit HCFC1 to chromatin (Fig-

ure 3F). The cell types used are indicated.

(B) ChIP-seq analysis for HSP90, HCFC1, and

genes known to recruit HCFC1. Heatmaps visu-

alize the occupancy of HSP90, HCFC1, ZNF143,

THAP11, GAPB, YY1, E2F1, E2F4, and E2F6 in a

1,000-bp region around HSP90 peak summits and

in HSP90-unbound promoter regions. HSP90

ChIP-seq was done in K562 cells; all of the other

data are from HeLa cells. Color-scaled ChIP-seq

read intensities are in units of reads per million

(RPM).

(C) Gene set analysis (GSA) of the gene expression

levels in primary tumor samples compared to

normal tissue samples based on RNA-seq data-

sets from TCGA. Known HCFC1 interactors (Table

S8) are grouped in one gene set (y axis). The sig-

nificance of the up- or downregulation of genes in

primary tumors versus normal tissues is calculated

as DGSA value. The maximal significance of up-

regulation is indicated by +1 (p = 0), while the

maximal significance of downregulation is indi-

cated by �1 (p = 0). DGSA values for HSP90 are

plotted againstDGSA values of HCFC1 interactors

in the scatterplot, with each dot representing one

cancer type in TCGA. R2 and p values calculated

using a linear regression analysis are shown.

(D) Normalized expression levels of HSP90,

HCFC1, and two proteins known to recruit HCFC1

in samples of normal tissue in comparison with

primary tumors in colon adenocarcinoma. Source

data: RNA expression from TCGA (left) and protein

expression from CPTAC (right; see Method De-

tails). Boxplots display the 25th to the 75th per-

centiles (boxes), the median is shown by the

middle line, and the whiskers depict 1.5 times the

interquartile range. See Figure S5 for all other

cancer datasets.

See also Figures S4 and S5 and Tables S6, S7, and

S8.
Stabilization of HCFC1 by HSP90 Is Required for Cell-
Cycle Gene Expression
We tested the possibility that nuclear HSP90 chaperones and

stabilizes HCFC1 against misfolding and degradation. HCFC1

is a large protein of �300 kDa and is proteolytically processed

into N- and C-terminal fragments of �150 kDa each (Capotosti

et al., 2011). These two forms of HCFC1 bind chromatin at the

same promoters tethered by various TFs (Michaud et al.,

2013). Upon HSP90 inhibition, protein levels of uncleaved

HCFC1 and its N- and C-terminal fragments are drastically

reduced, without having much effect on HCFC1 transcript levels

(Figures 5A and S6A). Cytosolic levels of HCFC1 levels were not

altered by HSP90 inhibition, even at the HSP90in concentration

that leads to the degradation of other known clients of HSP90

(Basso et al., 2002; Ding et al., 2016; Walerych et al., 2004)
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and the transcriptional upregulation of chaperones as expected

(Figures S6B–S6D). The degradation of HCFC1 upon HSP90 in-

hibition depended on functional autophagy, but not the protea-

some pathway (Figures S6E and S6F), which is in line with a

recent report for another transcriptional regulator (Wang et al.,

2018).

Next, we assessed whether HSP90 inhibition causes the mis-

regulation of HCFC1 targets, as can be expected from the

decrease in chromatin-associated HCFC1. As observed in pub-

licly available RNA-seq data (Hummel et al., 2017), acute HSP90

inhibition inmouse embryonic stem cells (ESCs) causes the tran-

scriptional upregulation of 2,727 genes and the downregulation

of 1,539 genes (p < 0.01, absolute fold change >2). Mainly down-

regulated genes were targeted by HCFC1 at their promoters, but

not upregulated genes (Figures 5B and S7A). A network analysis



Figure 5. HSP90 Controls Cell-Cycle Gene

Expression by Stabilizing HCFC1

(A) HSP90 inhibition leads to HCFC1 protein level

decrease in total nuclear extracts, nucleoplasm,

and chromatin fractions in HEK293 cells.

snRNP70 and H3 served as loading controls. The

control experiments to validate HSP90 inhibition

are shown in Figures S6C and S6D.

(B) Metaplots of HCFC1 binding around tran-

scriptional start sites (TSSs) of downregulated

(purple) and upregulated (red) genes in mouse

ESCs (mESCs) upon HSP90 inhibition. The y axes

indicate normalized ChIP-seq occupancy in RPM.

(C) Enrichment map of Reactome pathways

defined by genes that are HCFC1 targets and are

downregulated upon HSP90 inhibition. Node size

represents the number of downregulated genes

that overlap with the corresponding Reactome

pathway, and the size of the edges represent the

number of shared genes between two connecting

pathways.

(D) List of biological processes defined by Gene

Ontology for genes that are HCFC1 targets and are

downregulated upon HSP90 inhibition. p values

assessed by Fisher’s exact test with multiple-test

correction are shown.

(E) Genome browser tracks of two representative

genes: NOP2 in K562 cells (top panel) and CDC6 in

mESCs (bottom panel). ChIP-seq occupancy of

HCFC1 at promoters is shown in cyan. Expression

levels are visualized in control conditions (blue)

and upon HSP90 inhibition (red). The vertical scale

indicates normalized read density in RPM.

See also Figures S6 and S7.
of genes targeted by HCFC1 that are downregulated upon

HSP90 inhibition showed an enrichment of the regulators of

the cell cycle and chromosome segregation (Figures 5C and

5D; e.g., proliferating cell nucleolar antigen NOP2 and cell-divi-

sion cycle 6 [CDC6]; Figure 5E). HSP90 inhibition causes a signif-

icantly stronger downregulation of HCFC1-targeted cell-cycle

genes as compared to HCFC1-non-targeted cell-cycle genes

(Figure S7B). We selected a short list of cell-cycle genes that

are cancer relevant and some of which are being considered

for cancer therapeutics (Figure S7C). Using qPCR analyses, we

confirmed that HSP90 inhibition causes the downregulation of

these cell-cycle genes to varying degrees (Figure S7D). More

important, the overexpression of HCFC1 rescued the downregu-

lation caused by HSP90 inhibition (Figure S7D), further suggest-

ing that HSP90 regulates the expression of these genes by sta-

bilizing HCFC1.

Interaction between HCFC1 and HSP90 Is Important for
Diverse Cellular Processes
To further test the role of chaperoning HCFC1 function by HSP90

in maintaining gene expression, we used multiple independent
Cell Repor
models. In the first model, we asked

whether the HSP90-HCFC1 interaction is

important for the proliferation of K562

cells. Analogous to the chemical-genetic
screen (Figure 1), we quantified the effect of HSP90in on K562

cells with or without knock down of HCFC1. Control knock

down of renilla luciferase did not sensitize cells to HSP90 inhibi-

tion. HCFC1 depletion, however, exacerbated the effect of

HSP90in on cell viability (Figure 6A), confirming our results with

the chemical-genetic screen. To further strengthen the evidence

that HSP90 physically and functionally interacts with HCFC1,

we used the biochemical approach of co-immunoprecipitation

using truncated forms of HCFC1. HSP90 was found to interact

with the N-terminal fragment of HCFC1, specifically the Kelch

domain but not the C-terminal fragment (Figures 6B and S8A).

Due to expression differences between N- and C-terminal frag-

ments of tagged HCFC1, it is difficult to reach a conclusion about

their relative HSP90 interaction strength. Moreover, we found that

the client-trappingmutant of HSP90, E42A (Prince et al., 2015), in-

teracts with a higher affinity with the HCFC1N-terminal and Kelch

domains (Figure S8B), further confirming that HCFC1 is a client of

HSP90. To genetically test the interaction between the Kelch

domain and HSP90, we capitalized on a known spontaneous

point mutation in the Kelch domain of HCFC1, P134S, originally

isolated from the hamster cell line BHK-21 (Goto et al., 1997).
ts 29, 1645–1659, November 5, 2019 1653



Figure 6. Functional Relevance of HSP90-

HCFC1 Interaction Assessed in Indepen-

dent Cellular Models

(A) Effect of HCFC1 knockdown on the mean

growth rate of K562 cells in the presence and

absence of HSP90in as measured by growth

competition assay. Inset: western blot analysis of

HCFC1 upon knock down, with shRNA directed

against HCFC1. For normalization, snRNP70 was

used.

(B) Hsp90 co-purification upon affinity pull down of

the HCFC1 Kelch domain or the HCFC1 N-termi-

nal fragment in HeLa cells.

(C) Effect of a point mutation P134S in the Kelch

domain of HCFC1 sensitizes cells to HSP90 inhibi-

tion. Two isogenic BHK-21 cell lines differing in one

residue of HCFC1 (mutant and wild type) were

exposed to HSP90 inhibition, and the effect on

growthwas determined. The statistical significance

was calculated using the one-tailed t test. Themean

growth rate with SD is shown for three replicates.

(D) Effect of HSP90 inhibitor and HCFC1 over-

expression on VP16-induced transcription of viral

promoter-reporter constructs. Normalized values

of mRNA abundance of the reporter as evaluated

by qRT-PCR are shown as means and SEMs. The

effect of wild-type and P134S mutant HCFC1

overexpression are shown. The statistical signifi-

cance was calculated using the one-tailed t test.

(E) Effect of CDK9 and HSP90 inhibitors either

individually or in combination on the growth rate of

myeloma cell line U266. Themean growth ratewith

SEM is shown for three replicates. The gray bars

indicate the expected outcome of growth rates if

the two inhibitors worked additively or by multipli-

cative interaction. The experimental outcome of

the combination treatment is significantly lower

than that of the expected outcome, as shown by

the p values (one-tailed t test).

See also Figures S8 and S9.
This model allowed us to compare the effect of the HSP90 inhib-

itor on two isogenic cell lines that differ in only one residue of

HCFC1. While HSP90 inhibition only mildly affected the growth

rate of wild-type cells, mutant cells were significantly sensitive

to HSP90 inhibition (Figure 6C), confirming the requirement of

HSP90 for optimal HCFC1 function in driving cell proliferation.

We found that the steady-state protein levels of the HCFC1-

P134S mutant are lower than those of the wild-type HCFC1 (Fig-

ure S8C). Furthermore, mutant protein, especially the full-length

HCFC1, bound with much higher affinity to HSP90 as compared

to wild type (Figure S8D). These data suggest that the P134S

mutant HCFC1 is highly unstable and is much more dependent

on HSP90, which is in line with the finding that HSP90 binds to

the Kelch domain where the mutation P134S lies.

In the second model, we studied the ability of HCFC1 to acti-

vate the transcription of the immediate early (IE) promoter of the

herpes simplex virus (HSV). IE promoter expression is driven by
1654 Cell Reports 29, 1645–1659, November 5, 2019
the viral protein 16 (VP16) that recruits

HCFC1 (Wysocka and Herr, 2003). We

found that the activity of the HSV-IE pro-
moter is increased by VP16 expression as expected (Figure 6D).

Co-expression of wild-type HCFC1 but not P134S mutant

HCFC1 caused a further increase in the HSV-IE reporter, which

was sensitive to HSP90 inhibition (Figure 6D). Hence, HCFC1 re-

quires HSP90 for activating transcription from viral promoters,

which is in line with the observation that cellular promoters tar-

geted by HCFC1 are downregulated upon HSP90 inhibition (Fig-

ures 5B and 5E).

Simultaneous Inhibition ofCDK9andHSP90Suppresses
Cell Proliferation
Using three orthogonal analyses combined with genomic and

biochemical analyses, our study uncovered the importance of

the collaboration between HSP90 and HCFC1 in driving cell-cy-

cle gene expression fueling proliferation. Thus, simultaneous

inhibition of HSP90 and HCFC1 function should prove to be

synergistically lethal for cancer cells, similar to pharmacological



synergy (Loewe, 1953). Our chemical-genetic screen already

identified HCFC1 as one of the proteins that when knocked

down makes cells highly sensitive to Hsp90in (Figures 1D and

1E). HCFC1 itself cannot be targeted by small molecule inhibitors

such as HSP90, limiting the practical application of our findings

to cancer treatment. Hence, we sought to identify HCFC1 inter-

actors that also bind to HSP90 and can be targeted by small

molecules. Comparing HCFC1 interactors (Table S8) with

HSP90 interactors (Table S4), we identified cyclin-dependent ki-

nase 9 (CDK9) as a potential candidate. CDK9 is recruited by

HCFC1 to viral promoters for the activation of IE genes

(Alfonso-Dunn et al., 2017). Small-molecule inhibitors of CDK9

block the expression of these viral genes (Alfonso-Dunn et al.,

2017), similar to HSP90 inhibitors (Figure 6E). HSP90 has inde-

pendently been shown to interact with CDK9 (O’Keeffe et al.,

2000), likely in association with HCFC1. We directly tested

whether HSP90in could synergize with CDK9 inhibitors (CDK9is)

in killing cancer cells. CDK9i worked optimally to reduce the

expression of target cell-cycle genes, as expected (Figure S9A;

Aprile-Garcia et al., 2019). While individual inhibitors had only a

mild effect on proliferation, a combination of these two inhibitors

showed synergistic lethal effects on the cell proliferation of

myeloma cell line U266 (Figure 6E). The combination was more

effective than expected for an additive or multiplicative interac-

tion between the two inhibitors (Baryshnikova et al., 2013). The

simultaneous inhibition caused a substantial increase in the frac-

tion of apoptotic cells and an enhanced proportion of cells in G0

phase of the cell cycle (Figure S9B), phenocopying the loss of

function of HCFC1 (Goto et al., 1997).The simultaneous inhibition

caused a more persistent and severe decrease in the expression

of cell-cycle genes (Figure S9C). We further tested amore potent

and specific CDK9 inhibitor that was recently developed,

MC180295 (Zhang et al., 2018) for its synergy with HSP90 inhib-

itor in U266, K562, and HeLa cells. In all of the cases tested,

MC180295 was synergistic with HSP90in in controlling the pro-

liferation of cells (Figure S9D). In summary, the identification of

HCFC1 in this study as a target of nuclear HSP90 can be har-

nessed to provide a combination of drugs targeting proteostasis

and transcription.

DISCUSSION

Proteins that have completed de novo folding enter the nucleus

to encounter a unique challenge of dealing with chromatin poly-

mers. Our understanding of nuclear protein quality control still

requires a global understanding of chaperone clients in this

cellular compartment. By using three orthogonal and indepen-

dent approaches, this study provides a global analysis of the nu-

clear pool of HSP90 in human cells. We used different cell lines

and cancer types for implementing the diverse approaches

with the aim of identifying fundamental, cell-type-invariant regu-

latory modules that are chaperoned by HSP90.

The individual approaches detailed in this work will be a rich

resource for follow-up studies. For example, expression of the

interacting genes (Figure 1) in tumors treated with HSP90in

may predict therapeutic responsiveness among patients. In

this regard, it is noteworthy that we identified the SWI/SNF com-

plex in multiple analyses described here. Mutations in SWI/SNF
components have been recently linked to the sensitivity of tu-

mors to immunotherapy (Miao et al., 2018; Pan et al., 2018), sug-

gesting that HSP90 inhibitors may be synergistically combined

with immune checkpoint blockade. Similarly, HDACs recovered

in our work have already proved to be successful when com-

bined with HSP90in in cancer treatment (Krämer et al., 2014). It

is likely that HSP90 is critical for the assembly and/or the function

of BAF and NuRD complexes in the nucleus, both of which are

important cancer modifiers. It should be noted that most avail-

able HSP90 inhibitors are likely to inhibit both cytosolic and nu-

clear HSP90, affecting the levels of chromatin regulators in both

of these compartments.

The protein quality control mechanism controlled by HSP90

works in unison with co-chaperones and E3 ubiquitin ligases.

Besides HSP70, we found kinase-specific co-chaperone

CDC37 in the nuclear interactome of HSP90, along with multiple

kinases. We found that HCFC1 degradation upon HSP90 inhibi-

tion depends on autophagy rather than the proteasome. How

nuclear proteins are carried to autophagosomes will be an

important question for future studies. It is not clear how HSP90

selects its clients in the nucleus, where all of the proteins have

already finished the initial aspects of folding and maturation.

Some common themes have emerged from work of the last

few years. Three clients of HSP90, namely HCFC-1, trithorax/

MLL, and picornavirus capsid precursor poly-protein (P1), un-

dergo proteolytic processing as a part of their functional matura-

tion (Geller et al., 2007; Tariq et al., 2009). It is possible that a

common quality control feature associated with the proteolytic

maturation of proteins requires HSP90. In addition, we recently

reported the identification of the TRIM28 complex as a nuclear

client of HSP90 (Hummel et al., 2017), which can be recapitu-

lated in our work here (Figure 2E; Tables S3 and S4). TRIM28

and HCFC1 are both metazoan specific and act as a bridging

platform between TFs and chromatin-modifying proteins. It is

likely that the structural complexity of such a platform necessi-

tates chaperone action and control. The molecular determinants

by which HSP90 controls these platforms will be an exciting area

of future studies.

HCFC1 was named after its function as a host factor neces-

sary for the activation of viral IE promoters via binding VP16.

The finding that HCFC1 critically requires HSP90 for its stability

suggests that viral transcription and propagation in host cells

will be sensitive to HSP90 inhibition. Thus, HSP90 constitutes

an important host protein required for viral transcription and

replication (Geller et al., 2012; Wang et al., 2018), and HSP90 in-

hibitors could be used as broad antiviral agents (Wang et al.,

2017).

The premise of the use of HSP90 inhibitors in cancer therapy is

based on the findings that cancer cells are more sensitive to

HSP90in than untransformed normal cells. A recent study impli-

cated cellular quiescence and activity as a likely cause for the

differential sensitivity of normal and cancer cells to HSP90in

(Echeverria et al., 2019). The cellular activity of cancer cells is

driven by proliferation and the cell cycle. HSP90 is known to

directly stabilize multiple cell-cycle proteins. Our finding that

HSP90 regulates the transcription of cell-cycle genes defines

yet another layer of cell-cycle control by HSP90, likely contrib-

uting to the heightened sensitivity of cancer cells to HSP90in.
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TCGA data confirmed the previous findings that HSP90 is tran-

scriptionally upregulated in several cancer samples. It is not

clear how the expression of HSP90 is coordinated with that of

its interactors at the level of transcription, aswe found in our can-

cer co-expression analyses. One possibility is that proliferating

cells are fueled by the increased expression of cell-cycle regula-

tors such as HCFC1, whichmay enhance proteostatic demands.

Such demands may activate the HSF pathway, causing a tran-

scriptional upregulation of HSP90 genes. Nonetheless, the

data presented here suggest that HSP90 inhibitors can be ratio-

nally combined with drugs that target transcription to enhance

their therapeutic potential. In summary, our study provides

global insights into the function of nuclear HSP90 in human cells,

suggesting therapeutic intervention strategies that will bolster at-

tempts to make HSP90 inhibitors more effective in clinical

settings.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d LEAD CONTACT AND MATERIALS AVAILABILITY

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS
B Chemical-Genetic Interaction Screen

B Cell Fractionation

B SDS-PAGE

B Silver Staining

B Western Blotting

B Nuclear Protein Affinity Purification Coupled to Mass

Spectrometry

B RNA Isolation

B ChIP-Seq

B Biochemical Analyses of Protein Stability and Interac-

tions

B Experiments Testing Functional Interaction between

HSP90 and HCFC1

B RNA-Seq

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Computational Analysis of Sequencing Data

B Gene Set Analysis (GSA)

B Protein Expression Visualization

B Motif Discovery

B Statistical Tests

d DATA AND CODE AVAILABILITY

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

celrep.2019.09.084.

ACKNOWLEDGMENTS

We would like to thank Winship Herr (University of Lausanne, Lausanne,

Switzerland), Prof. Takeharu Nishimoto (Kyushu University, Fukuoka, Japan),

Monika Engelhardt (University Clinic Freiburg, Freiburg, Germany), Jean-

Pierre Issa (Temple University, Philadelphia, PA, USA), Christos A. Panagioti-
1656 Cell Reports 29, 1645–1659, November 5, 2019
dis (Aristotle University of Thessaloniki, Thessaloniki, Greece), and Thomas

Jenuwein and Eirini Trompouki (Max Planck Institute for Immunobiology and

Epigenetics, Freiburg, Germany) for sharing cell lines, inhibitors, protocols,

and plasmids. This work was financially supported by the Max Planck Society,

German Research Foundation (DFG) through the collaborative research center

CRC992 (Medical Epigenetics), via the research grant SA 3190 and through

Germany’s Excellence Strategy (CIBSS – EXC-2189 – Project ID 390939984)

to R.S. C.M. acknowledges financial support from the German Cancer Con-

sortium (DKTK).

AUTHOR CONTRIBUTIONS

R.S. conceived the project and designed the study; A.A., D.M.R., F.A.-G., P.R.,

E.C.H., A.K., and K.G. performed the experiments and interpreted the results;

B.H., M.S., J.M., G.M., and C.M. performed the computational analyses; and

R.S. wrote the manuscript with input from all of the authors.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: March 19, 2019

Revised: August 6, 2019

Accepted: September 27, 2019

Published: November 5, 2019

REFERENCES

Ajuh, P.M., Browne, G.J., Hawkes, N.A., Cohen, P.T., Roberts, S.G., and La-

mond, A.I. (2000). Association of a protein phosphatase 1 activity with the hu-

man factor C1 (HCF) complex. Nucleic Acids Res. 28, 678–686.

Alfonso-Dunn, R., Turner, A.W., Jean Beltran, P.M., Arbuckle, J.H., Budayeva,

H.G., Cristea, I.M., and Kristie, T.M. (2017). Transcriptional Elongation of HSV

Immediate Early Genes by the Super Elongation Complex Drives Lytic Infec-

tion and Reactivation from Latency. Cell Host Microbe 21, 507–517.e5.

Aprile-Garcia, F., Tomar, P., Hummel, B., Khavaran, A., and Sawarkar, R.

(2019). Nascent-protein ubiquitination is required for heat shock-induced

gene downregulation in human cells. Nat. Struct. Mol. Biol. 26, 137–146.

Arrigoni, L., Richter, A.S., Betancourt, E., Bruder, K., Diehl, S., Manke, T., and

Bönisch, U. (2016). Standardizing chromatin research: a simple and universal

method for ChIP-seq. Nucleic Acids Res. 44, e67.

Bao, Y., and Shen, X. (2007). SnapShot: chromatin remodeling complexes.

Cell 129, 632.

Baryshnikova, A., Costanzo, M., Myers, C.L., Andrews, B., and Boone, C.

(2013). Genetic interaction networks: toward an understanding of heritability.

Annu. Rev. Genomics Hum. Genet. 14, 111–133.

Basso, A.D., Solit, D.B., Chiosis, G., Giri, B., Tsichlis, P., and Rosen, N. (2002).

Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and

Cdc37 and is destabilized by inhibitors of Hsp90 function. J. Biol. Chem.

277, 39858–39866.

Berbers, G.A., Kunnen, R., van Bergen en Henegouwen, P.M., and vanWijk, R.

(1988). Localization and quantitation of hsp84 in mammalian cells. Exp. Cell

Res. 177, 257–271.

Bohenzky, R.A., Papavassiliou, A.G., Gelman, I.H., and Silverstein, S. (1993).

Identification of a promoter mapping within the reiterated sequences that flank

the herpes simplex virus type 1 UL region. J. Virol. 67, 632–642.

Brough, P.A., Aherne, W., Barril, X., Borgognoni, J., Boxall, K., Cansfield, J.E.,

Cheung, K.M., Collins, I., Davies, N.G., Drysdale, M.J., et al. (2008). 4,5-diary-

lisoxazole Hsp90 chaperone inhibitors: potential therapeutic agents for the

treatment of cancer. J. Med. Chem. 51, 196–218.

Calderwood, S.K., and Neckers, L. (2016). Hsp90 in Cancer: Transcriptional

Roles in the Nucleus. In Advances in Cancer Research, I. Jennifer and W.

Luke, eds. (Academic Press), pp. 89–106.

https://doi.org/10.1016/j.celrep.2019.09.084
https://doi.org/10.1016/j.celrep.2019.09.084
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref1
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref1
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref1
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref2
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref2
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref2
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref2
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref3
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref3
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref3
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref4
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref4
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref4
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref5
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref5
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref6
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref6
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref6
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref7
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref7
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref7
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref7
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref8
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref8
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref8
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref9
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref9
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref9
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref10
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref10
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref10
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref10
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref11
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref11
http://refhub.elsevier.com/S2211-1247(19)31288-4/sref11


Canonici, A., Qadir, Z., Conlon, N.T., Collins, D.M., O’Brien, N.A., Walsh, N.,

Eustace, A.J., O’Donovan, N., and Crown, J. (2018). The HSP90 inhibitor

NVP-AUY922 inhibits growth of HER2 positive and trastuzumab-resistant

breast cancer cells. Invest. New Drugs 36, 581–589.

Capotosti, F., Guernier, S., Lammers, F., Waridel, P., Cai, Y., Jin, J., Conaway,

J.W., Conaway, R.C., and Herr, W. (2011). O-GlcNAc transferase catalyzes

site-specific proteolysis of HCF-1. Cell 144, 376–388.

Colaprico, A., Silva, T.C., Olsen, C., Garofano, L., Cava, C., Garolini, D.,

Sabedot, T.S., Malta, T.M., Pagnotta, S.M., Castiglioni, I., et al. (2016).

TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA

data. Nucleic Acids Res. 44, e71.

Cox, J., Hein, M.Y., Luber, C.A., Paron, I., Nagaraj, N., and Mann, M. (2014).

Accurate proteome-wide label-free quantification by delayed normalization

and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics

13, 2513–2526.

Cvoro, A., Tzagarakis-Foster, C., Tatomer, D., Paruthiyil, S., Fox, M.S., and

Leitman, D.C. (2006). Distinct roles of unliganded and liganded estrogen re-

ceptors in transcriptional repression. Mol. Cell 21, 555–564.

Deeb, S.J., Cox, J., Schmidt-Supprian, M., and Mann, M. (2014). N-linked

glycosylation enrichment for in-depth cell surface proteomics of diffuse large

B-cell lymphoma subtypes. Mol. Cell. Proteomics 13, 240–251.

Deplus, R., Delatte, B., Schwinn, M.K., Defrance, M., Méndez, J., Murphy, N.,

Dawson, M.A., Volkmar, M., Putmans, P., Calonne, E., et al. (2013). TET2 and

TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/

COMPASS. EMBO J. 32, 645–655.

Dignam, J.D., Lebovitz, R.M., and Roeder, R.G. (1983). Accurate transcription

initiation by RNA polymerase II in a soluble extract from isolated mammalian

nuclei. Nucleic Acids Res. 11, 1475–1489.

Ding, G., Chen, P., Zhang, H., Huang, X., Zang, Y., Li, J., Li, J., and Wong, J.

(2016). Regulation of Ubiquitin-like with Plant Homeodomain and RING Finger

Domain 1 (UHRF1) Protein Stability by Heat Shock Protein 90 Chaperone Ma-

chinery. J. Biol. Chem. 291, 20125–20135.

Eccles, S.A., Massey, A., Raynaud, F.I., Sharp, S.Y., Box, G., Valenti, M., Pat-

terson, L., de Haven Brandon, A., Gowan, S., Boxall, F., et al. (2008). NVP-

AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor

growth, angiogenesis, and metastasis. Cancer Res. 68, 2850–2860.

Echeverrı́a, P.C., Bernthaler, A., Dupuis, P., Mayer, B., and Picard, D. (2011).

An interaction network predicted from public data as a discovery tool: applica-

tion to the Hsp90 molecular chaperone machine. PLoS One 6, e26044.

Echeverria, P.C., Bhattacharya, K., Joshi, A., Wang, T., and Picard, D. (2019).

The sensitivity to Hsp90 inhibitors of both normal and oncogenically trans-

formed cells is determined by the equilibrium between cellular quiescence

and activity. PLoS One 14, e0208287.

Echtenkamp, F.J., Gvozdenov, Z., Adkins, N.L., Zhang, Y., Lynch-Day, M.,

Watanabe, S., Peterson, C.L., and Freeman, B.C. (2016). Hsp90 and p23 Mo-

lecular Chaperones Control Chromatin Architecture by Maintaining the Func-

tional Pool of the RSC Chromatin Remodeler. Mol. Cell 64, 888–899.

Efron, B., and Tibshirani, R. (2007). On testing the significance of sets of genes.

Ann. Appl. Stat. 1, 107–129.

Engelke, R., Riede, J., Hegermann, J., Wuerch, A., Eimer, S., Dengjel, J., and

Mittler, G. (2014). The quantitative nuclear matrix proteome as a biochemical

snapshot of nuclear organization. J. Proteome Res. 13, 3940–3956.

Falsone, S.F., Gesslbauer, B., Tirk, F., Piccinini, A.M., and Kungl, A.J. (2005). A

proteomic snapshot of the human heat shock protein 90 interactome. FEBS

Lett. 579, 6350–6354.

Falsone, S.F., Gesslbauer, B., Rek, A., and Kungl, A.J. (2007). A proteomic

approach towards the Hsp90-dependent ubiquitinylated proteome. Prote-

omics 7, 2375–2383.

Freeman, B.C., and Yamamoto, K.R. (2002). Disassembly of transcriptional

regulatory complexes by molecular chaperones. Science 296, 2232–2235.

Gano, J.J., and Simon, J.A. (2010). A proteomic investigation of ligand-depen-

dent HSP90 complexes reveals CHORDC1 as a novel ADP-dependent

HSP90-interacting protein. Mol. Cell. Proteomics 9, 255–270.
Geller, R., Vignuzzi, M., Andino, R., and Frydman, J. (2007). Evolutionary con-

straints on chaperone-mediated folding provide an antiviral approach refrac-

tory to development of drug resistance. Genes Dev. 21, 195–205.

Geller, R., Taguwa, S., and Frydman, J. (2012). Broad action of Hsp90 as a host

chaperone required for viral replication. Biochim. Biophys. Acta 1823,

698–706.

Glinsky, G.V., Berezovska, O., and Glinskii, A.B. (2005). Microarray analysis

identifies a death-from-cancer signature predicting therapy failure in patients

with multiple types of cancer. J. Clin. Invest. 115, 1503–1521.

Goto, H., Motomura, S., Wilson, A.C., Freiman, R.N., Nakabeppu, Y., Fukush-

ima, K., Fujishima, M., Herr, W., and Nishimoto, T. (1997). A single-point mu-

tation in HCF causes temperature-sensitive cell-cycle arrest and disrupts

VP16 function. Genes Dev. 11, 726–737.

Greer, C.B., Tanaka, Y., Kim, Y.J., Xie, P., Zhang, M.Q., Park, I.-H., and Kim,

T.H. (2015). Histone deacetylases positively regulate transcription through

the elongation machinery. Cell Rep. 13, 1444–1455.

Gvozdenov, Z., Kolhe, J., and Freeman, B.C. (2019). The Nuclear and DNA-

Associated Molecular Chaperone Network. Cold Spring Harb. Perspect.

Biol. 11, a034009.

Hadizadeh Esfahani, A., Sverchkova, A., Saez-Rodriguez, J., Schuppert, A.A.,

and Brehme, M. (2018). A systematic atlas of chaperome deregulation topol-

ogies across the human cancer landscape. PLoS Comput. Biol. 14, e1005890.

Hartl, F.U. (1996). Molecular chaperones in cellular protein folding. Nature 381,

571–579.

Hauri, S., Comoglio, F., Seimiya, M., Gerstung, M., Glatter, T., Hansen, K., Ae-

bersold, R., Paro, R., Gstaiger, M., and Beisel, C. (2016). A High-Density Map

for Navigating the Human Polycomb Complexome. Cell Rep. 17, 583–595.

Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X.,

Murre, C., Singh, H., and Glass, C.K. (2010). Simple combinations of lineage-

determining transcription factors prime cis-regulatory elements required for

macrophage and B cell identities. Mol. Cell 38, 576–589.

Hulsen, T., de Vlieg, J., and Alkema, W. (2008). BioVenn - a web application for

the comparison and visualization of biological lists using area-proportional

Venn diagrams. BMC Genomics 9, 488.

Hummel, B., Hansen, E.C., Yoveva, A., Aprile-Garcia, F., Hussong, R., and Sa-

warkar, R. (2017). The evolutionary capacitor HSP90 buffers the regulatory ef-

fects of mammalian endogenous retroviruses. Nat. Struct. Mol. Biol. 24,

234–242.

Isaacs, J.S. (2016). Hsp90 as a ‘‘Chaperone’’ of the Epigenome: Insights and

Opportunities for Cancer Therapy. In Advances in Cancer Research, I. Jennifer

and W. Luke, eds. (Academic Press), pp. 107–140.

Kasten, M.M., Clapier, C.R., and Cairns, B.R. (2011). SnapShot: chromatin re-

modeling: SWI/SNF. Cell 144, 310.e1.

Kijima, T., Prince, T.L., Tigue, M.L., Yim, K.H., Schwartz, H., Beebe, K., Lee, S.,

Budzynski, M.A., Williams, H., Trepel, J.B., et al. (2018). HSP90 inhibitors

disrupt a transient HSP90-HSF1 interaction and identify a noncanonical model

of HSP90-mediated HSF1 regulation. Sci. Rep. 8, 6976.

Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., and Salzberg, S.L.

(2013). TopHat2: accurate alignment of transcriptomes in the presence of in-

sertions, deletions and gene fusions. Genome Biol. 14, R36.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-AKT1 Santa Cruz sc-55523

Anti-GAPDH Sigma Aldrich G8795

Anti-H3 Abcam ab70550

Anti-HCFC1 R & D Systems AF6254

Anti-HCFC1 Bethyl Laboratories A301-399A

anti-HSP90a Abcam ab79849

Anti-p53 Santa Cruz sc-126

Anti-SNRNP70 Abcam ab83306

Anti-UHRF1 Abcam ab153972

ECL anti-mouse HRP linked GE Healthcare NA931V

ECL anti-rabbit HRP linked GE Healthcare NA934

ECL anti-rat HRP linked GE Healthcare NA935

Chemicals, Peptides, and Recombinant Proteins

APC Annexin V BD PharMingen 550474

Benzonase Sigma Aldrich E1014

Blasticidin S Carl Roth CP14.1

Bortezomib LC Laboratories B-1408

Chloroquine Sigma Aldrich C6628

DAPI SERVA 18860.

DMEM Sigma Aldrich D5671

DMSO Sigma Aldrich 41639

DRB Santa Cruz sc-200581

Fetal Bovine Serum Sigma Aldrich F7524

Foxp3 / Transcription Factor Staining

Buffer Set

Thermo Fisher 00-5523-00

IMDM Gibco 21980

Ki67-FITC eBiosciences 8011-5699

L-Glutamine Sigma Aldrich G7513

Lys-C FujiFilm Wako 129-02541

MC180295 Dr. Jean Pierre Issa, Temple

University

N/A

NVP-AUY922 LC Laboratories N-5300

Oligonucleotide Array Agilent Biotechnologies Custom

Penicillin Streptomycin Sigma Aldrich P4333

Protein A Magnetic Beads Life Technologies 10002D

Protein G Magnetic Beads Life Technologies 10004D

Proteinase K Sigma Aldrich P2308

RNase A Applichem A3832

RPMI 1640 Gibco 11875093

Streptavidin Dynabeads C1 Invitrogen 65001

TRI-Reagent Sigma Aldrich T9424

Trypsin Promega V5113

WST-1 Sigma Aldrich 5015944001

Zeocin Invitrogen R25001

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical Commercial Assays

TurboFect Thermo Fisher R0532

Lipofectamine 3000 Thermo Fisher L3000-015

Strep-Tactin Sepharose. IBA LifeSciences 2-1201-025

PrimeScript RT Reagent Kit with gDNA Erase Takara Bio Science RR047

TB Green Premix Ex Taq Takara Bio Science RR420

NEBNext Ultra II DNA Library Prep kit for Illumina New England Biolabs NEB E7645S

TruSeq Stranded mRNA Library Prep Kit Illumina RS-122-2101

High Sensitivity DNA Chips Agilent Technologies 5067-4626

Experimental Models: Cell Lines

Human: Flp-In T-Rex HEK293 R. Paro, ETH Z€urich N/A

Human: HeLa R. Paro, ETH Z€urich N/A

Human: K-562 E. Trompouki, MPI-IE

Freiburg

N/A

Human: U266 Monika Engelhardt, Uniklinik

Freiburg

N/A

Syrian Hamster: BHK-21 wild-type Prof. Winship Herr and Prof.

Takeharu Nishimoto

N/A

Syrian Hamster: P134S mutant cell lines Prof. Winship Herr and Prof.

Takeharu Nishimoto

N/A

Mouse: MEF cells Thomas Jenuwein N/A

Mouse: HPC-7 Eirini Trompouki N/A

Deposited Data

Sequencing Data This paper GSE126151

HSP90 Clients Echeverrı́a et al. (2011) https://www.picard.ch/Hsp90Int/index.php

HCFC1 ChIP-seq data ENCODE https://www.encodeproject.org

KEGG Cell Cycle Genes GSEA MsigDB http://software.broadinstitute.org/gsea/

msigdb/cards/KEGG_CELL_CYCLE

Protein Expression Data from COAD

tumor and adjacent tissues

LinkedOmics http://linkedomics.org/cptac-colon/

Oligonucleutides

Refer to Table S9 for Primer Sequences N/A N/A

Recombinant DNA

pC5 HSP90 This paper N/A

pOG44 Renato Paro, ETH Zurich,

Switzerland

N/A

pDEST-3FHBH-HCFC1 Kelch This Paper N/A

pCDNA5- HCFC1-N-terminal Winship Herr, University of

Lausanne, Switzerland

N/A

pCDNA5-HCFC1-C-terminal Winship Herr, University of

Lausanne, Switzerland

N/A

pRAB14-VP16 Christos A. Panagiotidis, University

of Thessaloniki, Greece

N/A

pCP-OP_LUC Christos A. Panagiotidis, University

of Thessaloniki, Greece

N/A

pCDNA5-HCF1-fl-P134S Winship Herr, University of

Lausanne, Switzerland

N/A

pCDNA5-FL HCF1 Winship Herr, University of

Lausanne, Switzerland

N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

MaxQuant version 1.5.2.8 N/A https://www.maxquant.org

TrimGalore v0.4.0 N/A http://www.bioinformatics.babraham.ac.uk/

projects/trim_galore/,v0.4.0

TopHat2 v2.0.13 Trapnell et al., 2009 https://ccb.jhu.edu/software/tophat/

index.shtml

Picard tools v1.1.21 N/A http://broadinstitute.github.io/picard.

featureCounts Liao et al., 2014 http://www.rdocumentation.org/packages/

Rsubread/versions/1.22.2

DESeq2 Love et al., 2014 https://bioconductor.org/packages/release/

bioc/html/DESeq2.html

vioplot N/A https://github.com/TomKellyGenetics/

vioplot

WGCNA Langfelder and Horvath, 2008 https://bioconductor.org/packages/release/

bioc/vignettes/CVE/inst/doc/

WGCNA_from_TCGA_RNaseq.html

Bowtie2 Langmead and Salzberg, 2012 https://github.com/BenLangmead/bowtie2

MACS2 Zhang et al., 2008 https://github.com/taoliu/MACS

deeptools2 Ramı́rez et al., 2016 https://deeptools.readthedocs.io/en/develop

pyGenomeTracks N/A https://github.com/deeptools/pyGenomeTracks

BioVenn Hulsen et al., 2008 http://www.biovenn.nl

ggplot2 N/A https://ggplot2.tidyverse.org

R Statistical Computing Software N/A https://www.r-project.org

gplots N/A https://www.rdocumentation.org/packages/

gplots/versions/3.0.1.1

Homer Heinz et al., 2010 http://homer.ucsd.edu/homer

GraphPad Prism GraphPad Software https://www.graphpad.com

FlowJo FLOWJO LLC https://www.flowjo.com/

Cytoscape Otasek et al, 2019 https://cytoscape.org
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for reagents should be directed to and will be fulfilled by the lead contact, Ritwick Sawarkar

(rs2099@mrc-tox.cam.ac.uk). All unique/ stable reagents generated in this study are available from the lead contact with a completed

Materials Transfer Agreement.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Flp-In T-Rex HEK293, HeLa (obtained from R. Paro, ETH Z€urich), BHK-21 wild-type and the P134S mutant cell lines (kind gift from

Prof. Winship Herr and Prof. Takeharu Nishimoto), and MEF cells (kind gift from Thomas Jenuwein), were cultured in DMEM supple-

mented with 10% Fetal Bovine Serum, 2 mM L-Glutamine, Penicillin/ Streptomycin and 5 mg/ml blasticidin. K-562 and HPC-7 cells

(obtained from E. Trompouki, MPI-IE Freiburg) were grown in IMDM supplemented with 10% Fetal Bovine Serum and Penicillin-

Streptomycin. U266 cells (a kind gift from Monika Engelhardt, Freiburg) were grown in RPMI supplemented with 10% Fetal Bovine

Serum and Penicillin-Streptomycin. Cells were maintained at 37�C and 5% CO2 and were routinely tested for mycoplasma contam-

ination by PCR.

METHOD DETAILS

Chemical-Genetic Interaction Screen
The chemical genetic interaction screen was performed as described earlier (Scuoppo et al., 2012), with minor modifications.

Briefly, �2660 shRNA oligonucleotides targeting 668 different transcription regulator factors were synthesized on a 55k customized

oligonucleotide array (Agilent Technologies). PCR amplified shRNAs were pool-cloned into a retroviral vector allowing doxycycline

inducible expression (TREBAV; data not shown) to generate a plasmid shRNA library. The libraray was divided in 3 pools (A, B and C)
e3 Cell Reports 29, 1645–1659.e1–e9, November 5, 2019
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each with around 1000 shRNAs. Viruses carrying individual shRNAs were produced by transient transfection of Platinum-E retroviral

packaging cells using TurboFect (Thermo Fisher #R0532) and used to infect K562 cells co-expressing the ecotropic receptor as well

as the rtTA repressor. ShRNA-mediated knockdown of selected targets was achieved upon doxycycline induction (1 mg/ml doxycy-

cline final concentration) which concurrently induced DsRed expression. Cells were simultaneously treated with either DMSO (mock

treatment) or with 15 nM NVP-AUY922 (Hsp90 inhibitor, LC Laboratories, USA). Four days upon treatment cells were harvested and

barcodes were deep-sequenced. The experiment was performed in two biological replicates for each pool of shRNA (A1, A2, B1, B2,

C1 and C2). Thus we have 5 sets of samples (Day0, Day4untreated, day4dox, day4NVP, day4doxNVP) processed in 6 subpools

(A1, A2, B1, B2, C1 and C2) making up a total of 30 samples. To determine the Chemical-Genetic Interaction Score (CGIS), the

following two steps were performed: (1) the quotient between the shRNA counts of HSP90-inhibitor treated and untreated samples,

both after shRNA induction by doxycycline, was calculated to determine the fold change for each shRNA. (2) the log-2 based fold

change values for all shRNAs targeting the same gene added to calculate the CGIS. Five different cut-offs for CGIS were used to

filter the list of all genes tested. Analysis of the different list showed robustness of our findings to different cut-offs used (Figure S4C).

Finally, a CGIS cut-off of ± 1.5 was usedwhich is equivalent to the standard deviation of�1. Test of association between CGIS-short-

list and known HSP90 clients was done using chi-square test. A list of known HSP90 clients was downloaded from https://www.

picard.ch/Hsp90Int/index.php as of January 2019.

Since the CGIS outlined above does not consider the variation between duplicate experiments as well as for individual shRNA, we

also performed a Z-score based analysis as described in the reference (Malo et al., 2006). The CGIS of a gene is a cumulative score

for all shRNA targeting that gene (shown in Figure 1C) whereas the Z-score is calculated for individual shRNAs (shown in Figure 1D).

The average standard deviation for all shRNAs targeting the same gene across the whole population was �0.07, indicating highly

reproducible effects between the different shRNAs.

Cell Fractionation
Fractionation was performed as described earlier (Margueron et al., 2008). Briefly, HEK cells were harvested and an aliquot was taken

out in RIPA buffer (50 mM HEPES pH 7.9, 150 mM NaCl, 0.5% sodium deoxycholate, 0.1% SDS, 1% Triton-X, 5 mM MgCl2, 10%

glycerol), and saved as cell extract. Remaining cells were resuspended in Buffer A (10 mM HEPES pH 7.9, 5mM MgCl2, 0.25 M Su-

crose) and incubated on ice for 10 minutes. NP-40 detergent was added to the cell suspension to a final concentration of 0.1% for

HEK. Cells were then passed through an 18G needle (10 times for HEK) and centrifuged at 2000 xg for 10 min at 4�C. The resulting

supernatant was saved as cytosol. The nuclear pellet was washed twice with buffer A. An aliquot was taken out in RIPA buffer and

saved as total nuclear extract (TNE). The rest was resuspended in 0.5M buffer B (20 mM HEPES pH 7.9, 0.5 M KCl, 1.5 mM MgCl2,

0.1mMEDTA, 10%Glycerol) and incubated for 30min at 4�C. The suspension was centrifuged and supernatant was saved as nucle-

oplasm. The chromatin pellet was resuspended in 2M buffer B (20 mM HEPES pH 7.9, 2 M KCl, 1.5 mMMgCl2, 0.1 mM EDTA, 10%

Glycerol), and incubated for 30min at 4�C. TCE, TNE and chromatin (CHR) were sonicated for 15 cycles (30 s on/30 s off, high power)

using Bioruptor sonicator. Samples were centrifuged at 20 000 xg for 10min to remove debris and protein amount was determined by

Nanodrop.

SDS-PAGE
Polyacrylamide gels were cast according to Rotiphorese� Gel 30 (ROTH, #30291) instruction manual. Protein samples were mixed

with 4X loading buffer (50 mM Tris-HCl pH 6.8, 2%SDS, 10% glycerol, 1% b-mercaptoethanol, 0.02% bromophenol blue), heated at

95�C for 5 min and loaded on gels. Electophoresis was then run at 150-180 V for 60-90 min in SDS-PAGE running buffer (25 mM Tris,

192 mM glycine, 0.1% SDS).

Silver Staining
Polyacrylamide gels were fixed in fixation solution (10% HOAc, 45% MeOH) for 15 min and reduced in Farmer’s reducer solution

(30 mM K3Fe(CN)6, 30 mM Na2S2O3) for 2 min. Upon several extensive washes gels were stained in 0.1% (g/v) silver nitrate, washed

again, and developed with 0.1% formaldehyde in 2.5% Na2CO3. Reaction was stopped by addition of 10% HOAc.

Western Blotting
Transfer of proteins on nitrocellulose membrane was carried out at 300 mA for 60 min in transfer buffer (25 mM Tris, 192 mM glycine,

20% methanol). Membrane was then blocked with blocking solution (5% non-fat milk in PBST), incubated with primary (for 1 hour

or ON) and secondary antibody (for 1 hour) and developed using ChemiDoc Imaging System (Biorad).

Nuclear Protein Affinity Purification Coupled to Mass Spectrometry
Stable Cell Lines Generation

Hsp90a cDNAs was cloned into pC5 destination vector. Flp-In HEK293 T-REx cells stably expressing the tet repressor were co-

transfected with the corresponding expression plasmids and the pOG44 vector (for co-expression of the Flp-recombinase) using

the Lipofectamine 3000 (Life Technologies, #L3000-015) according to manufacturer’s protocol. Cells were selected in zeocin-con-

taining medium (100 mg/ml) for 2–3 weeks to generate stable cell lines. Resulting HA-Strep tagged protein clones were used for

further experiments.
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Nuclear Protein Extract Preparation

Flp-In HEK293 T-REx cells stably expressing Hsp90a or RFP were grown to 70% confluency. Recombinant protein expression was

induced by adding 1 mg/ml tetracyclin directly into growing medium for 16 hours. Cells were collected and nuclei were then isolated

as already described earlier. Nuclear protein extracts were generated using the classical high-salt Dignam extraction protocol

(Dignam et al., 1983) with slight modifications. Briefly, nuclei were resuspended in buffer B (20 mM HEPES pH 7.9, 420 mM KCl,

1.5 mM MgCl2, 0.1 mM EDTA, 10% glycerol) and incubate for 30 min at 4�C. Suspension was diluted in buffer D (20 mM HEPES

pH 7.9, 1.5 mMMgCl2, 10% glycerol), treated with benzonase (10 U/ml), and centrifuged at 70 000 xg for 30 min at 4�C. Supernatant
was recovered and immediately used for protein affinity purification.

Buffers A, B andD contained ATP regeneration system components (10mMATP, 0.2Mphosphocreatine, 1mg/ml creatine kinase)

to keep ATP concentration high enough for the ATP-dependent cycle of the chaperone.

Protein Affinity Purification

Affinity purification of recombinant HA-Strep-tagged proteins was performed utilizing the IBA GmbH Strep-tag� - Strep-Tactin sys-

tem (IBA, #2-1201-025). Briefly, sample was applied to the column to pass through gravity force. Following six washes with washing

buffer (20mMHEPES pH 7.9, 1.5mMMgCl2, 10%Glycerol, 150mMKCL, 0.1%NP-40) bound complexes were released with elution

buffer (20 mM HEPES washing buffer. pH 7.9, 1.5 mM MgCl2, 10% glycerol, 150 mM NaCl, 20 mM desthiobiotin, 0.1% NP-40).

Eluates were snap frozen in liquid nitrogen and kept at – 80�C until needed.

Protein Digestion and Mass Spectrometry Analysis

Combined elution fractions of the Streptactin Sepharose purified protein complexes were TCA precipitated, washedwith�20�Cneat

acetone, air-dried and finally resuspended in 50 ml urea buffer (10 mMHEPES-NaOH, pH 7.9, 6 M urea, 2M thiourea) and the pH was

adjusted to pH 7-8 by addition of 1M Tris-HCl, pH 10. Reduction/alkylation was carried out by adding TCEP to a final concentration of

5 mM (20 min, 25�C) followed by iodoacetamide to a final concentration of 10 mM (15 min, 25�C). Samples were first subjected to

Lys-C (Wako; 250 ng, 25�C, 3 hr) proteolysis and after addition of 0.2 mL 50mM ammonium bicarbonate subsequently digested with

Promega trypsin (250 ng, 25�C, 12 hr) and analyzed by nanoLC-MS as previously published (Tropberger et al., 2013) with modifica-

tions outlined below. STAGE tip assisted sample purification of digested samples was achieved essentially as described (Rappsilber

et al., 2007). Desalted samples were subsequently analyzed using nanoflow (Agilent 1200 nanoLC, Germany) LC-MS/MS (precisely

as reported in Engelke et al., 2014) on a linear ion trap (LIT)-Orbitrap (LTQ-Orbitrap XL+ETD) mass spectrometer (Thermo Fisher Sci.,

Germany). Peptides were eluted with a linear gradient of 10%�60% buffer B (80% ACN and 0.5% acetic acid) at a flow rate of 250

nl/min over 90 min. Each sample was analyzed twice, employing CID (collision induced dissociation) or ETD (electron transfer disso-

ciation) fragmentation for the generation of MS2 spectra. Data were acquired using a DDA ‘‘top 5’’ method, dynamically choosing the

five most abundant precursor ions from the survey scan (mass range 350�1600 Th) in order to isolate and fragment them in the LIT.

All data were acquired in the profile mode and dynamic exclusion was defined by a list size of 500 features and exclusion duration of

30 swith aMMDof 10 ppm. Early expirationwas disabled to decrease the re-sequencing of isotope clusters. The isolation window for

the precursor ion selection was set to 2.0 Th (CID) and 2.5 Th (ETD), respectively. Precursor ion charge state screening was enabled

and all unassigned charge states as well as singularly charged ions were rejected. For the survey scan a target value of 1,000,000

(1000 ms maximal injection time) and a resolution of 60,000 at m/z 400 were set (with lock mass option enabled for the

445.120024 ion), whereas the target value for the fragment ion spectra was limited to 10,000 ions (200 ms maximal injection

time). The general mass spectrometric conditions were: spray voltage, 2.3 kV; no sheath and auxiliary gas flow; ion transfer tube tem-

perature, 160�C; collision gas pressure, 1.3mTorr. Ion selection thresholds forMS2were 1000 counts (for both CID and ETD). For CID

the normalized collision energy (NCE) usingwide-band activationmodewas set to 35%and an activation q = 0.25 and activation time

of 30 ms was applied. We enabled supplementary activation (NCE 15%) for ETD, the default charge state was set to 3 and a fluo-

ranthene anion activation time of 100 ms was used. General ETD reagent ion source parameters were set as follows: polarity, nega-

tive; temperature, 160�C; emission current, 50 mA; electron energy,�70V; CI pressure, 25 psi; reagent vial 1 target value, 300,000 and

temperature, 90�C.
MS data were processed by MaxQuant (version 1.5.2.8) and searched with the integrated Andromeda database search engine

against the human Uniprot database (release October 2014) combined with frequently observed contaminants and concatenated

with the reversed versions (decoys) of all sequences. In addition the N-terminal HA-twin_StrepII double tag (MYPYDVPDYAG

TELGSTMASWSHPQFEKGGGSGGGSGGGSWSHPQFEKAAD) was appended as a separate protein sequence to the database.

The MMD for monoisotopic precursor ions and MS/MS peaks were restricted to 7 ppm and 0.6 Da, respectively. Enzyme specificity

was set to trypsin (permitting a maximum of two missed cleavages) allowing cleavage N-terminal to proline and between aspartate

and proline. Modifications were cysteine carbamidomethylation (fixed) as well as protein N-terminal acetylation, deamidation (aspar-

agine and glutamine) and methionine oxidation as variable PTMs. The required peptide false discovery rate (FDR) and the required

protein FDR were set to 0.01, with the minimum required peptide length of 6 amino acids. The ‘‘match between runs’’ and ‘‘second

peptide’’ features were enabled. Proteins were identified with at least two peptides, wherein one of them should be unique to this

protein. Intensity-based relative and absolute quantifications were performed using MaxLFQ, the label-free quantification (LFQ)

and iBAQ algorithms implemented in MaxQuant (Deeb et al., 2014). Protein quantification ratios were calculated only for proteins

with R 2 LFQ measurements, requiring at least one MS2 measurement to be associated with the MaxLFQ quantified peptide ion

isotope cluster peak (feature) in order to be considered as valid. The LFQ values calculated for the two tryptic peptides derived

from the HA-twin_StrepII double tag were utilized for additional normalization of samples in order to account for variations in the
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amount of bait proteins (HSP90a and RFP control). Nuclear HSP90a interactome analysis was performed in 4 biological replicates

using RFP-expressing HEK cells as a control. A ratio between peptide intensity in HSP90 and RFP pull-downs for individual protein

hits was calculated. Proteins with the peptide-intensity ratio of more than 4 were identified as HSP90a-interacting candidates per

replicate. Candidate proteins identified in at least 3 out of 4 replicates were considered as HSP90a physical interactors (Table

S3). Manual curation for transcription regulators from this list gave rise to Table S4 that has been used for all further analyses in

this study. Four different cut-offs for log2 fold enrichment was used to analyze the robustness of our findings (Figure S4D).

Network visualization of genetic and physical interactors was done using Cytoscapewith default parameters (Shannon et al., 2003)

with information of protein-protein interactions known in literature. For the sake of available space in the figure and clarity, not all

genes are shown. Both networks (Figures 1E and 2E) show only those genes which either have more than one known interaction

with other genes in the list or are known parts of a complex, other subunits of which were in the list.

Manual curation of HCFC1 interactors was done by combining interactors found in diverse cell lines in different labs in the last few

years, the source references of these data are indicated in themain text. TheseHCFC1 interactome data were used in Figures 3E, 4C,

and S4F. Annotation of subunits of NuRD and BAF complexes (Figure 3E) is based on references (Bao and Shen, 2007; Kasten et al.,

2011; Mashtalir et al., 2018; Sims and Wade, 2011).

RNA Isolation
RNA isolationwas done using TRI-Reagent (SigmaAldrich, #T9424) according tomanufacturer’s instructions. For HEK293 andHeLa,

cell lysis was done directly on the cell culture dish. 1ml of TRI-Reagent was used per 10 cm. For K562, cells were pelleted by centri-

fugation and resuspended in 1ml of TRI-Reagent per 10x106 cells. Samples were incubated at room temperature for 5 min to disso-

ciate nucleo-protein complexes. 0.2 mL of chloroform was added per 1ml of TRI-Reagent used for cell lysis. Samples were shaken

vigorously 15 s, incubated at room temperature for 10 min and spun down at 12 000 x g for 10 min at 4�C. The upper aqueous phase

was transferred into a fresh tube and supplemented with isopropanol (0.5 mL per 1 mL of TRI-Reagent used). Sample was mixed by

inverting and incubated at room temperature for 5-10 min. RNA pellet was washed with 1 mL of 75% ethanol by centrifuging at

10000 g for 10 min at 4�C. It was air-dried and re-dissolved in water. RNA concentration was measured using Nanodrop 1000.

ChIP-Seq
Preparation of chromatin

Twenty million K562, treated with DMSO or 300nM NVP-AUY922 for 16 hours were fixed using 1% methanol-free formaldehyde in

IMDM for 10 min at room temperature (end-over-end rotation). The cross-linking reaction was stopped by adding glycine to a final

concentration of 125 mM and incubated for 5 min at room temperature (end-over-end rotation). Cells were spun down at 750 xg for

5 min at 4�C and washed twice with cold PBS. Chromatin preparation for K652 was performed according to Arrigoni et al. (2016).

Briefly, cell pellet sonicated in Farnham Buffer (5 mM PIPES pH 8, 85 mM KCl, 0.5% Igepal) with Covaris sonicator to isolate nuclei.

The following settings were used: Peak Power = 75, Duty Factor = 2, Cycles/Burst = 200, Time = 2. Nuclei were then washed in

Farnham buffer and resuspended in shearing buffer (10 mM Tris-HCl pH 8, 0.1% SDS, 1 mM EDTA). Material was sonicated in

1 mL Covaris tubes using the following settings: Peak Power = 140, Duty Factor = 5, Cycles/Burst = 200, Time = 25-30min. Obtained

chromatin was spun down at 20 000 xg for 10 min at 4�C to remove debris. A small aliquot of sheared chromatin was processed in

order to assess sonication efficiency and chromatin yield prior to IP - the optimal size range of DNA for ChIP-seq analysis should be

between 200 and 600 base pairs. Prior to IP chromatin was diluted 1:1 with lysis buffer 3 to achieve a final SDS concentration of

0.05%. An aliquot was saved as input DNA.

Chromatin Immunoprecipitation

Chromatin Immunoprecipitation was performed as previously described (Lee et al., 2006). Briefly, Protein A or G magnetic beads

were incubated with 5ug of antibody in block solution for 6 hours at 4�C. Bead-antibody complex was then incubated with 200ug

of chromatin overnight at 4�C solution. Beads were washed once with wash buffer 1 (20 mM Tris-HCl pH 8, 150 mM NaCl, 2mM

EDTA, 0.1% SDS, 1%Triton X-100), wash buffer 2 (20 mM Tris-HCl pH 8, 500 mM NaCl, 2 mM EDTA, 0.1% SDS, 1%Triton

X-100) and wash buffer 3 (10 mM Tris-HCl pH 8, 250 nM LiCl, 2 mM EDTA, 1% NP40) and TE. DNA was eluted by addition of

200 mL elution buffer (50 mM Tris-HCl, pH 8.0, 10 mM EDTA and 0.5% – 1% SDS) to beads and heating at 65�C for 45 min under

vigorous shaking. Upon reverse crosslinking DNA was treated with RNase and proteinase K, and was purified by Phenol–chloro-

form–isoamyl alcohol extraction.

Library Prep

For ChIP-seq, DNA libraries were prepared from the immunoprecipitated DNA. Sequencing libraries were prepared using the

NEBNext Ultra II DNA Library Prep kit for Illumina (NEB E7645S). 2-5 ng of immunoprecipitated DNAwas used for library preparation.

Library size distribution was monitored by capillary electrophoresis (Agilent 2100 Bioanalyzer, High Sensitivity DNA Chips (Agilent,

5067–4626). Libraries were sequenced paired-end on HiSeq 3000. Sequencing Depth was 9M for ChIP and 95M for Input, paired

end for length of 75bps.

Biochemical Analyses of Protein Stability and Interactions
FLAG- and biotin-tagged HCFC1 Kelch domain (this paper) or HCFC1 N-/ C-terminal fragments (kind gift from Prof. Winship Herr,

Lausanne, Switzerland) were expressed in HEK293 or HeLa cells as indicated in respective figures. To strengthen the transient
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interaction between Hsp90 and HCFC1 cells were co-transfected with a mutant of HSP90 (E42A; deficient in ATP hydrolysis; Prince

et al., 2015) which binds but does not release its clients. Total cell extracts were prepared as described by Moulick et al. (2011).

Biotin-tagged bait proteins were purified using streptavidin magnetic Dynabeads.

To determine the role of autophagy and proteasome in degrading HCFC1 upon HSP90 inhibition, HEK293 cells were treated with

the following inhibitors indicated in Figure S7A: 300nM NVP-AUY922; 50nM Bortezomib; 15uM Chloroquine.

Experiments Testing Functional Interaction between HSP90 and HCFC1
Effect of HCFC1 knockdown on mean growth rate of K562 cells was measured in the presence and absence of HSP90in (Figure 6A).

K562 cells were infected with the indicated shRNAs linked to GFP and either treated with 15nM HSP90 inhibitor or left untreated.

Effect of HCFC1 knockdown on cell growth was assessed by flow cytometric measurement of the fraction of GFP+ cells, reflecting

growth rate of shRNA+ GFP+ cells relative to shRNA- GFP- cells in the same population. The graph shows the relative change in the

fraction of GFP+ cells 7 days after infection. A general increase in the fraction of GFP+ cells is seen as it takes a few days for all infected

cells to express sufficient GFP to be detected by FACS. At 15nM concentration of HSP90in, wild-type cells typically show very little

effect on growth rate.

To study if HCFC1 overexpression can rescue effects of HSP90in on cell-cycle gene expression (Figure S7D), we transfected HeLa

cells with HCFC1-expression constructs (kind gift from Prof. Winship Herr, University of Lausanne, Switzerland). 2 days after trans-

fection, 300nM HSP90in was added for 6 hours before lysing the cells in Trizol for expression analyses.

HSP90 Inhibitor Sensitivity of BHK Isogenic Cells

Two cell lines, BHK-21 wild-type and the P134S mutant cell lines (kind gift from Prof. Winship Herr, University of Lausanne,

Switzerland and Prof. Takeharu Nishimoto, Japan), were seeded at a density of 10,000 cells per well in 96-well plates and treated

with 15nM of the Hsp90 inhibitor, NVP-AUY922. The cells were incubated at 39.5�C and cell viability was measured 48 hours after

seeding using WST-1 reagent from Sigma. The interaction between HSP90 and HCFC1 was tested in BHK isogenic cells by trans-

fecting biotin-tagged HSP90 and performing affinity purifications following protocol detailed above.

HSP90/CDK9 Inhibitor Combination Treatment of Various Cell Lines

Cell lines were incubated with the following inhibitor concentration at indicated cell numbers. Cell viability was measured 24 or 48

hours after seeding using WST-1 reagent from Sigma, as shown in the table below.
Cell Line

Seeded Cells Per

well (96 well plate) CDK9 Inhibitor# Conc. HSP90 Inhibitor Conc. Time

U266 10k DRB 50 uM AUY922 12.5nM 48h

U266 20k MC180295 150nM AUY922 15nM 24h

K562 20k DRB 50 uM AUY922 15nM 24h

K562 20k MC180295 1uM AUY922 15nM 24h

HeLa 20k MC180295 1uM AUY922 50nM 24h

BHK21 (isogenic wild-

type and mutant)

10k - - AUY922 15nM 48h

#MC180295 was a kind gift from Dr Jean-Pierre Issa (Temple University, USA).
Viral Transcription Reporter Assay

HEK293 cells were plated in a 24-well plate 24hrs prior to transfection. Cells were co-transfected with Herpes Simplex Virus-alpha

promoter driven-Luc reporter plasmid (pCP-OP_LUC; 0.5ug) and trans-activator VP16 plasmid (pRAB14-VP16) at a 1:0.3 molar ratio

(Bohenzky et al., 1993). The plasmids were a kind gift from Christos A. Panagiotidis from Aristotle University of Thessaloniki, Greece.

Luciferase expression wasmeasured 24hrs post-transfection and normalized to GAPDH endogenous control by RT-qPCR. HSP90in

was added at 10nM concentration 6hrs prior to harvesting cells. P134S mutant HCFC1 was expressed from pCDNA5-HCF1-fl-

P134S plasmid, and wild-type HCFC1 from pCDNA5-FL HCF1, both obtained as a kind gift from Prof. Winship Herr, University of

Lausanne, Switzerland.

Apoptosis and Cell-Cycle Analyses of U266 Cells Treated with Inhibitors (Figure S9B)

Cells were washed twice by centrifugation in phosphate-buffered saline (PBS) at 500 g for 5min. Fixation, permeabilization and stain-

ing were performed using Foxp3/Transcription factor Staining buffer set (eBioscience) according to manufacturer0s instructions with

minor modifications. Cells were stained at 4�C in the dark. The annexin V/ DAPI staining was used to determine apoptosis according

to manufacturer0s protocol with minor modifications (BD pharmingen). Staining with Annexin V (1:50 dilution) conjugated to APC and

DAPI (2ug/ml) was performed in annexin V binding buffer at a concentration of 0.5-1.03 107 cells/ml. Flow cytometry was performed

using the BD LSR II flow cytometer on 10,000 events and analyzed using FlowJo software. For cell-cycle analysis, Ki67-FITC
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(eBioscience) was used at a 1:500 dilution and DAPI at 2ug/ml. Cells were then washed, resuspended in PBS and analyzed using the

BD LSR II flow cytometer on 10,000 events. Data were analyzed using FlowJo software.

Quantitative PCR

RNA was isolated after Trizol extraction per manufacturer’s protocol. RT was done using PrimeScript RT with dDNA eraser (Takara)

and cDNA amplified using TBGReen Premix Ex Taq (Takara) per manufacturers instructions. DNA amounts were quantified using the

DDCT, and the non treated condition was set to one.

RNA-Seq
HSP90 inhibition was carried out using the following concentrations of NVP-AUY922 for 16 hours with the corresponding cell types:

50nM for HPC-7, 200nM for MEFs and 300nM for K562. RNA was isolated using Trizol as described above. Library Preparation was

done using TruSeq Stranded mRNA, according to manufactures protocol. Samples were sequenced using. Samples were

sequenced using Illumina NextSeq 500 for MEF and K562 cells and Illumina NextSeq 2500 for HPC-7 cells, paired end and read

length of 75bps. Sequencing Depth was 9M and 15M for HPC-7 cells, 10M and 15M for K562, and 13M for MEF cells. Samples

were sequenced using Illumina NextSeq 500 for MEF and K562 cells and Illumina NextSeq 2500 for HPC-7 cells.

QUANTIFICATION AND STATISTICAL ANALYSIS

Computational Analysis of Sequencing Data
RNA-seq reads were trimmed with TrimGalore (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/, v0.4.0) and map-

ped to Gencode (GRCh37, release: 19 or GRCm38, release m4, respectively) annotation using TopHat2 (Kim et al., 2013) (v2.0.13)

with the options mate-inner-dist, mate-std-dev and library-type (fr- firststrand). The distance between read mates (mate-inner-dist

and mate-std-dev) were assessed individually using Picard tools [http://broadinstitute.github.io/picard.] (v1.1.21). After mapping of

the RNA-seq reads from all samples, the reads that mapped uniquely to the genome were counted using featureCounts (Liao et al.,

2014) with the following options: -Q 10 -p -B -C -s 2. The annotations present in theHomo sapiens gtf file from the Ensembl release 75

were used as reference for counting. DESeq2 (Love et al., 2014) was used for differential expression analysis of all replicates for each

condition. Genes with an adjusted p value < 0.01 and absolute log2 fold change more than 1 were defined as significantly affected.

A list of KEGG cell cycle genes were downloaded from GSEA MSigDB (http://software.broadinstitute.org/gsea/msigdb/cards/

KEGG_CELL_CYCLE). Genes were grouped into HCFC1 target and non-target genes based on the presence or absence, respec-

tively, of HCFC1 ChIP-seq peak in their promoter region (ENCODE data). Violin plots in Figure S7B showing log2 fold changes in

expression upon HSP90 inhibition was plotted for both groups using the vioplot package in R (https://github.com/

TomKellyGenetics/vioplot). Significance was calculated using a Wilcoxon test.

Raw read counts from TCGA RNA-seq data were downloaded using TCGAbiolinks R package (Colaprico et al., 2016). Raw counts

were first transformed to normalized log2-counts per million (logCPM) using the voommethod within limma (Ritchie et al., 2015) and

then centered gene-wise for between-sample comparisons. Only cancer types with more than 5 normal tissue controls were used for

further analysis (17 cancer types remained after filtering). Heatmaps were generated using the ‘‘gplots’’ R package (https://www.

rdocumentation.org/packages/gplots/versions/3.0.1.1) using the following score (medianPT-medianNT)/(medianPT+medianNT). Hier-

archical clustering with euclidean distance metric and ward method was performed using the heatmap.2 function available in the

‘‘gplots.’’ The resulting hierarchical tree was split into 25 clusters. Four additional number of clusters (15, 20, 30 and 35) were

used to demonstrate that the results of our analysis are not dependent on the cut-offs used (Figure S4E).

WGCNA (Langfelder and Horvath, 2008) analysis was used to identify modules of genes that are co-expressed in all cancer types

analyzed in this study including normal tissue and primary tumor samples. Analysis was performed according a WGCNA tutorial

(https://bioconductor.org/packages/devel/bioc/vignettes/CVE/inst/doc/WGCNA_from_TCGA_RNAseq.html).

TCGA cancer type acronyms: BLCA (bladder urothelial carcinoma), BRCA (breast invasive carcinoma), COAD (Colon adenocar-

cinoma), CHOL (cholangiocarcinoma), ESCA (esophageal carcinoma), HNSC (head and neck squamous cell carcinoma), KICH (kid-

ney chromophobe), KIRC (kidney renal clear cell carcinoma), KIRP (kidney renal papillary cell carcinoma), LIHC (liver hepatocellular

carcinoma), LUAD (lung adenocarcinoma), LUSC (lung squamous cell carcinoma), PRAD (prostate adenocarcinoma), READ (Rectum

adenocarcinoma), STAD (stomach adenocarcinoma), THCA (thyroid carcinoma), UCEC (uterine corpus endometrial carcinoma).

ChIP-seq reads were aligned to the human genome build hg38 or mouse genome mm10, respectively, using Bowtie2 (Langmead

and Salzberg, 2012). Duplicate and discordant reads were removed. Peak calling was done with MACS2 (model- based analysis of

ChIP- Seq) (Zhang et al., 2008) using ‘‘–keep-dup all,’’ ‘‘–nomodel’’ and ‘‘–extsize 200.’’ Gene annotations and transcript start site

(TSS) information for human genes were from taken from Gencode annotation release 26 and for mouse genome from Gencode

annotation release m4. For visualization, the paired-end reads were extended to fragment size and normalized to total reads aligned

(reads per million, RPM) using deeptools2 (Ramı́rez et al., 2016). Profile plots and heatmaps of ChIP-seq signal were generated with

deeptools2 (Ramı́rez et al., 2016).

All browser tracks were visualized using pyGenomeTracks program (https://github.com/deeptools/pyGenomeTracks). Venn dia-

gram was visualized using BioVenn (Hulsen et al., 2008).

BETA package (Wang et al., 2013b) was used to predict the activating/repressive function of HCFC1 on its target genes in mouse

embryonic stem cells.
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Publicly available ChIP-seq data for HCFC1, ZNF143, THAP11, GAPB and YY1 in HeLa cells were downloaded from GEO acces-

sion GSE31419. ChIP-seq data for E2F1, E2F4 and E2F6 in HeLa cells as well as HCFC1 in mouse ESCs were downloaded from

ENCODE.

Gene Set Analysis (GSA)
Gene Set Analysis was first described in Efron and Tibshirani (2007). GSA for genes interacting with HSP90 or HCFC1 was done as

described in Hadizadeh Esfahani et al. (2018). In our analysis, GSAmethod calculates a score for each gene based on its expression

in cancer tissues compared to control tissues using the t-statistic. The GSA analysis further combines these scores of individual

genes within a set to a singular value termed as ‘‘delta GSA value of the gene set’’ using the max-mean statistic. GSA values for

different gene sets were plotted as scatterplots using ggplot2 (Wickham, 2016). Correlation and F-Statistics were calculated using

the lm() function from the stats package (R Core Development Team, 2018). Heatmaps were plotted using ‘‘gplots.’’ TCGA cancer

type acronyms are indicated above.

Protein Expression Visualization
Protein expression data from COAD tumor and normal adjacent tissues (Vasaikar et al., 2019) was downloaded from LinkedOmics

(http://linkedomics.org/cptac-colon/). Boxplots were plotted using ‘‘ggplot2.’’

Motif Discovery
Motif discovery was done for promoter regions of genes misregulated upon HSP90 inhibition as well as for HSP90 ChIP-seq peak

regions using Homer software (Heinz et al., 2010) with default parameters except ‘–size given’ for peak regions. For misregulated

genes, the promoter region was defined as 400bp upstream of the transcription start site (TSS) to 100bp downstream of the TSS

following a Homer tutorial ((http://homer.ucsd.edu/homer/microarray/index.html). Genes upregulated and downregulated upon

HSP90 inhibition were used separately for the motif analysis.

Statistical Tests
Statistical tests used to plot each figure are indicated in their respective legends.

DATA AND CODE AVAILABILITY

All the deep-sequencing data in this study are deposited in GEO and are available under accession number GEO: GSE126151
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